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A B S T R A C T

Air quality management requires the development of relationships between the fre

quency distribution of ambient pollutant concentrations at sites of concern and emis

sions, meteorological and other forcing variables. In this thesis, mathematical models 

are devised to achieve a range of goals within this basic objective. In Australia, much 

recent effort has been devoted to both statistical and hybrid deterministic-statistical 

distribution modelling approaches which have extensive potential but previously have 

been given only limited attention in the literature.

These are the approaches investigated in this thesis, although it should be em pha

sised that the so-called statistical models should more appropriately be labelled fre

quency or probability distribution models as they are parametric forms of probability 

density functions. There are six parameterisations used in the thesis and these are the 

two- and three-param eter versions of the gamma, Weibull and lognormal distributions.

Basically, each of the two approaches treated has its own assumptions and the 

choice of approach depends on the goal, the validity of the assumptions and the data 

available. Each approach must also invoke a methodological infrastructure. Generally, 

this involves the use of adequate techniques for identification of an appropriate para

m etric form to represent a given pollutant data set and for estimation of the associated 

param etric values and the ensuing errors.

This thesis contributes to the development of the requisite techniques and illus

tra tes their application. It includes the construction of a new generalised information 

criterion (GIC) for discriminating among candidate parametric forms tha t may be 

nested or non-nested. The thesis develops a new algorithmic approach to maximum 

likelihood estimation (ML) which complements the general or traditional ML approach 

and can provide more computationally efficient param eter estimates. The algorithms 

allow maximisation of the likelihood function in an extended parameter space th a t is 

im portant in air quality applications where the traditional approach does not apply. 

The thesis also demonstrates that simple computational methods of estimation such
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as methods of moments can suffice if the objective is merely to summarise the data 

and/or to allow high variance estimates. It shows how to construct error models that 

allow the calculation of the minimum errors in percentiles to be expected when fitting 

samples from different probability distributions. The thesis also evaluates errors of mis- 

specification which arise when the wrong parametric form of distribution is selected. 

All of these tools are then combined to illustrate the practical use of a comprehensive 

procedure to identify a suitable parametric form which represents a given pollutant 

over the years at single and multiple sites. It should also be mentioned that much of 

the new technology developed for the statistical aspects of the thesis can also be used 

for application of extreme value theory in statistics since the same identification and 

estimation tools are required.

The last two chapters of the thesis involve the use of deterministic models. Chapter 

11 shows how to combine a statistical distribution model of short-term carbon monox

ide concentrations in an urban area with a deterministic model that predicts average 

pollutant concentrations from vehicle patterns and basic meteorology. The application 

shows how the deterministic and statistical components can be successfully combined 

when the attributes of predictive interest, that is the annual maxima of 1-hour carbon 

monoxide concentrations, represent samples from a long-term non-stationary process. 

Chapter 12 investigates the inadequacy of the standard box model of urban diffusion 

and illustrates the need for an additional connective parameter as exponent on the wind 

speed variable. The resulting generalised box model would then be suitable for hybrid 

modelling since it could be capable of reasonable predictions of long-term mean con

centrations. It would be complementary to the hybrid model developed in the previous 

chapter since it would require time series of wind measurements rather than seasonal 

or annual means of a wider range of meteorological variables.
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C h ap ter  1

A  S y stem s A pproach  to  A ir  
Q uality  M an agem en t

1.1 In tro d u ctio n

The atmosphere is an im portant shared resource whose quality needs protection. The 

deterioration of atmospheric environmental quality, related to changes in the chemical, 

physical and biological nature of air brought about by industrial, agricultural and 

social activities, has become a threat to many plant and animal communities, and to 

the hum an race. A systems approach to atmospheric environment quality control is 

urgently required to provide an effective means of preserving for future generations 

some semblance of the biological order of the world and to improve the deteriorating 

standard of urban public health (M etcalf and P itts, 1972).

Appendix 1 addresses some basic issues raised in air quality management. A brief 

historical review in section A 1.1 provides an overall picture of past air pollution and 

reveals the m ajor problems. Air pollution problems are discussed separately, in terms 

of the different scales of air pollution dispersion, local or regional, and continental 

or global, although the la tte r is not a m ajor topic in this thesis. From the review 

of air pollution history it is clear th a t direct energy use, industry and agriculture are 

three dominant contributors to air pollutant concentrations caused by human activities. 

They are strongly responsible for pollution of the atmospheric environment. Among 

global pollution problems, the greenhouse effect and depletion of the ozone layer, which
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have become of more concern in recent years, are discussed.

Appendix 1 also introduces the im portant concepts which underlie any study of air 

quality. These concepts include definitions for the term s atmosphere, clean air and 

global background concentrations. In order to better understand air quality impact as

sessment, most air pollutants and their characteristics are summarised in the appendix, 

and some of them  will be chosen for modelling in this thesis.

In recent decades, there have been great improvements in control technology, in 

understanding of atmospheric processes and interactions among air-borne pollutants. 

There have also been accompanying developments in adm inistrative and legislative in

strum ents for regulation and abatem ent of those pollutants. To develop management of 

our atmospheric resources further, more scientific information is needed. For example, 

de Nevers et al. (1977) have argued tha t a complete and closed information cycle might 

be required. The information would include emission data, air quality monitoring and 

air quality modelling results. If such associated analytical tools are widely available, 

their use may strongly influence decisions on any proposed or existing projects. Un

fortunately, there is considerable uncertainty at present about all three factors in this 

information cycle leading to model results of limited accuracy and validity. Therefore, 

each of the factors must be improved in order to develop a predictive scheme which 

can be used with confidence.

As a crucial aspect in the information cycle, air quality modelling has attracted  

a great deal of attention. Air pollution models may be constructed for diverse pur

poses. They can be used to describe the physical and chemical nature of air pollution 

processes, and to assist our scientific understanding of complex atmospheric behaviour. 

Alternatively, modelling techniques may be developed to provide information as aids in 

air quality management, and to be used in decision making for city, regional and other 

project planning. Generally, the former approach has tended to involve considerable 

m athem atically complexity. For the latter, models should be relatively simple to use, 

and be constructed within the context of the avaliable data and the required form of
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model output.

Atmospheric systems are, in the terminology of Young (1978), ‘badly defined’ in that 

the relationships tha t describe their behaviour are complex and not easily amenable 

to exploration through planned experimentation. Theoretically in such systems both 

causal and non-causal relations exist. For example, many deterministic models a ttem pt 

to present an ideal pattern  of the causal linkage among dependent and independent 

variables, such as in the basic equations of molecular diffusion. However, inherent in 

these systems are statistical features (e.g. Pasquill and Smith, 1983). Atmospheric 

behaviour is essentially the consequence of an hybrid determ inistic-statistical system. 

Therefore theory and techniques for both deterministic and statistical modelling ap

proaches are required. It would be useful to develop a specific system methodology 

which can be applied to such a hybrid system.

The aim of this thesis is to develop tools for the construction of simple but effective 

models to predict ambient pollutants which reduce the difficulties arising from limited 

meteorological information, sparse pollutant monitoring data  and the stochastic nature 

of turbulent diffusion processes. The models developed in this thesis have certain 

desirable properties; they contain as few param eters as are necessary for satisfactory 

performance and the output of the models allows direct comparison with air quality 

standards. The models provide an indication of the uncertainty associated with model 

prediction. In addition, the modelling tools developed here can be widely used in many 

other areas such as hydrology, water pollution management, reliability and life-testing 

(Yevjevich, 1972 and Bain, 1978).

Systematic methods for identification of the best param eterization of probability 

distribution models, estim ation of their associated param eters and ensuing errors have 

received little  attention. This places lim itations on the utility of probability distribution 

models and hybrid models. In addition, hybrid models have not been constructed 

with the aim of minimising problems imposed by autocorrelation and non-stationarity 

in pollutant concentration data. This thesis aims to provide some useful concepts,
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m ethods and applications to address these requirements.

1.2 A ir Q uality  M an agem en t

“Air quality management is the regulation of the amount, location, and time of pol

lu tan t emissions to achieve some clearly defined set of ambient air quality criteria. It 

includes the evaluation of various sets of emission control schedules to determine con

sequences to air quality and the formulation of alternative emission control schedules 

to meet air quality goals subject to some other constraint, e.g. technology feasibility 

or minimum cost” (de Nevers et ah, 1977).

The definition implies tha t the following data and knowledge be available: a state

m ent of air quality criteria, goals or standards; estim ates of pollutant emissions; ob

servations of ambient air pollutant concentrations; models for atmospheric dispersion; 

and models for characterization of the frequency distribution of air pollutant concen

trations.

1.3 A ir Q uality  S tandards

Ambient air quality standards are used in many countries to protect public health and 

welfare. In some countries, such as the United States, they are cast in legislation, while 

in others, such as Australia and the United Kingdom, they are used more as guidelines.

In general, air quality goals or standards tend to be w ritten in two ways:

a. Air quality standards can be prescribed as long-term mean levels tha t 

ideally are not to be exceeded; or

b. Air quality standards can be prescribed as short-term  levels not to be 

exceeded or only to be exceeded a small percentage of tim e in a given tim e 

period.

These air quality standards involve three factors: the period of prescription (usually 

annual), the perm itted time at a specified level and the quantity of air pollutant con-
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centration. In many air quality standards the la tter two factors are covered i.e. large 

dose in a short interval, or repeated small doses over a long period. These two types 

of air quality standards have arisen from evaluation of the exposure-response relation

ship, since air pollutants may have both long-term and short-term  effects. Accord

ingly? aif quality standards are usually classified into prim ary standards and secondary 

standards. Prim ary standards are concerned with the accepted maximum level of a 

pollutant whereas secondary standards are concerned with the mean of concentrations. 

Both are intended to protect public welfare.

On the other hand, it should be noted tha t most current air quality standards are 

effectively stated in term s of the frequency with which a specified concentration may 

be exceeded for a given averaging, or sample time. For example, the United States En

vironm ental Protection Agency (EPA) has a prim ary short-term  standard for sulphur 

dioxide which is 14 parts per hundred million (pphm) for a 24-hour average (sampling 

interval) and this figure must not be exceeded more than once per year. Therefore, an 

im portant goal in the evaluation of compliance with air quality standards is the esti

m ation of the upper percentiles of the frequency distribution of pollutant distribution. 

Im portant quantities are the maximum and second maximum, and sometimes the 98 

percentile of the annual frequency distribution.

Note also tha t, in addition to interest in the upper percentiles of the air pollutant 

concentrations, there is a need to accurately estim ate the entire range of pollutant 

concentrations. Such information may be applicable for the integration of damages 

sustained (Jakem an and Simpson, 1987). For example, m aterials may deteriorate grad

ually as a result of low concentrations occurring with high frequency. Lower concen

trations may also become more problematical where a synergistic combination of pol

lutants occurs. Hence, if the frequency distribution of pollutant concentration within 

an area of interest were predicted, then emission control strategies could be assessed 

to enable air quality standards to be met and damages to be minimised, subject to 

cost-benefit analysis.
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Air quality standards can differ by region, state  or country, as shown in Table 1.1. 

For example, developing countries, such as China, generally have a lower level of air 

quality. The pollutants listed in Table 1.1 are those of most concern in this thesis and 

will be compared with the output of air quality modelling exercises in Chapter 11.

1.4 Thesis Outline

The thesis can be considered in four parts. Part I contains this introductory chapter 

and a review chapter. P art II contains chapters on param etric estim ation methods 

for probability distributions, associated percentile errors and empirical models of those 

errors. In Part III, the focus is on methods of discrimination among distributions and 

errors in misspecifying a distribution. Part IV applies many of the tools developed and 

results obtained to problems in air quality management. It also contains the concluding 

chapter.

The remaining part of Part I is Chapter 2 which reviews developments in determ in

istic, statistical and hybrid determ inistic-statistical distribution modelling. A variety 

of models, their functions, advantages and lim itations are also assessed.

Chapters 3 to 9 constitute Parts II and III. They present the modelling techniques 

which have been developed in the thesis for the analysis and prediction of air qual

ity. Chapter 3 is concerned with param eter estim ation for the following frequency or 

probability distributions: the two- and three-param eter gamma, Weibull and lognor

mal distributions. The general or traditional maxim um  likelihood estim ation method 

is re-examined. To overcome the problem of non-existence of a solution for certain 

parent param eter values when the traditional formulation is applied, a new approach 

to m aximum likelihood estim ation is proposed. This m ethod is accurate and compu

tationally efficient, and is particularly useful for fitting air pollution data where the 

parent param eter values are such tha t the traditional formulation fails.

In Chapter 4, a comparison of different methods for percentile estimation, especially 

the upper percentiles, is discussed for all six distributions. W hen fitting the observed or
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sample upper percentiles it is seen tha t the method of moments can be more accurate 

than  the m ethod of maximum likelihood. Using Monte Carlo experiments, the bias 

(BIAS) and relative root-mean-square error (RRMSE) are calculated for each method 

in order to calculate the theoretical and empirical departure from the underlying distri

bution. In Chapter 5 response-surface techniques are adopted to develop some simple 

empirical models for predicting RRMSE. Based on extensive experiments, empirical 

models for the three-param eter gamma, Weibull and lognormal distributions are con

structed. They can be easily used in air quality applications to compute the variability 

of percentile estim ates against type of distribution, param eter values and sample size. 

This chapter also represents an a ttem pt to develop the response-surface techniques for 

data  from computer simulations.

Chapter 6 is the first chapter in Part III. It considers the problem of discrimination 

among nested distributions. Many well-known hypothesis tests and information cri

teria are considered for discriminating between the two- and three-param eter gamma, 

Weibull and lognormal distributions. To re-examine their performance both simula

tion experiments and observational data are used. The results from the simulations 

show th a t the performance of the tests and information criteria depend on the type 

of distribution and the range of param eters. The intended use of the distribution is a 

very im portant consideration for selecting an appropriate criterion. Chapter 7 assesses 

the effects of misspecification in estim ating the percentiles of the two- and three- pa

ram eter nested distributions, where the emphasis is placed on the upper percentiles. 

Conventional wisdom regarding underfitting or overfitting may not be a good guide to 

selecting a distribution. The consequence of such misspecification could cause substan

tially larger errors.

Chapter 8 considers discrimination among non-nested distributions. Some existing 

problems with the way discrimination is approached in the literature are addressed 

and the standardized procedure, which tests the null hypothesis against an alternative 

with some well-known discrimination criteria, is re-examined. The emphasis is to 

discriminate among a set of distributions. For example, discrimination is required
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among six distributions used in this thesis. In order to complement the weakness of 

the relevance of existing criteria for air quality management applications, a generalized 

information criterion (GIC) is constructed. As in chapter 7, Monte Carlo experiments 

are employed to examine their performance over a range of param eters and to assess the 

effects of misspecification in estim ating upper percentiles of non-nested distributions.

Chapters 10 to Chapter 12 constitute the main body of Part IV where the focus is 

on applying the modelling techniques. In Chapter 10 the estim ation and discrimina

tion techniques are used on air pollution data collected in Melbourne, Australia. The 

purpose of the investigation is to discriminate among the appropriate distributions and 

estim ate the param eters of the distributions. For different averaging times, pollutants 

may change distributional form.

Chapter 11 describes a hybrid method to determine the seasonal extremes of 1-hour 

average CO concentrations from vehicle patterns and emissions, basic meteorological 

measurements and historical records of ambient concentrations. The method links 

the output of a deterministic Gaussian plume line source model with knowledge of a 

suitable param etric form of the probability density function (pdf) of peak 1-hour CO 

concentrations. The deterministic model requires only average emission and meteo

rological data  as input, although the approach outlined can be extended to include 

more complex determ inistic models with more detailed dynamic input information. 

Knowledge of the pdf of ambient concentrations is gained from past data by applying 

goodness-of-fit tests based upon maximum likelihood estim ation and its accuracy is 

assessed by examining prediction performance for the extremes of interest. Problems 

of autocorrelation and non-stationarity in the distribution of pollutant concentrations 

are minimised by restricting attention to the winter season and to the evening peak 

concentration. The m ethod is used to predict 1-hour maxima of CO concentrations for 

winter seasons in Canberra, Australia, although it applies to other extremes at other 

tim e averages, such as 8-hour averages, and to other pollutants dispersed predominantly 

from mobile sources.

9



C hapter 12 investigates the seasonal variability in the wind speed exponent of 

the generalised box model for 24-hour average total suspended particulates (TSP), 

^-scattering and CO data collected in Canberra, Australia. The results confirm that it 

may be erroneous to assume tha t the exponent of the horizontal wind speed in the box 

model is equal to -1, at least in urban airsheds. The sensitivity of predicted concentra

tion by a box model is high with respect to the exponent value. Therefore, calibration 

for just a single season is likely to lead to much better predictions in future years than 

simply assuming an exponent value of -1, as is the present practice. This chapter also 

dem onstrates tha t more sophisticated, but algorithmically straightforward, techniques 

for param eter estim ation can be used. These are based on flexible but simple param- 

eterizations of the param eter changes over time. This chapter also indicates, under 

Gauss-Markov process assumptions, tha t Kalman filtering and smoothing algorithms 

are very useful in handling the data sets related to the box model formulation. Such 

techniques can be easily adopted when constructing a hybrid model to predict air 

pollutant concentrations.

10
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C h ap ter 2

R ev iew  o f A ir Q uality  M od ellin g

2.1 In trod u ction

M athem atical modelling for air pollution management has progressed considerably in 

recent years. Models are widely available for the prediction of both short and long

term  mean ambient pollutant concentrations. Many models are applied to assess the 

im pact on the atmospheric environment arising from both new and existing industries, 

to calculate urban pollution levels and global background concentrations.

This chapter provides a review of the m ajor modelling approaches available for air 

quality management of ambient concentrations. Three key approaches to the modelling 

of air pollutant concentrations in the atmosphere are examined, namely deterministic, 

statistical and hybrid. Emphasis is placed on pollutants with inert, or relatively inert, 

properties. A ttention is given to assessing the performance of each modelling approach 

and comparing their advantages and limitations.

The term  ‘determ inistic’ refers to models formulated on a physical basis and is con

cerned with mechanical outcomes. They can be constructed according to hypothesized 

causality among driving factors and defined by one or several m athem atical functions. 

Such models a ttem pt to provide a description and explanation of the dispersion process 

in the atmosphere.

The term  ‘statistical’ refers to a subset of stochastic models tha t are constructed 

on a non-causal or phenomenological basis. These models are calibrated by statistical
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m ethods and the output is the probability of pollutant concentrations. The statis

tical models addressed in the thesis are param etric forms of probability distribution 

functions, including the two- and three-param eter gamma, Weibull and lognormal dis

tributions.

The term  ‘hybrid’ refers to models comprising both determ inistic and statistical 

components. Such models a ttem pt to combine the best features of each approach 

and can be used to predict the frequency distribution of pollutant concentrations for 

direct comparison with air quality criteria. Hybrid models can provide a measure 

of uncertainty associated with model predictions. Since they predict the frequency 

distribution of air pollutant concentrations, such models allow the development of 

strategies for emission control with respect to ambient mean levels and extreme events.

2.2 D eterm in istic  M od els  for A ir P o llu tio n  
C on cen tration s

Deterministic modelling is the traditional approach applied to the prediction of air 

pollutant concentrations. Initial contributions to modelling atmospheric dispersion 

were those by Taylor (1915), Scrase (1930), Sutton (1932) and G iblett et al. (see 

Pasquill and Smith (1983)). Since then, the number of determ inistic models developed 

has grown rapidly, and the literature contains a plethora of determ inistic approaches 

for a wide range of physical circumstances.

There have been many reviews of deterministic models, including Lamb and Seinfeld 

(1975), Eschenroeder (1975), Johnson et al. (1976), Hanna (1978), Drake et al. (1979), 

Turner (1979), Simpson and Hanna (1981), Hanna (1982), and Geraghty and Ricci 

(1984). The task of the review here is to examine critically the existing literature, 

elicit some pertinent conclusions and clarify useful future directions. The overview 

of determ inistic models also provides a basis for selecting an appropriate model for a 

given application, and presents evidence to dem onstrate the need for other modelling 

approaches. Only m ajor references are given as the reader can refer to the publications
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cited in the reviews noted above.

2.3  D eterm in istic  M od els for A ir P o llu tio n  
C on cen tration s

Determ inistic modelling is a traditional approach applied to the prediction of air pol

lu tan t concentrations. Initial contributions to modelling atmospheric dispersion were 

those by Taylor (1915), Scrase (1930), Sutton (1932) and G iblett et al. (see Pasquill 

and Smith (1983)). Since then, the number of determ inistic models developed has 

grown rapidly, and the literature contains a plethora of determ inistic approaches for a 

wide range of physical circumstances.

There have been many reviews of deterministic models. These include Lamb and 

Seinfeld (1975), Eschenroeder (1975), Johnson et al. (1976), Hanna (1978), Drake et 

al. (1979), Turner (1979), Simpson and Hanna (1981), Hanna (1982) and Geraghty and 

Ricci (1984). The task of the review here is to critically examine the existing literature, 

elicit some pertinent conclusions and clarify useful future directions. The overview of 

determ inistic models also provides a basis for selecting an appropriate model for a 

given application, and presents evidence to dem onstrate the need for other modelling 

approaches. Only m ajor references are given as the reader can refer to the publications 

cited in the reviews noted above.

2.3.1 G aussian P lum e M odels

In the literature, the Gaussian plume model is the most well-known and widely ap

plied air quality model for describing the dispersion of most prim ary pollutants. The 

Gaussian plume model was first applied to point sources assuming homogeneous and 

stationary turbulent atmospheric conditions. The name of the model derives from the 

description of the shape of the dispersion from a source which, on average, was appar

ently found to be a close approximation to the Gaussian form in both the horizontal 

and vertical directions (Pasquill, 1974). The Gaussian plume model has been extended
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to describe the dispersion of pollutants from line, area and urban sources (see Chock 

(1978) and Burt and Slater (1977)).

Gaussian plume models were originally derived from the theory of molecular diffu

sion and heat conduction but they can also be regarded as a special case of the general 

mass conservation equation. Huang (1979) has derived a generalised non-Gaussian dif

fusion model for a turbulent shear flow relating K-theory to statistical theory. Thus, the 

conventional Gaussian dispersion model can be regarded as a special case of Huang’s 

model.

Gaussian plume models often assume the following:

1. meteorological conditions are steady, with wind speed and direction kept con

stan t, and no inversion layer;

2. the initial concentration is assumed to be zero, emissions are constant, and the 

pollutant is inert;

3. there is no downwind diffusion, the diffusion coefficients in the cross-wind and 

vertical directions vary only with downwind distance and are constant in the diffusion 

domain, and there is no absorption or generation of pollutants by the ground.

The typical Gaussian plume model recommended by the United States Environ

m ental Protection Agency (EPA) is expressed as (Turner, 1964)

x(x , y , z )  = Q
exp { - ^ ) { exp[-

y ^ z a  £(Jy

(.H - Z )2), . (H + Z)2)„
v ’ ’} + e x p [ - K J  ’ ’ ]} (2.1)

2 o\ 1 rl 2a?

where \  is concentration at the point (x,y,z), Q the steady source strength (mass emis

sion rate), ü the mean wind speed, ay and crz the standard deviations in concentration 

in the crosswind (y) and vertical (z) directions, respectively, and H  the effective height 

of emission. W ind is assumed to be in the x-direction. A feature of this model is 

its simplicity and requirement of little  data input in comparison with other models. 

Based on this formulation, many well-known Gaussian plume models are used and 

recommended by the EPA for impact assessments.
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Equation (2.1) can be used directly to calculate ambient pollutant concentrations. 

The key procedure is the estim ation of H  and the cr values because even modest errors 

in both estim ates may yield a 50% total error (Weber, 1976). Calculation of effective 

height H  is given by

where h is the physical height of the source and A H  is the plume rise.

The <7 values depend on the turbulence characteristics of the flow. The most com

mon m ethod of estim ating <j  is to use the Pasquill-Cifford curves (Turner, 1970), which 

classify the turbulent state  of the atmosphere into six categories A to F. Alternatives 

include the stability curves from Singer and Smith (1966), and McElroy and Pooler 

(1968), and the interpolation formulae of Briggs (1974).

A sophisticated model, based upon K-theory, has appeared widely in the literature 

(Hanna et ah, 1982). K-theory assumes th a t there is similarity between atmospheric 

turbulence and molecular diffusion. The m ajor physical assumption is th a t the tu r

bulent flux of m aterial is proportional to the mean concentration gradient. In the 

x-direction, the proportional relation can be given as

where a prime indicates fluctuation about the mean.

On the basis of the above gradient assumption, the K-theory model can be expressed 

as

where x  1S the species pollutant concentration, U the velocity, Q a source term , and 

K x, K y and K z are the appropriate diffusivities in the x ,y  and z directions (see e.g.

H = h + A H (2.2)

2.3.2 K -Theory M odels

(2.3)
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Carras, 1989).

Generally, a K-theory model requires a numerical solution to provide predictions of 

the ambient concentration of a particular species as a function of position and time. 

However, to obtain a satisfactory result, K-theory assumes tha t the largest eddies 

responsible for plume dispersion are much smaller than the dimensions of the plume. 

For convective conditions, the mixing height typically varies from 500m to 2000m. The 

size of these largest eddies is approximately 1.5 times the mixing height. Models based 

on K-theory will sometimes fail to work well (Carras, 1989).

2 .3 .3  B o x  M o d e ls

Based on different assumptions, a variety of box models has been developed for predic

tion of air pollutant concentrations. They can be divided into single box and multi-box 

models, and can also be considered to apply to area emission sources, line sources, and 

even point sources. In addition, according to the basic assumptions of the box model 

approach, box models can be divided into two types. One type of box model assumes 

th a t the pollutants are unlikely to disperse as far as the inversion layer. This assump

tion is likely to prevail if the area considered is small and the wind speed is not too 

low. The other type of box model assumes tha t vertical dispersion is affected by the 

inversion layer, which usually occurs for stagnant wind conditions and large areas.

The box model can be derived from simple physical considerations as shown, for 

example, by Simpson and Hanna (1981). However, some box models often incorporate 

ideas inherent in the Gaussian plume approach. Thus, models such as the Atmo

spheric Turbulence and Diffusion Laboratory (ATDL) model are sometimes referred to 

as Gaussian models.

T he A tm osp h eric  T urbulence and D iffusion L aboratory (A T D L ) M od el

The popular ATDL model was proposed by Gifford (1970, 1973), Gifford and Hanna 

(1971, 1973), and Hanna (1971, 1973). This model is applied to urban area sources for

17



stable non-reacting pollutant species. Emissions are assumed to be uniform over each 

grid square. The essential idea is based on integration in the up-wind direction of a 

cross-wind infinite line-source diffusion formula, namely the simple power law

Z ( x ) =  axb (2-4)

which only involves vertical diffusion, where Z(x)  is crz , the standard deviation in 

Gaussian dispersion, x  is the downwind distance, and a and b are param eters dependent 

on atmospheric stability. Lateral dispersion is neglected so tha t area sources are treated 

by the narrow-plume assumption. Based on these considerations, the ATDL model is 

described by the following formula

Xo =  ( - ) ' ^ r r ¥ - W o  +  E <?••[(»  +  I ) 1' 6 -  (2* -  l ) 1- 6]} (2.5)

where Xo is the pollutant concentration at ground level, u is the mean wind speed, 

A x is the source inventory grid spacing, Qi are the source strengths in the n +  1 

upwind source boxes, and i = 0 , 1 , . . . , n. The total ambient air quality then follows 

by combining the contributions from equation (2.5) with the point source contribution 

Qo and the background concentrations.

The ATDL model uses typical values of grid spacing A x  from 1 km to 10 km. In 

equation (2.5), the term  (A :r/2 )1-6 varies by less than a factor of 5 over the range of 

stabilities encountered in a given city. This model has been shown to yield comparable 

predictions with other more complex models in a wide range of urban environments by 

Eschenroeder (1975), Hanna and Gifford (1977), Daly and Steele (1976), and Gualdi 

and Tebaldi (1982).

Simple Box M odels

The ATDL model is generally regarded as the first step towards obtaining a simple 

box model. A further step considers the source terms Qi. W hen dealing with smooth 

area source distributions, it is noted tha t the variations in the source term  outside the
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receptor grid square do not greatly influence Xo- This means tha t the coefficients of the 

Qi term s are certainly less than tha t for the Qo term . Then the assumption is made 

th a t all source term s are equal to Q0 and the simplified model based on equation (2.5) 

can be w ritten as (see Hanna (1971))

CQo 
Xo= —

where

O * A  nr*

C =  ( ^ [ ( 2 n  +  l ) ^ ] 1- t [ a ( l - 6 ) ] - 1. (2.7)
7r Z

The term  a(l-b ) varies very slowly for the stability range normally encountered over 

cities, and is considered approximately constant for broad stability categories. C values 

have been assigned values of 50, 200 and 600 for unstable, neutral and stable condi

tions, respectively, for total suspended particulate (TSP) levels (Ilanna, 1971). This 

simplified model suggests th a t the pollutant concentrations depend mainly on source 

strength and wind speed, and are virtually independent of the inversion height which 

may enter the calculations via the stability category (Simpson and H anna,1981).

However, it has been found tha t the relationship between the pollutant concentra

tion and wind speed may vary from tim e to time. Benarie (1978) examined equation 

(2.6) and revised it to include a param eter for the exponent of wind speed in order 

to incorporate such changes in the relationship. Thus, the simple box model can be 

generalized as

(2.6)

X =  C ' (2.8)

where e is the wind speed exponent which may be a seasonally varying climatological 

characteristic for a given city. Further discussion and development of the model will 

be given in Chapter 12. Basically, equations (2.6) and (2.8) imply tha t wind speed and 

pollutant concentration are inversely related as m atched pairs of observations when e 

is -1. However, at best this inverse relationship is very broad under certain conditions.
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C hapter 12 dem onstrates the variability in this relationship for TSP and other pollutant 

concentrations in Canberra.

To take advantage of the causal relationship between wind speed and concentration, 

Daly and Steele (1976) and Simpson et al. (1983) assumed that the simple inverse rela

tionship might exist between opposite percentile values of wind speed and air pollutant 

concentrations. Simpson et al. (1983) showed that simple probabilistic arguments can 

be used to convert equation (2.6) to a more general form

T
X p  T T

cqoo-p

where Xv is the air pollutant concentration corresponding to the p-percentile ordinate 

of the air pollution cumulative frequency distribution, f/ioo-p the wind speed corre

sponding to the (100 — p) - percentile ordinate of the wind speed cumulative frequency 

distribution, and T  is a constant. The constant is derived from the relationship be

tween Xp and Uioo-p for each sampling station under consideration over some percentile 

range for which T  is approximately constant. The T  term  is the emission param eter 

Q multiplied by (7, the la tter param eter depending on atmospheric stability.

W ithout using direct knowledge of the source strength, Knox and Lange (1974), 

Benarie (1976) and Simpson et al. (1983) proposed the following simple formula for 

calculating T, namely

T  = UsoX 50 (2.10)

where the right-hand term s are the medians of distributions of wind speed and pollutant 

concentrations, respectively. The simple model of Simpson et al. (1983) has been 

successfully applied to TSP and acid gas data, and T  =  U\oo-pXp was found reasonably 

constant over the 30-70 percentile range (Simpson et al, 1985). Thus, such a model 

can be a good representation of the relationship of the frequency distributions of wind 

speed and pollutant concentration for at least the 30-70 percentile range.

Simpson et al. (1983) also showed tha t when combined with the assumption of
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a lognormal distribution of pollutant concentrations, from which it follows that the 

distribution of wind speed is also lognormal, then equation (2.6) becomes

X p  = — c - (2.11)

where ßu is the geometric standard deviation, au the geometric mean of the wind speed 

data, and zv is the standard variable corresponding to the percentile p. This model 

was developed to yield estimates of the entire distribution of pollutant concentration 

(Simpson et ah, 1983) and has been used to forecast worst case pollution scenarios 

for particulates due to urban industrial development (Simpson and Jakeman, 1985). 

Nicholson (1975) proposed the simple box model to predict street level concentrations 

of traffic CO emissions. Leahy (1975) has used a moving box model for hourly ground- 

level concentrations of nitrogen oxides (N 0X) at Edmonton, Canada. Smith (1976) 

also developed a simple box model incorporating a simple relationship between the 

mixing layer depth and the horizontal dimension of the box to obtain good results 

for climatological averages of pollutant concentrations of SO2 for a number of English 

cities.

Multi-box Models

The principle of multi-box models is to use the stepwise movement of a box to describe 

a curvilinear path over the ground. It is dependent on the choice of adequate wind 

direction to trace the trajectory. Such a procedure is known as a back-tracing or re

verse trajectory method and is commonly used in weather forecasting and atmospheric 

research.

Multi-box models have been widely used for different pollutants and in various lo

cations. MacCracken et al. (1971) developed a multi-box model to simulate hourly CO 

data in California. Gifford and Hanna (1971) have also used this method to model SO2 

concentrations in Milan, Italy. In Japan, the multi-box model has been used by several 

authors. Shiozawa et al. (1973) estimated SO2 concentrations in Tokyo. Ishikawa
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et al. (1973) used a two-layer multi-box model in Osaka. Funabashi (1973) also em

ployed real-time filtering for prediction purposes. Benarie (1980) discussed how to use 

a multi-box model to calculate CO concentrations. Dabbert et al. (1973) suggested 

a model, named APRAC, to predict concentrations of inert, vehicle-generated pollu

tants. The derivation of APRAC is quite similar to that of Gifford (1973). Ragland 

(1973) provided a steady-state implicit finite-difference matrix solution for an array of 

n x n boxes in the vertical plane. Calculated concentration patterns in the x-z plane 

appear similar to those obtained by Egan and Mahoney (1972), who employed the 

mass continuity equation directly. Kontnik (1974) designed a multi-layer box model 

to account for both light winds and non-uniform wind fields, which essentially moves 

material along the wind directions, with the addition of a proper amount of vertical 

mixing. Hameed (1974) has compared a simple version of the ATDL model with a more 

complex one by Randerson (1968) in studying a two-hour SOx episode in Nashville, 

Tennessee. Hameed (1974) found that the simpler model yields comparable results to 

the more complex one.

R o llb a ck  M o d e ls

A lack of meteorological information or knowledge of the relationship between meteo

rological data and pollutant dispersion can cause great difficulties in the prediction of 

air pollutant concentrations. In these cases, the rollback model can be used to provide 

a simple method to assess source pollutant emissions required to satisfy air quality 

criteria. The rollback model may be considered as belonging to the same family as the 

box model (Benarie, 1980), so that it is sometimes called the receptor-oriented symmet

rical counterpart of the box model. A basic physical assumption of the rollback model 

is that the pollutant concentrations are directly proportional to emissions according 

to some simple relationship. Without consideration of meterological parameters and 

local effects, such as the terrain, the emission control requirements can be determined 

as proportional to the amount by which the peak pollutant concentration exceeds the 

desired air quality standards.
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The simplest form of the rollback model is of the type

X =  Xb + Re  (2.12)

where \  is the pollutant concentration due to emissions with rate e, and Xb is a measure 

of background pollutant concentration. R  is the constant of proportionality which 

includes all the effects relevant to the meteorology and area source distribution, and 

can be determ ined as (de Nevers and Morris, 1975)

R =  , X m a x - X b ,  (2.13)
e

where Xmax is the highest pollutant concentration in the region of interest. According 

to the selected air quality standard, the allowable emission rate for a new Xmax can be 

obtained from

e(x*ta -  Xb) (2.14)^max — / \
(X m ax  Xb)

where Xsta is the designated air quality standard specified for the pollutant being

considered. The required reduction from a peak of pollutant concentration can be 

obtained from

p  __  q q  X f i ’iß .i '  "Xsta

Xmax Xb

where P  is the percentage reduction required (Schuck and Papetti, 1973).

A generalised formulation of the simple rollback model is given by (Chang and 

Weinstock, 1973, 1974)

X*- =  Xb +  Ci>ej  (2-16)
i = i  j = l

where Xi is the concentration at receptor z, ej is the emission rate  for source j ,  and 

Rij is the source-receptor interaction for source j  and receptor i. The Cij may be 

calculated from a moving box model or a Gaussian plume model.
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The simple rollback model has been used successfully to examine the motor vehicle 

emission goals for standards governing CO, N 0 X and hydrocarbons (Barth (1970) and 

Schuck and P apetti (1973)). The technique has also been employed to describe photo

chemical smog effects in term s of the prim ary pollutant concentrations (Hamming et 

al, 1973). de Nevers and Morris (1975) extended the basic technique to apply to mul

tiple sources, different stack heights, different source-to-receptor distances and wind 

direction frequencies. Szepesi (1977) specified source-receptor functions as Gaussian 

for point and area sources. Peterson and Moyers (1980) developed a model for the case 

where continuous measurements of ambient concentrations and emissions are available 

and recorded over tim e intervals corresponding to air quality standards. Georgopoulos 

and Seinfeld (1982) recommended the use of the mean values E(xmax) and E(xsta) 

instead of Xmax and Xsta in rollback calculations, which has the advantage of allowing 

for the conservation of mass of non-reactive pollutants.

The nonlinearity of atmospheric processes limits the usefulness of the rollback 

model, as does its lack of spatial resolution. Horie and Overton (1974) noted tha t 

the higher the percentile value of concentration considered as the desired air quality 

goal, the greater the uncertainty in the emissions reductions calculated by the rollback 

technique. W hen using the model to predict the rate  of growth of air pollution due to 

urban development, it must be assumed tha t the distribution of sources is unchanging 

with time. Therefore, the rollback model may be used for regional analysis of areas 

with many well distributed sources of various types and as a first step approach or 

screening model to obtain a crude picture of future trends.

2.3.4 Perform ance and Validation o f D eterm in istic  M odels

From the preceding discussion above, it is seen th a t determ inistic models vary in de

scriptive and com putational complexity. They can be simple (e.g. the Hanna-Gifford 

ATDL model), interm ediate (e.g. Gaussian plume model) or complex (e.g. numerical 

models based on K-theory). Numerous investigations have shown tha t, under cer

tain  conditions, a simple modelling approach may perform quite well when compared
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w ith more complex models for estim ation of ambient pollutant concentrations result

ing from the dispersion of pollutants in an airshed. Simpson and Hanna (1981) argued 

th a t the advection effects of the atmosphere dom inate horizontal diffusion effects for 

long periods. Therefore, the vertical diffusion is relatively less im portant and it can be 

accommodated by simple Gaussian or box assumptions. On the other hand, complex 

models such as the K-diffusion model merely involve different assumptions to handle 

what is commonly regarded as a highly stochastic problem, and also require a numerical 

solution which may introduce com putational errors.

The best feature of deterministic models is tha t they can be used for approximation 

of the causal link between the variables, such as those describing emissions, meteoro

logical conditions and terrain, and the dependent pollutant concentrations. These 

models have improved our understanding of the nature of pollutant dispersion in the 

atmospheric environment and describe the physical processes of pollutant dispersion. 

In practice, most applicable deterministic models are useful at best for predicting the 

mean of pollutant concentrations (see e.g. Jakem an et ah, 1988). Many determinis

tic models can predict long-term means of pollutant concentrations for a wide range 

of physical circumstances with reasonable accuracy. Such models retain sensitivity to 

variations in both mean emission strengths and meteorological variables, such as wind 

speed and wind direction. Thus, deterministic models are generally best suited to 

estim ation of mean pollutant concentration under m ean conditions.

Deterministic modelling encounters two m ajor practical difficulties with respect 

to model performance. First, the deterministic models are not capable of predicting 

extrem e pollutant levels especially well, and many air quality standards require this 

knowledge. Second, by their very nature, determ inistic models cannot characterize the 

uncertainty in model predictions.

It has been found, for example, by Simpson and Hanna (1981) in an examination of 

the predictive ability of various deterministic models, that the values of the extremes 

of the distribution are unlikely to be very accurate. Pasquill and Smith (1983) argue
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tha t it is the special nature of the meteorological conditions and other circumstances 

which combine occasionally to form the worst pollution episodes, and it is difficult 

to model such extrem e occurrences. Hanna (1982) refers to ‘natural variability’ as the 

turbulent fluctuations in wind velocity which may occur over tim e periods ranging from 

microseconds to years. Obviously, the existence of natural variability limits strongly 

the estim ation accuracy of air pollutant concentrations using deterministic models. 

V enkatram ’s (1983, 1984) analysis reveals tha t the expected deviation of observations 

from predictions becomes large when the sampling tim e is not much greater than the 

tim e scale controlling diffusion. From the study of Hanna (1982) and the theoretical 

analysis of Venkatram (1984), it is often stated th a t the accuracy of predictions of 

existing determ inistic models for ensemble means is approximately of order 2.

The accuracy and application of deterministic models is often restricted due to the 

lack of essential meteorological or topographical information being available, particu

larly for complex models. Enhancing the data collection substantially raises the costs 

of model development, which may be prohibitive in many circumstances. Therefore, a 

simple but functional deterministic model is normally very im portant in practice for 

air quality management problems.

In conclusion, a wide range of deterministic models is available in the literature 

(and in com puter packages) for impact assessments of air quality. Such models are 

most useful in predicting concentration values around the mean or median of pollutant 

concentrations over tim e periods no shorter than one hour. The highly stochastic nature 

of turbulent diffusion is a problematic constraint. Deterministic models are unlikely 

to perform well in estim ating the upper percentiles of the distribution of air pollutant 

concentrations. Different approaches are required to circumvent these problems and to 

satisfy the demands of air quality management.
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2.4  S ta tis tica l M od ellin g

W hile the main emphasis has traditionally been placed on development of deterministic 

models for describing the physical behaviour of atmospheric dispersion of air pollutants, 

the statistical properties of air pollutant concentrations are im portant because of the 

complexities which arise in the physically-based analysis of atmospheric turbulence. 

Although predictions of air pollutant concentration might be obtained from a sophisti

cated model, large departures will still be expected when compared with observed air 

quality data. The statistical description of turbulent flow is an essential tool in rep

resenting the fluctuations of a variety of meteorological and emission quantities. Air 

pollutant concentrations are inherently random variables in nature.

Since air pollutant concentrations are normally measured sequentially over time, 

and averaged over successive non-overlapping tim e periods of equal length, air qual

ity data  consist of statistical tim e series which can be w ritten as (Georgopoulos and 

Seinfeld, 1982)

X l ( ^ l ) > X 2 ( * 2 ) » • • • >  X n ( ^ n ) ;  t\ < t2 < •  '  •  < tn ( 2 - 1 7 )

where the sampling period is known as the averaging tim e r ,  defined as r  =  t2 — t\ =  

3̂ t2 — . . . — tn tn—\.

Since atmospheric systems extend up to the large scales associated with distur

bances of the general circulation, the properties of air quality data depend consider

ably on the sampling duration. That is, the length of the averaging tim e will affect the 

degree of correlation of successive data points (Georgopoulos and Seinfeld, 1982). For 

a given pollutant and measurement site, there is an inverse proportional relationship 

between the averaging tim e and the degree of autocorrelation, such th a t the longer is 

the averaging tim e, the less is the autocorrelation. Furtherm ore, the properties of air 

quality data also depend on the specific place and tim e at which the observations are 

made. Due to the effects of variable terrain, of diurnal heating and nocturnal cool

ing of the ground, and of the continually changing large-scale pattern  of air flow, air
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pollutant concentrations are neither homogeneous nor stationary (Pasquill and Smith, 

1983). Based on the statistical characteristics of air quality data, there are several 

alternative statistical approaches which have been applied to air quality assessment.

2.4.1 Probability  D istribution  M odelling

The assessment of environmental impact for air quality management in term s of air 

quality standards is based on a probability curve of concentrations measured over a 

fixed averaging tim e at locations of interest. Such an assessment requires specification 

of at least the mean and upper percentiles of the frequency distribution of pollutant 

concentrations. Thus, probability distribution modelling plays an im portant role in 

control and management of air pollution, and is of particular interest in this thesis.

The graphical nature of air pollutant frequency concentrations over a given averag

ing tim e can be viewed with the aid of an histogram. A typical histogram of air quality 

data tends to be unimodal and skewed to the right (Benarie, 1980). Quite often the 

histograms of air pollution concentration appear to be inversely “J ” shaped, having 

a peak value of frequency near the lower concentrations and a gradual but long tail. 

Based on such intuitive information, many skewed distributions have been developed 

in the statistical literature and have been dem onstrated to be useful for fitting air pol

lution data. Benarie (1980) has enum erated distributions such as: Poisson (Benarie 

(1980)); negative binomial (Prinz and Stratm an, 1966); Weibull (Barlow, 1971; Cur

ran and Frank, 1975; Tsukatani and Shoyi, 1977); exponential (Barry, 1971; Scriven, 

1971; Curran and Frank, 1975); gamma and beta (Lynn, 1972; Graedel et ah, 1974); 

lognormal (Mage, 1975; Larsen, 1977a,b).

Probability distribution models complement determ inistic models (Jakem an et al., 

1988) but, unlike determ inistic models, they provide solutions which are not certain, 

as they are described within the framework of probability. They are especially useful 

in cases where the output of natural systems cannot be expressed satisfactorily as 

a fixed function of input variables, whether the reason be inadequate understanding
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of the system of interest, inadequate data or inherent randomness of the observations. 

These problems are circumvented by modelling the observations in a simple param etric 

m anner.

The uses of efficiently parameterised probability distribution models have been sum

m arised by O tt and Mage (1979), Bai et al. (1988), and Jakem an and Taylor (1989). 

Such models can provide a simple description and sum m ary of a set of data as a member 

of a general class of distributions. The reduction of masses of data to more manageable 

quantities with relatively few param eters provides adm inistrative benefits, for example, 

in storage and transmission, by converting long records of data to a simple param etric 

form which retains the basic information needed for future reference. The models can 

be used to filter the effects of noise inherent in raw observations by interpolation or 

extrapolation. For example, they can fill in gaps created by missing information tha t is 

random  or uniform, smooth measurement, sampling error, or unrepresentative events.

As argued in Bai et al. (1988), statistical inferences can be drawn from the param- 

eterisation taking into account the properties of the methods and the raw data  used. 

Hypotheses related to the population can be tested in order to reach certain conclu

sions. Statistical models can express uncertainties or tolerances, and the variability 

of the system can be quantified. These models can also be applied to design, analyse 

and assess sampling methods or data bases. Finally, Jakem an et al. (1988) show how 

statistical models can be augmented with determ inistic models to obtain hybrid models 

with the desirable properties of each modelling approach for prediction under a wide 

range of conditions. These hybrid models will be discussed in a later section.

A m ajor lim itation of probability distribution modelling is th a t calibrated models 

cannot be expected to be valid under conditions other than those which existed during 

data collection. Prediction under wide-ranging conditions is restricted because such 

models contain no explicit relation between param etric form, or at least between para

metric values and the m ajor causal factors. On the positive side, these statistical models 

can be designed to predict all events well, being based closely on observations. Because
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observations are usually assumed to be independent and identically distributed (iid), 

uncertainty in param eters and hence model properties can be characterised easily by 

appropriate estim ation methods. The iid assumption, however, restricts the straight

forward identification of statistical models when observations are autocorrelated. As 

w ith tim e series modelling, it is possible to induce independence and stationarity by 

variable transform ation or selection of appropriate subsets of observations for analy

sis. Even without adjustm ent for its effect, some autocorrelation can still be tolerated 

since it does not affect the estim ate of the mean, only the estim ates of the variance 

(see Jakem an et al. (1986) for further details).

Probability distribution modelling has been successfully applied in air quality ap

plications. Larsen (1964, 1969, 1973, 1974) developed the so-called statistical model for 

predicting maximum air pollutant concentrations across an airshed from limited sets 

of observations, in conjunction with a single continuous monitoring site. Jakem an and 

Taylor (1989) summarise the applications of probability distribution modelling. Fur

ther developments of this capability will be discussed in the hybrid modelling section 

of this chapter.

2 .4 .2  S to c h a stic  M o d e llin g

Air quality data are essentially autocorrelated and non-stationary statistical tim e se

ries, although the degree of autocorrelation and non-stationary can vary considerably. 

In recent years, stochastic modelling of diffusion has become increasingly popular. A 

simple form of stochastic tim e series modelling is the linear rollback model, described as 

being based on the assumption tha t pollutant concentrations are proportional to emis

sions. Similar concepts can also be used to construct source-oriented models which 

establish transfer functions between the distribution of pollutant emissions and con

centrations for atmospheric dispersion. These transfer functions can be obtained em

pirically through an appropriate m athem atical inversion technique from accumulated 

data  on joint distributions of air pollution and emission, and can be used for predicting 

air pollutant concentrations (Benarie, 1980). To determ ine the functions adequately, a
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large amount of data is necessary and the assumption th a t there is a consistent source- 

receptor relationship in the region under study is essential. Successful applications of 

this m ethod were illustrated by Meisel (1976), Meisel and Teener (1976), and Breiman 

and Meisel (1976).

Some stochastic modelling approaches apply the random  walk to atmospheric dis

persion. Initial work can be traced to Einstein (1905), who first used the familiar 

‘drunkard’s walk’ to simulate molecular diffusion. Recent approaches adopt the Marko

vian assumption to treat eddy diffusion as a continuous process. In the simplest case 

of one-dimensional homogeneous stationary turbulence, the random  walk equation can 

be w ritten as

V(t  +  At)  = W(At)V( t )  -f V \ t )  (2.18)

where W  is the Lagrangian correlation function and V'(t) is a random  velocity drawn 

from a Gaussian distribution with zero mean and standard  derivation crv (Pasquill and 

Smith, 1983). Smith (1968) used equation (2.18) in a study of conditioned particle mo

tion in homogeneous turbulence, and Hall (1975) applied the same m ethod to simulate 

sea spray droplet motions and their resulting distribution in the surface layer of the 

atmosphere. Significant contributions to Markovian modelling include those of Hanna 

(1978), Reid (1979), Durbin and Hunt (1980), Lamb (1982), Ley (1982), and especially 

Wilson et al. (1981) and Thomson and Ley (1982).

An alternative to the Markovian assumption is to use the well-established Kalman 

(1960) filtering technique to predict air pollutant concentrations. The underlying model 

is known as the state-space model. This method specifies an optim al estim ate of the 

state  in a time-varying dynamic system with additive Gaussian noise. The estim ate 

obtained at each tim e step is optim al in, for example, the m ean square sense, based 

on all the observations up to tha t time. The Kalman filter is applied to models of the 

form
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yk = Z kbk +  ek, k = 1,2, —  (2.19)

where yy. is the X 1 vector of observations available at tim e k, an n*. X q known 

m atrix  and bk the q x  1 state vector of the estim ates. The state vector is allowed to 

change through tim e in accordance with the state equation

bk+i =  Tk+ibk-\-wk+i, k =  1, 2, ••• (2.20)

where Tk + 1 is the transition m atrix, and ek and wk are independently distributed 

m ultivariate normal random variables (Sallas and Harvile, 1981).

The Kalman filtering technique has been applied to air pollution forecasting by 

Takam atsu et al. (1971) by using the basic Gaussian plume concept to formulate the 

state  equation. Wells and Lau (1971), and Bankoff and Hanzevack (1973, 1975), also 

used the technique for numerical integration of the mass transport balance equation.

2.5 Hybrid M odelling

The atmospheric environment is regarded as a complex system which requires both 

determ inistic and statistical modelling techniques. Until recently, these two approaches 

had undergone parallel but separate developments. As discussed before, each approach 

has its own advantages and weaknesses, with augm entation of these two approaches 

providing additional improvements.

