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ABSTRACT

Air quality management requires the development of relationships between the fre-
quency distribution of ambient pollutant concentrations at sites of concern and emis-
sions, meteorological and other forcing variables. In this thesis, mathematical models
are devised to achieve a range of goals within this basic objective. In Australia, much
recent effort has been devoted to both statistical and hybrid deterministic-statistical
distribution modelling approaches which have extensive potential but previously have

been given only limited attention in the literature.

These are the approaches investigated in this thesis, although it should be empha-
sised that the so-called statistical models should more appropriately be labelled fre-
quency or probability distribution models as they are parametric forms of probability
density functions. There are six parameterisations used in the thesis and these are the
t§v0— and three-parameter versions of the gamma, Weibull and lognormal distributions.

Basically, each of the two appfoaches treated has its own assumptions and the
choice of approach depends on the goal, the validity of the assumptions and the data
available. Each approach must also invoke a methodological infrastructure. Generally,
this involves the use of adequate techniques for identification of an appropriate para-
metric form to represent a given pollutant data set and for estimation of the associated

parametric values and the ensuing errors.

This thesis contributes to the development of the requisite techniques and illus-
trates their application. It includes the construction of a new generalised information
criterion (GIC) for discriminating among candidate parametric forms that may be
nested or non-nested. The thesis develops a new algorithmic approach to maximum
likelihood estimation (ML) which complements the general or traditional ML approach
and can provide more computationally efficient parameter estimates. The algorithms
allow maximisation of the likelihood function in an extended parameter space that is
important in air quality applications where the traditional approach does not apply.

The thesis also demonstrates that simple computational methods of estimation such

v



as methods of moments can suffice if the objective is merely to summarise the data
and/or to allow high variance estimates. It shows how to construct error rﬁodels that
allow the calculation of the minimum errors in percentiles to be expected when fitting
samples from different probability distributions. The thesis also evaluates errors of mis-
specification which arise when the wrong parametric form of distribution is selected.
All of these tools are then combined to illustrate the practical use of a comprehensive
procedure to identify a suitable parametric form which represents a given pollutant
over the years at single and multiple sites. It should also be mentioned that much of
the new technology developed for the statistical aspects of the thesis can also be used

for application of extreme value theory in statistics since the same identification and

estimation tools are required.

The last two chapters of the thesis involve the use of deterministic models. Chapter
11 shows how to combine a statistical distribution model of short-term carbon monox-
ide concentrations in an urban area with a deterministic model that predicts average
pollutant concentrations from vehicle patterns and basic meteorology. The application
shows how the deterministic and statistical components can be successfully combined
- when the attributes of predictive interest, that is the annual maxima of 1-hour carbon
monoxide concentrations, represent samples from a long-term non-stationary process.
Chapter 12 investigates the inadequacy of the standard box model of urban diffusion
and illustrates the need for an additional connective parameter as exponent on the wind
speed variable. The resulting generalised box model would then be suitable for hybrid
modelling since it could be capable of reasonable predictions of long-term mean con-
centrations. It would be complementary to the hybrid model developed in the previous
chapter since it would require time series of wind measurements rather than seasonal

or annual means of a wider range of meteorological variables.
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Part I
INTRODUCTION



Chapter 1

A Systems Approach to Air
Quality Management

1.1 Introduction

The atmosphere is an important shared resource whose quality needs protection. The
deterioration of atmospheric environmental quality, related to changes in the chemical,
physical and biological nature of air brought about by industrial, agricultural and
social activities, has become a threat to many plant and animal communities, and to
the human race. A systems approach to atmospheric environment quality control is
urgently required to provide an effective means of preserving for future generations
some semblance of the biological order of the world and to improve the deteriorating

standard of urban public health (Metcalf and Pitts, 1972).

Appendix 1 addresses some basic issues raised in air quality management. A brief
historical review in section Al.1 provides an overall picture of past air pollution and
reveals the major problems. Air pollution problems are discussed separately, in terms
of the different scales of air pollution dispersion, local or regional, and continental
or global, although the latter is not a major topic in this thesis. From the review
of air pollution history it is clear that direct energy use, industry and agriculture are
three dominant contributors to air pollutant concentrations caused by human activities.
They are strongly responsible for pollution of the atmospheric environment. Among

global pollution problems, the greenhouse effect and depletion of the ozone layer, which



have become of more concern in recent years, are discussed.

Appendix 1 also introduces the important concepts which underlie any study of air
quality. These concepts include definitions for the terms atmosphere, clean air and
global background concentrations. In order to better understand air quality impact as-
sessment, most air pollutants and their characteristics are summarised in the appendix,

and some of them will be chosen for modelling in this thesis.

In recent decades, there have been great improvements in control technology, in
understanding of atmospheric processes and interactions among air-borne pollutants.
There have also been accompanying developments in administrative and legislative in-
struments for regulation and abatement of those pollutants. To develop management of
our atmospheric resources further, more scientific information is needed. For example,
de Nevers et al. (1977) have argued that a complete and closed information cycle might
be required. The information would include emission data, air quality monitoring and
air quality modelling results. If such associated analytical tools are widely available,
their use may strongly influence decisions on any proposed or existing projects. Un-
fortunately, there is considerable uncertainty at present about all three factors in this
information cycle leading to model results of limited accuracy and validity. Therefore,
each of the factors must be improved in order to develop a predictive scheme which

can be used with confidence.

As a crucial aspect in the information cycle, air quality modelling has attracted
a great deal of attention. Air pollution models may be constructed for diverse pur-
poses. They can be used to describe the physical and chemical nature of air pollution
processes, and to assist our scientific understanding of complex atmospheric behaviour.
Alternatively, modelling techniques may be developed to provide information as aids in
air quality management, and to be used in decision making for city, regional and other
project planning. Generally, the former approach has tended to involve considerable
mathematically complexity. For the latter, models should be relatively simple to use,

and be constructed within the context of the avaliable data and the required form of



model output.

Atmospheric systems are, in the terminology of Young (1978), ‘badly defined’ in that
the relationships that describe their behaviour are complex and not easily amenable
to exploration through planned experimentation. Theoretically in such systems both
causal and non-causal relations exist. For example, many deterministic models attempt
to present an ideal pattern of the causal linkage among dependent and independent
variables, such as in the basic equations of molecular diffusion. However, inherent in
these systems are statistical features (e.g. Pasquill and Smith, 1983). Atmospheric
behaviour is essentially the consequence of an hybrid deterministic-statistical system.
Therefore theory and techniques for both deterministic and statistical modelling ap-
proaches are required. It would be useful to develop a specific system methodology

which can be applied to such a hybrid system.

The aim of this thesis is to develop tools for the construction of simple but effective
models to predict ambient pollutants which reduce the difficulties arising from limited
meteorological information, sparse pollutant monitoring data and the stochastic nature
of turbulent diffusion processes. The models developed in this thesis have certain
desirable properties; they contain as few parameters as are necessary for satisfactory
performance and the output of the models allows direct comparison with air quality
standards. The models provide an indication of the uncertainty associated with model
prediction. In addition, the modelling tools developed here can be widely used in many
other areas such as hydrology, water pollution management, reliability and life-testing
(Yevjevich, 1972 and Bain, 1978).

Systematic methods for identification of the best parameterization of probability
distribution models, estimation of their associated parameters and ensuing errors have
received little attention. This places limitations on the utility of probability distribution
models and hybrid models. In addition, hybrid models have not been constructed
with the aim of minimising problems imposed by autocorrelation and non-stationarity

in pollutant concentration data. This thesis aims to provide some useful concepts,



methods and applications to address these requirements.

1.2 Air Quality Management

“Air quality management is the regulation of the amount, location, and time of pol-
lutant emissions to achieve some clearly defined set of ambient air quality criteria. It
includes the evaluation of various sets of emission control schedules to determine con-
sequences to air quality and the formulation of alternative emission control schedules

to meet air quality goals subject to some other constraint, e.g. technology feasibility

or minimum cost” (de Nevers et al., 1977).

The definition implies that the following data and knowledge be available: a state-
ment of air quality criteria, goals or standards; estimates of pollutant emissions; ob-
servations of ambient air pollutant concentrations; models for atmospheric dispersion;

and models for characterization of the frequency distribution of air pollutant concen-

trations.

1.3 Air Quality Standards

Ambient air quality standards are used in many countries to protect public health and
welfare. In some countries, such as the United States, they are cast in legislation, while

in others, such as Australia and the United Kingdom, they are used more as guidelines.

In general, air quality goals or standards tend to be written in two ways:

a. Air quality standards can be prescribed as long-term mean levels that

ideally are not to be exceeded; or

b. Air quality standards can be prescribed as short-term levels not to be
exceeded or only to be exceeded a small percentage of time in a given time

period.

These air quality standards involve three factors: the period of prescription (usually

annual), the permitted time at a specified level and the quantity of air pollutant con-

5



centration. In many air quality standards the latter two factors are covered i.e. large
dose in a short interval, or repeated small doses over a long period. These two types
of air quality standards have arisen from evaluation of the exposure-response relation-
ship, since air pollutants may have both long-term and short-term effects. Accord-
ingly, air quality standards are usually classified into primary standards and secondary
standards. Primary standards are concerned with the accepted maximum level of a
pollutant whereas secondary standards are concerned with the mean of concentrations.

Both are intended to protect public welfare.

On the other hand, it should be noted that most current air quality standards are
effectively stated in terms of the frequency with which a specified concentration may
be exceeded for a given averaging, or sample time. For example, the United States En-
vironmental Protection Agency (EPA) has a primary short-term standard for sulphur
dioxide which is 14 parts per hundred million (pphm) for a 24-hour average (sampling
interval) and this figure must not be exceeded more than once per year. Therefore, an
important goal in the evaluation of compliance with air quality standards is the esti-
mation of the upper percentiles of the frequency distribution of pollutant distribution.
Important quantities are the maximum and second maximum, and sometimes the 98

percentile of the annual frequency distribution.

Note also that, in addition to interest in the upper percentiles of the air pollutant
concentrations, there is a need to accurately estimate the entire range of pollutant
concentrations. Such information may be applicable for the integration of damages
sustained (Jakeman and Simpson, 1987). For example, materials may deteriorate grad-
ually as a result of low concentrations occurring with high frequency. Lower concen-
trations may also become more problematical where a synergistic combination of pol-
lutants occurs. Hence, if the frequency distribution of pollutant concentration within
an area of interest were predicted, then emission control strategies could be assessed
to enable air quality standards to be met and damages to be minimised, subject to

cost-benefit analysis.



Air quality standards can differ by region, state or country, as shown in Table 1.1.
For example, developing countries, such as China, generally have a lower level of air
quality. The pollutants listed in Table 1.1 are those of most concern in this thesis and

will be compared with the output of air quality modelling exercises in Chapter 11.

1.4 Thesis Outline

The thesis can be considered in four parts. Part I contains this introductory chapter
and a review chapter. Part II contains chapters on parametric estimation methods
for probability distributions, associated percentile errors and empirical models of those
errors. In Part III, the focus is on methods of discrimination among distributions and
errors in misspecifying a distribution. Part IV applies many of the tools developed and

results obtained to problems in air quality management. It also contains the concluding

chapter.

The remaining part of Part I is Chapter 2 which reviews developments in determin-
istic, statistical and hybrid deterministic-statistical distribution modelling. A variety

of models, their functions, advantages and limitations are also assessed.

Chapters 3 to 9 constitute Parts II and III. They present the modelling techniques
which have been developed in the thesis for the analysis and prediction of air qual-
ity. Chapter 3 is concerned with parameter estimation for the following frequency or
probability distributions: the two- and three-parameter gamma, Weibull and lognor-
mal distributions. The general or traditional maximum likelihood estimation method
is re-examined. To overcome the problem of non-existence of a solution for certain
parent parameter values when the traditional formulation is applied, a new approach
to maximum likelihood estimation is proposed. This method is accurate and compu-
tationally efficient, and is particularly useful for fitting air pollution data where the

parent parameter values are such that the traditional formulation fails.

In Chapter 4, a comparison of different methods for percentile estimation, especially

the upper percentiles, is discussed for all six distributions. When fitting the observed or



sample upper percentiles it is seen that the method of moments can be more accurate
than the method of maximum likelihood. Using Monte Carlo experiments, the bias
(BIAS) and relative root-mean-square error (RRMSE) are calculated for each method
in order to calculate the theoretical and empirical departure from the underlying distri-
bution. In Chapter 5 response-surface techniques are adopted to develop some simple
empirical models for predicting RRMSE. Based on extensive experiments, empirical
models for the three-parameter gamma, Weibull and lognormal distributions are con-
structed. They can be easily used in air quality applications to compute the variability
of percentile estimates against type of distribution, parameter values and sample size.

This chapter also represents an attempt to develop the response-surface techniques for

data from computer simulations.

Chapter 6 is the first chapter in Part III. It considers the problem of discrimination
among nested distributions. Many well-knowh hypothesis tests and information cri-
teria are considered for discriminating between the two- and three-parameter gamma,
Weibull and lognormal distributions. To re-examine their performance both simula-
tion experiments and observational data are used. The results from the simulations
show that the performance of the tests and information criteria depend on the type
of distribution and the range of parameters. The intended use of the distribution is a
very important consideration for selecting an appropriate criterion. Chapter 7 assesses
the effects of misspecification in estimating the percentiles of the two- and three- pa-
rameter nested distributions, where the emphasis is placed on the upper percentiles.
Conventional wisdom regarding underfitting or overfitting may not be a good guide to
selecting a distribution. The consequence of such misspecification could cause substan-

tially larger errors.

Chapter 8 considers discrimination among non-nested distributions. Some existing
problems with the way discrimination is approached in the literature are addressed
and the standardized procedure, which tests the null hypothesis against an alternative
with some well-known discrimination criteria, is re-examined. The emphasis is to

discriminate among a set of distributions. For example, discrimination is required
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among six distributions used in this thesis. In order to complement the weakness of
the relevance of existing criteria for air quality management applications, a generalized
information criterion (GIC) is constructed. As in chapter 7, Monte Carlo experiments
are employed to examine their performance over a range of parameters and to assess the

effects of misspecification in estimating upper percentiles of non-nested distributions.

Chapters 10 to Chapter 12 constitute the main body of Part IV where the focus is
on applying the modelling techniques. In Chapter 10 the estimation and discrimina-
tion techniques are used on air pollution data collected in Melbourne, Australia. The
purpose of the investigation is to discriminate among the appropriate distributions and
estimate the parameters of the distributions. For different averaging times, pollutants

may change distributional form.

Chapter 11 describes a hybrid method to determine the seasonal extremes of 1-hour
average CO concentrations from vehicle patterns and emissions, basic meteorological
measurements and historical records of ambient concentrations. The method links
the output of a deterministic Gaussian plume line source model with knowledge of a
suitable parametric form of the probability density function (pdf) of peak 1-hour CO
concentrations. The deterministic model requires only average emission and meteo-
rological data as input, although the approach outlined can be extended to include
more complex deterministic models with more detailed dynamic input information.
Knowledge of the pdf of ambient concentrations is gained from past data by applying
goodness-of-fit tests based upon maximum likelihood estimation and its accuracy is
assessed by examining prediction performance for the extremes of interest. Problems
of autocorrelation and non-stationarity in the distribution of pollutant concentrations
are minimised by restricting attention to the winter season and to the evening peak
concentration. The method is used to predict 1-hour maxima of CO concentrations for
winter seasons in Canberra, Australia, although it applies to other extremes at other
time averages, such as 8-hour averages, and to other pollutants dispersed predominantly

from mobile sources.



Chapter 12 investigates the seasonal variability in the wind speed exponent of
the generalised box model for 24-hour average total suspended particulates (TSP),
p-scattering and CO data collected in Canberra, Australia. The results confirm that it
may be erroneous to assume that the exponent of the horizontal wind speed in the box
model is equal to -1, at least in urban airsheds. The sensitivity of predicted concentra-
tion by a box model is high with respect to the exponent value. Therefore, calibration
for just a single season is likely to lead to much better predictions in future years than
simply assuming an exponent value of -1, as is the present practice. This chapter also
demonstrates that more sophisticated, but algorithmically straightforward, techniques
for parameter estimation can be used. These are based on flexible but simple param-
eterizations of the parameter changes over time. This chapter also indicates, under
Gauss-Markov process assumptions, that Kalman filtering and smoothing algorithms
are very useful in handling the data sets related to the box model formulation. Such

techniques can be easily adopted when constructing a hybrid model to predict air

pollutant concentrations.
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Chapter 2

Review of Air Quality Modelling

2.1 Introduction

Mathematical modelling for air pollution management has progressed considerably in
recent years. Models are widely available for the prediction of both short and long-
term mean ambient pollutant concentrations. Many models are applied to assess the
impact on the atmospheric environment arising from both new and existing industries,
to calculate urban pollution levels and global background concentrations.

This chapter provides a review of the major modelling approaches available for air
quality management of ambient concentrations. Three key approaches to the modelling
of air pollutant concentrations in the atmosphere are examined, namely deterministic,
statistical and hybrid. Emphasis is placed on pollutants with inert, or relatively inert,
properties. Attention is given to assessing the performance of each modelling approach

and comparing their advantages and limitations.

The term ‘deterministic’ refers to models formulated on a physical basis and is con-
cerned with mechanical outcomes. They can be constructed according to hypothesized
causality among driving factors and defined by one or several mathematical functions.

Such models attempt to provide a description and explanation of the dispersion process

in the atmosphere.

The term ‘statistical’ refers to a subset of stochastic models that are constructed

on a non-causal or phenomenological basis. These models are calibrated by statistical
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methods and the output is the probability of pollutant concentrations. The statis-
tical models addressed in the thesis are parametric forms of probability distribution

functions, including the two- and three-parameter gamma, Weibull and lognormal dis-

tributions.

The term ‘hybrid’ refers to models comprising both deterministic and statistical
components. Such models attempt to combine the best features of each approach
and can be used to predict the frequency distribution of pollutant concentrations for
direct comparison with air quality criteria. Hybrid models can provide a measure
of uncertainty associated with model predictions. Since they predict the frequency
distribution of air pollutant concentrations, such models allow the development of

strategies for emission control with respect to ambient mean levels and extreme events.

2.2 Deterministic Models for Air Pollution
Concentrations

Deterministic modelling is the traditional approach applied to the prediction of air
pollutant concentrations. Initial contributions to modelling atmospheric dispersion
were those by Taylor (1915), Scrase (1930), Sutton (1932) and Giblett et al. (see
Pasquill and Smith (1983)). Since then, the number of deterministic models developed
has grown rapidly, and the literature contains a plethora of deterministic approaches

for a wide range of physical circumstances.

There have been many reviews of deterministic models, including Lamb and Seinfeld
(1975), Eschenroeder (1975), Johnson et al. (1976), Hanna (1978), Drake et al. (1979),
Turner (1979), Simpson and Hanna (1981), Hanna (1982), and Geraghty and Ricci
(1984). The task of the review here is to examine critically the existing literature,
elicit some pertinent conclusions and clarify useful future directions. The overview
of deterministic models also provides a basis for selecting an appropriate model for a
given application, and presents evidence to demonstrate the need for other modelling

approaches. Only major references are given as the reader can refer to the publications
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cited in the reviews noted above.

2.3 Deterministic Models for Air Pollution
Concentrations

Deterministic modelling is a traditional approach applied to the prediction of air pol-
lutant concentrations. Initial contributions to modelling atmospheric dispersion were
those by Taylor (1915), Scrase (1930), Sutton (1932) and Giblett et al. (see Pasquill
and Smith (1983)). Since then, the number of deterministic models developed has

grown rapidly, and the literature contains a plethora of deterministic approaches for a

wide range of physical circumstances.

There have been many reviews of deterministic models. These include Lamb and
Seinfeld (1975), Eschenroeder (1975), Johnson et al. (1976), Hanna (1978), Drake et
al. (1979), Turner (1979), Simpson and Hanna (1981), Hanna (1982) and Geraghty and
Ricci (1984). The task of the review here is to critically examine the existing literature,
elicit some pertinent conclusions and clarify useful future directions. The overview of
deterministic models also provides a basis for selecting an appropriate model for a
given application, and presents evidence to demonstrate the need for other modelling
approaches. Only major references are given as the reader can refer to the publications

cited in the reviews noted above.

2.3.1 Gaussian Plume Models

In the literature, the Gaussian plume model is the most well-known and widely ap-
plied air quality model for describing the dispersion of most primary pollutants. The
Gaussian plume model was first applied to point sources assuming homogeneous and
stationary turbulent atmospheric conditions. The name of the model derives from the
description of the shape of the dispersion from a source which, on average, was appar-
ently found to be a close approximation to the Gaussian form in both the horizontal

and vertical directions (Pasquill, 1974). The Gaussian plume model has been extended
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to describe the dispersion of pollutants from line, area and urban sources (see Chock

(1978) and Burt and Slater (1977)).

Gaussian plume models were originally derived from the theory of molecular diffu-
sion and heat conduction but they can also be regarded as a special case of the general
mass conservation equation. Huang (1979) has derived a generalised non-Gaussian dif-
fusion model for a turbulent shear flow relating K-theory to statistical theory. Thus, the

conventional Gaussian dispersion model can be regarded as a special case of Huang’s

model.
Gaussian plume models often assume the following:

1. meteorological conditions are steady, with wind speed and direction kept con-

stant, and no inversion layer;

2. the initial concentration is assumed to be zero, emissions are constant, and the

pollutant is inert;

3. there is no downwind diffusion, the diffusion coefficients in the cross-wind and
vertical directions vary only with downwind distance and are constant in the diffusion

domain, and there is no absorption or generation of pollutants by the ground.

The typical Gaussian plume model recommended by the United States Environ-

mental Protection Agency (EPA) is expressed as (Turner, 1964)

Q

2royo,u

=27y o B2

X(m)y?z) - p(_ ){ea:p[— (2'1)

where x is concentration at the point (x,y,z), @ the steady source strength (mass emis-
sion rate), & the mean wind speed, o, and o, the standard deviations in concentration
in the crosswind (y) and vertical (z) directions, respectively, and H the effective height
of emission. Wind is assumed to be in the x-direction. A feature of this model is
its simplicity and requirement of little data input in comparison with other models.
Based on this formulation, many well-known Gaussian plume models are used and

recommended by the EPA for impact assessments.

15



Equation (2.1) can be used directly to calculate ambient pollutant concentrations.
The key procedure is the estimation of H and the o values because even modest errors

in both estimates may yield a 50% total error (Weber, 1976). Calculation of effective
height H is given by

H=h+AH (2.2)

where h is the physical height of the source and AH is the plume rise.

The o values depend on the turbulence characteristics of the flow. The most com-
mon method of estimating o is to use the Pasquill-Gifford curves (Turner, 1970), which
classify the turbulent state of the atmosphere into six categories A to F. Alternatives
include the stability curves from Singer and Smith (1966), and McElroy and Pooler
(1968), and the interpolation formulae of Briggs (1974).

2.3.2 K-Theory Models

A sophisticated model, based upon K-theory, has appeared widely in the literature
(Hanna et al., 1982). K-theory assumes that there is similarity between atmospheric
turbulence and molecular diffusion. The major physical assumption is that the tur-
bulent flux of material is proportional to the mean concentration gradient. In the

z-direction, the proportional relation can be given as

éX
Il e . —_—
UX— Kxa

where a prime indicates fluctuation about the mean.

On the basis of the above gradient assumption, the K-theory model can be expressed

as

dx 9, 0% , 9, . 9x 6 0 . 0%
- 2k, 2y + (K, X 2.3
o tUVx=0Q+ 5 () + 5, * 5.3, (23)

where y is the species pollutant concentration, U the velocity, @ a source term, and

K., K, and K, are the appropriate diffusivities in the z,y and z directions (see e.g.
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Carras, 1989).

Generally, a K-theory model requires a numerical solution to provide predictions of
the ambient concentration of a particular species as a function of position and time.
However, to obtain a satisfactory result, K-theory assumes that the largest eddies
responsible for plume dispersion are much smaller than the dimensions of the plume.
For convective conditions, the mixing height typically varies from 500m to 2000m. The
size of these largest eddies is approximately 1.5 times the mixing height. Models based

on K-theory will sometimes fail to work well (Carras, 1989).

2.3.3 Box Models

Based on different assumptions, a variety of box models has been developed for predic-
tion of air pollutant concentrations. They can be divided into single box and multi-box
models, and can also be considered to apply to area emission sources, line sources, and
even point sources. In addition, according to the basic assumptions of the box model
approach, box models can be divided into two types. One type of box model assumes
that the pollutants are unlikely to disperse as far as the inversion layer. This assump-
tion is likely to prevail if the area considered is small and the wind speed is not too
low. The other type of box model assumes that vertical dispersion is affected by the
inversion layer, which usually occurs for stagnant wind conditions and large areas.
The box model can be derived from simple physical considerations as shown, for
example, by Simpson and Hanna (1981). However, some box models often incorporate
ideas inherent in the Gaussian plume approach. Thus, models such as the Atmo-

spheric Turbulence and Diffusion Laboratory (ATDL) model are sometimes referred to

as Gaussian models.

The Atmospheric Turbulence and Diffusion Laboratory (ATDL) Model

The popular ATDL model was proposed by Gifford (1970, 1973), Gifford and Hanna
(1971, 1973), and Hanna (1971, 1973). This model is applied to urban area sources for
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stable non-reacting pollutant species. Emissions are assumed to be uniform over each
grid square. The essential idea is based on integration in the up-wind direction of a

cross-wind infinite line-source diffusion formula, namely the simple power law

Z(z) = az’ (24)

which only involves vertical diffusion, where Z(z) is o,, the standard deviation in
Gaussian dispersion, z is the downwind distance, and @ and b are parameters dependent
on atmospheric stability. Lateral dispersion is neglected so that area sources are treated

by the narrow-plume assumption. Based on these considerations, the ATDL model is

described by the following formula

G e D WA RS Rty | SECD)

=1

where xo is the pollutant concentration at ground level, u is the mean wind speed,
Az is the source inventory grid spacing, @Q; are the source strengths in the n +1
upwind source boxes, and ¢ = 0,1,...,n. The total ambient air quality then follows
by combining the contributions from equation (2.5) with the point source contribution

Qo and the background concentrations.

The ATDL model uses typical values of grid spacing Az from 1 km to 10 km. In
equation (2.5), the term (Az/2)'~® varies by less than a factor of 5 over the range of
stabilities encountered in a given city. This model has been shown to yield comparable
predictions with other more complex models in a wide range of urban environments by

Eschenroeder (1975), Hanna and Gifford (1977), Daly and Steele (1976), and Gualdi
and Tebaldi (1982).

Simple Box Models

The ATDL model is generally regarded as the first step towards obtaining a simple
box model. A further step considers the source terms ;. When dealing with smooth

area source distributions, it is noted that the variations in the source term outside the
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receptor grid square do not greatly influence xo. This means that the coefficients of the
Q); terms are certainly less than that for the Qo term. Then the assumption is made

that all source terms are equal to Qo and the simplified model based on equation (2.5)

can be written as (see Hanna (1971))

m=C§° (2.6)
where
¢ = (3)(en + DEE a1 - B (2.7)

The term a(1-b) varies very slowly for the stability range normally encountered over
cities, and is considered approximately constant for broad stability categories. C' values
have been assigned values of 50, 200 and 600 for unstable, neutral and stable condi-
tions, respectively, for total suspended particulate (TSP) levels (Hanna, 1971). This
simplified model suggests that the pollutant concentrations depend mainly on source
strength and wind speed, and are virtually independent of the inversion height which
may enter the calculations via the stability category (Simpson and Hanna,1981).
However, it has been found that the relationship between the pollutant concentra-
tion and wind speed may vary from time to time. Benarie (1978) examined equation
(2.6) and revised it to include a parameter for the exponent of wind speed in order
to incorporate such changes in the relationship. Thus, the simple box model can be

generalized as

x =CQU* (2.8)

where e is the wind speed exponent which may be a seasonally varying climatological
characteristic for a given city. Further discussion and development of the model will
be given in Chapter 12. Basically, equations (2.6) and (2.8) imply that wind speed and
pollutant concentration are inversely related as matched pairs of observations when e

is -1. However, at best this inverse relationship is very broad under certain conditions.
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Chapter 12 demonstrates the variability in this relationship for TSP and other pollutant

concentrations in Canberra.

To take advantage of the causal relationship between wind speed and concentration,
Daly and Steele (1976) and Simpson et al. (1983) assumed that the simple inverse rela-
tionship might exist between opposite percentile values of wind speed and air pollutant
concentrations. Simpson et al. (1983) showed that simple probabilistic arguments can

be used to convert equation (2.6) to a more general form

T
XP - UlOO—p

where X, is the air pollutant concentration corresponding to the p-percentile ordinate

(2.9)

of the air pollution cumulative frequency distribution, Ugo-p the wind speed corre-
sponding to the (100 — p) - percentile ordinate of the wind speed cumulative frequency
distribution, and T is a constant. The constant is derived from the relationship be-
tween x, and Ujgo—p for each sampling station under consideration over some percentile
range for which T is approximately constant. The T' term is the emission parameter

@ multiplied by C, the latter parameter depending on atmospheric stability.

Without using direct knowledge of the source strength, Knox and Lange (1974),
Benarie (1976) and Simpson et al. (1983) proposed the following simple formula for

calculating T, namely

T = Usoxso (2.10)

where the right-hand terms are the medians of distributions of wind speed and pollutant
concentrations, respectively. The simple model of Simpson et al. (1983) has been
successfully applied to TSP and acid gas data, and T' = U1o0-pXp Was found reasonably
constant over the 30-70 percentile range (Simpson et al, 1985). Thus, such a model
can be a good representation of the relationship of the frequency distributions of wind

speed and pollutant concentration for at least the 30-70 percentile range.

Simpson et al. (1983) also showed that when combined with the assumption of
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a lognormal distribution of pollutant concentrations, from which it follows that the

distribution of wind speed is also lognormal, then equation (2.6) becomes

Tk 2.1)
where f3, is the geometric standard deviation, a, the geometric mean of the wind speed
data, and z, is the standard variable corresponding to the percentile p. This model
was developed to yield estimates of the entire distribution of pollutant concentration
(Simpson et al., 1983) and has been used to forecast worst case pollution scenarios
for particulates due to urban industrial development (Simpson and Jakeman, 1985).
Nicholson (1975) proposed the simple box model to predict street level concentrations
of traffic CO emissions. Leahy (1975) has used a moving box model for hourly ground-
level concentrations of nitrogen oxides (NOy) at Edmonton, Canada. Smith (1976)
also developed a simple box model incorporating a simple relationship between the
mixing layer depth and the horizontal dimension of the box to obtain good results

for climatological averages of pollutant concentrations of SO, for a number of English

cities.

Multi-box Models

The principle of multi-box models is to use the stepwise movement of a box to describe
a curvilinear path over the ground. It is dependent on the choice of adequate wind
direction to trace the trajectory. Such a procedure is known as a back-tracing or re-
verse trajectory method and is commonly used in weather forecasting and atmospheric

research.

Multi-box models have been widely used for different pollutants and in various lo-
cations. MacCracken et al. (1971) developed a multi-box model to simulate hourly CO
data in California. Gifford and Hanna (1971) have also used this method to model SO,
concentrations in Milan, Italy. In Japan, the multi-box model has been used by several

authors. Shiozawa et al. (1973) estimated SO, concentrations in Tokyo. Ishikawa
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et al. (1973) used a two-layer multi-box model in Osaka. Funabashi (1973) also em-
ployed real-time filtering for prediction purposes. Benarie (1980) discussed how to use
a multi-box model to calculate CO concentrations. Dabbert et al. (1973) suggested
a model, named APRAC, to predict concentrations of inert, vehicle-generated pollu-
tants. The derivation of APRAC is quite similar to that of Gifford (1973). Ragland
(1973) provided a steady-state implicit finite-difference matrix solution for an array of
n X n boxes in the vertical plane. Calculated concentration patterns in the x-z plane
appear similar to those obtained by Egan and Mahoney (1972), who employed the
mass continuity equation directly. Kontnik (1974) designed a multi-layer box model
to account for both light winds and non-uniform wind fields, which essentially moves
material along the wind directions, with the addition of a proper amount of vertical
mixing. Hameed (1974) has compared a simple version of the ATDL model with a more
complex one by Randerson (1968) in studying a two-hour SO, episode in Nashville,

Tennessee. Hameed (1974) found that the simpler model yields comparable results to

the more complex one.

Rollback Models

A lack of meteorological information or knowledge of the relationship between meteo-
rological data and pollutant dispersion can cause great difficulties in the prediction of
air pollutant concentrations. In these cases, the rollback model can be used to provide
a simple method to assess source pollutant emissions required to satisfy air quality
criteria. The rollback model may be considered as belonging to the same family as the
box model (Benarie, 1980), so that it is sometimes called the receptor-oriented symmet-
rical counterpart of the box model. A basic physical assumption of the rollback model
is that the pollutant concentrations are directly proportional to emissions according
to some simple relationship. Without consideration of meterological parameters and
local effects, such as the terrain, the emission control requirements can be determined
as proportional to the amount by which the peak pollutant concentration exceeds the

desired air quality standards.
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The simplest form of the rollback model is of the type

X = x» + Re (2.12)

where x is the pollutant concentration due to emissions with rate e, and x} is a measure
of background pollutant concentration. R is the constant of proportionality which
includes all the effects relevant to the meteorology and area source distribution, and

can be determined as (de Nevers and Morris, 1975)

R= (-@‘f;"—x—b) (2.13)

where Xmaz is the highest pollutant concentration in the region of interest. According
to the selected air quality standard, the allowable emission rate for a new xq, can be

obtained from

e eXsta = xo)
mas (Xma:c - Xb)

where ¥s:, is the designated air quality standard specified for the pollutant being

(2.14)

considered. The required reduction from a peak of pollutant concentration can be

obtained from

P = 10pXmaz — Xeta (2.15)
Xmaz — Xb

where P is the percentage reduction required (Schuck and Papetti, 1973).
A generalised formulation of the simple rollback model is given by (Chang and
Weinstock, 1973, 1974)

xi=xs+ 2,2 Cije;j (2.16)

=1 j=1

where y; is the concentration at receptor i, e; is the emission rate for source j, and
R;; is the source-receptor interaction for source j and receptor i. The C;; may be

calculated from a moving box model or a Gaussian plume model.

23



The simple rollback model has been used successfully to examine the motor vehicle
emission goals for standards governing CO, NOy and hydrocarbons (Barth (1970) and
Schuck and Papetti (1973)). The technique has also been employed to describe photo-
chemical smog effects in terms of the primary pollutant concentrations (Hamming et
al, 1973). de Nevers and Morris (1975) extended the basic technique to apply to mul-
tiple sources, different stack heights, different source-to-receptor distances and wind
direction frequencies. Szepesi (1977) specified source-receptor functions as Gaussian
for point and area sources. Peterson and Moyers (1980) developed a model for the case
where continuous measurements of ambient concentrations and emissions are available
and recorded over time intervals corresponding to air quality standards. Georgopoulos
and Seinfeld (1982) recommended the use of the mean values E(Xmaz) and E(Xsta)
instead of Xmaz and Xste in rollback calculations, which has the advantage of allowing

for the conservation of mass of non-reactive pollutants.

