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P reface

That engineers are involved in the realization of technical goals which are of significance 
in a broader social context is implicit in the first of the tenets in the code of ethics of 
the Institution of Engineers Australia:

Members shall at all times place their responsibility for the welfare, health and safety 
of the community before their responsibility to sectional or private interests or to other 
members.

The outcomes of an engineer’s work are more than just the provision of industrial 
equipment, consumer goods, public works, to name but a few immediately tangible 
examples. These outcomes generally constitute the means by which broader economic, 
social, industrial and cultural goals are attained.

The fact that all engineering occurs in such a context should give the engineer cause to 
reflect upon how he interacts with society and how he chooses to organize his activities 
in response. Traditionally the focus of engineering has been on the realization of goals 
at a technical or scientific level, rather than on taking an active role in the definition of 
these goals. Engineers have generally not been trained to reflect on the broader social 
dimensions of their vocation, although these have always been present. Increasingly, 
both of these aspects must be viewed together. The demand of the public on engineers 
is for technological solutions which are of the highest quality, axe safe, environmentally 
sustainable, efficient, economical and which are user-friendly. To provide these solutions, 
the technology development process must adhere to the highest technical standards and 
yet simultaneously be driven by a discourse with the end user.

A serious consideration of these issues also involves questions of political involvement, 
social responsibility and personal moral decisions. These issues axe of concern to the 
profession, as evidenced by the recent debate concerning professional ethics and codes of 
regulation. Such questions are also being raised anew in other professions. Whilst the 
espousement of codes of ethics is essential, such codes cannot in themselves create ethical 
behaviour. This endeavour might be aided by the application of systematic approaches to 
dealing with such issues as part of the engineer’s everyday duties. Environmental impact 
assessments are one example of such a strategy. The challenge is to apply intellectual and 
other resources in managing the society-technology interface as an integral part of every 
subfield of engineering. This is bound to lead to increased complexity in engineering
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design tasks and further challenging work for researchers.

Complex decisions must often be made with limited resources and information. The 
engineer must prioritize his decisions and assess the relative benefits of different actions. 
It is basic that the engineer must acknowledge the limit to his knowledge during the 
design process. It is commonsense that basing decisions solely on a ’best guess’ is an 
unwise practice. Fortunately, it is often possible to describe the bounds of one’s un
certainty. This, in itself, provides valuable information for decision making. This is a 
principle which finds expression in the field of robust control design to which this thesis 
makes a contribution. The work presented is offered in good faith, in the hope that it 
will be of good use.
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G lossary

ARE algebraic Riccati equation.
DARE discrete algebraic Riccati equation.
FI full information.
KF Kalman filter.
LQG Linear-quadratic-Gaussian.
OE output estimation.
RDE Riccati difference equation.

Som e notes on E nglish  usage.

• The personal pronoun he is used to refer to a person, whether they be male or 
female.

• After much agonizing, the letter z has been chosen over the letter s where such a 
choice is possible.
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A bstract

Control Design Perspective.

This thesis reports on investigations related to two technical questions which have 
relevance to linear robust control design with multiple synthesis objectives. The results 
obtained in each case also have relevance to design with a single synthesis objective as 
well as to other systems and control problems. The unifying goal for these investigations 
has been to find easily implementable algorithms to aid the controller synthesis part of 
the control design process. Some attention is first given to the design process as a whole 
and the role of controller synthesis before specific technical questions are addressed. A 
simple design example is introduced which makes this background material concrete. 
The posing of a controller synthesis problem, quite aside from its solution, is a major 
step in the design process. The perspective taken is that controller synthesis theory 
should support this process as much as possible. Standard software synthesis tools 
generally stipulate that the controller synthesis problem satisfy certain mathematical 
assumptions, which in effect impose constraints on the designer. It is desirable that 
these assumptions put as few additional constraints as possible on the creative activity of 
design. The algorithms presented here do not in themselves, nor seen together, constitute 
full synthesis procedures for multiple objective robust control design. Rather, they are 
intended to provide tools in the development of such procedures, an activity which 
remains a challenging research topic.

Redundancy due to additional Sensors and Actuators in Hoo Control.

Necessary and sufficient conditions for existence, and full parametrizations are derived 
for Tioo controllers of a class of state-space realizations of linear, time-invariant general
ized plants which is somewhat broader than the class which is considered in the so-called 
standard Hoo synthesis theory (see e.g. [25]). Assumptions from the standard theory 
concerning the dimensions of the generalized plant’s disturbance input and objective out
put signal spaces are relaxed. This allows for the possibility that the generalized plant 
has more control inputs than Hoo objective signals and/or more measurements than 
disturbances associated with the Hoo objective. In such cases there is some redundancy 
in the control inputs and/or in the measurements. Controller synthesis problems with 
redundancy are likely to arise in design scenarios where the Hoo objective is just one of 
many synthesis objectives associated with different input/output signal pairs of the same 
generalized plant. A design example with a mixed H 2 /  Hoo synthesis objective is intro-
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duced to illustrate this point. The nonstandard Hoo controller parametrizations contain 
free stable transfer function matrix parameters which are not present in the standard 
Hoo controller parametrization. These additional parameters make the redundancy in 
control laws explicit. Parametrizations of nonstandard H2 control laws can be derived 
using similar techniques to those which are used to derive the nonstandard Hoo results. 
A summary of the nonstandard H2 results is presented without proof.

Spectral Factorization with Imaginary Axis and Unit Circle Zeros.

Controller synthesis algorithms with an Hoo or an H2 objective are widely accessible 
in standard software packages. However, synthesis algorithms which enable Hoo and H2 
objectives to be simultaneously achieved on possibly different input/output pairs for the 
same generalized plant are not. This work investigates one aspect of a mixed H2 /Hoo 
synthesis objective where optimal H2 performance on one input/output signal pair of 
the generalized plant is sought, subject to the satisfaction of an Hoo bound on another, 
in general different, input/output signal pair. Both the H2 and Hoo synthesis objectives 
have connections with factorization theory for rational spectral matrices. In particular, 
the satisfaction of a bound on the Hoo norm of a closed loop transfer function matrix 
is equivalent to nonnegative definiteness of a certain spectral matrix on the imaginary 
axis. The bounded real lemma says that this condition is equivalent to the existence 
of a strong solution of a certain algebraic Riccati equation. It is shown that the the 
bound on the Hoo norm of the closed loop must generally be achieved by optimal mixed 
H2 /  Hoo control laws. In this case, the spectral matrix associated with the Hoo bound 
has a transmission zero on the imaginary axis. Algorithms in standard software for 
solving the algebraic Riccati equation fail in such circumstances due to the fact that 
these algorithms preclude realizations of spectral matrices which have imaginary axis 
invariant zeros (whether they be transmission or decoupling zeros).

An algorithm is developed for solving the algebraic Riccati equation whose implemen
tation is straightforward and which has known convergence properties when the spectral 
matrix realization has imaginary axis invariant zeros. The proposed algorithm relies on 
bilinear transformation of the continuous time spectral matrix to form a discrete time 
spectral matrix. The resulting realization of the discrete time spectral matrix has unit 
circle invariant zeros whenever the realization of the original continuous time spectral 
matrix has imaginary axis invariant zeros. The algebraic Riccati equation associated 
with the continuous time spectral matrix has the same strong solution as the discrete al
gebraic Riccati equation associated with the discrete time spectral matrix. An algorithm 
for solving the discrete ARE is proposed which relies on the convergence of a related Ric
cati difference equation. It is shown that the Riccati difference equation converges at a 
known rate (£) to the strong solution of the ARE. Secondly, it is shown how a doubling 
algorithm can be used to calculates RDE iterates only at integral powers of two. The 
result is an algorithm with known convergence rate which can be used to solve a wide 
range of continuous or discrete spectral factorization problems.
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N otation , D efinitions and Fundam ental
R esults

G eneral.

• Given any z EC, let 3£{z} and 0{z} denote its real and imaginary parts, respec
tively.

• Given any two nonnegative integers j  and fc, define

• Define the discrete time unit step function u(-) as follows; with l any integer, 
u(l) =  1 if / > 0 and u(l) =  0 if Z < 0.

• Given /(Z) and g(l), both scalar functions of an integer variable Z, we say g(l) =
if there exists a constant 0 < k < oo such that lim/^oo =  «•

0
j!

(j—k)\k\
if j  < k 

otherwise (0 .1)

L inear a lgebra.

• Let 0m denote the m  x m  zero matrix, 0nXm the n x m  zero matrix and Im the 
m  x m  identity matrix.

• Given a matrix M  ECnxm, M T denotes its transpose and M* its complex conjugate 
transpose.

• Given a square matrix M  e € nxn, {Ai{M)} i — 1 , . . . n  denotes the set of eigen
values of M  and p(M) — max* |A*(M)| the spectral radius of M .

• Given a matrix M  £(CnXTn, let (<7j(M)} j  = 1 , . . . ,  min{n, m} denote the set of 
singular values of M  and &(M) = amax(M) the maximum singular value of M .

• A matrix M  6 lRnxm is full rank if rank{M} = min{n,m}.

• Given a matrix M  G lRnxn, we say that any p-dimensional hnear subspace W C lRn 
is M-invariant if MW C W. If V  G IRnxp is a full column rank matrix whose 
columns span W, then there exists a matrix My  € lRpxp such that M V  =  VMy-

• Given a matrix M, we let Mij or (M)ij  denote the ( i ,j) th entry of M.
Suppose M  has an even number of rows and columns, consisting of a matrix of 
2 x 2  matrix sub-blocks; for convenience we let [M]- G 1R2x2 denote the (z, j ) th 
2 x 2  subblock of M.

1
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• Let /( /)  be a scalar valued function and U(/) be a matrix valued function, both of 
an integer variable l. We say that U(l) =  if crmgLX(U(l)) =  ö(f ( l) ) ,  where
the notation O(-) applied to scalar functions has the definition given above.
Note the following property: If U(l) is such that each (U(l))mn = 0 (f(l)) or each 
[tfWly =  0 (f(l)),  then U(l) =  0 (/(/)).

T he m atrix  inversion lem m a.

Suppose one is given the matrices A, B,C, D, with both A and C invertible.
The matrix (A+BCD)  is invertible if and only if the matrix (DA~lB + C ~l ) is invertible. 
Moreover, the following identity holds:

(A +  B C D )_1 =  A - 1 -  A~1B(DA~l B  +  C~l ) - l DA~l . (0.2)

Signals.

• £2(—oo, oo) denotes the set of square-integrable real vector-valued signals; /(•) | 1R —* 
]Rn.
Given any /(•) G £2(—oo, oo), define the 2-norm of/(•) as \\l\\2 =  j lT(t)l(t)dt j 2.

•  £2 denotes the set of vector-valued frequency domain signals, /(•) | <D —̂ Cn with
= lT(—ju>), which are square-integrable on the imaginary axis.

Given any /(•) G £2, define the 2-norm of/(•) as ||/||2 =  lT{— jw)l(ju)dujf2.

• £2 and £2(—00,00) are Hilbert spaces, isomorphic under the Fourier transform
/•OO

/■{/} =  / l(t)e-’“‘dt. (0.3)
J  — OO

• £2(0,00) denotes the subspace of signals in £ 2(—00,00) which are zero for t G 
( -o o ,0).
£2(0,00) inherits the norm || • H2 from £ 2(~ 00,00).

•  H 2 is the set of complex vector valued signcils /(•) | C —>Cn which are analytic in 
the open right half plane and for which the following norm exists:

||/||2 =  (sup i  [  l(ot +ju>)*l(oc + ju)dcj\  . (0.4)
l a >0  J  — 0 0  J

• The spaces £2(0,00) and li.2 are isomorphic under the Laplace transform.
Given a signal /(•) | 1R —*■ H n, its Laplace transform, when it exists, is defined as 
follows:

/•OO

l(s) =  C{l(t)} =  /  l{t)e~’‘dt.
Jo

(0.5)
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• Given a matrix A associated with the realization of a transfer function matrix such 
as G(s) as above, we say that A  is stable if it has all eigenvalues in the open left 
half plane.
If A is stable then G(s) is stable in the sense that all its poles must be in the open 
left half plane.

• If G(s) as described by the above state space realization is square and D is invert
ible, then the inverse system G~1(s) is well defined and has a state-space realization

G-1« A — B D ~lC B D ~l
- D ~ lC D~L ( 0.11)

• With G(s) as described above, its adjoint system has state-space realization

- A t CT
- b ’1' D'r (0.12)

• Suppose one is given realizations of two transfer function matrices G(s) = Dq + 
Cg (sI — and H(s) =  Dh +  Gh (sI  — Ah)~1Bh . If their product is well
defined, it has a state-space realization

G(s)H(s)
Aq BgCh BgD h
0 A h B h

Cg DgCh DgDh

If their sum is well defined, it has a state-space realization

G{s) + H(s)
Ag 0 Bg
0 A h B h

Ca Gh Dg +  Dh

(0.13)

(0.14)

• Suppose one is given a pair of matrices (.A,J9), with A G lRnxn and B  G IRnXm. 
The pair (A, B ) is controllable if and only if the following matrix has full row rank 
for all A GC

( X I - A  B ) .  (0.15)

This matrix has full row rank when 9?{A} > 0 if and only if (.A, B ) is stabilizable.

• Suppose one is given a pair of matrices (C, A), with C G lRpxn and A G IRnxn. 
The pair (C, A) is observable if and only if the following matrix has full column 
rank for all A GC

(  XIcA )  • (°-16)

This matrix has full row rank when 3R{ A} > 0 if and only if (G, 4̂) is detectable.

Invariant Zeros o f R ealizations o f  FDLTI System s.

The invariant zeros of the realization of a transfer function matrix M (s) =  C (sl —
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Ä)~l B  4- D are the values of A EC at which

rank j ̂   ̂ ^  ̂|  < normrank d )}' (0-17)
In contexts where a particular realization of a transfer function matrix M{s)  is already 
implied, we shall often refer to the invariant zeros of that realization simply as the 
invariant zeros of M(s).

Should the above realization of M{s ) have an invariant zero at A 6 C, then it may 
arise due to any combination of the following:

• Should (A, J9) have an uncontrollable mode A EC, then these modes give rise to 
input decoupling zeros of M(s).

• Should (A,C) have an unobservable mode A £ <D, then these modes give rise to 
output decoupling zeros of M(s).

• If the rank of M ( A) is less than the normal rank of M (s), then it is a transmission 
zero of M(s).

Supposing D has at least as many rows as it has columns, then with A a transmission 
zero of M (s), there exist vectors xo ^  0 and rj ^  0 such that

AcXI d)U°)=0- (0-18)

Algebraic R iccati equations.

Given matrices A, R, Q E ]Rnxn with Q = QT, R  = consider the algebraic Riccati 
equation (ARE):

At X  + X A  + X R X  4- Q = 0. (0.19)

In general we shall be concerned with real symmetric solutions X  £ ]Rnxn of the ARE. 
We call such a solution X  stabilizing if ̂ {(A +RX )} < 0 and strong if 5R{(A + RX)} < 0. 
Associated with the Riccati equation (0.19) is the Hamiltonian matrix

M - «  -IO - ( 0.20)

A matrix M  € ]R2nx2n is said to be Hamiltonian if it satisfies the equality JM  =  (J M )*
0 In j Since J* = J~ l — — t ;+ t as t- l

— In 0 J
hence that for any eigenvalue Ai(M), —Ai (M)  is also an eigenvalue of M.

where J —J, it follows that J M J  1 = —M* and

Lemma of Lyapunov

Lemma 0.0.1 Suppose one is given the following linear equation

Al[ X  +  X A 2 +  Q — 0m xn> ( 0 .21)
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Figure 0.2: Feedback configuration for the linear fractional map notation.

has outputs with the same dimension as u2. Let the two systems be connected in the 
feedback configuration U2 — iV(s)y2 as depicted in Figure 0.2. Let M(s) have block 
partitions Mij(s) i , j  G {1,2} whose dimensions correspond with those of the input and 
output signal vectors. The resulting closed loop system has input/output behaviour 
which can be described by the linear fractional map y\ =  LFT{M , N }u\,  where

L F T {M , N} = M n  + M 12N (I  -  M22 N )-1M2i , (0.10)

provided the inverse operator (I  — M22iV)_1 exists.
We call M(s)  the coefficient matrix of the linear fractional map.

Some Properties of Contractive and Unitary LFTs.
Given a linear fractional map as described above with det(I — M22(oo)iV(oo)) ^  0, the 
following hold:

1. If IIMHoo < 1, then IIJVII«, < 1 implies that \\LFT{M, N }\\00 < 1.

2. If M t (—s) M( s) = I  and M2i(ju;) is full row rank for all u  G 1R, then 
\\LFT{M, iV}||oo < 1 if and only if U^ll«, < 1.

The above results are due to Redheffer. For proofs and a discussion of these and related 
results, see [34].

State Space R ealizations o f FDLTI System s.

In the Laplace Domain, a state-space realization of an m  x p proper FDLTI system 
G(s) G H  is any set of four matrices A G JRnxn,R  G IRnxp,C  G ]Rmxn and D G ]Rmxp 
such that

G(s) = C ( s I -  A ) - 1B  + D.

We also use the notation

to denote such a realization.
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• Given a matrix A associated with the realization of a transfer function matrix such 
as G(s) as above, we say that A is stable if it has all eigenvalues in the open left 
half plane.
If A is stable then G(s) is stable in the sense that all its poles must be in the open 
left half plane.

• If G(s) as described by the above state space realization is square and D is invert
ible, then the inverse system G~1(s) is well defined and has a state-space realization

G - l (s) A — B D ~lC B D ~l
- D ~ lC D~L ( 0 . 11)

• With G(s) as described above, its adjoint system has state-space realization

GT(-s ) f  - A T CT \
V - B 1' d t J ( 0 . 12)

• Suppose one is given realizations of two transfer function matrices G(s) =  Dq +  
Cg {sI  — Aq )~1Bg and H(s ) =  Dh + Gh {sI  — A h )~1B h • If their product is well 
defined, it has a state-space realization

G(s)H (*)
Ag BgCh BgDh
0 A h B h

Cg DgCh DgDh

If their sum is well defined, it has a state-space realization

(  Aq 0 Bg
G W  + / ? ( « ) = (  0 A h B h

V Ch Dg +  Dh

(0.13)

(0.14)

• Suppose one is given a pair of matrices {A, J3), with A G IRnxn and B  G IRnxm. 
The pair (A, B ) is controllable if and only if the following matrix has full row rank 
for all A GC

(A  I - A  B ) . (0.15)

This matrix has full row rank when 3£{A} > 0 if and only if (A , B) is stabilizable.

• Suppose one is given a pair of matrices (C, A), with C G ]RpXn and A G ]Rnxn. 
The pair (C, 4̂) is observable if and only if the following matrix has full column 
rank for all A GC

( XI c A ) -  (°-16)

This matrix has full row rank when 3ft{A} > 0 if and only if (C,A) is detectable.

Invariant Zeros o f R ealizations o f FDLTI System s.

The invariant zeros of the realization of a transfer function matrix M (s ) =  C (sl —
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A)~1B 4- D are the values of A GC at which

rank j  ^  ^  ^  n o r m r a n ^  { ( ^ ( 7 ^  ^ ) } ’ ( 0 - 1 7 )

In contexts where a particular realization of a transfer function matrix M( s ) is already 
implied, we shall often refer to the invariant zeros of that realization simply as the 
invariant zeros of M(s).

Should the above realization of M(s)  have an invariant zero at A G C, then it may 
arise due to any combination of the following:

• Should {A,B)  have an uncontrollable mode A GC, then these modes give rise to 
input decoupling zeros of M(s).

• Should (A, C) have an unobservable mode A G C, then these modes give rise to 
output decoupling zeros of M(s).

• If the rank of M(A) is less than the normal rank of M (s), then it is a transmission 
zero of M(s).

Supposing D has at least as many rows as it has columns, then with A a transmission 
zero of M( s ), there exist vectors xo ^  0 and rj ^  0 such that

{ A c XI d )(°-18)

Algebraic Riccati equations.

Given matrices A ,R ,Q  G IRnxn with Q = QT, R  = RT , consider the algebraic Riccati 
equation (ARE):

At X  + X A  + X R X  + Q = 0. (0.19)

In general we shall be concerned with real symmetric solutions X  G ]Rnxn of the ARE. 
We call such a solution X  stabilizing if $R{(A+RX)} < 0 and strong if ^{(A +RX ’)} < 0. 
Associated with the Riccati equation (0.19) is the Hamiltonian matrix

H ={-Q-a t ) '  (°-2°)

A matrix M  G ]R2nx2n is said to be Hamiltonian if it satisfies the equality JM  = (JM)*

Since J* — J ~ l — — J,  it follows that J M J ~ l — —M* and 

hence that for any eigenvalue A*(M), —Ai (M)  is also an eigenvalue of M .

Lemma of Lyapunov

Lemma 0.0.1 Suppose one is given the following linear equation

where J 0  In
- I n  0

A j X  +  X A 2 +  Q — 0 m X n 5 (0 .21)
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where Ai E JRmXm, A2 E lRnxn and Q € lRmXn.

1. There exists a unique solution X  E JRmxn if and only if \i(A \)  +  Xj(A2) /  0 for 
all i and j .

2. In particular, suppose that Q — 0mXn, then if A\ and A2 have all eigenvalues in 
the open left half plane, X  =  0mXn is the unique solution of (0.21).

3. If Q > 0 and A\ =  A2 =  A, then X  > 0 if and only i f$l { \ (A)}  < 0.

4- If Q > 0, Ai =  A2 =  A and (Q , A ) is detectable, then X  > 0 if and only if 
5R{A(A)} < 0.
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C ontrol D esign  C on tex t.
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M easurements. From the point of view of the controller, measurements m(t) may be 
available of a number of variables related to the process. The process model gener
ally contains a model of the measurement process, which describes the anticipated 
relationship between other process variables and the measured quantities.

Control inputs. A number of signals c(t) associated with the process are generally 
considered to be independently adjustable by the controller. These signals exert 
some influence over process dynamics. The process model must describe how these 
signals affect other process variables, including the performance variables q{t) and 
measurements m(t).

Reference signals r(t) are chosen by an external user as a means of expressing desired 
process performance objectives on-line. These signals are presented as an input 
to the controller. A decision has to be made by the designer as to the types of 
reference signals which the controller should be able to accommodate.

Disturbances. A process is generally subject to the influence of externally determined 
disturbances d(t) which may affect the process behaviour in an undesirable way and 
which cannot be predicted in advance. In general, disturbances are not directly 
measureable. Disturbances may affect the process in any number of different ways; 
e.g. noise in sensors and actuators or direct perturbations on internal process 
variables. Disturbances are generally modelled as belonging to a set of possible 
signals which may be deterministic or probabilistic. The designer must assess in 
a idvance the likely nature of these disturbances. The process model must also 
include a description of the way in which disturbances axe expected to influence 
the process dynamics.

The Controller generally consists either of analogue electronics hardware for which 
design specifications axe sought, or a digital computer for which a program must 
be written. In either case, a control law is sought which accepts measurements 
m(t) from the process and reference signals r(t) from the user and computes the 
control signal c(t) which is fed to the process.

Remark: Only continuous-time descriptions of signals and systems axe considered. This 
assumption is not restrictive for many process-related systems and signals. However, it 
does pose some difficulties for controller implementation. Whilst direct analogue im
plementation of control laws is still important in practice, digital computers most often 
provide the hardware platform for control laws. Control algorithms therefore must be 
discrete-time in most instances. One technique for dealing with such situations is to 
design in continuous-time and then discretize the resulting controller. Simple discretiza
tion techniques which are satisfactory in many circumstances axe outlined in standard 
textbooks (see e.g. [5]). □

Design Objectives.
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In trod u ction .

On the distinction between Design and Synthesis.

In control system design, mathematical models of systems and signals are obtained 
and arranged in an attempt to reflect the essential features of the process to be controlled. 
Various theoretical and computational tools axe then applied to these models, resulting 
in the synthesis of a feedback control law which, it is hoped, will meet engineering 
objectives.

In any given practical situation, the control design process involves a large input of 
resources and is not merely a computational task. Developing means for obtaining pro
cess models is in itself an axea of intensive research which is not considered in depth 
here. It is a matter of judgement on the part of the designer as to how a given process 
is best modelled for the purpose of control design. The task of appropriately configuring 
the process and signal models in a manner which reflects the actual system and which 
respects the design objectives is not trivial. This activity requires considerable insight 
and experience and, invariably, the incorporation of process-specific information. The 
outcome is, hopefully, a well-defined controller synthesis problem in which the desired 
engineering criteria for selection of a controller have been expressed in mathematical 
terms. Different design methodologies, sets of specifications and types of process and 
signal models will give rise to their own classes of synthesis problems. A control system 
designer, having formulated a controller synthesis problem, must then draw upon the 
available mathematical synthesis tools to furnish a control law. The design engineer gen
erally passes the appropriate data to a software implementation of a synthesis algorithm 
where a control law is computed, if one is available for the given data. A distinction 
is thus drawn in this thesis between the task of control system design and that of con
troller synthesis, which is just one aspect of the design process. This thesis is primarily 
concerned with controller synthesis. The results are presented in the trust that they will 
come to good use as additional tools in the process control designer’s toolbox.

Key issues for Controller Synthesis.

Very often it will be necessary to iterate the design process until satisfactory closed
11
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loop performance is attained. In addition to further controller synthesis calculations, this 
iterative process may well include model refinement, adjustment of control objectives 
and possibly the reconfiguration of system models. One measure by which synthesis 
procedures can be judged is on the basis of their efficiency from the point of view of the 
design process. How easily can design objectives be cast in the mathematical framework 
of the synthesis algorithm? What is the computational burden associated with computing 
a control law? How easily can the synthesized control law be implemented? These 
questions are adopted as motivating principles in the present work, which seeks to develop 
results which axe of relevance to controller synthesis with multiple objectives.

Chapter summary.

The purpose of this introductory chapter is twofold. Firstly some principles and 
results from control design and controller synthesis axe reviewed. This establishes the 
context for the second part, in which the main topics of this thesis are introduced with 
the aid of a simple design example.

1.1 Control D esign  and Controller Synthesis.

In this section, the objectives of process control design axe first reviewed. Some results of 
linear control design methodology axe then summarized. A simple control design example 
is then presented; firstly with a view to making the background material concrete and 
secondly to help motivate the particular topics which axe the focus of this thesis. Whilst 
being by no means exhaustive, it is hoped that the discussion in the present section will 
provide a reference point and an aid in the interpretation of the remainder of this thesis.

1.1.1 E lem en ts o f  C ontrol S ystem  D esign .

Whilst most of the content of this thesis assumes that the reader has a fair degree 
of specialist knowledge, it is proper for the non-specialist reader to enquire as to the 
motivation and scope of the material presented. The intention in this subsection is to 
provide a non-technical summary of some key elements in control design, with a view to 
providing a framework for the technical details which follow. It is hoped that the present 
subsection will also be accessible to the non-specialist reader.

Figure 1.1 represents one way of thinking about an engineering system; from the point 
of view of process control. In process control design the focus is generally on the design of 
one subcomponent of the system, called the controller. The function of the controller is 
to improve the quality of process behaviour by making on-line decisions about a number
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Disturbances. Performance variables.

d(t) Q(t)

Control
inputs.

Measurements.

Controller 
(tobe designed)

(uncertain)

Process

Reference signals.

Figure 1.1: The process control task.

of process control inputs which can be freely chosen.

R em ark : It should be noted that Figure 1.1 does not represent the generalized regulator 
configuration which has come to play a central role in recent linear controller synthesis 
results. It will be explained in due course how the generalized regulator configuration 
(which appears in Figure 1.5) relates to the above figure. □

Before embarking on the design of a controller, it is of benefit to identify how the 
various parts of the actual system may be classified according to the features identified 
in Figure 1.1.

T he P rocess consists of all plant of interest, including actuators and sensors. Each of 
these components, including the instrumentation, may have dynamic behaviour. 
For the purpose of design, mathematical models of these components axe generally 
adopted. These models are generally nonlinear and may also have time-varying 
elements. Physical and chemical laws, for example, invariably give rise to nonlinear 
features.

Importantly, in most engineering situations, there is some degree of uncertainty 
associated with these models. This may arise due to a combination of many fac
tors; e.g. inadequacies in the scientific theory used to describe the system, use of 
simplified or reduced-complexity models, unforeseen variability in the process, the 
effect of off-line measurement errors in the modelling process, limited resources for 
the modelling process. Often, a set of process models V  can be defined which can 
adequately capture the behaviour of the actual process.

P erfo rm ance  variables. A number of variables q(t) associated with the process are 
deemed to quantify the performance of the process. These variables should relate 
directly to process operating specifications and or product quality goals. They 
need not be measureable on-line, however. They may instead be approximated 
from other process variables using models, which in turn form part of the overall 
process model.
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M easurem ents . From the point of view of the controller, measurements m{t) may be 
available of a number of variables related to the process. The process model gener
ally contains a model of the measurement process, which describes the anticipated 
relationship between other process variables and the measured quantities.

C on tro l inpu ts . A number of signals c(t) associated with the process are generally 
considered to be independently adjustable by the controller. These signals exert 
some influence over process dynamics. The process model must describe how these 
signals affect other process variables, including the performance variables q(t) and 
measurements m(t).

R eference signals r(t) are chosen by an external user as a means of expressing desired 
process performance objectives on-line. These signals are presented as an input 
to the controller. A decision has to be made by the designer as to the types of 
reference signals which the controller should be able to accommodate.

D istu rbances. A process is generally subject to the influence of externally determined 
disturbances d(t) which may affect the process behaviour in an undesirable way and 
which cannot be predicted in advance. In general, disturbances are not directly 
measureable. Disturbances may affect the process in any number of different ways; 
e.g. noise in sensors and actuators or direct perturbations on internal process 
variables. Disturbances are generally modelled as belonging to a set of possible 
signals which may be deterministic or probabilistic. The designer must assess in 
advance the likely nature of these disturbances. The process model must also 
include a description of the way in which disturbances axe expected to influence 
the process dynamics.

T he  C on tro ller generally consists either of analogue electronics hardware for which 
design specifications are sought, or a digital computer for which a program must 
be written. In either case, a control law is sought which accepts measurements 
m(t) from the process and reference signals r(t) from the user and computes the 
control signal c(t) which is fed to the process.

R em ark : Only continuous-time descriptions of signals and systems axe considered. This 
assumption is not restrictive for many process-related systems and signals. However, it 
does pose some difficulties for controller implementation. Whilst direct analogue im
plementation of control laws is still important in practice, digital computers most often 
provide the hardware platform for control laws. Control algorithms therefore must be 
discrete-time in most instances. One technique for dealing with such situations is to 
design in continuous-time and then discretize the resulting controller. Simple discretiza
tion techniques which are satisfactory in many circumstances axe outlined in standard 
textbooks (see e.g. [5]). □

D esign  O bjectives.
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Control laws are sought which ensure that the actual process performance variables 
q(t) assume values which meet operating specifications. This means that they must 
respond in a specified manner to reference signals r(t) in the face of disturbances d(t), 
despite the fact that actual plant behaviour is uncertain.

Reference Tracking.
For a given class of reference signals r(t), q(t) should track r(t) to within a specified 
tolerance.

Disturbance Attenuation.
The control law may also be required to attenuate the effect of disturbance signals on 
q(t).

Stability.
High quality process performance should be sustainable, meaning that no process variable 
should be allowed to drift outside a safe operating range.

Feedforward and Feedback Control.

Assuming that a process model is available at the time of controller design, it is 
reasonable to expect that one could design a controller which has some predictive ability. 
If the model is sufficiently accurate, it may be possible to design a feedforward control 
law which has excellent reference following properties. (Feedforward controllers decide 
on control inputs only on the basis of the process model and reference inputs). Even with 
a sufficiently accurate process model however, feedforward control strategies provide no 
means of attenuating unmeasureable disturbances.

Control laws which also monitor measured process variables may be able to infer 
something about the actual disturbances, process behaviour and performance variables. 
If measurements are used in deciding inputs, then the the control law is said to use feed
back. Feedback control laws are therefore able to attenuate disturbances; the influence 
of disturbances on measured signals may be detected and compensated for via adjust
ments to the control input variables. Feedback control laws result in a closed loop system 
system with its own new dynamical properties.

R obustness.

In the above discussion of design objectives, the issue of plant uncertainty was not 
addressed explicitly. Naturally, one would like to achieve the above closed loop design 
objectives for the actual process, despite the fact that there is some uncertainty in the 
process model.

Robustness of Control Laws.

A control law is termed robust if it is able to achieve closed loop performance objectives 
despite the variations in actual process behaviour from the model used to design the
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control law.

Some description of the accuracy of the model is invaluable in designing for good actual 
closed-loop behaviour. In robust control design, knowledge about the likely uncertainty 
in the process model is explicitly taken into account in the design process.

Robustness with respect to a Model Set.

A control law is said to be robust with respect to the model set V  if it is guaranteed 
to achieve closed loop performance specifications for all plants in V.

One of the primary reasons for introducing feedback is that it is capable of reducing 
the sensitivity of closed loop performance to plant uncertainty. Feedback provides a 
means of reducing the effects of deviations of process behaviour from the model which 
was adopted at the time of control design. Feedback control laws systems have the 
potential to be robust since they can compensate for measured deviations from ideal 
plant behaviour.

In summary, mathematical models of processes and their uncertainty, together with 
on-line process measurements provide a powerful combination, the potential benefits of 
which are sought in process control design.

Trade-offs.

Some of the design and robustness objectives described above may well be in con
flict. For example, improvement of reference tracking ability will often accentuate the 
undesirable effects of sensor noise on the closed-loop system.

1.1.2 Linear Control Design Methodology.

Figure 1.2 describes one means of addressing the control design task introduced in Figure 
1.1. As a basis for the design of the controller, we take a nominal model P(s) of the 
process which is a finite dimensional linear time invariant (FDLTI) system.1 Also a 
FDLTI system E{s) is introduced to assess the performance of the system (note that 
E(s) is chosen to reflect the designer’s objectives and does not model any part of the real 
process). For simplicity and ease of implementation, we also restrict our attention to 
the class of FDLTI control laws. This obviously rules out nonlinear and adaptive control 
strategies.

T he P rocess M odel Set V.

It is well recognized that nominal linear models alone cannot always provide a descrip

t o r  a sum m ary of FDLTI systems, see the summ ary of N o ta tio n , D efin ition s a n d  F un dam ental 
R esu lts  at the beginning of this thesis.
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Process 
model set. Uncertainty.

Nominal linear model

Figure 1.2: A framework for linear control design, including a nominal linear process 
model P(s) with process uncertainty X  (possibly nonlinear and time-varying), a linear 
control law C(s) (to be designed) and a lineax system E(s) (to be chosen by the designer) 
which generates objective signals for performance assessment.

tion of the process which is adequate for control design. For example, it is well known 
that the actual closed-loop stability of nominally high-performing lineax control designs 
can be very sensitive to deviations from the nominal plant model (see e.g. [34] and [26]).

In Figure 1.2, the process has been represented by a set of models V  which consists 
of two components. The first is the nominal model P  which is a FDLTI system. The 
second component is an uncertain dynamical system X  (not necessarily FDLTI). With 
reference to Figure 1.2, observe that uncertain process behaviour is attributed to the 
system X  which maps qx(t), consisting of signals related to the nominal process model, 
to dx(t) which consists of signals which disturb the nominal lineax process dynamics. It 
is hoped that the process can be adequately described by P(s), together with at least 
one X  G A, where X  is a set of systems which is chosen by the designer in an effort 
to capture his uncertainty in process behaviour. The elements P  and X  of the process 
model set V  are described below in more detail.

Remark: A number of different ways of describing how the process uncertainty X  
perturbs the behaviour of the nominal model are commonly adopted. These include 
multiplicative, additive and normalized coprime factor uncertainty descriptions (see e.g. 
[34], [69],[82] and [66]). It is generally possible to describe uncertain plant behaviour in 
terms of a connection of the type shown in Figure 1.2 (see [69]). □

N om inal Linear Tim e Invariant Process M odel.

The inputs of P{s) include all process inputs (actuator signals, disturbances) as well 
as the the signal dx(t) which is the output of the model uncertainty. The outputs of 
P{s) include all process outputs (sensor signals and performance variables), as well as 
the signal qx(t) which is the model uncertainty input.

Many analysis and synthesis tools for control design (including those developed in
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this thesis) draw upon the rich structure and many well-established results of linear 
systems theory. Working with linear systems does have some basis in practice as well 
as in mathematical expediency, however. Nominal linear models for process behaviour 
are generally obtained either by local linearization of nonlinear process models or from 
linear system identification experiments based on input/output data obtained during 
process operation. Also, it has become apparent in a number of nonlinear control de
sign methodologies (see for example [39]) that a preliminary nonlinear transformation of 
process inputs and outputs can often be used to construct an equivalent linear descrip
tion of a nonlinear process. Linear control techniques can often be used successfully in 
conjunction with this transformed system. The final result is a control law which is a 
combination of nonlinear and linear elements.

P rocess U n certa in ty  Set.

Linear models of time-varying or nonlinear systems are subject to the errors inherited 
from the nonlinear modelling process itself, from linearization of the nonlinear model 
and from experimental uncertainty. Thus the model uncertainty X  will in general be 
a nonlinear time-varying operator. However, we consider here only one class of linear 
plant uncertainty description.

FDLTI Uncertainty.
It is assumed that X  G X  is a FDLTI operator which is contained in a set A’, defined as 
follows:

X = {X{s)  I X{s) = W ^U )X n(S)WgI(S) with UXnlloo < 1} . (1.1)

Thus the overall plant uncertainty X  is described as a series connection of an unstruc
tured normalized uncertainty UXnlloo < 1, weighted by transfer function matrices on 
its inputs and outputs. Here Wdx{s) and Wqx(s) are stable, minimum phase weighting 
functions whose frequency response (magnitude, directions and phase) should be chosen 
to reflect process uncertainty bounds. They may, for example, be obtained using ex
perimental frequency response data, perturbations in process model parameters (see the 
remark below), together with insights specific to the process at hand.

R em ark : Another common plant uncertainty description is in terms of intervals on sys
tem parameters. System identification routines often calculate probability distributions 
for parameters as well as nominal estimates. Whilst a whole field of research in the 
linear systems area is devoted to the study of robustness to parametric uncertainties, it 
is also sometimes possible to translate such uncertainties into the frequency domain type 
described above. Given a nominal operating condition and nominal parameter values 
for a linearized process model, foreseeable variations in operating conditions or system 
parameters can often be used to generate linear frequency domain uncertainty bounds 
around the nominal model. For an application of this approach to robust Power System
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Stabilizer design, see [17] and [101]. □

O bjective Signals for Perform ance A ssessm ent.

The FDLTI system E(s) in essence compares the performance signals q(t) and the 
reference signals r(f) in some way, generating objective signals ze(t). Generally speaking, 
E(s ) is chosen in such a manner that making ze(t) small (in a sense to be defined) 
corresponds to the achievement of closed-loop dynamic performance objectives. The 
objective signals may, for example, consist of a deviation of a performance variable 
from a reference signal, the response of a performance variable to sensor noise or to 
other exogenous disturbances. For example, E(s) may be a simple comparison ze(t) =  
r (t) — q(t) or perhaps a model-matching criterion ze(s) = q(s) — Mr(s)r(s). Here Mr(s) is 
a transfer function matrix whose properties we would like the actual closed loop mapping 
from r(f) to q(t) to approximate. The object E(s) may also include a weighting function 
VFe(s) which emphasizes the frequency ranges where performance improvement is sought. 
For example ze(s) =  s-1 (<?(s) — Mr (s)r(s)) will tend to emphasize the importance of 
steady-state tracking performance.

Linear C ontroller Structure.

The controller C(s) is a FDLTI system with the following inputs and output:

cW =  ( C iW  C2(s) ) (  )  . (1.2)

This is a general two-degree-of-freedom control law (see e.g. [64], [34] and [82]). In many 
design approaches it is stipulated that C(s) have some additional internal structure. For 
example, a common assumption which corresponds to unity gain negative feedback is 
that c(s) =  ifi(s)(r(s) — m(s)), where Ki(s) is to be chosen. In this case the control law 
has the structure C(s) = K\(s) ( —I  I  ). Other examples include the observer/state- 
feedback structure [5] and the internal model control structure [82]. The controller C(s) 
may also contain a loop shaping function (see e.g. [66], [64]). For simplicity, we do not 
consider control laws C(s) with internal structure in this presentation.

A  D esign  E xam ple.

A design example is now introduced to illustrate the elements of Figure 1.2 which 
have been described above. The design example is depicted in Figure 1.3. It should be 
noted that all signals shown in this diagram are scalar and all systems are SISO. We 
shall return to the design example later in this chapter.

The process under consideration consists of two subsystems in cascade. The first sub
system consists of an actuator and some physical plant. The output h\(t) of subsystem 
1 becomes the input of subsystem 2. The main quantity of interest is /12(f), the output 
of subsystem 2, which is to be regulated.

Noisy measurements mi(f) and 7712(f) are available of h\(t) and /12(f), respectively.
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Process model

Figure 1.3: A two-degree-of-freedom linear control design example, including a nomi
nal linear process model with additive uncertainty, measurement errors, and with an 
objective signal for model reference control.

Measurement noise is modelled via additive stationary stochastic disturbance signals 
di(t) and d2 (t). When compared with the bandwidth of the process and the anticipated 
bandwidth of the closed loop, the power spectral densities of both d\(t) and d2 {t) can 
be considered as positive constants; say «FcMi (i^) =  and $ i 2d2(joj) =  a ,̂ for some 
constants a\ > 0 and a2  > 0.

The dynamical behaviour of the first subsystem is known to have a significant degree of 
uncertainty. It is modelled as a nominal FDLTI system P 1(s), together with an additive 
FDLTI uncertainty X (s). Subsystem 2 is modelled with a nominal FDLTI system P 2(s). 
The uncertainty associated with subsystem 2 is known to be negligible when compared 
with that of subsystem 1. Suppose that the additive uncertainty X (s) for subsystem 1 
can be contained in a set X,  which is defined as follows:

*  =  {X(s )  I X(s)  =  Xn(s)Wx(s) with UXnlloo < 1} , (1.3)

where ^ ( s )  is a stable, minimum phase weighting function.

Suppose that r( t ) is expected to consists of a weighted sum of shifted unit step inputs, 
sufficiently separated in time. Let Mr(s) be a FDLTI system whose unit step response 
is the desired step response of the actual closed loop mapping from r(t) to /1 2 W (see 
[64] where this approach is applied to control design for a distillation column example). 
One means of choosing Mr(s) is as follows: first design a control law which uses only the 
nominal model and which achieves desirable nominal performance. Then choose Mr(s) 
to be the nominal closed loop transfer function which results from this control law (see 
e.g. [101] where this approach is discussed).

A two-degree-of-freedom controller structure has been chosen which has access to the 
measured signals m\{t)  and rri2 {t) as well as the reference signal r(t), and generates the 
control input c(£).

The main performance objective is then to ensure that for all X  G the signal /i2(t)
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responds to r(t) in a manner which is sufficiently close2 to the behaviour of Mr(s). It 
should do this while maintaining closed loop stability and reasonable immunity to the 
sensor noises. □

In the design example discussed above, the notion of “closeness” of system signals was 
introduced. In order to make the process control design task more mathematically pre
cise, we need to introduce some mathematical modelling of the disturbance and reference 
signals to which the system will be subjected.

D isturbance Signal M odels.

The disturbance models adopted here take the form

d(s) = Wd{s)wd{s), (1.4)

where Wj(s) is a FDLTI system and wd(s) is a normalized disturbance signal which is 
assumed to belong to a given signal space. The purpose of Wj(s) is to capture the varia
tion in frequency of the dominant magnitude and directions expected in the disturbance 
signals d(t).

Weighted stochastic disturbances.
One approach is to describe disturbances as coloured white noise. In such a case, the 
disturbance signal is modelled as the response of a linear system Wd(s) to a stationary 
unity variance white noise signal wd(t). Here $ Wdwd{ju) = I  and the system Wd(s) is 
chosen to ensure that the power spectrum of the disturbance signal d(t) reflects that 
expected in practice. Such signals are of prime interest in 7̂ 2 controller synthesis, which 
will be later reviewed.

Weighted £2 disturbances.
Another common description of disturbance signals is in terms of weighted signals in 
£2(0,00). Recall that £2(0,00) consists of real valued signals defined on t E (—00,00)

which are zero for t € (—00,0) and for which ||/||2 =  | / 0°°/T(t)/(t)dt| 2 is well de
fined. Such signals can be interpreted as having finite energy and may adequately 
capture certain types of process disturbances. One can also weight these signals; i.e. 
d(s) =  Wd(s)wd(s) where wd(t) € £2(0,00). £2 disturbances are also important in the 
development of Tioo control design, as the Hoo norm of a stable FDLTI system M{s)  is 
its induced norm with respect to £2(0,00).

Deterministic Disturbances.
Another commonly adopted disturbance model is a deterministic linear system H^f(s), 
perhaps with unspecified initial conditions or with a unit impulse input. The output of 
such a system can be used to model persistent deterministic signals such as an unknown

2 E xactly what is meant by close is yet to  be defined.
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constant offset signal or a sinusoidal disturbance.

Sensor Noise M odels.

Recall that in the design formulation adopted here, sensor noise signals are included in 
the disturbance d(t). In designing a feedback law, the fact that only imperfect measure
ments are available must be taken into account. It is well known that noisy measurements 
impose a fundamental limitation on system performance (see for example [34]). A com
mon means of modelling measurement errors is by additive weighted noise on the nominal 
plant output. In the design example introduced above, sensor noise was modelled using 
two broadband stationary stochastic signals.

R eference Signal M odels.

The same approach can be taken to the modelling of reference signals as is taken to 
the modelling of disturbances. Reference signal models thus generally take the form

where Wr (s) is a FDLTI system and wr(s) is a normalized disturbance signal of one of 
the types described above.

1.1.3 G eneralized  Linear R egulator C ontroller Synthesis M ethodolo-

Having chosen nominal process models, uncertainty descriptions, controller structures, 
performance objective generating systems, disturbance and reference signal models, the 
generalized linear regulator provides a framework for unifying these elements into a single 
mathematical description of the design problem. The final step in the control design 
phase before controller synthesis is construction of the generalized plant. The generalized 
plant is an FDLTI system which consists only of known FDLTI systems. It therefore 
excludes the uncertain component of the plant uncertainty X n(s). The task of control 
design is then essentially reduced to the task of control law synthesis for the generalized 
plant G(s) as depicted in Figure 1.4. This allows many different control design problems 
to be cast in the same mathematical framework which forms the basis for theoretical 
investigations and also makes possible general purpose Software tools.

T he G eneralized  P lan t.

The FDLTI generalized plant G is given the following partitioning and interpretation 
of its input and output signals:

d(s) = W,(s)u>.(s), (1.5)

gies.

( 1.6)

where

• z(t) is the generalized objective output signal.
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Gtnrralizeä Plant G(t)

Figure 1.4: Inclusion of weighting functions for disturbances, model uncertainty and 
reference inputs, resulting in the generalized plant.

This may include a weighted combination of the following types of signals:
a) The normalized plant uncertainty input zx(t).
b) The closed-loop performance objective signals ze(t); e.g. tracking errors, control 
activity, response of certain variables to disturbances.

• u(t) is the generalized control input signal.
This is the output of that part of the controller which is to be designed. It need 
not be the actuator input itself. However, the actuator input will be influenced by 
this signal (in a manner which depends on the chosen controller structure).

• w(t) is the generalized disturbance input signal.
This may include a weighted combination of the following types of signals:
a) The normalized plant uncertainty output wx(t).
b) The normalized disturbance signal tüj(t).
c) The normalized reference signal wr(t).

• y(t) is the generalized measurement output signal.
This is the input of that part of the controller which is to be designed, it may 
consist of a combination of sensor outputs m(t) and reference signal inputs r(t). 
The chosen controller structure will influence the composition of y(t).

T he C losed Loop O perator w ith  U ncertainty.

Given a control law K(s), and some unstructured FDLTI normalized plant uncertainty 
Xn(s) with | | X n ||oo  < 1 , we define the closed loop operator with uncertainty as follows:

(i-7)

where the operator S Xn'K(s) results from simultaneously connecting the normalized un
certainty Xn(s) and the control law to the generalized plant in Figure 1.4. It is the 
designer’s aim to choose K (s ) such that SXn,K(s) meets design specifications for all pos-
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sible X n. A number of such synthesis objectives for S Xn,K(s) will be discussed in the 
next subsection.

T he N om inal C losed Loop O perator and C ontroller Synthesis.

The effect of model uncertainty is generally not explicitly taken into account in con
troller synthesis for the generalized plant. A number of well known linear control design 
methodologies focus on synthesizing linear control laws for the nominal generalized plant 
only, without explicitly taking into account the uncertainty set in control law synthesis. 
This is the so-called generalized regulator problem, pictured in Figure 1.5. Whilst ro
bustness properties are not explicitly treated using such an approach, if the generalized 
plant and synthesis objectives are chosen carefully, controllers with desirable robustness 
properties can be obtained. The main benefit of the Tioo control design methodology is 
that it is able to give robustness guarantees for certain types of model uncertainty sets 
(not for the actual plant, however).

Generalized plant.

Figure 1.5: The generalized regulator problem.

A finite dimensional, linear, time-invariant, proper controller K(s ), when connected 
to G(s) according to the control law u(s) =  K(s)y(s), results in the nominal closed loop 
operator

z(s) = T?I,(s)w(s), (1.8)

where T^{s )  is given by

r £ , ( s) =  LFT{G(s), K(s)}

=  G n ( s ) + G u ( s ) K ( s ) ( I - G 22(s)K(s))-1G2i(s). (1.9)

The notation L F T  is short-hand for linear fractional transformation. The diagram 1.5 
represents such a linear fractional transformation. The generalized plant is said to be
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the coefficient matrix in the linear fractional map.

The standard approach is to design a FDLTI controller K (s) for the generalized 
plant, in the hope that obtaining certain closed loop properties of the nominal closed 
loop operator T ^ (s )  will ensure the desired objectives on the closed loop operator with 
uncertainty S Xn,K (s) and thereby the actual closed loop system. Often we shall deal with 
subsystems of the generalized plant which are associated with a selection of variables from 
w and z .  Let W j ( t ) and Z{( t )  be vectors consisting of a subsets of the vector signals w 
and z, then T ^w is referred to as the closed loop operator with respect to the signal pair 
{Wj,Zi}. The operator can be defined in an analogous manner. Isolating particular 
subsystems of the closed loop operator T is particularly important from the perspective 
of multiple objective control.

S tate  Space R ealizations for C ontroller Synthesis.

It is often the case that state-space realizations of each constituent FDLTI system 
of the generalized plant axe available. Combining these elements leads to a state-space 
realization of the generalized plant:

G(s)
A Bi B2
Ci D n D\2
c 2 Z>21 D22

( 1. 10)

For computational purposes, this is generally the most favourable description of the 
generalized plant. We shall take such a realization as a basis for the development of all 
algorithms in this thesis.

A  G eneralized  P lant for th e  D esign  Exam ple.

We next show how a generalized plant may be constructed for the design example 
introduced in Figure 1.3.

Figure 1.6: Construction of a generalized plant for the design example.

Recall first the definition of the model uncertainty set X  in (1.3) which was defined
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in terms of a weighting function Wx(s). We introduce the weighted signal ^ (s )  =  
Wx{s)qx(s) =  Wa;(s)u(s) and incorporate the weighting function in the generalized plant. 
We now express some of the exogenous signals in Figure 1.3 in terms of normalized 
signals and weighting functions. Recall that the sensor noise signals di(t) and d2(t) are 
white with {joj) =  a2 and $ < f 2 d 2 (.jv)  =  a ^ ,  and where a\ and 0 2  are the standard 
deviations of the actual sensor noises. Observe in Figure 1.6 that these signals have been 
modelled as d\(t) =  aiw^(t) and d2(t) — aiur^(f) where w\(t)  and w^(t) are both unity 
variance white noise signals. Note that no other weights have been introduced in this 
example. For consistency, however, we introduce the following notation in constructing 
the generalized plant: wx(t) =  dx(t) and wr(t) =  r( t ).

Recall that the anticipated reference signals are step inputs. It might also be possible 
to describe this behaviour by incorporating a weighting function with an integrator at the 
reference input in the generalized plant (see e.g. [78] and [50]). However, the approach 
taken here (as in [64]) is to choose a reference model Mr(s) which has a desirable unit 
step response. The aim is then to choose a control law such that S ^ ^ ( s )  is close to 
Mr(s), in the hope that this will guarantee that the step responses will be close. In 
the next subsection we shall discuss in somewhat more detail some commonly adopted 
measures of closeness of FDLTI systems. The relationship between time domain and 
frequency domain response of a system is not easy to characterize. However it is possible 
to obtain some bounds on time responses given frequency response bounds; see e.g. [53] 
and [71].

Since a general two-degree of freedom control structure has been adopted, the control 
law -ftT(s) which is to be synthesized in Figure 1.6 is identical to C(s)  depicted in Figure 
1.3. It also follows from this that the output of the control law to be synthesized is 
exactly u(t) =  c(t). Recall that this is not necessarily the case if the controller C(s) 
contains internal structure. All signals available to K(s)  are combined as follows:

/  mi(t)  \
y (t) =  m 2(t) . ( 1. 11)

V w r ( t )  )

The controller to be designed thus has three-inputs and a single output.

Combining the plant model, reference model and weighting functions yields the fol
lowing input/output description of the generalized plant:

/  Ze { s )  \
z x ( s ) 0

 
0

 

0
 

0
 1

0

H-*

( \  
W d ( s )

m i { s ) = CLl 0 0 1 ■ P 1 W r M
m 2 ( s ) 0 a 2 0 P 2 ; P 2P 1 Wx ( s )

V r ( s ) / 0 0 I—1 0 0

□
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1.1.4 Generalized Regulator Synthesis Objectives.

Having constructed the generalized plant, we now ask what mathematical optimization 
criteria should be introduced for the generalized regulator problem to express the desired 
performance specifications for the actual closed loop system.

Internal Stability.

The most basic objective is that the control law, when connected to the generalized 
plant results in a closed loop system which is internally stable. By this, we mean that the 
feedback connection of G22(s) and K (s) is internally stable. (For a definition of internal 
stability, see the summary in the section Notation, Definitions and Fundamental 
R esults at the beginning of this thesis.)

Remark:
It should be noted that internal stability of the interconnection of £22(5) and K(s)  does 
not always imply that the mappings from w to internal loop variables axe stable. For 
example, if the generalized plant contains weighting functions with imaginary axis poles 
(as in [50]) this will definitely not be the case. Henceforth, we shall assume that the 
generalized plant has only stable weighting functions. □

Define K to be the set of all internally stabilizing controllers for the generalized plant. 
Note that this is in general not the same as the set of all controllers which stabilize a 
given process, nor those which stabilize a given model set. Nevertheless, this set does 
play an important role since the minimum that any control law should do is stabilize the 
nominal plant. Nominal closed loop stability also plays an important role in establishing 
robust stability results using the small gain theorem (see e.g. [34]).

Operator Norm s for Performance Assessm ent.

Here we consider controllers which either minimize or achieve a bound on a norm of 
selected submatrices of the nominal closed loop system:

I|t£ j  < 7. (M3)

Here Z{(t) and 1U{(t) consist of a subset of the elements of z(t) and w(t), respectively. 
We consider here only the H2 and Tioo norms for FDLTI systems. Formulations of the 
mathematical controller synthesis problems associated with these objectives are reviewed 
next.

1.1.5 Linear Quadratic Gaussian Control Design.

The purpose of the Linear Quadratic Gaussian (LQG) control design methodology is to 
minimize the effect on selected process objective signals of exogenous input signals which 
are described as stationary stochastic processes; e.g. process disturbances, measurement
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noise, actuator errors or reference signals.

The stationary stochastic disturbance signals are generally modelled as the response 
of stable weighting filters to a zero-mean unity variance white noise signal n(t); d(s) =  
Wd(s)n(s). Since the power spectral density matrix of n(t) satisfies 4>nn(ju;) = L, it 
follows that $dd(u) =  Wd(ju>)Wj(— juj). Thus, if one has some prior knowledge of the 
power spectral matrix of the disturbance the filter ^ ( s )  should be chosen to
be a spectral factor of $ dd{u) (f°r a definition of spectral factors see Chapter 6). The 
weighting function Wd{s) is incorporated in the generalized plant. The normalized signal 
n(t) is treated as a disturbance input to the generalized plant.

Any objective signal e(t) can be weighted by a stable, minimum phase transfer func
tion matrix, the singular values and directions of which can be chosen to reflect the 
relative importance of attenuation over different frequencies; v(ju>) = V(juj)e(ju>). As
suming that V(s) is invertible, then $ ee(^) — V-1 (ja;)$1;t,(u;)V’-T (— ju>). The weighting 
function F(s) also becomes part of the generalized plant.

The aim of LQG control is to minimize the total power of the weighted objective 
signal v(t) in response to the stationary stochastic input d(t). Equivalently, minimize 
the root mean square value of the signal v(t) in response to the unity variance white 
noise input n(t). Subject to such an input, the objective of LQG design is to minimize 
the following quantity:

i
=  /  trace{$™(ju;)}du; j , (1.14)

which is the average root-mean-squared value of the weighted system objective signals 
v(t).

Suppose that Tffn(s) is the closed loop mapping between the normalized disturbance 
n(t) and the weighted output v(t). It is easy to show that $t,v(s) =  T ^(s) (T ^)t (—s) 
which again is due to the fact that $ nn(ju) = I. This is equivalent to an 'H2 synthesis 
objective for the generalized plant, which we now review.

lim — [  vT (t)v(t)dt
T->00 T  JO

The V.2 Controller Synthesis Problem .

Suppose one is given a generalized plant G(s) with the following partitioning

( v^  \ = ( Gn(s) g12(s) \ ( «(«) \
V 2 /( s ) /  V G2iU) G22{s) ) V u(s) ) (1.15)

with v(t) the controlled output or objective signal of dimension nv, u(t) the control input 
signal of dimension nu, n(t) the disturbance input signal of dimension nn and y(t) the 
measured output signal of dimension ny.

Linear, time-invariant, proper controllers K (s ) are sought which, when connected to 
G(s) according to the control law u = K(s)y, result in an internally stable closed-loop
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system

TvKn(s) = ), K(>)}

such that the H 2  norm is minimized:

\\Tv n h  = | ^ ^ t r a c e { T ^ ( j w ) ( T ^ ( - j w ) ) T}<iw| 2 .

(1.16)

(1.17)

Plant Uncertainty in LQG.

The LQG design methodology does not explicitly take into account plant uncertainty 
descriptions. Instead, the objective is to optimally solve the noise attenuation problem 
for the nominal linear generalized plant. Ideally, one would like to be able to make 
statements about the H 2 norm of the uncertain operator S*?'K for all X n such that 
HXnlloo < 1. Results of this nature are not readily available by minimizing the H 2  

synthesis objective for the nominal generalized plant.

1.1.6 T i o o  Linear Robust Control Design.

The design of linear robust controllers is a broad topic (for a summary of different 
approaches see e.g. [65]). Generally a nominal linear plant model is first adopted, 
however various descriptions of plant uncertainty can arise and these lead to different 
design methodologies. Here we summarize a number of the robustness properties which 
can be obtained using the Hoo design methodology and FDLTI uncertainty descriptions.

The symbol H 00 represents the set of transfer function matrices which are analytic and 
uniformly bounded in the open right half plane. In Hoo controller synthesis, control laws 
are sought which ensure that certain closed-loop transfer function matrices, associated 
with the generalized plant, lie in Hoo and that the magnitude of their frequency response 
achieves a pre-specified bound. Let be such a pair of signals associated with the
generalized plant. The Hoo synthesis objective is to ensure internal stability of the closed 
loop and that

l|T £ jo o  < 7- (1.18)

Careful choice of weighting functions in the generalized plant can be used to obtain 
frequency shaping in the actual closed loop system.

Remark: It should be recalled (see e.g. [34]) that with G £ H o o , the norm | |G ||o o  is 
an induced norm with respect to £2  input and output signals. Thus if the disturbance 
signal W{(t) in the generalized regulator problem is an £2 signal,

\\zi h  < l lT ^ llo o K Ib . (1-19)

Thus the Hoo design objective has immediate interpretation in terms of the attenuation
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of finite energy signals. □

R obustness to Plant Uncertainty.

If weighted linear unstructured modelling errors are assumed, then robustness of the 
following closed-loop properties with respect to normalized FDLTI uncertainty X n can 
be obtained using the 7ioo design methodology:

1. Internal Stability: 
g X n ,K  -s internally stable.

2. Reference tracking:

H a l l o o  <  ! •

3. Disturbance attenuation.

I i s & f l l -  < i-

Each of the above goals can be achieved by solving different manifestations of basically 
the same problem: construct a controller which achieves specified closed loop frequency 
response magnitude bounds between appropriately selected input and output signals of the 
generalized plant.

1. Internal Stability:
A sufficient condition is to guarantee that both T K(s) is internally stable and 
ll^z^Jloo < 1- This follows from the small gain theorem (see e.g. [34]).

2. Reference tracking:
A sufficient condition is to guarantee that both T K(s) is internally stable and that

where

rjiK
1  Z t,xV > r,x oo < 1, ( 1.20)

*-<*> =  ( : : $ ) >  a - 2«

wr,x{t) = (  )  . (1.22)

This follows from Redheffer’s results on contractive LFTs (See the section N ota
tion, Definitions and Fundamental Results at the beginning of this thesis 
and the references [64] and [34]).

3. Disturbance attenuation.
A sufficient condition is to guarantee that both T K(s) is internally stable and that

rpK
± Zt,x'Wd,x OO

< 1. (1.23)

where

-  (  z '( i)  ) (1.24)
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wd,x (^) (  w d ( t )  \
V w x { i )  )  '

This also follows from Redheffer’s results on contractive LFTs.

(1.25)

The 7-foo Controller Synthesis Problem.

Linear, time-invariant, proper controllers K (s) are sought which, when connected to 
G (s) according to the control law u =  K(s)y, result in an internally stable closed-loop 
system

T*( s )  =  LFT{K(s)} (1.26)

whose infinity norm is bounded by a given constant 7 > 0;

l | r £  lloo < 7- (1-27)

Remarks:
a) In other words, we seek controllers which axe internally stabilizing and for which 
T^u{s) G BTiZo- (Recall that we say M(s) G BTi1̂  if M(s)  G TZHoo and ||M (s)||00 < 7 .)
b) Henceforth, for brevity we call any K(s ) satisfying these conditions a 7 -admissible 
or simply an Tioo controller.
c) We denote the set of all linear Tioo control laws as AC7. □

A number of different approaches to the Tioo synthesis problem are available in the 
literature. The Tioo synthesis problem is expressed in the frequency domain and the 
earliest development of the synthesis theory had such a focus. More recently, the problem 
has come to be formulated in the literature in terms of a state space description of the 
generalized plant. Controller existence conditions and formulae based on state-space 
computations are available. The state-space approach is summarized in Chapter 2. 
The fruit of research in this field over the past 5 to 10 years has been a collection of 
computational tools which can now be quite easily used to synthesize control laws which 
achieve this goal in many circumstances.

1.2 M otivation  for and Sum m ary of Thesis Topics.

This thesis contains a number of results relevant to state-space controller synthesis theory 
which are motivated by the earlier discussion on control design. The aim of this section is 
to explain these connections, with a view to making the material in subsequent chapters 
more accessible. The relevance of these results in the context of design is illustrated via 
the example which was introduced earlier in this chapter.
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1.2.1 A ssu m p tion s on th e  G eneralized  P lant in C ontroller Synthesis.

Synthesis algorithms for 7ioo control laws have been derived in the literature under a va
riety of different assumptions on the generalized plant. In general, the more assumptions 
made, the more complete is the available synthesis theory. Whilst facilitating elegant 
solutions, assumptions tend to restrict the class of engineering design problems which 
can be addressed by the resulting synthesis theory. Thus the challenge for the control 
design engineer is to pose a controller synthesis problem (construct a generalized plant 
and choose optimization criteria) which is meaningful in the context of his design objec
tives, yet is amenable to the assumptions required by the currently available synthesis 
algorithms. The question as to the degree to which the assumptions made on the gener
alized plant are reasonable in an engineering design context is complex.3 The generalized 
plant is a function of the design process in its many facets. The designer constructs a 
generalized plant according to his own design philosophy, the available process models, 
knowledge of external signals, chosen controller structure, chosen performance demands, 
anticipated plant uncertainty, to name only a few. Importantly in posing a synthesis 
problem, the designer is also restricted by the currently available synthesis algorithms. 
This is objectionable in that it may be necessary for him to somewhat artificially re
arrange his mathematical description of the design objectives in order to use software 
synthesis tools. This is not in accord with the philosophy that the design process be 
driven primarily by the engineering objectives and not by the synthesis procedures. 
Mathematical insights can aid the designer, however they must be expressed in tangible 
and reasonable terms in the context of the design process.

In an effort to alleviate this restriction on the practitioner, one might seek a complete 
controller synthesis theory for an arbitrary FDLTI generalized plant. At least for a state- 
space formulation of the Hoo problem, this seems on many accounts to be particularly 
difficult and is as yet unsolved. The task of the control engineering theoretician is to 
address synthesis problems which have been identified as being of practical importance. 
On this basis, it could be argued that only certain subclasses of generalized plants are 
likely to occur in practice and a synthesis theory appropriate to those problems should be 
sought. The following principle might be adopted: where design needs reveal deficiencies 
in current synthesis results, an attempt should be made to relax relevant assumptions. 
There have been a number of results of this nature in the literature in recent years 
(refer to Chapter 2 for a summary). This thesis presents easily implementable Idoo 
controller synthesis results for a class of generalized plants which cannot be treated using 
commercially available synthesis software. The class of generalized plants considered 
here is characterized by the fact that more sensors and/or actuators are available than 
is normally assumed. Such nonstandard generalized plants can arise in different design 
contexts where there is some redundancy in the control law or in the measurements. In

3 The following comment is made in Chapter 12 of [34]: “The central difficulty with using the general
ized regulator to solve design problems is interfacing the engineering requirements to the mathematical 
optimization process.”
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the next section, we show how a nonstandard generalized plant arises when considering 
multiple objective robust control design for the design example which was introduced 
earlier in this chapter.

