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Abstract

In relational database systems the query optimiser plays a critical role in translating a 

query from its initial form as input by a user into an efficient program which can be 

executed by the database component which performs the physical retrieval of data. For 

queries other than the most trivial, there usually exist numerous different possibilities 

for the sequence in which tables are accessed and the access methods used to retrieve 

the requested data. It is the role of the optimiser to select a good, and possibly the 

best, program to execute the query.

In addition to the inherent complexity of the problem, designers of optimisers have to 

contend with often conflicting requirements such as the need for modularity and 

extensibility versus the need for efficient execution of the program. Often this leads to 

designs which compromise on some qualities of the optimiser in order to maximise 

others. This thesis proposes a model which attempts to address characteristics 

desirable in a relational query optimiser more completely than contemporary designs.

An architecture for an SQL optimiser which is based on the concept of a blackboard is 

investigated. The proposed design incorporates a set of rules to perform the 

transformations necessary to optimise the query. Subsets of these rules are grouped 

into knowledge sources which operate on the evolving problem solution in an 

independent manner. A mechanism for the back propagation of the results of 

optimisations is also incorporated in the design.

The proposed model has been implemented in Aion/DS, a knowledge base 

development tool. The results of the optimisation of a sample set of queries are 

examined. The impact of restricting the number of alternatives explored by the 

optimiser, both on query execution plan quality and optimiser performance, is also 

investigated.

The thesis concludes with a brief discussion of possible further work including 

enhancements to the model and automated tuning of the optimiser.
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A Blackboard Architecture for a Rule-Based SQL Optimiser

1. INTRODUCTION

1.1 Background

In relational database systems the query optimiser plays a critical role in translating a 

query from its initial form as input by a user into an efficient program which can be 

executed by the database component which performs the physical retrieval of data. For 

queries other than the most trivial, there usually exist numerous different possibilities 

for the sequence in which tables are accessed and the access methods used to retrieve 

the requested data. In the case of more complex queries, alternative programs may 

number in the thousands. It is the role of the optimiser to select a good, and possibly 

the best, program to execute the query. Thus the quality of the optimiser greatly 

influences the overall performance of a database management system.

As a key component of database management systems, a great deal of research has 

been devoted to the design of the optimiser. Due to the nature of its problem domain, 

the optimiser is inherently a very complex piece of software. In addition to the problem 

complexity, designers of optimisers have to grapple with often conflicting requirements 

such as the need for modularity and extensibility versus the need for efficient execution 

of the program. In many cases, this has led to designs which have had to compromise 

on some aspects o f the optimiser in order to maximise the performance of others.

Ideally, the design o f an optimiser should attempt to address as many of the following 

desirable characteristics as possible :

• Early assessment o f quality of alternative solutions

• Modularity to facilitate maintenance

• Architecture which supports extension of functionality

• Provision of metrics to aid analysis of performance

• Support o f parallel processing
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This thesis proposes an architecture for a relational database optimiser which aims to 

address these characteristics more completely than other contemporary designs.

1.2 A rea of R esearch

An SQL optimiser architecture which is based on the concept of a blackboard, 

borrowed from the area of artificial intelligence, is investigated. This research draws 

from several previous works, which are discussed in Chapter 2, and builds upon the 

concepts presented in those works.

The proposed design incorporates a set of rules to perform the transformations 

necessary to optimise an SQL query. Subsets of these rules are grouped into 

knowledge sources which operate on the evolving problem solution in an independent 

manner. A mechanism for the back propagation of the results of optimisations is also 

incorporated in the design.

The research aims to investigate the feasibility of the architecture outlined above, 

construct a software suite to implement the proposed design and examine various 

characteristics of the model. Specific characteristics to be studied include quality of 

optimisations, efficiency of the proposed architecture and extensibility of the model. 

The back propagation of optimisation results as a mechanism for calibrating and tuning 

knowledge sources is also to be examined.

2
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2. RELATED WORK

This chapter examines research which has been conducted in areas relevant to the topic 

o f this thesis. As part of the study of previous and contemporary work, a number of 

papers on blackboard systems and optimiser design were consulted. A complete list of 

these works can be found in the References section.

This chapter is divided into three sections. The first section looks at the concept of 

blackboard systems and describes two projects which are considered to have originated 

this model of problem solving. The second section discusses a paper which describes a 

set transformation rules for the optimisation of relational queries. The third section 

discusses a paper which employs the blackboard concept coupled with a rule set, 

derived from the paper presented in the second section, to present a model for query 

optimisation in object-bases.

2.1 Blackboard Systems

2.1.1 Model for Problem Solving

An effective method of describing the concept of blackboard systems is by way of 

analogy to a group of people collectively solving a jigsaw puzzle (Engelmore and 

Morgan, 1988). The problem domain is the construction of the puzzle from the jigsaw 

pieces, the group of people working of the puzzle is analogous to a set of knowledge 

sources solving the problem and the board on which the emerging solution is being 

constructed is representative of the blackboard.

In the analogy, the pieces of the puzzle are distributed amongst the group of problem 

solvers. The problem solution commences with each person placing their most 

promising piece or pieces on the blackboard. As pieces are placed on the blackboard, 

each group member examines their own pieces and adds new ones that may now fit as 

a consequence o f others having being added. The solution evolves as more and more 

pieces fit and terminates once all the pieces have been placed.

3
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This model o f problem solving provides a number of interesting features and presents 

the basis of an architecture suitable for a certain class of problems. Some of the points 

of particular note are :

• No direct communication between the problem solvers is required

• No predetermined sequence is defined for the order in which the problem is solved

• Solution is formed incrementally

• Problem solvers can exhibit opportunistic behaviour

• Distribution of the puzzle pieces amongst group does not greatly affect the problem 

solution

Many of the concepts of this model of problem solving find their origins in two 

projects conducted in the 1970’s.

The first o f these, Hearsay-II, was one of the systems developed at the Carnegie- 

Mellon University as part of a five year speech recognition project sponsored by the 

Defence Advanced Research Projects Agency (DARPA). The project commenced in 

1971 with three organisations demonstrating systems in 1976. Although Hearsay-11 

was not the most successful system, it did produce some original software engineering 

techniques that have general applicability. Hearsay-II was the product of 

approximately 40 person years of effort and several design iterations.

The second, HASP, was one of the early applications to utilise and extend some of the 

concepts developed in Hearsay-II. It was developed to identify and track vessels, 

particularly submarines, using data from concealed hydrophone sensors in the deep 

ocean. The main feature of the blackboard architecture for HASP was the capability 

for opportunistic problem solving.

Discussions of these two projects in the sections which follow are extracts from 

(Engelmore and Morgan, 1988), complete descriptions of the projects can be found in 

that text.
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The blackboard model consists principally of three components, a global solution 

board containing emerging solution alternatives, a set of knowledge sources which 

progress the problem solution and a control strategy which determines the sequence of 

invocation of the knowledge sources.

2.1.2 The Blackboard

The global solution board or blackboard is a structure for storing solution alternatives 

as the problem is being solved. The solutions on the blackboard are visible to all 

knowledge sources and cost functions which form part of the control strategy. The 

blackboard is segmented into levels, each containing partial solutions which are at a 

similar stage of evolution. While a knowledge source has read access to the entire 

range of emerging alternatives, it usually operates on alternatives on one level, emitting 

more developed alternatives to an adjacent “higher” level. In some instances the 

knowledge source may produce alternatives at the same level as its input.

In the HEARSAY-II project, the blackboard is segmented into levels that correspond 

to the various stages of speech recognition. Hypotheses at each level have a unique 

identifier and are tagged with additional information including time within the spoken 

sentence and credibility ratings. The levels of the blackboard form a hierarchical 

structure with each higher level aggregating elements of lower levels. A diagram of the 

architecture of HEARSAY-II is given in the next section.

An important component of the HASP architecture is its model of the current ocean 

scene known as the Situation Board. This describes the state of the geographical area 

of interest and provides a reference model for the interpretation of new information, 

assimilation of new events and generation of expected future events.

The problem of understanding the state of the ocean is organised into a hierarchy of 

blackboard levels with the highest one corresponding to the Situation Board and the 

lowest level consisting o f sonagram data from ocean sensors. A diagram of these 

blackboard levels and some the knowledge sources operating between them is 

presented in the next section.
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2.1.3 Knowledge Sources

Knowledge sources are program units which progress the problem solution by 

generating partial, and ultimately complete, solution alternatives. Each knowledge 

source has access to all the partial alternatives that have been produced prior to its 

invocation. Upon invocation a knowledge source will typically use a partial solution at 

one level to generate one or more alternatives at an adjacent higher level on the 

blackboard.

In Hearsay-II, the knowledge sources are implemented as independent programs which 

perform the functions o f generating, merging and evaluating hypotheses. Although the 

nature of knowledge sources varies greatly, due to the differing problem domains of 

Hearsay-II components, each is represented by a condition-action tuple. The condition 

specifies the situations in which the knowledge source may be able to contribute to the 

solution and the action specifies what the contribution is and how this can be 

integrated into the evolving solution.

The condition part of each knowledge source searches through existing alternatives on 

the blackboard searching for conditions where it may be appropriate to apply the 

action part of the knowledge source. In Hearsay-II, each condition program declares a 

set of primitive conditions in which it may be applicable and is only invoked if changes 

to the problem solution trigger these conditions. This improves efficiency as it 

minimises the evaluation of condition programs and changes the architecture from 

polling to interrupt driven.

The diagram below shows the main components of the architecture of Hearsay-II. 

Functions implemented by the knowledge sources include extracting acoustic 

parameters, classifying acoustic segments into phonetic classes, recognising words, 

parsing phrases and generating and evaluating predictions for undetected words or 

syllables. Each o f these knowledge sources use partial solutions at one level to 

generate one or more alternatives which are placed on the adjacent higher level. Partial 

solutions at all levels of the blackboard are accessible by the Blackboard Monitor
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knowledge source which interacts with the Focus of Control program. This program 

directs the Scheduler on the selection of the next knowledge source to be invoked.

Level k

Level 3 

Level 2 

Level 1

Blackboard

SchedulerFocus of 
control

Scheduling
Queues

Diagram 1 - Hearsay-II Architecture (Figure 3.3 in (Engelmore and Morgan, 1988))

In the HASP system, alternative generation is opportunistic and is both data-driven and 

model-driven. Control knowledge sources determine the most appropriate knowledge 

source to invoke at each step of the problem solution. Modifying the analysis strategy 

involves changes only to the control knowledge sources.

Diagram 2 illustrates the blackboard levels (on the left) and some of the knowledge 

sources (on the right) in HASP. Knowledge sources use one or more hypothesis 

elements at one level to infer hypotheses at other levels, these are shown as links
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between the levels in the diagram. Where the knowledge source makes inferences in 

one direction only these links are represented by directed lines.

Situation Board

Vessels

Sources

Harmonics

Lines

Ratio Finder

Source classifier & 
Cross array associator

Harmonic set former 
& Line finder

Diagram 2 - HASP blackboard levels and KSs 

(Figure 6.2 in (Engelmore and Morgan, 1988))

Specialist knowledge sources are responsible for generating new hypotheses and/or 

modifying existing ones. Their focus of attention is usually a hypothesis that has 

recently changed. Although a knowledge source has access to all hypotheses, it 

normally operates only on hypotheses contained in its input and output levels.

2.1.4 Control Strategy

As there is limited procedural control in most blackboard systems, the control strategy 

is responsible for the selection of the next knowledge source to be executed. It also 

selects the partial solution on which this knowledge source should operate. The 

selection o f the knowledge source and partial solution alternative is often predicated 

on a cost metric which estimates both the cost of operations already incorporated in 

the partial solution and the cost of operations which are yet to be incorporated. The
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architecture of blackboard systems allows segregation of the components which 

implement the control strategy from the remainder of the program units. Thus changes 

to the control strategy may be effected with relative ease and impact only the control 

strategy components.

In Hearsay-II, the sequence of activation of knowledge sources is determined purely by 

the state of the problem solution as described by the hypotheses on the blackboard. 

The system exhibits opportunistic behaviour as it is able to invoke the knowledge 

source that is most likely to be appropriate to each stage of the problem solving 

process.

This requires an evaluation of three metrics (Engelmore and Morgan, 1988):

1. the probable effects of invocation of a knowledge source

2. significance of the actions by an analysis of its cooperative and competitive 

relationships with existing hypotheses

3. the relative value of invoking a knowledge source versus the other potential 

candidates

Hearsay-II incorporates these metrics in a heuristic scheduler which calculates a 

priority for all candidate knowledge sources and invokes the knowledge source with 

the highest priority rating.

The control strategy of HASP is implemented by KS-Activators, which know when to 

invoke particular Specialist knowledge sources, and the Strategy-KS, which 

determines the “focus of attention”. One execution cycle consists of the following 

steps (Engelmore and Morgan, 1988) :

1. Focusing attention on one o f : time-dependent activities, verification of hypotheses 

or one of the hypothesised elements

2. Choosing the most appropriate knowledge source for the focus of attention

3. Invoking the selected knowledge source

9
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KS-Activation knowledge sources perform the task of selecting Specialists according 

to the kind of problem solving strategy being employed. Thus a model-driven strategy 

would have a different goal to a data-driven strategy. Two other important factors 

considered by the control strategy are the efficiency and the accuracy of each 

Specialist.

The high level Strategy-KS mirrors the problem solving strategy of a human analyst. It 

determines the accuracy of the CBH and selects the task that will have the greatest 

impact on the current problem state.

2.1.5 Conclusions

The blackboard model offers an alternative problem solving paradigm and possesses 

characteristics which make it well suited to certain classes of problem.

Classes of problems to which the blackboard model would be suited according to 

(Engelmore and Morgan, 1988) include those where :

• Large amounts of signal data are to be analysed

• Heuristics are applied to interpret data

• Problem domain inherently possesses a hierarchical structure

• Opportunistic strategies may be used to advantage

Some of the advantages of this model for problem solving as listed in (Engelmore and 

Morgan, 1988) are :

• Multiple sources of knowledge allow incorporation of diverse types of knowledge.

• Multiple levels of abstraction in the global blackboard structure allow for 

representation o f the problem at several different levels.

• Knowledge sources can represent knowledge in a consistent format and share 

partial results.

10



A Blackboard Architecture for a Rule-Based SQL Optimiser

• Interaction between knowledge sources is limited to the changes that each makes to 

the data on the blackboard. This means that each knowledge source can be 

developed independently and without any description of the others allowing for a 

high degree of modularity.

• Solutions are formed incrementally with lower level hypotheses integrated into 

larger and more credible composites as part of the problem solving process.

•  Opportunistic behaviour exploits the most promising alternative(s) to which the 

most significant addition can be made.

• Control strategy is flexible with changes to search method (eg. depth-first, breadth- 

first, left-to-right etc.) requiring modifications only to the control knowledge 

source.

For certain types o f problem however, a blackboard architecture can have significant 

disadvantages. The calculation of a cost metric for partial solution alternatives may be 

computationally expensive. The process of selecting the next knowledge source to 

trigger and the partial alternative to expand imposes an overhead on the search for a 

solution. And lastly, the need for data structures which are globally visible can lead to 

complex blackboard structures.

2.2 A Model For A Rule-Based SQL Optimiser

The query optimiser is the component of a database management system which 

generates a Query Execution Plan (QEP) to efficiently compute the result of a user- 

submitted query. The non-trivial task of finding a good QEP has led to sophisticated, 

however, complex implementations of optimisers. In these implementations, changes 

or extensions o f functionality are often difficult and time-consuming.

This section describes a basis for a modular query optimiser, presented in (Freytag, 

1987), which is designed to alleviate some of the problems associated with the
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inflexibility of traditional query optimiser implementations. The proposed architecture 

attempts to clearly separate different aspects of the optimisation process thereby 

reducing the inter-dependence between components of the optimiser. The basis of the 

design is a set of transformation rules which convert the user-submitted query into an 

algebraic QEP. These transformation rules provide an implementation independent 

description of the steps required to generate the QEP. This design for an optimiser is 

amenable to change and facilitates extensions to the set of possible QEPs produced.

