
A Blackboard Architecture for a
Rule-Based SQL Optimiser

A thesis submitted for the degree of
Master of Science of

The Australian National University

Vikram Sharma

August 1997

I declare that this thesis reports my own original work, that no part of it has been
previously accepted or presented for the award of any degree or diploma by any
University, and to the best of my knowledge no material previously published or
written by another person is included except where due acknowledgment is given.

Vikram Sharma

Canberra ACT
August 1997

Abstract

In relational database systems the query optimiser plays a critical role in translating a

query from its initial form as input by a user into an efficient program which can be

executed by the database component which performs the physical retrieval of data. For

queries other than the most trivial, there usually exist numerous different possibilities

for the sequence in which tables are accessed and the access methods used to retrieve

the requested data. It is the role of the optimiser to select a good, and possibly the

best, program to execute the query.

In addition to the inherent complexity of the problem, designers of optimisers have to

contend with often conflicting requirements such as the need for modularity and

extensibility versus the need for efficient execution of the program. Often this leads to

designs which compromise on some qualities of the optimiser in order to maximise

others. This thesis proposes a model which attempts to address characteristics

desirable in a relational query optimiser more completely than contemporary designs.

An architecture for an SQL optimiser which is based on the concept of a blackboard is

investigated. The proposed design incorporates a set of rules to perform the

transformations necessary to optimise the query. Subsets of these rules are grouped

into knowledge sources which operate on the evolving problem solution in an

independent manner. A mechanism for the back propagation of the results of

optimisations is also incorporated in the design.

The proposed model has been implemented in Aion/DS, a knowledge base

development tool. The results of the optimisation of a sample set of queries are

examined. The impact of restricting the number of alternatives explored by the

optimiser, both on query execution plan quality and optimiser performance, is also

investigated.

The thesis concludes with a brief discussion of possible further work including

enhancements to the model and automated tuning of the optimiser.

Acknowledgments

I would like to express my deepest gratitude to my supervisor, Dr Vicki Peterson, who

has patiently guided me throughout this work. Her insight and direction have added

greatly to the final outcome of the project.

I would like to thank my wife, Gauri, who has unfailingly supported and encouraged

my endeavours. I would also like to express my delight at the arrival of our beautiful

daughter, Diya, which provided the catalyst for the completion this work.

1. INTRODUCTION... 1

1.1 Background..1
1.2 Area of Research..2

2. RELATED W O R K .. 3

2.1 Blackboard Systems..3
2.1.1 Model for Problem Solving... 3
2.1.2 The Blackboard...5
2.1.3 Knowledge Sources... 6
2.1.4 Control Strategy.. 8
2.1.5 Conclusions...10

2.2 A Model For A Rule-Based SQL Optimiser..11
2.2.1 Query Optimisation and Evaluation..12
2.2.2 Source and Target Languages.. 13
2.2.3 Operators and Functions... 14
2.2.4 The Transformation Rules... 16
2.2.5 Conclusions.. 20

2.3 A Blackboard Architecture for Query Optimisation in Object Bases..........................21
2.3.1 Blackboard Structure..23
2.3.2 Search Strategy... 24
2.3.3 Back propagation... 25
2.3.4 Conclusions.. 27

3. BBQ CONCEPTUAL M ODEL...28

3.1 Objectives... 28
3.2 Architecture...28

3.2.1 Transformation Rule Set.. 30
3.2.2 The Blackboard... 30
3.2.3 Cost function and Control Strategy... 31
3.2.4 Back Propagation Function...32

4. BBQ DESIGN... 35

4.1 SQL Transformation Rules..35
4.2 Cost Mo d el .. 37
4.3 Search Strategy..41
4.4 Back Propagation of Optimisation Results... 42

5. RESULTS... 44

5.1 Database Mo d el ..44
5.2 Results of Sample Optimisations...46
5.3 Distribution of QEP Costs.. 51
5.4 Results from Restricted Searches..56

5.4.1 Limited number o f alternatives expanded..57
5.4.2 Increase Search Breadth... 59
5.4.3 Increase Search Depth...63
5.4.4 Summary o f restricted search runs.. 64

5.5 Change in IO to CPU Weighting.. 65
5.6 Delta Profiles for Knowledge Sources...67
5.7 Example of Extending Transformation Rule Se t .. 69
5.8 Advantages of Blackboard Architecture.. 73
5.9 Benefits of Search Strategy..74

6. FUTURE W ORK AND EXTENSIONS... 76

6.1 Extension of Source Language and Transformation Rule Set ...76
6.2 Set of Representative SQL for Calibrating BBQ..76

6.3 Self Tuning Optimiser.. 77
6.4 Tool for Benchmarking and Testing Transformation Rules...78
6.5 Applicability to Commercial DBMS’ .. 78

7. CONCLUSIONS..80

APPENDIX A - LISTING OF RULES...82

APPENDIX B - BBQ INTERNAL DATA STRUCTURES.. 93

BIBLIOGRAPHY.. 95

A Blackboard Architecture for a Rule-Based SQL Optimiser

1. INTRODUCTION

1.1 Background

In relational database systems the query optimiser plays a critical role in translating a

query from its initial form as input by a user into an efficient program which can be

executed by the database component which performs the physical retrieval of data. For

queries other than the most trivial, there usually exist numerous different possibilities

for the sequence in which tables are accessed and the access methods used to retrieve

the requested data. In the case of more complex queries, alternative programs may

number in the thousands. It is the role of the optimiser to select a good, and possibly

the best, program to execute the query. Thus the quality of the optimiser greatly

influences the overall performance of a database management system.

As a key component of database management systems, a great deal of research has

been devoted to the design of the optimiser. Due to the nature of its problem domain,

the optimiser is inherently a very complex piece of software. In addition to the problem

complexity, designers of optimisers have to grapple with often conflicting requirements

such as the need for modularity and extensibility versus the need for efficient execution

of the program. In many cases, this has led to designs which have had to compromise

on some aspects o f the optimiser in order to maximise the performance of others.

Ideally, the design o f an optimiser should attempt to address as many of the following

desirable characteristics as possible :

• Early assessment o f quality of alternative solutions

• Modularity to facilitate maintenance

• Architecture which supports extension of functionality

• Provision of metrics to aid analysis of performance

• Support o f parallel processing

1

A Blackboard Architecture for a Rule-Based SQL Optimiser

This thesis proposes an architecture for a relational database optimiser which aims to

address these characteristics more completely than other contemporary designs.

1.2 A rea of R esearch

An SQL optimiser architecture which is based on the concept of a blackboard,

borrowed from the area of artificial intelligence, is investigated. This research draws

from several previous works, which are discussed in Chapter 2, and builds upon the

concepts presented in those works.

The proposed design incorporates a set of rules to perform the transformations

necessary to optimise an SQL query. Subsets of these rules are grouped into

knowledge sources which operate on the evolving problem solution in an independent

manner. A mechanism for the back propagation of the results of optimisations is also

incorporated in the design.

The research aims to investigate the feasibility of the architecture outlined above,

construct a software suite to implement the proposed design and examine various

characteristics of the model. Specific characteristics to be studied include quality of

optimisations, efficiency of the proposed architecture and extensibility of the model.

The back propagation of optimisation results as a mechanism for calibrating and tuning

knowledge sources is also to be examined.

2

A Blackboard Architecture for a Rule-Based SQL Optimiser

2. RELATED WORK

This chapter examines research which has been conducted in areas relevant to the topic

o f this thesis. As part of the study of previous and contemporary work, a number of

papers on blackboard systems and optimiser design were consulted. A complete list of

these works can be found in the References section.

This chapter is divided into three sections. The first section looks at the concept of

blackboard systems and describes two projects which are considered to have originated

this model of problem solving. The second section discusses a paper which describes a

set transformation rules for the optimisation of relational queries. The third section

discusses a paper which employs the blackboard concept coupled with a rule set,

derived from the paper presented in the second section, to present a model for query

optimisation in object-bases.

2.1 Blackboard Systems

2.1.1 Model for Problem Solving

An effective method of describing the concept of blackboard systems is by way of

analogy to a group of people collectively solving a jigsaw puzzle (Engelmore and

Morgan, 1988). The problem domain is the construction of the puzzle from the jigsaw

pieces, the group of people working of the puzzle is analogous to a set of knowledge

sources solving the problem and the board on which the emerging solution is being

constructed is representative of the blackboard.

In the analogy, the pieces of the puzzle are distributed amongst the group of problem

solvers. The problem solution commences with each person placing their most

promising piece or pieces on the blackboard. As pieces are placed on the blackboard,

each group member examines their own pieces and adds new ones that may now fit as

a consequence o f others having being added. The solution evolves as more and more

pieces fit and terminates once all the pieces have been placed.

3

A Blackboard Architecture for a Rule-Based SQL Optimiser

This model o f problem solving provides a number of interesting features and presents

the basis of an architecture suitable for a certain class of problems. Some of the points

of particular note are :

• No direct communication between the problem solvers is required

• No predetermined sequence is defined for the order in which the problem is solved

• Solution is formed incrementally

• Problem solvers can exhibit opportunistic behaviour

• Distribution of the puzzle pieces amongst group does not greatly affect the problem

solution

Many of the concepts of this model of problem solving find their origins in two

projects conducted in the 1970’s.

The first o f these, Hearsay-II, was one of the systems developed at the Carnegie-

Mellon University as part of a five year speech recognition project sponsored by the

Defence Advanced Research Projects Agency (DARPA). The project commenced in

1971 with three organisations demonstrating systems in 1976. Although Hearsay-11

was not the most successful system, it did produce some original software engineering

techniques that have general applicability. Hearsay-II was the product of

approximately 40 person years of effort and several design iterations.

The second, HASP, was one of the early applications to utilise and extend some of the

concepts developed in Hearsay-II. It was developed to identify and track vessels,

particularly submarines, using data from concealed hydrophone sensors in the deep

ocean. The main feature of the blackboard architecture for HASP was the capability

for opportunistic problem solving.

Discussions of these two projects in the sections which follow are extracts from

(Engelmore and Morgan, 1988), complete descriptions of the projects can be found in

that text.

4

A Blackboard Architecture for a Rule-Based SQL Optimiser

The blackboard model consists principally of three components, a global solution

board containing emerging solution alternatives, a set of knowledge sources which

progress the problem solution and a control strategy which determines the sequence of

invocation of the knowledge sources.

2.1.2 The Blackboard

The global solution board or blackboard is a structure for storing solution alternatives

as the problem is being solved. The solutions on the blackboard are visible to all

knowledge sources and cost functions which form part of the control strategy. The

blackboard is segmented into levels, each containing partial solutions which are at a

similar stage of evolution. While a knowledge source has read access to the entire

range of emerging alternatives, it usually operates on alternatives on one level, emitting

more developed alternatives to an adjacent “higher” level. In some instances the

knowledge source may produce alternatives at the same level as its input.

In the HEARSAY-II project, the blackboard is segmented into levels that correspond

to the various stages of speech recognition. Hypotheses at each level have a unique

identifier and are tagged with additional information including time within the spoken

sentence and credibility ratings. The levels of the blackboard form a hierarchical

structure with each higher level aggregating elements of lower levels. A diagram of the

architecture of HEARSAY-II is given in the next section.

An important component of the HASP architecture is its model of the current ocean

scene known as the Situation Board. This describes the state of the geographical area

of interest and provides a reference model for the interpretation of new information,

assimilation of new events and generation of expected future events.

The problem of understanding the state of the ocean is organised into a hierarchy of

blackboard levels with the highest one corresponding to the Situation Board and the

lowest level consisting o f sonagram data from ocean sensors. A diagram of these

blackboard levels and some the knowledge sources operating between them is

presented in the next section.

5

A Blackboard Architecture for a Rule-Based SQL Optimiser

2.1.3 Knowledge Sources

Knowledge sources are program units which progress the problem solution by

generating partial, and ultimately complete, solution alternatives. Each knowledge

source has access to all the partial alternatives that have been produced prior to its

invocation. Upon invocation a knowledge source will typically use a partial solution at

one level to generate one or more alternatives at an adjacent higher level on the

blackboard.

In Hearsay-II, the knowledge sources are implemented as independent programs which

perform the functions o f generating, merging and evaluating hypotheses. Although the

nature of knowledge sources varies greatly, due to the differing problem domains of

Hearsay-II components, each is represented by a condition-action tuple. The condition

specifies the situations in which the knowledge source may be able to contribute to the

solution and the action specifies what the contribution is and how this can be

integrated into the evolving solution.

The condition part of each knowledge source searches through existing alternatives on

the blackboard searching for conditions where it may be appropriate to apply the

action part of the knowledge source. In Hearsay-II, each condition program declares a

set of primitive conditions in which it may be applicable and is only invoked if changes

to the problem solution trigger these conditions. This improves efficiency as it

minimises the evaluation of condition programs and changes the architecture from

polling to interrupt driven.

The diagram below shows the main components of the architecture of Hearsay-II.

Functions implemented by the knowledge sources include extracting acoustic

parameters, classifying acoustic segments into phonetic classes, recognising words,

parsing phrases and generating and evaluating predictions for undetected words or

syllables. Each o f these knowledge sources use partial solutions at one level to

generate one or more alternatives which are placed on the adjacent higher level. Partial

solutions at all levels of the blackboard are accessible by the Blackboard Monitor

6

A Blackboard Architecture for a Rule-Based SQL Optimiser

knowledge source which interacts with the Focus of Control program. This program

directs the Scheduler on the selection of the next knowledge source to be invoked.

Level k

Level 3

Level 2

Level 1

Blackboard

SchedulerFocus of
control

Scheduling
Queues

Diagram 1 - Hearsay-II Architecture (Figure 3.3 in (Engelmore and Morgan, 1988))

In the HASP system, alternative generation is opportunistic and is both data-driven and

model-driven. Control knowledge sources determine the most appropriate knowledge

source to invoke at each step of the problem solution. Modifying the analysis strategy

involves changes only to the control knowledge sources.

Diagram 2 illustrates the blackboard levels (on the left) and some of the knowledge

sources (on the right) in HASP. Knowledge sources use one or more hypothesis

elements at one level to infer hypotheses at other levels, these are shown as links

7

A Blackboard Architecture for a Rule-Based SQL Optimiser

between the levels in the diagram. Where the knowledge source makes inferences in

one direction only these links are represented by directed lines.

Situation Board

Vessels

Sources

Harmonics

Lines

Ratio Finder

Source classifier &
Cross array associator

Harmonic set former
& Line finder

Diagram 2 - HASP blackboard levels and KSs

(Figure 6.2 in (Engelmore and Morgan, 1988))

Specialist knowledge sources are responsible for generating new hypotheses and/or

modifying existing ones. Their focus of attention is usually a hypothesis that has

recently changed. Although a knowledge source has access to all hypotheses, it

normally operates only on hypotheses contained in its input and output levels.

2.1.4 Control Strategy

As there is limited procedural control in most blackboard systems, the control strategy

is responsible for the selection of the next knowledge source to be executed. It also

selects the partial solution on which this knowledge source should operate. The

selection o f the knowledge source and partial solution alternative is often predicated

on a cost metric which estimates both the cost of operations already incorporated in

the partial solution and the cost of operations which are yet to be incorporated. The

8

A Blackboard Architecture for a Rule-Based SQL Optimiser

architecture of blackboard systems allows segregation of the components which

implement the control strategy from the remainder of the program units. Thus changes

to the control strategy may be effected with relative ease and impact only the control

strategy components.

In Hearsay-II, the sequence of activation of knowledge sources is determined purely by

the state of the problem solution as described by the hypotheses on the blackboard.

The system exhibits opportunistic behaviour as it is able to invoke the knowledge

source that is most likely to be appropriate to each stage of the problem solving

process.

This requires an evaluation of three metrics (Engelmore and Morgan, 1988):

1. the probable effects of invocation of a knowledge source

2. significance of the actions by an analysis of its cooperative and competitive

relationships with existing hypotheses

3. the relative value of invoking a knowledge source versus the other potential

candidates

Hearsay-II incorporates these metrics in a heuristic scheduler which calculates a

priority for all candidate knowledge sources and invokes the knowledge source with

the highest priority rating.

The control strategy of HASP is implemented by KS-Activators, which know when to

invoke particular Specialist knowledge sources, and the Strategy-KS, which

determines the “focus of attention”. One execution cycle consists of the following

steps (Engelmore and Morgan, 1988) :

1. Focusing attention on one o f : time-dependent activities, verification of hypotheses

or one of the hypothesised elements

2. Choosing the most appropriate knowledge source for the focus of attention

3. Invoking the selected knowledge source

9

A Blackboard Architecture for a Rule-Based SQL Optimiser

KS-Activation knowledge sources perform the task of selecting Specialists according

to the kind of problem solving strategy being employed. Thus a model-driven strategy

would have a different goal to a data-driven strategy. Two other important factors

considered by the control strategy are the efficiency and the accuracy of each

Specialist.

The high level Strategy-KS mirrors the problem solving strategy of a human analyst. It

determines the accuracy of the CBH and selects the task that will have the greatest

impact on the current problem state.

