
Errata

Page 38, Line 11

Change "for all sequences {ißk} and {vk} with \ipk\ < Rx and \v \̂ < er" to "for some 

arbitrary sequence {tpk}, \4>k\ < Rx, and for all {vk} such that \vk\ < tT" •

Page 40

Delete last sentence.

Page 41, Theorem 2.8

Change "(2.24) and (2.25) hold." to "(2.24) and (2.25) hold along the trajectory z{k) =

x(k) — z(k)."

Page 50, Theorem 2.9

Change "(2.24) and (2.25) hold." to "(2.24) and (2.25) hold along the trajectory x(k\k) = 

x{k) — e{k\k)."

Page 67

Delete lines 17, 18 and 19 then insert "Since the trajectory (xi(k),x2(k)) is on the unit 

circle, restricting er to the range 0 < er < 1 ensures a < W3 < 3 + 4Rx where o > 0 and 

arbitrarily small."

Page 68

Change " Amax < ..."  to "Amax < Delete sentence beginning "Now the requirements

. . ." .  Change sentence beginning "With this restriction . . ."  to "The minimum eigen­

value of 0(k,  1) satisfies Amin > Change “er = -  a a > 0 and arbitrarily small"

to "0 < er < 1". Change “bx = ..."  to b1 = Change "b2 = to "b2 = f".

Page 69, Table 3.1

Change "maximised by ra" to "minimised by ra". Change "ra = ..."  to "ra = 

Change "rß = ..."  to "rß = ( 5 ^ ) 5 " .
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Abstract

^ H I S  thesis is concerned with the development and analysis of algorithms for fre­

quency tracking and estimation. The frequency of a sinusoidal signal embedded in 

noise can carry important information in many areas of signal processing and control. 

This makes the estimation of a constant frequency or the tracking of a time-varying 

frequency important issues. Two problems in this area are examined. The first is 

the tracking of a time-varying frequency in open-loop using the extended Kalman filter 

(EKF). The second is the estimation of a constant frequency for the purposes of vibration 

control.

The extended Kalman filter was chosen as a frequency tracker because of its widespread 

use as a method of deriving filters for nonlinear systems. However, a thorough under­

standing of its behaviour and modes of failure was not available. Accordingly the 

stability of the EKF as an observer for nonlinear systems is examined. A new result giv­

ing sufficient conditions for bounded-input bounded-output stability of the EKF when 

applied to stochastic, discrete-time systems is presented. This extends previous results 

which were available only for continuous time and deterministic systems. The result 

also allows the development of theoretically supported design guidelines.

Following the stability analysis of the EKF, design guidelines for constructing EKF-based 

observers are presented. This section collects previously known results, as well as the 

new guidelines which can be derived from the new stability result. These guidelines 

are used to construct EKF-based frequency trackers for high strength signals as well as 

weak, narrowband signals. This work also illustrates the flexibility of the EKF approach 

to nonlinear observer design by demonstrating how the particular features of a problem

V ll
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can be incorporated into the design of the filter, allowing for highly accurate estimates 

even at low signal-to-noise ratios.

The control problem examined is that of eliminating a vibrational disturbance from the 

output of a linear, time-invariant and unknown system using adaptive control. Theory 

is presented which shows that it is possible to design an adaptive controller which will 

converge to a stable controller which regulates the system. Moreover, it is shown that 

in this regime it is possible to estimate consistently the frequency of the disturbance. 

This contrasts with the well-known bias that occurs when estimating the frequency of a 

sinusoid in open-loop.

The results presented here extend the theoretical knowledge for nonlinear observer 

design in general, as well as in the particular areas of frequency tracking and estimation. 

All theoretical results are illustrated by numerical examples which demonstrate their 

conclusions.
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1

Introduction

1.1 Problem Description

JN  many problems in both control and signal processing the frequency of some signal 
encodes important information. One obvious example is an FM radio signal where 
information is transmitted via modulation of the carrier frequency. In radar signal 

processing the aim is to recover information on the velocity and range of a target from 

the doppler shift in the reflected microwave signal. Monitoring the changing frequency 

of the waveforms produced by rotating machinery can yield information on the rate 

of mechanical wear, as well as providing measurements which can be used to control 

the plant via a feedback mechanism. Improvements in efficiency and pollution control 

and the elimination of "knocking" in internal combustion engines requires just such 

processing (Böhme and König 1994).

Like many interesting open problems, estimating the frequency of a sinusoidal signal 

in noise is not an easy one. Systems which output periodic signals have the curious 

feature of being neither stable (in the sense of Lyapunov) nor unstable (in the sense of 

Lagrange). Once such a critically stable system has been set going it will continue to 

output the same sinusoidal signal forevermore, neither diminishing nor expanding in 

amplitude. Typically, oscillations result from nonlinear systems but their high energy

1
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fundamental modes are best modelled, analysed and controlled using critically stable 

linear systems.

Such systems are awkward, in-between cases which are often ignored. It is not un­

common to encounter estimation or control algorithms which consider the two cases 

of asymptotically stable or unstable systems, but which neglect the third, troublesome 

case of critically stable systems. The reason control and estimation methods based on Lp 

optimisation face difficulties when dealing with critically stable systems and periodic 

signals is that the cost function is not continuous with respect to the parameters. If a 

sinusoid is not precisely accounted for, then its energy contribution to the cost function 

is infinite. If it is correctly accounted for then it does not contribute to the cost func­

tion. For this reason Lp gain methods such as LQ, least squares and Hoo all experience 

difficulties.

The problem of estimating the parameters of a constant frequency sinusoid in noise can 

be posed in a number of ways. It can be written as a linear, state space problem as 

follows

Xl(fc +  1 ) cos(u>) -  sin(w) x\{k)

x2(k +1) sin(w) cos(ic>) X2 (k)

Vk 1 0
x\(k) 
x2{k)

+ e(k).

Alternatively, it can be posed as the following input-output problem

y(k) = 2 cos{u)y(k -  1) -  y(k -  2) + e(k).

In both cases y(k) = cos(ku + <p) + e(k) and the frequency, u, can be recovered from the 

estimates of the linear parameters. There are a number of difficulties in estimating the 

parameters in either formulation.
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Firstly, consider estimating the parameters, {a;}, of the auto-regressive (AR) model 

y(k) = a\y(k -  1) + a2y(k -  2) + . . . any(k -  n) + e{k) 

where E[e(k)] = Oand E[e(k)2} = 1. This can be written as the linear estimation problem

y(k) = 4>{k -  \ )T0 + e(k) (1.1)

where

f  =  [ai , a2, . . . , a n]

<t>{k-\)T = [y(k -  l ) , y(k  -  2), . .  . ,y(k -  n)].

It can also be written in state space form as

0{k + 1) = 9(k) (1.2)

y(k) = <p(k- l )T0(k) + e(k). (1.3)

The recursive least-squares (RLS) equations for (1.1) and the Kalman filter equations 

for (1.2)—(1.3) are identical since both estimation algorithms calculate the least-squares 

estimate of 0. Both algorithms are given by the set of equations

9(k + 1)

K(k)  

P(k + 1)

9(k) + K(k) (y(k)-  4>(k)T0(k)^

P(k)<p(k)
4>(k)T P(k)4>(k) + 1

_ p(k)mmTP(k)
1 ' 4>(k)T P(k)4>(k) + 1

A known property of the RLS algorithm is that K{k)  —► 0 as k —► oo and this property 

must naturally be shared by the Kalman filter algorithm when it is used to estimate 

parameters of autoregressive models (1.2)—(1.3). Thus, in both formulations of the 

constant frequency estimation problem, the least-squares estimator, however posed, 

will ultimately ignore the data. Standard least-squares estimation is, therefore, not a 

robust method for the frequency estimation problem.



4 Introduction Chapter 1

The inclusion of a zero mean noise term, w(k) with variance Q, in the state equation 

(1.2), or equivalently modifiying the RLS algorithm to prevent Urn K(k) = 0, willk—*oc
alleviate this lack of robustness for most AR models. The cases where this performance

1
improvement will not occur are those where [F,Q2] has uncontrollable modes on the 

unit circle. The lack of uncontrollable modes on the unit circle is a necessary condition 

for the maximum limiting value of P(k) to be non-zero (de Souza et al., 1986). Thus, the 

inclusion of dither or noise in the state dynamics of the frequency estimation problem 

will not eliminate the lack of robustness of estimators using a least-squares criterion.

Another problem in least-squares frequency estimation is that of bias. This is more 

clearly seen when considering the input-ouput formulation of the problem. When esti­

mating the parameters of an AR model with unit circle zeros, equation error estimation 

algorithms, such as recursive least squares, will yield biased solutions (Mendel, 1973; 

Johnson, Jr. and Hamm, 1979). Moreover, in the case of constant frequency estimation, 

the bias is a function of the unknown parameter, a\ -  2 cos(u;) (Johnson, Jr. and Hamm, 

1979), which makes it difficult to eradicate.

When we extend the frequency estimation problem from merely estimating the param­
eter 2 cos(u;), to estimating directly the frequency of the periodicity, our task becomes 

more difficult still as the problem is now nonlinear. If the frequency varies with time 

the difficulty of the problem increases yet again. When there is more than one periodic 

component in the measured signal the issues of identification of the correct number of 

tones and the separation of tones closely spaced in frequency must also be taken into 

account. Sometimes it is not possible to measure the sinusoidal signal directly but only 

the combination of the sinusoid and some other signal. In fact, the sinusoid may be 

considered a disturbance corrupting the desired output signal.

In this thesis two general problems are considered, one an open-loop and one a closed- 

loop estimation problem. The first is of estimating the frequency of a single tone, 

sinusoidal signal in noise. This problem is termed frequency estimation if the frequency 

is constant and frequency tracking if the frequency varies with time. Only the open-loop 

frequency tracking problem is examined here although many of the results carry over 

to estimation. The second problem is that of eliminating a sinusoidal disturbance of 

unknown frequency from the output of a plant using an adaptive controller. This is a
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vibration control problem. In both cases, methods based on a least-squares criterion will 

be used.

In spite of the difficulties in estimating the constant frequency of a sinusoidal signal, the 

ubiquity of the frequency estimation problem has spawned a myriad of techniques to deal 

with it. For high signal-to-noise ratio (SNR) regimes simple, non-parametric methods 

such as those based on counting the zero crossings of the signal can be used. For 

signals with a lower SNR there is a range of more sophisticated techniques which make 

use of the peculiar features of a particular frequency estimation problem to improve 

performance. For the case of the frequency tracking problem there are fewer options. In 

both cases, the choice of which method to employ depends to a large degree on the 

nature of the given problem to be solved.

The next section gives a brief overview of the common methods used for tracking the 

frequency of a single sinusoid in noise1. Following this is an overview of the problem of 

designing adaptive controllers for linear, time-invariant plants that converge to optimal 

controllers. The final section gives an outline of this thesis, detailing the problems 

considered and the proposed methods of solution.

1.2 Common Frequency Tracking Algorithms

Probably the best known application of frequency tracking techniques is that of the 

demodulation of FM signals using the phase-locked loop (PLL). The application of the 

PLL to demodulation appears to have begun with Appleton (1922). Since it was first 

proposed the analog PLL has been extensively studied, see for example Viterbi (1966) 

or Gardner (1968). Somewhat more recently digital implementations of the PLL have 

also been examined (Kelly and Gupta, 1972; Polk and Gupta, 1973).

Another popular technique for frequency tracking makes use of hidden Markov models 

(HMMs). In this approach, at any instant the system is assumed to take one of a 

discrete, finite set of frequency values. The probability of the system taking on a value

]Many of these can be extended to the case of multiple sinusoids in noise also.
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in the set at a given time instant is assumed to depend solely on the state of the system 

(i.e. frequency value) at the previous instant, hence the problem is Markovian. The 

measured output signal of the system is the sinusoid corrupted by channel noise. The 

HMM frequency tracker was introduced by Streit and Barrett (1990). In their algorithm 

the measurement sequence was also assumed to take on values from a finite set of 

discrete outcomes. This work has been extended by Barrett and Holdsworth (1993) to 

the case where the measured output is a continuous variable. The relationship between 

HMMs and neural networks has been explored by Adams and Evans (1994) and a neural 

network based frequency line tracker proposed. Hidden Markov model techniques are 

clearly best suited to frequency tracking problems where the set of possible frequency 

values is naturally discrete, such as the case of frequency-shift key (FSK) modulated 

signals. These methods are also applicable to cases where it is known that the frequency 

will vary in some given range such as in the case of sonar tracking. In such cases the 

frequency variable can be discretized to an appropriate degree of accuracy.

For signals whose frequency varies slowly enough with respect to the sampling rate that 

the frequency can be considered constant over a reasonable time period, such as sonar 

signals, it is possible to use block frequency estimation techniques. In this approach, 

the signal is divided into possibly over-lapping segments and the signal characteristics, 

including frequency, are treated as constant within blocks. A frequency estimation algo­

rithm is then used on each subsequence. Such algorithms include maximum likelihood 

methods (Quinn and Fernandes, 1991; Starer and Nehorai, 1992), methods based on the 

Fourier coefficients of the blocked signal (McMahon and Barrett, 1986; Quinn, 1994) or 

weighted linear predictor estimators (Lankef al., 1973; Kay, 1989; Lovell and Williamson, 

1992; Clarkson et al., 1994).

Another approach, widely discussed in the literature, is that of the use of time frequency 

representations (TFRs). The aim of this approach is to display the energy of the signal 

as a function of both time and frequency in the manner of a joint probability density for 

a bivariate random  variable. The first moments of such representations can be used as 

estimators of instantaneous frequency. Unfortunately, it has been shown (Lowe, 1986) 

that such a joint probability density as a function of time and frequency does not exist. 

In spite of this, a TFR which has the spectrum and instantaneous power as its marginal
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densities is termed a time-frequency distribution (TFD). Such TFDs have spurious cross 

terms which imply that there exists energy in the signal where there is none. The use 

of TFRs for spectral analysis has been examined by Lovell (1990). It has been shown 

that the most appropriate TFR for this use is simply the short time Fourier transform 

(STFT) (Lovell et al., 1993). In the case of the S IF T the spurious cross terms coincide with 

the true peaks in the TFD, thus distorting the magnitude but not the location of these 

peaks. Other Cohen-class TFDs do not have this property. Moreover, it has been shown 

that estimators based on the moments of common TFDs are arithmetically equivalent 

to those produced by weighted linear predictor methods, are computationally more 

complex and have a higher variance (Kootsookos et al., 1992; Lovell and Williamson, 

1992). Thus TFRs, other than the short-time Fourier transform, are of little practical use.

One more technique for constructing frequency trackers, and indeed observers for non­

linear systems in general, is that of using an extended Kalman filter (EKF). As the name 

implies, the EKF is an extension of the well-known Kalman filter, which may be applied 

to linear systems, to the case of nonlinear systems. Briefly an EKF estimate is obtained 

by linearising a nonlinear state space model about the current state estimate and then 

producing an updated state estimate using the gain calculated from a Kalman filter 

on the resulting linearised system. While the EKF no longer possesses the optimality 

properties of the Kalman filter it is still a valuable technique. A derivation of the EKF 

and an example of applying it to the frequency tracking problem is given in Anderson 

and Moore (1979, Chapter 8). A more extensive examination of the EKF for frequency 

tracking is given in Parker and Anderson (1990). The performance of an EKF for both 

single and multiple tone frequency tracking is analysed using averaging analysis by 

James (1992).

1.3 Self-Tuning Regulators

Consider the problem illustrated in Figure 1.1 where there is a plant, P, the output of 

which is perturbed by some disturbance process characterised by H. Suppose the plant 

and disturbance process are parameterised by some unknown vector 9°. The aim is to 

estimate 9° from the closed-loop output of the plant and to use these estimates to design
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an adaptive controller, C, which will reject the disturbance, v, and make the output of 

the plant, y, track some reference trajectory, yM.

Figure 1.1: Disturbance rejection via adaptive control.

There are several questions to be answered in such a problem.

Stability The first and foremost question is that of stability of the closed-loop system. 
Is the computed control input, {tijt}, bounded and does it produce a bounded 

output, {yk}7

Convergence The next question to consider is do the parameter estimates 9k converge 

to some limiting value Ö?

Self-Optimisation If the parameter estimates converge, does the limiting adaptive 

controller, C(9), satisfy the performance measure for the control law? If so, the 

system is said to be self-optimising.

Self-tuning If, in addition to satisfying the performance criterion, the adaptive con­

troller, C(9k), converges to the optimal controller, C(9°), then the system is said to 

be self-tuning.

Consistency If lim 9k = 9° then the parameter estimates are consistent and the self-k—* oo

tuning property follows immediately.
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Systems which are self-tuning when the reference trajectory, {yj.}, is identically zero are 

termed self-tuning regulators. When the reference trajectory is non-zero they are termed 

self-tuning trackers.

The problem, as stated above, is impossibly general. Even when the problem is restricted 

to particular types of systems, control laws and estimation methods the problem is still 

very difficult. A well-known example of a self-tuning tracker was first proposed by 

Äström and Wittenmark (Äström and Wittenmark, 1973; Äström et dl., 1977). They 

posed the self-tuning regulator problem for linear time-invariant systems described by 

an ARMAX model, where the plant, P, was stably invertible and the disturbance transfer 

function, H , was stable. They employed a certainty equivalence minimum-variance 

controller and estimated the unknown system parameters using recursive least-squares. 

Experimental results suggested that this system was self-tuning. However, even for this 

very particular formulation of the self-tuning problem, the question of whether Äström 

and Wittenmark's self-tuning regulator (STR) was accurately named remained open for 

almost 20 years.

In order to obtain answers to the questions above a simplified version of Äström and 

Wittenmark's self-tuning regulator was first examined. Goodwin et al. (1980) showed 

that, for deterministic systems (that is when Vk = 0 for all k) and when the stochastic 

approximation algorithm was used in place of recursive least-squares, the system was 

stable and self-optimising. Bittanti et al. (1990) showed that this form of the STR was 

stable and self-optimising as a regulator and as a tracker when the parameter estimation 

was performed using any one of a family of recursive least-squares based algorithms.

The first result for stochastic systems (that is with a non-zero, random disturbance 

{vk}) was that of Becker et al. (1985). They showed that the form of the STR which 

used the stochastic approximation estimation algorithm in place of least-squares was 

a convergent and stable self-tuning regulator. They also showed that the parameter 

estimates were not consistent but converged to a random multiple of the true parameters 

when the optimal controller was irreducible.

The STR as posed by Äström and Wittenmark was eventually shown to be convergent, 

stable and self-optimising by both Radenkovic (1990) and Guo (1993) using different



10 Introduction Chapter 1

approaches. It was also shown that the parameter estimates will be consistent, and 

hence the STR self-tuning, if the optimal controller is irreducible (Radenkovic, 1990; 

Guo, 1993).

The problem posed by Äström and Wittenmark has now been extended to consider Un­

ear, time-invariant systems, least-squares estimation and a variety of control strategies. 

Becker et al., Radenkovic and Guo used stochastic Lyapunov functions and Martingale 

theory in their solutions. Kumar (1990) used an alternative method of Bayesian embed­

ding (Stemby, 1977; Rootzen and Sternby, 1984) to show that the recursive least-squares 

algorithm, when used in closed-loop, would converge and be consistent, independently 

of the control strategy used except for an exceptional set of 0° with Lebesgue measure 

zero. Moreover this result did not require assumptions on the transfer functions of the 

plant, P, and disturbance process, H , other than those of linearity and time-invariance. 

Thus it is possible to show that the STR is a self-tuning regulator and tracker for a variety 

of control laws provided the true system, 6°, is not in the exceptional set. Unfortunately, 

the parameters for a system which has poles on the unit circle, such as systems with a 

sinusoidal disturbance, lie in this exceptional set (Nassiri-Toussi and Ren, 1994).

1.4 Thesis Outline

This thesis considers frequency estimation in both open and closed loop. Firstly, it 

examines the use of the extended Kalman filter (EKF) to estimate the time-varying 

frequency of a noisy sinusoidal signal. The closed loop problem considered is that of 

eliminating a sinusoidal disturbance from the output of a linear, time-invariant plant.

This thesis concentrates on the use of the extended Kalman filter for frequency tracking 

as the EKF is one of the most flexible tools for this task. By the suitable construction 

of a state space signal model (and possible pre-filtering of the measurement signal) 

an EKF tracker can be designed for a wide variety of frequency tracking problems. 

Before the EKF can be used intelligently it is necessary to understand the modes of 

failure of the EKF and their causes. Accordingly, in Chapter 2 the EKF is presented 

and then an overview is given of what is known of the stability of the EKF. The bulk
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of this chapter is then concerned with presenting a new stability result for the EKF 

when applied to discrete-time, stochastic systems which have nonlinear state dynamics. 

This theorem gives sufficient conditions for the boundedness of the errors of the EKF 

given a sufficiently good initial state estimate. As a corollary, this result also gives 

conditions under which the errors of the EKF will converge to zero when it is applied 

to a deterministic, discrete-time nonlinear system.