1.2.2 Towards M u ltip le  O bjective R obu st Control.

We now address some of the issues which arise when one considers multiple synthesis 
objectives for a given generalized plant. This topic has been the subject of ongoing 
research for a number of years. The focus here is on synthesis with a mixed H 2 /  Hoo 
objective.

Nonuniqueness of Hoo Controllers.

It is well known that Hoo controllers are in general not unique. On the one hand, 
one would like to find at least one solution to the Hoo problem. On the other hand, 
it is also of interest to find a description of all Hoo controllers which makes explicit 
any freedom in the choice of controllers. The possibility can then be investigated as to 
how this freedom might be used to further improve closed-loop system behaviour. That 
is, given the set of controllers which satisfy a given closed-loop Hoo norm constraint, 
find a controller within this set which optimizes another, in general different, closed-loop 
performance measure.

A M ixed Tfy /Hoo Synthesis Problem .

We shall focus on the dual-objective generalized regulator problem described in figure 
1.7. The inputs and outputs have been partitioned into two pairs (w ,z ) and (n,v). Two 
closed loop input/output objectives are sought in addition to the usual internal stability 
objective. The minimum possible H 2 norm of is sought, subject to an Hoo norm 
bound being satisfied on T^,.

We now demonstrate the relevance of this problem in the context of the design example 
introduced earlier in this chapter.

M ixed H 2 /  Hoo Objective for the Design Example.

It should be noted that the disturbance signals in the generalized plant of Figure 1.6 
have been modelled using different classes of signals. The signals w^(t) and w%(t) are 
stationary stochastic processes with unity variance. The H 2 optimization criterion is 
best suited to this type of disturbance signal. Recall that few statements can be made 
about robust H 2 performance. The quantity we shall be concerned with here is simply 
\\T^wd 112 ? which is the nominal H 2 performance, given a candidate control law K(s).

The robust model matching and stability objectives are associated with the signals 
wx(t), wr(t) , ze(t) and zx (t). The synthesis objective associated with these objectives is 
the satisfaction of an Hoo norm bound on certain closed loop transfer function matrices.
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Generalized plant.
z(t)

v(t)

Figure 1.7: Multiple objective design framework with linear time invariant generalized 
plant and control law.

With the choice of variables

n(t) II (1.28)

u(t) (1.29)
(  W r { t )  \
V  W x ( t )  ) ’

(1.30)

z{t) (  Ze[t) \
V W x i t )  )  ’

(1.31)

the 7i2 and 7ioo design objectives for the example being considered have been expressed 
in the framework introduced above.

This will guarantee the following robust stability and performance properties: for all 
X n such that ||Xn||oo < 1, < 1 and SXn,K(s) will be internally stable.

One might ask what is the best nominal performance that one could achieve with 
respect to the stationary stochastic inputs w\(t)  and w%(t), whilst maintaining the Tioo 
objective with respect to the other objectives. Note that we seek to simultaneously 
address the fundamentally different H 2 and Hoo synthesis criteria, corresponding to 
nominal sensor noise attenuation and the robust stability and reference tracking objec
tives.

The hope is that we can achieve the desired robust performance in the actual response 
of the variable /1 2 (f) to step inputs r(f), whilst ensuring the least possible influence of 
the two sensor noise signals. □

A Strategy for Solving the M ixed H2 /  Hoo Problem.

A strategy consisting of three steps is now proposed for solving the mixed H 2 /  Hoo 
problem which was introduced in figure 1.7. This strategy does not constitute an imme-
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diately applicable synthesis algorithm since the third step in the procedure remains an 
unsolved problem. However, the first two steps of the procedure are addressed in this 
thesis.

Step 1: Construct the reduced-dimension generalized plant G which has disturbance 
input w(t) and objective output z(t) only.

Step 2: Carry out an Tioo synthesis for G, explicitly parametrizing the degrees of free
dom in Tioo control laws by deriving a state-space formula for all Tioo controllers.

Step 3: Next, return to the original, larger generalized plant G(s) and select the free 
parameters associated with Tioo control laws for G(s) in order to minimize the 
H.2 norm of the closed loop transfer function which maps the stationary stochastic 
input n(t) to the 7̂ 2 performance objective v(t).

A pplication of the M ixed Ti.2 /  Tioo Strategy to the Design Example.

Application of the proposed mixed H 2 j  Tioo synthesis strategy to the design example 
highlights a number of points which axe of significance to the theoretical work found in 
the body of this thesis.

Step 1: The reduced-dimension generalized plant G is as follows:

f z e {s) \ ( - M p 2 ; P 2p i  \

Zx (s)
___

1

0
 :o 
•1 0

. . . .
w x

- p T -

m 2{s) 0 p 2 ;
p 2 p l

V r (s ) / V 1 0 : 0 )

/  Wr(s) \  
»■(») 

\ " « W 7
(1.32)

S tep  2: The task of finding all Tioo control laws for G is not solvable via standard 
state-space methods. In particular, note that the number of measured signals 
y{t) outnumbers the number of disturbances w(t). A full parametrization of Tioo 

control laws for such classes of generalized plants is derived in Chapters 3 and 4.

S tep  3: The next task is to choose the free parameters in the description of all Tioo 
control laws in a manner which minimizes the Ti2 norm of the closed loop transfer 
function mapping the stationary stochastic inputs w^(t) and w%(t) to the perfor
mance objective ze(t). This is a very hard problem. Just one aspect of the mixed 
Ti2 /  Tioo objective is treated in this thesis. An attempt is made to characterize a 
particular property of such control laws. In fact, it turns out that the closed loop 
transfer function matrix resulting from the optimal mixed control law achieves the 
Tioo bound in most circumstances. Chapters 6 and 7 are concerned with develop
ing an algorithm which allows this property to be characterized using state space 
realizations of a generalized plant together with a candidate control law.
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1.2.3 Summary of Thesis Topics and Contributions.

The general motivating principles for the topics addressed in this thesis can be summa
rized thus:

1. We need to relax mathematical assumptions in the formulation of synthesis prob
lems in order to meet design needs.

2. A full description of control laws satisfying a given synthesis objective is needed if 
additional control objectives are to be considered.

3. A full understanding of the synthesis objective is needed before a synthesis theory 
can be developed.

4. All Algorithms should be as straightforward as possible to implement.

The research carried out in this thesis explores two main topics, which are outlined 
below. Each topic gives rise to specific computational and theoretical questions, which 
are pursued in subsequent chapters of this thesis.

1. 7ioo Synthesis w ithout Signal D im ension  R estrictions  
(C hapters 2, 3 and 4).
A parametrization of all control laws is obtained for a class of state-space Hoo 
synthesis problems. These results expand upon the so-called standard state-space 
Hoo results obtained in [31], lifting restrictions on certain input and output sig
nal dimensions which are introduced in the standard theory, but maintaining all 
other assumptions. This allows for the possibility that the number of control in
puts exceeds the number of controlled outputs and/or the number of measured 
outputs exceeds the number of disturbance inputs. In such cases, the generalized 
plant is said to be nonstandard. As in the standard Hoo problem, it is assumed 
that the direct feedthrough matrices from control inputs to controlled outputs and 
from measured outputs to disturbance inputs are full rank. Chapter 2 contains a 
summary of background material on state-space Hoo synthesis and gives a precise 
formulation of the nonstandard Hoo problems.

With regard to the signal dimension assumptions made in the standard theory, the 
following observation was made in section 4.2.1 of [34]: “Since no measurement 
is error free and no control action is costless, these are reasonable assumptions.” 
Whilst this statement is true for single objective problems, it is not necessarily true 
for multiple objective problems where different disturbances are associated with dif
ferent synthesis criteria. This has been illustrated using the design example in the 
previous subsection. For that example it was shown that the Hoo objective treated 
on its own is a nonstandard problem, there being less disturbances associated with 
the Hoo objective than measurements. Similarly, a multiple objective synthesis
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problem may have objective signals which are associated with different synthesis 
criteria, in which case the number of objective signals associated with the Hoo 
objective may be less than the number of control signals.

Nonstandard generalized plants may also arise in considering some single objective 
problems. For example it might be the case that some measurements are virtually 
error free. It might be argued in such a case that one could weight the noise inputs 
with a small parameter e, resulting in a standard generalized plant. However, 
this will generally result in a poorly conditioned problem (see Chapter 3). In 
such a case, it would be of advantage to consider a generalized plant with noise- 
free measurements directly. Another example of a nonstandard Hoo problem is 
the full information Hoo problem where the number of measurements (state plus 
disturbances) clearly exceeds the number disturbances.

The nonstandard state-space Hoo synthesis problem is addressed in Chapters 3 and 
4 via two different methods. Both of the two methods draw upon standard Hoo 
results, but use quite different techniques. Each approach results in Hoo controller 
existence conditions and a full parametrization of Hoo controllers. The results in 
each case are presented in terms of straightforward state-space calculations. The 
nonstandard Hoo results obtained by each method are shown to be equivalent. 
The controller parametrizations contain additional degrees of freedom which are 
not present in the standard Hoo results. This is important from the perspective of 
multiple objective robust control since the additional free parameters can be used 
to achieve closed-loop performance objectives in addition to the Hoo constraint.

In the first of the two derivation methods, a family of augmented plants is intro
duced, to which the standard Hoo theory can be directly applied. Subsequently, 
limiting arguments furnish existence conditions and controller parametrizations for 
the nonstandard generalized plant. In the second method, a lossless decomposition 
of the generalized plant is constructed, resulting in a so-called temporary general
ized plant which is simpler and yet equivalent to the original generalized plant in 
that it has the same set of Hoo control laws. The Youla parametrization of all sta
bilizing controllers is then applied to the temporary plant. This allows reduction 
of the problem to a simple so-called one-block Hoo design problem which can be 
solved using standard Hoo techniques.

The techniques used in the two methods of solving the nonstandard Hoo problem 
have subsequently found successful application to other control problems. Similar 
techniques to those of the first method have been applied by other authors to an 
Hoo servo problem (see [50]). The second approach has been applied to an H 2 con
troller synthesis problem in which signal dimension restrictions are relaxed as for 
the nonstandard Hoo problem. Chapter 4 concludes with controller parametriza
tions for H 2 synthesis without signal dimension restrictions. The solution of this 
problem mirrors that for the Hoo case in that it also has additional degrees of free
dom. As in the standard case, the H 2 algebraic Riccati equations are somewhat
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simpler than those for Woo synthesis. A proof of the nonstandard W2 results is 
reported elsewhere ([74]).

2. T he B oundary o f  the W o o  C onstraint and A lgorithm s for Spectral Fac
torization
(C hapters 5,6 and 7).

The main purpose of this work is to investigate one aspect of the mixed W2 /  Woo 
controller synthesis objective. Whilst a full synthesis procedure is not proposed, it 
is hoped that a closer understanding of the mixed design objective will aid in the 
development of synthesis algorithms. It turns out that one characteristic of control 
laws which minimize an W2 criterion subject to a closed-loop Woo constraint is 
that the closed loop transfer function matrix will generally be on the boundary 
of the Woo constraint set, in other words ||T ",||00 =  7. Chapter 5 contains a 
proof and discussion of this result. The Woo -norm bound on the closed-loop 
operator T^  can be expressed in state-space terms via the bounded real lemma, 
which states that ||T^||oo < 7 if and only if there exists a so-called strong solution 
of an associated algebraic Riccati equation (ARE). Study of the bounded real 
lemma has been instrumental in the development of the standard state space Woo 
controller synthesis theory (see e.g. [85]).

Suppose one is given a candidate mixed W2 /  Woo controller. In theory, one should 
be able to check the Woo constraint by solving for the strong solution of the alge
braic Riccati equation associated with a state space realization of the closed loop 
system. The difficulty is that most algorithms for solving algebraic Riccati equa
tions fail when the Woo norm of the closed loop system achieves the 7-bound. The 
main objective here is to find a simple and reliable algorithm for solving the ARE 
in such circumstances.

The bounded real lemma is a special case of a broader class of state space spectral 
factorization problems with wider engineering significance. The difficulty in solving 
the algebraic Riccati equation when the 7-bound is achieved can be interpreted as 
being due to the fact that the realization of the associated spectral matrix has 
an imaginary axis invariant zero. An iterative algorithm for solving the ARE 
associated with this broader class of spectral factorization problems is developed 
in Chapters 6 and 7. The algorithm is guaranteed to converge at a known rate to 
the strong solution of the ARE even when the spectral matrix has imaginary axis 
invariant zeros.

The proposed algorithm relies on bilinear transformation of a continuous time spec
tral matrix, to form a discrete time spectral matrix. The resulting realization of 
the discrete time spectral matrix has unit circle invariant zeros whenever the real
ization of the original continuous time spectral matrix has imaginary axis invariant 
zeros. The algebraic Riccati equation associated with the continuous time spectral 
matrix can be solved via a discrete algebraic Riccati equation associated with the 
discrete time spectral matrix. This is a well established technique for dealing with
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continuous time spectral factorization problems (see e.g. [4]). The algorithm for 
solving the continuous time problem relies on the development of an algorithm 
for solving the discrete time spectral factorization ARE. This algorithm is also of 
interest in its own right since it can be applied directly to spectral matrices arising 
in intrinsically discrete spectral factorization problems.

The discrete time spectral factorization algorithm relies on two novel developments. 
Firstly, it is shown that a Riccati difference equation associated with the discrete 
algebraic Riccati equation converges at a known rate of  ̂ to the strong solution. 
Whilst many convergence results are available in the literature for RDEs, few re
sults on convergence rates are available, particularly when the associated spectral 
matrix has unit circle invariant zeros. Secondly, a doubling algorithm, which cal
culates RDE iterates only at integral powers of two, is shown to be available for 
discrete time spectral factorization problems. Previously, doubling algorithms have 
only been demonstrated to be applicable to Kalman filtering and LQG problems. 
Combination of the RDE convergence rates and the doubling algorithm results 
in an algorithm for discrete spectral factorization which has known convergence 
properties.
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G i2 (s) can take the form of transmission zeros or of decoupling zeros [68]. It is possible 
to envisage design problems in which imaginary axis zeros of either of these types occur. 
Suppose, for example that assumption A .lis  violated as described in a) above, being 
due to the existence of imaginary axis modes of A which axe not controllable via B2 

(as in [78] and [50]). It is easy to check that this immediately gives rise to imaginary 
axis invariant (decoupling) zeros of the realization of G\2(s). The case where Gi2(s) has 
imaginary axis transmission zeros has been addressed in [94]. □

R em arks on Gn(oo) = 0 and  £ 22(0 0 ) = 0:
a) Note that we have assumed £ 22(0 0 ) =  £>22 =  0 in (2.1). This assumption is generally 
not made at the expense of practical utility since in most situations it is generally the case 
that, due to physical considerations, the mapping from plant inputs to measurements is 
best modelled by a transfer function matrix G22(s) which is strictly proper.
b) The assumption that Gn(oo) =  D u = 0 is somewhat stronger. It is certainly possible 
in generalized plants arising from genuine design problems that D u  is nonzero. In this 
case, the disturbance signal w(t) influences the objective signal z(t) directly (i.e. via 
D u),  in addition to possibly doing so indirectly via some dynamics (i.e. via transfer 
function C i(s l — A)~1Bi).
c) It has been shown in [92] that the assumptions D u = 0 and D22 — 0 can be relaxed 
by a series of transformations, provided the standard dimensionality assumptions are 
made on £>12 and D21, in addition to the assumptions A . l ,A .2 and A .3 . Suppose one 
is given a generalized plant with D u  and/or D22 nonzero. A series of transformations is 
described in [92] which constructs a new generalized plant which satisfies "D'h =  0 and 
" D22 =  0 and which is equivalent to the original problem in the sense that a solution of 
the Hoo problem for the new problem allows construction of a solution of the original 
problem. This process is also described in detail in [34].
d) The series of transformations referred to above in c) and described in [92] and [34] is
not immediately applicable to all generalized plants in the class we consider here. It is 
a subject for further investigation as to whether a similar sequence of transformations is 
available which can be applied to generalized plants which satisfy A . l , A .2 and A .3 but 
violate the standard dimension restrictions. This issue is not investigated here; however 
a resolution of this would be important in making the synthesis results presented in this 
thesis applicable in design scenarios where D u  ^  0 and/or D22 ^  0. □

2.3 Standard State-Space /H00 Controller Synthesis.

Recall that in the formulation of the Tioo problem given above, no assumptions have 
been made concerning the relative number of inputs and outputs of the feedthrough 
matrices D12 or £>21- After a period of development over the past ten years or so, it 
has been found by a number of researchers that, provided in addition to A . l , A .2 and 
A .3 , the assumption A .4 (stated below) is made, a check for existence and formulae
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R estrictions.
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En  =  DJ2D i2 , E2l = D21D21,
D a  » =  E r fü J 2, D21* =

Moreover, when the above conditions hold, all 7 -admissible controllers for G(s) are de
scribed as follows:

K {s) =  L F T {M ( s ) , N ( s ) }  (2.4)

where N(s)  E and the coefficient matrix M (s ) /ms the following state-space
realization:

Ä + B 2F ^  + HooC -Hoo ZB2V12
M(s)  = Foo 0 V12

\  -V21C2 V21 0
(2.5)

/
where V12 and V21 are any square matrices (not necessarily symmetric) which satisfy

VuVg =  E r f ,  Vrfv21 =  (2.6)

and where

Foo = - D r f C i - E r f B ^ X , Ä  =  A + y~2B i B f X ,
ff»  =  Z ( - B ! D 21' - Y C % E r f ) , C2 =  C2 + y - 2D21B ‘[ X ,

Z  = ( I - 7 - 2Y X ) - \ b 2 =  7- 2y c ? d 12 + b 2.

P r o o f:  T he stated  result has been established in [79] (see also [32]) for the case 7 =  1
_  i  1 _  1 _  1

and with V12 =  E 12 and V21 =  E2i. Here E 12 and E2\ are positive-definite symmetric 
square roots of Ef2 and Ef2 , respectively.

Generalization of the result in [79] to the case 7 ^  1 follows by applying the 7 = 1 
result to a generalized plant which has a realization which is the same as (2.1) except 
for the following replacements: B \ —* 7~l B \ and D21 —► 7-1 Z)2i-

From the above two paragraphs, it follows that all hioo control laws are given by

K*(s) = L FT{M *{s ) ,N *(s )}  (2.7)

where N& 6 BU-Zo is a free parameter and the coefficient matrix M^(s)  is given by (2.5) 
with the choice V12 =  E 12 and V21 =  E%1.

Now let V12 and V21 he any square matrices which satisfy the identities (2.6) in the 
lemma statement. It follows that that K ^(s)  can be rewritten as

K*(s)  =  L F T { M ( s),V&e I2N # ( s)e I vI } ,  (2.8)

where M (s ) is as given in (2.5) with the new values of V\2 and V21. Next observe that
1 1  I

^12^12 =  E12 implies that E[2^12^12-^12 = I. Since V ^ E f 2 is square, it is therefore an

Recall that BHZo is the set of all M(s) € TZHoo such that ||Af(s)||oo < 7



C hapter 2

S ta te -S p a ce  H S yn th esis  
w ith o u t Signal D im en sion  
R estr ic tio n s.

Summary.

For an arbitrary state-space realization of a generalized plant G(s), necessary and 
sufficient conditions for the existence of an Hoo controller and a state-space description 
of all 7-admissible controllers are not available in the literature. However, full controller 
parametrizations have been derived in the literature under a number of different sets 
of assumptions on the state-space realization of the generalized plant. The state-space 
based results presented in [31] and [25] are perhaps the best known. We refer to the 
problem solved in these references as the standard Hoo problem. One of the main 
purposes of the present work is to relax some assumptions which are made in the standard 
Hoo synthesis theory concerning the relative dimensions of the signals in the generalized 
plant. With regard to Hoo synthesis theory, the main emphasis of this thesis is therefore 
on a broadening of the class of generalized plants for which directly applicable state-space 
Hoo synthesis algorithms are available.

The main aim of the present chapter is to formulate a state space controller syn
thesis problem without signal dimension restrictions which includes the standard and 
nonstandard cases. The controller synthesis problems for which the standard signal di
mension restrictions are violated axe referred to as nonstandard. Attention is given to 
the relevance of the nonstandard problems from the perspective of design, as described 
in Chapter 1. A summary of well known standard state space Hoo results is given as 
well as a survey of the literature relevant to the nonstandard problems. It is shown in 
the two Chapters which follow this one that state-space existence conditions and full 
controller parametrizations similar to those for the standard problem are also available 
for nonstandard generalized plants. The nonstandard problems are addressed via two 
different routes in Chapters 3 and 4. A discussion and comparison of the results obtained 
using each approach appears in section 4.5 of Chapter 4.

43
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2.1 Problem  Form ulation.

We now introduce the class of generalized plants for which we concentrate on developing 
Hoo controller synthesis results. Henceforth, we assume th a t when realized in the Laplace 
dom ain, G (s) has the  following state-space structure:

which satisfies assum ptions A . l , A .2 and A .3 described below.

A ssu m p tion s on the R ealization  o f G(s).

A . l  (A, #2) is stabilizable and (C2,A) is detectable.

A .2 B oth D 12 and D21 are full rank.

A .3 N either G i2(s) nor G 2i(s), as described by the sta te  space realization in (2.1), have 
im aginary axis invariant zeros.

It should be noted th a t assum ption A .2 above includes a broader class of assum ptions 
th an  those which are trea ted  in the standard  case (which is described in detail in section 
2.3). In particu lar, it is assum ed only th a t the feedthrough m atrices D \2  and D21 are full 
rank and no assum ptions are made regarding their shape; i.e. whether they have more 
columns th an  rows or vice versa. In the standard  theory, the  following two assum ptions 
are made; the  dimension of the  objective signal z ( t) is a t least as great as the dimension 
of the  control inpu t u(t), and the dimension of the disturbance signal w(t) is at least as 
great as the  dimension of the  m easured signal y{t). In subsection 1.2.2 of Chapter 1, a 
mixed H 2 /  Hoo design example was introduced which gives rise to a generalized plant 
for Hoo synthesis which violates the second of these signal dimension restrictions in the 
standard  state-space Hoo theory. We now sta te  formally the Hoo synthesis problem 
associated w ith the  class of generalized plants described above, noting th a t this class of 
problem s includes the standard  problem as a special case.

T he State-Space H oo  C ontroller Synthesis Problem .
Given a realization of the generalized plant G(s) in (2.1), satisfying A . l , A .2 and A .3 , 
and a constant 7  >  0, find necessary and sufficient conditions for existence, and a state 
space parametrization of all linear, time-invariant, causal controllers which result in an 
internally stable closed loop system T^ v(s) for which

( 2. 1)

ll-^zwlloo < 7*

R em ark: Recall from C hapter 1 th a t T^ v(s) denotes the closed loop transfer function
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matrix which maps the generalized disturbance signal tu(s) to the generalized objective 
signal z(s). □

2.2  O n th e  R o le  o f  th e  S y n th esis  A ssu m p tio n s in  D esig n .

In summary, considerable creativity may be required of the control designer in con
structing a generalized plant which satisfies the controller synthesis assumptions and yet 
adequately reflects the closed-loop design criteria. The present work aims at reducing 
this load on the designer by providing a controller synthesis theory which lifts the signal 
dimension restrictions in the standard theory.

The purpose of the present section is to investigate some of the implications of the 
assumptions A . l , A .2 and A .3 in the context of control design. Whilst these assump
tions do define a broader class of generalized plants than that defined by the so-called 
standard assumptions, they still impose some limitations on the designer, which we now 
investigate. A number of these limitations have been addressed in the literature and the 
relevant references are given below.

Remarks on Assum ptions A . l , A .2 and A .3 .
a) If the generalized plant does not contain weighting functions which have closed right 
half plane modes, A .l  says that there must exist a control law which stabilizes all un
stable plant modes. It has be shown recently in [78] and [50] that A .l  is violated in 
generalized plants arising in one formulation of Tioo servo design problems. In such 
cases it may be that part of the disturbance signal w(t) is the input of a weighting func
tion which has imaginary axis modes. These modes will not be controllable from u(t). 
Alternatively, it might be that part of the the objective signal z(t) is the output of a 
weighting function which has imaginary axis modes. These modes will not be observable 
from y(t).
b) Assumption A .2 is quite a strong assumption in that it rules out some fairly common 
design problems. One example is designing for a bound on the sensitivity of a feedback 
system. Say one has z(t) =  y(t) = Pu{t) +  w(t) where P  represents the nominal linear 
plant dynamics and one wishes to design a control law u(t) = Ky( t ) which ensures both 
closed loop stability and ||T^||oo < 7- Note here that T^w is actually the closed loop 
sensitivity operator (I — P K) ~ l . Note that if P(s =  oo) =  0 (which is often the case), 
one obtains D 12 =  0. Whilst sensitivity minimization is rarely the only design objective, 
it is frequently one of a number of specifications on a closed loop system. This may cause 
D\2 to lose rank.
c) In [99], existence conditions for a so-called singular Hoo control problem axe obtained 
in which assumptions A .l  and A .3 are maintained, whilst assumption A .2 is removed. 
Whilst state-space controller existence results are found in [99] for such problems in 
terms of quadratic matrix inequalities, as yet there is no full description of control laws.
d) Now consider the implications of assumption A .3 . Recall that the invariant zeros of
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G i2 (s) can take the form of transmission zeros or of decoupling zeros [68]. It is possible 
to envisage design problems in which imaginary axis zeros of either of these types occur. 
Suppose, for example that assumption A .l is  violated as described in a) above, being 
due to the existence of imaginary axis modes of A which are not controllable via B2 

(as in [78] and [50]). It is easy to check that this immediately gives rise to imaginary 
axis invariant (decoupling) zeros of the realization of Gi2(s). The case where G uis)  has 
imaginary axis transmission zeros has been addressed in [94]. □

R em arks on Gn(oo) =  0 and £ 22(0°) =  0:
a) Note that we have assumed ^ 22(0 0 ) =  D22 =  0 in (2.1). This assumption is generally 
not made at the expense of practical utility since in most situations it is generally the case 
that, due to physical considerations, the mapping from plant inputs to measurements is 
best modelled by a transfer function matrix G22{s) which is strictly proper.
b) The assumption that Gn(oo) =  D \\ — 0 is somewhat stronger. It is certainly possible 
in generalized plants arising from genuine design problems that D \\  is nonzero. In this 
case, the disturbance signal w(t) influences the objective signal z ( t) directly (i.e. via 
T>ll), in addition to possibly doing so indirectly via some dynamics (i.e. via transfer 
function C \{ s l  — A)~l B\).
c) It has been shown in [92] that the assumptions D u  =  0 and D22 — 0 can be relaxed 
by a series of transformations, provided the standard dimensionality assumptions are 
made on D 12 and D21, in addition to the assumptions A . l ,A .2 and A .3 . Suppose one 
is given a generalized plant with D\\  and/or D22 nonzero. A. series of transformations is 
described in [92] which constructs a new generalized plant which satisfies " D'h =  0 and 
"D 22 — 0 and which is equivalent to the original problem in the sense that a solution of 
the Tioo problem for the new problem allows construction of a solution of the original 
problem. This process is also described in detail in [34].
d) The series of transformations referred to above in c) and described in [92] and [34] is
not immediately applicable to all generalized plants in the class we consider here. It is 
a subject for further investigation as to whether a similar sequence of transformations is 
available which can be applied to generalized plants which satisfy A . l , A .2 and A .3 but 
violate the standard dimension restrictions. This issue is not investigated here; however 
a resolution of this would be important in making the synthesis results presented in this 
thesis applicable in design scenarios where D\\  ^  0 and/or D22 0. □

2.3 Standard State-Space H o c  Controller Synthesis.

Recall that in the formulation of the Tioo problem given above, no assumptions have 
been made concerning the relative number of inputs and outputs of the feedthrough 
matrices D 12 or D21. After a period of development over the past ten years or so, it 
has been found by a number of researchers that, provided in addition to A . l , A .2 and 
A .3 , the assumption A .4 (stated below) is made, a check for existence and formulae
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for construction of Tioo controllers is available which are based on straightforward state 
space calculations. Since this case has been extensively treated in the literature (see e.g. 
[31, 25, 32, 62, 92, 85]), we refer to it as the standard Tioo problem. Henceforth we also 
refer to the assumptions, generalized plant and control laws in such cases as standard.

Standard Assum ption on the Realization of G(s).

A .4 D i2 is tall (nz > nu) and D21 is fat (ny < nw).

Existence conditions and a formula for the construction of all Tioo controllers for the 
standard case are summarized below. Historically, these results constitute a major step 
towards making the Tioo design methodology computationally accessible. In this thesis, 
the standard state space results are taken as a basis for the development of a solution 
to the somewhat broader state space Tioo synthesis problem which was formulated in 
section 2.1. Recall that this problem is broader than the standard problem in the sense 
that assumption A .4 is not made.

Remark: Note that in the paper [25], slightly stronger assumptions are made (with
out loss of generality) on the realization of G(s). In particular, it is assumed that 
D \2  (Cl £>12) =  (0 I) and that D21 D%i ) =  (0 I). See also [34] where a detailed 
account is given as to why these assumptions introduce no loss of generality. □

A summary of state-space Tioo results for the standard case is presented in Lemma
2.3.1. This result constitutes a partial solution to the Tioo problem formulated in section
2.1. A state-space realization is given for a FDLTI system which becomes the coefficient 
matrix in a linear fractional transformation which parametrizes all controllers in terms 
of a free 7 -bounded real transfer function matrix. The result in Lemma 2.3.1 is a minor 
variation on the standard Tioo results presented in [31]. It is in one sense a weaker result 
than that of [31] since it is not assumed there that D u  =  0. However, in another sense 
it is a slightly stronger result than that of [31] in that a family of coefficient matrices is 
given for the linear fractional transformation, any one of which can be used to describe 
the set of all standard Tioo controllers. This fact becomes important in the derivation 
of all nonstandard control laws presented in Chapter 3.

Lemma 2.3.1 Given a generalized plant (2.1) satisfying assumptions A .l ,  A .2, A .3 
and A .4, a 'y-admissible controller exists if and only if the following algebraic Riccati 
equations have stabilizing solutions X  > 0 and Y  > 0 which satisfy p(XY)  < 72;

0 =  X ( A  -  S 2jDi2,C i ) +  (A -  (2.2)

+  X ( 7~2B i B f  -  B2E ^ B J ) X  + C J ( I -  Dn E $ D l2)Cu  

0 = Y(A- B1D21,C2f  +  (A -  (2.3)

+  Y (7~2C?C\ -  C j E21xC2)Y  + -  D ^ E ^ D ^ B j ,

with the definitions:
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Ei2 =  D i2D \2 , E21 =  D21D21,
D i 2  ̂ =  £ 1 2 ^ 1 2 1  ^21^  =  D 21E 21  •

Moreover, when the above conditions hold, all 'y-admissible controllers for G(s) are de
scribed as follows:

K {s) =  LFT{M {s), N{s)} (2.4)

where N (s) E , and the coefficient matrix M (s) has the following state-space
realization:

1 + 5 2 ^ 0 0  +  ^ 0 0 6 2 -H o* ZB2V12
M (s ) = ^OO 0 Vl2

^  ~V 2 1C 2 ^21 0

(2.5)
/

where V12 and V21 are any square matrices (not necessarily symmetric) which satisfy

V12V12 =  £ f2\  V£V21 = E-2i \  (2.6)

and where

5 o o  =  - 5 1 2 * 0 1  - E ^ B l X Ä =  A +  j - 2B i B^X,

Hoo =  Z ( - B ! D 21' - Y C j E r f ) , C2 =  C 2 +  ~
Z  =  ( I - y - 2Y X ) - \ b 2 =  j - 2y c J d 12 +  b 2.

Proof: The stated result has been established in [79] (see also [32]) for the case 7 =  1
_  i  1 _ i  _  1

and with V12 = E l2 and ^21 =  Efi- Here E l2 and E2\ axe positive-definite symmetric 
square roots of E f2 and E [~2 , respectively.

Generalization of the result in [79] to the case 7 ^  1 follows by applying the 7 =  1 
result to a generalized plant which has a realization which is the same as (2.1) except 
for the following replacements: B\ —► 7-1B i and £>21 —► 7_1^2i-

From the above two paragraphs, it follows that all Ttoo control laws axe given by

K *(s) = LFT{M*{s),N#(s)}(2.7) 

where N& 6 BUZ0 is a free parameter and the coefficient matrix M $(s) is given by (2.5)
_ i  I

with the choice V12 =  E 12 and V21 =  E2

Now let V12 and V21 be any square matrices which satisfy the identities (2.6) in the 
lemma statement. It follows that that K&(s) can be rewritten as

K *(s)  =  LFT{M (s), V?2E}2N * (s)e I 1V?1}, (2.8)

where M {s) is as given in (2.5) with the new values of V\2 and V21. Next observe that
1 1  I

^12^12 =  E12 imPÜes that -^12^12^12-^12 =  Since V^E fe  is square, it is therefore an

1Recall that BhClo is the set of all M(s)  € TZHoo such that ||M(s)||oo < 7
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orthogonal matrix. It is easy to show that V2 1 E2 1  is also orthogonal.
i 1

Next note that the transfer function matrix N(s)  =  Vy^EfaN# i f  
and only if N #  G This follows trivially due to the orthogonality of the matrices
which left and right multiply N&.  The description of all controllers given in (2.4) follows.
□

R em arks:
a) Note that stabilizing solutions of the H«*, Riccati equations may exist which are not 
also nonnegative definite. This differentiates the H<x> problem from the H2 problem 
where stabilizing solutions of the associated algebraic Riccati equations are generally 
nonnegative definite.
b) The standard central Hoo controller is defined as the one which is obtained with the
free parameter N (s) set to zero. □

These results are important since they provide a computationally straightforward 
means for constructing control laws. Given generalized plant data, it is easy to test for 
the existence of Hoo controllers and to calculate realizations of such controllers using 
standard linear algebra. This in turn makes translation into software straightforward. 
It is this attribute which we seek to maintain in developing a full solution of the state 
space Hoo problem without signal dimension restrictions which was posed in section 2.1.

2 .4  S ig n a l D im en sio n  R estr ic t io n s  in  th e  S ta n d a rd  T h e 
ory.

When compared with the standard problem, the significant feature of the Hoo problem 
addressed in this thesis is that there are no restrictions on the allowable dimensions 
of signals in the generalized plant Assumption A .4 of the standard synthesis theory 
is violated for generalized plants in which control inputs outnumber objective signals 
and/or the number of disturbances associated with the infinity-norm objective is less 
than the number of measurable outputs. Such a generalized plant arose in the design 
considerations for the example in Chapter 1. The first implication for the control designer 
in such a circumstance is that the standard synthesis theory cannot directly furnish a 
control law for this generalized plant. An experienced designer may be able to re-cast 
the problem at hand into the standard framework, however this forces him to engage in 
work which is primarily due to theoretical limitations and not due to the overall design 
objectives.

It is evident that a nonstandard generalized plant should offer the control designer 
more flexibility in achieving closed-loop objectives than would be available for a compa
rable standard generalized plant with less measurements and/or control inputs. In order 
to utilize the expected redundancy in the control of nonstandard generalized plants to 
further improve system performance, a full parametrization of all internally stabilizing
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controllers which ensure the closed-loop Hoo norm bound is required. The standard 
synthesis theory alone cannot provide such a parametrization. As was suggested in sub
section 1.2.2 of Chapter 1, one might, for example, want to use the redundancy in the 
description of Hoo control laws to minimize the nominal H 2 performance of the closed 
loop system with respect to a second input/output signal pair.

Indeed, the parametrizations of control laws derived in Chapters 3 and 4 have redun
dant degrees of freedom which do not appear in the standard case. This redundancy 
is described in terms of free stable transfer function matrices which, whilst they do not 
influence the Hoo control objective, do influence the closed loop dynamics and may 
therefore influence other closed loop transfer functions of interest.

In addition to their occurrence in applications, such nonstandard controller synthesis 
problems also have significance in the theoretical context. For example, the full informa
tion (FI) Hoo control problem does not satisfy the standard assumption A .4 since both 
the state and the disturbance signal are measurable and then ny — n +  nw > nw:

(  A B i b 2 \
GFI(s) =

In
0
0

Du
0

o In w o /

A particular solution of the FI Hoo problem plays an important role in the develop
ment of standard Hoo results (see for example [25]). It is therefore somewhat curious 
that the standard theory cannot in turn be directly applied to describe all controllers 
for the full information problem. It has been recognized in [77] that the description of 
all FI Hoo control laws presented in [25] was incomplete in that the redundancy in the 
parametrization was not included. A full parametrization is given in [77] in terms of an 
additional stable free transfer function matrix. A full solution to the FI problem is also 
given in [34] where this redundancy in the control law is also described.

2.5 Singular Hoo R esults w ithout Signal D im ension R e
strictions.

In [98] and [93], broader classes of problems are tackled than those in this thesis, in which 
no assumptions on the rank or relative number of inputs and outputs of the feedthrough 
matrices are made; assumption A .2 is relaxed completely in addition to A .4 , whilst 
assumptions A .la n d  A .3 axe maintained. The results of [98] and [93] are therefore 
directly applicable to the Hoo problem treated in this section (where A . l , A .2 and 
A .3 hold).

Remark: The Hoo problem treated in [98], is referred to as a singular. Whilst the 
assumptions adopted there include the particular problem addressed here, we refrain 
from calling the problem defined in section 2.1 singular due to lack of an appropriate
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interpretation in the present context. □

Controller Existence.

In [98], conditions for the existence of output feedback 7-admissible Hoo controllers 
are established using a pair of quadratic matrix inequalities, the solutions of which allow 
state-space construction of one (but not all) controllers. In [93], existence conditions 
are obtained in terms of algebraic Riccati inequalities. Neither of these characteriza
tions of existence axe computationally easy to handle. Software for solving quadratic 
matrix inequalities is not in widespread use. It is demonstrated in the present work 
how questions of controller existence can be answered in terms of the solution of a pair 
of algebraic Riccati equations (AREs), rather than inequalities. In fact, in Chapter 4 
the conditions given in [98] are applied directly to the class of plants defined in section 
2.1, resulting in an expression of the existence conditions in terms of a pair of algebraic 
Riccati equations. It is precisely the additional assumption A .2 (which was not adopted 
in [98]) which facilitates this.

Controller Parametrization.

In [99], under the same assumptions employed in [98], a paxametrization of all closed- 
loop transfer functions is given which satisfy the Hoo constraint. Paxametrizations of all 
Hoo controllers axe not presented in either [98], [99] or [93] however. As is commented 
in [99], constructing such paxametrizations appears to be a difficult problem for the 
general singular case and as yet no solution is available under the assumptions A .l  and 
A .3 alone.

Here, as in a number of recent papers (see [61], [76], [72], [73], [74], [75], [61], [46] 
and [107]) the standard assumption A .4 is not made, whilst assumptions A . l , A .2 and 
A .3 are maintained. One of the main results of this thesis is that a full Hoo controller 
parametrization does exist for the class of realizations of G(s) given in (2.1) under the 
assumptions A . l , A .2 and A .3 . In a manner analogous to the standard case, explicit 
state-space paxametrizations of all nonstandard Hoo controllers axe given in terms of the 
solutions of the AREs which axe used to check controller existence conditions. These 
controller paxametrizations contain free stable transfer function matrix parameters which 
axe not present in the paxametrization of Hoo controllers for standard generalized plants. 
It should be emphasized once again that Assumption A .2 plays an important role in 
developing these results.

2.6 The N onstandard Problem s.

Recall that the solution of the standard Hoo problem provides a partial solution to the 
state space Hoo problem which was presented in section 2.1, since it solves that problem 
under the additional assumption A .4 .  In this section, we describe in more detail the 
three distinct cases of the state space Hoo controller synthesis problem of section 2.1
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which are excluded by this assumption. In the remainder of this chapter, a summary of 
the literature related to these problems is given, together with an outline of the way in 
which these problems have been addressed in this thesis.

The Standard Problem  (Case 0).

We shall also refer to the standard problem as the Case 0 problem since it is a special 
case of the state space Tioo problem defined in section 2.1.

Case 0 A .4 holds; i.e. tall, D21 fat: (nz > nu, ny < nw)

With respect to the matrices D12 and D21, we say that they axe standard in this case. 

On the term  Nonstandard.

It could be argued that any plant not simultaneously satisfying each of the assumptions 
A . l , A .2 , A .3 and A .4 could validly be called nonstandard. However, in this thesis it is 
in a restricted sense that the term nonstandard is used; henceforth, we call a nonstandard 
Hoo problem one for which assumptions A . l , A .2 and A .3 hold, but for which A .4 is 
violated. We also refer to the assumptions and control laws in such cases as nonstandard. 
With respect to the matrices D12 and D21, we refer them as being nonstandard in such 
circumstances.

The N onstandard Problem s.

In relaxing the standard assumption A .4 on D12 and D21, we allow for the possibility 
that either or both of these matrices are nonstandard; in other words nz < nu and/or 
nw < riy.  Note, however that we maintain A .2 , the assumption that these matrices 
have full rank. It is a trivial observation that there are three distinct cases of the Tioo 
problem defined in section 2.1 for which at least one of D12 and D21 violates A .4 . These 
are listed below and have been denoted Cases 1, 2 and 3.

Case 1 Both D12 and D21 fat: (nz < nu, ny < nw).

Case 2 D12 fat, D21 tall: (nz < nu, ny > nw).

Case 3 Both D12 and D21 tall: (nz > nu, ny > nw).

Cases 1 and 3 are called singly-nonstandard (i.e. only one of D12 and D21 is nonstan
dard) and case 2 is called doubly-nonstandard (i.e. both D\2 and D21 are nonstandard).
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2 .7  V ariou s A p p roach es to  N o n sta n d a rd  T i o o  P ro b lem s.

In this section, we summarize a number of different means of addressing nonstandard 
Tfoo problems.

R eduction  to  a Standard Problem  by Ignoring som e freedom  in C ontrols/Sensors.

At this point, one might try dealing with nonstandard problems by effectively ignoring 
some freedom in the inputs or observations and applying standard Tioo design techniques 
directly to the resulting modified generalized plant. For example, suppose one is given 
a problem with only D\2 nonstandard, i.e. nz < nu, where the input signal u(t) G IRnu. 
This can be transformed to a standard problem by defining a reduced-dimension input 
signal u'{t) G JRn*, for example via the preliminary transformation u(t) = D ^u ^ t) .  The 
existence of a solution to the new problem is clearly sufficient for the existence of the 
original problem. Note, however that it will become apparent in Chapters 3 and 4 that 
the reverse is not true.

C onversion to  a Standard Problem  via Squaring D ow n C om pensators.

A means for solving nonstandard problems is proposed in [61] where stable, minimum- 
phase squaring-down compensators allow transformation of the original non-standard 
Tioo design problem into one where standard techniques are applicable. The paper [61] 
also contains a helpful discussion explaining why techniques employed in the solution of 
the standard problem are inapplicable in the nonstandard case.

The first step in the approach of [61] (see Lemma 4.1 of that paper) is to construct a 
state-space description of all stable closed loop systems T^w{s) =  Ti(s) — T2(s)Q(s)T3(s) 
via the Youla parametrization, where Q(s) is a free stable transfer function matrix and 
Ti (s),T2(s) and 73(3) are stable transfer function matrices for which state space realiza
tions can be easily constructed, given a state space realization of the generalized plant. 
The result is an open-loop stable Tioo synthesis problem where the Youla parameter 
Q(s) G TZTioo must be chosen as a control law to ensure ||Ti(s) — T2(s)Q(s)T3(s)||00 < 7.
It should be noted, however that the generalized plant associated with this new synthesis 
problem has state dimension twice that of G(s).

At this point, the Tioo synthesis problem is still nonstandard in that the matrix 
Ti(s) (T3(s)) will have nonstandard dimensions if the partition G i2(s) (G2i (s)) of 
the original generalized plant has nonstandard dimensions. The abovementioned pa
per introduces a technique whereby the set of all closed loops can be reexpressed as
T^v(s) =  Ti(s) — T2(s)Q(s)T3(s) where T2(s) and T3(s) are square transfer function ma
trices which are obtained from T2(s) and Ts(s) via so-called squaring down compensators:

T2(s)Si2{s) =

S2i (s)T3M =

( 2. 10)

( 2 . 11)
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where T2(s) and T^(s) are square transfer function matrices. The squaring-down com
pensators 5 i2 and S21 for T2(s) and T^(s) are constructed using a state-space algorithm 
described in [61] which is based on Kalman’s canonical form. (In this respect the au
thors of [61] demonstrate another rationale for choosing certain key matrices arising in 
the schemes described in Chapters 3 and 4.) The realizations of T2(s) and Ts(s) have 
exactly the same set of unstable invariant zeros as T^s) and T3(s). The result of this 
is that the task of selecting Q(s) G IZTioo such that ||Ti(s) — T2(s)Q(s)T3(s)||00 < 7 is 
amenable to standard H.00 results.

A characterization of all Youla parameters Q(s) G 'TVHoo which solve the original 
nonstandard ?ioo problem (||Ti(s) — T2(s)Q(s)T3(s)||00 < 7 ) is then obtained in terms 
of all solutions Q(s) to the intermediate standard Tioo problem, free stable transfer 
function matrix parameters Q i, Q2 and Q3, together with the dynamic squaring down 
compensators S12 and S21:

& ) * * ■ (2-i2)

In [61] neither state space existence conditions nor explicit formulae for all controllers 
K (s ) of the original generalized plant are presented however. To obtain all control laws 
for the original nonstandard plant, one would need to insert the above subset of Youla 
parameters Q(s) solving the intermediate problem into the description of all stabilizing 
controllers. If one were to write the resulting parametrization of control laws in linear 
fractional form, the resulting order of the coefficient matrix of the linear fractional map 
and therefore also of the central controller (i.e. that controller which results when all 
free parameters are set to zero) is likely to be much higher than the plant order, in which 
case model order reduction would be necessary.

In contrast, a formula is given in Chapters 3 and 4 for a central controller which has 
order equal to that of the generalized plant. Chapters 3 and 4 offer approaches which 
differ considerably from that adopted in [61]. The approach in Chapter 4 is similar to 
that of [61] in that it also draws upon the Youla parametrization. However, an important 
difference between the approach in [61] and that in Chapter 4 is that a so-called lossless 
decomposition of the nonstandard plant is employed. This decomposition facilitates the 
proof of the simple state-space formulae which axe obtained.

R esults reported for the Singly Nonstandard Cases.

In [46], controller parametrizations have been derived for the case 3 (singly) nonstan
dard problem under the additional condition that G2i(s) has no zeros in the right half 
plane. This additional restriction is not imposed in this thesis. A parametrization of Tioo 
controllers for case 3 plants is also given in [107], however without the assumption on the 
right half plane zeros of G2i(s).  The techniques of derivation in both [46] and [107] differ 
from the two alternatives presented in Chapters 3 and 4 of this thesis. Moreover, a full 
controller parametrization for the case of a doubly nonstandard plant (i.e. where both
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D\2 and D21 are nonstandard) is presented here, a result which is not trivially derivable 
from the singly nonstandard result.

2.8 Sum m ary of the N onstandard T i o o  R esults in this 
T hesis.

Nonstandard Tioo problems have been addressed in this thesis via two distinct routes. 
In both approaches, new Tioo control problems are defined which are closely related to 
the nonstandard problem but satisfy the standard assumptions. Subsequently, standard 
controller existence and synthesis results are applied to the new standard problems, 
which can be shown to yield a solution to the original nonstandard problem. Both 
approaches have had outcomes of significance beyond the particular nonstandard Tioo 
problem addressed here. In fact, the techniques of chapter 3 have been applied in [50] to 
an Tioo servo problem, whilst the techniques of Chapter 4 have been applied in [74] to a 
nonstandard H 2 problem, the results of which have been summarized in section 4.7.

Controller Existence Conditions.

In chapter 3, a family of (standard) augmented plants is constructed and limiting argu
ments are employed to establish existence conditions. In chapter 4, existence conditions 
are established using the singular Tioo results of [98]. The same existence conditions are 
obtained by both approaches and are expressed in terms of a pair of algebraic Riccati 
equations and a coupling condition involving their solutions.

Controller Formulae.

A complete state space parametrization of all nonstandard Tioo controllers, was first 
presented in [76]. The approach taken in [76] uses a combination of the Youla Param
etrization and a lossless decomposition of the nonstandard plant. As in the standard 
case, this parametrization is expressed in terms of a linear fractional map with a fixed 
coefficient matrix and a parameter matrix consisting of a number of free transfer func
tion matrices. One of these free transfer function matrices must be bounded real and 
the others are must be stable. The structure of the matrix of free transfer function 
parameters given in [76] was observed to be somewhat more complex and less symmetric 
than expected. In [75] and in Chapter 3 of this thesis, simpler and more symmetric 
controller parametrizations are obtained by applying limiting arguments to the state 
space controller formulae for the family of augmented plants which was used to find 
existence conditions. An awareness of the simpler form for controllers obtained in [75] 
prompted a reappraisal of the approach taken in [76], resulting in the work reported in 
[72] and in Chapter 4. The resulting complete nonstandard controller parametrization 
is expressed in terms of a matrix of transfer function parameters which has the same 
simple, symmetric structure as that obtained using the augmented plant approach.

The controller parametrizations obtained in Chapters 3 and 4 are completely equiva-
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lent in that they parametrize exactly the same set of control laws. However, the state- 
space construction of the coefficient matrices in the final linear fractional formula for 
all controllers differ slightly. It is shown in section 4.6.3 of Chapter 4 how this minor 
difference in the controller formulae can be accounted for.



C hapter 3

N onstandard Hoo Synthesis via  
P lant A ugm entation.

Summary.

The nonstandard state space Hoo problem is addressed in this chapter by augmenting 
the generalized plant to produce a family of standard generalized plants. Standard 
state-space Hoo controller existence and parametrization results are then applied to 
the augmented plants. Subsequently, limiting arguments using well known results from 
analysis and linear algebra are applied to establish that the existence of nonnegative 
definite stabilizing solutions to two algebraic Riccati equations and satisfaction of an 
associated coupling condition are necessary and sufficient conditions for the existence of 
controllers. These results are analogous to the standard results, except for the fact that 
some preliminary state-space calculations must be performed before they can be applied. 
Limiting arguments are then applied to the parametrization of standard control laws for 
the augmented family of generalized plants to reveal a state-space parametrization of all 
controllers for the nonstandard problem. Controller formulae are presented for each of 
the three different cases of nonstandard generalized plants which were defined in section 
2.6 of Chapter 2. However, only the doubly nonstandard case (case 2) is treated in detail 
since results for cases 1 and 2 can be obtained via reasoning entirely analogous to that 
presented for the doubly nonstandard case.

The technique employed here of defining a family of related standard problems promises 
to be applicable in relaxing other assumptions in the standard theory. In fact, similar 
techniques have been employed in [50] in obtaining Hoo controller formulae for an Hoo 
servo problem.

3.1 The Invariant Zeros of certain Subblocks o f the
G eneralized Plant.

Recall the class of state space realizations of generalized plants which were introduced
57
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in Chapter 2:

G(s)
A B 1 b 2
Ci 0 D12
Cl D21 0

(3.1)

The invariant zeros of the realizations of Gi2(s) and C2i(s), as given by (3.1), are known 
to play a key role in feedback controller synthesis (see for example section 7.6 of [40]). 
The plant zeros are of interest since we are essentially interested in regulation, i.e. in 
making the signal z (t) as close to zero as possible.

Recall that we make the following assumptions on the realization of G(s):

A .l  (A, B2) is stabilizable and (C2,A) is detectable.

A .2 Both D12 and D21 are full rank.

A .3 Neither Gi2(s) nor C?2i(s), as described by the state space realization in (3.1), have 
imaginary axis invariant zeros.

Recall also the additional assumption which is made in the standard state-space 'H0q 
synthesis theory:

A .4 D\2 is tall (nz > nu) and D21 is fat (ny < n w).

For convenience, we now list the four cases of the state-space Tioo problem without signal 
dimension restrictions which was introduced in Chapter 2.

Case 0 A .4 holds; i.e. D12 tall, D21 fat: (nz > nu, ny < nw)

Case 1 Both D\2 and D21 fat: (nz < nu, ny < nw).

Case 2 D 12 fat, D21 tall: (nz < nu, ny > nw).

Case 3 Both D12 and D21 tall: (nz > nu, ny > nw).

The aim of this section is to investigate the invariant zeros of Gi2(s) and G2i(s) 
under assumptions A . l ,  A .2 and A .3 and review means for their calculation. It will 
become apparent that assumption A .2 has an important role in facilitating a simplified 
description of the invariant zeros of G\2(s) and G2i(s). We shall pay particular attention 
to the nonstandard cases 1-3 in which A .4 is violated. These results will prove to be 
essential in each of the two developments of a nonstandard Hoo synthesis theory which 
are presented in this thesis.

3.1.1 Invariant Zeros for Realizations of Nonsquare Transfer Function 
Matrices.

The following lemma characterizes the invariant zeros of any realization of a nonsquare 
transfer function matrix which is full rank at infinity.
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Lemma 3.1.1
1. Let D E JRlxm be of full column rank with l > m, and define D t E ]RTnx/ and 
D l E ]R^~Tn)x* according to the following equality:

(  )  (D (D±)T) =  (3.2)

Note also the following equality

DD' +  (D1)t D ± = Ih (3.3)

Given the above definitions and a realization of a transfer function matrix

G(s) = C (sl — A)~l B  +  D,

the invariant zeros of this realization are the unobservable modes of the pair (A — 
BD^C, D l C ).

2. Let D E IR/xm be of full row rank with l < m, and define D t E IRmx* and D L E 
I^m x (m—l) accorcLing i0 the following equality:

(  (d ^)t) (£>t D±) = • (3'4)
Note also the following equality

D 'D  + D-l(D-l)t  = Im. (3.5)

Given the above definitions and a realization of a transfer function matrix

G(s) = C (sl — A)~l B  +  D,

the invariant zeros of this realization are the uncontrollable modes of the pair (A — 
B D 'C ,B D l ).

Proof: See [63]. An alternative proof of this result is contained in Appendix A. □

Remark: The matrices D t and D 1 described in part 1 of the above lemma can be quite 
easily constructed using a QR  decomposition of the matrix D (which is full column rank). 
Observe that such a decomposition has the form

D = QR = { Q l Qo^ U )  <3-6)

with Q E H /x/ orthogonal and R\ E JRmxm nonsingular. The choices D t =  R±l Qi and 
D 1 = Q2 then suffice. In part 2, the same argument applied to DT yields matrices 
(L>t)T and (Z)1)77, where D t and D L satisfy (3.4). □
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3.1.2 Invariant Zeros for the  N onstandard  P lants.

The lemma introduced in the previous subsection can be applied to the realizations of 
Gi2(s) and G2i(s) associated with any nonstandard generalized plant (i.e. cases 1- 3) as 
given in (3.1) which satisfies A .2 . For convenience, we now summarize the consequences 
of Lemma 3.1.1 for nonstandard plants.

Lem m a 3.1.2 Given a realization of G(s) as in equation (3.1) which satisfies assump
tions A . l , A .2 and A .3 ,

1. I f D i2 violates assumption A .4 , then the invariant zeros ofGi2{s), as described 
by the state variable realization in (3.1), are given by the uncontrollable modes of 
the pair (A — B2D\2^C\, B2D\2L), where D d  and B\21 are given by application 
of (3.4) to D\2-

2. I f  D21 violates assumption A.A, then the invariant zeros o/G2i(s), as described by 
the state variable realization in (3.1), are given by the unobservable modes of the 
pair {D2iLC2, A — -Bi-C^i^C^), where £>21̂  and D211 are given by application of 
(3.2) to D21.

Invariant zeros of the realizations of Gi2(s) and G2i(s) as described above can arise 
in design problems in a number of different ways. Recall that assumption A .3 precludes 
invariant zeros on the imaginary axis. Note that right half plane invariant zeros are 
permitted under the standing assumptions. Such invariant zeros may, for example, arise 
due to non-minimum phase process models within the generalized plant.

Note that even if one has a minimal realization (3.1) of the generalized plant G(s), 
it may often be the case that the resulting realizations of Gi2(s) and Cx2i(s) will be 
nonminimal. The realizations of Gi2(s) and G2i(s) will then have invariant (decoupling) 
zeros. For example, recall that assumption A .l allows for the possibility of stable uncon
trollable modes of (A, B2) (due for example to a stable weighting function). It is easy to 
check that when (A , B2) has uncontrollable modes, they are also uncontrollable modes 
of the pair (A  — B2D\2^C\, and, by Lemma 3.1.2, they are therefore invariant
zeros of Gi2(s).

3.1.3 Canonical Form s for the  Invariant Zeros of ^12(5) and 021(5).

Two canonical forms and their corresponding state-space similarity transformations are 
now introduced which display information regarding the invariant zeros of Gi2(s) and 
^21(5). These canonical forms provide insight in the derivation of the existence condi
tions and controller parametrizations for nonstandard plants in both this chapter and in 
Chapter 4. Closely related observations have been made in [61].

Suppose D\2 is nonstandard; then it follows from item 1 of Lemma 3.1.2 that the in
variant zeros of Gi2(s) are the uncontrollable modes of the pair (A — £2 £*12̂ Ci, B2D\2L).
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It is a standard result of linear systems theory that a state space similarity transfor
mation T  can be found which produces a controllability canonical form for the pair 
(A — B2D \2^Ci , B2D i2L). For future reference, we now review how such a similarity 
transformation can be constructed. Let Vp denote a matrix of full column rank whose 
column space is the controllable subspace of the pair (A — B2D\2^Ci , -02-D121)- Let Up 
be any full rank matrix whose column space is complementary to that of Vp. It follows 
that

T  =  ( UF VF ) (3.7)

defines a square, invertible state-space basis transformation. It is well known that using 
such a basis, one obtains a controllability canonical form :

T - \ A - B 2D ^ C { ) T  = (^° £ ) ,  (3.8)

T~l B2D 12L =  ( ß F ) '  (3'9)

where (Ai, ßp) is a controllable pair and, from Lemma 3.1.2, it follows that the modes 
of Aq correspond to the invariant zeros of Gi2 (s).

Suppose D21 is nonstandard; then it follows from item 2 of Lemma 3.1.2 that the in
variant zeros of G2 i ( s ) are the unobservable modes of the pair A — B\D2\^C2) •
The dual of the controllability canonical form described above is the observability canon
ical form. We now review how a state space similarity transformation U can be found 
which produces this canonical form for the pair (Z^i^C^A — B \ L e t  Vh de
note a matrix of full row rank whose row space is the controllable subspace of the pair 
(D2i'LC2 , A — B \D 2\*C2 )- Let Uh be any full row rank matrix whose row space is com
plementary to that of Vff. Observe therefore that the following matrix is a square and 
invertible state-space transformation

U = UH
VH (3.10)

It is well known that expressing the pair (D211 C,2 , A — B 1D21*C2) in this basis via the 
following similarity transformation results in the observability canonical form:

U(A -  B iD 2i*C2)U~l =  (  “ “  )  , (3.11)

D2lLC2U - 1 =  ( 0  ß B ).  (3.12)

The pair (/3ff,ai) is observable. From Lemma 3.1.2, we see that the invariant zeros 
of G2 i(s) are the eigenvalues of <*0 .

3.2 A Param etrized A ugm entation of the N onstandard
Plant.

Henceforth, we concentrate on the doubly nonstandard (case 2) generalized plant
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G(s). In this section we introduce a family of standard generalized plants Ge(s) which is 
parametrized by a real number e > 0. The main conclusion of this section is that provided 
e is small enough, the existence of a 7-admissible controller for Ge(s) is equivalent to the 
existence of a 7-admissible controller for the nonstandard plant.

The (-Augm ented Plant.

Consider a family of generalized plants Ge(s) with the following state-space descrip
tion:

A
A Bi eBi b 2
Ci 0 0 D u
eCi 0 0 e ( D n L)T
C2 D21 e(D2i ±)'1' 0

A B{ B2
Cl 0 D{2
c2 De2l 0

(3.13)

Recall that D12 is fat and D21 is tall in the doubly nonstandard case and the matrices 
D u \  0 i2'L> an<̂  -^2i 'L are defined by the following relations:

( ) ( Dl2' Dl2l) = (o ? ) .  <3-14>

( d2S) ( D21 (D2li)T) = ( 0 ) • <3'15>
Refer to section 3.1 for a description of how the above matrices may be constructed. 
Appropriate choices for the matrices B \,C \  in (3.13) will become clear in the ensuing 
analysis.

We have thus augmented the original generalized plant with extra disturbance and 
objective signals. We do this with the aim of creating augmented generalized plants 
which satisfy the standard assumption A .4 , in fact this actually renders the feedthrough 
matrices D{2 and D2i square and full rank. The input/output behaviour of Ge(s) can 
be written as follows:

(3.16)

(3.17)

where the signals ye(t) and ue(t) have the same dimensions as y(t) and u(t), respectively 
and the signals 5e(i) and 1u€(t) have the same dimensions as z(t) and w(t), respectively. 
The signals z€(t) and w€(t) have dimensions nu — nz and ny — nw, respectively.

Satisfaction of the Standard Assum ptions for the Augmented Plants.

The augmented feedthrough matrices D\2 and D2l are square, of full rank and it 
follows from (3.14) and (3.15) that when e > 0, they have inverses:

( t ( D i 2 L ) T ) = ( ° 12' l‘ D n l  ) ’ (3.18)
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(3.19)

This choice of D \2 and D2l ensures that assumptions A .2 and A .4 hold for G€(s). 
Assumption A .l holds trivially. In a later section it is shown that B\ and C\ can be 
chosen in a manner which ensures that G€(s)has no imaginary axis invariant zeros, thus 
guaranteeing A .3. It follows that, for any nonzero e, the standard state-space Tioo theory 
summarized in section 2.3 can be directly applied to the realization of Ge(s)described 
above. It will be shown that this fact, in conjunction with the observations in the 
remainder of this subsection, allows the deduction of both existence conditions and a full 
parametrization of nonstandard controllers for G(s).

Remark: Augmentation of a generalized plant has also been used in [21] for treating 
certain singular Tioo problems. When compared with the approach adopted here, there 
are substantial differences in the problem treated, the techniques used and the results 
obtained. For the problems treated in [21], D12 and D21 may violate A .2 (i.e. be rank 
deficient) but they are assumed to be standard (i.e. they satisfy A .4). In [21], D\2 
is tall and has its rows further augmented by a matrix eIUu, whilst D21 is fat and has 
its columns further augmented by a matrix eIUy. In [21] the matrices B\ and C\ are 
augmented with Gi =  0 and B\ =  0. The fact that we take these quantities to be nonzero 
in our approach is a key to achieving the main results. □

R elating Hoo Controllers for the Original and Augm ented Plants.

We now make two key observations regarding the augmented plant which lead to 
Lemmas 3.2.1 and 3.2.2 and thus to Theorem 3.2.1.

1. Internal stability. Observe that G^l®) =  ^ 22(5 )- If K(s) internally stabilizes G22(s), 
then by [33] (Ch.4 Thm .l), it will internally stabilize both G€(s) and G(s).

2. Augmentation in closed-loop. Given a linear control law K (s ), observe the following 
relationship between the augmented and original closed-loop transfer matrices

T Z'w ' { s )
Tz*w*(s) Tztwt(s) \    (  Tzw(s) c(x) \
Tz^ ( s )  7 W (s )  )  ~  V e(x) e2(x) ) ’ (3.20)

where x denotes fixed e-independent transfer function matrices which are not of 
immediate interest. Here Tzw(s) is the closed loop transfer function mapping w(t) 
to z (t) which results from connecting the same controller K (s) to the original 
(unaugmented) nonstandard generalized plant.

Lem ma 3.2.1 Given the plant G(s) in (3.1), suppose that for some e > 0, there exists 
a 7-admissible controller K €(s)for Ge(s)as given in (3.13), then K e(s)is 7-admissible for 
G(s).
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Proof: Recall observations 1 and 2 which were made immediately prior to the lemma 
statement. Since K €(s)internally stabilizes Ge(s), by observation 1 it also internally 
stabilizes G(s). By hypothesis, K e(s)also ensures ||T'z«1i,«||00 < 7. From observation 2 
note that Tzw(s) is a submatrix of Tz>wt(s) and hence < ||Tz<11,«||o0 < 7 . □

Lem m a 3.2.2 Given the plant G(s) in (3.1) and a controller K(s) which is 7-admissible 
forG(s), then there exists an e*(K) > 0 such that for all e G (0,e*(.ff)), K (s) is 7- 
adnissihle for Ge(s).

Proof: Suppose a controller has been implemented which ensures ||Tzw||oo < 7. Clearly, 
if e = 0 then \\Tztwt ||oo =  Hoc,. Since the singular values of Tztwt( ju ) vary contin
uously with e (see [67]), there will be some e*(K) > 0 such that e G (0,e*(i;f)) implies 

1100 < 7 - ^

Theorem  3.2.1 Given the plant G(s) in (3.1), there exists a 7-admissible controller 
for G(s) if and only if there exists an e* > 0 such that for all e G (0,e*), there exists a 
7-admissible controller for Ge(s).

Proof: => Let there exist a 7-admissible controller K(s) for G(s). From Lemma 3.2.2, 
there exists an e* =  e*(K) such that there exists a 7-admissible controller for G€(s) 
whenever e G (0,e*).