Some insights were shown in the 1970’s where it was recommended th a t determinis

tic and statistical models be combined. Eschenroeder (1975) suggested th a t estim ation 

of the param eters of a lognormal distribution could use the distribution of the de

term inistic model output. Benarie (1976) recommended a possible link between the 

distribution of wind speeds and pollutant observations through a simple inverse rela

tionship between percentiles. Simpson et al. (1983) combined the ATDL model with 

Larsen’s lognormal statistical model for estim ating the maximum concentration. Since
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then, the hybrid approach has been successfully extended, developed and used in many 

applications.

The hybrid modelling approach adopts system atic methods in model construction 

for predicting air pollutant concentrations (Jakem an et ah, 1987), and is based on the 

notion th a t the air pollution system is made up of both deterministic and stochastic 

components. The mean conditions may be determ ined reasonably well by fundam en

tal laws but many extrem e conditions can only be estim ated statistically. The ap

proach sets out guidelines for relating the determ inistic component of the system to 

the stochastic component, thereby deriving relationships between the extrem e pollu

tan t events and the driving forces in the system, such as emissions and meteorology. 

There are no fundam ental laws for predicting extrem e events, but there are em piri

cal relationships which vary in different situations. However, many applications have 

shown th a t such relationships are predictable if extensive data sets are available (Jake

man et ah, 1987). Alternatively, such relationships can be assumed and the sensitivity 

to different assumptions can be investigated.

The m ajor steps in the application of hybrid modelling are as follows. First, in

formation related to the sources, pollutant type, meteorology, the topography between 

source and monitor, and the historical pollutant concentration data  are required as in

put. From this information, selection among determ inistic models and different para

m etric distributions can be made in order to obtain the correct determ inistic and 

statistical components. Selection of deterministic models can be made from a range 

of available model types generally relevant to source type and available emission and 

meterological data. Choice of a final model is based on the performance in predicting 

percentile concentrations, but when the performance is equal among models, parsimony 

and the level of input information available may be considered as final determining fac

tors.

Second, from input variables such as emission and meteorological data, the selected 

determ inistic model will be used to predict pollutant concentrations in the middle

33



percentiles (e.g. means, medians), where the model invariably performs the best and 

has the greatest mechanistic reliability.

Third, the middle percentiles obtained from the output of deterministic models 

are fitted to the statistical distribution chosen at the preceding step and param eter 

estim ates are generated.

Finally, the more extreme events can be predicted from the estim ated distribution. 

The output of hybrid models can thus be compared with air quality standards.

In practice, hybrid models have been applied with considerable success. Their 

numerous advantages over deterministic and statistical models include:

(a) provision of relatively good predictions over the entire distribution of pollutant 

concentrations, in particular the upper percentiles; and

(b) a causal link between source and receptor via the determ inistic model component 

which relates pollutant concentrations to emissions and meteorological data, therebj' 

retaining sensitivity to variations in inputs when meteorological conditions vary or 

emission control strategies change (e.g. changing stack heights and pollutant emission

levels).

W hen employing hybrid modelling, the following assumptions apply:

(a) the historical pollutant data  should be sufficiently informative to develop a 

distributional type for the statistical component;

(b) the distributional form for a given pollutant at a specific site should remain 

consistent with changes in emissions and meteorological conditions;

(c) the deterministic form should be commensurate with the input information 

available and capable of predicting reliably the required range of percentiles for the 

distribution of pollutant concentrations; and

(d) hybrid modelling is presently confined to predicting the frequency distribution 

of pollutant concentration over time, and pollutants have been restricted to relatively 

inert types. Hybrid models are not used to predict a particular pollutant concentration 

in tim e without related frequencies.
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It should be noted tha t the first two lim itations above arise from the m ajor un

derlying assumption of hybrid modelling. Changes in emissions and meteorology from 

year to year basically do not affect the form of the distribution but merely the values 

of the param eters of the distribution. According to this presupposition, historical data 

can be used to identify the distributional form of the statistical component. Obviously, 

sufficiently informative data  sets are necessary.
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Part II

ESTIM A TIO N
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C h a p te r  3

A  N ew  A p p ro ach  to  M ax im u m  
L ikelihood  E s tim a tio n  of th e  
T h re e -P a ra m e te r  D is tr ib u tio n s

3.1 In trod u ction

Continuous univariate distributions, such as the gamma and Weibull, have received 

much attention since they first appeared in the literature. They have been used ex

tensively in many areas such as reliability and life-testing (e.g. Mann et al. (1974) 

and Bain (1978)), hydrology (Stedinger (1980)), and air quality management (Jake- 

man and Taylor (1989), Jakeman et al. (1986)), where natural laws can be modelled 

quite successfully. Three parameter distributions involving the shape, scale and loca

tion of the distribution have been considered to be reasonably satisfactory, containing 

sufficient flexibility and sensitivity to fit real data while avoiding the problem of over- 

parameterization. For this reason, these distributions have been examined by many 

authors, such as Harter and More (1965), Johnson and Kotz (1970) and Cohen and 

Whitten (1982).

However, there remain some well-known problems in the literature when employing 

the maximum likelihood (ML) method to estimate the parameters of the gamma and 

Weibull distributions. A theoretical difficulty occurs when the shape parameter is less 

than or equal to unity, since one of the three first-derivative equations often used to 

maximize the likelihood function is not valid in these cases.
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Some effort has been made to overcome this weakness. For example, Johnson and 

Kotz (1970, p. 185) suggested that ML should not be used for the gamma distribution 

if the shape parameter is less than 2.5 and gave details of the method of moments as an 

alternative procedure. Cohen and Norgaard (1977) also discussed this theoretical diffi

culty and developed a modified ML method which introduced the method of moments 

formula to avoid the failure of ML. It can be shown that such methods involving the 

method of moments will have a high degree of deviation from the parent distribution 

and will be outperformed when compared with ML over a suitable range of the shape 

parameter (Bai et al. (1988), and Bai and Taylor (1986)).

Cheng and Amin (1983) provided a method called the maximum product of spac- 

ings (MPS) estimation. For a distribution function F with parameter 0 and random 

observations a;,-, their method uses the transformation yi =  F(x{, 0 ) ,  i — 0 ,1 , . . . ,  n + 1 

to transform the sample into the interval (0,1) and maximize the geometric mean of 

the spacings, Z), = ?/, — y,_i, instead of the maximum likelihood function itself. Un

fortunately, their method is very difficult to use because the derivative equations of 

MPS are complicated and implicit. In particular, if the distribution has no explicit 

form of the cumulative function, such as in the case of the gamma distribution, the 

transformation of the data itself is implicit and the derivative equations become more 

complicated and are difficult to solve. Estimation using MPS also appears to be less 

accurate than the ML method. Further discussion and comparison of this method with 

the ML method are given in the appendix.

It is known that, in the definition of the gamma and Weibull distributions, the range 

of the shape parameter is greater than zero. If the range of the shape parameter is less 

than or equal to unity, ML technically fails in its performance because its three first- 

derivative equations cannot be used. Some simple techniques can be used to overcome 

this difficulty while still following the principle of ML.

The primary motivation for this chapter is to propose a general methodology which 

can provide satisfactory ML estimates consistently and efficiently. This methodology
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can be used, in principle, for all distributions with shape, scale and location param eters, 

and is especially useful when ML breaks down. Such a methodology also has a compu

tational advantage in various applications since the normal ML procedure sometimes 

has difficulties in converging, particularly when the sample size is not especially large. 

In the following sections, estim ation of both the gam m a and Weibull distributions is 

examined by this method but more emphasis is placed on the former, together with the 

other three alternative methods for purposes of comparison. Monte Carlo simulations 

are used to assess the performance of each method. Some real pollutant data  from 

Melbourne, Australia are used for purposes of empirical illustration.

3.2 A  G eneral A pproach  to  M axim u m  L ikelihood  
E stim a tio n  o f th e  T hree P aram eter  G am m a  
and W eibull D istr ib u tio n s

The likelihood principle in its general form selects param eters of the distribution over 

the admissible range to make the likelihood function as large as possible (see e.g. 

Kendall and Stuart (1979)). The probability density functions of the random  variable 

for the three- param eter gamma and Weibull distributions are of the form:

( 3 ' 1 }

/ ( * )  =  -ß( ^ p r l e * p [ - ( ^ n  (3.2)

respectively, where ß  represents the scale param eter, a  the shape param eter, 7 the 

location param eter and T the gamma function. In the above equations, ß  >  0, a  > 

0 and 7 < x < 00. If x i , . . . , x n is a random sample of n observations, then the 

logarithmic likelihood functions for the gamma and Weibull distributions are:

logL =  —nalogß -  nlogT(a)  +  (a  -  1) X  % (*«’ “ 7) ~  D ~ P ~ ) (3-3)
i=l t=l P

logL = nloga -  nalogß  + (a  -  1) X  log(x{ -  7) -  XX * o 1 T  (3-4)
t = i  1=1 P
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respectively. Taking partial derivatives with respect to the parameters 7, ß and a 

yields the following first-order conditions:

Gamma:
dlogL

$7 (3.5)

dlogL _ na V'V a' t 7 \ «
dß ~ ~  ß ß2

Weibull:

dlogL
da —nlogß — n4>(o:) + ^  log(x{ — 7) = 0

t=i

dlogL
d~f = ~( a - 1)S (i r ^ )+ ^ S (*‘“ 7 r l = 0

(3.6)

(3.7)

(3.8)

dlogL
dß

na a
ßa+'

n

5Z(*i -  7 )“
t=l

0 (3.9)

dlogL
da -  nlogß + 'L log(x i -  ~i) -  7 )°/o ff(-- -7 ) =  0

0  t = l i=l P P

where 4/(a) is the digamma function, given as

(3.10)

t f ( a )
ö/o^r(a)

da

The usual approach to ML estimation is to simultaneously solve the derivative 

equations (5) to (7) and (8) to (10) for the parameters of the two distributions. It is 

clear that this method is not valid if a < 1 because the terms and 52?=i(^z^) *n (5), 

and Z)?=1(737) an<l "§£ IZ?ssi(®*—'l ) a~l in (8)j are always positive values. Obviously, it is 

then not possible to satisfy the first-order conditions for ML estimation simultaneously. 

For further details of estimation when a < 1, see e.g. Cohen and Norgaard (1977).
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3.3 A  N ew  A pproach  to  M axim u m  L ikelihood  
E stim a tio n

In contrast to the derivative m ethod for finding the extrem e value of a given function, 

it is possible to consider an optim ization approach to maximise directly the likelihood 

function and search for its extrem e value over the permissible range of param eters. Al

though not reported in this chapter, extensive experiments show th a t the optimization 

m ethod of searching in three dimensions for three param eters can provide quite sat

isfactory estim ates for the three-param eter gamma and Weibull distributions without 

limiting the range of the shape param eter whenever the maximum of the likelihood 

function exists. However, this three-param eter optimization m ethod is not com puta

tionally efficient and also consumes considerable CPU time.

A computationally more efficient method may be obtained by combining the 

optim ization of the likelihood function with an associated simplification and reduc

tion from a three- to a two-parameter distribution. The main difference between the 

three- and two-parameter distributions lies in the location param eter, which the la tter 

sets equal to zero. The curve for both distributions is principally determined by the 

shape and scale param eters. Therefore, a three-param eter distribution can be treated 

as a two-parameter distribution after using the linear transform ation given by

x\ =  X{  — 7 (* =  1, 2 , . . . ,  n) (3.11)

which simply transforms the original variable x to  a new variable x ' . Two-parameter 

gamma and Weibull distributions can be estim ated without any difficulties over the full 

range of the shape param eter by using the derivative equations. Therefore, using the 

transform ation in (11) to eliminate the location param eter, the derivative equations 

can now be expressed as follows:

Gamma:

— V' logx' — logx' — ^ ( a )  — loga (3.12)
n 7 î
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x'  =  a ß (3.13)

Weibull:

“  =  [ ( £  x ? io<J x 'i)C t, x ' i ^  £  lo9x ',}~1 (3-14)
t'=l 1=1 1=1

^  =  (3-15)
11 t= l

The key to this m ethod is to use the optimization procedure to search over the 

entire admissible range of 7 and then to obtain the shape and scale param eters by 

using (12), (13) and (14), (15) for the gamma and Weibull distributions, respectively. 

The upper bound should be less then the first observation according to the definition 

tha t X{ > 7 for i = 1 , 2 , . . . ,  n. This method can be used for estim ation over the entire 

range of param eters w ithout restricting the range of the shape param eter. From our 

simulation experiments, it is found tha t this method can also avoid the convergence 

difficulties which are sometimes encountered in solving the derivative equations.

3 .4  Im p r o v e d  G e n e r a l A p p r o a c h e s  for th e  G a m m a  
D is tr ib u t io n

If prior knowledge can be used to show that the distribution is bell-shaped, it is worth

while considering an improvement in the derivative m ethod which requires a three- 

dimensional param etric search. Rearrangement of equations (5) and (6), assuming a 

known value for 7 , yields the direct analytic solutions for ß  and a  in terms of 7 as 

follows:

a
n

= £ (
S i  — 7 ' 

n ß  '
(3.16)

/3 =  £ ( :
7 )- (3.17)

i= i  -  £ ? = i ( s i  - 7 ) ~ r

The use of equations (16) and (17) requires only a one-dimensional search for the 

location param eter 7 . There are two ways of proceeding with this numerical search,
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namely by substituting (16) and (17) into the derivative equation (7) or into the like

lihood function (3). In both cases, conditional on the estim ate of 7 , the estim ates of 

a  and ß  are determ ined according to (16) and (17). The solution can be attained in 

the former case by reaching an arbitrary permissible tolerance level, or in the latter 

case by finding a local maximum of the likelihood function. Of course, unlike the 

m ethod outlined in the previous section, these two methods of obtaining maximum 

likelihood estim ates are still subject to the restriction tha t estim ates of ß  and 7 cannot 

be obtained where the estim ate of a  is less than or equal to unity.

3.5 S im u la tion  E x p erim en ts

Monte Carlo simulations are undertaken to assess the performance of the estim ation 

methods discussed in the previous sections. The param eters are taken over a range 

of possible values which might arise in practice. Results are reported in tabular form 

for shape param eters taking the values { 0.3, 0.5, 0.8, 1, 1.5, 2, 4, 6 } for the gamma 

distribution, and values { 0.3, 0.5, 0.8, 1, 1.5, 2, 3, 4 } for the Weibull distribution. 

These values span a large range of shapes which may arise in the analysis of life

testing and reliability, or air pollution concentrations (see Jakem an et al. (1986)). 

For the gam m a distribution, the curve becomes symmetrical as the shape param eter 

exceeds 6 while, for the Weibull distribution, negative skewness will result as the shape 

param eter exceeds 4. These extrem e cases are not of interest here. The scale and 

location param eters are set at unity in all cases in order to enable an emphasis to be 

placed on difficult situations. Figures 3.1 and 3.2 indicate the form of the probability 

density functions for some selected param eter values. For all param eter sets, one 

thousand experiments are conducted. The main sample size used is n = 365, which is 

chosen as it represents a common case: namely a year of 24-hourly average observations. 

In order to examine the effects of varying the sample size on the m ethod described in the 

previous section, a range of sample sizes from 50 to 1000 (which covers most applicable 

situations) is also used.
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In this Monte Carlo study the performance criteria recommended for assessing air 

quality distributions are chosen, namely the relative bias (BIAS) and the relative root 

mean square error (RRMSE) (Fox, 1981). The criteria are defined as follows:

""<«)-i f?Y) (3.18)

R R M S E ( g ) = ['N  n 9, q Vr (3.19)

where N  is the number of Monte Carlo experiments, q is the true value of the param eter 

or the percentiles of the underlying distribution, and qi is the estim ate of the param eter 

for the i’th  experiment.

The random sample generators used for the Monte Carlo study are DRNGAM for 

the gam m a distribution and DRNWIB for the Weibull distribution, available as sub

routines in the International M athem atical and Statistical Library (IMSL) in version 

1.0 (April, 1987). The same seed number (1234) is used to obtain the first random 

sample of the first 1000 simulations. Varying the initial seed produces similar results 

to those reported in the chapter.

Tables 3.1 to 3.6 list the MEAN, BIAS and RRMSE for estim ation of the param eters 

of the gam m a and Weibull distributions for different sample sizes, different values of the 

location param eter and different methods of estim ation. In Table 3.1, results from using 

four methods for estim ating the gamma distribution when n =  365 are given, namely 

m ethod 1 (the new ML approach of Section 3), m ethod 2 (the general ML approach 

of Section 2), methods 3 and 4 (the improved general ML approaches of Section 4, 

the former solving the third equation to obtain 7 and the la tter by maximising the 

likelihood function). In this table, the shape param eter is limited to a  >  1 because 

decreasing the value further will not be valid for m ethods 2, 3 and 4. It can be seen 

that these four methods perform reasonably closely in term s of estim ating all three 

param eters of the distribution. The similar performances can be investigated in term s 

of the mean and standard deviation of the maximised log-likelihood function over 1000
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simulation experiments. For the gamma distribution with shape parameter taking the 

value 2, the mean and standard deviation of the maximised log-likelihoods for methods 

1, 3 and 4 are the same to four decimal places, namely - 573.90 and 15.68, respectively, 

while for method 2 they are - 573.91 and 15.71, respectively.

Considering CPU time, methods 3 and 4 are the most efficient computationally, 

followed by method 1 and finally method 2. The differences in computational efficiency 

increase with the value of the shape parameter. A conservative comparison of the 

efficiency of the four methods is therefore to consider the CPU time taken when fitting 

random samples from a parent gamma distribution with the shape parameter taking 

the value 2. Over 1000 experiments on samples of size 365, the estimation time for 

methods 1 to 4 are 7(min):36(secs), 10:13, 3:24 and 4:02, respectively. The rankings in 

terms of computational efficiency are broadly similar for many of the other experiments.

Table 3.2 reports only the results for method 1 when the shape parameter is equal to 

or less than unity in which case the other three methods are invalid. It is clear from the 

table that method 1 provides quite accurate results and the estimates are consistently 

close to the true values of all three parameters of the underlying distribution. When 

the true value of the shape parameter is less than unity, the estimates of the location 

parameter are always equal to unity, with BIAS and RRMSE both zero (or very close 

to zero). In order to investigate the performance of the new ML approach, Table 3.3 

reports the results of estimating the gamma distribution when varying the sample size 

from 50 to 1000. The results in the table demonstrate that this method is capable of 

working well over the full range and produces consistent results following asymptotic 

theory. Accuracy improves as the sample size is increased, although there is little to 

be gained after n = 300 for the gamma distribution. The estimates of the location 

parameter are again very close to unity, with zero BIAS and RRMSE, for sample sizes 

in excess of 100 when the shape parameter is 0.8.

In Table 3.4, methods 1 and 2 are used for the Weibull distribution. The results 

are similar to those for the gamma distribution in that all three parameter values are
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accurately estim ated. As in the case for Table 3.2, Table 3.5 reports the results for 

estim ating the Weibull distribution using method 1 only and the estim ates are quite 

close to the true values of the parameters. Following along the lines of the gamma 

distribution in Table 3.3, the results in Table 3.6 also show that the new ML approach 

seems to perform extremely well for different sample sizes, with little improvement 

beyond n = 200 for the Weibull distribution. The results for estim ates of the location 

param eter for the Weibull distribution when the shape param eter is less than unity 

(see Tables 3.5 and 3.6) are very similar to those obtained for the gam m a distribution 

(see Tables 3.2 and 3.3).

3.6 F itting R eal D ata

As illustrative examples, two data sets are chosen for air pollutant measurements of 

24-hourly nitrogen dioxide concentrations in Melbourne, Australia. These two data 

sets present two diverse cases: “bell” shaped and reverse “J ” shaped samples for the 

same pollutant and same year but measured at different stations. It is obvious tha t 

there is no prior knowledge to indicate whether the shape param eter of the parent 

distribution is less than, equal to or greater than unity, and it is uncertain whether 

the general approach of ML can be used or might break down. These two data  sets 

dem onstrate th a t the new approach of ML is necessary in order to enable fitting over 

the entire range of param eters without restricting the range of the shape param eter. In 

the first data  set, the sample size is 271 from the Museum monitoring station in 1979; 

four methods for estim ating the gamma distribution and two methods for the Weibull 

distribution are employed. The results are listed in Table 3.7. In the second data set, 

the sample size is 317 from the Alphington station in 1979. Only the new approach of 

ML for the gam m a and Weibull distributions is applied and the estim ated param eters 

are also listed in Table 3.7, with the gamma distribution fitting better than the Weibull 

distribution. Figures 3.3 and 3.4 show the fit to the data sets by the new ML approach. 

The results show tha t the new ML approach produces identical estim ates to those of the
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general approaches for the first data  set, with the gamma distribution being superior 

to the Weibull distribution. The estim ates are also satisfactory for the second data 

set, with the estim ated shape param eter being less than unity and the ML estim ate 

of the location param eter being equal to the minimum observed value of the data  (as 

required). On the basis of these estim ates, it is clearly useful to apply the new ML 

approach in general situations.

3.7  D iscu ssio n  o f th e  M axim u m  P ro d u ct o f  
Spacings (M P S ) E stim a tio n  M eth o d

The MPS estim ation m ethod is designed as a general m ethod of providing consistent 

estim ators by Cheng and Amin (1983). From their paper, this m ethod can be applied 

to any univariate distribution, and is especially useful for non-regular cases such as 

the gam m a and Weibull distributions when ML fails. They proposed tha t this method 

retains the desirable properties of ML estim ation and, im portantly, th a t the  MPS 

m ethod estim ates the param eters of distributions under much more general conditions 

than the ML m ethod. In some situations, the MPS estim ator can be a function of 

sufficient statistics whereas the ML estim ator is not.

As discussed in previous sections, the ML principle can be applied to a wide range 

of estim ation problems under very general conditions. The ML m ethod may be suc

cessfully used in many continuous univariate distributions by implementing the general 

approach of solving the derivative equations. In particular cases such as the gamma 

and Weibull distributions, a simple useful technique can be employed to overcome the 

difficulties encountered by the general m ethod following the ML principle.

In comparison with the ML method and the new approach suggested in this chapter, 

the MPS m ethod is computationally more complex and it can be less accurate.
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3.7.1 M PS E stim ation  o f the Gam m a D istribution

For purposes of illustration, the gamma distribution will be used to describe the esti

mation method. The derivation of the estimation equations is as follows.

If .Ti < x -2 < . . .  < xn is a random sample of n observations from the gamma distri

bution, transform all the data into the unit interval (0,1) by using the transformation 

yi = F(x{,0), i = 0 ,1 , . . . ,  n +  1. The difference given by

Di = yi -  2/i-i =  /  f (x ,0 )dx  (i = 1,2, . . . , n  +  1) (3.20)
J x i - 1

is called the (uniform) spacing of the sample {y }. The MPS method maximizes the 

geometric mean of the spacings

n + l

H = logG = log(Y[. Th)n+1 = —alogß — logT(a)
i = i

+  — 7 7  Y  log I  ( x -  7 )a~l e x p ( - ^ - —^-)dx  n + l 1=1 Jxi- 1 ß

for which the first-order conditions are

dlogG _  Ä  l ) ( * - 7 ) °  2 + g( * ~ 7 )a 1̂ x p ( - !Lf L)]dx
d~i ~  +  (n +  1) {*;_AX ~ ■y)a- io x p ( - ^ 1)dx

= 0

(3.21)

dlogG a  1
dß ~ ß + n + 1 +  IZ -  7 

=  0

(3.22)

dlogG
da

"+J /** (x — ^)a 1log(x —'f)exp(—EjfL)dx
—logß — logty(a) + V) — ------7—  -----7— .—  (3.23)

t i  (n +  1) I x L ix -  l ) a~1e x p ( - ^ 1 )dx
0.
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As compared with equations (5) to (7), it is easy to see tha t the MPS method is 

considerably more complicated than ML since it needs to solve such difficult equations, 

even though the plotting technique for 7 to see if it has a (local) maximum may lead 

to the deletion of (21). The ML m ethod is relatively more simple and efficient, par

ticularly using the new approach and the improved general approach to estim ate the 

param eters of the gamma distribution. It is known tha t complex equations may intro

duce iterative errors, may cause difficulties with convergence, and may yield inaccurate 

solutions. Even when the cumulative distribution functions have explicit forms, such as 

the Weibull distribution, the equations for estim ation are still more complicated than 

for the ML m ethod.

3.7.2 Com parison of the ML and M PS M ethods for the  
W eibull D istribution

A simple comparison shows tha t the MPS m ethod can be less accurate than the ML 

method. The assessment criterion is simply the relative maximised log-likelihood func

tion values corresponding to the estim ated param eters of each m ethod, together with 

observing whether the ML estim ate of the location param eter is equal to the minimum 

observed data point if the shape param eter is less than or equal to unity. The higher 

value of the log-likelihood function will indicate which m ethod provides estimates more 

accurately. For illustrative purposes, the samples used are 20 observations on maxi

mum flood levels (in millions of cubic feet per second) for the Susquehanna River of 

Harrisburg over twenty, 4-year periods given in Dumonceaux and Antle (1973) and 20 

observations on beach pollution (measured in number of coliform per 100 ml) in South 

Wales on twenty days over a 5-week period, provided by Steen and Stickler (1976). 

Both data sets are employed for the MPS estim ation in Cheng and Amin (1983).

Table 3.8 shows tha t the new ML method provides much higher values of the log- 

likelihood functions than the MPS method. It is useful to note tha t the estimates of the 

shape param eters are less than unity for both data  sets using the new ML method, and 

for the pollution data set using the MPS method. In such situations, the ML estimate
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of the location param eter is the minimum observed value of the data. For both samples, 

the log-likelihood values associated with the MPS estimates are much lower than those 

obtained by the new ML approach, indicating the inaccuracy of the estimates given 

by the MPS m ethod. Moreover, for the pollution data set, the ML estim ate of the 

location param eter is, in fact, the minimum observed data point, whereas the MPS 

estim ate is not, providing further evidence of the superiority of the ML approach over 

the MPS m ethod.

3.8 C o n c lu d in g  R e m a rk s

In this chapter, a new approach to maximum likelihood (ML) estim ation is developed 

to overcome the difficulties encountered in some continuous univariate distributions, 

such as the three-param eter gamma and Weibull distributions. This method can also 

essentially be used for other three-param eter univariate distributions, such as the log

normal distribution. It can provide consistent and efficient estim ators without placing 

any restrictions on the range of param eters concerned. Through the Monte Carlo study 

and the empirical illustration, the new approach is shown to be capable of perform

ing well over an extensive range of param eter values and sample sizes, and can easily 

be used in applications where the value of the shape param eter may be greater than, 

less than, or equal to unity. There are also im portant implications for theory: the 

new approach complements the standard ML approach and removes the difficulties of 

estim ation for all values of the shape param eter.
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Figure 3.2: Profile of the Weibull distribution for a range of shape param eters and uni t  
scale and location param eters
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Figure 3.3: Fit of the gamma and Weibull distributions to an histogram of the nitrogen 
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Figure 3.4: Fit of the gamma and Weibull distributions to an histogram of the nitrogen 
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TABLE 3.1
E s t im a te s  o f  p a ra m e te r s  d e riv e d  fro m  fo u r  m e th o d s  fo r  t h e  th r e e - p a r a m e te r  g a m m a  

d i s t r i b u t io n  b a se d  on  1000 M o n te  C a rlo  s im u la tio n s  w ith  s a m p le  s ize  n  =  365 a n d  ß  =  7 =  1

E s t im a te d P e rfo rm a n c e O r  = 1.5 a —2.0
P a r a m e t e r C r i te r ia M e th o d M e th o d

1 2 3 4 1 2 3 4

m e a n 1.458 1.460 1.460 1.454 1 .953 1.947 1 .948 1 .947
a b ia s -0.028 -0 .027 -0 .027 -0 .031 -0 .0 2 4 -0 .0 2 6 0 .026 0 .027

r r m s e 0.089 0.089 0.089 0.091 0 .1 0 3 0 .104 0 .105 0 .106

m e a n 1.027 1.026 1.026 1.030 1 .022 1.024 1.024 0 .988
ß b ia s 0.027 0.026 0.026 0 .030 0 .022 0 .024 0 .024 -0 .0 1 2

r rm s e 0.097 0.098 0.098 0 .098 0 .100 0 .100 0.101 0 .097

m e a n 1.011 1.011 1.011 1.011 1.019 1.021 1.021 1.022
7 b ia s 0.011 0.011 0.011 0.011 0 .019 0.021 0.021 0 .022

r r m s e 0.021 0.020 0.020 0 .021 0 .048 0 .049 0 .050 0 .052

E s t im a te d P e r fo rm a n c e O r  = 4.0 a —6.0
P a r a m e t e r C r i te r ia M e th o d M e th o d

1 2 3 4 1 2 3 4

m e a n 3.947 3.947 3.947 3 .947 6 .0 3 4 6 .038 6 .034 6 .026
a b ia s -0 .013 -0.013 -0 .013 -0 .0 1 3 0 .0 0 6 0 .006 0 .006 0 .0 0 0 4

r r m s e 0.196 0.196 0.196 01961 0 .2 6 8 0 .270 0 .268 0 .2 8 4

m e a n 1.026 1.026 1.026 1 .026 1 .026 1 .025 1.026 0 .995
ß b ia s 0.026 0.026 0.026 0 .0 2 6 0 .0 2 6 0 .025 0 .026 -0 .0 0 5

r r m s e 0.134 0.134 0.134 0 .134 0 .1 6 0 0 .159 0 .160 0 .168

m e a n 1.045 1.044 1.045 1.045 1 .047 1.045 1.047 1.044
7 b ia s 0.045 0.044 0.045 0 .045 0 .0 4 7 0 .045 0 .047 0 .0 4 4

r r m s e 0.291 0.291 0.291 0 .291 0 .6 5 2 0 .657 0 .652 0 .701
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TABLE 3.2
E s tim a te s  o f p a r a m e te r s  d e r iv e d  fro m  n ew  M L  a p p ro a c h  fo r th e  th r e e - p a r a m e te r  g a m m a  

d is t r ib u t io n  b a s e d  o n  1000 M o n te  C a rlo  s im u la tio n s  w ith  sa m p le  size  n  =  365 a n d  ß  — 7 =  1

E s t im a te d P e r fo rm a n c e S h a p e  P a r a m e te r  a
P a r a m e te r C r i te r ia 0.3 0.5 0.8 1.0

m e a n 0.310 0.501 0.781 0 .9 5 7
O r b ias 0 .032 0.001 -0 .023 -0 .0 4 3

r rm s e 0.065 0.060 0.063 0 .0 7 3

m e a n 0.973 1.003 1.029 1 .046

ß b ias -0 .027 0.003 0.029 0 .0 4 6
rrm s e 0.110 0.093 0.093 0 .0 9 3

m e a n 1.000 1.000 1.001 1 .003

7 b ias 0.000 0.000 0.001 0 .0 0 3
rrm s e 0.000 0.000 0.001 0 .0 0 4
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TABLE 3.4
E s t im a te s  o f  p a ra m e te r s  d e riv e d  fro m  new  M L  a p p ro a c h  fo r  th e  th r e e - p a r a m e te r  W e ib u ll 

d is t r ib u t io n  b a se d  on  1000 M o n te  C a rlo  s im u la tio n s  w ith  sa m p le  size  n  =  3G5 a n d  ß  =  7  =  1

E s t im a te d
P a r a m e te r

P e rfo rm a n c e
C r i te r ia 1.5

S h a p e  P a r a m e te r  a  
2 .0 3.0 4.0

m e a n 1.483 1.983 2 .987 4 .032
a b ias - 0.012 -0 .009 -0 .004 0 .008

r rm s e 0 .047 0.058 0 .092 0 .137

m e a n 0.988 0.989 0.991 1.040

ß b ias -0.012 -0.011 -0 .009 0 .040
rrm s e 0 .043 0.045 0.073 0 .577

m e a n 1.008 1.010 1.008 0 .985

7 b ias 0 .008 0.009 0.008 -0 .015
rrm s e 0 .015 0.029 0 .066 0 .194

N o te  : T h e  r e s u l ts  fro m  u sin g  M e th o d  2 a re  v ir tu a l ly  id e n tic a l to  th o s e  o f  T a b le  3.
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TABLE 3.5
E stim a te s  o f  p aram eters derived  from  new  M L approach  for th e  th ree-p a ra m eter  W eib u ll 

d is tr ib u tio n  b ased  on 1000 M on te  C arlo sim u la tio n s w ith  sa m p le  size  n =  365 an d  ß  — 7  =  1

E stim a te d  Perform ance
P a ra m eter  C riteria

S h ap e P a ra m eter  a
0.3 0 .5  0 .8  1.0

m ean
q b ias

rrinse

0 .305  0.501 0 .794  0 .983
0.016  0 .003  -0 .0 0 8  -0 .0 1 7
0.041 0.039 0 .039  0 .042

m ean
ß  bias

rrinse

1.034 1.005 0 .995  0 .990
0 .034  0 .005 -0 .005  -0 .0 1 0
0.195  0 .112  0 .070  0 .056

m ean
7  bias

rrm se

1.000 1.000 1.001 1.003
0.000 0 .000  0 .001  0 .003
0 .000  0.000 0 .001  0 .004
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TABLE 3.7
E s t im a te s  o f  p a ra m e te r s  o f tw o d is t r ib u t io n s  a n d  m a x im iz e d  lo g -lik e lih o o d  v a lu es  by  v a r io u s  
m e th o d s  to  fit n i t ro g e n  d io x id e  c o n c e n tra t io n s  in  t h e  M u s e u m  a n d  th e  A lp h in g to n  s ta t io n s ,

M e lb o u rn e , A u s t r a l ia

n D a ta  S ta t io n D is tr ib u tio n M e th o d a ß 7 M a x (lo g L )

G a m m a 1 ,2 ,3 ,4 1.772 9 .962 0.523 -586 .21
271 M u se u m

W eib u ll 1,2 1.336 3 .749 0.565 -5 8 8 .4 2

G a m m a 1 0 .637 3 .286 0.040 -525 .33
317 A lp h in g to n

W eib u ll 1 0 .773 1.840 0.040 -5 3 1 .9 7

N o te  : F o r th e  d a ta  in  th e  A lp h in g to n  s t a t io n ,  m e th o d s  2-4  fa ile d  to  co n v e rg e .

TABLE 3.8
E s t im a te s  o f  p a ra m e te r s  a n d  m a x im iz e d  lo g - l ik e lih o o d  v a lu e s  b y  n ew  M L  a p p ro a c h  a n d  M P S  

m e th o d  to  fit th e  th r e e  p a r a m e te r  W e ib u ll  d i s t r ib u t io n  u s in g  th e  f lo o d  level d a ta  a n d  th e
p o l lu t io n  d a t a

n D a ta  S e t M e th o d a ß 7 M a x (lo g L )

M L 0 .4 6 4 0 .128 0 .265 25.03
20 F lo o d  L evel

M P S 1 .310 0 .202 0 .244 16.36

M L 0 .4 3 0 4333 1364 -43 .44
20 P o llu t io n

M P S 0 .9 5 0 6562 1085 -56 .75
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C h ap ter 4

P ercen tile  E stim ation : th e  M eth o d  
o f  M om en ts versus M axim u m  
L ikelihood

4 .1  I n tr o d u c t io n

This chapter considers the problem of param etric fitting of probability distributions 

given a tim e series of observations by comparing the results of comprehensive Monte 

Carlo simulation experiments using the method of moments and maximum likelihood. 

From the analysis of air quality data sets collected at fixed sites over invariant averaging 

times, common distributional forms considered appropriate are the lognormal, gamma 

and Weibull distributions (e.g. Bencala and Seinfield, 1976; Taylor et al. 1986), which 

have been discussed in previous chapters. The aim here is to summarise the data while 

obtaining accurate estim ates of the percentiles required. For this application it must 

be assumed th a t air pollutant observations are independent, identically distributed 

random variables. Often this appears not too harsh an assumption in practice. Geor- 

gopoulos and Seinfeld (1982) noted in their review of the statistical distribution of air 

pollutant concentrations tha t the application of theoretical results derived for indepen

dent, identically distributed random variables produced satisfactory agreement with 

observations.

To fit air quality data, the upper percentiles of the distribution are the m ajor 

concerns although fitting of the overall distribution is also very im portant. These
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upper percentiles can generally be considered to consist of the 98-percentile and higher 

percentiles. This is the percentile range of concentrations to which most air quality 

standards refer. Particular emphasis is placed upon estim ation of the maximum and 

second highest concentrations of a data set consisting of observations recorded over a 

fixed averaging tim e (sampling interval) of 24-hours and collected for a calendar year. 

However, the effect of other averaging times is investigated as well by varying the 

sample size in simulation experiments.

Little attention has previously been given directly to quantify performance for fit

ting high percentiles in the statistical literature. In general applications, the method 

of maximum likelihood and the m ethod of moments are commonly used in estimation. 

It is well understood tha t the method of maximum likelihood provides more efficient 

estim ates of the param eters than the method of moments at large sample sizes (Kendall 

and S tuart, 1979). However, the relevant performance of the fit will change accord

ing to the parent param eter values, the percentile of interest, the sample size and the 

selected performance criterion. This problem shall be examined here.

4.2 G eneral P ro p erties  o f  th e  M eth o d s o f  M om en ts  
and M axim u m  L ikelihood  re la ted  to  A ir 
Q uality  A p p lica tion

As mentioned before, the methods of moments (MT) and maximum likelihood (ML) 

are the most popular statistical techniques for estim ating param eters of a distribution. 

Even though numerous papers and text books in the statistical literature have dis

cussed these two methods, most authors have focussed only on the theoretical aspects 

(Kendall and S tuart, 1979). Practical aspects have received little  attention, especially 

investigation of the performance of these two methods by simulation experiments and 

fitting real data. Employing these methods to study air pollution data, it is necessary 

to re-examine their properties in relation to the requirements raised in applications. 

Particularly, there is concern with their behaviour in predicting upper percentiles of
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distributions.

The m ethod of moments is a traditional approach used for estim ating the param e

ters of distributions. This m ethod equates the sample moments with the corresponding 

population values, an equivalence which becomes true as the sample size tends to infin

ity. Generally, the moment generating function or characteristic function can be used 

to generate theoretical moments, and the sample moments can be easily obtained by 

simple calculations from the data. Compared to the m ethod of maximum likelihood, 

the m ethod of moments is simpler to use and its estim ates are consistent. However, 

as a distribution departs considerably from normality, such as those of the Pearsonian 

type, the MT m ethod becomes very inefficient in estim ating param eters of the distri

bution (Cramer, 1946). In many cases, the estim ates of the m ethod of moments have 

large variance, and they are not unbiased (Kendall and Stuart, 1979).

The m ethod of maximum likelihood is a more sophisticated technique in estim ating 

param eters of distributions. Since it maximizes the likelihood function of the distribu

tions, the ML estim ates have many optimal properties. Asymptotically, the estim ates 

of ML follow the normal distribution with the true value as mean, and a variance 

achieving the Cramer-Rao bound (Kendall and S tuart, 1979). Also such estimates are 

asym ptotically efficient, sufficient and consistent. Hence, they play a very im portant 

role in statistical inference, such as in hypothesis testing. On the other hand, because 

the ML m ethod usually involves a numerical procedure to estim ate the param eters 

iteratively and simultaneously, it can provide convergence difficulties. Personal experi

ence suggests th a t such difficulties occur particularly when the num ber of param eters 

of the distribution is more than 3 or the sample size is below 30. On the contrary, the 

m ethod of moments does not suffer from this convergence problem.

In practice, it is desirable to use a simple m ethod as long as its error in estim ation 

can be tolerated. There is a lack of knowledge in the literature, indicating the exact 

quantitative difference between the MT and ML m ethods in estim ating param eters 

of probability distributions. This may be obtained via extensive investigations and
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Monte Carlo com puter simulations. The aim here is to provide such information to the 

practitioner, so tha t the decision of which method should be used can be made based 

upon the results given.

Even less attention has been given to upper percentile estim ation by MT and ML 

methods. In recent years, it has become very im portant since many environmental 

regulations, such as air quality standards, are stated specifically in term s of upper 

percentiles. It is im portant to predict these percentiles as accurately as possible because 

the results have serious practical consequences.

It is well understood tha t the behaviour of the sampling distribution differs over the 

entire range of percentiles. Corresponding to the lower, middle, and upper percentiles, 

the standard errors of the samples are not identical. For illustrative purposes, consider 

the following simple analysis. Suppose aq , . . . ,  x n is a random sample of n observations 

in ascending order of magnitude, i.e., it can be expressed as

Xi < x 2 < . •. <  x n

and f ( x )  is the parent probability density function of the distribution. Based upon the 

theory of quantiles (Kendall and S tuart, 1979), the variance of Xi can be calculated as

var(xi) = (4.1)

where p = F ( x p). For any p, 0 <  p < 1, and p + q =  1. The quantity / t- is the ordinate 

of the parent density distribution (Kendall and Stuart, (1979, p. 237)). Considering 

the entire range of percentiles, the relationship between var(x{) and p, in terms of 

(4.1), can be shown in Fig 4.1 for the three-param eter gam m a distribution. Generally, 

var(xi)  becomes larger as p is increased. A similar analysis can be used to obtain 

the relationship between var(xi)  and /,• shown in Fig 4.2. var(xi)  is high for low 

value of fi  at the upper percentiles. Hence, these plots clearly illustrate tha t at upper 

percentiles, where fi  has the lowest value, the largest variance in sampling is focussed. 

Obviously the upper percentiles yield the largest sampling errors for positively skewed 

distributions with long tails.
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It is easy to see the effects of sample upper percentiles on the ML and MT estim ation 

m ethods. Estim ation by maximum likelihood depends on the values of / ,  to maximise 

the likelihood function

L = L(x  i, . . . , x n;0) = max  J J  /(&,-; 0) (4.2)
t = i

in order to  obtain estimates of 0 where the maximized value of the function occurs. 

The middle range of percentiles with high values of /,■ has greatest influence on the 

estim ation results, while changes in the upper percentiles have less influence on the 

estim ation. In other words, this method is not especially sensitive to upper percentile 

variation because /,• is very low there. On the other hand, the m ethod of moments 

generally employs the first two or three moments of the sampling distribution, which 

heavily depend on the values of X{ rather than /,-. High values of X{ at the upper 

percentiles have strong influence on the estim ation results, particularly when using 

high moments. Hence, the method of moments is more sensitive to sampling errors in 

the upper percentiles, and it will simply fit the data  better there (but not necessarily 

the parent distribution) than the method of maximum likelihood.

4.3  E stim a tio n  by th e  M eth o d  o f M om en ts

Estim ation by maximum likelihood has been discussed in the previous chapter. Here 

the principle of the method of moments is outlined. Using the characteristic function, 

formulas for param eter estim ation of the two- and three-param eter gamma, Weibull 

and lognormal distributions are obtained.

4.3.1 T he C haracteristic Function and M om ents

In general, the distribution function is closely related to the characteristic function. 

The la tte r has many useful and im portant properties and plays a central role in statis

tical theory. Like moment generating functions, it can be used to derive properties of 

theoretical moments which widely apply to statistical inference and sampling analysis.
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Another important aspect of the characteristic function is that it uniquely determines 

a distribution function since the reciprocal relationship between distribution density 

function and characteristic function exists. From the limiting properties of distribution 

and characteristic functions which are demonstrated by the uniqueness theorem and 

the continuity theorem (Mann, 1974), the characteristic function of the joint distri

bution of a number of independent variables has provided a fundamentally important 

result in the theory of sampling (Kendall and Stuart, 1979).

Let F(x) denote a one-dimensioned distribution function and t a real number, the 

characteristic function corresponding to F(x) is defined as

0(f) =  f°° e'txdF(x) (4,3)
J  —  OO

where ( f ) ( t ) is generally a complex-valued function of t and always has <̂ (0) = 1 and 

eltx = cos tx + i sintx.  Differentiating (4.3) k times with respect to t,

roo
0"(f) = i‘/ x V ,x<iF(x) (4.4)

J —oo

Hence, the characteristic function can be expressed as a MacLaurin’s series in the 

neighbourhood of t = 0 by

m  =  1 + E  ^y(i t y  + 0(tk) (4.5)

where the error term tends to zero as t —> 0. (Cramer, 1946). Here a„ is just the 

moment of order v of the distribution, having the form

roo
a„ = I x'rfFfx) (4.6)

J —oo

The first moment cq is the mean of the distribution, denoted also by m. Based on the 

mean of the distribution, the central moments can be defined by

Hi/ m)VC(x) (4.7)
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Using (4.7), the relation between moments and central moments are easily found 

as the following (Cramer, 1946)

Po =  1 , (4.8)

Pi =  0, (4.9)

fi2 = a2 — m 2, (4.10)

//ß =  0 3  — 3 m a 2 +  2 m3, (4.11)

= a4 — 4 mö3 -f 6m 2a2 — 3m4, (4.12)

where is the variance of the distribution, denoted by <7 2 (cr is the standard deviation). 

In general applications, the first moment, and second and third central moments are 

used quite often. To distinguish between symmetric and skewed distributions, the 

coefficient of skewness is commonly introduced as

9 = (4.13)

The skewness is used to measure the departure of a skewed distribution from a 

symmetric distribution. Positive skewness shows tha t the frequency curve forms a long 

tail in the positive direction; similarly negative skewness will lead to extension in the 

negative direction. Normally, the positive-skewed distribution is the usual case in air 

pollution applications and will be the m ajor focus in this chapter.

In the next section, the three-param eter gamma distribution is used for illustrative 

purposes to show how to obtain moments from the characteristic function. Subse

quently, the moment estim ators for the two- and three-param eter gamma, Weibull and 

lognormal distributions will be given, as they are the most commonly used forms in 

the air pollution and much of the statistical literature.
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4 .3 .2  T h e  M o m en ts  E stim a to rs  for T w o- and T h ree-p a ra m eter  

G a m m a ,W eib u ll and L ogn orm al D is tr ib u tio n s

As discussed above, the characteristic function can be used to derive the theoretical 

m om ents for a particular distribution function of interest. Based on the central limit 

theorem , the sampling moments will tend to the theoretical or parent moments as sam

ple size tends to infinity. For finite samples the assumption of equality is made to derive 

the d istribution param eters. As an illustrative example, the three-param eter gamma 

distribution is now employed to dem onstrate the derivation of moment estimators. In 

the previous chapter, the density function of the three-param eter gamma distribution 

was given in (3.1). Inserting this in equation (4.3), the characteristic function for the 

three-param eter gam m a becomes

7 )\<k (4.14)
ßV (a ) Jo 'ß '  ß

where the lower bound of the interval of integration is zero according to the definition

of the gam m a distribution. Using the substitution u = x — 7 and re-arranging, the 

equation becomes

< 4 - , 5 )

Substituting again with v =  (^ — it)u,  the form of the characteristic function 

becomes

r 00

(bit) = n , ( 7 :  — U)~a /  va- l e~vdv’ ß QT ( a y ß  ' Jo
= c<t7(l - ü ß ) - a (4.16)

After expansion of (4.16) in a M acLaurin’s series in the neighbourhood of t = o and 

comparing it with (4.5), the z^-th moments for the three-param eter gamma distribution 

can be obtained as
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Ol = 7 + ßa

a3 = 72 + 27 ßa  + + 1) 

<*3 = 73 + 3-y2ßa +  37 ß 2a(a  + 1) + /?3(a + l)(a + 2)

(4.17)

(4.18)

(4.19)

For three-parameter distributions, the skewness is often used in deriving the mo

ment estimators. Inserting (4.17), (4.18) and (4.19) into (4.10) and (4.11) and rear

ranging, the second and third central moments become

/ i 2 =

f i3 =  2

From the definition of skewness in (4.13),

2ct/?3 _  _2_
9 ~ (aß*)i ~  >/5

Therefore, the shape parameter a  can be obtained by

(4.20)

(4.21)

a =
£
92

(4.23)

By using the variance /Z2, the scale parameter can be determined from

ß = y P  (4-24)V a

When the first two parameters are calculated, the remaining location parameter 7 

can be directly obtained from the definition of the mean as

7 = d\ — ßa (4.25)
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Following a similar procedure to the above, the moment estim ators for the two- 

param eter gamma, two- and three-param eter Weibull and lognormal distributions can 

also be derived. The sample moments are equated to their theoretical counterparts. 

For a sample aq, x 2, • . . ,  x n of n independently and identically distributed random ob

servations, the sample moments can be expressed as

« , = - £ > ?  (4-26) n s t
and the central moments as

^  =  i E ( x i - x ) 1' (4-27)
n i=1

where x  is the sample mean. Note th a t normal practice is to use s =  £ j-  — ^ )2

instead of the sample variance because of its unbiased property. Using the sample 

moments, m ethod of moment estim ators of the param eters of the six distributions 

considered in this thesis can be given as follows (Johnson and Kotz (1970), Dubey 

(1966) and Aitchison and Brown (1975)): 

three-param eter Gamma:

jE ? .i(* .- -S )3

9

a  =
£  
A or (4.29)

' i E L i(x .-x ) :
n — 1 a

(4.30)

7  =  x — ßct

two-param eter Gamma:
(n — l)a*2

E ”=l(x,- -  x ) 2

(4.31)

(4.32)
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three-param eter Weibull:

i  _ r(f + 1) -  3r(f + i ) r ( j  + 1) + 2r3(i + 1)
[4 r HLi(*i -  s)2!1 [r(| + 1) -  P ( i  + 1)]§

(4.34)

ß
N

1 E f a i ( ^ - ^ ) 2

n - i r ( |  +  l ) - P ( l  +  l) 

■y =  x -  ß ^ { - g  +  1)

(4.35)

(4.36)

tw o-param eter Weibull:

(n -  l )x 2 r 2( !  + 1)
E "=1 ( x , - i ) 2 r ( i  +  2 ) - r 2( i  +  i)

(4.37)

ß =  *P r ( i  +  i)
(4.38)

three-param eter Lognormal:

s 2 -  1 ) ( e “ 2 +  2) (4.39)

=  {iog{[i + \ s 2 + \j(  1 +  \ a 2)2 - 1 ]* +  [1 +  -  \J(1 +  5 S2 ) 2 -l ] 3 - i } } 2  (4.40)

A 1 ] c   ̂ E i s l ^ t  — I
^  ~  2 °Sh  — 1 e“2 (e“ 2 — 1 ) '

(4.41)

7  =  x -  exp(ß  +  - a 2) (4.42)

two-param eter Lognormal:

(4.43)



(4.44)ß  = \ o g x -  ^ a 2

Note th a t (4.34) and (4.38) define a  implicitly.

The two- and three-param eter gamma, and two-parameter lognormal distributions 

require only simple calculations. For the two- and three-param eter Weibull and three- 

param eter lognormal distributions, the m ethod of moment estim ators are obtained by 

iterative numerical methods.

It should be appreciated tha t there will be different solutions for param eter esti

m ates if different moments are employed, such as higher moments. In other words, the 

m ethod of moment estim ators are not unique. Thus, using different moments can gen

erate quite different performance. However for the purpose of comparing performance 

with the maximum likelihood estim ator, common practice is followed here in using the 

first two moments for two-parameter distributions and the first three moments for 3 

param eter distributions.

4.4  Loss F unctions

In order to assess the performance of the methods of moments and maximum likelihood 

in predicting the percentiles of a distribution, loss functions recommended for assessing 

air quality models are used (see Fox (1981)). These functions are given in equations 

(3.18) and (3.19), and are reproduced below for convenience

BIAS(q) =  j r ' £ ( SLZ1 ) (4-45)

R R M S E ( q )  =  [ 1  E ( ^ ) 2]0'5 (4-46)

where N  is the num ber of replications in the Monte Carlo experiments. For present 

purposes, q denotes the parent param eter values and upper percentile quantities of the 

underlying distributions. The upper percentile quantities may be observed samples
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or underlying values of the parent distribution as errors of departure from both are 

calculated.