In Chapter 3 a general EKF-based frequency tracker is presented and general, ad hoc 

tuning guidelines for EKF systems are given. In addition, the EKF tracker is shown to 

satisfy the conditions of the result given in Chapter 2. As a result, theoretically based 

tuning guidelines for the EKF frequency tracker are also derived. The performance of 

this frequency tracker is illustrated with simulation results.

The flexibility of the EKF-based approach is illustrated in Chapter 4 by considering the 

problem of passive sonar tracking. In this application the frequency of the acoustic 

signals suffers a doppler shift which is a function of the velocity of the target. Since 

the sonar detectors are passive the SNR of such signals is very low (in the range -20 to 

-30 dB). General EKF-based frequency trackers are known to suffer from a threshold 

effect for signal with SNR below 5-6 dB (James, 1992). That is, the mean square error of 

the state estimates increases dramatically below the threshold SNR value. To overcome 

this problem a new state-space model is proposed which incorporates the particular 

characteristics of sonar signals. In this way the effective SNR of the signal is increased 

and the resulting EKF tracker is able to estimate the instantaneous frequency with 

reasonable accuracy. Simulations illustrate the performance of this low SNR frequency 

tracker.

A vibration control problem is considered in Chapter 5. The problem examined is that 

of a linear, time-invariant plant whose output is corrupted by a sinusoidal disturbance 

of unknown frequency. The aim is to design an adaptive, feedback control system to 

eliminate the disturbance and drive the plant output to zero. The adaptive control 

system used is that of a minimum-variance certainty equivalence controller coupled to 

a parameter estimator. This is an extension of Äström and Wittenmark's self-tuning 

regulator to the case when the disturbance process is critically stable rather than strictly 

stable, thus allowing for certain types of deterministic disturbances as well as purely
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stochastic perturbations. In this chapter a convergence proof is given for the vibration 

control problem using a modified least-squares algorithm. This result shows that by 

embedding the estimation problem in closed-loop, the known bias that occurs in fre­

quency estimation by this method in open-loop is eliminated and the output of the plant 

can be regulated.

The final chapter in this thesis summarises the contributions in this work and discusses 

avenues for further research.



2

Stability of the 

Extended Kalman Filter

2.1 The Extended Kalman Filter

JN  this chapter the extended Kalman filter (EKF) is introduced and its stability is 

dicussed. We wish to determine under what conditions the estimation errors in the 

EKF will tend to zero (asymptotic stability) or be bounded for all time (bounded-input 

bounded-output (BIBO) stability). This section is devoted to an overview of the EKF and 

the derivation of its associated error dynamics. The following section reviews previous 

work on the stability of the EKF. The rest of the chapter is devoted to a new result on 

the stability of the EKF when applied to a stochastic, discrete-time system.

The extended Kalman filter is a tool for estimating the state of a system which is de­

scribed by a nonlinear state space model. The EKF state estimates are an approximation 

to the mean of the conditional density of the state {x(k)} given the measurements 

{y(l),. . . ,  y(k)}. Jazwinski (1970) derives this conditional density for both continuous 

time and discrete time systems and gives several approximations to the moments of 

these densities, including the EKF. He discusses the effect of the neglected terms in 

these approximations but does not give any strict results.

13
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The EKF is derived by linearising the signal model about the current predicted state 

estimate and then using the Kalman filter on this linearised system to calculate a gain 

matrix. This gain matrix, along with the nonlinear signal model and new signal mea­

surement, is used to produce the filtered state estimate and then an estimate of the state 

at the next time instant. For a nonlinear signal model of the form

x(k + 1) = f (x(k))  + w(k) (2.1)

y(k) = h(x(k)) + v(k) (2.2)

where E[w(k)w(k)T] = Q{k) and E[v(k)v(k)T] = R(k), the equations for the EKF are 

(Anderson and Moore, 1979, Chapter 8)

Measurement Update:

x(k\k) = x(k\k — 1) + Kx(k)[y(k) — h(x(k\k — 1))] (2.3)

P£{k\k) = [ I -  K£(k)H£(k)\P£(k\k -  l)  (2.4)

Time Update:

x(fc 4- \ \k)  = f{x(k\k))  (2.5)

Pi(k + l\ k) = Fi(k)Pi(k(2.6)

where

Ki(k)  

Fi(k)

Hi(k)

Pi(k\k -  1)Hi(k)T[Hi(k)Pi(k\k -  \ )Hi(k)T + R(k)}-'1

9fi_
dxj x=x(A:|fc)

dh
dxj x = x ( k \ k —1 )

(2.7)

(2.8)

(2.9)

and x (k \ k) is the estimate of the state at time k and x (k + 1 1 k) is the prediction of the state 

at time k + 1 using all the observations up to and including y(k). The matrices Pz(k\k) 

and Pf (k + 1 \k) are approximations of the respective state estimate error covariances. 1

TThe notation used here explicitly shows the dependence in the EKF equations on a particular 
trajectory in the state space. This is non-standard but will make the later stability arguments 
clearer.
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This thesis is concerned primarily with problems of frequency estimation and associated 

issues and most common models for systems with time-varying frequency are linear in 

either the output map (2.2) or state dynamics (2.1). Thus for the remainder of this chapter 

only systems with a linear output map, i.e. systems with y(k) = H(k)x(k) + v(k) are 

considered. Stability for signal models which have linear state dynamics and a nonlinear 

output map can be derived in a similar fashion to the following.

Define the error in the filtered and predicted state estimates as e(k\k) and e{k\k -  1) 

respectively. Thus

e(k\k) = x(k) — x(k\k) (2.10)

e(k\k — 1) = x(k) -  x(k\k -  l )  (2.11)

From (2.3)

e(k\k) = [I -  K£(k)H{k)]e(k\k -  1) -  K £(k)v(k)

where

e(k + l\k) = f ( x ( k ) ) +w( k )  -  f(x{k\k))

= f (x(k))  + w(k) — f (x(k)  — e(k\k))

= f (x{k))  + w(k) -  f (x(k))  + ^~(x(k))  • e(k\k) -  Kj(x(k), -e(k\k))

= x(k )) • e(k\k) — Kj(x(k),  — e(k\k)) -f w(k)
ox

and Kj is the remainder term from the Taylor series expansion of / ,  i.e.

« /(a , b) = / ( a  + b) -  /(a ) -  ^ ( a )  • 6.

Therefore

e(*|*) = [I -  Ki (k)H(k)]Fx( k - l ) e ( k - l \ k - l )

- [ I -  K£(k)H(k)]Kf ( x ( k - l ) , - e ( k - l \ k - l ) )

+ [ / -  K£( k ) H( k ) ]w( k- l ) ~  K £(k)v(k) (2.12)
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where

Fx(k) = j-(x(k)).

Thus the dynamics for the filtering error of the EKF may be written as the sum of the 

error dynamics for the deterministic case, neglecting linearisation errors, and nonlinear 

perturbation terms driven by the noise processes and remainder term from the Taylor 

series expansion of the nonlinearity in the signal model.

In the case of a nonlinear output map and linear state dynamics the stability of the 

prediction error of the EKF needs to be examined. In such cases the prediction error 

dynamics are

e(k+l\k) = F(k)[I — K&(k)Hx(k)]e(k\k-l)

+F(k)Kx(k)Kh(x(k), -  e(fc|fc-l))

-F(k)Kx(k)v(k) + w(k)

where

HAk) = |^(x(*)).

In the fully nonlinear case the filtered error dynamics are given by the equation

e(*|A?) = [/ -  Kx(k)Hx(k)]Fx(k)e(k -  l\k -  1)

+ [/ -  Kx(k)Hx(k)\{w(k -  1) -  Kj(x(k-1), —e(k — l\k — l))} 

- K x(k){v(k) +

Kh(x(k), —Fx(k — l)e(k — l\k — l) + Kf(x(k — l ) ,—e(k — l\k — l ) )— w(k))}.

From this equation it can be seen how the linearisation error in the state dynamics, n /, 

inflates the apparent noise in the state dynamics. Similarly, the error in the linearisation 

of the output map, Kh, inflates the contribution due to "noise" in the output equation. 

It can also be seen how the smoothness properties of the nonlinear functions, /  and h, 

will affect the error dynamics. If the linearisation error terms are zero then the error 

dynamics of the EKF reduce to those of the linear, Kalman filter. If the nonlinearites are 

smooth (and hence n j and small) the error dynamics of the EKF will be close to those
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of the Kalman filter. However, note that for the fully nonlinear case, the remainder terms 

are also effected by the state noise due to the presence of a w(k) term in the argument 

of Kh. Thus in this case the degree of noise in the state is also crucial to the analysis.

In the next section we will review what is already known about the dynamics of the 

errors of the EKF. Knowledge of these dynamics is crucial to an understanding of when 

and why the EKF will fail or be successful.

2.2 Previous Results

The extended Kalman filter is often used to design observers for nonlinear filtering 

problems in spite of the fact that there are few theoretical results to indicate when such a 

design will be successful. In practice it has been found that when the nonlinearities are 

not significant such a design will often work but, until recently, more precise guidelines 

have not been available. This was due to the nonlinearities and dependence of the gain 

calculations on previous state estimates, which make a general stability analysis of the 

EKF extremely difficult.

One approach to overcoming these difficulties is to concentrate on applying the EKF to 

a particular application. Any analysis of the performance of the EKF can then make use 

of the structure of the application to simplify the analysis. 2

An alternative approach is to consider modified versions of the EKF algorithm (perhaps 

applicable to particular classes of nonlinear functions) which are more amenable to 

analysis. For cone-bounded functions, i.e. the class of nonlinear systems where the 

nonlinearities are uniformly Lipschitz in the state variable, a nonlinear observer has 

been proposed and analysed (Gilman and Rhodes, 1973; Rhodes and Gilman, 1975). A 

bounding linear system for such systems can be found. By calculating the gain using 

this nominal linear system the dependence of the gain on previous state estimates is 

removed and it is possible to derive upper and lower bounds for the estimation error 

covariance.

2See for example Moorman and Bullock (1991) and Mehra (1971).
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Safonov and Athans (1978) considered using a constant gain in the EKF. Their motiva­

tion for a constant gain EKF (CGEKF) was primarily to reduce computational complexity, 

however it also allowed a theoretically based stability analysis to be performed. They 

derived a sufficient condition for the stability of the CGEKF and described an ad hoc, 

iterative design procedure.

Song and Speyer (1985; 1986) proposed a modified gain EKF (MGEKF) for modifiable 

functions, i.e. functions for which an exact expansion of f(a  + b) about (a + b) can 

be found. By incorporating this expansion, rather than the first order Taylor series 

approximation, in the EKF equations it is possible to derive global stability conditions for 

the MGEKF. Unfortunately these conditions are not verifiable analytically. Pachter and 

Chandler (1993) proposed a method for deriving an approximation to the appropriate 

expansion of f  (a + b) for smooth nonlinearities using a Maclaurin series expansion of / .

Ahmed and Radaideh (1994) also proposed a modified EKF (MEKF). They considered 

stochastic, continuous-time systems and expanded the nonlinearities about the solution 

of the deterministic, undriven state equation. As the solution {£(<)} of

dx{t)
dt

is a known, deterministic sequence it is possible to derive upper bounds on the error 

between the deterministic solution and the true state, x(t) = x(t) -  x(t). Moreover the 

resulting MEKF equations for (x(/)} are linear in the state given the known sequence 

{x(*)}. Thus their MEKF is the optimal linear estimator of x. The authors claim that as

E[x(t)\y(l) ,. . . ,y(t)]  ~ x(t) + x{t) (2.13)

where x(t) is the estimate of x(t) produced by their MEKF, the MEKF is more accu­

rate than the standard EKF. However they make no comment on the accuracy of the 

approximation in (2.13).

Chui et al. (1990) examine the case of using the EKF to estimate both the parameters as 

well as the state of a linear system. They propose a parallel algorithm where the states 

of the linear system are estimated via a linear, Kalman filter for a given sequence of
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parameter estimates. This sequence of parameters estimates is produced from an EKF 

using the state estimates from the Kalman filter. In other words, let x\ (k) be the estimate 

of the state of the system at time k and x2{k) be the estimate of the parameters of the 

system at time k, then x\ (h+  1) is given by a Kalman filter run on the linear system

x\ (k + 1) = h ( x 2 (k))xi(k) + wi(k) (2.14)

and x2 (k + 1) from an EKF run on the nonlinear system

x2{k + 1) = f 2 (x\{k), x2(k )) + w2(k) (2.15)

where { tx;i(A:)} and {w2(k)} are white noise processes. The authors claim that as the 

estimates of {x-[(k)} given by the Kalman filter run on the system (2.14) are the optimal 

estimates of x\(k) given { y [ l ) , .. . , y(k) ,x2( l ) , .. . , x2(k)}, the estimates given by the 

coupled system (2.14)-(2.15) will be more accurate than those given by the standard 

EKF. This is due to the fact that the linearisation about x\(k) in the EKF for the system 

given by (2.15) will be more accurate than the linearisation about the generic EKF 

estimate of x\ since x\(k) is the optimal estimator of x\.

The first theoretically based analysis of the standard EKF in a reasonably general setting 

arose from Ljung's examination of the EKF as a parameter estimator (Ljung, 1979). 

He examined the asymptotic behaviour of the EKF when it is used to estimate the 

unknown parameters, as well as the state, of a linear, time-invariant system. The analysis 

was performed by approximating the dynamics of the errors in the EKF estimates by 

an ordinary differential equation and examining the limiting points of this equation. 

He concluded that, in general, the parameter estimates given by the EKF would be 

biased due to errors in modelling precisely the noise structure of the system. He 

proposed a modified algorithm, based on stochastic gradient descent arguments, which 

has improved convergence properties. The modifications are similar to the ad hoc process 

of tuning the EKF by varying the noise covariance matrices. 3

3See Jazwinski (1970) for a discussion on the merits of tuning the EKF in this way.
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More recently there have been several attempts to quantify the performance of the EKF 

for general nonlinear problems. Baras et al. (1988) have given conditions under which 

the EKF will be a locally asymptotic observer when applied to a deterministic, continu­

ous time system. That is, they have shown that the errors in the state estimates will tend 

to zero if the initial error is small enough under appropriate conditions. Following from 

the work in Baras et al. (1988), Song and Grizzle (1993) have demonstrated a similar 

result in the discrete time case. In addition Picard (1991) has considered the case of ap­

plying the EKF to continuous time, stochastic systems with high signal-to-noise ratios. 

He gives conditions under which the scaled EKF filtering error will be asymptotically 

optimal and provides a bound for the EKF estimation error in terms of the SNR and 

computed error covariance.

In the following subsections the theorems of Baras et al. (1988), Song and Grizzle (1993) 

and Picard (1991) are given and then briefly discussed.

2.2.1 Deterministic, Continuous Time Systems

Baras, Bensoussan and James (1988) examined this case. Their results were the following. 

Consider the deterministic, nonlinear, continuous time system

x(t) = f (x(t)),  x(0) = xq

y(t) = Hx(t)

The extended Kalman filter for such a system is given by the equations

rh(t) = f (m(t ) )  + N( t )HT R~l [y(t) — Hm(t)],  m(0) = mo

N(t)  = ^ - ( m ( t ) ) N ( t )  + N ( t ) ^ -  ( m ( t ) ) - N ( t ) H TR - ' H N ( t )  + Q,

N(0)  = N0 = Pgl

Given the following definitions their results can be stated in two theorems.
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Definition 2.1 The pair [H. F{x)] is uniformly detectable if there exists a bounded Borel 

matrix-valued function A(x ) such that

t1T ( F ( x ) + A( x) H )r) < —ck0|/7I2, q0 > 0

for all x,rj E 1R!.

Definition 2.2 The pair [F{x),  Q] is uniformly controllable if there exists a bounded Borel 

matrix-valued function T(x) such that

\ T(F(x)  +  Q T ( x ) ) X > ß 0\ \ \ 2, ß0 > 0

for all x, A E lRn.

Theorem 2.1 (Theorem 7, (Baras et al., 1988)) If

1. [R~2H,  |£ ( x )] is uniformly detectable; and

2. [ | i i x )iQ] is uniformly controllable

then

IW O II  <

A

mm =
<

A

\ m  +

q

I I Q 5II2 + | | A | | :
2uo

l|Ar-1(Oll

\ \ m +

p

p - ^ l l 2 + lir||:
2ß0

l|A|| = sup ||A(x)||
x£Rn

||r|| = sup ||T(x)||
x€Rn

for all t > 0 where
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Theorem 2.2 (Theorem 8, (Baras et al., 1988)) Assume

1. f  : IRn —► IRn is smooth with bounded first derivative;

2. Q > qol for some go > 0;

3. [R~2 H, |£(x)] is uniformly detectable;

4. [§£(*), Q] is uniformly controllable; and

5. [H , |£(®)] is uniformly detectable.

If

where

then

|*o -  m0|||d2/|| < max 1 J 
n2p2||F02||

||ö2/|| = sup ||§ 4 (* ) ||

|* (0  -  m (t)I < C|x0 -  m0| exp(—7<) 

for all t > 0 for some constants C > 0,7  > 0.

(2.16)

2.2.2 Stochastic, Continuous Time Systems

Picard (1991) examined this case when the system has small noise. Consider the non­

linear system

dxt = f ( t , x t )dt + \A g(t, x t )dwt + y/eb(t, x t )dvt 

dyt = h(t, xt)dt + \fkdvx

where wt and vt are independent Brownian motions. The extended Kalman filter for 

this system is given by the equations

m t = m0 + [  f ( s , m $)ds+  f  K s(dys -  h (s ,m s)ds)
Jo Jo

K t = b (t,m t) + PtH (t)T
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P, =  -P ,H( t )TH(t)Pt + [F(t)-

+ Pt[F(t) -  +

where

H ( ! )  =

Fit) =

Make the following definitions.

Definition 2.3 A function f ( t , x, e) is almost linear i/ f/zere exists a family of matrix valued 

processes Ft(e) such that

\ f ( t , x, e) -  f ( t ,  m ,  e) -  JF<(e)(x -  m)\ < p t \x -  m\

for some family of numbers p t —► 0 as e —*■ 0.

Definition 2.4 function f i t ,  x) is strongly injective if

\ f ( t , x) — /( t ,  m)| > c|x — m|

for some c > 0.

The following result can then be obtained.

Theorem 2.3 (Theorem 2.2.1 (Picard, 1991)) Assume

1. the functions g and b are bounded;

2. the functions f  and h are C1 and almost linear;

3 . the function h is strongly injective;

4. ggT is positive definite; and

5. the ratio of the largest and smallest eigenvalue of Pq is bounded.
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v

then

for all t > 0.

_ l
P0 2(zo -  rn0) = 0(y/c)

_ 1
Pt 2(xt -  mt) -  0(y/e)

2.2.3 Deterministic, Discrete Time Systems

Song and Grizzle (1993) have examined this case. Consider the nonlinear, single-input 

single-output system

x { k 1) = f(x(k)),  xo unknown

y{k) = h(x(k)).

The extended Kalman filter for this system is given by the equations

x(k\k) = x(k\k — 1) + K  (k)(y(k) — h(x(k\k — 1)))

p^ifc)-1 = P{k\k -  l )~l + H(k)R~l H(k)

x(k -f 1|&) = f (x(k\k))

P(* + l|*) = F(k)P(k\k)F(k)  + Q

K =P(k\k -  l )H(k)[H(k)P(k\k -  1 )H(k) + R]

where

m  = f x m m

H(k)  i  ~ ( x ( k \ k - l ) ) .
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Make the following assumptions

1. There exist ß \ , > 0 such that

k
ßi l  < Y  H h k ) TH(k)R-^H(k)^(i ,k) < ß2I

i=k—M

for some finite M  > 0 and for all k > M  where

$(*;, i) = F(k -  1 )F(k -  2) • • -F(*);

2. ^ -(s)  is non-zero for each a: G 1R;

3. The following bounds exist and are finite

\F
A sup|T(x)|

X

\F-'\
A su p l^ x)-1!

X

|H|
A s u p |ir i£ (* ) |

, d 2f , A \ d2f , ..
— S“P f e WI

d 2h A t d 2h , „
d x 2 S"P

4. Let

g{x, y) = /i(r) -  A(x) -  ^ (r ) (x  ~ y)

and suppose there exists c < 00 such that

1 / \ 1 . d h 11 . 2|yO,y)l < q ^ H x  -  yl for all x, y.

Note that the assumption of a bounding norm for | F~l | is unnecessary given Assumption 

2. Also in the fourth assumption g{x, y) is the remainder term in a first order Taylor 

series expansion. A bound can be found for this remainder term provided ^  is Lipschitz 

in x. Given these assumptions the following results can then be derived.
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Theorem 2.4 Given the above assumptions there exists p ,q ,r , 6 > 0 such that

|P(fc|fc)| < \P(k\k — 1)| < q 

\P(k\k — 1)-1 | < p 

\P{k\k)~l + F(k)Q ~'F(k)\ < r 

\K(k)\ < 6

for all k > 0.