4= Suppose 3 e* > 0 such that there exists a 7-admissible controller for G€(s), V e G 
(0,e*). From Lemma 3.2.1 it follows that K e(s) is a 7-admissible controller for G(s), 
V e G (0, e*). □

3.3 Controller E xistence Conditions.

It is shown in this section that state-space existence results for the standard ?7oo prob
lem lead to similar state-space results for the doubly nonstandard case. This connection 
is made via the family of augmented plants introduced in the previous section. Under 
the hypothesis that each of the standard assumptions holds for the realization (3.13) 
of Ge(s), standard state-space existence conditions for 7-admissible controllers axe first 
derived. It is then shown how the augmentation matrices B\ and C\ in the realization 
(3.13) of Ge(s) can be chosen such that each standard assumption indeed holds. Subse
quently, a limiting argument applied to the e-dependent existence conditions establishes
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e-independent existence conditions for the nonstandard problem.

3.3.1 e-D ep en dent E xistence C onditions.

Roughly speaking, one conclusion of the previous section is that the existence of a 
7-admissible controller for a nonstandard plant is equivalent to the existence of a 7- 
admissible controller for a (standard) e-augmented plant for small enough e. In this 
subsection, we investigate the consequence of this observation in state-space terms.

We first introduce the following algebraic Riccati equations which arise when the 
standard state space T i^  theory summarized in Lemma 2.3.1 of Chapter 2 is applied to 
Ge(s) with e > 0:

0 =  X 'A z x  + ATz x X< + X 'Q (c )X e, (3.21)

0 =  YtA TZY + A z y Y, + YeP(c)Yt , (3.22)

with the definitions:

A zX =  (A - B 2D 12'C i ~ B 2D l2LCi), (3.23)

A z y = (A-  S i A s M  -  Ä 021 ±c 2), (3.24)

Q (t) = + 7 ' 2«2Ä ß f  -  B 2D 12\ D U') T B$

- ( 2B2D 12l (D12L)TB ^ (3.25)

P(e) = y - 2Cf[Ci + r 2e2C'[C1 -C % (D 21' f D 2i'C 2

- i c J ( D 211 )r A i xC2. (3.26)

A solution X e of a Riccati equation of the form (3.21) is said to be stabilizing if the 
matrix A z x  +  Q (e)X( is stable (has all eigenvalues in the open left half-plane), whilst a 
solution Y( of an ARE of the form (3.22) is said to be stabilizing if (A z y  +  Y^P(c)) is 
stable.

Lemma 3.3.1 Let G(s) be a doubly-nonstandard plant realized as in (3.1), satisfying 
A . l , A .2 and A .3 . Suppose B\ and Ci are chosen such that for all e > 0, G€(s), as 
realized in (3.13), satisfies A .3.

1. When they exist, nonnegative definite stabilizing solutions of (3.21) and (3.22) are 
unique.

2. There exists a 7 -admissible controller for a doubly nonstandard plant G(s) i f  and 
only if  there exists an e* > 0 such that for all e E (0,e*), the algebraic Riccati 
equations (3.21) and (3.22) have nonnegative definite stabilizing solutions X e and 
Ye satisfying p (X eYe) < 72.

Proof: A proof is presented in Appendix B.l. □

Whilst Lemma 3.3.1 does give necessary and sufficient conditions for the existence of
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nonstandard controllers, it is of limited immediate use. Firstly, the result depends on B\ 
and C\ having been chosen such that Ge(s)satisfies A .3. Secondly, the dependence in the 
Ric:ati equations on e is problematic since we have no knowledge in general of the size of 
e*. Thirdly, direct implementation of an e-augmented controller is likely to be subject to 
nunerical difficulties if e* is very small since the Riccati equations have entries which are 
unfounded as e —> 0; for example one cannot eliminate the e-dependence of the Riccati 
equation (3.21) by the limiting process e —► 0 since the term — ̂ B 2 D \2 L(Di2 L)T B% in 
the Riccati equation diverges.

It is demonstrated subsequently that a careful construction of C\ and B\ guaran
tees not only that A .3 holds for G€(s), but also that limiting solutions Ao and Yo of 
the e-dependent AREs exist. The next section contains important observations on the 
structure of nonstandard generalized plants which lead to this construction.

3.3.2 C hoice o f M atrices for A u gm en tation .

In this subsection, it is shown how the observations on the invariant zeros of Gi2 (s) 
anc/or G2 i(s) and on the associated canonical forms which were made in section 3.1 
suggest a choice of augmentation which ensures that Ge(s)satisfies each of the assump
tions A . l , A .2 , A .3 and A .4 . Moreover, these results facilitate a simplification in 
the structure of the two e-dependent Riccati equations (3.21) and (3.22). The following 
lemma is the key result in this subsection.

Lemma 3.3.2

l. Let T  be a similarity transformation associated with the controllability canonical 
form in (3.8) and (3.9). Given the selection

where L 2 is any matrix such that A \ + ßpL 2 is stable and L\ is a free matrix, the 
nonnegative definite stabilizing solution to the e-dependent Riccati equation (3.21), 
when it exists, is independent of the matrices L\ and L 2 (provided L2 is stabilizing 
in the sense described above) and has the form:

where is a square matrix having the same dimensions as Aq. In addition, X e 
satisfies the following equality:

Ci = - { L i  L2 ) T - \ (3.27)

(3.28)

X€B2Di2̂ ~ =  0 . (3.29)
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2. Let U be a similarity transformation associated with the observability canonical 
form in (3.11) and (3.12). Given the selection

*  = - V ' 1 ( ) ■ <»•»)
where M2 is any matrix such that <*i +  M2ßü is stable and M\ is a free matrix, the 
nonnegative definite stabilizing solution to the e-dependent Riccati equation (3.22), 
when it exists, is independent of the matrices M i and M2 (provided M 2 is stabilizing 
in the sense described above) and has the form:

Y. =  I T 1 (  0 )  (UTf \  (3.31)

where 0 e is a square matrix having the same dimensions as ao- In addition, Ye 
satisfies the following equality:

D2i l C2Y€ =  0. (3.32)

3. With B\ and C\ chosen according to items 1 and 2 respectively, the partitions 
Gf2(s) and G21(s) of G€(s)as defined in (3.13) inherit the closed-right half plane 
invariant zeros of G i2 (s) and G2 i(s) respectively, but do not acquire any additional 
closed right half plane invariant zeros. Hence, under these conditions, Ge(s)as 
defined in (3.13) satisfies assumption A .3.

Proof:
1. With definitions X e =  T t X €T  and Q(e) =  T~1Q(e){T~1)T, we return to the Riccati 
equation (3.21), expressed in the basis corresponding to the transformation T:

° = M U °  l ) - ( ßr ) C'T)
+  ( (  Z  l ) - { ß F ) ^ T y  X c +  X eQ(e)Xt . (3.33)

If we choose a matrix Ci which stabihzes the controllable modes corresponding to 
A \, simplification of the Riccati equation follows from the following argument; since the 
pair (Ai , ßp)  is controllable, it is possible to find an L2 with (Ai +  ßpL 2 ) stable and 
hence a C i as described in item 1 exists. With such a choice of Ci, the Riccati equation, 
transformed as in equation (3.33), can be expressed thus:

0 =  X  (  ^ ^€ V ^ 0 1  +  ßFLi A\ +  ßpL2 )

+ { { a01X l1 A1+°ßFL2 ) + Q W ' ) T*'- <3-34)
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If one right-multiplies this equation by the matrix y ^ j  (where the identity matrix has 

the same dimensions as Ai), one obtains:

(  0  )  =  * ' (  /  ) ( M + 0 f L 2)

+  ( (  A 0i +°0f L i i l l  +°ßFL2 )  +  * * (  /  )  ( 3 -35)

Note first that (Ai + ßpLz)  has been designed stable and that

( (  Aoi t ^ F h  i l l  +°ßFL2 )  +

is stable since X € is by hypothesis a stabilizing solution of (3.21). The stability of these 
two matrices allows us to deduce from (3.35) and the well known Lemma of Lyapunov (see 
Lemma 0.0.1 in the summary of N o ta tion , D efinitions and F undam enta l R esu lts  
at the beginning of this thesis) to conclude that =  and hence that the

(1,2) and (2,2) blocks of X e axe zero matrices. Since X e is symmetric, its (2,1) block is 
also a zero matrix. This yields the structure of X e shown in equation (3.28).

Let the nonzero (1,1) partition of X e be From examination of the equation (3.34), 
we see that satisfies

*'Ao + A%*e + <6€( I  0 ) Q( e ) ( I  0 ) T * e =  0 (3.36)

from which it is clear that 4?e is independent of C i1. Since T is also independent of 
Cl, we deduce from (3.28) that X e is also. The identity (3.29) follows directly from the 
structure of X € exhibited in (3.28) and the structure of B2 D 1 2 1  in (3.9).

2. The proof is analogous to that for part 1.

3. Application of the argument used in Appendix A to G i2(s) (with the choice of C\ 
given in part 1) and G21(s) (with the choice of B\ given in paxt 2), yields the result. □

3.3.3 6-Independent Existence Conditions.

Recall that the special choice of augmentation in Lemma 3.3.2 makes application of 
Lemma 3.3.1 to G€ possible. This results in existence conditions for the nonstandard 
plant in terms of the solutions of the two e-dependent Riccati equations (3.21) and (3.22). 
In this subsection, we first demonstrate how the special choice of plant augmentation 
matrices also leads to the elimination of the divergent terms in the e-dependent Riccati 
equations. It is possible to express controller existence conditions for Ge(s) in terms of 
modified e-dependent Riccati equations which have no terms which diverge as e —► 0. 
The limit as e —> 0 of the modified e-dependent AREs therefore exist and are themselves

^ o t e  that it is still dependent on B\ which is present in Q(e), however this dependence disappears 
in the limit as e —► 0.
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AREs. Solutions Xo and Yb of these e-independent AREs are then shown to exist if and 
only if there exist solutions of the family of modified e-dependent AREs. This result 
is established using standard analysis results, including the implicit function theorem. 
The conclusion is that existence of a nonstandard 7-admissible controller is equivalent 
to the existence of nonnegative definite stabilizing solutions to the e-independent AREs 
and satisfaction of a coupling condition p(X qYo) < 7 .

The Modified e-Dependent AREs.

Consider the modified pair of e-dependent algebraic Riccati equations:

XfA z x  +  ATz x Xt + X'Q(e)X< =  0, (3.37)

y tA\y +  AZYy t + y<P(e)yt =  0, (3.38)

with the definitions (compare with (3.25) and (3.26))

QM  =  -f-2B 1B'[ + -y-2e2B 1B l - E h D n H D u 'f B Z  (3.39)

V(e) = 7 ' 2C f C i + 7- 2£2C'?'C1 -C 2 ’(D2i, )TD2itC2 (3.40)

where A z x  and A z y  are defined in (3.23) and (3.24) respectively. The important dif
ference between these equations and the e-dependent AREs for X e and Y€ is that the 
quadratic terms Q(e) and V(e) do not diverge as e —► 0. The next lemma claims that for 
the purposes of checking for controller existence, one can replace equations (3.21) and 
(3.22) with (3.37) and (3.38) respectively.

Lemma 3.3.3 Let B \ and C\ be chosen according to Lemma 3.3.2.

1. When they exist, nonnegative definite stabilizing solutions Xt and y e to (3.37) and 
(3.38) are unique.

2. X e andYe are nonnegative definite stabilizing solutions of (3.21) and (3.22) if and 
only if Xe =  X e and y € = Ye are nonnegative definite stabilizing solutions of (3.37) 
and (3.38).

Proof: A proof of this result is presented in Appendix B.2. □

Lim iting Results for a Family of AREs.

The next lemma is needed to prove the e-independent existence result in Theorem 
3.3.1 which concludes this section.

Lem ma 3.3.4 Given real matrices A E lRnxn and Q =  QT E H nxn, suppose the alge
braic Riccati equation

X A  + At X  + X Q X  = 0 (3.41)
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has a nonnegative definite stabilizing solution X  = Xo, where Q is symmetric. Let 
Q(rj) : IR —» IRnXn be a continuously differentiable symmetric function of 77 E H  which 
satisfies Q(0) = Q. For each 77 E 1R, consider the algebraic Riccati equation:

X VA + At X v + X vQ(r,)Xv = 0. (3.42)

1. There exists an rji > 0 such that for all 77 E (—771,771), there exists a stabilizing 
solution Xrj of (3.42), moreover in that interval;

a) X v is a continuous function of rj.

b) The derivative exists and varies continuously with 77.

c) X v is symmetric.

2. In addition, suppose there exists an f) > 0 s.t. for all 77 E (0,77), ^  > 0. Then 
with 772 =  min{77 , 77i} > 0 it follows that X v > Xo > 0, for all 77 E (0,772).

Proof: See Appendix C.l for a simple proof from first principles, based on application of 
the implicit function theorem to the Riccati equation (3.42). Related continuity results 
have been obtained in [88] for algebraic Riccati equations where Q{rf) is nonnegative- 
definite, a condition which cannot be guaranteed here. □

Lem m a 3.3.5 Adopting the notation of Lemma 3.3.4, assume that ^  > 0 for all 77 > 0. 
Suppose also that there exists an r\* > 0  such that for all 77 E (0,77*), there exists a 
nonnegative definite stabilizing solution X^ of (3.42), then there exists a nonnegative 
definite stabilizing solution X  — Xo of (3.41)- Moreover, X v > Xo for all 77 E (0,77*).

P roof: Refer to Appendix C.2. □

C orollary  3.3.1 Adopting the notation of Lemma 3.3.4, assume that ^  > 0, for all 
77 > 0. The equation (3.41) has a nonnegative definite stabilizing solution X  =  Xo if 
and only if there exists an 77* > 0 such that for all rj E (0,77*), (3.42) has a nonnegative 
definite stabilizing solution X v. Moreover, X^ > Xo for all rj E (0,77*).

Proof: => Let 771 be defined by application of part 1 of Lemma 3.3.4 to (3.41). Since 
by hypothesis ^  > 0, V 77 > 0, define 772 > 0 by application of part 2 of Lemma 
3.3.4 to (3.41). Choose 77* =  min(77i, 772). The if part of the desired result then follows. 
V 77 E (0,77*).
<= Follows from Lemma 3.3.5 as does the fact that X v > Xo, V 77 E (0,77*). □

P ro o f  of th e  D oubly N o n stan d a rd  E xistence R esult.

The following theorem is one of the main results of this chapter. It presents necessary 
and sufficient conditions under which there exist 7-admissible controllers for the doubly
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nonstandard generalized plant. It is shown in the next section that once the conditions 
of this theorem are satisfied, it is possible to construct all doubly nonstandard Ttoo 
controllers.

Theorem  3.3.1 Let G(s) be a doubly nonstandard plant realized as in (3.1), satisfying 
A .l  , A .2 and A .3 . Suppose B\ and C\ are constructed in the manner described in 
Lemma 3.3.2 via matrices L \, L2 , M \ and M2 , such that the matrices A\ 4- Pf L2 and 
a i  4- M2ßü are stable. Let A zx  and A z y  be given by (3.23) and (3.24) respectively.

A necessary and sufficient condition for the existence of a 7-admissible controller for 
G(s) is that the following conditions hold:

1. There exists a stabilizing solution Xo > 0 of the ARE

X 0A z x  + A z x TX0 + Xo(7~2B iB f -  =  0. (3.43)

2. There exists a stabilizing solution Yq > 0 of the ARE

Y0A z y t +  A z y Yo + Y0(7~2C [C i -  C l (D21' f  D21'C2)Y0 =  0. (3.44)

3.
p(Xi)Yo) < 72. (3.45)

When such matrices X q and Yo exist, they are unique and independent of the particular 
choice of L \, L2 , M\ and M 2 and thereby of B\ and C\ as described in Lemma 3.3.2, 
provided the matrices L2 and M2 are chosen to stabilize A\ 4- and c*i 4- M2pH>
respectively.

Proof:
Necessity: Assume a 7-admissible control law for G(s) has been found. By Lemma 3.3.1 
in conjunction with Lemma 3.3.3, it follows that the Riccati equations (3.37) and (3.38) 
have nonnegative definite stabilizing solutions X€ and y e for some finite e-interval (0, e*).

Observe from (3.39) that ^  =  'y~22eB\Bi > 0, V e > 0. Corollary 3.3.1 can thus 
be applied to (3.37) with 77 =  e, A =  Azx,  Qiv) — Q{e) X v =  Xt , thus establishing 
the existence of a nonnegative definite solution X q to (3.43). An analogous argument 
establishes the existence of a nonnegative definite solution Yq of (3.44) from the equation 
(3.38) for y e.

To establish the coupling condition p(XoTo) < 72> observe first that Xe > X q and 
ye > ^0 f°r any e € (0,e*), facts which also follow from Corollary 3.3.1. Next note 
the following chain of inequalities: 72 > p(XeYe) = p(Ye2 XfYß)  > p(YßXoYß)  =  

p(X$Y€Xg) > p( X 2YqxI )  = p(XqYq)

Sufficiency: Suppose one has nonnegative definite stabilizing solutions of both (3.43) 
and (3.44) which satisfy (3.45). We now aim to prove the existence of a 7-admissible
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controller by establishing the equivalent conditions described in Lemma 3.3.1.

Let Xo be the nonnegative definite stabilizing solution to (3.43). By Corollary 3.3.1 
it follows that 3 e > 0 such that V e € (0, i) =>■ 3 Xe which is a nonnegative stabilizing 
solution of (3.37). Analogous arguments establish the existence of an e > 0 such that 
V e E (0, e) =4- 3 y e which is a nonnegative definite stabilizing solution of (3.38).

Note from Lemma 3.3.4 that Xe and vary continuously with e since Q(e) and 'P(e) 
are continuously differentiable functions of e. By hypothesis, p(XoYb) < 72- Since X€ 
and y e depend continuously on e, so will the eigenvalues of their product and thus its 
spectral radius p(Xey e). Hence 3 ep > 0 such that e E (0,e^) =4 p(Xey e) < 72.

Let e* =  min(e,e, ep). It follows from Lemma 3.3.3 and the above argument that 
provided e E (0,e*), X e =  X€ and Ye =  y e axe nonnegative definite stabilizing solutions 
of (3.21) and (3.22) and p(XeYe) < 72. One can then apply Lemma 3.3.1 to establish 
the existence of a 7-admissible controller.

An argument similar to that applied to (3.21) and (3.22) in the proof of Lemma 
3.3.2 can be applied to the Riccati equations (3.43) and (3.44) with the same basis 
transformations T  and U, to reveal that both X q and Yq are independent of B\ and C\. 
□

Rem ark: Note from the above proof that it follows that, provided C\ and B\ are 
chosen according to Lemma 3.3.2, limiting solutions of the e-dependent equations (3.21) 
and (3.22) exist;

• lim€_>o X € =  X q > 0

• lim€_>o Ye =  Yo >  0

It can also be shown that the following facts hold:

• Y\m€.^Q(Azx +  Q{t)Xt) exists and has all eigenvalues in the open left half-plane.

• lime—o(Azy  +  P{t)Ye) exists and has all eigenvalues in the open left half-plane.

Note that the above limits exist, despite the fact that entries in the Riccati equations 
diverge as e —► 0. This is due to the special structure of X e and Ye which was elucidated 
in Lemma 3.3.2. □

3.4 C ontroller Param etrization for the Augm ented
Plant.

This section, together with the next comprise a derivation of a parametrization of /C7, 
the set of all 7-admissible controllers for G(s).  We assume the existence of at least one 
7-admissible controller for the doubly nonstandard generalized plant G(s).  The present
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section describes the first step in this process, whereby /Q, the set of all 7-admissible 
controllers for the e-augmented plant Ge(s), is investigated. (Henceforth, for the sake 
of brevity, any i f  G /Q  is called an e-controller.) The study of K is motivated by 
the following reasoning: recall from Lemma 3.2.2 that all nonstandard controllers are 
expressible as an e-controller provided e is small enough. It is also true that all e- 
controllers are 7-admissible for the nonstandard plant (see Lemma 3.2.1). Thus we can 
begin to build a state-space picture of /C7 by applying the results of the standard 7-foo 
theory to e-augmented systems. This gives rise at first to a state-space description of 
/C7, the set of all e-controllers. Subsequently, in section 3.5 we establish the controller 
form for all doubly nonstandard plants via limiting arguments involving /C7.

3.4.1 State-space Parametrization of all e-Controllers.

By hypothesis, there exists at least one 7-admissible controller for G(s). We assume that 
the matrices B\ and C\ which appear in the state space description of the generalized 
plant Gc(s)given in (3.13) axe chosen according to Lemma 3.3.2. Recall that it was shown 
in section 3.3 that when Ge(s)is constructed using this augmentation, it satisfies each of 
the standard assumptions A . l , A .2 , A .3 and A .4 . Lemma 3.3.1 then guarantees the 
existence of an e* such that for all e G (0, e*), there exist stabilizing solutions X e and Ye 
of the e-dependent AREs (3.21) and (3.22) which satisfy p(XeYe) < j 2.

Application of the Standard H o o  Controller Formulae to G€(s).

Application of the standard controller formulae in Lemma 2.3.1 of Chapter 2 to the 
e-augmented plant Gc(s)in (3.13) results in the following description of all e-controllers:

i f c(s) =  LF T  {M€(s), iV€(s)} . (3.46)

In the above expression,

+ B2F ^  + H'^Ci - H L Z J Z D u 1 (~lZeB{Dn L \

M €(s) =
- D ^ C \

0

D21(
Ö 121

0
e_ 1 £>l2'L

0
€~1D211 0 0 /

and N e is a free parameter having block partitioning compatible with that of the coeffi
cient matrix M € of the linear fractional map above and with the property that

*‘= ( ^  S  £ <3-48)
Recall that BFClQ is the set of all M(s)  G VSH<x> such that ||M(s)||oo < 7.

Note here, with reference to Lemma 2.3.1 in Chapter 2 that we have chosen V{2 =  
D{2~1 and V21 =  L?2i _1 35 given m (3.18) and (3.19) respectively. Recall from (3.29) and 
(3.32) that (D i2 L)TB2 X e =  0 and YeC2 (D2i 1)7 =  0. These identities, together with
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the standard state space controller formulae in Lemma 2.3.1 lead to the expressions:

n > =  - D n ' C x  -  D i2±C,i -  D u ' ( D 12')TB Z x e, (3.49)

Hlo =  Zc( - S i  £>21* -  Bl D21L -  YeC j (D2it)TD2i t) , (3.50)

Äe =  A +  +  y~2e2B1B j X ( , (3.51)

Ze =  (I -  y~2YfX e) - \ (3.52)

C€2 =  C2 + l - 2D2lB l X l + (3.53)

=  B2 +  y~2YtC f  D l2 +  €27 - 2y(C f (Oi21)T. (3.54)

Note that Ze is well-defined since p(XeYe) < 7 2 for all e G (0,e*).

Each controller of the form given in (3.46) is, by Lemma 3.2.1, also a doubly non
standard controller. Note however, it is not true in general that all doubly nonstandard 
controllers are expressible in this form for a fixed t > 0. Thus (3.46) on its own cannot 
be used to describe all doubly nonstandard controllers. In addition, it suffers from nu
merical problems. Even if solutions of the Riccati equations axe available, it is apparent 
from (3.47) that certain terms in M € diverge as e —*• 0.

A ltern ative  S tate Space description  o f all e-Controllers.

It can be easily seen from (3.46), (3.47) and (3.48) that through a simple scaling 
procedure, the following alternative expression of all e-controllers is available:

K e(s) =  L F T { M e, W e} ,  (3.55)

with the free parameter

W =   ̂  ̂ G (3.56)

which is subject to the constraint that

(  2 \  ‘J w t ) = *e 6 *>&■ <3-57)
The new scaled coefficient matrix in the above description of all e-controllers is given by:

A‘ +  B2FL + - H ^  Z M D i J Z . B i D n 1 \

M e(s) = FL

- d 21l C'2

0 D\2^
D2\  ̂ 0
D2\ l 0

2 o
 o

 
Cl

with constituent matrices defined in (3.49) -  (3.54). The above description of all e- 
controllers does not suffer the same numerical difficulties as (3.46) and is the key to 
finding a complete description of doubly nonstandard controllers.
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3 .4 .2  L im iting  B ehaviour o f e-Controllers.

The following lemma presents some properties of the alternative description of e-controllers 
which was presented in the previous subsection.

L em m a 3.4.1 Let G(s) be a doubly nonstandard plant realized as in (3.1), satisfying 
A . l , A .2 and A .3 . Suppose B\ and C\ are chosen according to Lemma 3.3.2. Let 
A z x  and A z y  be given by (3.23) and (3.24) respectively. Assume that there exists a 
7 -admissible controller for G(s) and let Xo andYo be the nonnegative definite stabilizing 
solutions of the AREs (3.43) and (3-44) respectively.

Then the state-space realization of M e given in (3.58) varies continuously with e and 
the following limit exists:

lim M € = M°, (3.59)
€ —►O

where
/  A A  F 2 F 0 0  + H00G2 - t f o o ZoB2Di2] B2Dl2L \

M° = F o e 0 £ > 1 2 ' d 12l

— D2l^ C2 Ö 2 1 * 0 0
- d 21l c 2 £ > 2 1 X 0 0 /

and

Foo =  - D i 2 t C i - D i 2 J- < 5 i - D i 2 t ( ö i 2 t ) T ß 2 r X 0 , A  =  A + t ^ B i B f X o ,
= Z o f - B i A ü '  -  B iD ii1- - Y 0C j ( D n ' )TD2i'), C2 = C2 + j - 2D21b J x 0, 

Z0 =  ( J - 7 - 2r 0X 0r 1, B2 = B2 + -y-‘2Y0CTDn .

Proof: Observe that the conditions assumed in the statement of this lemma ensure that 
those associated with Lemma 3.3.1 hold, which guarantees the existence of an e* > 0 such 
that V e 6 (0,e*), there exist nonnegative definite stabilizing solutions X e and Ye of the 
Riccati equations (3.21) and (3.22) which satisfy p(XeYe) < 72. Recall also from Lemma 
3.3.4, that X e, Ye and hence Zt vary continuously with e in the given interval. From this 
fact and from inspection of the formulae (3.49) -  (3.54), continuous dependence on e of 
each element of the state-space realization of M e (3.58) can be deduced.

Recall from the previous section that limiting values Xo and Yo of Xe and Ye exist. 
The following limits result: limc_ o ^ € = A, lime_>o =  Foo, lim ^oC^ =  C2 and 
lim€_>o j where formulae for these limits are given in the Lemma statement.
Observe that since p(XoYo) < 72, Zq — (I — 7~2Yo^o)_1 is weil defined and note that 
limc-^o Ze = Zq. It then follows that lim ^o =  Hoq.

The above facts establish the convergence of each block of (3.58) to the corresponding 
blocks of (3.60), except the blocks (4,1) and (1,4). The convergence of these blocks may 
be established by noting the following equalities:

ZeB ‘2D12L = Zt (B2D12L + € V 2n C 1T (D i2l )t D12l ) 

Zt{I -  r 2YtX e + -y-2YeX t )B2D12L
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+ t21- 2ZtYeC j(D l2^)TDx2L
=  B2D12L +  t27~2ZtY,C, (Di2±)TDi2±, (3.61)

- 0 2 i x C 2  =  -(B>2i±C2 + €27 - 2D211(3.62)

In deriving (3.61), we have made use of the identity (3.29). □

Whilst the above Lemma demonstrates the existence of M° (the limit of M e as e —► 0 of
the coefficient matrix of 7-admissible controllers for the e-augmented generalized plant), 
it coes not make clear how one can fully describe the freedom in Tioo control laws; this 
is addressed in the next section. With regard to the freedom in this parametrization, 
the identity (3.57) gives some hint as to the likely form of the parametrization for non
standard controllers. It follows from this expression that the limitations on the infinity 
norm of the transfer functions W f (i = 1,2,3) reduce as e becomes small, whilst these 
transfer function matrices must remain stable for finite e. The limitation on the infinity 
norm of N is maintained els e —* 0, however.

3.5  A ll ? io o  C o n tro llers  for th e  N o n sta n d a rd  P la n t.

The following theorem is the main controller pEixELmetrization result in this chapter. 
It presents a state-space construction of all 7-axImissible controllers for the doubly non
standard plant. The remainder of this section is concerned with a proof of this result.

Theorem 3.5.1 Let G(s) be a doubly nonstandard plant, realized as in (3.1), satisfying 
A . l , A .2 and A .3 . Let there exist at least one 7-admissible controller for G(s). Let 
B\ and C\ be chosen in accordance with Lemma 3.3.2. Let M° be defined as in Lemma 
3.).1 and define the set

K J =  [ K \ K  =  L F T { M a, ( ^ ^ { £ * ) } ,  1 , 2 , 3} .

(3.63)
Then /Cq is the set of all 7 -admissible nonstandard controllers,

1C =

We set about proving Theorem 3.5.1 by showing the set inclusions 1C C /Cq and 
KL] C 1C in Lemmas 3.5.3 and 3.5.4 respectively. Before proceeding, we present a 
number of results in the next subsection which are of utility in proving the main result.

3.5.1 Som e C ontinu ity  P ro p erties  o f Linear Fractional Transform a
tions.

To facilitate the proof of Theorem 3.5.1, the following lemma describes some properties 
of a particular class of lineax fractional maps.
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L em m a 3.5.1

1. Let M (s) be a proper, real-rational transfer function matrix with partitioning

(  M n (s) M12(s)
V ^ 2 1  (s) M22(s)

and the following properties:

a) M i2 (s) and M2 i(s) have proper inverses.

b) M 22 is strictly proper, (i.e. lim3_»oo M22{s) = 0.)

Then the linear fractional map

K  = L F T {M ,N }  =  M u +  -  (3.64)

defines a one-to-one relationship between real rational proper transfer function ma
trices K  and N . In other words, the mapping defined by (3.64) is invertible.

2. Let xp G IR* be a vector of real parameters. Suppose thai a family of state-space 
realizations of coefficient matrices M ^ for the linear fractional map in (3.64) is 
given, which satisfies properties a) and b) in 1 for the considered range of values of 
the parameter xp. Suppose also that one is given a family of state space realizations 
of either one of the real rational transfer function matrices N ^(s) or K ^(s) in
(3.64) - Suppose that each of the given realizations is continuously dependent on 
ip. It follows that there exists a state-space realization of a third system defined by
(3.64) (Le. either K^{s) or N^(s))  which depends continuously on xp.

3. Suppose a transfer-function matrix W ^(s) has a state-space realization with ma
trices continuously dependent on a parameter xp G ]Rk and suppose that W ^(s) G 
IlHoo for all values of the parameter of interest. Then IIW^H,» is a continuous 
function of the parameter xp.

Proof:
1. Suppose first that a proper real-rational N (s) is given. (I — M2 2 A’ ) - 1  is well-defined 
and proper since M 22 is strictly proper. Propemess of M \\,M \2 and M21 follow from 
properness of M . With K (s ) defined in (3.64), the above observations demonstrate that 
it is proper and real-rational.

Now suppose a proper real-rational K(s)  is given. With reference to (3.64), note that 
the quantity

N ( I  -  M22N ) - 1 = M f2\ K  -  Mi i )M2~11 =  V  (3.65)

exists due to the assumption l a ) .  Note that the quantity V = ~ ^ 1 1 )^2 1

is proper and real-rational. This follows from the properness of the inverses and
M2i (which was assumed in item 1 a)) and of both M\\  and K.  From (3.65), it follows 
that (I — V M 22)N = V.  Since V  is proper and M22 is strictly proper, the inverse
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(I  -  V M22 ) 1 is well defined. It follows that the real-rational transfer function matrix 
N  = (I — VM22)~1V  is uniquely defined, proper and satisfies (3.64).

2. Since all variations in the parameter ip are assumed to be such that the assumptions 
on the coefficient matrix M (s) in item 1 axe preserved for M^(s), the reasoning in the 
proof of part 1 applies.

State-space formulae for K ^ in terms of the ^-dependent matrices of the state-space 
realizations of N ^  and can be obtained directly from the expression (3.64) by re
peated application of state space formulae for system inversion and series and parallel 
connection which are summarized at the beginning of this thesis in the section entitled 
Notation, Definitions and Fundamental Results. Continuous dependence on ip of 
the resulting state-space realization for can be verified from these formulae.

Suppose now that a ip-dependent state-space realization of K ^ is given. State-space 
formulae for V" ,̂ as defined by application of the arguments in the proof of 1, can be 
calculated directly from those for M ^ and , again by using the state space formulae 
for system inversion and series and parallel connection. Continuous dependence of this 
realization on ip can again be verified from these formulae. From this state space de
scription of V^  and the given realization of M^, a state-space description of N ^  follows 
from the last equality in the proof of part 1. Continuous dependence of the state-space 
realization of N ^  on ip follows.

3. Since W ^(s) E IZTio0 for each value of ip we consider, it follows that is finite
for all u> E ]RU{oo}. Consider any transfer function matrix M(s) =  D + C (sl — Ä)~l B  E 
IZHoo• It is easy to check that for any a; G IRU{oo}, M (jv)  is locally a continuous 
function of the state-space matrices A ,B ,C ,D . In particular, this is true of W ^(s). 
Next recall that the state-space matrices in the given realization of W ^(s) are assumed 
to be continuous functions of ip. It follows that, for any given value of u  6 lRU{oo}, 
W^(juj) is a continuous function of ip. Since the singular values are always a continuous 
function of the given matrix-valued data (see e.g. Appendix A of [97]), it follows that

is a continuous function of ip for all uj E IRU{oo}.

It now follows from the definition ||W^||oo =  s u p ^ ^ y ^ }  (ju>)) that ||W^||oo is
also a continuous function of ip. □

Observe for future reference that:

• For e > 0 it follows that M e in (3.58) satisfies the conditions in part 1 of Lemma 
3.5.1.

• M° as defined in (3.60) also satisfies the conditions in part 1 of Lemma 3.5.1.
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3.5 .2  A necessary Structure o f all N onstandard  H o o  C ontrollers.

In this subsection, we demonstrate that all nonstandard Hoo control laws must neces
sarily have the structure of /Cg. This proof follows in two steps. First we show that 
the nonstandard H o o  control laws necessarily have the structure of a set /Cg which is a 
superset of and is closely related to /Cg. The second step of the proof is to show that is 
impossible for a nonstandard H o o  controller to be in /Cg and not in /Cg.

Before stating the next result, recall the following: M(s) £ 1ZA+ if M(s) is real- 
rational and analytic in 3£{s} > 0; M (s ) £ IZHoo if M{s) is real-rational and in Hoo 
; M (s)  £ IZHoo if and only if it is real-rational, proper and analytic in 3£{s} > 0; 
M {s)  £ W Z  if M(s)  £ IZHoo and ||M («JH«, < 7 -

Lem ma 3.5.2 Let G(s) be a doubly nonstandard plant, realized as in (3.1), satisfying 
A . l , A .2 and A.3 . Let there exist at least one 7 -admissible controller for G(s).
Let M° be defined as in Lemma 3.4-1 and define the set

lq, =  { K \ K  =  LFT{ Ma, ( * 2 ^  ) } ,  N e m ü ,  W( e  R.A+ (i =  1 ,2 ,3 )} .

(3.66)
Then the set of all 7 -admissible nonstandard controllers /C7 satisfies

JC clCQ.

Proof: Assuming /C7 is nonempty, take an arbitrary K  £ /C7 . Then by Lemma 3.2.2, 
3 e*(K) such that K  £ /C7 when 0 < e < Note that for each such e, M e satisfies
conditions a) and b) in part 1 of Lemma 3.5.1 and hence there is a unique W e £ TZHoo 
(see (3.56)) such that

K  =  L F T {M ', W ‘] =  LFT  (jW', (  ) )  (3.67)

and since K  is 7-admissible, it follows (recall (3.57)) that W e has the property:

(iw* (3-68)
Suppose one is given any state-space description of K (s ), along with the state space 

description of M e given in (3.58). Since the state-space realization of M e varies con
tinuously with e and K  is fixed, it follows from part 2 of Lemma 3.5.1 that there are 
state-space realizations of N{± and Wf (i =  1,2,3) which vary continuously with e. Re
call that M e —> M° as e —► 0 and observe that M 0 also satisfies the conditions of part 1 
of Lemma 3.5.1. Note therefore the existence of the limit

lime—*-0
N{, W{
Wj w$

N Wi \
w2 w3 ) ■

It follows from (3.68) that V e £ (0,e*(lC)), N^ £ BH'lQ- Since the state-space matrices 
which describe vary continuously with e, we can apply part 3 of Lemma 3.5.1 to
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conclude that ||iV||oo < 7- Since W f G 'TZ'H00{i =  1, 2, 3) when 0 < e < e*(K), it follows 
that G 1ZA+. The stated result follows. □

In the following lemma, the above result is sharpened to exclude the possibility that a 
nonstandard 7-admissible controller could be on the “boundary” of the set JCq. In other 
words, the aim is to extend the proof of the last lemma to show that N  G B'HZo an(i 
Wi G ^ 00(2 =  1, 2, 3).

L em m a 3.5.3 Let G(s) be a doubly nonstandard plant, realized as in (3.1), satisfying 
A .l  , A .2 and A .3 . Let B \ and C\ be chosen in accordance with Lemma 3.3.2. Let 
there exist at least one 7 -admissible controller for G(s) .
Let M°  be defined as in Lemma 3.^.1 and define the set /Cq according to (3.63). Then 
the set of all 7 -admissible nonstandard controllers K.1 satisfies

/C7 C /Cj.

Proof: Let K  be any controller in /C7. Observe by Lemma 3.5.2 that

K  = L F T { M \  (  *  * g ) } (3.69)

for some N  G BFQ0 and G 1ZA+ (i — 1,2,3). Moreover, observe that we can always 
find a state-space realization of these matrices since they are real and rational.

For any N  and (i =  1,2,3) as defined above, it will prove useful to consider
the following perturbations of the control law K(s),  which depend on the two variables
6, p> 0:

KP'6 =  L F T  I M { NP'6 W?'6
rp,6 LF T {*•,( (1 + 6 ) N ( s - p )  

W2( s - p )
W i ( s - p )  \ \  
W3( s - p ) ) j '

(3.70)
and note that lim^)P_o K p'6 = K- Note that the perturbed transfer function matrices 
N p'6 and Wf ' 6 (i =  1,2,3) have been chosen in a manner such that they will violate the 
constraints N p,s G and Wfi'6 G (z =  1, 2, 3) for sufficiently large p and/or 6.

Let e G (0,e*(K)) where e*{K) is defined by application of Lemma 3.2.2 to K. Since 
M e satisfies assumptions a) and b) in part 1 of Lemma 3.5.1, W p,6'e,Ni{S'e and W f'6,e (z =  
1,2,3) are uniquely defined via the following equalities:

K p'6 LF T  ,

(  N p[S,t W ('s'e \
\  W$At )  ’

(3.71)

(3.72)

with block partitioning compatible with that of the coefficient matrix M e of the linear 
fractional map above.

Given a state space realization of N  and W{ (z =  1,2,3), item 2 of Lemma 3.5.1 
confirms the existence of a state space realization of K p'6 defined via (3.70), whose
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constituent matrices are continuous functions of p and 6.

Since there exist state-space realizations of both K p,s and M e which axe continuous 
functions of p , 6 and e, it follows by part 2 of Lemma 3.5.1 that there exists a state- 
space realization of W p'S,e and thus also of iV ^ ,e and Wf'6'€ (i =  1,2,3), which vary 
continuously with e, 6 and p.

Observe by continuity that for any fixed e,

lim
0

/  N pAe WPlS,e N\ _  (  Nil \
\  W2M e

W €

where W e is the unique transfer function matrix which is defined by inversion of the 
linear fractional map in (3.67).

Recall that e E (0,e*(AT)). From the alternative expression of all e-controllers given 
in (3.55), (3.56) and from (3.57) in particular it follows that

( «WJ & j l ) - N ' e B K k .  (3.73)

Since it was established above that W p,6,e as defined by (3.71) has a state-space 
realization which is a continuous function of each of the parameters p, 6 and e, the 
following transfer function matrix also has a state-space realization continuous in each 
of these parameters:

u 0
t l

N ? f'€ ( I 0 ^  /
e W fA ‘

W £ ’s,< W $ A ‘) u )  ~  \V w i* *

By applying item 3 of Lemma 3.5.1 to this realization of N p,s,e and by recognizing the 
property (3.73), it follows that 3 p*(K, e) > 0 and 6*(K, e) > 0 such that provided both 
0 < p < p*(K,e) and 0 < 6 < 6*{K, e),

N p'6'e E BHU.

With the above restrictions on p and 6, it then follows from (3.71) that K p,s E K.]. This 
follows since we have shown that K p'6 can be expressed according to the alternative form 
for e-controllers as described by the identities (3.55), (3.56) and (3.57).

Since /Q C fC7 for any e > 0, we conclude that K p,s E /C7, provided both 0 < p < 
p*(K,e) and 0 < 6 < 6*(K,e). From Lemma 3.5.2, it follows that K p'6 E /Cq.

We now establish that K  E /Cq by contradiction: 

recall again that K  =  L F T {M ° ,  ̂ ^  ^   ̂} for some N  E and Wi E 1ZA+ (i =

1,2,3).  Suppose that K  E /Cg\/Cg; then either H-WHoo =  7 or has a jo;-axis pole for 
some i (or both). If this is the case, then it can then be easily seen from the definition 
of K p'8 that at least one of the following conditions hold V 6, p > 0:

1. H a llo o  > 7.
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2. At least one of W?'S £ 1ZA+ (i = 1,2,3).

This allows one to conclude that K p,s 0  /Cg, which contradicts the previously established 
conclusion that K p,s £ /Cg. Thus we conclude that K  G /Cg. □

3 .5 .3  T he C ontroller S tru cture is also sufficient.

The following lemma establishes the reverse inclusion to that of Lemma 3.5.3, and thereby 
proves the theorem stated earlier which says that /Cg = /C7 .

Lem m a 3.5.4 Let G(s) be a doubly nonstandard plant, realized as in (3.1), satisfying 
A . l , A .2 and A .3 . Let there exist at least one 7 -admissible controller for G(s).
Let M ° be defined by Lemma 3.4-1 and define the set /Cg according to (3.63), then

/CJ C/C7

where /C7 denotes the set of all 7 -admissible controllers for G(s).

Proof: Take any K q G /Cg. By definition, there exists an N  G BTf7 , and G VSK^ (i =  
1,2,3) such that

K q =  LFT| m °, (  ^  {£)} .  (3.74)

Note that M° satisfies the assumptions in part 1 of Lemma 3.5.1 and thus N  and 
(i = 1,2,3) are unique.

Note that M € also satisfies the assumptions in part 1 of Lemma 3.5.1 for any e > 0. 
A consequence of this is that for any e > 0, the following equality uniquely defines a 
transfer function matrix We(s) satisfying:

k0 = lft{m',w'} = lft{ m',(Zi ) } -  <3-75)

Since K q is fixed and the state-space realization of M € is a continuous function of e 
(something guaranteed by Lemma 3.4.1), one can apply part 2 of Lemma 3.5.1 to (3.75) 
to reveal that W e (and each of its partitions) also has a state-space realization which is 
a continuous function of e.

Observe also that since M € —> M°, it follows from (3.75) together with (3.74) that

lim
e —►O

Ni 1 W { \  _  (  N  Wi \  
w 2 W$ )  ~ v w 2 WZ ) •

Note that since each of the component matrices of this limit are stable by hypothesis, it 
follows that there exists an c{Kq) > 0 such that when £(Ko) > e > 0, W e and each of its 
partitions are in IZTioo-
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With the definition

) (
I  0
0 €

note that

where N  is defined according to the identity (3.74). Since N  is, from the definition of 
/Cj, in B'HIq, we can apply part 3 of Lemma 3.5.1 to iV€, to conclude that 3 €(Kq) s.t. 
when 0 < e < i(Ko),

Thus with e(Ko) =  min(e(Ä'o)?e(ifo))> e £ (0,i(fCo)) guarantees that both W e £ 
'n'Hoo and that the constraint (3.76) holds. These facts, together with the identity
(3.75), are enough to ensure that K q E /CJ. This follows from the discussion of the 
alternative form for Hoo controllers given in subsection 3.4.1. Recall from Lemma 3.2.1 
that for any e >  0, /CJ C  /C7 . The stated result that /Cg C /C7  follows directly from the 
last two observations. □

Lemmas 3.5.3 and 3.5.4 together establish Theorem 3.5.1 which is the main result 
of this section; /Cg =  /C7 . The explicit construction of this set given in the Theorem 
statement constitutes a full state-space characterization of the set of all 7-admissible 
controllers for the doubly nonstandard (case 2) plant G(s). We shall not be concerned 
with the proofs for singly nonstandard plants (cases 1 and 3) since they follow by com
pletely analogous means, and are somewhat simpler than the proof for the doubly non
standard case. The controller existence and parametrization results for cases 1 and 3 are 
summarized in the next section.

3 .6  S u m m a ry  o f  th e  M ain  R esu lts .

The Hoc controller existence and parametrization results for case 1,2 and 3 nonstandard 
plants are summarized in this section. These results, together with the standard (case 0) 
results (see section 2.3), constitute a full solution of the state space Tioo problem without 
signal dimension restrictions which was introduced in Chapter 2. We now recount the 
problem statement and assumptions for convenient reference.

Given a generalized plant G(s), realized as follows:

(3.76)

(3.77)

which satisfies the following assumptions:

A .l  (A, B2 ) is stabilizable and (C2,A) is detectable.
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A .2 Both D \ 2  and D21 are full rank.

A .3 Neither ^ 1 2 (5 ) nor G2 i(s), as described by the state space realization in (3.77), 
have imaginary axis invariant zeros.

Find all FDLTI control laws K(s) which ensure that the closed loop mapping T^v(s) is 
internally stable and ||T^||oo < 7.

Riccati Equations for Controller Existence and Parametrization.

The algebraic Riccati equations required in the expression of the main results of 
the present Chapter are summarized next. Two of these equations have already been 
introduced in this chapter in the doubly nonstandard derivation. The other two equations 
axe the AREs which appear in the standard results summarized in section 2.3. These 
equations are required in the expression of the singly nonstandard results.

• When JDia is standard (i.e. nz > nu), consider the equation

0 =  X 0(A-  S 2Di2, Ci) +  (A -  B2£>i2,C i)r X0 (3.78)

+ X o i - r ^ B iB j  -  B2Di2t (Oi2, )r B j)X 0 + C%(Du1)7D 12LCU

where D\2  ̂and Z?i2± satisfy the following relation

( dS  ) ( 012 M T  ) =  ( 0  (3J9>
• When D 13 is nonstandard (i.e. nz < nu), consider the equation

X 0A z x  + A z x TX o +  X o ^ B i B f  -  B2Du Hd 12<)t  B%)X0 =  0, (3.80)

with A z x  — A — B2D\2^Ci — Bi Dw ^C i , where Di2* and D\2 -1 satisfy the following 
relation

( (z>«V ) ( °12± ) = ( 0 ) - <3-81>
and where C\ is chosen according to Lemma 3.3.2 such that it stabilizes the con
trollable subspace of the pair (A — B 2 D\2 ^C\2 — B 2 D 1 2 1).

• When D 31 is standard (i.e. ny < nw), consider the equation

0 =  Y0(A -  B i D2i , C2)t + (A -  B 1D2i tC2)Y0 (3.82)

+  Y o i - y - ^ C x  -  CJ(D211)t D2i 'C2)Y0 + B 1D21L(D2l1)T B f ,

where D2i ' and D2i 1 satisfy the following relation

(  ( A u V  )  ( ° 21' ° 2lL ) =  (  0 I )  • (3’83)

• When D 31 is nonstandard (i.e. ny > nw), consider the equation

Y0A z y t + AzyYo + Yoi-r^C jC i  -  =  0, (3.84)
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with A z y  =  A — BiD2i^C2~BiD2iLC2, where D2S and satisfy the following 
relation

( S '  )  ( 021 ^ L)T) =  (  0 ) .  (3-85)

and where B\ is chosen according to Lemma 3.3.2 such that it stabilizes the ob
servable subspace of the pair (—D2iLC2, A — B1D2SC2).

Nonstandard 'HOQ Controller Existence and Parametrization Results.

Theorem  3.6.1 (Case 1) Given a singly nonstandard generalized plant (3.77), satis
fying assumptions A .l ,  A .2 and A .3 for which D\2 is nonstandard and D21 is standard, 
let D i2* and D121 satisfy (3.81) and let D21* and D211 satisfy (3.83). Let C\ be chosen 
such that it stabilizes the controllable subspace of the pair (A — 02012^1, — 02£>i2'L)-

Then a 7-admissible controller for G(s) exists if and only if the AREs (3.80) and 
(3.82) have stabilizing solutions X q > 0 and Yb > 0 which satisfy p(X qYq) < 72.

Moreover, under such conditions, every ^-admissible controller K(s) can be expressed
as:

f  A  -+- .0 2 -^ o o  ■+■ 0 0 0 ^ 2 -0OO : Z qB 2D \2^ B 2D i 2L \
Foo 0  : £>12* D l 2 X

\  -V21C2 V 2 1  i 0 0 /
K (s ) =  LF T < 

with free parameters
n (s) e B H lo , W(s) e nUoo.

Here V21 any square matrix (not necessarily symmetric) which satisfies

N
W

(3.86)

vgv2i = (D2l D ^ r l

and the remaining matrices are defined as

Foo =  - D 12'C i - D 121C1 ~ D 12' ( D n ])TB2TX 0, Ä 

Hoo =  Zo(-Si£>2i, - r o C j ( D 2i , )T02 it) ,  c 2 
Z0 = ( I - y - 2YoX0) - \  B2

A + y~2B iB j  Xo, 
C2 + ')- 2D21B ’[ X q, 
B2 + 7 - 2Y0C ?D 12.

Proof: This result can be proven in a manner completely analogous to that for the 
doubly nonstandard plant. The details of the proof are therefore omitted. □

Theorem  3.6.2 (Case 2) Given a doubly nonstandard generalized plant (3.77), satis
fying assumptions A .l, A .2 and A .3 and for which both D12 and D21 are nonstandard, 
let D21* and D211 satisfy (3.81) and let and ■Di2‘L satisfy (3.85). Let C\ be chosen
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suck that it stabilizes the controllable subspace of the pair (A — B 2D\2^C\, —B2D121 ) and 
let 3\ be chosen such that it stabilizes the observable subspace of the pair {—D21 1C2 ,A  —

Then a 7 -admissible controller for G(s) exists if and only if the AREs (3.80) and 
(3.84) have stabilizing solutions X q > 0 and Yo > 0 which satisfy p{XqYq) < j 2.

Moreover, under such conditions, every 7 -admissible controller K(s) can be expressed 
as:

K{>) =
Ä + B2F0„ +  h x c 2 -Hoc ' ZqB2D\2^ B2D u l \

Foo 0 : £>12T D n 2-
-£>21* C2 £>21* 0 0
- d 21l c 2 ^ 211 ; 0 0 /

with free parameters

(3.87)

N Wi \
w 2 w 3 )  '

N(s)  S BTQo , Wi(a) 6 TCWco (i =  1,2,3),

and the definitions

=  - D 1̂ C 1 ~ D n ±C1 - D u ' ( D ^ ) TB2TXo, Ä =  ,
ff»  =  Z o(-ß iD 2i, - S i f 5 2i J- - > o C |’(f)2it):r0 2 it), C2 = C2 + y - 2D21B f X 0, 

Zo = (I -  ~i-2Y0X0) - \  B2 = B2 + 'y-2Y0C [ D 12.

Proof: The proof of this result is presented in the body of the present chapter. □

Theorem  3.6.3 (C ase 3) Given a singly nonstandard generalized plant (3.77), satis
fying assumptions A .l ,  A .2 and A .3 and for which D\2 is standard and D21 is nonstan
dard, let D\2^ and D i2'L satisfy (3.79) and .D21* and D2\ L satisfy (3.85). Let B\ be cho
sen such that it stabilizes the observable subspace of the pair (— A — B \D 2\*C2)■

Then a 7-admissible controller for G(s) exists if and only if (3.78) and (3.84) have 
stabilizing solutions X q > 0 and Yq > 0 which satisfy p{XqYq) < 72.

Moreover, under such conditions, every 7 -admissible controller K(s) can be expressed
as:

K(s)  = L F T  i 

with free parameters

/  Ä  + B2F00 + H ooC2 -Hoo : b 2v12 \
Foo 0 V12

— T>21̂  C2 Zq 021* • 0
V —D21±C2 £>21X 0 /

, ( N  W ) > (3.88)

N(s)  £ BKU , W { s ) e 1 i n (
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Here V\ 2  is any square matrix (not necessarily symmetric) which satisfies

V 1 2 V &  =

and the remaining matrices are defined as

F0o =  ( - D 12̂ C1 - D l2'(D u ')TB^Xo)Zo, Ä = A + j - 2Y0C jC u
Hx  = - B iA n ' -  B l D2i L -  VoCj(D2i, )T0 2 it , C2 = C2 + l - 2D21B jX 0,

Z0 = ( I - 7- 2Y0X 0) - \  =  B2 + -r-2Y0C fD 12-

Proof: This result follows by application of the case 1 result to the transpose of the 
case 3 plant. Transposition of the resulting existence conditions and controller formulae 
give the above result. □

3 .7  C o n c lu sio n s a b o u t th e  P la n t A u g m en ta tio n
A p p roach .

This chapter has addressed the nonstandard cases of the state-space Tioo controller 
synthesis problem without signal dimension restrictions which was introduced in Chapter 
2. A special case of this problem is the so-called standard problem (case 0) in which an 
additional assumption is made concerning the comparative dimensions of some of the 
input and output signal spaces of the generalized plant. Results for the nonstandard 
plants (cases 1-3) have been presented in this chapter which, together with the standard 
result (case 0), constitute a full solution of the state space 'H00 problem posed in Chapter 
2.

The approach developed to solve the nonstandard problems relies on a parametrized 
augmentation of the nonstandard plant followed by application of standard Hoo results 
and limiting arguments. A detailed proof has only been provided for case 2 (doubly 
nonstandard) plants since completely analogous and somewhat simplified reasoning is 
required to prove the case 1 and case 3 (singly nonstandard) results.

Aside from the preliminary calculation of the augmentation matrices C\ and/or B\ 
(which involve standard manipulations only), the computational burden associated with 
the nonstandard results is the same as that for the standard case. As in the standard 
case, the resulting existence conditions depend on the solution of two algebraic Riccati 
equations and the satisfaction of a bound on the spectral radius of their product. Analo
gous to the standard case, the set of all 7-admissible controllers can be expressed in terms 
of a linear fractional transformation with a coefficient matrix which can be constructed 
using the Riccati equation solutions. It is well known that standard Tioo controllers are 
parametrized by a free bounded real transfer function matrix. In the nonstandard case, 
additional degrees of freedom in the form of stable transfer function matrices.
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Further discussion of the nonstandard results is postponed until section 4.6 of Chapter 
4. In Chapter 4, an alternative approach is presented to solving the same nonstandard 
T i o o  problems. Section 4.6 also contains a comparison of the results obtained via the two 
different approaches.



Chapter 4

N on stan d ard  W o o  S yn th esis v ia  a  
L ossless D eco m p o sitio n  and th e  
Y oula P aram etrization .

Summary.

Like Chapter 3, the present chapter addresses the nonstandard state-space Woo con
trol problem without signal dimension restrictions, which was introduced in Chapter 2. 
Both existence conditions and controller parametrizations are presented for each type 
of nonstandard generalized plant. As in Chapter 3, controller existence results are ex
pressed in terms of a pair of algebraic Riccati equations, together with a constraint on 
the spectral radius of the product of the solutions to these equations. The derivation 
of the existence result employs the quadratic matrix inequalities and associated rank 
conditions which were derived for a more general (singular) Woo problem in [98]. The 
controller derivation presented in this chapter draws upon the well-known state-space 
results for the parametrization of all stabilizing controllers as well as on the param
etrization of all standard Woo controllers. Controller parametrizations are derived by 
reducing the doubly nonstandard problem to a related standard Woo problem. The first 
step in this process is to construct the so-called temporary generalized plant via a lossless 
transformation of the original generalized plant. The temporary plant is equivalent to 
the original plant in the sense that the family of Woo controllers is identical for both. 
In this sense, the approach bears close similarities with the well known derivation of 
standard Woo controllers (see e.g. [32]). In contrast with the standard case however, the 
temporary plant is not directly amenable to application of standard output estimation 
Woo results.

Instead, a state-space construction of the Youla parametrization is next applied to 
describe all stabilizing controllers for the temporary plant. A new and equivalent Woo 
problem is then posed; choose the Youla parameter such that the closed loop for the 
temporary plant is bounded real. Introducing the temporary plant has the important 
consequence that it enables all internally stable closed loop systems to be described as 
a linear fractional map with a coefficient matrix which has the same order as that of
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the plant, when this coefficient matrix would otherwise normally have twice the plant 
order. It turns out that the new and equivalent Hoo problem can be easily reduced to 
a standard output estimation Hoo synthesis problem, to which the well-known standard 
state-space Hoo results of [32] can be applied. The result is a state-space description 
of the required subset of Youla parameters. A formula for all Hoo control laws for 
the temporary generalized plant is then derived by substituting the description of this 
subset of Youla parameters into the parametrization of all controllers which stabilize the 
generalized plant.

The final controller form differs slightly from that which was derived using the parametrized 
plant augmentation approach described in Chapter 3. However, the parametrizations are 
equivalent in that they both describe all Hoo control laws. This equivalence is estab
lished in the final section of this chapter. The chapter concludes with an interpretation 
of the nonstandard state space Hoo results. The proof techniques used in each approach 
are also compared.

4.1 Controller E xistence Conditions.

Recall the class of state space realizations of generalized plants which were introduced 
in Chapter 2:

A Bi B2
0 D12

C2 -£>21 0

G(s)

Recall also that we make the following assumptions on the realization of G(s):

(4.1)

A .l  (A, B 2 ) is stabilizable and (C2 ,A) is detectable.

A .2 Both D \2  and D21 are full rank.

A .3 Neither G i2(s) nor £ 21(5), 35 described by the state space realization in (4.1), have 
imaginary axis invariant zeros.

Existence conditions for a more general class of so-called singular problems are con
sidered in [98], where no assumptions are made on either the rank or shape of the 
feedthrough matrices D 12 or D2 1 . The conditions obtained there are expressed in terms 
of quadratic matrix inequalities and are summarized in Lemma 4.1.1 in the next sub
section. The objective in this section is to specialize the result of [98] to the class of 
plants where assumption A .2 holds in addition to assumptions A .l and A .3 . The main 
conclusion is that the existence conditions of [98] can be expressed equivalently in terms 
of the existence of nonnegative definite stabilizing solutions of a pair of algebraic Riccati 
equations which are easily solvable using standard software. This constitutes an impor
tant insight since software, especially commercial software, for solving quadratic matrix 
inequalities is not in widespread use.
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Only doubly nonstandard (case 2) plants, as defined in subsection 2.6 of Chapter 2, 
are treated. Proofs for the singly nonstandard case 1 and case 3 generalized plants follow 
completely analogous reasoning. For simplicity throughout this chapter, we set 7  =  1, 
without loss of generality. Having established results for the 7 =  1 case, they can easily 
be applied with 7 ^  1 by simple scaling of the state-space data. For example, one can 
apply results for 7  =  1 to a generalized plant which has B\ replaced by 7 - 1Hi and D21 
replaced by 7 _ 1i)2l-

4.1.1 Singular Hoo Existence Conditions via Quadratic Matrix Inequal
ities.

For reference, we restate the main result of [98] which presents necessary and sufficient 
conditions for the existence of Hex controllers in terms of a pair of quadratic matrix 
inequalities. We now recall Theorem 2.1 of that paper, incorporating minor changes in 
notation and emphasis.

Adopting the notation introduced in (4.1) for the generalized plant, we define four 
matrix valued functions of the n x n square matrices X  and Y , where n is the dimension 
of the state space of the generalized plant:

F(X)

H(Y)

L(X,s)

M (Y ,s)

(  At X  + X A  + C fC 1 + X B iB y X  X B 2 + C [D l2 \  ,,
l  + Dj2Dl2 ) ’ (4'2)
f  A Y  + Y A t  + B \B i +  y C fC iF  Y C f +  B iD j, \  , ,  „
l  C2Y + D21B? D2lD l  )  ' <4'3>
( s i - A -  B\BjX-B2 ) ,  (4.4)
( s I - A - Y G ^ y  (45)

Lem ma 4.1.1 Given a generalized plant G(s) with state space realization (4-1) satisfy
ing assumptions A .l and A .3, an 7i0Q controller exists if and only if there exist solutions 
X  > 0 and Y  > 0 to the quadratic matrix inequalities F( X)  > 0 and H{ Y ) > 0 which 
satisfy p ( XY)  < 1 and for which

1. rank{F,(A)} =  normrank{Gi2(s)}.

2. rank{#(Y)} =  normrank{G2i(s)}.

3. When 3£{s} > 0,

rank ( ^p fy S\ "] = n + normrank{Gi2(s)}. (4.6)

4. When > 0,

rank ( M(Y, s) H(Y)  ) =  n-F normrank{G2i(s)}. (4.7)
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The objective of the present section is to establish necessary and sufficient conditions 
for the existence of nonstandard controllers by using the above quadratic matrix inequal
ities and rank conditions. We shall thus examine these conditions for the special case 
where assumption A .2 is maintained, i.e. the feedthrough matrices D 12 and D21 are full 
rank.

4.1.2 S ta tem en t o f th e  N on stan d ard  C ontroller E xistence C onditions.

Recall that for doubly nonstandard (case 2) plants, nu > nz and nw < ny. Recall also 
from section 3.1 of Chapter 3 how matrices and D 12"*" can be constructed which 
satisfy the following relation:

(  (D nhT )  (  ° 12' ° 12± )  =  (  0  )  • <4 -8 >

Likewise, recall how matrices D2 1  ̂ and D 2 11 can be constructed which satisfy the fol
lowing relation:

( S' ) ( 021 {D̂ T ) = ( 0  I  ) • (4-9>

We now state the main existence result for doubly nonstandard Tdoo controllers. It 
should be noted that the Lemma is expressed in terms of two matrices Lp and Lh 
which must be constructed before the Riccati equations can be solved to check for the 
existence of controllers. The choice of these matrices is governed by the right half plane 
invariant zeros of Gi2 (s) and G2i(s). Section 3.1 of Chapter 3 contains a discussion of 
how it is possible to calculate the invariant zeros of the state space realizations of G i2(s) 
and (j 2i (s), 35 given in (4.1). The matrices Lp and L h may be constructed using the 
canonical forms which axe introduced in in section 3.1. A discussion of exactly how Lp 
and Lh may be calculated is presented after the lemma statement.

Lemma 4.1.2 Suppose one is given a generalized plant G(s) with realization (4-1) sat
isfying assumptions A .l, A .2 and A .3 and with both D \ 2  and D 21 nonstandard, i.e. 
nz < nu and nw < ny . Let , D 121 , 1̂ 21̂  and Z^i1 be defined as in (4-8) and (4-9). 
Define

Azf — A — -8 2 1 1̂ 2 ^ 1  4- B2D\2LLp (4-10)

with Lp chosen such that it stabilizes the controllable modes of the pair

( A -  BiDu'CuBiDn^-).  (4.11)

Similarly, define

Azh — A — BXD2l'C2 + Lh D2\LC2 (4.12)
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with L h chosen such that it stabilizes the observable modes of the pair

( D n ^ A - B ^ C i ) . (4.13)

A necessary and sufficient condition for the existence of a 7 -admissible controller for 
G(s), is that there exist stabilizing solutions X ,Y  > 0 of the following algebraic Riccati
equations:

X A zf  + A z f t X  + X f S i S /  -  B2Du '(D 12])t B2t }X = 0, (4.14)

y a z h t + A z h Y  + y[C ir Ci -  =  0 , (4.15)

which satisfy the coupling condition

p(X Y) < 1. (4.16)

By stabilizing solutions of (4-14) and (4-15), we mean ones which ensure that the eigen
values of the following matrices are all in the open left half plane

Ax = A ZF + (BxB l - B 2Du '(D l2') TB l)X ,  (4.17)

A y  =  AzH + Y i C f C i - C j i D ^ f D ^ C ^ .  (4.18)

When they exist, stabilizing solutions of the above Riccati equations are independent of 
the particular choice of LF and Lh , provided these matrices are chosen as described 
above.

Let Vp be a full column rank matrix with column space corresponding to the controllable 
subspace of the pair (A — B 2D i2^C\, -B2-D121) and let V# be a full row rank matrix with 
row space corresponding to the observable subspace of the pair (D2\ LC2 ,A  — B \D 2i*C2)- 
Then it follows that stabilizing solutions of the above Riccati equations satisfy

X V F = 0 and VHY  =  0. (4.19)

C onstruction of the M atrices LF and L h in the Controller Existence Condi
tions.

We now consider how the matrices L f and L h can be constructed as described in 
the above lemma statement. The construction of such matrices is an important step 
in checking the controller existence conditions. As will become apparent later, these 
matrices also appear in the state-space construction of the parametrization of all doubly 
nonstandard Tioo controllers.

We construct L f and L h with reference to a controllability canonical form for (A — 
B2D \2 *C\, B 2D \2L) and an observability canonical form for (D2i 1C2 , A — 01^21^2)» 
respectively. In section 3.1 of Chapter 3 it was shown how such canonical forms may be 
constructed. For convenience, we now recount these results.