The nonlinearity of atmospheric processes limits the usefulness of the rollback
model, as does its lack of spatial resolution. Horie and Overton (1974) noted that
the higher the percentile value of concentration considered as the desired air quality
goal, the greater the uncertainty in the emissions reductions calculated by the rollback
technique. When using the model to predict the rate of growth of air pollution due to
urban development, it must be assumed that the distribution of sources is unchanging
with time. Therefore, the rollback model may be used for regional analysis of areas
with many well distributed sources of various types and as a first step approach or

screening model to obtain a crude picture of future trends.

2.3.4 Performance and Validation of Deterministic Models

From the preceding discussion above, it is seen that deterministic models vary in de-
scriptive and computational complexity. They can be simple (e.g. the Hanna-Gifford
ATDL model), intermediate (e.g. Gaussian plume model) or complex (e.g. numerical
models based on K-theory). Numerous investigations have shown that, under cer-

tain conditions, a simple modelling approach may perform quite well when compared
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with more complex models for estimation of ambient pollutant concentrations result-
ing from the dispersion of pollutants in an airshed. Simpson and Hanna (1981) argued
that the advection effects of the atmosphere dominate horizontal diffusion effects for
long periods. Therefore, the vertical diffusion is relatively less important and it can be
accommodated by simple Gaussian or box assumptions. On the other hand, complex
models such as the K-diffusion model merely involve different assumptions to handle
what is commonly regarded as a highly stochastic problem, and also require a numerical

solution which may introduce computational errors.

The best feature of deterministic models is that they can be used for approximation
of the causal link between the variables, such as those describing emissions, meteoro-
logical conditions and terrain, and the dependent pollutant concentrations. These
models have improved our understanding of the nature of pollutant dispersion in the
atmospheric environment and describe the physical processes of pollutant dispersion.
In practice, most applicable deterministic models are useful at best for predicting the
mean of pollutant concentrations (see e.g. Jakeman et al., 1988). Many determinis-
tic models can predict long-term means of pollutant concentrations for a wide range
of physical circumstances with reasonable accuracy. Such models retain sensitivity to
variations in both mean emission strengths and meteorological variables, such as wind
speed and wind direction. Thus, deterministic models are generally best suited to

estimation of mean pollutant concentration under mean conditions.

Deterministic modelling encounters two major practical difficulties with respect
to model performance. First, the deterministic models are not capable of predicting
extreme pollutant levels especially well, and many air quality standards require this
knowledge. Second, by their very nature, deterministic models cannot characterize the

uncertainty in model predictions.

It has been found, for example, by Simpson and Hanna (1981) in an examination of
the predictive ability of various deterministic models, that the values of the extremes

of the distribution are unlikely to be very accurate. Pasquill and Smith (1983) argue
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that it is the special nature of the meteorological conditions and other circumstances
which combine occasionally to form the worst pollution episodes, and it is difficult
to model such extreme occurrences. Hanna (1982) refers to ‘natural variability’ as the
turbulent fluctuations in wind velocity which may occur over time periods ranging from
microseconds to years. Obviously, the existence of natural variability limits strongly
the estimation accuracy of air pollutant concentrations using deterministic models.
Venkatram’s (1983, 1984) analysis reveals that the expected deviation of observations
from predictions becomes large when the sampling time is not much greater than the
time scale controlling diffusion. From the study of Hanna (1982) and the theoretical
analysis of Venkatram (1984), it is often stated that the accuracy of predictions of

existing deterministic models for ensemble means is approximately of order 2.

The accuracy and application of deterministic models is often restricted due to the
lack of essential meteorological or topographical information being available, particu-
larly for complex models. Enhancing the data collection substantially raises the costs
of model development, which may be prohibitive in many circumstances. Therefore, a
simple but functional deterministic model is normally very important in practice for

air quality management problems.

In conclusion, a wide range of deterministic models is available in the literature
(and in computer packages) for impact assessments of air quality. Such models are
most useful in predicting concentration values around the mean or median of pollutant
concentrations over time periods no shorter than one hour. The highly stochastic nature
of turbulent diffusion is a problematic constraint. Deterministic models are unlikely
to perform well in estimating the upper percentiles of the distribution of air pollutant
concentrations. Different approaches are required to circumvent these problems and to

satisfy the demands of air quality management.
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2.4 Statistical Modelling

While the main emphasis has traditionally been placed on development of deterministic
models for describing the physical behaviour of atmospheric dispersion of air pollutants,
the statistical properties of air pollutant concentrations are important because of the
complexities which arise in the physically-based analysis of atmospheric turbulence.
Although predictions of air pollutant concentration might be obtained from a sophisti-
cated model, large departures will still be expected when compared with observed air
quality data. The statistical description of turbulent flow is an essential tool in rep-
resenting the fluctuations of a variety of meteorological and emission quantities. Air

pollutant concentrations are inherently random variables in nature.

Since air pollutant concentrations are normally measured sequentially over time,
and averaged over successive non-overlapping time periods of equal length, air qual-

ity data consist of statistical time series which can be written as (Georgopoulos and

Seinfeld, 1982)

Xl(tl), XZ(tZ)a cee aXn(tn); hh<ta<--- <ty (2'17)

where the sampling period is known as the averaging time 7, defined as 7 =12 — ¢; =
t3—te=...=tp, —tp-1.

Since atmospheric systems extend up to the large scales associated with distur-
bances of the general circulation, the properties of air quality data depend consider-
ably on the sampling duration. That is, the length of the averaging time will affect the
degree of correlation of successive data points (Georgopoulos and Seinfeld, 1982). For
a given pollutant and measurement site, there is an inverse proportional relationship
between the averaging time and the degree of autocorrelation, such that the longer is
the averaging time, the less is the autocorrelation. Furthermore, the properties of air
quality data also depend on the specific place and time at which the observations are
made. Due to the effects of variable terrain, of diurnal heating and nocturnal cool-

ing of the ground, and of the continually changing large-scale pattern of air flow, air
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pollutant concentrations are neither homogeneous nor stationary (Pasquill and Smith,
1983). Based on the statistical characteristics of air quality data, there are several

alternative statistical approaches which have been applied to air quality assessment.

2.4.1 Probability Distribution Modelling

The assessment of environmental impact for air quality management in terms of air
quality standards is based on a probability curve of concentrations measured over a
fixed averaging time at locations of interest. Such an assessment requires specification
of at least the mean and upper percentiles of the frequency distribution of pollutant
concentrations. Thus, probability distribution modelling plays an important role in

control and management of air pollution, and is of particular interest in this thesis.

The graphical nature of air pollutant frequency concentrations over a given averag-
ing time can be viewed with the aid of an histogram. A typical histogram of air quality
data tends to be unimodal and skewed to the right (Benarie, 1980). Quite often the
histograms of air pollution concentration appear to be inversely “J” shaped, having
a peak value of frequency near the lower concentrations and a gradual but long tail.
Based on such intuitive information, many skewed distributions have been developed
in the statistical literature and have been demonstrated to be useful for fitting air pol-
lution data. Benarie (1980) has enumerated distributions such as: Poisson (Benarie
(1980)); negative binomial (Prinz and Stratman, 1966); Weibull (Barlow, 1971; Cur-
ran and Frank, 1975; Tsukatani and Shoyi, 1977); exponential (Barry, 1971; Scriven,
1971; Curran and Frank, 1975); gamma and beta (Lynn, 1972; Graedel et al., 1974);
lognormal (Mage, 1975; Larsen, 1977a,b).

Probability distribution models complement deterministic models (Jakeman et al.,
1988) but, unlike deterministic models, they provide solutions which are not certain,
as they are described within the framework of probability. They are especially useful
in cases where the output of natural systems cannot be expressed satisfactorily as

a fixed function of input variables, whether the reason be inadequate understanding
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of the system of interest, inadequate data or inherent randomness of the observations.

These problems are circumvented by modelling the observations in a simple parametric

manner.

The uses of efficiently parameterised probability distribution models have been sum-
marised by Ott and Mage (1979), Bai et al. (1988), and Jakeman and Taylor (1989).
Such models can provide a simple description and summary of a set of data as a member
of a general class of distributions. The reduction of masses of data to more manageable
quantities with relatively few parameters provides administrative benefits, for example,
in storage and transmission, by converting long records of data to a simple parametric
form which retains the basic information needed for future reference. The models can
be used to filter the effects of noise inherent in raw observations by interpolation or
extrapolation. For example, they can fill in gaps created by missing information that is
random or uniform, smooth measurement, sampling error, or unrepresentative events.

As argued in Bai et al. (1988), statistical inferences can be drawn from the param-
eterisation taking into account the properties of the methods and the raw data used.
Hypotheses related to the population can be tested in order to reach certain conclu-
sions. Statistical models can express uncertainties or tolerances, and the variability
of the system can be quantified. These models can also be applied to design, analyse
and assess sampling methods or data bases. Finally, Jakeman et al. (1988) show how
statistical models can be augmented with deterministic models to obtain hybrid models
with the desirable properties of each modelling approach for prediction under a wide

range of conditions. These hybrid models will be discussed in a later section.

A major limitation of probability distribution modelling is that calibrated models
cannot be expected to be valid under conditions other than those which existed during
data collection. Prediction under wide-ranging conditions is restricted because such
models contain no explicit relation between parametric form, or at least between para-
metric values and the major causal factors. On the positive side, these statistical models

can be designed to predict all events well, being based closely on observations. Because
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observations are usually assumed to be independent and identically distributed (iid),
uncertainty in parameters and hence model properties can be characterised easily by
appropriate estimation methods. The iid assumption, however, restricts the straight-
forward identification of statistical models when observations are autocorrelated. As
with time series modelling, it is possible to induce independence and stationarity by
variable transformation or selection of appropriate subsets of observations for analy-
sis. Even without adjustment for its effect, some autocorrelation can still be tolerated
since it does not affect the estimate of the mean, only the estimates of the variance

(see Jakeman et al. (1986) for further details).

Probability distribution modelling has been successfully applied in air quality ap-
plications. Larsen (1964, 1969, 1973, 1974) developed the so-called statistical model for
predicting maximum air pollutant concentrations across an airshed from limited sets
of observations, in conjunction with a single continuous monitoring site. Jakeman and
Taylor (1989) summarise the applications of probability distribution modelling. Fur-

ther developments of this capability will be discussed in the hybrid modelling section
of this chapter.

2.4.2 Stochastic Modelling

Air quality data are essentially autocorrelated and non-stationary statistical time se-
ries, although the degree of autocorrelation and non-stationary can vary considerably.
In recent years, stochastic modelling of diffusion has become increasingly popular. A
simple form of stochastic time series modelling is the linear rollback model, described as
being based on the assumption that pollutant concentrations are proportional to emis-
sions. Similar concepts can also be used to construct source-oriented models which
establish transfer functions between the distribution of pollutant emissions and con-
centrations for atmospheric dispersion. These transfer functions can be obtained em-
pirically through an appropriate mathematical inversion technique from accumulated
data on joint distributions of air pollution and emission, and can be used for predicting

air pollutant concentrations (Benarie, 1980). To determine the functions adequately, a
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large amount of data is necessary and the assumption that there is a consistent source-
receptor relationship in the region under study is essential. Successful applications of

this method were illustrated by Meisel (1976), Meisel and Teener (1976), and Breiman
and Meisel (1976).

Some stochastic modelling approaches apply the random walk to atmospheric dis-
persion. Initial work can be traced to Einstein (1905), who first used the familiar
‘drunkard’s walk’ to simulate molecular diffusion. Recent approaches adopt the Marko-
vian assumption to treat eddy diffusion as a continuous process. In the simplest case

of one-dimensional homogeneous stationary turbulence, the random walk equation can

be written as

V(t+ At) = W(AH)V(t) + V'(t) (2.18)

where W is the Lagrangian correlation function and V’(t) is a random velocity drawn
from a Gaussian distribution with zero mean and standard derivation o, (Pasquill and
Smith, 1983). Smith (1968) used equation (2.18) in a study of conditioned particle mo-
tion in homogeneous turbulence, and Hall (1975) applied the same method to simulate
sea spray droplet motions and their resulting distribution in the surface layer of the
atmosphere. Significant contributions to Markovian modelling include those of Hanna
(1978), Reid (1979), Durbin and Hunt (1980), Lamb (1982), Ley (1982), and especially
Wilson et al. (1981) and Thomson and Ley (1982).

An alternative to the Markovian assumption is to use the well-established Kalman
(1960) filtering technique to predict air pollutant concentrations. The underlying model
is known as the state-space model. This method specifies an optimal estimate of the
state in a time-varying dynamic system with additive Gaussian noise. The estimate
obtained at each time step is optimal in, for example, the mean square sense, based
on all the observations up to that time. The Kalman filter is applied to models of the

form
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Y = Zkbk + ek, k= ]-a 21 e (2‘19)

where y;, is the np X 1 vector of observations available at time k, Z; an n; X ¢ known
matrix and by the ¢ x 1 state vector of the estimates. The state vector is allowed to

change through time in accordance with the state equation

be+1 = Thqpa bk + wiqa, k=1,2,--- (2.20)

where Tj4q is the transition matrix, and e; and w; are independently distributed

multivariate normal random variables (Sallas and Harvile, 1981).

The Kalman filtering technique has been applied to air pollution forecasting by
Takamatsu et al. (1971) by using the basic Gaussian plume concept to formulate the
state equation. Wells and Lau (1971), and Bankoff and Hanzevack (1973, 1975), also

used the technique for numerical integration of the mass transport balance equation.

2.5 Hybrid Modelling

The atmospheric environment is regarded as a complex system which requires both
deterministic and statistical modelling techniques. Until recently, these two approaches
had undergone parallel but separate developments. As discussed before, each approach

has its own advantages and weaknesses, with augmentation of these two approaches

providing additional improvements.

Some insights were shown in the 1970’s where it was recommended that determinis-
tic and statistical models be combined. Eschenroeder (1975) suggested that estimation
of the parameters of a lognormal distribution could use the distribution of the de-
terministic model output. Benarie (1976) recommended a possible link between the
distribution of wind speeds and pollutant observations through a simple inverse rela-
tionship between percentiles. Simpson et al. (1983) combined the ATDL model with

Larsen’s lognormal statistical model for estimating the maximum concentration. Since
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then, the hybrid approach has been successfully extended, developed and used in many

applications.

The hybrid modelling approach adopts systematic methods in model construction
for predicting air pollutant concentrations (Jakeman et al., 1987), and is based on the
notion that the air pollution system is made up of both deterministic and stochastic
components. The mean conditions may be determined reasonably well by fundamen-
tal laws but many extreme conditions can only be estimated statistically. The ap-
proach sets out guidelines for relating the deterministic component of the system to
the stochastic component, thereby deriving relationships between the extreme pollu-
tant events and the driving forces in the system, such as emissions and meteorology.
There are no fundamental laws for predicting extreme events, but there are empiri-
cal relationships which vary in different situations. However, many applications have
shown that such relationships are predictable if extensive data sets are available (Jake-
man et al., 1987). Alternatively, such relationships can be assumed and the sensitivity
to different assumptions can be investigated.

The major steps in the application of hybrid modelling are as follows. First, in-
formation related to the sources, pollutant type, meteorology, the topography between
source and monitor, and the historical pollutant concentration data are required as in-
put. From this information, selection among deterministic models and different para-
metric distributions can be made in order to obtain the correct deterministic and
statistical components. Selection of deterministic models can be made from a range
of available model types generally relevant to source type and available emission and
meterological data. Choice of a final model is based on the performance in predicting
percentile concentrations, but when the performance is equal among models, parsimony
and the level of input information available may be considered as final determining fac-

tors.

Second, from input variables such as emission and meteorological data, the selected

deterministic model will be used to predict pollutant concentrations in the middle
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percentiles (e.g. means, medians), where the model invariably performs the best and

has the greatest mechanistic reliability.

Third, the middle percentiles obtained from the output of deterministic models
are fitted to the statistical distribution chosen at the preceding step and parameter

estimates are generated.

Finally, the more extreme events can be predicted from the estimated distribution.

The output of hybrid models can thus be compared with air quality standards.

In practice, hybrid models have been applied with considerable success. Their

numerous advantages over deterministic and statistical models include:

(a) provision of relatively good predictions over the entire distribution of pollutant

concentrations, in particular the upper percentiles; and

(b) a causal link between source and receptor via the deterministic model component
which relates pollutant concentrations to emissions and meteorological data, thereby
retaining sensitivity to variations in inputs when meteorological conditions vary or

emission control strategies change (e.g. changing stack heights and pollutant emission

levels).

When employing hybrid modelling, the following assumptions apply:

(a) the historical pollutant data should be sufficiently informative to develop a

distributional type for the statistical component;

(b) the distributional form for a given pollutant at a specific site should remain

consistent with changes in emissions and meteorological conditions;

(c) the deterministic form should be commensurate with the input information
available and capable of predicting reliably the required range of percentiles for the

distribution of pollutant concentrations; and

(d) hybrid modelling is presently confined to predicting the frequency distribution
of pollutant concentration over time, and pollutants have been restricted to relatively
inert types. Hybrid models are not used to predict a particular pollutant concentration

in time without related frequencies.
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It should be noted that the first two limitations above arise from the major un-
derlying assumption of hybrid modelling. Changes in emissions and meteorology from
year to year basically do not affect the form of the distribution but merely the values
of the parameters of the distribution. According to this presupposition, historical data
can be used to identify the distributional form of the statistical component. Obviously,

sufficiently informative data sets are necessary.
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Part I1
ESTIMATION
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Chapter 3

A New Approach to Maximum
Likelihood Estimation of the
Three-Parameter Distributions

3.1 Introduction

Continuous univariate distributions, such as the gamma and Weibull, have received
much attention since they first appeared in the literature. They have been used ex-
tensively in many areas such as reliability and life-testing (e.g. Mann et al. (1974)
and Bain (1978)), hydrology (Stedinger (1980)), and air quality management (Jake-
man and Taylor (1989), Jakeman et al. (1986)), where natural laws can be modelled
quite successfully. Three parameter distributions involving the shape, scale and loca-
tion of the distribution have been considered to be reasonably satisfactory, containing
sufficient flexibility and sensitivity to fit real data while avoiding the problem of over-
parameterization. For this reason, these distributions have been examined by many

authors, such as Harter and More (1965), Johnson and Kotz (1970) and Cohen and
Whitten (1982).

However, there remain some well-known problems in the literature when employing
the maximum likelihood (ML) method to estimate the parameters of the gamma and
Weibull distributions. A theoretical difficulty occurs when the shape parameter is less

than or equal to unity, since one of the three first-derivative equations often used to

maximize the likelihood function is not valid in these cases.
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Some effort has been made to overcome this weakness. For example, Johnson and
Kotz (1970, p. 185) suggested that ML should not be used for the gamma distribution
if the shape parameter is less than 2.5 and gave details of the method of moments as an
alternative procedure. Cohen and Norgaard (1977) also discussed this theoretical diffi-
culty and developed a modified ML method which introduced the method of moments
formula to avoid the failure of ML. It can be shown that such methods involving the
method of moments will have a high degree of deviation from the parent distribution
and will be outperformed when compared with ML over a suitable range of the shape

parameter (Bai et al. (1988), and Bai and Taylor (1986)).

Cheng and Amin (1983) provided a method called the maximum product of spac-
ings (MPS) estimation. For a distribution function F' with parameter  and random
observations x;, their method uses the transformation y; = F(z;,0),¢=0,1,...,n+1
to transform the sample into the interval (0,1) and maximize the geometric mean of
the spacings, D; = y; — ¥i-1, instead of the maximum likelihood function itself. Un-
fortunately, their method is very difficult to use because the derivative equations of
MPS are complicated and implicit. In particular, if the distribution has no explicit
form of the cumulative function, such as in the case of the gamma distribution, the
transformation of the data itself is implicit and the derivative equations become more
complicated and are difficult to solve. Estimation using MPS also appears to be less
accurate than the ML method. Further discussion and comparison of this method with

the ML method are given in the appendix.

It is known that, in the definition of the gamma and Weibull distributions, the range
of the shape parameter is greater than zero. If the range of the shape parameter is less
than or equal to unity, ML technically fails in its performance because its three first-
derivative equations cannot be used. Some simple techniques can be used to overcome

this difficulty while still following the principle of ML.

The primary motivation for this chapter is to propose a general methodology which

can provide satisfactory ML estimates consistently and efficiently. This methodology
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can be used, in principle, for all distributions with shape, scale and location parameters,
and is especially useful when ML breaks down. Such a methodology also has a compu-
tational advantage in various applications since the normal ML procedure sometimes
has difficulties in converging, particularly when the sample size is not especially large.
In the following sections, estimation of both the gamma and Weibull distributions is
examined by this method but more emphasis is placed on the former, together with the
other three alternative methods for purposes of comparison. Monte Carlo simulations
are used to assess the performance of each method. Some real pollutant data from

Melbourne, Australia are used for purposes of empirical illustration.

3.2 A General Approach to Maximum Likelihood
Estimation of the Three Parameter Gamma
and Weibull Distributions

The likelihood principle in its general form selects parameters of the distribution over
the admissible range to make the likelihood function as large as possible (see e.g.
Kendall and Stuart (1979)). The probability density functions of the random variable

for the three- parameter gamma and Weibull distributions are of the form:

7 a1, r—a

f(z) = —( )“'lewp[ (——-)“] (3.2)
respectively, where § represents the scale parameter, o the shape parameter, 4 the
location parameter and I' the gamma function. In the above equations, 8 > 0, o >
0and vy < z < oco. If zy,...,z, is a random sample of n observations, then the

logarithmic likelihood functions for the gamma and Weibull distributions are:

logL = —nalogf — nlogl'(a) + (e — 1) Y log(z; — v) — E(ﬂh ; 2
i=1 i=1

(3.3)

logL = nloga — nalogf + (a — 1) Z log(z; — %) — Z(m"; ) (3.4)
i=1 i=1
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respectively. Taking partial derivatives with respect to the parameters v, 8 and o

yields the following first-order conditions:

Gamma:
OdlogL i 1 n
—(a—-1 —=0 3.5
=~ - )N+ (3.5)
OlogL na 3. T —
= —— =0 .
ap B +§( 32 ) | (3.6)
alaozL = —nlogB —n¥(a) + »_log(z; —7) =0 (3.7
=1
Weibull:
OlogL
s = —(a=1) 3 2 S (i — ) = (38)
=1 Ti — ﬂa =1
OlogL _ _na o
aﬂ ﬂa+1 ;(xt ’Y) =0 (3‘9)
OlogL n

da = o MosBt > log(ai —7 E( T )elog( 2 7 Ty=0 (3.10)

=1 i=1

where ¥(q) is the digamma function, given as

The usual approach to ML estimation is to simultaneously solve the derivative

equations (5) to (7) and (8) to (10) for the parameters of the two distributions. It is

5) in (3),

and ¥, ( .,l_,y) and £5 Yo, (zi—7)* ~lin (8), are always pos1t1ve values. Obv10usly, it is

clear that this method is not valid if & < 1 because the terms and E,_l(

then not possible to satlsfy the first-order conditions for ML estimation simultaneously.

For further details of estimation when a < 1, see e.g. Cohen and Norgaard (1977).
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3.3 A New Approach to Maximum Likelihood
Estimation

In contrast to the derivative method for finding the extreme value of a given function,
it is possible to consider an optimization approach to maximise directly the likelihood
function and search for its extreme value over the permissible range of parameters. Al-
though not reported in this chapter, extensive experiments show that the optimization
method of searching in three dimensions for three parameters can provide quite sat-
isfactory estimates for the three-parameter gamma and Weibull distributions without
limiting the range of the shape parameter whenever the maximum of the likelihood
function exists. However, this three-parameter optimization method is not computa-

tionally efficient and also consumes considerable CPU time.

A computationally more efficient method may be obtained by combining the
optimization of the likelihood function with an associated simplification and reduc-
tion from a three- to a two-parameter distribution. The main difference between the
three- and two-parameter distributions lies in the location parameter, which the latter
sets equal to zero. The curve for both distributions is principally determined by the
shape and scale parameters. Therefore, a three-parameter distribution can be treated

as a two-parameter distribution after using the linear transformation given by
Ti=1z;— 7 (t=1,2,...,n) (3.11)

which simply transforms the original variable z to a new variable z’. Two-parameter
gamma and Weibull distributions can be estimated without any difficulties over the full
range of the shape parameter by using the derivative equations. Therefore, using the
transformation in (11) to eliminate the location parameter, the derivative equations

can now be expressed as follows:

Gamma:

%Z logz' — logz’ = ¥(a) — loga (3.12)

i=1
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7 =af (3.13)

Weibull:

n

o= (S logal)(Y o)™ — + Y- logal]™ (3.14)

=1 =1 =1

B= (3 al)k. (3.15)

i=1

The key to this method is to use the optimization procedure to search over the
entire admissible range of v and then to obtain the shape and scale parameters by
using (12), (13) and (14), (15) for the gamma and Weibull distributions, respectively.
The upper bound should be less then the first observation according to the definition
that 2; > 4 for ¢ = 1,2,...,n. This method can be used for estimation over the entire
range of parameters without restricting the range of the shape parameter. From our
simulation experiments, it is found that this method can also avoid the convergence

difficulties which are sometimes encountered in solving the derivative equations.

3.4 Improved General Approaches for the Gamma
Distribution

If prior knowledge can be used to show that the distribution is bell-shaped, it is worth-
while considering an improvement in the derivative method which requires a three-
dimensional parametric search. Rearrangement of equations (5) and (6), assuming a
known value for 4, yields the direct analytic solutions for § and « in terms of v as

follows:

o= i}(xin;a 7 (3.16)

R ke A n
S (7

The use of equations (16) and (17) requires only a one-dimensional search for the

location parameter 7y. There are two ways of proceeding with this numerical search,
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namely by substituting (16) and (17) into the derivative equation (7) or into the like-
lihood function (3). In both cases, conditional on the estimate of «, the estimates of
o and 3 are determined according to (16) and (17). The solution can be attained in
the former case by reaching an arbitrary permissible tolerance level, or in the latter
case by finding a local maximum of the likelihood function. Of course, unlike the
method outlined in the previous section, these two methods of obtaining maximum
likelihood estimates are still subject to the restriction that estimates of 8 and v cannot

be obtained where the estimate of « is less than or equal to unity.

3.5 Simulation Experiments

Monte Carlo simulations are undertaken to assess the performance of the estimation
methods discussed in the previous sections. The parameters are taken over a range
of possible values which might arise in practice. Results are reported in tabular form
for shape parameters taking the values { 0.3, 0.5, 0.8, 1, 1.5, 2, 4, 6 } for the gamma.
distribution, and values { 0.3, 0.5, 0.8, 1, 1.5, 2, 3, 4 } for the Weibull distribution.
These values span a large range of shapes which may arise in the analysis of life-
testing and reliability, or air pollution concentrations (see Jakeman et al. (1986)).
For the gamma distribution, the curve becomes symmetrical as the shape parameter
exceeds 6 while, for the Weibull distribution, negative skewness will result as the shape
parameter exceeds 4. These extreme cases are not of interest here. The scale and
location parameters are set at unity in all cases in order to enable an emphasis to be
placed on difficult situations. Figures 3.1 and 3.2 indicate the form of the probability
density functions for some selected parameter values. For all parameter sets, one
thousand experiments are conducted. The main sample size used is n = 365, which is
chosen as it represents a common case: namely a year of 24-hourly average observations.
In order to examine the effects of varying the sample size on the method described in the
previous section, a range of sample sizes from 50 to 1000 (which covers most applicable

situations) is also used.
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In this Monte Carlo study the performance criteria recommended for assessing air
quality distributions are chosen, namely the relative bias (BIAS) and the relative root

mean square error (RRMSE) (Fox, 1981). The criteria are defined as follows:

BIAS(q Z(q‘ — (3.18)
RRMSE(q) = Z("‘ e (3.19)

where N is the number of Monte Carlo experiments, q is the true value of the parameter

or the percentiles of the underlying distribution, and §; is the estimate of the parameter

for the i’th experiment.

The random sample generators used for the Monte Carlo study are DRNGAM for
the gamma distribution and DRNWIB for the Weibull distribution, available as sub-
routines in the International Mathematical and Statistical Library (IMSL) in version
1.0 (April, 1987). The same seed number (1234) is used to obtain the first random
sample of the first 1000 simulations. Varying the initial seed produces similar results

to those reported in the chapter.

Tables 3.1 to 3.6 list the MEAN, BIAS and RRMSE for estimation of the parameters
of the gamma and Weibull distributions for different sample sizes, different values of the
location parameter and different methods of estimation. In Table 3.1, results from using
four methods for estimating the gamma distribution when n = 365 are given, namely
method 1 (the new ML approach of Section 3), method 2 (the general ML approach
of Section 2), methods 3 and 4 (the improved general ML approaches of Section 4,
the former solving the third equation to obtain 4 and the latter by maximising the
likelihood function). In this table, the shape parameter is limited to a > 1 because
decreasing the value further will not be valid for methods 2, 3 and 4. It can be seen
that these four methods perform reasonably closely in terms of estimating all three
parameters of the distribution. The similar performances can be investigated in terms

of the mean and standard deviation of the maximised log-likelihood function over 1000

44



simulation experiments. For the gamma distribution with shape parameter taking the
value 2, the mean and standard deviation of the maximised log-likelihoods for methods
1, 3 and 4 are the same to four decimal places, namely - 573.90 and 15.68, respectively,
while for method 2 they are - 573.91 and 15.71, respectively.

Considering CPU time, methods 3 and 4 are the most efficient computationally,
followed by method 1 and finally method 2. The differences in computational efficiency
increase with the value of the shape parameter. A conservative comparison of the
efficiency of the four methods is therefore to consider the CPU time taken when fitting
random samples from a parent gamma distribution with the shape parameter taking
the value 2. Over 1000 experiments on samples of size 365, the estimation time for
methods 1 to 4 are 7(min):36(secs), 10:13, 3:24 and 4:02, respectively. The rankings in

terms of computational efficiency are broadly similar for many of the other experiments.

Table 3.2 reports only the results for method 1 when the shape parameter is equal to
or less than unity in which case the other three methods are invalid. It is clear from the
table that method 1 provides quite accurate results and the estimates are consistently
close to the true values of all three parameters of the underlying distribution. When
the true value of the shape parameter is less than unity, the estimates of the location
parameter are always equal to unity, with BIAS and RRMSE both zero (or very close
to zero). In order to investigate the performance of the new ML approach, Table 3.3
reports the results of estimating the gamma distribution when varying the sample size
from 50 to 1000. The results in the table demonstrate that this method is capable of
working well over the full range and produces consistent results following asymptotic
theory. Accuracy improves as the sample size is increased, although there is little to
be gained after n = 300 for the gamma distribution. The estimates of the location
parameter are again very close to unity, with zero BIAS and RRMSE, for sample sizes

in excess of 100 when the shape parameter is 0.8.

In Table 3.4, methods 1 and 2 are used for the Weibull distribution. The results

are similar to those for the gamma distribution in that all three parameter values are
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accurately estimated. As in the case for Table 3.2, Table 3.5 reports the results for
estimating the Weibull distribution using method 1 only and the estimates are quite
close to the true values of the parameters. Following along the lines of the gamma
distribution in Table 3.3, the results in Table 3.6 also show that the new ML approach
seems to perform extremely well for different sample sizes, with little improvement
beyond n = 200 for the Weibull distribution. The results for estimates of the location
parameter for the Weibull distribution when the shape parameter is less than unity

(see Tables 3.5 and 3.6) are very similar to those obtained for the gamma distribution

(see Tables 3.2 and 3.3).

3.6 Fitting Real Data

As illustrative examples, two data sets are chosen for air pollutant measurements of
24-hourly nitrogen dioxide concentrations in Melbourne, Australia. These two data
sets present two diverse cases: “bell” shaped and reverse “J” shaped samples for the
same pollutant and same year but measured at different stations. It is obvious that
there is no prior knowledge to indicate whether the shape parameter of the parent
distribution is less than, equal to or greater than unity, and it is uncertain whether
the general approach of ML can be used or might break down. These two data sets
demonstrate that the new approach of ML is necessary in order to enable fitting over
the entire range of parameters without restricting the range of the shape parameter. In
the first data set, the sample size is 271 from the Museum monitoring station in 1979;
four methods for estimating the gamma distribution and two methods for the Weibull
distribution are employed. The results are listed in Table 3.7. In the second data set,
the sample size is 317 from the Alphington station in 1979. Only the new approach of
ML for the gamma and Weibull distributions is applied and the estimated parameters
are also listed in Table 3.7, with the gamma distribution fitting better than the Weibull
distribution. Figures 3.3 and 3.4 show the fit to the data sets by the new ML approach.

The results show that the new ML approach produces identical estimates to those of the
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general approaches for the first data set, with the gamma distribution being superior
to the Weibull distribution. The estimates are also satisfactory for the second data
set, with the estimated shape parameter being less than unity and the ML estimate
of the location parameter being equal to the minimum observed value of the data (as
required). On the basis of these estimates, it is clearly useful to apply the new ML

approach in general situations.

3.7 Discussion of the Maximum Product of
Spacings (MPS) Estimation Method

The MPS estimation method is designed as a general method of providing consistent
estimators by Cheng and Amin (1983). From their paper, this method can be applied
to any univariate distribution, and is especially useful for non-regular cases such as
the gamma and Weibull distributions when ML fails. They proposed that this method
retains the desirable properties of ML estimation and, importantly, that the MPS
method estimates the parameters of distributions under much more general conditions
than the ML method. In some situations, the MPS estimator can be a function of

sufficient statistics whereas the ML estimator is not.

As discussed in previous sections, the ML principle can be applied to a wide range
of estimation problems under very general conditions. The ML method may be suc-
cessfully used in many continuous univariate distributions by implementing the general
- approach of solving the derivative equations. In particular cases such as the gamma
and Weibull distributions, a simple useful technique can be employed to overcome the

difficulties encountered by the general method following the ML principle.

In comparison with the ML method and the new approach suggested in this chapter,

the MPS method is computationally more complex and it can be less accurate.
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3.7.1 MPS Estimation of the Gamma Distribution

For purposes of illustration, the gamma distribution will be used to describe the esti-

mation method. The derivation of the estimation equations is as follows.