2.2.1_Query Optimisation and Evaluation

The paper identifies three processes for the conversion of a query from a format input 

by a user to a program which can be executed by a database management system to 

retrieve the data. The processes are - validation, optimisation and translation. The 

validation phase checks for semantic and syntactic correctness, view resolution and 

possibly checks authorisation prior to generating an internal representation of the 

query. The optimisation phase uses information about the physical representation of 

the data to be accessed and available evaluation strategies to generate a query 

execution plan. The final phase, translation, transforms the query execution plan into a 

representation suitable for efficient execution. The focus of the paper is the second of 

these processes, the generation of a query execution plan.

A general non-procedural query representation is selected as the source language and 

an extended relational algebra is the target language. The rule-based transformations 

described are central to the optimisation algorithm. The algorithm selected is 

sufficiently complex to illustrate the power of rule-based description. There are two 

other important aspects of the optimisation process which are not in the scope of the 

paper. The first is the selection of a search strategy to define how to search through 

alternative QEPs, examples of possible search strategies are breadth-first, depth-first 

and k-step look-ahead. The second is the selection of a cost function to compare 

alternative QEPs to determine which ones are better that others. This function may be 

dependant on the cost of using various resources such as CPU time, number of I/O 

operations and number of messages.

12
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The stated objective of the paper is to present a rule-based description for the 

generation of QEP alternatives from an initial query specification in an implementation 

independent manner.

2.2.2_Source and Target Languages

The source language selected for the purposes of the paper allows conjunctive queries 

which exclude sub-queries and aggregates. This selection is only to limit the scope of 

the paper and not due to any fundamental limitations of rule-based transformation. To 

demonstrate this the paper includes a discussion of how the rule set can be readily 

extended to cater for more complex query formulations.

The query input to the optimisation phase is assumed to have the following form :

SELECT <project list>

<select_pred_list>

<join_pred_list>

<table_list>

The lists respectively describe the projection of the result tuples, predicates applicable 

to individual tables only, join predicates and tables accessed.

Query 1 as defined in section 5.2, is used as an example to illustrate the effect of the 

transformations which follow. Represented in the form described above, this query is 

specified as :

SELECT (PortfolioItem.ASXCode, PortfolioItem.NumOfUnits)

(Client.ClientName = “Vikram Sharma”)

(PortfolioItem.Clientld = Client. Clientld)

(Client, Portfolioltem)

The target language is an extended form of relational algebra as some of the operations 

required are not available in traditional algebra. All the operators defined manipulate a

13
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list o f tuples which is derived from either a relation referenced by name or the output 

of another operation.

2.2.3_Operators and Functions

The operators defined do not allow transformation of all SQL queries, however they 

are sufficient to transform the selected source language. An extension of this set of 

operators to process a more complex source language is shown to be feasible. Freytag 

defines the following operators :

(FSCAN <t_pred> re!) - scans a relation while applying the list of predicates in 

<t_pred>, which may be empty.

(I SCAN <i_pred> index <t_pred> rel) - scans a relations using the index to apply 

the index predicates <i_pred> before scanning the table and applying the predicates 

<t_pred>. One or both predicate lists may be empty.

(PROJECT <proj_list> tuplelist) - projects tuples in tuple list onto the attributes 

specified in <proj_list>.

(LJOIN <join_pred> listl list2) - denotes a nested-loop join with listl being the 

outer list and list2 the inner.

(MJOIN <join_pred> listl list2) - denotes a merge-join with listl being the outer 

list and list2 the inner.

(SORT <attr_list> tuple list) - sorts tuple list according to the order specified by 

a ttrlis t.

Some additional operators are defined to generate intermediate steps required in the 

course o f the transformation.

(SCAN <sel_pred> rel) - scans a relation without specifying the access path.

14
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(JOIN <join_pred> <scan_list>) - joins an arbitrary number of relations without 

specifying their order.

(TJOIN <join_pred> listl list2) - denotes a two-way join without specifying the 

type of join.

Each step of the optimisation process is described by a transformation or rewrite rule. 

A transformation rule (ti —» t2) specifies the replacement of ti by t2. This notation is 

extended to introduce restricted rules. These are of the form (ti c —» t2) signifying that 

ti is to be replaced by t2 if condition C evaluates to true. A restriction on C is that it 

may only access variables in expressions ti and t2.

The notation (... ti ...) denotes zero or more subexpressions to the left and right of 

some tj.

Restricted rules often use functions in their conditions to determine properties of a 

relation, predicate or general expression. Functions defined for the transformation rules 

are :

Ind(Il, R) - determines if II is an index on relation R.

T(p) - denotes the set of relation names referenced in p.

A(t, RS) - denotes the set of attributes of the relations in RS which are referenced 

in t.

0(1) - returns an attribute list determining the ordering of rows retrieved from a 

relation using index I.

Q(Q) - denotes the order in which tuples are retrieved by a QEP Q. This function 

is defined recursively as follows :
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Q((FSCAN <p> rel)) = <>

Q((ISCAN <ip> ind <tp> rel)) = O(ind)

Q((PROJECT <pr> list)) = Q (list)

Q((LJOIN <jp> listl list2)) = Q (listl)

Q((MJOIN <jp> listl list2)) = Q (listl)

Q((SORT <a_list> list)) = <a_list>

Note : <> in the definition of the function applied to the FSCAN operator denotes that 

no order can be ascertained.

2.2.4 The Transformation Rules

The first step of the optimisation requires a translation of the query from its initial form 

to an algebraic form for further manipulation.

The following two rules create a list of SCAN operators attached to each relation 

in the input query.

((SELECT e, e2 ( ...ti...»  -► (SELECT e, e2 (.......) ((SCAN () t,))))

((SELECT ei e2 (...ti...) ( .......)) -> (SELECT e, e2 (....... ) (...(SCAN () t , ) ...)))

For the example query defined in section 2.2.2, these transformations result in 

following expression :

SELECT (PortfolioItem.ASXCode, PortfohoItem.NumOfUnits)

(Client.ClientName = “Vikram Sharma”)

(PortfolioItem.Clientld = Client.Clientld)

((SCAN () Client), (SCAN () Portfolioltem))

Next the selection predicates are distributed amongst the SCAN expressions 

depending on the relation name accessed in each predicate.
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((SELECT e, (...p,...) e2 ( ,.(SCAN(.......) t , ) ...)) cl->

(SELECT e, (.......) e2 (... (SCAN(... p, ...) t , ) ...)))

C l= (T (p ,)= { t,} )

Applying this transformation to the example query produces :

SELECT (PortfolioItem.ASXCode, PortfolioItem.NumOfUnits) 

(PortfolioItem.Clientld = Client. Clientld)

((SCAN (Client.ClientName = “Vikram Sharma”) Client),

(SCAN () Portfolioltem))

Once the selection and relation lists are empty, an n-way join is created followed by 

a projection for the resultant expression.

((SELECT e, () e2 () e3) -> (PROJECT ei (JOIN e2 e3)))

After this transformation the example query takes the following form :

(PROJECT (PortfolioItem.ASXCode, PortfolioItem.NumOfUnits)

(JOIN (PortfolioItem.Clientld = Client.Clientld)

((SCAN (Client.ClientName = “Vikram Sharma”) Client),

(SCAN () Portfolioltem))))

The second step of the optimisation involves generating alternatives for accessing 

individual relations, in particular selection predicates which might be evaluated using 

indexes.

The first transformation below converts a generic scan to a full relation scan 

without using any indexes. The second applies an index scan if a subset of the 

predicate list can form a prefix of the attribute list denoting the index order.
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((SCAN p, ti) -> (FSCAN Pl t,))

((SCAN p, t,) cl-> (ISCAN p,' II p," ti))

Cl = (Ind(Il, ti) a  (pi = (p,' u  pi") a (pi' n  pi" = 0 )  a  

(A(p,', t,) e 0(11)))

One possible alternative generated by the above transformations for the example 

query is :

(PROJECT (PortfolioItem.ASXCode, PortfolioItem.NumOfUnits)

(JOIN (PortfolioItem.Clientld = Client.Clientld)

((ISCAN (Client.ClientName=“Vikram Sharma”) ClientName () Client), 

(FSCAN 0 Portfolioltem))))

The next step of the optimisation process involves exploring different join orders 

among the tables involved as well as choosing join methods.

The first rule selects a relation at random to be the outer expression of a join. The 

second rule successively creates two-way joins by taking any relation and 

combining it with the two-way join expression created so far. The final rule 

discards the n-way join operator when both the predicate and relation lists are 

empty. Between them, these rules can generate a number of alternative join orders 

for a given expression.

((JO IN t, (... t2 ...)) —> (JOIN t) ( ...... ) t 2))

((JOIN (... p, ...) (... t i ...) t2) c ,-> (JOIN ( .......) (....... ) (TJOIN (Pl) t2 t,)))

C l= ( T ( p , ) 6 T ( t , ) u T ( t2))

((JOIN () O t , ) - M ,)

The rules listed above are not sufficient to completely reduce a list of join 

predicates. To process cyclic queries and ones in which two relations are joined by
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more than one predicate, two further rules which push the remaining predicates 

into two-way joins are required :

((JOIN (... p, ...) t, (TJOIN (...) t2 13)) c l->

(JOIN ( ....... ) t ,  (TJOIN (... p, ...)t2 t3)))

Cl = (T (p ,)e T ( t2) u T ( t 3))

((TJOIN (... p, ...) (TJOIN (...) t, t2) t3) C2->

(TJOIN ( ....... ) (TJOIN (p, . . . ) t , t 2) t 3))

C2 = ( T ( p l ) e T ( t i ) u T ( t 2))

One possible alternative generated by the above transformations for the example 

query is :

(PROJECT (PortfolioItem.ASXCode, PortfolioItem.NumOfUnits)

(TJOIN (PortfolioItcm.Clientld = Client. Clicntld)

((1SCAN (Client.ClientName=“Vikram Sharma”) ClientName () Client), 

(FSCAN () Portfolioltcm))))

The final step involves the selection o f a join method to implement each two-way join. 

The paper implements transformations for nested-loop joins and merge joins. The first 

rule below transforms a two-way join into nested-loop join. The second and third rules 

generate a merge join, applying the SORT operator to the outer expression if required.

((TJOIN p) ti t2) -> (LJOIN p, ti t2))

((TJOIN p, ti t2) c '-> (MJOIN p, t, t2))

Cl = (A(pi, T(t,)) e O (t,))

((TJOIN p, t, t2) C2->  (MJOIN p, (SORT A(p,, T(t,)) t,) t2))

C2 = (A(Pi, T(t,)) g Q (t,))
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Finally, in the case of a merge join, a transformation to ensure that the two sets of 

tuples being merged are in a compatible order is defined. The SORT operator is 

only applied to the inner expression when the order of tuples of the outer and inner 

expressions is not the same.

((MJOIN p, t, t2) c '->  (MJOIN p, t, (SORT A(p,, T(t2)) t2)))

Cl = ((Q(t2) <2 Q (t,)) a  (fl(A(p,, T(t2))) = (t,)))

Two possible alternatives generated by the application of the above 

transformations to the example query are :

(PROJECT (PortfolioItem.ASXCode, PortfolioItem.NumOfUnits)

(LJOIN (Portfolioltem. Clientld = Client. Clientld)

((ISCAN (Client. ClientName=“Vikram Sharma”) ClientName () Client), 

(FSCAN () Portfolioltem))))

(PROJECT (PortfolioItem.ASXCode, PortfolioItem.NumOfUnits)

(MJOIN (Portfolioltem.Clientld = Client.Clientld)

((SORT (Client.Clientld)

ISCAN (Client.ClientName = “Vikram Sharma”) ClientName () Client), 

(SORT (PortfolioItcm.Clientld) FSCAN () Portfolioltem))))

2.2.5 Conclusions

The paper presents a set of rules which effect the necessary transformations to convert 

a query from the input language into a query execution plan of fundamental operations 

on the relations accessed in the query. Adoption of such an approach in the design of 

an optimiser allows a clear separation between the components which transform the 

input into a QEP and those which control the process of QEP generation. Additionally, 

the set o f rules is extensible, facilitating the incorporation of new functionality.
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2.3 A Blackboard  A rchitecture for Q uery O ptimisation in 
O bject  Bases

This section describes a model presented in (Kemper et al., 1993) which proposes the 

adoption of a blackboard architecture for an object-oriented database query optimiser.

The blackboard problem solving model is coupled with a set of rule-based 

transformations derived from the paper discussed in the previous section (Freytag, 

1987) to present a new architecture for an object base query optimiser. The proposed 

architecture possesses two desirable characteristics - firstly, the design enables the 

back propagation of optimised queries to allow evolutionary improvement in optimiser 

performance and secondly, a modified version of A* search can be selectively applied 

to control the search space.

Query optimisers, whether for relational or object databases, are very complex pieces 

o f software and much research is still devoted to their design. The qualities which are 

desirable in a query optimiser, as listed in (Kemper et al., 1993), are :

1. extensibility and adaptability : the architecture should facilitate design change as 

new optimisation techniques or index structures are developed.

2. evolutionary improvability : it should be possible to tune the optimiser after 

gathering data from a sequence of queries which have been optimised. The ultimate 

goal being a self-tuning optimiser which is able to automatically improve the quality 

of its optimisations based on previous results.

3. predictability of quality : as there is often a trade-off between the time used for the 

optimisation and the quality of the result, it would be useful to be able to predict 

the quality o f the result relative to the time allocated for the optimisation.

4. graceful degradation under time constraints : given a time constraint, the quality of 

the optimised result should degrade gracefully.
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5. early assessment of alternatives : the performance of the optimiser to a large extent 

depends on the number of alternatives generated and typically, heuristics are used to 

restrict search space. A more flexible approach is to abandon less promising 

alternatives as early as possible. For this a cost model which estimates the potential 

quality of each alternative at an early stage in the optimisation process is required.

6. specialisation : the optimiser design should support the incorporation of specialised 

knowledge to deal with particular parts of the optimisation process or to deal with 

specific sub-classes of queries.

Numerous optimiser designs have been proposed to try to incorporate some of the 

above qualities. However it is often the case that in order to maximise some qualities 

others are neglected. For example, while rule-based systems place emphasis on 

extensibility, an estimation of the quality of the result in relation to optimisation time 

allocated becomes difficult.

The paper proposes an architecture which segments the query into building blocks 

consisting of fundamental operations in order to construct a query execution plan in a 

well-structured fashion. A cost model is central to the proposed design. As it is not 

generally obvious which transformation will lead to the optimal solution, alternatives 

are generated. The alternatives are graded by an expected cost function and this cost 

has to be improved as each alternative is developed.

The architecture presented tries to address each of the previously listed characteristics 

desirable of an optimiser. It is based on the blackboard model which facilitates a 

bottom up building block design and early assessment of alternatives by utilising future 

cost estimates.
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2.3. l _ Blackboard Structure

The blackboard is organised in r successive regions Ro..Rr-i each containing a set of 

items which represent alternatives being generated by the optimiser in the search for an 

optimal query execution plan.

The original query is translated into an internal form and is placed into region Ro as the 

only item. A knowledge source KSj is associated with a pair of successive regions 

(Ri,Ri+i). Each knowledge source KSj retrieves items from region R; and emits, in an 

order which it determines, one or more alternatives to the region Rj+i. There is no 

restriction on the data which the knowledge source may read, it may come from any 

region and may include database statistical data, schema definition and indexing 

information.

Each alternative emitted by a knowledge source has the name of the knowledge source 

and the next sequence number for that knowledge source added to an identification 

tag. Thus any item on the blackboard can be uniquely identified and a history of its 

derivation can be easily determined. This feature is essential for evaluation of quality 

and calibration of knowledge sources.

The diagram below illustrates blackboard levels, knowledge sources operating between 

these levels and examples of identification tags of alternatives at each level.

Diagram 3 - Blackboard Architecture (Figure 1 in (Kemper et al., 1993))
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Ro In p u t Q u ery
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2.3.2_Search Strategy

As previously described a building block approach is used for query execution plan 

generation. Thus successive regions of the blackboard contain more and more 

complete query execution plan alternatives. One or more complete query execution 

plans are contained in the final region Rr_i.

To avoid an exhaustive and expensive search of all possible alternatives a cost is 

computed for each item on the blackboard. Two cost functions, costh and costf have 

been defined to compute the historical and future costs respectively for an item. Costh 

determines the cost of operations already incorporated into the QEP and costf 

estimates the cost of operations which have yet to be integrated. The sum of these two 

costs is used to drive an A* search, the knowledge source which is applicable to the 

item with the lowest total cost is allowed to generate further alternatives for that item.