C onstruction of the M atrix Lf .
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With £>12 nonstandard, the invariant zeros of Gi2 (s) are the uncontrollable modes of 
(A — #2-Di2*Ci, B 2D\2L). Let Vp denote a matrix of full column rank whose column 
space is the controllable subspace of this pair. Let Uf be any full rank matrix whose 
column space is complementary to that of Vp. Then the matrix

T =  ( Up Vp ) (4.20)

is a square, invertible state-space basis transformation which results in the controllability 
canonical form:

T - \ A  -  B2Dn 'Cx)T  =  (  £  )  , (4.21)

T ~ l B2D l2L = ( ß F ) -  (4-22)

Here the invariant zeros of Gi2 (s) axe the eigenvalues of Aq and the pair (Ai, ßp) is 
controllable.

Consider now how a matrix Lp  may be constructed which ensures the stability of the 
subset of eigenvalues of Azf =  A — B2D\2^Ci -I- B2Ü\2LLf which correspond to the 
controllable subspace of the pair {A — B2D\2^C\, £ 2 -^12 'L): without loss of generality, 
observe that any Lp  can be described as

Lp  =  (Lpi Lp2)T~1, (4.23)

and observe that in the new basis,

T ~l A ZFT  =  (  Aoi + 0 f L fi  Al  +  ßFLF2 )  ' (4-24)

Hence with Lp2 chosen such that ap = A\  -I- ßpLp 2 is stable and with Lpi  arbitrarily 
chosen, the stability of the modes of A zf corresponding to the controllable subspace is 
guaranteed.

Construction o f the M atrix Lh •

With D21 nonstandard, the invariant zeros of G2i(s) correspond to the unobservable 
modes of the pair (D2i LC2 ,A  — J9i£>2i*C2). Let V# denote a matrix of full row rank 
whose row space is the observable subspace of this pair. Let Uh be any full row rank 
matrix whose row space is complementary to that of V#. Then the matrix

u = ( UvB ) (4-25)

is a square, invertible state-space basis transformation which results in the following 
observability canonical form:

U(A -  B 1D2i ‘'C2)U -1 = (  “ ° )  (4.26)

D21LC2U~l = ( 0  ßa ).  (4.27)

Here the invariant zeros of Cx2i(s) 3X6 the eigenvalues of cxq and the pair ( )  is
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observable.

Consider now how a matrix Lh may be constructed which ensures the stability of 
the subset of eigenvalues of Azh =  A — B \D 2 \^C2 +  L h D2 \ LC2 which correspond to 
the observable subspace of the pair (Z?2l'LC,2> A ~ without loss of generality,
observe that any Lh can be described as

l *  =  (4-28> 

and observe that in the new basis,

W ‘-( o" Ä ) '  <“ »>
Hence with Lh 2 chosen such that a #  =  a i +  Lh 2Ph is stable and with Lh 1 arbitrarily 
chosen, the stability of the modes of A zh corresponding to the observable subspace is 
guaranteed.

4 .1 .3  A  R e-exp ression  o f th e  Singular E xisten ce R esu lts for N o n stan 
dard P lan ts.

Before proceeding, we re-express the conditions 1~4 of Lemma 4.1.1 for the case of 
doubly nonstandard plants in terms of Riccati equations instead of Riccati inequalities. 
The following Lemma constitutes an intermediate step in the proof of the existence 
conditions.

Lemma 4.1.3 Given a generalized plant G (s) with state space realization (4-1) satisfy
ing assumptions A .l, A .2 and A .3, the conditions of Lemma 4-1-1 may be reexpressed 
as follows:

•  A solution X  > 0 of the quadratic matrix inequality F( X)  > 0 satisfies conditions
1 and 3 of Lemma 4-1-1 if and only if X  is a solution of the algebraic Riccati 
equation

(.A -  B2D ^ C x)t X  +  X (A  -  B2D l2'C i) +  X ( B 2B j  -  B2D l2\ D n ')TB%)X =  0,
(4.30)

X  also satisfies

X B 2D i21 =  0, (4.31)

and results in the following pair being stabilizable

(A -  B2Di2, C1 +  B i B f X -  B2D 12'(D 12')t B%X, B r f u 1 ) . (4.32)

• A solution Y  > 0 of the quadratic matrix inequality H (Y ) >  0 satisfies conditions
2 and 4 of Lemma 4-1-1 if and only if Y  is a solution of the algebraic Riccati
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equation

Y(A  -  S 10 21, C,2)T + (A -  B 1D2i 'C2)Y  + y (C iTCi -  C2T(D2i')TD2J C 2)Y  =  0,
(4.33)

Y  also satisfies

D21l C2Y  = 0 (4.34)

and results in the following pair being detectable

(. D21l c 2, A- BiD n 'C i  + Y C j C i  -Y C % {D 2i ' )t D2 (4.35)

Proof: Condition 1 of Lemma 4.1.1 says that with X  > 0 such that F(X)  > 0, 
rank{ir(X)} =  normrank{Gi2(s)}. Since we assume here that D12 is nonstandard and 
full row rank, this means that normrank{Gi2(s)} = rank{Di2} = nz.

Observe now that for any invertible matrix M, rank{F(X)} = rank{MTF(X)M }.  
Also observe that for such an M, F( X)  > 0 if and only if M TF ( X ) M  > 0. Next define 
the following invertible matrix

J In 0 0
0 D\2^

(  In 0 0 \
- ( ( D 12t)TB j X + C i )  J„, 0

\ 0 0
(4.36)

Straightforward algebra can be employed to verify that

/  U( X)  0 \
J t F ( X ) J  =  0 In, 0 , (4.37)

V (Dn̂B̂X 0 0(n. _ n, )

with the definition:

K( X)  = (A -  B2D 12'Ci)TX  + X ( A  -  S 2£>i2,C i ) +  X ( B i B j  -  B2£>i2, (Di2, )T£ 2 )*•
(4.38)

The matrix given in (4.37) is nonnegative definite and has rank nz if and only i f lZ(X)  =  
0, i.e.

( A - B r f n ' C x f X + X ( A - B 2Dn ' C i ) + X ( B 2B l - B i D n ^ D u l ) 7 B%)X =  0, (4.39)

and simultaneously
X B 2 D 1 2 =  0 . (4.40)

Condition 3 of Lemma 4.1.1 says that when 3ft{s} > 0,

rank ^ ^ =  n +  normrank{Gi2(s)} =  n + nz. (4.41)

Note that for any invertible matrices M  and N  having appropriate dimensions, 

rank (  N( )  A /) =  rank ( (4.42)
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Provided condition 1 of Lemma 4.1.1 holds, i.e. (4.39) and (4.40) are true for some 
X  > 0, it can again be verified by straightforward algebra that

f  In 0
V 0 J T

L(X,8) \  
F( X)  ) J

{ s i -  A -  B xB \ X  +  B2D12HDi2])t B%X 4- B2D12'C i
0  n x n

\
0
0

0
0

I n z
0

- b 2d u l \  
0 
0

0 ( n u n z ) )

Observe that the rank condition in (4.41) is equivalent to the above expression having 
rank n +  nz in the closed right half plane. Hence provided (4.39) and (4.40) hold, an 
equivalent statement of condition 3 of Lemma 4.1.1 is that the following matrix has full 
row rank in the closed right half plane:

[ s i - A -  B x B jX  + B2D12H D i^)TB j X  + B2Dn 'C i - B 2D12L ) , (4.43)

or equivalently that the following is a stabilizable pair:

(. A -  B2D12'C i + BiBfX-  B2, ) . (4.44)

Condition 1 of Lemma 4.1.1 says that with X  > 0 such that F( X)  > 0, rank{F(X)} =  
normrank{Gi2 (s)}. Since we assume here that Di2 is nonstandard and full row rank, 
this means that normrank{Gi2 (s)} =  rank{Di2} =  nz.

Analogous reasoning to the above can be used to establish that a matrix Y > 0 
such that H ( Y ) > 0 satisfies conditions 2 and 4 °f Lemma 4.1.1 if and only if Y  is a 
nonnegative definite solution of the ARE (4.33) which satisfies (4.34) and for which the 
pair (4.35) is detectable. □

4.1.4 Proof of the Nonstandard Existence Conditions.

Since A .l and A.3 hold for the plants considered here, the existence conditions presented 
in Lemma 4.1.1 of subsection 4.1.1 apply. With this in mind, we shall prove the necessity 
and sufficiency of the nonstandard existence conditions given in Lemma 4.1.2. These 
proofs draws upon the re-expression of the singular existence conditions presented in the 
previous subsection.

Proof of Necessity.

If an Woo controller exists for (4.1), then matrices X  > 0 and Y  > 0 exist which satisfy 
F( X)  > 0, H ( Y ) > 0, p(XY)  < 1 and which ensure satisfaction of the conditions 1~4 
in Lemma 4.1.1. Using Lemma 4.1.3, we shall now show that the existence conditions 
stated in Lemma 4.1.2 follow as a necessary consequence of the above facts.

From Lemma 4.1.3, X  > 0 as defined above satisfies the ARE (4.39), the identity 
(4.40) and ensures that the pair (4.44) is stabilizable. We now show that this also 
guarantees that X  solves the ARE (4.14).
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If we right-multiply the ARE (4.39) by the matrix B2 Ö 1 2 1  and use the identity (4.40), 
we obtain X ( A  — B z D d C i j B z D w 1' =  0. More generally, an inductive argument is now 
given which shows that the following identity holds for all nonnegative integers i:

X (A  -  B2D\2Ci )'B2D = 0. (4.45)

Suppose that (4.45) holds for some nonnegative integer i. If we then right-multiply (4.39) 
by the matrix (A — B2D[2C i )1 B2D i2, then it follows that X{A — B2D\2Ci)t+1 B 2D12 =  0. 
Thus the row space of X  is perpendicular to the controllable subspace of the pair

( A - B 2D[2Cu B2Dt2) .  (4.46)

It follows immediately that XVp = 0 since the column space of Vp by definition spans 
the controllable subspace of the pair (A — 52^12^1» B 2D121). If one now introduces 
the basis transformation T  as defined in (4.20), corresponding to the canonical form in 
(4.21) and (4.22), it follows that

T t X T  =  (  *  0  )  , (4.47)

with partitioning conformal to that in the canonical form and nonzero in general.

Since the pair (4.44) is stabilizable, it follows that there exists a matrix L E ]R,(n“~n*)Xn 
such the following matrix is stable

A -  B2Di2tCi + B i B f X  -  B2D ^ ( D ^ ) t B ^ X  + B2D12l L. (4.48)

Note that any matrix L as given in (4.48) can, without loss of generality, be expressed 
as

L = ( h  L2) T ~ \  (4.49)

where L\ and L2 have the same number of columns as Ao and A\,  respectively. It can 
be verified that, as a consequence of the structure of X  in (4.47) and the controllability 
canonical form in (4.21) and (4.22), that when expressed in the new basis, the stable 
matrix (4.48) reads

( x  Ai  +  ßpL2 )  ’ (4'50)
Here x denotes entries whose exact values axe inconsequential to our argument. Since 
the above matrix is by hypothesis stable, its (1,1) block must also be stable. It is 
fairly straightforward to show that the (1,1) block is also independent of L. Another 
consequence of the stability of (4.50) is that A\  +  ßpL^ is stable. It follows that an 
appropriate choice for L is L = Lp, with L f as described in the statement of Lemma 
4.1.2.

It follows from (4.39) and (4.40) that X  > 0 solves the ARE (4.14) and the comments 
immediately above establish that it is also a stabilizing solution of that equation.

An identical argument establishes the necessity of the existence of a stabilizing solution
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Y  > 0 of (4.15). The coupling condition (4.16) follows directly from Lemma 4.1.1.

Proof of Sufficiency.

Suppose (4.14) has a stabilizing solution X  > 0. Suppose that Lp has been chosen as 
described in the Lemma statement, such that it stabilizes the pair (A— B2D 121')

Recall that Lp has the structure Lp = (Lpi Lp2 )T~l where the matrix Lp2 is chosen 
such that it stabilizes ap = A\  +  /3pLp2*

Note that (4.14) can be rewritten as

X A Zf + ATx X  = 0, (4.51)

where Azf =  A —B 2Di2^C\+B2D\2^~Lp and A x  — Azf-\-{B\Bi — B2D ^  (D\2^)T B%)X. 
If one now introduces the basis transformation defined in (4.20), one obtains

T" Â T =  ( a01+X lf1 aF ) ^
and it follows that A z f Vf =  Vpap, where Vp is a full column rank matrix whose 
column space is the controllable subspace of the pair (A — B 2Di2^Ci, B2D\2L)- Hence, 
right-multiplying (4.51) by Vp results in the identity XVpotp +  A'xXVp = 0. Since 
both ap  and A x  are by hypothesis stable, one can apply the Lemma of Lyapunov, (see 
Lemma 0.0.1 in the summary of Notation, Definitions and Fundamental Results 
at the beginning of this thesis) directly to the above equation to deduce that XVf =  0. 
Recall tha t Vp is full column rank. It follows that X has the structure given in (4.47). 
A consequence of this and the identity (4.22) is that XB2D121’ — 0 and also that 
X  A zf  — X ( A  — B2Di2^C\), from which it follows that X, in addition to being a solution 
of (4.14), is also a solution of (4.39).

Next observe that the matrix A x  results when one applies the state feedback matrix 
Lp to the pair (4.44). Since A x  is stable by hypothesis, it follows that (4.44) must be a 
stabilizable pair.

In summary, we have established the existence of a real symmetric matrix X > 0 
which solves (4.39), satisfies (4.40) and ensures that the pair (4.44) is stabilizable. It 
follows from Lemma 4.1.3 that items 1 and 3 of Lemma 4.1.1 hold.

Given a stabilizing solution Y  > 0 of (4.15), analogous arguments to the above estab
lish conditions 2 and 4 of Lemma 4.1.1.

The coupling condition p(XY)  < 72 holds trivially by hypothesis. Each of the condi
tions of Lemma 4.1.1 therefore hold, from which it follows that there exists at least one 
doubly nonstandard Tioo controller. □
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4.2  T h e  N o n sta n d a r d  S ta te  F eedback P ro b lem .

In this section, we lay foundations for the full parametrization of nonstandard output 
feedback controllers by developing a solution for the state-feedback case. This work draws 
directly on the existence conditions established in the previous section. The existence of 
a constant Hoo state-feedback gain matrix is established for a state feedback problem 
associated with the realization of the generalized plant given in (4.1). The state-feedback 
law is constructed using the solution X  of the ARE (4.14) given in Lemma 4.1.2.

The Generalized Plant for the State Feedback Problem.

Consider the following state-feedback problem which is derived from the original dou
bly nonstandard problem, with the only difference being that all states are measureable 
and uncorrupted by the signal w(t); i.e. y{t) = x(t). The associated generalized plant 
reads:

Gs f (S)
A Bi b 2
Ci 0 D \2

In 0 0
(4.53)

It should be noted that the matrix D12 is assumed to be nonstandard (i.e. nz < nu). It is 
generally the case that nw < n = ny, with the result that D21 is nonstandard. Note that 
assumption A .2 is also violated since G ^ f  (00) =  0. Thus using standard results alone we 
cannot present a complete parametrization of all (possibly dynamic) state-feedback laws. 
However, with the existence results from section 4.1, it is shown in the present section 
that a constant state-feedback control strategy is available if there exists a nonnegative 
definite stabilizing solution X  of the ARE (4.14).

A Special Structure for Constant State Feedback Laws.

Note first that any state-feedback law F  for the pair (A, B2) can be written without 
loss of generality as:

F = —D \2 ^Ci +  D \2 ^~Lf + D \2  ̂Ep, (4.54)

where

(  El f )  -  (  Co )  +  (  (d 5 -)t  ) (4.55)

Remark: Note that the first term in this state-feedback law, if implemented on its 
own results in complete disturbance decoupling, in the sense that z(t) = 0. However, the 
closed loop state dynamics matrix A — #2^12^1 which result from this is not necessarily 
stable. In fact, if C i2(s) has any right half plane invariant zeros, these become closed 
loop modes. This can be easily gleaned from the controllability canonical form for 
(A — #2^12*Cl, B2D\2L) which was introduced earlier. □

Consider the closed-loop state dynamics matrix which results from implementing
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(4.54):

A 4- B^F = A — B 2D\2^ C \ B 2Di2^ L p B 2D\2^Ep.  (4.56)

Observe now that one can introduce a basis transformation of the form described in 
(4.20) and apply the identities (4.21) and (4.22) to obtain:

T - H A  +  W  = (  *  I  )  +  (  I  )  L ,  +  (  I  )  EF, (4.57)

where, for convenience, we have partitioned the matrix B2D12^ in this basis as follows:

T ~ 'B 2D12}  =  (  £  )  . (4.58)

Consider the family of state-feedback matrices which arises when one makes the following 
particular choices of Lp and Ep:

Lp =  (Lj?i Lp2)T~1, (4.59)

Ep = {Ei 0)T” \  (4.60)

where Lpi  and E\ have the same number of columns as Ao, and Lf2 has the same 
number of columns as A\. Since (A\,ßp)  is controllable, it is possible to choose that 
Lp2 such that ap = A\  +  ßpLp2 is stable. The structure of Ep  given in (4.60) ensures 
that T ~ l {A -1- B2F)T  has the following block triangular structure:

r r i - l  A r p  _  f  ^ 0  +  Tl-^l 0
F \  -Aoi +  ß p L p i  4- 72-Ei  A\  +  ßpLp2

Suppose next that the partition E\  is chosen such that it stabilizes Aq + ̂ i E i . The effect 
of such a choice of E\  on Ap  is to move the right half plane modes of Aq (corresponding
to right half plane zeros of Gi2(s)) into the left half plane. The result is that the closed
loop matrix Ap = A +  B2F is stable.

Note that it is always possible to choose the partition E\  such that it stabilizes A q + 
71 £h. This follows from the following reasoning: observe that stabilizability of (A, #2) 
is equivalent to the stabilizability of {A — B2D\2^Ci , B2) which in turn is equivalent to 
the stabilizability of {A — B2D\2^Ci , (.B2-O12* ^2^21'*'))• Applying the change of basis 
T  to this latter pair results in the pair

A q 0
A 01 A i

71
72

(4.62)

With L p 2 chosen such that ap  
transformation

A\ + ßpLp2 is stable, application of the feedback

(4.63)

to the pair 4.62 allows us to conclude that the following pair is stabilizable:

((
Ao

A 01

0
A\  -I- ßpE\

71
72

(4.64)
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This implies the required stabilizability of (Ao,7i). (This can be checked using the 
standard rank test for stabilizability which is given at the beginning of this thesis in the 
section N otation, Definitions and Fundamental Results.)

Closed Loop Transfer Function with the Special State Feedback Law.

Consider the closed loop transfer function which results when a state-feedback law F  
is implemented:

GSJ  = (Ci + D u F)(bI  -  (A + B2F))~1B 1. (4.65)

Suppose in addition that F  has the special structure described above. It follows then 
that

GSJ  = E p(sl -  A f y 'B i .  (4.66)

Applying the basis transformation T  and noting the special structure of Ep and Ap  in 
that basis reveals that

G f£  =  ( E i(s l -  (A0 + f iE i ) ) - 1 0 ) (4.67)

This has the important consequence that the closed loop transfer function is actually 
independent of the closed loop modes associated with A\ A ßpLp2• Note also that this 
closed-loop transfer function is independent of the matrix Lf • However, Lf must be 
chosen as described above to ensure closed loop internal stability.

A Nonstandard TCoo State Feedback Law via the Riccati Equation.

It should be emphasized that the above observations are made independently of any 
consideration of the closed-loop Tioo objective. However, we now examine a particular 
choice of F  which has the structure described above and which is of importance in the 
context of Tloo control.

Lem ma 4.2.1 Suppose one is given a generalized plant G(s) with realization (\.53) 
satisfying assumptions A .l ,  A .2 and A .3 with Dyi nonstandard, i.e. nz < nu. Suppose 
a nonnegative definite stabilizing solution X  of (4-H) has been found.

1. With the definition Ep — — ( D ^ ^ B ^ X ,  this matrix has the particular structure 
described in (4-60).

2. With the above definition of Ep, let F0Q be defined according to (4-54)'-

F = - D n 'C i +  Di2LLF -  (4.68)

where Lp stabilizes the controllable subspace of the pair (A — B iD ^ C 'i , 02^12'L)- 
Then the matrix Aoo =  A A  # 2 - ^ 0 0  stable.

3. Moreover, with the above choice of state-feedback control, the resulting closed loop 
transfer function matrix is bounded real:

||(Ci +  D n F ^ i s I  -  (A + B2i?o o ) r1Billoo < 1. (4.69)
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Proof:

1. From the structure of X T  established in (4.47) and the structure of T~l B2 D 1 2 * 
established in (4.22), it follows that

£ F =  ( - 7f *  0)T ~ \  (4.70)

2. Note from (4.14) that

X A „  +  A ^ X  + X (B iB f  +  B’2D 12HDi2])t BJ)X =  0. (4.71)

Since Ax  =  4 «  +  B \ B j X  is, by hypothesis, stable, it follows that (B[X,  Aoo) is a 
detectable pair. Since X  > 0, it follows immediately from (4.71) and standard Lyapunov 
stability results that is stable.

3. To show the identity (4.69), we apply the bounded real lemma to the closed loop 
system. Note that C\ +  D 1 2 -F00 =  Ep and therefore that the closed loop system can be 
written as Ep(s l  — (A 4- B2 F00))~lB\. Next note that one can re-write (4.71) as follows:

X{A + BiFoo) + (A + B2F00)t X  +  +  =  0. (4.72)

Observe that (4.72) is in fact the ARE which arises when the bounded real lemma is 
applied to the closed loop system. X  > 0 is a stabilizing solution of this equation. The 
(strictly) bounded real lemma (see [85]) states that the existence of such a solution to 
(4.72) is a necessary and sufficient condition for satisfaction of the bound given in (4.69). 
□

4.3 A R e-expression of the Nonstandard Controller
Synthesis Problem .

This section describes the first step in the derivation of the parametrization of all 
case 2 controllers. The derivation continues in subsequent sections and finally the result 
is presented in Theorem 4.5.2 in section 4.5. We do not derive the singly nonstandard 
results for case 1 and case 3 plants, which is presented in Theorems 4.5.1 and 4.5.3 
respectively, since proofs for these cases follow along similar lines to, and are in fact 
considerably simpler than, the proof for the case 2 problem.

The derivation is based on the existence conditions and state-feedback control law 
which were established in sections 4.1 and 4.2 respectively. We assume throughout the 
existence of at least one case 2 Hoo controller and thus the existence of matrices X  and 
Y  satisfying the conditions given in Lemma 4.1.2.

Before proceeding, we give an outline of the approach taken in proving the controller 
parametrization result. In subsection 4.3.1, we review some well known results from 
linear systems theory which are used in the controller derivation. Next, it is shown in
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subsection 4.3.2 that the state-feedback law derived in section 4.2 can be used to de
compose the generalized plant into two components. It is shown that G(s) is expressible 
as a linear fractional map of a lossless system @(s) and another system, the so-called 
temporary generalized plant G*mp(s). A similar decomposition was employed as part of 
the solution to the standard Hoo problem in [25]. It will become evident that one can 
equivalently and more easily treat the Hoo problem for the temporary generalized plant 
than the 7i x  problem for the original generalized plant.

Direct application of standard results to Gtmp(s) is, however not possible. In order 
to find a full paxametrization of Hoo controllers , our strategy in subsection 4.3.3 is 
to first describe all stabilizing controllers for G*mp(s). In this step, the state-space 
Youla parametrization presented in Lemma 4.3.1 is applied to G*TOp(s), resulting in a 
parametrization of stabilizing controllers as a function of a stable free parameter Q(s). As 
will become apparent in subsection 4.3.3, one important advantage in treating G*mp(s) 
is that the set of all internally stable closed-loop systems can be described using a linear 
fractional transformation of the free stable parameter Q(s) with a coefficient matrix 
which has state state dimension only that of Gtmp(s) (and thus of G(s)), rather than 
twice this dimension which is generally the case. By writing down the corresponding set 
of all internally stable closed-loop transfer function matrices, one can pose a new Hoo 
control problem in which the Youla parameter Q(s) is required to be chosen as a control 
law. In section 4.4, it is shown that the Hoo problem defined at the end of section 4.3 can 
be expressed in terms of a standard output estimation Hoo controller synthesis problem.

4.3.1 Prelim inaries.

We now summarize a number of facts which find application in the controller derivation 
which follows. Note that these facts are general observations and are not specific to the 
Hoo objective.

Youla Param etrization o f all Stabilizing Controllers.

In order to fully investigate the freedom in nonstandard Hoo control laws, we will later 
employ the Youla paxametrization of all stabilizing controllers, which we now recount. 
Note that this result is applicable to both standard and nonstandard plants.

Lemma 4.3.1 Let G(s) be a generalized plant as given in (4-1) which satisfies A .l. Let 
F and H be any matrices which stabilize

Ap = A + B 2 F  and A h = A HC2 respectively. (4.73)

The set of all controllers K(s) which internally stabilize G(s) is described by

K(s) = L FT
A  +  B 2F  +  H C 2 - H - b 2

F 0 - In..
- C 2 In, 0

(4.74)

where Q(s) € LVHoo is a f ree parameter. Moreover, (4-74) defines an invertible mapping
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between stabilizing controllers and stable transfer function matrices Q (s) 6 IZTLoo-

The set of all internally stable closed-loop operators Tzw(s) can be described in terms 
of the same parameter Q (s) as

Tzw(s) L F T

Ap - b 2f B i b 2
0 A h B\ -t- H D21 0

Ci +  D 12F - D 12F 0 D\2
0 c2 D 21 0

, -Q{s ) > .(4.75)

Proof: Derivations of these results are presented in [33] and Appendix A of [34]. □

R ealizations o f different Order for the sam e Transfer Function M atrix.

The result described in the following lemma will be later used to enable the nonstan
dard problem to be expressed as a standard problem. It is a straightforward extension 
of standard state space transformation ideas.

L em m a 4.3.2
1. Given a transfer function with realization G (s) =  C (s l  — A )~ l B , let oc,ß,9 be any 
matrices such that A V  = V a , B  = V ß  and C V  =  9, where V is of full column rank, 
then

( 4 B ) = f a ß )
V  c 0  J 0  )

2. Furthermore, if 9 = 0, then the transfer function is identically zero.

Proof: 1 follows since the Markov parameters of the two systems are identical; for all 
nonnegative integers i , C A lB  = C A 'V ß  = C V a lß = 9axß. 2 is then immediate. □

4 .3 .2  L ossless D ecom p osition  and th e T em porary G eneralized P lan t.

In the solution of the standard output feedback TLoo control problem in [25], a lossless 
decomposition of the generalized plant is introduced as a preliminary step. This allows 
the TLoo synthesis problem to be equivalently expressed in terms of a simpler (output 
estimation) TLoo problem for a so-called temporary generalized plant. In [25], a nonneg
ative definite stabilizing solution of the standard full-information Riccati equation (see 
equation (4.147) in section 4.5) makes a state-space construction of the components of 
this decomposition possible. We now demonstrate that a plant having D 12 nonstandard 
can be decomposed in a similar manner, given a nonnegative definite stabilizing solution 
X  of

X A ZF + A ZFT X  + X [B l B 1T - B 2D12'{D 12') T B 2T]X  = 0 .  (4.77)

Moreover, the nonstandard TLoo problem can also be equivalently expressed in terms 
of an TLoo problem for a temporary generalized plant Gtmp(s). However, whilst being 
simpler to deal with than the original nonstandard plant, the temporary plant is not
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directly amenable to application of standard state-space results. It is the subject of later 
sections as to how the Tioo problem for Gtmp{s) can be solved.

Lem m a 4.3.3 Suppose there exists a solution to the control problem for a general
ized plant G(s) as given in (4-1) which satisfies A . l , A .2 and A .3 with D i2 nonstandard 
(n2 < nu). Let X  be the nonnegative definite stabilizing solution of (4-77), whose exis
tence is guaranteed by Lemma 4-l-%- Define the following matrices:

A  = A + BiBjX, (4.78)

Ci = C2 + D2i B ^X , (4.79)

E f = - ( D l2')TB%X. (4.80)

Then with Gtmp{s) defined as

Bi B2
Gtmp(s) — Ci - E p 0 012

{  c 2 021 0
(4.81)

K (s) is an Tioo controller for G(s) if and only if it is an Tioo controller for Gtmp(s). 

Proof: Consider the following transfer function matrix:

© (*)
A 4- B2F0

Ep
- B iTX

B\ 02012^
0

In.
In,
0

ennt (4.82)

It is shown in Appendix D that for any controller K(s),

L F T {©, LFT{Gimp, K }}  =  LF T{G ,K } = Tzw{s). (4.83)

Note in particular that this identity holds without any unstable pole/zero cancellations. 
As discussed in Appendix D, in deriving the right hand side of (4.83) from the left hand 
side, it is apparent that some nonminimal modes can be eliminated. These modes axe 
stable and hence do not affect the internal stability of the closed-loop system.

Let 0(s) =  Dq + Co(sI — Ae)~lBe denote the realization defined in (4.82). One can 
confxm that 0 (s) is inner, in other words it satisfies the identity

e T(-s)e(s)  = (4.84)

This can be established using a well known state-space check of this property (see for 
example Chapter 3 of [34]): the identity (4.84) holds due to the following equalities

X A e + AeTX  + C / C e = 0, . . . . .
D9TCt + B$TX  = 0 and 1 '

Here X  > 0 is the stabilizing solution of (4.77). The first of these equalities is simply a 
re-writing of the ARE (4.71) which was obtained under the same conditions in the proof 
of Lemma 4.2.1. The second equality is a direct consequence of the value of Ep assumed 
in the lemma statement. The third equality is easily checked.
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Note also that 0 211(s) £ FHoo since the zeros of 0 2i(s) are the eigenvalues of A + 
-B2Fqq +  B \ X  = A zf  + {Bi B i -  B2 D d { D d ) TB%)X = A x  which is, by hypothesis, 
a stable matrix. Observe also that ©2 2 (0 0 ) = 0. Under these conditions on 0 (s), the 
following fact holds (see Lemma 15 of [25] and Theorem 4.3.3 of [34]):

Given any transfer function matrix £2(s), then Q(s) G BHoo
if and only if

both LFT{0,Cl} G BHoo and this interconnection is internally stable.

By applying this result with Q(s) =  LFT  {Gtmp(s), K (s)}, the stated result follows. □

Thus the set of Hoo controllers for G(s) is equivalent to the set of Hoo controllers for 
Gtmp(s)• Whilst Gtmp(s) is also a nonstandard plant, it will be shown subsequently that 
it can be more easily transformed into a problem which can be solved using standard Hoo 
results, than can G(s) alone. The main objective is now therefore to try and parametrize 
all Hoo controllers for G*mp(s), thereby obtaining those for G(s).

4.3.3 Youla Parametrization for the Temporary Plant.

We now apply the state space Youla parametrization result of Lemma 4.3.1 to the re
alization of Gtmp{s) given in (4.81). Recall that Lemma 4.3.1 can be applied without 
restriction to nonstandaxd plants.

Existence of Stabilizing F  and H Matrices for the Youla Parametrization.

With reference to Lemma 4.3.1, note that the Youla parametrization constitutes an 
invertible mapping between internally stabilizing controllers and transfer function ma
trices Q(s) G TlHoo, provided we make a choice of F  and H which stabilize the matrices 
A -I- B 2 F  and A-\- HC2 respectively. It is now argued that provided an Hoo controller 
exists for the original nonstandard generalized plant, a choice of stabilizing F  and H 
matrices is always possible for the realization of G*mp(s) given in (4.81).

With X  the nonnegative definite stabilizing solution of (4.77), we choose F = F ^  
as defined in Lemma 4.2.1. With reference to the definition of A x  in (4.17) and the 
definition of A in (4.78), note the following equality:

A + B 2 F00 = Ax- (4.86)

Since A x  (as given in 4.17) is stable by hypothesis (since X  is a stabilizing solution of 
4.77), it follows that F  =  Fqo is a suitable choice of stabilizing state feedback law for the 
Youla parametrization of all stabilizing controllers of Cj*mp(s).

Since we have assumed the existence of an Hoo controller for G(s), by Lemma 4.3.3 
there must exist an Hoo controller for G*mp(s) in (4.81) which, by definition, must 
be internally stabilizing. Thus (A,B 2 ,C2 ) is stabilizable and detectable. It follows
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immediately that there exists at least one matrix 0  such that A h — A +  HC2 is stable. 
(How such an 0  can be constructed will become evident Lemma 4.4.3.) At the present 
stage in the argument, we need only know that it exists.

P aram etrization  o f C ontrollers and C losed Loops for the Tem porary Plant.

With Q G VSHoo a free parameter, we apply (4.74) employing and for the moment 
any stabilizing H (as described above) to obtain all stabilizing controllers of G*mp(s):

' Ä + b 2f x  + h c 2 - H -5 2  ^
>

K  = LF T  < Foo
\  - c 2

0
fny

~ - n u

0 J
, Q ►. (4.87)

The following description of all stable closed-loop systems for G*mp(s) follows from 
(4.75):

LF T
 ̂ A  +  -021*00 - 0 2 0 0 0 B i b 2 \

0 Ä + HC 2 0 1  +  0  £>21 0
Ci — Ep + £>i2Foo “ £>12000 0 £>12

0 g 2 £>21 0 /

-Q (4.88)

where Q =  00T{G tmp, 0}- If is easy to check that (Ci — Ep) +  0i20oo =  0, from 
which it follows that we can remove the unobservable modes in (4.88) associated with 
the (stable) matrix A +  020oo =  Ax- Note therefore that

(  Ä + HC2 01 +  0021 0 \ '
n  =  LFT c x - e f 0 012 , - Q

[\  Cl 021 0 ) J

(4.89)

7-fco Synthesis in term s o f  th e  Y oula Param eter.

Recall that we seek to describe all stable Q(s) such that Q(s) G 00oo and such tia t 
the interconnection (4.89) is internally stable. Therefore (4.89) actually constitutes an 
7-foo controller synthesis problem, with the additional limitation imposed that the conlrol 
law Q(s) be stable. Note, however that it is still not a standard problem since D 12 is 
nonstandard. However, we will next show that the nonstandard Tioo synthesis probiem 
associated with (4.89) can be solved by treating a rather simple standard Tioo synthesis 
problem.

4.4 C onstruction  o f all Youla Param eters corresponding 
to  T i o o  Controllers.

In this section, a parametrization is first derived of all Youla parameters Q(s) G TlTioofor 
the temporary plant Gfmp(s) which ensure a closed-loop infinity norm bound on (4J9). 
Subsequently, that description is used to recover all Tioo control laws for the orignal 
doubly nonstandard generalized plant.
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It will be shown in Lemma 4.4.2 that a description of all solutions to the Hoo synthesis 
problem defined by (4.89) can be found by first solving a standard output estimation Hoo 
synthesis problem, which is defined in (4.109). Moreover, the existence of a solution to 
this problem is guaranteed by the existence of a solution to the original nonstandard 
problem. The result of solving the output estimation problem will be the description 
given in (4.140) of the subset of Youla parameters Q{s) which solve the Hoo problem 
given by (4.89) and which therefore correspond to H 0o controllers for Gtmp(s) (and 
by Lemma 4.3.3 also for G(s)). This description contains four degrees of freedom, a 
bounded real transfer function matrix N (s ) and three stable transfer function matrices 
W M  (i =  1,2,3).

Substitution of the above description of all parameters Q(s) in the formula for all 
stabilizing controllers for G*mp(s), along with several simplifications, yields the final 
controller parametrization presented in Theorem 4.5.2 in section 4.5. This parametriza- 
tion also has four degrees of freedom; the same bounded real transfer function matrix 
iV, plus three different stable transfer function matrices which can be related to the 
free stable transfer function matrices matrices W{ (i =  1,2,3) described above.

4.4.1 A Related Standard Output Estimation Problem.

We shall now show that all solutions to the (nonstandard) Hoo problem associated with 
(4.89) may be described in terms of solutions to a related standard output estimation 
Hoo problem. The following lemma is the key result, enabling the connection with 
the standard problem to be made. It should be noted that this lemma will later find 
application to the (2,1) partition of the coefficient matrix in (4.89):

Ä + HÖ2 B h
C2 D21

(4.90)

Lemma 4.4.1 Suppose one is given a realization of a generalized plant G(s) as presented 
in (4-1) with D21 nonstandard. Let Vh be a matrix of full row rank whose row space 
spans the observable subspace of the pair (Ü2i'LC2 ,A  — B\D 2\*C2)-

Consider the application of an arbitrary state-feedback transformation to the fol
lowing realization

G2l(s) =  C2(s l -  +  O21, (4.91)

and define the resulting transfer function matrix

G2i (s) =  C2{sl -  + D21 (4.92)

where Ä  = A  4- and C2 — C2 +  D2i^ f.
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Now consider subsequent application of an output injection transformation H to the 
above realization of G21, resulting in a transfer function matrix

Ö21 (s) = C2 ( s i  -  ( i  +  H C2))~ 1 (Bi +  HD21) + D21. (4.93)

Let H , without loss of generality, have the following form:

H — —B\D2i^ +  L h D2 i 1- +  E r D2i  ̂- (4.94)

Suppose that for a given L u  and E h can be chosen such that both Vh E h =  0 and 
the matrix A h =  A  +  H C 2 is stable.

Then with the definition B h — B \ + HD21, the following identity holds:

621(a) a  +  h c 2 B h
c 2 D \21

D 2 1
A + HC2 E h
D2i 'C 2

(4.95)

Proof: Observe that for any the invariant zeros of the realizations of G2i(s) and 
<j2i(s) as given in the lemma statement axe identical. This can be argued as follows: 
note the equalities Ä — B\D2\^C2 = A — BiD2i^C2 and D2i L&2 =  D2iLC2, from which 
it follows that the unobservable modes of (A — B\D2i^C2, D2iLC2) are identical to the 
unobservable modes of (Ä  — BiD2\^C2, D2\ LC2)- It also follows that the pair (A — 
B\D2i^C2, D2iLC2) shares exactly the same observability canonical form as the pair 
(A — B\D2\^C2, D2\LC2), which was presented in (4.26) and (4.27).

With H  chosen as described in the Lemma statement, the following identity holds:

A + HC2 B h
D21LC2 0

(4.96)

Some reasoning is now presented as to why this is the case. First note the following 
equality:

Ä + HC2 =  A — B \ C2 +  L h D2\^~C2 +  E h D2\^C2 +  E h ^I- (4.97)

We next express this equality in the basis associated with the observability canonical 
form introduced in (4.26) and (4.27). Recall the form of the similarity transformation 
associated with this canonical form:

u = ( S ) • (4-98>
Since we assume that Vh E h  = 0, it follows that there exists a matrix E h \ such that

E h = U - 1 <4' " )

Recall from (4.27) that

D2i LC2U~l ( 0 ß H ) (4.100)
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and for convenience, we partition the matrix D2i^C2 in this basis as follows:

D2i 'C2U - 1 =  ( S2 ).

Without loss of generality, Lh can be expressed as

Lh =  U~l 1 L hi
L h 2 )  ’

(4.101)

(4.102)

and ’F can be expressed as

( V’l ^2 ) U. (4.103)

From the above observations, it follows that (4.97) can be expressed in the basis associ
ated with U as follows:

u {ä  + h c 2)u - 1 { ao +  E niipi +  «10  +  LnißH +  Eh \£>2 +  Eh i^2
V 0 ai +  Lh2Ph

From the above equation and the definition of U in (4.98), it follows that

Vh (A -r IIC2) =  (<*1 +  L h2Ph )Vh - (4.104)

Secondly, from (4.100) it follows that

D2\ LC2 =  Ph Vh - (4.105)

Thirdly, observe that B\  4- HD21 =  Eh , a fact which follows immediately from the 
structure of H given in (4.94). Since we assume that Vh Eh = 0, it follows that

Vh (Bi + H D 2i ) =  0. (4.106)

Consider the transpose of the realization on the left hand side of (4.96). We now apply 
Lemma 4.3.2 to G^iis), identifying the following quantities: V = V#, A = (̂ Ä +  HC2)) ,

B  =  (^D2i^C^j  and C =  (B\ +  HD 2i)T. It can be seen that the conditions of that 
Lemma correspond to transposition of the identities (4.104), (4.105) and (4.106). The 
identity (4.96) follows immediately, from item 2 of Lemma 4.3.2.

Next note from equation (3.3) in section 3.1 of Chapter 3 that

Dn D21* +  (D2i l )t D2lL =  I  (4.107)

and hence (trivially) that

c2 = (d 21D21 t +  (£>21J-)T£>21J‘) (4.108)

Making this substitution in the left hand side of (4.95) and noting (4.96) yields the right 
hand side of (4.95). □

A Temporary Assum ption on the Structure of H.
We now seek to apply the above result to the (2,1) partition of the coefficient matrix
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associated with the Hoo control problem defined by (4.89), with the purpose of deriving 
a related standard problem. Recall from the discussion in section 4.3.3 that, provided 
an Hoo controller exists for the original nonstandard generalized plant, we can be sure 
of the existence of at least one matrix H which stabilizes the matrix A + HÖ2 - However, 
it is not obvious in advance that one can find a stabilizing H which has the structure 
described in the above lemma and which thus enables the simplification given in (4.95). 
At this point in the argument, we temporarily assume that a stabilizing H  exists with 
this structure. It will later be demonstrated that such an H does indeed exist and that 
this is a direct consequence of the assumed existence of a nonstandard controller for the 
original generalized plant.

L em m a 4.4.2 (T he R elated  O utput E stim ation  H o o  P rob lem .)
With reference to Lemma 4-4-U suppose that 4* =  B ^ X  and that therefore A = A and 
C2 — C?2’ Suppose also that H has the structure described in Lemma 4-4-1 and stabilizes 
Ä +  HC2 .

Consider the Hoo control problem defined by the linear fractional map

7  Ä +  HC-2 E h  0 ^
Q = LFT l Ci -  e f 0 In, , K(s)

\  D 2 l t C’2 0 J
J

(4.109)

where stable controllers K (s ) E VSHoo are sought which ensure that both Q(s) E BHoo 
and that the connection is internally stable.

Then Q(s) E VSHoo is a solution to the Hoo problem defined by (4-89) if and only if

q (s ) = - (£>12* £ ; ) ( £ ! ) .  (4-110)

where K(s)  E VSHoo is a solution to the Hoo problem defined by (4-109) and W{(s) E 
V H 00 (fori = 1,2,3).

Proof:
Necessity: Suppose one is given a transfer function matrix Q{s) E VSHoo which solves the 
Hoo problem defined by (4.89). Note that with a choice of H  as described in the lemma, 
one can apply (4.95) of Lemma 4.4.1 to the (2,1) partition of the coefficient matrix of 
the linear fractional map in (4.89).

This allows the extraction of the feedthrough matrix D21 from the coefficient matrix 
in the linear fractional map into the feedback system part by right multiplying by D21 

to give:

Ä + HC2 B\  -f H D21 0
C i - E f 0 D\2
£>21*02 Inw 0

► .Q LFT -Q D 2 1 (4.111)



4.4 C onstruction of all Youla Param eters corresponding to H qq Controllers. 113

In the coefficient matrix of the above linear fractional map, note that " — 0. It follows
that one can also extract the feedthrough matrix D12 from the coefficient matrix into to 
the feedback system part by left-multiplying to give —D 1 2Q (s)Z>2i- The result of this 
is a linear fractional map of the form (4.109). By identifying K(s ) = —D\2Q(s)D2\, we 
obtain Q(s) =  Q(s), which by hypothesis is in BHoo- Internal stability of the closed-loop 
is preserved after the extraction of the matrices D 12 and D21 as described above. It 
follows therefore that K ( s ) =  —-Di2Q(5)-C>2i 6 H H o o  is a solution to the H o o  problem 
defined by (4.109).

Recall that parts 1 and 2 of Lemma 3.1.1 in Chapter 3 can be applied to D21 and 
D 12, respectively. The following identities result:

(012* SU1 ) ( (iS?)* ) = (4-U2)

( D21 (D2I1 )t ) f  )  = L  (4-113)

Note that it follows (trivially) from these identities that

Q «  =  ( £>i2f Ö121 ) (  )  Q(s) ( D21 (£>21 X)T ) 0 2 1* 
£»211

-  ( £>12* £»12
K(s) w ^ s )
W2W W 3 ( $ )

£>21*
£»2/

(4.114)

where li'i(s) =  -£>i2<?(s)(£>21J-)r  € W2{s) = - { D l2L)TQ(s)D2i € TIHoo and
W3 (s) =  — (D\2 L)t Q(s)(D2iL)T € 'IZ'Hoo- This demonstrates that Q{s) has the form 
described in (4.110).

Sufficiency: Suppose now that one is given a any Q(s) 6 IZWoo as described by (4.110) 
where Ä"(s) is any stable solution of the Hoo problem defined by (4.109) and W^(s) (for 
i =  1,2,3) axe stable free parameters. With this choice of Q(s), an identical argument 
to that presented in the necessity proof above allows us to conclude that Q(s) = fl(s). 
Since K  is an Hoo controller for (4.109), it follows that Q(s) =  fi(s) G BHoo and is 
internally stable. Observe that none of the Wi(s) appear in the closed-loop system Q(s). 
We conclude that Q(s) is a solution of the Hoo problem defined by (4.89). □

4.4.2 Existence of Solutions to the Related Output Estimation Prob
lem.

Recall the temporary assumption introduced in the previous subsection; that there exists 
a matrix H  which has the special structure described in Lemma 4.4.1 and which simul
taneously stabilizes the matrix A + HC2 . Subject to this assumption, we now exhibit 
conditions under which the Hoo problem defined in (4.109) has solutions. We then show 
that if a solution to the original nonstandard Hoo problem exists, then

• The temporary assumption on H is guaranteed to hold.
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• A solution to the related output estimation problem defined in (4.109) is guaranteed 
to exist.

N ecessary  and Sufficient C onditions for th e E xistence o f a Solution  to the  
R elated  O utput E stim ation  Problem .

In considering the coefficient matrix in (4.109) as a generalized plant of the type given 
in (4.1), we identify “.D12” with IUt, “A” with the (stable) matrix A +  17C2 , “# 2” with 
the zero matrix and “D21” with IUw. These special features allow more particularized 
7-foo results to be obtained than the standard Ttoo results stated in Lemma 2.3.1 of 
Chapter 2. In fact, the task of synthesizing 77oo control laws K (s) in (4.109) is a 
standard output estimation type problem (apart from the requirement that K (s ) be 
stable). Controller existence and parametrization results for this special case of the 
output estimation problem are summarized in Lemma E.0.1 of Appendix E. In fact, 
7-foo controllers in such cases are always stable, a fact which is essential in ensuring the 
stability of K (s ) in (4.109).

By applying the existence conditions in item 1 of Lemma E.0.1 to (4.109), one obtains 
the algebraic Riccati equation:

0 = S A z h T +  A z h S
+S[(Ci -  ß f ) T(Ci -  Ef ) -  CZ(D21') TD21'C2]S. (4.115)

Note that A zh  appearing in this equation has the same form as the quantity defined in 
(4.12); A zh  = A +  HC2 — E h E>2i^C2 = A — B iÜ 2i^C2 + Lh E>2\^C 2 - Recall that A zh 
appears in the Riccati equation for Y

y a z h t  + a z h y  + y[C iTCi -  C2I’(D2it)T£’2itc 2]y = o, (4.116)

which in turn is part of the existence conditions given in Lemma 4.1.2.

To summarize:
Suppose H = —B i D2i  ̂+ L h D2i 1' + E h D2i ,̂ with Vh a.nd Lh chosen such that Vh E h =  
0 and A +  HC2 is stable. Then, the existence of a nonnegative definite stabilizing solu
tion to (4-115) is necessary and sufficient for the existence of a solution to the output 
estimation Tioo problem defined in (4-109).

P ro o f o f the E xisten ce o f  a Solu tion  to the R elated  Problem .

We now show that the existence of Hoo controllers for the original generalized plant 
(4.1) imply the existence of a nonnegative definite stabilizing solution of (4.115), and 
thereby the existence of an Ttoo controller for the generalized plant in (4.109). It will 
also become apparent that this solution enables the construction of a matrix H which 
stabilizes A +  HC2 and has the structure assumed earlier. It should be emphasized that 
the following lemma does not in any way depend on H having this structure, but only 
on the existence of a solution to the original nonstandard problem.
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L em m a 4.4.3 Suppose one is given a generalized plant G(s) with realization (4-1) sat
isfying assumptions A .l ,  A .2 and A .3 and with both D 12 and D2 1  nonstandard, i.e. 
nz < nu and nw < ny .

Let Vh be a matrix of full row rank whose row space spans the observable subspace of 
the pair ( ,  A —B \D 2 \^C2 ) and let Ljj be any matrix which stabilizes the observable 
subspace of this pair.

Suppose there exists an TLoo controller for the nonstandard plant G(s). Let X  and Y  
denote the corresponding nonnegative definite stabilizing solutions of the algebraic Riccati 
equations (4.T1) and (4-116), whose existence is guaranteed by Lemma 4-1-2.

Then it follows that:

1. S  =  (7 — Y X ) ~ 1Y  is a nonnegative definite stabilizing solution of (4-115).

2. VffS =  0 and S is independent of Lh -

3. Let Hqq be defined according to (4-94) in Lemma 4-4-T with

E h =  -SC % (D 2i ')T, (4.117)

and hence
Hoo =  +  LhD2I1 -  SC ?(D21')t D21K (4.118)

Then the matrix A -f H0 0 C2  is stable.

P roof:

1. Consider the Hamiltonian matrix associated with (4.115):

H (A Zh t  [(Ci -  Ef )t (C j -  EF) -  C?(D2it)T02i,C2]
V 0 - A zh

Recall from Lemma 4.1.2 that there exist nonnegative definite stabilizing solutions X  
and Y  of the algebraic Riccati equations (4.77) and (4.116).

Application of the following similarity transformation to Hs

H Y  =  ( 0  /  ) ^  (  0 “/  ) -  (4-12°)

results in another Hamiltonian matrix Hy- By calculating the n x n block elements of 
this matrix, it can be easily checked that all but the (2,2) block of Hy  are the same as 
those of Hs- Straightforward algebra can be used to find the following formula for the 
(2,2) block of H y ’.

C iTCi -  C2t (D2i ')t D2i 'C2 -  X L h D22l C2 -  C2t (D21l )t L%X -  K( X)  (4.121) 

where

■R(X) =  (A -  B2D 12'C ,) t X  +  + X ( A  -  S 2ß i2 tCi) +  X (ß iB ?  -  B2ö i 2t ( ö 12t)TB ? )X
(4.122)
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Since X  is a solution of the ARE (4.77) and since X B 2 D1 2 1 =  0, it follows that 
K (X)  = 0.
Thus, the Hamiltonian matrix Hy  corresponds with the following algebraic Riccati equa
tion:

0 =  Y A Zh t  +  Az h Y  +  ? [C iTCi -

+ Y [ - X L h D2i l C2 -  (4.123)

With Y  the nonnegative definite stabilizing solution of the algebraic Riccati equation 
(4.116), we now show that Y  = Y  is a stabilizing solution of (4.123). Recall from (4.19) 
in Lemma 4.1.2 that Y  has the property Vr Y  = 0, where Vjj is is any matrix of full row 
rank whose row space spans the observable subspace of the pair (Z^i^C^i A — B\D2i^ C2 ) • 
In (4.27) it is stated that D2\~C2 =  ßü^H-  From the last two sentences, one can conclude 
that D2 \ LC2 Y  =  0. It can then be checked that Y  =  Y  is indeed a solution of (4.123). 
By hypothesis, Y  > 0. The fact that Y  is a stabilizing solution of (4.123) is inherited 
directly from the fact that it is a stabilizing solution of (4.116). It follows then that there 
exists a stable matrix A+ G ]Rnxn such that

Hy ̂ y  ) = ̂ Y  ) (4.124)

By substituting for Hy in this equation using the identity (4.120), one obtains the 
following identity after some simple rearrangement:

)  =  ( ' - / * > + •  (4-125)

Since p{XY)  < 1 by hypothesis, it follows that the quantity I  — X Y  is invertible. It 
is a standard result that S  =  Y ( I  — X Y ) ~ l is then a solution of (4.115). That S  is a 
stabilizing solution follows from (4.125) and the fact that A+ is stable. Since both X  and 
Y  are nonnegative definite, S  is also well defined and nonnegative definite. The standard 
identity S — Y ( /  — XY)~* = (I — Y X ) ~ lY  can be used to show ST =  S  and confirms 
that S  is as stated in item 1 of the Lemma.

2. It was demonstrated in Lemma 4.1.2 that VuY = 0. Recall from the proof of 1 that 
one valid formula for S  is S  = Y ( I  — X Y ) ~ l . The stated result follows.

3. Observe the following identity

Ä -|- H<x>C2 =  A zh  +  E h D2\*C2- (4.126)

This follows from the identity (4.97) in the proof of Lemma 4.4.1, with the choice \Er =
B f X .

With Eh as chosen in the lemma statement, note that the ARE for S  in (4.115) can 
be rewritten as follows:

0 =  S(A zh  +  E h D2\^C2)t  -I- (A zh  +  Eh D2\*C2)S
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+S[(Ci -  EF)T (Ci -  Ef )]S + E h E th . (4.127)

Recall that since S  is a stabilizing solution of the ARE (4.115), the following matrix is 
stable:

A zh + EHD21<C2 +  S[(Ci -  E f )t (Cx -  E f )}. (4.128)

It follows from the above fact that the following pair must be stabilizable:

(A zh + ß ffD2i , Ö2,S(Ci -  EFf )  . (4.129)

With this in mind, along with the fact that S > 0, standard Lyapunov stability results 
can be applied to (4.127) to show that Azh +  EHD2J C 2 = A +  #0062 is also stable. □

Removal of the Temporary Assum ption on the Structure of H.

Items 2 and 3 of the above lemma together present a choice of stabilizing output 
injection matrix H = Hqq in the Youla parametrization of stabilizing controllers for 
G t m v ( s ) which has the structure specified in Lemma 4.4.1. Thus we can now apply 
Lemma 4.4.2 with this choice of H . In summary, it is possible to treat the Hoo control 
problem defined via (4.89) by treating that defined via (4.109).

Item 1 of the above lemma confirms the existence of a solution K(s) of the 7ioo 
control problem defined by (4.109). Recall that stability of K(s) is guaranteed by item 
6 of Lemma E.0.1 in Appendix E. In the next section, we investigate the state-space 
description of all controllers K (s). This, together with the result of Lemma 4.4.2, enables 
all Youla parameters corresponding to Ti^, controllers of the temporary generalized plant 
to be found.

4.4.3 All Solutions to the Doubly Nonstandard H c a  Problem.

In order to parametrize all solutions K(s)  of the standard output estimation problem 
in (4.109), one can apply the controller formulae in Lemma E.0.1 of Appendix E. With 
reference to that lemma, we identify “L” in (E.5) with —E h — 5Cj(Z)2i^)T which is 
identically zero owing to (4.117). It follows that one has the general form K (s ) =
LFT{M ,  iV}, where N  G B7i oc and

Ä + HocCi 0 S(Ci -  Ef )t  \
M  = ~ { C i - E F) 0 In,

- D 2J c 0 J
From this it follows that

K{s) = M l2N{I  -  M22N) - l (4.130)

where

MiaM = I - ( C i - £ f )*M, (4.131)
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-^22(5) =  —D2i^C2$(s),  (4.132)

$(s) =  (si -  Ä -  H0oC2) - lS(C1 -  E f  )T e K H x . (4.133)

From (4.110) in Lemma 4.4.2, it is evident that one can express each of the transfer 
function matrices Q(s) E PFioo which solve the Hoo problem in (4.89) in the following 
manner:

(4.134)

where

P(s) M n N ( I  -  M22N ) - 1 Wi A
w2 W3 ) ’

(4.135)

with W i,^ 2 , ^ 3  eKHoo-

Observe next that P(s) can be expressed in linear fractional form as:

P M\2 0
L f $ ( s) I

N Wl \ S T _  (  M 22 0w2 w3 ) \ v o  0
N Wi \ \ -1 
W2 W3 ) ]  ’ (4.136)

where Wi{s) E 'IZ'Hoo axe free parameters which axe related to Wi(s) E PTioo via the 
following equalities:

m  = Ma (n (I - M221V )-1M22 + l )w lt (4.137)

W2 =  (LFi ( s ) N  + W2) ( I - M 22N )~1, (4.138)

W3 =  (LF$(s )N  + W2)(I-  M22N )~1M22 (4.139)

We now show that W{ E 'P'Hoo if and only if E PTLoo (i =  1,2,3) and thus that there 
is no loss of generality in the new description (4.136) of P(s):
Note firstly from Lemma E.0.1 that both M\2 and ( / —M22N ) - 1  axe unimodular matrices 
and in addition that each Mij(s) E VSHoo- Suppose now that E TZHoo (i =  1,2,3). 
It then follows directly from (4.137)-(4.139) that W{ E 'P'H0o>
Suppose now that W{ E VJ~too- It can be fairly easily shown from (4.137) that one 
can solve for W\ = (I  — N  M22)M^2 ^ U  from which it follows that W\ E TZHoq. From 
(4.138), it follows that W2 =  W2(I — M 22N) — LF$(s)N  and therefore that W2 E PHoo- 
From (4.139), it follows that W3 =  W3 — W2M 22W 1 — Lf ${s)W\ and the stability of this 
matrix follows from the results established thus far.

Observe that — M 12 — D\2LL f $  =  —D ^  Foo$, which together with (4.134)
allows one to deduce that

Q =  ( -O 12' -  F « * , - D i2 X ) W { /  ■- (  ° )  w } ' 1 (  J V  )

=  L F T{M q ,W }  (4.140)

where
W (  N  Wi \  

\ W 2 W3 ) (4.141)
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/  Ä +  h c 2 0 ; s ( C i  -  e f)t
0 \

M q = -Foo 0 ; - d*- Ü 1 2 1

- £ > 2 1 '  c 2 -D21* ; 0 0

\  0 £ » 2 1 1 ; 0 0  /

(4.142)

If we combine the description of all Youla parameters (4.140) with the formula for all 
Hoo controllers for G*mp given in (4.87), we obtain Ä'(s) =  LFT{Mk , W}  (corresponding 
to the description given in Theorem 4.5.2) where

A  + b 2fx  +  h „,c 2 B2Foo -Hco B2D\2^ B2D12l \

0 A +  H^C2 0 S(Ci -  Ef)t 0

Foo Foo 0 £»12* £> 12X

- £ > 2 1 * 6 2 - £ » 2 1 * 0 2 £>21* 0 0

- D 21LC2 0 £ » 2 1 X 0 0 )

A  +  b 2fx  +  h ^ c 2 0 -Hoo ZB2 D1 2* B2D 121'
0 A +  H00C2 0 S ( C i  -  E f)t 0

Foo 0 0 D d £ » 1 2 X

— D2VC2 0 D 21' 0 0

— D 2 i ± C 2 D21LC2 D21L 0 0 >

 ̂ Ä +  B 2 F oo +  HoqC2 -Hoo ZB2D\2^ B 2 0 1 2 1  \

Foo 0 Dn' £»12X

- 0 2 1 * 0 2 £»2 1 * 0 0

- d 21l c 2 £»2 1 x 0 0 )

The first expression for M k (s) is obtained using the star product formula in Appendix F. 
The second expression can then be obtained by applying a simple basis transformation 
to the first.

Now consider how the third expression can be obtained from the second. Recall from 
Lemma 4.4.3 that Vh S  = 0. Identical reasoning to that which led to the identity (4.96) 
in the proof of Lemma 4.4.1 can be used to show the following equality:

£>211C2$(s) =  0. (4.143)

From (4.143), it follows that the (5,2) partition of the second expression for M k  (the 
matrix Z^i^Ck) can be eliminated. The final expression for M k  can then be obtained 
by removing the stable unobservable modes corresponding to Ä  +  # 0 0  G2 .

In the above we have Z — ( /  — Y X )-1 , S = ZY  and B 2 = Y C f  D\2 +  #2- Note here 
that Hoo (defined according to Lemma 4.4.3) can be rewritten as

=  -B 1 Ü 2 1 *  -  S C ?(£»21*)T £>21* (4.144)

=  - Y C l { D 2l' )T D2l' )  + LHD2^ .  (4.145)
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4.5 Sum m ary o f the M ain R esults.

For reference, we now summarize the main results concerning Hoo controller existence 
and parametrization for nonstandard plants of cases 1, 2 and 3. These results should

differences, the results are the same. A comparison of the results obtained via the two 
approaches is presented in the next section.

For convenience, we now restate the state-space Hoo synthesis problem without signal 
dimension restrictions. Given a generalized plant G(s), realized as follows:

which satisfies the following assumptions:

A .l (A, B 2 ) is stabilizable and (C2 ,A)  is detectable.

A.2 Both D 12 and D21 are full rank.

A.3 Neither G i2 (s) nor C 2 i(s), as described by the state space realization in (4.146), 
have imaginary axis invariant zeros.

Find all FDLTI control laws K(s)  which ensure that the closed loop mapping T^v(s) is 
internally stable and that ||T/£,||oo < 1.

Riccati Equations for Hoo Controller Existence and Parametrization:

• When D 13 is standard (full column rank), consider

be compared with the nonstandard Hoo results obtained using the augmented plant 
approach which are summarized in section 3.6 of Chapter 3. Except for some minor

(4.146)

0 =  X ( A  -  B 2D12'C i ) +  (A -  B2D\2^C\)TX

+  X ( B \B i  -  B2D12HDi2])TB?)X  + C f  (D\2L)t D\2LC\,

where and D\ 2 L are defined according to the identity

(4.147)

(4.148)

• When D ia is nonstandard (full row rank and nz < nu), consider

X A zf +  AZFt X  + X i B i B ^  -  B2D12]{Di2])TB2T)X = 0, (4.149)

where D 1 2 * and D i2 ‘L are defined according to the identity

(4.150)
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and where

Azf — A — 52 -̂ 12^1 + B2D\2^ Lp (4.151)

with L f any matrix which stabilizes the controllable subspace of

( A - B 2D 12'C U B2D12L (4.152)

• When D-2X is standard (full row rank), consider

0 = Y ( A  -  B \D 2^ C 2)t  + (A -  BiD2i}C2)Y (4.153)

+ Y (C {C i  -  C?(D21')t D21'C2)Y + B i D21L(D21L)TB l

where D2and D2i 1 are defined according to the identity

(  ( S V  )  ( D21±) = ( o ? ) •  (4-154>

• When D 21 is nonstandard (full column rank and ny > nw), consider

Y A ZhT +  Az h Y  +  Y[C1t C1- C 2t (D2i')t D21'C2]Y =  0, (4.155)

where £>21* and D2\ L be defined according to the identity

(  S '  )  ( ° 21 ^ l )T  ) =  (  0 ? )  - <4-156)

and where

Azh =  A — B\D2\^C2 +  Lh Ü2i^C2 (4.157)

with Lh any matrix which stabilizes the observable subspace of

{D21lC2, A -  B1D21'C2). (4.158)

Nonstandard Woo Controller Existence and Parametrization Results.

Theorem 4.5.1 (Case 1) Given a singly nonstandard generalized plant (4-146) which 
satisfies assumptions A .l ,  A .2 and A .3 for which D 12 is nonstandard and D21 is stan
dard, an Woo controller exists if and only if (4-149) and (4-153) have stabilizing solutions 
X  > 0 and Y  > 0 which satisfy p{XY)  < 1.

When it exists, the set of all Woo controllers can be expressed as:

—Hoo • ZB2D\2  ̂ 132^12'L
K(s)  =  L F T  i

(  A +  #2-̂ 00 ~t~ HqqC2 
_______ Foo..............

. V -EÖAC2
0 p i £

0
P x 27 

0

N
W

(4.159)
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with free parameters

N (s) e  B H ^ Xny , ^ ( s )  G K H & r-n’)xn'  

and the definitions: E 21 = D21D21,

Foo =  - D ^ C x  + D12±L f - D 12H D i2')TB2TX , i  =  A + B ^ X ,

Hoo = Z  (̂ —B i D 2i  ̂ — Y C j (£>2it )T£)2it ) , C2 =  C2 + D21B ^ X ,
Z _  (I — Y X ) ~ l , 2 =  B2 + Y C \  D12.

P ro o f: A proof is not presented here, however this result can be proven using identical 
reasoning to tha t employed in the proof of the case 2 result which has been presented. 
□

T h e o re m  4.5.2 (C ase  2) Given a generalized plant (4-146) which satisfies assump
tions A .l ,  A .2 and A .3 and for which both D \2 and D21 are nonstandard, an Hoo 
controller exists if  and only if  (4-149) and (4-155) have stabilizing solutions X  > 0 and 
Y  > 0 which satisfy p (X Y )  < 1.

When it exists, the set of all Hoo controllers K (s ) can be expressed as:

K (s)  =  (4.160)
A  -V- B2F00  4-  H00G2 - H o o  '• Z  B 2 D \ 2 ^ B 2 D , 2L \ y

Foo 0 : D u> £ > 1 2 ^ f  N  W i \

- £ > 2 1 '  C 2 £> 2 i '  : 0 0 '  V  w2 w3 )  '

- D 2 l L C 2 £> 21  ■1  i 0 0 ) J

with free parameters

N(s)  €  B H £ Xn~> W l M  ^ HH%x{n'>-nw), 

w 2(s) e n n {̂ - nz)xnw, w 3{s) e

and the definitions:
Foo =  - D n 'C \  + Di2LL F -  D n H D u ') T B2t X , A = A + B i B f X ,  

Hoo =  z f i ß x D i J - Y C Z (D 2 l ') T D 2 i} )+ L B D21L,C 2  = C2 + D2lB ? X ,

2j — (I — Y X ) -1, 2 =  .