4.5 M onte Carlo Experim ents

To undertake this assessment of fitting percentiles of the gamma, Weibull and lognormal 

distributions for both the sample and parent cases, simulation over an extensive range 

of possible cases was undertaken. Results are reported in tabular form for shape 

param eters of value 2, 4 and 6 for the gamma distribution, of value 2, 3 and 4 for 

the Weibull distribution and of value 0.5, 0.7 and 0.9 for the lognormal distribution. 

These values span a large range of shapes which may arise in the analysis of air pollutant 

concentrations. In order to assess the sensitivity of results to the location param eter, 

the values of 1, 3 and 5 were selected for each distribution. The same values of 1, 3 

and 5 are also set for the scale param eter. For all param eter sets in the tables and 

figures, one thousand simulations are used. The m ajor sa m p le  size used is n —  365, 

since it represents a common case, namely a full year of 24-hourly average observations. 

However, a range of sample sizes from 100 to 1000 is also considered to show th a t the 

qualitative conclusions derived for sample size n =  365 are applicable for other sample 

sizes.

Through the Monte Carlo simulations, estim ates of both the param eters and per

centiles are obtained. In the percentile estim ation, the emphasis is placed on the 

following upper percentiles: the 98-percentile (98%), second maximum (MAX2) and 

maximum (M AXI) percentiles. The predicted values are compared with both  parent 

and sampling distributions. In the case of the param eter estim ation, only deviations 

from the parent (true) value can be calculated. Note th a t the new methodology of the 

m ethod of maximum likelihood proposed in Chapter 3 is used which can provide satis

factory ML estim ates in a com putationally efficient m anner for both the 3-param eter 

gamma and Weibull distributions. W hen the sampling distribution is quite skewed, 

it was found th a t the classical maximum likelihood m ethod for estim ation of the 3-
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param eter lognormal distribution, which involves solving the first derivative equations, 

has difficulty in converging. Using the new approach in Chapter 3, this problem can also 

be avoided. Therefore, in this chapter, the new ML method is used for the estim ation 

of the param eters of the three-param eter gamma, Weibull and lognormal distributions.

As is always the case in this thesis, the random sample generators used for the 

Monte Carlo experiments are DRNGAM, DRNWIB and DRNLNL for the gamma, 

Weibull and lognormal distributions, respectively. These are available as subroutines 

in the International M athem atical and Statistical Library (IMSL) in version 1.0 (April 

1987). The same seed number (1234) is used to obtain the first random sample of the 

first of the 1000 replications. Varying the initial seed produces similar results to those 

reported in the tables. For the maximum likelihood estim ation, a golden section search 

algorithm is used to obtain the roots of equations and the final estim ate of the root 

was accepted when the relative error between two successive approximations was less 

than 10-6 . A VAX 8700 mainframe computer was used.

4.6 M on te  Carlo R esu lts

4 .6 .1  E s tim a tio n  for th e  T h ree -p a ra m eter  G a m m a  
D istr ib u tio n

Table 4.1 lists the MEAN, BIAS and RRMSE for param eter estim ates of the gamma 

distribution derived using the method of maximum likelihood and m ethod of moments. 

As would be expected from theoretical considerations (Kendall and S tuart, 1979), Table

4.1 dem onstrates tha t the m ethod of maximum likelihood yields improved estimates 

of the param eters of the distribution, in term s of BIAS and RRMSE, over the method 

of moments. Note tha t param eter errors for shape and scale param eters are almost 

identical for different scale and location values of the parent distribution. This is not 

the situation for percentile errors reported in Tables 4.2 and 4.3. Generally, the relative 

performance of the two methods converges as the skewness decreases (shape increases).

For the three-param eter gamma distribution, Table 4.2 lists estim ates of the BIAS
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and RRMSE of predictions of the maximum value (M AXI), the second highest value 

(MAX2) and the 98-percentile (98%). These error criteria are based upon deviations 

from the true parent distributional percentiles. Again the m ethod of maxim um  like

lihood yields consistently better RRMSE values than the m ethod of moments. The 

estim ates of BIAS show tha t for the gamma distribution the m ethod of moments pro

duces estim ates of the percentiles with slightly smaller BIAS than the maxim um  like

lihood m ethod. The im portant point is tha t for both methods the BIAS is much lower 

than the corresponding RRMSE, often around 10 per cent of the RRMSE value. A 

comparison of the results of Tables 4.2 and 4.1 is interesting. The m ethod of moments 

is seen to produce much higher RRMSE values for the param eter estim ates than the 

maximum likelihood method. In Table 4.2 the improved accuracy of the m ethod of 

maximum likelihood over the m ethod of moments is relatively lower. Thus, the method 

of moments provides a much be tter fit to the upper percentiles of the distribution than 

the estim ates of param eters, considered as an isolated factor, would indicate.

Table 4.3 is based upon similar calculations to those for Table 4.2 except th a t the 

performance criteria are based upon deviations from the relevant sample percentile in 

each of the 1000 Monte Carlo simulations. The results of Table 4.3 show th a t the 

m ethod of moments produces lower BIAS and RRMSE values for the three percentiles. 

Hence the m ethod of moments provides a closer description of sample upper percentiles 

than the m ethod of maximum likelihood.

The results of Tables 4.2 and 4.3 also yield a consistent pattern  in the percentile error 

sensitivity to location, scale and shape parameters. Consider the effect of changes in 

location param eter first. For either method a larger location param eter yields a general 

decrease in BIAS accompanied always by a decrease in RRMSE from the parent and 

sample percentiles. This pattern  holds for all shape param eterisations and for the three 

percentiles investigated. The reverse effect can be observed for changes in the scale 

param eter. BIAS and RRMSE will increase when the value of the scale param eter 

increases. For the effect of shape param eter changes, an equally consistent pa ttern  can 

be seen whichever the method, percentile, scale and location param eter values. In this
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case the BIAS and RRMSE generally drop as skewness decreases.

In order to investigate the performance of the method of moments and method 

of maximum likelihood over a range of percentiles, the RRMSE for the full range of 

percentiles was evaluated. Again N  =  1000 and n — 365 were chosen for the Monte 

Carlo study. Results are plotted for gamma param eter values of (a , /?, 7 ) =  (2,1,1). The 

other param eter sets yield analogous behaviour. Figure 4.3 presents these results for 

RRM SE deviations from the parent percentiles. Figure 4.4 presents the corresponding 

results for RRMSE, th a t is for deviations from the sample percentiles. Figure 4.3 shows 

th a t the m ethod of maximum likelihood produces the lower RRMSE (from the parent 

percentile) values over all percentiles. However, Figure 4.4 indicates tha t the fit to the 

observed percentiles by the m ethod of moments is superior for the upper percentiles. 

This is not the case for the lower percentiles. Thus there is a cross-over percentile 

above which the m ethod of moments becomes superior.

The effect of sample size was also investigated by evaluating RRMSE at the 98- 

percentile (98%) over the range of sample sizes n =  50,100(100)1000. Figure 4.5 

presents the indicative results for deviations from the true value. The parent param eter 

values used to illustrate are ( a ,/? ,7 ) =  (2,1,1) for the gamma distribution. Figure 4.6 

shows the corresponding results for deviations from the sample 98-percentile. Figure 

4.5 dem onstrates the expected result tha t the method of maximum likelihood yields 

the lowest values of RRMSE relative to the parent percentile for the whole range of 

sample sizes considered here. By contrast, Figure 4.6 illustrates th a t for the gamma 

distribution the m ethod of moments has lower deviations for the estim ates of sample 

percentiles. However the m ethod of maximum likelihood appears to be approaching 

the m ethod of moments in accuracy as the sample size increases.

4.6.2 E stim ation  for th e T hree-param eter W eibull 
D istribution

Comparison of estim ates of both param eters and percentiles by the methods of mo

ments and maximum likelihood for the three-param eter Weibull distribution yields
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qualitatively similar patterns to the results above for the gamma distribution. These 

are shown in Tables 4.4 to 4.6. In Table 4.4, the MEAN, BIAS and RRM SE for 

param eter estim ates of the Weibull distribution are derived by using the m ethod of 

m aximum likelihood and method of moments. Again the method of m aximum likeli

hood yields improved estimates of the param eters of the distribution, in term s of BIAS 

and RRMSE, over the method of moments. Param eter errors for shape and scale pa

ram eters remain almost identical for different scale and location values of the parent 

distribution.

Table 4.5 reports estim ates of the BIAS and RRMSE of predictions of the three 

upper percentiles based upon deviations from the true parent percentiles. The method 

of maximum likelihood yields consistently better RRMSE values than the m ethod of 

moments. Again, as been seen in the three-param eter gam m a case, the estim ates of 

BIAS show th a t for the Weibull distribution the method of moments produces estim ates 

of the percentiles with slightly smaller BIAS than the maximum likelihood m ethod.

The results of estim ation Based upon deviations from the relevant sample percentile, 

are obtained which are reported in Table 4.6. The method of moments has lower BIAS 

and RRMSE values for the three percentiles investigated. It dem onstrates tha t the 

m ethod of moments provides a better fit of sample upper percentiles than the method 

of maximum likelihood.

For the three-param eter Weibull distribution, the percentile errors are also sensi

tive to location, scale and shape parameters. W hen the location param eter changes, 

BIAS and RRMSE generally decrease for both the parent and sample percentiles, but 

an increase in the scale param eter value leads to an increase in BIAS and RRMSE. 

Similar to the three-param eter gam m a case, the effects of shape param eter changes are 

significant whatever the m ethod, percentile, scale and location param eter values.

As with the gamma distribution, an investigation was undertaken for examining 

the performance of the method of moments and method of maximum likelihood over a 

range of percentiles for the three-param eter Weibull distribution. Still using N  = 1000
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and n =  365 for the Monte Carlo study, the RRMSE for the full range of percentiles 

was evaluated. In illustration, three parameter values of (a,/?, 7) = (2,1,1) are used. 

In Figure 4.7, RRMSE is plotted for deviation from the parent percentiles. The method 

of maximum likelihood produces the lower RRMSE values over percentiles in terms of 

the parent distribution. Figure 4.8 is the corresponding plot for deviations from the 

sample percentiles. It shows that the fit to the observed percentiles by the method 

of moments is superior to that obtained using the method of maximum likelihood. It 

should be noted that the method of moments performs better here than the method 

of maximum likelihood over a much wider range of percentiles than was found for the 

three-parameter gamma distribution in Figure 4.6.

The effects of sample size are shown in Figures 4.9 and 4.10, which investigate 

RRMSE at the 98-percentile (98%) over the range of sample sizes n = 50,100(100)1000. 

For indicative results, the parent parameter values used are (c*,/?, 7) =  (2,1,1) for 

the Weibull distribution. Figure 4.9 provides the expected result that the method of 

maximum likelihood yields the lowest values of RRMSE relative to the parent percentile 

for the whole range of sample sizes considered here. However, the corresponding results 

for deviations from the sample 98-percentile in Figure 4.10 reverses this situation.

4.6.3 E stim ation  for th e T hree-param eter Lognormal 
D istribution

The same investigation procedure was applied for estimating both parameters and 

percentiles for the three-parameter lognormal distribution by the methods of moments 

and maximum likelihood. The results are shown in Tables 4.7 to 4.9 which indicate a 

qualitatively similar pattern of the results as with the previous two distributions. Note 

that the lognormal distribution has an apparent opposite behaviour to the other two 

as the shape parameter changes. This is because skewness increases for the lognormal 

distribution as the value of shape parameter increases. The results of applying the 

method of maximum likelihood and method of moments to estimate the parameters 

of the lognormal distribution are given in Table 4.7. In terms of BIAS and RRMSE,
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the m ethod of m aximum likelihood yields improved estim ates of the param eters of 

the distribution over the m ethod of moments. It should be noted tha t the relative 

performance in term s of RRMSE differences between the m ethod of moments and 

m ethod of maximum likelihood is much worse than for the gamma and Weibull cases. 

Again, param eter errors for shape and scale param eters remain almost identical for 

different scale and location values of the parent distribution.

In Table 4.8, estim ates are given of the BIAS and RRMSE for predictions of the 

three upper percentiles, based upon deviations from the true parent distributional 

percentiles. The m ethod of maximum likelihood yields consistently better RRMSE 

values than the m ethod of moments. Unlike the two previous distributions, the method 

of moments produces estim ates of the percentiles with both larger BIAS and RRMSE 

than the maximum likelihood m ethod.

Calculations of the deviations from the relevant sample percentiles (Table 4.9) show 

tha t the m ethod of moments has lower BIAS and RRMSE values for the three per

centiles. It provides further evidence tha t the m ethod of moments yields a better fit of 

sample upper percentiles than the m ethod of maximum likelihood.

The percentile errors for the three-param eter lognormal distribution also vary with 

the change of location, scale and shape param eters. BIAS and RRM SE generally 

decrease (for deviations from both the parent and sample percentiles) as the location 

param eter is increased. On the other hand, increases in the value of the scale param eter 

causes increases in BIAS and RRMSE, and it seems tha t the proportional increase is 

much larger than for the other two distributions. Changes in shape param eter affect 

both BIAS and RRMSE whatever the m ethod, percentile, scale and location param eter 

values.

The RRMSE were calculated for the full range of percentiles of the three-param eter 

lognormal distribution. To illustrate the results, three param eter parent values of 

(a ,/? ,7 ) =  (0.9,1,1) are used. Figure 4.11 presents deviations from the parent per

centiles which shows th a t the m ethod of maximum likelihood produces the lower
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RRM SE (from the parent percentile) values over all percentiles. In Figure 4.12, it 

is seen tha t the fit to the observed percentiles by the m ethod of moments is superior 

to those predicted by the method of maximum likelihood for the upper percentiles, 

if errors is based upon deviations from the samples. Similar to the three-param eter 

gam m a distribution, there is a cross-over percentile above which the method of mo

m ents becomes superior.

The same parent param eter sets and the 98 percentile was used to illustrate results 

of comparing the m ethod of maximum likelihood and m ethod of moments. The results 

are dem onstrated in Figure 4.13. In contrast, Figure 4.14 shows the corresponding 

results for deviations from the sample 98-percentile when the m ethod of moments 

produces lower deviations when estim ating sample percentiles.

4 .6 .4  E stim a tio n  for th e  T w o -p a ra m eter  G a m m a , W eib u ll 
and L ogn orm al D is tr ib u tio n s

Similar investigations were also undertaken for estim ating of both param eters and per

centiles by the methods of moments and maximum likelihood for the two-parameter 

gamma, Weibull and lognormal distributions. In principle, the results are qualitatively 

very close to those of their three-param eter versions. For the three two-parameter m od

els, the m ethod of maximum likelihood always yields improved estim ates of the param 

eters of the distribution over the method of moments in term s of BIAS and RRMSE. 

Also, being similar to the three-param eter models, the method of maximum likelihood 

yields consistently better RRMSE values of parent percentiles than the method of mo

ments. For deviations from the sample percentiles, the results dem onstrate th a t the 

m ethod of moments provides a better fit of sample upper percentiles than the method 

of maximum likelihood.

Considering the effects of changes in param eter values, the shape param eter be

comes the only factor to influence RRMSE since the location for two-parameter ver

sion is always zero, and RRMSE values remain almost identical as the scale param eter 

changes. These results are not given in this chapter. The interested readers should refer
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to the paper by Bai and Taylor (1986) for the two-parameter gamma distribution and a 

forthcoming paper by Bai for the two-parameter Weibull and lognormal distributions.

4 .7  C o n c lu d in g  R e m a rk s

Probability distributions can be employed in the study of air quality data to overcome 

many of the problems of managing large data bases with possible information deficien

cies. A data  set can be reduced to just a few param eters if an appropriate distributional 

function can be identified. Probability distributions can also be employed to produce 

estim ates of properties of the probability density function when the sample contains 

errors and missing data.

The results presented in this section dem onstrate tha t, where gamma, Weibull or 

lognormal description of the raw data set is required, the method of moments provides 

more accurate estim ates of the highest and second highest sample concentrations than 

m axim um  likelihood for the param eter space investigated. For the gamma and lognor

mal distributions and sample size n =  365, this result holds from MAXI to the sample 

98-percentile, but this is at the expense of poorer estim ates at the lower sample per

centiles. Table 4.3 shows for the param eter space investigated tha t the improvement 

obtained by using the method of moments is well worth having for the sample maxi

m um  and second highest value and this is doubly im portant if the distribution is highly 

skewed. For example, the worst root mean square error is 33.3 per cent for the m axi

m um  likelihood method but reduces to 14.4 per cent for the method of moments. The 

m ethod of moments also offers the advantage of yielding numerically simpler solutions 

than  tha t of maximum likelihood.

However, the m ethod of maximum likelihood should be employed when the most 

likely (true) estim ate is desired. This method provides reasonable estim ates over the 

entire range of percentiles of the parent distribution. The m ethod of moments is much 

more sensitive to the sample data and tends to produce estim ates which weight the 

upper percentiles of the sample in favour of the entire data set. Table 4.2, for example,
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shows tha t the improvement obtained by using maximum likelihood to reduce random 

error is well worth the effort in all cases for the gamma distribution. The worst root 

mean square error (for high skewness) in estim ating the underlying maximum value is 

just 1 per cent compared to 23.9 per cent for the method of moments.

Finally, as the m ethod of maximum likelihood does not weight the largest observa

tions as significantly as the method of moments, the method of maximum likelihood 

will be far less sensitive to outliers produced through systematic, experimental, data 

handling or other errors which may arise in the course of extensive routine and ex

perim ental monitoring programs. This is of particular practical importance in the 

management of air quality, where, for example, the prediction of extreme pollutant 

concentrations plays an im portant role in the consideration and implementation of 

pollution control strategies.
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Figure 4.1: The variance with respect to each percentile for the 3-parameter gamma 
distribution (a ,/? ,7) =  (2,1,1) and sample size n =  100
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Figure 4.2: The variance with respect to each value /,• of the density distribution for 
the 3-parameter gamma distribution with (a ,/? ,7) =  (2 ,1 ,1) and sample size n = 100
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Figure 4.3: The RRMSE values with respect to each true percentile for the 3-parameter 
gam m a distribution with (a ,/? ,7) =  (2 ,1 ,1) and n = 365
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Figure 4.4: The RRMSE values with respect to each sample percentile for the 3- 
param eter gamma distribution with (a ,/? ,7) =  (2 ,1 ,1) and n = 365
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Figure 4.5: The RRMSE values with respect to true percentile (98%) for the 3- 
param eter gamma distribution, versus n
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Figure 4.6: The RRMSE values with respect to sample percentile (98%) for the 3- 
param eter gamma distribution, versus n
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Figure 4.7: The RRMSE values with respect to each true percentile for the 3-parameter 
Weibull distribution with (a,/? ,7) = (2,1,1) and n = 365
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Figure 4.8: The RRMSE values with respect to each sample percentile for the 3- 
parameter Weibull distribution with (a,/3,7) = (2,1,1) and n = 365
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Figure 4.9: The RRMSE values with respect to true percentile (98%) for the 3- 
param eter Weibull distribution, versus n
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Figure 4.10: The RRMSE values with respect to sample percentile (98%) for the 3- 
param eter Weibull distribution, versus n
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Figure 4.11: The RRMSE values with respect to each true percentile for the 3-
param eter lognormal distribution with ( a , /? ,7 ) =  (0.9,1,1) and n = 365
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Figure 4.12: The RRMSE values with respect to each sample percentile for the 3- 
param eter lognormal distribution with (a ,/? ,7 ) =  (0.9,1,1) and n = 365
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Figure 4.13: The RRMSE values with respect to true percentile (98%) for the 3- 
param eter lognormal distribution, versus n
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Figure 4.14: The RRMSE values with respect to sample percentile (98%) for the 3- 
param eter lognormal distribution, versus n
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C h a p te r  5

E m p ir ic a l M o d e ls  o f F i t t in g  E rro rs

5.1 In tro d u c tio n

The objective of this chapter is to show th a t empirical models can be constructed to 

describe the dependence of the error in fitting param etric models of probability dis

tributions on type of distribution, sample size, parent param eter values and percentile 

property of interest. The procedure and results are described for three-param eter 

gam m a, lognormal and Weibull distributions. Monte Carlo simulations are used to 

infer the true errors used as dependent variables to calibrate or infer the parameters 

of the empirical model. The simulations reflect errors obtained under ideal conditions 

where the samples generated are independent and identically distributed according to 

a known parameterisation, i.e. the three-param eter gamma, Weibull or lognormal dis

tributions. The errors obtained in this way are therefore the minimum ones that could 

be expected in practice where the samples are not likely to be as strongly independent 

and identically distributed, nor will the true distribution be known or even exist.

The work was undertaken so tha t practitioners who wish to apply identification and 

estim ation methods to random samples from some probability density function will be 

able to appeal to a simple formula to obtain an appreciation of the minimum error 

associated with fitting percentile values of interest. A similar exercise was undertaken 

by Jakem an, Taylor and Simpson (1986) for two-param eter distributions.

The approach used to construct the empirical models can be placed within the
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framework of Response Surface Methodology (RSM). Therefore, we begin with a dis

cussion of the history and steps in this general framework. This is followed by a 

description of some of the different techniques used. We then go on to show its use 

for our application to fitting probability density functions for air quality management 

uses.

5.2 L itera tu re  R ev iew

RSM is a set of techniques for predicting empirical model structure from experiments. 

It employs some well-known statistical methodologies in solving model estim ation and 

identification problems. Experim ents can be carefully designed in order to optimally 

explore the relationship between dependent and independent variables. Initial de

velopments can be traced back to contributions from J. W ishart, C.P. W insor, E.A. 

Mitscherlich, F. Yates and others in the early 1930’s. However, the m ajor success 

was achieved in applying methods to explore the relationships between the  yield of a 

chemical process and a set of input variables presumed to influence the yield. In 1951, 

G.E.P. Box and K.B. Wilson with their colleagues formally established RSM. Many 

followers, such as R.H Myers (1971), provided new developments and a full description 

of RSM. Since then, RSM has been successfully used and applied in many diverse fields 

such as environmental, agricultural, biological, com puter and social sciences. However, 

the techniques for the RSM vary in different fields, depending upon the motivation for 

the experiments and the specific application. It is the task of different experts and 

specialists to develop RSM in their own areas.

5.3 E m p irica l M o d el-b u ild in g  and th e  S im ilarity  
to  T im e Series A n alysis

Using RSM to build an empirical model generally encompasses steps in the following 

procedure:

1. Designing carefully a series of experiments within the region of most interest and
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obtaining measurements of the response-surface variables;

2. Proceeding with an estim ation m ethod such as regression analysis to determine a 

m athem atical model appropriate for fitting the data; scaling and other transformations 

can be used if necessary;

3. Testing hypotheses of model param eter significance and goodness of fit;

4. Employing optim ization techniques to discover the best predicted value of the 

response and find the best operating conditions.

From the procedure above, it is easy to see tha t apart from the first and last steps, 

the techniques used are quite similar to others such as those used in tim e series analysis. 

Time series analysis is used predominently to describe a stochastic process (e.g. Box 

and Jenkins, 1976) while RSM presents the approximation to an underlying mechanism 

in the presence of noise. Both of them  use very similar statistical techniques in dealing 

with the data. In both cases, a set of data collected from experiments can be sum

marised by fitting some form of m athem atical model through an estim ation method. 

Consequently, some well-established statistical techniques, such as least squares proce

dures, maximum likelihood estim ation and hypotheses testing, can be easily adopted. 

Also the results of analysis for the empirical model can be presented in similar forms 

to those for tim e series models with an indication of performance using a statistic, such 

as variance. If the empirical model is an optim al approximation of a true mechanistic 

model, the variance between predicted and observed values will tend to be minimized.

5.4 T h e R esp o n se  F u n ction

RSM takes its name from the study of the relationship between the dependent variable 

y and a num ber of predictor variables x  = (aq ,. . .  , aq)' where the variable y is called 

the response. By using graphical techniques, when there is only a single independent 

variable, the relationship between input and output of a model can be easily plotted, 

hence the terminology, a response curve. If there are two independent variables as 

input which will determine a surface region of interest, the three dimensional curve is
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known as a response surface. Generally, input variables can be k dimensional and the 

region of interest is still known as a response surface being defined in k -f 1 dimensional 

space.

The response function can be expressed as

y =  / ( « ) + £  (5-1)

where e is noise from measurement sampling and model errors, and y is the actual 

observed response (which may be a vector). If the approximation of the response 

surface model is optim al, the expected value of y is equal to the hypothetical response 

77, th a t is E( y)  =  7/, while the discrepancy of y — rj is the error e often assumed to 

have a normal distribution. The response function f ( x ) is usually assumed to be a 

continuous function.

Basically, there are two ways of approximating a hypothetical response function. 

One is to use a series approximation which most commonly employs a Taylor series 

expansion; another is to assume a basic model structure by physical considerations and 

fit the data  in order to yield relevant values of param eters for the response function.

5 .4 .1  S er ies A p p ro x im a tio n

As an illustrative example, consider the response function with a single factor. If f ( x )  

is a continuous function with K derivatives, the function can be expressed as a Taylor 

series expansion about an arbitrary point a?o, as

77 =  f { x o) +  f ' { x 0)(x -  x 0) +  7>f"(x0)(x -  x 0 ) 2 +  • • • (5.2)

where f ' ( x 0) and f " ( x o) are the first and second derivatives respectively of f ( x )  with 

respect to x  evaluated at Here Xo can be any arbitrary value but it is usually defined 

at the center of the region of interest. Most commonly, a poly nominal approximation 

is used as a response function. Using the coefficients Ao, Ai, A2,. . .  as param eters which 

depend on x  and the derivatives of f ( x )  at #05 the expansion of (5.2) can be transformed
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to a polynominal form of degree n as

r) =  A0 +  Ai# +  \ 2x 2 . . .  +  \ nx n (5.3)

In general, the higher the degree of the approximating function, the more closely the 

Taylor series can approximate the true function. However, higher degrees of approx

im ation substantially increase com putational complexity. In practice, a polynomial 

of first or second degree is often chosen to adequately represent the true function by 

limiting its application to an appropriately random region of the factor space.

Normally the computational procedure is first to assume a form with a lower degree 

of polynomial model. Then, fit observations to estim ate the param eters of the model 

to obtain an estim ate of the experimental error variance. Hypothesis tests may be 

used subsequently to evaluate the performance of the model. W hen performance is 

not satisfactory, a higher degree of the polynomial model may be selected and the 

procedure can be repeated until satisfactory prediction is achieved.

5 .4 .2  D e te r m in is t ic  A p p ro x im a tio n

Series approximation may provide a satisfactory prediction of the true model but the 

form of such a model can be totally different from the underlying hypothetical form. 

Such empirical models cannot be used to explain the underlying process mechanisms 

and to explore the relationship between the variables in order to improve our un

derstanding of natural phenomena. Normally, deterministic approximations to the 

underlying model are used in this case. The approximation involves similar factors to 

the series approximation, but the model structure is based on certain physical consid

erations. A m ajor step is the quantitative analysis used to establish the relationship 

among these factors. By employing some well-known estim ation procedure, the pa

ram eters of each factor will be obtained. Similarly, the goodness of fit test is usually to 

test the model performance. The final form of the model can be obtained by carefully 

designing and proceeding with this model-building procedure.
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5.5 Em pirical M odel-building in Predicting RRM SE  
for Air Quality M anagem ent

The aim here is to construct an empirical model to predict the minimum relative root 

m ean square errors (RRMSE) when using probability density function to represent 

frequency distribution of sampled environmental phenomena such as air pollutant con

centrations. We dem onstrate with the theoretical RRMSE for upper percentiles of the 

gamma, Weibull and lognormal distribution, which are of strong interest in air quality 

monitoring and modelling studies.

Recall from Chapter 2 tha t a statistical distribution can be used as a summary of 

a set of data by incorporating the data into an appropriate member of a general class 

of distributions. When a particular data  set can be summarized by a certain form of 

distribution with few param eters, it is useful to know how well the distribution fits the 

data. This can be achieved partly by using a goodness of fit test which may give some 

indication of variability. The RSM approach here yields this variability in estimates 

of the upper percentiles for any sample size of interest. The quantity analysed is the 

RRMSE in upper percentiles.

The RRMSE is normally obtained by fitting the probability distribution to the 

data. Such errors depend on the type of the distribution, the values of its param eters, 

the estim ation method used and the sample size of the data  being fitted. These are 

the m ajor factors in determining the response surface.

Studying the features of individual plots between each factor and response variable, 

where other factors are fixed, helps understanding of the effect between each factor 

and response. For illustrative purposes, the procedure of empirical model-building for 

the three-param eter gamma distribution will be shown in the following. A similar 

procedure can also be used to develop analogous models for most distributions, such 

as the two- and three-param eter Weibull and lognormal distributions.
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5 .5 .1  H y p o th e t ic a l R esp o n se  F u n ctio n  o f  R R M S E

The first step in deriving an empirical model is to examine the effect of each factor 

on the response surface. These factors include: sample size n, the shape param eter 

a , scale param eter /?, location param eter 7 , and percentile p. Hence, the response 

function can be expressed as

where y is the RRMSE for fitting the three-param eter gamma distribution. Based on 

the analysis of the effects of each factor, a more specific function than this notional 

representation can be derived. These effects will now be discussed.

T he E ffect o f Sam ple Size n

According to asym ptotic theory, as sample size increases, the deviation between the 

sampling and theoretical (or parent) distribution becomes smaller. That is, RRMSE 

is reduced as n increases as shown in Figure 5.1. Therefore, the relationship between 

y and n can be expressed as

where a\ is a constant positive param eter of the empirical model tha t needs to be 

estim ated.

T he Effect o f Sh ape, Scale and L ocation  Factors

Similar analysis can be used for studying the effect of the shape, scale and location 

factors to the response variable. The shape param eter is very sensitive to RRMSE as 

shown in Figure 5.2, and the proportional relation is

V = f ( n , a , ß , ' y , p )  + e (5.4)

1
(5.5)

1 (5.6)
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where a2 is also a constant positive param eter of the empirical model to be determined.

The scale factor ß  has the opposite effect as shown in Figure 5.3. It can be shown 

tha t its response is of the form of

y oc ß a> (5.7)

where a3 is a constant positive param eter.

For the location factor 7, a similar pattern  can be seen in tha t RRMSE decreases 

as 7 increases, which is shown in Figure 5.4. Then the relationship between 7 and y 

can be w ritten as

y« (5-8)

where a4 is a constant positive param eter.

T h e  E ffec t o f P e r c e n tile s

The percentile p is quite different in affecting the response variable. From Figure 5.5, 

it can be seen tha t RRMSE is reasonably consistent over the range of most percentiles 

except the lower and upper extremes. This is because the m ethod of maximum log- 

likelihood used yields poor performance on the two extrem e cases as discussed in the 

previous chapter. Here we are only concerned with the upper percentiles which have 

an exponential relationship with the response variable as

y oc pai (5.9)

where a5 is a constant positive param eter for the percentile factor.

Based on the analysis above and ignoring the error term , the essential structure of 

the empirical model is proposed as

C ß a3pab
y  — -------------------------------------7«4
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where C is a constant which contains composite effects from all factors.

5 .5 .2  T ra n sfo rm a tio n , E s tim a tio n  and  Id en tifica tio n

In the next stage, the m ajor task is to determine the appropriate param eters for each 

factor and ensure tha t these param eters lead to an empirical model with adequate 

performance. To achieve this goal, there are three procedures to be typically followed. 

These are: transform ation, estim ation and identification.

T ransform ation

In order to simplify the estim ation procedure, linear regression is used instead of non

linear regression. Nonlinear transformations are therefore necessary. A natural trans

formation is a logarithmic one of the form

logy = logC — ailogn — a2loga + a^logß — a4logi + a5logp (5-IT)

=  Go T  Cl i l l i  -f- a 2 U 2 +  G3G3 T  G4U4 T  G5U5

where a0 = logC and u\ = logn,u2 =  loga , and so on. These param eters can be 

estim ated by standard linear least-squares methods.

E stim ation

A standard ordinary least-squares m ethod (regression analysis) can be easily applied to 

obtain param eters when the function is linear of the form (5.11). Adding experimental 

error, and considering n observations of the response surface, the standard form is

gj = Go +  aiUji +  a2uj2 +  a3uj3 +  a4Uj4 +  a5uj5 -f £j (5.12)

J =  1, 2, . . .  72
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where cjj denotes the observed response for the j ’th  trial, u j i  represents the level of 

factor i at the jth  trial, and £ j  are the random errors in g j .  In general, the error 

assumptions are

1. Random errors £ j  are normally distributed with zero mean and variance <r2;

2. They are m utually independent in the statistical sense.

The m ethod of ordinary least-squares selects values of the param eters which min

imise the quantity

R(a0, a2, . . . ,  a5) =  -  a0 -  axUji -  . . .  -  a5uj5y
j =i

where

u =

e w ritten a,s

y  =  Ou +  £

y\ ' 
2/2

y  =

1 <C
2 

..
.

3 1__
__

__
__

' 1 « 1 1 « 1 2 . . .  « 1 5  "

1 « 21 « 2 2 . • . « 2 5

. 1 « n l « n 2

’ a0 ' 
«1

• . • « n 5

a  =

a5 _

’ £i 1 

£2
£ =

.  .

The equation for the minimiser of (5.13) is then

(5.13)

(5.14)
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u'ub = u'y (5.15)

where b — (60, &i,. . . ,  bk) is the param eter estim ates. The solution for the least-squares 

estim ates is

b = (u'u)-1u'y (5.16)

where (u ' u )_1 is the inverse of u ' u  which is symmetric.

Id e n tif ic a tio n

Several statistics are commonly used to examine the performance of a fitted regres

sion model. The F -sta tistic  is normally used for testing the significance of the fitted 

regression equation. Under the assumption of norm ality for the errors, the test of the 

null hypothesis is H0: all values of 6; (excluding 60) are zero, against the alternative 

hypothesis H a: at least one value of 6, (excluding 6t) is not zero. The F-sta tistic  can 

be w ritten as (Khuri and Cornell, 1987)

M e a n S  quareRegression S S R / ( k  — 1)
M e a n S  quareResidual S S E / ( n  — k )

where SSR and SSE are defined as

(5.17)

S S R  =  jr(y, -  (5.18)
j =1

S S E  = i t ( y j  -  (5-19)
j =1

respectively. The average value equals y = [y\ +  y2 +  . . .  +  yn) / n while yj denotes the 

empirical estim ate of yj. If the null hypothesis is true, the F -sta tistic  will follows an 

F-distribution with k — 1 in the num erator and and n — k degrees of freedom in the 

denominator. However, if the value of F  exceeds the upper critical value Fayk-i,n-k , 

then the null hypothesis is rejected at the a-level of significance.
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For testing an hypothesis concerning the individual param eters in the proposed 

model, the T  statistic is used which compares the param eter estim ates in the fitted 

model to their respective estim ated standard errors. A test of the null hypothesis Ho: 

a{ = 0 is performed against the alternative H\\  a,- ^  0. The form of the T  test statistic 

is (Khuri and Cornell, 1987)

T  =
a{

SDi (5.20)

where SD{ is the estim ated standard error corresponding to a*; and the value of T  is 

compared with the critical value from the t distribution.

In addition, the coefficient of determ ination is also very useful as an accompanying 

statistic  to the F -sta tistic , which is the form of

where SSR is defined as

2 _  SSR.  
S S T

(5.21)

S S T  = £ ( w -  y f .  (5.22)
j=1

The value R 2 is a measure of the proportion of to tal variation of the values of yj about 

the m ean y which is explained by the fitted model.

W hen the fitted model is rejected, a new search must be in itiated  for a more ade

quate model. It can be started from the analysis of residuals, and rem edial measures, 

such as other transformations of y. In general, the true model is difficult to find, and 

attention should be focused on searching for a model with reasonable accuracy, which 

is useful for the intended application.

5 .5 .3  S im u la tio n  and E x p er im en ta l D es ig n

In general, the smaller the specific region of interest over which the approximation 

needs to be made, the better is the approxim ation achieved. This region is normally
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known as the factor space in which the experiments can actually be performed. For 

some cases, the experiments require exploration of the whole region in order to de

rive the generalised response surface, but this is sometimes quite difficult in practice, 

perhaps involving large com putational tim e and cost. Instead, the investigation can 

be restricted to certain lim ited regions of interest, which are particularly im portant in 

application.

From prior knowledge it is known tha t the density functions of air pollution data  are 

positively skewed. Hence, the possible range of param eter values for a given distribution 

can be delineated. Since the shape param eter is the most sensitive param eter, it 

is chosen over the widest range of possible values: the shape param eter is assumed 

to take values within the range [0.5, 6] for the gam m a distribution; [0.5, 4] for the 

Weibull distribution; and [0.4, 1.2] for the lognormal distribution. In the simulation 

experiments, the scale param eter and location param eter take on values from the range 

[1, 5] for these three distributions, respectively. Note tha t the lognormal distribution 

has opposite behaviour to the gam m a and Weibull distributions as the shape param eter 

increases. For each entry in the tables, N=1000 replications of the experiments are 

processed. The sample size considered covers the ranges, from 50 to 1000.

Random sample generators are used for the Monte Carlo experiments. As in pre

vious chapters these are DRNGAM, DRNWIB and DRNLNL for the gamma, Weibull 

and lognormal distributions, respectively. These subroutines are available in the Inter

national M athem atical and Statistical Library (IMSL) in version 1.0 (April 1987). The 

same seed number (1234) is used to obtain the first random sample of the first of the 

1000 replications. Varying the initial seed produces similar results to those reported 

in the tables. The new maximum likelihood approach discussed in the Chapter 3 is 

adopted here for estim ating the param eters of the distributions. For the regression 

analysis, the ‘Shazam ’ package is used to obtain the param eters of the linear equation 

(5.14) and to calculate goodness-of-fit of the empirical model to the data.
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5.5.4 The E xperim ental R esu lt

T h e  G a m m a  D is tr ib u tio n

W ith careful design of experiments in the factor space and through extensive simu

lation experiments, a large data set was obtained. For the three-param eter gamma 

distribution, 684 data points were used for the regression analysis of equation (5.12). 

The resulting model for the gamma distribution is

_  1.482ft0-118/)14,871
y  n 0 .544Q 0 .2 1 iy ) .1 0 0  1 ' >

The details of fitting the data and the results of using significant tests are listed in 

Table 5.1 and 5.2.

In Table 5.1 and 5.2, all of the statistics used show tha t the empirical model fits 

the data  well. By using the F  statistic, the null hypothesis is rejected at the 0 level 

of significance, indicating strongly th a t at least one of the five param eters ai in the 

equation (5.11) (excluding a0) is not zero. The results of T  tests show tha t each of these 

six param eters is significant. The R2 value between observed and predicted quantities 

is 93.87 per cent which implies th a t 93.87 per cent of the to tal variation in the values 

of data  is explained by the fitted model. The standard error of the estim ated a is .075. 

The sum of residuals is —0.756-12 with the variance of residuals 0.006, which indicate 

th a t this model is well-fitted to the data, and the mean of the residuals is close to zero 

and the variance of residuals is constant.

Figures 5.6 to 5.8 illustrate the fit of the empirical model of RRMSE to the data. 

The values of the shape, scale and location factors are (a ,/? , 7) =  (2 ,1 ,1). Each plot 

uses a range of sample sizes between 100 to 1000. Figure 5.6 shows the fit of the model 

to the data  at the 98 percentile, Figure 5.7 at the 99 percentile and Figure 5.8 at the 

99.8 percentile which is equivalent to the maximum percentile obtained from Larsen’s 

(Larsen, 1971) calculation when the sample size is 365. These figures clearly show that 

the empirical model provides a good fit to the data with reasonable accuracy.
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The model (5.23) is a generalised form for the upper percentile estim ation of 

RRMSE. To emphasize estim ation of the maximum percentile, for example, the per

centile factor in the model (5.12) can be om itted and then the regression analysis is 

performed by using the remaining factors against the estim ated RRMSE related to the 

maximum percentile. Thus the data points are reduced from 684 to 114. The resulting 

model is

=  1.481/?0-105 .y n 0.555a 0 .1 7 6 ^ 0 .0 9 1 ' '  ‘ '
Comparing model (5.24) to (5.23), the param eters of this simplified model, ao> ai, «2 ? 

a3 and a4, are slightly changed. The performances of (5.23) and (5.24) are almost 

identical which can be seen from the fit of both models to the data  for the maximum 

percentile in Figure 5.8 and Figure 5.9. Hence, the simpler model of (5.24) can be used 

in predicting RRMSE at maximum percentile which is particularly im portant in air 

quality management.

T he W eibull and L ognorm al D istr ib u tion s

Following a similar procedure to the model construction for the three-param eter gamma 

distribution, empirical models of the three-param eter Weibull and lognormal distribu

tions for predicting RRMSE can be obtained. For the regression analysis, 510 data 

points were used for the three-param eter Weibull and 594 data  points for the lognor

mal. The resulting empirical models for these two distributions are

Weibull:
« /->n -3R7 ]

p (5.25)
0 977/?0'3®  ̂,»19.317 

y ~~ n 0.470a 1.146/y0.363

Lognormal:

V =
2.687a0974/ j Q ^ y 3-757

^0.499/y0.054
(5.26)

Note tha t the shape param eter a  has a positive exponent for the three-param eter 

lognormal distribution, which is different to the other two distributions.
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The details of fitting the data and the results of using significant tests are listed 

in Table 5.3 and 5.4. It can be seen from these tables tha t the empirical models fit 

the data  well. The F  statistic shows tha t the null hypothesis is rejected at the 0 level 

of significance for both models, which strongly indicates at least one value of the five 

param eters a,- (excluding a0) is not zero. The T  tests indicate th a t each of these five 

param eters (excluding a0) is significant for both the Weibull and lognormal distribution. 

The R 2 value between observed and predicted quantities is 95.29 per cent for the three- 

param eter Weibull and 95.59 per cent for three-param eter lognormal distribution. The 

standard error of the estim ated a is 0.127 for three-param eter Weibull and .077 for 

the three-param eter lognormal distribution. The sum of residuals is —0.112“ 11 with 

the variance of residuals 0.016 for the three-param eter Weibull, and is — 0.170-11 with 

the variance of residuals 0.006 for the three-param eter lognormal distribution. The 

properties of the residuals indicate tha t these models fit the data wrell, and the means 

of the residuals are close zero and the variances of the residuals appear constant.

Figures 5.10 to 5.15 illustrate the fit of the empirical model to the data  for these two 

distributions. The values of the shape, scale and location factors are (a , ß,  7) =  (2,1,1) 

for the Weibull, and (a , ß, 7) =  (0.9,1,1) for the lognormal distribution. Each plot uses 

a range of sample sizes between 100 to 1000. Figures 5.10 and 5.13 shows the fit of model 

to the data at the 98 percentile for 3-parameter Weibull and lognormal distributions, 

respectively. Figures 5.8 and 5.11 are the fit at the 99 percentile and Figure 5.9 and 

5.12 at the 99.8 percentile which is equivalent to the maximum percentile by using 

Larsen’s calculation when the sample size is 365. The figures for the three-param eter 

Weibull clearly show that the empirical model provides a good fit to the data  with 

reasonable accuracy. Although the fit of the model for the three-param eter lognormal 

is not as good as the two other distributions, the accuracy of the fit still appears to be 

useful.

W hen estim ation is restricted to the maximum percentile, th a t is the percentile 

factor in the estim ated models is om itted and the regression analysis performed on 

data associated with the maximum percentile only, these models become
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0.932/?0-368
y  = n 0A71 a l . 124^0.344 (5.27)

1.243a0-911/?0-086
^ ~  n 0.389^0.044 ( 5.28)

T he com parison of m odel perform ances betw een (5.25) and (5.27), and (5.26) and 

(5.28), shows th a t th e  models (5.25) and (5.27) perform  alm ost identically bu t (5.28) 

has a slightly im proved fit over (5.26). These can be seen from the  fit of the  model to 

th e  d a ta  for the  m axim um  percentile as ind icated  in Figures 5.12 and 5.16, and Figures 

5.15 and 5.17.

5.6 C o n c lu d in g  R e m a rk s

In th is chapter, em pirical m odels of the  th ree-param eter gam m a, W eibull and lognormal 

d is tribu tions for predicting RRM SE are developed by em ploying RSM. Such models are 

im p o rtan t in evaluating the  goodness of fit of some d istribu tional forms to  air pollution 

d a ta  and, once calibrated , require only sim ple calculations. To obta in  a reasonable 

causal linkage betw een the factors and the  response surface, graphical techniques were 

used to  show the  m ajo r relation between each factor and response variable. Based on 

prior knowledge for air quality  assessm ent, the  factors space is carefully designed so 

th a t th e  sim ulation experim ents proceed efficiently. By using the  extensive d a ta  from 

the  sim ulation experim ents, regression analysis derives th e  expected m odel structu re  by 

the ord inary  least squares m ethod of estim ation. A variety  of m odel selection criteria 

are used to exam ine the  m odel perform ance. From  th e  results, it is seen th a t the 

models developed here have reasonable accuracy in pred ic ting  the  RRM SE. Obviously, 

using such models can im prove the  efficiency of assessm ent procedures in air quality 

m anagem ent. Also, such em pirical m odels are im p o rtan t for the  study  of probability 

d istribu tions in ex trem e theory  applications.
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F igure  5.1: The  R R M SE values at 98 percentile  versus sample size for the 3-param eter 
gam m a d is tr ib u tio n  w ith  (a ,/? ,7 ) =  (2, 1, 1)

.038 -

.036 -

.032 -

SHAPE PARAMETER

F igure  5.2: The R R M SE values at 98 percentile  versus the shape param eter for the 
3-param eter gam m a d is tr ib u tio n  w ith  (/? ,7 ) =  (1 ,1 ) and n =  365
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Figure 5.3: The RRMSE values at 98 percentile versus the scale param eter for the 
3-param eter gamma distribution with (0 , 7 ) =  (2,1) and n = 365

2.5  3  3.5
LOCATION PARAMETER

fig u re  5.4: The RRMSE values at 98 percentile versus the location param eter for the 
3-param eter gamma distribution with (a ,/?) =  (2,1) and n =  365
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Figure 5.5: The RRMSE values versus each value of percentiles for the 3-parameter 
gam m a distribution with (a ,/? ,7) =  (2 ,1 ,1) and n = 365

-----  MODEL PREDICTION
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Figure 5.6: Fit of error model (5.23) to the RRMSE values at 98 percentile versus 
sample size for the 3-parameter gamma distribution with (a ,/? ,7) =  (2,1,1)
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-----  MODEL PREDICTION
A A ORIGINAL DATA
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Figure 5.7: Fit of error model (5.23) to the RRM SE values at 99 percentile versus 
sample size for the 3-parameter gam m a distribution with (a-,/?,7) =  (2,1,1)

-----  MODEL PREDICTION
A A ORIGINAL DATA

Figure 5.8: Fit of error model (5.23) to the RRM SE values at maximum percentile 
versus sample size for the 3-param eter gam m a distribution with (c*,/3,7) =  (2,1, 1)
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Figure 5.9: F it of error model (5.24) to the RRMSE values at maximum percentile 
versus sample size for the 3-param eter gamma distribution with (a ,/? ,7) =  (2,1,1)
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Figure 5.10: Fit of error model (5.25) to the RRMSE values at 98 percentile versus 
sample size for the 3-parameter Weibull distribution with (a , ß , j )  = (2,1,1)
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Figure 5.11: Fit of error model (5.25) to the RRMSE values at 99 percentile versus 
sample size for the 3-parameter Weibull distribution with (a,/?, 7 ) = (2,1,1)
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Figure 5.12: Fit of error model (5.25) to the RRMSE values at maximum percentile 
versus sample size for the 3-parameter Weibull distribution with (0 , ^ , 7 ) = (2 ,1,1)
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Figure 5.13: Fit of error model (5.27) to the RRMSE values at maximum percentile 
versus sample size for the 3-parameter Weibull distribution with (a,/? ,7 ) = (2,1,1)

-----  MODEL PREDICTION
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Figure 5.14: Fit of error model (5.26) to the RRMSE values at 98 percentile versus 
sample size for the 3-parameter lognormal distribution with (a ,/? ,7 ) = (0.9,1,1)
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Figure 5.15: Fit of error model (5.26) to the RRMSE values at 99 percentile versus 
sample size for the 3-parameter lognormal distribution with (a , =  (0.9,1, 1)
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Figure 5.16: Fit of error model (5.26) to the RRMSE values at maximum percentile 
versus sample size for the 3-parameter lognormal distribution with (c*,/?, 7 ) =  (0.9,1,1)
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Figure 5.17: Fit of error model (5.28) to the RRMSE values at maximum percentile 
versus sample size for the 3-parameter lognormal distribution with (a , ß ,  7 ) =  (0.9,1,1)
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T A B L E  5.1
D e s c r i p t i v e  s t a t i s t i c s  fo r  e s t i m a t e d  p a r a m e t e r s  o f  e r r o r  m o d e l  fo r  t h e  t h r e e - p a r a m e t e r

g a m m a  d i s t r i b u t i o n

P a r a m e t e r  E s t i m a t e d
N a m e  C oeff ic ien t

S t a n d a r d
E r r o r

T - R a t i o  
(6 7 8  D F )

S t a n d a r d i z e d
C oeff ic ien t

ai 0.544 0 .007 7 9 .1 5 3 0 .756

C IO 0.211 0 .006 3 3 .6 3 4 0 .325

«3 0.118 0 .004 2 7 .9 8 4 0 .270

a4 0.100 0 .004 2 3 .7 1 8 0 .227

as 14.871 0 .412 3 6 .0 5 4 0.343

a o 0.394 0 .044 8 .858 0.000

N o te : D F  d e n o te s  t h e  d e g re e s  o f  f r e e d o m  a n d  ao = logC.

T A B L E  5.2
D e s c r i p t i v e  s t a t i s t i c s  fo r  fit o f  e r r o r  m o d e l  to  d a t a  fo r  t h e  t h r e e - p a r a m e t e r  g a m m a

d i s t r i b u t i o n

F  T e s t  
F -v a lu e  D F l D F 2  R 2 <r S R  V R S A E

2 0 7 6 .3 9 4  5 678 93.87 0 .075 - 0 .7 5 6 -12 0 .006 38.078

N o te :  D F l  a n d  D F 2  d e n o te  t h e  n u m e r i t o r  a n d  d e n o m i n a t o r  d e g re e s  o f  f r e e d o m ,
re s p e c t iv e ly .  S R  d e n o te s  t h e  s u m  o f  r e s id u a l s ,  V R  t h e  v a r i a n c e  o f  r e s id u a l s  
a n d  S A E  t h e  s u m  o f  a b s o l u t e  e r r o r s .

124



T A B L E  5.3
D e sc r ip tiv e  s ta t is t ic s  for e s t im a te d  p a ra m eters  o f  error m o d e l for th e  th ree -p a ra m eter

W eibu ll d is tr ib u tio n

P a ra m eter  E stim a ted
N a m e  C oeffic ien t

S ta n d a rd
E rror

T -R a tio  
(5 0 4  D F )

S ta n d a rd ized
C oeffic ien t

a i 0.470 0 .012 39 .0 4 0 0 .381

a 2 1.146 0 .0 2 0 57 .2 9 5 0 .562

a 3 0.387 0 .085 4 5 .3 0 0 0 .4 4 4

a 4 0.363 0 .082 4 4 .2 8 4 0 .4 3 2

a 5 19.317 0 .802 24 .081 0 .2 3 3

ao -0 .023 0 .078 -0 .2 9 6 0 .000

N o te: D F  d e n o te s  th e  d egrees o f  freed o m  an d  ao = logC.