Theorem 2.5 (Theorem 3.2 (Song and Grizzle, 1993)) Consider the filtering error, 

e(k) = x(k) -  x(k\k  -  1), then if |eo|, \ ^ i \  and | ^ |  are such that for some 7 > 0

1 1 d2f
V(q-2V( 0,e0)2 ,|^ | d2h

dx2I) < - 7

where

then

V (k ,e )  =  eP(k\k — l ) -1e 

<^>(e,X,Y) = 6cY lF |+  \X {pq  + bcYe)2

<p(e,X,Y) = = \  + pe<f,(e,x,Y)(2pq\F

lim e(k) =  0.
k— * 00

2.2.4 Discussion

There are a number of common features shared by these three results. As would be 

expected they all require limits on the size of the nonlinearities (condition 1 and equation 

(2.16) for Theorem 2.2, conditions 1 and 2 for Theorem 2.3 and condition 3 for Theorem 

2.5). This is a result of the fact that the derivation of the EKF is based on the assumption 

that the neglected, higher order terms in the Taylor series expansion of the nonlinearities 

in the signal model are not significant. Furthermore all three results require that the
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initial error be sufficiently small. Once again this is a result of the assumption that the 

linearisation of the signal model is sufficiently good. As this can only be true within a 

sufficiently small region, a global stability result for the EKF would not be possible.

In addition to conditions imposed by the assumption made when deriving the EKF all 

three results require that the nonlinear system satisfy global observability and controlla­

bility style conditions (conditions 3,4 and 5 for Theorem 2.2, condition 3 for Theorem 2.3 

and condition 1 for Theorem 2.5). Such conditions are restrictive. In particular, signal 

models for the frequency tracking problem cannot satisfy global observability condi­

tions as the sine and cosine functions are not one-to-one mappings. However these 

conditions can be weakened as they are not fundamental consequences of assumptions 

made when deriving the EKF.

In this rest of this chapter the remaining case of the performance of the EKF when applied 

to a discrete time, stochastic system is considered. (Note only the case of systems 

with nonlinear state dynamics but a linear output map is examined.) In addition to 

completing the set of results given by Baras et al. (1988), Song and Grizzle (1993) and 

Picard (1991), this result weakens some of the restrictive conditions required by previous 

stability analyses. In particular, the key assumption of uniformity in the bounds on the 

growth rate of the nonlinearities and of observability properties of the signal model used 

in Theorems 2.2, 2.3 and 2.5 is relaxed. In addition, an assumption of high signal-to- 

noise ratios is not made. Instead, the effect of the size of the noise is included explicitly 

in the sufficient conditions for bounding the filtering error of the EKF.

In obtaining this nonlinear perturbation result it is necessary to examine not only the 

dynamics of the estimator but also of the associated Riccati difference equation. The 

result obtained shows that the stability of the error systems depends, as would be 

expected, on the nature of the nonlinearities and the size of the noise processes. These 

results can be used to design stable, nonlinear filters.
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2.3 Nonlinear Stability Theorems

2.3.1 Norms and Notation

Before presenting the required stability theorems it is necessary to define precisely the 

notation to be used in the remainder of the chapter.

Definition 2.5 Let | • | be some vector norm then the corresponding induced matrix norm is 

denoted by

11A11 = sup I Arc I 
kl=i

where A is a matrix and x is an appropriately sized vector.

Definition 2.6 Let | • | be some vector norm then the corresponding induced tensor norm is 

denoted by

\\B\\=  sup \ B x i . . . x n\
|xi|,..., |xn|= l

where B is a tensor of degree n and x \ , . . . ,  xn are vectors of appropriate lengths.

A  property of induced matrix and tensor norms is that they are sub-multiplicative, i.e.

\ \ m  < pupil.

The required nonlinear stability theorems involve the use of derivatives of vector valued 

functions. In the following a short-hand notation will be given for these derivatives and 

some chain rules for derivatives of these quantities will be derived.

Definition 2.7 Let a column vector of length n be written as

v = [vi\, z = l , . . . ,rc

where vt is the i-th element.
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Definition 2.8 Let an n x m matrix be written as

Oil i = l , . . . , n  j  = 1, . . . ,  m

where Al3 is the (i, j)-th element.

Definition 2.9 Let an n x m x r tensor be written as

B = [Bijk], i = l , . . . , n  j  = 1, . . . ,  m =

where BXJk is the (i, j , k)-th element. Let higher order tensors be defined similarly.

Definition 2.10 Suppose f  : lRn —<• Rm then

1.
dj_ A . dfj 
dx dxj

2.
d2f  a f dfi 
dx2 dxjdxk

3.
d3f  a . dfi 
dx3 dxjdxkdxi

for i = 1, . . . ,  m and j , k , l  =

Definition 2.11 Suppose A : Rr -  ̂ Rnxm then

dA  a  rdAi j  

dx dxk

/or i = 1, . . . ,  n, j  = 1, . . . ,  m and k = 1, . . . ,  r

With these definitions we can now prove the following chain rules hold using the 

short-hand notation given above.
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Lemma 2.1 Consider y = A( x ) x  where y is a p x 1 vector, x is a n x  1 vector and A i s a p x  n 

matrix which is a function of x, then

dy , dA( x )
JT = A (x + —f h Lxax  ox

Proof

Immediately from the definitions

dy%
dxj

— ( ^  4(x),fcXfc)

h  { ) h

£  A (x ) ik( ]k + £  ^ ^ x k
k=1 k=1 dxj

for i = 1, . . . ,  p and j  = 1 , . . . ,  n, therefore

dy_
dx

= A( x)  +
dA( x )

dx
X

Lemma 2.2 Consider C ( x ) = A( x ) B( x )  where x is a n x 1 vector, A  is an r x p matrix and 

B is a p x m  matrix then
d C _ d A  d£
dx dx dx

Proof

Again from the definitions
d c  = dCjj
dx dxk

for i = 1, . . .  r, j  = 1 , . . . ,  m  and k = 1 , . . . ,  n where

dCjj
d x k ■ ^ ( J 2 A(x '>itB(xh )

± dJ§ r Bh + ± A ü
l—\ UXk /=!

dB{x) i j
d x k
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therefore
d_C__d_Ai 8B_ 
dx ~ dx t + A dx

2.3.2 Stability Theorems

Recall that the EKF error equation satisfies a nonlinear equation (2.12) which has a quasi- 

linear homogeneous part and additive perturbation terms due to linearisation error and 

the noise processes. The exponential asymptotic stability of the error equations for 

the Kalman filter is a well known and understood property (Anderson and Moore, 

1979). For the EKF in the discrete time case, Song and Grizzle (1993) have presented 

sufficient conditions for the exponential asymptotic stability when the signal model 

is deterministic. The approach used to extend these results makes use of the Total 

Stability Theorem of Anderson et al. (1986) and related results. In this section the 

nonlinear stability theorems necessary to prove later the stability of the error system of 

the EKF are developed and reviewed.

Theorem 2.6 (Total Stability Theorem) Consider the ordinary difference equation

z(k + 1) = A(k)z(k)  + f (k,  z(k)) + g(h, z(k))

2(0) =  Z q £ R '

where the functions A : N + —► R nXn, /  : N + x lRn -  lRn, g : N + x R n -  IRn satisfy the 

conditions:-

for some r > 0 there exists C > 0 and r) > 0 such that for all \z\ \ < r, \z2 \ < r and k £ N ,

1. sup I A(k)\ < 00; 
iteN

2. f (k ,  0) = 0;

3. z\) -  f { k , z2)I < Cl*i -  zi \ ’,

4. \g(k,z\)\ < r/r;

5. Ig(k, zi) -  g{k , 2:2)1 <  V\z\ -  z21.
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If the unperturbed linear system

z(k  -f 1) = A(k)z(k) (2.17)

is exponentially stable, i.e. the transition matrix of (2.17), k\), satisfies

*l)l < ß o , k> - k'

for all k2 > k\ >  0 for some 3 >  1 and 0 < a < 1 then

\zo\ < -  and ß(C + rj) + a <  1

imply that for k > 0

\z(k)\ < ß(pL + Cß) \zq\ +A .  , , ßW
1 -  (Oc + C ß )

< r.

Corollary 2.6.1 Consider the unperturbed, homogeneous difference equation

z ( k 1) = A(k)z(k)  + f (k,  z(k))  

z( 0) = z0 e R n

where A (k ) and f ( k , z )  satisfy the conditions of Theorem 2.6 and the transition matrix, 

$z ( k 2 , &i), of the linear system is exponentially asymptotically stable as before, then

and ßC 3- ot < 1

imply that for k > 0

z(k)  I < ß ( a  + C ß ) k \zo\

< r.
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Note that Theorem 2.6 applies to nonlinear equations which are composed of the sum 

of a linear component, a nonlinear homogeneous component and a nonlinear non- 

homogeneous component. Its corollary applies to the case when the non-homogeneous 

component is absent. The following theorem deals with the case when the linear 

component is absent. The EKF error dynamics are of this latter form.

Theorem 2.7 Consider the nonlinear difference equation

x(k  + 1) = f ( x (k ) )  + g(x(k))  (2.18)

x(0) = io £ Kn

where f  e C^ITMR71) and g e C!(lRn,R n) and the associated homogeneous nonlinear 

equation

z(k  + 1) = f ( z (k ) )  z( 0) = x0 (2.19)

and its linearised equation

z(k  + 1) =  y^( z (k ) ) z ( k)  2(0 ) = x0 (2.20)

Suppose there exists an rz > 0 such that for all | xo| < rz 

C l the solution, { z ( k ) : k =  0 ,1 , . . .} ,  of (2.19) satisfies

\z(k)\ < ßi<*i\xo\

where ß\ > 1 and 0 < a\ < 1; and 

C2 the solution, { z ( k ) : k =  0 ,1 , . . .} ,  of (2.20) satisfies

\z(k)\ < ß2ock2|x0|

where ß i > \  and 0 < Q2 < 1.

C = 2 sup | | ^ ( i ) | |
| l |< r ,  O X

For some rx > ß\ rz define
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and 77 >  0 such that

l $ ( a ) l  <  r](rx - ß \ r z)

l l f f ( z )11 <

for all \x\ < rx. Then

0 2 ( C  +  v)  +  Oi2 < 1  and  | x 0 |  <  rz

imply

x(k)\ < ß\a*\x0\ + ß 2(a2 + Cß2 )k\xo\ +
02V{rx ~  ß\rz) 
1 -  (ö!2 + Cß l )

< rx by construction

for all k > 0 .

Proof

The proof of this result is as follows. A recursion for the difference between the solu­
tion of the homogeneous equation (2.19) and the original, perturbed equation (2.18) is 

derived. This recursion is then be shown to be in the form of Theorem 2.6. Applying 

this theorem and condition Cl yields the result.

Using Taylor's Theorem write

where kj is the remainder after the first order expansion of /. From (2.18) we then have

z(l) = f ( x 0) + g(x0)

= f(xo) + HV
x(2) = f(x(l)) + g(x(l))

= / ( / ( zo) + <H1)) + £(z(1))

=  / ( / ( * o ) )  +  ' S(l ) +  Kj U ( x0), <$(1)) +  ^ (* (1))

= f 2{*o) + ^(2)
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z(3) = f(x(2)) +g(x{2))

= f ( f 2(x0) + 6(2)) + g(x(2))

= / ( / 2(*0)) + § | ( / 2(^o)) ■ «(2) + K/(/2(*o),«(2)) + ff(i(2))

= / 3(*o) + «(3)

x(fc) = f k{x0) + 6(k).

Note that the correction term, {<$(&)}, between the solution, {x(k)}, of (2.18) and that, 

{z(k)},  of (2.19) obeys the recursion

6(k + 1) = |jj(/*(*o)) • m  + k/ U H * o), «(*)) + s(i(* )).

Using the solution, {z(k)},  of the homogeneous equation (2.19) permits us to rewrite 

this as

S(k + 1) = ~-(z(k))  • 6(k) + K/(z(fc),$(fc)) + g(z(k) + 6(h)). (2.21)

Note that (2.21) is now in precisely the form required for the Total Stability Theorem. 

Note also that 6(0) is zero.

Suppose |a:o| = |̂ oI < Tz and let r& = rx -  ß\rz. From Cl and C2 we know that j£(z{k)) 

is a bounded function and its transition matrix, $ z(k2 , k\), satisfies

||^(fc2,*l)|| < /?2a?- *1

where ß2 > 1 and 0 < <*2 < 1 so the linear portion of (2.21) satisfies the conditions of the 

Total Stability Theorem.

Define

/(M(*)) = Kt(z(k),6(k))

= f(z(k)  + «(*)) -  -  ~ ( z ( k ) )  ■ m
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then for all |<§i | < rg, j^l < r$ and k > 0

/ ( M )  = o.

Now note that

dj^ =

and for all |<5| < r$ and \xq\ < rz

z(k) + 6\ < |z(*)| + |*|

< ß\<*i\xo\ + r6

< ß \rz + r6 

= rx.

Therefore

d K f ( z ,  6)
db * ng(* + «)ii + ii5;Wil

<  C

and hence

Similarly let

then for all |6i| < r&, |̂ 2 | < r& and k > 0

l < K M i ) l  = \g(z(k) + Si)\ 

< rjrg.

Kg(k, 6) = g(z(k)  + 6(k)) -  g(z(k)) -  ^ (* ( fc ) ) ' H k)

Define
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then as before

W M i) -  9{k,62)\ = \g(z{k) + <$i) -  g(z(k) + <$2)|

< 771̂ 1 — ^2|-

Thus the nonhnear portions of (2.21) satisfy the boundedness conditions of the Total 

Stability Theorem provided |xq| < rz. Hence

ßi(C + h) + n2 < 1 and |x0| = \z0\ < rz

imply that

iw>i * + cß2)k\x0\+ 1 _ g / ; cfe)
< r6

Therefore for the solution of the original equation (2.18) we have

l * ( * ) l  <  l / * ( * o ) i  +  w * ) i

= W*)l + I*(*)l

< ß\0t\[a0| + ßi{ot2 + (ß2)k\xo\ + Y~-Ja2  + (ß2)

whenever

&(C + »?) + «2 < 1 and |x0| = \z0\ < rz

which completes the proof.

2.4 EKF Stability for Stochastic, Discrete Time Systems

In this section Theorem 2.7 is applied to the EKF error dynamics. In Theorem 2.8 it is 

shown that condition Cl holds under conditions on the observability and controllability 

of the signal model given a sufficiently small initial value. In Lemma 2.3 it is shown that 

condition C2 holds under the same assumptions. In Lemma 2.4 an explicit equation
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for the bound for the noise and linearisation error based perturbation component of the 

error dynamics is derived and in Lemma 2.5 a similar bound is given for the nonlinear, 

undriven component. The stability result itself is presented in Theorem 2.9.

2.4.1 Observability and Controllability

_i
Define the observability Gramian of [FZ,R  2 H] as

k
0(k, N) = Y ,  <S>{hk)TH(i)TR{i)-lH(i)${i,k) (2.22)

i = k - N

for some N > 0 and for all k > N, where $(£2, &i) = Fz(k2 -  X)Fz{k2 -  2).. .Fz(k\).

Similarly, define the controllability Gramian of [Fz, Q] as

k- 1

C(k,N)=  £  <t>(k,i+l)Q (2.23)
i=k —N

Assume there exists N such that for all Rx > 0 there exists 0 < er < Rx, at-(Äx, er, N) 

and bi(Rx, er, N), i = 1 ,2such that for all sequences {ip(k)} and {̂ (A:)} with |^(fc)| < Rx 

and |t/(A:)| < er

a\I > C(k, N ) > ü2 I  0 < Ü2 < ai < 00 (2.24)

b^I < G(k, N) <b2I  0 < bx < b2 < 00 (2.25)

where these Gramians are evaluated along the trajectory z(k) = ip{k) — v(k) i.e.

W )  =  %(*(*))
= ^ (V ’(fc) -  v(k)).

2.4.2 Standing Assumptions on the Signal Model

The following assumptions will be assumed to hold for the remainder of this section. 

The nonlinear signal model has a linear output map, /  G C3(lRn, Rn), ||(x )  is invertible
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for all x e IRn and for all k

|*(*)| < Rx'f (2.26)

\\H(k)\\ < P5; (2.27)

E[w(k)w(k)T] = Q(k) > b\I and ||w(fc)|| < ||it;|| < oo; (2.28)

E[v(k)v(k)T} = R(k) > 6 2 1 and ||i>(fc)|| < ||u|| < 00 (2.29)

Furthermore it is assumed that we can find N  and eT < Rx such that the observability 

and controllability conditions (2.24) and (2.25) hold.

The EKF equations for this system are given by (2.3) -  (2.7) and error dynamics of the 

EKF when applied to such a signal model are given by equation (2.12).

2.4.3 Signal Model Bounds

Since /  G C3(lRn, Kn) we can find P\,P2 ,P3  > 0 as

ugwii < p \ (2.30)

< P2 (2.31)

S<‘>« < P 3 (2.32)

for all I a; I < Rx + er . Furthermore, by the continuity assumptions on / ,  there exists a 

y>4 > 0 such that

l l | { ( x l )  -  | { ( X2)II ^  P *IX1 “  X2I 

for all |a?i| < Rx and |a?2| < Rx and therefore

(x l )  -  f ~ ( x 2) -  f ^ ( l 2 ) ' ( * '  ”  X2)H -  \P*\*1 ~  l 2 !2 (2.33)

(Dennis and Schnabel, 1983, Chapter 4).
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Let

1
P = «1 + T  

o 1
1 .q = — + b2

Ü2

S = ----h b2 4* P\b\ *•a2

Consider the equations for the evolution of the EKF gain, Kz(k), and the covariance 

matrices Pz(k\k) and Pz(k + l\k) along the arbitrary trajectory z(k) = tjj(k) -  v(k), which 

are given by the equations

Pz(k\k) = [ I -  Kz(k)H(k)}Pz( k \ k - l )

Pz(k + m  = Fz(k)Pz(k\k)F,(k)T + Q(k)

Kz(k) = Pz(k\k -  l )H(k)T[H(k)Pz(k\k -  1 )H(k f  + R(k)]- \

These are the same equations as those for a Kalman filter applied to the linear signal 

model

€(k + 1) = Fz{k)f(k) + w(k)

T (k) = H(k){(k) + v(k)

where Fz(k) = ^( ip(k)  -  v(k)). Thus we can use the results of Deyst and Price (1968) 

on the stability of the time-varying Kalman filter to obtain the bounds

q~l I  < Pz(k\k) < pi  

q - ' l  < P z{ k + l \ k ) <  s i

which depend on er, Rx and N.  Note that these bounds will hold for any trajectory in 

the ball \z\ < Rx + er .
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2.4.4 Preliminary Results

The following result gives sufficient conditions for the stability of the EKF when applied 

to a deterministic signal model when the linearisation errors are neglected. This theorem 

only requires that these properties hold in some subset of the er-ball centred on z — 0.

Theorem 2.8 Consider the nonlinear equation

Given Rx > 0 select N and cr < Rx such that the observability and controllability conditions, 

(2.24) and (2.25) hold. Let

z(k  + 1) = [ I - K ; ( k  +  l ) H ( k  +  l ) ] % x ( k ) ) - z ( k )

=  f(k, z(k))

(2.34)

where

z(k)  = x(k)  — z(k)

Kz(k) = P-Z(k\k -  l )H{k)T[H{k)Ps(k\k -  1 )H(k)T +  R(k)]~l

Pz(k + l\k) = Fg(k)Pi(k\k)FM(k)T + Q(k)

Pz{k\k) = [ I - K i ( k ) H( k ) ] Ps( k \ k -  1)

F ~z =  % ( x ( k ) ~  z( k ))

(2.35)

where 0 < 7 < then

< 0)| <

implies

z(k)\ <

= ß a k\z (2.36)

for all k > 0. (Note that as a consequence we know that \z(k)\ < ez for all k > 0J
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Proof

We shall prove this result using a Lyapunov stability argument. Let

V(k,  z )  = ZT P;(k\k) 1 2

then

p~l \z(k)\2 < V(k,z(k)) < q\z(k)\2

for all k and \z(k)\ < er. Using the equations for the EKF and the matrix inversion 

lemma it can be shown that

F;(k)T Pt(k + \ \k)- 'Fs(k)  =

Pi(k\k) - ’ -  P - A m - ' l P i W k ) - '  + Ft (k)TQ(k)- 'Fi (k)]- lPi(k\k)- '

P f k  + l f r ' K f k  + 1 )H(k  + 1) =

H(k + 1 f [ H ( k  + 1 )Ps(k + 1| k)H(k + + R(k + + 1).