If 1 < 2 < ... < z, is a random sample of n observations from the gamma distri-
bution, transform all the data into the unit interval (0,1) by using the transformation

yi = F(2,0),i=0,1,...,n+ 1. The difference given by

Di=yi—yr= [ f(z6)ds (i=12...,n+1) (3.20)

Ti-1
is called the (uniform) spacing of the sample {y}. The MPS method maximizes the

geometric mean of the spacings

n+1
H = logG = log(T[ D:)™ = —alogB — logT'(cx)
=1
ﬂ+1 »7
LSt [ @) tean(- 25 e
=1 1':—-1

for which the first-order conditions are

dlogG ™ [ [—(a=1)(z—7)"%+ l(“" - 7)01—169;1)(-—2;—‘1)](13:

= 3.21
S P (N It L P e (20
=0
0logG a 1 _1(-"3 ) eap(— 5 )da
__«@ : 3.92
ap B + n+1 ; e, (z —y)*tezp(—%5 )dz (3:22)
=0
dlogG ntl (% (x —v)* Hog(z — 7)exp(—=F)dz 3.93
aa - —logﬁ—log\p(a)+§ ( + 1) x'-l(m . )a_lexp(_?)dw ( . )
= 0.
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As compared with equations (5) to (7), it is easy to see that the MPS method is
considerably more complicated than ML since it needs to solve such difficult equations,
even though the plotting technique for v to see if it has a (local) maximum may lead
to the deletion of (21). The ML method is relatively more simple and efficient, par-
ticularly using the new approach and the improved general approach to estimate the
parameters of the gamma distribution. It is known that complex equations may intro-
duce iterative errors, may cause difficulties with convergence, and may yield inaccurate
solutions. Even when the cumulative distribution functions have explicit forms, such as

the Weibull distribution, the equations for estimation are still more complicated than

for the ML method.

3.7.2 Comparison of the ML and MPS Methods for the
Weibull Distribution

A simple comparison shows that the MPS method can be less accurate than the ML
method. The assessment criterion is simply the relative maximised log-likelihood func-
tion values corresponding to the estimated parameters of each method, together with
observing whether the ML estimate of the location parameter is equal to the minimum
observed data point if the shape parameter is less than or equal to unity. The higher
value of the log-likelihood function will indicate which method provides estimates more
accurately. For illustrative purposes, the samples used are 20 observations on maxi-
mum flood levels (in millions of cubic feet per second) for the Susquehanna River of
Harrisburg over twenty, 4-year periods given in Dumonceaux and Antle (1973) and 20
observations on beach pollution (measured in number of coliform per 100 ml) in South
Wales on twenty days over a 5-week period, provided by Steen and Stickler (1976).
Both data sets are employed for the MPS estimation in Cheng and Amin (1983).

Table 3.8 shows that the new ML method provides much higher values of the log-
likelihood functions than the MPS method. It is useful to note that the estimates of the
shape parameters are less than unity for both data sets using the new ML method, and

for the pollution data set using the MPS method. In such situations, the ML estimate
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of the location parameter is the minimum observed value of the data. For both samples,
the log-likelihood values associated with the MPS estimates are much lower than those
obtained by the new ML approach, indicating the inaccuracy of the estimates given
by the MPS method. Moreover, for the pollution data set, the ML estimate of the
location parameter is, in fact, the minimum observed data point, whereas the MPS

estimate is not, providing further evidence of the superiority of the ML approach over

the MPS method.

3.8 Concluding Remarks

In this chapter, a new approach to maximum likelihood (ML) estimation is developed
to overcomf; the difficulties encountered in some continuous univariate distributions,
such as the three-parameter gamma and Weibull distributions. This method can also
essentially be used for other three-parameter univariate distributions, such as the log-
normal distribution. It can provide consistent and efficient estimators without placing
any restrictions on the range of parameters concerned. Through the Monte Carlo study
and the empirical illustration, the new approach is shown to be capable of perform-
ing well over an extensive range of parameter values and sample sizes, and can easily
be used in applications where the value of the shape parameter may be greater than,
less than, or equal to unity. There are also important implications for theory: the
new approach complements the standard ML approach and removes the difficulties of

estimation for all values of the shape parameter.
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scale and location parameters

1.5 -
— SAPE= S

125 1 — — SHAPE=m 2
P -—-- SHAPE= 3
R -—- SHAPE= 4
0 1
B
A
1
L
|
T
Y 0.5 -

0.25 -

ol e
0 4 5 6

Figure 3.2: Profile of the Weibull distribution for a range of shape parameters and unit
scale and location parameters

51



025

— SAMPLE
----- GAMIA
02 - AN -— - WEIBULL
b PSRN
R 1 I R\
o 5 B
B 0.15 v
A » £ i
B - \
'L 111N
| 0.4 1 s
T : Yy
Y ’3%
05 - RN
“h
00— T T i T =T

0o 25 5 75 0 025 5 75 20
CONCENTRATION
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TABLE 3.1

Estimates of parameters derived from four methods for the three-parameter gamma
distribution based on 1000 Monte Carlo simulations with sample size n = 365 and f =y =1

Estimated Performance a=15 a=20
Parameter Criteria Method Method
1 2 3 4 1 2 3 4
mean 1.458 1.460 1.460 1.454 1.953 1.947 1.948 1.947
a bias -0.028 -0.027 -0.027 -0.031 |} -0.024 -0.026 0.026 0.027
rrmse 0.089 0.089 0.089 - 0.091 0.103 0.104 0.105 0.106
mean 1.027 1.026 1.026 1.030 1.022 1.024 1.024  0.988
B bias 0.027 0.026 0.026 0.030 0.022 0.024 0.024 -0.012
rrmse 0.097 0.098 0.098 0.098 0.100 0.100 0.101 0.097
mean 1.011 1.011 1.011 1.011 1.019 1.021 1.021 1.022
04 bias 0.011 0.011 0.011 0.011 0.019 0.021 0.021 0.022
rrmse 0.021 0.020 0.020 0.021 0.048 0.049 0.050 .0.052
Estimated Performance a=4.0 a=6.0
Parameter Criteria Method Method
1 2 3 4 1 2 3 4
mean 3.947 3.947 3.947 3.947 6.034 6.038 6.034 6.026
a bias -0.013 -0.013 -0.013 -0.013 | 0.006 0.006 0.006 0.0004
rrmse 0.196 0.196 0.196 01961 0.268 0.270 0.268 0.284
mean 1.026 1.026 1.026 1.026 1.026 1.025 1.026 0.995
B bias 0.026 0.026 0.026 0.026 0.026 0.025 0.026° -0.005
rrmse 0.134 0.134 0.134 0.134 0.160 0.159 0.160 0.168
mean 1.045 1.044 1.045 1.045 1.047 1.045 1.047 1.044
v bias 0.045 0.044 0.045 0.045 0.047 0.045 0.047 0.044
rrmse 0.291 0.291 0.291 0.291 0.652 0.657 0.652 0.701
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TABLE 3.2

Estimates of parameters derived from new ML approach for the three-parameter gamma
distribution based on 1000 Monte Carlo simulations with sample size n = 365 and =7 =1

Estimated Performance Shape Parameter a
Parameter Criteria 0.3 0.5 0.8 1.0
mean 0.310 0.501 0.781 0.957
a bias 0.032 0.001 -0.023 -0.043
rrmse 0.065 0.060 0.063 0.073
mean 0.973 1.003 1.029 1.046
B bias -0.027 0.003 0.029 0.046
rrmse 0.110 0.093 0.093 0.093
mean 1.000 1.000 1.001 1.003
v bias 0.000 0.000 0.001 0.003
rrmse 0.000 0.000 0.001 0.004
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TABLE 3.4

Estimates of parameters derived from new ML approach for the three-parameter Weibull
distribution based on 1000 Monte Carlo simulations with sample size n = 365 and f=7 =1

Estimated Performance Shape Parameter o
Parameter Criteria 1.5 2.0 3.0 4.0
mean 1.483 1.983 2.987 4.032
o bias -0.012 -0.009 ' -0.004 0.008
remse 0.047 0.058 0.092 0.137
mean 0.988 0.989 0.991 1.040
B bias -0.012 -0.011 -0.009 0.040
rrmse 0.043 0.045 0.073 0.577
mean 1.008 1.010 1.008 0.985
Y bias 0.008 0.009 0.008 -0.015
rrmse 0.015 0.029 0.066 0.194

Note : The results from using Method 2 are virtually identical to those of Table 3.
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TABLE 3.5

Estimates of parameters derived from new ML approach for the three-parameter Weibull
distribution based on 1000 Monte Carlo simulations with sample size n = 365 and f =7y =1

Estimated Performance ! Shape Parameter a
Parameter Criteria 0.3 0.5 0.8 1.0
mean 0.305 0.501 0.794 0.983
a bias 0.016 0.003 -0.008 -0.017
rrmse 0.041 0.039 0.039 0.042
mean 1.034 1.005 0.995 0.990
B bias 0.034 0.005 -0.005 -0.010
rrmse 0.195 0.112 0.070 0.056
mean 1.000 1.000 1.001 1.003
Y bias 0.000 0.000 0.001 0.003
rrmse 0.000 0.000 0.001 0.004
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TABLE 3.7
Estimates of parameters of two distributions and maximized log-likelihood values by various
methods to fit nitrogen dioxide concentrations in the Museum and the Alphington stations,
Melbourne, Australia

n Data Station Distribution Method a B ¥ Max(logL)
Gamma 1,2,3,4 1.772 9.962 0.523  -586.21
271 Museum
Weibull 1,2 1.336 3.749  0.565  -588.42
Gamma 1 0.637 3.286 0.040  -525.33
317 Alphington S
Weibull 1 0.773 1.840  0.040  -531.97

Note : For the data in the Alphington station, methods 2-4 failed to converge.

TABLE 3.8

Estimates of parameters and maximized log-likelihood values by new ML approach and MPS
method to fit the three parameter Weibull distribution using the flood level data and the
pollution data

n Data Set Method a B ¥ Max(logL)
ML 0.464 0.128 0.265 25.03
20 Flood Level
MPS 1.310 0.202 0.244 16.36
ML 0.430 - 4333 1364 -43.44
20 Pollution
MPS 0.950 6562 1085 -56.75
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Chapter 4

Percentile Estimation: the Method

of Moments versus Maximum
Likelihood

4.1 Introduction

This chapter considers the problem of parametric fitting of probability distributions
given a time series of observations by comparing the results of comprehensive Monte
Carlo simulation experiments using the method of moments and maximum likelihood.
From the analysis of air quality data sets collected at fixed sites over invariant averaging
times, common distributional forms considered appropriate are the lognormal, gamma
and Weibull distributions (e.g. Bencala and Seinfield, 1976; Taylor et al. 1986), which
have been discussed in previous chapters. The aim here is to summarise the data while
obtaining accurate estimates of the percentiles required. For this application it must
be assumed that air pollutant observations are independent, identically distributed
random variables. Often this appears not too harsh an assumption in practice. Geor-
gopoulos and Seinfeld (1982) noted in their review of the statistical distribution of air
pollutant concentrations that the application of theoretical results derived for indepen-

dent, identically distributed random variables produced satisfactory agreement with

observations.

To fit air quality data, the upper percentiles of the distribution are the major

concerns although fitting of the overall distribution is also very important. These
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upper percentiles can generally be considered to consist of the 98-percentile and higher
percentiles. This is the percentile range of concentrations to which most air quality
standards refer. Particular emphasis is placed upon estimation of the maximum and
second highest concentrations of a data set consisting of observations recorded over a
fixed averaging time (sampling interval) of 24-hours and collected for a calendar year.

However, the effect of other averaging times is investigated as well by varying the

sample size in simulation experiments.

Little attention has previously been given directly to quantify performance for fit-
ting high percentiles in the statistical literature. In general applications, the method
of maximum likelihood and the method of moments are commonly used in estimation.
It is well understood that the method of maximum likelihood provides more efficient
estimates of the parameters than the method of moments at large sample sizes (Kendall
and Stuart, 1979). However, the relevant performance of the fit will change accord-
ing to the parent parameter values, the percentile of interest, the sample size and the

selected performance criterion. This problem shall be examined here.

4.2 General Properties of the Methods of Moments
and Maximum Likelihood related to Air
Quality Application

As mentioned before, the methods of moments (MT) and maximum likelihood (ML)
are the most popular statistical techniques for estimating parameters of a distribution.
Even though numerous papers and text books in the statistical literature have dis-
cussed these two methods, most authors have focussed only on the theoretical aspects
(Kendall and Stuart, 1979). Practical aspects have received little attention, especially
investigation of the performance of these two methods by simulation experiments and
fitting real data. Employing these methods to study air pollution data, it is necessary
to re-examine their properties in relation to the requirements raised in applications.

Particularly, there is concern with their behaviour in predicting upper percentiles of
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distributions.

The method of moments is a traditional approach used for estimating the parame-
ters of distributions. This method equates the sample moments with the corresponding
population values, an equivalence which becomes true as the sample size tends to infin-
ity. Generally, the moment generating function or characteristic function can be used
to generate theoretical moments, and the sample moments can be easily obtained by
simple calculations from the data. Compared to the method of maximum likelihood,
the method of moments is simpler to use and its estimates are consistent. However,
as a distribution departs considerably from normality, such as those of the Pearsonian
type, the MT method becomes very inefficient in estimating parameters of the distri-
bution (Cramer, 1946). In many cases, the estimates of the method of moments have

large variance, and they are not unbiased (Kendall and Stuart, 1979).

The method of maximum likelihood is a more sophisticated technique in estimating
parameters of distributions. Since it maximizes the likelihood function of the distribu-
tions, the ML estimates have many optimal properties. Asymptotically, the estimates
of ML follow the normal distribution with the true value as mean, and a variance
achieving the Cramer-Rao bound (Kendall and Stuart, 1979). Also such estimates are
asymptotically efficient, sufficient and consistent. Hence, they play a very important
role in statistical inference, such as in hypothesis testing. On the other hand, because
the ML method usually involves a numerical procedure to estimate the parameters
iteratively and simultaneously, it can provide convergence difficulties. Personal experi-
ence suggests that such difficulties occur particularly when the number of parameters
of the distribution is more than 3 or the sample size is below 30. On the contrary, the

method of moments does not suffer from this convergence problem.

In practice, it is desirable to use a simple method as long as its error in estimation
can be tolerated. There is a lack of knowledge in the literature, indicating the exact
quantitative difference between the MT and ML methods in estimating parameters

of probability distributions. This may be obtained via extensive investigations and
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Monte Carlo computer simulations. The aim here is to provide such information to the

practitioner, so that the decision of which method should be used can be made based

upon the results given.

Even less attention has been given to upper percentile estimation by MT and ML
methods. In recent years, it has become very important since many environmental
regulations, such as air quality standards, are stated specifically in terms of upper
percentiles. It is important to predict these percentiles as accurately as possible because

the results have serious practical consequences.

It is well understood that the behaviour of the sampling distribution differs over the
entire range of percentiles. Corresponding to the lower, middle, and upper percentiles,
the standard errors of the samples are not identical. For illustrative purposes, consider
the following simple analysis. Suppose z,...,Z, is a random sample of n observations

in ascending order of magnitude, i.e., it can be expressed as

21 <22<K...< 2Ty

and f(z) is the parent probability density function of the distribution. Based upon the
theory of quantiles (Kendall and Stuart, 1979), the variance of z; can be calculated as

var(z;) = ;pjg? (4.1)
where p = F(z,). For any p, 0 < p < 1, and p+ g = 1. The quantity f; is the ordinate
of the parent density distribution (Kendall and Stuart, (1979, p. 237)). Considering
the entire range of percentiles, the relationship between var(z;) and p, in terms of
(4.1), can be shown in Fig 4.1 for the three-parameter gamma distribution. Generally,
var(z;) becomes larger as p is increased. A similar analysis can be used to obtain
the relationship between var(z;) and f; shown in Fig 4.2. war(z;) is high for low
value of f; at the upper percentiles. Hence, these plots clearly illustrate that at upper
percentiles, where f; has the lowest value, the largest variance in sampling is focussed.

Obviously the upper percentiles yield the largest sampling errors for positively skewed

distributions with long tails.
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It is easy to see the effects of sample upper percentiles on the ML and MT estimation

methods. Estimation by maximum likelihood depends on the values of f; to maximise

the likelihood function

L = L(xy,...,z,50) = mamﬁf(w,-; 0) (4.2)

=1

in order to obtain estimates of @& where the maximized value of the function occurs.
The middle range of percentiles with high values of f; has greatest influence on the
estimation results, while changes in the upper percentiles have less influence on the
estimation. In other words, this method is not especially sensitive to upper percentile
variation because f; is very low there. On the other hand, the method of moments
generally employs the first two or three moments of the sampling distribution, which
heavily depend on the values of x; rather than f;. High values of z; at the upper
percentiles have strong influence on the estimation results, particularly when using
high moments. Hence, the method of moments is more sensitive to sampling errors in

the upper percentiles, and it will simply fit the data better there (but not necessarily

the parent distribution) than the method of maximum likelihood.

4.3 Estimation by the Method of Moments

Estimation by maximum likelihood has been discussed in the previous chapter. Here
the principle of the method of moments is outlined. Using the characteristic function,
formulas for parameter estimation of the two- and three-parameter gamma, Weibull

and lognormal distributions are obtained.

4.3.1 The Characteristic Function and Moments

In general, the distribution function is closely related to the characteristic function.
The latter has many useful and important properties and plays a central role in statis-
tical theory. Like moment generating functions, it can be used to derive properties of

theoretical moments which widely apply to statistical inference and sampling analysis.
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Another important aspect of the characteristic function is that it uniquely determines
a distribution function since the reciprocal relationship between distribution density
function and characteristic function exists. From the limiting properties of distribution
and characteristic functions which are demonstrated by the uniqueness theorem and
the continuity theorem (Mann, 1974), the characteristic function of the joint distri-
bution of a number of independent variables has provided a fundamentally important
result in the theory of sampling (Kendall and Stuart, 1979).

Let F(z) denote a one-dimensioned distribution function and ¢ a real number, the

characteristic function corresponding to F(z) is defined as

(1) = / et dF(z) (4.3)
where #(t) is generally a complex-valued function of ¢ and always has ¢(0) = 1 and

€'"® = costz + 1 sintz. Differentiating (4.3) k times with respect to ¢,

oo .
& (t) = & / 2’ dF () (4.4)
—00
Hence, the characteristic function can be expressed as a MacLaurin’s series in the

neighbourhood of ¢t = 0 by

60 = 1+ 32 256ty + o) (45)

where the error term tends to zero as t — 0. (Cramer, 1946). Here a, is just the

moment of order v of the distribution, having the form

a, = / ” 2dF(z) (4.6)
The first moment a, is the mean of the distribution, denoted also by m. Based on the

mean of the distribution, the central moments can be defined by

p= [ (@=m)dF () (4.7)
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Using (4.7), the relation between moments and central moments are easily found

as the following (Cramer, 1946)

Ko =1, (4.8)

=0, (4.9)

p2 = ag — m?, (4.10)

p3 = az — 3may + 2m3, (4.11)

P4 = ag — dmaz + 6mZay — 3m?, (4.12)

------------------------------

where y; is the variance of the distribution, denoted by o2 (¢ is the standard deviation).
In general applications, the first moment, and second and third central moments are

used quite often. To distinguish between symmetric and skewed distributions, the

coefficient of skewness is commonly introduced as

= % (4.13)

The skewness is used to measure the departure of a skewed distribution from a
symmetric distribution. Positive skewness shows that the frequency curve forms a long
tail in the positive direction; similarly negative skewness will lead to extension in the

negative direction. Normally, the positive-skewed distribution is the usual case in air

pollution applications and will be the major focus in this chapter.

In the next section, the three-parameter gamma distribution is used for illustrative
purposes to show how to obtain moments from the characteristic function. Subse-
quently, the moment estimators for the two- and three-parameter gamma, Weibull and
lognormal distributions will be given, as they are the most commonly used forms in

the air pollution and much of the statistical literature.
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4.3.2 The Moments Estimators for Two- and Three-parameter

Gamma,Weibull and Lognormal Distributions

As discussed above, the characteristic function can be used to derive the theoretical
moments for a particular distribution function of interest. Based on the central limit
theorem, the sampling moments will tend to the theoretical or parent moments as sam-
ple size tends to infinity. For finite samples the assumption of equality is made to derive
the distribution parameters. As an illustrative example, the three-parameter gamma
distribution is now employed to demonstrate the derivation of moment estimators. In
the previous chapter, the density function of the three-parameter gamma distribution
was given in (3.1). Inserting this in equation (4.3), the characteristic function for the

three-parameter gamma becomes

40 = gre Jo G empl (s (4.1)

where the lower bound of the interval of integration is zero according to the definition

of the gamma distribution. Using the substitution u = z — 4 and re-arranging, the

equation becomes

et’t'y o0 1
t) = a-le=(g=itlg 4.15
60 = g Jo w0 (4.15
Substituting again with v = (% — it)u, the form of the characteristic function

becomes
1 1 o
t) = ——(5—1)™" v* le™Vdv
60 = oy

= (1 —itf)™™ (4.16)

After expansion of (4.16) in a MacLaurin’s series in the neighbourhood of ¢ = 0 and
comparing it with (4.5), the »-th moments for the three-parameter gamma distribution

can be obtained as
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a; =7+ Ba (4.17)
az = 7?4+ 27yBa + fPa(a +1) (4.18)
as =7+ 37V Ba+3fa(a+1) + BPa+1)(a+2) (4.19)

..............................

For three-parameter distributions, the skewness is often used in deriving the mo-
ment estimators. Inserting (4.17), (4.18) and (4.19) into (4.10) and (4.11) and rear-

ranging, the second and third central moments become

p2 = afp? (4.20)
ps = 2a° (4.21)

From the definition of skewness in (4.13),

3
g= ﬁﬂ—i = 2 (4.22)
() ~ Va
Therefore, the shape parameter a can be obtained by
4
a = g—z' (4.23)
By using the variance 2, the scale parameter can be determined from
H2
=.,/= 4.24
g=[E (4.24)

When the first two parameters are calculated, the remaining location parameter v

can be directly obtained from the definition of the mean as

7= a1 - fa (4:25)
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Following a similar procedure to the above, the moment estimators for the two-
parameter gamma, two- and three-parameter Weibull and lognormal distributions can
also be derived. The sample moments are equated to their theoretical counterparts.
For a sample z;,z3,...,z, of n independently and identically distributed random ob-

servations, the sample moments can be expressed as

§|r—'

f: (4.26)

and the central moments as

Py = — E(m, —-z)” (4.27)

z-—l

where Z is the sample mean. Note that normal practice is to use s = =25 S0, (z; — Z)?

instead of the sample variance because of its unbiased property. Using the sample
moments, method of moment estimators of the parameters of the six distributions
considered in this thesis can be given as follows (Johnson and Kotz (1970), Dubey

(1966) and Aitchison and Brown (1975)):

three-parameter Gamma:

ryra(zi—z)°

g — 4.28
g nll :—1 (z' - m)2]3 ( )
. 4
o= 5,_; (4.29)

™
I

J L T2y (4.30)

n—1 a

y=z— P& (4.31)
two-parameter Gamma:
. (n—1)z?
& = —— 7 (4.32)

z?:l (.27,' - 5‘;)2
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=R
il
Q| 81

(4.33)
three-parameter Weibull:
oy i (o — 2)713 [P(Z+1) -T2 + 1) |
2 1 E?:l(ml' - 5)2
ﬂ—Jn—II‘(§+1)—1“2(§;+1) (4.35)
- ooa 1
Y=z - ﬂl“(g +1) (4.36)
two-parameter Weibull:
(n—1)z* (3 +1)
T -9 TE+2) -+ 30
A T
b=z ey (4.38)
three-parameter Lognormal:
15 . z)3 R .
R —r = (¥ —1)(e¥ +2) (4.39)
ot iz (T — 2))2

1 1 1 1,
& = {log{[1 + 54" + \/(1 + 5977 - 1% +[14 Y \/(1 + 59 - 1)5 —1}}% (4.40)

" 1,
4=z —exp(f+ 3 2) (4.42)

two-parameter Lognormal:

& = \/log[n i - iz (;;‘ 2 4 1] (4.43)
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(4.44)
Note that (4.34) and (4.38) define & implicitly.

The two- and three-parameter gamma, and two-parameter lognormal distributions
require only simple calculations. For the two- and three-parameter Weibull and three-

parameter lognormal distributions, the method of moment estimators are obtained by

iterative numerical methods.

It should be appreciated that there will be different solutions for parameter esti-
mates if different moments are employed, such as higher moments. In other words, the
method of moment estimators are not unique. Thus, using different moments can gen-
erate quite different performance. However for the purpose of comparing performance
with the maximum likelihood estimator, common practice is followed here in using the

first two moments for two-parameter distributions and the first three moments for 3

parameter distributions.

4.4 Loss Functions

In order to assess the performance of the methods of moments and maximum likelihood
in predicting the percentiles of a distribution, loss functions recommended for assessing
air quality models are used (see Fox (1981)). These functions are given in equations

(3.18) and (3.19), and are reproduced below for convenience

BIAS(q) = %f}(?—g—ﬁ) (4.45)
N
RRMSE(g) = [ S (4.46)

where N is the number of replications in the Monte Carlo experiments. For present
purposes, g denotes the parent parameter values and upper percentile quantities of the

underlying distributions. The upper percentile quantities may be observed samples
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or underlying values of the parent distribution as errors of departure from both are

calculated.

4.5 Monte Carlo Experiments

To undertake this assessment of fitting percentiles of the gamma, Weibull and lognormal
distributions for both the sample and parent cases, simulation over an extensive range
of possible cases was undertaken. Results are reported in tabular form for shape
parameters of value 2, 4 and 6 for the gamma distribution, of value 2, 3 and 4 for
the Weibull distribution and of value 0.5, 0.7 and 0.9 for the lognormal distribution.
These values span a large range of shapes which may arise in the analysis of air pollutant
concentrations. In order to assess the sensitivity of results to the location parameter,
the values of 1, 3 and 5 were selected for each distribution. The same values of 1, 3
and 5 are also set for the scale parameter. For all parameter sets in the tables and
figures, one thousand simulations are used. The major sample size used is n = 365,
since it represents a common case, namely a full year of 24-hourly average observations.
However, a range of sample sizes from 100 to 1000 is also considered to show that the

qualitative conclusions derived for sample size n = 365 are applicable for other sample

sizes.

Through the Monte Carlo simulations, estimates of both the parameters and per-
centiles are obtained. In the percentile estimation, the emphasis is placed on the
following upper percentiles: the 98-percentile (98%), second maximum (MAX2) and
maximum (MAX1) percentiles. The predicted values are compdred with both parent
and sampling distributions. In the case of the parameter estimation, only deviations
from the parent (true) value can be calculated. Note that the new methodology of the
method of maximum likelihood proposed in Chapter 3 is used which can provide satis-
factory ML estimates in a computationally efficient manner for both the 3-parameter
gamma and Weibull distributions. When the sampling distribution is quite skewed,

it was found that the classical maximum likelihood method for estimation of the 3-
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parameter lognormal distribution, which involves solving the first derivative equations,
has difficulty in converging. Using the new approach in Chapter 3, this problem can also
be avoided. Therefore, in this chapter, the new ML method is used for the estimation

of the parameters of the three-parameter gamma, Weibull and lognormal distributions.

As is always the case in this thesis, the random sample generators used for the
Monte Carlo experiments are DRNGAM, DRNWIB and DRNLNL for the gamma,
Weibull and lognormal distributions, respectively. These are available as subroutines
in the International Mathematical and Statistical Library (IMSL) in version 1.0 (April
1987). The same seed number (1234) is used to obtain the first random sample of the
first of the 1000 replications. Varying the initial seed produces similar results to those
reported in the tables. For the maximum likelihood estimation, a golden section search
algorithm is used to obtain the roots of equations and the final estimate of the root
was accepted when the relative error between two successive approximations was less

than 1078, A VAX 8700 mainframe computer was used.

4.6 Monte Carlo Results

4.6.1 Estimation for the Three-parameter Gamma
Distribution

Table 4.1 lists the MEAN, BIAS and RRMSE for parameter estimates of the gamma
distribution derived using the method of maximum likelihood and method of moments.
As would be expected from theoretical considerations (Kendall and Stuart, 1979), Table
4.1 demonstrates that the method of maximum likelihood yields improved estimates
of the parameters of the distribution, in terms of BIAS and RRMSE, over the method
of moments. Note that parameter errors for shape and scale parameters are almost
identical for different scale and location values of the parent distribution. This is not
the situation for percentile errors reported in Tables 4.2 and 4.3. Generally, the relative

performance of the two methods converges as the skewness decreases (shape increases).

For the three-parameter gamma distribution, Table 4.2 lists estimates of the BIAS
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and RRMSE of predictions of the maximum value (MAX1), the second highest value
(MAX?2) and the 98-percentile (98%). These error criteria are based upon deviations
from the true parent distributional percentiles. Again the method of maximum like-
lihood yields consistently better RRMSE values than the method of moments. The
estimates of BIAS show that for the gamma distribution the method of moments pro-
duces estimates of the percentiles with slightly smaller BIAS than the maximum like-
lihood method. The important point is that for both methods the BIAS is much lower
than the corresponding RRMSE, often around 10 per cent of the RRMSE value. A
comparison of the results of Tables 4.2 and 4.1 is interesting. The method of moments
is seen to produce much higher RRMSE values for the parameter estimates than the
maximum likelihood method. In Table 4.2 the improved accuracy of the method of
maximum likelihood over the method of moments is relatively lower. Thus, the method
of moments provides a much better fit to the upper percentiles of the distribution than

the estimates of parameters, considered as an isolated factor, would indicate.

Table 4.3 is based upon similar calculations to those for Table 4.2 except that the
performance criteria are based upon deviations from the relevant sample percentile in
each of the 1000 Monte Carlo simulations. The results of Table 4.3 show that the
method of moments produces lower BIAS and RRMSE values for the three percentiles.
Hence the method of moments provides a closer description of sample upper percentiles

than the method of maximum likelihood.

The results of Tables 4.2 and 4.3 also yield a consistent pattern in the percentile error
sensitivity to location, scale and shape parameters. Consider the effect of changes in
location parameter first. For either method a larger location parameter yields a general
decrease in BIAS accompanied always by a decrease in RRMSE from the parent and
sample percentiles. This pattern holds for all shape parameterisations and for the three
percentiles investigated. The reverse effect can be observed for changes in the scale
parameter. BIAS and RRMSE will increase when the value of the scale parameter
increases. For the effect of shape parameter changes, an equally consistent pattern can

be seen whichever the method, percentile, scale and location parameter values. In this
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case the BIAS and RRMSE generally drop as skewness decreases.

In order to investigate the performance of the method of moments and method
of maximum likelihood over a range of percentiles, the RRMSE for the full range of
percentiles was evaluated. Again N = 1000 and n = 365 were chosen for the Monte
Carlo study. Results are plotted for gamma parameter values of (a, 8,7v) = (2,1,1). The
other parameter sets yield analogous behaviour. Figure 4.3 presents these results for
RRMSE deviations from the parent percentiles. Figure 4.4 presents the corresponding
results for RRMSE, that is for deviations from the sample percentiles. Figure 4.3 shows
that the method of maximum likelihood produces the lower RRMSE (from the parent
percentile) values over all percentiles. However, Figure 4.4 indicates that the fit to the
observed percentiles by the method of moments is superior for the upper percentiles.
This is not the case for the lower percentiles. Thus there is a cross-over percentile

above which the method of moments becomes superior.

The effect of sample size was also investigated by evaluating RRMSE at the 98-
percentile (98%) over the range of sample sizes n = 50,100(100)1000. Figure 4.5
presents the indicative results for deviations from the true value. The parent parameter
values used to illustrate are (o, 8,7) = (2,1,1) for the gamma distribution. Figure 4.6
shows the corresponding results for deviations from the sample 98-percentile. Figure
4.5 demonstrates the expected result that the method of maximum likelihood yields
the lowest values of RRMSE relative to the parent percentile for the whole range of
sample sizes considered here. By contrast, Figure 4.6 illustrates that for the gamma
distribution the method of moments has lower deviations for the estimates of sample
percentiles. However the method of maximum likelihood appears to be approaching

the method of moments in accuracy as the sample size increases.

4.6.2 Estimation for the Three-parameter Weibull
Distribution

Comparison of estimates of both parameters and percentiles by the methods of mo-

ments and maximum likelihood for the three-parameter Weibull distribution yields
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qualitatively similar patterns to the results above for the gamma distribution. These
are shown in Tables 4.4 to 4.6. In Table 4.4, the MEAN, BIAS and RRMSE for
parameter estimates of the Weibull distribution are derived by using the method of
maximum likelihood and method of moments. Again the method of maximum likeli-
hood yields improved estimates of the parameters of the distribution, in terms of BIAS
and RRMSE, over the method of moments. Parameter errors for shape and scale pa-

rameters remain almost identical for different scale and location values of the parent

distribution.

Table 4.5 reports estimates of the BIAS and RRMSE of predictions of the three
upper percentiles based upon deviations from the true parent percentiles. The method
of maximum likelihood yields consistently better RRMSE values than the method of
moments. Again, as been seen in the three-parameter gamma case, the estimates of
BIAS show that for the Weibull distribution the method of moments produces estimates
of the percentiles with slightly smaller BIAS than the maximum likelihood method.

The results of estimation Based upon deviations from the relevant sample percentile,
are obtained which are reported in Table 4.6. The method of moments has lower BIAS
and RRMSE values for the three percentiles investigated. It demonstrates that the
method of moments provides a better fit of sample upper percentiles than the method

of maximum likelihood.

For the three-parameter Weibull distribution, the percentile errors are also sensi-
tive to location, scale and shape parameters. When the location parameter changes,
BIAS and RRMSE generally decrease for both the parent and sample percentiles, but
an increase in the scale parameter value leads to an increase in BIAS and RRMSE.
Similar to the three-parameter gamma case, the effects of shape parameter changes are

significant whatever the method, percentile, scale and location parameter values.

As with the gamma distribution, an investigation was undertaken for examining
the performance of the method of moments and method of maximum likelihood over a

range of percentiles for the three-parameter Weibull distribution. Still using N = 1000
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and n = 365 for the Monte Carlo study, the RRMSE for the full range of percentiles
was evaluated. In illustration, three parameter values of (o, 8,7) = (2,1,1) are used.
In Figure 4.7, RRMSE is plotted for deviation from the parent percentiles. The method
of maximum likelihood produces the lower RRMSE values over percentiles in terms of
the parent distribution. Figure 4.8 is the corresponding plot for deviations from the
sample percentiles. It shows that the fit to the observed percentiles by the method
of moments is superior to that obtained using the method of maximum likelihood. It
should be noted that the method of moments performs better here than the method
of maximum likelihood over a much wider range of percentiles than was found for the

three-parameter gamma distribution in Figure 4.6.

The effects of sample size are shown in Figures 4.9 and 4.10, which investigate
RRMSE at the 98-percentile (98%) over the range of sample sizes n = 50, 100(100)1000.
For indicative results, the parent parameter values used are (o, 3,7) = (2,1,1) for
the Weibull distribution. Figure 4.9 provides the expected result that the method of
maximum likelihood yields the lowest values of RRMSE relative to the parent percentile
for the whole range of sample sizes considered here. However, the corresponding results

for deviations from the sample 98-percentile in Figure 4.10 reverses this situation.