2.1.5 Conclusions

The blackboard model offers an alternative problem solving paradigm and possesses

characteristics which make it well suited to certain classes of problem.

Classes of problems to which the blackboard model would be suited according to

(Engelmore and Morgan, 1988) include those where :

• Large amounts of signal data are to be analysed

• Heuristics are applied to interpret data

• Problem domain inherently possesses a hierarchical structure

• Opportunistic strategies may be used to advantage

Some of the advantages of this model for problem solving as listed in (Engelmore and

Morgan, 1988) are :

• Multiple sources of knowledge allow incorporation of diverse types of knowledge.

• Multiple levels of abstraction in the global blackboard structure allow for

representation o f the problem at several different levels.

• Knowledge sources can represent knowledge in a consistent format and share

partial results.

10

A Blackboard Architecture for a Rule-Based SQL Optimiser

• Interaction between knowledge sources is limited to the changes that each makes to

the data on the blackboard. This means that each knowledge source can be

developed independently and without any description of the others allowing for a

high degree of modularity.

• Solutions are formed incrementally with lower level hypotheses integrated into

larger and more credible composites as part of the problem solving process.

• Opportunistic behaviour exploits the most promising alternative(s) to which the

most significant addition can be made.

• Control strategy is flexible with changes to search method (eg. depth-first, breadth-

first, left-to-right etc.) requiring modifications only to the control knowledge

source.

For certain types o f problem however, a blackboard architecture can have significant

disadvantages. The calculation of a cost metric for partial solution alternatives may be

computationally expensive. The process of selecting the next knowledge source to

trigger and the partial alternative to expand imposes an overhead on the search for a

solution. And lastly, the need for data structures which are globally visible can lead to

complex blackboard structures.

2.2 A Model For A Rule-Based SQL Optimiser

The query optimiser is the component of a database management system which

generates a Query Execution Plan (QEP) to efficiently compute the result of a user-

submitted query. The non-trivial task of finding a good QEP has led to sophisticated,

however, complex implementations of optimisers. In these implementations, changes

or extensions o f functionality are often difficult and time-consuming.

This section describes a basis for a modular query optimiser, presented in (Freytag,

1987), which is designed to alleviate some of the problems associated with the

11

A Blackboard Architecture for a Rule-Based SQL Optimiser

inflexibility of traditional query optimiser implementations. The proposed architecture

attempts to clearly separate different aspects of the optimisation process thereby

reducing the inter-dependence between components of the optimiser. The basis of the

design is a set of transformation rules which convert the user-submitted query into an

algebraic QEP. These transformation rules provide an implementation independent

description of the steps required to generate the QEP. This design for an optimiser is

amenable to change and facilitates extensions to the set of possible QEPs produced.

2.2.1_Query Optimisation and Evaluation

The paper identifies three processes for the conversion of a query from a format input

by a user to a program which can be executed by a database management system to

retrieve the data. The processes are - validation, optimisation and translation. The

validation phase checks for semantic and syntactic correctness, view resolution and

possibly checks authorisation prior to generating an internal representation of the

query. The optimisation phase uses information about the physical representation of

the data to be accessed and available evaluation strategies to generate a query

execution plan. The final phase, translation, transforms the query execution plan into a

representation suitable for efficient execution. The focus of the paper is the second of

these processes, the generation of a query execution plan.

A general non-procedural query representation is selected as the source language and

an extended relational algebra is the target language. The rule-based transformations

described are central to the optimisation algorithm. The algorithm selected is

sufficiently complex to illustrate the power of rule-based description. There are two

other important aspects of the optimisation process which are not in the scope of the

paper. The first is the selection of a search strategy to define how to search through

alternative QEPs, examples of possible search strategies are breadth-first, depth-first

and k-step look-ahead. The second is the selection of a cost function to compare

alternative QEPs to determine which ones are better that others. This function may be

dependant on the cost of using various resources such as CPU time, number of I/O

operations and number of messages.

12

A Blackboard Architecture for a Rule-Based SQL Optimiser

The stated objective of the paper is to present a rule-based description for the

generation of QEP alternatives from an initial query specification in an implementation

independent manner.

2.2.2_Source and Target Languages

The source language selected for the purposes of the paper allows conjunctive queries

which exclude sub-queries and aggregates. This selection is only to limit the scope of

the paper and not due to any fundamental limitations of rule-based transformation. To

demonstrate this the paper includes a discussion of how the rule set can be readily

extended to cater for more complex query formulations.

The query input to the optimisation phase is assumed to have the following form :

SELECT <project list>

<select_pred_list>

<join_pred_list>

<table_list>

The lists respectively describe the projection of the result tuples, predicates applicable

to individual tables only, join predicates and tables accessed.

Query 1 as defined in section 5.2, is used as an example to illustrate the effect of the

transformations which follow. Represented in the form described above, this query is

specified as :

SELECT (PortfolioItem.ASXCode, PortfolioItem.NumOfUnits)

(Client.ClientName = “Vikram Sharma”)

(PortfolioItem.Clientld = Client. Clientld)

(Client, Portfolioltem)

The target language is an extended form of relational algebra as some of the operations

required are not available in traditional algebra. All the operators defined manipulate a

13

A Blackboard Architecture for a Rule-Based SQL Optimiser

list o f tuples which is derived from either a relation referenced by name or the output

of another operation.

2.2.3_Operators and Functions

The operators defined do not allow transformation of all SQL queries, however they

are sufficient to transform the selected source language. An extension of this set of

operators to process a more complex source language is shown to be feasible. Freytag

defines the following operators :

(FSCAN <t_pred> re!) - scans a relation while applying the list of predicates in

<t_pred>, which may be empty.

(I SCAN <i_pred> index <t_pred> rel) - scans a relations using the index to apply

the index predicates <i_pred> before scanning the table and applying the predicates

<t_pred>. One or both predicate lists may be empty.

(PROJECT <proj_list> tuplelist) - projects tuples in tuple list onto the attributes

specified in <proj_list>.

(LJOIN <join_pred> listl list2) - denotes a nested-loop join with listl being the

outer list and list2 the inner.

(MJOIN <join_pred> listl list2) - denotes a merge-join with listl being the outer

list and list2 the inner.

(SORT <attr_list> tuple list) - sorts tuple list according to the order specified by

a ttrlis t.

Some additional operators are defined to generate intermediate steps required in the

course o f the transformation.

(SCAN <sel_pred> rel) - scans a relation without specifying the access path.

14

A Blackboard Architecture for a Rule-Based SQL Optimiser

(JOIN <join_pred> <scan_list>) - joins an arbitrary number of relations without

specifying their order.

(TJOIN <join_pred> listl list2) - denotes a two-way join without specifying the

type of join.

Each step of the optimisation process is described by a transformation or rewrite rule.

A transformation rule (ti —» t2) specifies the replacement of ti by t2. This notation is

extended to introduce restricted rules. These are of the form (ti c —» t2) signifying that

ti is to be replaced by t2 if condition C evaluates to true. A restriction on C is that it

may only access variables in expressions ti and t2.

The notation (... ti ...) denotes zero or more subexpressions to the left and right of

some tj.

Restricted rules often use functions in their conditions to determine properties of a

relation, predicate or general expression. Functions defined for the transformation rules

are :

Ind(Il, R) - determines if II is an index on relation R.

T(p) - denotes the set of relation names referenced in p.

A(t, RS) - denotes the set of attributes of the relations in RS which are referenced

in t.

0(1) - returns an attribute list determining the ordering of rows retrieved from a

relation using index I.

Q(Q) - denotes the order in which tuples are retrieved by a QEP Q. This function

is defined recursively as follows :

15

A Blackboard Architecture for a Rule-Based SQL Optimiser

Q((FSCAN <p> rel)) = <>

Q((ISCAN <ip> ind <tp> rel)) = O(ind)

Q((PROJECT <pr> list)) = Q (list)

Q((LJOIN <jp> listl list2)) = Q (listl)

Q((MJOIN <jp> listl list2)) = Q (listl)

Q((SORT <a_list> list)) = <a_list>

Note : <> in the definition of the function applied to the FSCAN operator denotes that

no order can be ascertained.

2.2.4 The Transformation Rules

The first step of the optimisation requires a translation of the query from its initial form

to an algebraic form for further manipulation.

The following two rules create a list of SCAN operators attached to each relation

in the input query.

((SELECT e, e2 (...ti...» -► (SELECT e, e2 (.......) ((SCAN () t,))))

((SELECT ei e2 (...ti...) (.......)) -> (SELECT e, e2 (.......) (...(SCAN () t ,) ...)))

For the example query defined in section 2.2.2, these transformations result in

following expression :

SELECT (PortfolioItem.ASXCode, PortfohoItem.NumOfUnits)

(Client.ClientName = “Vikram Sharma”)

(PortfolioItem.Clientld = Client.Clientld)

((SCAN () Client), (SCAN () Portfolioltem))

Next the selection predicates are distributed amongst the SCAN expressions

depending on the relation name accessed in each predicate.

16

A Blackboard Architecture for a Rule-Based SQL Optimiser

((SELECT e, (...p,...) e2 (,.(SCAN(.......) t ,) ...)) cl->

(SELECT e, (.......) e2 (... (SCAN(... p, ...) t ,) ...)))

C l= (T (p ,)= { t,})

Applying this transformation to the example query produces :

SELECT (PortfolioItem.ASXCode, PortfolioItem.NumOfUnits)

(PortfolioItem.Clientld = Client. Clientld)

((SCAN (Client.ClientName = “Vikram Sharma”) Client),

(SCAN () Portfolioltem))

Once the selection and relation lists are empty, an n-way join is created followed by

a projection for the resultant expression.

((SELECT e, () e2 () e3) -> (PROJECT ei (JOIN e2 e3)))

After this transformation the example query takes the following form :

(PROJECT (PortfolioItem.ASXCode, PortfolioItem.NumOfUnits)

(JOIN (PortfolioItem.Clientld = Client.Clientld)

((SCAN (Client.ClientName = “Vikram Sharma”) Client),

(SCAN () Portfolioltem))))

The second step of the optimisation involves generating alternatives for accessing

individual relations, in particular selection predicates which might be evaluated using

indexes.

The first transformation below converts a generic scan to a full relation scan

without using any indexes. The second applies an index scan if a subset of the

predicate list can form a prefix of the attribute list denoting the index order.

17

A Blackboard Architecture for a Rule-Based SQL Optimiser

((SCAN p, ti) -> (FSCAN Pl t,))

((SCAN p, t,) cl-> (ISCAN p,' II p," ti))

Cl = (Ind(Il, ti) a (pi = (p,' u pi") a (pi' n pi" = 0) a

(A(p,', t,) e 0(11)))

One possible alternative generated by the above transformations for the example

query is :

(PROJECT (PortfolioItem.ASXCode, PortfolioItem.NumOfUnits)

(JOIN (PortfolioItem.Clientld = Client.Clientld)

((ISCAN (Client.ClientName=“Vikram Sharma”) ClientName () Client),

(FSCAN 0 Portfolioltem))))

The next step of the optimisation process involves exploring different join orders

among the tables involved as well as choosing join methods.

The first rule selects a relation at random to be the outer expression of a join. The

second rule successively creates two-way joins by taking any relation and

combining it with the two-way join expression created so far. The final rule

discards the n-way join operator when both the predicate and relation lists are

empty. Between them, these rules can generate a number of alternative join orders

for a given expression.

((JO IN t, (... t2 ...)) —> (JOIN t) (......) t 2))

((JOIN (... p, ...) (... t i ...) t2) c ,-> (JOIN (.......) (.......) (TJOIN (Pl) t2 t,)))

C l= (T (p ,) 6 T (t ,) u T (t2))

((JOIN () O t ,) - M ,)

The rules listed above are not sufficient to completely reduce a list of join

predicates. To process cyclic queries and ones in which two relations are joined by

18

A Blackboard Architecture for a Rule-Based SQL Optimiser

more than one predicate, two further rules which push the remaining predicates

into two-way joins are required :

((JOIN (... p, ...) t, (TJOIN (...) t2 13)) c l->

(JOIN (.......) t , (TJOIN (... p, ...)t2 t3)))

Cl = (T (p ,)e T (t2) u T (t 3))

((TJOIN (... p, ...) (TJOIN (...) t, t2) t3) C2->

(TJOIN (.......) (TJOIN (p, . . .) t , t 2) t 3))

C2 = (T (p l) e T (t i) u T (t 2))

One possible alternative generated by the above transformations for the example

query is :

(PROJECT (PortfolioItem.ASXCode, PortfolioItem.NumOfUnits)

(TJOIN (PortfolioItcm.Clientld = Client. Clicntld)

((1SCAN (Client.ClientName=“Vikram Sharma”) ClientName () Client),

(FSCAN () Portfolioltcm))))

The final step involves the selection o f a join method to implement each two-way join.

The paper implements transformations for nested-loop joins and merge joins. The first

rule below transforms a two-way join into nested-loop join. The second and third rules

generate a merge join, applying the SORT operator to the outer expression if required.

((TJOIN p) ti t2) -> (LJOIN p, ti t2))

((TJOIN p, ti t2) c '-> (MJOIN p, t, t2))

Cl = (A(pi, T(t,)) e O (t,))

((TJOIN p, t, t2) C2-> (MJOIN p, (SORT A(p,, T(t,)) t,) t2))

C2 = (A(Pi, T(t,)) g Q (t,))

19

A Blackboard Architecture for a Rule-Based SQL Optimiser

Finally, in the case of a merge join, a transformation to ensure that the two sets of

tuples being merged are in a compatible order is defined. The SORT operator is

only applied to the inner expression when the order of tuples of the outer and inner

expressions is not the same.

((MJOIN p, t, t2) c '-> (MJOIN p, t, (SORT A(p,, T(t2)) t2)))

Cl = ((Q(t2) <2 Q (t,)) a (fl(A(p,, T(t2))) = (t,)))

Two possible alternatives generated by the application of the above

transformations to the example query are :

(PROJECT (PortfolioItem.ASXCode, PortfolioItem.NumOfUnits)

(LJOIN (Portfolioltem. Clientld = Client. Clientld)

((ISCAN (Client. ClientName=“Vikram Sharma”) ClientName () Client),

(FSCAN () Portfolioltem))))

(PROJECT (PortfolioItem.ASXCode, PortfolioItem.NumOfUnits)

(MJOIN (Portfolioltem.Clientld = Client.Clientld)

((SORT (Client.Clientld)

ISCAN (Client.ClientName = “Vikram Sharma”) ClientName () Client),

(SORT (PortfolioItcm.Clientld) FSCAN () Portfolioltem))))

2.2.5 Conclusions

The paper presents a set of rules which effect the necessary transformations to convert

a query from the input language into a query execution plan of fundamental operations

on the relations accessed in the query. Adoption of such an approach in the design of

an optimiser allows a clear separation between the components which transform the

input into a QEP and those which control the process of QEP generation. Additionally,

the set o f rules is extensible, facilitating the incorporation of new functionality.

20

A Blackboard Architecture for a Rule-Based SQL Optimiser

2.3 A Blackboard A rchitecture for Q uery O ptimisation in
O bject Bases

This section describes a model presented in (Kemper et al., 1993) which proposes the

adoption of a blackboard architecture for an object-oriented database query optimiser.

The blackboard problem solving model is coupled with a set of rule-based

transformations derived from the paper discussed in the previous section (Freytag,

1987) to present a new architecture for an object base query optimiser. The proposed

architecture possesses two desirable characteristics - firstly, the design enables the

back propagation of optimised queries to allow evolutionary improvement in optimiser

performance and secondly, a modified version of A* search can be selectively applied

to control the search space.

Query optimisers, whether for relational or object databases, are very complex pieces

o f software and much research is still devoted to their design. The qualities which are

desirable in a query optimiser, as listed in (Kemper et al., 1993), are :

1. extensibility and adaptability : the architecture should facilitate design change as

new optimisation techniques or index structures are developed.

2. evolutionary improvability : it should be possible to tune the optimiser after

gathering data from a sequence of queries which have been optimised. The ultimate

goal being a self-tuning optimiser which is able to automatically improve the quality

of its optimisations based on previous results.

3. predictability of quality : as there is often a trade-off between the time used for the

optimisation and the quality of the result, it would be useful to be able to predict

the quality o f the result relative to the time allocated for the optimisation.

4. graceful degradation under time constraints : given a time constraint, the quality of

the optimised result should degrade gracefully.

21

A Blackboard Architecture for a Rule-Based SQL Optimiser

5. early assessment of alternatives : the performance of the optimiser to a large extent

depends on the number of alternatives generated and typically, heuristics are used to

restrict search space. A more flexible approach is to abandon less promising

alternatives as early as possible. For this a cost model which estimates the potential

quality of each alternative at an early stage in the optimisation process is required.

6. specialisation : the optimiser design should support the incorporation of specialised

knowledge to deal with particular parts of the optimisation process or to deal with

specific sub-classes of queries.

Numerous optimiser designs have been proposed to try to incorporate some of the

above qualities. However it is often the case that in order to maximise some qualities

others are neglected. For example, while rule-based systems place emphasis on

extensibility, an estimation of the quality of the result in relation to optimisation time

allocated becomes difficult.