P ro o f: A proof of this result is contained in sections 4.3 and 4.4. □

T h e o re m  4.5 .3  (C ase  3) Given a generalized plant (4-146) which satisfies assump
tions A .l ,  A .2 and A .3 for which D \2 is standard and D21 is nonstandard, an Hoo 
controller exists i f  and only if  (4-147) and (4-155) have stabilizing solutions X  > 0 and 
Y  > 0 which satisfy p ( X Y )  < 1.
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When it exists, the set of all Hoo controllers K(s) can be expressed as:

K(s) = LF T <

A  +  b 2f x  +  h ^ c 2 Hoo '• - b 2 e ^  \

-F o o 0 e J $

£>21' c2 z £>21* 0

£>21 ^ D 2 iL ; 0  /

, ( N  W )

(4.161)
with free parameters

N(s)  6 BW £*n"\ W(s)  6 

and the definitions: E \2 — Dy

Foo = ( - D 12'C1 - D 12' (D12' )TB%X)Z, Ä
Hx  =  - B lD2^  + LHD2l L - Y C l ( D 2^ ) TD21\  C2

Z = (.I - Y X ) - \  B2

A + YC fC i ,
c 2 + d 21b J x , 
b 2 + y c J d 12.

Proof: This result follows by applying the results for case 1 in Theorem 4.5.1 to the 
transpose of the case 3 plant. The transpose of the resulting controller parametrization 
furnishes the above description of all controllers for the case 3 plant. □

4 .6  In te r p r e ta tio n  and  co m p a riso n  o f  th e  N o n sta n d a rd  
T i o o  re su lts .

In each of Chapters 3 and 4, a solution (existence conditions and a full controller param
etrization) of the same nonstandard Hoo control problem is presented. The derivations 
differ markedly in approach and in the type of techniques used. However, the solu
tions obtained bear a close relationship with each other. One objective of this section 
is to reconcile some minor differences in the solutions obtained in each chapter, thus 
demonstrating that they are in fact equivalent.

4.6.1 Canonical Forms and the Riccati Equations.

Calculation of the canonical forms displaying the invariant zeros of the subsystems G i2(s) 
and Cr2i (s) play an important role in both approaches. In both solutions of the nonstan
dard Hoo problem, this canonical form is used to calculate the auxiliary matrices C\ /Lp  
and/or B \/L h which appear in the controller existence conditions and parametrization.

In the augmented plant approach, the augmentation matrix C\ must be chosen such 
such that it stabilizes the controllable subspace of the pair (A — B 2 D\2 ^C\, —.0 2 - D i s 
similarly, in the Youla parametrization approach, a preliminary step is the calculation 
of a matrix Lp  which stabilizes the controllable subspace of (̂ 4 — -f^ Z ^ 1)-
Both Ci and Lp  can be constructed with the aid of a controllability canonical form for
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the pair (A — #2 £*12^61, B 2 D 1 2 1') which results from a similarity transformation T :

T  - \ A - B i D l2'C<)T =  (_ £ °  £  )  , (4.162)

T - 1B2D12l = ( ß p ) -  (4-163)

Importantly, the invariant zeros of the given realization of 612(5) are displayed in this 
canonical form in that they are the eigenvalues of Aq. Recall that we choose in Chapter 
3, we chose

Cl =  - ( £ i  L2 ) T ~ \  (4.164)

where L2 is any matrix such that A\  + ßF ^l is stable and L\ is arbitrary. Recall also
that Lfi as chosen in Chapter 4 has exactly the same type of construction:

Lp =  (Lpi Lp2)T~1, (4.165)

where Lf 2 is chosen such that ap  =  A\  + ßpLp2 is stable and with Lpi  arbitrary.

In summary, the class of all valid C\ is exactly the class of all —Lp with Lp chosen 
as described earlier. Likewise, it follows using similar reasoning to the above, that the 
class of all valid B\ is the class of all —Lr .

Next recall the algebraic Riccati equations obtained via each approach when D 12  is 
nonstandard:

X A zf  + A z fTX  + X(- , -2B 1B 1t - B 2D 12>(D12')t B2t )X  = 0, (4.166) 

XoAzX + A z x TX 0 + X 0(-y-2B i B { - B 2D12'(D12')TBZ)Xo = 0, (4.167)

with the definitions

A zf  — A — B2D\2*C\ +  B2D\2L Lp, (4.168)

A z x  = A — £ 2 ^ 1 2 ^ 6 1  — B2D12l Ci . (4.169)

Since the set of possible L f equals the set of —Ci, the resulting set of A zf  equals the set 
of all possible A z x  • An analogous identification can be made between the possible sets 
of matrices A zh and A zy  • Recall that when nonnegative definite stabilizing solutions of 
either of the nonstandard AREs exist, they are independent of the particular numerical 
values of C \ / L f and/or B \/L h , provided these matrices have the structure specified 
in the previous section. It follows immediately that the algebraic Riccati equations 
resulting from each approach always share the same nonnegative definite stabilizing 
solutions. Noting that nonnegative definite solutions to the algebraic Riccati equations 
are unique when they exist, we identify X  =  Xo and Y  =  Yq. Note that the subscript 'O' 
was used in Chapter 4 to emphasize that the solutions Xo and Yq are actually limiting 
values of the matrices X € and Ye, which are associated with the e-augmented plant.
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4 .6 .2  Solving th e  R iccati E quations.

Suppose a singly nonstandard problem having D \2  full row rank is transformed to a 
standard problem by defining a new input signal v! via the preliminary transformation 
u(t) = D i2 ^u'{t). This restricts the possible control actions to a subspace defined by the 
rowspace of D 12. In effect, some freedom in the input signal is ignored in this approach. 
This has been done with a view to first solving the standard Tioo problem associated 
with the new input signal u'(t), having the generalized plant:

G'(s)
A Bi b 2d 12' '
Ci 0 I
c 2 D21 0

(4.170)

The existence of a solution to the new standard problem for G'(s) is clearly sufficient 
for the existence of the original nonstandard problem. If an Tioo control law K '(s ) can 
be found for G'(s), then K (s ) =  K'(s) will be an Tioo controller for the original
nonstandard plant G(s).

(note that the reverse is not true).

When one applies the standard Tioo results to the standard generalized plant G'(s), 
one obtains the following ARE:

(A -  B2D12'C l )TX ' + X '(A  -  B2Oi2,Ci) +  -  B2D n'(D i2 ')T B%)X' = 0.
(4.171)

The existence of a nonnegative definite stabilizing solution X '  of (4.171) is a neces
sary and sufficient condition for the existence of an Tioo control law for G'{s). Recall 
that a stabilizing solution of (4.171) is one for which A — .0 2 -Di2*Gi +  (7 — 
B 2 D\2 \ D \ 2 *)t B 2 )X ' is a stable matrix.

The above Riccati equation should be contrasted with the nonstandard Tioo ARE 
(4.166).

One property of the nonnegative definite stabilizing solution X  of the nonstandard 
ARE (4.166) which was highlighted in both the present chapter and in Chapter 3 was 
that it satisfies the identity:

X B 2 D \ 2 ^ ~  —  0 . (4.172)

It follows immediately from this identity that that X ' = X  also solves the ARE (4.171). 
Note, however that stabilizing solutions of (4.166) are not in general stabilizing solutions 
of (4.171).

It may be that we cannot find a nonnegative definite stabilizing solution of (4.171), 
even though a stabilizing solution of the equation (4.166) exists.

It should be noted that a stabilizing (but not necessarily simultaneously nonnegative 
definite) solution of the algebraic Riccati equation always exists. When D12 (-D21) is 
nonstandard, the constant term in the Riccati equation for X  (T) is absent. With this
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in mind, consider, the Hamiltonian matrix associated with the ARE (4.166):

A z f t ('r-2B 1B 1T - B 2D n '
0 —Azf

Note that the eigenvalues of this matrix are those of Azf plus their reflections in the 
imaginary axis. Recall that the only closed right half plane eigenvalues of Azf correspond 
to zeros of Gi2(s). Recall also that imaginary axis invariant zeros are precluded by 
hypothesis (assumption A .3). It follows therefore that the Hamiltonian matrix H x  
has no imaginary axis eigenvalues. This implies the existence of a stabilizing solution 
of the ARE. In fact, a straightforward calculation of the stable invariant subspace of 
the associated Hamiltonian matrix enables the construction of the ARE solution. For a 
summary of these ideas, see subsection 6.2.1.

Recall that any stabilizing solution of the nonstandard Riccati equation (4.166) must 
have the following structure:

x  =  (TTr 1 ( o o ) T_1- <4-174)

where T  is a similarity transformation associated with the controllability canonical form 
for (A — B 2 D i2 ^C\, B 2 D i2 L) as given in (4.162). With partitioning conformal to that in 
(4.174), we write:

T - 1B2ß i2 t =  (  £  )  (4.175)

and
T -^B l = (  £  • (4.176)

There exists a nonnegative definite stabilizing solution X  of (4.166) if and only if there 
exists a nonnegative definite stabilizing solution of the following ARE:

+  A%V +  (7_20i (0i )T -  7171*) *  =  0, (4.177)

where Ao appears in the canonical form (4.162) and its eigenvalues correspond to the 
invariant zeros of Gi2(s).

The scalar 7 should not be confused with the matrix 71 in (4.177) which is defined as 
follows:

An equation of the same form as (4.177) appears in [86] where a so-called one-block 
state-feedback Tfoo control problem is addressed with D \ 2  =  / .  It should be noted 
that the constant term in this ARE is also zero. The comparatively simple structure 
of the ARE also leads to its being solvable by direct calculation of the solution of two 
associated Lyapunov equations. The solution of these Lyapunov equations can also be 
used to deduce the minimum achievable Hoo norm for the state-space system. A similar 
idea is employed in [16] where the Lyapunov equation solutions lead to a method by 
which the optimal Hoo disturbance attenuation can be directly calculated for an output 
feedback 7Yoo problem.
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We now recount the approach suggested in [86] for solving AREs of the form (4.177).

In subsection 3.1.3 of Chapter 3, a whole family of nonsingular state space basis 
transformations T  were introduced, each of which gives rise to a controllability canonical 
form as described above. There is a subclass of this family which results in a partitioning 
of the matrix Aq as follows:

A° = ( f !)- (4-178>
where Aq is stable and Ag is antistable (see [86]). Recall that Aq has no imaginary axis 
eigenvalues (since Gi2(s) has no imaginary axis invariant zeros) and therefore that Aq 
and Aq are also free of imaginary axis eigenvalues. With reference to equation (4.177) 
and [86], we now introduce the following partitioning of 0\ and 71 which is conformal to 
that in (4.178):

- ■ (2!)'
'•  -  ( ? ( ) •

It is shown in [86] that stabilizing solutions of (4.177) always have the following structure

*  =  (  0 (S3 -  T-2 ^ ) - 1) )  ’ (4'181)

where S3 > 0 and T3 > 0 are solutions of the two Lyapunov equations:

- A lS 3 - { A l ) TS3 + 7?(7i )T =  0, (4.182)
- A 30T3 -( 4 ) r T3 + 6\{6\)t =  0. (4.183)

It was shown in section 4.2 of the current chapter that (A, B2) stabilizable implies that 
(Ao, 7i ) is also stabilizable. It then follows that (Aq,7i ) is controllable, since (Ao,7i) 
stabilizable by definition means that all unstable modes must be controllable.

In the context of the nonstandard Tioo problem, these results reveal a particularly 
simple structure to the problem. In effect, solving the Riccati equation corresponds to 
the solution of two Lyapunov equations of an order equal to the number of right half 
plane invariant zeros of the plant Gi2(s). This highlights the important role played 
by right half plane zeros in controller synthesis. It can be seen that the only nonzero 
component of the Riccati equation solution is due to the right half plane invariant zeros 
of the subsystem Gi2(s) of the generalized plant.

It may be of advantage to employ this approach in solving the Riccati equations as 
they appear in the existence conditions for the nonstandard problem at hand. This 
approach has the advantage that the optimal attenuation can be calculated immediately 
as 7min =  {Amax ^ S ^ 1)}* (again see [86]).

(4.179)

(4.180)
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4 .6 .3  Param eterization o f C ontrol Laws.

Despite the differences in the derivations, the structure of the two nonstandard controller 
parametrizations is the same. Upon comparison, however it is apparent that there is a 
minor difference in the state-space formulae for the coefficient matrices in the linear 
fractional transformations used in the controller parametrizations. In particular, com
parison of the case 2 controller parametrization results in Theorem 3.6.2 and Theorem 
4.5.2 reveals a difference in the matrix “.öoo” as it is defined in each theorem. On the 
one hand, in the parametrized augmentation approach one has

Hx  =  Z0 ( -B iD z i'  -  y0C j(D 2i, )r D2it -  B iA ii1 ) , (4.184)

and yet in the present chapter

H00 =  Z ( - B i D i  1* -  YC% +  LhDn 1 . (4.185)

We now resolve this apparent discrepancy. Our strategy shall be to start with (4.184) 
and show that it may expressed without loss of generality in the form (4.185).

First recall that B\  in (4.184) is any matrix which stabilizes the observable subspace 
of the pair (— A — B\D2 i  ̂C2 ) and that Lh in (4.185) must be a matrix which 
stabilizes the observable subspace of (L^i^C^, A — B\D2 i^C2 )- The matrices B\  and 
Lh may be chosen using the observability canonical form for the pair (£>2 i 1C2 , A — 
B\D 2 \'‘C2 ). There exists a nonsingular matrix U such that

U(A-BiD2i'C2)l r 1 = ( “° “ ' “ ) ,  (4.186)

D n  lC2U-'  =  ( 0  ßa ) (4.187)

where the pair (Z?#,«i) is observable. Using this canonical form, we can choose B\  as

follows: B\ ( ) with Mi  arbitrary and M2 any matrix such that oc\+M2ßH

is stable. Similarly, we can choose Lh as follows: Lh =  U' 
and Lh 2 anY matrix such that a i +  Lh 2Ph is stable.

1 (  L hi  \
V LH2 )

with Lhi arbitrary

We now show that, given any B\  as described above, we can make a choice of Lh (also 
with structure described above) such that Hoq as given in (4.185) equals the expression 
in (4.184). First note that it is easy to check that if we define Lh =  —ZB\,  the right 
hand side of (4.185) equals that of (4.184). However, it is not obvious at this point that 
this choice of Lh has the structure described in the previous paragraph. The following 
argument is intended to establish that it does.

U{A -  B1D21tC2 +  L a D i i ^ U - 1 (4.188)

=  (  o° aT )  +  V(I -  Y X  +  Y X ) Z U - x (  ^  )  ( 0 ) (4.189)

=  (  0° a T + Ä  ) + U Y U TU - ? X Z U - '  (  g  ) (  0 ß a ) .  (4.190)
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Using a similar argument to that which was used to establish (3.31) in Lemma 3.3.2, it 
can be shown that

u y u t  = (  0 0 )  ’ (4-191)

for some matrix 0  which is nonzero in general. It follows from (4.191) and (4.190) that

U(A -  B i D 2 1 'C 2  +  L HD2l^C2)U~x =  (  o ttl +  M2/3ff )  - (4-192)

where the entries denoted x are irrelevant to the argument. Since M2 has already been 
chosen to stabilize oq +  M2/3ff, the identity (4.192) confirms that Lh — —ZB\  indeed 
stabilizes the observable subspace of the pair (D 2 i'LC'2 , A — -SiL^i^C^).

Suppose now that one is given a choice of Ljj — U~l  ̂ ^   ̂ where M2 is any matrix

such that « 1  +  M2/3ff is stable. With the choice Bi  =  —Z~1Lh , it is easy to verify that 
the right hand side of (4.184) equals that of (4.185). That B\  =  —Z~1Lh stabilizes the 
observable subspace of the pair (D2 \'LC2 ,A  — B\D 2 i^C2 ) follows via similar arguments 
to those outlined above which were used to show the reverse implication.

In summary then, despite the fact that the techniques used to prove the controller pa- 
rametrization results are quite different, the state space formulae are actually completely 
equivalent since the coefficient matrices of the linear fractional maps in the controller 
parametrizations can be made to equal each other by ensuring that the matrices Lh 
and B\  are related by the equality Lh = —ZB\.  Importantly, this relation does not 
compromise the key structural properties of Lh and B\.

4.6 .4  R elevan ce to  M u ltip le  O b jective D esign .

As was commented in the introduction of this thesis, a knowledge of the freedom in the 
parametrization of control laws for a given generalized plant and synthesis objective is of 
importance if secondary synthesis objectives are to be achieved. One means of approach
ing a mixed objective controller synthesis problem is to first find a parametrization of 
control laws satisfying one objective and then use the freedom in this parametrization to 
achieve other synthesis objectives. It was also noted in the introductionthat controller 
synthesis problems arising at each step using the above strategy can lead to a generalized 
plant which has more measurements than disturbances and/or more controls than objec
tive signals. The additional degrees of freedom available in nonstandard Hoo control as 
compared with the standard problem axe particularly important from this perspective.

The stable rational transfer function matrix parameters Wi, W2  and W 3  which appear 
in the parametrization of all doubly nonstandard controllers do not affect the closed-loop 
transfer function Tzw(s) and hence do not affect the Tioo norm. This fact can be verified 
by referring to the proof of the controller parametrization result in the present chapter. 
First note from subsection 4.3.2 that, given any control law K(s),  one can write the
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resulting closed loop operator as:

T2„ (s) =  L F T {Q ,L F T {G tmp,K } } ,  (4.193)

where state space realizations of O(s) and G*mp(s) are given in Lemma 4.3.3. Next note 
that with the choice H =  Ha0  in Lemma 4.4.2, it follows that:

' Ä +  H0oC2 Eh 0 ^
LF T {G tmp, K }  =  LFt I Ci - E f 0 /», , K(s)  1

D2i 'C2 Inw 0 j
J

(4.194)

where K  is a solution to the Ttoo problem defined by the linear fractional map (4.194). 
Construction of K (s ) is discussed in subsections 4.4.2 and 4.4.3. Note in particular that 
K (s ) is completely independent of W i(s), W2 (s) and ^ ( s ) .  This fact, together with the 
expression (4.193), reveals that Tzw is also independent of W i(s), W2 {s) and W ^s). It 
is in this sense that these parameters are redundant from the point of view of achieving 
the Ttoo objective. This is not true if other synthesis objectives are considered, however.

Whilst the additional freedom in the control laws cannot influence the nominal closed 
loop associated with the TLoo objective, these parameters do have an effect on the closed- 
loop state dynamics. For this reason it is important to take into account the additional 
freedom in synthesis problems which include additional performance criteria, since these 
will in general be affected by the additional free parameters. One such example was 
discussed in Chapter 1  where the minimization of the 7i2 performance objective on a 
second input/output pair of the generalized plant was considered. If one were to consider 
a generalized plant which has a second input/output signal pair (v,n), then variation of 
Wi, W2  and W3  would in general influence Tvn.

It has not been the objective of this work to investigate the means by which such 
parameters can be chosen, but to reveal their existence and emphasize their significance 
for multiple objective control design. The question remains open as to how the free 
parameters might be chosen to improve closed-loop performance criteria associated with 
additional signals.

4.6.5 Comparing the Plant Augmentation and Youla Parametrization 
Proof Techniques.

We now compare the two approaches to the nonstandard Hoo control problem which 
have been presented in the last two chapters. The two approaches have two major 
similarities. Firstly, the observations concerning the zeros of the systems G i 2 {s) and 
G2 i(s) are common to both approaches. Also, both approaches draw upon the standard 
Hoo theory at some point.

Derivation of control law parametrizations.

Note that in both cases, a lossless transformation is involved in obtaining output feed-
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back controllers. This is a key structural reconfiguration which is essential in obtaining 
the particularly simple final formula for output feedback Hqo control. In the case of the 
parametrized augmentation approach, the lossless decomposition is carried out implicitly 
since standard controller formulae (which rely on such a decomposition) are applied to 
the (standard) €-augmented plant. In the Youla parametrization based approach, an 
explicit lossless decomposition of the original (nonstandard) plant is carried out.

The author believes that each of these approaches has its own value, insights and 
potential for future application to other problems. The techniques based on the Youla 
parametrization have been recently applied in [74] to nonstandard?^ controller synthesis. 
Similar techniques to those used in the augmented plant approach have been employed 
in [50] to derive controllers for a class of Hoo servo problems.

4.7 Nonstandard Synthesis via the Youla Parametri- 
zation.

The techniques used in the first part of this chapter to obtain nonstandard Hoo results 
can also be used to obtain controller parametrization results for nonstandard H2 prob
lems. For reference, we now summarize these results without proof (see e.g. [74] for a 
proof of the doubly nonstandard result).

S ta te  Space H2 Synthesis w ithout Signal D im ension  R estrictions. 

Given a generalized plant G(s), realized as follows:

GW
A B i b 2
Ci 0 D12
C l D21 0

(4.195)

which satisfies the following assumptions:

A .l  (A, £ 2 ) is stabilizable and (C2 ,A) is detectable.

A .2 Both D \2  and D21 are full rank.

A .3 Neither G i2 (s) nor G2 i(s), as described by the state space realization in (4.195), 
have imaginary axis invariant zeros.
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Find all FDLTI control laws K(s) which ensure that the closed loop mapping T ^ (s) is 
internally stable and that ||TẐ ||2  is minimized.

Riccati Equations for H2 Controller Existence and Parametrization:

• When D 13 is standard (full column rank), consider

0 =  X (A  -  B2Oi2tCi) +  ( A  B i D d C i f X  (4.196)

-  X B 2D12'(D12')t B%X + C f(D i2i )TBi2-LCi,

where D\2  ̂ and D\2 ~̂ are defined according to the identity

( ü i ) ( Di2 ) =( o ) • <4-i97>
• When £)13 is nonstandard (full row rank and nz < nu), consider

X A zf  + Az f t X  -  X B 2D12' (D i2' )t B2X  = 0, (4.198) 

where £>i2* and Di2L are defined according to the identity

( ( D u l f  ) ( °,2t ßl21 ) = ( 0 5 ) - (4-199>

and where

A zf  — A — B^Di^  C\ +  B2D\2LLf (4.200)

with Lf any matrix which stabilizes the controllable subspace of (A—BiDyJCi,

• When E)31 is standard (full row rank), consider

0 = Y ( A -  B1B 21 tC2)T +  (A -  B iB 2i , C2)y  (4.201)

-  YC%(D21')t D2i 'C2Y  +  B1D2i-L(B21-L)TBj’

where D2i  ̂ and B2i'L are defined according to the identity

(  ( o ° V  )  ( ° 2lt 0 2 1 1 ) =  (  0 ? )  • <4-202)

• When D 21 is nonstandard (full column rank and ny > nw), consider

Y A zhT +  Az h Y  -  YC%(D2i , )TB2i tC2y  = 0, (4.203)

where D2i * and D2i 1 be defined according to the identity

( d2S  ) ( ° 21 (°2ll)T ) = ( o ?)■ (4-204>
and where

A z h A — B\D2l^C2 +  Lh D21^C2 (4.205)
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with L h any matrix which stabilizes the observable subspace of {D2\^~C2,A  — 
B i D2i 'C2).

Nonstandard H qq Controller Existence and Parametrization Results.

Theorem  4.7.1 (Case 1) Given a generalized plant (4-195) which satisfies assump
tions A .l, A .2 and A .3 for which Dyi is nonstandard and D21 is standard, the algebraic 
Riccati equations (4-198) and (4-201) have stabilizing solutions X  > 0 and Y  > 0 and 
an optimal TL2 controller exists.

The set of all optimal H 2 controllers K (s) can be expressed as:

K(s) =  LFT <
A +  B2F2 + H2C2 - h 2 ; B2D 12^ B2D12l \

f 2 0 : D u ' D n L
- e ^ c 2

!Ta
;

0 0 /

with free parameter
w(s)  e  T z n ^ - nz)xnv

and the definitions: E21 = D2\D \1,

F2 =  -D i2 tCi +  D12LLf -  D12]{Di2])TB2TX,

H2 = - B ^  -  YC%(D2i')TD2i'.

(4.206)

(4.207)

(4.208)

Theorem  4.7.2 (Case 2) Given a generalized plant (4-195) which satisfies assump
tions A .l, A .2 and A .3, for which both D12 and D21 are nonstandard, the algebraic 
Riccati equations (4-198) and (4-203) have stabilizing solutions X  > 0 and Y  > 0 and 
an optimal FL2 controller exists.

The set of all optimal 7i2 controllers K {s) can be expressed as:

f (  A + B2 F2, +  H2C2 - h 2 • -02-̂ 12̂ b 2d 12l \

K{s) = L F T  < f 2 0 ■ D u ' X)l2x (  0 W i \ ,

i

-Ö21f C2
- D 21X C

D21'
d 21l

; 0
■ 0

0
0 )

’ \ W 2 w 3 )

(4.209)
with free parameters

e 7eH£x<n»-n">, w2(s) e n n <£ '-n-)*n'-, iv3(s) e 7?wä“-n-)x(n»~n”)

and the definitions:

F2

h 2

- D u 'C i +  D 12l L f -  D12'(D n ')TB2TX ,

- B i D 2 1 '  - y c J ( D 2i t ) T Ö 2 i t +  £ f f Ö 2 l 1 .

(4.210)

(4.211)
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Theorem 4.7.3 (Case 3) Given a generalized plant (4-195) which satisfies assump
tions A .l ,  A .2 and A .3 for which D \2  is standard and D21 is nonstandard, the algebraic 
Riccati equations (4-196) and (4-203) have stabilizing solutions X  > 0 and Y  > 0 and 
an opitimal 14.2 controller exists.

The set of all optimal H 2 controllers K (s ) can be expressed as:

K( s ) = LFT <

 ̂ A + B2F2 + H2C2 h 2 ; - b 2e J  \

- f2 0 ;..L__ X M ..... , ( 0 W ) >
A2I* C2 zW ; 0
D2l LC2 Ö211 0 ) j

(4.212)

with free parameter
w(s) e i z n ^ nv~nw)

and the definitions: E \2  =  D^2D \2 ,

=  - D v f C x - D x J i D v t f B f i X ,

= - B xD2i ] + Lh D2i l -  Y C l ( D 21')t D2i '.
f2

h 2

(4.213)

(4.214)
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e such that the associated linear time invariant stabilizing control law

K  = LFT{M(s) , Q(s ) }  (5.9)

has better ?Y2 performance than K (s ) in the sense that

iir£ii2 < iit£ ii2. (5.10)

Proof: First define the map ?(•)  : IZTioo —*• 1R as

HQ)  =  \\LFT {Gvn,LFT{M,Q}} ||2 (5.11)

=  H i r + T T Q T r i h .  ( 5 -1 2 )

The transfer function matrices T fn (i =  1,2,3) are those associated with all internally 
stable closed loops which map n (t) to v(t). Note that T{-) has only been defined for 
arguments in TZTioo, since clearly we are only interested in internally stabilizing control 
laws.

Next note that the function ?(•)  is convex in its argument; with Qi ,Q2 G 'T̂ 'Hoo and
A €[0,1],

+ (1 -  A)Q2) = ||A(TYn + ^ nQi73n) + ( l -A)(7Tn +T2nQ2 ^ n)||2

< AT(Qi) + (1 -  A)^(Q2). (5.13)

Since || • | | 2 is a norm, the triangle inequality holds, which has been used to establish the 
above formula.

By hypothesis, the given control law K  is not globally H 2 optimal. In other words, 
Q does not globally minimize T(-).  Therefore there exists at least one Q G IZTioo such 
that

?(Q) < r(Q). (5.14)

Recall, that it is assumed in the lemma statement that some number e > 0 has been 
given. Should the Youla parameter Q with the property (5.14) also satisfy ||Q—Q||oo < e, 
then with Q =  Q ,  the result stated in the lemma holds. Suppose instead that | | Q —Q ||o o  >  
e. It remains to show that there exists a Q such that both \\Q — Q ||o o  < c and

r{Q) < (5-15)

Given Q and Q as defined above, define the family of Youla parameters Qv = rjQ +
(1 — rf)Q where 77 G (0,1]. Observe the following inequalities

r ( Q ”) <n?(Q) +  ( i - r i ) T ( Q )  ( 5.16) 

< ^ ( Q )  +  ( i  -v)H (5-17)

The first inequality follows directly from the convexity of T{-).  The second inequality 
follows from (5.14). Thus each element of the family Qv performs better in an 7f2 sense



C hapter 5

T he Boundary o f the Hoo  
C onstraint in M ultiple O bjective  
R obust Control.

Summary.

The aim of the present chapter is to investigate one particular aspect of multiple objec
tive controller synthesis problems in which an Hoo bound is sought on one input/output 
signal pair of the generalized plant. We shall focus on the mixed H 2 /Hoo synthesis 
problem which was introduced in subsection 1.2.2 of Chapter 1. The main conclusion of 
the present chapter is that the closed loop resulting from many multiple objective robust 
control laws must necessarily lie on the boundary of the Hoo constraint. In other words, 
the closed loop transfer function associated with the Hoo objective is not only bounded 
real but also achieves the specified bound on its infinity norm. This leads to the study of 
state space spectral factorization of spectral matrices which have imaginary circle zeros 
which is pursued in the subsequent chapter.

5.1 T he M ixed H2 /  'Hoo Synthesis O bjective.

We now consider the dual-objective controller synthesis problem depicted in Figure 5.1 
which was introduced in subsection 1.2.2 of Chapter 1. Suppose one has constructed 
a generalized plant G(s) consisting of a nominal plant model and weighting functions 
which have been chosen and configured to reflect disturbances, system uncertainty and 
closed loop design objectives. In constructing the generalized plant, two distinct (vector
valued) exogenous normalized disturbance signals have been considered which we label 
w(t) and n(t). Associated with these two signals are the objective signals z(t) and v(t), 
respectively. Here we consider the task of finding internally stabilizing control laws K(s ) 
which achieve a closed loop Hoo criterion with respect to the signal pair {w(t), z(t)}, 
whilst simultaneously achieving another, possibly different, criterion with respect to the 
other input/output pair {n(f),u(t)}.

As before, we limit our search to control laws which axe linear, time-invariant and
137
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Generalized plant.
z(t)

V(t)

Figure 5.1: Multiple objective design framework with linear time invariant generalized 
plant and control law.

finite dimensional. Given any such control law K (s ), we call the resulting closed loop 
operator T K , noting that

Let this operator be partitioned according to the dimensions of the signals associated with 
the control objectives. Let Tẑ (s )  and T ^(s) denote the (1, 1) and (2, 2) block-partitions 
of T k (s), having dimensions nz x nw and nv x nn respectively. By obtaining bounds 
on the infinity-norm of T ^ , the benefits of the linear robust Hoo design methodology 
are sought. Since there is considerable freedom associated with Hoo control laws, it 
is anticipated that there should be ample opportunity to use that freedom to achieve 
another performance objective on the operator T ^(s) in addition to achieving HT^Hoo < 
7. Minimization of the quantity ||T^||2 is adopted as the second performance objective.

Recall that /C denotes the set of linear, time-invariant internally stabilizing control 
laws for the generalized plant G(s). Let /C7 denote the set of 7-admissible Hoo control 
laws:

JO = { k \ K€ Kand ||T * ||00 < 7} . (5.2)

Next we consider the set /C7 C K, which denotes the set of all control laws which are 
either 7-admissible or achieve the closed-loop 7-bound with respect to the input/output 
signal pair {w(t), z(t)};

io = { k \ K  6 K and ||T* H«, < 7} • (5.3)

It will shortly be shown that it is necessary to consider this set, which is larger than 
/C7, when considering optimal closed loop H2 performance subject to a closed-loop H 0o
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constraint.

Hoc Controllers with Optimal Nominal H 2 Performance.

Consider the following set of linear time invariant control laws:

K- =  {*T| K  € K, | |T * |U < 7 ,and ||T* ||2 < ||T* ||2 V K  6 t o }  . (5.4)

In summary, these control laws provide the best possible nominal noise attenuation in 
an H 2 sense with respect to the signal pair {n(f),u(t)}, whilst providing a guaranteed 
(non-strict) 7-bound on the Hoo norm associated with the signal pair {u>(t), z(t)}.

Relevance of the M ixed H 2 /  Hoo Problem in Control Design.

In subsection 1.2.2 of Chapter 1, one rationale was given for solving the mixed H 2 
/  'Hoo problem in terms of a design example. There is was shown that the generalized 
plant had disturbance signals which were of fundamentally differing nature. An H 0o 
synthesis objective was used to quantify reference tracking performance, whilst an H 2 
synthesis objective was used to describe the effect of sensor noise on the system. We 
refer the reader to Chapter 1 for further discussion of this problem.

We now move on to introduce another control design scenario in which the mixed H 2 
/  Hoo objective would be of benefit. Suppose one has a nominal model which describes 
the dynamics of a process adequately for most of the time. However, every so often there 
are short-term deviations in the process dynamics from the nominal behaviour, whose 
magnitude and time of incidence cannot be predicted exactly in advance.

Firstly we would like to ensure good set-point tracking and disturbance attenuation 
during periods where the nominal model is accurate. For example, this may be important 
in ensuring good product quality during the normal operation of a process. Next suppose 
that a generalized plant has been constructed such that the objective of minimizing 
||T^||2 adequately reflects the process performance objectives for the nominal model.

One could try applying H 2 optimal control methods directly to the plant. However, 
it is well known (see [26]) that the closed-loop stability of H 2 optimal control laws can 
be extremely sensitive to plant perturbations. Should the closed loop process dynamics 
become unstable during a period in which the nominal process model is inaccurate, and 
if this period is sufficiently long, then process variables may take on values which are 
either unsafe or which make recovery to normal operating conditions very slow, with a 
potential cost in terms of product quality. We would therefore like to find a control law 
which, in addition to providing good nominal H2 performance, provides a guarantee of 
stability in the face of variations from nominal process behaviour.

It should be noted that during a period of uncertain process behaviour, the process 
itself is time-varying and possibly nonlinear, whilst the nominal plant model, the gener
alized plant and the controller axe all linear and time-invariant. An important feature 
of the Hoo design methodology is that, in addition to providing a guaranteed stability
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margin against linear time invariant uncertainties, controllers can be designed which 
guarantee robust stability in the face of potentially nonlinear and time-varying mod
elling errors (see e.g. Chapter 3 of [34]). Suppose that a generalized plant has been 
constructed such that certain of its generalized disturbance and generalized objective 
signals can be associated with uncertain process behaviour. Denote this signal pair as 
(u;(t), z(t)}. The intermittent variations in process behaviour are modelled as being due 
to a mapping w(t) = X nz(t), where X n is an uncertain time-varying and/or nonlinear 
operator. If a bound is available on the incremental gain T(Xn) < 1 of the uncertainty, 
then one can design Hoo control laws which provide robust stability (for a definition of 
incremental gain, see for example Chapter 3 of [34]). The small gain theorem says that a 
sufficient condition for robust stability in these circumstances is that r(A)||T^ )||00 < 1.

The M ixed H 2 /Hoo Controller Synthesis Problem.

Suppose one is content to synthesize just one control law in K.*, this being sufficient 
to satisfy the described objectives. Quite aside from the task of finding all controllers 
in 1C*, the problem of finding just one element is difficult. The difficulty of the mixed 
7̂ 2 /  Hoo controller synthesis problem is evidenced by the many attempts at solving 
it in the literature, and still the apparent lack of a straightforward and reliable design 
algorithm. Whilst it is now a long-standing problem, results axe just emerging in the 
literature which point towards such algorithms (see e.g. [94] and [95]). The mixed H 2 

/  Hoo state-feedback controller synthesis problem was posed in [91] (see Problem A of 
that paper) where state feedback control laws were sought. In [91], it was observed that 
optimal mixed H 2 /  Hoo state-feedback control laws may be dynamic and not static as 
is the case when the H 2 and Hoo criteria axe treated separately. This contrasts with 
the single objective H 2 and Hoo synthesis in which constant state-feedback laws are 
generally available (provided the state is measureable).

Hoo Controllers which are Sim ultaneous Globally H2 Optimal.

There is one circumstance under which the synthesis of controllers in 1C* is particularly 
simple; it is when the globally optimal H 2 controller is also 7-admissible. Suppose we 
remove the constraint that K  6 K1 and design a globally optimal H 2 control law K2 . 
Suppose also that, fortuitously, \ \T ^  Hoo < 7 . Clearly in this case K  G K* and the mixed 
H 2 /  Hoo problem is trivially solved. In fact, this case is the main subject of [91] (see 
Problem B in that paper), where conditions are developed in terms of state space plant 
data for the existence of a control law which is simultaneously globally H 2 optimal and 
7-admissible. The main difficulty with the mixed H 2 /  Hoo problem is associated with 
those cases when the globally optimal H 2 controller is not also 7-admissible.

A property o f the H o o  Norm  of M ixed H 2  /  H o o  controllers.

The controller synthesis problem for K* is not addressed explicitly in this thesis. 
Instead, the approach taken here is to gain a better appreciation of a particular property
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of the set K*, and thus of the synthesis objective. The particular property investigated 
is the infinity norm of the closed loop system which results from optimal mixed H 2 /  'Hoo 
controllers.

Given that K* G K* => Ĥ ÜL'lloo < 7 , when will it be true that \ \T ^  ||oo =  7 ?

It is hoped that an answer to this question might help provide a basis for a mixed H 2 

/  Tioo synthesis algorithm or, in the very least, contribute to an understanding of why, 
despite many attempts in the literature, a simple and computationally straightforward 
solution to the mixed synthesis problem has not yet been found. An understanding of 
the Hoo norm of mixed controllers should provide one reference point in the search for 
a controller synthesis algorithm. When implemented, mixed H 2 /  Hoo control laws must 
create a closed loop system which achieves the infinity norm bound. In state-space, a 
result which can be used to check the H 00 norm bound is the bounded real lemma, which 
says that satisfaction of the bound is equivalent to the existence of a strong solution of 
an algebraic Riccati equation. Solving the Riccati equation when the norm bound is 
achieved is numerically more difficult than is the case when the bound is strict. Most 
standard ARE solvers do not work in the latter case. However, algorithms axe now 
available in the literature which axe able to solve the ARE when the bound is achieved. 
In the two Chapters which follow this one, another such algorithm is developed which is 
iterative and has known convergence properties.

5.2 The Closed Loop Infinity N orm  for M ixed H 2 /  Hoo 
Controllers.

We shall see that elements of K* can be characterized in a very specific way in terms 
of the infinity norm of the associated closed loop matrix T^w: in general =  7 .
In Chapter 6, an algorithm is developed which is intended to enable this property to be 
checked using state-space calculations, given a state space description of the closed loop 
operator Xẑ .  Such a realization might, for example, result from a candidate optimal 
mixed controller K (s ) being connected to the generalized plant. This approach has been 
taken in the hope that the resulting algorithm will be of utility in the future development 
of algorithms for the synthesis of state space realizations of mixed H 2 /  Hoo controllers.

T heorem  5.2.1 Let K* be the set of mixedH2 / Hoo controllers as defined in (5.4) for 
a linear time invariant generalized plant G(s) with input and output signals partitioned 
as in Figure 5.1. Suppose one is given any linear time invariant optimal mixed control 
law K* G K.*, then if K*(s) is not simultaneously a globally optimal H 2 controller, then 
K* results in a closed loop which satisfies

Pl'll~ = T (5.5)
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Before attempting to prove this theorem, we establish two lemmas. The first concerns 
the effect of controller perturbations on the closed loop H2 norm and the second concerns 
the effect of such perturbations on the closed loop 7-foo norm. We shall use the well- 
known Youla parametrization of all stabilizing controllers to prove the following results. 
We now recount the main features of this parametrization which are relevant to the 
proofs.

Given a FDLTI generalized plant G(s) with control input u(t) and measured output 
y( t ), note the following facts:

• All control laws which internally stabilize £ 22(3) can be expressed as follows

K(s)  =  LFT{M(s) ,Q(s ) } ,  (5.6)

where M(s)  is a coefficient matrix which can be constructed from a coprime factor
ization of £ 22(3) and where Q (s) G IZTtoo is a free parameter, (see e.g. Appendix 
A of [34] for an account of coprime factorization and the parametrization of all 
stabilizing controllers.)

• The above linear fractional map is an invertible mapping between control laws 
which internally stabilize G22{s) and stable parameters Q(s).

• Suppose the generalized plant has disturbance signal tu(t) and objective signal z(t), 
then when implemented, any internally stabilizing control law has a closed loop 
transfer function with respect to the signal pair {w(t),  z( t )}  which can be written 
as

T ?Js)  =  r r  +  n wQ Tiw (5.7)

where Tfw(s) (i =  1,2,3) axe transfer function matrices which can be constructed 
from G(s).

• If the generalized plant G(s)  contains only stable weighting functions, then the 
transfer function matrices T*w(s) (i =  1,2,3) as defined above axe stable.

Lem m a 5.2.1 Consider a linear time invariant generalized plant G(s) with input and 
output signals partitioned as in Figure 5.1. Let K(s)  G K, be any linear time invariant 
stabilizing control law which is not globally optimal in the 7t2 sense. Consider also the 
Youla parametrization of all stabilizing control laws for G(s) and let Q(s ) G TCH qq be the 
unique parameter associated with K(s);

K(s )  =  LFT{M{s) , Q{s ) } ,  (5.8)

where M (s ) is a suitable coefficient matrix.
Then for any e >  0, there exists another Youla parameter Q(s) G IZHoo with ||Q — Qlloo <



5.2 The Closed Loop Infinity Norm for Mixed H 2 /  'Hoo Controllers. 143

e such that the associated linear time invariant stabilizing control law

K  = LFT{M (s),Q(s)}  (5.9)

has better'H2 performance than K (s ) in the sense that

\ \T ih  < r * I I 2. (5.10)

Proof: First define the map /'(•) : TiTioo —► IR £is

H Q )  =  \\LFT{Gvn,LF T{M ,Q }}\\2 (5.11)

= \\Tfn +T%nQT%n\\2. (5.12)

The transfer function matrices T fn (z =  1,2,3) axe those associated with all internally 
stable closed loops which map n(t) to v(t). Note that T{-) has only been defined for 
arguments in TZTi<*,, since clearly we are only interested in internally stabilizing control 
laws.

Next note that the function is convex in its argument; with Q \,Q 2 € IZTioo and 
A € [ 0 , 1],

H W i  +  (1 ~ A)Q2) =  IIA {Tfn +  T%nQ\T%n) +  (1 — A) (Tfn +  T2nQ2T$n) ||2

< AH Q i ) +  (1 -  A)HQ2). (5.13)

Since || * H2 is a norm, the triangle inequality holds, which has been used to establish the 
above formula.

By hypothesis, the given control law K  is not globally H 2 optimal. In other words, 
Q does not globally minimize Therefore there exists at least one Q £ l^Hoo such
that

T(Q) < T(Q). (5.14)

Recall, that it is assumed in the lemma statement that some number e > 0 has been 
given. Should the Youla parameter Q with the property (5.14) also satisfy ||Q — Q||oo < 
then with Q — Q, the result stated in the lemma holds. Suppose instead that ||Q—Q||oo > 
e. It remains to show that there exists a Q such that both ||Q — Q||oo < c and

r ( Q)  < HQ)-  (5.15)

Given Q and Q as defined above, define the family of Youla parameters Q71 = r]Q +
(1 — 77)Q where 77 6 (0,1]. Observe the following inequalities

H Q V) < v H Q ) + ( i - r i ) H Q )  (5.16)
< VT(Q)  +  (i -  T = H Q )  (5.17)

The first inequality follows directly from the convexity of T{-). The second inequality 
follows from (5.14). Thus each element of the family Q71 performs better in an 7i2 sense
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than Q.

Observe next that Qv — Q — rj(Q — Q). Since Q is not identically equal to Q and 
both are stable, it follows that \\Q — Q||oo is finite and nonzero. By choosing any 77 > 0 
as follows 77 < min j e  | | Q  — Q H “ 1 , 1 J, it follows that \\QV — Q||oo < e. By then choosing 
Q =  Qv the proof of the lemma is complete. □

L em m a 5.2.2 Consider a linear time invariant generalized plant G(s) with input and 
output signals partitioned as in Figure 5.1. Let K (s ) £ /C7 be any 7 -admissible control 
law. Consider also the Youla parametrization of all stabilizing control laws for G(s) and 
let Q(s) £ IZTioo be the unique parameter associated with K(s):

K{s) = LFT{M(s) ,Q(s)} ,  (5.18)

where M(s) is a suitable coefficient matrix.
Then there exists a constant 77 > 0 such that if Q(s) £ VSKoo with ||Q — Q||oo < V> it 
follows that

K  =  LFT{M(s) ,Q(s)}  £ KF. (5.19)

Proof: Take any Q(s) £ VSHoo and define the associated stabilizing controller k  as in 
(5.19). Consider the resulting closed loop operator associated with the TLqo objective:

=  T r  +  Tf'* Q T r  • (5.20)

By writing =  Tffw +  T^  — Tẑ ,, one can deduce from the triangle inequality for 
the norm || • ||oo that

ll̂ ztülloo — H a llo o +  1 1 ^ - ^ 1 1 0 0 .  (5.21)

Next note from (5.20) that

K i-r^ ||cc  = lirrrö -Q jrnu
< iiTniooiiQ-Qiuiiiriioo. (5.22)

Note that since each of the transfer function matrices T*w(s) (i = 1,2,3) are stable, 
their Ttoo norms are well defined. The same is true for {Q — Q). The inequality in (5.22) 
follows from the submultiplicative property of the norm || • Hoc,; given any transfer function 
matrices M (s ) and N(s)  with finite infinity norm, then ||MiV||oo < ||M||oo||-^||oo •

Since, by hypothesis, HT/^II«, < 7 , it follows that there exists a real constant 0 < e* < 
7 such that ||r* ||oo  =  7 — e*. Note therefore from (5.21) and (5.22) that

iit£ iu < 7 -e*+iiTruiQ-<?iicciirriico. (5.23)
By choosing

^ ( r r u m u r v , (5.24)
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it follows that ||Q — Q||oo < rj ensures that ||T*,||oo < 7- This establishes the desired 
result. □

P r o o f o f T heorem  5.2.1:
We now combine the results of Lemmas 5.2.1 and 5.2.2 to establish this result.

Let K *(s) be as described in the theorem statement and let Q* denote the corre
sponding unique Youla parameter.

Suppose, contrary to the stated result, that ||T^*||oo < 7, i.e. K* E /C7.

Application of Lemma 5.2.2 to if*, allows us to conclude that there exists a constant 
77 >  0 such that if Q E Hhtoo and ||Q — Q*||oo <  7̂, then

k  =  L F T {M (s),Q (s)}  E r  C r .  (5.25)

Recall that K * is by hypothesis not globally optimal. It follows from Lemma 5.2.1 
that one can find a control law arbitrarily close to K * which has better W2 performance 
than K *. For arbitrary e > 0, there exists a Q with j|Q — Q*jjoo < € such that

K  =  L F T {M {s),Q {s)}  (5.26)

outperforms K * in an H 2 -norm sense.

Take any e such that 0 < e < 77 and let Q be defined according to Lemma 5.2.1; then 
the associated controller K  is in /C7 and has superior FL2 performance to K* . This is a 
contradiction since K* has, by definition, optimal 7̂ 2 performance within the set /C7 □

In summary, a characteristic of those mixed H 2 /H co control laws K* E K* which are 
not simultaneously globally H 2 optimal controllers, is that they achieve the closed loop 
infinity norm bound 7.

Theorem 5.2.1 has motivated the work in Chapter 6 on spectral factorization with 
imaginary axis zeros. In the remainder of this section we shall briefly review the connec
tion between spectral factorization and the Tioo constraint, a topic which is discussed in 
more detail in Chapter 6.

5.3 T he B ounded R eal Lem m a and Spectral M atrices 
w ith  Im aginary Axis Zeros.

In Tioo control, a specified bound is sought on the infinity norm of selected closed loop 
transfer function matrices: one seeks to synthesize control laws subject to the constraint 
that the closed loop operator T^u(s) is 7-bounded real. Recall that a transfer func
tion matrix M (s) is called 7 -bounded real (strictly 7 -bounded real) if it is stable and 
I I ( s ) I I00 7 (IIMWHoo < 7)- It has been pointed out in the previous section that
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closed loop systems which achieve the infinity norm bound arise when considering multi
ple objective robust control problems. In essence, the closed loop system is on the bound
ary of the closed-loop Tt00 constraint set In such circumstances, the stable closed-loop 
operator T^w{s) satisfies = 7, for at least one frequency u; € [—00,00].

The Bounded Real Constraint expressed in term s of a Spectral Matrix.

It is well known that a spectral matrix can be associated with a 7-bounded real transfer 
function matrix M (s ):

$ (s) =  72/  -  M T(—s)M(s).  (5.27)

Note in particular that <$(.70;) > 0 for all u E ]RU{oo} if and only if ||M||oo < 7 (see 
[11] and [34]). Observe that if M(jco) achieves the 7-bound at one or more points on 
the imaginary axis (including at infinity), then <£(s) loses rank at these points. In other 
words, there exists a vector 77 ^  0 such that = 0 and 3>(s) has a transmission
zero at ju).

State Space formulation of the Bounded Real Constraint.

Suppose one is given a linear time invariant control law K  which internally stabilizes 
a generalized plant G(s), giving rise to the closed loop system T^v(s). If one is given 
state-space realizations of G(s) and K(s),  it is then easy to explicitly calculate a state 
space realization of the closed loop:

T *  (*) =  C(K)(s I  -  A i K ) ) - 1 B(K)  + D(K)y (5.28)

where each of the matrices A(K),  B(K) ,C( K)  and D ( K ) are functions of the state-space 
data for G(s) and K ( s ) (see e.g. Chapter 4 of [34]). The very least we would like to be 
able to do at this point is to determine whether M( s ) =  T^w{s) is bounded real.

We now review how the spectral property $(ja;) > 0 can be interpreted in state-space 
terms, given a state-space realization of a bounded real transfer function matrix M(s) = 
D +  C(s l  — A)~1B.  The aim is to develop an algorithm which is capable of efficiently 
checking whether M (s) is 7-bounded real. Let 3>(s) be defined as in (5.27). Given the 
above state-space realization of M (s), we seek a check for the condition $(ju/) > 0 and 
thus of the 7-bounded real property. Theoretically, one might imagine checking this 
property by evaluating ä(M(juj)) over the whole frequency domain.

The Bounded Real Lemma.

Suppose one is given a state-space realization of a transfer function matrix G(s); then 
under certain conditions on the state-space realization, the bounded real lemma provides 
an algebraic test for the bounded real property in terms of an algebraic Riccati equation.

Lem ma 5.3.1 Consider the realization of a transfer function matrix M{s) = C(sl  — 
A)~l B + D such that A is stable and ö (M(00)) =  ä{D) < 7 (and therefore U =  721 — 
DTD > 0). Then M(s)  is 7 -bounded real if and only if there exists a strong solution
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P = P T of the ARE:

PA  +  At P  -  CTC -  (PB  -  CTD)U~l {PB -  Ct D)t  = 0. (5.29)

Proof: See section 6.1 in Chapter 6 where the related theory is reviewed. □

Importantly, the above lemma allows for the case where the infinity norm bound is 
achieved; i.e. | |M ||o o  =  7 * In general, it is simpler to solve the ARE when there is a 
strict bound on the infinity norm.

The task of Tioo controller synthesis is basically the following; describe in state space 
terms control laws K(s ) which render T^v(s)M(s) 7-bounded real. In general, this is not 
a trivial question. The strict bounded real lemma has played an important role in the 
development of the standard suboptimal state-space Tioo results (see [85], [109] and [25]). 
In particular, it is shown in [85] that the algebraic Riccati equation which features in the 
(strict) bounded real lemma plays a key role in the derivation of the pair of algebraic 
Riccati equations associated with the existence of Tioo control laws. However the strict 
bound results are not adequate for the multiple objective control problem since they 
do not allow for the possibility that the specified 7-bound is achieved. Since the strict 
bounded real lemma plays such a fundamental role in the development of the standard 
suboptimal Tioo control theory, study of the (non-strict) bounded real lemma is likely 
to facilitate a similar development for Tioo control with a non-strict bound; i.e. where
l i r £ i u  <  7-

It should be noted that a study of the Tioo problem with a non-strict bound has 
been carried out for the full-information case in [38]. As is noted in [38]; “The primary 
difficulty at optimality is that the Riccati equations need not exist and/or the associated 
Hamiltonians may have imaginary axis eigenvalues” . It is not the purpose here to develop 
am algorithm for mixed Ti2 /  Tioo synthesis, but to develop a computational tool for 
solving the algebraic Riccati equation which arises in the bounded real lemma, which 
is a closely related to the Tioo objective. From the point of view of control design, 
the bounded real lemma is primarily am analysis and not explicitly a synthesis result. 
However, it is hoped that am understanding of the algebraic conditions and computational 
issues involved will facilitate advances in the synthesis theory.

R em arks:
a) Note that the above result is limited in applicability to those transfer function matrices 
for which we can be sure that a(M(00)) < 7 . Thus this lemma is not applicable to 
transfer function matrices which achieve the 7-bound at infinity.
b) Note that it is not assumed that (A, B) is controllable.
This is important in the context of control design for the following reason: a state space 
realization of a closed loop transfer function matrix T^w(s) may have stable modes which 
are uncontrollable via the disturbance w(t). □

S p ectra l Factorization .
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Given a bounded real transfer function M(s), the algebraic Riccati equation of the 
bounded real lemma is closely related to the spectral factorization problem for the spectral 
matrix 4>(s) =  72I  — M T(—s)M(s). Briefly, given a strong solution of the algebraic Ric
cati equation, it is possible to construct a square transfer matrix W (s) which is minimum 
phase (has no zeros in the open right half plane), and satisfies <£(s) =  W T ( — s)W(s). 
This connection is reviewed in detail in Chapter 6.

These connections with an algebraic Riccati equation are true for a broader class of 
spectral factorization problems which includes the bounded real lemma as a special case.

In Chapter 6, spectral matrices are treated which have state-space realizations as 
follows:

$(s) = U + B t ( - sI - A t ) - 1V(sI - A ) - 1B + B t { - sI - A t ) - 1S + S t ( $ I - A ) - 1B (5.30)

where each constant matrix is real, V =  V T, U =  UT, and the following assumptions 
are made

C A .l (A, B) is stabilizable.

CA.2 U > 0.

The main purpose of Chapter 6 is to develop an algorithm for solving the algebraic 
Riccati equation associated with the spectral matrix <£(s):

PA  + At P + V -  (PB  + S)U~l (PB +  S)T =  0, (5.31)

thus providing a check of the property $(juj) > 0. In particular, we shall be concerned 
with realizations of spectral matrices which which have imaginary axis invariant zeros. 
These may correspond with transmission zeros of <$(s) and/or nonminimal modes in its 
realization.

Discussion of the Assum ptions on the Spectral M atrix $(s).

Let us now briefly consider the implications of assumptions C A .l and CA.2 in the 
context of the bounded real lemma and the extent to which they are reasonable in 
a control design context. Suppose i f  is a control law which internally stabilizes a 
generalized plant G(s) and that the closed-loop operator can be realized as T ^  =  
D(K)  +  C{K)(sI — A{K))~1B k  where 3ft{A(if)} < 0. In general, we cannot assume 
that (A(K), B(K))  is controllable, however. If we assume that all weighting functions 
are strictly stable, then we can deduce that (A(K), B(K))  must be a stabilizable pair.

5 .4  A lg o r ith m s for so lv in g  th e  A R E  in  S p ec tra l F actor
iza tio n .

Recall that the ARE can be used to completely characterize the bounded real constraint. 
An algorithm which find the strong solution of the ARE when it exists is therefore an
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analysis tool, in the sense that it allows one to check the Jioo constraint. If a strong 
solution of the ARE can be calculated, then the corresponding closed-loop system is 
bounded real. On the other hand, we would also like the algorithm to indicate if no 
such solution exists, indicating that the bounded real constraint is violated. Algorithms 
for solving AREs which determine whether the strict bound is satisfied are widespread 
and reliable. The aim in the present work is to provide algorithms which solve the ARE 
when the bounded real constraint is achieved.

In Chapter 6, an algorithm is developed for solving the ARE associated with any 
state-space spectral factorization problem of the form described in (5.30). This includes 
spectral matrices arising in the bounded real lemma as well as other problems from sys
tem and control theory. The algorithm proposed in Chapter 6 hinges on transformation 
of the continuous time spectral matrix to a discrete time spectral matrix using the bilin
ear transformation s = y. This is a standard technique for dealing with continuous 
time problems. An account of the literature in this area is given in Chapter 6. The re
sulting discrete time spectral factorization problem is equivalent to the continuous time 
problem in that a strong solution to the continuous time ARE is also a strong solution of 
the discrete algebraic Riccati equation associated with the discrete time spectral matrix. 
The discrete time spectral matrix inherits unit circle zeros where the continuous time 
spectral matrix had imaginary axis zeros.

The proposed solution of the discrete time (and thus the continuous time) spectral 
factorization problem depends on the convergence of a certain Riccati difference equation 
to the strong solution of the discrete algebraic Riccati equation. Study of the rate of 
convergence of this difference equation is the main subject of Chapter 7. The new result 
established in Chapter 7 is that Riccati difference equations associated with discrete time 
spectral matrices with unit circle zeros are guaranteed to converge at a rate of at least 
where k is the iteration number of the Riccati difference equation. In general the RDE 
will not converge at a rate faster than this either. This is slower than the exponential 
convergence rate which occurs when there axe no unit circle zeros.

In Chapter 6 it is shown that a doubling algorithm is available for the RDE. The 
doubling algorithm calculates RDE iterates at iterations k =  2n only, where n — 1,2, . . .  
is the iteration number of the doubling algorithm. The resulting algorithm presented in 
Chapter 6 therefore has a convergence rate of ^ . The resulting algorithm is directly 
applicable to the bounded real problem but can be applied to a broad class of spectral 
matrices with some straightforward preliminary transformations.
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A n Iterative M ethod for 
C ontinuous T im e Spectral 
Factorization w ith  Im aginary  
A xis Invariant Zeros.

Summary.

Recall that the main objective of Woo control is to achieve a specified bound on 
the infinity norm of certain closed-loop transfer function matrices whilst maintaining 
closed-loop stability. In other words, one wishes to design a controller subject to the 
constraint that certain transfer function matrices be bounded-real. It is well known 
that the bounded real constraint is equivalent to a related transfer function matrix 
<3>(s) =  <$T(—s) satisfying the spectral property $(ju>) > 0 on the imaginary axis. When 
$(s) has this property, it is called a spectral matrix. In Chapter 5, it was argued that 
the boundary of the bounded real constraint is likely to play a critical role in Woo robust 
controller synthesis with secondary synthesis objectives. In other words, the infinity 
norm of the closed loop system is very likely to achieve the specified bound. The spectral 
matrix associated with the bounded real constraint in this case has at least one imaginary 
axis invariant zero. Realizations of spectral matrices which have imaginary axis invariant 
zeros can arise in other contexts also.

A class of state space realizations of continuous time spectral matrices is defined in 
this chapter which includes, but is broader than, those which arise in considering the 
bounded real constraint. The class of spectral matrices treated has been made more 
general due to the anticipated utility of the results in other design contexts, some of 
which are summarized in Appendix G .l. It is well known that the spectral property is 
equivalent to the existence of a so-called strong solution of an algebraic Riccati equation 
(ARE) associated with the state space realization of the spectral matrix. The main 
aim of this chapter is to develop an algorithm which calculates the strong solution of the 
ARE when it exists. Such algorithms effectively provide a means of checking whether the 
spectral property holds and enable the state space construction of a spectral factorization 
of <£(s). Most standard solution techniques for the ARE fail when the spectral matrix

150
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has imaginary axis invariant zeros. This is a key deficiency which this chapter seeks to 
address.

The algorithm for solving the algebraic Riccati equation which is proposed relies on 
three key facts. Firstly, it is a standard result that a bilinear transformation of the 
Laplace variable can be used to transform a continuous time spectral matrix into a 
discrete time spectral matrix. The associated discrete spectral factorization problem 
is equivalent to the continuous time problem in the following sense: a solution to the 
continuous time ARE is also a solution to a discrete algebraic Riccati equation (DARE) 
associated with the discrete spectral matrix. Secondly, iterates of a Riccati difference 
equation (RDE) associated with the discrete time problem converge to the strong solu
tion of the algebraic Riccati equation at a known rate (a result established in Chapter 
7). Thirdly, established doubling algorithms for LQ control and Kalman filtering prob
lems axe shown in this chapter to be applicable to the RDEs associated with the more 
general discrete time spectral factorization problem. The doubling algorithm enables a 
considerable improvement in the convergence rate of the RDE and thus of the overall 
algorithm.

6.1  A  R ev ie w  o f  C on tin u ou s T im e  S ta te -S p a ce  S p e c tra l  
F a cto r iza tio n .

A fairly general class of realizations of spectral matrices is introduced. The assumptions 
imposed on these realizations concern stabilizability of the underlying linear system and 
nonsingularity of the spectral matrix at infinity. This class of spectral matrices includes 
those arising in the context of the bounded real lemma, as well as those arising in a 
number of other important systems and control problems.

The role of the linear matrix inequality and the algebraic Riccati equation in the 
state-space solution of the spectral factorization problem is reviewed next. Such state 
space spectral factorization results have been under development for some thirty years 
(see e.g. [1]). However under the particular assumptions made here on the state space 
realization of the spectral matrix, it is only comparatively recently that results have 
become available in the literature. The primary aim of this section is to summarize a 
number of those results which have direct relevance to the problem at hand.

As far as the development of this chapter is concerned, the key conclusion of the 
review contained in this section is Theorem 6.1.1, which states that the spectral property 
is equivalent to the existence of the so-called strong solution of an algebraic Riccati 
equation. In terms of the bounded real lemma and therefore the TLoo objective, the main 
conclusion is that the desired closed-loop property ||T/£,||oo < 7, which is essentially a 
frequency domain constraint, is equivalent to the existence of a strong solution of an 
algebraic Riccati equation. Techniques for finding such solutions are the subject of later 
sections in this chapter.
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6.1.1 C o n tin u o u s  T im e  S p e c tra l  F ac to riza tio n .

Spectral M atrices and their Factorization.

For the purpose of this presentation, a spectral matrix <£(s) in continuous time is a 
square matrix of real rational functions of s EC which satisfies $ T(—s) =  $(s) and for 
which

* 0 « )  > 0 (6.1)

for all (jj £ !RU{oo}. Henceforth, for the sake of brevity, we refer to the above inequality 
as the spectral property. Note that <F(s) may have unbounded entries at a finite number 
of points on the imaginary axis. We shall be interested in spectral matrices for which 
3>(oo) is nonsingular. A consequence of the latter assumption is that det{3>(s)} ^  0, we 
then say that <$(s) is (generically) nonsingular. Another way of expressing this is that 
<F(s) has full normal rank.

Any real rational transfer function matrix W(s) which satisfies <J?(s) =  W T(—s)W(s) 
is called a spectral factor of the spectral matrix $(s). Spectral factors are not unique 
and need not be square. However, here we limit our search to those spectral factors 
which are minimal rank in the sense that they have full normal row rank. Such spectral 
matrices are unique up to left multiplication by a unitary matrix (see [106]). When 
$(s) is nonsingular, such spectral factors axe square and are of prime importance in 
furnishing solutions to the many engineering problems which can be posed in terms of 
spectral matrices (see appendix G.l for a summary of a number of these problems). Of 
particular importance in such contexts are so-called minimum phase spectral factors, 
which have the property that W -1 (s) is analytic when 3£{s} > 0. It is often desirable 
that W(s) itself be stable, however this is not stipulated in the state-space treatment of 
spectral factorization which we now summarize.

State-Space R ealization s o f Spectral M atrices.

In this work, we consider rational spectral matrices which can be realized as follows:

$(s) =  U +  B t { - sI -  At )~1V{sI -  A)~1B  +  Bt { - sI -  AT)~1S  +  ST{sI -  A)~l B

= U +  ( S*- 5 r ) ( S/_ - /  S/+V ) ~ l ( f )  (6.2)

where each constant matrix is real, V  =  F T, U = UT, and the following assumptions 
are made:

C A .l (A, B) is stabilizable.

CA.2 U > 0.

Invariant Zeros o f  th e  Spectral M atrix  R ealization.

Of central interest in the present chapter is the role of the invariant zeros of the 
realization of <$(s). Recall that the invariant zeros of the realization given in (6.2) are
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the values of s GC for which the following matrix pencil is less than its normal rank:

(  s i  -  A 0 B  \
Z(s) =  - V  sI  + At S \ .  (6.3)

V ST - B t  V )

It should be noted that invariant zeros may occur due to the nonminimality of the 
realization of the spectral matrix or due to transmission zeros (see the discussion of 
invariant zeros of a realization of a transfer function matrix in the summary of N o ta tion , 
D efin itions and  F undam enta l R esults at the beginning of this thesis).

S p ec tra l M atrix  R ealization  for th e  B ounded R eal Lem m a.

We now investigate some of the implications of the assumptions C A .lan d  C A .2in 
treating bounded real matrices. Suppose one is given a realization of a strictly 7-bounded 
real1 matrix M (s) =  C {s l—A)~1B+D, then the associated spectral matrix <F(s) =  721— 
M t ( - s ) M ( s ) has a realization as given in (6.2) with U — 721 — DTD, V = —CTC and 
S  =  —Ct D. Assumption CA .2is satisfied, provided cr{D) < 7. Assumption C A .Isays 
that all unstable modes of (A, .8) must be controllable. Suppose that M is)  =  T^1}(s) 
is a closed loop matrix, mapping disturbances to objective signals, which results from 
implementing an internally stabilizing control law on a generalized plant. If we consider 
only stable weighting functions, A is stable and (A, B ) is trivially stabilizable. Note 
that in many applications, not all modes of the closed loop system will necessarily be 
controllable via B however.

R ela tio n sh ip  w ith  a L inear Q uadratic  O ptim al C ontrol P rob lem .

Another informative way of expressing realizations of spectral matrices as given in 
(6.2) is as follows;

* ( » ) = (  I ) ( J r  u ) ( {sI~ f r l B )-  (6-4)

This expression reveals a connection with the following linear quadratic optimal control 
problem (with indefinite cost).