For A* to operate efficiently, costf should represent a close lower bound on future 

costs. However, for query optimisation a lower bound estimate for future operations is 

always based on the best case for each operation. Therefore the estimate can be 

considerably lower than the actual cost of those operations. This could lead A* to 

degenerate into an almost exhaustive search and lead to unacceptably long 

optimisation times. To overcome this potential problem, a variation of the A* strategy 

has been proposed.

One o f the characteristics desirable of the knowledge sources is that they emit more 

promising alternatives early in the optimisation process. To take advantage of this 

feature A* is modified to periodically and temporarily switch off A* control and 

process the first few alternatives without any cost control. Under this regime some 

promising alternatives will progress through successive blackboard regions and 

possibly to the top-most region where they would represent complete query execution 

plans. When A* control is resumed items which were generated in intermediate steps 

are discarded which has the effect of “straightening” the optimisation. This strategy 

allows the search to process some promising alternatives efficiently without 

backtracking. A degree of control over the trade off between optimisation time and
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quality of the result can be obtained by varying the periodicity A* disablement and the 

number of alternatives which are fully expanded during this time.

2.3.3_ Back propagation

The architecture of the optimiser, in particular the use of an identification tag to trace 

the derivation history of alternatives, supports the collection of metrics for quantitative 

evaluation and subsequent calibration of the knowledge sources.

This is achieved by back propagating the results of optimising an extensive set of 

benchmark queries. For this set of benchmark queries, the optimiser is run under pure 

A* control except that it is allowed to continue to generate alternatives even after the 

optimum alternative has been generated. Once the run has completed the top-most 

region will contain a list of complete query execution plan alternatives for each 

benchmark query. Due to the nature of the search strategy each list of QEP alternatives 

is already sorted in order of increasing cost.

To determine the quality of knowledge sources, results from these ordered lists are 

back propagated to each knowledge source. The quality of a knowledge source is 

measured in terms of a comparison of the sequence number at which the knowledge 

source produced its contribution to the QEP alternative versus the position of this 

QEP alternative in the list of QEPs ordered by running times. Using the results from a 

representative set of queries, a Top-Rank profile as shown below can be derived for 

each knowledge source.

Number of 
alternatives

Sequence of alternative used in QEP

Diagram 4 - Top-Rank Profile
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Quantitative analysis of the profiles allows prediction of the average quality of the 

solution. Statistical functions can derived fairly easily to compute the probability that 

the optimal solution will be amongst a certain number of alternatives generated.

Additional quantitative analysis of the profiles enables tuning of individual knowledge 

sources. The paper gives examples of the different types of delta profiles.

Number of 
alternatives

Sequence of alternative used in QEP

(a)

Number of 
alternatives

Sequence of alternative used in QEP

(b)

Number of 
alternatives

Diagram 5 - Different types of profiles

An ideal profile is depicted at (a) above, no further improvement is possible since the 

knowledge source always generates the optimal alternative the first time. Profile (b) is
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the worst possible and indicates that the knowledge source seems to produce 

alternatives at random. In practice it is worthwhile trying to achieve the profile shown 

at (c) where the optimal and semi-optimal alternatives are contained in the first few 

generated. The ultimate objective of this design is that the optimiser may be able to 

utilise this information for self-tuning.

2.3.4_Conclusions

A novel architecture for optimiser design has been proposed. It utilises a blackboard 

structure and knowledge sources which carry out a finite set of algebraic operations to 

derive a query execution plan. Due to its structured design the optimiser can be 

continually improved and readily extended. The use of back propagation of 

optimisation results allows evaluation and calibration of the knowledge sources. This 

facilitates the identification and possible elimination of weak points in the optimiser.
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3. BBQ CONCEPTUAL MODEL

This chapter provides a conceptual view of the architecture of the proposed 

Blackboard-Based Query optimiser (BBQ). The first section lists objectives of the 

proposed architecture and the second describes each of the components of the model.

3.1 Objectives

As discussed in the previous chapter the design of an optimiser has to attempt to 

satisfy conflicting characteristics. Often, this leads to compromise on some features in 

order to maximise others. The model presented in this thesis is an attempt to develop 

an architecture which minimises the compromises required between desirable 

characteristics. Specific requirements set out for the design are :

•  A modular architecture to enhance clarity of design

• The ability to easily add or change optimiser transformation rules to incorporate 

new query evaluation techniques or database structures

• Efficient performance via the use of a search strategy and a cost model which 

allows early selection of promising query execution plan (QEP) alternatives

• Collection of a set of metrics on the performance of components of the optimiser to 

allow calibration and enhancement

• A framework which enables the use of results of past optimisations in order to 

improve future ones

• A design which lends itself to parallel processing

3.2 Architecture

This section describes, at a conceptual level, the components which comprise the 

design. The major components are : a set of rules which transform a query from its 

initial form into a query execution plan, a search strategy and cost model to drive the 

search for solutions, a blackboard structure which contains alternative emerging 

execution plans and a mechanism for the back propagation of optimisation results.
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Knowledge Sources

Blackboard

AlgebraicForm

ScanMethod<

SortOperators

JoinOrders

Display

JoinMethods

FutureCost

Control KS

Historical
Cost

CompleteQEPs

JoinMethods

GenericJoins

AlgebraicForm

InputSQL

ScanOperators

Diagram 6 - BBQ architecture showing interactions between 

Knowledge Sources and Blackboard levels

Knowledge sources which implement the transformation rules operate on solution 

alternatives on the blackboard with the highest level of the blackboard ultimately 

containing one or more complete QEPs. The cost functions and control strategy 

determine the next knowledge source to trigger and the termination condition of the 

search. The back propagation function allows an assessment of the performance of 

knowledge sources and provides metrics on each to facilitate tuning. These 

components of the model are described in more detail in the sections which follow.
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3.2.1 Transformation Rule Set

The transformation rule set translates the query from its initial input form into an 

ordered sequence o f fundamental operations on the relations being accessed. Using a 

rule-based approach facilitates meeting three of the design objectives : modularity of 

design, extensibility of function and support of parallel processing.

The rule set used in BBQ has been adapted from the rules described in Section 2.2. 

The applicability o f a rule at any point in the execution sequence is evaluated by 

examining the blackboard for emerging partial solutions which would satisfy the 

condition component of the rule. Selection of the rule to trigger and the partial 

solution to expand are dependent on the control strategy.

The set of rules has been segregated such that each subset of related rules has been 

assembled into a knowledge source. This segregation of the transformation rules 

resulted in the following knowledge sources : AlgebraicForm, ScanMethods, 

JoinOrders, JoinMethods and SortOperators.

3.2.2 The Blackboard

The blackboard is the structure which houses the emerging alternatives as the search 

for solutions progresses. Some of the concepts presented in (Kemper et al., 1993) have 

been adapted as the basis for the architecture of the blackboard. This structure is 

conceptually segregated into six levels, each level containing alternatives which are at 

differing stages of evolution :

• InputSQL

• AlgebraicForm

• Scan Operations

• Generic Joins

• Join Methods

• Complete QEPs (Sort Operators)
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Knowledge sources, which generate alternatives that progress the problem solution, 

take items at one level as input and emit one or more alternatives to the same or 

adjacent level. The data structures which implement the blackboard are described at 

Appendix B.

As discussed in Section 2.1 the use of the blackboard simplifies the problem control 

strategy and eliminates the need for communication between knowledge sources. This 

leads to modular architecture which is conceptually clear. The functionality 

implemented by each knowledge source is readily visible and therefore may be easily 

changed or enhanced. Also, extension of functionality is facilitated as the effect of the 

addition of a new knowledge source can be quickly assessed since the impact is limited 

to its interactions with the blackboard.

3.2.3_Cost function and Control Strategy

The cost function and the control strategy are critical parts of the optimiser which have 

a direct impact on its performance. The cost function used in BBQ have been adapted 

from that presented in (Kemper et al., 1993) which is discussed in Chapter 2.

The cost function consists of two components, one representing the historical cost of 

operations already incorporated into the partial solution and the other an estimate on a 

lower bound of the cost of operations which are yet to be incorporated.

Calculation o f the historical cost component makes use of information on cardinality of 

tables and selectivity of columns from the database. The cost function attempts to 

estimate the number of 10 operations and the number of CPU operations required to 

retrieve the data specified by the partial QEP. A weighting factor is applied to the CPU 

cost which is then summed with the 10 cost to derive a composite cost metric.

An estimate o f a lower bound on future cost is derived by using a best case scenario on 

10 cost using selectivity and cardinality data for the relations which yet to be 

incorporated into the emerging QEP.
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The sum of historical and future costs is used by the heuristic of the control algorithm 

to select the next knowledge source to invoke and to select a partial QEP for 

expansion. The strategy used to drive the search process is a modified version of A* 

search. It uses a combination of procedural and A* control to efficiently generate QEP 

alternatives which are expected to be close to the optimal solution.

The search commences by invoking the knowledge source which converts the query 

from its initial representation to an internal form which is placed at the second level of 

the blackboard. Next all possible access paths, full scan and indexed, for the relations 

in the query are generated. The subsequent three steps are performed iteratively with 

the number of alternatives expanded under A* control in each step limited by a tunable 

parameter. The iteration cycle terminates once the lowest cost solution produced in the 

iteration exceeds the lowest cost solution of all iterations thus far by more than a 

predefined factor. This termination factor is also tunable.

The steps in the iterative process include generation of n-way joins, generation of two- 

way joins, selection of join methods and introduction of sort operators.

Each step operates on the lowest cost item on its blackboard input level. Using this 

item as input it emits all possible alternatives. The expansion of alternatives continues 

until the number of input items expanded in the step is equal to a control parameter or 

no more unexpanded items remain. Upon completion of the last step, the termination 

condition described above is tested to determine whether to cycle through the 

sequence again or to stop generation of alternatives.

Once the search terminates, QEP alternatives are sorted according to cost and the 

lowest cost solution is selected.

3.2.4_Back Propagation Function

To enable analysis of the performance of knowledge sources the architecture provides 

a mechanism to trace the derivation of each alternative QEP. Using this derivation trail 

the performance of each QEP alternative can be back propagated to knowledge
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sources. An assessment of the quality of each knowledge source can be made based on 

its contribution to the optimal and near optimal solutions. Another useful metric in 

tuning the knowledge sources is a determination of how early in the sequence of 

alternatives generated by a knowledge source the components which went on to 

become part of near optimal QEPs were produced. Delta profiles which are bar-charts 

graphing this performance metric are discussed later in this section.

Each knowledge source maintains a sequence number which is incremented each time 

a new component is added to an emerging QEP alternative. All partial and complete 

QEPs have a derivation trail, represented by a list, associated with them. Each time a 

knowledge source operates on a partial alternative it adds its unique identifier and the 

next sequence number for the knowledge source to the derivation trail of the partial 

QEP. Thus, when a complete QEP is produced the derivation trail contains a history 

for each component which describes the contributing knowledge source and the 

position o f the component in the sequence of alternatives emitted by the knowledge 

source.

The optimiser is calibrated by allowing it to produce all possible alternative QEPs for a 

given input query. The alternatives are then ordered by the execution time for each 

QEP. From these results a delta profile can be graphed for each knowledge source. A 

delta profile charts, for each QEP alternative, performance versus the sequence number 

of the component for the knowledge source being analysed. As shown in Section 2.3, 

the shape of a delta profile can provide useful information on the performance of a 

knowledge source.

As already discussed, an ideal profile is represented by Diagram 5 (a) where the 

knowledge source produces a contribution to the optimal solution the first time for all 

input queries. Diagram 5 (b) illustrates the worst case where the knowledge source 

appears to be producing alternatives at random and does not appear to possess any 

heuristic for grading alternatives. In practical terms, the profile in Diagram 5 (c) is 

considered worth attaining. For a knowledge source with such a profile, alternatives 

produced early in the sequence often form part of near optimal solutions.
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The delta profile of a knowledge source is a readily comprehensible tool for assessing 

quality and provides a reasonable basis for performance tuning. Furthermore, the data 

used to construct a delta profile could be used by an automated tuning mechanism as 

discussed in Chapter 6.
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4. BBO DESIGN

The previous chapter provided a conceptual overview of each of the major design 

components of BBQ. This chapter describes the physical implementation of each of 

these components. BBQ has been implemented using a knowledge base development 

tool called Aion/DS. In the descriptions which follow certain sections refer specifically 

to its implementation in this environment.

4.1 SQL T ransformation  Rules

As discussed in Section 3.1, the rule set used by BBQ has been adapted from that 

described in (Freytag, 1987). The transformation rules have been implemented in 

Knowledge Definition Language (KDL) which is the programming language of 

Aion/DS.

Knowledge sources, which are the basic building blocks of the transformation 

component, are comprised of groups of rules which are logically related in some way. 

The knowledge sources implementing this component are :

• AlgebraicForm

• ScanMethods

• JoinOrders

• JoinMethods

• SortOperators

A description of the function of each of these knowledge sources follows. A listing of 

the KDL rules implementing these knowledge sources is given at Appendix A.

The AlgebraicForm knowledge source translates the input query to an internal 

algebraic form. The input query is assumed to have the following structure :
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SELECT <project_list>

<select_pred_list>

<join_pred_list>

<table_list>

The internal form is implemented by the creation of instances of object classes which 

represent each list in the input query. Thus, instances of ProjAttr, SelectPred, JoinPred 

and Relation are created. SelectPred has attributes SelectAttr, Operator and 

ConstantValue. JoinPred has attributes JoinAttrl, Operator and JoinAttr2. A listing of 

the data structures implementing these object classes is given at Appendix B.

The ScanMethods knowledge source generates all possible access paths to the 

relations in the input query. For each relation, an instance of the class Fscan is created. 

The selection predicates applicable to this relation are also extracted. For relations 

which are indexed and an index is applicable, instances of the class Iscan are created. 

The selection predicates are divided into those applicable to the index and the 

remainder.

The JoinOrders knowledge source uses the Fscan and Iscan instances created in the 

preceding step along with JoinPred instances to generate alternative join orders for the 

query. It initiates the process by creating an instance of the class JoinExpression with 

the innermost relation being a relation selected from the instances of the Fscan and 

Iscan. The selection of this relation, as well as the sequence of subsequent expansions, 

is determined by the cost model and control strategy which are described in the next 

section.

Once the JoinExpression is initialised the knowledge source progressively generates 

two-way joins with alternative join orders for the remaining relations. As each two- 

way join is created, applicable join predicates are selected from the instances of 

JoinPred and recorded against the join.

The JoinMethods knowledge source takes a completed JoinExpression from the 

previous step and creates new alternatives with the generic joins replaced with
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permutations of merge and nested loop joins. As with the previous knowledge source, 

the order in which the permutations are generated is dictated by the cost model and 

control strategy.

As the name suggests, SortOperators inserts sort operators where required into 

expressions containing merge joins. The outer relation in the merge join is sorted to an 

order which is compatible with the order of the tuples of the inner expression if it is not 

already so. The tuples of the inner expression may still require sorting to be in the same 

order as the outer expression, in this case, a sort operation is introduced to the tuples 

of the inner expression.

4.2 C ost M odel

The cost model used in BBQ consists of two components, the first calculates a cost for 

the operations already incorporated in an evolving solution alternative and the second 

attempts to estimate a close lower bound on the cost of the operations which are yet to 

be incorporated.

As the cost model is not the central to the focus of this thesis, a model which provides 

a reasonable approximation of the efficiency of alternative solutions has been used. The 

algorithms used by BBQ to derive the various cost components are simplified versions 

o f the cost functions described in (Elmasri and Navathe, 1989). In the future these 

algorithms could be enhanced to provide more accurate cost estimates.

In deriving the cost of operations already incorporated into an alternative, an estimate 

is made of the number of tuples accessed in each relation and, if applicable, in the 

indexes. An estimate of the number of CPU operations required by the join and sort 

operators is also computed. A composite cost is derived as the weighted sum of 10 

and CPU costs. This 10 to CPU weighting factor is tunable and can be varied as 

appropriate for a specific hardware/software mix. In BBQ this factor has been set to 

1000 .
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The algorithm which estimates the historical 10 costs uses information from the 

database on the cardinality of relations and selectivity of columns (inversely 

proportional to the number of distinct values) in those relations.