Therefore for \z(k)\ < er 

A V(k,z(k))

= V ( k + l , z ( k + l ) ) - V { k , z ( k ) )

= z ( k f  Fx( k f [ I  -Ki ( k+l ) H{k+l ) ]TPi (k+l \ k+l ) - ' [ I  -

—z ( k f  Pz(k\k)~^ z(k)

= z ( k f  Fx( k f  P f k  + l\k)~^ Fx(k)z(k) -  z(k

- z ( k f  Fx ( k f  H(k+l ) [H(k+l )Pz( k + l \ k ) H ( k + l f  + R ( k +l ) ] - lH(k+l )Fx(k) 

<- z ( k f  Px(k\k)- '[Px(k\k)- '  + Fs(k)TQ(k)- 'Fs(k)]-'Ps(k\ 

+z(k)TFs(k)TP f k + l \ k ) - ' B x(k)z{k)

+ z ( k f  B f k f  P f k  + 1| k)~' F;(k)z(k)

+ z ( k f  B f k f  P-Z(k + 1| k ) - ' B f k ) z ( k )

Bz(k) = |£ (* (* ))  -  dJ-x (x(k) -  z (k )) -  ^ (x ( f c )  -  z(k)) ■ z(k).

where
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Therefore
AV(k , z (k ) )< 1 ^ 2  + P\p4q\z(k)\2 + \plq\z{k)\*\ \z{k)\ 

l SP )

Now

AV(k,  z(k)) < - i \ z ( k ) \2, 0 < 7 <
spz

provided

+ pmq\z(k) \2 + < - 7

which will hold when

H k ) l  -  W i  ( _/>1 +

Let

^  =  n ü n { £r’ ^ ( ^ 1 

and suppose \z(j)\ < cz for j  = 0, . . k — 1 then

AV( k  — 1, z(k — 1)) < —7 |z(fc —1)|2

=> V(k, z(k)) < ( l - 1P) V ( k - l , z ( k - l ) )  

* V ( k , z ( k ) )  < (1 — l p ) kV(0, z(0))

=> l^(fc)|2 < (1 -  7J>)*?k(0)|2

Now since 1 -  7P < 1 and pq > 1

|2(0)|2 < I =#. !̂ (fc)!2 <
Thus, by induction,

|2(0)|2 < t z

AV(k,  z(k)) < —̂ \z(k)\2

implies
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for all k > 0. Furthermore the bounds on the Lyapunov function give

\z(k)\ < {pq)2 ( l - i y  |z(0)|

<  fz

for all k > 0, which completes the proof. ■

Now consider the linear equation

z(k + 1) = ^J-{k,z{k)) • z(k) (2.37)oz

where /  and z(k) are defined in the previous theorem. Then differentiating f(k, z(k)) 

gives

j ;  = [ I - K i ( k  + \)H(k + l)]Fx(k)

-  H(k + 1 )Fx(k)z(k).

Therefore the equation (2.37) can be written as

z(k 4 1) = A(k)z(k) + h{k, z{k)) (2.38)

where

A(k) = [ I -  Kz(k 4 1 )H(k 4 1 )}Fx(k)

and

h ( k ,z )  =  - dK,(Q2+ —H +1

With the equation in this form we can now apply Corollary 2.6.1, which gives the 

following lemma.

This lemma shows that the linearised, undriven portion of the EKF error dynamics is 

asymptotically stable when linearisation errors are neglected. It shows that the EKF 

error dynamics under the standing assumptions satisfy condition C2 of Theorem 2.7.
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Lemma 2.3 Consider the equation (2.38) which is the linearised, undriven portion of the EKF 

error dynamics, neglecting linearisation errors. If

K 0)| < €z(pq)~2

then the linear system

z(k - f  1 )  =  A(k) z (k )

is exponentially asymptotically stable and its transition matrix, <&$(k2, k\), satisfies

\\$s(k2,ki)\\ < (pq)2 ^1 -  2

Also, the function f 2 is homogeneous and satisfies a Eipschitz condition in the ez-ball i.e.

1 . /2(M ) = 0;

2. ||/2(*,*i) -  h (k ,Z 2)\\ < C*l*i -  z2\.

for all \z\\ < cz,\z \ \ < ez and k > 0 for some Qz > 0. Therefore if

15(0)| < €z(pq)~2 and (pq)2& +  ( l  -  2 < 1

where 0 < 7 < then

\z{k)\ < (pq)i ^ 1  -  ^ j 2 + G-0?)5j  |5(0)|

< ez by construction

for all k > 0.

Proof

It can be shown that the linear portion of (2.38) is exponentially asymptotically stable 

using the same Lyapunov stability argument used in Theorem 2.8.
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All the remains in order to apply Corollary 2.6.1 is to show that for all k and \z\\ < er 

and 12 2 1 <

1. f i(k,  0) = 0;

2. ||/2(fe,^i)- 2 2) 11 < Cfki -^ l*

Since
Ä (M )  = - d A^ + 1 )g (fc+ i ) F l(fc)2(fc)f (fc)

condition (1) clearly holds.

To determine bounds for note that

d h ':f  + 11 = dPil' k + + i f  [ff(fc + 1 )Pi(k + l|fc)g(fc + i f  + R(k + l)]-1
d2 0 2

r\

+ Ps(k + 1| k)H(k  + \ f j - [ H ( k  + 1 + + i f  + R(k + 1)]

From equation (2.6)

o p ^ k ^ + m  = a t ^ s ) PiWk)F^ k)T + F.{k)p.W k ) d f ^ f

= - |^ (z (* ) -  z(k))P,(k\k)F,(k)T-  Fi(k)Pi(k \k )^d(x(k)  -

Thus under the assumptions

dPs{k + l\k) 
dz(k) < 2-P\piP

Furthermore

a

^ [ H ( k  + 1 )Pi(k + l \k)H(k + i f  + R(k + I)]'1 =

- [H(k  + \)Pi(k  +  1| k)H{k  + i f  + R(k + l ) ] - ’[ff(i + + i f ]  x

[H(k + 1 )Ps(k + 1| k)H(k + i f  + R (k + I ) ] '1
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hence
r\

|| — [i/(A: + 1 )Pz(k l \ k)H(k  + 1)^ + R{k -f 1)] *|| < p^2

and thus

dK-z(k+  1)
< öpp5S2 l {l + sp1̂ 2 1)

=  h -

dz

Therefore

\\f2(k,zi)  -  f2{k ,z2)\\ < hP5p\tz\z\ -  z2\

(2.39)

hence condition (2) is also satisfied. Applying Corollary 2.6.1 completes the proof.

■

The next lemma derives a bound for the noise and linearisation error based perturbation 

component of the EKF error dynamics.

Lemma 2.4 Consider the perturbation terms in the EKF error dynamics (2.12) due to the noise 

and linearisation errors,

g(e(k) ,k)  = [I -  Kz(k  + 1 )H(k  + l)][w(fc) -  K/(x(fc), -e(fc))] -  K z(k)v(k)  

where K (k ) is given in Theorem 2.8. There exists rj > 0 such that

• \g(e\,k)\ < rjer;and

• \9{e\,k) -  g(e2,k)\ < Tj\e-i -  e2\

for all |ei| < er, |e21 < er and k > 0.
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Proof

The bounds on the error covariance matrices and the noise processes gives

\g(e\,k)\

< ||Ps{k + 1|k + 1 )Pz{k + 1|k)~l[w(k) -  Kj(x(k),e(k))]\\

+ || Ps(k + 1| k + 1 )H(k + 1 )R(k + l ) - 1t;(fc)||

< pq{\\™\\+\p*4) +

Now

dg
de(k)

dKj (k  + \) 
de(k) H(k  + 1)[iü(A:) — Kf(x(k), —e(k))] - dKj j k  +  1 )

de(k) v(k)

- [ / -  K g(k + l )H(k+l)]
dn j (x(k), — e(k)) 

de(k)

so

l l ^ ^ l l  < M psIMI + \\v\\ + \ p*p5<Z) + 2-pqpi

Defining

7] = max{pq( ||ii;|| + \ p ^ 2r ) + pp562 ’ iMMjfcfasIMI + ||v|| + jPaPs4 )  + 2pqpi} (2.40)

completes the result. ■

The final lemma derives a bound for the nonlinear, undriven component of the EKF 

error dynamics.

Lemma 2.5 Consider the function

f ( k , z(k)) = [I -  Kz(k + 1 )H(k + l ) ] ^ ( x ( k ) )  • z(k)

which is the homogeneous portion of the EKF error dynamics neglecting linearisation errors. 

There exists £ > 0 such that

I|0(2(*))II<<

for all \z(k)\ < cr and k > 0.
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Proof 

Recall that

=  [ I - K s( k + l ) H ( k + l ) ] F x(k)

- 9Ri{gz+ 1] H(k + l)Fx(k)z(k)

= )Fx(

-  -)2A7p  + ~ + 1

where

0 i h g~2+ ^ = ~ ~ 'd £  — H(k + 1 f [ H ( k  + + \ \k)H(k + i f  + + l)]-1

+2^f ~ (*+ i)r ^ [ g (*+1)i>f(t + 1|*)g (fc+1)r +
r\

+P1(k+l \ k ) H( k+l ) T- ^ i [H(k+l)Pi (k+l\k)H(k I)]"1.

Now

d j
dz

d2/  
dz2

32^?(fc + l|fc) d3/ ,  r i \ \ r > r i \ i \ T ~ i s i  \ T
------------------dX*------------------  =  ö ^ ( x { k ) - z{k))P-z(k\k)Fz{k)

- 2 ^ ^ ( x ( k )  “  Z(k))pz(k\k) j^(x(k)  -  z(k))T 

+Fi(k)Ps( k \ k ) ^ ( x ( k ) - z ( k ) )

and hence
d2P-z{k + \\k) 

dx2 < Mp3p\ + pD-

Thus there exists a SiaiPb P2, P3, ps, <̂2 , p) > 0 such that

d2/o (fc+ 1)
dz1 < <$fc2
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for all k > 0. Therefore

<  2 p i p 56k +  P\P5^k2^r (2.41)
A (2.42)

which completes the proof.

2.4.5 Main Result

The results of the previous section can be combined to give the following result for the 

stability of the EKF when applied to a stochastic, discrete time nonlinear system.

Theorem 2.9 (EKF Stability) Consider the error dynamics of the EKF which are given by the 

equation

when the EKF is applied to a signal model with a linear output map which satisfies the standing 

assumptions (2.26) -  (2.29). Select N  and 0 < eT < Rx such that the observability and 

controllability conditions (2.24) and (2.25) are satisfied. Then if

e(k\k) = [I -  Ki{k)H(k)]Fx( k - l ) e ( k  -  l \k -  1)

+ [/ -  K £{k)H{k)]Kf ( x ( k - 1), —e(k — l\k — \)) 

+ [I -  K i ( k ) H ( k ) ] w ( k - l ) -  Ki (k)v(k)

where

kj (x , - e) =  f ( x  -  e) -  f ( x)  +  -^;(z) * e

ß(C + r}) + a < 1

ßCz +  <* <  1

(2.43)

(2.44)

N  < cg(pq) 2
1

(2.45)
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where and cz, a and ß, Q, rj and £ are given by (2 35), (2 36), (2 39), (2.40) and (2.42) 

respectively,

K*l*)l < + ß(a  + C3)*|e0| +

<  €r

for all k > 0.

Proof

To prove this result we shall appeal to Theorem 2.7. From Theorem 2.8 and (2.45) we 

know that the solution of

z(k) = [ I -  Ki(k)H(k)]Fx(k -  1 )*(*), z{0) = e0

where z(k) = x(k) — z(k), satisfies

z(k)I < ß a k\z(0)\

and so condition Cl of Theorem 2.7 is satisfied.

From Lemma 2.3 and equations (2.44) and (2.45) we know that the solution of

r\

z(k + l)  = - ^ - ){ [ I - K i (k)H(k)]Fx( k - l ) z ( k ) } z ( k ) ,  2(0) = e0, 2(0) = e0

will satisfy

\z(k)\ < ß a k\z(0)\

which satisfies condition C2.

Now ßcz < er so with rx = cT and rz = ez the bounds on the nonlinear components 

of the error dynamics are given by Lemma 2.4 and Lemma 2.5. Noting that x(k\k) = 

x(k) — e(k\k) and applying Theorem 2.7 completes the proof. Note, if \ez \ < 2 then (2.44) 

is automatically satisfied if (2.43) holds. ■

This theorem gives sufficient conditions for the stability of the error system of the 

extended Kalman filter for a general nonlinear signal model with a linear output map.
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It gives coupled conditions on

• the bound on the initial error;

• bounds on the noise proceses;

• observability of the signal model state;

• controllability of the process noise with the signal model state map; and

• smoothness properties of the signal model.

Within the regime of satisfaction of the sufficient stability conditions of Theorem 2.9 

there is a trade off between these requirements. The result given here represents a 

logical extension of linear Kalman filter theory to the nonlinear case. That is, it collapses 

to the linear theory where appropriate though necessarily the conditions given are more 

restrictive.

2.5 Conclusion

This chapter presented a new stability result for the extended Kalman filter, Theorem 

2.9. This theorem gives sufficient conditions for the error system of the EKF, when 

applied to a discrete time system, to be asymptotically stable when there is no driving 

noise; and bounded-input bounded-output stable when the system is driven by noise. 

This result provides an understanding of EKF dynamics and limiting features. As a 

consequence it can be used to form the basis for design rules for the EKF, though the 

resulting observer will be conservative.

Theorem 2.9 relies on weaker, local conditions on the signal model than previous results 

which required that the signal model satisfy restrictive, global conditions. Such global 

conditions are not necessary in EKF analysis as it is only possible to prove local conver­

gence results. However it is possible to weaken some of the conditions of Theorem 2.9 

even further. In particular the assumptions of (local) observability and controllability
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can potentially be weakened to detectability and stabilizability. In addition the assump­

tion of an invertible Jacobian of the state dynamics does not appear to be fundamental 

to the derivation.

A limitation of this result is the assumption of bounded noise. This cannot be weakened 

as there would then be a non-zero probability of the system moving outside the region 

where the linearisation assumptions are valid. However, this limitation is not overly 

restrictive as the EKF cannot be expected to work in circumstances of unbounded noise 

without more restrictive assumptions on the nature of the nonlinearities in the signal. In 

addition this result is only applicable to systems which have nonlinear state dynamics 

but a linear output map. The converse situation of a nonlinear measurement equation 

and linear state equation would satisfy a similar theorem. The extension to the fully 

nonlinear case will require stronger assumptions on the degree of nonlinearities in 

the signal and on the noise characteristics. Due to the presence of one of the noise 

processes in the argument of the linearisation error in this case, a stronger assumption 

of a sufficiently high signal-to-noise ratio will probably be required.

In the next chapter an EKF-based frequency tracker is proposed. The understanding 

of the dynamics of the EKF gained from Theorem 2.9 is used to tune the design of this 

observer. Simulation results confirm the conclusions of this theorem.
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D esign of an EKF Frequency Tracker

3.1 Introduction

JN  this chapter an EKF observer is designed for the problem of tracking the time- 

varying frequency of a signal which has a signal-to-noise ratio (SNR) of at least 5 dB. 

It has been shown (James, 1992) that EKF-based frequency trackers using the noisy 

sinusoid signal as input to the EKF, will suffer from thresholding at SNRs of less than 5 

dB. That is, the mean squared error of the frequency estimate increases dramatically for 

SNRs below the threshold value as the EKF fails to track. The problem of frequency 
tracking at SNRs of less than 5 dB will be considered in Chapter 4.

Studies of the behaviour of linear Kalman filtering problems (Chan et al., 1984; de Souza 

et al., 1986) indicate that stability problems are likely to arise in frequency estimation due 

to possible uncontrollable model modes on the unit circle. In Kalman filtering, when 

there are uncontrollable modes on the unit circle the Kalman gain converges to zero, 

ultimately causing the filter to ignore the data. Accordingly the stability of the error 

system of the EKF frequency tracker will be considered along with what this indicates 

about design. The issue of stability of the errors of the EKF is the key point in any EKF 

design. Unlike the linear Kalman filter where general theoretical results have long been 

available, most EKF designs have relied on heuristic arguments to attempt to ensure 

stability. A summary of these arguments will be presented in Sections 3.4.1 and 3.4.2.

55
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In addition to these arguments, we will make use of the stability result of Chapter 

2. This new result, Theorem 2.9, quantifies the stability of the EKF in terms of the 

degree of nonlinearity of the system, noise covariance matrices and bounds on the noise 

processes. This new result also provides the first theoretical analysis of EKF performance 

for general stochastic, discrete time, nonlinear systems. This analysis will be used to 

provide design guidelines for the problem of frequency tracking at high SNR.

This chapter focuses on the choice of appropriate covariance matrices to balance noise 

rejection with tracking at a maximal slew rate. These choices are very non-obvious 

and the nature of the performance penalty for over- and under-specification of noise 

covariances is shown. The performance of the observer is illustrated via simulation 

results.

3.2 Signal Model

Kalman filter design and, by implication, EKF estimator design proceeds from a state 

space signal model of the process tobe estimated. The signal model dynamics describe a 

mechanism for how the process may be evolving. In Kalman filtering the signal model is 

linear and consists of a dynamic state equation driven by a noise process and an output 

measurement equation corrupted by additive noise. Kalman filter theory endeavours 

to construct an optimal estimator for the state given the noise covariances Q and R, 

where optimality is measured in terms of the error covariance. The EKF is derived for 

nonlinear signal models using the Kalman filter on an associated linearised system. In 

this case the matrices Q and R used in the EKF equations can no longer be regarded 

as the same values as the noise covariances of the nonlinear signal model. They are 

instead measures of the degree of disturbances in the associated linearised system. Our 

focus here will be on the appropriate selection of design Q and R values in relation to 

the noise covariance matrices. The inclination is to take these design values to be the 

same as the noise covariances driving the nonlinear equation, but it can be shown that 

this leads to potentially poor performance. Further, since the signal model is a construct 

rather than an exact description of the measurement source, robustness of the estimator 

to design selections in the EKF needs to be considered.
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As a nonlinear signal model describing the evolution of noisy quadrature data of a 

slowly time-varying frequency, consider

X \ { k  +  1 ) COSX3 ( k )  - s m x 3( k )  0 x \ ( k ) 0

x 2 ( k  +  1 ) = sin  £3 ( k )  co s£3 ( k )  0 x 2( k ) + 0

x 3{ k  +  1 ) 1

1T—<

OO

____1 x 3 ( k ) w 3( k )

(3.1)

y\{k)

V2{k)

1 0 0 

0 1 0

X\(k) 

x2{k) 

x3{k)

v\ (<) 

v2{t)
(3.2)

where {y(k)} is the 2-vector received signal, 23 is the unknown time-varying frequency 

and x\ and x2 are the exact in-phase and quadrature signals. The parameter ea E (0,1) 

determines the rate of time variation of x3 and is chosen so that the frequency varies 

slowly enough that the signal appears periodic over several cycles. The signals {v(k)} 

and {w(k)} are zero mean, independent noise processes with

E[w(k)w(l)T] = Qa6kt 

E[v(k)v(l)T] =

where Ski is the Kronecker delta function, Qa > 0 and Ra > 0. The frequency of the 

signal, x3, represents the state of the system that we wish to recover. The x\ and x2 

components are noiseless transformations of the x3 component, hence

Qa

0 0 0

0 0 0

0 0 qa

(3.3)

The maximal slew rate of the frequency x3 is determined by ea and qa. Larger ea and 

smaller qa correspond to smaller variance for the x3 component, yielding a lower slew 

rate.

This simple model has properties which make it useful for designing filters for quasi- 

periodic signals generated from a variety of applications. The cartesian formulation of 

the model makes it close to linear thus reducing errors due to linearisation effects when
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filtering, compared with the polar formulation which has the frequency and phase as 

state variables. Furthermore in the absence of prior knowledge of systematic variation 

in the frequency of the signal other than that it is slowly varying, modelling the variation 

in frequency via a random walk is a reasonable choice as this simple model can be tuned 

in a straightforward manner to allow for varying rates of change via appropriate design 

choices for Qa and ca. Note that since this model has a linear output map and nonlinear 

state dynamics, Theorem 2.9 from Chapter 2 can be applied to derive design guidelines 

also.

3.2.1 Observability

A difficulty of the frequency tracking problem is that it is not possible to achieve global 

observability for any formulation of the discrete-time frequency tracking problem due 

to aliasing effects. Lack of observability increases the difficulties in state reconstruction. 

However consider for the moment a nonlinear system without noise, i.e.

where x £ R n and y £ R m.

Definition 3.1 The system (3.4)-(3.5) is strongly locally observable at x if there exists a 

neighbourhood, U, of x : h ( f k(x)) ^  h ( f k(x)) V x £ U, x ^  x and k = 0 , . . . ,  n — 1.

Definition 3.2 Define the map H n : lRn — (Rm)n

The system satisfies the observability rank condition at x if the rank of H n(x) = n.

x ( k l )  =  f (x(k) )

y{k) = h(x(k))

(3.4)

(3.5)

H ”-(x) = ( h ( x ) , h ( f ( x ) ) , . . . , h ( r - l (x)))

Theorem 3.1 (Nijmeijer, (1982)) If the system satisfies the observability rank condition at x 

then it is strongly locally observable at x.
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Corollary 3.1.1 (Nijmeijer, (1982)) If the system satisfies the observability rank condition for 

all x then the system is strongly locally observable for all x.