4.6.3 Estimation for the Three-parameter Lognormal
Distribution

The same investigation procedure was applied for estimating both parameters and
percentiles for the three-parameter lognormal distribution by the methods of moments
and maximum likelihood. The results are shown in Tables 4.7 to 4.9 which indicate a
qualitatively similar pattern of the results as with the previous two distributions. Note
that the lognormal distribution has an apparent opposite behaviour to the other two
as the shape parameter changes. This is because skewness increases for the lognormal
distribution as the value of shape parameter increases. The results of applying the
method of maximum likelihood and method of moments to estimate the parameters

of the lognormal distribution are given in Table 4.7. In terms of BIAS and RRMSE,
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the method of maximum likelihood yields improved estimates of the parameters of
the distribution over the method of moments. It should be noted that the relative
performance in terms of RRMSE differences between the method of moments and
method of maximum likelihood is much worse than for the gamma and Weibull cases.
Again, parameter errors for shape and scale parameters remain almost identical for

different scale and location values of the parent distribution.

In Table 4.8, estimates are given of the BIAS and RRMSE for predictions of the
three upper percentiles, based upon deviations from the true parent distributional
percentiles. The method of maximum likelihood yields consistently better RRMSE
values than the method of moments. Unlike the two previous distributions, the method

of moments produces estimates of the percentiles with both larger BIAS and RRMSE

than the maximum likelihood method.

Calculations of the deviations from the relevant sample percentiles (Table 4.9) show
that the method of moments has lower BIAS and RRMSE values for the three per-
centiles. It provides further evidence that the method of moments yields a better fit of

sample upper percentiles than the method of maximum likelihood.

The percentile errors for the three-parameter lognormal distribution also vary with
the change of location, scale and shape parameters. BIAS and RRMSE generally
decrease (for deviations from both the parent and sample percentiles) as the location
parameter is increased. On the other hand, increases in the value of the scale parameter
causes increases in BIAS and RRMSE, and it seems that the proportional increase is
much larger than for the other two distributions. Changes in shape parameter affect
both BIAS and RRMSE whatever the method, percentile, scale and location parameter

values.

The RRMSE were calculated for the full range of percentiles of the three-parameter
lognormal distribution. To illustrate the results, three parameter parent values of
(e, B,7) = (0.9,1,1) are used. Figure 4.11 presents deviations from the parent per-

centiles which shows that the method of maximum likelihood produces the lower
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RRMSE (from the parent percentile) values over all percentiles. In Figure 4.12, it
is seen that the fit to the observed percentiles by the method of moments is superior
to those predicted by the method of maximum likelihood for the upper percentiles,
if errors is based upon deviations from the samples. Similar to the three-parameter

gamma distribution, there is a cross-over percentile above which the method of mo-

ments becomes superior.

The same parent parameter sets and the 98 percentile was used to illustrate results
of comparing the method of maximum likelihood and method of moments. The results
are demonstrated in Figure 4.13. In contrast, Figure 4.14 shows the corresponding
results for deviations from the sample 98-percentile when the method of moments

produces lower deviations when estimating sample percentiles.

4.6.4 Estimation for the Two-parameter Gamma, Weibull
and Lognormal Distributions

Similar investigations were also undertaken for estimating of both parameters and per-
centiles by the methods of moments and maximum likelihood for the two-parameter
gamma, Weibull and lognormal distributions. In principle, the results are qualitatively
very close to those of their three-parameter versions. For the three two-parameter mod-
els, the method of maximum likelihood always yields improved estimates of the param-
eters of the distribution over the method of moments in terms of BIAS and RRMSE.
Also, being similar to the three-parameter models, the method of maximum likelihood
yields consistently better RRMSE values of parent percentiles than the method of mo-
ments. For deviations from the sample percentiles, the results demonstrate that the
method of moments provides a better fit of sample upper pércentiles than the method
of maximum likelihood.

Considering the effects of changes in parameter values, the shape parameter be-
comes the only factor to influence RRMSE since the location for two-parameter ver-
sion is always zero, and RRMSE values remain almost identical as the scale parameter

changes. These results are not given in this chapter. The interested readers should refer
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to the paper by Bai and Taylor (1986) for the two-parameter gamma, distribution and a

forthcoming paper by Bai for the two-parameter Weibull and lognormal distributions.

4.7 Concluding Remarks

Probability distributions can be employed in the study of air quality data to overcome
many of the problems of managing large data bases with possible information deficien-
cies. A data set can be reduced to just a few parameters if an appropriate distributional
function can be identified. Probability distributions can also be employed to produce

estimates of properties of the probability density function when the sample contains

errors and missing data.

The results presented in this section demonstrate that, where gamma, Weibull or
lognormal description of the raw data set is required, the method of moments provides
more accurate estimates of the highest and second highest sample concentrations than
maximum likelihood for the parameter space investigated. For the gamma and lognor-
mal distributions and sample size n = 365, this result holds from MAX1 to the sample
98-percentile, but this is at the expense of poorer estimates at the lower sample per-
centiles. Table 4.3 shows for the parameter space investigated that the improvement
obtained by using the method of moments is well worth having for the sample maxi-
mum and second highest value and this is doubly important if the distribution is highly
skewed. For example, the worst root mean square error is 33.3 per cent for the maxi-
mum likelihood method but reduces to 14.4 per cent for the method of moments. The
method of moments also offers the advantage of yielding numerically simpler solutions

than that of maximum likelihood.

However, the method of maximum likelihood should be employed when the most
likely (true) estimate is desired. This method provides reasonable estimates over the
entire range of percentiles of the parent distribution. The method of moments is much
more sensitive to the sample data and tends to produce estimates which weight the

upper percentiles of the sample in favour of the entire data set. Table 4.2, for example,
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shows that the improvement obtained by using maximum likelihood to reduce random
error is well worth the effort in all cases for the gamma distribution. The worst root
mean square error (for high skewness) in estimating the underlying maximum value is

just 1 per cent compared to 23.9 per cent for the method of moments.

Finally, as the method of maximum likelihood does not weight the largest observa-
tions as significantly as the method of moments, the method of maximum likelihood
will be far less sensitive to outliers produced through systematic, experimental, data
handling or other errors which may arise in the course of extensive routine and ex-
perimental monitoring programs. This is of particular practical importance in the
management of air quality, where, for example, the prediction of extreme pollutant
concentrations plays an important role in the consideration and implementation of

pollution control strategies.
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Figure 4.1: The variance with respect to each percentile for the 3-parameter gamma
distribution («, 8,7) = (2,1,1) and sample size n = 100
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Figure 4.2: The variance with respect to each value f; of the density distribution for
the 3-parameter gamma distribution with (e, 3,7) = (2,1,1) and sample size n = 100
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Figure 4.3: The RRMSE values with respect to each true percentile for the 3-parameter
gamma distribution with (a,3,7) = (2,1,1) and n = 365
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Figure 4.4: The RRMSE values with respect to each sample percentile for the 3-
parameter gamma distribution with («, 3,7) = (2,1,1) and n = 365
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Figure 4.5: The RRMSE values with respect to true percentile (98%) for the 3-
parameter gamma distribution, versus n
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Figure 4.6: The RRMSE values with respect to sample percentile (98%) for the 3-
parameter gamma distribution, versus n
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Figure 4.8: The RRMSE values with respect to each sample percentile for the 3-
parameter Weibull distribution with (e, 8,v) = (2,1,1) and n = 365
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Figure 4.9: The RRMSE values with respect to true percentile (98%) for the 3-
parameter Weibull distribution, versus n

0.4
=== METHOD OF MOMENTS
08 -
R J
R 06
M
S
E
.o‘ -
02 -
Y T T T T T
0 200 400 600 800 1000

SAMPLE SIZE

Figure 4.10: The RRMSE values with respect to sample percentile (98%) for the 3-
parameter Weibull distribution, versus n
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Figure 4.12: The RRMSE values with respect to each sample percentile for the 3-

parameter lognormal distribution with (a, 8,7) = (0.9,1,1) and n = 365
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Figure 4.13: The RRMSE values with respect to true percentile (98%) for the 3-
parameter lognormal distribution, versus n
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Figure 4.14: The RRMSE values with respect to sample percentile (98%) for the 3-
parameter lognormal distribution, versus n
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Chapter 5

Empirical Models of Fitting Errors

5.1 Introduction

The objective of this chapter is to show that empirical models can be constructed to
describe the dependence of the error in fitting parametric models of probability dis-
tributions on type of distribution, sample size, parent parameter values and percentile
property of interest. The procedure and results are described for three-parameter
gamma, lognormal énd Weibull distributions. Monte Carlo simulations are used to
infer the true errors used as dependent variables to calibrate or infer the parameters
of the empirical model. The simulations reflect errors obtained under ideal conditions
where the samples generated are independent and identically distributed according to
a known parameterisation, i.e. the three-parameter gamma, Weibull or lognormal dis-
tributions. The errors obtained in this way are therefore the minimum ones that could
be expected in practice where the samples are not likely to be as strongly independent

and identically distributed, nor will the true distribution be known or even exist.

The work was undertaken so that practitioners who wish to apply identification and
estimation methods to random samples from sbme probability density function will be
able to appeal to a simple formula to obtain an appreciation of the minimum error
associated with fitting percentile values of interest. A similar exercise was undertaken

by Jakeman, Taylor and Simpson (1986) for two-parameter distributions.

‘The approach used to construct the empirical models can be placed within the
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framework of Response Surface Methodology (RSM). Therefore, we begin with a dis-
cussion of the history and steps in this general framework. This is followed by a
description of some of the different techniques used. We then go on to show its use

for our application to fitting probability density functions for air quality management,

uses.

5.2 Literature Review

RSM is a set of techniques for predicting empirical model structure from experiments.
It employs some well-known statistical methodologies in solving model estimation and
identification problems. Experiments can be carefully designed in order to optimally
explore the relationship between dependent and independent variables. Initial de-
velopments can be traced back to contributions from J. Wishart, C.P. Winsor, E.A.
Mitscherlich, F. Yates and others in the early 1930’s. However, the major success
was achieved in applying methods to explore the relationships between the yield of a
chemical process and a set of input variables presumed to influence the yield. In 1951,
G.E.P. Box and K.B. Wilson with their colleagues formally established RSM. Many
followers, such as R.H Myers (1971), provided new developments and a full description
of RSM. Since then, RSM has been successfully used and applied in many diverse fields
such as environmental, agricultural, biological, computer and social sciences. However,
the techniques for the RSM vary in different fields, depending upon the motivation for
the experiments and the specific application. It is the task of different experts and

specialists to develop RSM in their own areas.

5.3 Empirical Model-building and the Similarity
to Time Series Analysis

Using RSM to build an empirical model generally encompasses steps in the following

procedure:

1. Designing carefully a series of experiments within the region of most interest and
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obtaining measurements of the response-surface variables;

2. Proceeding with an estimation method such as regression analysis to determine a

mathematical model appropriate for fitting the data; scaling and other transformations

can be used if necessary;

3. Testing hypotheses of model parameter significance and goodness of fit;

4. Employing optimization techniques to discover the best predicted value of the

response and find the best operating conditions.

From the procedure above, it is easy to see that apart from the first and last steps,
the techniques used are quite similar to others such as those used in time series analysis.
Time series analysis is used predominently to describe a stochastic process (e.g. Box
and Jenkins, 1976) while RSM presents the approximation to an underlying mechanism
in the presence of noise. Both of them use very similar statistical techniques in dealing
with the data. In both cases, a set of data collected from experiments can be sum-
marised by fitting some form of mathematical model through an estimation method.
Consequently, some well-established statistical techniques, such as least squares proce-
dures, maximum likelihood estimation and hypotheses testing, can be easily adopted.
Also the results of analysis for the empirical model can be presented in similar forms
to those for time series models with an indication of performance using a statistic, such
as variance. If the empirical model is an optimal approximation of a true mechanistic

model, the variance between predicted and observed values will tend to be minimized.

5.4 The Response Function

RSM takes its name from the study of the relationship between the dependent variable
y and a number of predictor variables = (z1,...,%x)" where the variable y is called
the response. By using graphical techniques, when there is only a single independent
variable, the relationship between input and output of a model can be easily plotted,
hence the terminology, a response curve. If there are two independent variables as

input which will determine a surface region of interest, the three dimensional curve is
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known as a response surface. Generally, input variables can be k dimensional and the
region of interest is still known as a response surface being defined in k+ 1 dimensional

space.

The response function can be expressed as

y=f(z)+e (5.1)

where ¢ is noise from measurement sampling and model errors, and y is the actual
observed response (which may be a vector). If the approximation of the response
surface model is optimal, the expected value of y is equal to the hypothetical response
n, that is E(y) = n, while the discrepancy of y — 5 is the error ¢ often assumed to

have a normal distribution. The response function f(z) is usually assumed to be a

continuous function.

Basically, there are two ways of approximating a hypothetical response function.
One is to use a series approximation which most commonly employs a Taylor series
expansion; another is to assume a basic model structure by physical considerations and

fit the data in order to yield relevant values of parameters for the response function.

5.4.1 Series Approximation

As an illustrative example, consider the response function with a single factor. If f(z)
is a continuous function with K derivatives, the function can be expressed as a Taylor

series expansion about an arbitrary point zo, as

n = f(z0) + f'(z0)(z — z0) + % F(z0)( — T0)? + .. (5.2)

where f'(zo) and f"(zo) are the first and second derivatives respectively of f(z) with
respect to & evaluated at zo. Here zo can be any arbitrary value but it is usually defined
at the center of the region of interest. Most commonly, a polynominal approximation
is used as a response function. Using the coefficients Ao, A1, A, . .. as parameters which

depend on z and the derivatives of f(z) at zo, the expansion of (5.2) can be transformed
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to a polynominal form of degree n as

n= AO + ,\lm + Agl‘z R /\n.’En (53)

In general, the higher the degree of the approximating function, the more closely the
Taylor series can approximate the true function. However, higher degrees of approx-
imation substantially increase computational complexity. In practice, a polynomial
of first or second degree is often chosen to adequately represent the true function by

limiting its application to an appropriately random region of the factor space.

Normally the computational procedure is first to assume a form with a lower degree
of polynomial model. Then, fit observations to estimate the parameters of the model
to obtain an estimate of the experimental error variance. Hypothesis tests may be
used subsequently to evaluate the performance of the model. When performance is
not satisfactory, a higher degree of the polynomial model may be selected and the

procedure can be repeated until satisfactory prediction is achieved.

5.4.2 Deterministic Approximation

Series approximation may provide a satisfactory prediction of the true model but the
form of such a model can be totally different from the underlying hypothetical form.
Such empirical models cannot be used to explain the underlying process mechanisms
and to explore the relationship between the variables in order to improve our un-
derstanding of natural phenomena. Normally, deterministic approximations to the
underlying model are used in this case. The approximation involves similar factors to
the series approximation, but the model structure is based on certain physical consid-
erations. A major step is the quantitative analysis used to establish the relationship
among these factors. By employing some well-known estimation procedure, the pa-
rameters of each factor will be obtained. Similarly, the goodness of fit test is usually to
test the model performance. The final form of the model can be obtained by carefully

designing and proceeding with this model-building procedure.
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5.5 Empirical Model-building in Predicting RRMSE
for Air Quality Management

The aim here is to construct an empirical model to predict the minimum relative root
mean square errors (RRMSE) when using probability density function to represent
frequency distribution of sampled environmental phenomena such as air pollutant con-
centrations. We demonstrate with the theoretical RRMSE for upper percentiles of the
gamma, Weibull and lognormal distribution, which are of strong interest in air quality

monitoring and modelling studies.

Recall from Chapter 2 that a statistical distribution can be used as a summary of
a set of data by incorporating the data into an appropriate member of a general class
of distributions. When a particular data set can be summarized by a certain form of
distribution with few parameters, it is useful to know how well the distribution fits the
data. This can be achieved partly by using a goodness of fit test which may give some
indication of variability. The RSM approach here yields this variability in estimates
of the upper percentiles for any sample size of interest. The quantity analysed is the

RRMSE in upper percentiles.

The RRMSE is normally obtained by fitting the probability distribution to the
data. Such errors depend on the type of the distribution, the values of its parameters,
the estimation method used and the sample size of the data being fitted. These are

the major factors in determining the response surface.

Studying the features of individual plots between each factor and response variable,
where other factors are fixed, helps understanding of the effect between each factor
and response. For illustrative purposes, the procedure of empirical model-building for
the three-parameter gamma distribution will be shown in the following. A similar
procedure can also be used to develop analogous models for most distributions, such

as the two- and three-parameter Weibull and lognormal distributions.
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5.5.1 Hypothetical Response Function of RRMSE

The first step in deriving an empirical model is to examine the effect of each factor
on the response surface. These factors include: sample size n, the shape parameter

o, scale parameter 3, location parameter v, and percentile p. Hence, the response

function can be expressed as

y=f(n’a$,3"7ap)+6 (’54)

where y is the RRMSE for fitting the three-parameter gamma distribution. Based on
the analysis of the effects of each factor, a more specific function than this notional

representation can be derived. These effects will now be discussed.

The Effect of Sample Size n

According to asymptotic theory, as sample size increases, the deviation between the
sampling and theoretical (or parent) distribution becomes smaller. That is, RRMSE
is reduced as n increases as shown in Figure 5.1. Therefore, the relationship between

y and n can be expressed as

1

no

Yy x (5.5)

where a, is a constant positive parameter of the empirical model that needs to be

estimated.

The Effect of Shape, Scale and Location Factors

Similar analysis can be used for studying the effect of the shape, scale and location
factors to the response variable. The shape parameter is very sensitive to RRMSE as

shown in Figure 5.2, and the proportional relation is

(5.6)

a2
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where a, is also a constant positive parameter of the empirical model to be determined.

The scale factor 8 has the opposite effect as shown in Figure 5.3. It can be shown

that its response is of the form of

y o B (5.7)
where a3 is a constant positive parameter.

For the location factor 7, a similar pattern can be seen in that RRMSE decreases

as v increases, which is shown in Figure 5.4. Then the relationship between v and y

can be written as

(5.8)

where a4 is a constant positive parameter.

The Effect of Percentiles

The percentile p is quite different in affecting the response variable. From Figure 5.5,
it can be seen that RRMSE is reasonably consistent over the range of most percentiles
except the lower and upper extremes. This is because the method of maximum log-
likelihood used yields poor performance on the two extreme cases as discussed in the
previous chapter. Here we are only concerned with the upper percentiles which have

an exponential relationship with the response variable as

y o p* (5.9)
where a5 is a constant positive parameter for the percentile factor.

Based on the analysis above and ignoring the error term, the essential structure of

the empirical model is proposed as

y = CB7P" (5.10)

T pau R
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where C' is a constant which contains composite effects from all factors.

5.5.2 Transformation, Estimation and Identification

In the next stage, the major task is to determine the appropriate parameters for each
factor and ensure that these parameters lead to an empirical model with adequate

performance. To achieve this goal, there are three procedures to be typically followed.

These are: transformation, estimation and identification.

Transformation

In order to simplify the estimation procedure, linear regression is used instead of non-
linear regression. Nonlinear transformations are therefore necessary. A natural trans-

formation is a logarithmic one of the form

logy = logC — ajlogn — azloga + azlogf — aslogy + aslogp (5.11)

= ao + ayu; + axuy + azuz + asuy + asus

where a9 = logC and u; = logn,u; = loga, and so on. These parameters can be

estimated by standard linear least-squares methods.

Estimation

A standard ordinary least-squares méthod (regression analysis) can be easily applied to
obtain parameters when the function is linear of the form (5.11). Adding experimental

error, and considering n observations of the response surface, the standard form is
g; = ao + ayujy + axuje + azujz + aquje + asujs + €; (512)
i=12,...n
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where g; denotes the observed response for the j’th trial, uj; represents the level of
factor i at the jth trial, and ¢; are the random errors in g;. In general, the error

assumptions are

2

1. Random errors ¢; are normally distributed with zero mean and variance o

2. They are mutually independent in the statistical sense.

The method of ordinary least-squares selects values of the parameters which min-

imise the quantity

R(ao,az,...,a5) = > _(9; — @0 — a1uj1 — ... — asu;s)’ (5.13)

i=1

In matrix notation this can be written as

y=0u+e¢ (5.14)
where
31
Y2
y=1 .
Yn
1 U1 U2 ... Uis
1 U1 U2 ... Us
u=
1 unl unz RS un5
- do W
a1
a=—=
| @5 ]
- €1 W
€2
€ =
. en J

The equation for the minimiser of (5.13) is then
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u'ub =u'y (5.15)

where b = (bg, b1, ..., b;) is the parameter estimates. The solution for the least-squares

estimates is

b = (u'u) lu'y (5.16)

where (u'u)™* is the inverse of u'u which is symmetric.

Identification

Several statistics are commonly used to examine the performance of a fitted regres-
sion model. The F-statistic is normally used for testing the significance of the fitted
regression equation. Under the assumption of normality for the errors, the test of the
null hypothesis is Hp: all values of b; (excluding bg) are zero, against the alternative
hypothesis H,: at least one value of b; (excluding b;) is not zero. The F'-statistic can

be written as (Khuri and Cornell, 1987)

MeanSquareRegression  SSR/(k — 1)

F= MeanSquareResidual =~ SSE/(n — k) (5.17)
where SSR and SSE are defined as
SSR=> (4 — 9)* (5.18)
i=1
SSE =3 (y; — 4;) (5.19)
i=1

respectively. The average value equals § = (y1 + y2 + ... + yn)/n while ; denotes the
empirical estimate of y;. If the null hypothesis is true, the F-statistic will follows an
F-distribution with k¥ — 1 in the numerator and and n — k degrees of freedom in the
denominator. However, if the value of F exceeds the upper critical value F, x—1,n—k,

then the null hypothesis is rejected at the a-level of significance.
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For testing an hypothesis concerning the individual parameters in the proposed
model, the T' statistic is used which compares the parameter estimates in the fitted
model to their respective estimated standard errors. A test of the null hypothesis Hy:

a; = 0 is performed against the alternative H;: a; # 0. The form of the T test statistic
is (Khuri and Cornell, 1987)

a;
T =5t (5.20)

where SD; is the estimated standard error corresponding to a;; and the value of T is

compared with the critical value from the ¢ distribution.

In addition, the coefficient of determination is also very useful as an accompanying

statistic to the F-statistic, which is the form of

SSR
2 = 21
R SST (5.21)
where SSR is defined as
SST =) (y; — 9)* (5.22)

=1

The value R; is a measure of the proportion of total variation of the values of y; about
the mean § which is explained by the fitted model.

When the fitted model is rejected, a new search must be initiated for a more ade-
quate model. It can be started from the analysis of residuals, and remedial measures,
such as other transformations of y. In general, the true model is difficult to find, and

attention should be focused on searching for a model with reasonable accuracy, which

is useful for the intended application.

5.5.3 Simulation and Experimental Design

In general, the smaller the specific region of interest over which the approximation

needs to be made, the better is the approximation achieved. This region is normally
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known as the factor space in which the experiments can actually be performed. For
some cases, the experiments require exploration of the whole region in order to de-
rive the generalised response surface, but this is sometimes quite difficult in practice,
perhaps involving large computational time and cost. Instead, the investigation can
be restricted to certain limited regions of interest, which are particularly important in

application.

From prior knowledge it is known that the density functions of air pollution data are
positively skewed. Hence, the possible range of parameter values for a given distribution
can be delineated. Since the shape parameter is the most sensitive parameter, it
is chosen over the widest range of possible values: the shape parameter is assumed
to take values within the range [0.5, 6] for the gamma distribution; [0.5, 4] for the
Weibull distribution; and [0.4, 1.2] for the lognormal distribution. In the simulation
experiments, the scale parameter and location parameter take on values from the range
[1, 5] for these three distributions, respectively. Note that the lognormal distribution
has opposite behaviour to the gamma and Weibull distributions as the shape parameter
increases. For each entry in the tables, N=1000 replications of the experiments are

processed. The sample size considered covers the ranges, from 50 to 1000.

Random sample generators are used for the Monte Carlo experiments. As in pre-
vious chapters these are DRNGAM, DRNWIB and DRNLNL for the gamma, Weibull
and lognormal distributions, respectively. These subroutines are available in the Inter-
national Mathematical and Statistical Library (IMSL) in version 1.0 (April 1987). The
same seed number (1234) is used to obtain the first random sample of the first of the
1000 replications. Varying the initial seed produces similar results to those reported
in the tables. The new maximum likelihood approach discussed in the Chapter 3 is
adopted here for estimating the parameters of the distributions. For the regression
analysis, the ‘Shazam’ package is used to obtain the parameters of the linear equation

(5.14) and to calculate goodness-of-fit of the empirical model to the data.
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5.5.4 The Experimental Result

The Gamma Distribution

With careful design of experiments in the factor space and through extensive simu-
lation experiments, a large data set was obtained. For the three-parameter gamma
distribution, 684 data points were used for the regression analysis of equation (5.12).

The resulting model for the gamma distribution is

1.48230-118 514,871
T n054440.211,0.100 (5.23)

The details of fitting the data and the results of using significant tests are listed in
Table 5.1 and 5.2.

In Table 5.1 and 5.2, all of the statistics used show that the empirical model fits
the data well. By using the F statistic, the null hypothesis is rejected at the 0 level
of significance, indicating strongly that at least one of the five parameters a; in the
equation (5.11) (excluding ao) is not zero. The results of T tests show that each of these
six parameters is significant. The R? value between observed and predicted quantities
is 93.87 per cent which implies that 93.87 per cent of the total variation in the values
of data is explained by the fitted model. The standard error of the estimated & is .075.
The sum of residuals is —0.756~12 with the variance of residuals 0.006, which indicate
that this model is well-fitted to the data, and the mean of the residuals is close to zero

and the variance of residuals is constant.

Figures 5.6 to 5.8 illustrate the fit of the empirical model of RRMSE to the data.
The values of the shape, scale and location factors are (e, 8,7) = (2,1,1). Each plot
uses a range of sample sizes between 100 to 1000. Figure 5.6 shows the fit of the model
to the data at the 98 percentile, Figure 5.7 at the 99 percentile and Figure 5.8 at the
99.8 percentile which is equivalent to the maximum percentile obtained from Larsen’s
(Larsen, 1971) calculation when the sample size is 365. These figures clearly show that

the empirical model provides a good fit to the data with reasonable accuracy.
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The model (5.23) is a generalised form for the upper percentile estimation of
RRMSE. To emphasize estimation of the maximum percentile, for example, the per-
centile factor in the model (5.12) can be omitted and then the regression analysis is
performed by using the remaining factors against the estimated RRMSE related to the

maximum percentile. Thus the data points are reduced from 684 to 114. The resulting

model is

1.481 '30.105
1,0-555 010.176,7,0.091 :

(5.24)

Comparing model (5.24) to (5.23), the parameters of this simplified model, ao, a1, as,
as and a4, are slightly changed. The performances of (5.23) and (5.24) are almost
identical which can be seen from the fit of both models to the data for the maximum
percentile in Figure 5.8 and Figure 5.9. Hence, the simpler model of (5.24) can be used

in predicting RRMSE at maximum percentile which is particularly important in air

quality management.

The Weibull and Lognormal Distributions

Following a similar procedure to the model construction for the three-parameter gamma
distribution, empirical models of the three-parameter Weibull and lognormal distribu-
tions for predicting RRMSE can be obtained. For the regression analysis, 510 data
points were used for the three-parameter Weibull and 594 data points for the lognor-

mal. The resulting empirical models for these two distributions are

Weibull:
_ 0.977ﬁ0.387p19.317 (5.25)
n0-470,1.146,0.363
Lognormal:
0.974 40.112 23.757
y= 2.687a”97p%112p (5.26)

10-499/0.054

Note that the shape parameter o has a positive exponent for the three-parameter

lognormal distribution, which is different to the other two distributions.
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The details of fitting the data and the results of using significant tests are listed
in Table 5.3 and 5.4. It can be seen from these tables that the empirical models fit
the data well. The F statistic shows that the null hypothesis is rejected at the 0 level
of significance for both models, which strongly indicates at least one value of the five
parameters a; (excluding ao) is not zero. The T tests indicate that each of these five
parameters (excluding ao) is significant for both the Weibull and lognormal distribution.
The R? value between observed and predicted quantities is 95.29 per cent for the three-
parameter Weibull and 95.59 per cent for three-parameter lognormal distribution. The
standard error of the estimated & is 0.127 for three-parameter Weibull and .077 for
the three-parameter lognormal distribution. The sum of residuals is —0.1127! with
the variance of residuals 0.016 for the three-parameter Weibull, and is —0.170~ with
the variance of residuals 0.006 for the three-parameter lognormal distribution. The
properties of the residuals indicate that these models fit the data well, and the means

of the residuals are close zero and the variances of the residuals appear constant.

Figures 5.10 to 5.15 illustrate the fit of the empirical model to the data for these two
distributions. The values of the shape, scale and location factors are (o, 8,7) = (2,1,1)
for the Weibull, and (e, 8,v) = (0.9, 1, 1) for the lognormal distribution. Each plot uses
a range of sample sizes between 100 to 1000. Figures 5.10 and 5.13 shows the fit of model
to the data at the 98 percentile for 3-parameter Weibull and lognormal distributions,
respectively. Figures 5.8 and 5.11 are the fit at the 99 percentile and Figure 5.9 and
5.12 at the 99.8 percentile which is equivalent to the maximum percentile by using
Larsen’s calculation when the sample size is 365. The figures for the three-parameter
Weibull clearly show that the empirical model provides a good fit to the data with
reasonable accuracy. Although the fit of the model for the three-parameter lognormal
is not as good as the two other distributions, the accuracy of the fit still appears to be

useful.

When estimation is restricted to the maximum percentile, that is the percentile
factor in the estimated models is omitted and the regression analysis performed on

data associated with the maximum percentile only, these models become
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0.932 ﬂ0.368
Y= noatiglize, 05 (5.27)

1 .243a0.911ﬂ0.086
= n0.389,0.044 (5.28)

The comparison of model performances between (5.25) and (5.27), and (5.26) and
(5.28), shows that the models (5.25) and (5.27) perform almost identically but (5.28)
has a slightly improved fit over (5.26). These can be seen from the fit of the model to

the data for the maximum percentile as indicated in Figures 5.12 and 5.16, and Figures

5.15 and 5.17.

5.6 Concluding Remarks

In this chapter, empirical models of the three-parameter gamma, Weibull and lognormal
distributions for predicting RRMSE are developed by employing RSM. Such models are
important in evaluating the goodness of fit of some distributional forms to air pollution
data and, once calibrated, require only simple calculations. To obtain a reasonable
causal linkage between the factors and the response surface, graphical techniques were
used to show the major relation between each factor and response variable. Based on
prior knowledge for air quality assessment, the factors space is carefully designed so
that the simulation experiments proceed efficiently. By using the extensive data from
the simulation experiments, regression analysis derives the expected model structure by
the ordinary least squares method of estimation. A variety of model selection criteria
are used to examine the model performance. From the results, it is seen that the
models developed here have reasonable accuracy in predicting the RRMSE. Obviously,
using such models can improve the efficiency of assessment procedures in air quality
management. Also, such empirical models are important for the study of probability

distributions in extreme theory applications.
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Figure 5.1: The RRMSE values at 98 percentile versus sample size for the 3-parameter
gamma distribution with (a, 3,v) = (2,1,1)
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Figure 5.2: The RRMSE values at 98 percentile versus the shape parameter for the
3-parameter gamma distribution with (3,v) = (1,1) and n = 365
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Figure 5.3: The RRMSE values at 98 percentile versus the scale parameter for the
3-parameter gamma distribution with (a,v) = (2,1) and n = 365
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Figure 5.4: The RRMSE values at 98 percentile versus the location parameter for the
3-parameter gamma distribution with (o, 8) = (2,1) and n = 365
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Figure 5.5: The RRMSE values versus each value of percentiles for the 3-parameter
gamma distribution with (e, 8,v) = (2,1,1) and n = 365
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Figure 5.6: Fit of error model (5.23) to the RRMSE values at 98 percentile versus
sample size for the 3-parameter gamma distribution with (e, 8,7) = (2,1,1)
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Figure 5.7: Fit of error model (5.23) to the RRMSE values at 99 percentile versus
sample size for the 3-parameter gamma distribution with (e, 8,v) = (2,1,1)
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Figure 5.8: Fit of error model (5.23) to the RRMSE values at maximum percentile
versus sample size for the 3-parameter gamma distribution with (e, 8,7) = (2,1, 1)
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Figure 5.9: Fit of error model (5.24) to the RRMSE values at maximum percentile
versus sample size for the 3-parameter gamma distribution with (e, 8,7) = (2,1,1)
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Figure 5.10: Fit of error model (5.25) to the RRMSE values at 98 percentile versus
sample size for the 3-parameter Weibull distribution with (e, 8,v) = (2,1,1)
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Figure 5.11: Fit of error model (5.25) to the RRMSE values at 99 percentile versus
sample size for the 3-parameter Weibull distribution with (e, 8,7v) = (2,1,1)
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Figure 5.12: Fit of error model (5.25) to the RRMSE values at maximum percentile
versus sample size for the 3-parameter Weibull distribution with (e, 8,7) = (2,1,1)
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Figure 5.13: Fit of error model (5.27) to the RRMSE values at maximum percentile
versus sample size for the 3-parameter Weibull distribution with (o, 8,v) = (2,1,1)
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Figure 5.14: Fit of error model (5.26) to the RRMSE values at 98 percentile versus
sample size for the 3-parameter lognormal distribution with (e, 8,7) = (0.9,1,1)
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Figure 5.15: Fit of error model (5.26) to the RRMSE values at 99 percentile versus
sample size for the 3-parameter lognormal distribution with (e, 8,v) = (0.9,1, 1)
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Figure 5.16: Fit of error model (5.26) to the RRMSE values at maximum percentile
versus sample size for the 3-parameter lognormal distribution with (o, 8,7) = (0.9,1,1)
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Figure 5.17: Fit of error model (5.28) to the RRMSE values at maximum percentile
versus sample size for the 3-parameter lognormal distribution with (a, 8,7) = (0.9,1,1)
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_ TABLE 5.1
Descriptive statistics for estimated parameters of error model for the three-parameter
gamma distribution

Parameter Estimated Standard T-Ratio Standardized
Name Coefficient Error (678 DF) Coeflicient
a 0.544 0.007 79.153 0.756
as 0.211 0.006 33.634 0.325
as 0.118 0.004 27.984 0.270
as 0.100 0.004 23.718 0.227
as 14.871 0.412 36.054 0.343
agp 0.394 0.044 8.858 0.000

Note: DF denotes the degrees of freedom and ag= logC.