The paper proposes an architecture which segments the query into building blocks

consisting of fundamental operations in order to construct a query execution plan in a

well-structured fashion. A cost model is central to the proposed design. As it is not

generally obvious which transformation will lead to the optimal solution, alternatives

are generated. The alternatives are graded by an expected cost function and this cost

has to be improved as each alternative is developed.

The architecture presented tries to address each of the previously listed characteristics

desirable of an optimiser. It is based on the blackboard model which facilitates a

bottom up building block design and early assessment of alternatives by utilising future

cost estimates.

22

A Blackboard Architecture for a Rule-Based SQL Optimiser

2.3. l _ Blackboard Structure

The blackboard is organised in r successive regions Ro..Rr-i each containing a set of

items which represent alternatives being generated by the optimiser in the search for an

optimal query execution plan.

The original query is translated into an internal form and is placed into region Ro as the

only item. A knowledge source KSj is associated with a pair of successive regions

(Ri,Ri+i). Each knowledge source KSj retrieves items from region R; and emits, in an

order which it determines, one or more alternatives to the region Rj+i. There is no

restriction on the data which the knowledge source may read, it may come from any

region and may include database statistical data, schema definition and indexing

information.

Each alternative emitted by a knowledge source has the name of the knowledge source

and the next sequence number for that knowledge source added to an identification

tag. Thus any item on the blackboard can be uniquely identified and a history of its

derivation can be easily determined. This feature is essential for evaluation of quality

and calibration of knowledge sources.

The diagram below illustrates blackboard levels, knowledge sources operating between

these levels and examples of identification tags of alternatives at each level.

Diagram 3 - Blackboard Architecture (Figure 1 in (Kemper et al., 1993))

K S,
w

k s 3
w

k s 2
w

KS,
w

KSo--------- k.

Rs [K S 4 O, K S 3 O, K S 2 0. K S iO. KSoO]. . ,[K S 4 7, K S 3 4, K S 2 5, K S, 1. K S 0 8]

R* [K S 3 0, K S 2 0, K S ,0 , K S oO] . . . [K S 3 4, K S 2 5, K S, 1, K S 0 8]

Rs [K S 2 0, K S ,0 , K S oO] [K S 2 1, K S ,0 , K S 0 0] . . . [K S 2 5, K S ,1 , K S 0 8]

r 2 [K S ,0 , KSoO] [KS, 1, KSoO] . . . [KS, 1, K S 0 8]

R i [KSoO] [KS 0 1] . . . [K S 0 8]

Ro In p u t Q u ery

23

A Blackboard Architecture for a Rule-Based SQL Optimiser

2.3.2_Search Strategy

As previously described a building block approach is used for query execution plan

generation. Thus successive regions of the blackboard contain more and more

complete query execution plan alternatives. One or more complete query execution

plans are contained in the final region Rr_i.

To avoid an exhaustive and expensive search of all possible alternatives a cost is

computed for each item on the blackboard. Two cost functions, costh and costf have

been defined to compute the historical and future costs respectively for an item. Costh

determines the cost of operations already incorporated into the QEP and costf

estimates the cost of operations which have yet to be integrated. The sum of these two

costs is used to drive an A* search, the knowledge source which is applicable to the

item with the lowest total cost is allowed to generate further alternatives for that item.

For A* to operate efficiently, costf should represent a close lower bound on future

costs. However, for query optimisation a lower bound estimate for future operations is

always based on the best case for each operation. Therefore the estimate can be

considerably lower than the actual cost of those operations. This could lead A* to

degenerate into an almost exhaustive search and lead to unacceptably long

optimisation times. To overcome this potential problem, a variation of the A* strategy

has been proposed.

One o f the characteristics desirable of the knowledge sources is that they emit more

promising alternatives early in the optimisation process. To take advantage of this

feature A* is modified to periodically and temporarily switch off A* control and

process the first few alternatives without any cost control. Under this regime some

promising alternatives will progress through successive blackboard regions and

possibly to the top-most region where they would represent complete query execution

plans. When A* control is resumed items which were generated in intermediate steps

are discarded which has the effect of “straightening” the optimisation. This strategy

allows the search to process some promising alternatives efficiently without

backtracking. A degree of control over the trade off between optimisation time and

24

A Blackboard Architecture for a Rule-Based SQL Qptimiser

quality of the result can be obtained by varying the periodicity A* disablement and the

number of alternatives which are fully expanded during this time.

2.3.3_ Back propagation

The architecture of the optimiser, in particular the use of an identification tag to trace

the derivation history of alternatives, supports the collection of metrics for quantitative

evaluation and subsequent calibration of the knowledge sources.

This is achieved by back propagating the results of optimising an extensive set of

benchmark queries. For this set of benchmark queries, the optimiser is run under pure

A* control except that it is allowed to continue to generate alternatives even after the

optimum alternative has been generated. Once the run has completed the top-most

region will contain a list of complete query execution plan alternatives for each

benchmark query. Due to the nature of the search strategy each list of QEP alternatives

is already sorted in order of increasing cost.

To determine the quality of knowledge sources, results from these ordered lists are

back propagated to each knowledge source. The quality of a knowledge source is

measured in terms of a comparison of the sequence number at which the knowledge

source produced its contribution to the QEP alternative versus the position of this

QEP alternative in the list of QEPs ordered by running times. Using the results from a

representative set of queries, a Top-Rank profile as shown below can be derived for

each knowledge source.

Number of
alternatives

Sequence of alternative used in QEP

Diagram 4 - Top-Rank Profile

25

A Blackboard Architecture for a Rule-Based SQL Optimiser

Quantitative analysis of the profiles allows prediction of the average quality of the

solution. Statistical functions can derived fairly easily to compute the probability that

the optimal solution will be amongst a certain number of alternatives generated.

Additional quantitative analysis of the profiles enables tuning of individual knowledge

sources. The paper gives examples of the different types of delta profiles.

Number of
alternatives

Sequence of alternative used in QEP

(a)

Number of
alternatives

Sequence of alternative used in QEP

(b)

Number of
alternatives

Diagram 5 - Different types of profiles

An ideal profile is depicted at (a) above, no further improvement is possible since the

knowledge source always generates the optimal alternative the first time. Profile (b) is

26

A Blackboard Architecture for a Rule-Based SQL Optimiser

the worst possible and indicates that the knowledge source seems to produce

alternatives at random. In practice it is worthwhile trying to achieve the profile shown

at (c) where the optimal and semi-optimal alternatives are contained in the first few

generated. The ultimate objective of this design is that the optimiser may be able to

utilise this information for self-tuning.

2.3.4_Conclusions

A novel architecture for optimiser design has been proposed. It utilises a blackboard

structure and knowledge sources which carry out a finite set of algebraic operations to

derive a query execution plan. Due to its structured design the optimiser can be

continually improved and readily extended. The use of back propagation of

optimisation results allows evaluation and calibration of the knowledge sources. This

facilitates the identification and possible elimination of weak points in the optimiser.

27

A Blackboard Architecture for a Rule-Based SQL Optimiser

3. BBQ CONCEPTUAL MODEL

This chapter provides a conceptual view of the architecture of the proposed

Blackboard-Based Query optimiser (BBQ). The first section lists objectives of the

proposed architecture and the second describes each of the components of the model.

3.1 Objectives

As discussed in the previous chapter the design of an optimiser has to attempt to

satisfy conflicting characteristics. Often, this leads to compromise on some features in

order to maximise others. The model presented in this thesis is an attempt to develop

an architecture which minimises the compromises required between desirable

characteristics. Specific requirements set out for the design are :

• A modular architecture to enhance clarity of design

• The ability to easily add or change optimiser transformation rules to incorporate

new query evaluation techniques or database structures

• Efficient performance via the use of a search strategy and a cost model which

allows early selection of promising query execution plan (QEP) alternatives

• Collection of a set of metrics on the performance of components of the optimiser to

allow calibration and enhancement

• A framework which enables the use of results of past optimisations in order to

improve future ones

• A design which lends itself to parallel processing

3.2 Architecture

This section describes, at a conceptual level, the components which comprise the

design. The major components are : a set of rules which transform a query from its

initial form into a query execution plan, a search strategy and cost model to drive the

search for solutions, a blackboard structure which contains alternative emerging

execution plans and a mechanism for the back propagation of optimisation results.

28

A Blackboard Architecture for a Rule-Based SQL Optimiser

Knowledge Sources

Blackboard

AlgebraicForm

ScanMethod<

SortOperators

JoinOrders

Display

JoinMethods

FutureCost

Control KS

Historical
Cost

CompleteQEPs

JoinMethods

GenericJoins

AlgebraicForm

InputSQL

ScanOperators

Diagram 6 - BBQ architecture showing interactions between

Knowledge Sources and Blackboard levels

Knowledge sources which implement the transformation rules operate on solution

alternatives on the blackboard with the highest level of the blackboard ultimately

containing one or more complete QEPs. The cost functions and control strategy

determine the next knowledge source to trigger and the termination condition of the

search. The back propagation function allows an assessment of the performance of

knowledge sources and provides metrics on each to facilitate tuning. These

components of the model are described in more detail in the sections which follow.

29

A Blackboard Architecture for a Rule-Based SQL Optimiser

3.2.1 Transformation Rule Set

The transformation rule set translates the query from its initial input form into an

ordered sequence o f fundamental operations on the relations being accessed. Using a

rule-based approach facilitates meeting three of the design objectives : modularity of

design, extensibility of function and support of parallel processing.

The rule set used in BBQ has been adapted from the rules described in Section 2.2.

The applicability o f a rule at any point in the execution sequence is evaluated by

examining the blackboard for emerging partial solutions which would satisfy the

condition component of the rule. Selection of the rule to trigger and the partial

solution to expand are dependent on the control strategy.

The set of rules has been segregated such that each subset of related rules has been

assembled into a knowledge source. This segregation of the transformation rules

resulted in the following knowledge sources : AlgebraicForm, ScanMethods,

JoinOrders, JoinMethods and SortOperators.

3.2.2 The Blackboard

The blackboard is the structure which houses the emerging alternatives as the search

for solutions progresses. Some of the concepts presented in (Kemper et al., 1993) have

been adapted as the basis for the architecture of the blackboard. This structure is

conceptually segregated into six levels, each level containing alternatives which are at

differing stages of evolution :

• InputSQL

• AlgebraicForm

• Scan Operations

• Generic Joins

• Join Methods

• Complete QEPs (Sort Operators)

30

A Blackboard Architecture for a Rule-Based SQL Optimiser

Knowledge sources, which generate alternatives that progress the problem solution,

take items at one level as input and emit one or more alternatives to the same or

adjacent level. The data structures which implement the blackboard are described at

Appendix B.

As discussed in Section 2.1 the use of the blackboard simplifies the problem control

strategy and eliminates the need for communication between knowledge sources. This

leads to modular architecture which is conceptually clear. The functionality

implemented by each knowledge source is readily visible and therefore may be easily

changed or enhanced. Also, extension of functionality is facilitated as the effect of the

addition of a new knowledge source can be quickly assessed since the impact is limited

to its interactions with the blackboard.

3.2.3_Cost function and Control Strategy

The cost function and the control strategy are critical parts of the optimiser which have

a direct impact on its performance. The cost function used in BBQ have been adapted

from that presented in (Kemper et al., 1993) which is discussed in Chapter 2.

The cost function consists of two components, one representing the historical cost of

operations already incorporated into the partial solution and the other an estimate on a

lower bound of the cost of operations which are yet to be incorporated.

Calculation o f the historical cost component makes use of information on cardinality of

tables and selectivity of columns from the database. The cost function attempts to

estimate the number of 10 operations and the number of CPU operations required to

retrieve the data specified by the partial QEP. A weighting factor is applied to the CPU

cost which is then summed with the 10 cost to derive a composite cost metric.

An estimate o f a lower bound on future cost is derived by using a best case scenario on

10 cost using selectivity and cardinality data for the relations which yet to be

incorporated into the emerging QEP.

31

A Blackboard Architecture for a Rule-Based SQL Optimiser

The sum of historical and future costs is used by the heuristic of the control algorithm

to select the next knowledge source to invoke and to select a partial QEP for

expansion. The strategy used to drive the search process is a modified version of A*

search. It uses a combination of procedural and A* control to efficiently generate QEP

alternatives which are expected to be close to the optimal solution.

The search commences by invoking the knowledge source which converts the query

from its initial representation to an internal form which is placed at the second level of

the blackboard. Next all possible access paths, full scan and indexed, for the relations

in the query are generated. The subsequent three steps are performed iteratively with

the number of alternatives expanded under A* control in each step limited by a tunable

parameter. The iteration cycle terminates once the lowest cost solution produced in the

iteration exceeds the lowest cost solution of all iterations thus far by more than a

predefined factor. This termination factor is also tunable.

The steps in the iterative process include generation of n-way joins, generation of two-

way joins, selection of join methods and introduction of sort operators.

Each step operates on the lowest cost item on its blackboard input level. Using this

item as input it emits all possible alternatives. The expansion of alternatives continues

until the number of input items expanded in the step is equal to a control parameter or

no more unexpanded items remain. Upon completion of the last step, the termination

condition described above is tested to determine whether to cycle through the

sequence again or to stop generation of alternatives.

Once the search terminates, QEP alternatives are sorted according to cost and the

lowest cost solution is selected.

3.2.4_Back Propagation Function

To enable analysis of the performance of knowledge sources the architecture provides

a mechanism to trace the derivation of each alternative QEP. Using this derivation trail

the performance of each QEP alternative can be back propagated to knowledge

32

A Blackboard Architecture for a Rule-Based SQL Optimiser

sources. An assessment of the quality of each knowledge source can be made based on

its contribution to the optimal and near optimal solutions. Another useful metric in

tuning the knowledge sources is a determination of how early in the sequence of

alternatives generated by a knowledge source the components which went on to

become part of near optimal QEPs were produced. Delta profiles which are bar-charts

graphing this performance metric are discussed later in this section.

Each knowledge source maintains a sequence number which is incremented each time

a new component is added to an emerging QEP alternative. All partial and complete

QEPs have a derivation trail, represented by a list, associated with them. Each time a

knowledge source operates on a partial alternative it adds its unique identifier and the

next sequence number for the knowledge source to the derivation trail of the partial

QEP. Thus, when a complete QEP is produced the derivation trail contains a history

for each component which describes the contributing knowledge source and the

position o f the component in the sequence of alternatives emitted by the knowledge

source.

The optimiser is calibrated by allowing it to produce all possible alternative QEPs for a

given input query. The alternatives are then ordered by the execution time for each

QEP. From these results a delta profile can be graphed for each knowledge source. A

delta profile charts, for each QEP alternative, performance versus the sequence number

of the component for the knowledge source being analysed. As shown in Section 2.3,

the shape of a delta profile can provide useful information on the performance of a

knowledge source.

As already discussed, an ideal profile is represented by Diagram 5 (a) where the

knowledge source produces a contribution to the optimal solution the first time for all

input queries. Diagram 5 (b) illustrates the worst case where the knowledge source

appears to be producing alternatives at random and does not appear to possess any

heuristic for grading alternatives. In practical terms, the profile in Diagram 5 (c) is

considered worth attaining. For a knowledge source with such a profile, alternatives

produced early in the sequence often form part of near optimal solutions.

33

A Blackboard Architecture for a Rule-Based SQL Optimiser

The delta profile of a knowledge source is a readily comprehensible tool for assessing

quality and provides a reasonable basis for performance tuning. Furthermore, the data

used to construct a delta profile could be used by an automated tuning mechanism as

discussed in Chapter 6.

34

A Blackboard Architecture for a Rule-Based SQL Optimiser

4. BBO DESIGN

The previous chapter provided a conceptual overview of each of the major design

components of BBQ. This chapter describes the physical implementation of each of

these components. BBQ has been implemented using a knowledge base development

tool called Aion/DS. In the descriptions which follow certain sections refer specifically

to its implementation in this environment.

4.1 SQL T ransformation Rules

As discussed in Section 3.1, the rule set used by BBQ has been adapted from that

described in (Freytag, 1987). The transformation rules have been implemented in

Knowledge Definition Language (KDL) which is the programming language of

Aion/DS.

Knowledge sources, which are the basic building blocks of the transformation

component, are comprised of groups of rules which are logically related in some way.

The knowledge sources implementing this component are :

• AlgebraicForm

• ScanMethods

• JoinOrders

• JoinMethods

• SortOperators

A description of the function of each of these knowledge sources follows. A listing of

the KDL rules implementing these knowledge sources is given at Appendix A.

The AlgebraicForm knowledge source translates the input query to an internal

algebraic form. The input query is assumed to have the following structure :

35

A Blackboard Architecture for a Rule-Based SQL Optimiser

SELECT <project_list>

<select_pred_list>

<join_pred_list>

<table_list>

The internal form is implemented by the creation of instances of object classes which

represent each list in the input query. Thus, instances of ProjAttr, SelectPred, JoinPred

and Relation are created. SelectPred has attributes SelectAttr, Operator and

ConstantValue. JoinPred has attributes JoinAttrl, Operator and JoinAttr2. A listing of

the data structures implementing these object classes is given at Appendix B.