For a full table scan operation, the number of relation tuples accessed is simply equal 

to the cardinality of the relation. For an index scan operation, the number of tuples 

accessed is estimated as follows :

Number of tup les accessed  -  cardinality of relation

* combined selectivity of se lect predicates

* (1 +num ber of index accesses)

w here number of index a c cesses  is an approximation derived from the 

cardinality of the relation and a tunable application constan t

In the above calculation it has been assumed that the cost of access to an index page is 

of the same order of magnitude as access to a data row. While this does not yield a 

precise cost, it is adequate for the purposes of this thesis. In future work, this 

calculation could be further refined in future to use information on data and index page 

sizes to estimate the number of disk pages accessed which is a closer approximation of 

the number of physical 10 operations. For the purposes of this thesis this has not been 

required.

A simple estimate o f the number of tuples selected from each relation is obtained by 

multiplying the cardinality of the relation by the selectivity factor for each selection 

predicate applying to the relation. The selectivity factor is determined by the 

comparison operator and the selectivity of the attribute contained in each selection 

predicate. It is calculated as follows :

if the com parison operator is ' - ' t h e n

selectiv ity  fac to r = column selectivity 

else if ' <  > '  then

selectiv ity  fac to r -  (1 - column selectivity) 

else i f ' < '  o r ' > '  then

selectiv ity  facto r -  0.5
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As the source language defined for this project allows only conjunctive queries the 

combined selectivity factor of all select predicates applicable to a relation is the 

product of the individual selectivity factors.

An estimate of the cardinality of a join expression is calculated as the product of the 

number o f tuples selected from each relation and the combined selectivity factor of the 

join predicates. The selectivity factor for a join predicate is determined as follows:

If the join operator i s t h e n

selectiv ity  fac to r -  m axiselectivity of attribu te 1, selectivity of attribu te 2) 

else if join operator i s ' <  > '  then

selectiv ity  facto r = 1 ■ m axiselectivity of a ttribute 1, selectivity of attribu te 2) 

else if join operator i s ' < '  o r ' > '  then

selectiv ity  facto r -  0.5

As with selection predicates, the combined selectivity factor of multiple join predicates 

is the product of the individual factors.

An estimate o f CPU costs is based on a calculation of the number of operations 

required to perform join operations and, in the case of merge joins, sort intermediate 

results. While more accurate estimates of the number of CPU operations can be 

obtained through more sophisticated algorithms, the formulas described below are 

adequate for the purpose of this research.

In calculating join costs it has been assumed that after scanning, both the expressions 

being joined can be held in memory and therefore no additional disk accesses are 

required to perform the join. While this assumption is reasonable in the context of this 

thesis, it may be desirable in future to extend join cost calculations to account for 

cases, particularly if large intermediate result sets are involved, where additional disk 

accesses are required to complete the join operation. In that case a tunable parameter 

representing memory size could be defined to BBQ allowing it to further adapt to 

specific operating environments.
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The number of operations required to perform a loop join is calculated by the 

following formula :

CPU operations -  num ber of tuples in outer expression 

* num ber of tuples in inner expression

The same computation for a merge join is :

CPU operations -  num ber of tuples in expression 1 

+ num ber of tuples in expression 2

A reasonable estimate of the number of CPU operations required for a sort is given by:

CPU operations = co n stan t * num ber of tuples * loglnumber of tuples)

The constant has been defined as a tunable parameter in BBQ.

An estimate of the cost of operations yet to be incorporated into the partial QEP is 

based on a best case scenario. A requirement of the search strategy is that the future 

cost should provide a good lower bound on future costs. The model adopted here uses 

a very simple heuristic to derive this lower bound. Future research could look to refine 

this algorithm which would improve efficiency of the search strategy.

The algorithm for future costs uses the best case for the number of tuples accessed in 

the relation and does not attempt to take into account any CPU costs which may be 

incurred. Thus for each relation the calculation is as follows :

Number of tuples a c cessed  -  Relation cardinality

* Selectivity factor of se lect expression

It is acknowledged that the above approximation is simplistic and that a more accurate 

estimate would be desirable if BBQ were to be developed further.
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4.3 Search  Strategy

The search strategy used is in BBQ is a modified version of the A* search 

incorporating some of the concepts from (Kemper et al., 1993). Main objectives set 

out for the strategy were that it should enable an early assessment of the quality of 

alternative partial solutions and should be able to progress some of the more promising 

ones to completion without exploring numerous search paths.

The strategy utilises a combination of sequential control and non-deterministic 

generation of alternatives under a modified form of A*. The A* search is driven by the 

cost model described in the previous section which estimates past and future costs for 

each partial solution. Flow of control between the knowledge sources under this 

strategy is shown below.

AlgebraicForm

ScansM ethods

Loop

JoinOrders stop  when

number of alternatives expanded -  BranchingFactor 

JoinM ethods stop  when

number of alternatives expanded -  BranchingFactor 

SortO perators

Until (cost of b es t solution from this iteration >  -

co st of b es t solution thus far * SearchTerminationFactor) 

or no more a lternatives possible 

DisplayResults

After sequential invocation of AlgebraicForm and ScanMethods, JoinOrders, 

JoinMethods and SortOperators are iteratively invoked. The two main alternative 

generating knowledge sources, JoinOrders and JoinMethods, operate under A*. In 

each, the item with the lowest combined historical and future cost is selected from the 

list o f candidate items for expansion. Once the number of alternatives expanded in an 

invocation is equal to the tunable parameter BranchingFactor or all alternatives have 

been expanded, the knowledge source returns control to the Control knowledge 

source.
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At the end of each iteration of the processing cycle the Control knowledge source 

compares the cost of the best solution produced in iteration against the best solution 

produced from all iterations thus far. If it exceeds by a factor more than the tunable 

parameter SearchTerminationFactor or all alternatives have been expanded, 

DisplayResults is invoked prior to process termination.

The justification for this termination condition is that the alternatives are produced in 

an ordered sequence with lower cost alternatives produced early due to the search 

strategy adopted. Under this regime, even after allowing for the fact that some degree 

of error will be present in estimates of future costs for emerging solutions, it is 

reasonable to assume that there is a high probability that a near optimal solution is 

produced amongst the early alternatives. Quantitative analysis techniques can be 

applied to determine the probability of obtaining a near optimal QEP amongst a certain 

number o f alternatives produced and this in turn can be used to set an appropriate 

value for SearchTerminationFactor.

It can be seen from the preceding discussion that the performance of the optimiser can 

be varied considerably by changing the values of the parameters used to drive the 

search. These parameters provide an effective method of tuning the knowledge sources 

to enhance optimiser efficiency and provides a basis for the possibility of a self-tuning 

optimiser which is discussed further Section 6.3.

4.4 Back Propagation of Optimisation Results

One of the objectives of the BBQ architecture was to facilitate the collection of data 

on the performance of knowledge sources. The delta profile of a knowledge source, 

which can be easily generated using data maintained by BBQ, is a tool which can be 

used to readily calibrate and tune optimiser components. Thus with the assistance of 

delta profiles, overall optimiser performance can be improved by the identification and 

refinement of knowledge sources which are not operating optimally.
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For each item on the blackboard, BBQ maintains a derivation tag. This derivation tag 

is a list containing the sequence of knowledge sources which contributed to formation 

of the item. Each element in the list comprises two components : a unique string 

identifying the knowledge source and a number representing the position of this 

contribution in the sequence of alternatives produced by the knowledge source.

A lg eb ra icF orm Scan M eth od s JoinO rdcrs Jo in M eth od s SortO perators

1 4 7 5 3

Diagram 8 - Example of a derivation tag

An example o f a derivation tag is given in the above diagram. The sequence of 

knowledge sources which have contributed to the formation of this alternative can be 

identified from this tag. An indication of how early the contributions were generated is 

also available.

The optimiser is calibrated by allowing it to generate all possible alternatives for each 

input query from a representative set. The specification of a set of queries which are 

representative o f a general class of queries could be the subject of further research and 

is briefly discussed in Section 6.2.

Once all alternatives have been generated for a particular query, they are ordered by 

cost of execution. The set of such QEP lists produced from all the input queries along 

with information contained in the derivation tag of each QEP can be used to produce a 

delta profile for each knowledge source in the optimiser. The delta profiles chart the 

frequency, at each sequence position in the alternative generation sequence, where the 

contribution went on to form part of the optimal QEP.

As discussed in Section 2.3, it is desirable to obtain a delta profile similar to Diagram 5 

(c) where the knowledge source, at an early stage, generates one or more contributions 

to near optimal solutions.
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5. RESULTS

This chapter presents some results and observations from the implementation of BBQ. 

It commences by presenting results of optimisations performed on a sample set of 

queries followed by a discussion of various aspects of the design.

5.1 Database  M odel

A rigorous analysis of the behaviour of BBQ would require compilation of a set of 

SQL statements which is in some way representative of all or at least a large 

proportion of queries which may be presented for optimisation. Collection of such a 

set of SQL is beyond the scope of this research. For the purposes of this project the 

behaviour of BBQ for a small set of queries against a hypothetical database is studied.

Legend

Cardinality

600,000

Primary Key 
Attribute

Entity Name
Code Type 
Code Value 
Description

Code

ASX Code
Date
Low
High
Closing
VolumeTraded

SharePrice

Company Id
CompanyName
Activities
IndustryCode

Company

ASXCode
Companyld
ShareType
NumOnlssue

Share

Clientld
ClientName
Address
State
Nett Worth 
Advisorld

Client

Advisorld
AdvisorName
Position

Advisor

Clientld
PurchaseDate
PurchaseTime
ASXCode
NumUnits
PurchasePrice

Portfoliolteir

15,000  1,000 12

Diagram 9 - Entity-Relationship diagram of hypothetical database
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An Entity-Relationship diagram of the hypothetical database is given above. The 

queries which have been formulated against this database to investigate the behaviour 

o f BBQ are described in the next section.

It is assumed that information on the composition of indexes and statistics, such as 

cardinality and selectivity, are available from the database. The indexes, cardinalities 

and selectivities listed below have been used for the query optimisations which are 

presented in the sections which follow.

................................... ...........M..... ......

_

ClientAdvisorld
........— M

— I

1  s-i
__

I v»wh MHMMMMMiM up AdvisorId
i Client ClientClientld Clientld
! S g  . ClientNatne S
I Code CodeTypeValue Type, Value
p £ o m p a n € : i^ ^ B ^ o m p a n v N a m € ^ ^ ^ ^ ^ ^ B o m p a n v N a m 4 ^ ^ ^ j  

Portfolioltem PortfolioASXCode ASXCodeüii '1 m r ii_
ShareASXCode ASXCode
SharePriceASXCode ASXCode

. Pc—
j Share 

SharePrice

Table 1 - Indexes in database

50
I Company

Table 2 - Cardinality of tables
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Table Colum n i^ rS e lec tiv j^ J
Advisor Advisorld

AdvisorName 1111

Client
'

Position
Clientld
ClientName

- * ' f  .2500
.0833

! ■ ■ ■ ■ ■ ■
Address 0011

B ■ ill State l i t B i a s i i « ;
NettWorth .0015
Advisorld .0833

Code Type .2500
p  i i i l ä i  -• i f l t i Value

Company
Description .0200

^^jC om panyld 3
Name .0013

( L  ' ' : Activities
IndustryCode .0250

Portfolioltem Clientld ■ ■ ■ ■ H R
PurchaseDate .0020

B i l l  1111 PurchaseTime — —
ASXCode 0040 I

: NumOfUnits .0001
PurchasePrice .0001

Share ASXCode 0008
Companyld .0013

I I I ..... .2500
NumOnlssue .0009

Snarer nee ASXCode 0008
Date .0020
Low .0002

1 ...... _ ............. High .0003
p — — Closing .0002

VolumeTraded .0001

Table 3 - Selectivity of columns

5.2 Results of Sample Optimisations

Five queries of varying complexity have been contructed to investigate various 

characteristics o f BBQ. The queries formulated to run against the hypothetical 

database which was described in the preceding section are listed below.

1. List the portfolio o f 'VIKRAM SHARMA'

2. List the portfolio of all clients advised by 'JOHN FRANCIS'
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3. List all clients who own more than 1000 BHP preference shares

4. List the closing price and volume traded on 30/3/97 o f all stocks in the 'TOURISM 
AND LEISURE' sector

5. List clients who live in 'A C T ', have a nett worth > $100,000 and have bought 
stocks in the 'DIVERSIFIED INDUSTRIALS' sector since 30/6/96

For each o f  these queries, an SQL statement and the best QEP generated by an 

exhaustive run o f BBQ is presented below. The cost o f executing the QEP, as 

computed by the cost algorithm used in BBQ, is shown along with a dissection o f the 

cost to each QEP step. Where the step cost is less than 1, it is displayed with a 

precision o f one decimal place to provide an indication o f its relative cost. The final 

projection operation is not shown in the QEP listings.

5.2.1_Query 1

SELECT Portfolioltem. PurchaseDate, Portfolioltem. ASXCode,

Porfolio.NumOfUnits 

FROM Client, Portfolioltem

W HERE Client.Clientld = Portfolioltem. Clientld

AND Client.Name = ‘Vikram Sharma’

(Ljoin (PortfolioItem.CIientld-Client. Clientld)

(Iscan (CIient.Name="Vikram Sharma") ClientName () Client) 

(Fscan () Portfolioltem))

15

2
15,000

An additional transformation commonly implemented by optimisers is the use of 

predicate(s) in a join expression to perform, if applicable, an index scan on the inner 

relation. The addition o f this transformation as an extension to the set o f rules 

implemented by BBQ is shown in Section 5.7.
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5.2.2_Query 2

SELECT

FROM

WHERE

AND

AND

Client.Name, PortfolioItem.ASXCode, PorfolioItem.NumOfUnits

Advisor, Client, Portfolioltem

Advisor. Advisorld = Client. Advisorld

Client. Clientld = Portfolioltem.Clientld

Advisor.Name = ‘John Francis’

l v Ä V

................................

(Mjoin (Portfolioltem, ClientId=Client. Clientld)

Step
cost

15

(Sort (Portfolioltem. Clientld) 208

Fscan () Portfolioltem) 15,000
(Sort (Client. Clientld) 1

(Ljoin (Client. Advisorld^Advisor. Advisorld) 1
(Fscan (Advisor.Name^John Francis") Advisor) 12
(Fscan () Client))) 1,000

5.2.3_Query 3

SELECT Client.Name, Portfolioltem.NumOfUnits

FROM Company, Share, Portfolioltem, Client

WHERE Company. Companyld = Share. Companyld

AND Share. ASXCode = PortfolioItem.ASXCode

AND Portfolioltem. Clientld = Client. Clientld

AND Portfolioltem.NumOfUnits > 1000

AND Company.Name = ‘Broken Hill Proprietary’

AND Share.Type = ‘Preference’
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QEP Cost 17224
...... ......

% N vs .̂ s %

| | | | | | ^ l | Ä | | ^ ; ^ | : | | | | | | | | | p | ^ ^ ^ ^ ^ | i | | p | | | s | | | | | | | p | | |

Step

;s!
(Mjoin (Portfolioltem. Clientld=Client. Oientld)

(Sort (Client. Clientld)

Fscan () Client)

(Sort (Portfolioltem. Clientld)

(Ljoin (Share. ASXCode=PortfolioItem. ASXCode)

(Fscan (PortfolioItem.NumOfUnits> 1000) Portfolioltem)

(Ljoin (Company. Company Id- Share. Company Id)

(Fscan (Share. Type="Preference") Share)

(Iscan (Company.Name-*'Broken Hill Proprietary") CompanyName () Company))))

1

10

1,000

0.1

10

15,000

0.6

1,200

2

5.2.4_Query 4

SELECT

FROM

W HERE

AND

AND

AND

AND

AND

Com pany.Nam e, Share.Type, SharePrice.Closing 

Code, Company, Share, SharePrice 

Code.V alue = Company. IndustryCode 

Company. Com panyld = Share. Com panyld 

Share. ASX Code = SharePrice. ASXCode 

Code.Type = ‘IN D U STR Y ’

Code.D escription = ‘TO URISM  AND L E ISU R E ’ 

SharePrice.D ate = ‘31/3/97’

(Mjoin (Share. ASXCode- SharePrice. ASXCode) 1

(Sort (SharePrice. ASXCode) 12

Fscan (SharePrice.Date="31/3/97") SharePrice) 600,000

(Sort (Share. ASXCode) 0.1

(Mjoin(Code.Value-Company.IndustryCode)and(Company,Companyld~Share.CompanyId)) 1

(Sort (Company.lndustryCode,Company.Companyld) 8

Fscan Q Company) 800

(Sort (Code. Value,Share. Companyld) 2

(Ljoin 0.3

(Iscan (Code.Type="INDUSTRY") CodcTypeVaiue 39

(Code.Description="TOURISM AND LEISURE*') Code)

(Fscan () Share)))) 1,200
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It is interesting to  note that the innermost join in this QEP generates a cartesian 

product. According to the cost model used, this alternative is very slightly cheaper than 

one which contains a loop join between Code and Company followed by merge joins 

with Share and subsequently SharePrice. Although that QEP does not generate any 

cartesian products, it is slightly more expensive as increased sort costs more than offset 

cost savings from the innermost join.