TABLE 5.2
Descriptive statistics for fit of error model to data for the three-parameter gamma
distribution
F Test
F-value DF1 DF2 R2? G SR VR SAE
2076.394 5 678 93.87 0.075 -0.756712 0.006 38.078

Note: DF1 and DF2 denote the numeritor and denominator degrees of freedom,

respectively. SR denotes the sum of residuals, VR the variance of residuals
and SAE the sum of absolute errors.
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. TABLE 5.3
Descriptive statistics for estimated parameters of error model for the three-parameter
Weibull distribution

Parameter Estimated Standard T-Ratio Standardized
Name Coefficient Error (504 DF) Coefficient
ay 0.470 0.012 39.040 0.381
as 1.146 0.020 57.295 0.562
as 0.387 0.085 45.300 0.444
a4 0.363 0.082 44.284 - 0.432
as 19.317 0.802 24.081 0.233
ap -0.023 0.078 -0.296 0.000

Note: DF denotes the degrees of freedom and ao= logC.

TABLE 5.4
Descriptive statistics for fit of error model to data for the three-parameter Weibull
distribution
F Test
F-value DF1 DF2 R? ] SR VR SAE
2037.314 5 504 95.29 0.127 -0.112-11 0.016 52.584

Note: DF1 and DF2 denote the numeritor and denominator degrees of freedom,

respectively. SR denotes the sum of residuals, VR the variance of residuals
and SAE the sum of absolute errors.
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TABLE 5.5
Descriptive statistics for estimated parameters of error model for the three-parameter
lognormal distribution

Parameter Estimated Standard T-Ratio Standardized
Name Coefficient Error (588 DF) Coefficient
ay 0.499 0.009 56.798 0.496
as 0.974 0.012 78.612 0.683
as 0.112 0.005 23.789 0.208
a4 0.054 0.005 11.503 0.100
as 23.757 0.451 52.635 0.456
ap 0.988 0.057 17.358 0.000

Note: DF denotes the degrees of freedom and ag = logC.

TABLE 5.6
Descriptive statistics for fit of error model to data for the three-parameter lognormal
distribution
F Test
F-value DF1 DF2 R? G SR VR SAE
2550.303 5 588 95.59 0.077 -0.170~ 1! 0.006 35.187

Note: DF1 and DF2 denote the numeritor and denominator degrees of freedom,

respectively. SR denotes the sum of residuals, VR the variance of residuals
and SAE the sum of absolute errors.
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Chapter 6

Discrimination Between Nested
Two- and Three-parameter
Distributions

6.1 Introduction

Several statistical criteria have been developed to discriminate among alternative para-
metric probability distributions. This chapter deals with discrimination between two-
and three-parameter nested alternatives for three common shape-scale-location para-
metric distributions, namely the gamma, Weibull and lognormal distributions. These
two- and three-parameter distributions have frequently been used to model air pollution
and environmental quality data; for example, see Jakeman and Taylor (1989) and the
references cited therein. In the Monte Carlo experiments, we evaluate the well-known
likelihood ratio (LR) test, Akaike’s (1974) Information Criterion (AIC), Schwarz’s
(1978) Information Criterion (SIC), the Chi-square test, and the Kolmogorov-Smirnov
test. Using extensive Monte Carlo simulations from two- and three-parameter parent
distributions, we investigate the performance of these tests and information criteria.
The performance of the tests and criteria depends to some extent on the types of nested
distributions being considered, the parametric values of the parent distributions, the
confidence levels used (if applicable), and the sample sizes. The parameter space in-
vestigated covers an extensive range of values which might arise in practice. For an

illustrative example, the sensitivity of the results to the values of the location and
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shape parameters is evaluated.

Selection of an appropriate criterion should depend upon the intended use of the
model. The practical usefulness of the techniques is illustrated by observing the errors
of the models in fitting the upper percentiles of the parent distribution. Two sets
of air pollution data from an urban airshed are used to examine the similarities and
differences in fitting two- and three-parameter distributions where there is a preference

for the more parsimonious model.

The chapter also considers the relationship between the LR test and the two infor-
mation criteria. The former is an hypothesis test which implicitly assumes that one of |
the distributions being tested is true, while the latter makes no such assumption and
attempts to discriminate among alternatives in terms of the maximized log-likelihood
value, with an allowance made for the number of parameters and observations used in
estimation. Since the LR test performs quite well, it is useful to interpret the equiva-
lence of the test and the information criteria at a given confidence level in terms of a

generalised information criterion which relates directly to the critical region of the LR

test.

The plan of the chapter is as follows. In Section 2 the distribution functions and
log-likelihood equations are presented. The discrimination criteria and loss functions
are given in Sections 3 and 4, respectively. Sections 5 and 6 contain discussions of the
simulation procedure and Monte Carlo results, respectively. An empirical application
on hourly pollutant observations of S-scattering and nitrogen dioxide is outlined in

Section 7. Some concluding remarks are given in Section 8.

6.2 The Distributions

Standardized probability density functions for the three-parameter gamma, Weibull

and lognormal distributions for a random sample are given by:

Gamma:

SR SO ks PO S e .
1) = greay (g earl=- (5 (6.1)
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Weibull:

f(z) = G5 eanl= (5] (6.2)
Lognormal:
f(z) = . 127r (z — 7)—16501){— [log(x ;a';') - ﬂ]2} (6.3)

In equations (1), (2) and (3), o represents the shape parameter, § the scale parameter,
~ the location parameter, and T' is the gamma function. The two-parameter versions of
the density functions of the gamma, Weibull and lognormal distributions are the same
as in (1), (2) and (3), with v = 0 in each case. In the above equations, 8 > 0, a > 0

and 7 is less than the minimum observed sample value.

The properties of these three distributions and the asymptotic behaviour of esti-
mators depend very heavily on the values of the parameters, particularly that of the
shape parameter. Figures 6.1 and 6.2 show that the resulting density functions of the
gamma and Weibull distributions are similar to the exponential distribution at o =1,
reverse 'J’ shaped for o < 1, and ’bell’ shaped for o > 1. Figure 6.3 shows that the
curves for the lognormal distribution change from nearly symmetric to heavily skewed
as « is increased from 0.3 to 1.2. These values span a large range of shapes which
arise in the analysis of real data, such as air pollutant concentrations. In order to as-
sess the different criteria for discriminating among competing descriptions of the data,
the shape parameter is examined over an extensive range of possible cases where the

density functions vary from being skewed to symmetric.

The maximized value of the likelihood function is an essential statistic employed in
many criteria used to discriminate among alternative models. For a sample z1, z2,...,%x
of n independently and identically distributed random observations, the log-likelihood
functions for the three-parameter gamma, Weibull and lognormal distributions are

given as follows:

Gamma:

logL = —nalogf — nlogl'(a) + (a — 1) zn: log(zi —7) — z":(m, - 7) (6.4)

=1 =1 ’8
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Weibull:

logL = nloga — nalogB + (o — 1) Y log(z; — v) — Z(E'—ﬂ_—z)“ (6.5)
=1 =1
Lognormal:
n n 1 n
logL = —Elog(27ra2) =Y log(z;i — ) — 207 [log(z; — ) — B]>. (6.6)
i=1 i=1

The parameters of the three log-likelihood functions are estimated by maximum
likelihood methods. Since the general maximum likelihood procedure for the three-
parameter gamma and Weibull distributions will frequently fail to converge when the
(unknown) shape parameter is less than or equal to unity, a computationally efficient

approach that circumvents this problem is used (for further details, see Bai et al.

(1989)).

6.3 Discrimination Criteria

Let zq,z,,...,, represent a random sample of n observations. Interest here lies in
discriminating among nested two- and three-parameter distributions in which the null
hypothesis of interest is Hp : v = 0 against the alternative Hy : v # 0. The standard
LR test can be employed for this problem. Denoting the maximized values of the two-
and three-parameter variants of a particular log-likelihood function as logLg and logL;,

respectively, the LR test can be expressed as:

LR = —2(logLo — logLy) ~ x*(1) (6.7)

under the null hypothesis that the location parameter is zero. The AIC and SIC may

be expressed, respectively, as:

Choose the { g

} parameter distribution if

AIC : logLo — 2{ Z } logLy — 3 (6.8)
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SIC :logLg — logn{ z } logLy — 3logn/2. (6.9)

When Hy holds for testing a two-parameter distribution against a three-parameter
alternative, rearranging (8) and (9), and defining AL = logLo — logL,, corresponds to

. 2 el e s
choosing the 3 parameter distribution if

AIC’:—AL{ i }1 (6.10)
. < | logn
SIC : —AL{ N } 5 (6.11)

Since the information criteria and the LR test are based on the maximized value of the
likelihood function, it is possible to compare the information criteria and hypothesis test
in terms of the probability of accepting the underlying null distribution. By comparison

with (10) and (11), the LR test will accept Hp if

LR:-AL< g (6.12)

where c is the critical value of the x?(1) statistic. It is easy to see that an equivalence
among the LR test, AIC and SIC can be found when the nested model is regarded
as the true distribution. Use of the AIC criterion is equivalent to the LR statistic
at the 84.2 per cent confidence level (i.e. when ¢ = 2) and SIC, for a sample size of
365, is equivalent to the LR statistic at the 98.5 per cent confidence level (i.e. when
¢ = logn). When the sample size is decreased to n = 100, SIC is equivalent to the LR
statistic at the 96.81 per cent confidence level, but will be increased to the 99.14 per

cent confidence level for n = 1000.

The equivalence demonstrated above could be used to construct generalised infor-

mation criteria (GIC) which, when the nested distributions is true, is equivalent to the
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LR test at different confidence levels. In this chapter, we use two such criteria, GIC1
and GIC2 which can be regarded as LR analogues at the 40 per cent and 99 per cent
confidence levels, respectively, and indicate two extreme cases: the lowest and highest
confidence levels that might reasonably be considered in applications. These two cases
can also help to illustrate the tradeoff between the confidence level and power of a test.

An appropriate confidence level for air pollutant concentrations will be recommended

in a later section when examining real data.

The performance of two well-known procedures for testing goodness of fit are also
considered, namely the chi-square (CHI) test and Kolmogorov-Smirnov (KS) test. Clas-

sifying the n observations into k categories, the chi-square statistic is of the form (see

Pearson (1900)):

CHI = zkj (fi = npi)® (6.13)

=1 np;

which has an asymptotic x? distribution with (k — I — 1) degrees of freedom when
Hj holds. The p; are hypothetical probabilities, the f; are empirical frequencies and
[ is the number of parameters estimated for each distribution (for further details, see
Kendall and Stuart (1979)). For the experiments conducted in Section 6 below, k =
10 and | = 2 or [ = 3. The KS test, which is defined in terms of the maximum
absolute difference between the sample distribution function S,(z) and the hypothetical

distribution function Fy(z) (see e.g. Bury (1975, p. 204)), is given by

D, = sup |Sn(z) — Fo(z)|. (6.14)

Large observed values of the D, statistic lead to rejection of the hypothesis Fo(z).

6.4 Loss Functions

An assessment of the performance of different tests and criteria requires some form of
loss function or performance criterion which should rely on the nature of the problem

and the major purpose of the application. Standard performance criteria for assessing
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nested hypothesis tests are size and power. In this Monte Carlo study, loss functions
recommended for assessing air quality models have also been chosen (see Fox (1981)) to
establish the effect of discrimination criteria on the intended use of the model. These
functions are the relative bias (BIAS) and the relative root mean square error (RRMSE)
which are evaluated at the upper percentiles of the distributions. For an estimate d;
of a quantity of interest ¢, these loss function are defined in terms of deviations from
the true or parent value ¢ in each replication of the Monte Carlo experiments. The

definitions used for the loss functions are:

N s _
BIAS(q) = %;(ﬂ'_;—q) (6.15)

N s~ _
RRMSE(q) = [ S (6.16)

where N is the number of replications of the experiment. For present purposes, the

quantity ¢ denotes the upper percentiles of the underlying distributions.

6.5 Simulation Procedure

In order to assess the various criteria for discriminating between models over different
independently and identically distributed random samples, simulation over an extensive
range of possible cases is considered. For all parameter sets in the tables and figures
reported here, one thousand simulation experiments are processed. The main sample
size used is n = 365, since it represents a common case: a full year of 24-hour average
observations. For two extreme cases associated with possible applications, n = 100
and n = 1000 are considered here as illustrative examples. The shape parameters take
the values 0.5, 1, 2, 4, 6 for the gamma distribution; 0.5, 1, 2, 3, 4 for the Weibull
distribution; and 0.3, 0.5, 0.7, 0.9, 1.2 for the lognormal distribution. It should be
noted that the lognormal distribution has the opposite behaviour to the other two as

the shape parameter is increased. In all of the cases investigated in this chapter, the
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arbitrary scale parameter is set at unity. In most cases the location parameter is also

set to unity, but the sensitivity of our results to other values is also examined.

The random sample generators used for the Monte Carlo experiments are DRNGAM
for the gamma, DRNLNL for the lognormal and DRNWIB for the Weibull distribution.
These are available as subroutines in the International Mathematical and Statistical
Library (IMSL) in version 1.0 of April 1987. The same seed number (1234) is used to
obtain the first random sample of the first of the 1000 simulations. Varying the initial
seed produces similar results to those given in the chapter. For maximum likelihood
estimation, a golden section search algorithm is used with final estimates being accepted
when the relative error between two successive approximations is less than 107¢. Two
subroutines, namely DCHIGF and DKSONE, are chosen from IMSL to perform the

CHI and KS tests. All results are obtained on a VAX8700 mainframe computer at
ANU.

6.6 Monte Carlo Results

Consider initially an investigation of the performance of the discrimination criteria for
random samples of size n = 365 from the gamma distribution. In this chapter, the
scale parameter is always set at 8 = 1, and the values of the location parameter are
v =0 or v = 1. It should be noted that, for a fixed value of the location parameter, it
becomes increasingly difficult to reject the false null hypothesis that 4 = 0 as the value
of the shape parameter increases (i.e. power decreases). Table 6.1 shows the results
in two situations: first, the null hypothesis Hy is true, so that the samples for each
Monte Carlo experiment are taken from a two- parameter distribution; second, the
alternative hypothesis H; is true so that the samples are taken from a three-parameter

distribution.

When o > 2, v = 0 and n = 365, the empirical performance of the LR test is not
significantly different from the nominal level of 0.05 given by asymptotic theory. The
empirical probabilities vary only slightly with the shape parameter and with the initial
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seed used for the random number generator. Acceptance rates for AIC, SIC, GIC1 and
GIC2 are also similar to those expected from the derived equivalent (LR) confidence
intervals reported in Section 3, namely the 84.2, 98.5, 40.0 and 99.0 per cent levels,
respectively. The CHI test has rejection frequencies which are very similar to those

predicted by theory, while the KS test rarely rejects the true null hypothesis.

The power of any of the first five tests is inversely related, in general, to the ac-
ceptance rate when o > 2. The lower the confidence level imposed for acceptance of
the null hypothesis, the higher is the power. Quantifying this inverse relationship for
different parameter values is a major concern in terms of how often we can expect under-
fitting of two-parameter distributions to occur in samples taken from three-parameter
parent distributions. For a fixed value of the location parameter, power decreases as

the shape parameter is increased.

Notice that, for the gamma distribution when o = 0.5 and a = 1.0, the LR test
and the four discrimination criteria tend to overfit, a three-parameter distribution being
generally preferred when Hj is true (i.e. v = 0), especially for a = 0.5, and always
preferred when Hp is false (i.e. 4 = 1). This behaviour is due to the fact that the
distributions approach the exponential when a < 1, and likelihood values increase
when the location parameter is set near the first order statistic. However, the CHI test
has empirical sizes that are unaffected by whether the value of the shape parameter is

less than or greater than unity, and the KS test still rarely rejects a true null hypothesis.

Figure 6.4 portrays the cumulative frequency over 1000 experiments of the differ-
ences between the maximized log-likelihood values of the two- and three-parameter
gamma distributions when the samples are taken from a three-parameter parent dis-
tribution. The figure demonstrates why power decreases as the value of the shape
parameter increases. Figure 6.5 shows the differences when the samples are taken from
a two-parameter parent distribution. Whatever the value of the shape parameter, the

differences are large in only a small proportion of the 1000 cases.

Consider the power of the LR test at the 95 per cent confidence level for different
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values of the location parameter. Figure 6.6 shows the results for @ = 2,4 and 6. For
a = 2, the power of the LR test is high for quite low location values; for example,
power is 0.98 when v = 0.34. Power is also 0.98 for the combinations (o = 4,y = 2.4)
and (a = 6,y = 6.5).

Table 6.1 also provides the results for rejection probabilities of the null hypothesis
and powers of the tests and discrimination criteria over a range of parameter values for
the Weibull and lognormal distributions. The conformity with theory of the LR test
and AIC, SIC, GIC1 and GIC2 is good for the Weibull distribution when « > 2 and
for the lognormal distribution for all values of @ when the sample size is n = 365. The
empirical sizes of the CHI and KS tests of the Weibull and lognormal distributions are
very similar to those of the gamma distribution for all values of the shape parameter.
Sizes for the CHI test are close to the nominal size of 0.05, while the sizes for the KS

test are almost zero in all cases. Not surprisingly, the powers of the CHI and KS tests

are much lower than for the LR test.

The power of the LR test, when applied at the 95 per cent confidence level for
the Weibull and lognormal distributions, is shown in Figures 6.7 and 6.8, respectively,
as a function of the shape and location parameters. Compared with the case of the
gamma distribution in Figure 6.6, a similar pattern of power as a function of the shape
and location parameters is observed for the Weibull distribution. High power will be
obtained when the shape parameter is 2 for quite low values of the location parameter,
as shown in Figure 6.7. For example, power is 0.98 when o = 2 and 4 = 0.17. When the
value of the shape parameter is increased, large values of the location parameter will be
required to maintain high power. For instance, power is also 0.98 for the combinations
(¢ = 3, v = 0.49) and (o = 4, v = 1.48). Figure 6.8 provides similar results for the
lognormal distribution, except that the lognormal has the opposite behavour to the
other two as the shape parameter is increased. For power to be 0.98, the combinations
of shape and location parameters are (o = 0.9,4 = 0.41), (a = 0.7,y = 1.25) and
(e =0.5,y =3.91).
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We now turn to an evaluation of the performance of the discrimination criteria
for other sample sizes using the gamma distribution as a guide. Table 6.2 provides
the analogous results to those in Table 6.1 where the sample sizes are n = 100 and
n = 1000. As expected, at n = 1000 the criteria perform according to asymptotic
theory in terms of correctly accepting two-parameter models, since a similar result is
achieved at the lower sample size of n = 365. The empirical sizes for the KS test are
still very low, and the powers of the CHI and KS tests are considerably lower than
for the LR test. Again, power declines with the shape parameter for a fixed value of
the location parameter, but at the larger sample size the power is much higher for
any specific shape parameter and criterion. At n = 100, the acceptance rates of two-
parameter distributions for the LR and CHI tests and the four criteria are lower than
those predicted by theory, while power is consistently lower than at n = 365 for any
specific shape parameter and criterion. The acceptance rates for the KS test vary with
the value of the shape parameter, being too high when a = 2 and too low when o = 4
and a = 6. The powers of the CHI and KS tests are considerably lower than those of
the LR test for all values of the shape parameter.

6.7 Application to Models of Air Pollution

Hourly pollutant observations of 3-scattering and nitrogen dioxide for Melbourne, Aus-
tralia, are available at state site numbers 11 (Museum), 27 (Alphington), 34 (Dande-
nong) and 81 (Camberwell) for the years indicated in Tables 6.3 and 6.4. These data are
converted into samples of 24-hour averages for those years and sites where the number
of the resultant daily samples available is greater than 100. These data sets are used
to illustrate an application of the discrimination criteria for the situation where the
intended use of the model is predicting extreme concentrations and historical practice

suggests there is a preference for two-parameter models.

Table 6.3 gives results for 3-scattering when the two- and three-parameter lognor-

mal distribution is estimated. S-scattering here refers to light scattering by suspended
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aerosol as measured by an intergrating nephelometer (see Finlayson-Pitts and Pitts
(1986)). Notice that, in general, the probabilities of rejecting the two-parameter log-
normal model are very high and the maximized log-likelihood values are much lower
for the two-parameter lognormal distribution than for its three-parameter counterpart.
Indeed, the lognormal distribution yields much larger maximized log-likelihood values
for the three-parameter models than the gamma and Weibull distributions in 18 of
the 20 cases considered. Omitting the single case in 1977 for site 11 where the two-
and three-parameter log-likelihoods are equal, the minimum value of the acceptance
threshold for the null hypothesis is 0.9860 for site 11 in 1976. If the parent distribution
is the three-parameter lognormal, then fitting the two-parameter lognormal to sam-
ples from this parent yields substantial errors which can be quantified by simulation.
For example, for the three-parameter lognormal distribution, the RRMSE obtained by
simulation over 1000 experiments is 0.092 for the maximum percentile (MAX1), 0.078
for the second-highest percentile (MAX2), and 0.058 for the 98’th percentile (98%),
while for the the two-parameter lognormal these values are 0.136, 0.112 and 0.076, re-
spectively. Admittedly, if we do not wish to risk obtaining errors of these magnitudes
in such air quality applications, we should set our acceptance threshold for the null

hypothesis below 98.6 per cent.

In order to fine-tune the estimate of where this threshold should be, given a prefer-
ence for two-parameter models, consider the results for daily nitrogen dioxide samples
in Table 6.4. The three-parameter gamma and lognormal distributions have the highest
maximized log-likelihood values. However, the three-parameter lognormal distribution
generally has a negative location parameter, which is regarded as physically unrealistic.
Let us, therefore, assume that the gamma distribution is appropriate. The simulation
results reported in Table 6.1 indicate that, even when the parent distribution is a two-
parameter model, the probability of rejecting the two-parameter gamma distribution
with the LR test is unity when the shape parameter is less than unity. In such cases, the
true underlying model may not be determined even when the estimate of the location

parameter for the three-parameter gamma distribution is very small.
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Let us now re-examine the data sets and evaluate the errors in percentiles when
we obtain an acceptance threshold below the value of .9860 found to be too high in
the B-scattering case. The 1978 data set at site 11 yields an acceptance threshold of
0.9782. Again we can calculate the errors assuming that the three-parameter gamma
is the underlying parent distribution. The RRMSE values for MAX1, MAX2 and
98% for fitting the three-parameter gamma distribution are 0.063, 0.060 and 0.055,
respectively, compared with 0.081, 0.075 and 0.065, respectively, when fitting the two-
parameter gamma distribution. These results provide further information as to where
to set the confidence levels, given the errors that can be tolerated. If there is seen
to be a strong need to use a two-parameter model, such as might be set by historical
precedent, then from the results presented here, it can be observed how often and by

how much the use of such a model is likely to exceed tolerable errors.

Any criterion used to discriminate between nested models will involve a trade-off
between acceptance of the true null hypothesis and rejection of the false null hypothesis.
What level of BIAS should be chosen for overfitting? This should depend on answers to
the following two basic questions: (i) Under what conditions would it be inaccurate to
assume that the true model is the two-parameter null? (ii) When would it be inaccurate
to assume that the true model is the three-parameter alternative? Of course, the precise
answers depend on the acceptable levels of inaccuracy. Basically, for the first question,
inaccuracy is greatest for those parameter sets where the powers of the discrimination |
criteria are around unity. The answer to the second question is when the information
content of the sample is too low to give reasonably efficient estimates of the three

parameters.

The answers given above can be refined in specific cases. Consider, for example,
predicting the upper percentiles of the underlying parent distribution. This is a mo-
tivation in analysing data sets for environmental quality. Environmental guidelines
for air and water pollutants can be written in terms of allowable excesses of some
extreme concentration. In this chapter we confine attention to the annual maximum

concentration MAX1, the second highest value MAX2, and 98% values. More detailed
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results for the comparative errors in fitting two- and three-parameter alternatives to
the distributions with parameters within the range of Table 6.1 are given in Bai et al.
(1990). However, some indication of the errors is warranted here. We use the gamma
distribution as a guide and begin with the situation where the underlying parent is
a three-parameter distribution. For a = 2, the comparative errors begin to diverge
for ¥ > ;. For instance, when o = 2, ¥ = 1 and n = 365, the RRMSE of MAX1,
MAX2 and 98% is more than double that of the three-parameter estimates when the

location parameter is not estimated but is set to zero. When the parent distribution

is two-parameter and the sample size is 365, there is little additional error in fitting a

three-parameter over a two-parameter model.

6.8 Concluding Remarks

The purpose of this chapter has been to discriminate between two- and three-parameter
nested alternatives for the gamma, Weibull and lognormal distributions. Monte Carlo
experiments were conducted to evaluate the likelihood ratio test, Akaike’s information
criterion, Schwarz’s information criterion, the Chi-square test and the Kolmogorov-
Smirnov test. The performance of the tests and criteria was shown to depend on
the types of nested distributions under consideration, the parametric values of the
parent distributions, the confidence levels used (if applicable), and the sample sizes.
The practical usefulness of the techniques was illustrated by observing the errors of
the models in fitting the upper percentiles of the parent distribution. Two sets of
air pollution data, namely hourly pollutant observations of §-scattering and nitrogen
dioxide, from an urban airshed were used to examine the similarities and differences in
fitting two- and three-parameter distributions where historical practice suggests there

is a preference for the more parsimonious model.
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Figure 6.1: Profile of the gamma distribution for a range of shape parameters and unit
scale and location parameters
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Figure 6.2: Profile of the Weibull distribution for a range of shape parameters and unit
scale and location parameters
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Figure 6.4: Cumulative frequency over 1000 experiments of the differences between the
maximized log-likelihood values of the 2- and 3-parameter gamma distributions when
the samples are taken from a 3-parameter parent distribution
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Figure 6.5: Cumulative frequency over 1000 experiments of the differences between the
maximized log-likelihood values of the 2- and 3-parameter gamma distributions when
the samples are taken from a 2-parameter parent distribution
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Figure 6.6: The power of the LR test at the 95 per cent confidence level for different
values of the location parameter v for testing between 2- and 3-parameter gamma
distributions
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Figure 6.7: The power of the LR test at the 95 per cent confidence level for different
values of the location parameter v for testing between 2- and 3-parameter Weibull
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Figure 6.8: The power of the LR test at the 95 per cent confidence level for different
values of the location parameter v for testing between 2- and 3-parameter lognormal
distributions
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TABLE 6.2 A

Probabilities of rejecting the null hypothesis that ¥ = 0 for the gamma distribution using

seven tests and discrimination criteria over 1000 replications of random samples of sizes
n =100 and n = 1000 (8 =1)

n =100 n = 1000
Shape Parameter « Shape Parameter o
True Criteria 2.0 4.0 6.0 2.0 4.0 6.0
Distribution
LR 0.088 0.066 0.051 0.042 0.043 0.048
Two AIC 0.199 0.178 0.168 0.143 0.152 0.143
Parameter SIC 0.056 0.039 0.041 0.005 0.013 0.014
(v=0) GIC1 0.648 0.628 0.609 0.546 0.576 0.575
GIC2 0.026 0.018 0.014 0.005 0.016 0.014
CHI 0.086 0.083 0.091 0.055 0.049 0.065
KS 0.002 0.112 0.087 0.019 0.000 0.000
LR 0.930 0.256 0.114 1.000 0.987 0.569
Three AIC 0.979 0.473 0.276 1.000 0.996 0.789
Parameter S1C 0.898 0.189 0.079 1.000 0.931 0.279
(y=1) GIC1 0.999 0.844 0.695 1.000 1.000 0.963
GIC2 0.767 0.090 0.040 1.000 0.942 0.299
CHI 0.286 0.112 0.087 0.965 0.227 0.193
KS 0.019 0.000 0.000 0.896 0.040 0.103
Note:

The LR, CHI and KS tests have a nominal level of significance of 0.05
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TABLE 6.3 ‘
laxiimized log-likelihood values, estimated parameter values and probabilities of rejecting the
ull thypothesis that ¥ = 0 for the 3- and 2-parameter lognormal distributions fitted to n daily
[B-scattering samples over different years and sample sizes (8 = 1)

Site Year n Probabilities Max(log L) Shape Scale Location
of rejecting Lognormal (3) o B v
y=0 Lognormal (2)
11 1975 156 0.9993 -458.89 0.73 1.84 1.84
-464.68 0.56 2.14 © 0.00
1976 311 0.9860 -855.78 0.57 1.89 1.25
-858.80 0.47 2.09 0.00
1977 251 0.0000 -644.62 0.43 1.99 0.01
-644.62 0.43 2.00 0.00
1978 215 1.0000 -644.42 0.87 1.71 2.10
-659.12 0.63 2.11 0.00
1979 257 0.9999 -655.32 0.57 1.70 1.99
-663.19 0.42 2.04 0.00
1980 199 1.0000 -478.81 0.68 1.38 1.79
. -487.36 0.46 1.80 0.00
1981 277 1.0000 -587.44 0.81 0.92 1.57
-602.63 0.49 1.48 0.00
1982 272 1.0000 -563.11 0.91 0.75 1.77
-586.93 0.49 1.45 0.00
1983 324 0.9999 -735.19 0.61 1.35 1.25
-742.98 0.45 1.66 0.00
27 1979 291 1.0000 -812.74 0.61 1.86 1.69
-821.60 0.49 2.13 0.00
1980 304 1.0000 -686.81 0.69 1.21 3.30
-722.44 0.37 1.95 0.00
1981 302 1.0000 -755.21 0.72 1.41 2.74
-790.78 0.46 1.98 0.00
1982 279 1.0000 -686.98 0.72 1.37 1.94
-708.51 0.49 1.82 0.00
1983 326 0.9948 -824.74 0.55 1.70 1.18
-828.64 0.45 1.92 0.00
34 1981 272 1.0000 -589.83 0.68 1.14 1.44
-600.24 0.46 1.56 0.00
1982 208 1.0000 -694.29 0.68 1.29 1.43
-703.41 0.48 1.67 0.00
1983 280 0.9991 -628.90 0.59 1.35 1.23
-634.44 0.44 1.66 0.00
8L 1981 160 1.0000 -319.99 0.76 0.85 2.89
-343.30 0.37 1.72 0.00
1982 312 1.0000 -985.45 0.78 1.99 3.05
-1002.13 0.54 2.40 0.00
1983 301 1.0000 -827.81 0.73 1.64 2.54
-842.02 0.49 2.10 0.00
Note:

Sites 11, 27, 34 and 81 are Museumn, Alphington, Dandenong and Camberwell, respec-
tively.
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Table 6.4 i
faxiimized log-likelihood values, estimated parameter values and probabilities of rejecting the
nulll hypothesis that ¥ = 0 for the 3- and 2-parameter gamma distributions fitted to n daily
nitrogen dioxide samples over different years and sample sizes (3 =1)

Sitee Year n Probabilities Max(log L) Shape Scale Location
of rejecting Lognormal (3) a g Y
vy=0 Lognormal (2)

11L 1975 116 0.5457 -253.42 2.68 1.50 0.25
-253.70 3.14 1.37 0.00

1976 280 0.1936 -687.36 2.06 2.36 0.03
-687.39 2.10 2.33 0.00

1977 297 0.5835 -678.94 3.44 1.43 0.13
-679.27 3.20 1.49 0.00

1978 227 0.9782 -613.74 1.32 4.26 0.25
-616.37 1.57 3.74 0.00

1979 271 0.9996 -586.23 1.76 1.98 0.53
-592.42 2.60 1.54 0.00

1980 175 0.7666 -365.56 2.30 1.52 0.18
-366.27 2.65 1.39 0.00

1981 276 0.9600 -518.99 2.05 1.33 0.14
-521.10 2.35 1.22 0.00

1982 202 0.9698 -773.78 1.59 3.47 0.22
-776.13 1.80 3.18 0.00

1983 313 0.5024 -741.46 2.67 1.81 0.12
-741.69 2.85 1.74 0.00

27 1979 317 1.0000 -525.33 0.64 3.29 0.04
-556.82 0.95 2.24 0.00

1980 302 0.9787 -477.91 1.19 1.52 0.03
-480.56 1.29 1.43 0.00

1981 245 0.9632 -355.64 1.22 1.31 0.03
-357.82 1.34 1.22 0.00

1982 188 1.0000 -380.20 0.61 5.04 0.17
-408.71 0.92 3.53 0.00

1983 241 1.0000 -470.45 0.84 3.13 0.09
-480.57 1.10 2.46 0.00

341 1981 193 1.0000 -244.10 0.67 2.07 0.04
-260.46 1.15 1.24 0.00

1982 256 0.9636 -426.33 0.96 2.04 0.04
-428.52 1.23 1.62 0.00

1981 139 0.1585 -219.45 1.52 1.23 0.01
-219.47 1.55 1.21 0.00

1982 251 0.9995 -536.92 1.35 2.37 0.25
-543.01 1.74 1.99 0.00

1983 230 0.8945 -477.96 1.17 2.53 0.03
-479.27 1.24 2.42 0.00

Notes: Sites 11, 27 and 34 are Museum, Alphington and Dandenong, respectively.
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Chapter 7

The Effects of Misspecification in
Estimating the Percentiles of Some
Two- and Three-Parameter
Distributions

7.1 Introduction

The gamma, Weibull and lognormal distributions have been used successfully in test-
ing and modelling natural phenomena such as reliability and life testing (Mann et al.
(1974) and Bain (1978)), hydrology (Stedinger (1980)), and air quality management
(Jakeman and Taylor (1989) and Jakeman et al. (1986)). Two- and three-parameter
versions of these distributions have been used because they are parsimonious in con-
sidering the shape, scale and location of the distribution, but still sufficiently flexible
in fitting real data. Occasionally, there may be some prior information regarding the
location of the distribution and parsimony considerations might yield a preference for
the two-parameter variant. However, an estimated two-parameter distribution might
be inadequate if the location parameter is not sufficiently close to zero. In general, it
is not known which of the two- or three-parameter distributions is appropriate, and
conventional wisdom regarding underfitting or overfitting may not be a good guide to

selecting one of these distributions.

In considering whether the two- or three-parameter variant of a distribution should
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be used to estimate the percentiles of the distribution, it is important to take account
of the sorts of errors that might be made in fitting the distribution. Specifically, the
consequences of misspecifying the distribution should be evaluated. Such misspecifi-
cations arise when a two- (three-) parameter distribution is estimated when the three-
(two-) parameter version is correct. The purpose of this chapter is to assess the con-
sequences of such misspecification in estimating the upper percentiles of the two- and

three-parameter gamma, Weibull and lognormal distributions.

For a given distribution, the statistical decision might be to simply estimate the two-
or three-parameter variant of the distribution, or to use discrimination and/or testing
criteria to choose one of the two distributions. The three discrimination methods
considered in this chapter are the likelihood ratio (LR) test, Akaike’s information
criterion (AIC), and Schwarz’s information crif.erion (SIC) based on Bayesian methods.
The primary aim of the experiments is to observe the magnitudes of the errors obtained
by fitting the incorrect distribution (by overfitting or underfitting), by fitting the correct
distribution, and by fitting a distribution that is selected by the LR method, AIC
or SIC. The experiments are conducted for three different distributions and different

parameter sets, especially for different values of the shape parameter.