T A B L E  5.4
D e sc r ip tiv e  s ta t is t ic s  for fit o f  error m o d e l to  d a ta  for th e  th ree -p a ra m eter  W eib u ll

d is tr ib u tio n

F -va lu e
F T est 

D F 1 D F 2 R 2 <r S R  V R S A E

20 3 7 .3 1 4 5 504 95.29  0 .1 2 7 -0 .1 1 2 “ 11 0 .016 5 2 .5 8 4

N o te : D F 1 an d  D F 2 d e n o te  th e  n u m er ito r  an d  d e n o m in a to r  d egrees o f  freed o m ,
r esp ec tiv e ly . S R  d en o tes  th e  su m  o f  re s id u a ls , V R  th e  variance o f  resid u a ls  
an d  S A E  th e  sum  o f  a b so lu te  errors.
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T A B L E  5.5
D e sc r ip t iv e  s ta t is t ic s  for e s t im a te d  p a ra m eters  o f  error m o d e l for th e  th ree -p a ra m eter

lo g n o rm a l d is tr ib u tio n

P a r a m e te r
N a m e

E stim a te d
C oeffic ien t

S ta n d a rd
E rror

T -R a tio  
(5 8 8  D F )

S ta n d a rd ized
C oeffic ien t

a l 0 .499 0 .009 5 6 .7 9 8 0 .496

02 0 .974 0 .012 7 8 .6 1 2 0.683

0 3 0.112 0 .005 2 3 .7 8 9 0.208

Q4 0 .054 0 .005 11 .5 0 3 0.100

a 5 23 .7 5 7 0 .451 5 2 .6 3 5 0.456

oo 0 .988 0 .057 17 .3 5 8 0 .0 0 0

N o te: D F  d e n o te s  th e  d eg rees o f  freed o m  an d  ao =  logC.

D e sc r ip tiv e  s ta t is t ic s  for fit o f
T A B L E  5.6

error m o d e l to  d a ta  for th e  th ree -p a ra m eter  lo gn orm al 
d is tr ib u tio n

F T est 
F -va lu e D F 1 D F 2 R 2 <7 S R  V R SA E

2550 .303  5 588 95 .59  0 .077 - 0 .1 7 0 - 11 0.006 35 .187

N o te: D F 1 an d  D F 2  d e n o te  th e  n u m er ito r  an d  d e n o m in a to r  d egrees o f  freed o m ,
re sp e c tiv e ly . S R  d e n o te s  th e  su m  o f  r e s id u a ls , V R  th e  variance o f  resid u a ls  
a n d  S A E  th e  su m  o f  a b so lu te  errors.
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Part III

DISCRIM INATION AND  
M ISSPECIFICATION
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C h ap ter 6

D iscr im in a tio n  B etw een  N ested  
T w o- and T h ree-p aram eter  
D istr ib u tio n s

6 .1  I n tr o d u c t io n

Several statistical criteria have been developed to discriminate among alternative para

m etric probability distributions. This chapter deals with discrimination between two- 

and three-param eter nested alternatives for three common shape-scale-location para

m etric distributions, namely the gamma, Weibull and lognormal distributions. These 

two- and three-param eter distributions have frequently been used to model air pollution 

and environmental quality data; for example, see Jakem an and Taylor (1989) and the 

references cited therein. In the Monte Carlo experiments, we evaluate the well-known 

likelihood ratio (LR) test, Akaike’s (1974) Information Criterion (AIC), Schwarz’s 

(1978) Information Criterion (SIC), the Chi-square test, and the Kolmogorov-Smirnov 

test. Using extensive Monte Carlo simulations from two- and three-param eter parent 

distributions, we investigate the performance of these tests and information criteria. 

The performance of the tests and criteria depends to some extent on the types of nested 

distributions being considered, the param etric values of the parent distributions, the 

confidence levels used (if applicable), and the sample sizes. The param eter space in

vestigated covers an extensive range of values which might arise in practice. For an 

illustrative example, the sensitivity of the results to the values of the location and
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shape param eters is evaluated.

Selection of an appropriate criterion should depend upon the intended use of the 

model. The practical usefulness of the techniques is illustrated by observing the errors 

of the models in fitting the upper percentiles of the parent distribution. Two sets 

of air pollution data from an urban airshed are used to examine the similarities and 

differences in fitting two- and three-param eter distributions where there is a preference 

for the more parsimonious model.

The chapter also considers the relationship between the LR test and the two infor

m ation criteria. The former is an hypothesis test which implicitly assumes tha t one of 

the distributions being tested is true, while the la tte r makes no such assumption and 

a ttem pts to discriminate among alternatives in term s of the maximized log-likelihood 

value, with an allowance made for the number of param eters and observations used in 

estim ation. Since the LR test performs quite well, it is useful to interpret the equiva

lence of the test and the information criteria at a given confidence level in term s of a 

generalised information criterion which relates directly to the critical region of the LR 

test.

The plan of the chapter is as follows. In Section 2 the distribution functions and 

log-likelihood equations are presented. The discrimination criteria and loss functions 

are given in Sections 3 and 4, respectively. Sections 5 and 6 contain discussions of the 

simulation procedure and Monte Carlo results, respectively. An empirical application 

on hourly pollutant observations of /9-scattering and nitrogen dioxide is outlined in 

Section 7. Some concluding remarks are given in Section 8.

6.2 T h e D istr ib u tio n s

Standardized probability density functions for the three-param eter gamma, Weibull 

and lognormal distributions for a random sample are given by:

Gamma:

( 0 )
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Weibull:

m=f (V )“' lexp[- (V r l  (6'2)

Lognormal:

f ( x ) = “  l ) ~ lexP{~  2J ? — — }• (6-3)

In equations (1), (2) and (3), a  represents the shape param eter, ß  the scale param eter,

7 the location param eter, and P is the gamma function. The two-param eter versions of 

the density functions of the gamma, Weibull and lognormal distributions are the same 

as in (1), (2) and (3), with 7 =  0 in each case. In the above equations, ß  >  0, a > 0 

and 7 is less than the minimum observed sample value.

The properties of these three distributions and the asym ptotic behaviour of esti

m ators depend very heavily on the values of the param eters, particularly th a t of the 

shape param eter. Figures 6.1 and 6.2 show tha t the resulting density functions of the 

gam m a and Weibull distributions are similar to the exponential distribution at a = 1, 

reverse ’J ’ shaped for a  <  1, and ’bell’ shaped for a  > 1. Figure 6.3 shows tha t the 

curves for the lognormal distribution change from nearly symmetric to heavily skewed 

as a  is increased from 0.3 to 1.2. These values span a large range of shapes which 

arise in the analysis of real data, such as air pollutant concentrations. In order to as

sess the different criteria for discriminating among competing descriptions of the data, 

the shape param eter is examined over an extensive range of possible cases where the 

density functions vary from being skewed to symmetric.

The maximized value of the likelihood function is an essential statistic employed in 

many criteria used to discriminate among alternative models. For a sample aq, X2 , . • . ,  x n 

of n independently and identically distributed random observations, the log-likelihood 

functions for the three-param eter gamma, Weibull and lognormal distributions are 

given as follows:

Gamma:

logL =  —notlogß -  nlogT(a) +  (a  -  1) lod{x i ~  l )  ~  O  1 n 7 ) (6-4)
i=l t=l P
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Wei bull:

logL =  nloga  -  nalogß  +  (a  -  1) ^  log(x{ -  7) -  Ö 7 )a (6-5)
i = i  i = i  P

Lognormal:

logL =  - ^ l o g ^ n a 2) -  J2 log{x{ — 7 ) — -  7 ) ~  /?]2- (6-6)

The param eters of the three log-likelihood functions are estim ated by maximum 

likelihood methods. Since the general maximum likelihood procedure for the three- 

param eter gam m a and Weibull distributions will frequently fail to converge when the 

(unknown) shape param eter is less than or equal to unity, a com putationally efficient 

approach tha t circumvents this problem is used (for further details, see Bai et al. 

(1989)).

6.3 D is c r im in a tio n  C r i te r ia

Let £ 1 , X2 1  • • •, x n represent a random sample of n observations. Interest here lies in 

discriminating among nested two- and three-param eter distributions in which the null 

hypothesis of interest is Ho : 7 =  0 against the alternative H\ : 7 ^  0. The standard 

LR test can be employed for this problem. Denoting the maximized values of the two- 

and three-param eter variants of a particular log-likelihood function as logLo and logL\ , 

respectively, the LR test can be expressed as:

L R  = -2 ( lo g L a -  logL,) A * 2(1) (6.7)

under the null hypothesis tha t the location param eter is zero. The AIC and SIC may 

be expressed, respectively, as:

Choose the param eter distribution if

AIC : logLo ~ 2 >
<

logLi — 3 ( 6.8)
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S I C  : logLo — logn >
<

logLi — 3logn/2. (6.9)

W hen H0 holds for testing a two-parameter distribution against a three-param eter 

alternative, rearranging (8) and (9), and defining A L =  logL0 — logLi, corresponds to 

choosing the < “ > param eter distribution if

A / C : - A l j ^ j l  (6.10)

S / C : - A i {  < (6.11)

Since the information criteria and the LR test are based on the maximized value of the 

likelihood function, it is possible to  compare the information criteria and hypothesis test 

in term s of the probability of accepting the underlying null distribution. By comparison 

with (10) and (11), the LR test will accept II0 if

L R  : —A L < I  (6.12)

where c is the critical value of the x 2(l)  statistic. It is easy to see tha t an equivalence 

among the LR test, AIC and SIC can be found when the nested model is regarded 

as the true distribution. Use of the AIC criterion is equivalent to the LR statistic 

at the 84.2 per cent confidence level (i.e. when c — 2) and SIC, for a sample size of 

365, is equivalent to the LR statistic at the 98.5 per cent confidence level (i.e. when 

c — logn). W hen the sample size is decreased to n = 100, SIC is equivalent to the LR 

statistic  at the 96.81 per cent confidence level, but will be increased to the 99.14 per 

cent confidence level for n =  1000.

The equivalence dem onstrated above could be used to construct generalised infor

m ation criteria (GIC) which, when the nested distributions is true, is equivalent to the
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LR test at different confidence levels. In this chapter, we use two such criteria, GIC1 

and GIC2 which can be regarded as LR analogues at the 40 per cent and 99 per cent 

confidence levels, respectively, and indicate two extreme cases: the lowest and highest 

confidence levels th a t might reasonably be considered in applications. These two cases 

can also help to illustrate the tradeoff between the confidence level and power of a test. 

An appropriate confidence level for air pollutant concentrations will be recommended 

in a later section when examining real data.

The performance of two well-known procedures for testing goodness of fit are also 

considered, namely the chi-square (CHI) test and Kolmogorov-Smirnov (KS) test. Clas

sifying the n observations into k categories, the chi-square statistic is of the form (see 

Pearson (1900)):

k
cm = £

* = l

(/»• ~  npif  
npi

(6.13)

which has an asym ptotic \ 2 distribution with (k — l — 1) degrees of freedom when 

Ho holds. The pi are hypothetical probabilities, the /,• are empirical frequencies and 

/ is the number of param eters estim ated for each distribution (for further details, see 

Kendall and Stuart (1979)). For the experiments conducted in Section 6 below, k = 

10 and / =  2 or Z =  3. The KS test, which is defined in term s of the maximum 

absolute difference between the sample distribution function Sn(x) and the hypothetical 

distribution function Fq(x ) (see e.g. Bury (1975, p. 204)), is given by

D n =  sup \Sn(x) -  Fo(x)\. (6.14)
X

Large observed values of the D n statistic lead to rejection of the hypothesis Fo(x).

6.4 L oss F u n c tio n s

An assessment of the performance of different tests and criteria requires some form of 

loss function or performance criterion which should rely on the nature of the problem 

and the m ajor purpose of the application. Standard performance criteria for assessing
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nested Itypothesis tests are size and power. In this Monte Carlo study, loss functions 

recommended for assessing air quality models have also been chosen (see Fox (1981)) to 

establish the effect of discrimination criteria on the intended use of the model. These 

functions are the relative bias (BIAS) and the relative root mean square error (RRMSE) 

which are evaluated at the upper percentiles of the distributions. For an estim ate qi 

of a quantity of interest q, these loss function are defined in term s of deviations from 

the true or parent value q in each replication of the Monte Carlo experiments. The 

definitions used for the loss functions are:

B Jy tffo ) =  1  £ ( * - « )  (6.15)

R R M S E ( q )  =  [ 1  B ^ ) T 5 (6.16)

where N  is the number of replications of the experiment. For present purposes, the 

quantity q denotes the upper percentiles of the underlying distributions.

6.5 S im u lation  P roced u re

In order to assess the various criteria for discriminating between models over different 

independently and identically distributed random samples, simulation over an extensive 

range of possible cases is considered. For all param eter sets in the tables and figures 

reported here, one thousand simulation experiments are processed. The main sample 

size used is n = 365, since it represents a common case: a full year of 24-hour average 

observations. For two extreme cases associated with possible applications, n =  100 

and n = 1000 are considered here as illustrative examples. The shape param eters take 

the values 0.5, 1, 2, 4, 6 for the gamma distribution; 0.5, 1, 2, 3, 4 for the Weibull 

distribution; and 0.3, 0.5, 0.7, 0.9, 1.2 for the lognormal distribution. It should be 

noted tha t the lognormal distribution has the opposite behaviour to the other two as 

the shape param eter is increased. In all of the cases investigated in this chapter, the
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arbitrary scale param eter is set at unity. In most cases the location param eter is also 

set to unity, but the sensitivity of our results to other values is also examined.

The random sample generators used for the Monte Carlo experiments are DRNGAM 

for the gamma, DRNLNL for the lognormal and DRNW IB for the Weibull distribution. 

These are available as subroutines in the International M athem atical and Statistical 

Library (IMSL) in version 1.0 of April 1987. The same seed number (1234) is used to 

obtain the first random sample of the first of the 1000 simulations. Varying the initial 

seed produces similar results to those given in the chapter. For maximum likelihood 

estim ation, a golden section search algorithm is used with final estim ates being accepted 

when the relative error between two successive approximations is less than  10-6 . Two 

subroutines, namely DCHIGF and DKSONE, are chosen from IMSL to perform the 

CHI and KS tests. All results are obtained on a VAX8700 mainframe computer at 

ANU.

6.6 M onte Carlo R esults

Consider initially an investigation of the performance of the discrimination criteria for 

random samples of size n =  365 from the gamma distribution. In this chapter, the 

scale param eter is always set at ß  =  1, and the values of the location param eter are 

7 =  0 or 7 =  1. It should be noted tha t, for a fixed value of the location param eter, it 

becomes increasingly difficult to reject the false null hypothesis tha t 7 =  0 as the value 

of the shape param eter increases (i.e. power decreases). Table 6.1 shows the results 

in two situations: first, the null hypothesis Hq is true, so th a t the samples for each 

Monte Carlo experiment are taken from a two- param eter distribution; second, the 

alternative hypothesis Hi is true so tha t the samples are taken from a three-param eter 

distribution.

When a  >  2, 7 =  0 and n =  365, the empirical performance of the LR test is not 

significantly different from the nominal level of 0.05 given by asym ptotic theory. The 

empirical probabilities vary only slightly with the shape param eter and with the initial
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seed used for the random  num ber generator. Acceptance rates for AIC, SIC, G IC l and 

GIC2 are also similar to those expected from the derived equivalent (LR) confidence 

intervals reported in Section 3, namely the 84.2, 98.5, 40.0 and 99.0 per cent levels, 

respectively. The CHI test has rejection frequencies which are very similar to those 

predicted by theory, while the KS test rarely rejects the true null hypothesis.

The power of any of the first live tests is inversely related, in general, to the ac

ceptance rate when a  > 2. The lower the confidence level imposed for acceptance of 

the null hypothesis, the higher is the power. Quantifying this inverse relationship for 

different param eter values is a m ajor concern in term s of how often we can expect under

fitting of two-param eter distributions to occur in samples taken from three-param eter 

parent distributions. For a fixed value of the location param eter, power decreases as 

the shape param eter is increased.

Notice tha t, for the gam m a distribution when a  =  0.5 and a  =  1.0, the LR test 

and the four discrimination criteria tend to overfit, a three-param eter distribution being 

generally preferred when Ho is true (i.e. 7 =  0), especially for ct =  0.5, and always 

preferred when H0 is false (i.e. 7 =  1). This behaviour is due to the fact th a t the 

distributions approach the exponential when a  <  1, and likelihood values increase 

when the location param eter is set near the first order statistic. However, the CHI test 

has empirical sizes th a t are unaffected by whether the value of the shape param eter is 

less than or greater than  unity, and the KS test still rarely rejects a true null hypothesis.

Figure 6.4 portrays the cumulative frequency over 1000 experiments of the differ

ences between the maximized log-likelihood values of the two- and three-param eter 

gamma distributions when the samples are taken from a three-param eter parent dis

tribution. The figure dem onstrates why power decreases as the value of the shape 

param eter increases. Figure 6.5 shows the differences when the samples are taken from 

a two-parameter parent distribution. W hatever the value of the shape param eter, the 

differences are large in only a small proportion of the 1000 cases.

Consider the power of the LR test at the 95 per cent confidence level for different
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values of the location parameter. Figure 6.6 shows the results for ot =  2,4 and 6. For 

a = 2, the power of the LR test is high for quite low location values; for example, 

power is 0.98 when 7 =  0.34. Power is also 0.98 for the combinations (a = 4,7 = 2.4) 

and (a = 6,7 = 6.5).

Table 6.1 also provides the results for rejection probabilities of the null hypothesis 

and powers of the tests and discrimination criteria over a range of parameter values for 

the Weibull and lognormal distributions. The conformity with theory of the LR test 

and AIC, SIC, GICl and GIC2 is good for the Weibull distribution when a > 2 and 

for the lognormal distribution for all values of a  when the sample size is n = 365. The 

empirical sizes of the CHI and KS tests of the Weibull and lognormal distributions are 

very similar to those of the gamma distribution for all values of the shape parameter. 

Sizes for the CHI test are close to the nominal size of 0.05, while the sizes for the KS 

test are almost zero in all cases. Not surprisingly, the powers of the CHI and KS tests 

are much lower than for the LR test.

The power of the LR test, when applied at the 95 per cent confidence level for 

the Weibull and lognormal distributions, is shown in Figures 6.7 and 6.8, respectively, 

as a function of the shape and location parameters. Compared with the case of the 

gamma distribution in Figure 6.6, a similar pattern of power as a function of the shape 

and location parameters is observed for the Weibull distribution. High power will be 

obtained when the shape parameter is 2 for quite low values of the location parameter, 

as shown in Figure 6.7. For example, power is 0.98 when a = 2 and 7 = 0.17. When the 

value of the shape parameter is increased, large values of the location parameter will be 

required to maintain high power. For instance, power is also 0.98 for the combinations 

(a = 3, 7 = 0.49) and (a = 4, 7 = 1.48). Figure 6.8 provides similar results for the 

lognormal distribution, except that the lognormal has the opposite behavour to the 

other two as the shape parameter is increased. For power to be 0.98, the combinations 

of shape and location parameters are (a =  0.9,7 =  0-41), (a = 0.7,7 = 1.25) and 

(a = 0.5,7 = 3.91).
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We now turn  to an evaluation of the performance of the discrimination criteria 

for other sample sizes using the gamma distribution as a guide. Table 6.2 provides 

the analogous results to those in Table 6.1 where the sample sizes are n — 100 and 

n =  1000. As expected, at n = 1000 the criteria perform according to asymptotic 

theory in terms of correctly accepting two-parameter models, since a similar result is 

achieved at the lower sample size of n =  365. The empirical sizes for the KS test are 

still very low, and the powers of the CHI and KS tests are considerably lower than 

for the LR test. Again, power declines with the shape param eter for a fixed value of 

the location param eter, but at the larger sample size the power is much higher for 

any specific shape param eter and criterion. At n = 100, the acceptance rates of two- 

param eter distributions for the LR and CHI tests and the four criteria are lower than 

those predicted by theory, while power is consistently lower than at n = 365 for any 

specific shape param eter and criterion. The acceptance rates for the KS test vary with 

the value of the shape param eter, being too high when a = 2 and too low when a  =  4 

and a: =  6. The powers of the CHI and KS tests are considerably lower than  those of 

the LR test for all values of the shape param eter.

6.7 A p p lica tio n  to  M od els o f A ir P o llu tio n

Hourly pollutant observations of /^-scattering and nitrogen dioxide for Melbourne, Aus

tralia, are available at state site numbers 11 (M useum), 27 (Alphington), 34 (Dande- 

nong) and 81 (Camberwell) for the years indicated in Tables 6.3 and 6.4. These data are 

converted into samples of 24-hour averages for those years and sites where the number 

of the resultant daily samples available is greater than  100. These data  sets are used 

to illustrate an application of the discrimination criteria for the situation where the 

intended use of the model is predicting extreme concentrations and historical practice 

suggests there is a preference for two-parameter models.

Table 6.3 gives results for /^-scattering when the two- and three-param eter lognor

mal distribution is estim ated, ^-scattering here refers to light scattering by suspended
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aerosol as measured by an intergrating nephelometer (see Finlayson-Pitts and P itts 

(1986)). Notice tha t, in general, the probabilities of rejecting the two-parameter log

norm al model are very high and the maximized log-likelihood values are much lower 

for the two-parameter lognormal distribution than for its three-param eter counterpart. 

Indeed, the lognormal distribution yields much larger maximized log-likelihood values 

for the three-param eter models than the gamma and Weibull distributions in 18 of 

the 20 cases considered. Om itting the single case in 1977 for site 11 where the two- 

and three-param eter log-likelihoods are equal, the minimum value of the acceptance 

threshold for the null hypothesis is 0.9860 for site 11 in 1976. If the parent distribution 

is the three-param eter lognormal, then fitting the two-param eter lognormal to sam

ples from this parent yields substantial errors which can be quantified by simulation. 

For example, for the three-param eter lognormal distribution, the RRMSE obtained by 

sim ulation over 1000 experiments is 0.092 for the maximum percentile (M AXI), 0.078 

for the second-highest percentile (MAX2), and 0.058 for the 98’th  percentile (98%), 

while for the the two-param eter lognormal these values are 0.136, 0.112 and 0.076, re

spectively. Admittedly, if we do not wish to risk obtaining errors of these magnitudes 

in such air quality applications, we should set our acceptance threshold for the null 

hypothesis below 98.6 per cent.

In order to fine-tune the estim ate of where this threshold should be, given a prefer

ence for two-parameter models, consider the results for daily nitrogen dioxide samples 

in Table 6.4. The three-param eter gamma and lognormal distributions have the highest 

maximized log-likelihood values. However, the three-param eter lognormal distribution 

generally has a negative location param eter, which is regarded as physically unrealistic. 

Let us, therefore, assume th a t the gamma distribution is appropriate. The simulation 

results reported in Table 6.1 indicate tha t, even when the parent distribution is a two- 

param eter model, the probability of rejecting the tw o-param eter gamma distribution 

with the LR test is unity when the shape param eter is less than unity. In such cases, the 

true underlying model may not be determined even when the estim ate of the location 

param eter for the three-param eter gamma distribution is very small.
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Let us now re-examine the data sets and evaluate the errors in percentiles when 

we obtain an acceptance threshold below the value of .9860 found to be too high in 

the /^-scattering case. The 1978 data set at site 11 yields an acceptance threshold of 

0.9782. Again we can calculate the errors assuming th a t the three-param eter gamma 

is the underlying parent distribution. The RRMSE values for M AXI, MAX2 and 

98% for fitting the three-param eter gamma distribution are 0.063, 0.060 and 0.055, 

respectively, compared with 0.081, 0.075 and 0.065, respectively, when fitting the two- 

param eter gamma distribution. These results provide further information as to where 

to set the confidence levels, given the errors tha t can be tolerated. If there is seen 

to be a strong need to use a two-parameter model, such as might be set by historical 

precedent, then from the results presented here, it can be observed how often and by 

how much the use of such a model is likely to exceed tolerable errors.

Any criterion used to discriminate between nested models will involve a trade-off 

between acceptance of the true null hypothesis and rejection of the false null hypothesis. 

W hat level of BIAS should be chosen for overfitting? This should depend on answers to 

the following two basic questions: (i) Under what conditions would it be inaccurate to 

assume that the true model is the two-parameter null? (ii) When would it be inaccurate 

to assume tha t the true model is the three-param eter alternative? Of course, the precise 

answers depend on the acceptable levels of inaccuracy. Basically, for the first question, 

inaccuracy is greatest for those param eter sets where the powers of the discrimination 

criteria are around unity. The answer to the second question is when the information 

content of the sample is too low to give reasonably efficient estim ates of the three 

parameters.

The answers given above can be refined in specific cases. Consider, for example, 

predicting the upper percentiles of the underlying parent distribution. This is a mo

tivation in analysing data  sets for environmental quality. Environmental guidelines 

for air and water pollutants can be w ritten in term s of allowable excesses of some 

extreme concentration. In this chapter we confine attention to the annual maximum 

concentration M AXI, the second highest value MAX2, and 98% values. More detailed
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results for the comparative errors in fitting two- and three-param eter alternatives to 

the distributions with param eters within the range of Table 6.1 are given in Bai et al. 

(1990). However, some indication of the errors is w arranted here. We use the gamma 

distribution as a guide and begin with the situation where the underlying parent is 

a three-param eter distribution. For a  = 2, the comparative errors begin to diverge 

for 7 >  For instance, when a  =  2, 7 =  1 and n = 365, the RRMSE of MAXI, 

MAX2 and 98% is more than double tha t of the three-param eter estimates when the 

location param eter is not estim ated but is set to zero. W hen the parent distribution 

is two-parameter and the sample size is 365, there is little  additional error in fitting a 

three-param eter over a two-parameter model.

6 .8  C o n c lu d in g  R e m a r k s

The purpose of this chapter has been to discriminate between two- and three-param eter 

nested alternatives for the gamma, Weibull and lognormal distributions. Monte Carlo 

experiments were conducted to evaluate the likelihood ratio test, Akaike’s information 

criterion, Schwarz’s information criterion, the Chi-square test and the Kolmogorov- 

Smirnov test. The performance of the tests and criteria was shown to depend on 

the types of nested distributions under consideration, the param etric values of the 

parent distributions, the confidence levels used (if applicable), and the sample sizes. 

The practical usefulness of the techniques was illustrated by observing the errors of 

the models in fitting the upper percentiles of the parent distribution. Two sets of 

air pollution data, namely hourly pollutant observations of /^-scattering and nitrogen 

dioxide, from an urban airshed were used to examine the similarities and differences in 

fitting two- and three-param eter distributions where historical practice suggests there 

is a preference for the more parsimonious model.
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Figure 6.2: Profile of the Weibull distribution for a range of shape parameters and unit 
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Figure 6.4: Cumulative frequency over 1000 experiments of the differences between the 
maximized log-likelihood values of the 2- and 3-param eter gamma distributions when 
the samples are taken from a 3-parameter parent distribution

143



1.2

P
R
0
B
A
B
I
L
I
T
Y

1 -

0.6  -

0 .4  -

0.2  -

T
1 2 

DIFFERENCES IN

I r
3  4

MAXIMIZED VALUES

SHAPE-2.0
SHAPE-3.0
SHAPE-4.0
SHAPE-6.0

F igu re  6.5: C um u la tive  frequency over 1000 experim ents o f the differences between the 
m axim ized  log-like lihood values o f the 2- and 3-param eter gamma d is tribu tions when 
the samples are taken from  a 2-param eter parent d is tr ib u tio n

0.8  -

0.6  -

0.4 -

-----  SHAPE=2

LOCATION PARAMETER

F igure  6.6: The power o f the LR  test at the 95 per cent confidence level for d ifferent 
values of the location  param eter 7 fo r testing between 2- and 3-parameter gam ma 
d is tr ib u tio n s

144



1.2

P
0
W
E
R

1 -

0.8  -  

0.6  -  

0 .4  - 

0.2 -  

0  -

0 0 3  1 2
LOCATION PARAMETER

Figure 6.7: The power of the LR test at the 95 per cent confidence level for different 
values of the location parameter 7 for testing between 2- and 3-parameter Weibull 
distributions

Po
w
•
r

0 .4  -

-----  S H A P B -03

LOCATION PARAMETER
Figure 6.8: The power of the LR test at the 95 per cent confidence level for different 
values of the location parameter 7 for testing between 2- and 3-parameter lognormal 
distributions

145



T
A

B
L

E
 6

.1
P

ro
b

ab
ili

ti
es

 o
f 

re
je

ct
in

g 
th

e 
nu

ll 
hy

po
th

es
is

 t
ha

t 
7 

=
 0

 u
si

ng
 s

ev
en

 t
es

ts
 a

nd
 d

is
cr

im
in

at
io

n 
cr

it
er

ia
 o

ve
r 

10
00

 r
ep

li
ca

ti
on

s 
of

 r
an

do
ir

sa
m

pl
es

 o
f 

si
ze

 n
 =

 3
65

 (
ß 

- 
1)

d  O  O  b -  O  C l  O d  CO t o  d  d  ' f  CO
1  H  O  H  O  O WO O  b -  O  rH CO O

0 d O  r-t  O  iQ  O  O  O N  OO tO Q  f  H  O

pH
d  d  d  d  d  d  d d  d  d  d  d  d  d

O 0  O  N  0  N  0 10  c o  t o  CO H  C I O
3 0 ^  "C rH C l  r-l  O  O d  00  rH 0  00 d  Cl
Ö d O  r-l  Q  O  Q  Q  Q 0  0  00 0  t — d  0

r<

iH
cC

d  d  d  d  d  d  d d  d  d  d  d  d  d
a 00  0  0  0  0  C l  0 t— 0  co  0  d  t— 0

0 <U ^  ^  rH O  O  O  O O O O O O O O
a O O  rH O  O  O  O  O O  O  O  O  O  1 * H

to 5 0  0  d  d  d  d  d d  h  d  r l  d  d  d
0

a c75
0  CO d  00  0  d  0 O  O  O  O  O  C0  rH

0 0 ^  V5 rH 0  0  CO 0 0  0  0  0  0  rp 00
X
Qp*

d O  rH 0  IQ 0  0  0 0  0  0  0  0  b -  d
d  d  d  d  d  d  d rH rH rH rH rH O  w

m  n  n  00  h  d  0 O  O  O  O  O  CO WO
Cl O  O  rH 00 rH O  O O O O O O O O
rH O  rH O  t o  O  Q  Q 0  0  0  0  0  0  b -

d  d  d  d  d  d  d rH rH rH rH rH O  O

O  C l  CO rH 00 d  rH b  0  t o  O  d  d  b
0 ^  Q  T f  O  O  Ö  O b -  t — d  O  1—1 rH d

Q d
O  rH Q  O  Q  O  Q 0  CO O  O  O  CO O

U
d  d  d  d  d  d  d d  d  d  rH d  d  0

0 t f l  (O O  H  M  d  H O  O  O  O  CO d  rHfl 0 ■'tf CO rH GO O  CO O O  O  O  O  O  O  t -
a d O  rH Q  LQ Q  Q  Q 0  0  0  0  0  CO 0

u d  d  d  d  d  d  d rH rH O  rH O  O  O
a

a iH  C l  O  r r  b -  d  rH O O O O O O O
X Ü 0 C l  H  N  O  t O O O  O  O  O  O  00 rH• rH
<U a ci O  rH Q  LO 0  Q  Q O  O  O  O  O  O  WQ

£
Cv

q
d  d  d  d  d  d  d rH rH rH rH rH O  O

c*>
«4-1 t -  CO CO O  d  rH O O O O O O O
0 0 H  O  CO Cf  LO CO O O O O O O O O
X r H d  V.Q O  00 O  O  O O O O O O O O
0pH d  d  d  d  d  d  d r H r H r H r H r H r H rH

1 O  O  O  O  O  d  r H O O O O O O O
10 0  0  0  0  0  c o  0 O O O O O O O
d 0  0  q  0  0  0  0 O O O O O O O

r H r H r- t  r H O  ©  O r H r H rH r H r H rH rH

O  b -  10 C l  d  CO 0 O  d  GO O  CO r H rH

d O  r H 0  10  O  O  O d  T}< rH 00 r H O  O

pH
O O O O O O O O O O O O O O

Q rH T f  O  d  CO O  O O  t G  O  b  O  W5 O
3 0 CO CO d  CO rH V5 O O  O  b -  GO Cl  0  0

d O  rH Q  CO O  O  O 0  00  t y  0  t y  h  0
d  d  d  d  d  d  cd d  d  d  d  d  ^

2
PJ

a
3

3
tu 0 CO N  H  N  H  1 0  O O  O  O  O  O  00 rH
a ci O  rH O  10 0  O  O O  O  O  O  O  W0 Cl

cC
0

pH
CO

0  d  0  d  0  d  0 rH rH rH rH rH O  O

V- d  N  GO T(t S  00  H O O O O O O O
0 0 CO d  0 0  0  t o  0 O O O O O O O
CO r H CO CQ r H 00  r H Q  0 O O O O O O O
<u
s d  d  d  d  d  d  d r H r H r H 1-H r H r H 1-H

1 O  CO Tjt 0  O  VO r H O O O O O O O
r 0 O  GO O  O  O  W0  O O O O O O O O

d O  00  O  O  O  O  O 0  0  0  q  0  0  0
r H O  O  r H r H O  © r H r H r H r H r H r H r H

C
ri

te
ri

a

L
R

A
IC

SI
C

G
IC

1
G

IC
2

C
H

I
K

S
L

R
A

IC
SI

C
G

IC
1

G
IC

2
C

H
I

K
S

3
. 2

u
0  _ u<u

P i
0 ^ 0  
* 3 11 P s  -

S a 11
£  is H 2 H t  <-CO a ~  cC ' '

5
a a

146

N
ot

e:
 

T
he

 L
R

, 
C

H
I 

an
d 

K
S 

te
st

s 
ha

ve
 a

 n
om

in
al

 l
ev

el
 o

f 
si

gn
if

ic
an

ce
 o

f 
0.

05



T A B L E  6.2
P r o b a b i l i t ie s  o f  r e je c t in g  th e  null h y p o th e s is  th a t  7  =  0 for th e  g a m m a  d is tr ib u t io n  using  
s e v e n  t e s t s  and  d iscr im in a t io n  criter ia  over  1000  rep l ica t io n s  o f  ra n d o m  sam p les  o f  sizes

n — 100 and  n = 1000 (/? — 1)

n = 100 n = 1000

S h a p e  P a r a m e te r a S h a p e  P a ra m eter a

True C riter ia 2.0 4 .0 6.0 2.0 4.0 6.0
D is tr ib u t io n

L R 0.088 0.066 0.051 0 .042 0.043 0.048
T w o A IC 0.199 0.178 0.168 0 .143 0.152 0 .143

P a r a m e te r SIC 0.056 0 .039 0.041 0.005 0.013 0.014
(7 -  0) G IC 1 0.648 0 .628 0 .609 0.546 0.576 0.575

G IC 2 0.026 0 .018 0 .014 0.005 0.016 0.014
C H I 0.086 0 .083 0.091 0 .055 0.049 0.065
K S 0.002 0 .112 0 .087 0.019 0.000 0.000

L R 0.930 0 .256 0.114 1.000 0.987 0.569
T h ree A IC 0.979 0.473 0.276 1.000 0.996 0.789

P a r a m e te r SIC 0.898 0 .189 0.079 1.000 0.931 0.279
(7 =  1) G IC 1 0.999 0 .844 0.695 1.000 1.000 0.963

G IC 2 0.767 0 .090 0.040 1.000 0.942 0.299
C H I 0.286 0 .112 0 .087 0 .965 0.227 0.193
K S 0.019 0 .000 0 .000 0 .896 0.040 0.103

N ote :  T h e  L R , C H I  and KS te s ts  h a v e  a n o m in a l  leve l o f  s ign ificance o f  0.05

147



T A B L E  C.3
la x i im iz e d  log -l ik e l ih o o d  values, e s t im a te d  p a r a m e te r  va lu es  a n d  p robab il it ies  o f  re jec t in g  th e  
n i l  h y p o th e s i s  th a t  7 =  0 for th e  3- and 2 -p a r a m e te r  lo g n o rm a l d is tr ib u t ion s  f i t te d  to  n daily  

/^-scattering sa m p les  over d ifferent years  an d  sa m p le  sizes  ( ß  =  1)

Sit<e Year n P rob ab il it ie s M a x ( lo g  L) S h a p e Scale L ocat ion
o f  rejec tin g L o g n o r m a l (3) a ß 7oII L o g n o r m a l (2)

111 1975 156 0.9993 -4 5 8 .8 9 0.73 1.84 1.84
-4 6 4 .6 8 0.56 2.14 0 .00

1976 311 0 .9860 -8 5 5 .7 8 0.57 1.89 1.25
-8 5 8 .8 0 0.47 2.09 0 .00

1977 251 0.0000 -6 4 4 .6 2 0.43 1.99 0 .01
-6 4 4 .6 2 0.43 2.00 0 .00

1978 215 1.0000 -6 4 4 .4 2 0.87 1.71 2 .10
-6 5 9 .1 2 0.63 2.11 0 .00

1979 257 0.9999 -6 5 5 .3 2 0.57 1.70 1.99
-6 6 3 .1 9 0.42 2 .04 0 .00

1980 199 1.0000 -4 7 8 .8 1 0.68 1.38 1.79
-4 8 7 .3 6 0.46 1.80 0 .00

1981 277 1.0000 -5 8 7 .4 4 0.81 0.92 1.57
-6 0 2 .6 3 0.49 1.48 0.00

1982 272 1.0000 -563 .11 0.91 0.75 1.77
-5 8 6 .9 3 0.49 1.45 0 .00

1983 324 0.9999 -7 3 5 .1 9 0.61 1.35 1.25
-7 4 2 .9 8 0.45 1.66 0 .00

2 T 1979 291 1.0000 -8 1 2 .7 4 0.61 1.86 1.69
-8 2 1 .6 0 0.49 2.13 0.00

1980 304 1.0000 -6 8 6 .8 1 0.69 1.21 3 .30
-7 2 2 .4 4 0.37 1.95 0.00

1981 302 1.0000 -7 5 5 .2 1 0.72 1.41 2 .74
-7 9 0 .7 8 0.46 1.98 0.00

1982 279 1.0000 -6 8 6 .9 8 0.72 1.37 1 .94
-708 .51 0.49 1.82 0 .00

1983 326 0.9948 -8 2 4 .7 4 0.55 1.70 1.18
-8 2 8 .6 4 0.45 1.92 0 .00

34L 1981 272 1.0000 -5 8 9 .8 3 0.68 1.14 1.44
-6 0 0 .2 4 0.46 1.56 0 .00

1982 298 1.0000 -6 9 4 .2 9 0.68 1.29 1.43
-703 .41 0.48 1.67 0.00

1983 280 0.9991 -6 2 8 .9 0 0.59 1.35 1.23
-6 3 4 .4 4 0.44 1.66 0.00

81 1981 160 1.0000 -3 1 9 .9 9 0.76 0.85 2 .89
-3 4 3 .3 0 0.37 1.72 0 .00

1982 312 1.0000 -9S 5 .45 0.78 1.99 3 .05
-1 0 0 2 .1 3 0.54 2.40 0.00

1983 301 1.0000 -827 .81 0.73 1.64 2 .54
-8 4 2 .0 2 0.49 2.10 0.00

N o t e :  S ite s  11, 27, 34 and 81 are M u se u m , A lp l i in g to n ,  D a n d e n o n g  and C a m b erw ell ,  r e sp e c 
tively .
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T able  6.4
la x i im iz e d  log -l ik e l ih o o d  va lu es ,  e s t im a te d  p a r a m e te r  va lues a n d  prob ab il it ies  o f  re jec tin g  th e  
nulll  h y p o th e s i s  th a t  7  =  0 for th e  3- and 2 -p a r a m e te r  g a m m a  d is tr ib u t io n s  f i t te d  to  n daily  

n itr o g e n  d io x id e  sa m p le s  over d ifferent years an d  sa m p le  s izes  ( 5 = 1 )

S itte Y ear n P ro b a b il i t ie s  
o f  re jec t in g  

7 =  0

M a x ( lo g  L) 
L o g n o rm a l (3)  
L o g n o rm a l (2)

S h ap e
a

Scale
3

L ocation
7

11 1975 116 0 .5457 -2 5 3 .4 2 2.68 1.50 0.25
-2 5 3 .7 0 3.14 1.37 0.00

1976 280 0 .1936 -6 8 7 .3 6 2.06 2.36 0.03
-6 8 7 .3 9 2.10 2.33 0.00

1977 297 0 .5835 -6 7 8 .9 4 3.44 1.43 0.13
-6 7 9 .2 7 3.20 1.49 0.00

1978 227 0 .9782 -6 1 3 .7 4 1.32 4.26 0.25
-6 1 6 .3 7 1.57 3.74 0.00

1979 271 0 .9996 -5 8 6 .2 3 1.76 1.98 0.53
-5 9 2 .4 2 2.60 1.54 0.00

1980 175 0 .7666 -3 6 5 .5 6 2.30 1.52 0.18
-3 6 6 .2 7 2.65 1.39 0.00

1981 276 0 .9600 -5 1 8 .9 9 2.05 1.33 0.14
-5 2 1 .1 0 2.35 1.22 0.00

1982 292 0.9698 -773 .78 1.59 3.47 0.22
-776 .13 1.80 3.18 0.00

1983 313 0 .5024 -7 4 1 .4 6 2.67 1.81 0.12
-741 .69 2.85 1.74 0.00

27 1979 317 1 .0000 -5 2 5 .3 3 0.64 3.29 0.04
-5 5 6 .8 2 0.95 2.24 0.00

1980 302 0 .9787 -477 .91 1.19 1.52 0.03
-4 8 0 .5 6 1.29 1.43 0.00

1981 245 0 .9632 -3 5 5 .6 4 1.22 1.31 0.03
-357 .82 1.34 1.22 0.00

1982 188 1 .0000 -380 .20 0.61 5.04 0.17
-408 .71 0.92 3.53 0.00

1983 241 1.0000 -470 .45 0.84 3.13 0.09
-4 8 0 .5 7 1.10 2.46 0.00

34 1981 193 1.0000 -244 .10 0.67 2.07 0.04
-260 .46 1.15 1.24 0.00

1982 256 0 .9636 -4 2 6 .3 3 0.96 2.04 0.04
-428 .52 1.23 1.62 0.00

1981 139 0 .1585 -219 .45 1.52 1.23 0.01
-219 .47 1.55 1.21 0.00

1982 251 0 .9995 -536 .92 1.35 2.37 0.25
-543 .01 1.74 1.99 0.00

1983 230 0 .8945 -477 .96 1.17 2.53 0.03
-4 7 9 .2 7 1.24 2.42 0.00

Note.: S ite s  11, 27 and  34 are M u se u m , A lp l i in g to n  and  D a n d e n o n g ,  resp ec t iv e ly .
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C h ap ter  7

T h e  E ffects o f  M issp ecifica tion  in  
E stim a tin g  th e  P ercen tiles  o f Som e  
T w o- and T h ree-P aram eter  
D istr ib u tio n s

7.1 In tro d u ctio n

The gamma, Weibull and lognormal distributions have been used successfully in test

ing and modelling natural phenomena such as reliability and life testing (Mann et al. 

(1974) and Bain (1978)), hydrology (Stedinger (1980)), and air quality management 

(Jakeman and Taylor (1989) and Jakeman et al. (1986)). Two- and three-parameter 

versions of these distributions have been used because they are parsimonious in con

sidering the shape, scale and location of the distribution, but still sufficiently flexible 

in fitting real data. Occasionally, there may be some prior information regarding the 

location of the distribution and parsimony considerations might yield a preference for 

the two-parameter variant. However, an estimated two-parameter distribution might 

be inadequate if the location parameter is not sufficiently close to zero. In general, it 

is not known which of the two- or three-parameter distributions is appropriate, and 

conventional wisdom regarding underfitting or overfitting may not be a good guide to 

selecting one of these distributions.

In considering whether the two- or three-parameter variant of a distribution should
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be used to estimate the percentiles of the distribution, it is important to take account 

of the sorts of errors that might be made in fitting the distribution. Specifically, the 

consequences of misspecifying the distribution should be evaluated. Such misspecifi- 

cations arise when a two- (three-) parameter distribution is estimated when the three- 

(two-) parameter version is correct. The purpose of this chapter is to assess the con

sequences of such misspecification in estimating the upper percentiles of the two- and 

three-parameter gamma, Weibull and lognormal distributions.

For a given distribution, the statistical decision might be to simply estimate the two- 

or three-parameter variant of the distribution, or to use discrimination and/or testing 

criteria to choose one of the two distributions. The three discrimination methods 

considered in this chapter are the likelihood ratio (LR) test, Akaike’s information 

criterion (AIC), and Schwarz’s information criterion (SIC) based on Bayesian methods. 

The primary aim of the experiments is to observe the magnitudes of the errors obtained 

by fitting the incorrect distribution (by overfitting or underfitting), by fitting the correct 

distribution, and by fitting a distribution that is selected by the LR method, AIC 

or SIC. The experiments are conducted for three different distributions and different 

parameter sets, especially for different values of the shape parameter.

7.2 D istribution Functions and Statistical Criteria

For a sample aq, x2, •. . ,  xn of n independently and identically distributed random ob

servations, the log- likelihood functions for the three-parameter gamma, Weibull and 

lognormal distributions are given as follows:

Gamma:

log L = —na log ß — n log T(a) + (a — 1) X  ̂log(zi — 7) ~  XX a )
t=i f=i P

Weibull:

log L — n log a — na  log ß + (a — 1) XI l°g(®* — 7 ) — XX
i=i *=1 P
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Lognormal:

log L  =  —~  log(27ra2) +  ]T lo g (x{ -  7 ) -  f ^ [ log(x{ -  7 ) -  /?]2 (7.3)

in which ß  represents the scale param eter, a  the shape param eter, 7 the location 

param eter, and T the gam m a function. The two-param eter versions of the above 

functions are obtained by setting the location param eter 7 to zero in each case. In

the above equations, ß  >  0, a  > 0 and 7 <  Xi < 00 for i =  1 , 2 , . . .  , n. The density 

functions of the gam m a and Weibull functions approach the exponential at a  = 1, 

are “J ” shaped for a  < 1 and “bell” shaped for a  >  1, whereas the density for the 

lognormal function changes from being nearly symmetric to being heavily skewed as 

a  is increased from 0.4 to 0.9 to 1.2. These values accommodate a variety of shapes 

which arise in practice in analysing real data.

The param eters of the three log-likelihood functions are estim ated by maximum 

likelihood methods. Since the general maximum likelihood procedure will frequently 

fail to converge when the shape param eter is less than or equal to unity, an approach 

tha t circumvents this problem is used (for further details, see Bai et al. (1989)). 

Denoting the maximized values of the two- and three-param eter variants of a particular 

log-likelihood as logL0 and logL\ , respectively, the LR test can be expressed as:

L R  =  —2(logL0 -  l o g h )  A  x 2( l) (7.4)

when the null hypothesis th a t the location param eter is zero is true. The AIC and SIC 

may be expressed, respectively, as:
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For purposes of assessing the performance of the LR, AIC and SIC, loss functions 

recommended for assessing air quality models are used (see Fox (1981)). These func

tions are the relative bias (BIAS) and the relative root m ean square error (RRMSE) 

which are evaluated at the upper percentiles of the distribution. For an estim ate <?,- 

of a quantity of interest q, the performance criteria are defined in term s of deviations 

from q in each replication of the simulation experiments. The definitions used are as 

follows:

B I A S ( q ) = ^ n q-̂ )(7.5)

RRMSE(q)  =  [ 1  £ ( * - ^ ) 2]°'5 (7.6)

where N  is the num ber of replications of the experim ent. For present purposes, q 

denotes the upper percentile quantities of the underlying distributions.

7.3 M o n te  C arlo E xp er im en ts

In order to assess the effects of misspecification in estim ating the percentiles of the three 

distributions, an extensive range of possible cases is considered. The shape param eter is 

examined over a wide range of possible values where the density functions are positively 

skewed: the shape param eter takes the values 0.5, 1, 2 and 6 for the gam m a distribution; 

0.5, 1, 2 and 3 for the Weibull distribution; and 0.4, 0.5, 0.9 and 1.2 for the lognormal 

distribution. In all cases considered in this chapter, the arb itrary  scale param eter is 

set to unity, and the location param eter takes on the values 0 and 1 for the two- 

and three- param eter distributions, respectively. The lognormal distribution has the 

opposite behaviour to the gamma and Weibull distributions as the shape param eter 

is increased. For each entry in the tables, N=1000 replications of the experiments are 

processed. The sample size used is n=365, since it represents a common case, namely 

a full year of 24-hourly average observations. The level of significance used for the LR 

test is five percent. For each set of param eter values, BIAS and RRM SE are evaluated
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for estimates of the exact 98’th percentile and the highest value which, for n=365, is 

equivalent to using the 99.9’th percentile.

The random sample generators used for the Monte Carlo experiments are DRNGAM, 

DRNWIB and DRNLNL for the gamma, Weibull and lognormal distributions, 

respectively. These are available as subroutines in the International Mathematical and 

Statistical Library (IMSL) in version 1.0 (April 1987). The same seed number (1234) 

is used to obtain the first random sample of the first of the 1000 replications. Varying 

the initial seed produces similar results to those reported in the chapter.

7.4  M o n te  Carlo R esu lts

Results of the experiments for the two- and three-parameter gamma, Weibull and log

normal distributions are given in Tables 7.1-7.3, respectively. In all cases, the true 

model is either a two- or three-parameter distribution, the estimated quantities are the 

maximum value or the 98% value, and the performance criteria are BIAS and RRMSE. 

The LR test and the two discrimination criteria, AIC and SIC, are used. Both the 

three- and two-parameter distributions are estimated to examine the consequences of 

misspecifying the distribution, namely estimating the two- (three-) parameter distri

bution when the three- (two-) parameter variant is correct.

The following points should be noted from the experiments reported in Table 7.1.

(i) When the shape parameter is 0.5 and the three-parameter gamma distribution 

is correct (7 =  1), the BIAS and RRMSE are identical for the three discrimination 

criteria and the estimated three-parameter gamma distribution, for both the maxi

mum and 98% quantities. Underfitting the correct distribution with a two-parameter 

version yields substantially larger values for BIAS and RRMSE. Identical qualitative 

results are obtained as the shape parameter is increased from 0.5 to 1, and then to 

2. When the shape parameter is increased to 6 with 7 = 1, the rankings in terms of 

RRMSE for both the maximum and 98% values are very similar for the three discrim

ination criteria and the two estimated distributions, with a slight preference foi the
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correctly estimated three-parameter gamma distribution. In terms of BIAS, however, 

the estimated three-parameter distribution is superior to the rest, followed by AIC 

which is known to favour the model with the larger number of parameters (namely, 

the three-parameter model). Interestingly, the BIAS in estimating the underfitted two- 

parameter gamma distribution is not substantially higher than for SIC, which favours 

the more parsimonious two-parameter model. On the basis of these results, it is clear 

that incorrectly underfitting a distribution can lead to substantially higher BIAS and 

RRMSE values, in general, as compared with fitting the correct distribution, and also 

relative to using discrimination criteria to select the appropriate distribution.