5.2.5_Query 5

SELECT

FROM

W HERE

AND

AND

AND

AND

AND

AND

AND

AND

Client.Name, Company.Name, Share.Type, PortfolioItem.NumOfUnits

Code, Company, Share, Portfolioltem, Client

Code.IndustryCode = Company. Value

Company. CompanyId= Share. Companyld

Share. ASXCode = Portfolioltem. ASXCode

Portfolioltem. Clientld = Client. Clientld

Code.Type = ‘INDUSTRY’

Code.Description = ‘DIVERSIFIED INDUSTRIALS’

Portfolioltem.PurchaseDate > ‘30/06/96’

Client. State = ‘ACT’

Client.NettW orth > 100000

Owing to the limited capability o f the hardware platform on which the QEPs were 

generated, a subset o f approximately 750 alternatives out o f a possible 3840 has been 

generated for this query. The search was restricted by limiting the number o f 

alternatives expanded by each knowledge source, refer to Section 5.4.1 for a 

discussion on how this is achieved. The relationship between the set o f QEPs produced 

in a restricted search and the set o f all possible QEPs from an exhaustive search is 

touched upon in Section 5.4.5.

« I I I 11 ^ '

............

n
V

» » » » » » ,

(Mjoin ((Company. Industry Code-Code. Value) and (Share. CompanyId~Company* Companyld)) 11

(Sort (Company.IndustiyCode,Company.CompanyId) 8

Fscan () Company) 800
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(Sort (Code. Value,Share. Companyld)

(Mjoin (Portfol ioltem. ASXCode= Share. ASXCode))

(Sort (Share. ASXCode)

Fscan () Share)

(Sort (Portfolioltem. ASXCode)

(Mjoin (Client.ClientId=PortfolioItem.ClientId))

(Sort (Client. Clientld)

Fscan (Client.NettWorth>1ÖÖÜÖO) Client)

(Sort (Portfolioltem. Clientld)

(LjoinO

(Iscan (Codc.Type=”INDUSTRY") CodeType Value 

(Code.Dcscription-'DlVERSlFIED INDUSTRIALS") Code) 

(Fscan (PortfolioItem.PurchaseDate>"30/06/96’') Portfolioltem)))))

no
2

12

1,200

10

2

4

1,000

2

39

15,000

5.3 D istribution  of QEP C osts

This section presents graphs showing the behaviour o f  QEP costs from the results o f  

running BBQ to produce an exhaustive set o f  solutions for each o f  the sample queries.

For Query 1, only a small number o f  alternatives are possible and the cost o f  

alternatives does not vary greatly. It ranges from a minimum o f  15,018 to  a maximum 

o f  16,223.

Query 1 QEP Costs

16400 
16200 
16000 
15800 
15600 

8 15400 
°  15200 

15000 
14800 
14600 
14400

1 2 3 4 5 6 7 8

Alternative Sequence
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The main component of the total QEP cost is the full scan of the Portfolioltem table 

which has a cost of 15,000. An enhancement to the transformation rule set which 

allows the join predicate to be used for an index scan on this table is given in Section 

5.6. Alternatives 5 - 8  have a higher cost when compared with earlier QEPs due to the 

index scan on the Client table, which had a cost of 2, being replaced with a full scan 

which has a cost of 1,000.

Diagram 10 illustrates the identification tags of alternatives, as discussed in Section 

4.4, generated at each level of the blackboard at the conclusion of the optimisation for 

Query 1. Note that the Algebraic Form level contains a solitary alternative as only one 

algebraic representation of the query is produced and that the list of identification tags 

at the Complete QEPs level is the same as that at the Join Methods level since the Sort 

operator is not required for this query. In the diagram, KS0, KSi, KS2, and KS3 

represent the knowledge sources AlgebraicForm, ScanMethods, JoinOrders and 

JoinMethods respectively.

Level Name

C o m p lete
QEPs

Join Methods

Generic Joins

Scan Operators

Algebraic
Form

Input SQL

Diagram 10

The query trees for the best (cost 15,018) and the worst (cost 16,223) plans are shown 

at Diagram 11 (a) and Diagram 11 (b) respectively.

[KS3O, KS20. KS,2, KSoO] [KS3 I, KS22. KS,0. KSo0| [KS32, KS20, KS,2. KSo01 
[KS33, KS22, KS,0, KSoO) [KS34, KS2L KS,2, KS00) [KS35, KS23, KS, 1, KS00] 

[KS36 , KS2 1, KS,2. KSoO] [KS37, KS23, KS, 1, KS00]

[KS30, KS20, KS,2, K S oO] [KS3L KS22, KS,0, KS00] [KS32, KS20. KS,2, K S o0] 
[KS33, KS22, KS,0, K S oO] [KS34, KS2 1, KS,2, KS00] [KS35, KS23, KS, 1, KS00] 

[KS36 , KS2L KS,2. K S oO] [KS37, KS23, KS, 1, KS00]

[KS20. KS,2. K S oO] [KS,!, KS,2, KSo0] [KS22, KS,0, KS00] 
[KS23, KS, 1, KS00]

[KS,0, KSoO] [KS, 1, KSoO] [KS,2. KS00]

[KSoO]

Input Query

- Identification tags of alternatives at each level of blackboard on 

completion of optimisation of Query 1
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LJOIN
Portfolio.ClientId= 

Client.Clicntld

FSCAN ISCAN
ClientNaine= 

“Vikram Sharma”

MJOIN
Client.Clientld= 
Portfolio.Clientld

FSCAN 
ClientName= 

“Vikram Sharma”

FSCAN

Portfolio Client Client Portfolio

(a) (b)

Diagram 11 - Query trees for best and worst plans for Query 1

For Query 2, again only a small number of alternatives are possible. The cost does not 

vary greatly for the first 14 alternatives and but then increases significantly. It ranges 

from a minimum of 16,237 to a maximum of 32,406.

Query 2 QEP Costs

35000

30000 -

25000

20000

15000 -

10000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Alternative Sequence

As with Query 1, a major contributor to the total QEP cost is the full scan of the 

Portfolioltem table. In alternatives 1 5 - 2 0  the significant increase in cost is due to 

additional CPU costs associated with a loop join between the Portfolioltem and Client 

tables. The scans on these tables, which have cardinalities of 15,000 and 1,000
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respectively, do not have any associated selection predicates and thus retrieve all rows 

from each relation, leading to a high computation cost for the loop join.

For Query 3, a total of 256 alternative QEPs are possible. The cost of the first 248 

alternatives falls in the range 17,224 to 39,233 with the cost of the last 8 rising steeply 

to be in the range 2,267,529 to 2,268,608.

Query 3 QEP Costs

10000000

1000000

100000

10000

Alternative Sequence

In the early alternatives for this query, the major component of the total cost is the full 

scan of the Portfolioltem table which has a cost of 15,000. Alternatives with sequence 

numbers appoximately in the range 150 - 248 have a loop join between Portfolioltem 

and Share or between Portfolioltem and Client as the innermost join. In each of these 

cases, the number of rows selected from both relations is large leading to join 

computation costs which contribute significantly to the total cost of the QEP. For the 

last 8 alternatives, the inner most join is a loop join between Client and Share which 

produces a cartesian product. This large resultant set of rows is loop joined with 

Portfolioltem from which a large number of rows are also likely to be retrieved. Thus 

the approximate cost of performing the second loop join is 2,250,000 which represents 

over 99% of the cost of these QEPs .
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As with Query 3, a total of 256 alternative QEPs are possible for Query 4. The 

distribution of QEP costs is also similar to Query 3 although the cost curve is flatter. 

The cost of the first 248 alternatives falls in the range 602,064 to 637,450 with the 

cost of the last 8 rising steeply to be in the range 1,755,004 to 1,755,186.

Query 4 QEP Costs

700000 
690000 
680000 
670000 
660000 

S 650000 
°  640000 

630000 
620000 
610000 
600000

1 51 101 151 201 251

Alternative Sequence

The major component of the cost for the first 248 alternatives is the full scan of the 

SharePrice table which has a cost of 600,000. The cost of the last 8 alternatives rises 

sharply as these QEPs contain a loop join between the SharePrice and Company tables 

followed by another loop join between the resultant set of rows and the SharePrice 

table. The first join is estimated to return 960,000 rows which are then loop joined 

with an estimated 1,200 rows from SharePrice resulting in a cost of 1,152,000 for the 

second join and thus adding significantly to the QEP cost.

The cost distribution of Query 5 QEPs is different to that of the other four queries in 

that it does not have the flat distribution exhibited in the early portion of the cost 

curves for those queries. The costs range from a minimum of 16,237 to a maximum of 

7,262,040.
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Query 5 QEP Costs

10000000 r

3 1000000

100000

10000

Alternative Number

In the early alternatives for this query the cost of disk access is the major contributor 

to the total QEP cost. In the case of the optimal QEP, disk accesses account for 

approximately 98% of the QEP cost. For the remainder of the alternatives there is no 

significant increase in the cost of disk accesses. The increase in QEP costs is primarily 

due to degradation in the efficiency of joins leading to an exponential rise in their costs.

5.4 Results from Restricted Searches

The search strategy used by BBQ can be adjusted by altering the values of parameters 

which control both the breadth and depth of search. The weighting of the cost of IO 

operations relative to CPU may also be changed to reflect a setting which is 

appropriate to the hardware and system software mix of the operating environment. 

This capability represents a significant differentiator from traditional optimiser designs 

and provides a mechanism to improve the quality of QEPs generated and the efficiency 

of the optimiser. It may also form the basis for a self-tuning optimiser which is briefly 

discussed in Section 6.3.

The results of experimentation with various parameter settings are presented in this 

section. The effect of these changes both in terms of the QEP quality and optimiser 

efficiency is discussed. The number of alternative QEPs generated in a restricted run is 

approximately proportional to the time taken to perform the optimisation. Therefore, a 

reasonable measure of the efficiency of the optimiser is the ratio of the number of 

alternatives produced during a restricted search to the total number possible.
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5.4.1_Limited number of alternatives expanded

This section presents the QEPs generated for the sample queries in Section 5.2 when 

the number of alternatives expanded by each knowledge source is severely restricted. 

BBQ parameter settings used were : BranchingFactor = 2, SearchTerminationFactor = 

1.00 and IO to CPU weighting = 1000. The effect of these settings is to limit each 

knowledge source to expanding the two most promising alternatives and to terminate 

the search after one processing cycle. A complete discussion of these parameters was 

given in Section 4.3.

5.4.1.1 Query 1

The best QEP produced was the same as under an exhaustive search, possibly because 

the total number of alternatives possible is small. Four out of eight possible QEPs were 

generated.

5.4.1.2 Query 2

As with Query 1, the best QEP produced was the same as under an exhaustive search, 

again the total number of alternatives possible is small. Eight out of 20 possible QEPs 

were generated.

5.4.1.3 Query 3

The best QEP produced was within 1% of the optimum with only eight out of a total 

of 256 possible QEPs produced. In the case of this query the result may have been 

aided by the flatness of its cost distribution curve.
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Query 3

^ "
(Mjoin^Share.ASXCode^PortfolioItem. ASXCode) and (PortfolioItem.Clientld-Client.Clientld)) 

(Sort ((Portfoiioltem. ASXCode,PortfolioItem.Clientld)

Fscan (PortfolioItem.NumQfUnits>1000) Portfolioltem)

(Sort (Share. ASXCode,Client. Clientld)

(Mjoin (Company. Company Id^Share. Company Id)

(Sort (Share. Companyld)

Fscan (Share.Type-"Preference") Share)

(Sort (Company. Companyld)

(LjoinO

(Fscan () Client)

(Iscan (Company.Name:=,'Broken Hill Proprietary”) CompanyNameOCompany))))

5,4.1.4 Query 4

As with Query 3, the best QEP produced was within 1% of the optimum QEP with 

only eight out o f a total of 256 possible QEPs produced. Again, the results for this 

query may have been aided by the flatness of its cost distribution curve.

(Mjoin((Company. Companyld“  Share. Companyld) and (Share. ASXCode=SharePrice. ASXCode)) 

(Sort (Share.Companyld,Share. ASXCode)

Fscan () Share)

(Sort (Company. Companyld, SharePrice. ASXCode)

(Ljoin (Code. Value-Company. IndustryCode)

(Iscan (Code.Type-HINDUSTRY") CodeTypeValue 

(Code.Descripton-’TOURISM AND LEISURE”) Code)

(LjoinO

(Fscan (SharePrice.Date~’'3 1/3/97”) SharePrice)

(Fscan () Company))))
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5.4.1.5 Query 5

The best QEP produced was 6% worse than the best QEP available from the more 

expansive search of Section 5.1.5. This search generated only 16 QEPs compared with 

approximately 750 for the more expansive search. If we classify near optimal queries 

as those which are within 5% of the best result obtained previously, this result would 

not qualify as near optimal. While the restrictions imposed on the optimiser in the case 

of this complex query appear to be too severe to allow it to produce a result within the 

above definition o f near optimal, it appears to be a reasonable outcome in light of the 

fact that the number of alternatives generated was only 2% of the number produced by 

the more expansive search.

Query 5

...... .....^

;

.......................................to.,„.»»»»»»»»», ........ ......... ............................
(Mjoin ((Share.Companyld^Company.Companyld) and (PortfolioItem.ASXCode^Sharc.ASXCodc)) 

(Sort (Share. CompanylcfShare.ASXCode)

Fscan () Share)

(Sort (Company. Companyld.PortfolioItem.ASXCode)

(Mjoin (Ciient.Clientld-PortfolioItcm Clientld))

(Sort (PortfolioItem.Clientld)

Fscan (Portfol ioltem.PurchaseDate>"30/06/96") Portfoiioltem)

(Sort (Client.Clientld)

(Ljoin (Company.IndustryCode^Code.Value)

(Iscan (Code.Type-HINDUSTRY”) CodeTypeValue 

(Code.Descripbon-'DIVERSIFIED INDUSTRIALS") Code)

(Ljoin ()
(Fscan (Client. NettWorth> 100000) Client)

(Fscan () Company)))))

5.4.2 Increase Search Breadth

The breadth of partial QEP alternatives searched by BBQ, as compared with the 

preceding section, was increased by setting the parameter BranchingFactor = 3. This 

change causes each of the knowledge sources under modified A* control to expand a
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larger number of partial QEP alternatives. The results produced with this changed 

setting are presented below.

5.4.2.1 Query 1

The best QEP produced was the same as the optimum solution with six out of a 

possible eight alternatives generated.

5.4.2.2 Query 2

The best QEP generated is marginally worse than with the previous more restrictive 

search. It is probable that the increased number of alternatives available caused the 

cost function and the control strategy to incorrectly ignore a partial QEP which had 

previously led to a superior solution. This would occur if the total projected cost of a 

partial alternative previously expanded was greater than that of new competing 

alternatives. Thus by implication, the function which approximates future costs of 

partial QEPs is not performing effectively in this case and should be refined to increase 

the probability that partial QEPs which lead to optimal or near-optimal solutions are 

explored. 10 out o f a possible 20 alternatives were generated.

n
■...... ,  :... . . • . .,. ...