7.2 Distribution Functions and Statistical Criteria

For a sample 1,2, ...,2, of n independently and identically distributed random ob-
servations, the log- likelihood functions for the three-parameter gamma, Weibull and

lognormal distributions are given as follows:

Gamma:

log L = —nalog B —nlogl'(a) + (a —1) Zn:log(a:,- -9) - zn:(m' — 7) (7.1)

i=1 =1 'B

Weibull:

log L = nloga —nalog B+ (a—1) zn:ylog(w,- —)— z":(f%l)a (7.2)

i=1 i=1
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Lognormal:

n n , 1 &
log L = -3 log(2ra?) + Zlog(a:; —7)— 507 Z[log(:v; —~9) =B (7.3)

i=1 i=1
in which B represents the scale parameter, o the shape parameter, v the location
parameter, and I' the gamma function. The two-parameter versions of the above
functions are obtained by setting the location parameter v to zero in each case. In
the above equations, 8 > 0, @ > 0 and v < z; < oo for i = 1,2,...,n. The density
functions of the gamma and Weibull functions approach the exponential at o = 1,
are “J” shaped for ¢ < 1 and “bell” shaped for @ > 1, whereas the density for the
lognormal function changes from being nearly symmetric to being heavily skewed as

« is increased from 0.4 to 0.9 to 1.2. These values accommodate a variety of shapes

which arise in practice in analysing real data.

The parameters of the three log-likelihood functions are estimated by maximum
likelihood methods. Since the general maximum likelihood procedure will frequently
fail to converge when the shape parameter is less than or equal to unity, an approach
that circumvents this problem is used (for further details, see Bai et al. (1989)).
Denoting the maximized values of the two- and three-parameter variants of a particular

log-likelihood as logLo and logL,, respectively, the LR test can be expressed as:

LR = —2(logLo — logLy) ~ x*(1) (7.4)

when the null hypothesis that the location parameter is zero is true. The AIC and SIC

may be expressed, respectively, as:
Choose the { g } parameter distribution if

AIC: logLo — 2{ Z } logLy — 3

SIC: logLe — Iogn{ Z }logL1 — 3logn /2.
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For purposes of assessing the performance of the LR, AIC and SIC, loss functions
recommended for assessing air quality models are used (see Fox (1981)). These func-
tions are the relative bias (BIAS) and the relative root mean square error (RRMSE)
which are evaluated at the upper percentiles of the distribution. For an estimate g;
of a quantity of interest ¢, the performance criteria are defined in terms of deviations

from ¢ in each replication of the simulation experiments. The definitions used are as

follows:

p1AS@) = 5 2 (E=Y) (1.5
L& G a0 -
RRMSB() = [ 3-(E =0y (7.6

where N is the number of replications of the experiment. For present purposes, ¢

denotes the upper percentile quantities of the underlying distributions.

7.3 Monte Carlo Experiments

In order to assess the effects of misspecification in estimating the percentiles of the three
distributions, an extensive range of possible cases is considered. The shape parameter is
examined over a wide range of possible values where the density functions are positively
skewed: the shape parameter takes the values 0.5, 1, 2 and 6 for the gamma distribution;
0.5, 1, 2 and 3 for the Weibull distribution; and 0.4, 0.5, 0.9 and 1.2 for the lognormal
distribution. In all cases considered in this chapter, the arbitrary scale parameter is
set to unity, and the location parameter takes on the values 0 and 1 for the two-
and three- parameter distributions, respectively. The lognormal distribution has the
opposite behaviour to the gamma and Weibull distributions as the shape parameter
is increased. For each entry in the tables, N=1000 replications of the experiments are
processed. The sample size used is n=365, since it represents a common case, namely
a full year of 24-hourly average observations. The level of significance used for the LR

test is five percent. For each set of parameter values, BIAS and RRMSE are evaluated
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for estimates of the exact 98’th percentile and the highest value which, for n=365, is
equivalent to using the 99.9’th percentile.

The random sample generators used for the Monte Carlo experiments are DRNGAM,
DRNWIB and DRNLNL for the gamma, Weibull and lognormal distributions,
respectively. These are available as subroutines in the International Mathematical and
Statistical Library (IMSL) in version 1.0 (April 1987). The same seed number (1234)
is used to obtain the first random sample of the first of the 1000 replications. Varying

the initial seed produces similar results to those reported in the chapter.

7.4 Monte Carlo Results

Results of the experiments for the two- and three-parameter gamma, Weibull and log-
normal distributions are given in Tables 7.1-7.3, respectively. In all cases, the true
model is either a two- or three-parameter distribution, the estimated quantities are the
maximum value or the 98% value, and the performance criteria are BIAS and RRMSE.
The LR test and the two discrimination criteria, AIC and SIC, are used. Both the
three- and two-parameter distributions are estimated to examine the consequences of
misspecifying the distribution, namely estimating the two- (three-) parameter distri-

bution when the three- (two-) parameter variant is correct.
The following points should be noted from the experiments reported in Table 7.1.

(i) When the shape parameter is 0.5 and the three-parameter gamma distribution
is correct (y = 1), the BIAS and RRMSE are identical for the three discrimination
criteria and the estimated three-parameter gamma distribution, for both the maxi-
mum and 98% quantities. Underfitting the correct distribution with a two-parameter
version yields substantially larger values for BIAS and RRMSE. Identical qualitative
results are obtained as the shape parameter is increased from 0.5 to 1, and then to
2. When the shape parameter is increased to 6 with v = 1, the rankings in terms of
RRMSE for both the maximum and 98% values are very similar for the three discrim-

ination criteria and the two estimated distributions, with a slight preference for the
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correctly estimated three-parameter gamma distribution. In terms of BIAS, however,
the estimated three-parameter distribution is superior to the rest, followed by AIC
which is known to favour the model with the larger number of parameters (namely,
the three-parameter model). Interestingly, the BIAS in estimating the underfitted two-
parameter gamma distribution is not substant‘ially higher than for SIC, which favours
the more parsimonious two-parameter model. On the basis of these results, it is clear
that incorrectly underfitting a distribution can lead to substantially higher BIAS and
RRMSE values, in general, as compared with fitting the correct distribution, and also

relative to using discrimination criteria to select the appropriate distribution.

(ii) On the other hand, when the two-parameter gamma distribution is correct
(v = 0) and the shape parameter is 0.5, the estimated two-parameter distribution is
understandably superior in terms of BIAS for both the maximum and 98% values, with
‘the three discrimination criteria and the estimated three-parameter gamma distribution
‘being very similar. In terms of RRMSE, however, the three discrimination criteria and
the two estimated distributions are very similar, with only a very slight preference
for the correctly estimated two-parameter gamma distribution, followed by SIC which
favours parsimony. Similai qualitative results hold for both BIAS and RRMSE as the
shape parameter is increased from 0.5 to 1. However, when the shape parameter is
increased from 1 to 2, and from 2 to 6, the SIC and LR criteria have smaller BIAS
values than the estimated two-parameter gamma distribution for both the maximum
and 98% quantities. Using RRMSE, the three discrimination criteria and the two
estimated disfributions are quite similar. On the basis of these results, it is clear that
BIAS values will not generally be increased substantially by incorrectly overfitting a
three-parameter gamma distribution when the two-parameter version is correct, and
that at least one of the discrimination criteria can be superior to the correctly estimated

two-parameter distribution in terms of BIAS and RRMSE.

The main points from the Weibull distribution experiments given in Table 7.2 are

as follows:
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(1) When the three-parameter Weibull distribution is correct, the three discrimina-
tion criteria and the estimated three-parameter Weibull distribution are identical in
terms of BIAS and RRMSE for both the maximum and 98% quantities for all values of
the shape parameter (namely, 0.5, 1, 2 and 3). Underfitting the correct Weibull distri-
bution with its two-parameter variant yields considerably larger BIAS and RRMSE for
all values of the shape parameter, although the degree of error is reduced as the value
of the shape parameter is increased. Thus, estimating the correct three-parameter
distribution is not preferable in terms of BIAS and RRMSE as compared with using
the three discrimination criteria, although underfitting the three-parameter Weibull
distribution by setting the location parameter v to zero yields much larger BIAS and
RRMSE values in all cases considered. This result is broadly similar in qualitative
terms to those obtained for the gamma distribution although, in the latter case, esti-

mating the correct distribution is preferred in terms of BIAS for a large value of the

shape parameter.

(i) As compared with the case of the gamma distribution, overfitting the correct
two-parameter Weibull distribution yields some surprising results in terms of BIAS,
especially for larger values of the shape parameter. When the shape parameter is 0.5,
the estimated two-parameter Weibull distribution has much lower BIAS values than
those obtained using the discrimination criteria and the estimated three-parameter
Weibull distribution for both the maximum and 98% quantities. As the shape param-
eter is increased from 0.5 to 1, the correctly estimated two-parameter distribution is
still preferred for the maximum quantity but is inferior to SIC, which favours the lower
dimensioned model, for the 98% quantity. When the shape parameter is increased to
2 or 3, all three discrimination criteria are preferred to the estimated two-parameter
Weibull distribution in terms of BIAS. Indeed, when the shape parameter is set to
3, even the overfitted three-parameter distribution has lower BIAS than the correctly
fitted two-parameter variant for both the maximum and 98% quantities. In terms of
RRMSE, thé correctly estimated two-parameter distribution is preferred in all cases,

although its superiority is diminished as the shape parameter is increased. While there
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is not a noticeable difference between the overfitted three-parameter distribution and
the three discrimination criteria, SIC is always second best to the estimated two- pa-
rameter distribution, and the estimated three-parameter distribution is generally the
worst. Qualitatively, the results are reasonably similar to those for the gamma distri-
bution in that overfitting does not generally increase the BIAS and RRMSE values for
the maximum and 98% quantities for the Weibull distribution. However, it is interest-
ing to note that estimating the correct two-parameter Weibull distribution does not
always yield the smallest BIAS value relative to the three discrimination criteria, or

even to the overfitted three-parameter distribution.

Finally, Table 7.3 contains the results from experiments for the lognormal distri-
bution. Since the lognormal distribution has the opposite behaviour to the gamma
and Weibull distributions as the shape parameter is increased, it is useful for compar-
ative purposes to examine the results as the shape parameter is decreased rather than

increased. The principal points to note from the table are as follows:

(i) When the three-parameter lognormal distribution is correct (y = 1) and the
shape parameter is 1.2 or 0.9, the correctly fitted three-parameter distribution and
the three discrimination criteria have identical BIAS and RRMSE values for both the
maximum and 98% quantities, whereas the underfitted two-parameter lognormal dis-
tribution has substantially higher values for BIAS and RRMSE. Although the under-
fitted two-parameter distribution still has the largest BIAS and RRMSE values when
the shape parameter is reduced to 0.5 or 0.4, the other four methods do not remain
identical. When the shape parameter is 0.5, the LR method has by far the smallest
BIAS for the maximum quantity while SIC has the largest; for the 98% quantity, AIC
and the correctly fitted three-parameter distribution have the smallest BIAS, and SIC
again has the largest. These rankings are not maintained when the shape parameter
is reduced to 0.4. The smallest BIAS values for the maximum and 98% quantities
are AIC and the estimated three-parameter lognormal distribution, respectively, with
SIC the worst of the four methods in each case. On the basis of RRMSE, however,

the three-parameter lognormal distribution has the smallest value, followed closely by
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AIC, with SIC the worst of the four methods, for both the maximum and 98% quan-
tities when the shape parameter is 0.5 or 0.4. The poor performance of SIC, which
favours the more parsimonious two-parameter lognormal variant of the correct model,
is consistent with the findings for the gamma and Weibull distributions, as is the re-
sult that underfitting the model will generally lead to much larger values of BIAS and
RRMSE for both the maximum and 98% quantities. Moreover, estimating the correct
distribution is the preferred strategy, at least in terms of RRMSE, and sometimes also
for BIAS, relative to using the three discrimination criteria to determine which of the

three- and two- parameter distributions should be used.

(ii) Similar observed patterns to the above do not hold when the correct model is the
two-parameter lognormal distribution (y = 0). For example, when the shape parameter
is 1.2, the correctly fitted two-parameter lognormal distribution has the smallest BIAS,
followed by the parsimony- inclined SIC, and lastly by the overfitted three-parameter
lognormal distribution, for the maximum quantity; for the 98% quantity, however,
SIC has BIAS equal to that of the estimated two-parameter distribution, followed by
the LR method and lastly by the overfitted three-parameter lognormal distribution.
Even when the shape parameter is reduced to 0.9, these rankings are not sustained.
While the estimated three-parameter lognormal distribution has the largest BIAS for
both the maximum and 98% quantities, in the former case SIC is best, followed by
the estimated two-parameter lognormal distribution, and in the latter case the LR
method is best, followed by SIC. Interesting results arise when the shape parameter is
reduced to 0.5 or 0.4. In the former case, the LR method has lowest BIAS, followed
by SIC and lastly by the overfitted three-parameter distribution for the maximum
quantity; for the 98% quantity, AIC is best, followed by the overfitted three-parameter
distribution and lastly by the correctly fitted two-parameter distribution. The results
for BIAS are especially striking when the shape parameter is reduced to 0.4. The LR
method has lowest BIAS, followed by SIC, for the maximum quantity, while AIC is best,
followed by the LR method, for the 98% quantity. However, the correctly estimated

two-parameter distribution has the largest BIAS in each case, even larger than those
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of the overfitted three-parameter variant. Thus, overfitting the lognormal distribution
for low values of the shape parameter can yield lower BIAS values than estimating the
correct distribution. The results for RRMSE are not too dissimilar from the qualitative
results for the gamma and Weibull distributions. For shape parameter values of 1.2,
0.9 or 0.5, and for both the maximum and 98% quantities, the correctly estimated two-
parameter lognormal distribution always has the smallest RRMSE, followed in each
case by SIC, which favours parsimony, and lastly by the overfitted three-parameter
lognormal distribution. When the shape parameter is reduced to 0.4, however, the
rankings for RRMSE for both the maximum and 98% quantities are SIC, LR and
AIC, followed distantly by the two estimated distributions. Thus, in terms of RRMSE,
the three discrimination criteria are preferred to simple estimation of the distribution,

whether it be the correct distribution or an overfitted variant.

7.5 Concluding Remarks

In this chapter we have assessed the effects of missspecification in estimating the per-
centiles of the two- and three-parameter gamma, Weibull and lognormal distributions.
In the experiments, the true model is either a two- or three-parameter distribution, the
estimated quantities are the maximum observed value or the ninety-eighth percentile
value, and the performance criteria are the BIAS and RRMSE associated with the
estimated quantities. Three discrimination criteria are used, together with estimation
of both the three- and two-parameter distributions, to evaluate the consequences of
misspecifying the distribution. The shape parameter is examined over a wide range
of possible values. The results for the gamma and Weibull distributions are generally
similar in qualitative terms. In particular, incorrectly underfitting a distribution can
lead to substantially higher BIAS and RRMSE values as compared with fitting the
correct distribution, and also relative to using discrimination criteria to select the ap-
propriate distribution. Incorrectly overfitting a distribution does not generally increase

BIAS substantially, if at all, and the discrimination criteria can be superior to the cor-
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rectly estimated two-parameter distribution. Results for the lognormal distribution
are not entirely similar to the above, depending crucially on the value of the shape
parameter. Incorrectly underfitting the three-parameter lognormal distribution yields
significantly larger BIAS and RRMSE values, and correctly fitting the distribution
seems to be optimal. However, for small values of the shape parameter, the correctly
estimated two-parameter distribution can have larger BIAS values than for the incor-
rectly overfitted three-parameter lognormal distribution, and much larger values than

those obtained using discrimination criteria to select the appropriate distribution.
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TABLE 7.1 ,
Estimates of BIAS and RRMSE at maximmum and 98 % quantities from 1000 Monte Carlo
simulations with sample size n = 365 for the gamma distribution (8 =1)

GAMMA DISTRIBUTION

True Percentile Performance Discrimination Criteria Estimated Models
Values Criteria LR AIC SIC 3-P 2-P
Gamma3 MAX BIAS 0.0013 0.0013 0.0013 0.0013 -.3803
a=0.5 RRMSE 0.0673 0.0673 0.0673 0.0673 0.3820
=1.0 98 BIAS 0.0007 0.0007 0.0007 0.0007 -.2198
RRMSE 0.0550 0.0550 0.0550 0.0550 0.2231
Gamma?2 MAX BIAS 0.0183 0.0164 0.0168 0.0183 -.0003
a=0.5 RRMSE 0.0836 0.0846 0.0844 0.0836 0.0808
~+=0.0 98 BIAS 0.0132 0.0118 0.0120 0.0132 -.0003
RRMSE 0.0772 0.0782 0.0780 0.0772 0.0755
Gamma3 MAX BIAS 0.0234 0.0234 0.0234 0.0234 -.2638
a=1.0 RRMSE 0.0600 0.0600 0.0600 0.0600 0.2665
¥y=1.0 98 BIAS 0.0156 0.0156 0.0156 0.0156 -.1559
RRMSE 0.0492 0.0492 0.0492 0.0492 0.1603
Gamma2 MAX BIAS 0.0157 0.0282 0.0070 0.0429 -.0016
a=1.0 RRMSE 0.0729 0.0775 0.0687 0.0777 0.0620
¥=0.0 98 BIAS 0.0113 0.0205 0.0050 0.0314 -.0012
RRMSE 0.0638 0.0667 0.0614 0.0671 0.0575
Gamma3 MAX BIAS 0.0073 0.0073 0.0073 0.0073 -.1450
a=2.0 RRMSE 0.0527 0.0527 0.0527 0.0527 0.1499
v=1.0 98 BIAS 0.0040 0.0040 0.0040 0.0040 -.0850
RRMSE 0.0422 0.0422 0.0422 0.0422 0.0919
Gamma?2 MAX BIAS 0.0014 0.0050 -.0008 0.0106 -.0018
a=2.0 RRMSE 0.0552 0.0572 0.0546 0.0597 0.0532
v¥=0.0 98 BIAS 0.0002 0.0026 -.0012 0.0062 -.0018
RRMSE 0.0478 0.0487 0.0476 0.0500 0.0468
Gamma3 MAX BIAS -.0166 -.0062 -.0235 0.0042 -.0339
a=6.0 RRMSE 0.0492 0.0484 0.0488 0.0440 0.0461
v=1.0 98 BIAS -.0094 -.0038 -.0131 0.0019 -.0186
RRMSE 0.0336 0.0335 0.0333 0.0315 0.0321
Gamma?2 MAX BIAS 0.0005 0.0027 -.0006 0.0045 -.0014
a=6.0 RRMSE 0.0383 0.0423 0.0367 0.0467 0.0358
v=0.0 98 BIAS 0.0000 0.0011 -.0006 0.0021 -.0011
RRMSE 0.0303 0.0321 0.0298 0.0341 0.0296

Note : « is the shape parameter, § the scale parameter and v the location parameter.
Gamma3 and Gamma2 denote the 3- and 2-parameter gamma distributions.
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TABLE 7.2 .
Estimates of BIAS and RRMSE at maximum and 98 % quantities from 1000 Monte Carlo
simulations with sample size n = 365 for the Weibull distribution (3 = 1)

WEIBULL DISTRIBUTION

True Percentile Performance Discrimination Criteria Estimated Models
Values Criteria LR AIC SIC 3-P 2-P
‘Weibull3 MAX BIAS 0.0041 0.0041 0.0041 0.0041 -.5739
a=0.5 RRMSE 0.1466 0.1466 0.1466 0.1466 0.5773
~+=1.0 98 BIAS 0.0021 0.0021 0.0021 0.0021 -.3002
RRMSE 0.1165 0.1165 0.1165 0.1165 0.3116
Weibull2 MAX BIAS 0.0382 0.0382 0.0382 0.0382 0.0000
a=0.5 RRMSE 0.1599 0.1599 0.1599 0.1599 0.1495
v=0.0 98 BIAS 0.0239 0.0239 0.0239 0.0239 -.0005
RRMSE 0.1290 0.1290 0.1290 0.1290 0.1238
‘Weibull3 MAX BIAS 0.0241 0.0241 0.0241 0.0241 -.2768
a=1.0 RRMSE 0.0714 0.0714 0.0714 0.0714 0.2803
v¥=1.0 98 BIAS 0.0135 0.0135 0.0135 0.0135 -.1250
RRMSE 0.0521 0.0521 © 0.0521 0.0521 0.1323
Weibull2 MAX BIAS 0.0111 0.0249 0.0035 0.0446 -.0028
a=1.0 RRMSE 0.0850 0.0912 0.0806 0.0904 0.0743
+=0.0 98 BIAS 0.0063 0.0150 0.0017 0.0276 -.0021
RRMSE 0.0667 0.0699 0.0647 0.0696 0.0617
‘Weibull3 MAX BIAS 0.0017 0.0017 0.0017 0.0017 -.0955
a=2.0 RRMSE 0.0302 0.0302 0.0302 0.0302 0.0980
v=1.0 98 BIAS 0.0005 0.0005 0.0005 0.0005 -.0419
. : RRMSE 0.0217 0.0217 0.0217 0.0217 0.0461
‘Weibull2 MAX BIAS -.0008 0.0005 -.0016 0.0055 -.0021
a=2.0 RRMSE 0.0388 0.0399 0.0377 0.0426 0.0372
~v=0.0 98 BIAS -.0009 -.0002 -.0013 0.0024 -.0015
RRMSE 0.0316 0.0319 0.0311 0.0329 0.0309
‘Weibull3 MAX BIAS 0.0008 0.0008 0.0008 0.0008 -.0466
a=3.0 RRMSE 0.0195 0.0195 0.0195 0.0195 0.0486
¥=1.0 98 BIAS 0.0001 0.0001 0.0001 0.0001 -.0206
RRMSE 0.0137 0.0137 0.0137 0.0137 0.0238
Weibull2 MAX BIAS -.0011 -.0007 -.0014 0.0013 -.0015
a=3.0 RRMSE 0.0262 0.0276 0.0251 0.0298 0.0248
v¥=0.0 98 BIAS -.0009 -.0008 -.0011 0.0001 -.0011
RRMSE 0.0211 0.0216 0.0207 0.0223 0.0206

Note : « is the shape parameter, § the scale parameter and ¥ the location parameter.
Weibull3 and Weibull2 denote the 3- and 2-parameter Weibull distributions.
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TABLE 7.3 .
Estimates of BIAS and RRMSE at maximum and 98 % quantities from 1000 Monte Carlo
simulations with sample size n = 365 for the lognormal distribution (8 =1)

LOGNORMAL DISTRIBUTION
True Percentile Performance Discrimination Criteria Estimated Models
Values Criteria LR AIC SIC 3-P 2-P
LogN3 MAX BIAS 0.0283 0.0283  0.0283 0.0283 -.4706
a=1.2 RRMSE 0.1742 0.1742 0.1742 0.1742 0.4758
v=1.0 98 BIAS 0.0130 0.0130 0.0130 0.0130 -.2748
RRMSE 0.1195 0.1195 0.1195 0.1195 0.2844
LogIN2 MAX BIAS 0.0110 0.0181 0.0050 0.0286 0.0016
a=1.2 RRMSE 0.1582 0.1645 0.1527 0.1760 0.1485
v=0.0 98 BIAS 0.0041 0.0078 0.0009 0.0134 -.0009
RRMSE 0.1154 0.1179 0.1133  0.1232 0.1116
LogIN3 MAX BIAS 0.0169 0.0169 0.0169 0.0169 -.3387
a=0.9 RRMSE 0.1344 0.1344 0.1344 0.1344 0.3444
v=1.0 98 BIAS 0.0066  0.0066 0.0066  0.0066 -.1823
RRMSE 0.0891 0.0891 0.0891 0.0891 0.1918
LogIN2 MAX BIAS 0.0042 0.0091 0.0005 0.0173 -.0009
a=0.9 RRMSE 0.1196 0.1262 0.1125 0.1377 0.1108
=0.0 98 BIAS 0.0006 0.0030 -.0012 0.0070 -.0018
RRMSE 0.0869 0.0892 0.0840 0.0942 0.0835
LogN3 MAX BIAS 0.0001 0.0047 -.0107 0.0052 -.1453
a=0.5 RRMSE 0.0865 0.0794 0.0988 0.0784 0.1514
y=1.0 98 BIAS -.0015 0.0008 -.0067 0.0010 -.0689
RRMSE 0.0515 0.0485 0.05635 0.0481 0.0775
LogN2 MAX BIAS -.0004 0.0036 -.0014 0.0056 -.0020
a=0.5 RRMSE 0.0668 0.0752 0.0641 0.0849 0.0613
v=0.0 98 BIAS -.0013 0.0005 -.0017 0.0012 -.0019
RRMSE 0.0479 0.0508 0.0472 0.0545 0.0464
LogN3 MAX BIAS -.0102 -.0007 -.0255 0.0032 -.1006
a=0.4 RRMSE 0.0782 0.0685 0.0885 0.0633 0.1066
¥=1.0 98 BIAS -.0060 -.0016 -.0130 0.0003 -.0463
RRMSE 0.0438  0.0400 0.0478  0.0380 0.0543
LogN2 MAX BIAS -.0006 0.0024 -.0015 -.0967 -.1016
a=0.4 RRMSE 0.0546 0.0617 0.0520 0.1156 0.1108
v=0.0 98 BIAS -.0012 0.0000 -.0016 -.1390 -.1407
RRMSE 0.0386  0.0410 0.0379  0.1441 0.1443
Note :

« is the shape parameter, 8 the scale parameter and 4 the location parameter.
LogN3 and LogN2 denote the 3- and 2-parameter lognormal distributions.
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Chapter 8

Discrimination Procedures for

Fitting Nested and Non-Nested
Distributions

8.1 Introduction

In recent years there has been an increased demand for statistical techniques to draw in-
ferences regarding the probability distribution of an unknown parent population based
on sample information. Applications occur in many areas, such as reliability and life-
testing (Mann et al. (1974) and Bain (1978)), hydrology (Stedinger (1980)), and air
quality management (Jakeman and Taylor (1989)). Discrimination techniques are used

when the null model has both a more general as well as non-nested alternatives.

For a particular sample of observations, it is generally preferable to have a greater
choice among alternatives rather than less. It is found in this chapter that some
members of non-nested families can be good approximations to others. This occurs
especially among three-parameter probability distributions. When distributions are
very similar, it can be difficult to discriminate among alternatives. It would be useful,
therefore, to consider selection criteria that are powerful in discriminating among very

similar distributions.

In this chapter, discrimination among nested and non-nested distributions is consid-

ered. Traditional approaches are re-examined. These include the standard likelihood
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ratio procedure which tests the null hypothesis against a more general alternative, and
some well-known discrimination criteria. The particular problem considered is to dis-
criminate among a set of probability distributions in three situations. The first two
cases are concerned only with non-nested distributions, but both nested and non-nested
distributions are examined in the third case. For illustrative purposes, the two- and
three-parameter gamma, Weibull and lognormal distributions are used to demonstrate
a new discrimination procedure and compare its performance with existing criteria.
These three distributions are well known and have been used successfully for various
problems. Monte Carlo experiments are employed to examine their performance over

a range of parameter values found to be relevant in assessing environmental quality

data.

Extensive investigation of a number of popular criteria indicates that there is no
ideal existing method of discrimination which is satisfactory for all cases of interest.
The results show that the performance of each criterion depends strongly on the rel-
evant probability distribution, the range of parameters and the confidence level (if
applicable). Of course, performances are much improved when the sample size is in-

creased, but sufficiently large sample sizes are not always possible in real applications.

To complement the inadequacies of existing criteria, a generalized information cri-
terion (GIC) is proposed. A desirable feature of GIC is to determine whether or not a
distribution is significantly superior to others under consideration. There is no restric-
tion on the number of candidates in the discrimination procedure, as long as the true
distribution is among the alternatives considered. The GIC procedure is particularly

useful when the alternative distributions considered are very similar.

The plan of the chapter is as follows. In Section 2 several existing procedures for
testing and discriminating among nested and non-nested distributions are discussed,
as are several goodness-of-fit tests. Some practical problems in discrimination and
testing are outlined in Section 3. Discrimination criteria and asymptotic tests are

presented in Section 4, and a generalised information criterion is developed in Section
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5. Three distribution functions and several statistical criteria are given in Section 6.
The Monte Carlo procedure is outlined in Section 7, and the results of the experiments
for discriminating between two, three and five non-nested distributions are discussed
in Sections 8, 9 and 10, respectively. An extension of the Monte Carlo experiments to
the case of one nested and five non-nested distributions is presented and discussed in

Section 11. Some concluding remarks are given in Section 12.

8.2 Available Procedures

Let x,,2,,...,z, represent n observations of a random variable with density function
f(z). If the null hypothesis specifies Hp : f(z) = fo(z;0) against the alternative Hj :
f(z) = fi(z; ¢), where 6 and ¢ are p x 1 and ¢ X 1 parameter vectors ranging over
suitable domains, the nesting requirement is that fo(z;0) and fi(z;$) are members
of the same family of distributions. However, if an arbitrary member of one family
cannot be obtained as a limit member of the other, fo(z;80) and fi(z; @) are separate

(or non-nested) distributions.

Goodness-of-fit criteria used for assessing the appropriateness of a given distribu-
tion can be classified into three categories. Standard tests involve inference about
either the unknown population distribution or parameters based on the available sam-
ple information. Taking into account the variability associated with samples from a
particular distribution, such hypothesis tests allow confidence levels to be established.
In the nested case, the typical procedure used is the likelihood ratio (LR) test with
an asymptotic x? distribution. In the non-nested case, a well-known test is the Cox
(1961,1962) test, which is based upon the centred likelihood ratio statistic (see McAleer
and Pesaran (1986)). Other tests include those of Atkinson (1970), Epps et al. (1982),
and Horowitz and McAleer (1988).

In recent years, many information criteria have appeared in the literature to com-
plement the hypothesis testing approach. The two most frequently used information

criteria are those of Akaike (1974) and Schwarz (1978). The primary advantage of
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information criteria is that they are very flexible. They can be used in both the nested
and non-nested cases, and the true model does not have to be a candidate among the
tested models. Information criteria can also be used to discriminate among a set of
more than two candidates, unlike the hypothesis tests which are generally limited to
two distributions. Moreover, the criteria are usually simple to use. The disadvan-
tage of information criteria is that the results they yield generally do not convey any
probabilistic statements, and it is difficult to analyse quantitatively their power and

robustness, as can be done for hypothesis testing.

There are other familiar tests, different from the tests mentioned above, which
emphasize testing the differences in fit between the proposed distribution and the
sampling distribution. Such goodness-of-fit tests can be assessed by fitting either the
cumulative distribution function or the probability density function, and the model will
be tested for significant deviations from the sampling distribution. In general, there is
no restriction to nested or non-nested cases for such tests and they allow consideration
of a set of alternatives. Although such goodness-of-fit tests are also based on asymptotic
theory, in finite samples their results might differ from the hypothesis tests discussed
earlier. Two well-known goodness-of-fit tests considered in this chapter are the chi-

square (Pearson (1900)) and the Kolmogorov-Smirnov (see Bury (1975)) tests.

8.3 Practical Problems

The purpose of standard approaches for testing and discrimination is to determine
either the ‘true’ or ‘best’ distribution based upon a random sample of observations. In
the first category, the Cox (1961, 1962) procedure is used to test the null hypothesis
against a non-nested alternative. One of the two distributions is presumed to be true. A
representative example in the second category is Akaike’s information criterion (AIC),
which chooses from among a set of models the distribution with the highest value of the

log-likelihood function subject to a penalty for the number of parameters estimated.

If the null hypothesis is true, the sampling distribution will approach the population
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distribution as the sample size tends to infinity, but false null hypotheses will be rejected
based on the evidence of large departures between the hypothesized and sampling
distributions. As the sample size increases without limit, the false distribution will be

rejected with probability approaching one.

Information criteria are constructed in a different way. For example, Schwarz’s
information criterion (SIC) is based on Bayesian theory, while Akaike’s information
criterion can be considered from the theory of cross-validation (Stoica et al. (1986)).
The aim of existing information criteria is to choose the distribution which ‘best’ fits
the data, after imposing a penalty for the number of parameters and/or observations
used in estimation. In contrast to hypothesis tests, the true distribution need not be
included among the models considered. However, when the true distribution is under
consideration, the ‘best’ distribution chosen should be the true one as the sample size
tends to infinity. Under this assumption, the sampling errors tends to zero, and the un-
derlying and sampling distribution become identical. In this sense, the performances of
information criteria and hypothesis tests should be comparable. These discrimination
and testing criteria can be used successfully over a wide range of situations. Simula-
tion experiments have shown that good empirical sizes and powers can be obtained for

many distributions, including many one- and two-parameter distributions.

There is no single dominant criterion, and some of these deficiencies will be discussed
in the following sections. Attention is paid mainly to general problems and emphasis

is placed on discrimination among parametric probability distributions.

Example 1: Consider real data from air pollutant measurements of 24-hour averages
of nitrogen dioxide concentrations sampled at the city monitoring station in Canberra,
Australia. The number of available daily observations for the 1979 full year is 271. To
test the data, the three-parameter gamma distribution is chosen as the null hypothesis
against the non-nested alternative three-parameter Weibull distribution. Fitting three-
parameter gamma and Weibull distributions to the data, the maximized values of the

log-likelihood functions are -375.99 and -375.33, respectively. Applying the bounded-
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size likelihood ratio (BLR) test of Horowitz and McAleer (1988) at the 95 per cent
confidence level, with a critical value of 1.35, the Weibull alternative does not fit
significantly better than the gamma null. Thus, the gamma distribution cannot be

rejected against the Weibull alternative.

Example 2: Suppose a random sample is generated from an underlying two- or
three-parameter gamma distribution with sample size n = 365 (which represents one
year of 24-hour observations), and this is repeated in 1000 Monte Carlo simulation
experiments. The three-parameter gamma, Weibull and lognormal distributions are
considered as candidates for fitting the data. For each experiment, the method of
maximum likelihood is used to estimate the three parameters for each of these three
distributions. The simplest discrimination procedure is to choose the distribution with
the highest value of the log-likelihood function. This is equivalent to using AIC and
SIC for selecting the distributions when the number of parameters of the alternative

distributions is the same. The results of the simulations are as follows:

(1) When the parameters of the underlying gamma distribution are given as shape
= 2, scale = 1 and location = 1 in all 1000 simulation experiments, the three-parameter
gamma distribution is selected 596 times, the three-parameter Weibull distribution 355,
and the three-parameter lognormal distribution 49. That is, only 59.6 per cent of the

selections are correct and 40.4 per cent are incorrect.

(2) When the parameters of the underlying gamma distribution are given as shape
= 6, scale = 1 and location = 1 in 1000 simulation experiments, the three-parameter
gamma distribution is selected 526 times, the three-parameter Weibull distribution
234, and the three-parameter lognormal distribution 240. That is, only 52.6 per cent

of selections are correct and 47.4 per cent are incorrect.