(ii) On the other hand, when the two-parameter gamma distribution is correct 

(7 =  0) and the shape parameter is 0.5, the estimated two-parameter distribution is 

understandably superior in terms of BIAS for both the maximum and 98% values, with 

the three discrimination criteria and the estimated three-parameter gamma distribution 

being very similar. In terms of RRMSE, however, the three discrimination criteria and 

the two estimated distributions are very similar, with only a very slight preference 

for the correctly estimated two-parameter gamma distribution, followed by SIC which 

favours parsimony. Similar qualitative results hold for both BIAS and RRMSE as the 

shape parameter is increased from 0.5 to 1. However, when the shape parameter is 

increased from 1 to 2, and from 2 to 6, the SIC and LR criteria have smaller BIAS 

values than the estimated two-parameter gamma distribution for both the maximum 

and 98% quantities. Using RRMSE, the three discrimination criteria and the two 

estimated distributions are quite similar. On the basis of these results, it is clear that 

BIAS values will not generally be increased substantially by incorrectly overfitting a 

three-parameter gamma distribution when the two-parameter version is correct, and 

that at least one of the discrimination criteria can be superior to the correctly estimated 

two-parameter distribution in terms of BIAS and RRMSE.

The main points from the Weibull distribution experiments given in Table 7.2 are 

as follows:
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(i) When the three-parameter Weibull distribution is correct, the three discrimina

tion criteria and the estimated three-parameter Weibull distribution are identical in 

terms of BIAS and RRMSE for both the maximum and 98% quantities for all values of 

the shape parameter (namely, 0.5, 1, 2 and 3). Underfitting the correct Weibull distri

bution with its two-parameter variant yields considerably larger BIAS and RRMSE for 

all values of the shape parameter, although the degree of error is reduced as the value 

of the shape parameter is increased. Thus, estimating the correct three-parameter 

distribution is not preferable in terms of BIAS and RRMSE as compared with using 

the three discrimination criteria, although underfitting the three-parameter Weibull 

distribution by setting the location parameter 7 to zero yields much larger BIAS and 

RRMSE values in all cases considered. This result is broadly similar in qualitative 

terms to those obtained for the gamma distribution although, in the latter case, esti

mating the correct distribution is preferred in terms of BIAS for a large value of the 

shape parameter.

(ii) As compared with the case of the gamma distribution, overfitting the correct 

two-parameter Weibull distribution yields some surprising results in terms of BIAS, 

especially for larger values of the shape parameter. When the shape parameter is 0.5, 

the estimated two-parameter Weibull distribution has much lower BIAS values than 

those obtained using the discrimination criteria and the estimated three-parameter 

Weibull distribution for both the maximum and 98% quantities. As the shape param

eter is increased from 0.5 to 1, the correctly estimated two-parameter distribution is 

still preferred for the maximum quantity but is inferior to SIC, which favours the lower 

dimensioned model, for the 98% quantity. When the shape parameter is increased to 

2 or 3, all three discrimination criteria are preferred to the estimated two-parameter 

Weibull distribution in terms of BIAS. Indeed, when the shape parameter is set to 

3, even the overfitted three-parameter distribution has lower BIAS than the correctly 

fitted two-parameter variant for both the maximum and 98% quantities. In terms of 

RRMSE, the correctly estimated two-parameter distribution is preferred in all cases, 

although its superiority is diminished as the shape parameter is increased. While there
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is not a noticeable difference between the overfitted three-param eter distribution and 

the three discrim ination criteria, SIC is always second best to the estim ated two- pa

ram eter distribution, and the estim ated three-param eter distribution is generally the 

worst. Qualitatively, the results are reasonably similar to those for the gamma distri

bution in th a t overfitting does not generally increase the BIAS and RRMSE values for 

the maximum and 98% quantities for the Weibull distribution. However, it is interest

ing to note th a t estim ating the correct two-parameter Weibull distribution does not 

always yield the smallest BIAS value relative to the three discrimination criteria, or 

even to the overfitted three-param eter distribution.

Finally, Table 7.3 contains the results from experiments for the lognormal distri

bution. Since the lognormal distribution has the opposite behaviour to the gamma 

and Weibull distributions as the shape param eter is increased, it is useful for compar

ative purposes to  examine the results as the shape param eter is decreased rather than 

increased. The principal points to note from the table are as follows:

(i) W hen the three-param eter lognormal distribution is correct (7 =  1) and the 

shape param eter is 1.2 or 0.9, the correctly fitted three-param eter distribution and 

the three discrim ination criteria have identical BIAS and RRMSE values for both the 

maximum and 98% quantities, whereas the underfitted two-parameter lognormal dis

tribution has substantially higher values for BIAS and RRMSE. Although the under

fitted two-param eter distribution still has the largest BIAS and RRMSE values when 

the shape param eter is reduced to 0.5 or 0.4, the other four methods do not remain 

identical. W hen the shape param eter is 0.5, the LR m ethod has by far the smallest 

BIAS for the m axim um  quantity  while SIC has the largest; for the 98% quantity, AIC 

and the correctly fitted three-param eter distribution have the smallest BIAS, and SIC 

again has the largest. These rankings are not m aintained when the shape param eter 

is reduced to 0.4. The smallest BIAS values for the maximum and 98% quantities 

are AIC and the estim ated three-param eter lognormal distribution, respectively, with 

SIC the worst of the four m ethods in each case. On the basis of RRMSE, however, 

the three-param eter lognormal distribution has the smallest value, followed closely by
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AIC, with SIC the worst of the four methods, for both the maximum and 98% quan

tities when the shape parameter is 0.5 or 0.4. The poor performance of SIC, which 

favours the more parsimonious two-parameter lognormal variant of the correct model, 

is consistent with the findings for the gamma and Weibull distributions, as is the re

sult that underfitting the model will generally lead to much larger values of BIAS and 

RRMSE for both the maximum and 98% quantities. Moreover, estimating the correct 

distribution is the preferred strategy, at least in terms of RRMSE, and sometimes also 

for BIAS, relative to using the three discrimination criteria to determine which of the 

three- and two- parameter distributions should be used.

(ii) Similar observed patterns to the above do not hold when the correct model is the 

two-parameter lognormal distribution (7 = 0). For example, when the shape parameter 

is 1.2, the correctly fitted two-parameter lognormal distribution has the smallest BIAS, 

followed by the parsimony- inclined SIC, and lastly by the overfitted three-parameter 

lognormal distribution, for the maximum quantity; for the 98% quantity, however, 

SIC has BIAS equal to that of the estimated two-parameter distribution, followed by 

the LR method and lastly by the overfitted three-parameter lognormal distribution. 

Even when the shape parameter is reduced to 0.9, these rankings are not sustained. 

While the estimated three-parameter lognormal distribution has the largest BIAS for 

both the maximum and 98% quantities, in the former case SIC is best, followed by 

the estimated two-parameter lognormal distribution, and in the latter case the LR 

method is best, followed by SIC. Interesting results arise when the shape parameter is 

reduced to 0.5 or 0.4. In the former case, the LR method has lowest BIAS, followed 

by SIC and lastly by the overfitted three-parameter distribution for the maximum 

quantity; for the 98% quantity, AIC is best, followed by the overfitted three-parameter 

distribution and lastly by the correctly fitted two-parameter distribution. The results 

for BIAS are especially striking when the shape parameter is reduced to 0.4. The LR 

method has lowest BIAS, followed by SIC, for the maximum quantity, while AIC is best, 

followed by the LR method, for the 98% quantity. However, the correctly estimated 

two-parameter distribution has the largest BIAS in each case, even larger than those
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of the overfitted three-parameter variant. Thus, overfitting the lognormal distribution 

for low values of the shape parameter can yield lower BIAS values than estimating the 

correct distribution. The results for RRMSE are not too dissimilar from the qualitative 

results for the gamma and Weibull distributions. For shape parameter values of 1.2, 

0.9 or 0.5, and for both the maximum and 98% quantities, the correctly estimated two- 

parameter lognormal distribution always has the smallest RRMSE, followed in each 

case by SIC, which favours parsimony, and lastly by the overfitted three-parameter 

lognormal distribution. When the shape parameter is reduced to 0.4, however, the 

rankings for RRMSE for both the maximum and 98% quantities are SIC, LR and 

AIC, followed distantly by the two estimated distributions. Thus, in terms of RRMSE, 

the three discrimination criteria are preferred to simple estimation of the distribution, 

whether it be the correct distribution or an overfitted variant.

7.5  C o n c lu d in g  R e m a r k s

In this chapter we have assessed the effects of missspecification in estimating the per

centiles of the two- and three-parameter gamma, Weibull and lognormal distributions. 

In the experiments, the true model is either a two- or three-parameter distribution, the 

estimated quantities are the maximum observed value or the ninety-eighth percentile 

value, and the performance criteria are the BIAS and RRMSE associated with the 

estimated quantities. Three discrimination criteria are used, together with estimation 

of both the three- and two-parameter distributions, to evaluate the consequences of 

misspecifying the distribution. The shape parameter is examined over a wide range 

of possible values. The results for the gamma and Weibull distributions are generally 

similar in qualitative terms. In particular, incorrectly underfitting a distribution can 

lead to substantially higher BIAS and RRMSE values as compared with fitting the 

correct distribution, and also relative to using discrimination criteria to select the ap

propriate distribution. Incorrectly overfitting a distribution does not generally increase 

BIAS substantially, if at all, and the discrimination criteria can be superior to the cor-
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rectly estim ated two-parameter distribution. Results for the lognormal distribution 

are not entirely similar to the above, depending crucially on the value of the shape 

param eter. Incorrectly underfitting the three-param eter lognormal distribution yields 

significantly larger BIAS and RRMSE values, and correctly fitting the distribution 

seems to be optimal. However, for small values of the shape param eter, the correctly 

estim ated two-parameter distribution can have larger BIAS values than for the incor

rectly overfitted three-param eter lognormal distribution, and much larger values than 

those obtained using discrimination criteria to select the appropriate distribution.
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T A B L E  7.1
E s t im a te s  o f  B IA S  a n d  R R M S E  a t m ax im u m  a n d  98 % q u a n titie s  fro m  1000 M o n te  C arlo  

s im u la tio n s  w ith  sam p le  size n  =  365 fo r th e  g am m a d is tr ib u tio n  ( ß = 1)

G A M M A  D IS T R IB U T IO N

T ru e P e rc e n ti le P e rfo rm an ce D isc r im in a tio n  C r ite r ia E s tim a te d  M odels
V alues C rite r ia L R A IC SIC 3-P 2-P

G a m in a ß M A X BIAS 0.0013 0.0013 0.0013 0.0013 -.3803
a = 0 .5 R R M S E 0.0673 0.0673 0.0673 0.0673 0.3820
7 = 1.0 98 BIA S 0.0007 0.0007 0.0007 0.0007 -.2198

R R M S E 0.0550 0.0550 0.0550 0.0550 0.2231
G a m m a 2 M A X BIA S 0.0183 0.0164 0.0168 0.0183 -.0003

a = 0 .5 R R M S E 0.0836 0.0846 0.0844 0.0836 0.0808
7 = 0.0 98 BIAS 0.0132 0.0118 0.0120 0.0132 -.0003

R R M S E 0.0772 0.0782 0.0780 0.0772 0.0755
G a m m a 3 M A X BIAS 0.0234 0.0234 0.0234 0.0234 -.2638

Qf =  1.0 R R M S E 0.0600 0.0600 0.0600 0.0600 0.2665
7 = 1.0 98 BIA S 0.0156 0.0156 0.0156 0.0156 -.1559

R R M S E 0.0492 0.0492 0.0492 0.0492 0.1603
G a m m a 2 M A X BIAS 0.0157 0.0282 0.0070 0.0429 -.0016

c* = l.0 R R M S E 0.0729 0.0775 0.0687 0.0777 0.0620
7 = 0.0 98 BIAS 0.0113 0.0205 0.0050 0.0314 -.0012

R R M S E 0.0638 0.0667 0.0614 0.0671 0.0575
G a m m a3 M A X BIAS 0.0073 0.0073 0.0073 0.0073 -.1450

o = 2.0 R R M S E 0.0527 0.0527 0.0527 0.0527 0.1499
7 = 1.0 98 B IA S 0.0040 0.0040 0.0040 0.0040 -.0850

R R M S E 0.0422 0.0422 0.0422 0.0422 0.0919
G a m m a2 M A X BIAS 0.0014 0.0050 -.0008 0.0106 -.0018

o = 2.0 R R M S E 0.0552 0.0572 0.0546 0.0597 0.0532
7 = 0.0 98 BIAS 0.0002 0.0026 -.0012 0.0062 -.0018

R R M S E 0.0478 0.0487 0.0476 0.0500 0.0468
G a m m a3 M A X BIAS -.0166 -.0062 -.0235 0.0042 -.0339

c*=6.0 R R M S E 0.0492 0.0484 0.0488 0.0440 0.0461
7 = 1.0 98 BIA S -.0094 -.0038 -.0131 0.0019 -.0186

R R M S E 0.0336 0.0335 0.0333 0.0315 0.0321
G a m m a2 M A X BIA S 0.0005 0.0027 -.0006 0.0045 -.0014

o = 6.0 R R M S E 0.0383 0.0423 0.0367 0.0467 0.0358
7 = 0.0 98 BIA S 0 .0000 0.0011 -.0006 0.0021 -.0011

R R M S E 0.0303 0.0321 0.0298 0.0341 0.0296

N o te  : a  is th e  sh a p e  p a ra m e te r ,  0 th e  sca le  p a r a m e te r  a n d  7 th e  lo c a tio n  p a ra m e te r .  
G a m m a 3  a n d  G a m m a2  d en o te  th e  3- a n d  2-p a ra m e te r  g am m a d is tr ib u tio n s .
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T A B L E  7.2
E s t im a te s  o f  B IA S  an d  R R M S E  at m a x im u m  an d  98 % q u a n tit ie s  from  1000 M o n te  Carlo  

s im u la t io n s  w ith  sam ple  size n =  365 for th e  W eib u ll  d is tr ib u t io n  (ß =  1)

W E IB U L L  D I S T R I B U T I O N

True P e r c e n t i le P erform ance D isc r im in a t io n  C riter ia E s t im a te d  M o d els
V a lu es Criteria L R A IC SIC 3-P 2-P

W eib u ll3 M A X B IA S 0.0041 0 .0041 0.0041 0 .0041 -.5739
a =  0.5 R R M S E 0.1466 0 .1466 0 .1466 0 .1466 0.5773
7 = 1.0 98 B IA S 0.0021 0 .0021 0.0021 0 .0021 -.3002

R R M S E 0.1165 0 .1165 0 .1165 0.1165 0.3116
W eib u ll2 M A X B IA S 0.0382 0 .0382 0 .0382 0 .0382 0.0000

o =  0.5 R R M S E 0.1599 0 .1599 0 .1599 0 .1599 0.1495
7 = 0.0 98 B IA S 0.0239 0 .0239 0 .0239 0 .0239 -.0005

R R M S E 0.1290 0 .1290 0 .1290 0 .1290 0.1238
W eib u ll3 M A X B IA S 0.0241 0 .0241 0.0241 0 .0241 -.2768

o =  1.0 R R M S E 0 .0714 0 .0714 0 .0714 0 .0714 0 .2803
7 = 1.0 98 B IA S 0.0135 0 .0135 0 .0135 0 .0135 -.1250

R R M S E 0.0521 0 .0521 0.0521 0 .0521 0.1323
W eib u ll2 M A X B IA S 0.0111 0 .0249 0 .0035 0 .0446 -.0028

o =  1.0 R R M S E 0.0850 0 .0912 0 .0806 0 .0904 0 .0743
7 = 0.0 98 B IA S 0.0063 0.0150 0 .0017 0 .0276 -.0021

R R M S E 0.0667 0 .0699 0 .0647 0 .0696 0 .0617
W eib u ll3 M A X B IA S 0.0017 0 .0017 0.0017 0 .0017 -.0955

o = 2.0 R R M S E 0.0302 0 .0302 0 .0302 0 .0302 0.0980
7 = 1.0 98 B IA S 0.0005 0 .0005 0 .0005 0 .0005 -.0419

R R M S E 0.0217 0 .0217 0 .0217 0 .0217 0.0461
W eib u ll2 M A X B IA S -.0008 0 .0005 - .0016 0 .0055 -.0021

o = 2.0 R R M S E 0.0388 0 .0399 0 .0377 0 .0426 0.0372
7 = 0.0 98 B IA S -.0009 - .0002 - .0013 0 .0024 - .0015

R R M S E 0.0316 0 .0319 0.0311 0 .0329 0 .0309
W eib u ll3 M A X B IA S 0.0008 0 .0008 0 .0008 0 .0008 - .0466

o = 3 . 0 R R M S E 0.0195 0 .0195 0 .0195 0 .0195 0.0486
7 = 1.0 98 B IA S 0.0001 0 .0001 0.0001 0 .0001 - .0206

R R M S E 0.0137 0 .0137 0 .0137 0 .0137 0 .0238
W eib u ll2 M A X B IA S -.0011 - .0 0 0 7 - .0014 0 .0013 - .0015

o =  3.0 R R M S E 0.0262 0 .0276 0.0251 0 .0298 0.0248
7 = 0.0 98 B IA S -.0009 - .0008 -.0011 0 .0001 -.0011

R R M S E 0.0211 0 .0216 0 .0207 0 .0223 0.0206

N o te  : cv is th e  sh a p e  p aram eter ,  ß th e  sca le  p a r a m e te r  an d  7 th e  lo c a t io n  p a ra m eter .  
W eib u ll3  an d  W eib u ll2  d en o te  th e  3- and  2 -p a r a m e te r  W eib u ll  d is tr ib u t io n s .
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T A B L E  7.3
E s t im a te s  o f  B IA S  and  R R M S E  at m a x im u m  an d  98 % q u a n tit ie s  from  1000 M o n te  Carlo  

s im u la t io n s  w ith  sa m p le  size n =  365 for th e  log n o rm a l d is tr ib u t io n  (ß =  1)

L O G N O R M A L  D I S T R I B U T I O N

True P e r c e n t i le P erform ance D isc r im in a t io n  C riter ia E s t im a te d  M o d e ls
V a lu es Criteria L R A IC SIC 3-P 2 -P

L o g N 3 M A X B IA S 0.0283 0 .0283 0 .0283 0 .0283 - .4706
a = 1.2 R R M S E 0.1742 0 .1742 0 .1742 0 .1742 0 .4758
7 = 1.0 98 B IA S 0.0130 0.0130 0 .0130 0 .0130 - .2748

R R M S E 0.1195 0 .1195 0.1195 0 .1195 0 .2844
L o g N 2 M A X B IA S 0.0110 0 .0181 0 .0050 0 .0286 0 .0016
a = 1.2 R R M S E 0.1582 0.1645 0 .1527 0 .1760 0 .1485
7 = 0.0 98 B IA S 0.0041 0 .0078 0 .0009 0 .0134 - .0 0 0 9

R R M S E 0.1154 0.1179 0 .1133 0 .1232 0.1116
L o g N 3 M A X B IA S 0.0169 0 .0169 0 .0169 0 .0169 - .3387
o = 0 . 9 R R M S E 0.1344 0 .1344 0 .1344 0.1344 0 .3444
7 = 1.0 98 B IA S 0.0066 0.0066 0 .0066 0 .0066 - .1823

R R M S E 0.0891 0.0891 0.0891 0.0891 0 .1918
L o g N 2 M A X B IA S 0.0042 0 .0091 0.0005 0 .0173 -.0009
o = 0 . 9 R R M S E 0.1196 0 .1262 0 .1125 0 .1377 0 .1108
7 = 0.0 98 B IA S 0.0006 0 .0030 - .0012 0 .0070 - .0018

R R M S E 0.0869 0 .0892 0 .0840 0 .0942 0 .0835
L o g N 3 M A X B IA S 0.0001 0 .0047 - .0107 0.0052 - .1453
o = 0 . 5 R R M S E 0.0865 0 .0794 0 .0988 0 .0784 0 .1514
7 = 1.0 98 B IA S -.0015 0 .0008 - .0067 0 .0010 -.0689

R R M S E 0.0515 0 .0485 0 .0565 0.0481 0 .0775
L o g N 2 M A X B IA S -.0004 0 .0036 - .0014 0 .0056 - .0020
o =  0.5 R R M S E 0.0668 0 .0752 0.0641 0.0849 0 .0613
7 = 0.0 98 B IA S -.0013 0 .0005 - .0017 0 .0012 - .0 0 1 9

R R M S E 0.0479 0 .0508 0.0472 0 .0545 0 .0464
L o g N 3 M A X B IA S -.0102 - .0007 - .0255 0 .0032 -.1006
o = 0 . 4 R R M S E 0.0782 0.0685 0 .0885 0.0633 0 .1066
7 = 1.0 98 B IA S -.0060 - .0016 - .0130 0 .0003 - .0 4 6 3

R R M S E 0.0438 0 .0400 0 .0478 0 .0380 0 .0543
L o g N 2 M A X B IA S -.0006 0 .0024 - .0015 - .0967 - .1016
o = 0 . 4 R R M S E 0.0546 0 .0617 0 .0520 0 .1156 0 .1108
7 = 0.0 98 B IA S -.0012 0.0000 - .0016 - .1390 - .1407

R R M S E 0.0386 0 .0410 0 .0379 0.1441 0 .1443

N o t e  : a  is th e  sh a p e  p a ra m eter ,  ß  the  sca le  p a r a m e te r  an d  7 th e  lo c a t io n  p a ra m eter .  
L o g N 3  and L o g N 2  d e n o te  th e  3- and  2 -p a ra m eter  lo g n o rm a l d is tr ib u t io n s .
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C h ap ter 8

D iscr im in ation  P roced u res for 
F ittin g  N e sted  and N o n -N e sted  
D istr ib u tio n s

8.1 In trod u ction

In recent years there has been an increased demand for statistical techniques to draw in

ferences regarding the probability distribution of an unknown parent population based 

on sample information. Applications occur in many areas, such as reliability and life

testing (Mann et al. (1974) and Bain (1978)), hydrology (Stedinger (1980)), and air 

quality management (Jakem an and Taylor (1989)). Discrimination techniques are used 

when the null model has both a more general as well as non-nested alternatives.

For a particular sample of observations, it is generally preferable to have a greater 

choice among alternatives rather than  less. It is found in this chapter tha t some 

members of non-nested families can be good approximations to others. This occurs 

especially among three-param eter probability distributions. W hen distributions are 

very similar, it can be difficult to discriminate among alternatives. It would be useful, 

therefore, to consider selection criteria tha t are powerful in discriminating among very 

similar distributions.

In this chapter, discrimination among nested and non-nested distributions is consid

ered. Traditional approaches are re-examined. These include the standard likelihood
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ratio procedure which tests the null hypothesis against a more general alternative, and 

some well-known discrimination criteria. The particular problem considered is to dis

crim inate among a set of probability distributions in three situations. The first two 

cases are concerned only with non-nested distributions, but both nested and non-nested 

distributions are examined in the th ird  case. For illustrative purposes, the two- and 

three-param eter gamma, Weibull and lognormal distributions are used to demonstrate 

a new discrimination procedure and compare its performance with existing criteria. 

These three distributions are well known and have been used successfully for various 

problems. Monte Carlo experiments are employed to examine their performance over 

a range of param eter values found to be relevant in assessing environmental quality 

data.

Extensive investigation of a num ber of popular criteria indicates tha t there is no 

ideal existing method of discrimination which is satisfactory for all cases of interest. 

The results show that the performance of each criterion depends strongly on the rel

evant probability distribution, the range of param eters and the confidence level (if 

applicable). Of course, performances are much improved when the sample size is in

creased, but sufficiently large sample sizes are not always possible in real applications.

To complement the inadequacies of existing criteria, a generalized information cri

terion (GIC) is proposed. A desirable feature of GIC is to determ ine whether or not a 

distribution is significantly superior to others under consideration. There is no restric

tion on the num ber of candidates in the discrimination procedure, as long as the true 

distribution is among the alternatives considered. The GIC procedure is particularly 

useful when the alternative distributions considered are very similar.

The plan of the chapter is as follows. In Section 2 several existing procedures for 

testing and discriminating among nested and non-nested distributions are discussed, 

as are several goodness-of-fit tests. Some practical problems in discrimination and 

testing are outlined in Section 3. Discrimination criteria and asym ptotic tests are 

presented in Section 4, and a generalised information criterion is developed in Section
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5. Three distribution functions and several statistical criteria are given in Section 6. 

1 he Monte Carlo procedure is outlined in Section 7, and the results of the experiments 

for discriminating between two, three and five non-nested distributions are discussed 

in Sections 8, 9 and 10, respectively. An extension of the Monte Carlo experiments to 

the case of one nested and five non-nested distributions is presented and discussed in 

Section 11. Some concluding remarks are given in Section 12.

8.2 A vailab le P roced u res

Let X\ ,X2 , . . .  , x n represent n observations of a random variable with density function 

f ( x ) .  If the null hypothesis specifies H0 : f ( x )  =  fo(x;0)  against the alternative Hi  : 

f ( x ) =  fi(x;(f>), where 9 and <f> are p x  1 and q x 1 param eter vectors ranging over 

suitable domains, the nesting requirement is th a t fo(x;0)  and f\(x;(j)) are members 

of the same family of distributions. However, if an arbitrary member of one family 

cannot be obtained as a limit member of the other, f o(x-0)  and f i (x;  (j>) are separate 

(or non-nested) distributions.

Goodness-of-fit criteria used for assessing the appropriateness of a given distribu

tion can be classified into three categories. Standard tests involve inference about 

either the unknown population distribution or param eters based on the available sam

ple information. Taking into account the variability associated with samples from a 

particular distribution, such hypothesis tests allow confidence levels to be established. 

In the nested case, the typical procedure used is the likelihood ratio (LR) test with 

an asym ptotic \ 2 distribution. In the non-nested case, a well-known test is the Cox 

(1961,1962) test, which is based upon the centred likelihood ratio statistic (see McAleer 

and Pesaran (1986)). O ther tests include those of Atkinson (1970), Epps et al. (1982), 

and Horowitz and McAleer (1988).

In recent years, many information criteria have appeared in the literature to com

plement the hypothesis testing approach. The two most frequently used information 

criteria are those of Akaike (1974) and Schwarz (1978). The prim ary advantage of
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information criteria is tha t they are very flexible. They can be used in both the nested 

and non-nested cases, and the true model does not have to be a candidate among the 

tested models. Information criteria can also be used to discriminate among a set of 

more than two candidates, unlike the hypothesis tests which are generally limited to 

two distributions. Moreover, the criteria are usually simple to use. The disadvan

tage of information criteria is th a t the results they yield generally do not convey any 

probabilistic statem ents, and it is difficult to analyse quantitatively their power and 

robustness, as can be done for hypothesis testing.

There are other familiar tests, different from the tests mentioned above, which 

emphasize testing the differences in fit between the proposed distribution and the 

sampling distribution. Such goodness-of-fit tests can be assessed by fitting either the 

cumulative distribution function or the probability density function, and the model will 

be tested for significant deviations from the sampling distribution. In general, there is 

no restriction to nested or non-nested cases for such tests and they allow consideration 

of a set of alternatives. Although such goodness-of-fit tests are also based on asymptotic 

theory, in finite samples their results might differ from the hypothesis tests discussed 

earlier. Two well-known goodness-of-fit tests considered in this chapter are the chi- 

square (Pearson (1900)) and the Kolmogorov-Smirnov (see Bury (1975)) tests.

8.3 P ractica l P ro b lem s

The purpose of standard approaches for testing and discrimination is to determine 

either the ‘tru e ’ or ‘best’ distribution based upon a random sample of observations. In 

the first category, the Cox (1961, 1962) procedure is used to test the null hypothesis 

against a non-nested alternative. One of the two distributions is presumed to be true. A 

representative example in the second category is Akaike’s information criterion (AIC), 

which chooses from among a set of models the distribution with the highest value of the 

log-likelihood function subject to a penalty for the number of param eters estimated.

If the null hypothesis is true, the sampling distribution will approach the population
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distribution as the sample size tends to infinity, but false null hypotheses will be rejected 

based on the evidence of large departures between the hypothesized and sampling 

distributions. As the sample size increases without limit, the false distribution will be 

rejected with probability approaching one.

Information criteria are constructed in a different way. For example, Schwarz’s 

information criterion (SIC) is based on Bayesian theory, while Akaike’s information 

criterion can be considered from the theory of cross-validation (Stoica et al. (1986)). 

The aim of existing information criteria is to choose the distribution which ‘best’ fits 

the data, after imposing a penalty for the number of param eters and /or observations 

used in estimation. In contrast to hypothesis tests, the true distribution need not be 

included among the models considered. However, when the true distribution is under 

consideration, the ‘best’ distribution chosen should be the true one as the sample size 

tends to infinity. Under this assumption, the sampling errors tends to zero, and the un

derlying and sampling distribution become identical. In this sense, the performances of 

information criteria and hypothesis tests should be comparable. These discrimination 

and testing criteria can be used successfully over a wide range of situations. Simula

tion experiments have shown tha t good empirical sizes and powers can be obtained for 

many distributions, including many one- and two-parameter distributions.

There is no single dominant criterion, and some of these deficiencies will be discussed 

in the following sections. A ttention is paid mainly to general problems and emphasis 

is placed on discrimination among param etric probability distributions.

Example 1: Consider real data from air pollutant measurements of 24-hour averages 

of nitrogen dioxide concentrations sampled at the city monitoring station in Canberra, 

Australia. The number of available daily observations for the 1979 full year is 271. To 

test the data, the three-param eter gam m a distribution is chosen as the null hypothesis 

against the non-nested alternative three-param eter Weibull distribution. Fitting three- 

param eter gam m a and Weibull distributions to the data, the maximized values of the 

log-likelihood functions are -375.99 and -375.33, respectively. Applying the bounded-
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size likelihood ratio (BLR) test of Horowitz and McAleer (1988) at the 95 per cent 

confidence level, with a critical value of 1.35, the Weibull alternative does not fit 

significantly better than the gamma null. Thus, the gamma distribution cannot be 

rejected against the Weibull alternative.

Example 2: Suppose a random sample is generated from an underlying two- or 

three-param eter gamma distribution with sample size n = 365 (which represents one 

year of 24-hour observations), and this is repeated in 1000 Monte Carlo simulation 

experiments. The three-param eter gamma, Weibull and lognormal distributions are 

considered as candidates for fitting the data. For each experiment, the m ethod of 

m axim um  likelihood is used to estim ate the three param eters for each of these three 

distributions. The simplest discrimination procedure is to choose the distribution with 

the highest value of the log-likelihood function. This is equivalent to using AIC and 

SIC for selecting the distributions when the number of param eters of the alternative 

distributions is the same. The results of the simulations are as follows:

(1) W hen the param eters of the underlying gamma distribution are given as shape 

=  2, scale =  1 and location =  1 in all 1000 simulation experiments, the three-param eter 

gam m a distribution is selected 596 times, the three-param eter Weibull distribution 355, 

and the three-param eter lognormal distribution 49. T hat is, only 59.6 per cent of the 

selections are correct and 40.4 per cent are incorrect.

(2) W hen the param eters of the underlying gamma distribution are given as shape 

=  6, scale =  1 and location =  1 in 1000 simulation experiments, the three-param eter 

gam m a distribution is selected 526 times, the three-param eter Weibull distribution 

234, and the three-param eter lognormal distribution 240. T hat is, only 52.6 per cent 

of selections are correct and 47.4 per cent are incorrect.

This example simply shows tha t, in finite samples, the incorrect distribution may 

frequently have a higher maximized value of the log-likelihood function than  the true 

one. Using information criteria such as AIC may lead to a large number of incorrect 

selections. Indeed, many other existing selection criteria have similar problems. More
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details will be given in the following sections.

For a particular sample of observations, the population from which the data are 

drawn is unknown. If the sample is finite, sampling error exists. W hen there is strong 

statistical evidence in favour of an hypothesized distribution, it might only be that 

the specific sampling distribution is close to the population. However, there may be 

alternative distributions which could provide better representations of the data.

One of the problems of standard hypothesis tests arises from the requirement that 

one of the models considered must be the true distribution, while the other must be 

false. As discussed already, a difference of performance between two distributions will 

be used to infer tha t one is true and the other false. The initial null hypothesis and the 

alternative used are chosen arbitrarily. There is no strong reason why the sample must 

be drawn from one of the tested distributions. If both of the distributions initially 

hypothesized are wrong, the test will not necessarily indicate such a result. Moreover, 

from simulation results, the true distribution does not always perform the best, even 

in large but finite samples.

Another problem of standard hypothesis tests is tha t they are generally restricted to 

two distributions. Initial consideration of the correct distribution could be over a wide 

range of possible cases, such as those which have already been used in practice. This is 

a practical rather than a statistical problem. A ttem pting to overcome the problem is a 

m ajor concern of this chapter. Most information criteria such as AIC and SIC can be 

used without the lim itation of the second problem. There is no requirement tha t the 

number of distributions considered be limited. The task of such criteria is to choose the 

’best’ fitting distribution among all candidates, with some penalty for parsimony and 

the number of observations used. For a particular sample of observations, the ‘best’ 

fit to the distribution can be determined. Generally, the true model is the best fitting 

distribution if the sample size is very large.
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8.4 D iscr im in a tio n  C riteria  and A sy m p to tic  T ests

Traditional hypothesis testing involves testing the ‘true’ distribution. However, em

phasis can also be placed on determining false distributions. Assuming that the true 

distribution exists among a set of distributions, strong evidence can be sought to in

dicate that any distribution is false. In the ideal case, all false distributions will be 

rejected and the true distribution accepted. In the worst case, with little significant dif

ferences between the distributions, no superior distribution will emerge. Performances 

are similar and false distributions cannot be recognized. Between these extreme cases, 

some false distributions are determined and some of them are not, so that empirical 

distributions can be allocated to two categories: the superior and the badly fitting 

categories. The true distribution should frequently appear in the superior distribution 

category and have a high probability of appearing as the superior distribution in each 

sample case. Such a procedure is used to dismiss the worst cases, and retain the supe

rior distributions. Consequently, this procedure can avoid some problems encountered 

in the use of existing criteria.

The rationale used above leads to the construction of a new discrimination crite

rion. This criterion would perform the filtering function to dismiss the badly fitting 

distributions. It should also retain distributions with similar performances, which are 

superior to those rejected. The criterion is designed to test a number of distributions 

simultaneously and to apply in general situations. The key issue is how to distinguish 

between the superior and badly fitting distributions. To determine a critical value, the 

equivalence between some well-known information criteria and hypothesis tests can be 

used. Since most information criteria and hypothesis tests are based on the maximized 

value of the likelihood function, it is possible to compare information criteria and hy

pothesis tests in terms of the probability of accepting the underlying null distribution.

Consider comparisons between the well-known AIC, SIC, the LR test, and the 

BLR test of Horowitz and McAleer (1988). In discriminating between a 2-parameter 

distribution and a 3-parameter alternative for a random sample of size n, and defining
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logLo and logLi as the maximized values of the log-likelihood functions of the 2- and 

3-parameter distributions, respectively, the AIC and SIC may be expressed as:

Choose the 2-parameter distribution if

A IC  : —logLo d* 2 <! —logLi 3 (8.1)

S IC  : —logLo 4- logn < —logLi -f 3logn/2. (8.2)

Rearranging (1) and (2), and defining A L = logLo — logLi, the respective criteria will 

select the 2-parameter null distribution as follows :

A IC  : - A L < 1 (8.3)

SIC : - A  L< (8.4)

Suppose it is desired to test the nested null hypothesis H0: 2-parameter distribution, 

against the more general alternative hypothesis H\i 3-parameter distribution. The LR 

test defines the rejection region of the null hypothesis as:

L R : - A  L> I  (8.5)

where c is the critical value of the x2 distribution with one degree of freedom.

In the non-nested case with a similar hypothesis H0: 2-parameter distribution, 

against the non-nested alternative IIa: 3-parameter distribution, the BLR test defines 

the rejection region as :

B L R  : - A L > z* (8.6)

where z* > 0 and the asymptotic upper bound on the significance level is given by the 

cumulative standard normal distribution function evaluated at $[—\j2z*].
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By comparison with (3) and (4), the LR and BLR test statistics will accept H0 if

LR  : - A L < ~ (8.7)

B L R  : - A L < z \  (8.8)

The probability of accepting the true model could be obtained by using the critical 

values of the and the standard normal distributions, respectively. An equivalence 

among AIC, SIC and the LR and BLR tests can easily be established. For any sample 

size, use of AIC is equivalent to use of the LR statistic at the 84.2 per cent confidence 

level for nested distributions, and to use of the BLR statistic at the 92.1 per cent 

confidence level for non-nested distributions. Similarly, for a sample size of 365, SIC is 

equivalent to the LR test at the 98.5 per cent confidence level in the nested case, and

is equivalent to the BLR test at the 99.2 per cent confidence level in the non-nested

case. Such equivalences can be used to construct GIC which, when the null hypothesis 

holds, is equivalent to use of the LR or BLR tests at different confidence levels for 

nested and non-nested distributions, respectively. Essentially, GIC can be based on 

any asymptotic test which uses the maximized values of the log-likelihood functions of 

the appropriate distributions.

8.5 A Generalized Inform ation Criterion (GIC)

A new GIC procedure is proposed for the discrimination of distributional structures 

among a set of alternatives. The GIC is based on the equivalence between some well- 

known information criteria and hypothesis tests, and attempts to determine the false 

distributions based on sample information. Large differences between the maximized 

values of log-likelihood functions will lead to rejection of the distribution with the 

lower value. Discriminated distributions are separated into two categories, the supe

rior and badly fitting categories. The distributions in the superior category perform 

within an acceptable tolerance level and there are no significant differences among their
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performances. The GIC procedure may provide several alternatives rather than  one 

particular distribution for a particular set of data. In the event of there being several 

sets of data, the distribution with the highest probability of acceptance in the superior 

category will be chosen.

Let x\,x-2 , . . . ,  x n be n independently and identically distributed random observa

tions. Denote logLj as the maximized log-likelihood value of distribution j  (j  = 

1 , 2 , . . . ,  m ), with the ordering given as

logLi >  logL2 > • • • >  logLm. (8.9)

Then distribution j  will be rejected in favour of distribution 1 if

G IC  —2logL\ T  To <! —‘llogLj ( 8. 10)

where To > 0. The value T0 erance level required in order to reject distributions

as being significantly different from each other, and is equivalent to the  rejection region 

discussed in the previous section. For the nested case, To can be expressed as

To =  c (8.11)

whereas in the non-nested case, T0 is given by

To =  2z*. (8.12)

The motivation behind the GIC procedure is straightforward. First, for a given 

sample, select the distribution with the highest maximized log-likelihood value among 

logLj (j  = 1,2, . . . , m ) .  This distribution then belongs to the category of superior 

distributions and is also used as a standard for further inference. Second, reject the 

false alternatives among the remaining distributions in term s of the given tolerance. 

The distributions which perform within an acceptable tolerance level of the best fitting 

distribution are retained in the superior category, and the distribution with the highest
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probability of acceptance over different sets of data will be chosen from the superior

category.

8.6  D istr ib u tio n  F u n ctions and S ta tis tica l C riteria

For a sample , . . . ,  x n of n independently and identically distributed random  obser

vations, the log-likelihood functions for the 3-parameter gamma, Weibull and lognormal 

distributions are given as follows:

Gamma:

logL = —nctlogß -  nlogT(a) +  (a  -  1) j h  log(x{ -  7 ) -  ^ (8.13)
i=i i=i P

Weibull:

logL =  nloga -  nctlogß +  (a  -  1) ^  log(xi -  7 ) -  ■■■1 )a (8.14)
*=i t=i P

Lognormal:

logL = ~ ^ lo g (2 n a 2) -  log{Xi -  7 ) -  J2[log(xi -  7 ) -  ß]2 (8.15)

in which ß  represents the scale param eter, a  the shape param eter, 7 the location 

param eter, and T is the gamma function. The 2-param eter versions of the above 

functions are obtained by setting the location param eter 7 to zero in each case. In 

the above equations, ß > 0, a  > 0 and 7 <  X{ < 00 for i = 1 , 2 , . . .  ,n.  The density 

functions of the gamma and Weibull functions approach the exponential at a  =  1, 

are ” J ” shaped for ct < 1 and ’’bell” shaped for a  > 1, whereas the density for the 

lognormal function changes from being nearly symmetric to being heavily skewed as a  

is increased from 0.4 to 1.2. These values accommodate a variety of shapes which arise 

in practice in analysing real data.

The param eters of the three log-likelihood functions are estim ated by maximum 

likelihood methods. Since the general maximum likelihood procedure will frequently 

fail to converge when the shape param eter is less than or equal to unity, an approach 

th a t circumvents this problem is used (for further details, see Bai et al. (1989)).

175



In the application to air quality assessment and control, the simplest non-nested 

discrimination problem is to test an hypothesis tha t the pollutant population has a 

specified distribution against the alternative tha t the distribution belongs to a non

nested alternative. Standard non-nested procedures can then be applied.

The choice of an appropriate test for a specific practical problem depends upon 

the properties of the test. The Cox test is generally complicated to use, involving the 

calculation of the asymptotic variances of the differences of the log-likelihoods between 

two distributions. Kent (1986) points out the problem of possible degeneracy of the Cox 

test. To introduce a consistent test, Epps et al. (1982) propose a method based on the 

comparison of the theoretical and empirical moment generating functions. However, 

since the empirical moment generating function will depart largely from the theoretical 

moment generating function, particularly for positively skewed distributions, the test 

will be inefficient. In order to avoid the disadvantages of such tests, Horowitz and 

McAleer (1988) developed the BLR test which is tractable, easy to use and applies for 

general param etric forms of distributions. Denoting the maximized values of the 2- and 

3-parameter variants of a particular log-likelihood as logLo and logL\, respectively, the 

BLR test is given in equation (8), when the null hypothesis is true tha t the location 

param eter is zero. The AIC and SIC are given in equations (3) and (4), respectively, 

with the 3-param eter distribution being selected when the inequalities are reversed.

In this chapter, two well-known criteria for testing goodness of fit are also con

sidered. These are the chi-square (CHI) test and the Kolmogorov-Smirnov (KS) test. 

Classifying the n observations into k categories, the chi-square statistic is of the form 

(see Pearson (1900)):

C H I  = y (8.16) 
nPi

which has an asym ptotic \ 2 distribution with (k — l — 1) degrees of freedom when 

II0 holds. The are hypothetical probabilities, the fi  are empirical frequencies and 

/ is the number of param eters estim ated for each distribution (for further details, see
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Kendall and Stuart (1979)). For the experiments conducted in this chapter, k = 

10 and / =  2 or / =  3. The KS test, which is defined in term s of the maximum 

absolute difference between the sample distribution function Sn(x) and the hypothetical 

distribution function F0(x) (see e.g. Bury (1975, p. 204)), is given by

Dn = sup \Sn(x) -  F0(x)\. (8.17)
X

Large observed values of the D n statistic lead to rejection of the null hypothesis Fo(x).

Based on the loss function recommended for assessing air quality models (see Fox 

(1981)), two performance criteria defined in term s of the relative root mean square 

error (RRMSE) are also used. The first criterion is based on the mean of RRMSE in 

the upper (U) percentiles, and the second is based on the mean of RRMSE in the entire 

or full (F) percentiles of the distribution. For an estim ate qij of a quantity of interest q, 

these performance criteria are defined in term s of deviations from q in the percentiles 

of interest, where i denotes the specific percentiles estim ated and j  corresponds to 

the replication of experiments. The definitions of the upper percentile error and full 

percentile error are as follows:

1 N
U P E = -  £ [ E(N  j=l 1 +  (! -  ittn  9

9ij 9 \2 j0 .5 (8.18)

fpe=L ei- ± ( ^ r r  (8.19)
j = 1 n  i= 1 <7

where p is the location of the p-quantile which is chosen at the 98 per cent level for 

UPE and 100 per cent for FPE, N  is the number of replications of the experiment, and 

n is the sample size. For present purposes, q denotes the percentile quantities related 

to the upper and full percentile errors.
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8.7  M o n te  Carlo E xp erim en ts

In order to assess the performances of discrimination criteria, an extensive range of 

possible cases is considered. The shape param eter is examined over a wide range of 

possible values where the density functions are positively skewed: the shape parameter 

takes the values 2 and 6 for the gam m a distribution; 2 and 4 for the Weibull distribution; 

and 0.5 and 0.9 for the lognormal distribution. In all cases considered in this chapter, 

the arbitrary scale param eter is set to unity, and the location param eter takes on the 

values 0 and 1 for the 2- and 3-param eter distributions, respectively. The lognormal 

distribution has the opposite behaviour to the gamma and Weibull distributions as the 

shape param eter is increased. For each entry in the tables, N  = 1000 replications of 

the experiments are processed. The sample size used is n =  365, since it represents a 

common case, namely a full year of 24-hourly average observations.

The random sample generators used for the Monte Carlo experiments are DRNGAM, 

DRNW1B and DRNLNL for the gam m a, Weibull and lognorm al distributions, 

respectively. These are available as subroutines in the International M athem atical and 

Statistical Library (IMSL) in version 1.0 (April 1987). The same seed number (1234) is 

used to obtain the first random sample of the first of the 1000 replications. Varying the 

initial seed produces similar results to those reported in the chapter. Two subroutines, 

namely DCHIGF and DKSONE, are chosen from IMSL to perform the CHI and KS 

tests. All results are obtained on a VAX8700 mainframe com puter at ANU.

8.8 D iscr im in a tio n  B etw een  T w o N o n -N ested  
D istr ib u tio n s

The most common use of hypothesis tests and discrimination criteria arises in the case 

of having two candidate models. To compare the performance of different tests and 

criteria, each pair of possible combinations of the two-and three-param eter gamma, 

Weibull and lognormal non-nested distributions will be considered. The m ajor pur-
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pose of the Monte Carlo simulation experiments presented here is to re-examine the 

performance of different discrimination criteria, and to draw some useful conclusions 

as a guide for practice. It must be pointed out tha t some distributions are very similar 

in fitting the data, so tha t some of the discrimination criteria will not perform well. 

Theoretically, such simulation experiments could be used to expose the difficulties in 

discrimination of distributions th a t are very similar and give a necessary warning that 

care should be exercised. For further discrimination among a group of distributions, 

the results obtained in this section may be used to assist in the analysis of complicated 

problems, such as selection among six distributions, which will be discussed in Section 

11 .

The results of the Monte Carlo simulation experiments are shown in Tables 1 to 3. 

The main points are given as follows.

(i) W hen the three-param eter gam m a is the true distribution, the BLR test per

forms very well in accepting the true null hypothesis, except when the three-param eter 

Weibull distribution is the alternative, in which case the probability of accepting the 

true null is below the nominal level of significance. On the other hand, in term s of 

rejecting the false null hypothesis, the BLR test provides low probabilities in cases 

where the false null is either the three-param eter Weibull or lognormal distribution. 

For the Weibull distribution, power is increased when the shape param eter is increased 

to 6, but power is decreased in the lognormal case. Generally, the BLR test has high 

power in rejecting the false two-parameter null model, except in the single case when 

the two-param eter lognormal distribution is false and the value of the shape param eter 

of the alternative three-param eter gam m a distribution is 6.

In term s of the probability of accepting the correct distribution, the remaining cri

teria  perform differently when the value of the shape param eter of the true distribution 

is 2. The KS statistic accepts the true null with high probability, but CHI has slightly 

lower probabilities of accepting the true null, when compared with the confidence level. 

Note tha t the confidence level of the KS and CHI tests used here is 98 per cent, which is
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a value chosen from empirical air pollution applications. The same confidence level for 

the KS and CHI tests will be also used throughout this chapter. The ranking of these 

criteria are AIC and SIC (which are identical because they have the same num ber of 

param eters), and then FPE. The worst is UPE, whose probability is below 50 per cent. 

W hen the shape param eter is increased to 6, all criteria except UPE have significantly 

improved performances, even though they are still not satisfactory.

(ii) The results of discrimination between two non-nested models are quite similar 

to the above when the true distribution is the two-parameter gamma. The BLR test 

provides high probabilities of accepting the true null hypothesis, in general. However, 

when testing the two-param eter gam m a against the three-param eter Weibull, or test

ing the two-param eter gamma against the three-param eter lognormal distribution, for 

values of the shape param eter being 2 and 6, the BLR test performs poorly. If the alter

native is the tw o-param eter Weibull distribution, the power in rejecting the false null 

is quite low when the shape param eter is 2, but improves appreciably when the shape 

param eter is increased to  6. Similar results can be obtained when the two-parameter 

lognormal is the alternative; tha t is, the BLR test performs very well when the value 

of the shape param eter is 2, but becomes worse when the value of the shape param eter 

is increased to 6.

Of the remaining criteria, SIC works very well in most cases, with high proba

bilities of accepting the true null hypothesis. AIC is generally good but sometimes 

has low probabilities of accepting the true null, such as when the alternative is the 

three-param eter gam m a distribution. O ther methods are unstable. For example, FPE 

performs very well if the alternative is the two-parameter lognormal distribution, and 

performs well when the alternative is the two-parameter Weibull with shape param eter 

taking the value 6. However, SIC is worst when the alternative is either the three- 

param eter Weibull or lognormal distribution, with the shape param eter taking the 

values 2 and 6. Based on these results, SIC is the preferred criterion, in general.

(iii) W hen the three-param eter Weibull distribution is correct, the probabilities
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of accepting the true null hypothesis for the BLR test all exceed the nominal level 

of significance. However, in term s of rejecting the false null hypothesis, the BLR 

test performs differently according to various pairs of tested distributions, and the 

values of the shape param eters of the true distribution. Testing between the three- 

param eter Weibull and gamma distributions when the shape param eter is 2, the BLR 

test has low power in rejecting the false gamma null hypothesis, especially at the 99 

per cent confidence level. An improvement in the performance of the BLR test can be 

seen when the shape param eter is increased to 4, but the power in rejecting the false 

model is still relatively low at the 95 and 99 per cent confidence levels when compared 

with some other pairs of non-nested models. Similar results are also obtained when 

testing between the three-param eter Weibull and lognormal distributions, in which 

the power of the BLR test is increased when the value of the shape param eter of the 

Weibull distribution is increased. In testing the three-param eter Weibull versus the 

two-parameter gamma distribution when the shape-param eter is 2, the BLR test has 

very good power in rejecting the false model, bu t power decreases significantly when the 

shape param eter is increased to 4. This is also the case for testing the three-param eter 

Weibull distribution against the two-parameter lognormal distribution, in which the 

power of the BLR test changes when the value of the shape param eter is increased.

Of the others, AIC performs consistently well in most cases, except for the single 

case where the probability of accepting the true null hypothesis decreases to 0.89 for 

discriminating between the three-param eter Weibull and lognormal distributions when 

the value of the shape param eter is 4. SIC produces the same results as AIC when 

discriminating among three-param eter distributions, and SIC performs worse when dis

criminating between the three-param eter Weibull and either the two-parameter gamma 

or lognormal alternatives. The lowest probability of accepting the true null is observed 

when the shape param eter equals 4 for the case of the three-param eter Weibull against 

the two-param eter gamma distribution. Compared with AIC, FPE  also performs con

sistently well in most cases but also decreases the probability of accepting the true null 

hypothesis when the shape param eter is 4 in the case of the three-param eter Weibull
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against the two-param eter lognormal distribution. Surprisingly, UPE is the best in 

cases where the others are worsening, but has the lowest probability of accepting the 

true null hypothesis when the shape param eter is 2 for the three-param eter Weibull 

versus the two-param eter gamma distribution. The performance of KS is good in 

terms of accepting the true null, but CHI has a probability of acceptance of the true 

null slightly below the confidence level.

(iv) For the same discrimination procedures but with the sample coming from the 

two-parameter Weibull distribution, the results obtained in the simulation experiments 

are similar to the above. In terms of the probability of accepting the true null hypoth

esis, the BLR test provides very good performance in all cases. However, when testing 

the twro-param eter Weibull distribution against either the three-param eter gam m a or 

lognormal distributions, the power in rejecting the false null hypothesis is very poor. 