The ScanMethods knowledge source generates all possible access paths to the

relations in the input query. For each relation, an instance of the class Fscan is created.

The selection predicates applicable to this relation are also extracted. For relations

which are indexed and an index is applicable, instances of the class Iscan are created.

The selection predicates are divided into those applicable to the index and the

remainder.

The JoinOrders knowledge source uses the Fscan and Iscan instances created in the

preceding step along with JoinPred instances to generate alternative join orders for the

query. It initiates the process by creating an instance of the class JoinExpression with

the innermost relation being a relation selected from the instances of the Fscan and

Iscan. The selection of this relation, as well as the sequence of subsequent expansions,

is determined by the cost model and control strategy which are described in the next

section.

Once the JoinExpression is initialised the knowledge source progressively generates

two-way joins with alternative join orders for the remaining relations. As each two-

way join is created, applicable join predicates are selected from the instances of

JoinPred and recorded against the join.

The JoinMethods knowledge source takes a completed JoinExpression from the

previous step and creates new alternatives with the generic joins replaced with

36

A Blackboard Architecture for a Rule-Based SQL Optimiser

permutations of merge and nested loop joins. As with the previous knowledge source,

the order in which the permutations are generated is dictated by the cost model and

control strategy.

As the name suggests, SortOperators inserts sort operators where required into

expressions containing merge joins. The outer relation in the merge join is sorted to an

order which is compatible with the order of the tuples of the inner expression if it is not

already so. The tuples of the inner expression may still require sorting to be in the same

order as the outer expression, in this case, a sort operation is introduced to the tuples

of the inner expression.

4.2 C ost M odel

The cost model used in BBQ consists of two components, the first calculates a cost for

the operations already incorporated in an evolving solution alternative and the second

attempts to estimate a close lower bound on the cost of the operations which are yet to

be incorporated.

As the cost model is not the central to the focus of this thesis, a model which provides

a reasonable approximation of the efficiency of alternative solutions has been used. The

algorithms used by BBQ to derive the various cost components are simplified versions

o f the cost functions described in (Elmasri and Navathe, 1989). In the future these

algorithms could be enhanced to provide more accurate cost estimates.

In deriving the cost of operations already incorporated into an alternative, an estimate

is made of the number of tuples accessed in each relation and, if applicable, in the

indexes. An estimate of the number of CPU operations required by the join and sort

operators is also computed. A composite cost is derived as the weighted sum of 10

and CPU costs. This 10 to CPU weighting factor is tunable and can be varied as

appropriate for a specific hardware/software mix. In BBQ this factor has been set to

1000 .

37

A Blackboard Architecture for a Rule-Based SQL Optimiser

The algorithm which estimates the historical 10 costs uses information from the

database on the cardinality of relations and selectivity of columns (inversely

proportional to the number of distinct values) in those relations.

For a full table scan operation, the number of relation tuples accessed is simply equal

to the cardinality of the relation. For an index scan operation, the number of tuples

accessed is estimated as follows :

Number of tup les accessed - cardinality of relation

* combined selectivity of se lect predicates

* (1 +num ber of index accesses)

w here number of index a c cesses is an approximation derived from the

cardinality of the relation and a tunable application constan t

In the above calculation it has been assumed that the cost of access to an index page is

of the same order of magnitude as access to a data row. While this does not yield a

precise cost, it is adequate for the purposes of this thesis. In future work, this

calculation could be further refined in future to use information on data and index page

sizes to estimate the number of disk pages accessed which is a closer approximation of

the number of physical 10 operations. For the purposes of this thesis this has not been

required.

A simple estimate o f the number of tuples selected from each relation is obtained by

multiplying the cardinality of the relation by the selectivity factor for each selection

predicate applying to the relation. The selectivity factor is determined by the

comparison operator and the selectivity of the attribute contained in each selection

predicate. It is calculated as follows :

if the com parison operator is ' - ' t h e n

selectiv ity fac to r = column selectivity

else if ' < > ' then

selectiv ity fac to r - (1 - column selectivity)

else i f ' < ' o r ' > ' then

selectiv ity facto r - 0.5

38

A Blackboard Architecture for a Rule-Based SQL Optimiser

As the source language defined for this project allows only conjunctive queries the

combined selectivity factor of all select predicates applicable to a relation is the

product of the individual selectivity factors.

An estimate of the cardinality of a join expression is calculated as the product of the

number o f tuples selected from each relation and the combined selectivity factor of the

join predicates. The selectivity factor for a join predicate is determined as follows:

If the join operator i s t h e n

selectiv ity fac to r - m axiselectivity of attribu te 1, selectivity of attribu te 2)

else if join operator i s ' < > ' then

selectiv ity facto r = 1 ■ m axiselectivity of a ttribute 1, selectivity of attribu te 2)

else if join operator i s ' < ' o r ' > ' then

selectiv ity facto r - 0.5

As with selection predicates, the combined selectivity factor of multiple join predicates

is the product of the individual factors.

An estimate o f CPU costs is based on a calculation of the number of operations

required to perform join operations and, in the case of merge joins, sort intermediate

results. While more accurate estimates of the number of CPU operations can be

obtained through more sophisticated algorithms, the formulas described below are

adequate for the purpose of this research.

In calculating join costs it has been assumed that after scanning, both the expressions

being joined can be held in memory and therefore no additional disk accesses are

required to perform the join. While this assumption is reasonable in the context of this

thesis, it may be desirable in future to extend join cost calculations to account for

cases, particularly if large intermediate result sets are involved, where additional disk

accesses are required to complete the join operation. In that case a tunable parameter

representing memory size could be defined to BBQ allowing it to further adapt to

specific operating environments.

39

A Blackboard Architecture for a Rule-Based SQL Optimiser

The number of operations required to perform a loop join is calculated by the

following formula :

CPU operations - num ber of tuples in outer expression

* num ber of tuples in inner expression

The same computation for a merge join is :

CPU operations - num ber of tuples in expression 1

+ num ber of tuples in expression 2

A reasonable estimate of the number of CPU operations required for a sort is given by:

CPU operations = co n stan t * num ber of tuples * loglnumber of tuples)

The constant has been defined as a tunable parameter in BBQ.

An estimate of the cost of operations yet to be incorporated into the partial QEP is

based on a best case scenario. A requirement of the search strategy is that the future

cost should provide a good lower bound on future costs. The model adopted here uses

a very simple heuristic to derive this lower bound. Future research could look to refine

this algorithm which would improve efficiency of the search strategy.

The algorithm for future costs uses the best case for the number of tuples accessed in

the relation and does not attempt to take into account any CPU costs which may be

incurred. Thus for each relation the calculation is as follows :

Number of tuples a c cessed - Relation cardinality

* Selectivity factor of se lect expression

It is acknowledged that the above approximation is simplistic and that a more accurate

estimate would be desirable if BBQ were to be developed further.

40

A Blackboard Architecture for a Rule-Based SQL Optimiser

4.3 Search Strategy

The search strategy used is in BBQ is a modified version of the A* search

incorporating some of the concepts from (Kemper et al., 1993). Main objectives set

out for the strategy were that it should enable an early assessment of the quality of

alternative partial solutions and should be able to progress some of the more promising

ones to completion without exploring numerous search paths.

The strategy utilises a combination of sequential control and non-deterministic

generation of alternatives under a modified form of A*. The A* search is driven by the

cost model described in the previous section which estimates past and future costs for

each partial solution. Flow of control between the knowledge sources under this

strategy is shown below.

AlgebraicForm

ScansM ethods

Loop

JoinOrders stop when

number of alternatives expanded - BranchingFactor

JoinM ethods stop when

number of alternatives expanded - BranchingFactor

SortO perators

Until (cost of b es t solution from this iteration > -

co st of b es t solution thus far * SearchTerminationFactor)

or no more a lternatives possible

DisplayResults

After sequential invocation of AlgebraicForm and ScanMethods, JoinOrders,

JoinMethods and SortOperators are iteratively invoked. The two main alternative

generating knowledge sources, JoinOrders and JoinMethods, operate under A*. In

each, the item with the lowest combined historical and future cost is selected from the

list o f candidate items for expansion. Once the number of alternatives expanded in an

invocation is equal to the tunable parameter BranchingFactor or all alternatives have

been expanded, the knowledge source returns control to the Control knowledge

source.

41

A Blackboard Architecture for a Rule-Based SQL Optimiser

At the end of each iteration of the processing cycle the Control knowledge source

compares the cost of the best solution produced in iteration against the best solution

produced from all iterations thus far. If it exceeds by a factor more than the tunable

parameter SearchTerminationFactor or all alternatives have been expanded,

DisplayResults is invoked prior to process termination.

The justification for this termination condition is that the alternatives are produced in

an ordered sequence with lower cost alternatives produced early due to the search

strategy adopted. Under this regime, even after allowing for the fact that some degree

of error will be present in estimates of future costs for emerging solutions, it is

reasonable to assume that there is a high probability that a near optimal solution is

produced amongst the early alternatives. Quantitative analysis techniques can be

applied to determine the probability of obtaining a near optimal QEP amongst a certain

number o f alternatives produced and this in turn can be used to set an appropriate

value for SearchTerminationFactor.

It can be seen from the preceding discussion that the performance of the optimiser can

be varied considerably by changing the values of the parameters used to drive the

search. These parameters provide an effective method of tuning the knowledge sources

to enhance optimiser efficiency and provides a basis for the possibility of a self-tuning

optimiser which is discussed further Section 6.3.

4.4 Back Propagation of Optimisation Results

One of the objectives of the BBQ architecture was to facilitate the collection of data

on the performance of knowledge sources. The delta profile of a knowledge source,

which can be easily generated using data maintained by BBQ, is a tool which can be

used to readily calibrate and tune optimiser components. Thus with the assistance of

delta profiles, overall optimiser performance can be improved by the identification and

refinement of knowledge sources which are not operating optimally.

42

A Blackboard Architecture for a Rule-Based SQL Optimiser

For each item on the blackboard, BBQ maintains a derivation tag. This derivation tag

is a list containing the sequence of knowledge sources which contributed to formation

of the item. Each element in the list comprises two components : a unique string

identifying the knowledge source and a number representing the position of this

contribution in the sequence of alternatives produced by the knowledge source.

A lg eb ra icF orm Scan M eth od s JoinO rdcrs Jo in M eth od s SortO perators

1 4 7 5 3

Diagram 8 - Example of a derivation tag

An example o f a derivation tag is given in the above diagram. The sequence of

knowledge sources which have contributed to the formation of this alternative can be

identified from this tag. An indication of how early the contributions were generated is

also available.

The optimiser is calibrated by allowing it to generate all possible alternatives for each

input query from a representative set. The specification of a set of queries which are

representative o f a general class of queries could be the subject of further research and

is briefly discussed in Section 6.2.

Once all alternatives have been generated for a particular query, they are ordered by

cost of execution. The set of such QEP lists produced from all the input queries along

with information contained in the derivation tag of each QEP can be used to produce a

delta profile for each knowledge source in the optimiser. The delta profiles chart the

frequency, at each sequence position in the alternative generation sequence, where the

contribution went on to form part of the optimal QEP.

As discussed in Section 2.3, it is desirable to obtain a delta profile similar to Diagram 5

(c) where the knowledge source, at an early stage, generates one or more contributions

to near optimal solutions.

43

A Blackboard Architecture for a Rule-Based SQL Optimiser

5. RESULTS

This chapter presents some results and observations from the implementation of BBQ.

It commences by presenting results of optimisations performed on a sample set of

queries followed by a discussion of various aspects of the design.

5.1 Database M odel

A rigorous analysis of the behaviour of BBQ would require compilation of a set of

SQL statements which is in some way representative of all or at least a large

proportion of queries which may be presented for optimisation. Collection of such a

set of SQL is beyond the scope of this research. For the purposes of this project the

behaviour of BBQ for a small set of queries against a hypothetical database is studied.

Legend

Cardinality

600,000

Primary Key
Attribute

Entity Name
Code Type
Code Value
Description

Code

ASX Code
Date
Low
High
Closing
VolumeTraded

SharePrice

Company Id
CompanyName
Activities
IndustryCode

Company

ASXCode
Companyld
ShareType
NumOnlssue

Share

Clientld
ClientName
Address
State
Nett Worth
Advisorld

Client

Advisorld
AdvisorName
Position

Advisor

Clientld
PurchaseDate
PurchaseTime
ASXCode
NumUnits
PurchasePrice

Portfoliolteir

15,000 1,000 12

Diagram 9 - Entity-Relationship diagram of hypothetical database

44

A Blackboard Architecture for a Rule-Based SQL Optimiser

An Entity-Relationship diagram of the hypothetical database is given above. The

queries which have been formulated against this database to investigate the behaviour

o f BBQ are described in the next section.

It is assumed that information on the composition of indexes and statistics, such as

cardinality and selectivity, are available from the database. The indexes, cardinalities

and selectivities listed below have been used for the query optimisations which are

presented in the sections which follow.

...................................M.....

_

ClientAdvisorld
........— M

— I

1 s-i
__

I v»wh MHMMMMMiM up AdvisorId
i Client ClientClientld Clientld
! S g . ClientNatne S
I Code CodeTypeValue Type, Value
p £ o m p a n € : i^ ^ B ^ o m p a n v N a m € ^ ^ ^ ^ ^ ^ B o m p a n v N a m 4 ^ ^ ^ j

Portfolioltem PortfolioASXCode ASXCodeüii '1 m r ii_
ShareASXCode ASXCode
SharePriceASXCode ASXCode

. Pc—
j Share

SharePrice

Table 1 - Indexes in database

50
I Company

Table 2 - Cardinality of tables

45

A Blackboard Architecture for a Rule-Based SQL Optimiser

Table Colum n i^ rS e lec tiv j^ J
Advisor Advisorld

AdvisorName 1111

Client
'

Position
Clientld
ClientName

- * ' f .2500
.0833

! ■ ■ ■ ■ ■ ■
Address 0011

B ■ ill State l i t B i a s i i « ;
NettWorth .0015
Advisorld .0833

Code Type .2500
p i i i l ä i -• i f l t i Value

Company
Description .0200

^^jC om panyld 3
Name .0013

(L ' ' : Activities
IndustryCode .0250

Portfolioltem Clientld ■ ■ ■ ■ H R
PurchaseDate .0020

B i l l 1111 PurchaseTime — —
ASXCode 0040 I

: NumOfUnits .0001
PurchasePrice .0001

Share ASXCode 0008
Companyld .0013

I I I2500
NumOnlssue .0009

Snarer nee ASXCode 0008
Date .0020
Low .0002

1 _ High .0003
p — — Closing .0002

VolumeTraded .0001

Table 3 - Selectivity of columns

5.2 Results of Sample Optimisations

Five queries of varying complexity have been contructed to investigate various

characteristics o f BBQ. The queries formulated to run against the hypothetical

database which was described in the preceding section are listed below.

1. List the portfolio o f 'VIKRAM SHARMA'

2. List the portfolio of all clients advised by 'JOHN FRANCIS'

46

A Blackboard Architecture for a Rule-Based SQL Optimiser

3. List all clients who own more than 1000 BHP preference shares

4. List the closing price and volume traded on 30/3/97 o f all stocks in the 'TOURISM
AND LEISURE' sector

5. List clients who live in 'A C T ', have a nett worth > $100,000 and have bought
stocks in the 'DIVERSIFIED INDUSTRIALS' sector since 30/6/96

For each o f these queries, an SQL statement and the best QEP generated by an

exhaustive run o f BBQ is presented below. The cost o f executing the QEP, as

computed by the cost algorithm used in BBQ, is shown along with a dissection o f the

cost to each QEP step. Where the step cost is less than 1, it is displayed with a

precision o f one decimal place to provide an indication o f its relative cost. The final

projection operation is not shown in the QEP listings.

5.2.1_Query 1

SELECT Portfolioltem. PurchaseDate, Portfolioltem. ASXCode,

Porfolio.NumOfUnits

FROM Client, Portfolioltem

W HERE Client.Clientld = Portfolioltem. Clientld

AND Client.Name = ‘Vikram Sharma’

(Ljoin (PortfolioItem.CIientld-Client. Clientld)

(Iscan (CIient.Name="Vikram Sharma") ClientName () Client)

(Fscan () Portfolioltem))

15

2
15,000

An additional transformation commonly implemented by optimisers is the use of

predicate(s) in a join expression to perform, if applicable, an index scan on the inner

relation. The addition o f this transformation as an extension to the set o f rules

implemented by BBQ is shown in Section 5.7.

47

A Blackboard Architecture for a Rule-Based SQL Optimiser

5.2.2_Query 2

SELECT

FROM

WHERE

AND

AND

Client.Name, PortfolioItem.ASXCode, PorfolioItem.NumOfUnits

Advisor, Client, Portfolioltem

Advisor. Advisorld = Client. Advisorld

Client. Clientld = Portfolioltem.Clientld

Advisor.Name = ‘John Francis’

l v Ä V

................................