If it is possible to resolve the state locally without ambiguity in the deterministic case, it 

is reasonable to expect that an observer could be constructed in the stochastic environ­

ment which could successfully track the state of the system given a sufficiently good 

initial state estimate. The signal model, (3.1M3.2), proposed for the frequency tracking 

problem is strongly locally observable as will now be shown.

The rank of a map H(x)  is equal to the rank of the matrix evaulated at x. This makes 

the observability rank condition reduce to requiring that

£ ( * o )

- f ; ( I n - l  ) ä f ( :En - 2 )  ' "  ä i ( x o) .

H(x o)

H{xi)F(x0)

_ H(xn- i ) F(xn- 2 ) - - - F { xo) _

be of full rank. This is the same as requiring that if we linearise the system at each time 

instant around the value of the state at that time instant, then this sequence of linearised 

systems must be observable (in the linear systems sense) when evaluated along the 

trajectories of the system.

The trajectories of (3.1)-(3.2) without noise are

*i(0) coslEfTo1 *3(0) -  *2(0) s in ^ f-J  *3(i))

*i(0) sin(£*=0 *3(0) + *2(0) c o s i^ I o  *3(0)

(l-€ )* * 3(0)

x(k) =
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therefore

[ ^ ( , ( 0 > ) ] ^ W 0))] =

3 0 — 2z2(0) — 1 — 622(0)

0 3 2xi(0) + 1 — exi(0)

—2x2(0) -  1 —ez2(0) 2a?i(0) + l-cx-^O) (zi(0)2 + x2(0)2)(l + (2 -  e)2)

This will be of full rank except when zi(0) = 0 and x2(0) = 0 so the system given by 

(3.1) -  (3.2) is strongly locally observable.

3.3 EKF Observer

Recall the EKF equations for a nonlinear signal model of the form

x(k + 1) = f (x(k))  + w(k) (3.6)

y{k) = h(x(k)) + v(k) (3.7)

where E[w(k)w(k)T] = Qa(k) and E[v(k)v(k)T] = R a(k). These are given by (2.3M2.7). 

In the case of (3.1M3.2) we have

m

H{k)

cos(x3) -  sin(x3) - x \  sin(i3) -  i 2 cos(x3)) 

sin(i3) cos(Ä3) x\ cos(x3) -  i 2 sin(x3)

0 0 1 - c d

1 0 0 

0 1 0

x=ir(fc|&)

(3.8)

(3.9)

In constructing our EKF frequency tracker some assumptions will be made on the 

structure of the noise covariance matrices used in the design. To distinguish between 

the noise covariance matrices assumed to be driving the signal model and those used in 

the construction of the observer, the former will be denoted by a superscript a indicating 

these are the actual values and the latter with a superscript d for the design values.



§3.3 EKF Observer 61

Note:

1. The EKF observer will be constructed assuming a diagonal Q of the form

Qd =

q\ 0 0

o <71 0

0 0 2̂

where 0 < q\ <C 52 instead of

Qd = Qa

0 0 0 

0 0 0 

0 0 qa

as would be indicated by the signal model to ensure that the model used to
1

construct the EKF is stabilizable. It is known that the stabilizability of [F,Q 2 ] 

ensures that the Kalman filter is asymptotically stable in the linear filtering case. It 

shall be demonstrated subsequently that the design choice of Q in the EKF greater 

than the actual value of Q used in the signal model is, in fact, a key element in 

securing state estimate error bounds.

2. Assume that the noise in both channels is of the same magnitude i.e. Rd(k) = rdI.

Note that the values ed, Qd and Rd are design parameters and are not necessarily equal 

to the values given in the signal model, although the usual implication would have 

them so. When choosing the filter parameters Qd and ed it is necessary to allow for not 

only the expected maximum slew rate of the frequency but also linearisation errors. The 

choice of Rd and Qd will affect the stability properties and rate of response of the filter. If 

these design issues are neglected and these values are set to the estimated signal model 

values, the resulting filter may have undesirable properties.

The EKF is derived via Kalman filtering and linearisation but is still fundamentally 

nonlinear. Thus, while the performance of the Kalman filter relies mostly on the relative 

size of Qd and Rd or the signal to noise ratio, as can be seen simply from the dual Linear 

Quadratic Regulator problem (Bitmead et al., 1990), the EKF depends on the separate
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values of Qd and Rd. The other feature distinguishing the EKF from the Kalman filter is 

that linearisation errors also must be accounted for, as we shall see. The design trade­

offs in developing extended Kalman filters (and indeed Kalman filters) based on signal 

models are

• filter divergence, where the filter becomes increasingly confident of increasingly 

bad estimates through the computed error covariance becoming too small, leading 

to loss of tracking capabilities; and

• sensitivity to noise, where the parameter estimator fails to reject enough of the 

measurement noise process.

These effects can be tied to questions of the magnitude of the Kalman gain K(k) being 

either too small or too large respectively. In the following sections the effect of suitable 

choices of Qd, ed and Rd and how these problems might be avoided is discussed.

3.4 Heuristic D esign  Issues

3.4.1 General Linear Issues

To appreciate the design issues connecting guaranteed performance with computed 

performance assessment it is necessary to define several filters and their associated 

covariance functions. Consider a signal generated by a linear signal model with noise 

covariances Qa and Ra.

Let x°(k\k — 1) be the state estimates produced by a Kalman filter designed for this 

system with Q = Qa and R = Ra. This estimator is the optimal state estimator, since 

the system is linear, and the estimates achieve the minimum covariance P°(k\k -  1).

Let xp(k\ k — 1) be the state estimates produced by a Kalman filter designed for the linear 

system with Q -  Qd and R — Rd, which are not necessarily the same as Qa and Ra. This
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is a suboptimal estimator. Its state estimates xp(k\k -  1) achieve an error covariance

Pp{k\k -  1) = E[(x{k) -  xp(k\k -  1 ))(x(k) -  xp{k\k -  1))T]

whereas the designer computes a "designed" covariance, Pd(k\k -  1) via the Riccati 

equation for the Kalman filter with Q = Qd and R = Rd. The superscript p indicates 

that Pp measures the performance of the filter designed with Qd and Rd when it is run 

on the real data which is produced with Qa and Ra.

The following theorem states the relationship between P°, Pp and Pd as Qd and Rd vary.

Theorem 3.2 If Qd < Qa and Rd < Ra then

Pd(k\k -  1) < P°(k\k -  1) < Pp(k\k -  1). 

If Qd > Qa and Rd > Ra then

P°(k\k -  1) < Pp(k\k -  1) < Pd(k\k -  1).

Optimahty and dual optimal control arguments can be used to establish the above result, 

see (Anderson and Moore, 1979; Bitmead et al., 1990).

From this theorem we see that if Qd and Rd are selected to be greater the actual values, 

then the achieved performance, Pp, is bounded above by the computed performance, 

Pd. Note that Pp is what we wish to guarantee bounded. Under-design possesses 

no such guarantees and there is no bound on the level of actual error. Accordingly, 

over-design is to be preferred with the Kalman filter and hence with the EKF. For the 

EKF there are further reasons to pursue still larger Qd.
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3.4.2 General N onlinear Issues

An issue to consider is that for the EKF the solution of the Riccati equation, Pd(k\k -  1), 

is only a first order approximation to the true error covariance, Pp(k + l\k). It has been 

shown (Jazwinski, 1970) that this approximation is an under-estimate. Consider the 

nonlinear function f (x(k))  expanded in a Taylor series about some value, x*

fi{x(k)) = fi(x*) + (x(k) -  x*)TV  fi + -  x*)THt(x(k) -  x K)-\----- (3.10)

where /; is the z-th row of f(x(k)),  V /} is the gradient and Ht is the Hessian.

The recursion (2.6) for P d(k + 1 \k) only includes terms up to first order in the expansion 

(3.10) and is thus a crude approximation to Pp(k + l\k). If second order terms in (3.10) 

are taken into account the following result is obtained.

Lemma 3.1 To second order

Pp(k +  1| k) =  F ( k ) P (k \ k ) F ( k f  + ) + l (Pd2f)(k\k)(Pd2f)(k\k)T

where

(Pd2f)(k\k)  =

■

y: Pj,k
d2h

j , k = \
dxjdxk

(x(k\k))

This result is derived in Jazwinski (1970). This lemma shows that the linearisation itself 

introduces effects which increase the effective Q value. Thus the associated linearised 

system which is used to calculate the gain is "noisier" than the original nonlinear system.

3.5 Design Issues Arising from Stability of the Observer

The stability result of Chapter 2 can be used to show that this EKF observer for the 

frequency tracking problem will, in fact, be able to track the underlying frequency of 

its input signal subject to conditions on the evolution of the target frequency and the



§3.5 Design Issues Arising from Stability of the Observer 65

design parameters of the EKF. This is done by showing that the observer designed 

in Section 3.3 satisfies the standing assumptions on the signal model made in Chapter 

2, (2.26)-(2.29) and the conditions of Theorem 2.9. This requires consideration of the 

properties of the received signal and also the properties of the signal model used to 

design the EKF observer.

Briefly the conditions our observer must satisfy are:

1. boundedness of the true state;

2. smoothness properties of the output and state dynamics;

3. bounded noise processes; and

4. observability and controllability of the signal model.

In order to obtain any meaningful results from nonlinear filtering, it is necessary that 

the state of the received signal be bounded for all time. It is rarely possible to derive 

global, nonlinear stability results and the methods employed in Chapter 2 certainly are 

not. However, while the signal model chosen does not ensure a bounded state, for the 

frequency tracking problem to be well posed we need to be sampling the received signal 

fast enough that 0 < x$(k) <  2n. Hence, in practice, the state of the signal will satisfy

\x(k)\ = \J x\(k)2 + x2(k)2 + x3(k)2

< \ / l  + 47T2

< 6.4 V k.

Consider now the signal model used to design the EKF. Let || • || be the induced Euclidean 

norm. Immediately we have

||tf(fc)|| = 1 for all k.

In addition we require /  £ C3(Kn, Rn) and | |  be invertible. In our case the derivatives 

of /  are continuous and will be bounded in a region but these bounds depend on the
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size of the region, that is

||~(a:(fc)-e(A:|fc))|| < 2 (Äx + cr),

\ \ ^ ( x ( k )  -  e(k\k))\\ < y/2(Rx + €r ),

\ \ j jg (x(k)  -  e(k\k))\\ < >/2(Rx + cr )

when I a: (A:) I < Rx and \e(k\k)\ < cr for some Rx > 0 and er > 0. Furthermore the 

determinant of is simply 1 -  e and since 0 < e < 1 it is therefore invertible. Thus the 

nonlinear signal model used to design our frequency tracker is sufficiently smooth.

From the noise processes used in the design of the EKF observer, we have

Q{k) > q\I 

R[k) = r l .

Suppose the noise processes are bounded by some multiple of their standard deviation 

i.e.

IMI = ci y / q i

IMI = c2y/r

for some constants ci > 0 and c2 > 0.

A ll that remains in order to apply Theorem 2.9 is to show that a region can be found in 

which the Gramians of the EKF are positive definite and bounded. From the definitions 

of the Gramians, (2.22) and (2.23), and the EKF observer, the controllability Gramian 

C{k, 1) is simply Q(k) and hence

q2I  > C(k, 1) > q\I

for any positive er .
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The observability Gramian of [F, R 2 H] is

O ( k . l )  = 0  r

; 1 l ( k , k - l )  - } j 2( k , k - l )

- f 7 l ( M  - 1 )

~ \ l 2  ( k , k -  1 )

, fc -  l ) 2 + ra2(fc, fc -  l ) 2}

where

l \ ( k , i ) 

72 (M ) 

rai(fc, i) 

m2(k, i)

This has eigenvalues 

where

fc-i

l—i
k

— e)l~x{ —x\(l) sm.(p(k, l) — x2(l) cos<t)(k, /)} 
l=i
k

— e)l~l{ x i(/) cos<p(k, l) — x2(l) sin<f>(k, l)}
l=x
k

^ ( 1  - e ) /_/c{xi(/) sin<p(z, l) + x2(l) cos6(i, /)} 
i=i 
k

^ 2 ( l - e ) l~k{ - x \ (/) cos0(i, /) + z2(/) s in 0 (i,/)}
l—i
4>{k, l ) -  4>(k, i)

7> ^ { 2  + w 3± \ / w l  + 4}

rr’3 = xi(fc|fc)2 + ä2(ä:|ä:)2

= {xi(fc) -  ei(fc)}2 + {x2(fc) -  e2(fc)}2 

< 1 + 2er[x-[(k) + x2(k)] + le2r

and hence

(1 -  V2er)2 < w3 <  (1 +  V2er)2.

The maximum eigenvalue of 0(k,  1) therefore satisfies
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^max 5: — {(1 + V 2 e r ) 2  + 2 + \ J  ( l  + \ f l c r  )4 +  4}

< - ( l  + \/2€r)2r

Now the requirements that er be positive and 0(k,  1) be positive definite imply 0 < er < 

-7= which ensures that w2 can never be zero. With this restriction on eT, the minimumv2
eigenvalue of 0(k.  1 ) satisfies

Ami„ > 3_{(1 -  V2<r)2 + 2 -  v/(l -  >/2fr)4 + 4} 

> 1 ( 1 1 ( 1 -  V2er)2}

Thus, for the EKF frequency tracker, we can set

Rx = 7

P\  — 2 (Rr + cr )

P3 — v̂ 2 (Rx + cr )

P 5 = l
<$1 = qi 

«1 = Q2

b, =  i ( l  -  V ^ ( r ) 2 { l  -  J(1 -  V2(r)2}

er = — a a > 0  and arbitrarily small

Pi — v^2 (Rx +  €r )

Pa = \ /2(Rx +  cr )

62 = r 

a2 = q\
b2 = 3(1 + v/2 er ) 2

To satisfy Theorem 2.9 we need condition (2.43),

+ 77) + a < 1

to hold, where a and ,3, 77 and ( are given by the equations (2.36), (2.40) and (2.42) 

respectively.

Recall that the stability parameters a and ß determine the rate of the decay of the 

linear portion of the error dynamics. The stability parameter £ is a bound on the 

nonlinear portion of the dynamics and 77 is a bound on the term due to the noise- 

based perturbations and linearisation errors. The size of the parameters will depend
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proportionally on the size of the ball {e : \e\ < er } and, in the case of rj, on the size of the 

noise processes. Thus, if we know the nature of the noise processes and design an EKF 

observer using those values, we can ensure the condition on the stability parameters is 

satisfied by considering a sufficiently small region.

On the other hand, we can regard r, qi and q2 as design variables rather than as estimates 

of the true covariances of the noise processes. The first three stability parameters, a, ß 

and C are functions of these design values only. The stability parameter 77 is a function 

of the properties of the noise in the received signal as well as the design values, through 

the bounds \\w\\ and || v||. Analysing the first two stability parameters as functions of the 

design variables gives the following table, Table 3.1. This table gives indicative results 

for the properties of the stability parameters with respect to each design variable.

a ß
91 decreasing decreasing
92 increasing increasing
r maximised by

r 0 )
1 a

minimised by
J 2 )  
r 0

Table 3.1: Stability parameters as functions of the design variables

Note:

1. *•» = {1(1 -  2e$)2[l -  |(1  -  & r ) M \  + 5)}!

2. T0 = {§|(1 — 2cJ)2[l — j ( l  — V^fr)2]}!

The stability of the filter depends on making a and ß sufficiently small. From this table, 

and the constraint that q\ < q2 \  we can see that designing our EKF frequency tracker 

with

Q(k) =

q\ 0 0

0 q\ 0

0 0 <?2

where q\ = q2 -  qd and qd relatively small, will enhance the stability of the filter even 

though we are supposing that the first two components are obtained via a noiseless

1 If > q2 then q and ß will be increasing functions of q\ and decreasing functions of q2.
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transformation of the frequency, x$. Note that qd is an EKF design parameter. If this is 

taken to be smaller than the value indicated by the maximal slew rate of received signal, 

the stability parameter 77 will be inflated.

3.6 Choice of EKF Frequency Tracker D esign Values

3.6.1 Choice of Qd

The choice of Qd is crucial to the performance of any EKF observer. From equation (2.6) 

it can be seen that the minimum value of the solution of this Riccati equation is given 

by Qd. Too small a value of Qd leads to over-confidence in the accuracy of the estimates 

(Pd(k + l|fc) too small) and consequently to the filter paying insufficient attention to 

new data (K(k)  too small). This will cause filter divergence.

For the frequency tracking problem, the values of Qd and ed affect the stability of the 

filter and also determine the maximal slew rate it can detect. Even if qa is known it is 

important in the design of the EKF that |\Qd11 > ||Qa||.

In the past, more precise statements on the appropriate choice of Qd have not been 

possible. However, Theorem 2.9 now provides the following insights. If Qd is chosen 

to be positive definite, then the controllability Gramian of [F, Qd] will be bounded and 

positive definite. The conditions of Theorem 2.9 show that this property is one of a set of 

sufficient conditions for the errors of the EKF for any nonlinear system to be bounded, 

provided the initial error is small enough.

Also, from considering the stability parameters defined in Theorem 2.9, it was shown 

that choosing Qd of the form

Qd

qd 0 0

0 qd 0 

0 0 qd

helped maximise the size of the region of admissible initial errors.
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3.6.2 Trade-off between Qd and ed

For the frequency tracking problem, a key design parameter is that of the maximum 

rate of change of the frequency (slew rate) the filter can track. As we wish to be able to 

track either an increasing or decreasing frequency we associate the slew rate with the 

variance of the frequency. In the signal model (3.1M3.2) the frequency variation is given 

by the equation

x3{k + 1) = (1 - e d)x3(k) + w3(k). (3.11)

Thus the variance of the frequency is given by

nd
a 2 = qi1 —  (1 — c d)2

(3.12)

and so the maximal slew rate of the signal that the EKF can track is determined by 

<?2 and cd. Hence a large Qd allows the EKF to track a signal with a potentially large 

slew rate. The drawback of a large Qd is that even when the EKF is tracking well, if 

the actualslew rate is low the sensitivity to noise caused by a large Qd causes the state 

estimates to fluctuate widely around the true frequency value. Setting ed < ca alleviates 

this problem by allowing the value of Qd to be decreased while still retaining the desired 

range for the frequency estimate. This, along with the design of Qd and Rd, is related 

to measures to achieve guarantees of the degree of stability of Kalman filters (Anderson 

and Moore, 1979, Section 6.2).

3.6.3 Choice of Rd

The choice of Rd, for the frequency tracking problem, appears less critical than that of 

Qd. The tracking ability of the EKF is relatively insensitive to the value of R. Instead, the 

value of R d affects the degree of variation in the state estimates. This can be shown by 

considering once again the dual optimal control problem. It is well known in the control 

literature, Anderson and Moore (1990, Chapter 6) for example, that increasing the cost 

of control (i.e. increasing Rd) reduces the feedback gain and the speed of response of the 

controlled system. Since the feedback gain in the control problem is equal to - K ( k ) T, 

reducing the magnitude of the feedback gain is equivalent to reducing the gain in the
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estimation problem also. If control is cheap (i.e. Rd is small) this increases the speed of 

response of the system by allowing higher feedback gains. The penalty of this is that 

the state variables may vary more widely causing excessive (and undesirable) peaking.

3.7 Simulation Results

Clearly, to design an effective EKF frequency tracker, it is essential that the choice of 

design parameters be conservative to ensure stability and good tracking performance. 

The following simulation results illustrate the importance of such a design. For these 

simulations the signal was not generated by the signal model. This was to emphasise 
the fact that the signal model is used purely for the construction of the filter. In EKF 

observer design we do not suppose that the signal is generated by the model. The 

model is chosen so that it provides an understandable mechanism for the evolution of 

the signal and has suitable properties which will produce an effective filter.

The values of the design parameters used and the sum of the squared error in the 
frequency estimate are summarised in the table below, Table 3.2.

Figure Qd Rd MSE

(3.2) 0.0005 0.05 0.01 2.9236

(3.3) 0.0065 0.05 0.01 1.8317

(3.4) 0.0013 0.01 0.01 0.3416

(3.5) 0.0023 0.01 0.05 0.2853

Table 3.2: Design values

While the data set was not generated by the model it can be thought of as having been 

generated by the model with a variance determined by the maximum change in the 

frequency. The effective actual values of the parameters for this data set, assuming they 

were generated by the model, were
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Qa = 0.0005 

€a = 0.05 

Ra = 0.01.

In each simulation |.r3(l) -  X3(l|0)| = 0.01. In the figures the evolution of the normalised 

target frequency is given by the solid line and that of the EKF estimate by the dashed 

line.

Mean squared tracking error of the frequency versus Qd is plotted in Figure 3.1. The 

value of Q 3 in the nonlinear signal model is shown as is the best Qd value for the EKF. It 

clearly illustrates that it is inappropriate to set Qd = Qa. It also shows the large penalty 

for too small a Qd and the modest degradation for too large a value.