Subject to the state-space dynamics

x(t) = Ax(t) -I- Bu(t), (6.5)

x(0) =  xo, (6-6)

choose the control input u(t) ( t E [0,00) ) to minimize the quadratic cost function 

J(u (t) ,x0) = ( x T{t) uT(t) ) [ g r  u )  { u(t) )  dtm

R ecall from section 5.3 of Chapter 5 that M[s ) is said to be strictly 7-bounded real if it is stable
and ||M||oo < 7-
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Note that it has not been assumed here (or in any of the above discussion in this 

chapter) that the cost matrix ^ g r  ^  ^ is nonnegative definite. The LQ optimal con

trol problem with sign indefinite cost matrix has been extensively studied in connection 
with spectral factorization and the Riccati equation (see for example [103]). In [8], an 
indefinite optimal control problem is treated in a study of the positive real lemma (see 
item c) in appendix G .l for a description of the spectral matrix arising in this case). 
In both of the above references, connections are established between the existence of 
solutions to the above optimal control problem and the spectral property.

Remarks on A ssum ptions C A. la n d  CA.2 :
a) Assumption CA.2 is a sufficient condition for a spectral matrix with realization (6.2) 
to be (generically) nonsingular.
b) As commented earlier, in the case of the bounded real lemma (A, B ) may have stable 
uncontrollable modes. Thus it is important that the assumption C A .lis  made and not 
the stronger assumption that (A, B ) is controllable.
c) Whilst the earliest work on state space spectral factorization was done under the 
assumption that (A, B ) is controllable, a number of problems have been treated in the 
literature in which this assumption has been relaxed, thus allowing for the possibility 
of stable uncontrollable modes. This has been considered for linear quadratic control 
in Problem 3.1.1 of [6], in the study of stabilizing solutions of the ARE in [81], more 
generally in the study of hermitian solutions of the ARE in [30], in the context of a study 
of state-space algebraic conditions for the spectral property in Theorem 7.1 of [18], and 
in [20] where a deflation procedure is developed for solving the spectral factorization 
problem.
d) The assumption adopted in in [20] is that (A, B ) be sign controllable which is some
what weaker than C A . l . □

6.1 .2  S p ectra l F actorization  v ia  a Linear M atrix  Inequality.

We next present a lemma which describes transformations which generate a family of 
alternative realizations of <£(s) as given in (6.2) and (6.4). This result provides a founda
tion for the state-space solution to the spectral factorization problem which is reviewed 
here.

Alternative Realizations o f the Spectral Matrix.

Lemma 6.1.1 Let $(s) be a nonsingular spectral matrix with a realization given in 
(6.4) ’ Let P = PT be any real symmetric matrix, then an alternative realization o /$ (s) 
is

$ (s) =  ( B t ( - sI  -  At )-1 (  PA + At P + V (  (s i — A)~1B  N
V (P B  + S)T U ) V  I )

(6.8)
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Proof: This result can be verified using standard manipulations. See for example [103].
□

Remark: Consider the linear quadratic optimal control problems associated with the 
family of realizations introduced in the above lemma. The state dynamics and quadratic 
control weighting are unchanged from (6.4), however there is a cancelling redistribution 
between the quadratic state weighting and the cross-terms. Thus 3>(s) can be associated 
with a whole family of different optimal control problems. □

The Linear M atrix Inequality.

With reference to the above lemma, consider the task of finding real symmetric solu
tions P  of the Linear Matrix Inequality (LMI)

(  p a  + a t p  + v  p b  + s \ . ,
1 (PB  +  S)r  U ) - ° - (6.9)

Under the condition that (A, B)  is controllable, the existence of real symmetric solutions 
to the LMI has been related to the existence of infima of the LQ optimal control problem 
defined in the previous section (again see [103]). In fact solutions of the LMI axe closely 
associated with solutions to the so-called dissipation inequality which establishes an in- 
fimum for J(u( t ) , xo) in the LQ control problem. This connection is not given further 
attention here.

Note that any symmetric solution P  of the LMI allows the spectral matrix <$(s) to 
be factored. Given a solution of (6.9), there sure many ways one can factor the left hand 
side of the LMI, to obtain matrices L and J  such that

pvs ) - ( » < *  '>• («■»>
Clearly then from (6.8), it follows that the matrix W(s) — J  + LT (si — A)~l B  is a 
spectral factor of <$(s).

In summary, given any solution of the LMI, it follows that $(s) as realized in (6.4) is 
a spectral matrix (since a spectral factor can be constructed as described above). The 
question of under what conditions on the realization of a spectral matrix one can be sure 
of the existence of a solution to the LMI is much more difficult. It turns out that in order 
to completely characterize the spectral property in terms of the LMI, it is necessary to 
focus on a particular class of LMI solutions which we discuss next; those which minimize 
the rank of the LMI.

Rank M inim izing LMI Solutions and the Spectral Property.

It is of importance in many applications to find those solutions of the LMI which are 
rank minimizing, in that they minimize the rank of the left hand side of the LMI (6.10). 
These solutions are important since they result in minimal rank spectral factors. (Recall 
that minimal rank spectral factors axe those with full normal row rank.)
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It has been shown in [18] that satisfaction of the spectral property $(ju>) > 0 is 
equivalent to (amongst other things) the existence of a rank-minimizing solution of the 
LMI. The conditions imposed in [18] are slightly stronger than those imposed here. 
Whilst assumption CA .2is maintained, a slightly stronger assumption than C A .l is 
imposed, being that the realization of <3>(s) as given in (6.2) has no uncontrollable closed 
right half plane modes. More recently in [20], under the weaker condition than C A .l , 
that (A, B ) is sign controllable2, it has been shown that the spectral property is equivalent 
to the existence of a rank minimizing solution to the LMI. We now summarize a somewhat 
weaker result which addresses the problem under the assumptions at hand.

L em m a 6.1.2 Suppose one is given a real rational transfer function matrix 3>(s) =  
<$T(—s), realized as in (6.2) such that the assumptions C A .l and CA.2 hold. Then 
$ (ju )  > 0 for all u; G !RU{oo} if and only if there exists a real, symmetric, rank
minimizing solution P of the LMI:

PA + At P + V  
(PB  + S)T

PB + S  
U >  0 . ( 6 . 11)

Proof: The if  part follows immediately from the previous discussion. The only if part 
is more difficult and has been established in [20]. □

6.1.3 Spectral Factorization via an Algebraic Riccati Equation.

The Algebraic Riccati Equation.

Since by C A .2 , $(oo) — U is nonsingular, note that the following inequality follows 
from the LMI:

I  - ( P B  +  5 ) ! / - 1 \  (  PA + ATP + V PB  + S  \  (  I  - ( P B  + S)U~l x T 
0 I  ) \  (PB  + S)t U ) \  0 I

PA  +  At P + V — (PB  +  S)U~l (PB + S)T 0
U ) ->  0 . ( 6. 12)

The minimum possible rank of the LMI is the normal rank of $(s), which here equals 
the rank of U. It follows from the above inequality that P  is a rank minimizing solution 
of the LMI if and only if it is a solution of the algebraic Riccati equation (ARE):

PA + At P + V  — (PB  +  + S)T = 0. (6.13)

Note that we consider only real symmetric solutions of the ARE. Given any such P, it 
then follows immediately from (6.8) and (6.12) that

$(s) =  ( /  +  B t ( - s I  -  At )~1{PB  + S ) ! /-1) + S)T{sI -  A)“ 1# )
(6.14)

2The pair (A , B)  is said to be sign controllable if for any uncontrollable mode A, the matrix (A — s i  B)  
has full rank for either s =  A or s =  — Ä.
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and therefore that W(s) = U* + U 2 (PB  +  S)T(sI — A) 1B  is a minimal rank spectral 
factor of $(s).

Remark: Note that W(s) is constructed using the two matrices A and B  which appear 
in the state variable realization (6.2) of the spectral matrix 3>(s). Observe therefore that 
such spectral factors inherit their poles from the dynamics of the associated optimal con
trol problem. This is an important feature in many applications of spectral factorization. 
□

M axim al and Strong Solutions of the ARE.

A solution P  of the ARE is called maximal if P — P > 0, for any other symmetric 
solution P  of the ARE. We restrict our consideration here to only the class of real 
symmetric solutions, for which maximal solutions, when they exist, must be unique ( see 
[30]). The following result is an immediate consequence of a more general result stated 
in Theorem 2.1 of [30] on the existence of maximal solutions.

Lem m a 6.1.3 Suppose the matrices {A, B,V,U , S} are real with U = UT > 0, V  =  V T 
and (A, B ) stabilizable. Suppose the following ARE has at least one real symmetric 
solution

PA  + At P + V -  (P B  +  S)U~1(PB  + S)T = 0. (6.15)

It follows that there exists a maximal real symmetric solution P of the ARE. Moreover, 
it satisfies

ft{Ai(A -  BU~l ST -  BU~1B t P)} < 0. (6.16)

Remarks:
a) Note in particular that the spectral property does not play a role in this result since 
the class of AREs considered includes but is not restricted to those arising in spectral 
factorization problems.
b) In the context of the LQ optimal control problem defined in 6.1.1, it is well known 
that by choosing P  to be the maximal solution of the ARE one can minimize the cost 
function «/(xo^C*)) v â the state feedback control law u(t) =  —U~l (sT + B TP̂ j x(t) 
(see e.g. [30]). When this control law is implemented on the system x(t) = Ax{t)-\-Bu{t), 
the closed loop matrix A — BU~l ST — BU ~1B TP  describes the resulting dynamics. □

With reference to the above lemma, we call a solution of (6.13) for which $ft{A*(A — 
BU ~1S t  — BU ~l B TP)} < 0 a strong solution. Under the assumption C A .l (that (A, B) 
is stabilizable), it can be shown (see Appendix H) that whenever such a P  exists, it is 
unique.

By inverting the state space realization of the spectral factor W(s) constructed from a 
strong solution P, it can be easily deduced that the eigenvalues of the above closed-loop
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matrix are the invariant zeros of W(s) since:

=  If" 2 -  U - \P B  + S)t ( s i  -  ( A -  BU~l ST -  BU~l B TP ) y l BU ~a. (6.17)

Thus, minimum phase spectral factors can be found using the strong solution of the 
ARE.

The Spectral Property and Strong Solutions of the ARE.

To summarize the results which have been reviewed in this section, we now state 
an algebraic condition which is equivalent to the (frequency domain) spectral property 
$ (ju )  > 0. This theorem is a straightforward consequence of results available in the 
literature. Observe that imaginary axis invariant zeros of the spectral matrix are not 
precluded in the statement of this theorem.

Theorem 6.1.1 Suppose one is given a real rational transfer function matrix $(s) =  
<$T(—s), realized as in (6.2) such that the assumptions C A .l and C A .2 hold. Then 
<£(ju;) > 0 for all u  G IRU{oo} if and only if there exists a strong solution P = PT of 
the ARE

PA  +  At P + V -  (P B  +  S)U~l (PB  4- S)T = 0. (6.18)

Proof: The i/p a rt follows immediately from the previous discussion in this subsection. 
The only if part is somewhat more difficult. Firstly, note from Lemma 6.1.2 that the 
spectral property is equivalent to the existence of at least one rank minimizing solution 
to the LMI, which we call P. Secondly, since U > 0, it follows from the arguments at the 
beginning of this subsection that P  is a solution of the ARE. Thirdly, by application of 
Lemma 6.1.3, the ARE has a maximal solution P , which is unique and must be strong. 
□

To summarize, the main conclusion of this section is that, under the assumptions 
C A .l and CA.2 on the realization of the spectral matrix, one need consider only the 
strong solution of the ARE in characterizing the spectral property in state space terms. 
Firstly, if we can find a strong solution of the ARE, then the spectral property is satisfied. 
On the other hand, if a strong solution of the ARE does not exist, then the spectral 
property does not hold.

The B ounded  R eal Lem m a.

An immediate consequence of this result is the bounded real lemma, which plays an 
important role in describing in state space terms the bound on the H <» norm of a transfer 
function matrix.

L em m a 6.1.4 Consider the realization of a transfer function matrix M (s) =  C (sl — 
A)~l B  +  D such that A is stable and 6 ( M( oo)) =  6(D)  < 7 (and therefore U =  721 — 
DTD > 0). and U =  72/  — DTD > 0. Then M(s) is 7 -bounded real if and only if there
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exists a strong solution P  =  P T of the ARE:

PA  4- At P -  CTC -  (PB  -  CTD)U~l {PB -  CTD)T =  0. (6.19)

Proof: See subsection 6.1.3 in Chapter 6. □

Note that the conditions adopted in the above lemma allow for the possibility that 
the transfer function matrix achieves the 7-bound at finite frequencies. In section 5.2 
of Chapter 5, it was shown how multiple objective Woo robust control problems can 
give rise to closed loop transfer functions which have this property. However, it should 
be noted that the conditions adopted in Lemma 6.1.4 preclude spectral matrices which 
achieve the 7-bound at infinity.

6.2  In varian t S u b sp ace A lg o r ith m s for S o lv in g  th e  A R E .

The main conclusion of the previous section is that the existence of a strong solution to 
the algebraic Riccati equation is a necessary and sufficient condition for satisfaction of 
the spectral property $(jtt>) > 0. As is described in Chapter 5, algorithms for calculating 
strong solutions of the ARE are of likely utility in the development of multiple objective 
Woo robust controller synthesis algorithms. Moreover, the fact that strong solutions of 
the ARE enable state space construction of spectral factors is of significance in many 
advanced control design methodologies. Reliable algorithms for the computation of ARE 
solutions are an essential element in realizing the potential benefits of these methodolo
gies. A deficiency in commercially available software is that it is generally not capable 
of solving the Riccati equation when the spectral matrix has imaginary axis invariant 
zeros.

The purpose of the present section is to review briefly a number of different approaches 
to constructing strong solutions of the ARE. We take particular interest in the ability of 
the algorithms to accommodate realizations of spectral matrices which have imaginary 
axis invariant zeros. Each approach is based on well known insights which relate the 
strong solution of the ARE to a particular invariant subspace of a so-called Hamiltonian 
matrix (which can be constructed directly from the problem data). A number of algo
rithms based on explicit computation of a basis for this invariant subspace are discussed. 
These algorithms can be applied when the spectral matrix has imaginary axis eigenval
ues; however a number of complexities arise in such cases. Another invariant-subspace 
type algorithm which we examine in closer detail is based on application of the matrix 
sign iteration to the Hamiltonian matrix. Whilst this algorithm is not able to accom
modate cases where the spectral matrix has imaginary axis invariant zeros, it is simpler, 
more straightforward to implement and more amenable to parallel implementation than 
other invariant subspace type algorithms.

Whilst the main algorithm introduced in later in this chapter for solving AREs is not 
an invariant subspace based algorithm, it is similar to the matrix sign algorithm in that
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it is iterative and straightforward to implement. Importantly, the algorithm it is directly 
applicable to cases where the spectral matrix has imaginary axis invariant zeros.

6.2.1 Solution via Hamiltonian Matrix Invariant Subspaces.

Perhaps the most common methods for solving the ARE (6.13) involve an invariant 
subspace calculation for a so-called Hamiltonian matrix which can be constructed from 
the matrices in the realization (6.2) of <F(s).

Since U is assumed nonsingular, a realization of the inverse of $($) can be constructed 
explicitly from (6.2) as follows:

where

where is a Hamiltonian3 matrix and n is the dimension of the (square) matrix A. Note 
that it follows from (6.20) that the invariant zeros of $(s) are the eigenvalues of H.

The basis of many approaches to solving the ARE is the fact that there is a one-to- 
one correspondence between solutions of (6.13) and certain invariant subspaces of the 
Hamiltonian matrix H. Let the matrices X , Y  € lRnXn together constitute a basis for 
an n-dimensional invariant subspace of H :

X
Y

u~l -  u~ l ( ST B t  ) (si -  H ) - 1( ? K ‘ (6.20)

A -  BU~l S T 
- V  + SU~1ST

—BU~1B t  \  
- A t  + SU~1B t  ) € JRnxn (6.21)

( ? ) * •
( 6.22)

The square matrix A G IRnXn has eigenvalues equal to those of the Hamiltonian matrix 
as an operator restricted to the invariant subspace described by X  and Y . It is a well- 
known result that there is a one to one correspondence between solutions P  of the ARE 
and ^-invariant subspaces having the form: Im j ̂ p  ̂j. Thus if X  and Y  together

describe a basis for an invariant subspace of H  and if X  is invertible, then P = YX ~^  
is a solution of the ARE. In order to ensure symmetry of P, it is also necessary that 
the matrices X  and Y  describing the invariant subspace satisfy the additional property 
Y X -1 =  X ~ TY T . If 9£{Aj(A)} < 0, it happens that this property is automatic. However, 
when A has imaginary axis eigenvalues this symmetry property will not necessarily hold. 
For a full discussion and account of the literature in this area, see [49] and [54].

Since the strong solution of (6.13) is unique, there is a unique choice of Hamiltonian 
invariant subspace associated with it (see [55], [49], [30] and [18]). By right-multiplying 
(6.22) by X -1 , it is easy to show that

A -  BU~l S T -  BU ~1B t P  =  X A X ~ \ (6.23)

3For a definition, see the collection of N otation , D efinitions and Fundam ental R esults at the 
beginning of this thesis.
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It follows that the choice of invariant subspace corresponding to the strong solution 
consists of two components. The first component is the stable invariant subspace of the 
Hamiltonian matrix of dimension na. The second component is a particular invariant 
subspace of H  which corresponds to imaginary axis eigenvalues and has has dimension 
n — na. (Note that this invariant subspace is a subspace of the largest invariant subspace 
of H  corresponding to imaginary axis eigenvalues which has dimension 2(n — n3).)

If the stable invariant subspace of H  has dimension na < n, the unstable invariant 
subspace also has dimension na. This is due to the fact that if H  is Hamiltonian, 
—Xi(H) is always an eigenvalue of H if Ai(H) is. The dimension of the imaginary axis 
invariant subspace is 2(n — n3), however the required imaginary axis invariant subspace 
has dimension (n — na) only.

Invariant Subspace C alculation via  QR-type A lgorithm s.

If the Hamiltonian matrix has no imaginary axis eigenvalues, determination of the 
strong solution is straightforward, as it only requires calculation of the stable invariant 
subspace of the Hamiltonian. In this case, the strong solution of (6.13) is actually sta
bilizing, i.e., 5?{Ai(A — BU~1St  — BU~l B TP)} < 0. Solution techniques for this case 
are well developed and reliable algorithms can be found in commercial software pack
ages. One well known and reliable means for computing a basis for the stable invariant 
subspace employs a QR  algorithm for calculating an ordered Schur decomposition of the 
Hamiltonian matrix H (see [59]). The result of this algorithm is a basis for the stable 
invariant subspace, from which the stabilizing solution of the ARE can be immediately 
calculated. See also [58] for a survey of various numerical methods which are applicable 
when the Hamiltonian matrix has no imaginary axis eigenvalues.

Here we take particular interest in the case when the Hamiltonian matrix does have 
imaginary axis eigenvalues. Recall that imaginary axis spectral matrix transmission zeros 
arise when considering the boundary of the 7-bounded real constraint in the context of 
multiple objective robust control. Reliable computational schemes for handling such 
cases are scarce. Invariant subspaces of H corresponding to imaginary axis eigenvalues 
are always of even dimension (a fact which was elucidated in [18]) and must be split 
into half (one half becoming a part of the invariant subspace which determines P). This 
splitting must take place in a manner which ensures that the Riccati equation solution 
is symmetric; i.e. X  and Y  must be chosen such that Y X ~ l =  X ~ TY T . Obviously 
this cannot be done simply on the basis of the eigenvalue, which is possible when the 
eigenvalues are not on the imaginary axis. At present, most commercially available 
software is not capable of correctly splitting the subspace corresponding to imaginary 
axis eigenvalues.

To accomplish the correct splitting of the imaginary axis invariant subspace, it is 
critical to take into account the Hamiltonian structure in solving the eigenvalue problem 
for H.  So-called structure-preserving QR  algorithms have been developed in which 
symplectic orthogonal transformations are employed to find the relevant subspace (see
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[18] for a summary of results in this area). A matrix M  G IR2nx2n is called symplectic if 
it satisfies the identity M T J M  =  J , where

Such symplectic transformations when applied to H preserve its Hamiltonian structure 
at each QR  step. It should also be noted that orthogonal transformations are particularly 
attractive from a numerical point of view.

In [18], the Hamiltonian eigenstructure has been revealed in detail. A concept for an 
algorithm for finding ARE solutions is also presented in [18]. This algorithm proceeds via 
QR-type iterations and deflations but is not a Hamiltonian QR  algorithm. Hamiltonian 
structure is not preserved at each iteration, but is first destroyed and then reconstructed 
component by component. This algorithm has been implemented in software by the first 
author of [18] and has proven numerically reliable and efficient.

A D eflation  P rocedure for the A R E .

An algorithm for calculating the ARE solution which accommodates imaginary axis 
invariant zeros has recently been proposed in [20]. The algorithm differs in that it 
does not aim to explicitly calculate a basis for the invariant subspace associated with 
the strong solution. Instead the strong solution is constructed piece by piece and at 
each iteration a new reduced-dimension problem is created by a deflation procedure. 
This approach is attractive since it reveals the detailed structure of the ARE solution 
explicitly. However, the numerical properties of this procedure are not likely to be 
as attractive as the QR-type invariant subspace techniques which use orthogonal basis 
transformations.

Iterative T echniques.
The structured QR  algorithm approach, described in [18] and in the references therein, is 
not addressed in detail in this thesis. The aim here rather is to find an iterative method 
of solution which does not require the sequence of basis transformations which is gen
erally involved in a QR-type approach. Rather than element-by-element manipulation 
of matrices with piece-by-piece construction of the invariant subspace, iterative methods 
produce a sequence of matrices, which at each iteration can be used to find an approxi
mate solution to the Riccati equation. In the next subsection, we review the matrix sign 
iteration, an iterative algorithm which is known to be very effective in solving the ARE, 
provided the Hamiltonian matrix does not have imaginary axis eigenvalues. The main 
purpose of the present chapter is to develop an iterative algorithm which is applicable 
in such cases and which also has known convergence properties.

6.2.2 ARE Solution via the Matrix Sign Iteration.

An effective solution procedure for the ARE, which is based on application of the ma
trix sign iteration to the Hamiltonian matrix, has been demonstrated in [90] and [28].

(6.24)
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However, this approach is guaranteed to work only when the Hamiltonian matrix has 
no imaginary axis eigenvalues. This approach does not rely on explicit calculation of 
the invariant subspace corresponding to the ARE solution; however the connection be
tween Hamiltonian matrix invariant subspaces and Riccati equation solutions which was 
described in the previous subsection is implicit in the technique. We first review the 
fundamental concepts and main results related to this approach.

T he Scalar Sign Function

We define the sign function of a scalar variable z GC as

sgn(x) =  [  ® |* | < o ' (6'25>

Note that this function is not well defined on the imaginary axis. The sign function can 
be calculated by applying a standard Newton iteration to the function f ( z )  = z2 — 1. 
This iteration has initial condition zq = x (EC and reads

z n + 1 = ^ ( z n +  zn 1) • (6.26)

Provided 5£{z} ^  0, this iteration will always converge quadratically to one of its fixed 
points, ±1, whichever corresponds to the sign of x.

T he M atrix  Sign Function.

The matrix generalization of the sign function, introduced by Roberts [90], is defined 
in the following manner. Suppose M  6 !Rpxp has Jordan form M  =  T  (D + N)  T -1 
where D is a diagonal matrix with the eigenvalues of M, {Ai, . . . ,  Ap} , on its diagonal 
and N  a nilpotent matrix with entries only on the first upper off-diagonal; then the 
matrix sign of M, Z  =  sgn(M) is defined as

Z  = T  diag (sgn(Ai),. . . ,  sgn(Ap)) T~ l . (6.27)

Thus the matrix Z  is only defined when all eigenvalues of H  lie off the imaginary axis. 
Its eigenvalues are all ±1 and it satisfies Z 2 — I. It can be shown (see [90]) that when 
it exists, the matrix sign function of M G ]Rpxp is the limit of the sequence of matrices 
generated using the iteration below, with initial condition Zq = M :

Zn+1 =  -  (^n +  Zn 1) • (6.28)

In fact, it has recently been shown in [44] that this iteration is just one of a whole class 
of rational iterative methods that calculate the matrix sign function.

R iccati E quation Solution  via  th e M atrix  Sign Function.

Application of the matrix sign iteration to a Hamiltonian matrix H having no imag
inary axis eigenvalues effects a partitioning of invariant subspaces, corresponding to its 
left and right half-plane eigenvalues. This fact is used to establish the following lemma.
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Lem m a 6.2.1 Let H G ]R2nx2n be the Hamiltonian matrix in (6.21) and suppose it has 
no imaginary axis eigenvalues. Denote

sgn(tf) =  (  I “  §22 )  ’

with Zxj G lRnXn, i , j  G {1,2}. If it exists, the unique strictly stabilizing solution P of 
(6.13) is a solution of the linear equation:

{ z „ h ) p= - ( z%H -  (6-29)
Proof: This is proved in [41] and relies on the fact that if a stabilizing solution to the 
Riccati equation exists, the Hamiltonian matrix can be block diagonalized with strictly 
stable closed-loop eigenvalues in the first diagonal block and unstable eigenvalues in the 
second. Application of the sign iteration to this diagonalized matrix reveals the result. 
□

R em arks:
a) One advantage of the matrix sign algorithm over QR  type invariant subspace algo
rithms is that it can be applied directly to the Hamiltonian matrix without having to 
carry out basis transformations. Only matrix inversions and additions are required.
b) It has also been shown recently that the matrix sign algorithm is amenable to parallel 
implementation (see [29], [58]), unlike the direct Q .ft-type algorithms for which parallel 
implementations appear to be difficult to find. This is an important advantage for AREs 
which arise in problems involving dynamical systems of very high order.
c) The matrix sign algorithm as presented above is usually scaled to improve numerical
accuracy. See for example [58] and also [45] which contains a detailed account of the 
convergence rates of the sign iteration. □

6.3 Lim its to  AR E Solution Accuracy.

Before proceeding, it is instructive to consider how we axe to measure the quality of 
any approximate solution to the ARE which wre might calculate. Suppose there exists 
a genuine solution P  of the ARE (6.13) which we seek to calculate by some as yet 
unspecified algorithm. One measure of the quality of an approximate solution P  of 
(6.13) is the residual

n( P)  =  PA +  At P  +  V -  (PB  +  S)U~1(PB +  S)T. (6.30)

However, it has been shown that this is not always a good indicator of solution quality 
[42]. This can be seen by observing that a computed solution P  with small nonzero 
residual is an exact solution to a perturbed ARE:

At P A P A -  (PB  +  S)U~l {PB +  S)T +  V + eN =  0. (6.31)
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This equation is simply a re-writing of equation (6.30) where, without loss of generality, 
eN = —7Z(P) with N  G ]Rnxn a nonzero matrix with unity norm and e =  ||7£(P)||, a 
real constant which is obviously small if the residual is small.

Whilst the norm of the residual might be quite small, the norm of the error in the 
Riccati equation solution \\P — P\\ can be very large, as we now show. Consider a family 
of AREs which are related to the perturbed ARE (6.31) and which are parametrised by 
€ G IR;

ATPe +  P,A -  (PeB  +  S ) U - \ P €B  +  S)T +  V  +  eN = 0 (6.32)

Note that when e =  0, P  solves this ARE and that when e =  e, P  is a solution. The 
question we would like to answer is: how sensitive is Pe to variations in e? Supposing for 
the moment that the derivative ^  exists at e =  0, then differentiation of (6.32) with 
respect to e reveals that

(A -  BU~l S T -  BU~1B t P)t (.A -  BU~lST -  BU~1B t P ) + N  = 0.
e=0

(6.33)
Observe that when the closed loop matrix (A — BU~1ST — BU~l B TP) has imaginary 
axis eigenvalues, is not well defined at e = 0, except for nongeneric N  and even then 
it is not computable from (6.33). It may be that this derivative is very large close to 
e =  0 (which is likely to be the case if {A — BU~l ST — BU~l BTPe) has stable eigenvalues, 
some very close to the imaginary axis); or if the derivative at e =  0 does not exist.

It can be seen that the difference between the actual solution of the ARE and the 
candidate solution

P - P & e (6.34)

can be large, even when the residual itself is quite small. In conclusion, finding a solution 
of (6.13) is made more difficult because of the bad conditioning of the problem when 
imaginary axis Hamiltonian eigenvalues axe present (for a discussion of this concept, 
see [60]). This difficulty is intrinsic to the problem we wish to solve and imposes a 
fundamental limitation to any proposed algorithm.

6 .4  D isc r e te  T im e  S ta te -S p a ce  S p ectra l F a cto r iza tio n
R ev iew .

In this section, we review a number of results for a class of discrete time state space 
spectral factorization problems. It will be discussed in section 6.5 how a continuous 
time spectral matrix with a state space description as described in section 6.1 can be 
transformed into a discrete-time spectral matrix which has a realization of the type 
described in the present section. The class of discrete spectral matrices introduced in 
this section include not only those which axise from such transformations of continuous 
time spectral matrices, but covers a broad class which is of significance in other contexts, 
including discrete LQ control and filtering for example.
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The discussion here can be viewed partly in parallel with the discussion on continuous 
time spectral factorization in section 6.1. The emphasis is mainly on the relationship 
between the discrete linear matrix inequality and the discrete algebraic Riccati equation, 
which becomes important in the next subsection. Connections between the discrete 
spectral property and the existence of so-called strong solutions of the discrete ARE are 
not discussed in detail. Such connections do exist but are not of immediate relevance to 
the present chapter.

6.4.1 Discrete Time Spectral Factorization.

Discrete Tim e Spectral M atrices and their Factorization.

In discrete time, a spectral matrix \I>(2) is a square real rational matrix-valued function 
of a complex variable z with the properties that ^ T(z-1) =  \&(.z), and 1®r(ej9) > 0 for 
all 9 G [0,27r). We consider only spectral matrices which are generically nonsingular, 
in the sense that det(4r(2)) ^  0. Like their continuous time counterparts, discrete time 
spectral matrices arise naturally in the description of stationary stochastic processes, the 
discrete bounded-real and positive-real lemmas and in the formulation of linear control 
and filtering problems. The construction of spectral factors is central to the solution of 
the abovementioned problems. A spectral factor Q(z) of ^ (2) is a real rational matrix
valued function of the complex variable z which satisfies fiT(z-1)fi(z) =  ^ (2). If, in 
addition, Q-1 (2) exists and is analytic when \z\ > 1 , 0(2) is called a minimum phase 
spectral factor. It is well known (see Theorem 1 of [80] and Theorem 4.1 in Chapter 9 
of [7]) that if \l/(z) is nonsingular, there exists a spectral decomposition of the form

tf(z) =  QT{z~1) N e ( z )  (6.35)

where N  is a symmetric positive definite matrix and 0(2) is a square real rational transfer 
function matrix which is invertible, satisfies @(00) =  I  and, along with its inverse, is 
analytic when \z\ > 1 . Hence a minimum-phase spectral factor of ^ (2) exists and can 
be constructed as Q(.z) =  N^Q(z).

State Space Realizations o f Spectral M atrices.
Let ^ (2) be a generically nonsingular spectral matrix which can be realized as follows: 

$ (2) =  Ü + GT (z~1I  — F t )~1S + ST (zI  — F)~1G + Gt (z~1I  — FT)~1V (zI  — F)~1G

=  Ü +  ( S T Gt z I - F  0 \  1 (
—V  z~ l I  — Ft  )  \  S  J (6.36)

where each constant matrix is real, V  =  VT and Ü = UT and where we make the 
following assumptions:

D A .l (F ,G ) is stabilizable.

D A .2 U is nonsingular.



6.4 Discrete Time State-Space Spectral Factorization Review. 167

Spectral matrices with the above state-space structure arise in Kalman filtering, linear 
optimal control, the discrete bounded real lemma and in realization theory for stationary 
discrete stochastic processes.

Invariant Zeros o f the Spectral M atrix R ealization .

The nonzero invariant zeros of the realization of a discrete spectral matrix as given in 
(6.2) are the values of z G(D for which the following matrix is less than its normal rank,

As in the continuous time case, invariant zeros may occur due to the nonminimality

A GC such that rank{\fr(A)} < normrank-f^z)}). Whilst in the continuous time case, 
invariant zeros can be calculated as the eigenvalues of an associated Hamiltonian matrix, 
this is not true in general in the discrete time case. However, calculation of invariant 
zeros in discrete time (including any at z =  0) can be reduced to the calculation of the 
generalized eigenvalues of a related matrix pencil (see e.g. [19]).

R elationsh ip  w ith  a D iscrete Linear Q uadratic O ptim al C ontrol P rob lem .

Note the following informative re-expression of the discrete time spectral matrix ^(z):

This expression reveals a close connection with the following discrete time linear quadratic 
optimal control problem.

choose the control input uk ( k € {0,1,2, . . . }  ) to minimize the quadratic cost function

negative definite. For an account of the connection between this optimal control problem 
and discrete time spectral factorization, see [80].

[19]:
/  z I - F  0 G \

i ( z )  =  - V  z~l I — Ft S 
\  ST Gt Ü )

(6.37)

of the realization of the spectral matrix or due to transmission zeros (i.e. values of

(6.38)

Subject to the state-space dynamics

xjb+i =  A xk +  B uk,

xk=0 =  *o,

(6.39)

(6.40)

(6.41)

Unless explicitly stated, it will not be assumed that the matrix

R em arks on A ssum ptions D A .l and D A .2 :
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a) Assumption D A .l includes a broad class of practically significant state-space realiza
tions of discrete spectral matrices.
b) Assumption D A .l also holds for the class of discrete time spectral matrices described 
in section 6.5, which result from application of the bilinear transformation to continuous 
time spectral matrices.
c) It is shown in Lemma 1.0.1 of Appendix I that assumption D A .2 entails no loss of 
generality, provided the spectral matrix is generically nonsingular. It is shown in the 
proof of Lemma 1.0.1 that if one is given a realization of a nonsingular \£(z) which vio
lates D A .2 , an alternative realization of ^(z) can be constructed which satisfies D A .2 . 
□

6.4.2 S p ectra l Factorization  via a Linear M atrix  Inequality.

Alternative Realizations of the Discrete Tim e Spectral Matrix.

Similar to the continuous time case, we now describe a family of alternative realiza
tions of the discrete time spectral matrix \£(z) which plays an important role in the 
development of state space algorithms for spectral factorization.

Lemma 6.4.1 Let ^(z) be a nonsingular spectral matrix with a realization given in 
(6.38) where each constant matrix is real and V = V T, U =  UT. Let P  =  PT be any 
real symmetric matrix, then an alternative realization of'if(z) is

V - P  + F t PF  
(S +  Ft PG)t

(6.42)

Proof: A class of simple basis transformations is now used to show this (standard) 
result.
Observe that ^ (z) can also be expressed in the following manner:

¥(z) =  Ü + GTF~1{z)G (6.43)

(6.44)

By introducing the basis transformation

(6.45)

one obtains the following new realization of ^(z)

tf(z) =  U + GTf ~ l {z)G (6.46)

where QT = QtT t (P), F ( z) =  T(P)F( z)Tt  (P).  Expansion of the identity (6.46)
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results in the new realization of the spectral matrix given in the lemma statement. □

R em ark : Observe that these transformations redistribute the weighting in the perfor
mance index of the associated discrete time optimal control problem, whilst preserving 
the underlying linear system. In contrast with the analogous continuous time result in 
Lemma 6.1.1, the above alternative realizations of the discrete spectral matrix alter the 
quadratic weighting on the control input. □

The Discrete Linear M atrix Inequality.

Analogous to the continuous time case, with reference to the above lemma, consider 
the task of finding real symmetric solutions P  to the following Linear Matrix Inequality 
(LMI):

V -  P  +  f t p f  s  +  f t p g  \
(,S + Ft PG)t  U + Gt PG ) -  '

It follows immediately from Lemma 6.4.1 that, given such a solution to the LMI, \&(z) 
can be factored; there axe any number of constant matrices L and J  such that

(  V - P  + F t P F  S + Ft PG 
\  (S + F t PG)t  U + Gt PG

(6.48)

It then follows immediately from (6.42) that the transfer function matrix D(z) =  J  + 
Lt (z l  — F)~1G is a spectral factor of \&(z).

Rank M inim izing Solutions of the Discrete LMI and the Spectral Property.

Rank minimizing solutions of the discrete LMI are those which minimize the rank of 
the matrix on the left hand side of (6.47). Rank minimizing solutions of the discrete LMI 
are of importance since they give rise to spectral factors which are of minimal normal 
row rank.

Remark: It has been shown quite recently in [19] that, under the assumption that 
(F ,G ) is stabilizable and that ^ ( 2 ) is generically nonsingular, there exists at least one 
rank-minimizing solution of the LMI. For the purpose of this chapter, which is the 
development of an algorithm for continuous time spectral factorization, this result is 
not of immediate relevance. However, it is likely to be of significance in the treatment 
of intrinsically discrete spectral factorization problems. For completeness, the result of 
[19] is now summarized. Suppose one is given a real rational transfer function matrix 
^ ( 2 ) =  \£T(z_1), realized as in (6.36) such that the assumptions D A .la n d  D A .2 hold. 
Then $(eJ0) > 0 for all 9 E [0,2-tt) if and only if there exists a real, symmetric, rank
minimizing solution $  of the LMI:

{ v - $  + f t $ f  s  +  f t $ g  \
\  (5 +  Ft $G)t  Ü +  g t 4 g  J -  ‘

(6.49)

□
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6.4 .3  S p ectra l Factorization  via an A lgebraic R iccati Equation.

Whilst in the continuous time case, the study of rank minimizing solutions to the LMI 
leads directly to the study of an associated algebraic Riccati equation, in general an 
analogous statement cannot always be made in the discrete time case. This is highlighted 
in [100] where the concept of strongly rank-minimizing solutions of the discrete LMI is 
introduced; a solution $  of the discrete LMI is called strongly rank-minimizing if the rank 
of the matrix on the left hand side of the LMI equals that of its (2,2) block; Ü + GT$G. 
A solution of the LMI must be strongly rank minimizing to also be a solution of the 
discrete ARE. However, provided 'I'(z) is (generically) nonsingular, no such distinction 
need be drawn since the following result holds:

Lemma 6.4.2 Suppose one is given a nonsingular spectral matrix \J/(z), realized as in 
(6.36) such that the assumptions D A .l and D A .2 hold. Then any rank minimizing so
lution $  of the associated LMI (6-47) has the following property

N  = Ü +  Gt $G > 0 (6.50)

and it satisfies the discrete algebraic Riccati equation (DARE):

<1 =  F T$ F  +  V  -  (FT$G  +  S)(U  +  Gt $ G )-1(F t $G + S)T. (6.51)

Proof: See [100]. □

Such equations arise in many contexts, including spectral factorization [4], and infinite- 
horizon control and filtering problems [5, 7]. Given a real symmetric solution of the 
DARE (6.51), a state-space realization of a spectral factor of ^Sf(z) can be constructed. 
It can be demonstrated using (6.51) that (6.35) can be satisfied with the definitions 
N  =  Ü +  Gt $G  and 0(z) =  J +  N ~ 1{GT^ F  +  ST)(zI -  F)~1G. This results in a 
spectral factor

Q(z) =  N* +  (AT» )" t (Gt $ F  +  ST){zI -  F )_1G, (6.52)

where N 2 is a square root of N  (not necessarily symmetric).

Strong Solutions to the ARE.

Consider the discrete time linear system associated with the linear quadratic optimal 
problem defined earlier (in (6.39), (6.40) and (6.41)) with a linear state-feedback control 
law of the following form: u =  — N ~ 1(GT$ F  + ST). We call the state transition matrix 
F associated with the closed loop system the closed-loop matrix, which is given by:

F = F -G N ~l (GT$ F  + ST). (6.53)

It should be noted that F  appears as the state-transition matrix in the following state- 
space realization of the inverse of the spectral factor Q(z) as given in (6.52):

Q-1 (z) =  ( /  -  N - l {GT$ F  +  ST){zI -  F )-1g ) N~2. (6.54)
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A solution of (6.51) is said to be strong if the closed loop matrix F  has all its eigenvalues 
either inside or on the unit circle. Note that the eigenvalues of F  are also the invariant 
zeros of Q(z) and thus spectral factors constructed from strong solutions of (6.51) have 
the minimum phase property. It will be the subject of section 6.6 as to how one can 
calculate strong solutions of the DARE.

R em arks:
a) Recall that in the continuous time case there exists a close connection between strong 
and maximal solutions of the ARE, as described in Lemma 6.1.3. Note that results 
concerning the existence or otherwise of maximal solutions to the DARE are not discussed 
in detail here. Whilst a study of this question is of interest in its own right, it will become 
apparent that such results are not required in the present development.
b) The question of under what conditions on the spectral matrix a unique strong solution 
3> of the DARE (6.51) exists is not addressed here either. In the later development of 
a spectral factorization algorithm for continuous time matrices using a related discrete 
time problem, it will be shown that the existence of a strong solution to the discrete 
ARE is guaranteed by the existence of a strong solution to the continuous time ARE. 
Thus when applying the results which have been summarized in the present subsection, 
it will be possible to assume that such a solution exists for the realization of the spectral 
matrix at hand.

A number of existence results for strong or stabilizing solutions of the DARE for var
ious classes of spectral matrices are available in the literature. In [80], a class of spectral 
matrices with (F ,G ) controllable is considered and it is shown there that, analogous to 
the continuous time case, the spectral property is a necessary and sufficient condition 
for existence of a strong solution to the ARE. In [54], a summary of existence results for 
the case with {F,G)  controllable and F stable is presented. Conditions for existence and 
uniqueness of strong solutions to (6.51) have been extensively studied in the context of 
Kalman filtering and linear optimal control (see [15] and [22] and the references therein). 
In [22], the condition {F,G) controllable is relaxed to stabilizable. For the case of spec
tral matrices arising in the discrete bounded real lemma, the question of existence has 
been addressed in [24] where (F, G) is assumed stabilizable. □

6.5 C onnecting Continuous and D iscrete Tim e Spectral 
Factorization.

In this section, we first review a well known method for constructing a family of discrete 
time spectral matrices from a continuous time spectral matrix using the bilinear trans
formation. Each member of the resulting family of discrete time spectral matrices has 
the property that any solution of the LMI associated with the continuous time spectral 
matrix is also a solution of the LMI associated with the discrete time problem. The main 
conclusion of this section is that one can solve for the strong solution of a continuous
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time ARE by focussing solely on finding the strong solution of any one of the family of 
discrete AREs associated with the family of spectral matrices. This sets the scene for 
the remainder of this chapter which is primarily concerned with solving the DARE. The 
results presented in this section are a minor strengthening of those presented in [4] and 
draw upon the continuous and discrete time spectral factorization results which were 
reviewed in sections 6.1 and 6.4.

6.5.1 A Family of Equivalent Discrete Time Spectral Matrices.

Given a spectral matrix <3>(s) with the realization in (6.2), we describe how the bilinear 
transformation s = gives rise to a family of discrete time spectral matrices:

After constructing a state-space description of the discrete time spectral matrix \£a (.z), 
the aim is to solve the associated discrete time spectral factorization problem and use the 
solution of that problem to deduce a solution of the original continuous time problem. 
This approach is well documented and has been widely applied. See for example the 
papers [35], [36], [37] and [4] which describe the development and origins of this approach. 
More recently, similar ideas have been applied in connecting discrete and continuous 7i<*> 
synthesis problems in [47] and [48].

The first step in finding realizations of the matrices ^<*(2) employs a minor variant of 
a result employed in [37] and [4] which is described in the following lemma.

Lem m a 6.5.1 Suppose one is given the following realization of a continuous time trans
fer function matrix

Let a > 0 denote a real constant which is not an eigenvalue of A. Let the variable 2 EC 
be defined by the bilinear transformation

z — i (6.55)

G{s) =  D + C {sl -  A)~l B.

s -1- a
z =

s — a

In this new variable, G{s) can be expressed as a rational function G(z), having a state- 
space realization

(6.56)

with constituent matrices given by

Da = D + C {a l -  A)~l B, 

Ca = - V 2a C i a l - A ) - 1, 

Ba = y/2a{al — A)~1B, 

Aa = (A + a l K A - a l ) - 1.

(6.57)

(6.58)

(6.59)

(6.60)
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Proof: It is easy to show by direct substitution that G(z) — D -f  C (a l — A)~1(z l — 
I ) ( z l  — Aa)~1B, and from the trivial identity (z l  — I) =  (z l  — Aa +  Aa — I), it follows 
that G (z) =  Da + C (a l — A)~1(z l — Aa )_1(yla — I)B . Note that it is necessary that a 
not be an eigenvalue of A to enable the inverse (a l  — A)~l to be calculated. The fact 
that Aa — I  =  2a(A — a / ) -1 is easy to verify and leads directly to the stated result. □

The next lemma presents state space realizations of the spectral matrix ^ a (z), as 
defined in (6.55). Variations of this result have been proven elsewhere (see for example 
[4]). In addition to giving state-space realizations, the following lemma highlights the 
fact that it is easy to ensure that this state-space description of ^ ( z )  satisfies the 
assumptions D A .lan d  D A .2 on discrete time spectral matrices given in section 6.4. 
This will prove important since we shall later apply discrete time spectral factorization 
results to this realization of 4ja (z) which depend on these assumptions.

L em m a 6.5.2 Suppose one is given the following realization of a nonsingular continuous
time spectral matrix $ (s):

=  ( B T( - s I  -  A7 ) - 1 I  ) (̂  g r  ^  B )  » (6.61)

satisfying C A .l (i.e. (A ,B ) is stabilizable) and CA.2 (i.e. U > 0). Let a > 0 denote a 
real constant which is not an eigenvalue of A. Let the variable z EC be defined by the 
bilinear transformation

s + a
z = -------.

s — a
In this new variable, <£(s) can be expressed as a nonsingular discrete-time spectral matrix 
^ « ( 2 ) =  $  having a state-space realization

*a(z) =  ( Gl(.z-H-  F j ) - 1 I ) (  J j  f “ )  (  (2/ “  P? r 'öa )  , (6.62)

with constituent matrices given by

Fa =  (A +  a J X A - a J ) “ 1, Ga = V 2a(a l -  A )_1B,

where Ca

(  Va Sa
\ s l  va

Cl 0 
D l I

V s 
£? U

— i/2a (a l -  A )"1 and Da =  (a l -  A)~lB.

Ca Da \
0  ’

Moreover, for this realization o f ^ a(z),

(Fa,G a ) is a stabilizable pair (in the discrete time sense),

(6.63)

• Ua is generically nonsingular.
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Proof: Consider the following transfer function which plays an important role in the 
given state-space description of $(s): W(s)  =  ( s i  — A)~1B. Application of Lemma 6.5.1 
to this state-space description yields W(s)  =  W(z)  =  Da +  Ca(z l  — Fa)~1Gon with 
each of the matrices in this realization defined in the lemma statement. Observe that 
W T(—s) — W T(—Q̂ -i 1 } ) =  W T(z~1), and that one can therefore write

* .(* )  =  (  Gl(z-H- F Z )- 'C a/ ) ( J r

+  D l  ( v C J z I  -  F cT 'G *  +  S) +  -  F l ) - lC l  +  ST) Da

+  D Ta VD a.

Collecting together all like terms gives the stated result. 4

We now show that the pair (Fa ,G a) =  ((A 4- aI)(A — ex/)-1 , y/2a(al  — A)~l B̂ j is 
stabilizable. Note first that it is a standard result that, provided a is not an eigenvalue 
of A, then the eigenvalues of Fa are • Note that if A(A) is stable (unstable) in a
continuous time sense, then the corresponding eigenvalue of Fa is stable (unstable) in 
a discrete time sense. In addition, the corresponding left eigenvectors xT of A axe also 
left eigenvectors of Fa. For any left eigenvector xT of Fa corresponding to an unstable 
eigenvalue, it follows from stabilizability of (A, B ) that xTGa =  xTB — 0.

Note that Üa =  D ^VD a -I- D^S +  STDa +  U is a rational function of a  and that 
Da=OQ =  0 whence Ua=00 =  U > 0. It follows immediately that Ua as a function of a  is 
generically a nonsingular matrix. □

Rem arks:
a) Similar formulae are available for conversion of a discrete time spectral matrix into a 
continuous time spectral matrix (see e.g. [37]).
b) Suppose that, after carrying out the transformation of a continuous time spectral
matrix as described by the above lemma, one obtains a discrete spectral factor fia (2); 
then the bilinear transform will give rise to a spectral factor W(s) =  n a( f ^ )  for the 
original continuous time spectral matrix. □

6.5.2 Relating Discrete and Continuous Time LMI and ARE Solutions.

A lemma is now presented which shows that a solution of the continuous time LMI is 
automatically a solution of the discrete LMI associated with the realization of ^<*(2 ) in 
Lemma 6.5.2. This result is important in that it demonstrates that one can transform 
to a discrete time problem and do state space calculations which are directly relevant to 
the continuous time case, without having to carry out any transformations back to the 
continuous time representation.

4The author would like to gratefully acknowledge Dr. D.J. Clements who pointed out equation (6.63) 
in correspondence.
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Lem ma 6.5.3 Suppose one is given a realization of a nonsingular continuous-time spec
tral matrix $(s) as described in Lemma 6.5.2. Let a > 0 denote a real constant which 
is not an eigenvalue of A. Let ^«(z) denote any member of the family of nonsingular 
discrete time spectral matrices with realizations described in Lemma 6.5.2.

Suppose the real matrix P = PT is a solution of the LMI associated with the continuous 
time spectral matrix <I>(s);

(  PA + At P + V PB + S \
V {PB + S)T U )  ~

Then P is also a solution to the discrete LMI associated with ^ a(z):

( v a - P  + F lP F a Sa + F^ PGa \ . n 
v (5a +  F jP G 0)T Üa + G l P G a ) -  '

(6.64)

(6.65)

Proof: Let P  be a solution to the continuous LMI as described in the lemma state
ment. Recall from Lemma 6.1.1 that the associated continuous time spectral matrix 
<F(s) can be realized as in described in (6.8). Application of the bilinear transformation 
described in Lemma 6.5.2 to this new realization of <£(s) results in a new state space 
realization of ^«(z). Note in particular that the part of this realization which is given 
by application of (6.63) to the new realization of $(s) is

( C l  0 \ (  PA + At P + V PB + S \ (  Ca Da
\ D l  I  ) i  {PB + S)T U ) { o I

>  0 . ( 6 .66)

Here Ca and Da are the same as given in the statement of Lemma 6.5.2. Note that the 
expression in (6.66) must be nonnegative definite since P  is a solution to the continuous 
time LMI. Standard manipulations of this expression results in the discrete time LMI in 
(6.65). □

The most important consequence of the above result here concerns solutions of the 
algebraic Riccati equations associated with rank minimizing solutions of the LMI (6.65).

Theorem  6.5.1 Suppose one is given a realization of a nonsingular continuous-time 
spectral matrix <£(s) as described in Lemma 6.5.2. Let a > 0 denote a real constant which 
is not an eigenvalue of A. Let \Pa(z) denote any member of the family of nonsingular 
discrete time spectral matrices with realizations described in Lemma 6.5.2. Suppose P is 
a strong solution to the continuous-time ARE

PA + ATP  +  V -  (PB + S)U~X(PB + S f  = 0, (6.67)

then <Fa =  P is a strong solution of the following DARE

i a  =  P j - M a  + va -  ( F l i aGa + Sa){V + GTaK G a)~l ( F l$ aGa + Sa)T . (6.68)

Proof: This result was proven in [4] for the case of spectral matrices arising in the 
positive real lemma. The proof below proceeds in two steps. Firstly it is shown that P
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solves the discrete ARE. Secondly it is shown that it is indeed a strong solution.

By hypothesis, P  is a solution of the continuous time ARE. Recall from the discussion 
in subsection 6.1.3 that since U > 0, any solution P  of the continuous time ARE is also 
a rank minimizing solution of the continuous time LMI given in (6.9) and (6.64). Next 
observe that it is fairly easy to establish that, for a given P, the ranks of the left hand 
sides of the continuous and discrete LMIs (6.64) and (6.65) are equal (this actually 
follows from the identity (6.66) connecting the left hand sides of the two inequalities, 
which is established in the proof of Lemma 6.5.3). Since P  is a rank minimizing  solution 
of the continuous LMI, it follows that it is simultaneously a rank minimizing solution of 
the discrete LMI (6.65). Because ^ ( z )  is generically nonsingular, and the realization of 
tfa (z) given in Lemma 6.5.2 satisfies all the assumptions in Lemma 6.4.2, one can apply 
that lemma to to deduce that P  must also be a solution of the discrete ARE and that

Na = Ua + GTaPGa > 0. (6.69)

As the final step in the proof, we now seek to show that P  is a strong solution of the 
DARE (6.68). The objective is thus to show that the following matrix has eigenvalues 
all with modulus less than or equal to unity:

Fa =  Fa -  6 aN - \ G l P F a +  (6.70)

By hypothesis, P  is a strong solution of the continuous time ARE (6.67). In other words, 
the following matrix has all its eigenvalues in the closed left half plane:

Ä — A — BU~lST -  BU~1B t P . (6.71)

Note the following identity

Fa =  (Ä +  a I ) ( Ä - a I ) - 1, (6.72)

which can be proven using the formulae for the state-space matrices of 4fa (z) as given 
in Lemma 6.5.2 (a shortened proof of this identity is presented below). Observe that the 
matrix (Ä +  aI){A — a l ) ~ l has eigenvalues in the closed unit disk. It follows immediately 
from (6.72) that P  is a strong solution of the discrete ARE.

Proof of the identity (6.72):
Recall that P  can be used to construct a minimum phase spectral factor of <£(s):

W(*) =  ui +  U~i (PB  +  -  A)~l B. (6.73)

Application of the bilinear transformation to W(s) using the transformation formulae in 
Lemma 6.5.1 gives rise to a spectral factor of the discrete time spectral matrix \&a (z):

n a (2) =  W(a ^ A )  =  N i  +  ( N l r T(GTaPFa + S l ) ( z l  -  Fa)~1Gaz  —  1
(6.74)
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where it can be checked that

N i  = U 2 +  U~2(PB  +  S)T(aI -  A)~1B (6.75)

is indeed a square root of Na (not symmetric in general). Also note that one can check 
that

{ N i ) - T(G lP F a +  S l )  =  - y /2 a l  r (6.76)

Observe that the matrix A appears in the inverse of the spectral factor W(s):

W ~ l (s) =  U~* -  U ~ \ P B  +  S)T(sI -  (6.77)

Application of the bilinear transformation to this realization using the formulae in 
Lemma 6.5.1 can be used to show that

2 + 1
W   ̂(et----- —) — DW-\ +  Oyy-i (2 /  — Ayy — i ) B̂W-\ , (6.78)

2 — 1

where Dw -i =  U ~ * - U ~ l { P B + S ) T { a I - Ä ) - l BU~h , C W - 1 =  y/2aU~l { P B + S)T( a l -  
A )-1 , Aw -i  =  (Ä +  aI)(Ä  — a / ) “ 1 and B \y-1 =  y/2a{al  — Ä)~l B U ~ 2 . Moreover, it 
can be shown that

W - \ a ^ ± ± )  =  Q Z \z ) ,  (6.79)
2 — I

where Q“ 1(2 ) has the realization

=  ( r - N ^ l (GlPF« +  S Z ) ( z I - Fa)~lGa) N ; K  (6.80)

In fact, it can be shown that the matrices used to realize Q“ 1(2 ) are identical to those 
which appear in the realization (6.79) of W -1 (a ^ y ). The identity (6.72) follows imme
diately. □

In summary, if a strong solution of the continuous time ARE (6.67) exists, then it 
must also be a strong solution of the discrete time ARE(6.68). This is a key result as it 
enables discrete time spectral factorization results to be applied to solve continuous-time 
spectral factorization problems.

6.6 C alculation o f the Strong DARE Solution via a R ic
cati Difference Equation.

In the previous section we concluded that when a strong solution to the continuous time 
ARE exists, it will also be the strong solution of a discrete ARE, which can be easily 
constructed from the state-space data for the continuous time spectral matrix using the 
formulae given in Lemma 6.5.2. We therefore now focus on finding strong solutions of 
discrete AREs. Whilst the work in this section and the next was motivated primarily 
by the observations connecting continuous and discrete spectral matrices, most of the 
material can be read independently of these observations.
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The main technique for solving the discrete ARE which we consider in this chapter 
draws upon the results which are established in Chapter 7 concerning the convergence of 
Riccati difference equation (RDE) iterates. In essence it is shown there that iterates of 
a matrix Riccati difference equation associated with the DARE converge to the strong 
solution of the DARE at least as fast as where k is the number of iterations. These 
convergence results hold for Riccati difference equations associated with a broad class of 
discrete spectral factorization problems.

The Riccati Difference Equation arising in Spectral Factorization.

We now return to considering the general discrete time spectral factorization problem 
discussed in section 6.4. Recall the class of realizations of nonsingular discrete time 
spectral matrices ^(z) which was discussed in section 6.4:

* ( 2) =  U + Gt (z- 1I  -  F t )~1S + S T (zI -  F)~lG + GT (z~lI  -  FT)~lV (z I  -  F )_1G,
(6.81)

where the following assumptions are made:

D A .l (F,G)  is stabilizable.

D A .2 U is nonsingular.

Recall also the discrete algebraic Riccati equation associated with ^(z):

$  =  F t $ F  + V -  {Ft $G  +  S)(U +  Gt $ G ) - 1{Ft $G  +  S)T. (6.82)

With reference to this DARE, we consider iteration of the closely related Riccati differ
ence equation (RDE):

$*+i =  FTi kF + V -  {FT$ t G + S)(Ü + GTi t G )-1(FTifcG + S)T, (6.83) 

with initial condition <$o- 

Remarks:
a) Suppose $  is the strong solution of the DARE (6.82); then it is well known, and
of considerable importance in what follows, that if the initial condition <$o > then 
3>jb > for all k € {1 ,2 ,...} . This result is established in chapter 7 and is stated in item
2 of Lemma 7.3.1.
b) In this presentation, we consider only convergence of the RDE iterates from above,
i.e. $0 In the case of LQ control and filtering, it is well known that convergence
can also occur from below, i.e. $o < ^  (see e.g. [15]). Convergence from below for 
RDEs associated with the general spectral factorization problem cannot be guaranteed 
in general.
c) The RDE is closely related to a finite horizon LQ optimal control problem defined on 
the spectral matrix data, which is in fact a finite horizon version of the infinite-horizon 
optimal control problem defined in section 6.4.1. See [5] for a description of the role of
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the RDE in the finite horizon LQ problem. □

Convergence of RDE Iterates to the Strong Solution.

An observation which is fundamental to the method we propose here, is that in many 
circumstances the RDE iterates <1*. converge to the strong solution 4>. This fact was 
recognized some time ago as being of utility in finding solutions to the discrete ARE. For 
example, in [37], [9], [15] and [22] this convergence is discussed for Kalman filtering and 
linear quadratic regulator problems. In [4] it is shown that this convergence property can 
be used to solve the DARE corresponding to a spectral matrix which is the Hermitian 
part of a discrete positive real matrix. For a summary of related convergence results in 
the literature, see section 7.1 of Chapter 7. The following result, which is established in 
Chapter 7, is a fairly straightforward generalization of well known convergence results.

Suppose one is given a discrete time spectral matrix \&(z) with realization (6.81) sat
isfying assumptions D A .l and D A .2 , along with the strong solution 4> of the associated 
algebraic Riccati equation (6.82). Suppose that the RDE (6.83) has an initial condition 
which satisfies > $ , then

lim =  <£. (6.84)
k—+oo

If this approach is to be readily applicable, however some understanding of the con
vergence rate of the RDE iterates is essential. The presence or otherwise of unit circle 
invariant zeros of the spectral matrix has considerable impact on this rate. The main 
contribution of Chapter 7 is to establish convergence rates of the RDE when the spectral 
matrix has unit circle invariant zeros. We now summarize some results about convergence 
rates.

RDE Convergence Rate with no U nit Circle Invariant Zeros.

Suppose one is given a discrete time spectral matrix \£(z) with realization (6.81) sat
isfying assumptions D A .l and D A .2 , along with the strong solution of the associated 
algebraic Riccati equation (6.82). Suppose also that ^(z) has no invariant zeros on the 
unit circle. I f  the RDE (6.83) has an initial condition which satisfies 4>o > then it is 
well known (see for example [13] and [4]) that RDE iterates converge exponentially to 
4>; there exist constants A, «3 > 0 such that 1 > «3 and

A„,„($* -  *) < AKk3. (6.85)

This exponential convergence result suggests direct application of the RDE in solving 
the DARE. Successful application of this approach to the linear quadratic regulator 
problem and a detailed discussion of computational aspects are reported in [37].

RDE Convergence Rate w ith Unit Circle Invariant Zeros.
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In what follows we allow for the possibility that the discrete spectral matrix has 
unit circle invariant zeros. Note that if one is given a continuous time spectral matrix 
which has imaginary axis invariant zeros, the discrete spectral matrices resulting from 
the transformation of section 6.5 will always have unit circle invariant zeros. Discrete 
spectral matrices with unit circle invariant zeros arise in other contexts also, some of 
which are described in more detail in subsection 7.1.2 of Chapter 7. The convergence 
of RDE iterates has been shown to occur at a ^ rate for some scalar examples in which 
unit circle invariant zeros are present (see subsection 7.1.3). However, no statement or 
proof of this result for the general case could be found in the literature. This is the main 
subject of chapter 7, where the following result is established: (see Theorem 7.5.1)

Suppose one is given a discrete time spectral matrix ^(z) with realization (6.81) sat
isfying assumptions D A .l and D A .2 , along with the strong solution of the associated 
algebraic Riccati equation (6.82). Suppose also that ^(z) has at least one invariant zero 
on the unit circle. Suppose that the RDE (6.83) has an initial condition which satisfies 
$0 > then there exist constants «i,«2 (depending on the realization o/\&(-) and on 

with « 1  > «2 > 0 such that:

Worst Case Convergence Rate
For all e > 0, there exists an integer kc such that when k > ke iterates of (6.83) 
satisfy

-  i )  < (6.86)

Best Case Convergence Rate
I f the initial condition also satisfies <$o > then for all rj £ (0, «2 )* there exists a 
kv such that when k > kv

A „ „ ( i t  -  * ) > (6.87)

Compared with the exponential rate when no unit circle invariant zeros are present, 
the above convergence rates are slow. On their own, these results actually suggest that 
direct application of the RDE (as in [37] or [4]) to find solutions of the DARE is not a 
good idea when the spectral matrix has unit circle invariant zeros. The iterates are likely 
to take some time to come within the vicinity of and once they do, numerical errors 
are not likely to be attenuated well by the algorithm and may overpower the calculation. 
In this chapter, we shall nevertheless draw upon the £ convergence result in deriving 
an algorithm for solving the discrete time ARE. We shall do so in conjunction with a 
doubling algorithm for the RDE which is introduced in the next section. The resulting 
algorithm has a considerably accelerated convergence rate.

Remark: In the above, we assume exact computations. It should be noted that the 
influence of numerical errors (due to finite wordlength effects) on the accuracy of the 
final result will depend on the above convergence rate. □



6.7 Doubling Algorithms for RDEs in Spectral Factorization. 181

6 .7  D o u b lin g  A lg o r ith m s for R D E s in  S p ectra l F actoriza 
t io n .

In the previous section it became apparent that due to the £ convergence rate, the need 
for an alternative to direct iteration of the RDE is particularly acute when the discrete 
spectral matrix has unit circle invariant zeros. In the present section, we discuss the 
applicability of the doubling iteration to Riccati Difference equations arising in discrete 
spectral factorization problems. The doubling iteration makes possible a method for 
finding the limiting solution of RDEs which is potentially numerically superior to direct 
iteration. This is achieved by calculating RDE iterates only at iteration numbers k 
which are integral powers of two (hence the term doubling). In the context of the results 
on RDE convergence summarized in the previous section, the result is an algorithm
whose iterates 4>2n converge to the strong solution of the DARE at a worst-case rate of

1_
2n ’

In [2] and [7] doubling algorithms are presented for Riccati difference equations in 
the context of the linear optimal regulator problem and Kalman filtering. In [2] and [7], 
the following assumptions axe effectively made on the realization of the discrete spectral 
matrix (6.81); S = 0, Ü > 0, V > 0, (F ,G ) is stabilizable and (F ,F ä ) is detectable. 
These assumptions rule out the possibility that the spectral matrix realization has unit 
circle invariant zeros. Here our objective is to establish the applicability of the doubling 
algorithm to RDEs associated with a somewhat more general class of spectral matrices 
than those arising in the class filtering and regulator problems described above. In 
particular, we would like to establish the applicability of the doubling algorithm in cases 
where the realization (6.81) of the spectral matrix \£(z) has unit circle invariant zeros, 
whether they be transmission or decoupling zeros.

A ssum ptions on the Spectral M atrix Realization for the Doubling Algorithm .

It is assumed that a discrete time spectral matrix is given which, in addition to being 
nonnegative definite on the unit circle, has a realization of the form described in (6.81). 
We make the following assumptions on this realization in the development which follows:

D A .l (F ,G ) is stabilizable.

D A .2 Ü is nonsingular.

D A .4 F — GU~l ST is nonsingular.