(Mjoin (Portfolioltem, ClientId=Client. Clientld)

Step
cost

15

(Sort (Portfolioltem. Clientld) 208

Fscan () Portfolioltem) 15,000
(Sort (Client. Clientld) 1

(Ljoin (Client. Advisorld^Advisor. Advisorld) 1
(Fscan (Advisor.Name^John Francis") Advisor) 12
(Fscan () Client))) 1,000

5.2.3_Query 3

SELECT Client.Name, Portfolioltem.NumOfUnits

FROM Company, Share, Portfolioltem, Client

WHERE Company. Companyld = Share. Companyld

AND Share. ASXCode = PortfolioItem.ASXCode

AND Portfolioltem. Clientld = Client. Clientld

AND Portfolioltem.NumOfUnits > 1000

AND Company.Name = ‘Broken Hill Proprietary’

AND Share.Type = ‘Preference’

48

A Blackboard Architecture for a Rule-Based SQL Optimiser

QEP Cost 17224
......

% N vs .̂ s %

| | | | | | ^ l | Ä | | ^ ; ^ | : | | | | | | | | | p | ^ ^ ^ ^ ^ | i | | p | | | s | | | | | | | p | | |

Step

;s!
(Mjoin (Portfolioltem. Clientld=Client. Oientld)

(Sort (Client. Clientld)

Fscan () Client)

(Sort (Portfolioltem. Clientld)

(Ljoin (Share. ASXCode=PortfolioItem. ASXCode)

(Fscan (PortfolioItem.NumOfUnits> 1000) Portfolioltem)

(Ljoin (Company. Company Id- Share. Company Id)

(Fscan (Share. Type="Preference") Share)

(Iscan (Company.Name-*'Broken Hill Proprietary") CompanyName () Company))))

1

10

1,000

0.1

10

15,000

0.6

1,200

2

5.2.4_Query 4

SELECT

FROM

W HERE

AND

AND

AND

AND

AND

Com pany.Nam e, Share.Type, SharePrice.Closing

Code, Company, Share, SharePrice

Code.V alue = Company. IndustryCode

Company. Com panyld = Share. Com panyld

Share. ASX Code = SharePrice. ASXCode

Code.Type = ‘IN D U STR Y ’

Code.D escription = ‘TO URISM AND L E ISU R E ’

SharePrice.D ate = ‘31/3/97’

(Mjoin (Share. ASXCode- SharePrice. ASXCode) 1

(Sort (SharePrice. ASXCode) 12

Fscan (SharePrice.Date="31/3/97") SharePrice) 600,000

(Sort (Share. ASXCode) 0.1

(Mjoin(Code.Value-Company.IndustryCode)and(Company,Companyld~Share.CompanyId)) 1

(Sort (Company.lndustryCode,Company.Companyld) 8

Fscan Q Company) 800

(Sort (Code. Value,Share. Companyld) 2

(Ljoin 0.3

(Iscan (Code.Type="INDUSTRY") CodcTypeVaiue 39

(Code.Description="TOURISM AND LEISURE*') Code)

(Fscan () Share)))) 1,200

49

A Blackboard Architecture for a Rule-Based SQL Optimiser

It is interesting to note that the innermost join in this QEP generates a cartesian

product. According to the cost model used, this alternative is very slightly cheaper than

one which contains a loop join between Code and Company followed by merge joins

with Share and subsequently SharePrice. Although that QEP does not generate any

cartesian products, it is slightly more expensive as increased sort costs more than offset

cost savings from the innermost join.

5.2.5_Query 5

SELECT

FROM

W HERE

AND

AND

AND

AND

AND

AND

AND

AND

Client.Name, Company.Name, Share.Type, PortfolioItem.NumOfUnits

Code, Company, Share, Portfolioltem, Client

Code.IndustryCode = Company. Value

Company. CompanyId= Share. Companyld

Share. ASXCode = Portfolioltem. ASXCode

Portfolioltem. Clientld = Client. Clientld

Code.Type = ‘INDUSTRY’

Code.Description = ‘DIVERSIFIED INDUSTRIALS’

Portfolioltem.PurchaseDate > ‘30/06/96’

Client. State = ‘ACT’

Client.NettW orth > 100000

Owing to the limited capability o f the hardware platform on which the QEPs were

generated, a subset o f approximately 750 alternatives out o f a possible 3840 has been

generated for this query. The search was restricted by limiting the number o f

alternatives expanded by each knowledge source, refer to Section 5.4.1 for a

discussion on how this is achieved. The relationship between the set o f QEPs produced

in a restricted search and the set o f all possible QEPs from an exhaustive search is

touched upon in Section 5.4.5.

« I I I 11 ^ '

............

n
V

» » » » » » ,

(Mjoin ((Company. Industry Code-Code. Value) and (Share. CompanyId~Company* Companyld)) 11

(Sort (Company.IndustiyCode,Company.CompanyId) 8

Fscan () Company) 800

50

A Blackboard Architecture for a Rule-Based SQL Optimiser

(Sort (Code. Value,Share. Companyld)

(Mjoin (Portfol ioltem. ASXCode= Share. ASXCode))

(Sort (Share. ASXCode)

Fscan () Share)

(Sort (Portfolioltem. ASXCode)

(Mjoin (Client.ClientId=PortfolioItem.ClientId))

(Sort (Client. Clientld)

Fscan (Client.NettWorth>1ÖÖÜÖO) Client)

(Sort (Portfolioltem. Clientld)

(LjoinO

(Iscan (Codc.Type=”INDUSTRY") CodeType Value

(Code.Dcscription-'DlVERSlFIED INDUSTRIALS") Code)

(Fscan (PortfolioItem.PurchaseDate>"30/06/96’') Portfolioltem)))))

no
2

12

1,200

10

2

4

1,000

2

39

15,000

5.3 D istribution of QEP C osts

This section presents graphs showing the behaviour o f QEP costs from the results o f

running BBQ to produce an exhaustive set o f solutions for each o f the sample queries.

For Query 1, only a small number o f alternatives are possible and the cost o f

alternatives does not vary greatly. It ranges from a minimum o f 15,018 to a maximum

o f 16,223.

Query 1 QEP Costs

16400
16200
16000
15800
15600

8 15400
° 15200

15000
14800
14600
14400

1 2 3 4 5 6 7 8

Alternative Sequence

51

A Blackboard Architecture for a Rule-Based SQL Optimiser

The main component of the total QEP cost is the full scan of the Portfolioltem table

which has a cost of 15,000. An enhancement to the transformation rule set which

allows the join predicate to be used for an index scan on this table is given in Section

5.6. Alternatives 5 - 8 have a higher cost when compared with earlier QEPs due to the

index scan on the Client table, which had a cost of 2, being replaced with a full scan

which has a cost of 1,000.

Diagram 10 illustrates the identification tags of alternatives, as discussed in Section

4.4, generated at each level of the blackboard at the conclusion of the optimisation for

Query 1. Note that the Algebraic Form level contains a solitary alternative as only one

algebraic representation of the query is produced and that the list of identification tags

at the Complete QEPs level is the same as that at the Join Methods level since the Sort

operator is not required for this query. In the diagram, KS0, KSi, KS2, and KS3

represent the knowledge sources AlgebraicForm, ScanMethods, JoinOrders and

JoinMethods respectively.

Level Name

C o m p lete
QEPs

Join Methods

Generic Joins

Scan Operators

Algebraic
Form

Input SQL

Diagram 10

The query trees for the best (cost 15,018) and the worst (cost 16,223) plans are shown

at Diagram 11 (a) and Diagram 11 (b) respectively.

[KS3O, KS20. KS,2, KSoO] [KS3 I, KS22. KS,0. KSo0| [KS32, KS20, KS,2. KSo01
[KS33, KS22, KS,0, KSoO) [KS34, KS2L KS,2, KS00) [KS35, KS23, KS, 1, KS00]

[KS36 , KS2 1, KS,2. KSoO] [KS37, KS23, KS, 1, KS00]

[KS30, KS20, KS,2, K S oO] [KS3L KS22, KS,0, KS00] [KS32, KS20. KS,2, K S o0]
[KS33, KS22, KS,0, K S oO] [KS34, KS2 1, KS,2, KS00] [KS35, KS23, KS, 1, KS00]

[KS36 , KS2L KS,2. K S oO] [KS37, KS23, KS, 1, KS00]

[KS20. KS,2. K S oO] [KS,!, KS,2, KSo0] [KS22, KS,0, KS00]
[KS23, KS, 1, KS00]

[KS,0, KSoO] [KS, 1, KSoO] [KS,2. KS00]

[KSoO]

Input Query

- Identification tags of alternatives at each level of blackboard on

completion of optimisation of Query 1

52

A Blackboard Architecture for a Rule-Based SQL Optimiser

LJOIN
Portfolio.ClientId=

Client.Clicntld

FSCAN ISCAN
ClientNaine=

“Vikram Sharma”

MJOIN
Client.Clientld=
Portfolio.Clientld

FSCAN
ClientName=

“Vikram Sharma”

FSCAN

Portfolio Client Client Portfolio

(a) (b)

Diagram 11 - Query trees for best and worst plans for Query 1

For Query 2, again only a small number of alternatives are possible. The cost does not

vary greatly for the first 14 alternatives and but then increases significantly. It ranges

from a minimum of 16,237 to a maximum of 32,406.

Query 2 QEP Costs

35000

30000 -

25000

20000

15000 -

10000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Alternative Sequence

As with Query 1, a major contributor to the total QEP cost is the full scan of the

Portfolioltem table. In alternatives 1 5 - 2 0 the significant increase in cost is due to

additional CPU costs associated with a loop join between the Portfolioltem and Client

tables. The scans on these tables, which have cardinalities of 15,000 and 1,000

53

A Blackboard Architecture for a Rule-Based SQL Optimiser

respectively, do not have any associated selection predicates and thus retrieve all rows

from each relation, leading to a high computation cost for the loop join.

For Query 3, a total of 256 alternative QEPs are possible. The cost of the first 248

alternatives falls in the range 17,224 to 39,233 with the cost of the last 8 rising steeply

to be in the range 2,267,529 to 2,268,608.

Query 3 QEP Costs

10000000

1000000

100000

10000

Alternative Sequence

In the early alternatives for this query, the major component of the total cost is the full

scan of the Portfolioltem table which has a cost of 15,000. Alternatives with sequence

numbers appoximately in the range 150 - 248 have a loop join between Portfolioltem

and Share or between Portfolioltem and Client as the innermost join. In each of these

cases, the number of rows selected from both relations is large leading to join

computation costs which contribute significantly to the total cost of the QEP. For the

last 8 alternatives, the inner most join is a loop join between Client and Share which

produces a cartesian product. This large resultant set of rows is loop joined with

Portfolioltem from which a large number of rows are also likely to be retrieved. Thus

the approximate cost of performing the second loop join is 2,250,000 which represents

over 99% of the cost of these QEPs .

54

A Blackboard Architecture for a Rule-Based SQL Optimiser

As with Query 3, a total of 256 alternative QEPs are possible for Query 4. The

distribution of QEP costs is also similar to Query 3 although the cost curve is flatter.

The cost of the first 248 alternatives falls in the range 602,064 to 637,450 with the

cost of the last 8 rising steeply to be in the range 1,755,004 to 1,755,186.

Query 4 QEP Costs

700000
690000
680000
670000
660000

S 650000
° 640000

630000
620000
610000
600000

1 51 101 151 201 251

Alternative Sequence

The major component of the cost for the first 248 alternatives is the full scan of the

SharePrice table which has a cost of 600,000. The cost of the last 8 alternatives rises

sharply as these QEPs contain a loop join between the SharePrice and Company tables

followed by another loop join between the resultant set of rows and the SharePrice

table. The first join is estimated to return 960,000 rows which are then loop joined

with an estimated 1,200 rows from SharePrice resulting in a cost of 1,152,000 for the

second join and thus adding significantly to the QEP cost.

The cost distribution of Query 5 QEPs is different to that of the other four queries in

that it does not have the flat distribution exhibited in the early portion of the cost

curves for those queries. The costs range from a minimum of 16,237 to a maximum of

7,262,040.

55

A Blackboard Architecture for a Rule-Based SQL Qptimiser

Query 5 QEP Costs

10000000 r

3 1000000

100000

10000

Alternative Number

In the early alternatives for this query the cost of disk access is the major contributor

to the total QEP cost. In the case of the optimal QEP, disk accesses account for

approximately 98% of the QEP cost. For the remainder of the alternatives there is no

significant increase in the cost of disk accesses. The increase in QEP costs is primarily

due to degradation in the efficiency of joins leading to an exponential rise in their costs.

5.4 Results from Restricted Searches

The search strategy used by BBQ can be adjusted by altering the values of parameters

which control both the breadth and depth of search. The weighting of the cost of IO

operations relative to CPU may also be changed to reflect a setting which is

appropriate to the hardware and system software mix of the operating environment.

This capability represents a significant differentiator from traditional optimiser designs

and provides a mechanism to improve the quality of QEPs generated and the efficiency

of the optimiser. It may also form the basis for a self-tuning optimiser which is briefly

discussed in Section 6.3.

The results of experimentation with various parameter settings are presented in this

section. The effect of these changes both in terms of the QEP quality and optimiser

efficiency is discussed. The number of alternative QEPs generated in a restricted run is

approximately proportional to the time taken to perform the optimisation. Therefore, a

reasonable measure of the efficiency of the optimiser is the ratio of the number of

alternatives produced during a restricted search to the total number possible.

56

A Blackboard Architecture for a Rule-Based SQL Optimiser

5.4.1_Limited number of alternatives expanded

This section presents the QEPs generated for the sample queries in Section 5.2 when

the number of alternatives expanded by each knowledge source is severely restricted.

BBQ parameter settings used were : BranchingFactor = 2, SearchTerminationFactor =

1.00 and IO to CPU weighting = 1000. The effect of these settings is to limit each

knowledge source to expanding the two most promising alternatives and to terminate

the search after one processing cycle. A complete discussion of these parameters was

given in Section 4.3.

5.4.1.1 Query 1

The best QEP produced was the same as under an exhaustive search, possibly because

the total number of alternatives possible is small. Four out of eight possible QEPs were

generated.

5.4.1.2 Query 2

As with Query 1, the best QEP produced was the same as under an exhaustive search,

again the total number of alternatives possible is small. Eight out of 20 possible QEPs

were generated.

5.4.1.3 Query 3

The best QEP produced was within 1% of the optimum with only eight out of a total

of 256 possible QEPs produced. In the case of this query the result may have been

aided by the flatness of its cost distribution curve.

57

A Blackboard Architecture for a Rule-Based SQL Optimiser

Query 3

^ "
(Mjoin^Share.ASXCode^PortfolioItem. ASXCode) and (PortfolioItem.Clientld-Client.Clientld))

(Sort ((Portfoiioltem. ASXCode,PortfolioItem.Clientld)

Fscan (PortfolioItem.NumQfUnits>1000) Portfolioltem)

(Sort (Share. ASXCode,Client. Clientld)

(Mjoin (Company. Company Id^Share. Company Id)

(Sort (Share. Companyld)

Fscan (Share.Type-"Preference") Share)

(Sort (Company. Companyld)

(LjoinO

(Fscan () Client)

(Iscan (Company.Name:=,'Broken Hill Proprietary”) CompanyNameOCompany))))

5,4.1.4 Query 4

As with Query 3, the best QEP produced was within 1% of the optimum QEP with

only eight out o f a total of 256 possible QEPs produced. Again, the results for this

query may have been aided by the flatness of its cost distribution curve.

(Mjoin((Company. Companyld“ Share. Companyld) and (Share. ASXCode=SharePrice. ASXCode))

(Sort (Share.Companyld,Share. ASXCode)

Fscan () Share)

(Sort (Company. Companyld, SharePrice. ASXCode)

(Ljoin (Code. Value-Company. IndustryCode)

(Iscan (Code.Type-HINDUSTRY") CodeTypeValue

(Code.Descripton-’TOURISM AND LEISURE”) Code)

(LjoinO

(Fscan (SharePrice.Date~’'3 1/3/97”) SharePrice)

(Fscan () Company))))

58

A Blackboard Architecture for a Rule-Based SQL Optimiser

5.4.1.5 Query 5

The best QEP produced was 6% worse than the best QEP available from the more

expansive search of Section 5.1.5. This search generated only 16 QEPs compared with

approximately 750 for the more expansive search. If we classify near optimal queries

as those which are within 5% of the best result obtained previously, this result would

not qualify as near optimal. While the restrictions imposed on the optimiser in the case

of this complex query appear to be too severe to allow it to produce a result within the

above definition o f near optimal, it appears to be a reasonable outcome in light of the

fact that the number of alternatives generated was only 2% of the number produced by

the more expansive search.