This example simply shows that, in finite samples, the incorrect distribution may
frequently have a higher maximized value of the log-likelihood function than the true
one. Using information criteria such as AIC may lead to a large number of incorrect

selections. Indeed, many other existing selection criteria have similar problems. More
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details will be given in the following sections.

For a particular sample of observations, the population from which the data are
drawn is unknown. If the sample is finite, sampling error exists. When there is strong
statistical evidence in favour of an hypothesized distribution, it might only be that
the specific sampling distribution is close to the population. However, there may be

alternative distributions which could provide better representations of the data.

One of the problems of standard hypothesis tests arises from the requirement that
one of the models considered must be the true distribution, while the other must be
false. As discussed already, a difference of performance between two distributions will
be used to infer that one is true and the other false. The initial null hypothesis and the
alternative used are chosen arbitrarily. There is no strong reason why the sample must
be drawn from one of the tested distributions. If both of the distributions initially
hypothesized are wrong, the test will not necessarily indicate such a result. Moreover,
from simulation results, the true distribution does not always perform the best, even

in large but finite samples.

Another problem of standard hypothesis tests is that they are generally restricted to
two distributions. Initial consideration of the correct distribution could be over a wide
range of possible cases, such as those which have already been used in practice. This is
a practical rather than a statistical problem. Attempting to overcome the problem is a
" major concern of this chapter. Most information criteria such as AIC and SIC can be
used without the limitation of the second problem. There is no requirement that the
number of distributions considered be limited. The task of such criteria is to choose the
'best’ fitting distribution among all candidates, with some penalty for parsimony and
the number of observations used. For a particular sample of observations, the ‘best’
fit to the distribution can be determined. Generally, the true model is the best fitting

distribution if the sample size is very large.
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8.4 Discrimination Criteria and Asymptotic Tests

Traditional hypothesis testing involves testing the ‘true’ distribution. However, em-
phasis can also be placed on determining false distributions. Assuming that the true
distribution exists among a set of distributions, strong evidence can be sought to in-
dicate that any distribution is false. In the ideal case, all false distributions will be
rejected and the true distribution accepted. In the worst case, with little significant dif-
ferences between the distributions, no superior distribution will emerge. Performances
are similar and false distributions cannot be recognized. Between these extreme cases,
some false distributions are determined and some of them are not, so that empirical
distributions can be allocated to two categories: the superior and the badly fitting
categories. The true distribution should frequently appear in the superior distribution
category and have a high probability of appearing as the superior distribution in each
sample case. Such a procedure is used to dismiss the worst cases, and retain the supe-
rior distributions. Consequently, this procedure can avoid some problems encountered
in the use of existing criteria.

The rationale used above leads to the construction of a new discrimination crite-
rion. This criterion would perform the filtering function to dismiss the badly fitting
distributions. It should also retain distributions with similar performances, which are
superior to those rejected. The criterion is designed to test a number of distributions
simultaneously and to apply in general situations. The key issue is how to distinguish
between the superior and badly fitting distributions. To determine a critical value, the
equivalence between some well-known information criteria and hypothesis tests can be
used. Since most information criteria and hypothesis tests are based on the maximized
value of the likelihood function, it is possible to compare information criteria and hy-

pothesis tests in terms of the probability of accepting the underlying null distribution.

Consider comparisons between the well-known AIC, SIC, the LR test, and the
BLR test of Horowitz and McAleer (1988). In discriminating between a 2-parameter

distribution and a 3-parameter alternative for a random sample of size n, and defining
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logLo and logL, as the maximized values of the log-likelihood functions of the 2- and
3-parameter distributions, respectively, the AIC and SIC may be expressed as:

Choose the 2-parameter distribution if

AIC : —logLo +2 < —logL, + 3 (8.1)

SIC : —logLo + logn < —logL, + 3logn/2. (8.2)

Rearranging (1) and (2), and defining AL = logLo — logL,, the respective criteria will

select the 2-parameter null distribution as follows :

AIC:—-AL<1 (8.3)
Sun—AL<'fT (8.4)

Suppose it is desired to test the nested null hypothesis Hy: 2-parameter distribution,
against the more general alternative hypothesis H;: 3-parameter distribution. The LR

test defines the rejection region of the null hypothesis as:

LR:—AL>§ (8.5)

where c is the critical value of the x? distribution with one degree of freedom.

In the non-nested case with a similar hypothesis Hy: 2-parameter distribution,
against the non-nested alternative H,: 3-parameter distribution, the BLR test defines

the rejection region as :

BLR: -AL> 2" (8.6)

where z* > 0 and the asymptotic upper bound on the significance level is given by the

cumulative standard normal distribution function evaluated at ®[—+/2z*|.
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By comparison with (3) and (4), the LR and BLR test statistics will accept Hp if

LR:-AL< —;’- (8.7)
BLR: -AL < 2" (8.8)

The probability of accepting the true model could be obtained by using the critical
values of the x% and the standard normal distributions, respectively. An equivalence
among AIC, SIC and the LR and BLR tests can easily be established. For any sample
size, use of AIC is equivalent to use of the LR statistic at the 84.2 per cent confidence
level for nested distributions, and to use of the BLR statistic at the 92.1 per cent
confidence level for non-nested distributions. Similarly, for a sample size of 365, SIC is
equivalent to the LR test at the 98.5 per cent confidence level in the nested case, and
is equivalent to the BLR test at the 99.2 per cent confidence level in the non-nested
case. Such equivalences can be used to construct GIC which, when the null hypothesis
holds, is equivalent to use of the LR or BLR tests at different confidence levels for
nested and non-nested distributions, respectively. Essentially, GIC can be based on
any asymptotic test which uses the maximized values of the log-likelihood functions of

the appropriate distributions.

8.5 A Generalized Information Criterion (GIC)

A new GIC procedure is proposed for the discrimination of distributional structures
among a set of alternatives. The GIC is based on the equivalence between some well-
known information criteria and hypothesis tests, and attempts to determine the false
distributions based on sample information. Large differences between the maximized
values of log-likelihood functions will lead to rejection of the distribution with the
lower value. Discriminated distributions are separated into two categories, the supe-
rior and badly fitting categories. The distributions in the superior category perform

within an acceptable tolerance level and there are no significant differences among their
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performances. The GIC procedure may provide several alternatives rather than one
particular distribution for a particular set of data. In the event of there being several

sets of data, the distribution with the highest probability of acceptance in the superior

category will be chosen.

Let zy,23,...,%, be n independently and identically distributed random observa-
tions. Denote logL; as the maximized log-likelihood value of distribution j (j =

1,2,...,m), with the ordering given as

logLy > logLy > -+ > logLn. (8.9)

Then distribution j will be rejected in favour of distribution 1 if

GIC . —2logLy + Tp < —-210ng (810)

where T > 0. The value T is the tolerance level required in order to reject distributions
as being significantly different from each other, and is equivalent to the rejection region

discussed in the previous section. For the nested case, Ty can be expressed as

To =cC (811)

whereas in the non-nested case, Tj is given by

To = 22*. (8.12)

The motivation behind the GIC procedure is straightforward. First, for a given
sample, select the distribution with the highest maximized log-likelihood value among
logL; (j = 1,2,...,m). This distribution then belongs to the category of superior
distributions and is also used as a standard for further inference. Second, reject the
false alternatives among the remaining distributions in terms of the given tolerance.
The distributions which perform within an acceptable tolerance level of the best fitting

distribution are retained in the superior category, and the distribution with the highest
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probability of acceptance over different sets of data will be chosen from the superior

category.

8.6 Distribution Functions and Statistical Criteria

For a sample x4, z,, . . ., z, of n independently and identically distributed random obser-

vations, the log-likelihood functions for the 3-parameter gamma, Weibull and lognormal

distributions are given as follows:

Gammas:

logL = —nalogh — nlogl(e) + (a— 1) S log(e: —7) = S(ET)  (8.13)

i=1 = B
Weibull:
logL = nloga — nalogf + (a — 1) il log(z; — ) — il(%_l)a (8.14)
Lognormal:
logLs = ~log(2re) =3 log(a: ~) = 5oz S Meg(ss— 1)~ B (819

in which B represents the scale parameter, a the shape parameter, v the location
parameter, and I' is the gamma function. The 2-parameter versions of the above
functions are obtained by setting the location parameter v to zero in each case. In
the above equations, 8 > 0, @ > 0 and vy < z; < oo for 7 = 1,2,...,n. The density
functions of the gamma and Weibull functions approach the exponential at a = 1,
are ”J” shaped for ¢ < 1 and "bell” shaped for a > 1, whereas the density for the
lognormal function changes from being nearly symmetric to being heavily skewed as «
is increased from 0.4 to 1.2. These values accommodate a variety of shapes which arise

in practice in analysing real data.

The parameters of the three log-likelihood functions are estimated by maximum
likelihood methods. Since the general maximum likelihood procedure will frequently
fail to converge when the shape parameter is less than or equal to unity, an approach

that circumvents this problem is used (for further details, see Bai et al. (1989)).
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In the application to air quality assessment and control, the simplest non-nested
discrimination problem is to test an hypothesis that the pollutant population has a
specified distribution against the alternative that the distribution belongs to a non-

nested alternative. Standard non-nested procedures can then be applied.

The choice of an appropriate test for a specific practical problém depends upon
the properties of the test. The Cox test is generally complicated to use, involving the
calculation of the asymptotic variances of the differences of the log-likelihoods between
two distributions. Kent (1986) points out the problem of possible degeneracy of the Cox
test. To introduce a consistent test, Epps et al. (1982) propose a method based on the
comparison of the theoretical and empirical moment generating functions. However,
since the empirical moment generating function will depart largely from the theoretical
moment generating function, particularly for positively skewed distributions, the test
will be inefficient. In order to avoid the disadvantages of such tests, Horowitz and
McAleer (1988) developed the BLR test which is tractable, easy to use and applies for
general parametric forms of distributions. Denoting the maximized values of the 2- and
3-parameter variants of a particular log-likelihood as log Lo and logL,, respectively, the
BLR test is given in equation (8), when the null hypothesis is true that the location
parameter is zero. The AIC and SIC are given in equations (3) and (4), respectively,

with the 3-parameter distribution being selected when the inequalities are reversed.

In this chapter, two well-known criteria for testing goodness of fit are also con-
sidered. These are the chi-square (CHI) test and the Kolmogorov-Smirnov (KS) test.
Classifying the n observations into k categories, the chi-square statistic is of the form

(see Pearson (1900)):

CHI = zkj (fi = np)* (8.16)

=1 np;
which has an asymptotic x? distribution with (k — ! — 1) degrees of freedom when

H, holds. The p; are hypothetical probabilities, the f; are empirical frequencies and

| is the number of parameters estimated for each distribution (for further details, see
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Kendall and Stuart (1979)). For the experiments conducted in this chapter, k¥ =
10 and | = 2 or [l = 3. The KS test, which is defined in terms of the maximum
absolute difference between the sample distribution function S,(z) and the hypothetical
distribution function Fy(z) (see e.g. Bury (1975, p. 204)), is given by

D,, = sup |Sn(z) — Fo(z)|. (8.17)
Large observed values of the D, statistic lead to rejection of the null hypothesis Fo(z).

Based on the loss function recommended for assessing air quality models (see Fox
(1981)), two performance criteria defined in terms of the relative root mean square
error (RRMSE) are also used. The first criterion is based on the mean of RRMSE in
the upper (U) percentiles, and the second is based on the mean of RRMSE in the entire
or full (F) percentiles of the distribution. For an estimate §;; of a quantity of interest g,
these performance criteria are defined in terms of deviations from ¢ in the percentiles
of interest, where ¢ denotes the specific percentiles estimated and j corresponds to
the replication of experiments. The definitions of the upper percentile error and full

percentile error are as follows:

UPE =+ E[H(l p)nZ(q" Lyes (8.18)

J—l t=pn

FPE = —E[ z(q” )20 (8.19)

J_'l n i=1
where p is the location of the p-quantile which is chosen at the 98 per cent level for
UPE and 100 per cent for FPE, N is the number of replications of the experiment, and
n is the sample size. For present purposes, ¢ denotes the percentile quantities related

to the upper and full percentile errors.

177



8.7 Monte Carlo Experiments

In order to assess the performances of discrimination criteria, an extensive range of
possible cases is considered. The shape parameter is examined over a wide range of
possible values where the density functions are positively skewed: the shape parameter
takes the values 2 and 6 for the gamma distribution; 2 and 4 for the Weibull distribution;
and 0.5 and 0.9 for the lognormal distribution. In all cases considered in this chapter,
the arbitrary scale parameter is set to ﬁnity, and the location parameter takes on the
values 0 and 1 for the 2- and 3-parameter distributions, respectively. The lognormal
distribution has the opposite behaviour to the gamma and Weibull distributions as the
shape parameter is increased. For each entry in the tables, N = 1000 replications of
the experiments are processed. The sample size used is n = 365, since it represents a

common case, namely a full year of 24-hourly average observations.

The random sample generators used for the Monte Carlo experiments are DRNGAM

DRNWIB and DRNLNL for the gamma, Weibull and lognormal distributions,

b

respectively. These are available as subroutines in the International Mathematical and
Statistical Library (IMSL) in version 1.0 (April 1987). The same seed number (1234) is
used to obtain the first random sample of the first of the 1000 replications. Varying the
initial seed produces similar results to those reported in the chapter. Two subroutines,
namely DCHIGF and DKSONE, are chosen from IMSL to perform the CHI and KS
tests. All results are obtained on a VAX8700 mainframe computer at ANU.

8.8 Discrimination Between Two Non-Nested
Distributions

The most common use of hypothesis tests and discrimination criteria arises in the case
of having two candidate models. To compare the performance of different tests and
criteria, each pair of possible combinations of the two-and three-parameter gamma,

Weibull and lognormal non-nested distributions will be considered. The major pur-
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pose of the Monte Carlo simulation experiments presented here is to re-examine the
performance of different discrimination criteria, and to draw some useful conclusions
as a guide for practice. It must be pointed out that some distributions are very similar
in fitting the data, so that some of the discrimination criteria will not perform well.
Theoretically, such simulation experiments could be used to expose the difficulties in
discrimination of distributions that are very similar and give a necessary warning that
care should be exercised. For further discrimination among a group of distributions,
the results obtained in this section may be used to assist in the analysis of complicated

problems, such as selection among six distributions, which will be discussed in Section

11.

The results of the Monte Carlo simulation experiments are shown in Tables 1 to 3.

The main points are given as follows.

(i) When the three-parameter gamma is the true distribution, the BLR test per-
forms very well in accepting the true null hypothesis, except when the three-parameter
Weibull distribution is the alternative, in which case the probability of accepting the
true null is below the nominal level of significance. On the other hand, in terms of
rejecting the false null hypothesis, the BLR test provides low probabilities in cases
where the false null is either the three-parameter Weibull or lognormal distribution.
For the Weibull distribution, power is increased when the shape parameter is increased
to 6, but power is decreased in the lognormal case. Generally, the BLR test has high
power in rejecting the false two-parameter null model, except in the single case when
the two-parameter lognormal distribution is false and the value of the shape parameter

of the alternative three-parameter gamma distribution is 6.

In terms of the probability of accepting the correct distribution, the remaining cri-
teria perform differently when the value of the shape parameter of the true distribution
is 2. The KS statistic accepts the true null with high probability, but CHI has slightly
lower probabilities of accepting the true null, when compared with the confidence level.

Note that the confidence level of the KS and CHI tests used here is 98 per cent, which is
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a value chosen from empirical air pollution applications. The same confidence level for
the KS and CHI tests will be also used throughout this chapter. The ranking of these
criteria are AIC and SIC (which are identical because they have the same number of
parameters), and then FPE. The worst is UPE, whose probability is below 50 per cent.
When the shape parameter is increased to 6, all criteria except UPE have significantly

improved performances, even though they are still not satisfactory.

(ii) The results of discrimination between two non-nested models are quite similar
to the above when the true distribution is the two-parameter gamma. The BLR test
provides high probabilities of accepting the true null hypothesis, in general. However,
when testing the two-parameter gamma against the three-parameter Weibull, or test-
ing the two-parameter gamma against the three-parameter lognormal distribution, for
values of the shape parameter being 2 and 6, the BLR test performs poorly. If the alter-
native is the two-parameter Weibull distribution, the power in rejecting the false null
is quite low when the shape parameter is 2, but improves appreciably when the shape
parameter is increased to 6. Similar results can be obtained when the two-parameter
lognormal is the alternative; that is, the BLR test performs very well when the value
of the shape parameter is 2, but becomes worse when the value of the shape parameter

is increased to 6.

Of the remaining criteria, SIC works very well in most cases, with high proba-
bilities of accepting the true null hypothesis. AIC is generally good but sometimes
has low probabilities of accepting the true null, such as when the alternative is the
three-parameter gamma distribution. Other methods are unstable. For example, FPE
performs very well if the alternative is the two-parameter lognormal distribution, and
performs well when the alternative is the two-parameter Weibull with shape parameter
taking the value 6. However, SIC is worst when the alternative is either the three-
parameter Weibull or lognormal distribution, with the shape parameter taking the

values 2 and 6. Based on these results, SIC is the preferred criterion, in general.

(iii) When the three-parameter Weibull distribution is correct, the probabilities
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of accepting the true null hypothesis for the BLR test all exceed the nominal level
of significance. However, in terms of rejecting the false null hypothesis, the BLR
test performs differently according to various pairs of tested distributions, and the
values of the shape parameters of the true distribution. Testing between the three-
parameter Weibull and gamma distributions when the shape parameter is 2, the BLR
test has low power in rejecting the false gamma null hypothesis, especially at the 99
per cent confidence level. An improvement in the performance of the BLR test can be
seen when the shape parameter is increased to 4, but the power in rejecting the false
model is still relatively low at the 95 and 99 per cent confidence levels when compared
with some other pairs of non-nested models. Similar results are also obtained when
testing between the three-parameter Weibull and lognormal distributions, in which
the power of the BLR test is increased when the value of the shape parameter of the
Weibull distribution is increased. In testing the three-parameter Weibull versus the
two-parameter gamma distribution when the shape-parameter is 2, the BLR test has
very good power in rejecting the false model, but power decreases significantly when the
shape parameter is increased to 4. This is also the case for testing the three-parameter
Weibull distribution against the two-parameter lognormal distribution, in which the

power of the BLR test changes when the value of the shape parameter is increased.

Of the others, AIC performs consistently well in most cases, except for the single
case where the probability of accepting the true null hypothesis decreases to 0.89 for
discriminating between the three-parameter Weibull and lognormal distributions when
the value of the shape parameter is 4. SIC produces the same results as AIC when
discriminating among three-parameter distributions, and SIC performs worse when dis-
criminating between the three-parameter Weibull and either the two-parameter gamma
or lognormal alternatives. The lowest probability of accepting the true null is observed
when the shape parameter equals 4 for the case of the three-parameter Weibull against
the two-parameter gamma distribution. Compared with AIC, FPE also performs con-
sistently well in most cases but also decreases the probability of accepting the true null

hypothesis when the shape parameter is 4 in the case of the three-parameter Weibull
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against the two-parameter lognormal distribution. Surprisingly, UPE is the best in
cases where the others are worsening, but has the lowest probability of accepting the
true null hypothesis when the shape parameter is 2 for the three-parameter Weibull
versus the two-parameter gamma distribution. The performance of KS is good in
terms of accepting the true null, but CHI has a probability of acceptance of the true
null slightly below the confidence level.

(iv) For the same discrimination procedures but with the sample coming from the
two-parameter Weibull distribution, the results obtained in the simulation experiments
are similar to the above. In terms of the probability of accepting the true null hypoth-
esis, the BLR test provides very good performance in all cases. However, when testing
the two-parameter Weibull distribution against either the three-parameter gamma or
lognormal distributions, the power in rejecting the false null hypothesis is very poor.
When the shape parameter is increased from 2 to 4, the performance of the BLR test
improves when testing against the three-parameter gamma, and deteriorates against
the three-parameter lognormal distribution. The probability of rejecting the false null
hypothesis is low at the 99 per cent confidence level when the shape parameter is 2,
but improves considerably when the shape parameter is increased to 4. For the last
pair of the two-parameter Weibull versus the two-parameter lognormal distribution,

the probability of rejecting the false null hypothesis for the BLR test is 100 per cent.

On the other hand, AIC and SIC provide high probabilities of accepting the true
null hypothesis in all cases. Similar results will be obtained when testing against
the two-parameter distributions and, as expected, AIC will have a lower probability
of accepting the true distribution than SIC if the alternative is the three-parameter
distribution. UPE is comparable to AIC and SIC in all cases, and is sometimes the
best. FPE has a lower probability of accepting the two-parameter Weibull distribution
against both the three-parameter gamma and lognormal distributions when the shape
parameter is 2, and has a high probability for the former when the shape parameter is
increased to 4, but becomes worse for the latter. KS and CHI have high probabilities

of accepting the true null hypothesis in testing against the two-parameter lognormal
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distribution when the shape parameter equals 2 or 4. Similar results will be obtained

against the two- and three-parameter gamma distributions if the value of the shape

parameter is 4.

On the basis of these results, great care should be exercised in testing the two-
parameter Weibull distribution against both the three-parameter gamma and lognor-
mal distributions using different criteria. The user should also be careful in the case
of the two-parameter Weibull versus the two-parameter gamma distribution. AIC,
SIC and UPE are generally reliable. FPE will perform very well for the two-parameter
Weibull versus either the two-parameter gamma or lognormal distribution. Care should
be exercised in using the KS and CHI tests because they often have low powers for
rejecting the false null, although their probabilities of accepting the true null are often
very high.

Finally, the simulation experiments are conducted to discriminate among the two-
and three-parameter gamma, Weibull and lognormal distributions, based on samples

taken from the lognormal distribution. The results are included in Table 3, and the

main points should be noted as follows.

(v) When the three-parameter lognormal distribution is correct, the BLR test pro-
vides accurate acceptances of the true null hypothesis in most cases. The exception is
the three-parameter lognormal versus the three-parameter gamma distribution when
the shape parameter is 2, with the probabilities being below the given confidence level.
In terms of the power of rejecting the false null hypothesis, the BLR test has low
probabilities of accepting the true null hypothesis in the case of the three-parameter
lognormal null against the three-parameter gamma alternative when the value of the
shape parameter is 0.5. However, the proba,bilitiés are increased significantly when
the shape parameter of the three-parameter lognormal distribution is set at 0.9. AIC,
SIC, and FPE perform very well in most cases, but there are exceptions when the
three-parameter lognormal null is tested against the three-parameter gamma alterna-

tive. CHI and KS consistently provide high probabilities of accepting the true null.
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Unfortunately, UPE works poorly in all pairs of tested distributions. The results show
that care should be exercised in applying the discrimination procedures to the three-
parameter lognormal null versus the gamma alternative distribution when the value
of the shape parameter is 0.5. UPE is not reliable here, reflecting the fact that the

estimation of the upper percentiles is unstable.

(vi) Similar observed patterns are obtained when the true distribution is the two-
parameter lognormal distribution. The results for accepting the true null and rejecting
the false null are similar to the case when the true distribution is the three parameter
version, with the probabilities of accepting the true null generally being lower than
those given in point (v) above. The BLR test still has problems in rejecting a false
null hypothesis when the shape parameter is 0.5, but improves considerably when the
shape parameter is increased to 0.9, in testing the two-parameter Weibull against both
the three-parameter gamma and lognormal distributions. This behaviour is also found
in testing against the two-parameter gamma distribution. Similarly, AIC, SIC and
FPE work well in most cases, except for the two-parameter lognormal against the
three-parameter gamma distribution. Once again, the performance of KS is good in
accepting the true null, but CHI has slightly lower probabilities of accepting the true
null. For SIC, its probability also decreases substantially against the two-parameter

gamma distribution. Once again, UPE performs poorly in all cases.

In summary, different discrimination criteria for selecting between two distributions
are re-examined. The experimental results show that there is no criterion which con-
sistently performs well in all cases. Great difficulties arise whenever three-parameter
distributions are involved because the extra (location) parameter significantly improves
empirical fitting of the data. It is argued here that efforts made to develop a new cri-

terion cannot help resolve this problem since differences between the true and false

distributions are too small.

The large sample sizes used in the experiments are commonly found in practice, so

the problems encountered here have general meaning for application of such statistical
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techniques to real situations. Based on the results of these simulation experiments,
the user should exercise care in employing these criteria to discriminate between two
three-parameter distributions, especially when the gamma distribution is involved. Ex-
tensive care should be exercised in situations when three-parameter distributions are
involved because false three-parameter non-nested distributions can frequently perform
better than true two-parameter distributions. In general, AIC is good in most cases
but might perform worse than SIC when the true distribution has only two parameters
and better than SIC when the true distribution has three parameters. FPE has very
good performances and is generally quite similar to AIC and SIC. UPE is not generally
reliable, but is superior in some cases where the others are performing badly. However,
UPE is particularly important for air quality management because this criterion indi-
cates errors at the upper percentiles. Unfortunately, KS and CHI generally have low

powers for rejecting the false null, so that care should be exercised in applications.

8.9 Discrimination Among Three Non-Nested
Distributions

Discrimination among three non-nested distributions is more difficult than between
two, as was reported in the previous section. Standard hypothesis tests are generally
not valid if the number of tested distributions exceeds two. On the other hand, an ad-
ditional candidate will affect other criteria used in selecting the true distribution. The
emphasis here is placed on discrimination among the two- or three-parameter gamma,
Weibull and lognormal distributions. Monte Carlo experiments are used to examine
the performance of the discrimination criteria as each distribution is taken to be true.
The discrimination procedures might be expected to expose certain distributions as
being good approximations to others over different parameter ranges, even when the

distributions come from different parametric families.

One of the purposes of the experiments is to examine the outcomes arising from the

situation where the data are generated from, say, the three-parameter gamma distribu-
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tion, and discrimination is made between it and its two-parameter counterpart. Such
considerations often arise in practice, and has especial importance for fitting models to
air quality data, as will be discussed later. For each experiment, selection will proceed
among the two- and three-parameter gamma, Weibull and lognormal distributions. In-
stead of using the BLR test, the Kullback-Leibler (KL) information criterion based on
the maximized log-likelihood values will be used. In this case, AIC and SIC will be
equivalent to KL since the penalties for AIC and SIC are identical. The sample size is
365, which is considerably large for practical purposes. As mentioned previously, GIC
is primarily designed to discriminate among three or more distributions simultaneously,
in which case the LR test is not applicable. Thus, GIC is expected to complement the

existing discrimination criteria.

The results of experiments using different criteria are shown in Table 4. The main

points from the table are as follows.

(i) When the three-parameter gamma distribution is correct, all of the criteria in
Table 4 perform poorly. The best is KL (or equivalently, AIC and SIC), although it is
only correct 59.6 per cent of the time when the shape parameter is 2, and 52.6 per cent
of the time when the shape parameter is increased to 6. FPE is reasonably close to
KL. KS and CHI perform well in accepting the true null but they also accept the false
three-parameter models frequently. UPE is worst and selects the false three-parameter
Weibull distribution 576 times in 1000 experiments. When the value of the shape pa-
rameter is 2, the three-parameter Weibull distribution has a rather high probability
of 35.5 per cent of being the best fitting distribution, but when the shape parameter
is increased to 6, the three-parameter lognormal distribution becomes a good approx-
imation to the true distribution. Somewhat surprisingly, when the value of the shape
parameter is 2, the two-parameter lognormal is the best fitting of the two-parameter
distributions. Although the two-parameter gamma becomes the best when the value
of the shape parameter is increased to 6, the two-parameter lognormal distribution is

still a good approximation to the true three-parameter gamma distribution.
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(ii) The performances of the discrimination criteria are improved substantially when
the true distribution is the two-parameter gamma. KL, AIC and SIC are the best when
the value of the shape parameter is 2, but FPE is best when the shape parameter is 6.
KS and CHI have high probabilities of accepting the two- and three-parameter gamma
and Weibull distributions when the values of the shape parameter are 2 and 6. UPE
remains the worst. For the other three-parameter distributions, the ranks are similar
to the case where the true distribution is the three-parameter gamma, which suggests

that changing the value of the location parameter from 1 to 0 does not effect the results

qualitatively.

(iii) Most of the criteria perform very well when the three-parameter Weibull dis-
tribution is true. In this case, UPE becomes the best when the value of the shape
parameter equals 2 or 4. The high probabilities of accepting the true distribution
indicate that both three-parameter gamma and lognormal distributions are not good
approximations to the three-parameter Weibull distribution. Once again, the two-
parameter lognormal distribution is the best when the shape parameter is 2, but it
is replaced by the two-parameter gamma distribution when the shape parameter is 4.
These results suggest that the member of the same family of distributions with two
parameters is not necessarily as good as a member from a non-nested counterpart. The
two-parameter lognormal distribution is the best approximation to the three-parameter
Weibull distribution if the data are heavily skewed, as is often encountered in air pol-

lution applications.

(iv) Similar observed patterns are obtained when the true distribution is the two-
parameter Weibull. Most of the criteria perform well in accepting the true distribution.
Only KS and CHI have low powers for rejecting the false two- and three-parameter
gamma, and the three-parameter Weibull and lognormal distributions. UPE performs

the best of the criteria.

(v) When the value of the shape parameter is 0.9 for the underlying three-parameter

lognormal distribution, most of the criteria perform very well, with the exception of
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UPE. However, when the shape parameter is decreased to 0.5, power is reduced sub-
stantially. KS and CHI have significantly higher probabilities for rejecting the false
distributions when the value of the shape parameter is 0.9, as compared with the cases
when the true distributions are the two- or three-parameter gamma and Weibull dis-
tributions. However, the false three-parameter gamma distribution will be frequently
accepted by KS and CHI tests if the shape parameter is decreased to 0.5. UPE has
the worst. It is interesting to note that, of the two-parameter distributions, the two-
parameter lognormal distribution is the best approximation to the three-parameter
lognormal. Based on these results, it is clear that, no matter which three-parameter
distribution is true, the two-parameter lognormal will always be a good representation
of the data if selection is restricted to two-parameter distributions and the sample data
are quite skewed. These simulation results are consistent with the recommendations
of many air pollution specialists (for example, Larsen (1971,1974) and Benarie (1980))
that the two-parameter lognormal distribution is the best for fitting urban air pollutant
concentrations. However, care should still be exercised because the two-parameter ver-
sion might not be the best if alternative three-parameter distributions are under serious

consideration.

(vi) When the true distribution is the two-parameter lognormal, most criteria apart
from UPE perform very well. The impfovement in rejecting the false models using the
KS and CHI tests can also been seen when the value of the shape parameter is 0.9, as
compared with the cases where the true distributions are the two- or three-parameter
gamma and Weibull distributions. Their performance in rejecting false models will
deteriorate when the shape parameter is reduced to 0.5. Similarly, the result of selection
among three-parameter distributions has no significant changes when the data are from

the two-parameter lognormal distribution.

From the results of the experiments, the criteria used are not always consistent,
especially for the underlying two-and three-parameter gamma distributions. The same
problem is found when the three-parameter lognormal is the true distribution with the

value of the shape parameter taken as 0.5. A major consequence of these findings is

188



that the criteria will reject the true distribution frequently because of a slightly lower
value of the maximized log-likelihood function relative to that of the false distribution.
To avoid this outcome, GIC is recommended. The principle of GIC is to reject the
distribution if the evidence shows that it performs very poorly. With small differences
in the performances of the distributions, GIC will not initially reject the distributions
but simply determine if they are similar for the particular sample. The true distribution
will be included in the selection and should have the highest probability of acceptance.

The results given in Table 5 emphasize the following points.

(a) GIC works consistently very well in accepting the true distribution as compared
with the remaining criteria. In all cases, the probability of acceptance is over 94 per

cent and, in many cases, the true distribution is always accepted.

(b) If the distribution is false, GIC will reject it when the value of its log-likelihood
function is lower than the tolerance level. In the event that a false distribution is
accepted by GIC, it means that such a distribution fits the data as closely as the true
one in terms of the given critical region. In all cases, the probability of accepting the
false model is less than 90 per cent, which is much lower than the result obtained for the
true model. Some three-parameter distributions, such as the Weibull and lognormal,
have large numbers of acceptances when the true distribution is the three-parameter
gamma. This only serves to indicate that they could be good approximations for
the underlying three-parameter gamma distribution over certain ranges of the shape

parameter.

(c) When selection is among three-parameter distributions but the parent distribu-
tion is a two-parameter version, its three-parameter counterpart is consistently selected.
This is not always the case when selection is among two-parameter distributions and
the underlying distribution is a three-parameter version. Since there is no true model
among the distributions under consideration, GIC is not guaranteed to select the cor-

rect model.

In conclusion, experiments have been conducted to discriminate among three non-
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nested distributions. Such discrimination has employed some well-known criteria and
tests, such as KL, AIC, SIC, CHI and KS, as well as some criteria recommended for
application to air quality data, such as UPE and FPE. The results of the experiments
have shown that the criteria are not consistent in all cases where the underlying distri-
butions and parameter values are altered, so that the true distribution can be rejected
quite frequently. Therefore, GIC was applied in the same experiments, and was shown
to perform very well for various underlying distributions and parameter values. GIC is
useful in avoiding over-rejection of the true distribution, which is important in applica-
tions. Moreover, GIC indicates that some distributions may fit the data equally well.
In addition, through Monte Carlo experiments, it was shown that the two-parameter
lognormal is a good approximation to the three-parameter gamma, Weibull and lognor-
mal distributions when selection is restricted to two-parameter distributions and the
sample is heavily skewed. In terms of acceptance of the true distribution, it is necessary
to consider three-parameter distributions against the two-parameter lognormal in such
cases, because further discrimination might yield different results. Such a suggestion

should be very useful when applying statistical techniques to air quality applications.

8.10 Discrimination Among Five Non-Nested
Distributions |

Similar statistical techniques used for discrimination among three non-nested distribu-
tions can easily be extended to discriminate among five non-nested distributions simul-
taneously. That is, for any given model, there will be a maximum of four non-nested
alternative distributions. Additional distributions generally affect the discrimination
criteria in terms of selecting the true distribution, but the nature of such distributions
is also important, namely whether they are good approximations to each other. For
example, from the results of the previous two sections, it is known that the three-
parameter Weibull distribution is often a good approximation to the three-parameter

gamma distribution for certain parameter values, but the two-parameter lognormal dis-
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tribution does not fit either the two- or three-parameter gamma distribution especially

well.

The advantage of including five distributions as candidates for a particular sample
is that this could help to avoid the problem found in the previous section, namely where
an incorrect selection occurs when the procedure is restricted to only two-parameter
distributions, but a heavily skewed three-parameter distribution is true. In principle,
criteria such as KL, AIC, SIC, CHI, KS, UPE and FPE have no restrictions on the
number of distributions considered. GIC is also constructed especially for discrimina-
tion when the number of distributions exceeds two. The task here is to investigate

whether they are capable of providing satisfactory results in applications.

At first, the Monte Carlo experiments are used to re-examine the different criteria

except GIC, and the results are given in Table 6. The following points should be noted.