Remarks on the Assum ptions:
a) Assumptions D A .l and D A .2 are important in that the RDE convergence results 
summarized in the previous section rest on them.
b) Note that a temporary assumption D A .3 (that (F,G) is controllable) is introduced
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in the next chapter in order to establish RDE convergence. This assumption plays no 
role at all in the present chapter.
c) Assumption D A .4 precludes many discrete time spectral factorization problems with 
time delays in the underlying dynamics. For example, suppose S — 0 in (6.81), then 
D A .4 precludes the existence of delays which would require F  to be nonsingular.
d) Note that one does not need to assume DA.4 to establish the RDE convergence re
sults established in Chapter 7. This assumption relates specifically to the development 
of the doubling algorithm presented in this section.
e) For the purpose of solving continuous time problems via the discrete time problems
described in section 6.5, assumption DA.4 is not restrictive since the parameter a  con
necting the discrete and continuous time problems can generally always be chosen to 
ensure D A .4 . This issue will be explored further in section 6.8. □

Applicability o f Doubling Algorithm s in Spectral Factorization.

A detailed discussion of doubling algorithms and their utility in finding the limiting 
solution to Riccati difference equations in Kalman filtering can be found in section 6.7 
of [7]. We now recount some of that discussion with some minor modifications which 
demonstrate how the doubling approach applies to the more general case of spectral 
factorization at hand. In particular, the spectral property ^(e-70) > 0 plays an important 
role in the proofs presented here.

A Linear M atrix Difference Equation underlying the RDE.

The key observation behind the doubling approach (the proof of which is algebraically 
intricate but in principle straightforward) concerns the underlying linear structure asso
ciated with the Riccati difference equation:

$ fc+i =  FT$ kF  +  V -  (FT$ kG 4- S)(U +  GT$ kG ) - \ F T$ kG +  S )T. (6.88)

Lemma 6.7.1 Suppose one is given a discrete-time spectral matrix ^(z), with a real
ization given in (6.81) which satisfies assumptions D A . l , D A .2 and D A .4 . Suppose 
4> is the strong solution of the discrete algebraic Riccati equation (6.82) associated with 
this realization. Let <&o > <& be an initial condition of the associated Riccati difference 
equation (6.88).

Consider the following linear difference equation for X k,Yk £ ]RnXn defined for k > 0:

(6.89)

with initial condition

(S) - (i). (6.90)
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and where the linear transition matrix T € IR2nx2n is defined as

with c*o 
true:

- l

70<*0 1
<*o V o

a o  + 7o<*0 V o  )  

F - G Ü ~ l ST, ß0 =  GU~l GT and 7 0  =  V - S Ü ~ 1ST.

(6.91)

Then the following hold

1. X k is nonsingular for all k > 0.

2. Iterates of the Riccati difference equation (6.88) can be constructed as

=  Ykx ^ .

Proof: When A; =  0, both 1 and 2 follow trivially from the definitions of Xo and Yq 
given in (6.90). Suppose next that 1 and 2 hold true for some k. We now show their 
validity for k +  1 , thus proving the lemma by induction.

Proof of item 1 for k +  1;
The following identity follows from expansion of (6.89) and the propositions that X*. is 
invertible and that $*. =  YkX f l :

X k+1 =  (F -G Ü -1St )~1(I +  (6.92)

Observe that the first and third terms of the above expression are invertible; (F — 
GU~1St ) by D A .4 and Xk by hypothesis. Next we show that under the assumptions 
stated in the lemma, the second term in (6.92), (7+G?7- 1GT$jb), is also invertible. Recall 
from Lemma 6.4.2 that since the spectral matrix 'F(z) is nonsingular, it follows that 
N  =  Ü +  Gt $G  > 0. Since Ü is invertible, this implies the invertibility of I + G T$G U ~ l . 
Observe next that 1 4- GT^ kÖÜ~1 =  /  +  GT$G U ~1 +  GTA kGU~1 where A k =  $ k -  $. 
Due to the spectral property ^ (eJÖ) > 0, it follows that one can apply item 2 in Lemma 
7.3.1 of Chapter 7 to show that A k >  0, for all k >  1 (since Ao > 0). It follows 
therefore that I  +  GT$ kGU~l is invertible for all k > 0. By the matrix inversion lemma 
I  +  GT^ kGU~1 is invertible if and only if (7 +  Gtf_ 1 GT$jfc) is invertible. Invertibility 
of X k+i follows immediately from (6.92).

Proof of item 2 for k +  1;
First note the following easily verified equalities:

=  x*  V + A * O _1<*0, (6.93)

U +i =  (to<*o +  ß o & k )  +  a o $*) X k . (6.94)

It follows easily from these equalities that

ĵfe+l ĵfe+i =  70 +  <*o$k{I +  A ) $ f c r V  (6.95)

Recall that ßo =  GU~l GT and note that the term whose inverse appears in the equation
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(6.95) can be re-expressed as follows using the matrix inversion lemma:

( /  +  GÜ~1GT$ k)~ l =  J -  G{GT$ kG +  U)~lGT3>k. (6.96)

Note that the inverse in the right hand side of the above equation is guaranteed to exist 
by virtue of the spectral property, as was explained above in the proof of item 1 of this 
lemma. Next substitute (6.96) into the equation (6.95) to obtain:

n+ iX *+ i =  70 +  «o (*» -  *kG(GTi kG + U )-16 Ti k) a0, (6.97)

where c*o and 70 are given in the lemma statement. Subsequent lengthy but straightfor
ward manipulations of the last expression (see for example the proof of Theorem 3 in 
[37]) can be used to show that the right hand side of (6.97) in fact equals the right hand 
side of the RDE (6.88). □

Remarks:
a) We call T in the above lemma the linear transition matrix associated with the RDE 
(6.88). It is an easily verified and standard result that T is a symplectic matrix.
b) The linear matrix difference equation described in the above lemma is directly related
to the state/co-state dynamics in the formulation of the finite-horizon linear quadratic 
optimal control problem associated with the spectral matrix \&(z). See [27] for an account 
of this connection for the finite-horizon linear quadratic regulator (where the RDE evolves 
in reverse time). □

The Doubling Algorithm .

The above lemma gives rise to the doubling algorithm as a means of solving the 
discrete-time algebraic Riccati equation. The key observations made in conjunction 
with Lemma 6.7.1 are that for all n £ {0 ,1 ,2 ,...} ,

( )  =  r 2 " + l  ( yo ) (e-98>
and that

r*2n+1 =  r 2nr 2\  (6.99)

Successive iteration of the formula (6.99) results in an iterative scheme for calculating 
r 2\  Using the equation <£*, =  YkX £ l given in item 2 of Lemma 6.7.1, one can then 
calculate 4>2n directly. The main advantage with this approach is that these iterates can 
be calculated without having to obtain the intermediate RDE iterates. Note that for the 
purposes of determining the limiting behaviour of the difference equation (which is our 
main objective here), the intermediate iterates axe irrelevant anyway.

Reduced Order Formulae for the Doubling Iteration.

Two potential problems can be identified with direct application of the iteration (6.99). 
The first is that the dimensions of the matrices involved can be quite large viz. 2n x 2n, 
where F  € lRnxn. The second is that T will generally have eigenvalues with modulus
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greater than unity. These will dominate and reduce the numerical accuracy of the cal
culations associated with invariant subspaces corresponding to eigenvalues with smaller 
modulus. Due to the symplectic structure of T, a reexpression of the doubling algorithm 
is possible which allows the 2n x 2n multiplication in (6.99) to be reduced to a set of 
three n x n iterations and which has been reported (see [7]) to result in good numerical 
behaviour.

In [7], the reduced order doubling formulae were introduced for the RDE associated 
with a Kalman filtering problem. In that case, it is known that the stabilizing solution 
of the RDE $  satisfies $  > 0. In what follows, we shall in fact assume $  < 0 to establish 
the reduced order formulae. When using the doubling algorithm to solve the DARE 
constructed from a continuous time spectral matrix via the bilinear transform, this is 
no loss of generality; it will become apparent in the next section that any continuous 
time spectral factorization problem can be transformed into one in which $  = P  < 0. 
It should be noted that this is automatically the case for the continuous time bounded 
real lemma.

Lem ma 6.7.2 Suppose one is given a discrete-time spectral matrix 4> ( z ), with a real
ization given in (6.81) which satisfies assumptions D A .2 and D A .4 . Suppose <F is the 
strong solution of the discrete algebraic Riccati equation (6.82) associated with this real
ization which also satisfies $  < 0. Let > $  be the initial condition of the associated 
Riccati difference equation (6.88). Then the following statements hold:

1. For each iteration n of the doubling algorithm n E {0,1 ,2 ,...} , T2" is a symplectic 
matrix and has the structure

( 6. 100)

with entries defined via the following iterations

C*n+1 =  “b ßnTn)

ßn+1 = ßn "b « , ( /  *b ßnTn) ßn&m

7n+1 = Tn “I" ^n7n(l +  ßnTn)

( 6. 101)

( 6.102)

(6.103)

which have the initial conditions:
a0 = F -  GÜ~1S t , ß0 =  GU~lGT and 7o =  V -  SU~l ST .

2. The iterates $2n of the RDE (6.88) with initial condition <$o can be constructed 
from the doubling iterates as follows:

^2" =  (tn<*n 1 +  (^n +  7n<*B 1 ßn)$o) (<*n 1 + <*n Vn^o) • (6.104)

Proof:
1. Note that r 2n is symplectic since any power of a symplectic matrix also has the 
symplectic property (see [7]). In the discussion on doubling algorithms in section 6.7 of
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[7], the observation is made that when r 2n is symplectic with an invertible (1,1) block, 
it can, without loss of generality, be expressed in the form shown in (6.100). We now 
show that, for the class of realizations of spectral matrices we consider, the (1,1) entry 
of r 2" must always be nonsingular. For any such n, let T2” have partitioning conformal 
with that of T:

r2" = (cl Dl)' (6'105)
(Note that we have not assumed at this stage that An is nonsingular.) Recall from item 
1 of Lemma 6.7.1 that with X q = I  and Yq = <Fo> X 2« = An +  BuYq is invertible for 
all n > 1. Given the hypothesis that $  < 0, then one can take Yö =  $0 =  0 > 
and therefore deduce immediately that X n = An is nonsingular for all n. Thus for any 
n > 0, there exists an invertible matrix an =  A~l and, due to the known symplectic 
structure of r 2™, there also exist matrices ßn and 7 n such that T2" is given by (6.100). 
The proof of (6.101), (6.102) and (6.103) is an immediate consequence of the observation
that r2n+1 = r2nr2\
2. Note first that

(  * 2nl V2n
(6.106)

Equation (6.104) follows from the structure of T2” revealed in item 1 of this lemma and 
the formula for given in item 2 of Lemma 6.7.1. □

Remarks:
a) The proof of the above lemma depends fairly strongly on the assumption that the 
strong solution of the associated DARE satisfies 4> < 0. It should be noted that whilst 
this is a sufficient condition for the reduced order doubling iteration to be applicable, 
it is not a necessary condition. This is illustrated by the well known case of Kalman 
filtering where generally Ü > 0, V  > 0 and $  > 0.
b) Whilst the underlying dynamical system associated with T is linear, the reduced
order doubling iterations (6.101), (6.102) and (6.103) axe clearly nonlinear. Although 
an improvement over the direct doubling approach in (6.99), the numerical behaviour 
of these nonlinearities may impose a further limitation on the achievable accuracy. A 
closer study of these formulae might prove to be important in a study of the numerical 
properties of the algorithm. □

6.8 A lgorithm s for Continuous and D iscrete T im e Spec
tral Factorization.

The results presented in section 6.6 on Riccati difference equation convergence and those 
presented in section 6.7 on the doubling algorithm together make possible an algorithm 
for solving the algebraic Riccati equation associated with discrete time spectral ma
trices. Given a continuous time spectral matrix, it was shown in section 6.5 how to 
construct a family of discrete time problems. A solution to any one of these discrete
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time problems immediately furnishes a solution to the continuous time problem. This 
observation, together with the discrete time spectral factorization algorithm results in an 
algorithm for continuous time spectral factorization. In this section, we give a summary 
of both the discrete time spectral factorization algorithm and the resulting continuous 
time algorithm.

In what follows, we assume stabilizability of the underlying linear dynamics and non
singularity (almost everywhere) of the spectral matrix. These assumptions have been 
made specifically with application to the bounded real lemma in mind. A number of 
other assumptions on the spectral matrix realization are necessary for direct application 
of the algorithm. It is shown how these can be circumvented should the spectral matrix 
realization not satisfy them. The focus on the role of imaginary axis and unit circle 
invariant zeros is critical to the present development. Results on the convergence rate 
of the RDE as established in chapter 7 (which were summarized in section 6.6) are used 
to establish convergence rates for the proposed algorithms.

6.8 .1  D iscrete  T im e Sp ectra l Factorization A lgorithm .

Suppose one is give a realization of a nonsingular discrete time spectral matrix

tjr(z) =  o + Gt (z~1I  -  F t )~1S + ST(zI -  F)~1G +  Gt (z~1I  -  FT)~lV(zI  -  F)~1G,
(6.107)

with the associated discrete time algebraic Riccati equation

$  =  Ft $ F  +  V -  (F t $G + S)(U +  Gt $ G ) - 1(Ft $G + S)T. (6.108)

The algorithm for solving (6.108) (which follows) rests on a number of results established 
earlier in this chapter. We first summarize the conditions under which all of these results 
are guaranteed to simultaneously hold:

A ssum ptions on the D iscrete Spectral M atrix Realization.

1. D A .l (F ,G ) is stabilizable.

2. D A .2 U is nonsingular.

3. D A .4 F — GU~1S t  is nonsingular.

4. A strong solution $  of the associated DARE exists.

5. The strong solution satisfies $  < 0.

An A lgorithm  for Solving the Discrete Tim e ARE.

Step 1
Set n = 0. Initialize the iterates oq, ßo and 70 as given in item 1 of Lemma 6.7.2.
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Step 2
Calculate an+i,ßn+i and 7n+i from anß n and 7 n using the reduced-order doubling 
formulae (6.101), (6.102) and (6.103).

Step 3
The RDE iterate $ 2* resulting from the initial condition 4>o — 0 can be calculated 
as follows:

$2n =  In- (6.109)

Step 4
For a pre-specified tolerance e > 0 in a chosen matrix norm || • ||, determine whether

| | $ 2 n — $ 2 n_1 II ^

If YES, then HALT.
If NO, then increment n and go back to Step 2.

Remarks:
a) The proofs given in earlier sections leading to the above algorithm guarantee that 
iterates will converge (in exact arithmetic) under the conditions 1-5 given above. This 
algorithm might also be directly applicable to many problems for which some of the 
conditions 1-5 are relaxed, however this possibility is not investigated here.
b) The particular initial condition $o = 0 is used in the above algorithm. This could be 
replaced by any initial condition $o > where $  is the strong solution of the DARE. 
In this case, the general formula (6.104) would need to be applied to obtain $2n- d

6.8.2 C ontinuous T im e Sp ectral Factorization A lgorithm .

The continuous time algorithm follows immediately from the construction of the family 
of related discrete time problems presented in section 6.5, together with the discrete time 
algorithm presented in the previous subsection.

Suppose one is give a realization of a nonsingular continuous time spectral matrix

$(s) =  U+Bt ( - sI - A t ) - 1V( sI - A ) - 1B + B t ( - sI - A t ) - 1S + S t (sI - A ) - 1B. (6.110)

with the associated continuous time algebraic Riccati equation

PA + At P + V - ( P B  + S W - ^ P B  +  = 0. (6.111)

We now list the conditions introduced in this chapter which together guarantee the 
applicability of the algorithm presented below.

Assum ptions on the Spectral M atrix.

1. C A .l (A, B) is stabilizable.
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2. CA.2 U is positive definite.

3. The unique strong solution P of the ARE (6.111) satisfies P < 0.
Recall from Lemma 6.1.1 that a strong solution P  of the ARE (6.111) is guaranteed 
to exist since the spectral property ${ju)  > 0 holds in addition to the assumptions
C A .l and C A .2 .

R em arks:
a) Condition 3 is at first sight quite strong and clearly restricts the class of spectral 
matrices to which the algorithm is directly applicable. This limitation arises due to the 
restricted conditions under which the discrete time spectral factorization algorithm is 
guaranteed to work.
b) We now show that condition 3 holds for an important subclass of spectral matrices. 
Recall that the main motivation in this thesis for solving the spectral factorization Riccati 
equation is the bounded real lemma. Suppose one is given a transfer function matrix 
M ( s ) =  C(sl  — A)~l B  with A stable. To test whether M(s) is bounded real, one can 
consider the spectral matrix $(s) = I — M T(—s)M(s).  It is easily checked that the 
associated ARE has the form PA  +  AT P — (P B B TP  -f CTC ) =  0. Since A is stable, 
it follows from standard results on Lyapunov equations that P  < 0 (see Lemma 0.0.1 in 
the summary of N o ta tion , D efinitions and  F undam enta l R esu lts  at the beginning 
of this thesis).
c) It should be noted that the algorithm described below may well still work in many 
circumstances where the condition P < 0 does not hold.
d) It is explained in Appendix G.2 and a summary is now given of how the limitation 
that 4? < 0 can be circumvented, this making the algorithm applicable to any continuous 
time spectral matrix which satisfies C A .l and C A .2 .

• Firstly, by the choice of any state feedback law K  which ensures that A k  = A — B K  
is stable, one can construct a related spectral matrix

* k (s) = U +  B t (—sI-  -  AJf) - 1S +  (6.112) 

B T( - s I  -  A f y - ' S K  + S l ( s l  -  A k )~1B,  (6.113)

where state-space formulae for A k , Vk  and S k  are given in (G.12) in Appendix G.2. 
Importantly, the algebraic Riccati equation associated with the above realization of 
this new spectral matrix is identical to that associated with the original realization 
of $(s).

• Next a different realization of the spectral matrix $ a:(s) is constructed using 
Lemma 6.1.1 of this chapter; with 'P' in the statement of that Lemma (i.e. not the 
strong solution P  of the ARE) chosen to be the unique (symmetric) solution M  of 
the Lyapunov equation M A k  +  A^-M = —Vk  (the existence of a solution to this 
equation is guaranteed by the stability of A k ’, see Lemma 0.0.1 in the summary 
of N o ta tio n , D efinitions and  F undam enta l R esu lts  at the beginning of this
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thesis). The realization which results can be constructed by applying the formula 
(G.14) in Appendix G.2 to the realization of $*r(s) given in (6.113):

$*•(») =  U + B T( - s I - A TK)~l (SK + M B) + {Sk  + M B ) t (sI - A k ) - 1B(6.114)

It is shown in the proof of Lemma G.2.2 in Appendix G.2 that the ARE associated 
with this new realization of $#-(s) will always have a strong solution II2 which 
satisfies II2 < 0. (Note that $ a-(s) is found without knowing II2-)

• It is now quite straightforward to check that the that the new realization of $ k 
in (6.114) satisfies each of the conditions 1 , . . . ,  3 listed above for continuous time 
spectral matrices. This makes it possible to apply the algorithm described below 
to find the solution II2 of the associated ARE.

• It is also shown in Appendix G.2 that, having found II2 , one can construct the 
solution P  of the original ARE (6.111) as P = H2 + M.

□

A n A lgorithm  for Solving the C ontinuous T im e A R E.

Step 1
With reference to Lemma 6.5.2, construct a realization of a discrete time spectral 
matrix ^«(z) from the realization of 3>(s) in (6.111) as follows:

*<«(*) = ( Gl(z-lI -  Fj)-1 / ) ( J? I“ ) ( {zI ~ Y ’ 10a ) . (6-H5)

where formulae for each of the above matrices are given in Lemma 6.5.2. Here 
a > 0 is a real number chosen such that it is not an eigenvalue of A and such that 
Ua is nonsingular.

Step 2
Now consider application of the algorithm for solving discrete time AREs (described 
in subsection 6.8.1) to the spectral matrix ^(z) =  ^ ( z ) ,  with realization given in 
(6.115). We now check that each of the conditions 1 , . . . ,  5 required for application 
of the DARE algorithm in section 6.8.1 hold:

1. It is shown in Lemma 6.5.2 that C A .l implies (Fa,Ga) is stabilizable.

2. It is also shown in Lemma 6.5.2 that Ua is generically nonsingular as a function 
of a.

3. The quantity Fa — GaU~1S^ is also generically nonsingular as a function of 
a. This follows from the following facts; in the limit as a —► 0 0 , Fa —* — 
Ga —<► 0, Ua —► U (since Da —* 0) and Sa —► 0 (since Ca —► 0). Thus 
lima-^oo Fa — GaU~lSa =  — / ,  which establishes the result.
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4. Recall that if the spectral property 3>(ju;) > 0 holds then we can be assured 
of the existence of a strong solution P  of the continuous ARE. It follows from 
Lemma 6.5.1 that 4> = <3>a =  P  is a strong solution of the DARE associated 
with \&a (z).

5. This follows since it has been assumed for the continuous time problem that 
P < 0.

Step 3 Apply the algorithm for solving the discrete time ARE directly to the above 
realization of ^«(z) to find an approximation to <Fa =  P  with specified tolerance 
e .

Remark: The above actually describes a family of algorithms which is parametrized by 
the variable a. In general, the convergence properties of the RDE will vary, according 
to the value of the parameter a. Some analysis and findings from numerical simulation 
studies appear in the context of a study of the linear quadratic control problem in the 
paper [37]. □

6.8 .3  C onvergence P rop erties o f th e  Sp ectral Factorization A lgorithm s.

Given exact arithmetic, if a strong solution to the continuous/discrete Riccati equation 
exists, the algorithms given in the previous two subsections should always halt due to the 
established guaranteed convergence results for Riccati difference equations. The result 
will be a matrix P  which is close to the actual strong solution P. In this subsection, we 
summarize the rate of convergence of the algorithm in exact arithmetic. The question 
of convergence behaviour in finite arithmetic and the achievable numerical accuracy of 
solutions is not considered here. However, the rates presented below would have direct 
relevance to an investigation of finite wordlength effects.

Convergence Rates for the Spectral Factorization Algorithm .

We state the convergence results for the discrete time algorithm only since those for 
the continuous time case can be readily inferred from these.

• Suppose the realization of \fr(z) has an invariant zero on the unit circle; then the 
following convergence results hold for the algorithm proposed in subsection 6.8.1.

There exist constants k \, k2 (depending on the realization of ^(-) and on $ 0 ) with 
« 1  > «2 > 0 such that:

W orst Case For all e > 0, there exists a such that when n >

^ m a x (^ 2 n ^
«1 +  C

2n
(6.116)
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B est Case If the initial condition also satisfies 4>o > then for all 77 E (0,«2)> 
there exists a such that when n > n ,̂

Ara« ( i 2- - i )  > (6.117)I11

• If ^ (z) has no unit circle invariant zeros, then there exist constants A > 0 and 
1 > c > 0 such that

A„ax(®2" -  * ) < Ale2" (6.118)

The convergence rate of the algorithm not only describes the rate at which large 
deviations (e.g. the initial deviation Ao) decay, but also the ability of the algorithm to 
attenuate numerical errors. It should be noted that the slower convergence rate for the 
unit circle case will decrease the achievable numerical accuracy of the algorithm in finite 
arithmetic. This is in accord with the observations in section 6.3 of this chapter. There 
it was shown that the presence of imaginary axis invariant zeros in the continuous time 
case leads to reduced numerical accuracy due to ill conditioning of the problem.

6.9 C onclusions about the Iterative Algorithm  for
Spectral Factorization.

In this chapter we have reviewed the task of construction of strong solutions of the 
algebraic Riccati equations which arise in continuous and discrete spectral factorization. 
Algorithms for solving the ARE which are implemented in standard software packages 
are based on calculation of a basis for the stable invariant subspace of a Hamiltonian 
matrix which can be constructed using the state space data for the spectral matrix. These 
algorithms fail when imaginary axis invariant zeros are present due to the fact that they 
ignore the Hamiltonian structure in the invariant subspace calculation. More advanced 
techniques based on invariant subspace calculations which respect this structure have 
been developed in the literature but are more complex.

One approach to solving the ARE which is comparatively simple is based on the matrix 
sign iteration. This involves no explicit invariant subspace calculation but repeated 
application of a simple and direct iterative formula to the original state space data. 
However, it is well known that the classical matrix sign iteration is not guaranteed to 
work when applied to the Hamiltonian matrix associated with a continuous-time spectral 
matrix which has invariant zeros on the imaginary axis.

The algorithm proposed here is, like the matrix sign algorithm, based on a straight
forward iterative formula. A discrete time spectral matrix can be constructed from a 
continuous time spectral matrix using a bilinear transformation. It is shown that the 
strong solution of the continuous time ARE is also a strong solution of the discrete 
ARE associated with the discrete time problem. It is shown that strong solutions of the 
discrete-time Riccati equation can be found via the convergent sequence of iterates of a
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Riccati difference equation associated with the discrete time spectral matrix. Should the 
spectral matrix have imaginary axis invariant zeros, then the convergence rate is 0 { \ )  

in general which is comparatively slow. A doubling algorithm for RDEs in discrete time 
spectral factorization allows the convergence rate to be substantially increased. The re
sulting algorithm has a convergence rate of 0 {^-) in exact arithmetic. This convergence 
rate should provide a basis for future work assessing the performance of the algorithm 
when implemented using finite arithmetic.



C h ap ter  7

C onvergence R ates of R iccati 
D ifference Equations for D iscrete  
T im e Spectral Factorization w ith  
U nit Circle Invariant Zeros.

Summary.

Given a state-space realization of a generically nonsingular discrete time spectral 
matrix, it is well known that minimum phase spectral factors can be constructed from 
the strong solution of an associated discrete algebraic Riccati equation (DARE), (see 
the review in section 6.4). Closely associated with the algebraic equation is a Riccati 
difference equation (RDE). The convergence behaviour of the iterates of this equation 
towards the strong solution of the DARE is the subject of the present chapter. Fairly 
mild conditions are adopted concerning the realization of the spectral matrix and the 
initial condition of the difference equation. Convergence results for RDEs which arise 
in a number of special cases of the discrete time spectral factorization problem are 
available in the literature and these axe summarized in the first section of this chapter. 
Few results are available, however which discuss in detail convergence of the Riccati 
difference equation when the realization of the discrete time spectral matrix has unit 
circle invariant zeros. The main objective of this chapter is to derive RDE convergence 
rates for this case.

It should be noted that the question of RDE convergence arose in section 6.6 of 
Chapter 6. In Chapter 6, it was shown how a family of discrete spectral matrices can 
be constructed from a continuous time spectral matrix and how the continuous time 
spectral factorization problem can be solved via the discrete time problem. Should the 
continuous time spectral matrix have imaginary axis invariant zeros, then each member 
of the resulting family of discrete time spectral matrices will have unit circle invariant 
zeros. Discrete time spectral matrices with unit circle invariant zeros are also important 
for a number of other reasons. Discrete time spectral matrices that have unit circle 
transmission zeros can arise in the discrete bounded-real and positive-real lemmas. In 
addition, spectral matrices with unit circle invariant (but not transmission) zeros arise

194
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when considering Kalman filtering for systems which have state dynamics with unit circle 
modes which are not corrupted by process noise.

The key observations made in this chapter concern the fine structure of the Riccati 
difference equation iterates when unit circle invariant zeros are present. From these 
results it is shown that there exists a worst case convergence rate of O(^), where k ranges 
over the nonnegative integers. It is also shown that generically, the convergence will not 
be feister than this. It should be noted that the nonnegative definiteness of the spectral 
matrix on the unit circle (spectral property) plays an important role in establishing these 
convergence rate results. Knowledge of the best and worst case convergence rates is of 
importance when using the Riccati Difference Equation as a means of finding the strong 
solution of the associated algebraic equation, as in section 6.6 of Chapter 6. The results 
established in this chapter can also be used to describe the convergence rate of state 
covariance matrices to their steady state values in Kalman filtering for systems with 
noise-free unit-circle modes.

7.1  In tr o d u c tio n .

The first step in this section is to state the main problem addressed in this chapter which 
concerns Riccati difference equation convergence for discrete time spectral factorization. 
Of central interest are spectral matrices with unit circle zeros. Next, and with reference 
to the literature, a discussion is included as to how these unit circle zeros may arise in 
different spectral factorization problems. Finally, a survey of the literature relevant to 
RDE convergence in such cases is given. Particular attention is given to evidence in the 
literature regarding convergence rates in the case of unit circle invariant zeros.

7 .1 .1  P rob lem  S ta tem en t.

Recall the class of realizations of nonsingular discrete time spectral matrices \£(z) which 
was introduced in section 6.4.1 of chapter 6:

*(*) = ( / ) ( j T ^ ) ( (2/“ f r 1 0 )- (7-D

where each constant matrix is real, V = V T and U =  UT and where we make the 
following assumptions:

D A .l (F ,G ) is stabilizable.

D A .2 U is nonsingular.

It should be emphasized that it has not been assumed tha the matrix V S \  .
J T  V ) ' S

sign definite. Now consider the discrete algebraic Riccati equation (DARE) associated
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with the above realization of the spectral matrix:

$  =  Ft $ F  +  V -  (F t $G  +  S)(U  + Gt $G )~1{Ft $G  4- S )T. (7.2)

The role of the DARE in solving the discrete spectral factorization problem was discussed 
in section 6.4.3.

A ssum ed  E xistence o f  a Strong D A R E Solution.

We shall assume throughout this chapter the existence of a strong solution of (7.2). Re
call that a solution of the DARE is by definition strong if the matrix F — GN~1(GT$F  +  
ST) has all eigenvalues in the closed unit circle, where N = U + GT$G.  Recall also that 
since 'I'(z) is a nonsingular spectral matrix, it follows that N > 0.

Q uestions about R iccati D ifference Equation C onvergence.

The main aim of the present chapter is to develop an understanding of the behaviour 
of the related Riccati difference equation (RDE) with initial condition <$o:

$*+1 = FTi kF + V-  (Fr$*G + S )(U +  + S)T. (7.3)

With reference to this equation, we shall be concerned with the following questions:

• Under what conditions on the realization of the spectral matrix and the initial 
condition 4>o will iterates of the RDE converge to the strong solution of the DARE?

• Does there exist an upper bound on the rate at which the iterates converge?

• Does there exist a lower bound on the rate at which the iterates converge?

In describing bounds on the rate of convergence, we would hope to establish the existence 
of functions e(k , $o) and e(k , <$o) which are nonnegative, converge to zero at known rates 
and satisfy the following inequalities:

c(fc,*o) < |Amax(<£fc -  i ) |  < c ( * , i0). (7.4)

Realizations of spectral matrices which have unit circle invariant zeros figure prominently 
in the convergence analysis. In fact, it will become apparent that unit circle invariant 
zeros pose a fundamental limitation on the rate at which RDE iterates can converge 
to the strong solution of the ARE. On the other hand, we demonstrate that an upper 
bound on the convergence rate can also be guaranteed when unit circle invariant zeros 
are present.

Henceforth, for brevity, we shall refer to the invariant realizations of a particular 
realization of a spectral matrix ^ (z) simply as the invariant zeros ofty(z),  provided it is 
clear from the context which realization is meant.

R em arks:
a) In the derivation of convergence rates of the above form, exact arithmetic is assumed.
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b) Convergence rates of the above form have immediate benefit in describing the rate 
at which iterates converge to a neighbourhood of the strong solution.
c) Once the RDE iterates get close to the DARE solution, the convergence rate bounds
will be of likely benefit in describing the numerical accuracy of the iteration. However 
this issue is not investigated here. □

7.1 .2  U n it Circle Invariant Zeros in D iscrete T im e Spectral Factoriza
tion .

Before proceeding, we shall review the role of unit circle invariant zeros in discrete time 
spectral factorization problems. In the previous chapter, a description is given as to how 
realizations of discrete time spectral matrices which have unit circle invariant zeros arise 
in consideration of continuous time spectral factorization problems. However, unit circle 
invariant zeros can arise in their own right in a number of inherently discrete problems.

Linear Quadratic Regulator and Kalman Filtering.

In 7̂ 2 linear-quadratic optimal control and Kalman filtering, spectral matrices arise 
which axe special cases of the class (7.1) where it is generally assumed that S — 0, U > 0  
and V  > 0. In such cases the spectral matrix is guaranteed to be positive definite on the 
unit circle and clearly the possibility that the spectral matrix has unit circle transmission 
zeros is precluded due to the sign definiteness of U and V . In much of the literature, unit 
circle invariant zeros axe precluded altogether by assuming detectability or observability 
of the pair (V* ,F ) (see for example [37]).

Note, however, that unit circle decoupling zeros can appeax if the realization of the 
spectral matrix is nonminimal: for example if (V" 2 , F) has unobservable unit-circle modes 
(see e.g. [3, 15, 22]), then these become decoupling zeros of the spectral matrix real
ization. It should be noted that in each of [3, 15, 22], Kalman filtering problems are 
treated in which filtered estimates axe sought of the states of a system Xfc+l =  Axk 4-iUfc 
from outputs yk = Cxk +  v*. In terms of the notation adopted in the present chapter, 
A  =  F t , C =  GT, S{vkv^} =  Ü and £{wkW%} — V. Thus if (V*,F)  has unobservable 
modes, it follows that (A ,Fä) has uncontrollable modes (recall that V* is symmetric). 
Since V  is interpreted as the process noise covariance matrix, this says that some modes 
of the underlying linear system axe uncorrupted by process noise. In [3, 15, 22], there 
are modes of this type on the unit circle.

The Discrete Positive Real Lemma.

A squaxe transfer function matrix G(z) = D + C {zl — A)~lB  is discrete positive 
real (see e.g. [36, 4]) if outside the unit circle, both of the following are true: G(z) is 
analytic and GT(z*) + G(z) > 0. Associated with G(z), one can define a spectral matrix 
\&(z) =  Gt (z~1) + G(z). In terms of the present notation for the state-space realization 
of the spectral matrices, when considering such problems, it is easy to check that the 
matrix V  =  0. Therefore, if the matrix A has unit circle eigenvalues, they automatically
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become invariant (decoupling) zeros of ^ ( 2 ). It may also be the case that the spectral 
matrix has unit circle transmission (and hence invariant) zeros.

The Discrete Bounded Real Lemma.

Unit circle transmission zeros can also arise in the discrete time version of the bounded- 
real lemma (see e.g. [24]) which is relevant in the discrete Tioo control problem (see also 
[105]). Recall that a discrete-time transfer function matrix L(z) is called bounded real if 
all poles of L (z ) are inside the unit circle and ||£||oo < 1. Consider the spectral matrix 
ty{z) defined by ^(z) — I — LT (z~1)L(z).  Observe that with the state-space realization 
L{z) =  Hl {zI  — Fl )~1G l , ^ ( 2 ) is of the standard form given in (7.1), with Ü =  / ,  
F =  Fl , G =  G l and V =  Should <7max(L(eJÖ*)) =  1 for some 6*, then ty(ej9*)
loses rank at that point; i.e. ^ ( 2 ) has a transmission zero at eJÖ*. In fact the above 
example is a discrete time version of the continuous time bounded real problem which 
was described in the introduction of this thesis in the context of multiple objective robust 
control. It is likely (though not investigated here) that the boundary of the bounded real 
constraint will play a role in discrete time multiple objective robust control analogous 
to the role it plays in the continuous time case.

7.1.3 A Summary of known RDE Convergence Results.

We now review the literature concerning the convergence of RDEs, paying particular 
attention to the role of unit circle invariant zeros and to the available convergence rate 
results. We also compare the assumptions on the state space realizations with those 
adopted here.

The Discrete Bounded Real Lemma.

To the author’s knowledge, the possibility of employing the associated RDE to solve 
this problem and the related convergence questions have not been studied in the litera
ture. The results established in this chapter can be used to address this problem for a 
discrete bounded real system L{z) =  Hl {zI  — Fl)~1G l , provided (Fl ,G l ) is stabilizable.

The Discrete Positive Real Lemma.

A Riccati difference equation appears in [4], where discrete time spectral factorization 
is posed in terms of a finite horizon optimal control problem. Under the assumption 
that (E, G) is controllable, it is shown in that paper that RDE iterates converge and 
convergence rates are stated - an exponential rate when no unit circle invariant zeros 
are present, and a  ̂ rate when they are present. Whilst steps towards a proof of these 
results are contained in [4], a full proof is not presented. It is also commented in [4] that £ 
rates have been observed in numerical studies. In the present chapter, this convergence 
behaviour is investigated in detail and the assumption that (F,G) is controllable is 
relaxed to stabilizable.
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In connection with the continuous-time positive real lemma in [8], it should be noted 
that a j  rate has been established for convergence of a Riccati differential equation to 
the strong solution of the associated algebraic Riccati equation.

Linear Quadratic Regulator and Kalman Filtering.

The Riccati difference equation (7.3) appears in the context of finite-horizon discrete 
time Kalman filtering [7] (where k is the time index and 4>o the covariance of the initial 
state estimate) and finite-horizon optimal control [5] (where k evolves in reverse-time 
and 4>o is a terminal-state weighting matrix).

If one adopts the assumptions that (V* ,F ) is detectable and $o > 0, iterates of (7.3) 
are known to converge to the strong solution of the algebraic Riccati equation (see [5] and 
[9]). It should be noted that a somewhat stronger assumption on the initial condition 
is adopted in the present work: $o > $ , where 4> is the strong solution of the DARE. 
This result was strengthened in [15] where it is shown that convergence is guaranteed if 
(V^ , F)  has no unobservable modes on the unit circle and $o > 0- Note that in [5], [9] 
and [15], the possibility that the spectral matrix has invariant zeros on the unit circle is 
precluded and the strong solution is actually a stabilizing solution. In this case, strong 
solutions of the ARE (7.2) also satisfy > 0 (which is not true in general of the broader 
class of spectral matrices considered here.) An exponential convergence rate for the RDE 
in linear filtering and control problems under the above assumptions is derived in [13].

Whilst unit circle transmission zeros are precluded in the standard filtering and LQ 
regulator problems, recall that invariant zeros may exist if the realization of the spec
tral matrix is nonminimal: for example if (V*,F)  has unobservable unit-circle modes, 
these become decoupling zeros of the spectral matrix. One of the first observations of 
the behaviour of the RDE in such circumstances is made in [3]. In that paper, a scalar 
example is considered with an identity state mapping, no process noise and with ob
servations corrupted with Gaussian white noise. For this example, the iterates of the 
Kalman Filter RDE axe shown to converge at a £ rate. A similar example can be found 
in [15].

More recently, the possibility of unit circle invariant zeros arising due to nonminimality 
of the realization of the spectral matrix has been discussed in [15] and [22] where Kalman 
filtering for so-called nonstabilizable systems is discussed. When expressed in terms of 
the notation adopted here, in these papers the possibility is considered that (V"5,F) 
has unobservable unit circle modes. Under the additional assumption that <$o > $, 
convergence of the RDE iterates to the strong solution 4> is stated in Theorem 4.2 of 
[22]. This generalizes the convergence result in Theorem 4.3 of [15] where it is assumed 
that (F ,G ) is controllable and either $o > $  or <$o = In [22], a finite horizon scalar 
LQ control example is presented with no control weighting, except on the terminal state.
An explicit formula for RDE iterates is derived there which converges at a £ rate.

It should be noted that convergence of the Riccati differential equation for the continuous
time LQ regulator problem has been studied in [14]. There, a stabilizability condition
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is adopted on the state space data and the possibility of uncontrollable imaginary axis 
modes in the realization of the spectral matrix is allowed. It is noted in [14] that a j  
convergence rate is possible in such circumstances.

Some questions regarding RDE Convergence Rates.

The evidence at hand from two scalar filtering examples (in [3] and [22]) and from 
the discrete positive real lemma (in [4]) indicates that a £ convergence rate is possible 
for RDEs associated with spectral matrices with unit circle invariant zeros. Observe, 
however that there is no proof in the above papers, or elsewhere in the literature it seems, 
concerning the convergence rate for spectral matrices under the assumptions given in the 
present chapter. A partial proof of the convergence rate result is given in Appendix III 
of [4] under the somewhat stronger assumption that (F , G) is controllable. The account 
given in [4] stops short of a detailed discussion of the mechanism of convergence of the 
RDE.

Given a realization of a spectral matrix as in (7.1) which satisfies the assumptions 
D A .l and D A .2 , we consider here the following questions in relation to the associated 
RDE (7.3):

• Can the convergence rate ever be worse than £?

• Can we ever expect convergence to be better than £?

It will become apparent that the answer to the first question is no and that the answer 
to the second question is generically no. Thus faster convergence is possible, but only 
for non-generic initial conditions 4>o-

7.2 A n Equivalent Problem  w ith  a Sim pler Spectral M a
trix R ealization.

In this section we show that, without loss of generality, in the remainder of this chapter we 
can consider a subclass of the realizations of nonsingular discrete time spectral matrices 
considered earlier. Each element ^(z) of this subclass can be realized as follows:

$ ( 2 ) =  U + GT(z~lI-  -  (7.5)

Here, as before, each constant matrix is real, V — VT, U — UT and the following 
assumptions hold:

D A .l (F, G) is stabilizable.

D A .2 U is nonsingular.

The difference here is that it is assumed that the cross-terms are zero; i.e. 5 =  0. The 
following lemma is the first step in demonstrating that this is no loss of generality.
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L em m a 7.2.1 Let 'ff(z) be a nonsingular spectral matrix with realization given by (7.1). 

Let K  be any state-feedback law (not necessarily stabilizing) for (F ,G ) and define

Fk  =  F +  G K , (7.6)

SK = S + K t U, (7.7) 

VK =  V + K t U K  +  S K  +  K t S t , (7.8)

then ^ (2) can be expressed as

<t(z) =  ( I -  Gt (z~1I -  FT)~l K t )'Sk (z)(I  -  K ( z l  -  F)~1G), (7.9)

where

* k (z) =  U + G t (z- 1I - F £ ) - 1Sk +S'1c(zI - F k ) - 1G + G t (z- 1I - F Z ) - 1Vk (zI - F k ) - 1G.
(7.10)

Moreover, the following hold:

1. $'(2) is a spectral mairix if and only if V!k (z ) is a spectral matrix.

2. ^ (2) is nonsingular if and only i f ^ K { z ) is nonsingular.

3. $  is a solution of the algebraic Riccati equation (7.2) associated with the realization 
0/ ^ ( 2) given in (7.1) if and only if it is a solution of the algebraic Riccati equation 
associated with the realization of ^ k (z ) given in (7.10).

4- If (F, G)  is a stabilizable pair if and only if (Fk ->G) is a stabilizable pair.

5. IfU  is nonsingular, then by choosing K  =  —U~1ST, the cross terms are eliminated 
in the realization o f ^ K { z ) (Le. Sk  =  0j.

Proof: A discussion of how one obtains the family of spectral matrices in (7.10) can 
be found in [80]. Items 1 and 2 follow immediately from the identity (7.9). Item 3 was 
identified in [80]. Item  ̂ is a well known result from linear system theory. Item 5 is 
easily verified. □

Suppose one is given a spectral matrix ^ (2) with realization as given in (7.1), defined 
by the matrices {F , G, U , V , 5 } and which satisfies D A .l and D A .2 . Note that here the 
cross coupling matrix S  is nonzero in general. Application of item 5 of the above lemma 
to this realization results in a new spectral matrix k {z) with state space realization

(2) =  U +  Gt {z~1I  -  Ft )~1V{ zI  -  F )-1 G, (7.11)

where U =  U and the other state-space matrices are given by application of the formulae 
(7.6), (7.7) and (7.8) to the state-space realization of ^ (2) with K  =  —Ü~1ST‘,

=  F - G Ü - 1St ,

= G,
F

G

(7.12)

(7.13)
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5 =  0, (7.14)

V = V  — SÜ(7.15)

Since (F, G) is a stabilizable pair, it follows from item 4 of the above lemma that (F, G) 
is also stabilizable.

It follows from item 3 of the above lemma that if $  is a solution of the DARE (7.2), 
then $  = 4> is also a solution of the following algebraic Riccati equation:

$  = F T ($  -  $G(U  +  GT$G )_1GT$ ) F + V. (7.16)

Note also that if $  is a strong solution to the DARE (7.2) associated with the realization 
(7.1) of ^ (z), then $  =  $  is also a strong solution to the above DARE (7.16). This 
follows from the following (fairly easily established) identity: F  — G N ~1GT$ F  =  F  — 
G N ~1(Gt ^ F  + 5 t ), where N  =  Ü + GT$G  =  U +  GT$G > 0.

Recall that describing the convergence of the iterates {$*;} to the strong solution 4> is 
of central interest in this chapter. In studying the behaviour of the RDE iterates {$*.}, 
we now show that we can equivalently study the iterates {$*.} of the following Riccati 
difference equation, with initial condition $o =  $o:

$ t+1 = Ft  (** -  $ kG(U + GT$ jtG )-1GT$ t)  F + V. (7.17)

L em m a 7.2.2 Consider iterates {$*} and {$*:} ( for all k E {1,2,...}  ) of the Riccati 
difference equations (7.3) and (7.17) respectively. Suppose these RDEs have the same 
initial condition $o = $o> then

*k = *k ( V f c € { l ,  2 ,...} ).

P roof: By substituting the expressions for F  and V  given in (7.12) and (7.15) in the 
RDE for (7.17), it can be shown using standard matrix manipulations that the right 
hand side of (7.17) is identical to the right hand side of the RDE for (7.3). See [37] 
for the details of this proof. □

In summary, we can study the RDE iterates $*. associated with the realization of a 
spectral matrix ^ (z) given in (7.1) by studying the convergence behaviour of the RDE 
iterates {$fc} associated with the realization (7.5) of the related discrete time spectral 
matrix ^ k {z ) given in (7.11). There is no loss of generality in doing this since if 
$ 0 = then the iterates {$*} arising from the simplified problem (with S  = 0) are 
identical to
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7.3 Com parison R esults for RDE Iterates.

We now state a minor extension of a well-known result which describes the way in which 
Riccati difference equation iterates behave under perturbations to the initial condition 
$0- Having established this result, we will find it has several applications in the proof of 
RDE convergence.

Lem m a 7.3.1 Let the sequences {$£} and {$£} be defined by application of the Riccati 
Difference Equation (7.17) with initial conditions an  ̂ respectively. With the 
definition

1. The following recursions hold for all k > 0;

**+i =  (H f i k H  -  (F l)Ti kG(GT$ kG +  Gt $ \G  +  V )-xGTi kFl (7.18)

* k+i =  +  (Ft2)TinG (G T$jG  +  Cl)-1Gr $ fcFfc2 (7.19)

where F l =  (I -  G{Gt ^ \G  +  t / ) - 1GT$£)F  
F l =  (J -  G(GT$ 2kG +  U )- lGT$ l)F .

2. Suppose the RDE (7.17) is associated with a nonsingular spectral matrix ^ (z) and 
the ARE (7.16) has a strong solution $ . Suppose also that both 3>q > and

Then if $o > 0 it follows that <1*. > 0 for all k >  0.

Proof: A more general version of the first difference equation which also accounts for 
perturbations in V was proven in the appendix of [23]. The second difference equation 
in item 1 can be obtained from the first simply by reversing the superscripts and then 
multiplication of the equation by —1.

Item 2 has been established in the nonnegative definite cost case for LQ control and 
Kalman filtering [9]. A generalization of this result to the broader class of spectral 
matrices we consider here follows from the discussion below.

Observe that with <J>q =  ĵb == $  for all subsequent k. By hypothesis, <3>o > $  and 
hence $0  > 0. Next observe from (7.19) that since GT$G  +  U > 0 (which follows from 
the assumed spectral property), it follows that > $  for all subsequent k.

Suppose now that one is given any ^ H follows from reversing subscripts in the 
argument immediately above that > $  for all subsequent k. Since GT$G  +  U > 0, 
it follows that Gt $ \G  4- U > 0 which together with (7.19) implies that <1*, > 0 for all 
subsequent k. □

7.4 A Prelim inary Convergence R esult.

In the present section, some additional (and temporary) assumptions are adopted con
cerning the spectral matrix realization and the initial condition of the RDE. The main
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result of this section is stated in Lemma 7.4.1 and proven in the remainder of the section. 
This result concerns the convergence rate of the RDE when the associated spectral matrix 
realization has unit circle invariant zeros. This result is a weakened version of the main 
convergence result presented in 7.5, where it is shown how the additional assumptions 
introduced in Lemma 7.4.1 may be relaxed.

Properties 1 and 2 in the following lemma can be found in [4] and [15]. Observations of 
the 0 { \ )  convergence rate have been made in a numerical study recorded in [102]. This 
convergence rate has been deduced for simple first order examples in [3], [15] and [22]. 
The worst-case RDE convergence rate given in item 3 a) is stated in [4] in connection 
with the spectral factorization problem associated with the discrete positive real lemma 
(see [4]). However a detailed proof of this convergence rate is not given in [4].

In proving the following lemma, a novel and nontrivial completion of the proof of 
convergence is presented which initially follows much the same reasoning as that given 
in [4] and [15], but which then investigates the convergence mechanism in more detail so 
that the stated rates can be deduced.

Lemma 7.4.1 Consider the following realization of a nonsingular discrete time spectral 
matrix

which, in addition to assumptions D A .l ( ( F,G ) is stabilizable) and D A .2 (U is nonsin
gular), satisfies the following two assumptions:

D A .3 (F, G ) is controllable.

D A .4 F is nonsingular.

Let $  be the strong solution of the associated algebraic Riccati equation (7.16);
then provided <$o > iterates of the associated Riccati difference equation (7.17) have
the following properties:

1 . $*. >  4 >.

2. l im i t - .o o  ~

3. I f the above realization o f ^ ( z )  has an invariant zero on the unit circle, then there 
exist constants 61,62 (depending on the realization of ^( - )  and on 4>oj with 61 > 
62 > 0 such that:

a) For all e > 0, there exists a positive integer kc such that when k > k t ,

(2) =  U +  GT{z~1I  -  Ft )~1V( zI  -  F )-1G, (7.20)

(7.21)

b) For all r\ E (0,62), there exists a positive integer kv such that when k > kv,

k
(7.22)
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In the next subsection the first step towards a proof of the above result is presented, 
which says that it is possible to describe RDE evolution in terms of a linear matrix 
difference equation (as described in [4] and [15]). Subsequently it is shown that upper 
and lower bounds for this difference equation can be found in terms of another, somewhat 
simpler linear matrix difference equation. A detailed study of the convergence behaviour 
of the simpler linear matrix difference equation gives rise to the convergence rate results 
which are stated in the above lemma.

7.4.1 A Linear Matrix Difference Equation describing RDE Evolution.

Under the additional assumptions adopted in Lemma 7.4.1, it is well known that the 
evolution of the RDE (7.17) can be described by that of a related linear matrix difference 
equation. This observation was made in both [4] and [15] but the behaviour of this 
difference equation was not studied in detail in these references.

D e r iv a tio n  o f  th e  D ifferen ce  E q u ation  for A ^ 1.

With the definitions A*; =  <£*. — <£ and

F = (I -  G(Gt $G  +  U)~lGT$)F,  (7.23)

one can apply part 1 of Lemma 7.3.1 with $]. =  $  and F% = F  to obtain

Afc+i =  FTA kF -  FTA kG(GTA kG +  GT$G  4- U )- l( F  A kF  . (7.24)

Suppose A* > 0, then since N  = U 4- GT$G  > 0 (due to the spectral property of 'I'(z)), 
the matrix inversion lemma may be applied to (7.24), revealing that

A j ^  =  F _1Afc 1F “t 4- F - 1G N - 1Gt F~t , (7.25)

which has been derived in [4] and [15]. Invertibility of F  is a consequence of the invert- 
ibility of F  and IV; application of the matrix inversion lemma to (7.23) yields

F~x =  F~l {14- GU~1Gt $). (7.26)

Since N ~ l > 0, (7.25) implies that A k+i > 0 whenever A k > 0. Thus our assumption 
that Ao > 0 ensures A k > 0 for all k > 0. This establishes item 1 in the statement of 
Lemma 7.4.1.

Observe that F  is of the form F  =  F — GL (where L = (GT$G  4- U)~lGT$F).  It 
is a well known result that controllability of the pair {F,G) guarantees controllability 
of (F ,G ), which in turn implies the controllability of (E -1 ,G). Since (F -1 ,G) is a 
controllable pair, so is the pair {F~1, GN~%). Hence the controllability Gramian for the 
latter pair satisfies

n —1
W  = F - j G N ~1GT{FT) - J > 0,

j - o
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with n the dimension of the state space; i.e. F  £ lRnXn. Direct iteration of the identity 
(7.25) then reveals that

A ^ n = F - " A fc- 1(F 7’)-"  +  (7.27)

which is the linear matrix difference equation which we shall use in the remainder of this 
section as a means for studying the convergence behaviour of the RDE.

Remark: The above observations, leading to the linear matrix difference equation 
(7.27), have been made in [4] and [15]. As in Appendix III of [4] and in (4.14) and 
(4.15) of [15], convergence to zero of the iterates of (7.24) is based on the following 
observation:

Amin(̂ jfc ) * 00 ^  Amax(Afc) * 0. (7.28)

However, in contrast to the presentation of [4] and [15], the present exposition gives an 
explicit account of the divergent behaviour of Amin(A ^1) —* oo. A full description of 
the behaviour of (7.27) is not, to the author’s knowledge, available in the literature. The 
purpose here is primarily to discuss its behaviour when F  has unit circle eigenvalues. In 
this case, F~n will also have unit circle eigenvalues, possibly with Jordan blocks of size 
greater than one. □

7 .4 .2  B ou n d in g  Sequ en ces for th e  Linear M atrix  D ifference E quation .

In this subsection, we shall begin a study the linear matrix difference equation (7.27) by 
introducing a Jordan canonical form for the matrix F~n. Subsequently, two sequences of 
matrices are defined which provide upper and lower bounds for iterates of the transformed 
linear matrix difference equation. These two sequences are defined in terms of another 
simpler linear matrix difference equation.

For convenience, we now introduce the the following definitions A =  F~n and Xj =  
A 'J', in which case (7.27) reads

x,+l =  Ä X  (7.29) 

X 0 =  A p1. (7.30)

Review  of the Real Jordan Form.

The following summarizes standard results concerning the real Jordan decomposition 
(see for example section 0.11 of [104]), which axe introduced in the subsequent analysis 
of the above difference equation for Xj.

Any square matrix B  with real coefficients can be expressed as

B = T A T ~ 1, (7.31)
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where T  is a nonsingular similarity transformation and

A = diag{Ai, ••• ,Ap} (7.32)

and p is the number of real Jordan blocks. For each q £ {1 ,... ,p}, Aq has one of the 
two forms described below.

In the first form, Aq £ ]R27l?x2n« where nq > 1 and

/  A, \
h  Ag

h  Ag

Ag
V h  Ag /

where

In this case, erg rfcjwg is a pair of complex conjugate eigenvalues of B.

In the second form, Aq £ JRn*xn« where nq > 1 and

(7.33)

(7.34)

(  \
1 Ag

\

Aq —
1 Ag

Ag
1 Ag J

where Ag is a real eigenvalue of B.

(7.35)

Let A have the recil Jordan decomposition

Ä =  T A T -1 , (7.36)

where A has the structure described in (7.32). Since $  is, by hypothesis, a strong solution 
of the algebraic Riccati equation, we know that |Aj(F)| < 1. It can be easily checked 
that |A^(A)| > 1 is a consequence of this.

With T  the transformation in (7.36), observe that one can express Xj  as Xj  =  TA’jT t , 
where X j  are iterates defined by the equation

X ,+l = A X j Är  + W, (7.37)

X 0 = T ^ X qT - 7 . (7.38)

Here W  = T ~ 1W T~ t > 0 and therefore Xj  > 0 for all > 0.

We next define a sequence of matrices {Yj} which underbounds {Xj}:

Yj+1 =  AYjA t + \ min(W)I,

Y0 = 0 .

(7.39)

(7.40)
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It is trivial to show by induction that 0 < Yj < Xj  for all j  > 0. Thus if we can show 
that {Yj} diverges, divergence of {Xj}  and {Xj}  follow.

Let /i > 0 be chosen such that > Amax(Xi) =  \ max(AXoAT + W), then the sequence 
of matrices Zj defined below overbounds X j :

Zj+i = AZjAT + ß l  (7.41)

Z0 =  0. (7.42)

It is trivial to show by induction that Zj > Xj  for all j  > 1.

The question now remains as to how we can establish the convergence behaviour of 
these bounding sequences {Yj} and {Zj}  and thus secure results on convergence of the
RDE iterates. It should be noted that, except for scaling on the constant term, the
sequences {Yj} and {Zj}  evolve according to the same linear matrix difference equation. 
The behaviour of this difference equation is the subject of the next subsection.

7.4.3 Evolution of a Linear Matrix Difference Equation with Unit Cir
cle Eigenvalues.

A linear matrix difference equation with Jordan structure.
Because of its significance in describing the convergence behaviour of the Riccati differ
ence equation to its strong solution, we examine the behaviour of the following linear 
matrix difference equation:

X ,(m + 1 ) =  (7.43)

X,(0) =  0. (7.44)

We assume that Aq has the first real Jordan form as described in (7.33) which corresponds 
to a complex conjugate pair of eigenvalues. Similar arguments to those which will be 
presented for this case can be used in the second case (7.35) (where A is real) and are 
therefore not treated here.

It follows by direct iteration of (7.43) that for m > 1, X q(m) =  Sq(m) where

771 —  1
S,(m) =  £  Aq(Aq)‘. (7.45)

1=0

The main objective of the present subsection is to study the behaviour of Sq(m) as 
a function of m  via a series of lemmas. This will lead to a proof of the preliminary 
convergence result which is presented in subsection 7.4.4. We focus here on Jordan blocks 
Aq which correspond to eigenvalues which axe on the unit circle. It is the behaviour of 
iterates of this type that are the most important in establishing the convergence rate of 
RDEs associated with spectral matrices which have unit circle invariant zeros.

Remark:
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For convenience, we review briefly some notation which is used to express the results 
which follow:
1) Let f( l)  be a scalar valued function and U(l) be a matrix valued function, both of
an integer variable l. We say that U(l) =  if crmafX(U(l)) =  ö (f( l) ) ,  where the
notation O(-) applied to scalar functions has the standard definition.
2) Suppose M  has an even number of rows and columns, consisting of a matrix of 2 x 2
matrix sub-blocks; for convenience we let [M\- E 1R2x2 denote the (z, j ) th 2 x 2  subblock 
of M . □

The following three lemmas together describe the divergence behaviour of Sq(m). They 
do so only for Jordan blocks corresponding to a complex conjugate pair of unit circle 
eigenvalues (i.e. A 7̂  ±1). Completely analogous results are available, however for the 
A =  ±1 case. The first lemma presents an approximation formula for the terms Alq(Aq)1 
which appear in the definition of Sq(m). The second lemma presents an approximation 
formula for Sq(m) itself, based on the approximation formula for Alq(Ä ^)1. Proofs of 
the first two of the lemmas presented below can be found in Appendix J. The third 
lemma is the key as fax as the development in this section is concerned. It gives upper 
and lower bounds for the divergence rate of Sq(m). A proof of this lemma is given in 
the present section which is based on the approximation formula for Sq(m ) given in the 
second lemma.

Lem m a 7.4.2 Let Aq be a Jordan block of size 2nq x 2nq which has the form given in 
(7.33), corresponding to a complex conjugate pair of unit circle eigenvalues. Then for 
sufficiently large l, one has the following identity:

A‘q(ATq)‘ = c(i) + p(i) = c m + o r 1» (7.46)

where

h  «A, |A 2

C(l) = (7.47)

or equivalently

(7.48)

and
(7.49)

Proof: Refer to appendix J .l. □
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Lemma 7.4.3 Let Aq be a Jordan block of size 2nq x 2nq which has the form, given in 
(7.33), corresponding to a complex conjugate pair of unit circle eigenvalues. Then with 
Sq(m ) defined in (7.f5), the following identity holds:

Sq(m) =  D (m ) 4- G(m) = D (m )(I + 0 (m  1)) (7.50)

where

D(m)

771/2 — A — A 2 • • • 6 1Yq rnn « A ^ - 1) \

f < A i n
# ( A ?’) 2

i - — A8 1

t ( A D
m 5 t 
20  ■'2

O T 7 ( A [ ) " ’
-1 m i '

(n,-l)!(n?-l)!(2n,-l)^1TJ2

or equivalently

( i- l)!(7-l)!(i+j-l)(A9 )l J
if i < j

and
[G(m)]jy — {  02Ö(m1+J_2) i f i  + j >  3 

O2  if i — j  =  1
Moreover, there exists a matrix © E jp2n,x2n? suc/l @ > q and

D{m) = m H T (m)QH (m)

where

H(m) = diag{/2, mA„ •••

(7.51)

(7.52)

(7.53)

(7.54)

Proof: Refer to appendix J.2. □

Lemma 7.4.4 Let Aq E be a Jordan block of the form given in (7.33) which
corresponds to a complex conjugate pair of eigenvalues on the unit circle. Let Sq(m) be 
defined as in (7.45). Then there exists a constant £ > 0 such that

1. For all 77 E (0,£) such that £ > 77 > 0, there exists an integer m v > 0 such that 
when 7 7 1 > m v,

2n
Amin (5 ,(771)) < 771— 2-. (7.55)c - 1

2. For all e > 0, there exists an integer me > 0 such that when m > m e,

TTi
Ami„ (S,(m ) ) >  — . (7.56)

Proof: Recall first that Sq(m) = rnHT(m)QH(rn) + G{m), where H im ), G(m) and 0
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are as described in Lemma 7.4.3. Since H (m) is invertible, it follows that

Sq(m) =  m H T(m)  {© +  W( m) }  H( m)  (7.57)

where
W (m) =  H T H  1(m).

m
It can also be verified fairly simply that W(m) =  0 ( m  x).

(7.58)

That Sq(m) is always a positive definite matrix can be seen from its definition in 
(7.45). In order to describe its eigenvalues as a function of m, we investigate those of 
5 ~ 1(m). Now recall that for any positive definite matrix M ,  if Am a x ( M )  is the maximum 
eigenvalue of M  then the minimum eigenvalue of M -1 is Amin ( M _ 1 ) =  A ~ * X( M ) .

Since Sq(m) is positive definite, it follows from (7.57) that 0  +  W(m)  is positive 
definite. Observe next that since W{m) — 0 ( m ~ l ) and © > 0,

( e  +  ITCm))-1 =  @~2 (J +  O tm -1) ) - 1©-^. (7.59)

Note next the following identity:

{I +  =  I  +  0 (m _1), (7.60)

which follows from two facts: firstly (J +  ö ( m ~ 1))~1 — I =  (I +  ö ( m ~ 1))~1ö ( m ~ 1), 
and secondly crmax ( ( /  +  £>(m-1 ))-1 ) =  amin (I +  ö { m ~ 1)) < crmax (I +  0 { m ~ 1)) =  1 +

From (7.60), it follows that

(e +  W ^m))-1 =  e-' +  Ofm"1). (7.61)

Inverting (7.57) and employing (7.61) reveals that

mS ~ l {m) =  H~l (m) |© _1 +  ö { m ~l ) } H~T(m) (7.62)

and since H~ l {m) =  0 (  1),

m S ~ l (m) =  i f “1(m )0~ 1.H’~T(m) +  0 (m -1). (7.63)

With M  a nonnegative definite matrix of dimension njif, recall the standard identity

Amax(Af) ^ trace{Af} < Amax(Af). (7.64)

Applying this result to (7.63) reveals that

Amax(m*S,“1(m)) < trace { H~1(m)Q~1H~T(m) } -I- 0 { m ~ 1) < 2nqAmax(m S~1(ra)).
(7.65)

Observe that

_L__
m 2~x~i

Al — * 

q
1  - i (7.66)
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and as a result that

trace ^ H ~ 1 (m)Q~lH~T(m)} = trace j |0 -1j } + 0 (m ~ 2). (7.67)

With the definition £ =  trace { [0-1]n }, note firstly from (7.65) and (7.67) that

A m axK ?_1(m)) < C + 0 (m _1) (7.68)

and secondly that

A m axK ?_1(m)) > ~ ~  + (7.69)
ZTlq

The stated results follow immediately from (7.68) and (7.69). □

7.4.4 P r o o f o f th e  P relim in ary C onvergence R esu lt.

In the light of the conclusions from the last section, we now return to describing the 
behaviour of the sequences {Yj} and {Zj}  which were introduced in section 7.4.2. Recall 
from the discussion in subsection 7.4.2 that A is in Jordan form, A =  diag{4i, • • • , Ap}, 
and that |A (̂^4)| > 1. It follows therefore that |Ai(Ag)| > 1 for q G {1 ,... ,p}.

Direct calculation of Yj yields the formula:

Yj = Amin(W) j y > ' ( , 4 T) ' j  (7.70)

=  Ami„(W)diag{51(j), ••• ,S„(j)}, (7.71)

where Sq( j ) =  ^]/=o Alq(Aq)1 f°r 9 £ { l , . . . ,p } .  Thus the set of eigenvalues of Yj is 
simply the union of all the eigenvalues of Sq( j ) for all g, scaled by Amin(W). In particular 
note that

Amin (Yj) = Amin(W) min Amin(Sg(j)). (7.72)

It follows from the properties of Sq(j ) described in the previous subsection that there 
must exist an integer jo > 1 such that when j  > jo,

Amin«) =  Amin(W)Amin(Sr (j)) (7.73)

where r corresponds to a Jordan block Ar of A  with unity eigenvalue. From Lemma
7.4.4, it follows that there exists a constant £r > 0 such that for all e > 0, there exists
an integer j \  such that when j  > j i,

Ami„(y,) > A min( W ) - ? — . (7.74)
Sr “T €

Next recall from the discussion in subsection 7.4.1 that X j  =  =  T X j J ^ . Hence
provided j  > max{jo,ji},

Amin (Xj  ) > (Tmin(T) Amjn(JCj) (7.75)
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— (7.76)

> 4 i . ( T ) W W ) ; r i j - r .  (7.77)

Note therefore that there exists a constant a > 0 such that for any e > 0, there exists 
an integer j»2 such that when j  >  j‘2 ,

Amax(A3«) < (7.78)j n

It then follows immediately that Amax(Ajn) —► 0, this ensuring that —► $.