(Mjoin (PortfolioItem.Oientld^Client.Clientld)
(Sort (Portfoholtem. Clientld)

Fscan () Portfolioltem)

(Sort (Client. Clientld)
(Ljoin (Client. Advi$orId=Advisor. Advisorld)

(Fscan () Client)

(Fscan (Advisor.Name="John Francis") Advisor)))
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5.4.2.3 Query 3

As with Query 2 the result produced is marginally worse than under the previous more 

restrictive search. The reasons for this are likely to be the same as for the previous 

query. 12 out of a possible 256 alternatives were generated.

Q uery 3

_________

;

(§§

(Mjoin ((Share. ASXCode^PortfolioItcm. ASXCode) and (PortfolioItem.Clientld^Client Chcntld)) 

(Sort (Portfolioltem. ASXCode,PortfolioItem.ClienUd)

Fscan (Portfolioltem.NumOfUnits>10Öö)PortfolioItem)

(Sort (Share.ASXCode,Client. Clientld)

(Mjoin (Company. Company ld= Share. Companyld)

(Sort (Share.Companyld)

Fscan (Share.Type^1"Preference") Share)

(Sort (Company. Companyld)

(LjoinO

(Fscan () Client)

(Fscan (Company.Name^"Broken Hill Proprietary") Company))))

5.4.2.4 Query 4

A QEP superior to that generated with previous optimiser settings was produced. The 

QEP was within 1% of the optimal solution with only 12 out of a possible 256 QEPs 

generated.

(Mjoin (Share. ASXCode^SharePrice. ASXCode)

(Sort (SharePrice. ASXCode)

Fscan (SharePrice.Date="31/3/97") SharePrice)

(Sort (Share.ASXCode)

(Mjoin(Code. Value=Company. Indust ry€ode)and(Company. Company Id= Share. Companyld)) 

(Sort (Company.IndustryCode,Company. Companyld)

61



A Blackboard Architecture for a Rule-Based SQL Optimiser

Fscan 0  Company)

(Sort (Code. Value, Share. Companyld)

(Ljoin

(Fscan () Share)

(Iscan (Code.Type-"INDUSTRY") CodeTypcValue 

(Codc.Dcscription-'TOURISM AND LEISURE”)))))

5.4.2.5 Query 5

A QEP superior to that generated with previous optimiser settings was produced. The 

QEP was within 1% of the optimum with 20 out of a possible 3840 alternatives 

generated.

WMWmMimMImvmmmmm

QEP Cost 1R337 J
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(Mjoin ((Portfolioltem. ASXCode^Share.ASXCode) and (Client.Clientld^PortfoiioItem.Clientld)) 

(Sort (Portfolioltem. ASXCode,PortfolioItem. Clientld)

Fscan (PortfolioItem.PurchaseDate>”30/06/96") Portfolioltem)

(Sort (Share. ASXCode,Ciient.Clientld)

(Mjoin (Share.Companyld-Company.Companyld)

(Sort (Share. Companyld)

Fscan () Share)

(Sort (Company. Companyld)

(Mjoin (Company. Industry Code=Code. Value)

(Sort (Company.IndustryCode)

Fscan () Company)

(Sort (Code. Value)

(LjoinQ

(Fscan (Client.NettWorth>100000) Client)

(Iscan (Code.Type="INDUSTRY”) CodeTypeValue 

(Code.Description-”DIVERSIFIED INDUSTRIALS”) Code)))))

Increase of the search breadth parameter yielded two solutions which were marginally 

worse, two which were superior and one which was the same when compared with the 

corresponding solutions generated with the previous, more restrictive, BBQ settings. 

The solutions which were either the same or superior are as expected given that the
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number of alternatives under consideration has increased due to the higher search 

breadth setting. The two solutions which were poorer indicated a shortcoming of the 

future cost algorithm and suggest that this algorithm should enhanced to reduce the 

possibility that promising partial QEPs are ignored.

5.4.3_Increase Search Depth

The depth o f QEP alternatives generated by BBQ, as compared to that in Section 

5.4.1, was increased by setting the parameter SearchTerminationFactor = 1.05. This 

change causes BBQ to continue generation of QEP alternatives until the cost of the 

best QEP produced in an iteration exceeds the cost of the best QEP generated thus far 

by 5%. QEPs produced under this setting for the previously described queries are 

presented below.

5.4.3.1 Query 1

This setting caused all eight possible QEPs to be generated for this query.

5.4.3.2 Query 2

This setting caused all 20 possible QEPs to be generated for this query.

5.4.3.3 Query 3

The best QEP produced was the same as the optimum solution with 52 out of a 

possible 256 alternatives generated.

5.4.3.4 Query 4

The best QEP produced was the same as that produced in the previous restricted 

search and within 1% of the optimum with 16 out of a possible 256 alternatives 

generated.
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5.4.3.5 Query 5

A Q E P  which is w ithin 3%  o f  the optim al so lu tion  w as p rod u ced  w ith 48 o u t o f  a 

possib le 3840 alternatives generated.

i i ü Ä S
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Query 5

(Mjoin ((Portfolioltem. ASXCode=Share. ASXCode) and (CUent.CliemId=PortfolioItem. Clientld)) 

(Sort (Portfolioltem. ASXCode,Portfolioltem. Clientld)

Fscan (PortfolioItem.PurchaseDate>w30/06/96”) Portfolioltem)

(Sort (Share. ASXCode,Client.Clientld)

(Mjoin (Share. CompanyId=Company. Company Id)

(Sort (Share. Company Id)

Fscan () Share)

(Sort (Company.Companyld)

(Ljoin (Company. IndustryCode=Code. Value)

(Iscan (Code.Type="INDUSTRY’’) CodeType Value 

(Codc.Description="DIVERSIFlED INDUSTRIALS")Code)

(Ljoin 0

(Fscan (Client.NettWorth> 100000) Client)

(Fscan () Company)))))

Increase o f  the  search dep th  param eter yielded tw o  so lu tions w ere  superio r and th ree  

w hich w ere th e  sam e w hen com pared  w ith the co rrespond ing  so lu tions Section  5.4.1. 

This results is as w ould  be expected  given th a t the  num ber o f  alternatives u nder 

consideration  has been increased w ith the h igher p aram eter setting.

5.4.4_Summary of restricted search runs

T he p receding  sections described the resu lts o f  generating  a lim ited set o f  Q E P  

alternatives by restric ting  the  num ber o f  alternatives expanded  by B B Q  o r by triggering  

the term ination  condition  fo r the search once the quality  o f  the  Q E P s had deg raded  by 

a specified factor.
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In these runs, the number of alternatives generated varied from less than 1% to 100% 

of the total number of alternatives possible. As mentioned earlier, the time taken to 

perform the optimisation is roughly proportional to the number of alternatives 

produced. Therefore, one measure of the efficiency of the optimiser is the ratio of the 

number of QEPs required to produce at least one near optimal QEP to the total 

number of QEPs possible. For the purposes of this thesis a near optimal QEP has been 

defined as one with a cost which is within 5% of the optimum; although other 

definitions, for example an upper bound of the highest cost of the best 10% of all 

QEPs, may be equally valid.

Given this definition of near optimal, each of the restricted searches, with the exception 

of one which was just outside the 5% bound, produced at least one near optimal QEP. 

Thus a satisfactory result in terms of QEP quality was achieved with the generation of 

only a small fraction of the total number possible alternatives. This is one of the five 

characteristics, listed in Chapter 1, which the BBQ model attempts to achieve. Further 

benchmarking against a more comprehensive set of queries could be used to establish 

BBQ parameter settings which achieve near optimal results with the generation of a 

minimum number of alternatives

5.5 C hange  in IO to CPU W eighting

The relative weighting of IO operations to CPU operations was changed to 500, 

effectively making CPU operations more expensive relative to IO operations. This 

change demonstrates the ability of the model to adapt to specific hardware and 

software environments. The effects of this setting on the optimisation of the previously 

described queries are presented below.

5.5.1.1 Query 1

The best QEP produced was the same as with the original optimiser settings. However, 

as expected the cost was different. The cost with the changed setting was 15034.
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5.5.1.2 Query 2

The best QEP produced was the same as with the original optimiser settings. However, 

as expected the cost was different. The cost with the changed setting was 16462.

5.5.1.3 Query 3

The best QEP produced was the same as with the original optimiser settings. However, 

as expected the cost was different. The cost with the changed setting was 17449.

5.5.1.4 Query 4

The best QEP produced was the same as with the original optimiser settings. However, 

as expected the cost was different. The cost with the changed setting was 604817.

5.5.1.5 Query 5

A QEP different to that generated using the previous settings was produced.
............. ...... ...........Query 5 .. ............ :.......... ... ................ ■...

\  '  '  %% OX •> \  .
... S Ä ,

(Mjoin ((Portfol ioltem A SXCode=Share. ASXCode) and (CUent.C]ienüd=PorlfoüoKem.ClientId)) 

(Sort (Porlfotioltcm. ASXCode,PortfolioUcm.Clicmld)

Fsean (PortroUoItcm.PurchaseDate>"30/06/96”) Portfolioitem)

(Sort (Share. ASXCode,Client.Clientld)

(Mjoin (Share. Companyid-Company. Company Id)

(Sort (Share.Companyld)
Fsean () Share)

(Sort (Company.Companyld)
(Ljoin (Company. lndustryCodc=Code. Value)

(Iscan (Code.Type="INDUSTRY") CodeTypeValue 

(Code.Description-MDIVERSIFIED INDUSTRIALS") Code)

(LjoinQ
(Fsean (Client. NettWorth> 100000) Client)

(Fsean () Company)))))
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For Query 5, the QEP generated was different to the corresponding one produced 

under the original optimiser settings. This demonstrates the flexibility of the model to 

select a QEP which takes into account characteristics of the operating environment.

5.6 D elta  P rofiles for Knowledge Sources

Using results of the optimisations from section 5.2, delta profiles of near optimal 

solutions for the five sample queries were constructed. For the delta profiles, near 

optimal QEPs have been defined as those having a cost within 5% of the optimum.

The method of construction of these profiles has been described in Chapter 4 and relies 

on the derivation tag which is associated with each QEP produced. A variation 

introduced in the profiles below is to plot the decile of the alternative sequence as 

opposed to the sequence ordinal. This enhancement allows a more meaningful 

comparison across a range of queries. Also, the metrics maintained by BBQ allow 

construction of delta profiles with a granularity finer than knowledge source level. 

Thus, delta profiles for the main alternative generating transformation rules are 

presented.

Delta Profile for SelectFirstScan

Decile of sequence of alternative used in QEP

The delta profile for SelectFirstScan has been constructed for comparative purposes 

only. It shows that this rule does not appear to have any ordering in its contributions to
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near optimal solutions. This result is as expected given that the rule is allowed to 

generate all possible first scans without restriction since the cost of this operation 

relative to the rest of the optimisation is small.

Delta Profile forTJoins

re 250

Decile of sequence of alternative used in QEP

The delta profile for Tjoins is significantly skewed to the lower deciles. This indicates 

that the rule is generating contributions to near optimal queries early in the sequence of 

alternatives produced by it. This implies that it should produce a high proportion of 

alternatives which form part of near optimal solutions even as the number of 

alternatives it is allowed to generate is restricted.

Delta Profile for LJoins

Decile of sequence of alternative used in QEP

68



A Blackboard Architecture for a Rule-Based SQL Optimiser

The delta profile for Ljoins is only slightly biased to lower deciles. This indicates that 

in restricted searches, the rule should still produce contributions which lead to near 

optimal solutions, however the probability of not generating near optimal contributions 

is higher than for the Tjoins rule. This rule is a candidate for improvement and its 

associated cost function should be examined for possible refinement. The assumptions 

made by the cost model with regard to loop joins, as discussed in Section 4.2, may 

need to be re-examined.

Delta Profile for MJoins

80
60 H
40
20

Decile of sequence of alternative used in QEP

In contrast to the delta profile for Ljoins, the delta profile for Mjoins is significantly 

more biased to low deciles. The rule appears to be performing efficiently and there is a 

high probability that it will contribute to near optimal query plans in restricted 

searches.

5.7 Exam ple  of Extending Transformation R ule Set

One of the primary objectives of the architecture of BBQ is that it should be amenable 

to the incorporation of new or changed transformation rules. As mentioned in 5.2.1 a 

common transformation implemented by optimisers is to use join predicates to perform 

an index scan, if applicable, on the inner relation of a join. This section presents the 

results of incorporating this transformation into BBQ’s rule set.
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Implementation of the new transformation required four discrete changes to BBQ :

1. Modification of the data structure containing index scan predicates to allow it to 

point to join predicates (in addition to select predicates as previously).

2. Addition of three new rules to perform the transformation. Listings of the new rules 

can be found at the end of Appendix A.

3. Modification of the cost algorithm for index scans.

4. Modification of the Tjoins rule to use the new scans only as inner relations.

No changes were required to either the control strategy or other transformation rules. 

The total time required to accomplish this extension, including problem analysis, was 

under three hours. The effect of this enhancement on the QEPs for Query 1 and Query 

2, described in Section 5.2, are presented below.

The optimum QEP for Query 1 after the enhancement is :

cos*

M join  (P ortfo iio ltem . C lie n tId = C lien t  C lien tld ) .02

(S o rt (C lien t.C lie n tld ) .0 0

Iscan  (C lient.N am e=="V ikram  Sharm a") C lien tN a m e () C lien t) 2

(Isca n  (P o rtfo lio Item .C lien tld ^ C lien t.C lien tld ) P ortfo lio Item C iien tid O  P o r tfo iio lte m »  5 0

As expected, the inner relation is now scanned using the index PortfolioClientld and 

the join predicate. It is interesting to note that the cost of the optimum QEP has 

improved dramatically from 15,018 previously to 52 after implementation of the new 

transformation.

The optimum QEP for Query 2 now is :
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h l p  r  yiLr C—
_________ _

Query 2
:x. ■ j

------------------- ---- -

Step
cost

Mjoin (Cl lent. Advisorld“ Advisor. Advisorld)

(Sort (Advisor. Advisorld)

Fscan (Advisor.Name~"John Francis") Advisor) 

(Sort (Client. Advisorld)

(Mjoin (Portfolioltem. ClientId=Ciient Clientld) 

(Sort (Client.Clientld)

Fscan () Client
.
fm

(iscan (PortfolioItem.Ciientld“ Client.ClientId) PortfolioClientld () Portfolioltem))))

Again, the inner relation is now scanned using the index and the cost of the optimum 

solution has decreased from 16,237 to 1,073 .

Query 1 Costs after New Transformation

18000 r

16000 -

14000

12000

10000

8000

6000 -

4000 -

2000

Alternative Sequence

The graph above shows the distribution o f costs for Query 1 after the new 

transformation has been introduced. The four additional QEPs have significantly lower 

costs when compared with the previous optimum QEP. QEPs 1 and 2 are dramatically 

superior, while QEPs 3 and 4 still represent a significant improvement.
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Query 2 Costs after New Transformation
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The graph above presents the new distribution of costs for Query 2. The first six 

QEPs, with a cost range of 1073 to 1081, are significantly superior to best QEP prior 

to the introduction of the new transformation.

It is desirable that BBQ should still produce some of the new superior QEPs when 

conducting restricted searches. To examine its performance in such searches, the 

number o f alternatives expanded was severely limited by setting the parameter 

BranchingFactor = 2. This allows each knowledge source to expand only the two most 

promising alternatives.

With this restriction for Query 1, four out of 12 possible QEPs were generated. The 

four QEPs generated represented the best four solutions possible from the exhaustive 

search incorporating the new transformation.

With this restriction for Query 2, eight out of 42 possible QEPs were generated. The 

costs of the best two alternatives generated in this instance were within 1% of the new 

optimum QEP cost.
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Thus an example of the implementation of an extension to the transformation rule set 

has been demonstrated. The change was effected with relative ease and resulted in 

significant improvement in QEP costs for the two sample queries examined. Also, the 

new rules were able to make useful contributions even when the search space was 

restricted.

5.8 A dvantages of Blackboard A rchitecture

A blackboard architecture was selected as the basis of the design of BBQ as it 

promised to offer a number of advantages over more traditional designs. Following the 

construction of software based on this design, this section takes a retrospective look at 

the benefits which were actually delivered.