Figure 3.2 shows the effect of designing an EKF frequency tracker using the actual 

model values. A common assumption is that using these design values would yield 

good performance. As predicted in Section 3.4.2 and illustrated in Figure 3.2, this is 

not the case. However higher Qd does permit tracking as depicted in Figure 3.3, where 

Qd = 0.0065 as the linearisation errors in the associated linearised signal model are now 

taken in account.

It is clear from Figure 3.3 that the EKF with Qd > Qa, ed = ea and Rd = Ra is still not 

ideal. The filter remains unable to track when the slew rate is at its maximum and the 

degree of variability in the state estimates is large. Setting ed = 0.01 and then adjusting 

Qd down to Qd = 0.0013 to maintain the same maximum slew rate permits the filter to 

maintain a similar tracking performance with less sensitivity to noise. This is illustrated 

in Figure 3.4. Finally setting Rd = 0.05 and increasing Qd to Qd = 0.0023 produces a 

filter which is able to track the frequency with less peaking. This is illustrated in Figure 

3.5. Note that the MSE for this filter is less than a tenth of that for the filter using the 

effective actual values.
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0.005 0.015
Q

Figure 3.1: MSE of EKF frequency estimate versus Qd

Time

Figure 3.2: EKF frequency estimate when Qd = Qa, ed = ea and Rd = Ra. The target 

signal is given by the solid line.
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200
Time

Figure 3.3: EKF frequency estimate when Qd > Qa, ed = ea and Rd = Ra. The target 

signal is given by the solid line.

200
Time

Figure 3.4: EKF frequency estimate when Qd > Qa, ed < ea and Rd = Ra. The target 

signal is given by the solid line.
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200
Time

Figure 3.5: EKF frequency estimate when Qd > Qa, ed < ea and Rd > Ra. The target 

signal is given by the solid line.

3.8 Conclusions

This chapter presented an EKF-based frequency tracker for signals with an SNR of at 

least 5 dB. Design guidelines for tuning this tracker were discussed. In addition to 

previously known heuristic tuning arguments, theoretically supported guidelines for 

the design of a stable EKF tracker were given. The design trade-offs between balancing 

noise rejection with tracking at a maximal slew rate were discussed. The nonlinearity 

inherent in this problem makes this trade-off non-obvious, critical to the performance 

of the filter and counter to the usual optimality guidelines for Kalman filtering. The 

performance penalties for over- and under-estimation of the noise covariances are fur­

ther illustrated via simulation results. These demonstrate the importance of designing 

a sufficiently conservative filter and might explain why so few successful applications 

of extended Kalman filters have been reported.

In the next chapter an EKF frequency tracker for signals with low SNR will be given. 

The ability to design frequency trackers for a variety of situations by the choice of signal 

model illustrates the flexibility of an EKF-based approach to nonlinear observer design.
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An EKF Frequency Tracker 

for High-Noise Environments

4.1 Introduction

JN  this chapter, the problem of constructing an EKF-based frequency tracker for weak, 

narrowband signals is considered. Such signals occur in passive sonar tracking applica­

tions. This problem presents its own particular difficulties above and beyond those of 

the general frequency tracking problem. As a result, the general EKF-based frequency 

tracker designed in Chapter 3 is not appropriate. This is because, for this application, 

the filter designer not only has to deal with the inherent nonlinearity of the problem, but 

also with the difficulties caused by extremely high noise levels. Passive sonar signals 

typically have a signal-to-noise ratio (SNR) in the range -20 to -30 dB.

What makes the passive sonar tracking problem tractable is the a priori knowledge 

the filter designer has of the signal characteristics. These include a rough idea of the 

neighbourhood of the frequency sought and the very slow time variation of the signal 

with respect to the sampling rate. By appropriate pre-filtering of the signal this a 

priori information can be incorporated into the state-space signal model. Thus the EKF

77
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frequency tracker constructed using this signal model has a sufficiently high effective 

SNR that accurate tracking is achievable. The technique proposed here is a variant on 

methods developed by Quinn (1994) and McMahon and Barrett (1986; 1987) using block 

Fourier coefficients to estimate a constant frequency. It extends their techniques to the 

case where the frequency is slowly time-varying.

In the following sections, the appropriate pre-filtering of the signal and the resulting 

signal model and EKF frequency tracker are described. After this, design guidelines for 

this particular application are discussed. The performance of the filter is then illustrated 

via simulation results.

4.2 Derivation of State Space Model

By taking advantage of the known characteristics of the signal it is possible to overcome 

the effect of low SNR. Due to the slow time variation of the signal, the data may be 

divided into blocks in which the signal parameters may be considered constant. This 

will increase the effective SNR by averaging. The problems caused by averaging when 

estimating a constant frequency with the Kalman filter are avoided by taking a particular 

weighted average which is described below. Prior knowledge of the region in which 

the frequency is located is incorporated to increase the accuracy of the observer.

Consider a sinusoidal signal with slowly time-varying parameters which has been 

blocked into N  non-overlapping segments of length T.1 If the parameters are varying 

sufficiently slowly they can be considered to remain constant within a block and only 

vary between blocks. Such a signal can be described by the following signal model,

k—\
%t,k = Pk COS(Ukt + 0 + X] + €t+(k-\ )T  (4-1)

r =  l

where t = 0 , . . T  — 1 is the time index within a block, k = 1 , . . N  is the block 

index and {e*} is additive noise. Prior knowledge of the frequencies of interest can be

Tf the segments overlap then the noise processes between blocks will be correlated which is 
undesirable as the EKF is derived under the assumption that the noise processes are independent.
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accommodated by supposing the frequency in the k-th block is given by

Wk =
2ir(M + 6 k) 

T (4.2)

where M < \  is a known integer and - a  < 6̂  < b, a, b given. In other the words the 

frequency is known to vary in the range

27r(M -  a) 2n(M + b)
T (4.3)

Each block of data is then filtered by a discrete Fourier transform to produce a weighted 

average of the original signal. Defining the T-point discrete Fourier transform of a 

sequence {a:*} as

(4.4)1 v -  f - j 2 v r t \
X r = J  L  eXP [ T )

for r = 0 , . . . ,  T  — 1, the Fourier transform of (4.1) is given by

(  ^ 1 rn i \ sin[7r(M — m + bk)\(4.5)

k - \h'k I , , T — 1 , . sin[7r(M + m + 6*)]
+ 2T exp + 2n Xj 6r + * - rb (M + m + h) ) sm[^ +m+f*)]

for m = 0 , . . . ,  T  - 1 ,  where vm,k is the Fourier transform of the noise ^t-\-(k-\)T' Consider 

only the Fourier coefficients at the frequencies , 2r-(Aj,+L) where L is such

that L <  T  and L > max(a, b), then

<y '  Pk  r ex  , n M [ e x P ( - ^ 2 7 r < $ f c )  -  1 ]  ,
r ^ a 7 Z ext W  + 2 * E M ] / M _ m + Sk) + v"■*

r = 1
(4.6)

for m = M -  L , M  + L, as the second term in T i s  0(1) since is bounded 

away from zero. Let

k-1
<Pk = 4> + 2 x ^ 6 r

(4.7)

(4.8)
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then

T m , A :  %  pke\p(j(fk) [expjjlTTÖk) -  1]
j(M -  m + 6k) " t”  Vm,k

for m — M — L, . . . ,  M + L.

(4.9)

t, l Xt,k

T-point DFT

To'1 TMll

y ( i )

^  ^  'Y '

T r - U  T 0,N T m ,n  T t ~FX

y ( X )

Figure 4.1: Transformation of input signal.

Figure 4.1 illustrates how the original sinusoidal signal, {Xt^ }, is blocked and then trans­

formed to produce the measurement signal for the EKF filter, {y{k)} in the frequency 

range m — M -  L, . . . ,  M + L. In the next two subsections we propose a state-space sig­

nal model which describes the evolution of the measurement signal {y(k)} from block 

to block.
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Another way of picturing the pre-filtering process is shown in Figure 4.2.

M+L

YM,k

Y
T-l,k

Figure 4.2: Filter bank representation of input signal pre-filtering.

In this representation the original signal, {X^}, is passed through a bank of linear, FIR 

filters. The impulse response of each filter is

hm(z) = ^[1 + exp ( f-J jr™ ) z~' + exP z~*

+ • • • + exp -  1)^ z~(T~ %

Thus the first filter, ho, picks out the DC component of the signal, the second, h\, the 

fundamental and the remainder the harmonics of the fundamental frequency. The DFT
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components, T m^ = z m ,kT, are obtained by periodically sampling the output of the 

filter bank. The frequency response of each filter has its mainlobe centred on Hz and 

has a bandwidth of j  Hz. By selecting only those DFT components in the frequency 

range m E [M — L, M  + L] the original, sinusoidal signal is effectively being filtered 

by a bandpass filter, centred on ^  Hz, with a bandwidth of Hz. It is this which 

contributes to the effective increase in the SNR.

In general, this type of signal filtering would produce a signal which was corrupted by 

correlated noise. However, as an added bonus from the DFT pre-filtering we have the 

following result concerning the noise processes. Assume that the noise in the original 

signal is ergodic, zero mean with finite variance and strictly positive spectral density 

(these are relatively weak assumptions). In this case its Fourier transform, {vm^}, is 

approximately complex Gaussian with zero mean and independent real and imaginary 

parts having the same variance (Hannan, 1979). The variance is given by ^ S ( uj) where 

S is the spectral density function

1 T5(u;) = jim ^ —  Y ,  exp(-jw r)£[e?+(it_1)T]. (4.10)

4.2.1 State Equation

The equation (4.9) describes the Fourier coefficients, {T™,*;}, in the frequency range of 

interest as functions of three variables which can be regarded as amplitude (p), phase 

(<p) and frequency (S) terms with additive, Gaussian noise. A simple state equation for 

such a system is

Zl(fc + 1) (1 — €p) 0 0 X\(k) m(k)

x2(k + 1) = 0 1 2tt x2{k) + 0

x3(k + 1) 0 0 ( l - €* ) X3 (k) w3(k)

(4.11)

where the states are defined as

=  ( 0 ) 1  (4.i2)

x2{k) = (pk (4.13)

*3(k) =  h (4.14)
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and x\ is defined as the square-root of the scaled amplitude to ensure its non-negativity. 

The frequency offset, X3 , and amplitude, x\, are modelled as varying according to AR(1) 

models in the absence of any other information. Also, an AR(1) model is straightforward 

to tune to account for rapidly or slowly varying states.

4.2.2 Measurement Equation

As the real and imaginary parts of the additive noise are independent, the measurement 

equation for this state space model may be taken as

y(k) =

*[TAf-Ltfc]

» [T m +l ,*]

3[TM+L,fc]

+ v(k)

where for m = M  — L , . . . ,  M  + L

»[Tm,fc] = M -m -\-x  3
[ s i n ( x 2  - I -  2 ^ x 3 )  -  s i n ( x 2 ) ]

9[Tm,*] = M — m + x 3 [cOS( X 2 ) — COS(x2 +  2^X3)]

(4.15)

(4.16)

(4.17)

when 6k is not an integer, with the obvious limits taken when the denominator is zero. 

In this case this output vector will be zero except for two elements in the positions

(M + X3) and (M + X3) +  (2L +  1).

The state space model for the passive sonar tracking problem is linear in the state 

dynamics but has a nonlinear output map. This is the opposite case to that examined in 

Chapters 2 and 3. However, except for the dependence of the amplitude-like term

M  — m  + X3

on the frequency offset 6, the signal model (4.11),(4.15) is similar to the standard polar 

form for general frequency tracking (Parker and Anderson, 1990).
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4.3 EKF Observer

For our system, the signal model is given by the equations (4.11) and (4.15) which is 

nonlinear in the output but linear in the state. Thus for the high-noise frequency tracker 

the EKF filter is given by equations (2.3)—(2.7) where

F =
(1 — €p) 0 0

0 1 27r

0 0 (1 -€ff)

(4.18)

and H is given by the following set of equations when 6 k is not an integer

H(i, 1) 

H(i, 2) 

H(i, 3)

H(i + 2L + l , l ) 

H(i + 2L + 1,2) 

H(i + 2L + 1,3)

2x\
L + 1 — i + 23

4
T + 1 -  * + x$

27tx\
L + 1 -  i + x3

X ?
+

[sin(x2 + 2^x3) -  sin(^2)] 

[cos(x2 -t- 2^ x 3) -  COS(X2)] 

cos(x2 + 2 ^ x 3 )

[sin(x2) -  sin(a:2 + 27rx3)](L + 1 -  i +  X3) 1 

2x 1
■[cOS(X2) -  COS(X2 +  2 7 T.T3 )]L + 1 — i + X3

4
L -f 1 — i + X3 

2irx\
L + 1 — i + X3

+ *1
(L + 1 -  i +  X3) 2

[sin(x2 + 27tX3) -  sin(x2)] 

sin(x2 + 27t X3)

[cOS(X2 +  2 ^ X 3 )  -  COS( X2)]

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

for i = 1 , . . . ,  2L + 1. The limiting case when 6k is an integer will be a matrix of zeros 

except for the first two elements of the rows i = M  + X3 and « = M + X3 + 2Z + 1.

4.3.1 Observability

Our aim in frequency tracking translates into the reconstruction of the state of the system 

(4.11),(4.15) from output measurements. The observability of the system equation is 

then central to our ability to derive such a state estimator, in our case via Kalman
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filtering methods. Observability of (4.11),(4.15) is implied if the zero state is the only 

state yielding K  + 1 successive zero output measurements when the exogenous noise 

processes {v(fc)} and {w(k)} are zero, for some K  > 0. This, in turn, may be verified by 

considering the observability Gramian of the linearised system

k
0 ( k , K) = Y ,  *(*> k)TH(i)TR{i)- l H(i)$(i ,  k) (4.25)

i = k - K

where <J>(&2, k\) = F(k2 — l )F(k 2 — 2) . . .  F(k\),  for some K  > 0 and for all k > K.

For integer 6 k the observability Gramian has a simple form which permits direct verifi­

cation of observability. In this case

O(kO)

167t2[xi (k)2 + x\(k — l )2] 0 0

0 47t2[xi(«)4 + x\(k -  l )4] |^ y 8 7 r2a:i(/e -  T)4

0  j ^ z j 8 n 2 x \ ( k  -  l ) 4 ^ =̂ 3y?167T3xi(Ä: — l ) 4

(4.26)

which will be of full rank provided x\(k) ± 0 for all k.

For non-integer 6k, consider the pair of output equations for one particular value of i

3[Ti,*] =

T +  1 — z +  £3
x2

T  +  1  — z +  X 3

[sin(x2 + 2^x3) -  sin(x2)] 

[cOS( X2) -  COS(x2 +  2 ttX3 )].

(4.27)

(4.28)

Over K  + 1 successive times, with v(k) and w(k) taken to be zero, K  + 1 successive zero 

outputs are possible only if {xi(fc — z) = 0, z = 0 , . . . ,  K}  or £3(k -  i) is an integer for all 

z = 0 , . . . ,  A'. The first case we rule out by assumption. The second has already been 

dealt with. By definition, if a system is observable from a subset of its outputs (in this 

case any pair) then it is observable from the complete set of outputs. The application 

of the full set of 2L + 1 output pairs is part of the mechanism for achieving the SNR 

improvement.
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Our formulation contains some inherent unobservability for some particular states in 

that:-

• zero amplitude, x\ = 0, implies zero output whatever the value of phase and 

frequency; and

• phase and discrete frequency are implicitly ambiguous modulo In.

In our reconstruction, by limiting ourselves to SNRs above -30 dB we rule out the 

zi = 0 case. The phase and frequency ambiguities are removed by constraining the 

state estimates to the appropriate intervals, which is not problematic in the absence of 

aliasing.

4.4 Designing the EKF

To tune the EKF, it is necessary to select appropriate design values for the matrices Qd 

and Rd. The inclination is to take these EKF values to be the same as the noise covariance 

driving the nonlinear state space model, Qa and Ra, but it was shown in Chapter 3 that 

this leads to potentially poor performance. This is because these design values need to 

take into account linearisation errors as well as the effect of the noise, thus it is necessary 

to have Qd > Qa and Rd > Ra.

From the derivation of the state space model we know that Ra is a diagonal matrix with

4.4.1 Choice of Rd

Ra(i,i) = Ra(i + 2L + l , i  + 2L + l) (4.29)

(4.30)
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for i = 1 , . . . ,  2L + 1, where S(u>) is the spectral density at the frequency u>. In order to 

design a sufficiently conservative filter to ensure stability we therefore require

Rd > ^ m a x S ( w ) /  (4.31)
21 u

for w in the frequency range of interest. Note if the measurement noise of the original 

signal, (t+(k-\)Tt is white then the equation for Ra reduces to

Ra =  -  (4.32)

where a2 = E(e2).

4.4.2 Choice of Qd

For the signal model (4.11) the state noise covariance matrix is of the form

Qa

q\ o o 
0 0 0 

0  0  93

(4.33)

However one of a set of sufficient conditions for the stability of the EKF is that [F, Q] be 

controllable, see Section 2.4. The simplest means of ensuring this is to use a Qd of the 

form

Qd

q\ 0 o

0 </2 0

0 0 <73

(4.34)

The (scaled) amplitude is assumed to vary according to an AR(1) equation in the state 

space model. If the amplitude is varying slowly or is constant, (1 — ep) should be close 

to 1 and q\ small. If there is the possibility of fading channels then (1 -  ep) should be 

reduced and q\ increased to allow for the greater variability. Note that the estimate of 

the amplitude will not be as accurate as that of the frequency as it is easier to determine 

frequency using the zero crossings, than it is to determine amplitude in very high noise.
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The size of determines the maximal slew rate of the signal that the EKF can track. 

Thus a large qff allows the EKF to track a signal with a potentially large slew rate. The 

drawback of a large q3  is that even when the EKF is tracking well, if the actual slew rate 

is low the sensitivity to noise caused by a large q$ causes the state estimates to fluctuate 

widely around the true frequency value. Setting ed < ea6 alleviates this problem by 

allowing the value of q3  to be decreased while still retaining the desired range for the 

frequency estimate.

Finally if q% is chosen such that 0 < q'j < q$ then the evolution of the filter estimates will 

not be greatly altered and the controllability of [F, Q] is assured.

4.4.3 Choice of L

It is clear from the formulation of the problem that the majority of the information in the 

EKF measurement signal (the set of Fourier coefficients for bins m = M -  L, . . . ,  M + L) 

is in a small number of bins centred on M. Thus there is a trade-off between the size 

of L and the accuracy of our knowledge of the centre frequency indexed by M. If M 

is known correctly, choosing a larger value of L than necessary to cover the variation 

in S will reduce the efficiency of the filter by decreasing the effective SNR of the EKF 

measurements, as it unnecessarily increases the bandwith of the pre-filter. On the other 

hand if M is not known exactly L must be chosen to be large enough so that the interval 

M — L , . .., M + L covers the range of variation of 6.

4.4.4 Choice of N  and T

As with any application of the short-time Fourier transform (STFT), there is a trade-off 

between resolution in the time domain (N large) and resolution in the frequency domain 

(T large). The problem of resolution in the frequency domain is not as severe as in other 

uses of the STFT as the frequency estimates produced by the high-noise EKF frequency 

tracker are not restricted to the values of the Fourier frequencies. However, T must 

be large enough that the approximations used to derive (4.6) are valid and hence, an 

averaging gain is achieved to improve the SNR. On the other hand T  must be small
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enough that the assumption that the signal parameters are constant within blocks is not 

unreasonable. In general, for SNRs between -20 dB and -30 dB, the value of T should 

be such that T > 1000.

4.5 Passive Sonar Tracking

4.5.1 Problem Description

The performance of the EKF frequency tracker for weak, narrowband signals designed 

above was tested on the problem of tracking a target moving past a single, stationary 

sonar receiver at a constant velocity, using simulated data. This problem is illustrated 

by Figure 4.3.

Target

Sensor

Figure 4.3: Constant velocity sonar tracking

The signal measured by the receiver was assumed to be corrupted with zero mean, 

Gaussian, white noise. In such a case the uncorrupted signal is given by the equation

X ( t - f  — ) =  pr COS(27tM t)
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where rT is the distance between the target and the receiver at time r, and c is the 

propagation rate of the signal through water. The centre frequency, M, is measured in 

Hz and the sampling rate was T  Hz, i.e. each time block is comprised of one second of 

data. All distances were normalised so that the distance between the target and receiver 

at the point of closest approach was rm = 1. The power of the signal was modelled 

as decreasing in proportion to the square of the distance. The value of the SNR when 

the target was furthest from the receiver is given by SNRmin. The value of the signal- 

to-noise ratio when the target is closest to the receiver is given by SNRmax and thus the 

broadband, background noise has a variance of

0 . 2    "J^Q—O.lSNRmax

Table 4.1 gives the signal characteristics for each data set.