Since for s 6  {1 , . . .  ,n —  1} it is known that A 3 > 0, identical reasoning to the above 
can be applied to deduce that Amax(Ajn+3) —> 0 and therefore that —► $. It
follows that Amax(Ajfc) — ► 0. Note also that for each s E {0 ,1 ,... ,n  —  1}, an inequality 
of the form (7.78) is available for $ j n+3. Combining these inequalities yields part 3 a) 
of the preliminary convergence result in Lemma 7.4.1.

In an identical manner to that employed in investigating Yj , one can deduce the 
following expression for Z j :

Zj = Mdiag {St (j), ••• ,STU)}. (7.79)

Observe that

Amin( ĵ) =  ß mm Amin (*Sg(j)). (7.80)

Reasoning identical to that used in the Yj case, yields the existence of an integer j'3 > 1 
such that when j  > j‘3 ,

Amin {Zj) =  ^Amin(5r(j)). (7.81)

where r corresponds to a Jordan block Ar of A with unity eigenvalue. From Lemma 
7.4.4, it follows that there exists a constant (r > 0 such that for all 77 (E (0,£r), there 
exists an integer j‘4 such that j  > implies that

2 y i

Amin (Zj) < ßj-z——r> (7.82)
C r ~ V

where nr is the size of the Jordan block Ar.

Since Zj > Xj  for all j  > 1 , note that Amjn(Zj) > \ min(Xj).  Hence provided j  > 
max{i3 , j 4},

A m i n ( ^ j )  ^ c rm a x ( 7 1) A m in  { X j ) (7.83)

< ^ m a x  ( 7 1)  A m in  (  Z j  ) (7.84)

< ° m * x { T ) ß j  .
Cr - V

(7.85)

Note therefore that there exists a constant ß  > 0 such that for any ß > 77 > 0, there
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exists an integer j 5 such that when j  >  .75,

>max(Ajn) > (7.86)
jn

Recall that for s E {0 ,1 ,. . . ,  n — 1}, it is true that A3 > 0. An inequality analogous to 
(7.86) but for Ajn+3 is available for each s. Combining these inequalities yields part 3 
b) of the preliminary convergence result of Lemma 7.4.1. □

7.5 The M ain Convergence R esult.

In this section, we return to considering spectral matrices realized as follows

*(z )  =  U +  Gt (z~1I  -  F t )~1V(zI  -  F )- 1G, (7.87)

which satisfy assumptions D A .l ((F, G) stabilizable) and D A .2 (£7 nonsingular) but 
which may not satisfy the stronger assumptions D A .3 and D A .4 which were required in 
the preliminary convergence result presented in the last section. Recall that our main 
objective is to study the convergence behaviour of the following RDE

$jt+1 =  Ft  ($* -  $ kG(U +  GT$ kG ) - 1GT$ k) F +  V (7.88)

towards the strong solution of the discrete algebraic Riccati equation

$  =  F t ($  -  $G (U  -I- Gt $G )_1Gt $ )  F +  V. (7.89)

The realization of the spectral matrix associated with the above RDE may have unit 
circle invariant zeros which arise due to nonminimal modes, transmission zeros, or any 
combination of these.

Recall that convergence has previously been established for linear-quadratic control 
and Kalman filtering problems (see [15] and [22]) and for the spectral factorization prob
lem associated with the discrete positive real lemma (see [4]). In [4], assumption D A .3 is 
made (that (F, G) is controllable), whilst assumption D A .4 (that F  is nonsingular) is 
relaxed. Convergence rates are stated in [4] but a proof is not given. In [15], both as
sumptions D A .3 and D A .4 are made and, except for a scalar example, no convergence 
rates are given. Following on from [15], it is shown in [22] (albeit by different means 
to those proposed here) that the condition (F, G) controllable can be relaxed to (F, G) 
stabilizable and that singular F matrices can be accommodated. However, except for a 
scalar example, no convergence rates are stated in [22] either.

New results are presented below concerning the rate at which the iterates of the Riccati 
difference equation converge to the strong solution of the DARE (7.89) under assumptions 
D A .l and D A .2 only. The convergence result which was derived in the previous section 
under the additional assumptions D A .3 , $0 > $  and D A .4 is central to the proof of 
the following result. The proof proceeds via a successive relaxation of these additional
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conditions to allow (F, G) stabilizable, 4>o > $, and finally also F singular.

Theorem 7.5.1 Given a realization (7.87) of a discrete time spectral matrix \&(z ) sat
isfying assumptions D A .l and D A .2 , along with the strong solution $  of the associated
algebraic Riccati equation (7.89), then provided $o > iterates of (7.88) have the
following properties:

1. >  4>.

2. lim*._00 =

3. If'ty(z) has an invariant zero on the unit circle, then there exist constants k\ ,K2 
(depending on the realization of'ff(-) and on with k\ > K2 > 0 such that:

a) For all e > 0, there exists a ke such that when k > ke

Am„ ($ *  -  *) < (7.90)

b) Suppose that $o > then for all 77 £ (0, «2), there exists a kv such that when
k >  kv

-  *) > (7.91)

R em arks:
a) Part 3 a) of the above theorem reports a worst-case ^ convergence rate in the case of 
unit-circle invariant zeros. Part 3 b) says that, with the exclusion of (non-generic) cases 
where $0 — $  is singular, the convergence rate can be no better than
b) If the spectral matrix has no invariant zeros on the unit circle, the convergence rate 
will in general be exponential. For example, it is shown in Theorem 5.4 of [13] that for 
realizations of spectral matrices with nonnegative definite cost having {F,G) stabilizable 
and (F, V ) detectable, <Ffc converges exponentially to <F. In other words, there exist 
constants A , «3 such that 1 > «3 > 0 and

Am„ ( $ t  -  $) < An\. (7.92)

Similar statements are made in section IV of [4] for the Riccati difference equation 
associated with the discrete positive real lemma. □

7.5.1 Relaxing assumption DA.3 (that (F,G) is controllable.)

The aim of this subsection is to establish the following result:

F irs t s tren g th en in g  of L em m a 7.4.1:
With the additional assumptions D A .4 (F is nonsingular)and $0 > the statements
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in Theorem 7.5.1 hold.

In [22], assumption D A .3 was relaxed to prove convergence of the RDE using a se
quence of perturbations on the original problem. The emphasis in the present paper 
is to investigate the structure of RDE iterates associated with the stable uncontrollable 
modes of (F, G). These observations give rise to statements concerning the convergence 
rate which were not made in [22].

We assume now that (F, G) is stabilizable and that, without loss of generality,

F = ( Fo § )  <7-93)

G =  (  ^  )  (7.94)

where |A*(^22)I < 1 and (F n ,G i) is a controllable pair. We partition $*. and V confor
mally:

*kn \  
*$2 )  

V 12  \  
V22 ) '

(7.95)

(7.96)

Expression of the RDE (7.88) in terms of this partitioning reveals that satisfies the 
Riccati difference equation

■bit1 =  Fh  (*11 -  * u G i ( U  +  G ^ G i ) " 1̂ } , )  F11 +  Vn . (7.97)

With conformal partitioning of $  (the strong solution of (7.89)), it can be readily shown 
that $11 is a solution of the algebraic Riccati equation

$ n  =  i f i  ( $ n  -  $nGi(C7 +  G [$ u G i) -1G f$ ii)  Fu  +  Vu . (7.98)

Moreoever, $ n  is also a strong solution of this equation, as is now shown. Observe that 
one can write

F =  ( I - G ( G t $ G  +  U ) - 1Gt $ )F
(  Fn( /  -  GiiV1-11G [ $ i1)Fi2 -  GiJVf11G [$ i2F22 A 
V O  F22 ) ’ (7.99)

where

Fn =  ( i  -  G i N r f G f i n )  Fn (7.100)

and N u =  N =  U 4- G q$nG i- Since $  is a strong solution of the DARE (7.89), it 
follows from (7.99) than Fu must have all its eigenvalues in the closed unit circle.

Recall that for the moment, we maintain the assumption that F is invertible, from 
which it follows that Fu  is also invertible. Since we also assume that $o > $  and 
therefore that Ao > 0, it follows that A ii > 0. Since (F n ,G i) is controllable, we can 
apply item 3 a) of Lemma 7.4.1 to deduce that iterates of the reduced-order RDE (7.97)
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satisfy
Ail =  0 (1 ) . (7.101)

It can also be shown using the RDE (7.88) that the partitions °f the iterates
satisfy

* 1 2+ 1  = (Fu)T*nP22 +  Wl*2 (7.102)

where

Fu  =  ( / - G 1(JVf1) - IG[<I>{1) F 11, (7.103)

JV f, =  U + Gf&nGu (7.104)

W?2 =  ( F ^ f& n F u  + V (7.105)

Recall from (7.101) that $5^ =  $ i i+ ö (^ ) . It follows from (7.104) that N = N n+ Ö ( J), 
from (7.103) that Ffi = Fu + 0 ( J )  and hence that W f2 =  W 12 +  ü(jj) where W& = 
F ii$ n F i2 +  V\2* By hypothesis, there exists a solution $ 1 2  of the algebraic equation

$12 — *5*12^22 +  (7.106)

Subtracting this equation from (7.102) and simultaneously adding and subtracting the 
term (.fTi)T$  12^22 yields the equation

A fr1 =  (J?i)TAf2f 22 + (#fi -  Fu f * v iF a  +  < 2  -  W12. (7.107)

We shall now summarize some convergence results of linear difference equations of the 
above form.

Convergence Rate for a Time Varying Linear Difference Equation.

As will become apparent, the following result gives convergence rates for difference 
equations with time varying coefficients such as (7.107). The proof of this result, pre
sented in Appendix K, combines a number of results from the theory of linear difference 
equations. Neither a statement of this result nor a result from which it could be simply 
deduced could be found in the literature.

Lem m a 7.5.1 Let {Y*} be a bounded sequence of matrices defined for k > 0. Consider 
the linear matrix difference equation with (possibly nonsquare) iterates E*, having a finite 
initial condition Ho:

Sfc+i =  AfcHjfcRjt + Tjfc. (7.108)

Suppose the (square) matrix sequences {A*.} and {Bk} are bounded for all k > 0 and 
satisfy Ak —► A and Bk —> B, where |Ai(A)Aj(2?)| < 1 for all i and j .
Then i f Tk  =  (9(£), it follows that

2 * = 0(1). (7.109)
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Proof: Refer to appendix K □

With the above result in mind, we now return to the linear difference equation for A^2 
given in (7.107). Recall that Fn  has all eigenvalues in the closed unit circle. Observe 
that F22 is stable. It follows that |Ai(Fn)Aj(F22)| < 1. In the statement of Lemma 7.5.1, 
we now identify S*, with A*2, Ak with (F n )T, Bk with F22 and Y*. with the remaining 
terms in (7.107), which can be easily shown to be O(^) .  We now apply Lemma 7.5.1 to 
(7.107) to conclude that

A‘2 =  0 (1 ) . (7.110)

Note that examination of the (2,2) partition of the RDE (7.88) reveals the following 
iteration:

*2 2  1 = * £ * 22*22 +  S£

where

«22 = *£*11*12 (*12)̂ *12*22

+ * £ ( * i2)T (* 1 2  -  Gl(ATf1) - 1G?’*{!1F22) +  V22 , (7.112)

* £  =  ( l - G 1( N { F u - (7.113)

Recall that by hypothesis, there exists a solution $ 2 2  of the equation

$ 2 2  =  ^ $ 22^22 +  S22 (7.114)

where S22 is given by talcing the limit of (7.112) as k —*■ 00. Subtracting the above 
equation from (7.111) yields the equation

A*2 1 =  * £ ^ £ * 2 2  +  S‘2 -  S22. (7.115)

From (7.101) and (7.110) it follows that 522 =  S22 +  ® {\)' Since F22 is stable, we can 
apply Lemma 7.5.1 with Ak =  Bk =  F22 and Tjt =  S22 — S22 to conclude that

A*2 =  0 ( 1 ). (7.116)

Since A =  O(^) for each partition of A*, it follows that A*. =  O (^). This establishes 
the worst-case convergence result in item 3 a).

We now establish the best-case result in item 3 b). Choose any $ 0  such that Ao > 0 
and note therefore that A ^  > 0. For convenience, we now recount the difference equation 
for 3?^ which was introduced earlier:

* n  1 = * n  (* 1 1  -  *uGi(£7 +  G f $ i1G 1)_1G^’$*1) Fu  + V„. (7.117)

Recall that $  is a strong solution of the DARE (7.89) in the sense that the eigenvalues
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of the following matrix are either inside or on the unit circle:

p = (  Fn  ( I -  G i N i i G j  $ h )F i 2 -
V 0  ^ 2 2

Note that all unit circle eigenvalues of F must be eigenvalues of Fn  since F22 is stable 
by hypothesis. Note that we can apply item 3 b) of Lemma 7.4.1 to the RDE (7.88) to 
deduce that there exists a 62 > 0 such that for all 77 £ (0 , 62)5 there exists a kv such that 
when k > kv,

W $ n  -  $ 11) > (7.U9)

Note now that the positive-definite matrix is a partition of the larger positive-definite 
matrix Ajt and hence that

-  4) > -  $ u ) > S~ L, (7.120)

provided k > kv. This establishes item 3 b).

7.5.2 Relaxing the assumption: $0 >

The aim of this subsection is to establish the following result:

Second strengthening of Lemma 7.4.1:
With the additional assumption D A .4 , the statements in Theorem 7.5.1 hold.

Suppose now that $ 0  > $  but not $ 0  > $ . It is well known that the difference 
equation (7.24) for A*, holds also when A*, is singular. In particular, from item 2 of 
Lemma 7.3.1, it follows that A* > 0 for all k > 0 which establishes item 1.

Suppose we have any $ 0  such that <$0 > $ 0  > $  and $ 0  > From item 2 of Lemma 
7.3.1 it follows that $k > $Jb > $  for all k > 0 (where <1* axe iterates of the RDE 
with initial condition <$o)* Since > 4>fc and the convergence of {$*.} is guaranteed 
by item 2 of the first strengthening of Lemma 7.4.1, item 2 in the theorem statement is 
established.

Item 3 a) in the first strengthening of Lemma 7.4.1 establishes a worst-case bound 
for the convergence rate of {$*} which by virtue of the above observations guarantees 
the same convergence rate for {$*}• Since the restriction $ 0  > $  is maintained in item 
3 b) of the theorem, clearly the best-case convergence result of item 3 b) in the first 
strengthening of Lemma 7.4.1 remains.

7.5.3 Relaxing assumption DA.4 (that F  is nonsingular).

The aim of this subsection is to establish the following result:

Final strengthening of Lemma 7.4.1:
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Without any further assumptions, the statements in Theorem 7.5.1 hold. □

If F  is singular then F = (I — GN lGT$)F  will be also (recall that N = U +  >
0). Suppose it has a Jordan canonical form F  =  M ~ 1F M  where

F = diag {Fnz Fz} (7.121)

and Fnz and Fz are block-diagonal and contain Jordan blocks corresponding to the non
zero and zero eigenvalues of F , respectively. Let G in this basis be partitioned as follows:
GT = (MG)T = (GTnt GZ).

The difference equation for A*, given in (7.24) can now be expressed in the coordinate 
basis introduced above with the definition A*. = M ~T A kM ~ l :

Ajfc+i =  F TA*F -  F TÄ kG{GTÄ kG +  GT$G  +  U)~1GTÄ kF. (7.122)

It should be noted that this equation still holds under the assumptions adopted here (i.e. 
those stated in Theorem 7.5.1).

Let Fq be any Jordan block of F  corresponding to a zero eigenvalue:

Fq

( 0 \
1 0

1  **.

0
V 1 0 /

(7.123)

We now investigate the RDE evolution in the subspace corresponding to this Jordan 
block. It can be shown fairly easily via (7.122) that

(At ), =  diag{Dk 0t} (7.124)

where (Afc)g is the nq x nq diagonal subblock of A* corresponding to the Jordan block 
Fq 6  IRn? xn?, and Dk 6 {nq- k ) x ( n q- k)  -g a nonzero matrix in general. Observe that for 
all iterations k > nq, (Ä k)q =  0nq. This reasoning can be applied to each Jordan block 
which has a zero eigenvalue. It follows that there exists an integer n3 (the size of the 
largest zero-eigenvalue Jordan block) such that when k > n3,

A t =  diag{A ‘ ,  0,,} (7.125)

where qz is the size of the whole invariant subspace corresponding to an eigenvalue of 
zero. With the definition qnz — n — qz, corresponding to the size of the whole invariant 
subspace corresponding to a nonzero eigenvalue, observe that £ ]RqnxXqnz. Next 
observe that A* > 0 (which can be shown by applying part 2 of Lemma 7.3.1 to (7.88)), 
from which it follows that A£z > 0.

Now define a lower dimensional problem by considering iterates of A£2 only. Note
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that for n > n3, it follows from (7.122) that A^z satisfies the following recursion:

+ gt$gt + u)fc-(-1 F1 A K F -  F
r n 2 u 7 i 2 r n ^  r -

a  ; ,g„, (gT Ä k u. G lÄ n J n z-  (7.126)

The existence of such a recursion was alluded to in Appendix III of [4] although it was 
not made explicit there.

Now consider the above RDE as being associated with the factorization of the spectral 
matrix = U +  GT$G  of the form (7.87) with "F" replaced by Fnz, "G" replaced 
by Gnz, "U" replaced by U +  GT$G  and "V" replaced by zero. Factorization of this 
spectral matrix from the original state-space realization is trivial and the strong solution 
of the algebraic equation associated with (7.126) is Anz =  0.

It can be easily checked that if (F,G ) is stabilizable then (Fnz,G nz) is also. Since we 
assume that Ao > 0, it follows that > 0. By construction, Fnz is invertible. Con
vergence (including rates) of Ä£z then follows by application of the second strengthening 
of Lemma 7.4.1 to ^(z).

Recall that the parts of the RDE iterates associated with invariant subspaces cor
responding to zero eigenvalues converge in a finite number of iterations. The best and 
worst case convergence behaviour of Ä£z axe therefore inherited by A*, as stated in items 
3 a) and 3 b) of Theorem 7.5.1.

7.6 Conclusions on RDE Convergence Rates.

The main purpose of the present chapter has been to establish convergence rates for a 
class of Riccati difference equations which arise in connection with discrete time spectral 
factorization. The motivation for this work in the context of this thesis is given in Chapter 
6 where an algorithm for continuous time spectral factorization is developed which relies 
on the solution of a discrete time spectral factorization problem. The convergence rates 
derived in the present chapter for the RDE have immediate application in finding the 
convergence rate of the algorithm which is proposed in Chapter 6.

The £ convergence rate for the RDE which has been derived in this chapter is also of 
immediate relevance to certain Kalman filtering problems. In particular, if the underlying 
linear dynamics have unit circle modes which are uncorrupted by process noise, then these 
modes will give rise to invariant zeros in the realization of the discrete spectral matrix 
associated with the Kalman filtering problem. This problem is particularly relevant to 
the filtering of states associated with persistent disturbances; e.g. sinusoids and steps. 
The presence of unit circle invariant zeros will cause the state covariance matrix (which is 
governed by a Riccati difference equation) in the Kalman filter to converge to its steady 
state value only at a ^ rate when it would normally converge at an exponential rate.



A ppendix A

Invariant Zeros for R ealizations 
of N onsquare Transfer Function  
M atrices which are Full Rank at 
Infinity.

A p roof o f Lem m a 3.1.1 in C hapter 3:

We prove only item 2 as stated in Lemma 3.1.1. Item 1 can be established by com
pletely analogous means.

First recall that the invariant zeros of the given realization of G(s) correspond to 
values of A GC where the following matrix pencil loses rank (i.e. has rank less than its 
normal rank):

f  A -  XI B  
\  C D ) •

(A.1)

Right multiplying G(s) by the square, full rank matrix ( D 1 DL ) does not alter its 
invariant zeros. Thus the invariant zeros of G(s) correspond also to rank loss of the 
matrix pencil

f  A - X I  BD'  B D l 
\  C I  0 ) ■

(A.2)

Applying simple column operations preserves the rank of this matrix. Replacing the first 
column with itself minus the second times C results in

(
A -  B D ' C  -  XI BD'  B D l  \

0 /  0 ) (A.3)

which loses rank if and only if A corresponds to an uncontrollable mode of (A—BD^C, B D -*■).
□
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Appendix B

H o c  R iccati Equations for the  
e-A ugm ented  P lant.

B .l  E xistence Conditions for the e-Augm ented Plant.

A proof of Lemma 3.3.1 in Chapter 3:

1. Suppose there exist two stabilizing solutions X*, i G {1,2} of an equation of the form 
ATX  + X A  + X Q X  + R = 0, where A , Q , R e  ]Rnxn and Q, R  axe symmetric. Talcing the 
difference between the equations for X \  and X 2 yields the equation (A + QX 2 )T{X i — 
X 2 ) +  (Xi — X 2){A +  Q X  1) =  0. Since, by assumption, (A +  Q X 2) and (A +  QX  1) 
are stable, one can apply the Lemma of Lyapunov (see Lemma 0.0.1 in the summary of 
N otation , Definitions and Fundamental R esults at the beginning of this thesis) 
to conclude that X \  — X 2 =  0 and thus that stabilizing solutions axe unique.

2. From Theorem 3.2.1, a 7-admissible controller for G(s) exists if and only if 3 e* > 0
such that V e G (0,e*), there exists a 7-admissible controller for Ge(s). By hypothe
sis Ge(s)is of standard form, and satisfies assumptions A .l ,A .2,A .3and A .4 . Hence 
Lemma 2.3.1 in Chapter 1 can be directly applied to the e -augmented system to obtain 
existence results. The Riccati equations (3.21) and (3.22), along with the coupling con
dition p(XeYc) < 72 are obtained by direct application of the formulae given in Lemma 
2.3.1 to the realization of Ge in (3.13), incorporating the formulae for D |2, 1 an(  ̂their
inverses as given in (3.18) and (3.19) respectively. □

B .2 Equivalence of the M odified e-Dependent R iccati Equa
tions.

A proof of Lemma 3.3.3 in Chapter 3:

Since B\  and C\ axe chosen according to Lemma 3.3.2, it follows (as in the proof of 
Lemma 3.3.1 paxt 1 in Appendix B.l ) that nonnegative definite stabilizing solutions of 
equations (3.21), (3.22), (3.37) and (3.38) Eire unique.

=> Suppose X € and Ye axe the (unique) nonnegative definite stabilizing solutions of
223



224 Appendix B.

(3.21) and (3.22). One can use the identities (3.29) and (3.32) to eliminate the divergent
terms in (3.21) and in (3.22).
It follows directly that Xt — X e and y e =  Ye are the (unique) nonnegative definite 
stabilizing solutions of (3.37) and (3.38).

<= Let Xe and y e be the (unique) nonnegative definite stabilizing solutions of (3.37) 
and (3.38). We can show by an identical argument to that in the proof of Lemma 3.3.2 
that Xe has a structure identical with that in (3.28) and y e identical with that in (3.31). 
The identities (3.29) and (3.32) also hold for Xe and y e. It follows directly that X € =  Xe 
and Ye = y e are the (unique) nonnegative definite stabilizing solutions of (3.21) and
(3.22) .



A ppendix C

E xistence of N onnegative  
D efin ite Stabilizing Solutions of a 
Fam ily o f A REs.

C .l E xistence, D ifferentiability and Sign D efiniteness of 
Solutions to the Family of AREs.

A proof of Lemma 3.3.4 in Chapter 3:

Proof of item 1.
With T] £ IR, X  € ]Rnxn, define the function F : H x ]Rnxn —> IRnxn as

F(v , X)  =  A X  + X A t + (C.l) 

By hypothesis, there is an Xo > 0 which satisfies:

F{ 0,X 0) =  0 (C.2)

Our next step is to establish the existence of solutions X v to the equation

F(r, ,X„)=0  (C.3)

in an interval about 77 =  0. We first apply the vec operation to F(rj,X):

vecF(rj, X )  = vec{AXI)  +  vec(/XAT) +  vec(AQ(7/)A) (C.4)

=  (I  <g> A)vecX + (A <g> /)vecX +  ( /  <g> XQ(r]))vecX (C.5)

Differentiation of this expression with respect to vecX and application of standard iden
tities (see [12]) results in the following expression:

dvecF
{t]=Q,X=Xq}

=  (A +  X qQ)  0  (A +  X qQ)  (C.7)
dvecX

I  ® (A +  X qQ ) +  (A +  AqQ) © I (C.6)

Here <8> and © denote the Kronecker product and sum respectively. It is a well known 
fact that the last expression has eigenvalues A*. =  Aij =  (A»(A -I- X qQ ) A  Aj(A +  XoQ)),

225
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with i , j  E {1, 2, . . .  ,n} and thus k = ij  6 {1, 2, , n2}. Since (A +  X qQ) is stable, all 
eigenvalues of (A +  X qQ) © {A +  X qQ ) have real parts strictly less than zero. Hence the 
derivative  ̂ q is n̂ver^^^e- The implicit function theorem can be imme
diately applied to vecF,  resulting in the conclusion that 3 fj > 0 and a unique continu
ously differentiable mapping X v | 1R —*• ]Rnxn such that X v- q =  Ao and F(r),Xrj) =  0
V 77 E Thus X v varies continuously with 77 in this interval and the derivative
dX  • •-T-1 exists and is continuous.dr\

Since X v and <3(77) are continuous functions of 77, it is true that the real parts of the 
eigenvalues, 3£{A*(A -f Q^vfjXjf)} also vary continuously with 77. By hypothesis, when 
77 =  0, all of these eigenvalues have negative real parts. By continuity, 3 77 > 0 such that 
this will also be true for 77 E (—77,77).

Since F T (r],X) = F(r],XT), it follows that X  =  X ^  satisfies F(r) ,X) =  0 for all 
77 E (—77,77). By the uniqueness part of the implicit function theorem, it follows that

Choosing 771 =  min(77, fj) completes the proof of part 1.

Proof of item 2.
j  y

When -3^ exists, one can differentiate (3.42) to obtain the following Lyapunov equation: 

^ ( A  + Q(v)X„) + (A + Q(V)X„)T ^  + X V^ X V = 0. (C.8)

Let 771 be defined as in part 1. Let 772 =  min(i7,77i), where 77 is defined in part 2 of
the lemma statement. Thus when 77 E (0,772), A +  Q(rj)Xv is a stability matrix and
3  ̂ > 0. These two facts, together with (C.8), imply by the Lemma of Lyapunov (see
Lemma 0.0.1 in the summary of N otation, Definitions and Fundamental Results

dXat the beginning of this thesis) that > 0, V 77 E (0,772). It follows immediately that 
provided 77 E (0,772), X v > X q > 0. □

C.2 E xistence o f a L im iting Solution.

A proof o f Lem m a 3.3.5 in Chapter 3:

Existence of X q.
For any 17 E (0,77*), one can apply Lemma 3.3.4 part 1 to (3.41) and conclude that
the nonnegative definite stabilizing solution of (3.42) varies continuously in some interval

dX  Iabout fj and moreover that -3-1 exists and varies continuously in some finite interval
”  17 7 = 7 7  

dXabout 77. It follows that exists and varies continuously throughout the interval
(o.r,*).

Thus one can differentiate the ARE (3.42) with respect to 77 to obtain (for any 77 E
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( 0 , 7?*) ) ,

^ ( A z x  + Q(ri)Xv) + (AZX + Q(v)X , ) t ^  +  x J ^ X n =  0

Note by hypothesis that that > 0 and that X v is stabilizing V 77 E (0,77*), hence
A z x  +  Q(t7)Xv has all eigenvalues in $R{s} < 0. These two facts, and application of the
Lemma of Lyapunov (see Lemma 0.0.1 in the summary of Notation, Definitions and
Fundamental Results at the beginning of this thesis) to the above equation allow us 

dXto conclude that > 0. Since X v is monotonically increasing with 77 and nonnegative 
definite V 77 E (0,77*), it must converge to some finite nonnegative symmetric matrix Xo 
as 77 —► 0. Obviously Xo < X v. The fact that Xo solves the ARE (3.41) follows trivially 
on taking the limit as 77 —► 0 of (3.42).

Xo is stabilizing.
X v is by hypothesis a stabilizing solution of (3.42) V 77 E (0,77*). Note that X v trivially 
solves X V(A +  Q(tj)Xv) -f AT X v =  0. Let A be any eigenvalue (necessarily stable) of 
(A 4- Q(rj)Xv) with corresponding eigenvector w: (A 4- Q(rj)Xv)w =  Aw and !R{A} < 0. 
Right multiplying the Riccati equation for X v by w, we deduce that XXT]w + At X vw =  0. 
For this equation to hold, it is required that either X vw =  0 or that —A be an eigenvalue 
of A. If X vw =  0, it can be checked that that Aw = Xw and thus that A is also a stable 
eigenvalue of A. If X vw ±  0, then ATX vw = —AX vw and since A is by hypothesis stable, 
it must be the reflection about the origin of some unstable eigenvalue of A. Hence we 
deduce that

A,(A +  Q(tj)Xv) =  { ^  < ° } (C.9)

Now since Q(rj) and X v vary continuously with 77, the eigenvalues A;(A +  Q ^ X ^ )  will 
also. Since they are always in the finite set {±A*(A)}, they are unchanged as 77 —> 0. 
Hence lim ^ o M  +  Q ^ X ^ )  = (A + Q X0) has all eigenvalues in the left half-plane. □



A ppendix  D

P r o o f o f  th e  L ossless  
D eco m p o sitio n .

Part o f th e  proof o f L em m a 4.3.3.

Observe that LFT{Q, LFT{Gtmp, K}} = LFT{M, K}  where

M(s)

Asioo B2Oi2t (Ci -  E f ) Bi B2Du 'D 12
- B i B j X A Bi b 2

E f (Ci -  Ef ) 0 D\2
- D n B j X c 2 D2\ 0

(D.l)

is calculated using the state-space star product formula given in Appendix F. With the 
definitions of Vp, Uf and T  given in equation (4.20) of Chapter 4, we apply the following 
state space transformation to the above realization of M(s):

f ( U F VF I  \
l o o  l )

This produces an equivalent realization

(D.2)

/  ^0 0 0 0 0
Aoi Ä1 ßpLp 0 - 0 F(Dl2L)T

M{s) = - B i B j X U p 0 A Bi b 2
EpUf 0 Ci 0 D\2

- D 21B { X U f 0 c2 D2\ 0

where the matrices Ao, Aoi and A\  are defined according to the identity: (refer to 
equation (4.17) in Chapter 4 )

T ~ l A x T = ( io“ £ ) •  <D-4>
The structure of A x  in this basis follows directly from the canonical structure introduced 
in in section 3.1 of Chapter 3 and from the structure of X  in this basis as revealed in 
the proof of Lemma 4.1.2 in Chapter 4.

Since A is a stabilizing solution of the ARE (4.14) in Chapter 4 (part of the existence 
conditions for nonstandard controllers) , A x  is stable and hence both Äq and Ä\  are also 
stable. Observe that in the final description of M (s), the modes corresponding to Ä\
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are all unobservable and those corresponding to Ä q are all uncontrollable. Elimination 
of these stable modes reveals that M(s) is a nonminimal realization of G(s), the original 
generalized plant.



A ppendix E

T he Stable Standard O utput 
E stim ation  T io o  Problem .

The following lemma presents the family of all Tioo controllers for the standard output 
estimation problem which is im portant in the derivation of the controller structure for 
the nonstandard problem in Chapter 4.

Lemma E.0.1 Let G(s) be a generalized plant with the following state-space realization:

G(s)
A Bi 0

C i 0 I
c 2 D21 0

(E.l)

where A is stable, D21 is full row rank, and G21 =  C2{sl — A) l B \ + D21 has no ju)-axis 
zeros.

Then the following hold:

1. An Ttoo controller for G(s) exists if and only if the ARE

0 = S ( A -  S l D2i , C2)T + ( A -  *C2)5  (E.2)

+ S [C ir Ci -  C2T(Z)21*)T£>21tC2]S +  B 1D n 1 (B1D2i1 )T

admits a nonnegative definite stabilizing solution S  > 0 . By a stabilizing solution, 
we mean one which stabilizes As  =  A — B\D2\^C2+S[C\TC\ — C2T{D2i^)TD2i^C2]-

Supposing that the conditions of item 1 above are satisfied, then the following hold true:

2 . Every Tioo controller is given by K (s ) =  LFT{M,  N}  with

M (s )
A + LC2 - L SC iT '

- C l 0 I
-sc 2 E 0

where N  (s) € BTioo is a free parameter and 

E  = ( D 2 1 D 2 1 )  2 ,

L =  - B ^ i '  -  SC2T{D2i')TD2i ].

(E.3)

(E.4)

(E.5)
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3. The matrix A +  LC2 is stable and thus Mij(s) G VSHoo for each partition of M(s) .

4. Mi2(s) is unimodular.

5. M 2 2 {s) £ BTCoo and ( /  — M22-/V) is unimodular.

6. K(s)  G UHoo for all N  G BHoo-

Proof:
Items 1. and 2. are immediate consequences of the standard state space Tioo results of

3. The ARE can be rewritten as

S(A  +  LC2)t  +  (A +  LC2)S + SC%£ TEC2S + SC f C i5  4- =  0(E.6)

The stabilizability of (A 4- LC2 , SC"[) (guaranteed by the stability of As  =  A +  TC2 + 
SC i  Ci), together with the fact that 5 > 0 ensure the stability of A + TC2. This implies 
Mij G IZTtoo-

4. The stability of As  guarantees Mi2(s)_1 G WJioo-

5. The stabilizing solution S  of the Riccati equation, together with the bounded real 
lemma can be used to establish that

from which it follows that M22 G BTtoo. Since HM^H^ < 1 and N  G BTioa, we can use 
the small gain theorem to show that (I — M221V)-1 G VTht^.

6. The form K (s ) =  M \\ + M 1 2 N (I — M221V)-1M2i , together with items 3 and 5 ensure

[31].

(E.7)

the stability of K(s). □



A ppendix F

Star P ro d u ct form ula for 
su ccessive  L FT s.

Suppose one is given realizations of two transfer function matrices M*(s), i = a, 6 with 
partitioning on the input and output signals as follows:

M \ s )
Ai BX2
q

C J

0

£>21

D h
0

(F.l)

Then, provided the inputs and outputs of the two systems are compatible,

L F T { M a, L F T { M b, K}} = L F T {M ab, K }, (F.2)

where K  is an arbitrary compatible transfer function matrix and M ab(s) is a transfer 
function matrix which has the following realization:

M ab(s)

Aa B$C\ B $D \2 '
Ab B l

c t D h C i 0 D h D \ 2
D bn  C f C h2 0

(F.3)

□
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A ppendix G

C ontinuous T im e Spectral 
M atrices and The R iccati 
Equation.

G .l  S p e c tra l M a tr ices  in  S y stem  and C on tro l T h eory .

a) L inear-Q uadratic R egulator

The underlying system is x =  Ax  -I- Bu  and the performance index is

f  \u(t)TUu(t) +  x(t)TVx(t)  -1- 2x(t)TSu(t)] dt, (G.l)
Jo

where S, U =  UT and V  =  V T axe real matrices. The spectral matrix is 

$(s) =  U + B T ( - s I - A T) - 1V { s I - A ) - l B + B T( - s I - A T) - 1S + S T ( s I - A ) - l B  (G.2) 

and the Riccati equation is

n(A -  BU~l ST) + (A -  BU~1S t )t n  -  UBU~1Bt U + (V -  SU~1ST) =  O. (G.3)

One often assumes S = 0, U > 0  and V = V T > 0 . In this case the requirement that 
&(ju) > 0 for all a; is automatic and <£(s) is in fact nonsingular on the jw-axis.

b) K alm an F iltering  Problem

The underlying system is x =  Ax  +  v, y =  Cx  -I- w where (vTwT)T is zero mean, 
Gaussian white noise, with covariance

£ { (  w(t) )  ( u(t _ r )T ^ ^ - r )T )} =  (  gr  0 (G.4)

where it is assumed that U > 0.

The spectral matrix here is that of y{t):

€>(«) =  U + C ( s I —A)~l V (—s i  — + C (s I—A)~1S + S T (—s i — (G.5)
233
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The associated Riccati equation is

n(,4 -  s u - 1c ) T +  (A -  s u - ' c )n -  u c Tu - lc a  -  =  o. (G.6)

c) P ositive  R eal Lem m a

The underlying system is x = Ax Bu, y = Cx -I- Du and is positive real, implying it 
is stable (though not necessarily asymptotically stable), has the same number of inputs 
as outputs, with the requirement that

$ (ju )  = D + DT + C ( ju l  -  A)~l B + BT{ - j u I  -  At )~1Ct > 0. (G.7)

With D 4- DT = U > 0, the associated Riccati equation is

n {A -  BU-'C)  + (A -  BU~l C)Tn  -  UBU~1Bt U -  CTU~lC =  O. (G.8)

d) B ounded  R eal Lem m a

The underlying system is x — Ax + Bu , y = Cx and is bounded real, i.e., it has 
3£{Ai(A)} < 0 and

$(ju;) = 1 -  BT(—j u I  -  AT)~lCTC{jujI -  A)~l B > 0. (G.9)

The associated Riccati equation is

nA +  ATn - n ß ß Tn - c Tc  =  o. (g .io)

This is closely related to the Woo controller synthesis problem.

R em arks:
In case a) with V = VT > 0, S = 0, and also when S — 0 in case b), II > 0. Also II < 0 
in cases c) and d). □

G .2  T ra n sfo rm a tio n s o f  S p e c tra l M a tr ices .

Notice that if $(s) is a spectral matrix, then so is

$*•(») = { /  + Bt ( - sI -  At ) - 1K t }~1 $ (s) { /  + K(al -  . (G.ll)

In case a), with Ak  — A — B K , we have

$jf(s) =  U + Bt ( - sI  -  ATK)~l {V  +  K t UK - S K -  K t St }(sI -

+ B t (—sI -  A j ) _1(S -  K t U) +  ( S -  K t U)t (sI  -  Aic)~lB. (G.12)

The Riccati equation associated with $#•($) in the manner that (G.3) is associated with 
(G.2) has the same form as (G.3). As demonstrated below, there axe two consequences
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of these ideas, allowing us, given a stabilizability condition on (A ,B ), to assume (via 
transformation of an initially specified problem) either one of the following:

1. The new spectral matrix has 5 = 0.

2. The A matrix is stable.

To see 1) above, choose K T = SU -1 . To see 2), we must assume that (A ,B ) is stabiliz- 
able. Then A k  can be taken to be stable.

Let us now restate the above claim formally.

L em m a G.2.1
Consider the Riccati equation (G.3), with (A ,B) stabilizable, derived from the spectral 
matrix (G.2), parametrised by A ,B ,V ,U  and S.

1. There is a second spectral matrix parametrised by A k , B , Vk , U and Sk  =  0 giving 
rise to the same Riccati equation.

2. There is a second spectral matrix parametrised by A k , B , Vk , U and S k  where A k  
is stable, giving rise to the same Riccati equation.

Next we comment that one spectral matrix can have more than one Riccati equation 
associated with it, in the following way. Consider the spectral matrix

$(s) =  U + B T( - s I - A T) - 1V { s I - A ) - 1B + B T{ - s I - A T) - lS + S T( s I - A ) - 1B (G.13)

where (without loss of generality in fight of 2 above) A is stable. Define M  as the solution 
of M A  + At M  = —V  so that

$(s) = U + B T(—sI -  At ) ~ \ S  +  M B) +  (5 +  M B )T{sI -  A)~l B. (G.14)

Following the construction of (G.3) from (G.2), we see that the two Riccati equations 
associated with the two different forms of <£(s) in (G.13) and (G.14) are

o =  n i ( J4 - B £ / - 1s T) +  ( A - B t f - 1s T)Tn 1- n 1w - 1Br n 1 +  ( v - s j r 10!.;i5) 

o =  n 2U  -  b u - 1s t  -  b u - 1b t m t ) +  b u - ' s 7 -  n 2

- n 2B y _1Br n 2 -  (S +  M B)U ~1(S + M B )t .

It is easily verified that the solutions IIi and II2 axe related by II1 =  II2 + M. In fact, 
one can establish the following result.

L em m a G .2 .2 Consider the spectral matrix <£(s) of (G.13), parametrised by A , B , V, U 
and S  with stable A, and the associated rewriting of (G .l\). Then the Riccati equation 
associated with (G.14) is of the type

n2i + irn2 - n2str1Brn2 - 0 (G.16)
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with Ä stable and V nonnegative definite.

R em ark : The point of this and the previous lemma is that all problems involving 
Riccati equations are more or less equivalent to one where the A matrix is stable and 
the V matrix is nonpositive definite, i.e., problems of the bounded-real type. Observe 
that one obtains the same Riccati equation by considering a spectral matrix with U 
replaced by I  and B  replaced by BU~5. Thus one can, without loss of generality treat 
realizations with U = I. □

P ro o f o f Lem m a G .2.2: We can identify V  with (S + M B )U ~ 1(S + M B ) T and Ä with 
A — BU~1S t — BU~l B TM t . Evidently, V > 0. We must now consider the stability of 
A. The equation for II2 can be rewritten as

n  2a + ATn 2 = (n2B + s  + m b )u~1{ji2b + s  + m b )t (G.i7)

which shows, due to the stability of A that II2 < 0. If (A — BU~1ST — BU~1B TM T)x =  
Xx for some x j=- 0, then the Riccati equation for II2 yields

25R{A}(2*n2z) =  x*U2BU~1Bt U2x 4- x*(S +  MB)U~1(S +  M B ) Tx > 0 (G.18)

So if £*Il2£ 7̂  0 and 9£{A} ^  0, it follows trivially that 3£{A} < 0. If x*Jl2x = 0 or 
9?{A} =  0, then (S  +  M B ) Tx = 0 and hence Ax  =  Ax, and 3£{A} < 0 again, since A is 
by hypothesis asymptotically stable. So the II2 equation has both a stable “A” matrix, 
as well as a sign semi-definite constant term. □



Appendix H

U n iq u e n e ss  o f S tro n g  S o lu tio n s  
o f  th e  C o n tin u o u s  T im e  A R E .

We assume the following: if 3£{A} =  0, then xTA =  \ x T together with xTB =  0 imply 
that x =  0.

Suppose there exist two real symmetric strong solutions Pi (i =  1,2) of the Riccati 
equation

ATPi + Pi A + P,RPi 0. (H.l)

Taking the difference between the equations for Pi and P2 one obtains the following:

( P1 - P 2)(A + RPl ) + (A + RP2)T(P1 - P 2)  =  0 (H.2)

(P l - P 2)(A + RP1) +  (A +  RPi)r (P1 - P 2) =  (Px -  P2)P (P i -  P2). (H.3)

Without loss of generality, one may use a state-space basis for which

Fl- p*=( o  0) <H-4>
where X  E IR9*9 is nonsingular and 0 < q < n.

We use this fact, along with the partitioning (conformal with that of (H.4) )

a+rp' = ( t  Z) ( H - 5 )

to obtain by direct substitution in equation (H.3) the equalities

X A U =  0 (H.6)

X A u  +  Af iX =  ( X  0 )ä( q V (H.7)

Since X  is by hypothesis nonsingular, the first of these equalities implies that A12 =  0. 
Thus A -I- RP\  is lower block triangular in this basis:

a + r p ' = { Z  L ) -  ( H - 8 )
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Equation (H.7), along with nonsingularity of X , reveals that

+  /  0 ) r (  n .  (H.9)

We now show that A n has no imaginary axis eigenvalues. Suppose to the contrary that 
A is a pure imaginary eigenvalue of An and that x j  is a left eigenvector corresponding 
to this eigenvalue. It follows directly that ( 0 ) is a left eigenvector of A + RP\:

( XT 0 ) (  A21 A22 )  =  ^ ( xl 0 ) • (H.10)

Multiplication of (H.9) on the left by xf  and on the right by x\ reveals that

x[  ( I 0 ) R ^ I0 ĵ xx =  x'i AxxX  lx\ +  x \ X  1Af1r i (H .ll)

=  {X +  XKxfX-'xx) (H.12)

=  0. (H.13)

This, in turn, implies that

0II0$0E-Ii-4 (H.14)

From this and (H.10), we have

0«<IIO

(H.15)

while since R = BBT,
( x \  0 ) B =  0. (H.16)

Together, these imply that (A , B ) has an uncontrollable mode on the imaginary axis, 
contradicting our original hypothesis. We conclude that An has all eigenvalues in the 
open left half-plane.

This allows us by (H.9) to conclude that X ~ l > 0. Identical arguments, reversing 
indices 1,2 in the above lead to —X ~ l > 0 and thus the conclusion that X ~ l =  0 and 
that X  does not exist. Our final conclusion then is that Pi — P2 =  0 and that strong 
solutions are indeed unique, given our assumption on (A, B).



Appendix I

S ta te-sp a ce  R ea liza tion  o f  
N on sin gu lar D iscrete  T im e  
S p ectra l M atrices.

In this appendix, we consider (generically) nonsingular spectral matrices \&(z), having a 
realization of the form

* (z ) =  Ü +G t (z~1I —Ft )~1S + S t (z I —F)~1G +G t (z~1I —F t )~1V( z I —F)~(1.1)

Unlike the continuous time case, it is possible for a nonsingular discrete spectral matrix 
to have a singular constant term U. We show in this appendix that this is no loss of 
generality since one can always re-express the same spectral matrix ^(z) in terms of 
a new state-space realization for which the constant term is nonsingular. Moreover, 
solution of the DARE corresponding to this new realization enables a direct solution of 
the DARE corresponding to the original realization.

E x isten ce o f  a R ealization  w ith  nonsingular m atrix  U .

L em m a 1.0.1 Let ^(z) be a nonsingular spectral matrix with a realization given in 
(1.1) where each constant matrix is real and V =  V T, U =  UT. Consider the family of 
alternative realizations of'ff(z) based on the set of real symmetric matrices P  which is 
defined in the statement of Lemma 6.4-1:

¥ (z )  =  ( GT{z~1I  -  F7 ) - 1 I V - P  +  Ft PF  S +  Ft PG  
(S +  Ft PG )t  Ü +  g t p g

Then the following facts hold:

( z l  -  F )~̂

(1.2)

1. is a strong solution of the algebraic Riccati equation (6.51) if and only if <$ =  
$  — P  is a strong solution of the algebraic Riccati equation associated with the new 
realization of'f'(z) given in (6-42).

2. It is always possible to choose a matrix P  =  P* defining a new realization (6.42)
239
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of^(z )  such that U — IJ + GTP*G is nonsingular.

Proof: Suppose Ü is singular and define the family of transformations

TTB )  (LS)

where Ta is any matrix of full row rank whose row space spans the row space of U and 
Tb is any matrix which makes T  nonsingular.

For any such T, it follows that U can be expressed thus

TUT T _  I Ua  0
0 0 (1.4)

where Ua is a symmetric, nonsingular matrix.

Let Ga and Gß be defined according to

G ( T%) = ( G a Gb ). (1.5)

It follows from the above that 

T(U +  Gt PG)Tt (1.6){ Uo o )  +  ( g £ ) p ( G a

Moreover, Gb can be further decomposed as

VGBW = ( G03 ° )  (1.7)

where V  is any matrix which achieves a row compression for Gb and W  is any matrix 
which achieves a column compression for the matrix VG b and hence G3 is nonsingular.

Define the square matrix

y = (o £*) W
which is partitioned conformally with the columns of (Ga Gb ) as given in (1.5).

It can now be deduced from (1.6) that

Ua0 0 \  /  G [ G f 

V 0 0 0

where
V G A = (  g  )  (1.9)

with row partitioning conformal to that of

0 0 0 I +  I G l  0 I V~TPV
0 0

- T  D T / - 1  (  Gi G3 0
g 2 0 0



1.0 241

Introduce another square matrix Z

Z
I  - t i l G f  0 \  
0 I  0 
0 0 I  )

( 1. 11)

where partitioning is in accordance with the column partitioning in (1.9) of the matrix

G i G3 0 
G2 o 0 ) '

With the choice

one obtains

p* = V T ( 1 0 r  1 0 0 v,

Z Y T(U  +  Gt  P 'G )T t Y t  z t  = y

Observe also that

Z Y T  ( (j 6 - ) ( TTyor Z r  y°T )  =  (  

From the above discussion, we deduce therefore that

UA 0 0
0 G f G 3 0
0 0 0

UA 0 0 0
0 0 0 G l
0 0 0 0

max rank 
p = p t

Gt PG +  Ü rank Gt P*G + U I =  rank U GT

( 1. 12)

(1.13)

(1.14)

(1.15)

(1.16)

Note now that since ^ ( 2) is nonsingular, y Ü GT ) ha^ full row rank. This can be 

shown as follows: Suppose there exists a nonzero vector v such that vT  ̂ Ü GT  ̂ =  
0. From these facts and the realization of ^ ( 2) given in (6.36), it is easy to show 
that vT'&(z)v = 0. However, since ^ ( 2) is a spectral matrix and is also generically 
nonsingular, there must exist values of 2 =  e-7̂  where vT^(eJ<̂)v > 0. This gives a 
contradiction which establishes the desired result.

Thus, there exists at least one matrix P  =  P* such that U is nonsingular. Such a P * 
may be explicitly constructed by following the above proof of its existence; however, it 
is immediate that Ü will be nonsingulax for almost all P. □

Suppose one is given a nonsingular spectral matrix ^ ( 2) realized according to (1.1). 
By choosing a matrix P* as described in item 2 of Lemma 1.0.1, one obtains a new 
realization given by (6.42) for which Ü is nonsingular.

D A R E  Solutions via the Transform ed Spectral M atrix.

It is in the following sense that one can without loss of generality treat rational 
nonsingular spectral matrices which have U nonsingular.

Suppose we know there exists a strong solution of the ARE associated with (1.1).
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Let P* be chosen according to the above lemma. It follows from the above lemma that 
<1 =  <£ — P* is a strong solution of the ARE corresponding to the new realization. By 
virtue of item 1 in Lemma 1.0.1, $  = +  is the strong solution of the ARE associated
with ^(z). 1

:The author wishes to thank David Clements for pointing out the key ideas in this proof.
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A pproxim ation R esults for 
Linear M atrix Difference 
Equations w ith  U nit Circle 
Eigenvalues.

For convenience, we review briefly some notation which is used in the proofs presented 
in this appendix:
1) Let /( /)  be a scalar valued function and U(l) be a matrix valued function, both of
an integer variable l. We say that U(l) = if crmax(U(l)) =  0(f ( l ) ) ,  where the
notation O(-) applied to scalar functions has the standard definition.
2) Suppose M has an even number of rows and columns, consisting of a matrix of 2 x 2 
matrix sub-blocks; for convenience we let [M]{ ■ G 1R2x2 denote the (z, j ) th 2 x 2  subblock 
of M.
3) Recall the definition of the discrete time unit step function u(-): with l any integer, 
u{l) — 1 if Z > 0 and u{l) =  0 if / < 0. For compactness, we shall denote the discrete 
time unit step function with integer argument l as ui.
4) Given any two nonnegative integers j  and k, define

J . l  P roof o f the A pproxim ation Formula for the Sum 
m ands in Sq(m ).

A proof of Lemma 7.4.2 in Chapter 7:

( j . i )

Here we seek to understand the behaviour of the summands Alq(Ä ^)1 in the definition

m — 1
S,(m) =  £  A‘q(A ^y. (J.2)

1=0
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The formula we seek to establish here is

A‘q(ATq y  =  C(l) +  P(l) =  +  o r 1)), (J.3)

where C(l) and P{1) axe as given in the statement of Lemma 7.4.2.

With l a nonnegative integer, the following equality is fairly easily established using 
inductive arguments or the binomial theorem:

( AJ
lA 'f1
(X - 2

AJ
‘A1, - 1 A'

L '_1)A i-(- - l)

\

AJ
K l K

Thus, A* is lower block-diagonal, with the following 2 x 2  block entries:

(J.4)

4 if
O2 if i < j

(J.5)

where O2 is the 2 x 2  zero-matrix. With the above fact in mind, observe that the following 
identity holds for any nonnegative integers i and j :

(  1 11 [ ( i - j y .  ('
(J.6)

where un is the unit step function with integral argument n.
The following decomposition of Alq results from substituting (J.6) into (J.4):

A‘q =  B(l) +  M(l)  (J.7)

where

/

B(l) =

lAlq 1u/_i 
y A /_ 2 U/_2

AJ
/A* 1t t / _  1 Â

V
/ n ? - 1 Ui

\

Ai
lAlq 1ui- 1 Â

Thus B (l) is also lower block-diagonal, with the following 2 x 2  block entries:

[*(*)]«
(I-J1)! aI, (t if i > j
O2  if

(J.8)

(J-9)

It also follows from (J.6) that M(l)  as given in (J.7) has the following 2 x 2  partitions 
for i >  j

m i )  ] (J.10)
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and th a t these matrices are zero for i < j .  Also it can be easily checked tha t for any 
nonnegative integer n, the two singular values of Aq satisfy

a2(AJ) =  <n(AJ) =  1. ( j . i i )

A consequence of this is tha t when i > j ,

• W Ü A f a ) ] « )  < (J.12)

and therefore

[M(Z)]y = 0(1' - ’ - ' ) . (J.13)

In summary then,

A
 

V
I 

• <<> 
t+

H

H1O
 o

 

II5[ (J.14)

We now show tha t for large enough /, B{1) describes the dominant behaviour of A lq,
since when they are nonzero, each subblock [£ (/)]- is invertible, it follows from the 
above discussion that

[4 ]^ .  = [B(l)]i j (I2 + 0 ( r 1)). (J.15)

This equation illustrates the dominance of B(l).

From the decomposition of A lq in (J.7), which has been derived above, it follows that

4 ,  ( < ) '  =  B( l )BT (l) + K(l)  (J.16)

where K{1) =  M ( l ) M T(l) +  B ( l ) M T(l) +  M ( l ) B T(l). We first investigate properties of 
K ( l ) and subsequently investigate B( l )BT (l). By identifying the terms of highest order 
in /, it can be verified from (J.14) that

[m (()M t (Z)] _ =  { 0°2(,,+J- 4> U j I I  l \  2 (J.17)

and from (J.14) and (J.8) it follows that

[b (Z)Mt (Z) +  M(Z)St (Z)].. =  { £ (,’+,_3) =  i

From the above formulae, we conclude immediately that

« • » >

By direct expansion of the quantity B( l )BT (l) using (J.8), followed by separation of the 
highest order terms into the m atrix C{1) for each 2 x 2  subblock, one obtains the identity:

B{l )BT (l) =  C(l) +  N(l) (J.20)
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where

C(l)

and

A '(A j)'
(Aj, Ha

l A '(A j') '-1ul_i 
i^A'-HAj’)'-1«,-!

(».

M O ]*  =  {
0 ( l i+j - 4) if i > 1 or j  > 1
O2 if i =  1 or j  =  1

(J.21)

(J.22)

Now we consider iterates only when / > (ng — 1) and hence all unit step functions in 
(J.21) evaluate to 1. Observe also that the following identity holds for any integer s > 1:

A;(Ain‘ = (h ,|2 + K |2)V2 (J.23)

where \crq\ and |u;g| are the magnitudes of the real and imaginary parts of the eigenvalues 
of Aq. In particular, for a unit circle eigenvalue, the right-hand side is simply I2. When 
applied to (J.21), this result leads to the equivalent form for C{1) which is presented 
in the lemma statement. It follows from (J.22) together with the invertibility of each 
[C(l)\i3 and the identity (J.20) that when l > (nq — 1),

[ s ( i)S r (i)] .. = [C(/)]„ (h +  o ( r 2)) (J.24)

and it is in this sense that C(l) is best seen to approximate B(l)BT(l).

The first equality in equation (7.46) of Lemma 7.4.2 can now be obtained:

A'q (ATq)' =  C(l) + P(l), (J.25)

with the definition P(l) =  K(l) +  N(l). Note that the order of P{1) is inherited from the 
matrix K{1),

[pm, = { oll'+,~3) (J-26)
It follows from (J.26), together with the invertibility of each [ C ( / ) ] a n d  the equality 
Alq(Aq)1 = C(l) -I- P{1) that when l > (nq — 1),

[A‘t (A ^)'].. =  [0(0]*,- ( h  + O i l -1)) (J.27)

and it is in this sense that C(l) is best seen to approximate Al(AT)1. The following 
equality is a consequence of (J.27)

A‘̂ ) ‘ = C(l)(I + O i r 1)). (J.28)
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□

J.2 P roof of the A pproxim ation Formula for Sq(m).

A  proof o f Lem m a 7.4.3 in C hapter 7:

Recall the definition of Sq(m) for m > 1

m —1
S,(m) =  £  A‘q(A*)'.

1=0

Observe that it follows immediately from Lemma 7.4.2 that

m —l m —1
S,(m) =  £  C(l) +  £  P(l).

1=0 1=0

Consider the 2 x 2  subblocks of the first sum in (J.30) for i > j:

(J.29)

(J.30)

'm—l

£ c ( i )
. 1=0

m -1  /* + j-2
(J.31)

When m  > (nq — 1), each of the 2 x 2  subblocks of the first sum for i > j  can be written 
as follows:

771— 1

(j  .32)
771—1
Z d o

L 1=0

m —l
____ -______ ( \ Ty - j  V  it + j ~ 2 -  e

(»-  i)!(i - 1)'. ‘ 9 ^

where Eij is a constant matrix which has the values Eij = Z]/=o (i-iWj-iV (A^)1 J when 
i > 2 and Eij =  0 when i =  1.

Given any integer r, the following identity is a standard result which can be obtained 
by approximating ^  hy the definite integral /J71-1 xrdx :

771— 1

Z ‘r
1=0

J r + i )
4- 0 ( m r).

(r +  1)

When the above observation is applied to (J.32), the following simplification results:

(J.33)

771— 1

Z C ( l )  = D(m) + G 1(m), 
1=1

(J.34)

where

D(m)

m /2

f ( A f )

mi A — \ 2 ■2 6 1Yq

T  h  f A ,  
t (AD £ h

I A*”«-1) \

-1 771 *

(71,  — l)!(n, — 1)!(2ti, - 1 ) )
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which can also be expressed as

[D(m)]tJ (A ,) (<_ 1)!(j. _ 1)!(f+ (J.35)

and where
[G iM ly  =  0 ( m i+i~2) -  E i j  =  0 (m '+>-2). 

Now examine the second summation in the expression (J.30):

(J.36)

m— 1 m—1
[Gj M ],,. = E = E

1=0 1=0
(J.37)

from which it follows that

taJmM..  =  /  if i- l - i  > 3
L  ( )\%j [ O2 if i =  j  =  1 (J.38)

Defining G(ra) =  Gi(m) +  G2 (m), one obtains

Sq(m) =  D(m)  +  G(m), (J.39)

where G(m) has the order given in the lemma statement. From the equality (J.39) 
together with the invertibility of [D(m)]^-, it follows that

[Sg(m)]tJ- =  [D{m)]{j (J2 +  O i m - 1)) (J.40)

from which the identity Sq(m) =  D{m)(I  -f G(m-1 )) follows.

It can now be verified that D(m)  has the form stated in equation (7.53) in Lemma 
7.4.3 where the matrix 0  in that equation is defined as follows:

l
1 s

I  1l I
8 20

( n , - l ) ! n , \

\  (n ? —l) !n ,

[«]« -  -

0 I 2 (J.41)

1

(*-i)!(i-i)K*+i“i)
The fact that 0  > 0 follows from the following discussion: 
First define

(n g —l) ! (n ,  —l)!(2nfl —1) /

h-

^(x)

\
X
*1
2

xn«-1
\  (»,-!)! /

0 I 2

and then observe that
0  =  [  ip(x)ipT (x) (h

Jo

(J.42)

(J.43)

(J.44)
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from which it follows immediately that 0  > 0. We show now that in fact 0  > 0: suppose 
there exists a vector a ^  0 such that

©a = 0. (J.45)

Then
a TQa  =  0 (J.46)

which, due to the identity (J.44) can be alternatively expressed as

aT,ip(x)ipT(x)a dx 0 . (J.47)

An immediate consequence of this is that aT,ip(x) =  (0 0), for all x E [0,1]. Let 
aT =  ( a f  . . .  with &r = (7r ßr) where and ßT are the real entries of the
vectors ar E 1R2x2, r — 1 , 2 , . . . , nq. Thus, for all x E [0,1] it follows that

a T^(x) =  a r  f i  Z i y / 2 =  (° °) (J-48)

and therefore that

^  T r ~ l

£ 7>-D! = 0> (J.49)

n« r r - 1

S A ( r - l ) l  _  ° ’
(J.50)

(J.51)

also for all x E [0,1]. This implies that 7r and ßr are zero for all r which implies that 
a =  0 which contradicts our earlier assumption that a ^ 0 .  Hence 0  > 0. □



Appendix K

C onvergence R ate o f a 
T im e-varying Linear M atrix  
D ifference Equation.

A proof o f Lemma 7.5.1 in Chapter 7:

Recall the linear matrix difference equation which weis introduced in Lemma 7.5.1 of 
Chapter 7:

Ĵfc+i =  Ak^kBk 4- Yfc. (K.l)

With the definitions x*. =  vecH*, Ak =  (B% <8> 4̂*) and v*. = vecTjfc, application of the 
vec operation to (K.l) yields the vector difference equation:

Xk+i = AkXk +  Vk- (K.2)

Note in particular that Ak —► A  where A = (BT <g> A) is a stable matrix since all the 
eigenvalues of A  can be given as Aij(A) =  Xi(A)Xj(B). We now consider (K.2) in the 
light of the well established stability theory for difference equations (see for example 
[52]). We do so via a series of lemmas which follow. The convergence rates established 
for the (vector) difference equation (K.2) can then be used to infer the convergence rates 
for the matrix difference equation (K.l).

The following result is well known, although a statement could not be readily found 
in the literature.

Lemma K.0.1 Suppose one is given a bounded sequence of matrices {Afc} which has 
a limit A = limjfc_>oo Ak with each of its eigenvalues satisfying |Ai(A)| < 1. Then the 
homogeneous linear difference equation

zk+1 =  Ak^k (K.3)

is exponentially asymptotically stable.

Before presenting a proof of this result, we recount the following well-known stability 
result for difference equations (see Theorem 4.7.2 in [52]).

250
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Lem ma K.O.2 Suppose one is given a sequence of matrices {i7*.} such that the associ
ated linear homogeneous difference equation

ilk+l = Fkyk (K.4)

is uniformly asymptotically stable. Now consider the nonhomogeneous difference equation

yk+i =  Fkyk +  f ( k , y k). (K.5)

I f  f { k , y k) is such that \\ f(k,yk)\\ < L||yj.|| for sufficiently small L, then the solution yk 
of (K.5) is exponentially asymptotically stable.

P roof o f Lemma K.0.1 : The continuous time analogue of Lemma K.0.1 is well known 
and widely stated (see e.g. section 2.3.2 in [83]). The discrete time result is well known, 
but seems not to be widely stated. We now present a brief proof of the stated stability 
result for (K.3) based on Lemma K.O.2. We shall apply Lemma K.O.2 to the difference 
equation (K.3) by making the following associations in (K.5): yk = zk, Fk = A  (for 
all k ) and f ( k , y k) = (Ak -  A)yk =  6kyk where 6k = A k -  A. By hypothesis, for
any e > 0, there exists an integer N (e) such that k > N(e) implies that ||<5fc|| < e.
Observe therefore that for any e > 0, there exists some N(e) such that k > N(e) implies 
\ \ f (k,yk)\\ < pjblllll/fcll < c||2/jfe||. Thus the condition on L in Lemma K.O.2 can be satisfied 
by making k large enough and we can conclude that (K.3) is exponentially asymptotically 
stable. □

Lem ma K.O.3 Suppose the homogeneous linear difference equation (K.3) is exponen
tially asymptotically stable. I f  in the nonhomogeneous equation (K.2) v k =  0(%) then
*k = 0(\).

Proof: The author is not aware of a statement or proof of the discrete time result in 
the literature. A similar but not directly analogous result for continuous time systems 
is established in Lemma 2.6 of [83].

Let T(k, ko) be the transition matrix associated with the homogeneous difference equa
tion (K.3). Since it is asymptotically stable, there exist constants a > 0 and 0 < rj < 1 
such that | | r ( f c , & o ) l l  < arfk~k°. Now we apply to (K.2) the well-known variation of con
stants formula (see e.g. section 4.6 of [52]) to obtain x k =  r(fc,0)xo + X)>=o r(fc, j  +  1 )vj. 
Since vk = O (^), there exists a constant b > 0 such that one can write \\vj\\ < for all 
j  > 1. By taking the norm of the variation of constants formula for xk and by repeated 
application of the triangle inequality, one obtains ||xfc|| < a77fc||a;oll +  abGk where ctq = 0

t  k  —  l

and (Tjfe =  YjI= i  ^~T~ w ^ e n  k > 1. Note that crk satisfies the scalar difference equation 
<7jfc+i =  Tjcrk +  yTj.. We now show that the solution of this equation satisfies crk =  0 { \ )  
which establishes the desired result.

First define u>k = kcrk for all k > 1 and note that it follows directly from the recursion 
for ak that uq = 0 and u k+i — (1 +  £ )rjuk -I-1. This equation ha^ a steady-state solution
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u) = The difference equation for Uk can be rewritten in terms of 6uk

6ujk+ i  =  77(1 +  . +  7̂70;

<*>k ~ w; 

(K.6)

Application of Lemma K.0.1 establishes the exponential asymptotic stability of the ho
mogeneous equation associated with (K.6) (since limfc_).00 =  V and (77) < 1). Since 
j;T]u) —+ 0, it follows from (K.6) that 6u>k —*• 0.

In summary, u>k —* w > 0 and therefore for all e > 0 there exists a N(e) such that 
k > N(e) implies that \u>k — u\ < e. Therefore if k > IV (e), \&k — %\ < f  and hence 
&k < which establishes that a*. =  O (^). □
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