As a result o f storing emerging partial solutions on a common blackboard which is 

operated upon by a number of knowledge sources, it was possible to segment the 

design into modules which in some fashion mirrored a natural decomposition of the 

problem domain. This led to high degree of correlation between the problem domain 

and its programmatic representation and thus transparency of the algorithms being 

implemented.

In addition to modularity, the structure of the blackboard allowed knowledge sources 

to be constructed with minimal interactions/interfaces between them. This provided 

great flexibility in adding and altering knowledge sources in that it greatly simplified 

impact analysis.

The design also allows a high degree of decoupling of control logic from problem 

solving logic. Thus changes to the control strategy could be effected without impacting 

problem solving logic and vice-versa. This capability is of particular significance as one 

of the goals of BBQ is to provide the basis for a self-tuning optimiser. It is envisaged 

that ultimately the optimiser could use the results of a benchmarking process to initially 

set values for tunable parameters and then continually improve these values as it 

performs more and more optimisations. This is discussed in greater detail in the next 

chapter.
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The use of a blackboard architecture also supports the control strategy. As all 

emerging solutions are globally visible and each has an associated cost estimate, 

comprising a historical and a future component, the process of selection of the next 

node to expand is greatly facilitated. The architecture also supports the incremental 

formation of partial solutions and allows flexibility in the granularity of the increments. 

Thus the knowledge sources can be defined to reflect a level of granularity considered 

appropriate for the control strategy.

The control strategy was readily able to use the structures provided by the blackboard 

to focus the search and thus produce complete solution alternatives after expansion of 

only a limited number of the candidate partial solutions. This allowed the breadth and 

depth of search to be limited according to certain tunable parameters. This is discussed 

further in the next section.

The derivation tag mechanism described in preceding chapters enabled the collection of 

metrics which were used to construct delta profiles graphing the efficiency of 

knowledge sources. This provided an effective means of identifying specific knowledge 

sources which could be candidates for improvement.

A final point which should be made is that while the blackboard architecture provided 

a number of benefits, the data structures required to support its implementation were 

complex and required a greater degree of effort to design efficiently than may have 

been the case in other designs.

5.9 Benefits of Search Strategy

The search strategy used by BBQ is a modified version of A* as described in preceding 

chapters. It selectively alternates between pure cost-based control and procedural 

control. The cost model used estimates both the cost of operations already 

incorporated and also the cost of operations yet to be incorporated for each partial 

solution alternative.
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The strategy imposes an iterative procedural sequence at the top level but it allows 

controlled A* at the knowledge source level. This allowed complete QEPs to be 

generated with the expansion of a limited number of candidate partial solutions. Thus 

when operating under constraints on the time to perform the optimisation, a set of 

possible QEPs could be generated at an early stage.

An important consideration in assessing efficiency of BBQ was the quality of these 

early QEPs. It was desired that at least one near optimal alternative be present in this 

set. Analysis o f QEPs produced presented in a previous section shows this to be case 

in a significant portion of the sample set. A significant factor in achieving this objective 

was the use of a cost model containing historical and future components.

As discussed in Chapter 4, it is not the intention of this research to devise a rigorous 

model for estimating the costs of partial and complete QEP alternatives. It does 

however attempt to use a model which provides an approximation of these costs and 

can be used in investigating the proposed optimiser design. A more comprehensive 

model could be the subject of further research.

The A* and procedural components and the termination condition are controlled by 

the setting o f a number of tunable parameters. The results of variations to these 

parameters have been presented in a previous section. Changes to their settings allow 

control over the breadth and depth of search and the trade-off between optimisation 

time and quality of QEP produced which is one of the qualities desirable in an 

optimiser. This capability to set these parameters to achieve a reasonable compromise 

in this trade-off was one of the objectives of this design.
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6. FUTURE WORK AND EXTENSIONS

This chapter examines some possibilities for extending the concepts presented in this 

thesis. In particular, it discusses extension of functionality, collection of a 

representative set of SQL statements for calibration, automating tuning of the 

optimiser and feasibility of using BBQ as a tool for benchmarking. It concludes with a 

discussion on the applicability of the model to commercial database management 

systems.

6.1 Extension  of Source Language and T ransformation  Rule 

Set

One of the main criteria driving the design of BBQ is that it should readily support 

enhancement and extension of functionality. The scope of this thesis limited the source 

language to a subset of SQL containing conjunctive queries and excluding sub-queries. 

An area for further research would be to extend the source language to include a more 

complete set of SQL. However, it should be noted that a significant class of subqueries 

are logically equivalent to joins. A number of commercial database management 

systems incorporate transformation rules to translate such subqueries to equivalent join 

expressions.

The modular structure of the knowledge sources which implement the transformation 

rules facilitates the task of adding new transformations to process the extended input 

language. Depending on the scope of the extension, new rules could be added to 

existing knowledge sources or new ones may be created and the control strategy 

altered accordingly. The changes to knowledge sources may require modification of 

existing data classes or the creation of new ones to hold emerging alternatives.

6.2 Set of Representative SQL for Calibrating  BBQ

A key area for further research would be the identification of a set of SQL statements 

which are representative of a broad class of queries. This set could be used to calibrate 

the performance of BBQ in a particular database and hardware environment. An
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investigation of existing benchmark query sets may be an appropriate starting point for 

this process.

The calibration process would involve running optimisations for the representative set 

o f SQL statements, ordering the resultant QEPs according to execution time and back 

propagating metrics which have been collected to the knowledge sources. This would 

enable the tunable parameters to be adjusted to optimum settings.

The identification of such a set of SQL statements has not been examined in this 

research. It may prove several such sets can be created and the set selected for use in 

calibration is that with characteristics most similar to queries likely to be input.

6.3 Self Tuning Optimiser

The search strategy used by BBQ can be controlled by adjusting the values of 

parameters which are part of its architecture. The parameters determine factors such as 

the number of alternatives expanding in one iteration of a knowledge source and the 

termination condition for the search. Other parameters include constants which are 

used by the cost model.

Specific aspects of BBQ’s behaviour which can be modified include depth and breadth 

of the search and the relative weighting of 10 operations to CPU operations. By using 

information from the delta profiles for the knowledge sources these parameters can be 

progressively refined to improve the performance of the optimiser.

It can be envisaged that a representative set of SQL statements, as discussed in the 

preceding section, is optimised and delta profiles constructed from the results are used 

to establish initial parameter settings for BBQ.

Ultimately it is feasible for the results of each optimisation to be back propagated to 

the knowledge sources which contributed to the optimisation. This could enable each 

knowledge source to automatically adjust tunable parameters to more optimal values.
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In such a scenario, the optimiser would improve performance over time by tuning itself 

as it generates optimisations.

6.4 Tool for Benchmarking and T esting  T ransformation  

R ules

The architecture of BBQ provides a framework within which the performance of sets 

o f transformation rules can be evaluated. Metrics generated by BBQ can be utilised for 

quantitative analysis. These metrics can also be used to produce delta profiles as 

described in Section 2.3.

Therefore, it is possible to experiment with alternative sets of rules and benchmark the 

performance of each set. The impact of changes to database structure or hardware 

configuration can be investigated. This allows development of efficient transformation 

rules and permits tuning of the optimiser to maximise query execution performance in 

a specific operating environment.

While the basis for these types of analyses exists in the proposed design, further 

research could develop more sophisticated techniques for benchmarking and perhaps 

extend the types of metrics collected.

6.5 A pplicability  to Commercial DBMS’

Optimisers which rely purely on a predetermined program sequence and set of rules to 

generate QEPs do not consistently produce results which can be regarded as near 

optimal. This has led to implementations where the user can assist the optimiser by 

providing hints on execution with the query. This however, requires knowledge of the 

physical structure of the database and still does not provide a satisfactory QEPs for a 

range o f queries.

The design proposed in this thesis should in general produce superior solutions as it 

searches a number of possible alternatives selecting and then refining a subset on the 

basis of an estimated cost of execution. Additionally, the search algorithm and cost
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model are designed such that near optimal QEPs should occur early in the sequence of 

alternatives generated.

While the model presented requires significant work to bring to a stage where it can 

effectively process a complete implementation of SQL, it does possess some desirable 

characteristics :

• generation of efficient QEPs

• flexibility and extensibility

• control over trade-off between time for optimisation and quality of solution

• ability to improve performance over time

With these advantages to offer, it is possible that this model for optimiser design could 

benefit commercial database management systems.
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7. CONCLUSIONS

An optimiser design which draws upon existing work in the areas of blackboard 

systems and rule-based optimiser design has been proposed. The model brings draws 

on concepts developed in previous research works and extends these to present a novel 

optimiser design. The proposed design was implemented in Aion/DS, a knowledge 

base development tool.

The model possesses a number of desirable features. It addresses each of the 

characteristics worth attaining in an optimiser, as listed in the Chapter 1.

The blackboard-based design proposed, comprising a global structure for storing 

emerging solution alternatives and a set of knowledge sources implementing query 

transformation rules, is well structured with limited interaction between components. 

In this model, the heuristics driving the search strategy are segregated from the logic 

implementing the transformations. This allowed great flexibility both in extending 

functionality and in changing the strategy used to drive the search for near-optimal 

QEPs. Also, the use of a set of rules to perform the translation of the input query to a 

query execution plan adds transparency to the optimisation process.

The search strategy adopted is a modified version of the A* algorithm utilising a cost 

model incorporating historical and future costs for emerging solution alternatives. The 

search strategy and cost model enabled early selection of promising alternatives thus 

enhancing optimiser efficiency and quality of QEPs produced.

A number of tunable parameters which can be used to control the behaviour of the 

search are defined in the model. These parameters allow tuning of the optimiser to a 

specific mix of transformation rules, database structure and hardware environment. 

They also enable control over the trade-off between quality of QEPs produced and 

time taken to perform the optimisation.
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A mechanism which enables the performance of individual components of the 

optimiser to be quantified has also been described. This is implemented by tagging each 

solution alternative with a structure showing the knowledge sources which participated 

in its formation. Metrics derived from these structures were used to construct delta- 

profiles for the knowledge sources. The delta profiles provided an easily 

comprehensible format for assessing the quality of knowledge sources and assisted in 

identifying those which could be improved.

Changes to the search strategy, by altering the settings of BBQ control parameters, 

were also demonstrated. While changes to control parameters are manual in the 

present design, further development of the model could lead to automation of this 

function so that ultimately, the optimiser is able to tune itself. This would lead to an 

optimiser design where performance improves over time as it learns from the result of 

previous optimisations.

Since the optimiser is constructed as a set of knowledge sources, each of which is an 

independent program unit, it could be readily adapted to take advantage of any parallel 

processing capability. Also, as all the data accessed is globally visible on the 

blackboard, communication between knowledge sources is minimised which further 

facilitates parallel operation.

In conclusion, an approach to optimiser construction which possesses several desirable 

characteristics has been proposed. As distinct from many contemporary optimiser 

designs, which compromise on certain characteristics to perform better in others, the 

proposed architecture is able to perform well against a number of criteria without 

significant trade-offs. This work provides a foundation for an optimiser whose design 

represents an advance over traditional optimiser architectures.
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APPENDIX A - LISTING OF RULES

A listing o f the main transformation rules used in BBQ is given below. The language 

used for implementation is KDL which is part of the Aion/DS development 

environment. The listing shows the rules grouped by knowledge source.

Knowledge Source : AlgebraicForm

Rule : ConvertSql

ifmatch InputSql with 
QueryName = NameOfQueryToOptimise 

then
for RelationList, Idx

create (Relation with Name=RelationList(Idx)) 
end

for ProjectList, Idx 
create (ProjectAttribute with

RelationName= ExtractRel(ProjectList(Idx)),
Attribute^ ExtractAttr(ProjectList(Idx))) 

end

for SelectList, Idx 
create (SelectPredicate with

RelationName=ExtractRel(ExtractOperand 1 (SelectList(Idx))), 
Attribute=ExtractAttr(ExtractOperand 1 (SelectList(Idx))), 
Operator=ExtractOperator(SelectList(Idx)), 
Constant=ExtractOperand2(SelectList(Idx))) 

end

for JoinList, Idx 
create (JoinPredicate with

RelationName 1 =ExtractRel(ExtractOperand 1 (JoinList(Idx))), 
Attribute 1 =Extract Attr(ExtractOperand 1 (JoinList(Idx))), 
Operator=ExtractOperator(JoinList(Idx)), 
RelationName2=ExtractRel(ExtractOperand2(JoinList(Idx))), 
Attribute2=ExtractAttr(ExtractOperand2(JoinList(Idx)))) 

end 
end

Knowledge Source : JoinMethods

Rule : CalcHistoricalCost

ifmatch TjoinExpression with
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Status = 'LMJoinsDone' and 
NodeStatus = 'Open' 

then

for TjoinExpression.TjoinPtrList

if i > 1 
then
InnerCardinality = TjoinPtrList(i-l)->.TjoinCardinality

HistoricalCost = HistoricalCost + JoinCost(TjoinPtrList(i)->. ScanCardinality,
InnerCardinality,
ExtractJoinType(TjoinPtrList(i)->))

end
end

FutureCost = 0

if vMinCostThisIteration = 0 or (HistoricalCost < vMinCostThisIteration) 
then

vMinCostThisIteration = HistoricalCost 
end

if vMinCostAllAlternatives = 0 or 
(HistoricalCost < vMinCostAllAlternatives) 

then
vMinCostAllAlternatives = HistoricalCost 

end 
end

Rule : CreateLjoins

ifmatch TjoinExpression with 
NodeStatus = 'Selected' 
orderby (round(HistoricalCost)) 

then 
Idx = 0
for TjoinExpression.TjoinPtrList 

if ExtractJoinType(TjoinPtrList(i)->) = 'Tjoin' and i > 1 
then 

Idx = i 
break 

end 
end

if Idx > 0 
then
TjoinPtr = TjoinExpression.TjoinPtrList(Idx)
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TjoinPtr = create (Ljoin with JoinPredicatePtrList = 
TjoinPtr->.JoinPredicatePtrList,
ScanPtr = TjoinPtr->. ScanPtr,
ScanCardinality = TjoinPtr->.ScanCardinality,
TjoinCardinality = TjoinPtr->.TjoinCardinality,
Selectivity = TjoinPtr->. Selectivity)

TjoinExpressionPtr = create (TjoinExpression with 
TjoinPtrList = TjoinExpression(l).TjoinPtrList, 
RelationNameList = TjoinExpression(l).RelationNameList, 
KSAlternativelDList =TjoinExpression(l).KSAlternativeIDList, 
HistoricalCost = TjoinExpression(l).HistoricalCost,
NodeStatus = 'Selected')

TjoinExpressionPtr->.TjoinPtrList(Idx) = TjoinPtr

AddAlternativelDToList(TjoinExpressionPtr,
'CreateLJoins')

end
end

Rule : CreateMjoins

ifmatch TjoinExpression with 
NodeStatus = 'Selected' 
orderby (round(HistoricalCost)) 

then

TjoinPosition = 0 
for TjoinExpression.TjoinPtrList 

if ExtractJoinType(TjoinPtrList(i)->)= 'Tjoin' and i > 1 
then

TjoinPosition = i 
break 

end 
end

if TjoinPosition > 0 
then

TjoinPtr = TjoinExpression.TjoinPtrList(TjoinPosition)

if not (currentvalue(TjoinPtr->. JoinPredicatePtrList) is unknown) 
then

NewTjoinPtr = create (Mjoin with 
JoinPredicatePtrList = TjoinPtr->.JoinPredicatePtrList,
ScanPtr = TjoinPtr->. ScanPtr,
ScanCardinality = TjoinPtr->. ScanCardinality,
TjoinCardinality = TjoinPtr->.TjoinCardinality,
Selectivity = TjoinPtr->. Selectivity)
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TjoinExpressionPtr = 
create (TjoinExpression with

RelationNameList = TjoinExpression(l). RelationNameList, 
TjoinPtrList = TjoinExpression(l).TjoinPtrList, 
KSAlternativelDList = TjoinExpression(l).KSAlternativeIDList, 
HistoricalCost = TjoinExpression(l).HistoricalCost,
NodeStatus = 'Selected')