Query 5

......^

;

.......................................to.,„.»»»»»»»»»,
(Mjoin ((Share.Companyld^Company.Companyld) and (PortfolioItem.ASXCode^Sharc.ASXCodc))

(Sort (Share. CompanylcfShare.ASXCode)

Fscan () Share)

(Sort (Company. Companyld.PortfolioItem.ASXCode)

(Mjoin (Ciient.Clientld-PortfolioItcm Clientld))

(Sort (PortfolioItem.Clientld)

Fscan (Portfol ioltem.PurchaseDate>"30/06/96") Portfoiioltem)

(Sort (Client.Clientld)

(Ljoin (Company.IndustryCode^Code.Value)

(Iscan (Code.Type-HINDUSTRY”) CodeTypeValue

(Code.Descripbon-'DIVERSIFIED INDUSTRIALS") Code)

(Ljoin ()
(Fscan (Client. NettWorth> 100000) Client)

(Fscan () Company)))))

5.4.2 Increase Search Breadth

The breadth of partial QEP alternatives searched by BBQ, as compared with the

preceding section, was increased by setting the parameter BranchingFactor = 3. This

change causes each of the knowledge sources under modified A* control to expand a

59

A Blackboard Architecture for a Rule-Based SQL Optimiser

larger number of partial QEP alternatives. The results produced with this changed

setting are presented below.

5.4.2.1 Query 1

The best QEP produced was the same as the optimum solution with six out of a

possible eight alternatives generated.

5.4.2.2 Query 2

The best QEP generated is marginally worse than with the previous more restrictive

search. It is probable that the increased number of alternatives available caused the

cost function and the control strategy to incorrectly ignore a partial QEP which had

previously led to a superior solution. This would occur if the total projected cost of a

partial alternative previously expanded was greater than that of new competing

alternatives. Thus by implication, the function which approximates future costs of

partial QEPs is not performing effectively in this case and should be refined to increase

the probability that partial QEPs which lead to optimal or near-optimal solutions are

explored. 10 out o f a possible 20 alternatives were generated.

n
■...... , :... . . • . .,. ...

(Mjoin (PortfolioItem.Oientld^Client.Clientld)
(Sort (Portfoholtem. Clientld)

Fscan () Portfolioltem)

(Sort (Client. Clientld)
(Ljoin (Client. Advi$orId=Advisor. Advisorld)

(Fscan () Client)

(Fscan (Advisor.Name="John Francis") Advisor)))

60

A Blackboard Architecture for a Rule-Based SQL Optimiser

5.4.2.3 Query 3

As with Query 2 the result produced is marginally worse than under the previous more

restrictive search. The reasons for this are likely to be the same as for the previous

query. 12 out of a possible 256 alternatives were generated.

Q uery 3

;

(§§

(Mjoin ((Share. ASXCode^PortfolioItcm. ASXCode) and (PortfolioItem.Clientld^Client Chcntld))

(Sort (Portfolioltem. ASXCode,PortfolioItem.ClienUd)

Fscan (Portfolioltem.NumOfUnits>10Öö)PortfolioItem)

(Sort (Share.ASXCode,Client. Clientld)

(Mjoin (Company. Company ld= Share. Companyld)

(Sort (Share.Companyld)

Fscan (Share.Type^1"Preference") Share)

(Sort (Company. Companyld)

(LjoinO

(Fscan () Client)

(Fscan (Company.Name^"Broken Hill Proprietary") Company))))

5.4.2.4 Query 4

A QEP superior to that generated with previous optimiser settings was produced. The

QEP was within 1% of the optimal solution with only 12 out of a possible 256 QEPs

generated.

(Mjoin (Share. ASXCode^SharePrice. ASXCode)

(Sort (SharePrice. ASXCode)

Fscan (SharePrice.Date="31/3/97") SharePrice)

(Sort (Share.ASXCode)

(Mjoin(Code. Value=Company. Indust ry€ode)and(Company. Company Id= Share. Companyld))

(Sort (Company.IndustryCode,Company. Companyld)

61

A Blackboard Architecture for a Rule-Based SQL Optimiser

Fscan 0 Company)

(Sort (Code. Value, Share. Companyld)

(Ljoin

(Fscan () Share)

(Iscan (Code.Type-"INDUSTRY") CodeTypcValue

(Codc.Dcscription-'TOURISM AND LEISURE”)))))

5.4.2.5 Query 5

A QEP superior to that generated with previous optimiser settings was produced. The

QEP was within 1% of the optimum with 20 out of a possible 3840 alternatives

generated.

WMWmMimMImvmmmmm

QEP Cost 1R337 J
- - •- \ ' n - v. O - - - s

ll||pll
H*____________________

(Mjoin ((Portfolioltem. ASXCode^Share.ASXCode) and (Client.Clientld^PortfoiioItem.Clientld))

(Sort (Portfolioltem. ASXCode,PortfolioItem. Clientld)

Fscan (PortfolioItem.PurchaseDate>”30/06/96") Portfolioltem)

(Sort (Share. ASXCode,Ciient.Clientld)

(Mjoin (Share.Companyld-Company.Companyld)

(Sort (Share. Companyld)

Fscan () Share)

(Sort (Company. Companyld)

(Mjoin (Company. Industry Code=Code. Value)

(Sort (Company.IndustryCode)

Fscan () Company)

(Sort (Code. Value)

(LjoinQ

(Fscan (Client.NettWorth>100000) Client)

(Iscan (Code.Type="INDUSTRY”) CodeTypeValue

(Code.Description-”DIVERSIFIED INDUSTRIALS”) Code)))))

Increase of the search breadth parameter yielded two solutions which were marginally

worse, two which were superior and one which was the same when compared with the

corresponding solutions generated with the previous, more restrictive, BBQ settings.

The solutions which were either the same or superior are as expected given that the

62

A Blackboard Architecture for a Rule-Based SQL Optimiser

number of alternatives under consideration has increased due to the higher search

breadth setting. The two solutions which were poorer indicated a shortcoming of the

future cost algorithm and suggest that this algorithm should enhanced to reduce the

possibility that promising partial QEPs are ignored.

5.4.3_Increase Search Depth

The depth o f QEP alternatives generated by BBQ, as compared to that in Section

5.4.1, was increased by setting the parameter SearchTerminationFactor = 1.05. This

change causes BBQ to continue generation of QEP alternatives until the cost of the

best QEP produced in an iteration exceeds the cost of the best QEP generated thus far

by 5%. QEPs produced under this setting for the previously described queries are

presented below.

5.4.3.1 Query 1

This setting caused all eight possible QEPs to be generated for this query.

5.4.3.2 Query 2

This setting caused all 20 possible QEPs to be generated for this query.

5.4.3.3 Query 3

The best QEP produced was the same as the optimum solution with 52 out of a

possible 256 alternatives generated.

5.4.3.4 Query 4

The best QEP produced was the same as that produced in the previous restricted

search and within 1% of the optimum with 16 out of a possible 256 alternatives

generated.

63

A Blackboard Architecture for a Rule-Based SQL Optimiser

5.4.3.5 Query 5

A Q E P which is w ithin 3% o f the optim al so lu tion w as p rod u ced w ith 48 o u t o f a

possib le 3840 alternatives generated.

i i ü Ä S

:s*Ss8®:jÄ

3EP C st 18827------ _ 7 ;

Query 5

(Mjoin ((Portfolioltem. ASXCode=Share. ASXCode) and (CUent.CliemId=PortfolioItem. Clientld))

(Sort (Portfolioltem. ASXCode,Portfolioltem. Clientld)

Fscan (PortfolioItem.PurchaseDate>w30/06/96”) Portfolioltem)

(Sort (Share. ASXCode,Client.Clientld)

(Mjoin (Share. CompanyId=Company. Company Id)

(Sort (Share. Company Id)

Fscan () Share)

(Sort (Company.Companyld)

(Ljoin (Company. IndustryCode=Code. Value)

(Iscan (Code.Type="INDUSTRY’’) CodeType Value

(Codc.Description="DIVERSIFlED INDUSTRIALS")Code)

(Ljoin 0

(Fscan (Client.NettWorth> 100000) Client)

(Fscan () Company)))))

Increase o f the search dep th param eter yielded tw o so lu tions w ere superio r and th ree

w hich w ere th e sam e w hen com pared w ith the co rrespond ing so lu tions Section 5.4.1.

This results is as w ould be expected given th a t the num ber o f alternatives u nder

consideration has been increased w ith the h igher p aram eter setting.

5.4.4_Summary of restricted search runs

T he p receding sections described the resu lts o f generating a lim ited set o f Q E P

alternatives by restric ting the num ber o f alternatives expanded by B B Q o r by triggering

the term ination condition fo r the search once the quality o f the Q E P s had deg raded by

a specified factor.

64

A Blackboard Architecture for a Rule-Based SQL Optimiser

In these runs, the number of alternatives generated varied from less than 1% to 100%

of the total number of alternatives possible. As mentioned earlier, the time taken to

perform the optimisation is roughly proportional to the number of alternatives

produced. Therefore, one measure of the efficiency of the optimiser is the ratio of the

number of QEPs required to produce at least one near optimal QEP to the total

number of QEPs possible. For the purposes of this thesis a near optimal QEP has been

defined as one with a cost which is within 5% of the optimum; although other

definitions, for example an upper bound of the highest cost of the best 10% of all

QEPs, may be equally valid.

Given this definition of near optimal, each of the restricted searches, with the exception

of one which was just outside the 5% bound, produced at least one near optimal QEP.

Thus a satisfactory result in terms of QEP quality was achieved with the generation of

only a small fraction of the total number possible alternatives. This is one of the five

characteristics, listed in Chapter 1, which the BBQ model attempts to achieve. Further

benchmarking against a more comprehensive set of queries could be used to establish

BBQ parameter settings which achieve near optimal results with the generation of a

minimum number of alternatives

5.5 C hange in IO to CPU W eighting

The relative weighting of IO operations to CPU operations was changed to 500,

effectively making CPU operations more expensive relative to IO operations. This

change demonstrates the ability of the model to adapt to specific hardware and

software environments. The effects of this setting on the optimisation of the previously

described queries are presented below.

5.5.1.1 Query 1

The best QEP produced was the same as with the original optimiser settings. However,

as expected the cost was different. The cost with the changed setting was 15034.

65

A Blackboard Architecture for a Rule-Based SQL Optimiser

5.5.1.2 Query 2

The best QEP produced was the same as with the original optimiser settings. However,

as expected the cost was different. The cost with the changed setting was 16462.

5.5.1.3 Query 3

The best QEP produced was the same as with the original optimiser settings. However,

as expected the cost was different. The cost with the changed setting was 17449.

5.5.1.4 Query 4

The best QEP produced was the same as with the original optimiser settings. However,

as expected the cost was different. The cost with the changed setting was 604817.

5.5.1.5 Query 5

A QEP different to that generated using the previous settings was produced.
.............Query 5 :.......... ■...

\ ' ' %% OX •> \ .
... S Ä ,

(Mjoin ((Portfol ioltem A SXCode=Share. ASXCode) and (CUent.C]ienüd=PorlfoüoKem.ClientId))

(Sort (Porlfotioltcm. ASXCode,PortfolioUcm.Clicmld)

Fsean (PortroUoItcm.PurchaseDate>"30/06/96”) Portfolioitem)

(Sort (Share. ASXCode,Client.Clientld)

(Mjoin (Share. Companyid-Company. Company Id)

(Sort (Share.Companyld)
Fsean () Share)

(Sort (Company.Companyld)
(Ljoin (Company. lndustryCodc=Code. Value)

(Iscan (Code.Type="INDUSTRY") CodeTypeValue

(Code.Description-MDIVERSIFIED INDUSTRIALS") Code)

(LjoinQ
(Fsean (Client. NettWorth> 100000) Client)

(Fsean () Company)))))

66

A Blackboard Architecture for a Rule-Based SQL Optimiser

For Query 5, the QEP generated was different to the corresponding one produced

under the original optimiser settings. This demonstrates the flexibility of the model to

select a QEP which takes into account characteristics of the operating environment.

5.6 D elta P rofiles for Knowledge Sources

Using results of the optimisations from section 5.2, delta profiles of near optimal

solutions for the five sample queries were constructed. For the delta profiles, near

optimal QEPs have been defined as those having a cost within 5% of the optimum.

The method of construction of these profiles has been described in Chapter 4 and relies

on the derivation tag which is associated with each QEP produced. A variation

introduced in the profiles below is to plot the decile of the alternative sequence as

opposed to the sequence ordinal. This enhancement allows a more meaningful

comparison across a range of queries. Also, the metrics maintained by BBQ allow

construction of delta profiles with a granularity finer than knowledge source level.

Thus, delta profiles for the main alternative generating transformation rules are

presented.

Delta Profile for SelectFirstScan

Decile of sequence of alternative used in QEP

The delta profile for SelectFirstScan has been constructed for comparative purposes

only. It shows that this rule does not appear to have any ordering in its contributions to

67

A Blackboard Architecture for a Rule-Based SQL Optimiser

near optimal solutions. This result is as expected given that the rule is allowed to

generate all possible first scans without restriction since the cost of this operation

relative to the rest of the optimisation is small.

Delta Profile forTJoins

re 250

Decile of sequence of alternative used in QEP

The delta profile for Tjoins is significantly skewed to the lower deciles. This indicates

that the rule is generating contributions to near optimal queries early in the sequence of

alternatives produced by it. This implies that it should produce a high proportion of

alternatives which form part of near optimal solutions even as the number of

alternatives it is allowed to generate is restricted.

Delta Profile for LJoins

Decile of sequence of alternative used in QEP

68

A Blackboard Architecture for a Rule-Based SQL Optimiser

The delta profile for Ljoins is only slightly biased to lower deciles. This indicates that

in restricted searches, the rule should still produce contributions which lead to near

optimal solutions, however the probability of not generating near optimal contributions

is higher than for the Tjoins rule. This rule is a candidate for improvement and its

associated cost function should be examined for possible refinement. The assumptions

made by the cost model with regard to loop joins, as discussed in Section 4.2, may

need to be re-examined.

Delta Profile for MJoins

80
60 H
40
20

Decile of sequence of alternative used in QEP

In contrast to the delta profile for Ljoins, the delta profile for Mjoins is significantly

more biased to low deciles. The rule appears to be performing efficiently and there is a

high probability that it will contribute to near optimal query plans in restricted

searches.

5.7 Exam ple of Extending Transformation R ule Set

One of the primary objectives of the architecture of BBQ is that it should be amenable

to the incorporation of new or changed transformation rules. As mentioned in 5.2.1 a

common transformation implemented by optimisers is to use join predicates to perform

an index scan, if applicable, on the inner relation of a join. This section presents the

results of incorporating this transformation into BBQ’s rule set.

69

A Blackboard Architecture for a Rule-Based SQL Optimiser

Implementation of the new transformation required four discrete changes to BBQ :

1. Modification of the data structure containing index scan predicates to allow it to

point to join predicates (in addition to select predicates as previously).

2. Addition of three new rules to perform the transformation. Listings of the new rules

can be found at the end of Appendix A.

3. Modification of the cost algorithm for index scans.

4. Modification of the Tjoins rule to use the new scans only as inner relations.

No changes were required to either the control strategy or other transformation rules.

The total time required to accomplish this extension, including problem analysis, was

under three hours. The effect of this enhancement on the QEPs for Query 1 and Query

2, described in Section 5.2, are presented below.

The optimum QEP for Query 1 after the enhancement is :

cos*

M join (P ortfo iio ltem . C lie n tId = C lien t C lien tld) .02

(S o rt (C lien t.C lie n tld) .0 0

Iscan (C lient.N am e=="V ikram Sharm a") C lien tN a m e () C lien t) 2

(Isca n (P o rtfo lio Item .C lien tld ^ C lien t.C lien tld) P ortfo lio Item C iien tid O P o r tfo iio lte m » 5 0

As expected, the inner relation is now scanned using the index PortfolioClientld and

the join predicate. It is interesting to note that the cost of the optimum QEP has

improved dramatically from 15,018 previously to 52 after implementation of the new

transformation.

The optimum QEP for Query 2 now is :

70

A Blackboard Architecture for a Rule-Based SQL Optimiser

h l p r yiLr C—
_________ _

Query 2
:x. ■ j

------------------- ---- -

Step
cost

Mjoin (Cl lent. Advisorld“ Advisor. Advisorld)

(Sort (Advisor. Advisorld)

Fscan (Advisor.Name~"John Francis") Advisor)

(Sort (Client. Advisorld)

(Mjoin (Portfolioltem. ClientId=Ciient Clientld)

(Sort (Client.Clientld)

Fscan () Client
.
fm

(iscan (PortfolioItem.Ciientld“ Client.ClientId) PortfolioClientld () Portfolioltem))))

Again, the inner relation is now scanned using the index and the cost of the optimum

solution has decreased from 16,237 to 1,073 .

Query 1 Costs after New Transformation

18000 r

16000 -

14000

12000

10000

8000

6000 -

4000 -

2000

Alternative Sequence

The graph above shows the distribution o f costs for Query 1 after the new

transformation has been introduced. The four additional QEPs have significantly lower

costs when compared with the previous optimum QEP. QEPs 1 and 2 are dramatically

superior, while QEPs 3 and 4 still represent a significant improvement.