When the shape param eter is increased from 2 to 4, the performance of the BLR test 

improves when testing against the three-param eter gamma, and deteriorates against 

the three-param eter lognormal distribution. The probability of rejecting the false null 

hypothesis is low at the 99 per cent confidence level when the shape param eter is 2, 

but improves considerably when the shape param eter is increased to 4. For the last 

pair of the two-param eter Weibull versus the two-parameter lognormal distribution, 

the probability of rejecting the false null hypothesis for the BLR test is 100 per cent.

On the other hand, AIC and SIC provide high probabilities of accepting the true 

null hypothesis in all cases. Similar results will be obtained when testing against 

the two-param eter distributions and, as expected, AIC will have a lower probability 

of accepting the true distribution than  SIC if the alternative is the three-param eter 

distribution. U PE is comparable to AIC and SIC in all cases, and is sometimes the 

best. FP E  has a lower probability of accepting the two-parameter Weibull distribution 

against both the three-param eter gam m a and lognormal distributions when the shape 

param eter is 2, and has a high probability for the former when the shape param eter is 

increased to 4, but becomes worse for the latter. KS and CHI have high probabilities 

of accepting the true null hypothesis in testing against the two-param eter lognormal
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distribution when the shape param eter equals 2 or 4. Similar results will be obtained 

against the two- and three-param eter gamma distributions if the value of the shape 

param eter is 4.

On the basis of these results, great care should be exercised in testing the two- 

param eter Weibull distribution against both the three-param eter gamma and lognor

mal distributions using different criteria. The user should also be careful in the case 

of the tw o-param eter Weibull versus the two-parameter gamma distribution. AIC, 

SIC and UPE are generally reliable. FP E  will perform very well for the two-parameter 

Weibull versus either the two-parameter gamma or lognormal distribution. Care should 

be exercised in using the KS and CHI tests because they often have low powers for 

rejecting the false null, although their probabilities of accepting the true null are often 

very high.

Finally, the simulation experiments are conducted to discriminate among the two- 

and three-param eter gamma, Weibull and lognormal distributions, based on samples 

taken from the lognormal distribution. The results are included in Table 3, and the 

main points should be noted as follows.

(v) W hen the three-param eter lognormal distribution is correct, the BLR test pro

vides accurate acceptances of the true null hypothesis in most cases. The exception is 

the three-param eter lognormal versus the three-param eter gamma distribution when 

the shape param eter is 2, with the probabilities being below the given confidence level. 

In term s of the power of rejecting the false null hypothesis, the BLR test has low 

probabilities of accepting the true null hypothesis in the case of the three-param eter 

lognormal null against the three-param eter gamma alternative when the value of the 

shape param eter is 0.5. However, the probabilities are increased significantly when 

the shape param eter of the three-param eter lognormal distribution is set at 0.9. AIC, 

SIC, and FP E  perform very well in most cases, but there are exceptions when the 

three-param eter lognormal null is tested against the three-param eter gamma alterna

tive. CHI and KS consistently provide high probabilities of accepting the true null.
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Unfortunately, UPE works poorly in all pairs of tested distributions. The results show 

th a t care should be exercised in applying the discrimination procedures to the three- 

param eter lognormal null versus the gamma alternative distribution when the value 

of the shape param eter is 0.5. UPE is not reliable here, reflecting the fact tha t the 

estim ation of the upper percentiles is unstable.

(vi) Similar observed patterns are obtained when the true distribution is the two- 

param eter lognormal distribution. The results for accepting the true null and rejecting 

the false null are similar to the case when the true distribution is the three param eter 

version, with the probabilities of accepting the true null generally being lower than 

those given in point (v) above. The BLR test still has problems in rejecting a false 

null hypothesis when the shape param eter is 0.5, but improves considerably when the 

shape param eter is increased to 0.9, in testing the two-parameter Weibull against both 

the three-param eter gam m a and lognormal distributions. This behaviour is also found 

in testing against the two-parameter gamma distribution. Similarly, AIC, SIC and 

F P E  work well in most cases, except for the two-parameter lognormal against the 

three-param eter gam m a distribution. Once again, the performance of KS is good in 

accepting the true  null, but CHI has slightly lower probabilities of accepting the true 

null. For SIC, its probability also decreases substantially against the two-param eter 

gam m a distribution. Once again, U PE performs poorly in all cases.

In summary, different discrimination criteria for selecting between two distributions 

are re-examined. The experimental results show tha t there is no criterion which con

sistently performs well in all cases. Great difficulties arise whenever three-param eter 

distributions are involved because the extra (location) param eter significantly improves 

empirical fitting of the data. It is argued here th a t efforts made to develop a new cri

terion cannot help resolve this problem since differences between the true and false 

distributions are too small.

The large sample sizes used in the experiments are commonly found in practice, so 

the problems encountered here have general meaning for application of such statistical
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techniques to real situations. Based on the results of these simulation experiments, 

the user should exercise care in employing these criteria to discriminate between two 

three-param eter distributions, especially when the gamma distribution is involved. Ex

tensive care should be exercised in situations when three-param eter distributions are 

involved because false three-param eter non-nested distributions can frequently perform 

be tte r than true two-param eter distributions. In general, AIC is good in most cases 

but might perform worse than SIC when the true distribution has only two parameters 

and better than SIC when the true distribution has three param eters. FP E  has very 

good performances and is generally quite similar to AIC and SIC. UPE is not generally 

reliable, but is superior in some cases where the others are performing badly. However, 

UPE is particularly im portant for air quality management because this criterion indi

cates errors at the upper percentiles. Unfortunately, KS and CHI generally have low 

powers for rejecting the false null, so tha t care should be exercised in applications.

8.9 D iscrim ination Among Three N on-N ested 
D istributions

Discrimination among three non-nested distributions is more difficult than  between 

two, as was reported in the previous section. Standard hypothesis tests are generally 

not valid if the num ber of tested distributions exceeds two. On the other hand, an ad

ditional candidate will affect other criteria used in selecting the true distribution. The 

emphasis here is placed on discrimination among the two- or three-param eter gamma, 

Weibull and lognormal distributions. Monte Carlo experiments are used to examine 

the performance of the discrimination criteria as each distribution is taken to  be true. 

The discrimination procedures might be expected to expose certain distributions as 

being good approxim ations to others over different param eter ranges, even when the 

distributions come from different param etric families.

One of the purposes of the experiments is to examine the outcomes arising from the 

situation where the data  are generated from, say, the three-param eter gam m a distribu-
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tion, and discrimination is made between it and its two-parameter counterpart. Such 

considerations often arise in practice, and has especial im portance for fitting models to 

air quality data, as will be discussed later. For each experiment, selection will proceed 

among the two- and three-param eter gamma, Weibull and lognormal distributions. In

stead of using the BLR test, the Kullback-Leibler (KL) information criterion based on 

the maximized log-likelihood values will be used. In this case, AIC and SIC will be 

equivalent to KL since the penalties for AIC and SIC are identical. The sample size is 

365, which is considerably large for practical purposes. As mentioned previously, GIC 

is prim arily designed to discriminate among three or more distributions simultaneously, 

in which case the LR test is not applicable. Thus, GIC is expected to complement the 

existing discrimination criteria.

The results of experiments using different criteria are shown in Table 4. The main 

points from the table are as follows.

(i) W hen the three-param eter gam m a distribution is correct, all of the criteria in 

Table 4 perform poorly. The best is KL (or equivalently, AIC and SIC), although it is 

only correct 59.6 per cent of the tim e when the shape param eter is 2, and 52.6 per cent 

of the tim e when the shape param eter is increased to 6. FP E  is reasonably close to 

KL. KS and CHI perform well in accepting the true null but they also accept the false 

three-param eter models frequently. U PE is worst and selects the false three-param eter 

Weibull distribution 576 times in 1000 experiments. W hen the value of the shape pa

ram eter is 2, the three-param eter Weibull distribution has a rather high probability 

of 35.5 per cent of being the best fitting distribution, but when the shape param eter 

is increased to 6, the three-param eter lognormal distribution becomes a good approx

im ation to the true distribution. Somewhat surprisingly, when the value of the shape 

param eter is 2, the two-param eter lognormal is the best fitting of the two-param eter 

distributions. Although the two-parameter gamma becomes the best when the value 

of the shape param eter is increased to 6, the two-parameter lognormal distribution is 

still a good approxim ation to the true three-param eter gamma distribution.
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(ii) The performances of the discrimination criteria are improved substantially when 

the true distribution is the two-parameter gamma. KL, AIC and SIC are the best when 

the value of the shape param eter is 2, but FPE  is best when the shape param eter is 6. 

KS and CHI have high probabilities of accepting the two- and three-param eter gam m a 

and Weibull distributions when the values of the shape param eter are 2 and 6. UPE 

remains the worst. For the other three-param eter distributions, the ranks are similar 

to the case where the true distribution is the three-param eter gamma, which suggests 

tha t changing the value of the location param eter from 1 to 0 does not effect the results 

qualitatively.

(iii) Most of the criteria perform very well when the three-param eter Weibull dis

tribution is true. In this case, UPE becomes the best when the value of the shape 

param eter equals 2 or 4. The high probabilities of accepting the true distribution 

indicate th a t both three-param eter gamma and lognormal distributions are not good 

approximations to the three-param eter Weibull distribution. Once again, the two- 

param eter lognormal distribution is the best when the shape param eter is 2, bu t it 

is replaced by the two-param eter gam m a distribution when the shape param eter is 4. 

These results suggest th a t the member of the same family of distributions with two 

param eters is not necessarily as good as a member from a non-nested counterpart. The 

two-parameter lognormal distribution is the best approximation to the three-param eter 

Weibull distribution if the data are heavily skewed, as is often encountered in air pol

lution applications.

(iv) Similar observed patterns are obtained when the true distribution is the two- 

param eter Weibull. Most of the criteria perform well in accepting the true distribution. 

Only KS and CHI have low powers for rejecting the false two- and three-param eter 

gamma, and the three-param eter Weibull and lognormal distributions. U PE performs 

the best of the criteria.

(v) W hen the value of the shape param eter is 0.9 for the underlying three-param eter 

lognormal distribution, most of the criteria perform very well, with the exception of
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UPE. However, when the shape param eter is decreased to 0.5, power is reduced sub

stantially. KS and CHI have significantly higher probabilities for rejecting the false 

distributions when the value of the shape param eter is 0.9, as compared with the cases 

when the true distributions are the two- or three-param eter gamma and Weibull dis

tributions. However, the false three-param eter gamma distribution will be frequently 

accepted by KS and CHI tests if the shape param eter is decreased to 0.5. UPE has 

the worst. It is interesting to note tha t, of the two-parameter distributions, the two- 

param eter lognormal distribution is the best approximation to the three-param eter 

lognormal. Based on these results, it is clear th a t, no m atter which three-param eter 

distribution is true, the two-param eter lognormal will always be a good representation 

of the data  if selection is restricted to two-parameter distributions and the sample data 

are quite skewed. These simulation results are consistent with the recommendations 

of many air pollution specialists (for example, Larsen (1971,1974) and Benarie (1980)) 

tha t the two-param eter lognormal distribution is the best for fitting urban air pollutant 

concentrations. However, care should still be exercised because the two-param eter ver

sion might not be the best if alternative three-param eter distributions are under serious 

consideration.

(vi) W hen the true distribution is the two-parameter lognormal, most criteria apart 

from UPE perform very well. The improvement in rejecting the false models using the 

KS and CHI tests can also been seen when the value of the shape param eter is 0.9, as 

compared with the cases where the true distributions are the two- or three-param eter 

gamma and Weibull distributions. Their performance in rejecting false models will 

deteriorate when the shape param eter is reduced to 0.5. Similarly, the result of selection 

among three-param eter distributions has no significant changes when the data  are from 

the two-param eter lognormal distribution.

From the results of the experiments, the criteria used are not always consistent, 

especially for the underlying two-and three-param eter gamma distributions. The same 

problem is found when the three-param eter lognormal is the true distribution with the 

value of the shape param eter taken as 0.5. A m ajor consequence of these findings is
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th a t the criteria will reject the true distribution frequently because of a slightly lower 

value of the maximized log-likelihood function relative to tha t of the false distribution. 

To avoid this outcome, GIC is recommended. The principle of GIC is to reject the 

distribution if the evidence shows th a t it performs very poorly. W ith small differences 

in the performances of the distributions, GIC will not initially reject the distributions 

but simply determ ine if they are similar for the particular sample. The true distribution 

will be included in the selection and should have the highest probability of acceptance. 

The results given in Table 5 emphasize the following points.

(a) GIC works consistently very well in accepting the true distribution as compared 

w ith the remaining criteria. In all cases, the probability of acceptance is over 94 per 

cent and, in many cases, the true distribution is always accepted.

(b) If the distribution is false, GIC will reject it when the value of its log-likelihood 

function is lower than the tolerance level. In the event th a t a false distribution is 

accepted by GIC, it means tha t such a distribution fits the data  as closely as the true 

one in term s of the given critical region. In all cases, the probability of accepting the 

false model is less than 90 per cent, which is much lower than the result obtained for the 

true model. Some three-param eter distributions, such as the Weibull and lognormal, 

have large numbers of acceptances when the true distribution is the three-param eter 

gam m a. This only serves to indicate tha t they could be good approximations for 

the underlying three-param eter gam m a distribution over certain ranges of the shape 

param eter.

(c) W hen selection is among three-param eter distributions but the parent distribu

tion is a two-parameter version, its three-param eter counterpart is consistently selected. 

This is not always the case when selection is among two-parameter distributions and 

the underlying distribution is a three-param eter version. Since there is no true model 

among the distributions under consideration, GIC is not guaranteed to select the cor

rect model.

In conclusion, experiments have been conducted to discrim inate among three non-
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nested distributions. Such discrimination has employed some well-known criteria and 

tests, such as KL, AIC, SIC, CHI and KS, as well as some criteria recommended for 

application to air quality data, such as UPE and FPE. The results of the experiments 

have shown tha t the criteria are not consistent in all cases where the underlying distri

butions and param eter values are altered, so tha t the true distribution can be rejected 

quite frequently. Therefore, GIC was applied in the same experiments, and was shown 

to perform very well for various underlying distributions and param eter values. GIC is 

useful in avoiding over-rejection of the true distribution, which is im portant in applica

tions. Moreover, GIC indicates tha t some distributions may fit the data equally well. 

In addition, through Monte Carlo experiments, it was shown that the two-parameter 

lognormal is a good approximation to the three-param eter gamma, Weibull and lognor

mal distributions when selection is restricted to two-parameter distributions and the 

sample is heavily skewed. In terms of acceptance of the true distribution, it is necessary 

to consider three-param eter distributions against the two-parameter lognormal in such 

cases, because further discrimination might yield different results. Such a suggestion 

should be very useful when applying statistical techniques to air quality applications.

8.10 D iscr im in a tio n  A m on g  F ive  N o n -N ested  
D istr ib u tio n s

Similar statistical techniques used for discrimination among three non-nested distribu

tions can easily be extended to discrim inate among five non-nested distributions simul

taneously. T hat is, for any given model, there will be a maximum of four non-nested 

alternative distributions. Additional distributions generally affect the discrimination 

criteria in terms of selecting the true distribution, but the nature of such distributions 

is also im portant, namely whether they are good approximations to each other. For 

example, from the results of the previous two sections, it is known tha t the three- 

param eter Weibull distribution is often a good approximation to the three-param eter 

gam m a distribution for certain param eter values, but the two-param eter lognormal dis-
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tribution does not fit either the two- or three-param eter gamma distribution especially 

well.

The advantage of including five distributions as candidates for a particular sample 

is th a t this could help to avoid the problem found in the previous section, namely where 

an incorrect selection occurs when the procedure is restricted to only two-parameter 

distributions, but a heavily skewed three-param eter distribution is true. In principle, 

criteria such as KL, AIC, SIC, CHI, KS, UPE and FP E  have no restrictions on the 

num ber of distributions considered. GIC is also constructed especially for discrimina

tion when the number of distributions exceeds two. The task here is to investigate 

whether they are capable of providing satisfactory results in applications.

At first, the Monte Carlo experiments are used to re-examine the different criteria 

except GIC, and the results are given in Table 6. The following points should be noted.

(i) Consider the case of the three-param eter gamma distribution being correct. The 

m ajor concern here is with a pair of two-parameter distributions. W hen the value of 

the shape param eter equals 2, KL and AIC remain the same, and SIC and F P E  are 

changed slightly. KS and CHI are good in terms of accepting the true distribution but 

false distributions, such as the three-param eter gamma and Weibull, are also frequently 

accepted by these two tests. However, when the shape param eter is increased to 6, all 

of the criteria have substantially decreased probabilities of accepting the true distri

bution. KL is the only criterion with a probability of acceptance in excess of 50 per 

cent. The worst is SIC, which favours the two-parameter lognormal distribution. UPE 

consistently shows that the three-param eter Weibull distribution is the best, which 

means tha t the three-param eter Weibull distribution provides lower errors at the up

per percentiles. From the outcomes of these experiments, the qualitative findings are 

quite different for each discrimination criterion.

(ii) The results from the experiments will largely differ from the above when the 

true distribution is the two-parameter gamma. SIC changes from being the worst to 

the best, especially when the value of the shape param eter is increased from 2 to 6.
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Unfortunately, AIC and the remaining criteria provide probabilities which are all 

under 50 per cent. W hen the value of the shape param eter is 6, KL and FPE  are all in 

favour of the three-param eter lognormal, whereas UPE still selects the three-param eter 

Weibull distribution. Although SIC and AIC have relatively high probabilities of ac

cepting the true distribution, the results show tha t the three-param eter distributions 

have much stronger influence than their two-parameter counterparts.

(iii) W hen the three-param eter Weibull distribution is correct with the shape pa

ram eter equal to 2, KL and FPE  have the same probabilities as compared with point 

(iii) of Section 9 in considering a pair of two-parameter distributions. AIC has only a 

very small change in the probability of accepting the true distribution but the prob

ability of SIC has decreased significantly. UPE accepts the two-parameter gamma 

distribution rather than the true distribution. However, when the value of the shape 

param eter is increased to 4, UPE becomes the best criterion, with a high probability of 

accepting the true distribution, while KL, AIC, SIC and FP E  have worsened substan

tially. The KS and CHI tests have poor performances in rejecting the false distribution 

when the shape param eter is 2, but their powers in rejecting the false three-param eter 

gamma is significantly increased when the value of the shape param eter is increased to 

6. This is not the case for the remaining false distributions.

(iv) Considering the two-parameter Weibull distribution as true, SIC performs well 

when the value of the shape param eter is 2 or 4. AIC and UPE also perform quite 

well, but KL provides a relatively low probability of accepting the true distribution. KS 

and FP E  perform quite well in accepting the true distribution, but are less powerful in 

rejecting the false models. Based on these results, the selections are strongly influenced 

by the addition of two- or three-param eter distributions. All of the criteria perform 

poorly and become unreliable when the values of the param eters and the nested true 

distribution are varied.

(v) W hen the three-param eter lognormal distribution is correct, all of the criteria 

remain the same when the value of the shape param eter is equal to 0.9, which indicates
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tha t the additional two-param eter distributions do not affect the outcome of the dis

crimination criteria. Such stability remains when the shape param eter is decreased to 

0.5. This is the only situation in which the results of the experiments are not changed 

when the number of distributions considered is increased from three to five.

(vi) There are noticeable differences in the results when the true distribution is 

changed to the two-param eter lognormal. The probabilities of accepting the true dis

tribution have decreased slightly for all the criteria when the value of the shape param 

eter is equal to 0.9, but have decreased substantially when the value is reduced to 0.5, 

apart from SIC. Such changes arise mainly from the three-param eter gam m a distribu

tion, which indicates th a t it is a good approximation to the two-param eter lognormal 

distribution. Compared with the case where the gamma and Weibull distributions 

are true, when the true model is the lognormal distribution, the results of discrimina

tion among five distributions are not much altered from discrimination among three 

distributions.

As expected, discrimination among five distributions is more difficult than  among 

three. Compared with the la tter case, the criteria used here perform either poorly or 

unreliably, and the results generally become much worse after involving the additional 

distributions, especially in the case when the two- or three-param eter gam m a distri

bution is true. The gam m a distribution has a probability of acceptance below 50 per 

cent for most of the criteria when the value of the shape param eter equals 6. Such 

performances are not satisfactory and the use of these criteria is subsequently in doubt. 

Therefore, there is still a need to provide more reliable selection procedures than  those 

used above.

The results from the experiments in using GIC are shown in Table 7. It is interesting 

to note th a t GIC performs very well, consistently providing the highest probability of 

accepting the true distribution in all cases. The main points should be noted as follows.

(a) W hen the three-param eter gam m a is the true distribution, the three-param eter 

Weibull distribution is a good approximation when the values of the shape param eter
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are 2 or 6. W hen the distribution becomes more symmetric at a  =  6, the two- and 

three-param eter lognormal distributions become close to the three-param eter gamma 

distribution. W hen the true distribution is the two-parameter gamma, the two- and 

three-param eter Weibull are quite good if the sample is skewed, but the three-param eter 

Weibull and lognormal are superior when the distribution is more symmetric.

(b) The additional two-parameter distributions do not change the discrimination 

results when the Weibull becomes the true distribution in both the two- and three- 

param eter cases. If the sample is heavily skewed when the value of the shape param 

eter is 2, the three-param eter gamma is close to both the two- and three-param eter 

Weibull distributions. W hen the value of the shape param eter is 4, the three-param eter 

lognormal distribution will approach the three-param eter gamma distribution.

(c) There is no difficulty in discriminating between the underlying lognormal dis

tributions for both the two- and three-param eter cases when the value of the shape 

param eter is 0.9. In this respect, the lognormal distribution is different from the gamma 

and Weibull distributions. However, the result is changed when the value of the shape 

param eter is decreased to 0.5, and the three-param eter gam m a distribution becomes a 

very good approximation to the lognormal distribution.

(d) The most im portant point to note here is tha t the three-param eter distributions 

will generally be affected only slightly by the presence of the two-param eter distribu

tions, but two-parameter distributions will be more heavily influenced by the addition 

of the three-param eter distributions. Based on the Monte Carlo simulations, when the 

three-param eter distribution is true, the probability of accepting the true distribution 

for GIC will be greater than 90 per cent in large samples. On the other hand, if the true 

distribution has two param eters, the probability would be slightly in excess of 85 per 

cent in large samples, such as when the two-parameter gamma is the true distribution. 

Such results indicate tha t if the two-parameter distribution has the highest probability 

of acceptance among the remaining distributions, this two-param eter distribution is 

likely to be the true one, although the probability of accepting the three-param eter
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distribution is close to tha t of its two-parameter counterpart. This result arises be

cause three-param eter distributions generally fit the data  better than two-param eter 

models.

In summary, different criteria have been re-examined through Monte Carlo ex

periments, and the weaknesses of the criteria used here have been highlighted. The 

proposed GIC has performed very well and consistently provides high probabilities of 

acceptance of the true distribution in all cases. It is, therefore, recommended tha t GIC 

should always be used in discriminating among five non-nested distributions.

8.11 D iscr im in a tion  A m on g  S ix N e s te d  and  
N o n -N e ste d  D istr ib u tio n s

It is a difficult task to discriminate among a num ber of distributions simultaneously. 

When these distributions contain both nested and non-nested relations, the problems 

become even more complicated. As discussed in Section 3, the gamma, Weibull and 

lognormal distributions are quite similar to each other for certain param eter values, 

so tha t each could be a candidate for a particular set of data. This is the usual 

case encountered in applications. For illustrative purposes, we introduced some simple 

procedures for discriminating among two- and three-param eter gamma, Weibull and 

lognormal distributions related to air quality applications.

Basically, the selection criteria used in the previous section can be applied in fairly 

general situations, where both nested and non-nested distributions can be considered. 

Discrimination procedures for six distributions are similar to those for three or five 

distributions. In this section, we consider discriminating between a null model and 

five other distributions, namely a nested alternative and four non-nested alternatives. 

However, the simulation results are quite different even though the sampling experi

ments are the same. The reason is simply tha t the greater is the num ber of alternative 

distributions considered, the greater are the chances of selecting the incorrect distri

bution in small samples. On the other hand, all criteria perform poorly when there
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are strong similarities among some three-param eter distributions such as the three- 

param eter gam m a and Weibull distributions. This problem arises generally for all 

existing selection criteria. The performances of each criterion are discussed below.

(i) Consider the situation when the true distribution is the 3-param eter gamma, and 

the two-param eter gamma distribution becomes one of the six candidates. Before the 

experiments are conducted, it might be predicted tha t the results should change only 

slightly since the two-param eter distribution might be expected to have little  im pact on 

the three-param eter distributions. In Table 8, when the value of the shape param eter 

is 2, all of the criteria remain largely unchanged, but most of them  except KL have 

largely decreased probabilities of accepting the true distribution when the value of the 

shape param eter is increased to 6. According to the results of the nested discrimination 

procedure (see Bai et al. (1990)), the two-parameter gamma distribution becomes a 

very good approxim ation to the three-param eter version as the distribution tends to 

symmetry. KL is the only criterion with a probability exceeding 50 per cent, and the 

others perform very poorly. A1C and SIC favour the two-parameter gamma, bu t U PE 

favours the three-param eter Weibull distribution.

(ii) Similar patterns are obtained when the true distribution is the two-param eter 

gamma. W hile SIC is best, followed by AIC, they are steady for both values of the 

shape param eter. O ther criteria have much lower probabilities, especially KL, which 

has decreased substantially. The results show th a t the three-param eter gam m a distri

bution has a strong influence on the outcomes of the discrimination procedures for the 

underlying tw o-param eter gam m a distribution.

(iii) W hen the three-param eter Weibull distribution is true with the shape param e

ter set at 2, most of the criteria are very stable and are little  influenced by the addition 

of the two-param eter Weibull distribution. Similar results can also be seen when the 

shape param eter is increased to 4, except tha t UPE has substantially decreased proba

bilities of accepting the true distribution. Surprisingly, KS and CHI have high powers 

for rejecting the false two-parameter Weibull distribution when the shape param eter is
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2, but power will be decreased when the value of the shape parameter is increased to

4.

(iv) Adding the three-parameter Weibull distribution has significantly altered the 

results of most criteria when the true distribution is the two-parameter Weibull distri

bution. KL now performs the worst and UPE has decreased by more than one-half. 

AIC has also reduced probabilities, and only SIC remains similar to the results ob

tained before the addition of the three-parameter Weibull distribution. It is interesting 

to note that the powers of KS and CHI are high for rejecting the false two-parameter 

lognormal distribution when the values of the shape parameter are 2 and 4. However, 

this is not the case for the remaining false distributions.

(v) When the three-parameter lognormal distribution is correct, the results are 

similar to those obtained before adding the nested two-parameter lognormal distribu

tion. This simply indicates that all of the two-parameter distributions, including the 

nested members, are not close to the three-parameter lognormal distribution. Only the 

three-parameter gamma distribution is close to the three-parameter lognormal.

(vi) The results of discrimination among six distributions could be expected to de

fer to those obtained in point (vi) of the previous section when the true distribution 

is the two-parameter lognormal and the three-parameter lognormal distribution is in

volved. The influence from the three-parameter lognormal distribution can be seen 

from KL, which has a zero probability of accepting the true distribution but favours 

the nested three-parameter alternative with very high probability. This is because the 

three-parameter lognormal distribution will be chosen even if it has only a slightly 

higher maximized log-likelihood value than the two-parameter distribution. SIC and 

AIC have much improved results since they penalize the number of parameters and/or 

observations used, but they still have decreased probabilities in comparison with the re

sults obtained previously. The other criteria have substantially decreased probabilities, 

providing very poor performances in selecting the true distribution.

Based on these results, the selection of the underlying two-parameter lognormal
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distribution is also affected significantly by adding the nested three-param eter alterna

tive. It is not surprising th a t all of the criteria perform very poorly because they did 

not work well even without involving the nested cases. Table 8 provides further evi

dence tha t these criteria are not capable of discriminating among distributions which 

are quite similar to each other.

Of course, discrim inating among six distributions simultaneously is also a difficult 

task for GIC. The reason is simply tha t the three-param eter distribution will perform 

b e tte r than, or at least similarly to, the two-parameter distribution when the latter 

distribution is true. As mentioned previously, GIC selects the 3-parameter distribution 

if its probability of acceptance is over 90 per cent. There is no doubt tha t this will 

be satisfied by the three-param eter distribution even though the true distribution has 

only two param eters.

W hen using the LR test, if the value of the log-likelihood function for the three- 

param eter distribution is close to th a t of the two-parameter distribution, it is inferred 

th a t the sample comes from the two-parameter distribution. By using GIC, if the 

probability of acceptance of the two-parameter distribution is close to tha t of the 

three-param eter nested alternative, it means tha t the values of the log-likelihood func

tions for these two nested distributions are very close and the data  are inferred as being 

generated from a tw o-param eter distribution. From the empirical results obtained in 

the previous section, when the two-param eter distribution has a probability of accep

tance in excess of 85 per cent, the two-parameter distribution would be expected to 

be the true distribution, regardless of the performance of the three-param eter alter

native. However, when the two-param eter distribution has a much lower probability 

of acceptance, it means th a t the values of the log-likelihood functions for the two- 

and three-param eter distributions have departed significantly from each other, so that 

the sample can be determ ined as being generated from a three-param eter distribution. 

Based on the results in Table 8, GIC will select the three-param eter distribution with 

the highest probability of acceptance, which should be over 90 per cent. This sugges

tion is based on the results from experiments for the discrimination procedures in both
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the nested and non-nested cases.

Based on the analysis above, the m atter of selecting the true distribution from 

among the six distributions is straightforward. The results are presented in Table 9, 

and the following points should be noted.

(a) W hen the three-param eter gamma distribution is true, with the value of the 

shape param eter set at 2, the result is unchanged from previous findings, with the 

two-parameter gam m a distribution having no influence on the selection at all. W hen 

the shape param eter is increased to 6, the probability of accepting the two-parameter 

gamma distribution is still less than 85 per cent. O ther distributions have low probabil

ities of being accepted and the three-param eter gamma distribution is selected. On the 

other hand, although involving the three-param eter gamma distribution, the probabil

ity of other distributions being selected is unchanged when the true distribution is the 

two-parameter gamma. The two-param eter gam m a distribution has a high probability 

of acceptance which is comparable with the three-param eter version, namely over 85 

per cent, and the result indicates th a t the values of the log-likelihood function are very 

similar. In such cases, the two-parameter gamma distribution will be selected and the 

three-param eter version will be rejected.

(b) Similar results will also be obtained when the Weibull distribution is correct. 

The results are the same as previously when the true distribution is the three-param eter 

Weibull for both values of the shape param eter. W hen the true distribution is the 

two-parameter Weibull, its acceptance is very similar to th a t of its three-param eter 

counterpart because these two distributions have similar log-likelihood values.

(c) W hen the lognormal distribution is correct, similar patterns will be obtained 

as above. If the true distribution is the three-param eter lognormal, the probability 

of accepting the true distribution remains unchanged for both values of the shape 

param eter. W hen the two-parameter lognormal distribution is correct, the results do 

not change significantly. Based on the similar probabilities of acceptance of the two- 

and three-param eter lognormal distributions, the log-likelihood values of these two
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distributions are very similar, thereby providing evidence tha t the sample comes from 

the two-parameter distribution.

(d) The best feature of GIC is tha t it determines the probability of accepting each 

distribution consistently for particular sample sets, while additional non-nested distri

butions will not significantly affect the probabilities of existing candidates if the true 

distribution is already under consideration. Based on the Monte Carlo experiments, 

the discrimination criteria listed in Table 8 fail to accept the true distribution fre

quently. However, the results show that GIC is a useful tool in discriminating among 

six nested and non-nested distributions in tha t it has a high probability of accepting 

the true distribution.

8.12 C onclud ing R em arks

In this chapter, some im portant issues in discriminating among nested and non-nested 

distributions have been raised. Existing problems in the literature are reported and 

discrimination procedures for non-nested distributions are re-examined. Such proce

dures are generally used to discriminate between two distributions, such as in classical 

nested hypothesis testing. The emphasis here is placed on discrimination among a set 

of three, five or six distributions where standard hypothesis testing procedures are not 

valid. From the practical point of view it is argued tha t, because the true distribu

tion is unknown, the more distributions tha t are considered, the greater will be the 

chances of selecting the most appropriate distribution. An example is given in Section 

10 whereby the two-parameter lognormal distribution is selected when discrimination 

is restricted to three two-parameter distributions, but the true distribution has three 

param eters. However, it is shown in this chapter tha t, in using different criteria, the 

greater the number of distributions th a t are considered, the greater will be the diffi

cult}' in selecting the true distribution. How to balance usefulness against selection of 

the true model is a m ajor concern of this chapter.

From the Monte Carlo simulations, some well-known discrimination criteria and
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tests such as KL, AIC, SIC, CHI, and KS, as well as some new criteria such as UPE 

and FPE, are shown to be neither consistent nor reliable. Some of these criteria, 

such as KL, AIC and SIC perform poorly in term s of accepting the true distribution, 

and such probabilities are decreased substantially as the number of distributions is 

increased. The KS and CHI tests are often accurate in accepting the true distribution, 

but generally have low powers in rejecting false distributions. To solve this problem, 

GIC is proposed specifically for discriminating among a set of distributions, where the 

number of distributions exceeds two. It has been shown tha t GIC performs exceedingly 

well and provides high probabilities of accepting the true distribution. Compared with 

other criteria, GIC is consistent and reliable, and it is also simple to use. W hen the 

true distribution is included among the distributions, additional candidates will not 

significantly affect the probability of accepting the true distribution.
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T A B L E  8.1
S izes a n d  p o w e rs  o f  th e  B L R  te s t  a n d  p r o b a b i l i t i e s  o f  a c c e p t in g  th e  t r u e  m o d e l u s in g  tw o  te s ts ,  

tw o  d is c r im in a t io n  c r i te r ia  a n d  tw o  p e r f o r m a n c e  c r i t e r i a  o v e r  1000 re p lic a t io n s  o f  r a n d o m
sa m p le s  o f  s iz e  n =  365 (ß =  1)

T ru e
M o d e l

F a lse
M o d e l

S ig n ifican ce  
L eve l F o r 
B L R  T est

B L R  T e s t 
S ize P o w e r A IC

T e s ts  a n d  C r i te r ia  
S IC  C H I  K S U P E F P E

G 3 W 3 .10 0.195 0 .4 4 7
a = 2 . 0 .05 0.111 0 .3 4 8 0 .645 0 .645 0 .960 1.000 0 .424 0 .635
7 = 1 .0 .01 0.015 0 .1 2 3

G 3 L N 3 .10 0.030 0 .9 0 3
a = 2 . 0 .05 0.017 0 .8 5 8 0.951 0.951 0 .960 1.000 0.950 0 .937
7 = 1 .0 .01 0.003 0 .6 5 9

G 3 W 2 .10 0.000 1 .000
o = 2 .0 .05 0.000 1 .000 1 .000 1 .000 0 .960 1.000 0.779 1.000
7 = 1 .0 .01 0.000 1 .000

G 3 L N 2 .10 0.000 1 .000
o = 2 .0 .05 0.000 0 .9 9 8 0 .999 0 .976 0 .960 1.000 0.551 0 .993
7 = 1 .0 .01 0.000 0 .9 8 2

G 2 W  3 .10 0.301 0 .351
o = 2 .0 .05 0.209 0 .2 7 2 0 .738 0 .960 0 .964 0 .990 0.442 0.491
7 = 0 .0 .01 0.057 0 .0 9 6

G 2 L N 3 .10 0.046 0 .8 6 0
o = 2 .0 .05 0.034 0 .8 0 3 0 .956 0 .995 0 .964 0.990 0.946 0.801
7 = 0 .0 .01 0.006 0 .5 6 0

G 2 W 2 .10 0.072 0 .7 4 6
o = 2 .0 .05 0.044 0 .6 7 9 0 .864 0 .864 0 .964 0 .990 0.508 0 .618
7 = 0 .0 .01 0.012 0 .452

G 2 L N 2 .10 0.000 0 .9 9 8
o = 2 .0 .05 0.000 0 .995 1.000 1.000 0 .964 0 .990 1.000 1.000
7 = 0 .0 .01 0.000 0 .9 8 3
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T A B L E  8.1 c o n t i n u e d

T r u e
M o d e l

F alse
M o d e l

S ig n if ican ce  
L ev e l  F o r  
B L R  T e s t

B L R  T e s t  
Size P o w e r A IC

T e s ts  a n d  C r i t e r i a  
S IC  C H I  K S U P E F P E

G 3 W 3 .90 0.152 0 .662
Of=6.0 .95 0.109 0 .581 0 .766 0 .766 0 .966 1.000 0.521 0.807
7 = 1.0 .99 0.025 0 .380

G 3 L N 3 .90 0.038 0 .270
0 = 6.0 .95 0.008 0 .105 0 .760 0 .760 0 .966 1.000 0.822 0.657
7 = 1.0 .99 0.000 0 .001

G 3 W 2 .90 0.000 1 .000
o = 6.0 .95 0.000 1.000 1 .000 1 .000 0.966 1.000 0.757 1.000
7 = 1.0 .99 0.000 1.000

G 3 L N 2 .90 0.016 0 .735
a = 6.0 .95 0.003 0 .555 0 .665 0 .160 0 .966 1.000 0.917 0.939
7 = 1.0 .99 0.000 0.187

G 2 W 3 .90 0.217 0 .590
o = 6.0 .95 0.157 0 .508 0 .805 0 .959 0 .966 0 .990 0 .524 0.669
7 = 0.0 .99 0.053 0 .334

G 2 L N 3 .90 0.180 0 .139
o = 6.0 .95 0.083 0 .034 0 .860 0 .989 0 .966 0 .990 0 .667 0.442
7 = 0.0 .99 0.016 0.000

G 2 W 2 .90 0.004 0 .988
o = 6.0 .95 0.003 0 .982 0 .991 0 .991 0 .966 0 .990 0 .704 0.973
7 = 0.0 .99 0.000 0.957

G 2 L N 2 .90 0.041 0 .892
o = 6.0 .95 0.028 0.861 0 .934 0 .934 0 .966 0 .990 0 .986 1.000
7 = 0.0 .99 0.007 0 .756

N o te :  a  is t h e  s h a p e  p a r a m e t e r ,  ,3 t h e  sc a le  p a r a m e t e r  a n d  7 t h e  l o c a t io n  p a r a m e t e r .  G 3
a n d  G 2  d e n o t e  t h e  th r e e -  a n d  t w o - p a r a m e t e r  g a m m a  d i s t r i b u t i o n s ,  W 3  a n d  W 2  
t h e  t h r e e -  a n d  tw o - p a r a m e t e r  W e ib u l l  d i s t r i b u t i o n s ,  a n d  L N 3  a n d  L N 2  t h e  t l i r e e -  
a n d  t w o - p a r a m e t e r  lo g n o rm a l  d i s t r i b u t i o n s .
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T A B L E  8.2
P r o b a b i l i t i e s  o f  a c c e p t in g  th e  t r u e  m o d e l a n d  r e je c t in g  th e  fa lse  m o d e l u s in g  th r e e  t e s t s ,  tw o  

d is c r im in a t io n  c r i t e r i a  a n d  tw o  p e r fo rm a n c e  c r i t e r i a  o v e r  1000 re p l ic a t io n s  o f  r a n d o m  s a m p le s
o f  s ize  n — 365 ( ß  =  1)

T ru e
M o d e l

F a lse
M o d e l

C o n fid e n c e  
L eve l F o r 
B L R  T est

B L R  T e s t 
S ize P o w e r A IC

T e s ts  a n d  C r i te r ia  
S IC  C H I K S U P E F P E

W  3 G 3 .90 0.031 0 .856
a = 2 .0 .95 0.017 0 .805 0 .924 0 .924 0 .959 1.000 0 .936 0 .918
7 = 1 .0 .99 0.005 0 .529

W 3 L N 3 .90 0.018 0 .940
a = 2 . 0 .95 0.011 0 .910 0 .968 0 .968 0 .959 1.000 0 .953 0 .949
7 = 1 .0 .99 0.004 0.791

W  3 G 2 .90 0.000 1.000
a = 2 .0 .95 0.000 0 .998 0 .999 0 .982 0 .959 1.000 0 .476 0 .999
7 = 1 .0 .99 0.000 0 .987

W 3 L N 2 .90 0.006 0 .969
o = 2 .0 .95 0.002 0.961 0 .968 0 .845 0 .959 1.000 0 .879 0 .953
7 = 1 .0 .99 0.000 0 .879

W 2 G 3 .90 0.06C 0 .790
o  =  2 .0 .95 0.044 0 .716 0.941 0 .991 0 .973 0 .999 0 .932 0 .722
7 = 0 .0 .99 0.011 0 .412

W 2 L N 3 .90 0.031 0 .909
o = 2 .0 .95 0.016 0 .870 0 .975 0 .996 0 .973 0 .999 0 .952 0 .886
7 = 0 .0 .99 0.004 0 .724

W 2 G 2 .90 0.022 0.941
o = 2 .0 .95 0.016 0 .920 0 .966 0 .966 0 .973 0.999 0 .987 0 .983
7 = 0 .0 .99 0.005 0 .853

W 2 L N 2 .90 0.000 1.000
o  =  2.0 .95 0.000 1.000 1 .000 1.000 0 .973 0 .999 1.000 1.000
7 = 0 .0 .99 0.000 1.000
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T A B L E  8.2  c o n t in u e d

True
M o d e l

False
M o d e l

C on fid en ce  
Level For 
B L R  Test

B L R  Test  
Size P o w er A IC

T ests  and  C riter ia  
SIC  C H I KS U P E F P E

W 3 G3 .90 0.020 0.919
o = 4 . 0 .95 0.012 0.895 0 .957 0 .957 0 .967 1.000 0 .980 0.957
7 = 1.0 .99 0.002 0.861

W  3 LN3 .90 0.041 0 .744
ct=4 .0 .95 0.019 0 .611 0 .890 0 .890 0 .967 1 .000 0 .921 0.845
7 = 1.0 .99 0.002 0.209

W 3 G2 .90 0.008 0 .951
o = 4 . 0 .95 0.004 0 .934 0 .945 0 .789 0 .967 1.000 0 .987 0.994
7 = 1.0 .99 0.000 0 .817

W 3 LN2 .90 0.001 0.995
o = 4 . 0 .95 0.000 0 .989 0 .993 0 .948 0 .967 1.000 0 .999 1.000
7 = 1.0 .99 0.000 0 .959

W 2 G3 .90 0.055 0 .870
o = 4 . 0 .95 0.041 0 .860 0 .9 4 8 0 .993 0 .973 0 .999 0 .974 0.925
7 = 0.0 .99 0.008 0 .853

W 2 LN3 .90 0.090 0 .634
o = 4 . 0 .95 0.056 0 .488 0 .929 0 .993 0 .973 0 .999 0 .908 0.558
7 = 0.0 .99 0.009 0 .129

W 2 G2 .90 0.000 0 .996
o = 4 . 0 .95 0.000 0 .995 0 .998 0 .998 0 .973 0 .999 1.000 0.997
7 = 0.0 .99 0.000 0.991

W 2 LN2 .90 0.000 1 .000
o = 4 . 0 .95 0.000 1 .000 1 .000 1 .000 0 .973 0 .999 1 .000 1.000
7 = 0.0 .99 0.000 1 .000

N ote :  a is th e  sh a p e  p a ra m eter ,  3 th e  sca le  p a r a m e te r  and  7 th e  lo c a t io n  p a ra m eter .  G3
and G2 d e n o te  th e  three- an d  tw o -p a r a m e te r  g a m m a  d is tr ib u t io n s ,  W 3  a n d  W 2  
th e  three-  and  tw o -p a ra m eter  W e ib u ll  d is tr ib u t io n s ,  and  L N 3  and L N 2 th e  tliree-  
and tw o -p a ra m eter  logn orm al d is tr ib u t io n s .
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T A B L E  8.3
P r o b a b i l i t i e s  o f  a c c e p t in g  th e  t r u e  m o d e l a n d  r e je c t in g  th e  fa lse  m o d e l u s in g  th r e e  te s t s ,  tw o  

d is c r im in a t io n  c r i t e r i a  a n d  tw o  p e r fo rm a n c e  c r i t e r i a  o v e r  1000 re p lic a t io n s  o f  r a n d o m  sa m p le s
o f  s ize  n = 365 (ß  =  1)

T ru e
M o d e l

F a lse
M o d e l

C o n fid e n c e  
L ev e l F o r 
B L R  T e s t

B L R  T e s t 
S ize P o w e r A IC

T e s ts  a n d  C r i te r ia  
S IC  C H I K S U P E F P E

L N 3 G 3 .90 0.022 0.951
a = 0 .9 .95 0.016 0 .946 0 .966 0 .966 0 .954 1.000 0 .684 0.930
7 = 1 .0 .99 0.006 0 .919

L N 3 W 3 .90 0.014 0 .973
0 = 0 .9 .95 0.009 0 .965 0.981 0.981 0 .954 1.000 0 .650 0.939
7 = 1 .0 .99 0.004 0.941

L N 3 G 2 .90 0.000 1.000
a = 0 .9 .95 0.000 1.000 1 .000 1 .000 0 .954 1.000 0 .830 1.000
7 = 1 .0 .99 0.000 1.000

L N 3 W 2 .90 0.000 1.000
o =  0.9 .95 0.000 1.000 1 .000 1 .000 0 .954 1.000 0 .787 1.000
7 = 1 .0 .99 0.000 1.000

L N 2 G 3 .90 0.028 0 .944
o =  0.9 .95 0.022 0 .935 0 .975 0.991 0 .964 0 .990 0 .692 0 .942
7 = 0 .0 .99 0.010 0 .909

L N 2 W 3 .90 0.020 0 .969
o = 0 .9 .95 0.016 0 .958 0 .980 0 .996 0 .964 0 .990 0 .659 0 .978
7 = 0 .0 .99 0.004 0 .935

L N 2 G 2 .90 0.003 0 .996
o = 0 .9 .95 0.003 0 .996 0 .997 0 .997 0 .964 0 .990 0 .747 0.991
7 = 0 .0 .99 0.000 0 .995

L N 2 W 2 .90 0.000 1.000
o = 0 .9 .95 0.000 1 .000 1 .000 1.000 0 .964 0 .990 0 .715 0 .998
7 = 0 .0 .99 0.000 0 .999
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T A B L E  8.3 co n t in u ed

T ru e
M o d e l

False
M o d e l

C onfidence  
Level For 
B L R  Test

B L R  T est  
Size P ow er A IC

T ests  an d  C riter ia  
SIC C H I ICS U P E F P E

L N 3 G3 .90 0.174 0 .598
a  =  0.5 .95 0.102 0 .515 0 .718 0 .718 0 .954 1.000 0 .515 0.678

II t—* b .99 0.019 0.316

L N 3 W 3 .90 0.050 0 .896
a  =  0.5 .95 0.032 0 .875 0.931 0 .931 0 .954 1.000 0 .649 0 .910
7 = 1.0 .99 0.014 0 .809

L N 3 G2 .90 0.000 1.000
o  =  0.5 .95 0.000 1.000 1 .000 0 .998 0 .954 1.000 0.769 1.000
7 =  1.0 .99 0.000 0 .998

L N 3 W 2 .90 0.000 1.000
0  =  0.5 .95 0.000 1.000 1.000 1 .000 0 .954 1.000 0845 1.000
7 = 1.0 .99 0.000 1.000

L N 2 G3 .90 0.226 0.522
o  =  0.5 .95 0.169 0 .437 0.793 0 .968 0 .964 0 .990 0 .534 0 .608
7 = 0.0 .99 0.045 0 .260

L N 2 W 3 .90 0.067 0 .876
o =  0.5 .95 0.048 0 .844 0 .937 0 .980 0 .964 0 .990 0 .646 0 .913
7 = 0.0 .99 0.023 0 .783

L N 2 G2 .90 0.016 0.951
o = 0 . 5 .95 0.008 0 .939 0 .973 0 .973 0 .964 0 .990 0 .750 0 .932

II 0 b .99 0.007 0 .873

L N 2 W 2 .90 0.000 1.000
o = 0 . 5 .95 0.000 1.000 1.000 1 .000 0 .964 0 .990 0 .756 1.000

-> II 0 b .99 0.000 0 .999

N o te :  oc is th e  sh a p e  p aram eter , l3 th e  scale  p a r a m e te r  a n d  7 th e  lo ca t io n  p a ra m eter .  G3
and G2 d e n o te  th e  three- an d  tw o -p a ra m eter  g a m m a  d is tr ib u t io n s ,  W 3  an d  W 2  
th e  three-  and  tw o-p aram eter  W cib u ll  d is tr ib u t io n s ,  an d  L N 3  and L N 2 th e  three-  
an d  tw o-p aram eter  logn orm al d is tr ib u t ion s .
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T A B L E  8.4
P r o b a b i l i t i e s  o f  a c c e p tin g  th e  e s t im a te d  m o d e l fo r  tw o  te s t s ,  th r e e  d is c r im in a t io n  c r i te r ia  a n d  
tw o  p e r fo rm a n c e  c r i te r ia  fo r  th r e e  n o n -n e s te d  d i s t r ib u t io n s  o v e r 1000 re p lic a t io n s  o f  r a n d o m

sa m p le s  o f  size  n =  365 ( / ? = ! )

T ru e E s t im a te d T e s ts  a n d  C r i te r ia
M o d e l M o d e l K L A IC S IC C H I K S U P E F P E

G 3 G 3 0.596 0.596 0 .596 0 .960 1.000 0.374 0 .572
a  =  2 .0 W 3 0.355 0 .355 0 .355 0 .916 0 .999 0.576 0.365
7 =  1.0 L N 3 0.049 0.049 0 .049 0 .9 3 4 0 .999 0.050 0 .063

G 3 G 2 0.001 0.001 0.001 0 .545 0 .781 0 .317 0.001
o =  2 .0 W 2 0.000 0.000 0.000 0 .003 0 .074 0.022 0.000
7 = 1 .0 L N 2 0.999 0.999 0 .999 0 .923 0 .985 0.661 0.999

G 2 G 3 0.597 0 .597 0 .597 0 .958 1.000 0.368 0 .344
o = 2 .0 W 3 0.354 0 .354 0 .354 0 .9 1 7 0 .999 0.587 0 .483
7 = 0 .0 L N 3 0.049 0.049 0 .049 0 .9 3 4 0 .999 0 .045 0.173

G 2 G 2 0.864 0 .864 0 .864 0 .9 6 4 0 .990 0.508 0 .618
o =  2 .0 W  2 0.136 0 .136 0 .136 0 .915 0 .996 0.492 0.382
7 =  0 .0 L N 2 0.000 0 .000 0 .000 0 .396 0 .654 0.000 0 .000

G 3 G 3 0.526 0.526 0 .526 0 .966 1.000 0.348 0 .464
o = 6 .0 W 3 0.234 0 .234 0 .234 0 .865 0 .999 0.479 0.193
7 = 1 .0 L N 3 0.240 0 .240 0 .240 0 .969 1.000 0.173 0.343

G 3 G 2 0.567 0 .567 0 .567 0 .962 0 .989 0.696 0 .757
o =  6.0 W 2 0.000 0 .000 0 .000 0 .180 0 .736 0.147 0.000
7 = 1 .0 L N 2 0.433 0 .433 0 .433 0 .948 0 .989 0.157 0.243

G 2 G 3 0.526 0 .526 0 .526 0 .966 1.000 0.341 0.323
q  =  6.0 W 3 0.234 0 .234 0 .234 0 .865 0 .999 0.485 0.185
7 = 0 .0 L N 3 0.240 0 .240 0 .240 0 .969 1.000 0.174 0.492