TjoinExpressionPtr->. TjoinPtrList(TjoinPosition) = NewTjoinPtr

AddAlternativeIDToList(TjoinExpressionPtr, 'CreateMJoins') 
end 

end 
end

Rule : SelectFirstScan

ifmatch Scan with TRUE 
then

TjoinPtr = create (Tjoin with ScanPtr = ->Scan)

TjoinExpressionPtr^ create (TjoinExpression with Status-FirstScan') 
add Scan.RelationName to TjoinExpressionPtr->.RelationNameList 
add TjoinPtr to TjoinExpressionPtr->.TjoinPtrList

AddAlternativelDToList(TjoinExpressionPtr, 'SelectFirstScan') 
end

Rule : SelectNodesToExpand

ifmatch TjoinExpression with 
Status = 'TJoinsDone' and 
NodeStatus = 'Open' and
NewNodeCount < KSBranchingFactor('JoinMethods') 

orderby (round(HistoricalCost+FutureCost)) 
then

NewNodeCount = NewNodeCount + 1 
NodeStatus = 'Selected' 

end

Rule : UpdateNodeStatus

ifmatch TjoinExpression with 
NodeStatus = 'Selected' 

then
NodeStatus = 'Closed'

TjoinFound = FALSE 
for TjoinPtrList
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if ExtractJoinType(TjoinPtrList(i)->) = Tjoin' and i > 1 
then

TjoinFound = TRUE 
end 

end

if not TjoinFound 
then

TjoinExpression. Status = 'LMJoinsDone'
NodeStatus = 'Open' 

end 
end

Knowledge Source : ScanMethods

Rule : AddPredicatesToFscans

ifmatch Fscan, SelectPredicate with 
Fscan.RelationName = SelectPredicate. RelationName 

then
add ->SelectPredicate to Fscan. SelectPredPtrList 

end

Rule : AddPredicatesToIscansl

ifmatch
Iscan, SelectPredicate with
SelectPredicate. RelationName = Iscan.RelationName 

then

if index( SelectPredicate. Attribute, I scan. IndexPtr->. AttributeLi st) 
= size(Iscan.IndexPredPtrList) + 1 

then
add ->SelectPredicate to Iscan.IndexPredPtrList 

end

end

Rule : AddPredicatesToIscans2

ifmatch Iscan, SelectPredicate with 
SelectPredicate. RelationName = Iscan.RelationName and 
not (Iscan.IndexPredPtrList includes ->SelectPredicate) 

then

add ->SelectPredicate to Iscan. SelectPredPtrList 

end

86



A Blackboard Architecture for a Rule-Based SQL Optimiser

Rule : GenerateFscans

ifmatch Relation with TRUE 
then

create (Fscan with RelationName = Relation.Name) 
end

Rule : Generatelscans

ifmatch Relation, DBIndex, SelectPredicate with 
DBIndex. RelationName = Relation.Name and 
SelectPredicate.RelationName = DBIndex.RelationName and 
SelectPredicate. Attribute = DBIndex.AttributeList(l) 

then
ScanPtr = create (Iscan with RelationName = Relation.Name,

IndexPtr = ->DB Index)

add ->SelectPredicate to ScanPtr->.IndexPredPtrList 

end

Knowledge Source : SortQperators

Rule : CalcHistoricalCost

ifmatch TjoinExpression with 
Status = 'SortsDone' 

then

for TjoinExpression.TjoinPtrList

if currentvalue(TjoinPtrList(i)->. Inner Sort AttributeList) is not unknown 
then

HistoricalCost = HistoricalCost + SortCost(TjoinPtrList(i-l)->.TjoinCardinality) 
end

if currentvalue(TjoinPtrList(i)->.OuterSortAttributeList) is not unknown 
then

HistoricalCost = HistoricalCost + SortCost(TjoinPtrList(i)->.ScanCardinality) 
end 

end 
end

Rule : SortlnnerExpression

ifmatch TjoinExpression with 
Status = 'LMJoinsDone' 

then
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for TjoinExpression.TjoinPtrList, MjoinPosition 
if ExtractJoinType(TjoinPtrList (MjoinPosition)->) = 'Mjoin' 
then

TjoinPtr = TjoinExpression.TjoinPtrList(MjoinPosition)

TupleOrder(->TjoinExpression, MjoinPosition, MjoinPosition,OuterPredicateList)

clear(InnerPredicateList)

for OuterPredicateList, Idxl 
for TjoinPtr->. JoinPredicatePtrList, Idx2 
if TjoinPtr->. JoinPredicatePtrList(Idx2)->.RelationNamel & &

TjoinPtr->.JoinPredicatePtrList(Idx2)->. Attribute 1 = OuterPredicateList(Idxl) 
then

add TjoinPtr->. JoinPredicatePtrList(Idx2)->.RelationName2 & &
TjoinPtr->.JoinPredicatePtrList(Idx2)->. Attribute2 

to InnerPredicateList 
break 

else
if TjoinPtr->. JoinPredicatePtrList(Idx2)->.RelationName2 & &

TjoinPtr->.JoinPredicatePtrList(Idx2)-> Attribute2 = OuterPredicateList(Idxl) 
then

add TjoinPtr->.JoinPredicatePtrList (Idx2)->. RelationNamel & &
TjoinPtr->. JoinPredicatePtrList(ldx2)->.Attributel 

to InnerPredicateList 
break 

end 
end 

end 
end

TupleOrder(->TjoinExpression, 1, MjoinPosition-1, TupleOrderList)

if not IsOrderSame(InnerPredicateList, currentvalue(TupleOrderList), 1) 
then

TjoinPtr->.InnerSortAttributeList = InnerPredicateList 
end 

end 
end

TjoinExpression. Status = 'SortsDone'
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Rule : SortOuterExpression

ifmatch TjoinExpression with 
Status = 'LMJoinsDone' 

then

for TjoinExpression.TjoinPtrList, MjoinPosition 
if ExtractJoinType(TjoinPtrList(MjoinPosition)->) = 'Mjoin' 
then

TjoinPtr = TjoinExpression. TjoinPtrList(MjoinPosition)

clear(OuterPredicateList)

for TjoinPtr->.JoinPredicatePtrList 
if TjoinPtr->. ScanPtr->.RelationName 
=TjoinPtr->.JoinPredicatePtrList(i)->.RelationNamel 

then
add TjoinPtr->.JoinPredicatePtrList(i)->.RelationNamel & &

TjoinPtr-> JoinPredicatePtrList(i)->. Attribute 1 
to OuterPredicateList 

else
add TjoinPtr->.JoinPredicatePtrList(i)->.RelationName2 & &

TjoinPtr->.JoinPredicatePtrList(i)->.Attribute2 
to OuterPredicateList 

end 
end

TupleOrder(->TjoinExpression, MjoinPosition, MjoinPosition, TupleOrderList)

if not IsOrderCompatible(OuterPredicateList, currentvalue(TupleOrderList), 1) 
then

TjoinPtr->.OuterSortAttributeList = OuterPredicateList 
end 

end 
end 

end

Knowledge Source : JoinOrders

Rule : CalcHistoricalCost

ifmatch TjoinExpression with 
Status = 'TjoinsDone' and 
NodeStatus = 'Open' 

then

for TjoinExpression.TjoinPtrList
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TjoinPtrList(i)->. ScanCardinality = ScanCardinality(TjoinPtrList(i)->. ScanPtr)

if i = 1 
then
HistoricalCost = ScanCost(TjoinPtrList(i)->. ScanPtr)
TjoinPtrList(i)->. TjoinCardinality = TjoinPtrList(i)->. ScanCardinality 

else
TjoinPtrList(i)->. Selectivity =

JoinSelectivity(currentvalue(TjoinPtrList(i)->. JoinPredicatePtrList))

TjoinPtrList(i)->.TjoinCardinality =
TjoinPtrList(i)->. ScanCardinality *
TjoinPtrList(i-1 )->.TjoinCardinality *
TjoinPtrList(i)->. Selectivity

HistoricalCost = HistoricalCost + ScanCost(TjoinPtrList(i)->. ScanPtr) 
end 

end 
end

Rule : CreateTjoins

ifmatch
Scan, TjoinExpression
with NodeStatus = 'Selected' and
not (TjoinExpression.RelationNameList includes Scan.RelationName) 
orderby (round(HistoricalCost+FutureCost)) 

then
JoinPredPtrList = selectall(JoinPredicate with

(Scan.RelationName = RelationNamel and 
RelationNameList includes RelationName2) or 

(Scan.RelationName = RelationName2 and 
RelationNameList includes RelationNamel))

TjoinPtr = create (Tjoin with ScanPtr= ->Scan,
JoinPredicatePtrList = JoinPredPtrList)

TjoinExpressionPtr = create (TjoinExpression 
with TjoinPtrList = TjoinExpression(l). TjoinPtrList,

RelationNameList = TjoinExpression(l).RelationNameList, 
KSAlternativelDList =TjoinExpression(l).KSAlternativelDList, 
PreviousHistoricalCost =TjoinExpression( 1 ).PreviousHistoricalCost, 
TjoinldxAtPreviousCost =TjoinExpression(l).TjoinIdxAtPreviousCost, 
NodeStatus = 'Selected')

add Scan.RelationName to TjoinExpressionPtr->.RelationNameList 
add TjoinPtr to TjoinExpressionPtr->.TjoinPtrList

AddAlternativeIDToList(TjoinExpressionPtr, 'CreateTjoins')
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end

Rule : SelectNodesToExpand

ifmatch TjoinExpression with 
Status = 'FirstScan' and 
NodeStatus = 'Open' and 
NewNodeCount < KSBranchingFactor('TJoins') 

orderby (round(HistoricalCost+FutureCost)) 
then

NewNodeCount = NewNodeCount + 1 
NodeStatus = 'Selected' 

end

Rule : UpdateNodeStatus

ifmatch TjoinExpression with 
NodeStatus = 'Selected' 

then
NodeStatus = 'Closed'

if size(TjoinExpression.RelationNameList) = size(selectall(Relation)) 
then

TjoinExpression. Status = 'TJoinsDone'
NodeStatus = 'Open' 

end 
end

The following rules was added to the JoinMethods knowledge source to implement the 

additional transformation which, if applicable, utilises an index along with join 

predicate(s) to scan the inner relation in a join.

Rule : Generatelscans2

ifmatch
Relation, DBIndex, JoinPredicate with 
DBlndex.RelationName = Relation.Name and 
((JoinPredicate.RelationNamel = DBlndex.RelationName and 

JoinPredicate. Attribute 1 = DBIndex. AttributeList(l)) or 
(JoinPredicate.RelationName2 = DBlndex.RelationName and 
JoinPredicate. Attribute2 = DBIndex. AttributeList(l))) and 

not exists (Iscan with RelationName = Relation.Name) 
then

ScanPtr = create (Iscan with
RelationName = Relation.Name,
IndexPtr = ->DBIndex)
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add ->JoinPredicate to ScanPtr->. IndexJoinPredPtrList 

end

Rule : AddPredicatesToIscans3

ifmatch
Iscan, JoinPredicate with
JoinPredicate.RelationName 1 = Iscan. RelationName 

then

if index(JoinPredicate. Attributed Iscan.IndexPtr->.AttributeList) 
= size(Iscan.IndexPredPtrList) + 1 

then
add ->JoinPredicate to Iscan.IndexJoinPredPtrList 

end

end

Rule : AddPredicatesToIscans4

ifmatch
Iscan, JoinPredicate with
JoinPredicate. RelationName2 = Iscan. RelationName 

then

if index(JoinPredicate.Attribute2, Iscan. IndexPtr->.AttributeList) 
= size(Iscan.IndexPredPtrList) + 1 

then
add ->JoinPredicate to Iscan.IndexJoinPredPtrList 

end

end
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APPENDIX F - BBQ INTERNAL DATA STRUCTURES

BBQ is implemented in Aion/DS which supports object oriented concepts such as 
object classes ard inheritance. A description of the main classes and sub-classes of 
objects which c>mprise the blackboard as defined in the implementation is given 
below. At run ime instances of these classes are created to represent solution 

alternatives.

........................................................... - >■»»- ••................... ■.......
f  C a r d i n a l i t y I

DBIndex AttributeList
IndexName

Ä1I11I1III

RelationName

DB Selectivity Attribute
lit!

■

...

iputSql ■ ■ ■ ■ ■ ■

lllllll

I  . ■ ■

f c f c  > OuervName .................................................

JoinPredicate

Selectivity 

JoinList 
Project Li st 

u l l l f i  yueryixame
RelationList 

Attribute 1

I") I  M B  fe Attribute  - | |
Operator

Attribute
Relation

l ‘'2a L J U E L ^  * W - ■ '  J mmwMMmam -^Relation |1 S * I :" J & § iS 'r  1  Käme
RelationName

..

Scan 

Fscan
.3

p ip  ifftfscan ;* IndexName
IndexPredPtrList

petectPredLcate Attribute

M M B M B — 1

Constant 

f c  Operator

,

M I B B —

93



A Blackboard Architecture for a Rule-Based SQL Optimiser

94



A Blackboard Architecture for a Rule-Based SQL Optimiser

BIBLIOGRAPHY

Adler M R and Simoudis E, Integrating Distributed Expertise, paper submitted to 
International Working Conference on Cooperative Knowledge Based Systems, 
University of Keele, England Oct 3-5, 1990

Blackboard Technology Group Inc, technical paper by the company - The Blackboard 
Problem-Solving Approach, Amherst, Massachusetts

Bond A H and Gasser L, An Analysis of Problems in Distributed Artifical Intelligence, 
in Readings in Distributed Artificial Intelligence, A H Bond and L Gasser (ed), 
Morgan Kaufmann, 1988

Corkhill D D, Gallagher K Q and Johnson P M, Achieving Flexibility, Efficiency, and 
Generality in Blackboard Architectures, in Readings in Distributed Artificial 
Intelligence, A H Bond and L Gasser (ed), Morgan Kaufmann, 1988

Cox B J, Object Oriented Programming: An Evolutionary Approach, Addison- 
Wesley, 1986

Elmasri R and Navathe S B, Fundamentals o f Database Systems, Addison-Wesley, 
1989

Engelmore R and Morgan J (ed), Blackboard Systems, Addison-Wesley, 1988

Freytag J C, A Rule-Based View of Query Optimization, in Proceedings o f  the ACM  
S1GMOD Conference on Management o f  Data, San Francisco USA, 1987, pp 173- 
180

Flanson E N, Rule Condition Testing and Action Execution in Ariel, ACM SIGMOD, 
June 1992, pp 49-58

Hayes-Roth B, A Blackboard Architecture for Control, in Readings in Distributed 

Artificial Intelligence, A H Bond and L Gasser (ed), Morgan Kaufmann, 1988

Hudlicka E and Lesser V, Modeling and Diagonsing Problem-Solving System 

Behaviour, in Readings in Distributed Artificial Intelligence, A H Bond and L Gasser 
(ed), Morgan Kaufmann, 1988

95



A Blackboard Architecture for a Rule-Based SQL Optimiser

Kemper A, Moerkotte G and Peithner K, A Blackboard Architecture for Query 
Optimisation in Object Bases in Proceedings o f  the 19th VLDB Conference, Dublin 
Ireland, 1993, pp 543-554

Krishnamurthy R, Boral H and Zaniolo C, Optimization of Nonrecursive Queries in 
Proceedings o f  the Twelfth International Conference on Very Large Data Bases, 
Kyoto Japan, August 1986, pp 128-137

Leao L V and Talukdar S N, COPS: A System for Constructing Multiple
Blackboards, in Readings in Distributed Artificial Intelligence, A H Bond and L 
Gasser (ed), Morgan Kaufmann, 1988

Lochovsky F H, Knowledge Communication in Intelligent Information Systems

Nii H P, Blackboard Systems: The Blackboard Model o f  Problem Solving and the 
Evolution o f  Blackboard Architectures, AI Magazine, Summer 1986, pp 38-53

Pomeroy B and Irving R, A Blackboard Approach fo r Diagnosis in Pilot’s Associate, 
IEEE Expert, August 1990, pp 39-46

Trinzic Corporation, AionDS Language Reference, Trinzic Corporation, 1994

Yoshida N and Narazaki S, A Cooperation and Communication Framework for 
Distrubuted Problem Solving, in Proceedings o f the Fourteenth Annual International 
Computer Software Applications Conference , pp , Chicago 1990

96