Data Set T N M L SNRmin SNRmax a 2

1 2048 400 300 2 -10 0 1

2 2048 400 300 2 -20 -10 10

3 2048 400 300 2 -30 -20 100

Table 4.1: Simulated data sets

4.5.2 Initial State Estimates

As was illustrated by Theorem 2.9 in Chapter 2, and also by common sense, the ability 

of the EKF to estimate accurately the state of a system depends crucially on the accuracy 

of the initial state estimate. For the passive sonar tracking problem reasonably good 

initial estimates can be obtained using the procedure outlined in Quinn et al. (1994) 

using only the Fourier coefficients of the first block of data. Briefly, their technique is as 

follows. Let 5m be the Fourier coefficients of the first block of data. Then estimates of 

<f>, p and are obtained by minimising

M+L
Y  km -  pexp(;^)dm(<$)|2
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where

The resulting estimates are given by the equations

6 = x3(l|0)

(4.35)

P = * i(l|0 )2

<P = x2(l|0)

(4.36)

where the superscript * indicates the complex conjugation. This estimator for constant 

<f> is unbiased and asymptotically statistically efficient. The estimate of 6 can be obtained 

by computing (4.35) for a fixed set of values in the range [-L,  L\ or by a numerical 

optimisation technique.

4.5.3 Results

For each simulation the initial state estimates were obtained via the equations (4.35)- 

(4.36). This method is not ideal, as the variance of the estimator of 6 is relatively large. 

In general, the technique produced sufficiently accurate initial estimates but this was 

not true in all cases examined. The problem of finding sufficiently accurate estimates 

for initialising the EKF for this scenario requires considerable further work.

The values used for the design parameters Qd = diag(gf, qd, q$) and Rd = ^ r dI  are 

given in Table 4.2. These are not necessarily the optimal design values. They were 

selected by holding all but one parameter fixed and then searching for the optimal value 

of the remaining, free parameter for each design value in turn. This procedure was 

iterated two or three times until the minimising value of each parameter did not change 

significantly. Also given in the table are the sum of the squared errors in the estimates 

of the frequency offset, 6, and the power of the signal (measured by 10 log10 ( | i )  )• In
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all cases the frequency offset, b, and the scaled amplitude, p, were assumed to vary 

according to random walk processes (i.e. er = es = 0).

1 2 3

4 0.00005 0.0001 0.0001

4 0.0010 0.0010 0.0010

4 0.0025 0.0045 0.0100
ji ̂ 12.50 20.00 125.0

MSE(power) 35.21 31.91 44.06

MSE(freq.) 0.0354 0.0327 0.0402

Table 4.2: Design values

Figures 4.4 -  4.12 display the results of the EKF tracker. A sample of the original, 

measured signal is given for each data set. The top trace is when the target was at the 

maximum distance from the receiver and the bottom trace when it was at the minimum 

distance. The periodicity in the data is not obvious, even for the strongest signal. Also 
for each data set the EKF estimates of the amplitude and frequency are plotted along 
with the true values. Then the errors in these estimates are plotted. These illustrate 

the high accuracy that is obtained by the EKF tracker even at very low signal-to-noise 

ratios.
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Time (s)

Time (s)

Figure 4.4: Measured sonar signal when target at greatest range (top) and closest range 

(bottom) for data set 1.

200
Time (s)

Time (s)

Figure 4.5: EKF estimates for data set 1. True values given by solid line.
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CQ
3 2

200
Time (s)

X 0.05:

Time (s)

Figure 4.6: The error in the EKF estimates for data set 1.

0.01 0.02 0.03 0.04 0.05 0.06
Time (s)

0.01 0.02 0.03 0.04 0.05 0.06
Time (s)

Figure 4.7: Measured sonar signal when target at greatest range (top) and closest range 

(bottom) for data set 2.
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200
Time (s)

Time (s)

Figure 4.8: EKF estimates for data set 2. True values given by solid line.

200
Time (s)

Time (s)

Figure 4.9: Error in the EKF estimates for data set 2.
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Time (s)

Time (s)

Figure 4.10: Measured sonar signal when target at greatest range (top) and closest range 

(bottom) for data set 3.

200
Time (s)

Time (s)

Figure 4.11: EKF estimates for data set 3. True values given by solid line.
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200 300 400

Figure 4.12: Error in the EKF estimates for data set 3.

4.6 Conclusion

In this chapter, the flexibility of the EKF approach to filter design was demonstrated. 

The EKF-based frequency tracker of Chapter 3 was effective only for signals which had 

relatively high signal-to-noise ratios. In spite of this, in this chapter an EKF tracker 

was designed which was effective for very weak, narrowband signals. This was done 

by incorporating prior knowledge of the nature of the signal into the structure of the 

filter by the choice of signal model. This increased the effective SNR and so allowed 

accurate tracking. Furthermore, the understanding of the dynamics of the errors of the 

EKF gained in Chapters 2 and 3 could be used to derive design guidelines applicable to 

this particular frequency tracker.

While the approach used in this chapter was specific to the problem of passive sonar 

tracking, the general methods used here and in Chapter 3 can be applied to the con­

struction of nonlinear observers for many types of problems.



5

A Self-Tuning Regulator 

for Vibration Control

5.1 Introduction

^ H IS  chapter examines a problem of active vibration control. Unlike passive control, 

which employs isolation and absorbtion techniques to reduce vibrations, active vibra­

tion control seeks to eliminate oscillations by generating cancelling vibrations. Such 

controllers are often adaptive in order to allow for changing circumstances or imperfect 

knowledge of the plant dynamics. The reduction of vibration in helicopters caused by 

the movement of the rotor blades is an important problem in their design and effective 

control systems offer significant benefits (see Pearson and Goodall (1994) for example).

The problem examined in this chapter is that of eliminating a sinusoidal disturbance 

of unknown frequency from the output of a linear, time-invariant plant with unknown 

parameters using an adaptive controller. Such a system has poles on the unit circle 

corresponding to the frequency of the disturbance and is therefore not asymptotically 

stable. From the internal model principle, these critically stable dynamics must be 

reproduced in the controller to reject successfully the disturbance. If the least-squares

99
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algorithm is used to estimate the unknown frequency in open-loop then a biased answer 

will be obtained. In this chapter it is shown that by estimating the unknown frequency 

(and other plant parameters) using a modified least-squares algorithm in closed-loop 

using a certainty equivalence minimum-variance controller, any bias in the frequency 

estimate is eliminated. The resulting adaptive controller is shown to converge to a 

solution which regulates the plant and which contains poles at the location of the true 

frequency of the disturbance.

The next section describes the plant, estimation algorithm and control law in detail and 

the subsequent section contains the convergence proof. The final section demonstrates 

the performance of the vibration control self-tuning regulator with simulation results.

5.2 Problem Description

Consider the adaptive control problem illustrated in Figure 5.1 where P is a linear, time- 

invariant plant which is perturbed by sinusoidal disturbance, Vk, of unknown frequency. 

The disturbance process is modelled by passing a white noise process through a transfer 

function H .

Figure 5.1: Adaptive control for vibration rejection.
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The parameters of the plant and disturbance are given by the vector, 9. These unknown 

parameters are estimated using a modified least-squares algorithm and the estimates are 

used to design an adaptive minimum-variance controller, K{9), to eliminate the effect 

of the disturbance on the output of the plant. The equations for the plant, disturbance 

process and controller are given below.

5.2.1 Plant Dynamics

The plant is a linear, time-invariant system described by the equation

Xk Puk

B\W)
M v )

Uk

where

B\(y) — b'0qn 3 + b\qn 4 + ---- b b'n_3

M { y )  =  </n - 2  T  «iQn_3 - T ----- h a n - 2

and q is the forward shift operator. To ensure the plant is sufficiently well-behaved we 

will make the following assumptions.

Assumptions

1. The plant is stably invertible, i.e. all the roots of B\(q) are strictly inside the unit 

circle.

2. The plant has unit delay, i.e. b'0 ^  0.

3. An upper bound, h, is known for the order of the plant, n — 2.

For convenience of notation (and without loss of generality) n will be assumed to equal 

n — 2.
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5.2.2 Disturbance Process

The sinusoidal disturbance process is characterised by the equation

where

Vk =  Hek
Bi(q)
M(q)

ek

B2{q) = q2

A2(q) = 1 - 2  COs(u>) • q + q2

subject to the condition that frequency of the disturbance u> is not an integer multiple of 

7r. If the noise process, {e^}, satisfies the conditions

E[ek\

E[e2k]

E[e\]

0

a2 k = —2, — 1
<

0 k > 0

f l \  < oo.

(5.1)

(5.2)

then { Ujt} is given by the second order, constant coefficient difference equation.

vk =  a ke_i  +  ß ke~2

where

sin (kuj) 
sin(w)

sin ([k + l]w) 
sin (a;)

Hence { i?̂ } is a sinusoid with random phase and amplitude and frequency determined 

by uj and will be bounded for all k provided e_ 2  and e_i are bounded. In the following 

we will assume that is the case.



§5.2 Problem Description 103

5.2.3 Minimum-Variance Control

The aim of minimum-variance control is, as the name implies, to minimise the variance 

of the output of the plant. The performance criterion for such a system is

k=1

For a time-invariant, linear system described by the ARMAX model

A(q)yk = B(q)uk + C(q)ek

the feedback control law, for stable B(q), which minimises this criterion is

C ( q ) - A (q )
B{q)

(5.3)

assuming the polynomials A, B and C are known (Äström and Wittenmark, 1984). The 

result of using this controller is to fix yk = ek for all k which clearly produces the 

minimal attainable variation in the output as all predictable variation in the output has 

been eliminated. If the polynomials are unknown then the controller designed using 

estimated values in place of the unknown values is the certainty equivalence minimum- 

variance controller. Note that the zeros of the plant appear in the poles of the controller. 

If the plant is not stably invertible then the closed-loop produced by the control law (5.3) 

will be unstable. In this case the internally stabilising minimum variance controller is 

not given by (5.3) but by an alternative formula as explained in Äström and Wittenmark 

(1984).

5.2.4 General System

The complete system can be described by the single ARMAX equation

A(q)yk = B(q)uk + C(q)ek (5.4)
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where

A(q) = A\{q)A2{q)

= (?n 2 + a\qn 3 + •— I- an-2)(l — 2cos(u;) • q + q2)

= qn + (a\ -  2cos(u>))qn~l + (1 -  2cos(u/)a'1 + a'2)qn~2

+ (ai -  2cos(u;)4 + a3)qn~3 + • • • + (a'n_4 -  2cos(u;)a,Tl_3 + a'n_2)q2 

+ ( a n - 3  — 2 cOS(u>)c4 _ 2 )<7 +  ö n - 2  

= + aiqn~l + • • • + an

B(q) = A2(q)Bi{q)

= (1 — 2cos(u;) • q + q2){b'0qn 3 + b\qn 4 + ---- f  K s )

= b'Qqn~̂  + (b\ -  2cos(u)b'0)qn~2 + (b'0 -  2cos(u>)b\ -  b'2)qn~3

+(&i — 2 cos(a;)Ö2 + b'3)qn 4 + • • • + (b'n_5 — 2 cos(w)&^_4 + b'n_3)q2

+(b'n- 4 -  Zcos{uj)b'n_3)q +  6'n_ 3 , 60 f  0

=  b ^ q 11 4  - f  b \ q n  2 - j -  • • • +  f r n - l  

C(q) = A\(q)B2(q)

= (qn~2 + a\qn~3> + ---- 1- a’n_2)q2

— qn + c\qn + • • • + Cn

and cn_i = cn = 0. Assume the plant initial conditions are

uk =  yk =  vk -  0 k < 0.

Recall that if the polynomials A , f? and C are known then the minimum-variance con­

troller is

K  = ^l(g)^2(g) ~ ^l(g)^2(g)
^ 2 ( ? ) ^ l ( ? )

Ai(g){2cos(u;) • g -  1}
~ 2cos(a;) ■ q + q2}

The resulting ideal control law u°k = — Kyk causes yk = ek so, in this case, the expression
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for yic can be rewritten as follows

yk+ 1 — +  e k+\ (5.5)

where

<Pk =  ( y k , y k - l , - - - , y k - n + l , U 0k ,U°k_ l , . . . , U 0k_ n + i ) T (5.6)

0° = ( c i . , c n -  an,60, .. .,6n_i)r  (5.7)

Note that a>k is known at time k + 1 so yk+\ is given by a linear regression equation. In 

this notation the minimum-variance control law is

U°k =  ~ l ~ { f l ( Ci - a i ) y k + l - i  +  nY , biu0k - i }
u t= l  t=l

n n —1

=  ---- { J Z ^ y k + l - i  +  Q n + \+ iU°k-i}-
n+ 1 t= l  i= l

Thus the true parameter vector, 9°, can be estimated using a technique, such as recursive 

least-squares, to estimate the parameters of a linear regression. At each time instant, 

a certainty equivalence controller can be calculated from the parameter estimates, 9k, 

using the equation

I  n n—1

^ k  —  ̂Qj,kyk-\-\— t T ^   ̂ t}- (5.8)
9n-\-\,k t= l t= l

where 9uk is the z-th element of estimate of 9 at time k.

5.2.5 Recursive Least Squares

The following slightly modified version of recursive least-squares from Sin and Goodwin 

(1982) will be used to estimate the unknown plant parameters. The modification ensures 

that the weighting matrix, Pk, has bounded condition number which helps prevent 

numerical problems. It is known as the condition number monitoring (CNM) algorithm. 

At each time instant k a new estimate of 9° is calculated based on the previous estimate,



106 A Self-Tuning Regulator for Vibration Control Chapter 5

Ok- 1  and the current output of the plant, yk, by the following equations.

Ok

P'k- 1

fk -1

Ok- 1 + Pk-2<fk-

1 + (y* -

Pfc-2
1 + bk-lPk-ltyk-X

rk-2{ 1 + 0 L iA -2 ^ - i ), r_! > 0

(5.9)

(5.10)

(5.11)

If

f k - \ \ m a x ( P ' k - l )  <  A

for some 0 < A < oo then

otherwise

This algorithm has the following properties.

(5.12)

(5.13)

(5.14)

1. The algorithm will perform a standard least-squares update of the parameter 

estimates provided the condition number of the weighting matrix is not too large. 

This can be seen by re-writing the equation for the weighting matrix as

P k - 1  =  ß k - 1 P k - 2
Pk-2<f>k-\< f>l.\Pk-2  

1 +  f t k —1 P k —2(f k —\

where 0 < ßk-\  < 1 is defined as

max( A, T k —l ^ m a x P fc_i )

1 + Qfc-10f-iPfc-2<ftA:-2 
1 + 0j_l^>fc-2</>A:-2

for some 0 < oik- 1  < 1, with q^-i = 1 when fk-\^max(P'k-\) -  A. That is ß = 1 

when the condition number is small enough and the algorithm reduces to regular 

least squares. When the condition number is too large ß  is as close to one as 

possible.
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2. Consider the quantites Rk and rk which are defined by the recursions.

R k- 1 = R k -2  + 4>k-\4>k-\

Tk-\ -  trace{Rk-\).

with the initial condition r_i > ^f_i .  With these definitions bounds for the quan­

tities Pk and fk  can be found which are a function of the measured data. In 

particular, by construction

Furthermore, by induction it can be shown that

fk -1 < Affc-i.

3. If a certainty equivalence minimum-variance controller is used then <t>k-i&k- 1  =  0 

for all k.

5.3 Properties of the Vibration Control STR

H aving clearly definied the problem w e now  w ish to determine which of the five 

properties of stability, convergence, self-optimality, self-tuning and consistency this 

system  possesses. It w ill be show n that this system  is stable, convergent and self- 

optimising. W hile consistency cannot be proven for this system, it can be show n that 

the poles of the controller will contain the poles due to the sinusoidal disturbance. 

Convergence, in general, to the correct parameter values 90 cannot be shown. The 

approach used to prove these results makes use of Martingale theory and stochastic 

Lyapunov functions. In the next section some preliminary theorems and lemmata are 

developed and reviewed. In the follow ing section the proofs of stability and optimality 

(Theorem 5.2) and convergence (Corollary 5.2.1) are given.
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5.3.1 Preliminary Results

Theorem 5.1 (Non-Negative Near-Supermartingale Convergence) (Robbins and Sieg- 

mund, 1971) Let (fhJF. P) be a probability space and T\ C T2 C ... be a sequence of 

a-algebras of T . For each k = 1 ,2 ,... let Zk, ßk, and (k be non-negative T^-measurable 

random variables such that

E [ z k + \ \ F k ]  <  z k (  1 +  ß k )  +  -  Ofc-

if

Y fa <° °  311(1 T, f*  <  ° °
f c = l  A : = l

then hm Zk exists and is finite, and
k—►oo

^2Ck<oo.  
k = 1

The following lemma considers a sequence { yk } which is the sum of an Tk_1 -measurable 

sequence and some disturbance sequence {e*}, and an .T^-i-measurable estimate of yk 

denoted by yk. It shows that if some non-decreasing, non-negative weighting sequence, 

{7̂ }, can be found which satisfies two technical conditions, (5.15) and (5.16), then the 

expected error in the estimates tends to zero (result (5.17)) and the variance of the 

error tends to the variance of the disturbance process (result (5.19)). Thus, if a suitable 

weighting sequence can be found for the vibration control STR then this lemma can be 

used to prove that the STR is self-optimising.

Lemma 5.1 (Stochastic Key Technical Lemma, (Goodwin and Sin, 1984)) If

lim < 00 a.s. (5.15)
rk~'

where for some increasing sequence of a-algebras Fk-\
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1. E[ek\Tk-\\ = 0 a.s.

2. E[e2k\Tk-\\ -  ° 2 a.s.

3. E[e\\Fk-\] < °° a.s.

4 . Vk = Vk~ Vk where yk and (yk -  ek) are Fk_\-measurable

5. {r̂ —i} is a non-decreasing, non-negative Tk^\-measurable sequence

and if there exist constants K \, A'2 and N, 0 < K\ < 00,0 < A’2 < 00,0 < N < 00, such that 

1 V N
- r iV- i  < K\ +  Y.(y>= ~ ekf as- (5.16)
1 iV fc=l

then

1 ‘V
lim — -  ek)2 = 0 a.s. (5.17)

N —>oc i \  *— ■ k—1

lim sup — < oo a.s. (5.18)
/V-+00 r  TV

1 N
Jim T7 S(yife-yjb)2 = a.s. (5.19)
iV—>oo iV f—'

Consider the vibration control STR posed in Section 5.2. The system can be described 

by the equation

Vk = + ek

where <f>k is defined by equation (5.6). Define T k as the cr-algebra generated by 

{y\ , . . . ,  yk, u\ , . . . ,  uk} then yk is clearly .^-measurable. Also ek satisfies the conditions 

of the noise process of Lemma 5.1 by assumptions (5.1)-(5.2). Given the minimum- 

variance control law (5.8) the a priori estimate of yk is .^-measurable and is simply

yk =  $ k - \ 0 k - \

0
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for all k. Thus in the notation of Lemma 5.1

Vk = E[yt !/•*_!] =

The following lemma shows that the vibration control STR satisfies the technical condi­

tion (5.16) of the Stochastic Key Technical Lemma.

Lemma 5.2 For the given model (5.4) with the noise assumptions (5.1)-(5.2), minimum- 

variance control law (5.8) and the recursive least-scjuares estimation algorithm (5.9)-(5.14)

for some 0 < K \ < oo, 0 < K j < oo, where T k is the a-algebra generated by

Proof

Since the plant is stably invertible {uk} can be written as the output of an asymptotically 

stable linear system driven by and {vk}. Hence there exist constants c, > 0. i = 

1, . . . ,  3 such that

(5.20)

1 N
i  + c 3

k=1

since {vk} is a bounded sequence. Now

-p{2̂ yi+1 = jy + ew ) 2

=  —  ^2 E[yk+\\F
k=1

by the assumptions on the noise process. Therefore since

rk = rk_ i + <f>l<l>k
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and

(Pk—\ — i Vk — • • •  i Vk—n  i ^k — 15 • • • 1 ^ k —n )

we immediately have

1 .  A
<  — r t - _ i
“ N

1 N
< ft-, + K2-  Y ,  E\yk| ^ - i ]2

The following lemma gives some simple results for the a posteriori prediction error for 

the vibration control STR.

Lemma 5.3 For the given model (5.4) with the noise assumptions (5.1)-(5.2), minimum- 

variance control law (5.8) and the recursive least-scjuares estimation algorithm (5.9)-(5.14) 

the a posteriori prediction error {vk} satisfies the equations

Vk =  Vk ~  4 > l - \ h

(5.21)

1 T <Pk—\Fk—2<Pk—\
(5.22)

where Ök =  Ok -  00 and Tk is the a-algebra generated by {y \ , . . .  , yk , u \ , . . .  ,Uk}.

Proof

From (5.5) we immediately have

Vk =  <?>Ll0° +  e k - \  ~  4 > l - \ h

using the noise assumptions (5.1)-(5.2) which proves (5.21).

Using the recursion for Ok gives

«rJf *
Vk =  Vk -  4>k-\Qk-\ -

(fk-iPk-l^k-X
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1 +

which proves (5.22).