(1) Consider the case of the three-parameter gamma distribution being correct. The
major concern here is with a pair of two-parameter distributions. When the value of
the shape parameter equals 2, KL and AIC remain the same, and SIC and FPE are
changed slightly. KS and CHI are good in terms of accepting the true distribution but
false distributions, such as the three-parameter gamma and Weibull, are also frequently
accepted by these two tests. However, when the shape parameter is increased to 6, all
of the criteria have substantially decreased probabilities of accepting the true distri-
bution. KL is the only criterion with a probability of acceptance in excess of 50 per
cent. The worst is SIC, which favours the two-parameter lognormal distribution. UPE
consistently shows that the three-parameter Weibull distribution is the best, which
means that the three-parameter Weibull distribution provides lower errors at the up-
per percentiles. From the outcomes of these experiments, the qualitative findings are

quite different for each discrimination criterion.

(i) The results from the experiments will largely differ from the above when the
true distribution is the two-parameter gamma. SIC changes from being the worst to

the best, especially when the value of the shape parameter is increased from 2 to 6.
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Unfortunately, AIC and the remaining criteria provide probabilities which are all
under 50 per cent. When the value of the shape parameter is 6, KL and FPE are all in
favour of the three-parameter lognormal, whereas UPE still selects the three-parameter
Weibull distribution. Although SIC and AIC have relatively high probabilities of ac-
cepting the true distribution, the results show that the three-parameter distributions

have much stronger influence than their two-parameter counterparts.

(iii) When the three-parameter Weibull distribution is correct with the shape pa-
rameter equal to 2, KL, and FPE have the same probabilities as compared with point
(iii) of Section 9 in considering a pair of two-parameter distributions. AIC has only a
very small change in the probability of accepting the true distribution but the prob-
ability of SIC has decreased significantly. UPE accepts the two-parameter gamma
distribution rather than the true distribution. However, when the value of the shape
parameter is increased to 4, UPE becomes the best criterion, with a high probability of
accepting the true distribution, while KL, AIC, SIC and FPE have worsened substan-
tially. The KS and CHI tests have poor performances in rejecting the false distribution
when the shape parameter is 2, but their powers in rejecting the false three-parameter
gamma is significantly increased when the value of the shape parameter is increased to

6. This is not the case for the remaining false distributions.

(iv) Considering the two-parameter Weibull distribution as true, SIC performs well
when the value of the shape parameter is 2 or 4. AIC and UPE also perform quite
well, but KL provides a relatively low probability of accepting the true distribution. KS
and FPE perform quite well in accepting the true distribution, but are less powerful in
rejecting the false models. Based on these results, the selections are strongly influenced
by the addition of two- or three-parameter distributions. All of the criteria perform
poorly and become unreliable when the values of the parameters and the nested true

distribution are varied.

(v) When the three-parameter lognormal distribution is correct, all of the criteria

remain the same when the value of the shape parameter is equal to 0.9, which indicates
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that the additional two-parameter distributions do not affect the outcome of the dis-
crimination criteria. Such stability remains when the shape parameter is decreased to
0.5. This is the only situation in which the results of the experiments are not changed

when the number of distributions considered is increased from three to five.

(vi) There are noticeable differences in the results when the true distribution is
changed to the two-parameter lognormal. The probabilities of accepting the true dis-
tribution have decreased slightly for all the criteria when the value of the shape param-
eter 1s equal to 0.9, but have decreased substantially when the value is reduced to 0.5,
apart from SIC. Such changes arise mainly from the three-parameter gamma distribu-
tion, which indicates that it is a good approximation to the two-parameter lognormal
distribution. Compared with the case where the gamma and Weibull distributions"
are true, when the true model is the lognormal distribution, the results of discrimina-

tion among five distributions are not much altered from discrimination among three

distributions.

As expected, discrimination among five distributions is more difficult than among
three. Compared with the latter case, the criteria used here perform either poorly or
unreliably, and the results generally become much worse after involving the additional
distributions, especially in the case when the two- or three-parameter gamma distri-
bution is true. The gamma distribution has a probability of acceptance below 50 per
cent for most of the criteria when the value of the shape parameter equals 6. Such
performances are not satisfactory and the use of these criteria is subsequently in doubt.
Therefore, there is still a need to provide more reliable selection procedures than those

used above.

The results from the experiments in using GIC are shown in Table 7. It is interesting
to note that GIC performs very well, consistently providing the highest probability of

accepting the true distribution in all cases. The main points should be noted as follows.

(a) When the three-parameter gamma is the true distribution, the three-parameter

Weibull distribution is a good approximation when the values of the shape parameter
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are 2 or 6. When the distribution becomes more symmetric at o = 6, the two- and
three-parameter lognormal distributions become close to the three-parameter gamma
distribution. When the true distribution is the two-parameter gamma, the two- and
three-parameter Weibull are quite good if the sample is skewed, but the three-parameter

Weibull and lognormal are superior when the distribution is more symmetric.

(b) The additional two-parameter distributions do not change the discrimination
results when the Weibull becomes the true distribution in both the two- and three-
parameter cases. If the sample is heavily skewed when the value of the shape param-
eter is 2, the three-parameter gamma is close to both the two- and three-parameter
Weibull distributions. When the value of the shape parameter is 4, the three-parameter

lognormal distribution will approach the three-parameter gamma distribution.

(c) There is no difficulty in discriminating between the underlying lognormal dis-
tributions for both the two- and three-parameter cases when the value of the shape
parameter is 0.9. In this respect, the lognormal distribution is different from the gamma
and Weibull distributions. However, the result is changed when the value of the shape
parameter is decreased to 0.5, and the three-parameter gamma distribution becomes a

very good approximation to the lognormal distribution.

(d) The most important point to note here is that the three-parameter distributions
will generally be affected only slightly by the presence of the two-parameter distribu-
tions, but two-parameter distributions will be more heavily influenced by the addition
of the three-parameter distributions. Based on the Monte Carlo simulations, when the
three-parameter distribution is true, the probability of accepting the true distribution
for GIC will be greater than 90 per cent in large samples. On the other hand, if the true
distribution has two parameters, the probability would be slightly in excess of 85 per
cent in large samples, such as when the two-parameter gamma is the true distribution.
Such results indicate that if the two-parameter distribution has the highest probability
of acceptance among the remaining distributions, this two-parameter distribution is

likely to be the true one, although the probability of accepting the three-parameter
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distribution is close to that of its two-parameter counterpart. This result arises be-

cause three-parameter distributions generally fit the data better than two-parameter

models.

In summary, different criteria have been re-examined through Monte Carlo ex-
periments, and the weaknesses of the criteria used here have been highlighted. The
proposed GIC has performed very well and consistently provides high probabilities of
acceptance of the true distribution in all cases. It is, therefore, recommended that GIC

should always be used in discriminating among five non-nested distributions.

8.11 Discrimination Among Six Nested and
Non-Nested Distributions

It is a difficult task to discriminate among a number of distributions simultaneously.
When these distributions contain both neéted and non-nested relations, the problems
become even more complicated. As discussed in Section 3, the gamma, Weibull and
lognormal distributions are quite similar to each other for certain parameter values,
so that each could be a candidate for a particular set of data. This is the usual
case encountered in applications. For illustrative purposes, we introduced some simple
procedures for discriminating among two- and three-parameter gamma, Weibull and

lognormal distributions related to air quality applications.

Basically, the selection criteria used in the previous section can be applied in fairly
general situations, where both nested and non-nested distributions can be considered.
Discrimination procedures for six distributions are similar to those for three or five
distributions. In this section, we consider discriminating between a null model and
five other distributions, namely a nested alternative and four non-nested alternatives.
However, the simulation results are quite different even though the sampling experi-
ments are the same. The reason is simply that the greater is the number of alternative
distributions considered, the greater are the chances of selecting the incorrect distri-

bution in small samples. On the other hand, all criteria perform poorly when there
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are strong similarities among some three-parameter distributions such as the three-
parameter gamma and Weibull distributions. This problem arises generally for all

existing selection criteria. The performances of each criterion are discussed below.

(i) Consider the situation when the true distribution is the 3-parameter gamma, and
the two-parameter gamma distribution becomes one of the six candidates. Before the
experiments are conducted, it might be predicted that the results should change only
slightly since the two-parameter distribution might be expected to have little impact on
the three-parameter distributions. In Table 8, when the value of the shape parameter
is 2, all of the criteria remain largely unchanged, but most of them except KL have
largely decreased probabilities of accepting the true distribution when the value of the
shape parameter is increased to 6. According to the results of the nested discrimination
procedure (see Bai et al. (1990)), the two-parameter gamma distribution becomes a
very good approximation to the three-parameter version as the distribution tends to
symmetry. KL is the only criterion with a probability exceeding 50 per cent, and the
others perform very poorly. AIC and SIC favour the two-parameter gamma, but UPE

favours the three-parameter Weibull distribution.

(ii) Similar patterns are obtained when the true distribution is the two-parameter
gamma. While SIC is best, followed by AIC, they are steady for both values of the
shape parameter. Other criteria have much lower probabilities, especially KL, which
has decreased substantially. The results show that the three-parameter gamma distri-
bution has a strong influence on the outcomes of the discrimination procedures for the

underlying two-parameter gamma distribution.

(iii) When the three-parameter Weibull distribution is true with the shape parame-
ter set at 2, most of the criteria are very stable and are little influenced by the addition
of the two-parameter Weibull distribution. Similar results can also be seen when the
shape parameter is increased to 4, except that UPE has substantially decreased proba-
bilities of accepting the true distribution. Surprisingly, KS and CHI have high powers

for rejecting the false two-parameter Weibull distribution when the shape parameter is

196



2, but power will be decreased when the value of the shape parameter is increased to

4.

(iv) Adding the three-parameter Weibull distribution has significantly altered the
results of most criteria when the true distribution is the two-parameter Weibull distri-
bution. KL now performs the worst and UPE has decreased by more than one-half.
AIC has also reduced probabilities, and only SIC remains similar to the results ob-
tained before the addition of the three-parameter Weibull distribution. It is interesting
to note that the powers of KS and CHI are high for rejecting the false two-parameter
lognormal distribution when the values of the shape parameter are 2 and 4. However,

this is not the case for the remaining false distributions.

(v) When the three-parameter lognormal distribution is correct, the results are
similar to those obtained before adding the nested two-parameter lognormal distribu-
tion. This simply indicates that all of the two-parameter distributions, including the
nested members, are not close to the three-parameter lognormal distribution. Only the
three-parameter gamma distribution is close to the three-parameter lognormal.

(vi) The results of discrimination among six distributions could be expected to de-
fer to those obtained in point (vi) of the previous section when the true distribution
is the two-parameter lognormal and the three-parameter lognormal distribution is in-
volved. The influence from the three-parameter lognormal distribution can be seen
from KL, which has a zero probability of accepting the true distribution but favours
the nested three-parameter alternative with very high probability. This is because the
three-parameter lognormal distribution will be chosen even if it has only a slightly
higher maximized log-likelihood value than the two-parameter distribution. SIC and
AIC have much improved results since they penalize the number of parameters and/or
observations used, but they still have decreased probabilities in comparison with the re-
sults obtained previously. The other criteria have substantially decreased probabilities,

providing very poor performances in selecting the true distribution.

Based on these results, the selection of the underlying two-parameter lognormal
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distribution is also affected significantly by adding the nested three-parameter alterna-
tive. It is not surprising that all of the criteria perform very poorly because they did
not work well even without involving the nested cases. Table 8 provides further evi-
dence that these criteria are not capable of discriminating among distributions which

are quite similar to each other.

Of course, discriminating among six distributions simultaneously is also a difficult
task for GIC. The reason is simply that the three-parameter distribution will perform
better than, or at least similarly to, the two-parameter distribution when the latter
distribution is true. As mentioned previously, GIC selects the 3-parameter distribution
if its probability of acceptance is over 90 per cent. There is no doubt that this will

be satisfied by the three-parameter distribution even though the true distribution has

only two parameters.

When using the LR test, if the value of the log-likelihood function for the three-
parameter distribution is close to that of the two-parameter distribution, it is inferred
that the sample comes from the two-parameter distribution. By using GIC, if the
probability of acceptance of the two-parameter distribution is close to that of the
three-parameter nested alternative, it means that the values of the log-likelihood func-
tions for these two nested distributions are very close and the data are inferred as being
generated from a two-parameter distribution. From the empirical results obtained in
the previous section, when the two-parameter distribution has a probability of accep-
tance in excess of 85 per cent, the two-parameter distribution would be expected to
be the true distribution, regardless of the performance of the three-parameter alter-
native. However, when the two-parameter distribution has a much lower probability
of acceptance, it means that the values of the log-likelihood functions for the two-
and three-parameter distributions have departed éignificantly from each other, so that
the sample can be determined as being generated from a three-parameter distribution.
Based on the results in Table 8, GIC will select the three-parameter distribution with
the highest probability of acceptance, which should be over 90 per cent. This sugges-

tion is based on the results from experiments for the discrimination procedures in both
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the nested and non-nested cases.

Based on the analysis above, the matter of selecting the true distribution from

among the six distributions is straightforward. The results are presented in Table 9,

and the following points should be noted.

(a) When the three-parameter gamma distribution is true, with the value of the
shape parameter set at 2, the result is unchanged from previous findings, with the
two-parameter gamma distribution having no influence on the selection at all. When
the shape parameter is increased to 6, the probability of accepting the two-parameter
gamma distribution is still less than 85 per cent. Other distributions have low probabil-
ities of being accepted and the three-parameter gamma distribution is selected. On the
other hand, although involving the three-parameter gamma distribution, the probabil-
ity of other distributions being selected is unchanged when the true distribution is the
two-parameter gamma. The two-parameter gamma distribution has a high probability
of acceptance which is comparable with the three-parameter version, namely over 85
per cent, and the result indicates that the values of the log-likelihood function are very
similar. In such cases, the two-parameter gamma distribution will be selected and the

three-parameter version will be rejected.

(b) Similar results will also be obtained when the Weibull distribution is correct.
The results are the same as previously when the true distribution is the three-parameter
Weibull for both values of the shape parameter. When the true distribution is the
two-parameter Weibull, its acceptance is very similar to that of its three-parameter

counterpart because these two distributions have similar log-likelihood values.

(c) When the lognormal distribution is correct, similar patterns will be obtained
as above. If the true distribution is the three-parameter lognormal, the probability
of accepting the true distribution remains unchanged for both values of the shape
parameter. When the two-parameter lognormal distribution is correct, the results do
not change significantly. Based on the similar probabilities of acceptance of the two-

and three-parameter lognormal distributions, the log-likelihood values of these two
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distributions are very similar, thereby providing evidence that the sample comes from

the two-parameter distribution.

(d) The best feature of GIC is that it determines the probability of accepting each
distribution consistently for particular sample sets, while additional non-nested distri-
butions will not significantly affect the probabilities of existing candidates if the true
distribution is already under consideration. Based on the Monte Carlo experiments,
the discrimination criteria listed in Table 8 fail to accept the true distribution fre-
quently. However, the results show that GIC is a useful tool in discriminating among

six nested and non-nested distributions in that it has a high probability of accepting

the true distribution.

8.12 Concluding Remarks

In this chapter, some important issues in discriminating among nested and non-nested
distributions have been raised. Existing problems in the literature are reported and
discrimination procedures for non-nested distributions are re-examined. Such proce-
dures are generally used to discriminate between two distributions, such as in classical
nested hypothesis testing. The emphasis here is placed on discrimination among a set
of three, five or six distributions where standard hypothesis testing procedures are not
valid. From the practical point of view it is argued that, because the true distribu-
tion is unknown, the more distributions that are considered, the greater will be the
chances of selecting the most appropriate distribution. An example is given in Section
10 whereby the two-parameter lognormal distribution is selected when discrimination
is restricted to three two-parameter distributions, but the true distribution has three
parameters. However, it is shown in this chapter that, in using different criteria, the
greater the number of distributions that are considered, the greater will be the diffi-
culty in selecting the true distribution. How to balance usefulness against selection of

the true model is a major concern of this chapter.

From the Monte Carlo simulations, some well-known discrimination criteria and
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tests such as KL, AIC, SIC, CHI, and KS, as well as some new criteria such as UPE
and FPE, are shown to be neither consistent nor reliable. Some of these criteria,
such as KL, AIC and SIC perform poorly in terms of accepting the true distribution,
and such probabilities are decreased substantially as the number of distributions is
increased. The KS and CHI tests are often accurate in accepting the true distribution,
but generally have low powers in rejecting false distributions. To solve this problem,
GIC is proposed specifically for discriminating among a set of distributions, where the
number of distributions exceeds two. It has been shown that GIC performs exceedingly
well and provides high probabilities of accepting the true distribution. Compared with
other criteria, GIC is consistent and reliable, and it is also simple to use. When the
true distribution is included among the distributions, additional candidates will not

significantly affect the probability of accepting the true distribution.
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TABLE 8.1
Sizes and powers of the BLR test and probabilities of accepting the true model using two tests,
two discrimination criteria and two performance criteria over 1000 replications of random
samples of size n = 365 (8=1)

Significance
True False Level For BLR Test Tests and Criteria
Model Model BLR Test Size Power AIC SIC CHI KS UPE FPE

G3 W3 .10 0.195  0.447
a=2.0 .05 0.111 0.348 0.645 0.645 0.960 1.000 0.424 0.635
v=1.0 .01 0.015 0.123
G3 LN3 .10 0.030  0.903
a=2.0 .05 0.017 0.858 0.951 0.951 0.960 1.000 0.950 0.937
v=1.0 .01 0.003  0.659
G3 W2 .10 0.000  1.000
a=2.0 .05 0.000 1.000 1.000 1.000 0.960 -1.000 0.779 1.000
v=1.0 .01 0.000  1.000
G3  LN2 .10 0.000  1.000
a=2.0 .05 0.000 0.998 0.999 0.976 0.960 1.000 0.551 0.993
v=1.0 .01 0.000 0.982
G2 W3 .10 0.301  0.351
a=2.0 .05 0.209 0.272 0.738 0.960 0.964 0.990 0.442 0.491
v=0.0 .01 0.057 0.096
G2 LN3 .10 0.046 0.860
a=2.0 .05 0.034 0.803 0.956 0.995 0.964 0.990 0.946 0.801
+=0.0 .01 0.006  0.560
G2 W2 .10 0.072  0.746
a=2.0 .05 0.044 0.679 0.864 0.864 0.964 0.990 0.508 0.618
v=0.0 .01 0.012  0.452
G2  LN2 .10 0.000  0.998
a=2.0 .05 0.000 0.995 1.000 1.000 0.964 0.990 1.000 1.000
v=0.0 .01 0.000 0.983
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TABLE 8.1 continued

Significance
True False Level For BLIRR Test : Tests and Criteria
Model Model BLR Test Size Power AIC SIC CHI KS UPE FPE

G3 W3 .90 0.152 0.662

a=6.0 .95 0.109 0.581 0.766 0.766 0.966 1.000 0.521 0.807
v=1.0 .99 0.025 0.380

G3 LN3 .90 0.038 0.270

a=6.0 .95 0.008 0.105 0.760 0.760 0.966 1.000 0.822 0.657
v=1.0 .99 0.000 0.001

G3 w2 .90 0.000 1.000

a=6.0 .95 0.000 1.000 1.000 1.000 0.966 1.000 0.757 1.000
v=1.0 .99 0.000 1.000

G3 LN2 .90 0.016 0.735

a=6.0 .95 0.003 0.555 0.665 0.160 0.966 1.000 0.917 0.939
v=1.0 .99 0.000 0.187

G2 w3 .90 0.217 0.590

a=6.0 .95 0.157 0.508 0.805 0.959 0.966 0.990 0.524 0.669
~+=0.0 .99 0.053 0.334

G2 LN3 .90 0.180 0.139

a=6.0 .95 0.083 0.034 0.860 0.989 0.966 0.990 0.667 0.442
v=0.0 .99 0.016 0.000

G2 w2 .90 0.004 0.988

a=6.0 .95 0.003 0.982 0.991 0.991 0.966 0.990 0.704 0.973
¥=0.0 ) .99 0.000 0.957

G2 LN2 .90 0.041 0.892

a=6.0 .95 0.028 0.861 0.934 0.934 0.966 0.990 0.986 1.000
4=0.0 .99 0.007 0.756

Note:

« is the shape parameter, 3 the scale parameter and v the location parameter. G3 -
and G2 denote the three- and two-parameter gamma distributions, W3 and W2

the three- and two-parameter Weibull distributions, and LN3 and LN2 the three-
and two-parameter lognormal distributions.
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TABLE 8.2
Probabilities of accepting the true model and rejecting the false model using three tests, two
discrimination criteria and two performance criteria over 1000 replications of random samples
of size n =365 (f=1)

Confidence
True False Level For BLRR Test Tests and Criteria
Model Model BLR Test Size  Power AIC SIC CHI KS UPE FPE

w3 G3 .90 0.031 0.856 '

a=2.0 .95 0.017 0.805 0.924 0.924 0.959 1.000 0.936 0.918
¥=1.0 .99 0.005 0.529

W3 LN3 .90 0.018 0.940 ,

a=2.0 .95 0.011 0.910 0.968 0.968 0.959 1.000 0.953 0.949
v=1.0 99 0.004 0.791

w3 G2 .90 0.000 1.000

a=2.0 .95 0.000 0.998 0.999 0.982 0.959 1.000 0.476 0.999
v=1.0 .99 0.000  0.987 :
w3 LN2 .90 0.006 0.969

a=2.0 .95 0.002 0.961 0.968 0.845 0.959 1.000 0.879 0.953
v=1.0 .99 0.000 0.879

w2 G3 .90 0.066  0.790

a=2.0 .95 0.044 0.716 0.941 0.991 0.973 0.999 0.932 0.722
¥=0.0 .99 0.011  0.412

w2 LN3 .90 0.031 0.909

a=2.0 95 0.016 0.870 0.975 0.996 0.973 0.999 0.952 0.886
¥=0.0 .99 0.004 0.724

w2 G2 .90 0.022 0.941

a=2.0 .95 0.016 0.920 0.966 0.966 0.973 0.999 0.987 0.983
v=0.0 .99 0.005 0.853

w2 LN2 .90 0.000  1.000

a=2.0 .95 0.000 1.000 1.000 1.000 0.973 0.999 1.000 1.000
v=0.0 .99 0.000 1.000
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TABLE 8.2 continued

Confidence
True False Level For BLR Test Tests and Criteria
Model Model BLR Test Size Power AIC SIC CHI KS UPE FPE

w3  G3 .90 0.020 0.919

a=4.0 .95 0.012 0.895 0.957 0.957 0.967 1.000 0.980 0.957
v=1.0 .99 0.002 0.861

W3  LN3 .90 0.041 0.744

a=4.0 .95 0.019 0.611 0.890 0.890 0.967 1.000 0.921 0.845
4=1.0 .99 0.002  0.209

w3 G2 .90 0.008 0.951

a=4.0 . .95 0.004 0.934 0.945 0.789 0.967 1.000 0.987 0.994
¥=1.0 .99 0.000 0.817

W3  LN2 .90 0.001  0.995

a=4.0 .95 0.000 0.989 0.993 0.948 0.967 1.000 0.999 1.000
¥=1.0 .99 0.000 0.959

w2  G3 .90 0.055 0.870 :
a=4.0 .95 0.041 0.860 0.948 0.993 0.973 0.999 0.974 0.925
4=0.0 .99 0.008 0.853

w2  LN3 .90 0.090 0.634

«=4.0 .95 0.056 0.488 0.929 0.993 0.973 0.999 0.908 0.558
4=0.0 .99 0.009 0.129

w2 G2 .90 0.000 0.996 »

a=4.0 .95 0.000 0.995 0.998 0.998 0.973 0.999 1.000 0.997
4=0.0 .99 0.000 0.991

W2  LN2 .90 0.000  1.000

a=4.0 .95 0.000 1.000 1.000 1.000 0.973 0.999 1.000 1.000
4=0.0 .99 0.000  1.000

Note:

a is the shape parameter, 3 the scale parameter and v the location parameter. G3
and G2 denote the three- and two-parameter gamma distributions, W3 and W2

the three- and two-parameter Weibull distributions, and LN3 and LN2 the three-
and two-parameter lognormal distributions.
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TABLE 8.3
Probabilities of accepting the true model and rejecting the false model using three tests, two
discrimination criteria and two performance criteria over 1000 replications of random samples

of size n =365 (B =1)

Confidence
True False Level For BLRR Test Tests and Criteria
Model Model BLR Test Size Power AIC SIC CHI KS UPE FPE

LN3 G3 .90 0.022 0.951
a=0.9 .95 0.016 0.946 0.966 0.966 0.954 1.000 0.684 0.930
v=1.0 .99 0.006 0.919
LN3 W3 .90 0.014 0.973
@=0.9 .95 0.009 0.965 0.981 0.981 0.954 1.000 0.650 0.939
v=1.0 .99 0.004 0.941
LN3 G2 .90 0.000  1.000
a=0.9 .95 0.000 1.000 1.000 1.000 0.954 1.000 0.830 1.000
v=1.0 .99 0.000  1.000
LN3 W2 .90 0.000 1.000
a=0.9 .95 0.000 1.000 1.000 1.000 0.954 1.000 0.787 1.000
v=1.0 .99 0.000  1.000
LN2 G3 .90 0.028  0.944
a=0.9 .95 0.022 0.935 0.975 0.991 0.964 0.990 0.692 0.942
v=0.0 .99 0.010  0.909
LN2 W3 .90 0.020  0.969
a=0.9 .95 0.016 0.958 0.980 0.996 0.964 0.990 0.659 0.978
4=0.0 .99 0.004 0.935
LN2 G2 .90 0.003  0.996
a=0.9 .95 0.003 0.996 0.997 0.997 0.964 0.990 0.747 0.991
v=0.0 .99 0.000 0.995
LN2 W2 .90 0.000 1.000
a=0.9 .95 0.000 1.000 1.000 1.000 0.964 0.990 0.715 0.998
v=0.0 .99 0.000  0.999
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TABLE 8.3 continued

Confidence
True False Level For BLR Test Tests and Criteria
Model Model BLR Test Size Power AIC SIC CHI KS UPE FPE

LN3 G3 .90 0.174 0.598

a=0.5 .95 0.102 0.515 0.718 0.718 0.954 1.000 0.515 0.678
¥=1.0 .99 0.019 0.316

LINN3 W3 .90 0.050 0.896

a=0.5 .95 0.032 0.875 0.931 0.931 0.954 1.000 0.649 0.910
~v=1.0 .99 0.014 0.809

LN3 G2 .90 0.000 1.000

a=0.5 .95 0.000 1.000 1.000 0.998 0.954 1.000 0.769 1.000
y=1.0 .99 0.000 0.998

LN3 w2 .90 0.000 1.000

a=0.5 .95 0.000 1.000 1.000 1.000 0.954 1.000 0843 1.000
¥=1.0 .99 0.000 1.000

LIN2 G3 .90 0.226 0.522 :

a=0.5 .95 0.169 0.437 0.793 0.968 0.964 0.990 0.534 0.608
~=0.0 .99 0.045 0.260

LIN2 w3 .90 0.067 0.876

a=0.5 .95 0.048 0.844 0.937 0.980 0.964 0.990 0.646 0.913
~+=0.0 .99 0.023 0.783

LN2 G2 .90 0.016 0.951

a=0.5 .95 0.008 0.939 0.973 0.973 0.964 0.990 0.750 0.932
~+=0.0 .99 0.007 0.873

LIN2 w2 .90 0.000 1.000

a=0.5 .95 0.000 1.000 1.000 1.000 0.964 0.990 0.756 1.000
v=0.0 .99 0.000 0.999

Note:

« is the shape parameter, 8 the scale parameter and v the location parameter. G3
and G2 denote the three- and two-parameter gamma distributions, W3 and W2
the three- and two-parameter Weibull distributions, and LN3 and LN2 the three-
and two-parameter lognormal distributions.

207




TABLE 8.4
Probabilities of accepting the estimated model for two tests, three discrimination criteria and
two performance criteria for three non-nested distributions over 1000 replications of random
samples of size n = 365 (8 =1)

True Estimated Tests and Criteria

Model Model KL AIC SIC CHI KS UPE FPE
G3 G3 0.596 0.596 0.596 0.960 1.000 0.374 0.572
a=2.0 W3 0.355 0.355 0.355 0.916 0.999 0.576 0.365
v=1.0 LN3 0.049 0.049 0.049 0.934 0.999 0.050 0.063
G3 G2 0.001 0.001 0.001 0.545 0.781 0.317 0.001
a=2.0 w2 0.000 0.000 0.000 0.003 0.074 0.022 0.000
v=1.0 LN2 0.999 0.999 0.999 0.923 0.985 0.661 0.999
G2 G3 0.597 0.597 0.597 0.958 1.000 0.368 0.344
a=2.0 W3 0.354 0.354 0.354 0.917 0.999 0.587 0.483
v=0.0 LN3 0.049 0.049 0.049 0.934 0.999 0.045 0.173
G2 G2 0.864 0.864 0.864 0.964 0.990 0.508 0.618
a=2.0 w2 0.136 0.136 0.136 0.915 0.996 0.492 0.382
v=0.0 LIN2 0.000 0.000 0.000 0.396 0.654 0.000 0.000
G3 G3 0.526 0.526 0.526 0.966 1.000 0.348 0.464
a=6.0 W3 0.234 0.234 0.234 0.865 0.999 0.479 0.193
v=1.0 LN3 0.240 0.240 0.240 0.969 1.000 0.173 0.343
G3 G2 0.567 0.567 0.567 0.962 0.989 0.696 0.757
a=6.0 w2 0.000 0.000 0.000 0.180 0.736 0.147 0.000
v=1.0 LIN2 0.433 0.433 0.433 0.948 0.989 0.157 0.243
G2 G3 0.526 0.526 0.526 0.966 1.000 0.341 0.323
a=6.0 W3 0.234 0.234 0.234 0.865 0.999 0.485 0.185
~v=0.0 LN3 0.240 -0.240 0.240 0.969 1.000 0.174 0.492
G2 G2 0.925 0.925 0.925 0.966 0.990 0.683 0.949
a=6.0 w2 0.009 0.009 0.009 0.516 0.910 0.296 0.027
v¥=0.0 LIN2 0.066 0.066 0.066 0.834 0.967 0.021 0.024
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TABLE 8.4 continued

True Estimated Tests and Criteria
Model Model KL AIC SIC CHI KS UPE FPE
W3 G3 0.073 0.073 0.073 0.923 0.999 0.050 0.071
a=2.0 W3 0.924 0.924 0.924 0.959 1.000 0.936 0.918
v=1.0 LN3 0.003 0.003 0.003 0.929 1.000 0.014 0.011
W3 G2 0.081 0.081 0.081 0.945 0.986 0.615 0.151
a=2.0 w2 0.000 0.000 0.000 0.038 0.490 0.194 0.000
v=1.0 LN2 0.919 0.919 0.919 0.949 0.990 0.191 0.849
w2 G3 0.074 0.074 0.074 0.923 0.999 0.044 0.282
a=2.0 W3 0.923 0.923 0.923 0.958 1.000 0.944 0.660
¥=0.0 LN3 0.003 0.003 0.003 0.929 1.000 0.012 0.058
w2 G2 0.034 0.034 0.034 0.807 0.928 0.013 0.017
a=2.0 w2 0.966 0.966 0.966 0.973 0.999 0.987 0.983
¥=0.0 LN2 0.000 0.000 0.000 0.027 0.142 0.000 0.000
w3 G3 0.029 0.029 0.029 0.087 0.129 0.004 0.008
a=4.0 W3 0.890 0.890 0.890 0.967 1.000 0.921 0.845
v=1.0 LN3 0.081 0.081 0.081 0.936 0.993 0.075 0.147
W3 G2 0.656 0.656 0.656 0.851 0.968 0.064 0.821
a=4.0 w2 0.344 0.344 0.344 0.813 0.973 0.936 0.179
v=1.0 LN2 0.000 0.000 0.000 0.713 0.906 0.000 0.000
w2 G3 0.029 0.029 0.029 0.086 0.119 0.004 0.022
a=4.0 w3 0.890 0.890 0.890 0.967 1.000 0.924 0.720
v=0.0 LN3 0.081 0.081 0.081 0.935 0.993 0.072 0.258
w2 G2 0.002 0.002 0.002 0.384 0.629 0.000 0.003
a=4.0 w2 0.998 0.998 0.998 0.973 0.999 1.000 0.997
+=0.0 LN2 0.000 0.000 0.000 0.027 0.142 0.000 0.000
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TABLE 8.4 continued

True Estimated Tests and Criteria
Model Model KL AIC SI1C CHI KS UPE FPE
LNN3 G3 0.031 0.031 0.031 0.311 0.604 0.055‘ 0.056
a=0.9 W3 0.003 0.003 0.003 0.133 0.705 0.296 0.017
=1.0 LN3 0.966 0.966 0.966 0.954 1.000 0.649 0.927
LN3 G2 0.000 0.000 0.000 0.000 0.001 0.000 0.000
a=0.9 w2 0.000 0.000 0.000 0.000 0.000 0.045 0.000
v=1.0 LN2 1.000 1.000 1.000 0.391 0.713 0.955 1.000
LN2 G3 0.030 0.030 0.030 0.311 0.606 0.059 0.035
a=0.9 w3 0.003 0.003 0.003 0.124 0.696 0.294 0.000
v=0.0 LN3 0.967 0.967 0.967 0.954 1.000 0.647 0.965
LN2 G2 0.003 0.003 0.003 0.177 0.256 0.038 0.009
a=0.9 W2 0.000 0.000 0.000 0.022 0.295 0.247 0.000
v=0.0 LN2 0.997 0.997 0.997 0.964 0.990 0.715 0.991
LN3 G3 0.269 0.269 0.269 0.918 0.996 0.387' 0.310
a=0.5 w3 0.013 0.013 0.013 0.471 0.924 0.098 0.012
v=1.0 LN3 0.718 0.718 0.718 0.954 1.000 0.515 0.678
LN3 G2 0.000 0.000 0.000 0.347 0.606 0.038 0.000
a=0.5 w2 0.000 0.000 0.000 0.000 0.003 0.007 0.000
¥=1.0 LN2 1.000 1.000 1.000 0.874 0.965 0.955 1.000
LN2 G3 0.269 0.269 0.269 0.917 0.996 0.388 0.275
a=0.5 w3 0.013 0.013 0.013 0.476 0.924 0.100 0.007
v=0.0 LIN3 0.718 0.718 0.718 0.954 1.000 0.512 0.718
LN2 G2 0.027 0.027 0.027 0.790 0.915 0.323 0.095
a=0.5 W2 0.000 0.000 0.000 0.022 0.295 0.013 0.000
v=0.0 LIN2 0.973 0.973 0.973 0.964 0.990 0.664 0.905
Note: ¢« is the shape parameter, § the scale parameter and v the location parameter. G3

and G2 denote the three- and two-parameter gamma distributions, W3 and W2
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