G 2 G 2 0.925 0.925 0 .925 0 .966 0 .990 0.683 0.949
o =  6.0 W 2 0.009 0 .009 0 .009 0 .516 0 .910 0.296 0 .027
7 = 0 .0 L N 2 0.066 0 .066 0 .066 0 .834 0 .967 0.021 0 .024
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T A B L E  8.4 c o n tin u e d

T ru e E s tim a te d T ests  a n d  C r i te r ia
M o d e l M o d el KL A IC SIC C H I KS U P E F P E

W 3 G3 0.073 0.073 0.073 0.923 0.999 0.050 0.071
a  =  2.0 W  3 0.924 0.924 0.924 0.959 1.000 0.936 0.918
7 = 1 .0 LN3 0.003 0.003 0.003 0.929 1.000 0.014 0.011

W 3 G2 0.081 0.081 0.081 0.945 0.986 0.615 0.151
a = 2 .0 W 2 0.000 0 .000 0 .000 0.038 0.490 0.194 0.000
7 = 1 .0 LN2 0.919 0.919 0.919 0.949 0.990 0.191 0.849

W 2 G3 0.074 0.074 0.074 0.923 0.999 0.044 0.282
o =  2.0 W 3 0.923 0.923 0.923 0.958 1.000 0.944 0.660
7 = 0 .0 LN 3 0.003 0.003 0.003 0.929 1.000 0.012 0.058

W 2 G2 0.034 0.034 0.034 0.807 0.928 0.013 0.017
o =  2.0 W 2 0.966 0.966 0.966 0.973 0.999 0.987 0.983
7 = 0 .0 LN2 0.000 0 .000 0 .000 0.027 0.142 0.000 0.000

W 3 G3 0.029 0.029 0.029 0.087 0.129 0.004 0.008
o = 4 .0 W  3 0.890 0.890 0.890 0.967 1.000 0.921 0.845
7 = 1 .0 LN3 0.081 0.081 0.081 0.936 0.993 0.075 0.147

W 3 G2 0.656 0.656 0.656 0.851 0.96S 0.064 0.821
o = 4 .0 W 2 0.344 0.344 0.344 0.813 0.973 0.936 0.179
7 = 1 .0 LN2 0.000 0 .000 0 .000 0.713 0.906 0.000 0.000

W 2 G3 0.029 0.029 0.029 0.086 0.119 0.004 0.022
o = 4 .0 W 3 0.890 0.890 0.890 0.967 1.000 0.924 0.720
7 = 0 .0 LN 3 0.081 0.081 0.081 0.935 0.993 0.072 0.258

W 2 G2 0.002 0.002 0.002 0.384 0.629 0.000 0.003
o = 4 .0 W 2 0.998 0.998 0.998 0.973 0.999 1.000 0.997
7 = 0 .0 LN2 0.000 0 .000 0 .000 0.027 0.142 0.000 0 .000
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T A B L E  8 .4  c o n tin u e d

T ru e E s t im a te d T e s ts  a n d  C r i te r ia
M o d e l M o d e l K L A IC S IC C H I K S U P E F P E

L N 3 G 3 0.031 0.031 0.031 0.311 0 .604 0.055 0.056
a = 0 .9 W 3 0.003 0 .003 0 .003 0 .133 0.705 0.296 0.017
7 = 1.0 L N 3 0.966 0 .966 0 .966 0 .954 1.000 0.649 0.927

L N 3 G 2 0.000 0 .000 0.000 0 .000 0.001 0.000 0.000
a = 0 .9 W 2 0.000 0.000 0 .000 0 .000 0.000 0.045 0.000
7 = 1.0 L N 2 1.000 1.000 1.000 0.391 0.713 0.955 1.000

L N 2 G 3 0.030 0 .030 0 .030 0.311 0 .606 0.059 0.035
o = 0 .9 W 3 0.003 0.003 0 .003 0 .124 0.696 0.294 0.000
7 = 0 .0 L N 3 0.967 0 .967 0 .967 0 .954 1.000 0.647 0.965

L N 2 G 2 0.003 0 .003 0 .003 0 .177 0 .256 0.038 0.009
o =  0.9 W 2 0.000 0.000 0 .000 0 .022 0.295 0 .247 0.000
7 = 0.0 L N 2 0.997 0 .997 0 .997 0 .964 0.990 0.715 0.991

L N 3 G 3 0.269 0 .269 0 .269 0 .918 0 .996 0.387 0.310
o = 0 .5 W 3 0.013 0 .013 0.013 0.471 0 .924 0.098 0.012
7 = 1.0 L N 3 0.718 0 .718 0.718 0 .954 1.000 0.515 0.678

L N 3 G 2 0.000 0.000 0 .000 0 .347 0.606 0.038 0.000
a  =  0.5 W 2 0.000 0 .000 0.000 0 .000 0.003 0.007 0.000
7 = 1.0 L N 2 1.000 1.000 1.000 0 .874 0 .965 0.955 1.000

L N 2 G 3 0.269 0 .269 0 .269 0 .917 0.996 0.388 0.275
o = 0 .5 W 3 0.013 0 .013 0 .013 0 .476 0 .924 0.100 0.007
7 = 0.0 L N 3 0.718 0 .718 0 .718 0 .954 1.000 0.512 0.718

L N 2 G 2 0.027 0 .027 0 .027 0 .790 0 .915 0.323 0.095
q =  0 .5 W 2 0.000 0.000 0 .000 0 .022 0.295 0.013 0.000
7 = 0.0 L N 2 0.973 0.973 0 .973 0 .964 0.990 0.664 0.905

N o te : a  is th e  s h a p e  p a r a m e te r ,  ß  th e  sca le  p a r a m e te r  a n d  7 th e  lo c a tio n  p a r a m e te r .  G 3
a n d  G 2  d e n o te  th e  th re e -  a n d  tw o - p a r a m e te r  g a m m a  d is t r ib u t io n s ,  W 3  a n d  W 2  
th e  th re e -  a n d  tw o -p a ra m e te r  W e ib u ll  d is t r ib u t io n s ,  a n d  L N 3  a n d  L N 2 th e  th re e -  
a n d  tw o - p a r a m e te r  lo g n o rm a l d i s t r ib u t io n s .
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T A B L E  8.5
P r o b a b i l i t i e s  o f  a c c e p t in g  t h e  e s t i m a t e d  m o d e l  f r o m  t h r e e  n o n - n e s t e d  d i s t r i b u t i o n s  u s in g  

G I C  o v e r  1000 re p l ic a t io n s  o f  r a n d o m  s a m p le s  o f  s ize  n =  365 (/? =  1)

T r u e E s t i m a t e d  M o d e l E s t i m a t e d  M o d e l
M o d e l G 3 W 3 L N 3 G 2 W 2 L N 2

G 3
c*=2.0
7 = 1.0

0.943 0.795 0 .240 0 .003 0.000 1 .000

G 2
a = 2.0
7 = 0.0

0.943 0.794 0.242 0 .977 0 .450 0.011

G 3
o = 6.0
7 = 1.0

0.947 0.527 0 .860 0 .846 0.000 0 .774

G 2
a=G .O
7 = 0.0

0.947 0.527 0 .860 0 .986 0.030 0 .197

W 3
o = 2.0
7 = 1.0

0.342 0.992 0.136 0 .538 0.000 0 .998

W 2
o = 2.0
7 = 0.0

0.338 0.992 0 .137 0 .115 0.991 0 .000

W  3 
o = 4 . 0  
7 = 1.0

0.128 0.989 0 .644 0 .781 0 .490 0 .018

W 2
o = 4 . 0
7 = 0.0

0.128 0.989 0 .644 0 .007 1.000 0 .000

L N 3
a = 0 . 9
7 = 1.0

0.069 0.042 0.991 0.000 0 .000 1 .000

L N 2
o = 0 . 9
7 = 0.0

0.069 0.042 0.991 0 .005 0.000 1 .000

L N 3
o = 0 . 5
7 = 1.0

0.605 0.096 0.961 0.000 0 .000 1 .000

L N 2
o = 0 . 5
7 = 0.0

0.605 0.096 0.961 0.091 0.000 0.992

N o te :  a  is t h e  s h a p e  p a r a m e t e r ,  ß  t h e  sca le  p a r a m e t e r  a n d  7 t h e  l o c a t io n  p a r a m e t e r .
G 3  a n d  G 2  d e n o te  t h e  th r e e -  a n d  t w o - p a r a m e t e r  g a m m a  d i s t r i b u t i o n s ,  W 3  a n d  
W 2  t h e  t h r e e -  a n d  t w o - p a r a m e t e r  W e ib u l l  d i s t r i b u t i o n s ,  a n d  L N 3  a n d  L N 2  t h e  
t h r e e -  a n d  t w o - p a r a m e t e r  l o g n o r m a l  d i s t r i b u t i o n s .
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T A B L E  8.6
P r o b a b i l i t i e s  o f  a c c e p t in g  th e  e s t im a te d  m o d e l fo r  tw o  te s t s ,  t h r e e  d is c r im in a t io n  c r i te r ia  a n d  

tw o  p e r f o r m a n c e  c r i te r ia  fo r  five n o n -n e s te d  d is t r ib u t io n s  o v e r  1000  re p l ic a t io n s  o f  r a n d o m
sa m p le s  o f  size  n =  365 ( ß  =  1)

T ru e E s t im a te d T e s ts  a n d  C r i t e r i a
M o d e l M o d e l K L A IC S IC C H I K S U P E F P E

G 3 G 3 0.596 0 .596 0 .5 8 4 0 .960 1.000 0 .238 0.569
a = 2 .0 G 2 - - - - - - -

7 = 1 .0 W 3 0.355 0 .355 0 .355 0 .916 0 .999 0 .467 0.365
W 2 0.000 0 .000 0 .000 0 .003 0 .074 0.061 0.000
L N 3 0.049 0 .049 0 .046 0 .9 3 4 0 .999 0 .047 0.061
L N 2 0.000 0 .000 0 .015 0 .923 0 .985 0 .187 0.005

G 2 G 3
o = 2 .0 G 2 0.463 0 .663 0 .835 0 .964 0 .990 0.392 0.394
7 = 0 .0 W 3 0.445 0 .1 9 4 0 .027 0 .9 1 7 0 .999 0 .274 0.182

W 2 0.014 0 .100 0 .134 0 .915 0 .996 0 .284 0.287
L N 3 0.078 0 .043 0 .004 0 .9 3 4 0 .999 0.050 0.137
L N 2 0.000 0 .000 0 .000 0 .396 0 .654 0.000 0.000

G 3 G 3 0.526 0 .362 0 .064 0 .966 1.000 0.341 0.460
o = 6 .0 G 2 - - - - - - -

7 = 1 .0 W 3 0.234 0 .2 3 4 0 .170 0 .865 0 .999 0 .424 0.193
W 2 0.000 0 .000 0 .000 0 .180 0 .736 0.055 0.000
L N 3 0.240 0 .1 0 5 0 .021 0 .969 1.000 0 .135 0 .314
L N 2 0.000 0 .299 0 .745 0 .948 0 .989 0.045 0.033

G 2 G 3
o = 6 .0 G 2 0.317 0 .682 0 .893 0 .966 0 .990 0 .319 0.298
7 = 0 .0 W 3 0.280 0 .185 0 .036 0 .865 0 .999 0.381 0.210

W 2 0.000 0 .000 0 .0 0 7 0 .516 0 .910 0 .083 0.001
L N 3 0.403 0 .091 0 .003 0 .969 1.000 0.211 0.490
L N 2 0.000 0 .0 4 2 0 .061 0 .834 0 .967 0 .006 0.001
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T A B L E  8.6 c o n t in u e d

T ru e E s t im a te d T e s ts  a n d  C r i t e r i a
M o d e l M o d e l K L A IC S IC C H I K S U P E F P E

W  3 G 3 0.073 0 .064 0 .025 0 .923 0.999 0.028 0 .064
a = 2 .0 G 2 0 .000 0 .000 0 .004 0 .945 0.986 0.516 0.001
7 = 1 .0 W 3 0.924 0 .923 0 .822 0 .959 1.000 0.361 0.918

W  2 - - - - - - -

L N 3 0.003 0 .003 0 .000 0 .929 1.000 0.010 0.009
L N 2 0.000 0 .010 0 .149 0 .949 0.990 0 .085 0.008

W 2 G 3 0.110 0 .034 0 .000 0 .923 0.999 0 .053 0 .233
o = 2 .0 G 2 0 .002 0 .027 0 .034 0 .8 0 7 0.928 0.001 0 .003
7 = 0 .0 W 3 - - - - - - -

W 2 0.885 0 .936 0 .964 0 .973 0.999 0 .929 0 .707
L N 3 0.003 0 .003 0 .002 0 .929 1.000 0 .017 0 .057
L N 2 0.000 0 .000 0 .000 0 .0 2 7 0.142 0 .000 0 .000

W 3 G 3 0.029 0 .014 0 .000 0 .0 8 7 0.129 0 .004 0 .007
o = 4 .0 G 2 0 .000 0 .029 0 .198 0 .851 0.968 0 .003 0 .000
7 = 1 .0 W 3 0.890 0 .880 0 .769 0 .967 1.000 0.921 0 .845

W  2 - - - - - - -

L N 3 0.081 0 .077 0 .033 0 .936 0.993 0.072 0 .148
L N 2 0.000 0 .000 0 .000 0 .713 0.906 0 .000 0.000

W 2 G 3 0.073 0 .038 0 .002 0 .086 0.119 0 .006 0.032
o = 4 .0 G 2 0.000 0 .000 0.001 0 .3 8 4 0.629 0 .000 0.000
7 = 0 .0 W  3 - - - - - - -

W 2 0.810 0 .927 0 .992 0 .973 0.999 0 .908 0 .557
L N 3 0.117 0 .035 0 .005 0 .935 0.993 0 .086 0.411
L N 2 0.000 0 .000 0 .000 0 .027 0.142 0 .000 0 .000
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T A B L E  8.6 co n tin u ed

T ru e E s tim a te d T ests  a n d  C rite r ia
M odel M o d el KL A IC SIC C H I KS U P E F P E

LN3 G3 0.031 0.031 0.031 0.311 0.604 0.055 0.056

0 II 0 b G2 0.000 0.000 0.000 0.000 0.001 0.000 0.000
7 = 1 .0 W 3 0.003 0.003 0.003 0.133 0.705 0.296 0.017

W 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000
LN 3 0.966 0.966 0.966 0.954 1.000 0.649 0.927
LN2 - - - - - - -

LN2 G3 0.036 0.022 0.007 0.311 0.606 0.060 0.058
a = 0 .9 G2 0.000 0.000 0.001 0.177 0.256 0.001 0.000
7 = 0 .0 W 3 0.005 0.004 0.001 0.124 0.696 0.279 0.000

W 2 0.000 0.000 0.000 0.022 0.295 0.001 0.000
LN3 - - - - - - -
LN2 0.959 0.974 0.991 0.964 0.990 0.659 0.942

LN3 G3 0.269 0.269 0.269 0.918 0.996 0.387 0.310
a = 0 .5 G2 0.000 0.000 0.000 0.347 0.606 0.015 0.000
7 = 1 .0 W 3 0.013 0.013 0.013 0.471 0.924 0.083 0.012

W 2 0.000 0.000 0.000 0.000 0.003 0.000 0.000
LN 3 0.718 0.718 0.718 0.954 1.000 0.515 0.678
LN 2 - - - - - - “

LN2 G3 0.343 0.186 0.013 0.917 0.996 0.357 0.373
o = 0 .5 G2 0.000 0.008 0.026 0.790 0.915 0.034 0.013
7 = 0 .0 W 3 0.013 0.013 0.010 0.476 0.924 0.068 0.006

W 2 0.000 0.000 0.000 0.022 0.295 0.007 0.000
LN 3 - - - - - - -
LN 2 0.644 0.793 0.951 0.964 0.990 0.534 0.608

N ote: a  is th e  s h a p e  p a ra m e te r ,  ß  th e  sca le  p a ra m e te r  a n d  7 th e  lo ca tio n  p a ra m e te r . G3
a n d  G 2 d e n o te  th e  th ree - a n d  tw o -p a ra m e te r  g am m a  d is tr ib u tio n s , W 3 a n d  W 2 
th e  th ree - an d  tw o -p a ra m e te r  W eib u ll d is tr ib u tio n s , a n d  LN3 a n d  LN2 th e  th ree - 
an d  tw o -p a ra m e te r  lognorm al d is tr ib u tio n s .
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T A B L E  8.7
P r o b a b i l i t i e s  o f  a c c e p t i n g  t h e  e s t i m a t e d  m o d e l  f r o m  five n o n - n e s t e d  d i s t r i b u t i o n s  u s in g  

G I C  o v e r  1000 r e p l i c a t io n s  o f  r a n d o m  s a m p le s  o f  s ize  n  =  365 ( ß — 1)

T r u e E s t i m a t e d  M o d e l
M o d e l G 3 G 2 W 3 W 2 L N 3 L N 2

G 3
a = 2 .0 
7 = 1.0

0.943 - 0 .795 0.000 0.240 0 .004

G 2
a = 2.0
7 = 0.0

- 0.871 0.831 0 .411 0 .294 0.002

G 3
a = 6.0
7 = 1.0

0.947 - 0 .527 0.000 0.860 0 .639

G 2
o = 6.0
7 = 0.0

- 0.881 0 .554 0 .008 0 .862 0 .170

W 3
o = 2.0
7 = 1.0

0.342 0.004 0 .992 - 0 .136 0 .060

W 2
o = 2.0
7 = 0.0

0.440 0.111 - 0 .980 0 .186 0.000

W  3 
o = 4 . 0  
7 = 1.0

0.128 0.097 0 .989 - 0 .644 0 .017

W 2
o = 4 . 0
7 = 0.0

0.146 0.001 - 0 .970 0 .735 0.000

L N 3  
o  =  0.9 
7 = 1.0

0.069 0.000 0.042 0.000 0.991 -

L N 2
o = 0 . 9
7 = 0.0

0.080 0.000 0.048 0.000 - 0 .982

L N 3
q - 0 . 5
7 = 1.0

0.605 0.000 0.096 0.000 0.961 -

L N 2  
q =  0.5  
7 = 0.0

0.669 0.065 0 .096 0.000 - 0 .913

N o te :  a  is t h e  s h a p e  p a r a m e t e r ,  ß  t h e  sca le  p a r a m e t e r  a n d  7 t h e  l o c a t io n  p a r a m e t e r .  
G 3  a n d  G 2  d e n o t e  t h e  th r e e -  a n d  t w o - p a r a m e t e r  g a m m a  d i s t r i b u t i o n s ,  W 3  a n d  
W 2  t h e  t h r e e -  a n d  t w o - p a r a m e t e r  W e ib u l l  d i s t r i b u t i o n s ,  a n d  L N 3  a n d  L N 2  t h e  
t h r e e -  a n d  t w o - p a r a m e t e r  l o g n o r m a l  d i s t r i b u t i o n s .
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T A B L E  8.8
P r o b a b i l i t i e s  o f  a c c e p tin g  th e  e s t im a te d  m o d e l fo r  tw o  te s t s ,  th r e e  d is c r im in a t io n  c r i te r ia  a n d  

tw o  p e r fo rm a n c e  c r i te r ia  fo r o n e  n e s te d  a n d  five n o n -n e s te d  d is t r ib u t io n s  o v e r 1000 re p lic a t io n s
o f  ra n d o m  s a m p le s  o f  size  n =  365 (ß =  1)

T ru e E s t im a te d T e s ts  a n d  C r i te r ia
M o d e l M o d e l K L A IC S IC C H I K S U P E F P E

G 3 G 3 0.596 0 .596 0 .584 0 .960 1.000 0 .2 3 8 0.569
a = 2 .0 G 2 0.000 0 .000 0.000 0 .545 0.781 0 .130 0.000
7 = 1 .0 W 3 0.355 0 .355 0 .355 0 .916 0 .999 0 .3 7 6 0.365

W 2 0.000 0 .000 0.000 0 .003 0 .074 0 .0 2 2 0.000
L N 3 0.049 0 .049 0.046 0 .9 3 4 0 .999 0 .0 4 7 0.061
L N 2 0.000 0 .000 0 .015 0 .923 0 .985 0 .1 8 7 0.005

G 2 G 3 0.520 0 .092 0.010 0 .958 1.000 0 .2 4 3 0.089
o = 2 .0 G 2 0.078 0 .607 0 .827 0 .964 0 .990 0 .1 7 4 0.359
7 = 0 .0 W 3 0.343 0 .169 0.025 0 .917 0 .999 0 .2 5 8 0.150

W 2 0.010 0 .096 0 .134 0 .915 0 .996 0 .2 8 3 0.278
L N 3 0.049 0 .036 0.004 0 .934 0 .999 0 .0 4 2 0 .124
L N 2 0.000 0 .000 0.000 0 .396 0 .654 0 .000 0.000

G 3 G 3 0.526 0 .106 0.001 0 .966 1.000 0 .2 2 3 0.328
o = 6 .0 G 2 0.000 0 .3 8 3 0 .528 0 .9 6 2 0 .989 0 .2 5 0 0 .216
7 = 1 .0 W 3 0.234 0 .192 0.059 0 .865 0 .999 0 .3 0 0 0.191

W 2 0.000 0 .000 0.000 0 .180 0 .736 0 .0 5 5 0.000
L N 3 0.240 0 .025 0.000 0 .969 1.000 0 .1 2 7 0.232
L N 2 0.000 0 .294 0.412 0 .948 0 .989 0 .0 4 5 0.033

G2 G 3 0.521 0 .075 0.001 0 .966 1.000 0 .2 2 7 0.172
o = 6 .0 G 2 0.005 0 .645 0.892 0 .966 0 .990 0 .181 0.252
7 = 0 .0 W 3 0.234 0 .172 0.036 0 .865 0 .999 0 .351 0.171

W 2 0.000 0 .000 0.007 0 .516 0 .910 0 .0 8 3 0.001
L N 3 0.240 0 .078 0.003 0 .969 1.000 0 .1 5 2 0 .404
L N 2 0.000 0 .030 0.061 0 .834 0 .967 0 .0 0 6 0.000
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T A B L E  8.8  c o n t in u e d

T ru e E s t im a te d T e s ts  a n d  C r i t e r i a
M o d e l M o d e l K L A IC S IC C H I K S U P E F P E

W 3 G 3 0.073 0 .0 6 4 0 .025 0 .923 0.999 0 .0 2 8 0.064
a = 2 .0 G 2 0.000 0 .000 0 .0 0 4 0 .945 0 .986 0 .3 9 6 0.001
7 = 1 .0 W 3 0.924 0 .9 2 3 0 .822 0 .959 1.000 0 .2 9 9 0.918

W 2 0.000 0 .000 0 .000 0 .038 0 .490 0 .1 8 2 0.000
L N 3 0.003 0 .0 0 3 0 .000 0 .9 2 9 1.000 0 .0 1 0 0.009
L N 2 0.000 0 .0 1 0 0 .149 0 .949 0 .990 0 .0 8 5 0.008

W 2 G 3 0.071 0 .0 3 0 0 .000 0 .9 2 3 0 .999 0 .041 0.175
o = 2 .0 G 2 0.001 0 .0 1 7 0 .0 3 4 0 .8 0 7 0 .928 0 .001 0.001
7 = 0 .0 W 3 0.788 0 .1 1 7 0 .0 0 4 0 .9 5 8 1.000 0 .4 3 6 0.280

W 2 0.137 0 .8 3 3 0 .9 6 0 0 .9 7 3 0 .999 0 .5 1 0 0 .487
L N 3 0.003 0 .0 0 3 0 .0 0 2 0 .9 2 9 1.000 0 .0 1 2 0 .057
L N 2 0.000 0 .000 0 .000 0 .0 2 7 0 .142 0 .000 0.000

W 3 G 3 0.029 0 .0 1 4 0.000 0 .0 8 7 0 .129 0 .0 0 4 0.008
o = 4 .0 G 2 0.000 0 .0 2 9 0 .198 0 .851 0 .968 0 .0 0 3 0.000
7 = 1 .0 W 3 0.890 0 .8 7 4 0 .7 0 7 0 .9 6 7 1.000 0 .5 3 9 0.845

W 2 0.000 0 .0 0 6 0 .062 0 .8 1 3 0 .973 0 .3 8 2 0.000
L N 3 0.081 0 .0 7 7 0 .033 0 .9 3 6 0 .993 0 .0 7 2 0.147
L N 2 0.000 0 .000 0 .000 0 .7 1 3 0 .906 0 .000 0.000

W 2 G 3 0.029 0 .0 2 2 0 .001 0 .0 8 6 0 .119 0 .0 0 4 0 .018
o = 4 .0 G 2 0.000 0 .000 0 .000 0 .3 8 4 0 .629 0 .000 0.000
7 = 0 .0 W  3 0.829 0 .1 2 9 0 .017 0 .9 6 7 1.000 0 .4 9 9 0.473

W 2 0.061 0 .8 1 8 0 .977 0 .9 7 3 0 .999 0 .4 2 7 0 .315
L N 3 0.081 0 .031 0 .005 0 .935 0 .993 0 .0 7 0 0 .194
L N 2 0.000 0 .000 0 .000 0 .0 2 7 0 .142 0 .000 0 .000
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T A B L E  8.8 co n tin u ed

T ru e E s tim a te d T ests  a n d  C rite r ia
M o d el M odel K L A IC SIC C H I KS U P E F P E

LN3 G3 0.031 0.031 0.031 0.311 0.604 0.013 0.056
0 = 0 .9 G2 0.000 0 .000 0.000 0 .000 0.001 0.000 0.000
7 = 1 .0 W 3 0.003 0.003 0.003 0.133 0.705 0.150 0.017

W 2 0.000 0 .000 0.000 0 .000 0.000 0 .000 0.000
LN3 0.966 0.966 0.966 0.954 1.000 0.627 0.927
LN2 0.000 0 .000 0.000 0.391 0.713 0.210 0.000

LN 2 G3 0.030 0.020 0.007 0.311 0.606 0.056 0.029
a = 0 .9 G2 0.000 0 .000 0.001 0.177 0.256 0.001 0.000
7 = 0 .0 W 3 0.003 0.003 0.001 0.124 0.696 0.249 0.000

W 2 0.000 0 .000 0.000 0.022 0.295 0.001 0.000
LN3 0.967 0.147 0.011 0.954 1.000 0.348 0.514
LN2 0.000 0.830 0.980 0.964 0.990 0.345 0.457

LN 3 G3 0.269 0.268 0.235 0.918 0.996 0.304 0.310
o = 0 .5 G2 0.000 0 .000 0.000 0.347 0.606 0.014 0.000
7 = 1 .0 W 3 0.013 0.013 0.011 0.471 0.924 0.068 0.012

W 2 0.000 0 .000 0.000 0 .000 0.003 0.000 0.000
LN3 0.718 0.716 0.625 0.954 1.000 0.513 0.677
LN2 0.000 0.003 0.129 0.874 0.965 0.101 0.001

LN2 G3 0.269 0.173 0.013 0.917 0.996 0.322 0.253
o =  0.5 G2 0.000 0.006 0.026 0.790 0.915 0.034 0.005
7 = 0 .0 W 3 0.013 0.013 0.010 0.476 0.924 0.068 0.006

W 2 0.000 0 .000 0.000 0.022 0.295 0.007 0.000
LN3 0.718 0.107 0.010 0.954 1.000 0.297 0.430
LN 2 0.000 0.701 0.941 0.964 0.990 0.272 0.306

N ote : a  is th e  sh a p e  p a r a m e te r ,  ß  th e  scale  p a ra m e te r  a n d  7 th e  lo ca tio n  p a ra m e te r .  G3
an d  G2 d en o te  th e  th re e -  a n d  tw o -p a ra m e te r  g am m a  d is tr ib u tio n s , W 3  an d  W 2 
th e  th ree - an d  tw o -p a ra m e te r  W eib u ll d is tr ib u tio n s , a n d  LN3 an d  LN 2 th e  th ree - 
an d  tw o -p a ra m e te r  lo g n o rm al d is tr ib u tio n s .
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T A B L E  8 .9
P r o b a b i l i t ie s  o f  a c c e p t in g  th e  e s t im a te d  m o d e l f r o m  o n e  n e s te d  a n d  f iv e  n o n -n e s te d  

d is t r ib u t io n s  u s in g  G IC  o v e r  1000 re p l ic a t io n s  o f  ra n d o m  s a m p le s  o f  s ize  n =  365 (ß =  1)

T ru e E s t im a te d  M o d e l
M o d e l G 3 G 2 W 3 W 2 L N 3 L N 2

G 3
o = 2.0
7 = 1.0

0 .9 4 3 0.000 0.795 0.000 0 .240 0 .004

G 2
a  =  2.0 
7 = 0.0

0 .9 4 3 0 .867 0 .794 0 .3 9 0 0 .241 0.001

G 3
o = 6.0
7 = 1.0

0 .9 4 7 0 .721 0 .527 0.000 0 .860 0 .639

G 2
o = 6.0
7 = 0.0

0 .947 0 .882 0 .527 0 .0 0 6 0 .860 0 .116

W  3 
o  =  2.0 
7 = 1.0

0 .342 0 .004 0 .992 0.000 0 .136 0 .060

W  2 
o = 2.0 
7 = 0.0

0 .338 0 .062 0 .992 0 .9 7 0 0 .137 0.000

W 3  
o =  4 .0  
7 = 1.0

0 .128 0 .097 0 .989 0 .0 4 8 0 .644 0 .017

W 2
o = 4 .0
7 = 0.0

0 .128 0.000 0.989 0 .9 5 6 0 .644 0.000

L N 3
a = 0 .9
7 = 1.0

0 .069 0.000 0 .042 0.000 0.991 0.000

L N 2
o = 0 .9
7 = 0.0

0 .069 0.000 0.042 0.000 0.991 0 .965

L N 3  
o  =  0 .5  
7 = 1.0

0 .605 0.000 0.096 0.000 0.961 0 .093

L N 2
o = 0 .5
7 = 0.0

0.605 0 .040 0 .096 0.000 0.961 0 .904

N o te :  q is  th e  sh a p e  p a ra m e te r ,  ß th e  sca le  p a ra m e te r  a n d  7 th e  lo c a t io n  p a ra m e te r .
G 3  a n d  G 2  d e n o te  th e  th re e -  a n d  tw o -p a r a m e te r  g a m m a  d is t r ib u t io n s ,  W 3  a n d  
W 2  th e  th re e -  a n d  tw o -p a r a m e te r  W e ib u l l  d is t r ib u t io n s ,  a n d  L N 3  a n d  L N 2  th e  
th r e e -  a n d  tw o -p a r a m e te r  lo g n o r m a l d is t r ib u t io n s .
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C hapter 9

E stim ating the Percentiles o f Som e  
M isspecified N on-nested  
D istributions

9 .1  I n tr o d u c t io n

Three distributions which have been used extensively in testing and modelling natu

ral phenomena in areas such as reliability and life testing (Mann et al. (1974) and 

Bain (1978)), hydrology (Stedinger (1980)), and air quality management (Jakeman 

and Taylor (1989) and Jakem an et al. (1986)) are the gamma, Weibull and lognor

mal distributions. Two- and three-param eter versions of these distributions have been 

used because they are parsimonious in considering the shape, scale and location of 

the distribution, but still sufficiently flexible in fitting real data. Occasionally, there 

may be some prior information regarding the form of the distribution and parsimony 

considerations might yield a preference for the two-parameter variant. However, an 

estim ated two- or three-param eter distribution might be inadequate empirically if the 

distribution has been specified incorrectly. In practice, it is not known which of the 

three distributions is appropriate and the conventional practice of selecting a particular 

distribution for convenience or on the basis of previous studies pays little  or no a tten 

tion to the consequences of misspecifying the distribution. While an exam ination of 

the consequences of underfitting or overfitting a particular distribution is useful within 

the context of having selected the correct distribution, it has no bearing on the pos-
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sible effects of misspecifying the distribution altogether in the presence of non-nested 

alternative distributions.

In considering whether a particular specification should be used to estim ate the 

percentiles of a distribution, it is im portant to  take account of the sorts of errors tha t 

m ight be made in fitting the distribution. Specifically, the consequences of misspecify

ing the distribution should be evaluated. Such misspecifications arise when a particular 

distribution is estim ated but a non-nested alternative distribution is correct. The pur

pose of this chapter is to assess the consequences of such misspecification in estim ating 

the upper percentiles of the two- and three-param eter non-nested gamma, Weibull and 

lognormal distributions.

For a given problem, a typical statistical decision is to  simply estim ate the two- or 

three-param eter variant of a particular distribution w ithout examining the possibility 

th a t the estim ated distribution is misspecified. The prim ary aim of the experiments in 

this chapter is to observe the magnitudes of the errors obtained by fitting an incorrect 

non-nested distribution relative to fitting the correct distribution. The experiments 

are conducted for three different distributions and different param eter sets, especially 

for different values of the shape param eter.

The plan of the chapter is as follows. In Section 2 the distribution functions and 

performance criteria are presented. The Monte Carlo experiments are outlined in 

Section 3 and the results are discussed in Section 4. Some concluding remarks are 

given in Section 5.

9.2 D istr ib u tio n  F u n ction s and  P erform an ce Cri
teria

For a sample aq, x2, . . . ,  x n of n independently and identically distributed random  ob

servations, the log-likelihood functions for the three-param eter gamma, Weibull and 

lognormal distributions are given in equations (7.1)-(7.3) and are reproduced here for 

convenience:
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Gamma:

log L = ~ n a  logß  — n log r ( a )  +  (a -  1) ^  log(a;t- -  7) -  7 ) (9.1)
t=i »=i ß

Weibull:

log L = n log a  -  na  log ß  +  (a  -  1) J2 l°g(*i -  7 ) “  (9-2)
t'=i t=i ß

Lognormal:

log L  =  - -  log(27r a 2) +  ]T  log(x,- -  7) -  ^ [lo g (a :t- -  7) -  ß]2 (9.3)
z  i= 1 Z a  i = 1

in which ß  represents the scale param eter, a  the shape param eter, 7 the location 

param eter, and T the gam m a function. The two- param eter versions of the above 

functions are obtained by setting the location param eter 7 to zero in each case. In 

the above equations, ß  > 0, a  > 0 and 7 < Xi < 00 for i = 1,2, . . . , n .  The density 

functions of the gam m a and Weibull functions approach the exponential at a  =  1, 

are “J ” shaped for o; < 1 and “bell” shaped for a  >  1, whereas the density for the 

lognormal function changes from being nearly sym m etric to being heavily skewed as 

o  is increased from 0.4 to 0.9 to 1.2. These values accommodate a variety of shapes 

which arise in practice in analysing real data.

The param eters of the three log-likelihood functions are estim ated by maximum 

likelihood methods. Since the general m aximum likelihood procedure will frequently 

fail to converge when the (unknown) shape param eter is less than or equal to unity, 

a com putationally efficient approach tha t circumvents this problem is used (for fur

ther details, see Bai et al. (1989)). For purposes of evaluating the performance of 

the misspecified two- and three-param eter versions of the estim ated distributions, loss 

functions recommended for assessing air quality models are used (see Fox (1981)). 

These functions are the relative bias (BIAS) and the relative root mean square error 

(RRMSE) which are evaluated at the upper percentiles of the distribution. For an 

estim ate <?,- of a quantity  of interest q, the performance criteria are defined in term s of 

deviations from q in each replication of the simulation experiments. The definitions 

are given in equations (3.18) and (3.19), namely
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(9.4)B I A S ( q) = ±jr(
i v  t = l

R RM SE (q )  = [ 1  £ (

Qi -  9  

9
)

9* 9.2rr (9.5)

where JV is the num ber of replications of the experiment. For present purposes, q 

denotes the upper percentile quantities of the underlying distributions.

9.3  M o n te  C arlo E xp er im en ts

In order to assess the effects of misspecification in estim ating the percentiles of the three 

distributions, an extensive range of possible cases is considered. The shape param eter 

is examined over a range of possible values where the density functions are positively 

skewed: the shape param eter takes the values 2 and 6 for the gamma distribution, 2 

and 4 for the Weibull distribution, and 0.5 and 0.9 for the lognormal distribution. In 

all cases considered in this chapter, the arbitrary scale param eter is set to unity, and 

the location param eter takes on the values and 1 for the two- and three-param eter 

distributions, respectively. The lognormal distribution has the opposite behaviour to 

the gam m a and Weibull distributions as the shape param eter is increased. For each 

entry in the tables, N =  1000 replications of the experiments are processed. The 

sample size used is n =  365, since it represents a common case, namely a full year of 

24- hourly average observations. For each set of param eter values, BIAS and RRMSE 

are evaluated for estim ates of the exact ninety-eighth percentile and the highest value 

which, for n =  365, is equivalent to using the ninety-ninth percentile.

The random sample generators used for the Monte Carlo experiments are DRNGAM, 

DRNWIB and DRNLNL for the gamma, Weibull and lognormal distributions, respec

tively. These are available as subroutines in the International M athem atical and Sta

tistical Library (IMSL) in version 1.0 (April 1987). The same seed num ber (1234) is 

used to obtain the first random sample of the first of the 1000 replications. Varying 

the initial seed produces similar results to those reported in the chapter.
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9 .4  M o n te  C arlo R esu lts

The results of the experiments in which the three- and two- parameter gamma distri

butions (G3 and G2, respectively), the three- and two-parameter Weibull distributions 

(W3 and W2, respectively), and the three- and two-parameter lognormal distributions 

(LN3 and LN2, respectively) are true are given in Tables 9.1 - 9.3, respectively. In 

all cases, the true model is either a three- or two-parameter distribution, the esti

mated quantities are the maximum value (MAX) or the ninety-eighth percentile value 

(98), and the performance criteria are BIAS and RRMSE. Both the three- and two- 

parameter versions of non-nested alternative distributions are estimated to examine 

the consequences of misspecifying the true distribution.

9 .4 .1  G a m m a  D is tr ib u tio n  is T rue

The following points should be noted from the experiments reported in Table 9.1, in 

which the true model is either G3 or G2 and the misspecified models that are estimated 

are W3, W2, LN3 and LN2.

(i) When the shape parameter is 2 ( a  = 2) and G3 is correct ( 7  = 1), LN2 has the 

lowest BIAS and RRMSE for both the maximum and 98 per cent quantities, followed 

by W3. Although the BIAS values for the correctly specified G3 are much closer to 

zero than are the BIAS values for LN2, the RRMSE values for

LN2 are very close to those of G3. The largest BIAS and RRMSE values for the 

maximum and 98 per cent quantities are LN3 and W2, respectively. When the shape 

parameter is increased to 6 (7 = 6) with 7 = 1, the lowest BIAS and RRMSE values for 

both the maximum and 98 per cent quantities are obtained for LN3, followed by W3. 

In the case of a  = 6, the BIAS and RRMSE values for LN2 are the worst rather than 

the best, as was the case when a  =  2. The BIAS and RRMSE values for the correctly 

specified G3 are the lowest for both the maximum and 98 per cent quantities. Overall, 

the BIAS and RRMSE values of the incorrectly specified LN2 are highly sensitive to 

the value of the shape parameter whereas those for W3 are not. On the basis of these
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results, it is clear that, in the absence of knowledge that G3 is correct, W3 is to be 

preferred of the four misspecified distributions.

(ii) However, when G2 is correct (7 = 0) and the shape parameter is 2 (a = 2), the 

distribution with lowest BIAS and RRMSE is W3, followed by W2, LN3 and LN2. The 

lowest values of BIAS and RRMSE are, not surprisingly, for the correctly specified G2. 

When the shape parameter is increased to 6 (a = 6), the lowest BIAS and RRMSE 

values hold for the correct G2. Of the misspecified distributions, the lowest are for 

LN3, followed by W3, W2 and LN2 On the basis of these results, it is clear that LN2 

is the worst when G2 is correct, with W2 and LN3 being highly sensitive to the value 

of the shape parameter. As in the case of G3 being correct, W3 is again the most 

reliable for G2 in terms of BIAS and RRMSE for both the maximum and 98 per cent 

quantities.

9 .4 .2  W eib u ll D is tr ib u tio n  is T rue

In Table 9.2 the true model is either W3 or W2 and the misspecified models that are 

estimated are G3, G2, LN3 and LN2. The main points are as follows

(i) When the three-parameter Weibull distribution is correct and a  —  2, the lowest 

BIAS and RRMSE values for the maximum quantity are obtained for G2, followed by 

LN2, G3 and LN3. It is worth observing that the only case in the three tables where 

the BIAS and RRMSE values for the correctly specified model exceed that of any of the 

misspecified models occurs in Table 9.2, where W3 is true and a  =  2. In this case, the 

RRMSE for G2 is slightly less than that for W3. For the 98 per cent quantity, however, 

the smallest BIAS and RRMSE values hold for LN2, followed by G2, LN3 and G3. As 

the shape parameter is increased to 4 ( a  = 4) with W3 as the true distribution, the 

lowest BIAS and RRMSE values are again obtained for W3. The two lowest values 

of BIAS and RRMSE for the four misspecified distributions are G2 and LN3, followed 

by LN2 and G3. Overall, when W3 is true, LN3 and LN2 are sensitive to the value 

of the shape parameter, G3 has largest BIAS and RRMSE values, and G2 is the most
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reliable of the four misspecified distributions.

(ii) In the case where W2 is the true distribution (a = 0) and the shape parameter 

is 2 (a = 2), the lowest BIAS and RRMSE values are for the true W2 distribution. 

For the maximum quantity, the low BIAS and RRMSE values hold for G3, followed by 

LN3, G2 and LN2, for the four misspecified distributions. For the 98 per cent quantity, 

the lowest BIAS and RRMSE values are obtained for G3 an LN3, ahead of G2 and 

LN2. When the shape parameter is increased to 4 (a = 4), several of the rankings for 

a = 2 are altered. The misspecified G3 is found to be highly sensitive to the value of 

the shape parameter, going from the lowest to the highest BIAS an RRMSE values for 

both the maximum and 98 per cent quantities. The true W2 always has the lowest 

BIAS and RRMSE values, with G2 being the best of the four misspecified distributions, 

followed by LN3 and LN2. While G2 is also slightly sensitive to the value of the shape 

parameter as it is increased, G2 still appears to be the most reliable of the misspecified 

distributions when W2 is true, just as in the case where W3 is true.

9.4.3 Lognorm al D istribution  is True

Finally, Table 9.3 contains the results from experiments when either LN3 or LN2 is 

true and the misspecified models that are estimated are G3, G2, W3 and W2. Since 

the lognormal distribution has the opposite behaviour to the gamma and Weibull dis

tributions as the shape parameter is increased, for purposes of comparison it is useful 

to examine the results as the shape parameter is decreased rather than increased. The 

correctly specified distribution always has the smallest BIAS and RRMSE values for 

both the maximum and 98 per cent quantities. The principal points to note from the 

table are as follows.

(i) When LN3 is correct (a = 1) and the shape parameter is 0.9 (a =  0.9), the 

lowest BIAS and RRMSE values for both the maximum and 98 per cent quantities 

are found for W3, followed by G3, W2 and G2. The rankings are altered as the shape 

parameter is reduced to a = 0.5, with the best performance being given by G3, followed
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by W3. For the m axim um  quantity, W2 has the highest BIAS and RRMSE values, 

whereas G2 has the highest values for the 98 per cent quantity. IN terms of reliability, 

both  G3 and W3 perform the best of the four misspecified distributions when LN3 is 

the true distribution.

(ii) The rankings for the case where LN2 is the true distribution (a  =  0) is very 

similar to th a t given above for LN3 being true. W hen the shape param eter is 0.9 (a  

=  0-9), W3 heads the rankings in term s of lowest BIAS and RRMSE values for both 

the m aximum and 98 per cent quantities, followed by G3, W2 and G2. Just as in the 

case where LN3 is true, when the shape param eter is reduced to 0. (a  =  0.5), the 

rankings are now given as G3, W3, G2 and W2 where LN2 is the true distribution. 

The least sensitive misspecified distributions to changes in the shape param eter are G3 

and W3, while G2 and W2 typically have higher BIAS and RRMSE values for both 

the maxim um  and 98 per cent quantities.

9.5 C oncluding R em arks

In this chapter we have assessed the effects of misspecification in estim ating the per

centiles of the two- and three-param eter gamma, Weibull and lognormal distributions. 

In the experiments, the true model is either a two- or three-param eter distribution, 

the estim ated quantities are the maximum observed value or the ninety-eighth per

centile value, the performance criteria are the BIAS and RRMSE associated with the 

estim ated quantities, and four misspecified non-nested alternative distributions are es

tim ated. The two- and three- param eter versions of two non-nested distributions are 

estim ated to examine the consequences of misspecifying the true distribution, namely 

estim ating the two- or three-param eter distribution when a two- or three-param eter 

version of a non-nested distribution is correct. The shape param eter is examined over 

a range of possible values where the density functions are positively skewed. When 

the two- or three-param eter gamma distribution is true, the three-param eter Weibull 

distribution is found to be the most reliable misspecified distribution in term s of lowest

227



BIAS and RRM SE values and lack of sensitivity to the value of the shape param eter. 

For the case where the two- or three-param eter Weibull distribution is true, the most 

reliable misspecified distribution is the two-param eter gam m a distribution, which is 

somewhat unusual in th a t it is clearly preferred to  its three-param eter counterpart. 

Finally, the three-param eter gamma and Weibull distributions are the most reliable 

misspecified distributions when the two- or three-param eter lognormal distribution is 

true.
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T A B L E  9.1
E s t im a t e s  o f  B IA S  an d  R R M S E  at m a x im u m  a n d  98 % q u a n t i t ie s  from  1000 M o n te  C arlo  

s im u la t io n s  w ith  sam ple  size n =  365 for th e  g a m m a  d is tr ib u t io n  ( ß  =  1)

G A M M A  D I S T R I B U T I O N

F iv e  E s t im a t e d  M o d e ls
T ru e

V a lu e s
P e r c e n t i le P erform ance

Criteria
T rue M o d e l  
G 3 G2

Four M issp e c if ie d  M o d e ls  
W  3 W 2 L N 3  L N 2

G3 M A X B IA S 0.007 -0 .0 7 4 -0 .206 0 .226 0 .023
a =  2 .0 R R M S E 0.053 - 0 .091 0 .210 0 .250 0 .059

7 = 1.0 98 B IA S 0.004 -0 .0 2 7 -0 .089 0 .065 - 0 .0 2 2
R R M S E 0.042 - 0 .050 0 .097 0 .086 0 .046

G2 M A X B IA S - 0 .002 -0 .0 8 3 - 0 .110 0 .252 0 .904
o = 2.0 R R M S E - 0.053 0 .1 0 1 0.123 0 .278 0 .927

7 = 0.0 98 B IA S - 0 .002 -0 .0 3 1 -0 .047 0 .076 0 .359
R R M S E - 0.047 0 .058 0 .067 0 .1 0 0 0 .372

G3 M A X B IA S 0.004 -0 .0 7 7 -0 .138 0 .046 0 .1 1 0
o  =  6.0 R R M S E 0.044 - 0 .0 8 5 0 .141 0 .074 0 .119

7 = 1.0 98 B IA S 0 .002 -0 .0 2 5 -0 .053 0 .011 0.041
R R M S E 0.031 - 0 .0 3 9 0 .060 0 .0 3 6 0 .052

G2 M A X B IA S - 0 .001 -0 .0 8 2 -0 .128 0 .048 0 .229
o =  6.0 R R M S E - 0.036 0 .091 0 .132 0 .079 0 .237

7 = 0.0 98 B IA S _ - 0 .001 -0 .0 2 7 -0 .050 0 .0 1 2 0 .096
R R M S E - 0.030 0 .042 0 .058 0 .039 0 .1 0 4

N o t e  : q is th e  sh a p e  p aram eter ,  ß  th e  sca le  p a r a m e te r  a n d  7 th e  lo c a t io n  p a r a m e te r .  G 3  an d  G2  
d e n o t e  th e  3- and  2-param eter  g a m m a  d is tr ib u t io n s ,  W 3  and  W 2  th e  3- a n d  2 -p a r a m e te r  
W e ib u l l  d is tr ib u t io n s ,  and LN3 and L N 2 th e  3- a n d  2 -p a r a m e te r  lo g n o rm a l d is tr ib u t io n s .
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T A B L E  9.2
E s t im a t e s  o f  B IA S  and R R M S E  at m a x im u m  an d  98 % q u a n t it ie s  fro m  1000 M o n te  Carlo  

s im u la t io n s  w ith  sam p le  size n  =  365  for th e  W e ib u ll  d is tr ib u t io n  ( ß  =  1)

W E IB U L L  D I S T R I B U T I O N

F iv e  E s t im a te d  M o d e ls
True P e r c e n t i le P erform an ce T rue  M o d e l Four M issp e c if ie d  M o d e ls

V a lu es Criter ia W 3 W 2 G 3 G 2 L N 3 L N 2

W 3 M A X B IA S 0 .0 0 2 0.079 -0 .007 0 .097 0.060
a =  2 .0 R R M S E 0.030 - 0 .088 0 .024 0 .109 0.066

7 = 1.0 98 B IA S 0 .0 0 0 _ 0.027 -0 .015 0 .026 0.011
R R M S E 0 .0 2 2 - 0 .037 0 .0 2 4 0 .037 0.023

W 2 M A X B IA S - 0 .002 0 .110 0 .221 0.135 0.995
o =  2.0 R R M S E - 0.037 0 .122 0.226 0.151 1.011

7 = 0.0 98 B IA S - 0 .002 0.041 0 .104 0 .040 0 .414
R R M S E - 0.031 0 .055 0 .110 0.056 0.422

W 3 M A X B IA S 0 .0 0 0 0.610 0 .065 0 .036 0 .094
q = 4 .0 R R M S E 0 .014 - 1.881 0 .066 0 .285 0.095

7 = 1.0 98 B IA S 0 .0 0 0 _ 0.541 0 .028 0 .017 0.040
R R M S E 0 .0 1 0 - 1 .998 0 .029 0 .210 0.041

W 2 M A X B IA S - 0 .001 0.998 0 .213 0 .059 0.411
o = 4 . 0 R R M S E - 0.019 3 .056 0 .215 0 .462 0 .416

7 = 0.0 98 B IA S _ - 0.001 0.930 0 .102 0.029 0.189
R R M S E “ 0.015 3 .418 0 .104 0 .360 0.192

N o te  : a  is th e  sh a p e  p a ra m eter ,  ß  th e  sca le  p a r a m e te r  an d  7 th e  lo c a t io n  p aram eter .  G3 and G2 
d e n o t e  th e  3- an d  2 -param eter  g a m m a  d is tr ib u t io n s ,  W 3  an d  W 2  th e  3- and 2 -p aram eter  
W e ib u l l  d is tr ib u t io n s ,  and LN3 and  L N 2  th e  3- an d  2 -p a r a m e te r  logn o rm a l d istr ibutions.
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T A B L E  9.3
E s t im a t e s  o f  B IA S  and  R R M S E  at m a x im u m  a n d  98 % q u a n t it ie s  from  1000 M o n te  Carlo  

s im u la t io n s  w ith  sa m p le  size n =  365 for th e  lo g n o r m a l d is tr ib u t io n  (ß  — 1)

L O G N O R M A L  D I S T R I B U T I O N

F iv e  E s t im a te d  M od els
Ti*ue P e r c e n t i le P erform an ce T rue  M o d e l Four M issp ec if ied  M o d e ls

V a lu es C riter ia L N 3 L N 2 G3 G2 W 3 W 2

L N 3 M A X B IA S 0.017 -0 .403 -0 .492 -0 .374 -0 .466
a =  0.9 R R M S E 0.134 - 0 .407 0 .494 0.381 0 .470

7 = 1.0 98 B IA S 0.007 . -0 .1 5 6 -0 .232 -0 .125 -0 .1 7 4
R R M S E 0.089 “ 0.170 0 .240 0 .146 0 .190

L N 2 M A X B IA S - 0 .001 -0 .413 -0 .449 -0 .383 -0 .4 2 7
a = 0 .9 R R M S E - 0.111 0 .417 0 .452 0.390 0 .432

7= 0.0 98 B IA S - 0 .002 -0 .1 6 5 - 0 .200 -0.131 -0 .163
R R M S E - 0.084 0 .180 0 .210 0.155 0 .180

L N 3 M A X B IA S 0.005 -0 .137 -0 .240 -0 .194 -0 .271
c* =  0.5 R R M S E 0.078 - 0 .145 0 .242 0.200 0.275

7= 1.0 98 B IA S 0 .001 _ -0 .0 4 4 -0 .105 -0 .059 -0 .0 9 0
R R M S E 0.048 - 0 .059 0 .110 0.072 0 .100

L N 2 M A X B IA S - 0 .002 -0 .149 -0 .213 -0.210 -0 .2 6 7
a =  0.5 R R M S E - 0.061 0 .157 0 .217 0 .217 0 .271

7 = 0.0 98 B IA S - 0 .002 -0 .050 -0 .092 -0 .067 -0 .095
R R M S E - 0.046 0 .066 0 .100 0.082 0 .106

N o te  : a is th e  sh a p e  p a ra m eter ,  ß  th e  sca le  p a r a m e te r  an d  7 th e  lo c a t io n  p aram eter . G 3  and  G2  
d e n o t e  th e  3- an d  2 -p aram eter  g a m m a  d is tr ib u t io n s ,  W 3  an d  W 2  th e  3- and  2 -p a ra m eter  
W eib u l l  d is tr ib u t io n s ,  and  LN 3 and L N 2  th e  3- an d  2 -p a r a m e te r  lognorm al d is tr ib u t io n s .
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P a r t  IV

A P P L IC A T IO N S  T O  A IR  
Q U A L IT Y  M A N A G E M E N T
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C hapter 10

E stim ation  and D iscrim ination o f  
A lternative Air Pollution  M odels

10.1 In tro d u ctio n

The use of probability distributions as descriptions of pollutant concentrations offers 

many advantages, as discussed in Chapter 2, and this issue need not be repeated 

here. Jakem an and Taylor (1989) summarise a substantial literature, which indicates 

th a t many probability distribution functions have proven to be good representations 

of the frequency distribution of air pollutant data. Among these distributions are the 

six analysed in this thesis. The gamma, Weibull and lognormal distributions are the 

most well known and frequently used, particularly the two-parameter distributions and 

sometimes their three-param eter counterparts.