71

A Blackboard Architecture for a Rule-Based SQL Optimiser

Query 2 Costs after New Transformation

35000 r ~ ~

30000

25000

20000 -

15000

10000

5000

Alternative Sequence

The graph above presents the new distribution of costs for Query 2. The first six

QEPs, with a cost range of 1073 to 1081, are significantly superior to best QEP prior

to the introduction of the new transformation.

It is desirable that BBQ should still produce some of the new superior QEPs when

conducting restricted searches. To examine its performance in such searches, the

number o f alternatives expanded was severely limited by setting the parameter

BranchingFactor = 2. This allows each knowledge source to expand only the two most

promising alternatives.

With this restriction for Query 1, four out of 12 possible QEPs were generated. The

four QEPs generated represented the best four solutions possible from the exhaustive

search incorporating the new transformation.

With this restriction for Query 2, eight out of 42 possible QEPs were generated. The

costs of the best two alternatives generated in this instance were within 1% of the new

optimum QEP cost.

72

A Blackboard Architecture for a Rule-Based SQL Optimiser

Thus an example of the implementation of an extension to the transformation rule set

has been demonstrated. The change was effected with relative ease and resulted in

significant improvement in QEP costs for the two sample queries examined. Also, the

new rules were able to make useful contributions even when the search space was

restricted.

5.8 A dvantages of Blackboard A rchitecture

A blackboard architecture was selected as the basis of the design of BBQ as it

promised to offer a number of advantages over more traditional designs. Following the

construction of software based on this design, this section takes a retrospective look at

the benefits which were actually delivered.

As a result o f storing emerging partial solutions on a common blackboard which is

operated upon by a number of knowledge sources, it was possible to segment the

design into modules which in some fashion mirrored a natural decomposition of the

problem domain. This led to high degree of correlation between the problem domain

and its programmatic representation and thus transparency of the algorithms being

implemented.

In addition to modularity, the structure of the blackboard allowed knowledge sources

to be constructed with minimal interactions/interfaces between them. This provided

great flexibility in adding and altering knowledge sources in that it greatly simplified

impact analysis.

The design also allows a high degree of decoupling of control logic from problem

solving logic. Thus changes to the control strategy could be effected without impacting

problem solving logic and vice-versa. This capability is of particular significance as one

of the goals of BBQ is to provide the basis for a self-tuning optimiser. It is envisaged

that ultimately the optimiser could use the results of a benchmarking process to initially

set values for tunable parameters and then continually improve these values as it

performs more and more optimisations. This is discussed in greater detail in the next

chapter.

73

A Blackboard Architecture for a Rule-Based SQL Optimiser

The use of a blackboard architecture also supports the control strategy. As all

emerging solutions are globally visible and each has an associated cost estimate,

comprising a historical and a future component, the process of selection of the next

node to expand is greatly facilitated. The architecture also supports the incremental

formation of partial solutions and allows flexibility in the granularity of the increments.

Thus the knowledge sources can be defined to reflect a level of granularity considered

appropriate for the control strategy.

The control strategy was readily able to use the structures provided by the blackboard

to focus the search and thus produce complete solution alternatives after expansion of

only a limited number of the candidate partial solutions. This allowed the breadth and

depth of search to be limited according to certain tunable parameters. This is discussed

further in the next section.

The derivation tag mechanism described in preceding chapters enabled the collection of

metrics which were used to construct delta profiles graphing the efficiency of

knowledge sources. This provided an effective means of identifying specific knowledge

sources which could be candidates for improvement.

A final point which should be made is that while the blackboard architecture provided

a number of benefits, the data structures required to support its implementation were

complex and required a greater degree of effort to design efficiently than may have

been the case in other designs.

5.9 Benefits of Search Strategy

The search strategy used by BBQ is a modified version of A* as described in preceding

chapters. It selectively alternates between pure cost-based control and procedural

control. The cost model used estimates both the cost of operations already

incorporated and also the cost of operations yet to be incorporated for each partial

solution alternative.

74

A Blackboard Architecture for a Rule-Based SQL Optimiser

The strategy imposes an iterative procedural sequence at the top level but it allows

controlled A* at the knowledge source level. This allowed complete QEPs to be

generated with the expansion of a limited number of candidate partial solutions. Thus

when operating under constraints on the time to perform the optimisation, a set of

possible QEPs could be generated at an early stage.

An important consideration in assessing efficiency of BBQ was the quality of these

early QEPs. It was desired that at least one near optimal alternative be present in this

set. Analysis o f QEPs produced presented in a previous section shows this to be case

in a significant portion of the sample set. A significant factor in achieving this objective

was the use of a cost model containing historical and future components.

As discussed in Chapter 4, it is not the intention of this research to devise a rigorous

model for estimating the costs of partial and complete QEP alternatives. It does

however attempt to use a model which provides an approximation of these costs and

can be used in investigating the proposed optimiser design. A more comprehensive

model could be the subject of further research.

The A* and procedural components and the termination condition are controlled by

the setting o f a number of tunable parameters. The results of variations to these

parameters have been presented in a previous section. Changes to their settings allow

control over the breadth and depth of search and the trade-off between optimisation

time and quality of QEP produced which is one of the qualities desirable in an

optimiser. This capability to set these parameters to achieve a reasonable compromise

in this trade-off was one of the objectives of this design.

75

A Blackboard Architecture for a Rule-Based SQL Optimiser

6. FUTURE WORK AND EXTENSIONS

This chapter examines some possibilities for extending the concepts presented in this

thesis. In particular, it discusses extension of functionality, collection of a

representative set of SQL statements for calibration, automating tuning of the

optimiser and feasibility of using BBQ as a tool for benchmarking. It concludes with a

discussion on the applicability of the model to commercial database management

systems.

6.1 Extension of Source Language and T ransformation Rule

Set

One of the main criteria driving the design of BBQ is that it should readily support

enhancement and extension of functionality. The scope of this thesis limited the source

language to a subset of SQL containing conjunctive queries and excluding sub-queries.

An area for further research would be to extend the source language to include a more

complete set of SQL. However, it should be noted that a significant class of subqueries

are logically equivalent to joins. A number of commercial database management

systems incorporate transformation rules to translate such subqueries to equivalent join

expressions.

The modular structure of the knowledge sources which implement the transformation

rules facilitates the task of adding new transformations to process the extended input

language. Depending on the scope of the extension, new rules could be added to

existing knowledge sources or new ones may be created and the control strategy

altered accordingly. The changes to knowledge sources may require modification of

existing data classes or the creation of new ones to hold emerging alternatives.

6.2 Set of Representative SQL for Calibrating BBQ

A key area for further research would be the identification of a set of SQL statements

which are representative of a broad class of queries. This set could be used to calibrate

the performance of BBQ in a particular database and hardware environment. An

76

A Blackboard Architecture for a Rule-Based SQL Optimiser

investigation of existing benchmark query sets may be an appropriate starting point for

this process.

The calibration process would involve running optimisations for the representative set

o f SQL statements, ordering the resultant QEPs according to execution time and back

propagating metrics which have been collected to the knowledge sources. This would

enable the tunable parameters to be adjusted to optimum settings.

The identification of such a set of SQL statements has not been examined in this

research. It may prove several such sets can be created and the set selected for use in

calibration is that with characteristics most similar to queries likely to be input.

6.3 Self Tuning Optimiser

The search strategy used by BBQ can be controlled by adjusting the values of

parameters which are part of its architecture. The parameters determine factors such as

the number of alternatives expanding in one iteration of a knowledge source and the

termination condition for the search. Other parameters include constants which are

used by the cost model.

Specific aspects of BBQ’s behaviour which can be modified include depth and breadth

of the search and the relative weighting of 10 operations to CPU operations. By using

information from the delta profiles for the knowledge sources these parameters can be

progressively refined to improve the performance of the optimiser.

It can be envisaged that a representative set of SQL statements, as discussed in the

preceding section, is optimised and delta profiles constructed from the results are used

to establish initial parameter settings for BBQ.

Ultimately it is feasible for the results of each optimisation to be back propagated to

the knowledge sources which contributed to the optimisation. This could enable each

knowledge source to automatically adjust tunable parameters to more optimal values.

77

A Blackboard Architecture for a Rule-Based SQL Optimiser

In such a scenario, the optimiser would improve performance over time by tuning itself

as it generates optimisations.

6.4 Tool for Benchmarking and T esting T ransformation

R ules

The architecture of BBQ provides a framework within which the performance of sets

o f transformation rules can be evaluated. Metrics generated by BBQ can be utilised for

quantitative analysis. These metrics can also be used to produce delta profiles as

described in Section 2.3.

Therefore, it is possible to experiment with alternative sets of rules and benchmark the

performance of each set. The impact of changes to database structure or hardware

configuration can be investigated. This allows development of efficient transformation

rules and permits tuning of the optimiser to maximise query execution performance in

a specific operating environment.

While the basis for these types of analyses exists in the proposed design, further

research could develop more sophisticated techniques for benchmarking and perhaps

extend the types of metrics collected.

6.5 A pplicability to Commercial DBMS’

Optimisers which rely purely on a predetermined program sequence and set of rules to

generate QEPs do not consistently produce results which can be regarded as near

optimal. This has led to implementations where the user can assist the optimiser by

providing hints on execution with the query. This however, requires knowledge of the

physical structure of the database and still does not provide a satisfactory QEPs for a

range o f queries.

The design proposed in this thesis should in general produce superior solutions as it

searches a number of possible alternatives selecting and then refining a subset on the

basis of an estimated cost of execution. Additionally, the search algorithm and cost

78

A Blackboard Architecture for a Rule-Based SQL Optimiser

model are designed such that near optimal QEPs should occur early in the sequence of

alternatives generated.

While the model presented requires significant work to bring to a stage where it can

effectively process a complete implementation of SQL, it does possess some desirable

characteristics :

• generation of efficient QEPs

• flexibility and extensibility

• control over trade-off between time for optimisation and quality of solution

• ability to improve performance over time

With these advantages to offer, it is possible that this model for optimiser design could

benefit commercial database management systems.

79

A Blackboard Architecture for a Rule-Based SQL Qptimiser

7. CONCLUSIONS

An optimiser design which draws upon existing work in the areas of blackboard

systems and rule-based optimiser design has been proposed. The model brings draws

on concepts developed in previous research works and extends these to present a novel

optimiser design. The proposed design was implemented in Aion/DS, a knowledge

base development tool.

The model possesses a number of desirable features. It addresses each of the

characteristics worth attaining in an optimiser, as listed in the Chapter 1.

The blackboard-based design proposed, comprising a global structure for storing

emerging solution alternatives and a set of knowledge sources implementing query

transformation rules, is well structured with limited interaction between components.

In this model, the heuristics driving the search strategy are segregated from the logic

implementing the transformations. This allowed great flexibility both in extending

functionality and in changing the strategy used to drive the search for near-optimal

QEPs. Also, the use of a set of rules to perform the translation of the input query to a

query execution plan adds transparency to the optimisation process.

The search strategy adopted is a modified version of the A* algorithm utilising a cost

model incorporating historical and future costs for emerging solution alternatives. The

search strategy and cost model enabled early selection of promising alternatives thus

enhancing optimiser efficiency and quality of QEPs produced.

A number of tunable parameters which can be used to control the behaviour of the

search are defined in the model. These parameters allow tuning of the optimiser to a

specific mix of transformation rules, database structure and hardware environment.

They also enable control over the trade-off between quality of QEPs produced and

time taken to perform the optimisation.

80

A Blackboard Architecture for a Rule-Based SQL Optimiser

A mechanism which enables the performance of individual components of the

optimiser to be quantified has also been described. This is implemented by tagging each

solution alternative with a structure showing the knowledge sources which participated

in its formation. Metrics derived from these structures were used to construct delta-

profiles for the knowledge sources. The delta profiles provided an easily

comprehensible format for assessing the quality of knowledge sources and assisted in

identifying those which could be improved.

Changes to the search strategy, by altering the settings of BBQ control parameters,

were also demonstrated. While changes to control parameters are manual in the

present design, further development of the model could lead to automation of this

function so that ultimately, the optimiser is able to tune itself. This would lead to an

optimiser design where performance improves over time as it learns from the result of

previous optimisations.

Since the optimiser is constructed as a set of knowledge sources, each of which is an

independent program unit, it could be readily adapted to take advantage of any parallel

processing capability. Also, as all the data accessed is globally visible on the

blackboard, communication between knowledge sources is minimised which further

facilitates parallel operation.

In conclusion, an approach to optimiser construction which possesses several desirable

characteristics has been proposed. As distinct from many contemporary optimiser

designs, which compromise on certain characteristics to perform better in others, the

proposed architecture is able to perform well against a number of criteria without

significant trade-offs. This work provides a foundation for an optimiser whose design

represents an advance over traditional optimiser architectures.

81

A Blackboard Architecture for a Rule-Based SQL Optimiser

APPENDIX A - LISTING OF RULES

A listing o f the main transformation rules used in BBQ is given below. The language

used for implementation is KDL which is part of the Aion/DS development

environment. The listing shows the rules grouped by knowledge source.

Knowledge Source : AlgebraicForm

Rule : ConvertSql

ifmatch InputSql with
QueryName = NameOfQueryToOptimise

then
for RelationList, Idx

create (Relation with Name=RelationList(Idx))
end

for ProjectList, Idx
create (ProjectAttribute with

RelationName= ExtractRel(ProjectList(Idx)),
Attribute^ ExtractAttr(ProjectList(Idx)))

end

for SelectList, Idx
create (SelectPredicate with

RelationName=ExtractRel(ExtractOperand 1 (SelectList(Idx))),
Attribute=ExtractAttr(ExtractOperand 1 (SelectList(Idx))),
Operator=ExtractOperator(SelectList(Idx)),
Constant=ExtractOperand2(SelectList(Idx)))

end

for JoinList, Idx
create (JoinPredicate with

RelationName 1 =ExtractRel(ExtractOperand 1 (JoinList(Idx))),
Attribute 1 =Extract Attr(ExtractOperand 1 (JoinList(Idx))),
Operator=ExtractOperator(JoinList(Idx)),
RelationName2=ExtractRel(ExtractOperand2(JoinList(Idx))),
Attribute2=ExtractAttr(ExtractOperand2(JoinList(Idx))))

end
end

Knowledge Source : JoinMethods

Rule : CalcHistoricalCost

ifmatch TjoinExpression with

82

A Blackboard Architecture for a Rule-Based SQL Optimiser

Status = 'LMJoinsDone' and
NodeStatus = 'Open'

then

for TjoinExpression.TjoinPtrList

if i > 1
then
InnerCardinality = TjoinPtrList(i-l)->.TjoinCardinality

HistoricalCost = HistoricalCost + JoinCost(TjoinPtrList(i)->. ScanCardinality,
InnerCardinality,
ExtractJoinType(TjoinPtrList(i)->))

end
end

FutureCost = 0

if vMinCostThisIteration = 0 or (HistoricalCost < vMinCostThisIteration)
then

vMinCostThisIteration = HistoricalCost
end

if vMinCostAllAlternatives = 0 or
(HistoricalCost < vMinCostAllAlternatives)

then
vMinCostAllAlternatives = HistoricalCost

end
end

Rule : CreateLjoins

ifmatch TjoinExpression with
NodeStatus = 'Selected'
orderby (round(HistoricalCost))

then
Idx = 0
for TjoinExpression.TjoinPtrList

if ExtractJoinType(TjoinPtrList(i)->) = 'Tjoin' and i > 1
then

Idx = i
break

end
end

if Idx > 0
then
TjoinPtr = TjoinExpression.TjoinPtrList(Idx)

83

A Blackboard Architecture for a Rule-Based SQL Optimiser

TjoinPtr = create (Ljoin with JoinPredicatePtrList =
TjoinPtr->.JoinPredicatePtrList,
ScanPtr = TjoinPtr->. ScanPtr,
ScanCardinality = TjoinPtr->.ScanCardinality,
TjoinCardinality = TjoinPtr->.TjoinCardinality,
Selectivity = TjoinPtr->. Selectivity)

TjoinExpressionPtr = create (TjoinExpression with
TjoinPtrList = TjoinExpression(l).TjoinPtrList,
RelationNameList = TjoinExpression(l).RelationNameList,
KSAlternativelDList =TjoinExpression(l).KSAlternativeIDList,
HistoricalCost = TjoinExpression(l).HistoricalCost,
NodeStatus = 'Selected')

TjoinExpressionPtr->.TjoinPtrList(Idx) = TjoinPtr

AddAlternativelDToList(TjoinExpressionPtr,
'CreateLJoins')

end
end

Rule : CreateMjoins

ifmatch TjoinExpression with
NodeStatus = 'Selected'
orderby (round(HistoricalCost))

then

TjoinPosition = 0
for TjoinExpression.TjoinPtrList

if ExtractJoinType(TjoinPtrList(i)->)= 'Tjoin' and i > 1
then

TjoinPosition = i
break

end
end

if TjoinPosition > 0
then

TjoinPtr = TjoinExpression.TjoinPtrList(TjoinPosition)

if not (currentvalue(TjoinPtr->. JoinPredicatePtrList) is unknown)
then

NewTjoinPtr = create (Mjoin with
JoinPredicatePtrList = TjoinPtr->.JoinPredicatePtrList,
ScanPtr = TjoinPtr->. ScanPtr,
ScanCardinality = TjoinPtr->. ScanCardinality,
TjoinCardinality = TjoinPtr->.TjoinCardinality,
Selectivity = TjoinPtr->. Selectivity)