5.3.2 Main Result

With the results derived above it is now possible to show that the vibration control 

STR satisfies the remaining technical condition (5.15) of Lemma 5.1 and thus it is self- 

optimising. As a consequence of this proof it is also possible to derive the stability and 

convergence results.

Theorem 5.2 (Stability and Optimality) For the given model (5.4) with the noise assump­

tions (5.1)-(5.2), minimum-variance control law (5.8) and the recursive least-squares estimation 

algorithm (5.9)-(5.14)

lim — Y^ y\ = 0 a.s.
N  —̂ oo N  f “? k

K — \

(5.23)

lim — y ^ u l < oo a.s.
N —oo i V f - !  *

A C = 1

(5.24)

Proof

Define the stochastic Lyapunov function

where 9k = 9k -  9°. From Lemma 5.3 and the recursion for 9k we obtain

9)t-l = 9k ~ Pk-2<Pk-\Vk

therefore

9l_^Pk} 2h - \  =  9kPk} 29k -  26Tk_^9kpk +  ( f l ^ P k ^ k - w lk—\ r k—2
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From the matrix inversion lemma

P k - \  ~  $ k - \ \ . P k - 2  +  P k - l & k - l ]

therefore

C 1 C 2 C 1  =  ß k - \ $ k P k l \ h  ~  O k f a - i t ä - i h  ~  +  <?l^Pk-2<Pk-\r)2k

hence

ßk-\Vk =  Vk- l  +  ~0Tk4>k-^Tk . A  +  2 < C iC *  -  4>l_^Pk-2<}>k-\rii 

= Vk- 1  -  v l -  <f%-iPk-2<t>k-\ril

Thus we have

Tk-2 Tk- 1 Tk- 1

= —  -  r P - E [ 4 \ r k- 1] -  E[<pjc_\Pk~2tPk—\Vk\~ k̂~\]
rk-2 n t-2 Tk- 2

Define
k „2

Mk =
A Vjfc , ^  V j  , ^  < P J ^ P j - 2 < P j - 2  ^ 2

r fc-i “ “JD-2 j=l D-2

then Mk is a non-negative, ^ -m easurable function. Furthermore

E[Mk\Tk-x] = £ [ ^ | ^ _ i ]  +  + £

r k —2 i=i fj-2

< V*-! 1
rjfc-2 ĵfe-2 Tk-2

2 fc-1 „2
+ £ [ A | ^ j  +  ^  J L

D-2 “ J D-2

^k—2
3 - 1

Tj—2

= Mk-1
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By the Non-Negative Near Supermartingale Convergence Theorem, Theorem 5.1, { M k )  

converges almost surely and hence

Now

N 2
lim T  —A-GKO J-j r k- 2

< oo a.s.

T  <l>'k—'l^>k—2<Pk—l 2lun > ------------------ n t <  oo a.s.
N — c o  ^k=\ rk -2

(5.25)

(5.26)

E [ y k \ T k - \ ]  =  4>L  i *°

=  Vk +  4> k-\8k  

=  Vk +  <Pk-\ f >k - 2 (P k -\r ]k

therefore

N
Urn y

t i

E [ y k \ T k- < \2 <
N 2

2 lim T  %
T k -\

N  2
< 2 lim y  %

N- ~ * = i T|'-2
< oo a.s.

: lim V  t ä - x p k-2<t>k-\?  2 

w- ~ £ i  ?*-i
N

N  — * o o

^k— l&k—1 <f)k—\ ^ >k—2<f>k—'[ 2
~r1k

fc=l T'fc—1 T*fc-2

using (5.25) and (5.26). Application of the Stochastic Key Technical Lemma then proves 

the results. ■

Corollary 5.2.1 (Convergence) For the given model (5.4) with the noise assumptions (5.1)- 

(5.2), minimum-variance control law (5.8) and the recursive least-scjuares estimation algorithm 

(5.9H5.14)

lim \\§k -  O k-1 ||2 = 0 a.s. (5.27)

Proof

From (5.22) the recursion for Ok can be written as

Ok = Ok- 1 -I- Pk-2<f>k-\Vk
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therefore

| | ^ - ^ - l | | 2  =  <t>l-\Pk-2<f>k-\Vk

Pk-2<t>k-\ 2

hence

N
lim Y ,  ¥k  - 6 k - \ I I 2  <

< oo a.s.

using (5.26) which proves the result.

Convergence Rate

The convergence rate of the vibration control STR described in Section 5.2 is very slow. 

The gain in the recursive least-squares algorithm will tend to zero because lim Pk — 0.
k—*oo

At the same time the magnitude of the input to the estimation algorithm, yk, is also 

tending to zero. As a consequence the convergence rate decreases with k. In practice, 

it is necessary to use a RLS algorithm which imposes a lower, non-zero bound on the 

magnitude of Pk.

Consistency

These results show that the vibration control STR will converge to a stable controller 

which regulates the plant. As the vibration control STR eliminates the sinusoidal dis­

turbance it follows from the internal model principle that the limiting controller must 

contain unit circle poles at the unknown frequency of the disturbance. Thus this STR 

must consistently estimate this frequency. However, it is not possible to conclude that 

the limiting, adaptive controller will be equal to the ideal controller, in general, for a 

number of reasons.
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Recall that when the transfer functions of the plant and disturbance are known, the ideal 

controller is
_ A \ { B i -  A2)

V ~ B, A2 •

If this controller is irreducible then it can be decomposed into a compensator for the 

plant, P _1, and an oscillator at the disturbance frequency, AY The system can then be 

represented as in Figure 5.2.

Figure 5.2: Oscillator+Compensator form of Vibration Control STR

If the adaptive controller is over-parameterised (i.e. n > n -  2) then the limiting 

controller could have cancellations between the compensator and the oscillator and 

convergence to the ideal controller cannot be assumed.

Furthermore, as the only input into the system is a pure sinosoid of frequency u, the 

frequency response of the limiting adaptive controller only needs to match the frequency 

response of the ideal controller at this frequency to eliminate the vibration. Mismatch 

between the estimated and ideal controller at other frequencies will have no effect. This 

would not be the case if the disturbance was a vibration embedded in white noise.

That the vibration control STR is not self-tuning is not unexpected. As was discussed in 

Chapter 2, it is well known that using least-squares to estimate the parameters of a linear
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system when there is a vibration present will produce a biased result. Moreover, Becket 

et al. (1985) showed that the parameter estimates produced by the form of Äström 

and Wittemark's STR which uses the stochastic approximation estimation algorithm, 

will converge to a biased answer. They showed that the limiting parameter estimates 

are a random multiple of the true parameter estimates when the ideal controller is 

irreducible. For the case of the vibration control STR a similar result can be expected. 

From the internal model principle we know that the limiting controller must have a 

denominator that has a quadratic factor, due to the vibration, which is a multiple of the 

same quadratic factor in the ideal controller.

If the disturbance had power at frequencies in addition to to then this limited consis­

tency result would be insufficient. Such a situation could arise if the frequency of the 

disturbance was time-varying, if the vibration contained harmonics of the fundamental 

frequency or if the vibration contained additive white noise. To achieve optimality in 

such cases the vibration control STR would have to match the ideal controller over the 

entire frequency range contained in the disturbance. For the case when the disturbance 

was a vibration with additive white noise a result similar to that of Becker et al. would 

be expected for any self-tuning adaptive vibration controller. In the case when the vibra­

tion frequency was time-varying the estimation algorithm would need to be modified, 

to incorporate exponential forgetting for example, to achieve a self-tuning result. In 

such a method the estimation estimation algorithm would operate on a sliding window 

of data and thus old data is discounted, allowing for variation in the parameters.

5.4 Simulations

The following simulations show the results of using a modified form of the vibration 

control STR in two situations. The first example is of a simple, low order, minimum 

phase plant of known order. In the second example the order of the plant is not known 

and the adaptive controller is over-parameterised.

In both cases the recursive least-squares algorithm used is the exponential forgetting 

and resetting algorithm (EFRA) (Salgado et al., 1988) in order to achieve a reasonable



118 A Self-Tuning Regulator for Vibration Control Chapter 5

convergence rate. This algorithm yields the same limiting controller as the condition 

number monitoring RLS algorithm (BNM algorithm) described in Section 5.2. In the 

EFRA algorithm, both lower and upper bounds are placed on the size of Pk. The 

algorithm is given by the equations

Ok

Pk-i

Ok-1 + aPk-2<t>k-\

TPk-2 ~

1 +  ( f k - i P k - l ^ k - l

aPk-24>k-\4>k-\Pk-2

(yk -  <i>Tk-\ök-i )

1 + (f>k-\Pk-2(f>k-\ + ß l — ÜPk-2

where a, ß, A and 6 are constants. If the constraints

0 < 7 < a < 1 

(7 -  a )2 +  4/36 < (1 -  a )2

ß > 0 
6 > 0

ß l  <  P_i < v l

hold, where

then

a  1 -  A 
7 = —r—

A 7
v =  ±  I 1+ ( 1 + —  j

4 ß ö \l '

_ A /  O t  -  7 li =

1*1 < Pk < v for all k.

General guidelines for choosing the constants are

• q adjusts the gain of the algorithm, typically a 6 [0.1,0.5];

• ß is related to the minimum eigenvalue of Pk, typically ß e [0,0.01];

• A is the exponential forgetting factor; typically A e [0.9,0.99]; and

• 6 is inversely related to the maximum eigenvalue of Pk, typically 6 e [0,0.01].
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For constants in these ranges

7 ß v »  7 + -o 7
ß

l i  % -----------
a  —  7

The simulations here used the settings

q = 0.5 ß = 0.005 

A = 0.95 6 = 0.005

and thus

0.011/ < Pk < 10.1/.

The plant model used in both simulation examples has the transfer function

=

3 z - '
1 -  0.5*-1

so the plant is minimum phase. That is, it is both stable and stably invertible. The 

disturbance process had the transfer function

H
Ai(z - 1)
_________ 1_________
1 -  2cos(u;)2-1 + z~2

where uj = |  radians or 0.0833 Hz. Hence the general system was of order n = 3 with 

poles at 0.8660 ±0.5;. The ideal controller for this system is

A\(z~l ) 2cos (u)z~l — z~2 
B \ ( z ~l ) 1 — 2 cos(u>)2“ 1 + z~2 
2- 1(2cos(u;) — (1 + cos(u;))z_1 + \ z ~2)

2_1( 3 — 6cos(u;)2-1 + 3z~2)
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5.4.1 Example 1

In this example the order of the plant was known and so the controller was correctly 

parameterised. Figure 5.3 compares the plant output when the BNM algorithm was 

used with the output obtained using the EFRA algorithm. This demonstrates the slow 

convergence rate when the RLS gain is not bound away from zero. Both algorithms 

converged to a limiting adaptive controller with the correct poles as expected. The poles 

of the limiting adaptive controller were 0.8660 ± 0.5000; after k = 250 iterations in the 

EFRA case and after k = 10.000 iterations when using the BNM algorithm.

The EFRA parameter estimates for the controller numerator and denominator poly­

nomials are given in Figures 5.4 and 5.5 respectively. The lack of consistency in the 

parameter estimates is clear. The true parameter values and the limiting estimated 

values are given in Table 5.1.

Time

Time

Figure 5.3: Plant output using the BNM (top) and EFRA (bottom) RLS algorithms for 

Example 1.
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100 200 
Time

100 200 
Time

I -1.5

Time

Figure 5.4: Estimates of controller numerator polynomial coefficients for Example 1. 

True values given by solid lines.

Time

Time

Figure 5.5: Estimates of controller denominator polynomial coefficients for Example 1. 

True values given by solid lines.
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True Estimated

C l  -  « 1 1.7321 1.7980 p

c 2 -  a2 -1.8660 -1.6164 p

C3 -  Ö3 0.5000 0.4802 p

bo 3.0000 3.0000 p

b\ -5.1962 -5.1962 p

&2 3.0000 3.0000 p

Table 5.1: Parameter values for Example 1, p = 1.1133

From Table 5.1 it can be seen that the denominator of the limiting adaptive controller 

is a multiple of the ideal denominator, but that this is not true for the numerator. This 

is in contrast to the Äström and Wittenmark STR where the limiting controller is a 

random multiple of the entire ideal controller when this ideal controller is irreducible 

(Becker, Jr. et al., 1985; Radenkovic, 1990). The vibration control STR is able to eliminate 

the vibration from the plant output in spite of converging to a different controller to 

the ideal one because, in this case, it is not necessary to match the ideal controller at all 

frequencies. The controller is only being exdted by a signal with energy at the unknown 

frequency u> and thus there are an infinite number of controllers which match the ideal 

controller at the frequency u and hence satisfy the performance criterion. That the 

limiting controller does this can be seen from the magnitude and phase response of the 

ideal and limiting adaptive controllers which are shown in Figures 5.6 and 5.7.
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Frequency (Hz)

Figure 5.6: Magnitude response for limiting adaptive controller (dashed line) and ideal 

controller (solid line) for Example 1.

Frequency (Hz)

Figure 5.7: Phase response for limiting adaptive controller (dashed line) and ideal 

controller (solid line) for Example 1.
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5.4.2 Example 2

In this example the same plant was used but the order was considered to be unknown. 

The adaptive controller was designed using an assumed upper bound of n = 5 for 

the order of the general system. If 0* was a consistent estimator of 9° then the extra, 

unnecessary parameters in the controller, (c± -  a4 ), (C5 -  05), 63 and 64, should converge 

to zero. This is not the case as can be seen from Figure 5.8. However, the limiting 

adaptive controller does regulate the plant, driving the output to zero, as is shown in 

Figure 5.9.

100 200 
Time Time

Time Time

Figure 5.8: Parameter estimates for Example 2.
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Figure 5.9: Plant output for Example 2.

The true parameter values and the limiting, estimated values are shown in Table 5.2. 

In this case, neither the denominator polynomial nor the numerator polynomial is a 

multiple of the ideal controller transfer function polynomials. This is in contrast to 

the case when the controller order was correctly estimated. However the poles of the 

limiting, adaptive controller are -3.2232,2.2085 and 0.8660 ± 0.5; and hence the vibration 

control STR contains the poles due to the vibration as expected. Once again the limiting 

controller matches the ideal controller at the frequency of the vibration, w, as in shown 

by Figures 5.10 and 5.11.

Parameter c i -  a\ c2 -  a2 c 3  -  a3 C 4  —  Ö 4 c 5  ~ a 5

True 1.7321 -1.8660 0.5000 0.0000 0.0000

Estimated 2.2585 -1.9837 0.4610 0.2449 -0.0845

Parameter bo h 62 h 64

True 3.0000 -5.1962 3.0000 0 . 0 0 0 0 0 . 0 0 0 0

Estimated 2.9604 -5.5496 3.2754 0.2984 -0.4159

Table 5.2: Parameter values for Example 2.
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Frequency (Hz)

Figure 5.10: Magnitude response for limiting adaptive controller (dashed line) and ideal 

controller (solid line) for Example 2.

Frequency (Hz)

Figure 5.11: Phase response for limiting adaptive controller (dashed line) and ideal 

controller (solid line) for Example 2.
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5.5 Conclusion

This chapter showed how the analysis for the self-tuning regulator problem posed by 

Äström and Wittenmark can be extended to the case when the plant disturbance is a 

deterministic vibration. It showed that the stability, convergence and self-optimality 

properties of the Äström and Wittenmark STR carry over to this new scenario, given an 

appropriate estimation algorithm. However the self-tuning property is not satisfied by 

the vibration control STR unlike the Äström and Wittenmark STR. Moreover, in general, 

conditions under which the parameter estimates will be consistent have not been found. 

However, it has been shown that the self-optimality property of the vibration control 

STR requires that the unit circle poles due to the vibration are consistently estimated. 

The properties of the vibration control STR have been illustrated with simulation results.
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Conclusion

6.1 Summary of Major Results

^ H E  results developed in this thesis contribute to the important problem of the esti­

mation of the frequency of a sinusoidal signal. This area is significant because in many 

problems in both signal processing and control the frequency of a signal encodes use­

ful information. This was illustrated by the choice of problems examined: the signal 

processing problem of tracking a time-varying frequency; and the control problem of 

rejecting a vibration at an unknown frequency.

In spite of the differing applications, both problems shared a number of common fea­

tures. In both cases it was necessary to solve a nonlinear estimation problem. In the 

frequency tracking case the nonlinearity arose from two sources. The first was that the 

information to be recovered was a nonlinear function of the output. The second source 

was the nonlinearities present in the calculation of the EKF gain matrix. In the vibration 

control problem the quantities directly estimated (the transfer function coefficients) were 

linear functions of the output. However, by embedding the problem in closed-loop and 

using a recursive least-squares algorithm, this problem also was nonlinear.

129
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The second common feature of both these problems was that they both relied on min­

imising a least-squares error criterion. It was known that using such a criterion could 

potentially cause difficulties. It has been shown that using the Kalman filter on a sys­

tem which has uncontrollable modes on the unit circle leads to a lack of robustness. 

To avoid this carrying over into the EKF frequency tracker, stability theory was devel­

oped for the EKF which allowed the derivation of design guidelines for constructing 

robust, nonlinear filters. In the vibration control case there was a potential bias in the 

parameter estimates which again could have lead to a lack of robustness. However, it 

was shown that by embedding the estimation problem is closed-loop the effects of the 

known open-loop bias were eradicated.

In the vibration control problem it was possible to achieve the goal of minimising 

the least-squares criterion. The high degree of nonlinearity in the frequency tracking 

problem made an exact solution impractical. The least-squares estimator property of the 

Kalman filter does not carry over to the extended Kalman filter. The EKF is merely an 

approximation to the optimal least-squares estimator and perhaps not the most desirable 

one.

However, in spite of the approximate nature of the EKF, it is a widely used tool for the 

construction of observers for many nonlinear estimation problems in addition to the 

ones considered here. This means this thesis potentially contributes to a far wider area 

than just the frequency estimation applications examined here. The theory presented 

in Chapter 2 was derived without simplifying approximations based on the particular 

problem structure considered as is often the case when analysing EKF performance. 

Moreover, the methodology employed to construct the two frequency trackers presented 

in Chapters 3 and 4 can be used to construct any nonlinear EKF-based observer.

The contributions made by this thesis are summarised below.

v • An analysis of the dynamics of the EKF and a derivation of sufficient conditions 

for bounding the errors of the EKF.

• Quantification of the relationship between the smoothness properties of the non­

linear system and the magnitude of the noise processes, and its implication to 

performance of the EKF.
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• An analysis of the construction of EKF-based filters for general nonlinear systems, 

including theoretically supported design guidelines.

• Construction of accurate EKF-based frequency trackers for both high SNR signals 

and weak, narrowband signals.

• An extension of Äström and Wittenmark's self-tuning regulator to the case of 

deterministic disturbances.

• The construction and analysis of the properties of a self-tuning regulator for vi­

bration control.

6.2 Future Research

The work in this thesis, while answering some questions, has raised many more, as is 
inevitably the case in scientific research. A list of some of these questions concludes this 

thesis.

6.2.1 The Extended Kalman Filter

The conditions for the stability of the extended Kalman filter, presented in Theorem 

2.9, only apply to state space systems which are nonlinear solely in the state equation. 

The extension of this result to the fully nonlinear case is the obvious next step. To do 

so would require a reasonably straightforward extension of the theory and methods 

presented here.

In addition, the requirements of local observability and controllability could probably 

be weakened to detectability and stabilizability respectively. Also the assumption of 

an invertible Jacobian of the state dynamics does not appear to be fundamental to the 

derivation and could possibly be dispensed with.

Other avenues of investigation include the derivation of more accurate estimates of 

error covariance than the Riccati equation solutions. In particular, the derivation of 

bounds for the true error covariance would be a significant advance in EKF theory. In
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addition, extending the EKF to include smoothing could bring potential improvements 

in accuracy.

6.2.2 Frequency Tracking using the EKF

Future research on the use of the EKF for frequency tracker could include the following.

• The development of methods for track initialisation and termination. In particular, 

the development of a reliable method for initialising the high noise EKF frequency 

tracker is desirable. The development of accurate initialisation methods for the 

EKF is a crucial step in the construction of reliable nonlinear filters.

• Investigation of threshold effects for both the high and low SNR frequency trackers 

and the quantification of these effects in terms of slew rate and SNR.

• Fuller comparison of the cartesian high SNR frequency tracker to that of the polar 

form tracker.

• Comparison of the EKF based trackers to alternative frequency trackers.

• Inclusion of amplitude estimation in the high SNR frequency tracker of Chapter 3.

6.2.3 Adaptive Control for Vibration Rejection

There are two immediate extensions of the vibration control self-tuning regulator. The 

first is to determine under what conditions it is possible to extend the self-tuning proof 

to the case when the unknown frequency is time-varying or perhaps even the plant 

parameters are time-varying.

The second extension is to consider the case when the disturbance is the sum of a 

sinusoid, with possibly time-varying frequency, and white noise. Such a vibration 

control problem is far less idealised than the one considered here. However, analysis of 

the vibration control STR of Chapter 5 represents a first step towards an understanding 

of adaptive controllers for active vibration control.
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