84

A Blackboard Architecture for a Rule-Based SQL Optimiser

TjoinExpressionPtr =
create (TjoinExpression with

RelationNameList = TjoinExpression(l). RelationNameList,
TjoinPtrList = TjoinExpression(l).TjoinPtrList,
KSAlternativelDList = TjoinExpression(l).KSAlternativeIDList,
HistoricalCost = TjoinExpression(l).HistoricalCost,
NodeStatus = 'Selected')

TjoinExpressionPtr->. TjoinPtrList(TjoinPosition) = NewTjoinPtr

AddAlternativeIDToList(TjoinExpressionPtr, 'CreateMJoins')
end

end
end

Rule : SelectFirstScan

ifmatch Scan with TRUE
then

TjoinPtr = create (Tjoin with ScanPtr = ->Scan)

TjoinExpressionPtr^ create (TjoinExpression with Status-FirstScan')
add Scan.RelationName to TjoinExpressionPtr->.RelationNameList
add TjoinPtr to TjoinExpressionPtr->.TjoinPtrList

AddAlternativelDToList(TjoinExpressionPtr, 'SelectFirstScan')
end

Rule : SelectNodesToExpand

ifmatch TjoinExpression with
Status = 'TJoinsDone' and
NodeStatus = 'Open' and
NewNodeCount < KSBranchingFactor('JoinMethods')

orderby (round(HistoricalCost+FutureCost))
then

NewNodeCount = NewNodeCount + 1
NodeStatus = 'Selected'

end

Rule : UpdateNodeStatus

ifmatch TjoinExpression with
NodeStatus = 'Selected'

then
NodeStatus = 'Closed'

TjoinFound = FALSE
for TjoinPtrList

85

A Blackboard Architecture for a Rule-Based SQL Optimiser

if ExtractJoinType(TjoinPtrList(i)->) = Tjoin' and i > 1
then

TjoinFound = TRUE
end

end

if not TjoinFound
then

TjoinExpression. Status = 'LMJoinsDone'
NodeStatus = 'Open'

end
end

Knowledge Source : ScanMethods

Rule : AddPredicatesToFscans

ifmatch Fscan, SelectPredicate with
Fscan.RelationName = SelectPredicate. RelationName

then
add ->SelectPredicate to Fscan. SelectPredPtrList

end

Rule : AddPredicatesToIscansl

ifmatch
Iscan, SelectPredicate with
SelectPredicate. RelationName = Iscan.RelationName

then

if index(SelectPredicate. Attribute, I scan. IndexPtr->. AttributeLi st)
= size(Iscan.IndexPredPtrList) + 1

then
add ->SelectPredicate to Iscan.IndexPredPtrList

end

end

Rule : AddPredicatesToIscans2

ifmatch Iscan, SelectPredicate with
SelectPredicate. RelationName = Iscan.RelationName and
not (Iscan.IndexPredPtrList includes ->SelectPredicate)

then

add ->SelectPredicate to Iscan. SelectPredPtrList

end

86

A Blackboard Architecture for a Rule-Based SQL Optimiser

Rule : GenerateFscans

ifmatch Relation with TRUE
then

create (Fscan with RelationName = Relation.Name)
end

Rule : Generatelscans

ifmatch Relation, DBIndex, SelectPredicate with
DBIndex. RelationName = Relation.Name and
SelectPredicate.RelationName = DBIndex.RelationName and
SelectPredicate. Attribute = DBIndex.AttributeList(l)

then
ScanPtr = create (Iscan with RelationName = Relation.Name,

IndexPtr = ->DB Index)

add ->SelectPredicate to ScanPtr->.IndexPredPtrList

end

Knowledge Source : SortQperators

Rule : CalcHistoricalCost

ifmatch TjoinExpression with
Status = 'SortsDone'

then

for TjoinExpression.TjoinPtrList

if currentvalue(TjoinPtrList(i)->. Inner Sort AttributeList) is not unknown
then

HistoricalCost = HistoricalCost + SortCost(TjoinPtrList(i-l)->.TjoinCardinality)
end

if currentvalue(TjoinPtrList(i)->.OuterSortAttributeList) is not unknown
then

HistoricalCost = HistoricalCost + SortCost(TjoinPtrList(i)->.ScanCardinality)
end

end
end

Rule : SortlnnerExpression

ifmatch TjoinExpression with
Status = 'LMJoinsDone'

then

87

A Blackboard Architecture for a Rule-Based SQL Optimiser

for TjoinExpression.TjoinPtrList, MjoinPosition
if ExtractJoinType(TjoinPtrList (MjoinPosition)->) = 'Mjoin'
then

TjoinPtr = TjoinExpression.TjoinPtrList(MjoinPosition)

TupleOrder(->TjoinExpression, MjoinPosition, MjoinPosition,OuterPredicateList)

clear(InnerPredicateList)

for OuterPredicateList, Idxl
for TjoinPtr->. JoinPredicatePtrList, Idx2
if TjoinPtr->. JoinPredicatePtrList(Idx2)->.RelationNamel & &

TjoinPtr->.JoinPredicatePtrList(Idx2)->. Attribute 1 = OuterPredicateList(Idxl)
then

add TjoinPtr->. JoinPredicatePtrList(Idx2)->.RelationName2 & &
TjoinPtr->.JoinPredicatePtrList(Idx2)->. Attribute2

to InnerPredicateList
break

else
if TjoinPtr->. JoinPredicatePtrList(Idx2)->.RelationName2 & &

TjoinPtr->.JoinPredicatePtrList(Idx2)-> Attribute2 = OuterPredicateList(Idxl)
then

add TjoinPtr->.JoinPredicatePtrList (Idx2)->. RelationNamel & &
TjoinPtr->. JoinPredicatePtrList(ldx2)->.Attributel

to InnerPredicateList
break

end
end

end
end

TupleOrder(->TjoinExpression, 1, MjoinPosition-1, TupleOrderList)

if not IsOrderSame(InnerPredicateList, currentvalue(TupleOrderList), 1)
then

TjoinPtr->.InnerSortAttributeList = InnerPredicateList
end

end
end

TjoinExpression. Status = 'SortsDone'

88

A Blackboard Architecture for a Rule-Based SQL Optimiser

Rule : SortOuterExpression

ifmatch TjoinExpression with
Status = 'LMJoinsDone'

then

for TjoinExpression.TjoinPtrList, MjoinPosition
if ExtractJoinType(TjoinPtrList(MjoinPosition)->) = 'Mjoin'
then

TjoinPtr = TjoinExpression. TjoinPtrList(MjoinPosition)

clear(OuterPredicateList)

for TjoinPtr->.JoinPredicatePtrList
if TjoinPtr->. ScanPtr->.RelationName
=TjoinPtr->.JoinPredicatePtrList(i)->.RelationNamel

then
add TjoinPtr->.JoinPredicatePtrList(i)->.RelationNamel & &

TjoinPtr-> JoinPredicatePtrList(i)->. Attribute 1
to OuterPredicateList

else
add TjoinPtr->.JoinPredicatePtrList(i)->.RelationName2 & &

TjoinPtr->.JoinPredicatePtrList(i)->.Attribute2
to OuterPredicateList

end
end

TupleOrder(->TjoinExpression, MjoinPosition, MjoinPosition, TupleOrderList)

if not IsOrderCompatible(OuterPredicateList, currentvalue(TupleOrderList), 1)
then

TjoinPtr->.OuterSortAttributeList = OuterPredicateList
end

end
end

end

Knowledge Source : JoinOrders

Rule : CalcHistoricalCost

ifmatch TjoinExpression with
Status = 'TjoinsDone' and
NodeStatus = 'Open'

then

for TjoinExpression.TjoinPtrList

89

A Blackboard Architecture for a Rule-Based SQL Optimiser

TjoinPtrList(i)->. ScanCardinality = ScanCardinality(TjoinPtrList(i)->. ScanPtr)

if i = 1
then
HistoricalCost = ScanCost(TjoinPtrList(i)->. ScanPtr)
TjoinPtrList(i)->. TjoinCardinality = TjoinPtrList(i)->. ScanCardinality

else
TjoinPtrList(i)->. Selectivity =

JoinSelectivity(currentvalue(TjoinPtrList(i)->. JoinPredicatePtrList))

TjoinPtrList(i)->.TjoinCardinality =
TjoinPtrList(i)->. ScanCardinality *
TjoinPtrList(i-1)->.TjoinCardinality *
TjoinPtrList(i)->. Selectivity

HistoricalCost = HistoricalCost + ScanCost(TjoinPtrList(i)->. ScanPtr)
end

end
end

Rule : CreateTjoins

ifmatch
Scan, TjoinExpression
with NodeStatus = 'Selected' and
not (TjoinExpression.RelationNameList includes Scan.RelationName)
orderby (round(HistoricalCost+FutureCost))

then
JoinPredPtrList = selectall(JoinPredicate with

(Scan.RelationName = RelationNamel and
RelationNameList includes RelationName2) or

(Scan.RelationName = RelationName2 and
RelationNameList includes RelationNamel))

TjoinPtr = create (Tjoin with ScanPtr= ->Scan,
JoinPredicatePtrList = JoinPredPtrList)

TjoinExpressionPtr = create (TjoinExpression
with TjoinPtrList = TjoinExpression(l). TjoinPtrList,

RelationNameList = TjoinExpression(l).RelationNameList,
KSAlternativelDList =TjoinExpression(l).KSAlternativelDList,
PreviousHistoricalCost =TjoinExpression(1).PreviousHistoricalCost,
TjoinldxAtPreviousCost =TjoinExpression(l).TjoinIdxAtPreviousCost,
NodeStatus = 'Selected')

add Scan.RelationName to TjoinExpressionPtr->.RelationNameList
add TjoinPtr to TjoinExpressionPtr->.TjoinPtrList

AddAlternativeIDToList(TjoinExpressionPtr, 'CreateTjoins')

90

A Blackboard Architecture for a Rule-Based SQL Optimiser

end

Rule : SelectNodesToExpand

ifmatch TjoinExpression with
Status = 'FirstScan' and
NodeStatus = 'Open' and
NewNodeCount < KSBranchingFactor('TJoins')

orderby (round(HistoricalCost+FutureCost))
then

NewNodeCount = NewNodeCount + 1
NodeStatus = 'Selected'

end

Rule : UpdateNodeStatus

ifmatch TjoinExpression with
NodeStatus = 'Selected'

then
NodeStatus = 'Closed'

if size(TjoinExpression.RelationNameList) = size(selectall(Relation))
then

TjoinExpression. Status = 'TJoinsDone'
NodeStatus = 'Open'

end
end

The following rules was added to the JoinMethods knowledge source to implement the

additional transformation which, if applicable, utilises an index along with join

predicate(s) to scan the inner relation in a join.

Rule : Generatelscans2

ifmatch
Relation, DBIndex, JoinPredicate with
DBlndex.RelationName = Relation.Name and
((JoinPredicate.RelationNamel = DBlndex.RelationName and

JoinPredicate. Attribute 1 = DBIndex. AttributeList(l)) or
(JoinPredicate.RelationName2 = DBlndex.RelationName and
JoinPredicate. Attribute2 = DBIndex. AttributeList(l))) and

not exists (Iscan with RelationName = Relation.Name)
then

ScanPtr = create (Iscan with
RelationName = Relation.Name,
IndexPtr = ->DBIndex)

91

A Blackboard Architecture for a Rule-Based SQL Qptimiser

add ->JoinPredicate to ScanPtr->. IndexJoinPredPtrList

end

Rule : AddPredicatesToIscans3

ifmatch
Iscan, JoinPredicate with
JoinPredicate.RelationName 1 = Iscan. RelationName

then

if index(JoinPredicate. Attributed Iscan.IndexPtr->.AttributeList)
= size(Iscan.IndexPredPtrList) + 1

then
add ->JoinPredicate to Iscan.IndexJoinPredPtrList

end

end

Rule : AddPredicatesToIscans4

ifmatch
Iscan, JoinPredicate with
JoinPredicate. RelationName2 = Iscan. RelationName

then

if index(JoinPredicate.Attribute2, Iscan. IndexPtr->.AttributeList)
= size(Iscan.IndexPredPtrList) + 1

then
add ->JoinPredicate to Iscan.IndexJoinPredPtrList

end

end

92

A Blackboard architecture for a Rule-Based SQL Optimiser

APPENDIX F - BBQ INTERNAL DATA STRUCTURES

BBQ is implemented in Aion/DS which supports object oriented concepts such as
object classes ard inheritance. A description of the main classes and sub-classes of
objects which c>mprise the blackboard as defined in the implementation is given
below. At run ime instances of these classes are created to represent solution

alternatives.

... - >■»»- ••................... ■.......
f C a r d i n a l i t y I

DBIndex AttributeList
IndexName

Ä1I11I1III

RelationName

DB Selectivity Attribute
lit!

■

...

iputSql ■ ■ ■ ■ ■ ■

lllllll

I . ■ ■

f c f c > OuervName ...

JoinPredicate

Selectivity

JoinList
Project Li st

u l l l f i yueryixame
RelationList

Attribute 1

I") I M B fe Attribute - | |
Operator

Attribute
Relation

l ‘'2a L J U E L ^ * W - ■ ' J mmwMMmam -^Relation |1 S * I :" J & § iS 'r 1 Käme
RelationName

..

Scan

Fscan
.3

p ip ifftfscan ;* IndexName
IndexPredPtrList

petectPredLcate Attribute

M M B M B — 1

Constant

f c Operator

,

M I B B —

93

A Blackboard Architecture for a Rule-Based SQL Optimiser

94

A Blackboard Architecture for a Rule-Based SQL Optimiser

BIBLIOGRAPHY

Adler M R and Simoudis E, Integrating Distributed Expertise, paper submitted to
International Working Conference on Cooperative Knowledge Based Systems,
University of Keele, England Oct 3-5, 1990

Blackboard Technology Group Inc, technical paper by the company - The Blackboard
Problem-Solving Approach, Amherst, Massachusetts

Bond A H and Gasser L, An Analysis of Problems in Distributed Artifical Intelligence,
in Readings in Distributed Artificial Intelligence, A H Bond and L Gasser (ed),
Morgan Kaufmann, 1988

Corkhill D D, Gallagher K Q and Johnson P M, Achieving Flexibility, Efficiency, and
Generality in Blackboard Architectures, in Readings in Distributed Artificial
Intelligence, A H Bond and L Gasser (ed), Morgan Kaufmann, 1988

Cox B J, Object Oriented Programming: An Evolutionary Approach, Addison-
Wesley, 1986

Elmasri R and Navathe S B, Fundamentals o f Database Systems, Addison-Wesley,
1989

Engelmore R and Morgan J (ed), Blackboard Systems, Addison-Wesley, 1988

Freytag J C, A Rule-Based View of Query Optimization, in Proceedings o f the ACM
S1GMOD Conference on Management o f Data, San Francisco USA, 1987, pp 173-
180

Flanson E N, Rule Condition Testing and Action Execution in Ariel, ACM SIGMOD,
June 1992, pp 49-58

Hayes-Roth B, A Blackboard Architecture for Control, in Readings in Distributed

Artificial Intelligence, A H Bond and L Gasser (ed), Morgan Kaufmann, 1988

Hudlicka E and Lesser V, Modeling and Diagonsing Problem-Solving System

Behaviour, in Readings in Distributed Artificial Intelligence, A H Bond and L Gasser
(ed), Morgan Kaufmann, 1988

95

A Blackboard Architecture for a Rule-Based SQL Optimiser

Kemper A, Moerkotte G and Peithner K, A Blackboard Architecture for Query
Optimisation in Object Bases in Proceedings o f the 19th VLDB Conference, Dublin
Ireland, 1993, pp 543-554

Krishnamurthy R, Boral H and Zaniolo C, Optimization of Nonrecursive Queries in
Proceedings o f the Twelfth International Conference on Very Large Data Bases,
Kyoto Japan, August 1986, pp 128-137

Leao L V and Talukdar S N, COPS: A System for Constructing Multiple
Blackboards, in Readings in Distributed Artificial Intelligence, A H Bond and L
Gasser (ed), Morgan Kaufmann, 1988

Lochovsky F H, Knowledge Communication in Intelligent Information Systems

Nii H P, Blackboard Systems: The Blackboard Model o f Problem Solving and the
Evolution o f Blackboard Architectures, AI Magazine, Summer 1986, pp 38-53

Pomeroy B and Irving R, A Blackboard Approach fo r Diagnosis in Pilot’s Associate,
IEEE Expert, August 1990, pp 39-46

Trinzic Corporation, AionDS Language Reference, Trinzic Corporation, 1994

Yoshida N and Narazaki S, A Cooperation and Communication Framework for
Distrubuted Problem Solving, in Proceedings o f the Fourteenth Annual International
Computer Software Applications Conference , pp , Chicago 1990

96