These distributions are not only parsimonious but are also sufficiently flexible in 

fitting real data. Im portantly, they cover a wide range of situations. For example, the 

gamma distribution will tend to the normal as the shape param eter becomes very large 

(Pearson (1959)). The lognormal distribution can also approxim ate the normal distri

bution when the value of the shape param eter is zero (Aitchison and Brown (1957)). 

W hen the shape param eter is equal to or less than unity, both the gamma and Weibull 

distributions approach the exponential or become inverse “J ” shaped. As will be shown 

in this chapter, air pollution data can conform to both the “bell” shaped distribution 

with a wide range of skewness and the inverse “J ” shaped distribution. Unlike some
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other skewed distributions, the gamma and Weibull distributions can fit both kinds 

of data reasonably well. Moreover, the lognormal distribution, particularly the two- 

parameter version, has been considered as “the most appropriate for characterizing 

both reactive and inert pollutant concentrations for a wide range of averaging times” 

(Benarie (1980, p. 305)). Therefore, the gamma, Weibull and lognormal distributions 

are the three candidates used in the empirical application in this chapter.

As discussed in Chapter 3, there have traditionally been problems with employing 

the maximum likelihood (ML) method to estimate the parameters of the gamma and 

Weibull distributions. A theoretical difficulty occurs when the shape parameter is less 

than or equal to unity, since one of the three first-derivative equations often used to 

maximize the likelihood function is not valid in these cases. Chapter 3 proposed a 

new algorithm which can provide computationally efficient ML estimates for both the 

three-parameter gamma and Weibull distributions. When the sampling distribution is 

quite skewed, it was found that the classical ML method for estimation of the three- 

param eter lognorm al distribution, which involves solving the first-derivative equations, 

has difficulty in converging. Using the new approach in Chapter 3, this problem can 

also be avoided. Therefore, in this chapter, the new ML method is used for fitting air 

pollution data.

In Chapters 6 and 8, extensive investigations were undertaken for discrimination 

procedures among a number of alternative distributions. In Chapter 8, it was argued 

that the application of standard hypothesis tests will not strictly be valid if there are 

more than two models. Monte Carlo simulation experiments also revealed that existing 

discrimination criteria, such as Akaike’s information criterion (AIC), Schwarz’s infor

mation criterion (SIC), the Kullback-Leibler (KL) information criterion, the chi-square 

(CHI) test and the Kolmogorov-Smirnov (KS) test, are not sufficiently reliable for the 

intended use of a model. Two performance criteria were proposed to investigate their 

discrimination ability in the same chapter. The criteria relate to the upper percentile 

error (UPE) and the entire or full percentile error (FPE) (see Chapter 8 for details). 

When applied in isolation, both UPE and FPE proved inadequate for selecting among
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the different underlying distributions.

To address this problem, a new generalised information criterion (GIC) was pro

posed. From the Monte Carlo simulation experiments, the GIC was shown in Chapters 

6 and 8 to perform reliably within the param eter spaces and sample sizes investigated. 

In this chapter, the GIC and other criteria are applied to discriminate among six distri

butions for annual sets of air pollutant concentration data. An interesting result from 

the experiments of Chapters 6 and 8 is tha t when the true underlying distribution is 

one of the three-param eter gamma, Weibull or lognormal distributions, but discrimina

tion is restricted among the two-parameter distributions, the two-parameter lognormal 

distribution will frequently be chosen if the sample distribution is skewed. This means 

th a t the two-param eter lognormal distribution will often be a better approximation 

to one of the three-param eter distributions than the nested member (with location 

param eter equal to zero) of the underlying true distribution. This result is consistent 

with the use of the two-param eter lognormal distribution being most frequently used 

for fitting probability distributions of air pollution data. Therefore, care should be 

exercised in such situations because a more appropriate underlying distribution may 

be one of the three-param eter models. This gives a strong reason for including the 

three-param eter distributions in the discrimination procedure.

In the development of the research for this thesis, a com puter package named 

“Probability-distribution F itting” (PRO FIT) has been designed for the general fitting 

of probability distributions and, in particular, for modelling problems in air quality 

management. One feature of the package is th a t it involves the new estim ation and 

discrimination procedures developed in the thesis for the six distributions (initially), 

as well as traditional moment estim ation and discrimination procedures. PRO FIT re

quires only free form at for input data. It can analyse observational da ta  from a number 

of years and sites independently or simultaneously. The output will provide detailed 

statistical information in a form similar to the results reported in this chapter. In addi

tion, this package can also perform Monte Carlo simulation experiments. This is a very 

convenient facility for understanding the performance of the estim ation and discrim-
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ination procedures applied to observed data by comparing the empirical results with 

synthetic results from parent distributions which closely fit the real data of interest.

In this chapter, PROFIT is applied to annual sets of air pollutant concentrations 

recorded at several monitoring sites in Melbourne, Australia. Six types of pollutants 

from up to five monitoring stations are analysed using a comprehensive model selection 

procedure. This procedure incorporates use of discrimination and performance criteria, 

together with analyzing the effects of misspecifying the distribution and of errors in 

estimation of observed upper percentile values. The results contained in this chapter 

are useful for general purposes, such as summarising or smoothing the data, particularly 

the upper percentiles, as well as providing statistical information to construct hybrid 

models. The last feature will be demonstrated in Chapter 11.

10.2 C on sideration s for a C om p reh en sive  M od el 
S electio n  P roced u re

A brief review of existing discrimination criteria has been given in Chapter 8. These 

criteria can be categorised in terms of functions of maximized log-likelihood values of 

distributions, such as AIC and SIC, or as a deviation between properties of the fitted 

and observed distributions, such as the CHI and KS tests. When the sample size 

tends to infinity, all of these criteria are expected to provide similar results since the 

sampling distribution will converge to the underlying population distribution. However, 

the performance of these criteria will differ in finite samples, as occurs when fitting 

empirical data or data from simulation experiments. In isolation, these criteria may not 

provide adequate discrimination for the types of probability distribution applications 

that arise in air quality management.

The choice of an appropriate distribution should depend on the modelling objec

tives. Application of probability distributions to air quality management problems 

requires adequate fitting of both the upper percentiles and overall fitting of the distri

bution to observed data, particularly those parts such as the mean which are used as
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calibration points for hybrid modelling. Distributions which fit the upper percentiles 

well may not fit other parts of the data  well. Criteria based upon deviations from the 

upper percentiles of the distribution should not be the sole criteria for discrimination. 

Such a criterion to select a distribution is the UPE, defined in Chapter 8, which is 

based on relative mean square fitting errors averaged over the upper two percentiles. 

From the results given in Chapter 8, UPE can perform quite well in discriminating 

among certain distributions but, as with other criteria, it frequently does not perform 

adequately when used in isolation. Thus, the selection of an appropriate distribution 

may be a compromise among various discrimination criteria if they yield conflicting 

results. In addition, an objective for hybrid and other modelling is to select a suitable 

distribution for a given pollutant at a particular site for separate observation periods 

(e.g. years), or over varying sites and periods. The weighting of these factors in a 

comprehensive model selection procedure is the motivation of the present chapter.

There are four basic considerations in this chapter. The first is to use GIC and tra 

ditional discrimination criteria to  examine which param etric distribution best describes 

the data  most frequently. The GIC procedure is regarded as the most im portant of 

these criteria because it does not reject a candidate if, after adjusting for the number of 

param eters and/or observations, its maximised log-likelihood value is not significantly 

inferior to the distribution with the highest maximised log-likelihood value. The second 

consideration involves the level of errors in fitting the observed percentiles of interest, 

which has generally been taken to be the relative root mean square error of the max

im um  percentile and a weighted average of the upper percentiles (i.e. the UPE based 

upon deviations from sample percentiles). However, other error functions, for example, 

the second highest concentration value, may be of more interest for specific applica

tions. One of the purposes served by these functions is to allow rejection of alternative 

distributions which lead to larger errors than some practical level designated as being 

tolerable.

The other two considerations in the comprehensive model selection procedure can 

be viewed as of secondary importance. The third consideration involves use of the
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misspecification results of Chapters 7 and 9 for nested and non-nested distributions, 

respectively. These results are of value especially when it is difficult to select among 

alternatives with comparable performances on the basis of the two prim ary consider

ations. They allow selection of the distribution which, if the alternative were true, 

leads to the most tolerable percentile deviations from the true distribution. The fourth 

consideration involves misspecification when the associated performance measures are 

based upon deviations from the empirical rather than from the true distribution. The 

analysis of this type of misspecification and the rationale for its use are addressed in 

the next section, followed by the results from fitting real air pollutant data from the 

urban Melbourne airshed.

10.3 E va lu atin g  M issp ecifica tion  Errors

The effects of misspecification in estim ating the upper percentiles of nested and non

nested distributions have been discussed in Chapters 7 and 9, respectively. The results 

obtained from the Monte Carlo experiments are based on comparisons of sample er

rors w ith the percentiles of the known true distribution. These results are useful for 

determ ining the errors in the percentiles of interest of the true distribution as well as 

other alternatives. Although the true distribution is unknown in practice, the Monte 

Carlo results provide some guidance as to the adoption of low risk strategies for model 

selection. Thus, if it is difficult to choose between two models on the basis of GIC 

and other criteria, the errors of misspecification can then be used to infer the conse

quences of selecting one model when the other is true. For example, using historical 

da ta  sets, three-param eter gam m a and two-parameter lognormal distributions might 

be preferred over other distributions with approximately the same frequency of accep

tance. From Table 9.1, a two-param eter lognormal estim ated using data from a true 

three-param eter gamma distribution may estim ate the percentiles as successfully as the 

true distribution estim ated for the same samples in term s of RRMSE when the value of 

the shape param eter is 2. However, when using a three-param eter gamma to fit sam-
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pies taken from a two-parameter lognormal distribution in Table 9.3, a substantially 

inferior reproduction of the percentiles is obtained in comparison with those obtained 

using the true distribution when the shape parameter is 0.9. Thus, the two-parameter 

lognormal would be selected as a low risk option relative to the three-parameter gamma 

distribution.

As an additional aid in model selection, it is also useful to re-examine the effects of 

misspecification in estimating the upper percentiles of nested and non-nested distribu

tions using analogous goodness-of-fit measures based on the observed data rather than 

the underlying true values. This allows errors of fit with real data to be compared with 

the errors obtained from simulations where the distribution and true parameters are 

similar to those estimated using real data.

Corresponding to this need, the associated performance measure given importance 

here is a relative root mean square error of the upper percentiles averaged over all 

observations in the 98 to maximum percentile range, and then averaged over all N  

Monte Carlo simulations from the same parent distribution. The performance criterion 

(PC) can be written as

1 N
p c  = tsH

l __  V - '  / Q i j  \ 2 i 0 . 5

N  fr i 'l  + (! ~P)n <3H
( 10. 1)

where p is the ordinate of the p-quantile which is generally chosen at 0.98, while the 

range between 98 per cent and maximum quantities of the fitted q^ and observed qij 

is of most concern in the management of air quality standards. Each percentile error 

is a relative mean square error that is weighted from 98 to the maximum percentiles 

by the observed sample value. The errors are averaged and transformed to derive 

a performance criterion for each experiment. The mean value (MEAN) of this per

formance criterion, its standard deviation(SD), and maximum (MAX) and minimum 

(MIN) values over all experiments are used to examine goodness-of-fit for both nested 

and non-nested distributions.

The results from the experiments are reported in Tables 10.1 to 10.3. Experiments 

are replicated 1000 times for each set of parameters. The sample size used in each
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experiment is 365 which is a common case, representing a period of one year of 24-hour 

average concentrations or one year of the daily m axima of any shorter time average. 

Results for smaller sample sizes would be useful where there are many missing data 

points or where shorter (e.g. seasonal rather than annual) periods are of interest. 

Two values of the shape param eter have been used to accommodate quite skewed and 

near-sym metric density functions. The following points should be noted in the results 

obtained with a sample size of n = 365 and the performance criterion in equation 

( 10.1).

(i) W hen either the two- or three-param eter gamma distribution is true, the three- 

param eter Weibull distribution performs almost as well as the true model in term s of 

all four statistics, irrespective of the values of the shape param eter. For the case of the 

true three-param eter gam m a distribution where the value of the shape param eter is 

2, the two-param eter lognormal distribution also performs very well overall. However, 

the two-parameter lognormal performs poorly when the underlying distribution is the 

two-parameter gamma, and the former is inferior in the more symmetric case where 

the value of the shape param eter is 6 when the underlying distribution is the three- 

param eter gamma. The two-param eter gamma distribution also performs well for the 

more symmetric version of the underlying three-param eter gamma. As expected, three- 

param eter gamma distribution performs very well when the underlying distribution is 

the two-parameter gamma. The three-param eter lognormal also performs well when 

either the two- or three-param eter gamma is the underlying distribution and the value 

of the shape param eter is 6.

Based on these results, if the true distribution is the three-param eter gam m a and 

the probability density function is quite skewed, the three-param eter Weibull and two- 

param eter lognormal distributions will have similar performances to the true model 

in fitting the upper percentiles. However, the two-parameter lognormal distribution 

will worsen and the two-param eter Weibull will improve if the true distribution is the 

two-parameter gamma. W hen the probability density function of the data tends to 

symmetry, the three-param eter lognormal and Weibull distributions are very good in
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terms of the performance criterion defined in equation (10.1).

(ii) When the true distribution is either the two- or three-parameter Weibull, the 

true model almost invariably fits substantially better than all other alternatives (see 

Table 10.2). When the value of the shape parameter is 2 for the sample from the 

three-parameter Weibull, the two-parameter gamma distribution performs as well as 

the true distribution. The three-parameter gamma and the two- and three-parameter 

lognormal distributions perform poorly for both values of the shape parameter when 

the data come from the true two- or three-parameter Weibull distribution.

(iii) When either the two- or three-parameter lognormal is correct, the true model 

almost invariably fits substantially better than the other alternatives (see Table 10.3), 

especially if the distribution is very skewed. However, when the distribution becomes 

quite symmetric, the three-parameter gamma distribution yields relatively lower errors 

than those of other false distributions. An interesting point arises if the true distribu

tion is the two-parameter lognormal, in which case all non-nested distributions have 

relatively large errors, facilitating recognition of this distribution.

In summary, the use of the performance criterion given in (10.1) in isolation can 

lead to the following conclusions. The three-parameter Weibull or two-parameter log

normal could be selected incorrectly, especially for more skewed probability density 

functions, even though the data come from the three-parameter gamma. Similarly, the 

two- and (especially) three-parameter Weibull could be selected for samples taken from 

the two-parameter gamma distribution. When the probability density function tends 

to symmetry, the errors in fitting the upper percentiles become relatively lower for 

different model alternatives, implying that wrong distributions will have higher prob

abilities of being selected. Generally, discrimination using this performance criterion 

can be confusing if the sample comes from either the two- or three-parameter gamma 

distribution. When the sample is taken from the two-parameter lognormal, the true 

model and its three-parameter counterpart should perform similarly, and differ from 

other non-nested alternatives, especially for the skewed sample case. If the sample
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comes from the three-parameter lognormal, the three-parameter gamma distribution 

may perform reasonably well if the sample becomes quite symmetric. When the sam

ple is taken from the Weibull distribution, the true distribution fits the data very well. 

However, when the sample comes from the two-parameter Weibull, its three-parameter 

counterpart may perform slightly better in terms of fitting the upper percentiles. The 

other remaining distributions produce substantially larger errors than the true model. 

Hence, in most cases discrimination is generally much clearer when the samples are 

taken from the Weibull distribution.

The errors reported in Tables 10.1 - 10.3 for the true underlying distribution repre

sent the minimum errors that could be expected in fitting the upper percentiles. Thus, 

for the three-parameter gamma distribution, this error is on average between 0.052 and 

0.074 as the value of the shape parameter changes from a value of 2 (quite skewed) 

to 6.0 (nearly symmetric). The standard deviation of this error varies between 0.022 

and 0.033, while the maximum error found over 1000 sets of random samples corre

spondingly varies from 0.144 to 0.206. For the underlying three-parameter Weibull 

distribution, this error is on average between 0.014 and 0.033 when the value of the 

shape parameter changes from a value of 2 to 4. The standard deviation of this error 

varies between 0.006 and 0.015, while the maximum error found over 1000 sets of ran

dom samples correspondingly varies from 0.043 to 0.097. The skewed sample case yields 

worse errors. When the three-parameter lognormal distribution is correct, the error is 

on average between 0.083 and 0.167 as the value of the shape parameter changes from 

0.9 to 0.5. The standard deviation of this error varies between .037 and .077, while the 

maximum error found over 1000 sets of random samples correspondingly varies from 

0.263 to 0.500. These figures provide an indication of the errors to be expected in 

fitting the observed percentiles of the six distributions.
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10.4 F itting R eal D ata

To demonstrate how the preceding work in the thesis can be combined to form a useful 

comprehensive model selection procedure, six air pollutants over 64 sites and a ten- 

year period from Melbourne, Australia, have been used. They are carbon monoxide 

(CO), nitrogen monoxide (NO), nitrogen dioxide (NO2), nitrogen oxides (N 0X), sulphur 

dioxide (SO2 ), and ^-scattering. To simplify the presentation, results are provided for 

annual sets of pollutant data from five stations, namely the Museum (site number 

11), Alphington (27), Dandenong (34), Camberwell (81) and Footscray (91) stations. 

The time period considered in this study is the 24-hour average since, for almost all 

pollutants, there is an international air quality standard expressed in terms of this time 

period.

As an illustrative example, full details of the estimation and discrimination proce

dure for CO and /9-scattering at the Museum station are given in Subsections 10.4.1 

and 10.4.2, respectively, while the remaining results for other pollutants at this site 

are given in Appendix 2. Following these two subsections, results are provided for CO 

over three sites and for /^-scattering over five sites in the ten-year period reported in 

Subsections 10.4.3 and 10.4.4, respectively. Then a summary is given of results for 

NO, NO2 , NOx and SO2 in Section 10.5, with more detailed tables being available in 

Appendix 2. Some concluding remarks are given in Section 10.6.

10.4.1 D etailed  CO R esu lts for th e M useum  Site

Table 10.4 includes three major pieces of information for estimating distributions of CO 

over different years at the Museum station, namely the estimated parameter values, 

maximized values of the log-likelihood functions and RRMSE values between predicted 

and observed percentiles. Note that, for the three-parameter distributions, the estimate 

of the location parameter may be negative, which is not consistent with air quality data 

being positive. In such cases, these distributions are automatically deleted from the 

discrimination procedure. There are three years, namely 1975, 1978 and 1984, in which
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all three-parameter distributions are eliminated. An initial reaction might be that the 

three-parameter distributions might be inadequate for describing CO at this site. The 

estimated values of the shape and scale parameters suggest that the samples are heavily 

skewed. There is only one exception, in 1976, where the estimated distributions are 

quite symmetric.

In Table 10.4, the maximized values of the log-likelihood functions show that, in 

many cases, the differences between some non-nested distributions are very small. This 

demonstrates the importance of using GIC, as recommended in Chapter 8, because it 

does not reject alternatives which are not significantly inferior to the model with the 

highest maximized log-likelihood value. The estimated RRMSE values for different 

percentiles fitted to CO data are also reported in Table 10.4. MAXI, MAX2 and 

98 denote the maximum, second highest and 98 percentiles, respectively. MEAN-U 

is the weighted mean of RRMSE from 98 to the maximum percentiles, as defined in 

(10.1). MEAN-F has a similar definition when the parent percentile is replaced by the 

observed or sample value. Generally, the estimated three-parameter distributions have 

lower values of RRMSE than the two-parameter distributions but, in cases such as 1980, 

the two-parameter gamma distribution performs very well at the upper percentiles.

A summary of eight discrimination and performance criteria applied to samples of 

CO over the ten-year period is given in Table 10.5. Of these criteria, the first four 

are based on the maximized values of the log-likelihood function and the next four 

are specialised performance criteria adopted for the fitting of distributions. Basically, 

the comprehensive model selection procedure proceeds in one of two ways: among one 

nested and five non-nested distributions, or among two sets of non-nested distributions, 

namely the three- and two-parameter distributions. The procedure considered here 

presumes that, in practice, discrimination arises only for non-nested two- or three- 

parameter distributions. The results for CO are discussed below.

In discriminating among the six distributions, GIC selects the two-parameter Weibull 

distribution most frequently for the CO data sets. GIC yields the highest acceptance
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rate , namely 8 acceptances from 10 samples. The two-parameter gamma distribution is 

ranked as second best, with a slightly lower acceptance rate, namely 7 from 10. CHI and 

KS are also marginally in favour of the two-param eter Weibull over the two-parameter 

gam m a distribution. For KL, AIC, SIC, and UPE, the frequency of acceptance of the 

preferred distribution is relatively lower, but the two-parameter Weibull distribution 

still has the highest or equal highest frequency of acceptance. FPE  favours the two- 

param eter Weibull in 9 cases, while the three-param eter Weibull is accepted once. In 

discrim inating among only three-param eter distributions, the three-param eter Weibull 

is clearly favoured by all criteria. W hen the discrimination procedure is undertaken 

among only the two-param eter distributions, the Weibull is preferred most often but 

the gam m a is also quite competitive. Therefore, based solely on the results of the vari

ous discrim ination criteria in Table 10.5, the two-param eter Weibull is the appropriate 

distribution for the ten annual sets of CO data from the Museum station.

Although the discrimination criteria indicate the two-parameter Weibull distribu

tion to  be the appropriate distribution for the annual data  sets, it is necessary to analyse 

the errors associated with percentile predictions. Table 10.6 provides a summary of the 

RRM SE perform ance for different percentile predictions including the maximum, up

per and full percentiles. The maximum percentile is especially im portant in assessing 

CO in term s of air quality standards. In considering the maximum percentile, the best 

distribution is the two-parameter gamma, but the two-parameter Weibull also works 

reasonably well. For fitting the full percentiles, the two-param eter Weibull is much 

better than  the other distributions. However, FPE  is not necessarily a critical statistic 

since it can be dom inated by errors at very low percentiles, which need not be predicted 

accurately for air quality management purposes. For upper percentile performance, the 

two-param eter gam m a is the best among the two-parameter distributions.

From the sim ulation results in this chapter, if a two-parameter Weibull were the 

underlying distribution, then the two-parameter Weibull would easily outperform the 

two-param eter gam m a in term s of the errors from the observed upper percentiles. 

Sometimes, a three-param eter distribution provides the best fit of the data. However,
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the results using the discrimination criteria might suggest that the data are not nec

essarily from a three-parameter distribution. Such a result is made very clear when 

the three-parameter distribution fits the data better on account of an unrealistic neg

ative estimate of the location parameter. The RRMSE values over the observed upper 

percentiles in Table 10.6 for the two-parameter gamma and Weibull distributions are 

quite competitive, which suggests a two-parameter gamma distribution is the appropri

ate distribution, according to the analysis of the errors in Section 10.3. The results of 

both the discrimination and performance criteria suggest that either the two-parameter 

gamma or Weibull distribution are adequate for representing the historical frequency 

distributions of 24-hour average concentrations of CO annually at this site.

10.4.2 D etailed  /3-Scattering R esu lts for the M useum  Site

As another example to illustrate the comprehensive model selection procedure, the 

results for /^-scattering data are reported in Tables 10.7 to 10.9. Table 10.7 lists the 

estimates of the parameters, the maximized values of the log-likelihood functions and 

RRMSE values for predictions of different percentiles. In terms of the estimated shape 

and scale parameters, the sampling distributions can be skewed or nearly symmetric, 

and all of the estimated location parameters for the three-parameter distributions over 

the ten data sets are positive. Unlike the CO data sets, the differences between the 

three- and two-parameter distributions in terms of both the maximized log-likelihood 

and RRMSE values for different percentiles are relatively large.

Table 10.8 provides a summary of the eight discrimination and performance crite

ria applied to the ^-scattering data. GIC chooses the three-parameter lognormal as 

the appropriate distribution from the alternatives, and its acceptance rate is 8 from 

10. It is interesting to note that, for the 1977 data, the results and the maximized 

log-likelihood values for the lognormal distributions are typical of an underlying two- 

parameter distribution. Since the two-parameter distribution is a special case of the 

three-parameter model, this is not especially surprising. There are two cases, for the 

1981 and 1982 data, where the maximized log-likelihood values of the three-parameter
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lognormal distribution are lower than for the three-parameter gamma and Weibull dis

tributions. In these cases, the three-parameter lognormal cannot fit a heavily skewed 

distribution as well as the three-parameter gamma and Weibull distributions. Never

theless, the three-parameter lognormal distribution is still generally the appropriate 

distribution.

All other criteria, and especially the CHI and KS tests, also favour the three- 

parameter lognormal distribution. When discriminating separately among two- and 

three-parameter distributions, the two- and three-parameter versions of the lognormal 

distribution are also strongly preferred. Table 10.9 provides further evidence that the 

three-parameter lognormal is the most suitable distribution overall. The errors in 

fitting the upper and maximum observed percentiles are substantially lower for the 

three-parameter lognormal distribution than for the others.

The misspecification results of Chapter 9 can also be recalled to assist in the se

lection of the appropriate distribution for ^-scattering at the Museum site. The es

timated values of the parameters of all distributions for the Museum site suggest a 

skewed distribution. For data from the lognormal distribution and parameter values 

in this range, the errors in the upper percentiles of fitting a three-parameter gamma 

or Weibull distribution are generally substantially higher than the percentile errors 

in fitting the three-parameter lognormal distribution to data from either the gamma 

or Weibull distribution. A similar result can also be observed for the two-parameter 

gamma and Weibull distributions for the CO data. However, for the ^-scattering data, 

the values of the errors and the risks of misspecification are much greater. Indeed, 

the error in fitting a three-parameter gamma or Weibull distribution to data from a 

three-parameter lognormal can be as high as 40 per cent for the maximum percentile 

(see Table 10.3), whereas fitting a lognormal incorrectly to either the three-parameter 

gamma or Weibull distribution is less than 30 per cent.

Considering the RRMSE values over the upper percentile range in Table 10.9 and 

the results of the discrimination criteria, the three-parameter lognormal distribution
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is selected as the appropriate distribution for representing the historical frequency 

distribution of ^-scattering data at the Museum station.

10 .4 .3  S u m m a ry  o f  A ir  P o llu ta n t D is tr ib u tio n s  for M u ltip le  
S ite s

For a particular pollutant, it is ideal if one distribution fits the data consistently well, 

not only over various years but also over various sites. Such a result will lead to 

a useful simplification when applying statistical and hybrid modelling approaches to 

predict probability distributions of pollutant concentrations.

Following the first example, a total of twenty annual CO data sets from three sites 

(namely 11, 27 and 81) are used for discrimination, and the associated results are listed 

in Tables 10.10 and 10.11. The two-parameter Weibull is selected by GIC, CHI and KS 

as the best distribution, with a high acceptance rate when discriminating among the 

six distributions. The UPE statistic also yields a high acceptance of the two-parameter 

Weibull distribution, which fits the upper range of sample percentiles best for the data 

sets. The AIC and SIC procedures also support the dominance of the two-parameter 

Weibull distribution, although less strongly. When considering discrimination among 

non-nested two- (three-) parameter distributions, the two- (three-) parameter Weibull 

distribution is preferred.

On the basis of RRMSE values for different percentiles in Table 10.11, the two- 

parameter Weibull distribution performs most strongly. The analysis of misspecifica- 

tion of this chapter also suggests that, if a two- or three-parameter Weibull distribution 

fits the observed values significantly better than non-nested alternatives, then the un

derlying distribution is Weibull. Therefore, for CO data sets over these sites and years, 

the two-parameter Weibull can be regarded as the appropriate distribution.

For ^-scattering, there are annual data sets from five sites available for discrimina

tion purposes, yielding twenty-eight years of data. The results are reported in Tables 

10.12 and 10.13. From Table 10.12, the three-parameter lognormal alternative may be 

regarded as the best distribution. GIC has an acceptance rate of 86.2 per cent for the
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three-parameter lognormal, and the CHI and KS tests perform similarly. AIC and SIC 

also yield high acceptance frequencies for the three-parameter lognormal distribution. 

The fact that the UPE and FPE statistics also yield high acceptance rates is an added 

bonus, as they show that the three-parameter lognormal almost always fits the max

imum and upper percentiles best. When evaluating the results from discrimination 

among only two- and only three-parameter distributions, the lognormal distribution is 

again preferred.

In Table 10.13, the RRMSE values for different percentiles indicate that the three- 

parameter lognormal distribution fits the data best in most cases. Occasionally, the 

three-parameter gamma and Weibull distributions have slightly lower RRMSE statis

tics; for example, both have lower minimum errors than the three-parameter lognormal 

distribution for the mean of the upper percentiles. For the two-parameter Weibull dis

tribution, both the minimum and maximum values of the mean of the upper percentiles 

are slightly smaller than for the three-parameter lognormal. However, the mean and 

standard deviation for all percentiles of the three-parameter lognormal distribution 

are consistently smaller than the others. Based on the results from both discrimina

tion and performance criteria, the three-parameter lognormal can be regarded as the 

appropriate distribution.

In conclusion, for the two pollutants illustrated above, certain types of distributions 

were found to perform consistently well over different sites and years. The discrim

ination and performance criteria can be used jointly to assist in the selection of the 

appropriate distribution for a given air pollutant. Based on these results, a hybrid 

deterministic-statistical model could be constructed for these pollutants to link the 

causal variables to properties of the distribution, such as using the deterministic model 

to predict the mean or other mid-percentile values of the probability distribution. The 

parameters of the distribution can be estimated based on these properties and the prob

ability distribution of pollutant concentrations can then be determined. The distribu

tional assumption could be applied at all sites investigated here and, with reasonable 

confidence, also at intervening locations for which records of historical concentrations
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are not available.

10.5 A B rief D iscussion of the R esults for 
Pollutants N O , N 0 2, N O x and S 0 2

The results of estimation and discrimination for the pollutants NO, NO2 , NOx and 

S 02 over different years and sites are given in Appendix 2. Tables A2.1 to A2.12 in 

Appendix 2 provide the details of fitting the pollutant data at the Museum site. The 

remaining tables there give results for these pollutants at multiple sites. Results for 

the Museum site are discussed before the other sites.

Based on the results in Tables A2.1 to A2.3, the two-parameter lognormal dis

tribution is appropriate for the NO data, which has the highest acceptance rate by 

the GIC criterion, namely 8 from 10. The RRMSE for the two-parameter lognormal 

distribution is lowest with respect to the upper percentile range, although the three- 

parameter lognormal has lower errors for the maximum percentile. Of the remaining 

candidates, the three-parameter gamma distribution is very competitive as compared 

with the two-parameter lognormal distribution, having an acceptance rate of 7 from 

10.

If the secondary factors in the model selection procedure are considered, then se

lection of the two-parameter lognormal distribution is reinforced. First, the misspeci- 

fication results of Tables 9.1 and 9.3 indicate that RRMSE values in fitting the upper 

percentiles of a true three-parameter gamma distribution using either a two-parameter 

lognormal or a three-parameter gamma distribution are not substantially different in 

absolute terms. However, the errors in fitting the percentiles of a true two-parameter 

Weibull distribution with a three-parameter gamma can be very large. Second, misspec- 

ification results in this chapter calculated for deviations from observed values suggest 

that the errors for the upper percentiles for the two-parameter lognormal distribution 

in Table A2.3 are as expected if the NO data were taken from a lognormal distribution.

Results for the NO2 data collected at the Museum site are reported in Tables A2.4
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to A2.6. All criteria except FPE choose the two-parameter gamma as being superior to 

the other distributions, the acceptance rate by GIC, for example, being 6 from 8. The 

RRMSE values over different upper percentiles are also the lowest for this distribution. 

Unfortunately, the errors for the upper percentiles are not as low as those obtained if 

the data were taken from a two-parameter gamma distribution.

For N 0X data at the Museum site, the two-parameter gamma and lognormal dis

tributions perform quite well, both having the same acceptance rate (8 from 10) using 

GIC, as shown in Table A2.8. GIC also accepts the three-parameter gamma distribution 

with high frequency. Comparing the RRMSE values in Table A2.9, the two-parameter 

lognormal has much lower errors than the two- and three-parameter gamma distribu

tions. Misspecification results for the level of skewness encountered in these data sets 

can also be used to assist in the selection of the appropriate model. The comments for 

NO also apply in this case. Thus, it is safest to specify the two-parameter lognormal 

distribution. The two-parameter lognormal seems to be, therefore, the appropriate 

distribution for the NOx data at the Museum site.

Tables A2.10 to A2.12 list the results for annual SO2 data sets at the Museum 

site. From Table A2.10, the sample sizes over different years can be quite low, so 

the results should be interpreted with caution. Of the six distributions, the three- 

parameter gamma distribution performs the best according to GIC, KL, AIC and SIC. 

However, the two-parameter gamma distribution is preferable if choosing on the basis 

of the lowest RRMSE values.

Tables A2.13 to A2.18 provide a summary of the NO, NO2 and NOx pollutants at 

multiple sites. For NO, the GIC criterion favours the three-parameter gamma distri

bution most frequently. However, the two-parameter lognormal, which was selected 

to represent this pollutant at the Museum site, is favoured by most of the other dis

crimination criteria. Consideration of the RRMSE values in Table A2.14 indicate that 

no distribution is entirely satisfactory, the two-parameter Weibull possibly being pre

ferred in that its errors for the maximum percentile are the lowest and are second
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lowest for the upper percentiles. At this stage, therefore, none of these distributions 

can be considered as adequate for NO concentrations at all sites.

For the NO 2 data  sets at the multiple sites, the two-parameter gamma distribution 

is clearly favoured by GIC and all discrimination criteria. The UPE and FP E  are incon

sistent with respect to the other tests. In term s of RRMSE values, the two-parameter 

gamma yields acceptable errors in fitting the upper and maximum percentiles, but the 

two-parameter gamma is generally outperformed by the three-param eter distributions. 

This is to be expected since the results of the misspecification analysis suggest that, if 

the underlying distribution is the two-parameter gamma, then all the three-param eter 

distributions can fit the observed upper percentiles well. Thus, for annual NO2 data 

sets, the distribution previously selected as appropriate for the Museum site is also 

suitable for the other sites.

For the N 0 X data sets at multiple sites, the GIC procedure marginally favours the 

three-param eter gamma over the two-parameter lognormal distribution, the latter be

ing the distribution selected most frequently by the other tests. The GIC criterion 

also accepts the two-parameter gamma distribution with high frequency. The RRMSE 

values for the upper percentiles also highlight the superiority of the two-parameter log

normal distribution. However, the RRMSE values for the maximum percentile indicate 

tha t large errors can occur for some data  sets, ranging up to 90 per cent. If required to 

select a single distribution to represent all the sites, the two-parameter gamma distri

bution would seem to be the most suitable. The two-parameter gamma distribution is 

similar to the two-parameter lognormal at the Museum site, its frequency of selection 

by GIC is high, and historically it has not led to errors of more than 40 per cent in 

reproducing the upper and maximum percentiles.

10.6 C on clu d in g  R em arks

In this chapter, new estim ation and discrimination procedures developed in the thesis 

have been applied to air pollution data from Melbourne, Australia. The emphasis was
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placed on how to select an appropriate distribution for a given pollutant over different 

years and, whenever possible, over different sites. An im portant issue addressed here is 

the need for compromise between using discrimination criteria and analysing RRMSE 

values in fitting percentiles.

These two factors do not always lead to identical choices. Sometimes it may be help

ful to consider secondary factors based upon errors of misspecification. If the outcome 

of considering all factors is not clear, the final decision has to depend on the modelling 

objectives. For air quality management, the prediction of certain upper percentiles is 

the m ajor concern. However, in applying the hybrid determ inistic-statistical modelling 

approach, the overall distribution and particular calibration points, usually the high 

frequency percentiles, require reasonable prediction. Hence, likelihood-based discrim

ination is also im portant. If a distribution performs quite well in both cases, as with 

the three-param eter lognormal distribution for the ^-scattering data, the appropriate 

distribution will be selected without any difficulty. Otherwise, the first consideration 

is the prediction of the relevant upper percentiles which should not be allowed to  yield 

deviations outside a tolerable range. The RRMSE values can suggest the appropriate 

underlying distribution. Through using this selection rule, certain distributions can 

generally be determined as being optim al for a certain pollutant over different years 

and/or sites.

However, the results for some of the pollutants investigated in this chapter were not 

sufficiently convincing to lead to selection of a particular empirical distribution with 

reasonable confidence. Small samples may lead to such difficulties. In many cases, 

however, it is possible th a t the conditions for fitting probability distributions to data 

are violated. For example, it is well known th a t NO2 tim e series of concentrations 

show strong seasonal trends and, hence, non-stationarity. It should always be checked 

whether samples are stationary and serially uncorrelated before a particular distri

butional form is accepted as an adequate description of air pollutant concentrations. 

Chapter 11 illustrates methods of investigating these assumptions.
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T A B L E  10.1
D e sc r ip tiv e  s ta t is tic s  fo r R R M S E  values fro m  th e  98 to  m ax im u m  p e rcen tile s  ov er 1000 M o n te  

C a rlo  s im u la tio n s  w ith  sam p le  size n = 365 fo r th e  g am m a d is tr ib u tio n  ( ß = 1)

G A M M A  D IS T R IB U T IO N

T ru e S ta tis tic s Six E s t im a te d  M odels
V alues fo r R R M S E G 3 G2 LN 3 LN2 W 3 W 2

G 3 M E A N 0.074 0.114 0.159 0.078 0.072 0.139
a = 2.0
7 = 1.0 SD 0.033 0.045 0.066 0.033 0.032 0.037

M IN 0.013 0 .020 0.025 0.013 0.015 0.033

M A X 0.206 0.271 0.401 0.209 0 .202 0.258

G2 M E A N 0.085 0.084 0.181 0.610 0.081 0.090

q
 0

 
c4 d

 
II 

II
Ö 

c*~ SD 0.038 0.037 0.076 0.169 0.035 0.039

M IN 0.015 0.014 0.028 0.172 0.016 0.013

M A X 0.251 0.228 0.468 1.197 0.221 0.231

G3 M E A N 0.052 0.054 0.059 0.093 0.059 0.091
o = 6.0
7 = 1.0 SD 0 .022 0.024 0.026 0.040 0.027 0.028

M IN 0 .010 0.008 0 .010 0.016 0.009 0 .010

M A X 0.144 0.155 0.211 0.234 0.160 0.172

G2 M E A N 0.056 0.057 0.063 0.168 0.063 0.087
a = 6.0
7 = 0.0 SD 0.023 0.025 0.028 0.058 0.028 0.031

M IN 0.011 0.008 0 .010 0.029 0 .010 0.014

M A X 0.156 0.154 0.227 0.353 0.168 0.176

N o te : a  is th e  sh ap e  p a ra m e te r ,  ß th e  scale  p a r a m e te r  a n d  7 th e  lo ca tio n  p a ra m e te r .  G3
a n d  G 2 d e n o te  th e  th re e -  a n d  tw o -p a ra m e te r  g am m a d is tr ib u tio n s , W 3 an d  W 2 th e  
th re e -  a n d  tw o -p a ra m e te r  W eib u ll d is tr ib u tio n s , a n d  LN3 a n d  LN 2 th e  th re e - an d  
tw o -p a ra m e te r  lo g n o rm al d is tr ib u tio n s . SD is th e  s ta n d a rd  d e v ia tio n  o f R R M S E , 
a n d  M IN  an d  M A X  a re  th e  m in im u m  a n d  m ax im u m  values o f R R M S E  over 1000 
s im u la tio n s
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T A B L E  10.2
D e sc r ip tiv e  s ta t is tic s  fo r R R M S E  values fro m  th e  98 to  m ax im u m  p e rcen tile s  over 1000 M o n te  

C arlo  s im u la tio n s  w ith  sam p le  size n =  365 fo r th e  W e ib u ll d is tr ib u tio n  (/? =  1)

W E IB U L L  D IS T R IB U T IO N

Tim e
V alues

S ta tis t ic s  
fo r R R M S E G3 G2

Six E s tim a te d  M odels 
LN 3 LN2 W 3 W 2

W 3 M E A N 0.063 0.037 0.069 0.052 0.033 0.064
o = 2.0
7 = 1.0 SD 0.026 0.016 0.027 0.024 0.015 0 .020

M IN 0.009 0.006 0.009 0.012 0.007 0.006

M A X 0.169 0.113 0.178 0.137 0.097 0.132

W 2 M E A N 0.092 0.171 0 .100 0.668 0.049 0.049
o =  2.0
7 = 0.0 SD 0.039 0.056 0.040 0.140 0 .021 0 .022

M IN 0.014 0.026 0.013 0.325 0 .010 0.009

M A X 0.254 0.347 0.263 1.316 0.142 0.137

W  3 M E A N 0.569 0.047 0.032 0.066 0.014 0.020
o = 4 .0
7 = 1.0 SD 1.844 0.015 0.247 0.017 0.006 0.009

M IN 0.006 0.008 0.005 0.015 0 .002 0.003

M A X 14.330 0.091 7.808 0.113 0.043 0.053

W 3 M E A N 0.956 0.155 0.054 0.286 0.023 0.024
o = 4 .0
7 = 0.0 SD 3.072 0.034 0.419 0.053 0 .010 0.011

M IN 0.009 0.060 0.008 0.150 0.003 0.005

M A X 24.160 0.266 13.263 0.516 0.072 0.068

N o te : a  is th e  sh a p e  p a ra m e te r ,  0 th e  scale  p a r a m e te r  a n d  7 th e  lo ca tio n  p a ra m e te r .  G3
a n d  G 2 d e n o te  th e  th re e -  an d  tw o -p a ra m e te r  g am m a d is tr ib u tio n s , W 3 a n d  W 2 th e  
th re e -  a n d  tw o -p a ra m e te r  W eibu ll d is tr ib u tio n s , an d  LN 3 a n d  LN 2 th e  th re e -  an d  
tw o -p a ra m e te r  lo g n o rm al d is tr ib u tio n s . SD is th e  s ta n d a rd  d e v ia tio n  o f R R M S E , 
a n d  M IN  a n d  M A X  a re  th e  m in im u m  a n d  m ax im u m  values o f R R M S E  ov er 1000 
s im u la tio n s
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T A B L E  10.3
D e s c r ip t iv e  s ta t is t ic s  for R R M S E  values from  th e  98 to  m a x im u m  p e rcen t i le s  over  1000  M o n te  

Carlo  s im u la t io n s  w ith  sa m p le  s ize  n = 365 for th e  lo g n o rm a l d is tr ib u t io n  ( ß  =  1)

L O G N O R M A L  D I S T R I B U T I O N

True S ta t is t ic s S ix  E s t im a te d  M o d e ls
V a lu es for R R M S E G3 G2 L N 3 L N 2 W 3 W 2

L N 3 M E A N 0.258 0.338 0 .167 0 .246 0 .233 0 .301
o = 0 . 9
7 = 1.0 SD 0.078 0 .067 0 .077 0 .086 0 .069 0 .055

M IN 0.038 0.129 0 .033 0 .044 0 .035 0 .125

M A X 0.492 0.536 0 .500 0 .533 0 .463 0 .472

L N 2 M E A N 0.267 0.301 0 .174 0 .175 0 .240 0 .275
a = 0 . 9
7 = 0.0 SD 0.079 0.075 0 .081 0 .082 0 .070 0 .0 6 5

M IN 0.040 0.069 0 .035 0 .023 0 .037 0 .070

M A X 0.497 0.522 0 .521 0 .533 0 .468 0 .476

L N 3 M E A N 0.097 0.160 0 .083 0 .110 0.119 0 .168
a =  0.5  
7 = 1.0 SD 0.048 0.052 0 .037 0.051 0 .046 0 .037

M IN 0.018 0.023 0 .018 0 .019 0 .015 0 .0 5 8

M A X 0.319 0.358 0 .263 0 .335 0 .306 0 .313

L N 2 M E A N 0.106 0.144 0 .091 0 .096 0 .131 0 .168
a =  0.5  
7 = 0.0 SD 0.051 0.057 0 .040 0 .044 0 .049 0 .044

M IN 0.020 0.023 0 .020 0.013 0 .018 0 .040

M A X 0.337 0.361 0 .277 0 .297 0 .323 0 .331

N o te :  a  is th e  sh a p e  param eter ,  ß  th e  sca le  p a r a m e te r  and  7 th e  lo c a t io n  p a r a m e te r .  G3
an d  G 2 d e n o te  th e  three-  and tw o -p a r a m e te r  g a m m a  d is tr ib u t io n s ,  W 3  and W 2  th e  
three-  and  tw o-p aram eter  W eib u ll  d is tr ib u t io n s ,  an d  L N 3 and  L N 2  th e  th ree -  and  
tw o -p a r a m e te r  logn orm al d is tr ib u t io n s .  SD  is th e  s ta n d a rd  d e v ia t io n  o f  R R M S E ,  
and M IN  and M A X  are th e  m in im u m  an d  m a x im u m  va lues  o f  R R M S E  over  1000  
s im u la t io n s
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C h ap ter  11

P red ic tio n  o f  N o n -sta tio n a ry  
S eason al E xtrem es o f  O ne-hour  
A verage  U rb an  CO C on cen tration s

11.1 In tro d u ctio n

In urban planning, it is desirable to assess the air quality implications of land use 

options by linking the emissions that result from specific land uses to ensuing ambi

ent concentrations of pollutants. Where motor vehicles are a dominant source of air 

pollutant concentrations, model predictions of the dispersion of emissions from road 

networks are needed. The resultant concentrations can be compared with air quality 

goals. This requires predictions of potential annual average levels or short-term ex

tremes or both. In the case of carbon monoxide, which is the prime consideration of 

this chapter and a significant pollutant in the city of our case study, Canberra, it is 

the 1-hour average and 8-hour average annual maxima which are of interest. These 

averaging times and maxima relate to air quality goals used by the planning authorities 

in Canberra and to air quality standards used by other agencies such as the United 

States Environmental Protection Agency (EPA). The prediction method developed in 

this chapter is illustrated for the 1-hour averaging time and the maximum extreme 

value only. However, it applies equally to the 8-hour case and other extremes which 

can be related to high percentile properties of the frequency distribution of concen

trations. Air pollutant data sets from 1982-1987 are available at Canberra’s central
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m onitoring site, Civic.

To provide the air quality advice required for the planning of urban areas, a hybrid 

modelling approach is described which combines a deterministic model with statistical 

techniques for estim ating extremes from the deterministic model output and analysis of 

historical pollutant concentrations. The particular method applied is a very simple but 

useful implem entation of the general hybrid approach of Jakem an et al. (1988). It uses 

only a basic deterministic model with static emission and meteorological input. While 

its predictive performance is considered satisfactory in this chapter, the deterministic 

model may be inadequate for some applications. However, the general hybrid approach 

does allow for the adoption of any suitable deterministic model.

In order to make the prediction problem above more tractable, the objective of the 

modelling exercise in this chapter is narrowed from prediction of the annual frequency 

distribution of all 1-hour concentrations of CO to the seasonal frequency distribution of 

1-hour concentrations for separate hours of the day within which the maximum annual 

concentration has been reported. For our case study in Canberra, this maximum has 

always occurred in the evening, and from 1800-1900 predominantly. While this is 

the hour for which our m ethod is illustrated in this chapter, the annual maximum 

did occur between 1900-2000 hours in 1985 and 1987. In practice the method should 

be applied to this tim e of the day as well although this was not carried out for the 

chapter. The frequencies are estim ated over each winter period, taken as April to 

Septem ber inclusive for the southern hemisphere. It is within the winter months which 

characteristically contain more stable meteorological conditions tha t the maximum has 

always been observed to occur. Figure 11.1 shows a plot of the diurnal variation of 

1-hour CO concentration at the Civic site averaged over the 1987 winter season. Other 

years show the same pattern  with early evening peaks in CO concentrations.

This simplified treatm ent increases the validity of one of the main assumptions 

of our approach delineated in the next section: within a period of predictive interest 

(taken here as the winter season), the probability density function (pdf) from which
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the pollutant observations are derived can be characterised by an efficient parame- 

terisation. A sufficient condition for this to apply is tha t the ambient observations 

are independent and identically distributed according to some pdf with a small num

ber of param eters. By systematically isolating particular hours of the day instead of 

analysing all hours of the day together, problems of autocorrelation among observations 

and short-term  cyclical trends caused by diurnal variation are minimised. By selecting 

a seasonal subset of the annual period, problems of nonstationarity in the observations 

caused by substantial variations in meteorology between summer and winter are min

imised. Before outlining the plan of the remainder of the chapter, some discussion and 

quantification of these key assumptions is appropriate.

Figure 11.2 shows the tim e series of evening peak hour concentrations of CO mea

sured in 1987 at the Civic site. The tim e series plot is typical of other years in that 

concentrations are generally higher in winter than summer. However, within season, 

the d a ta  can be more strongly regarded as em anating from a stationary process. Note 

tha t the tim e series for 1987 represents samples which, of all years, conform least to the 

independent and identically distributed assumption. Table 11.1 provides, for each year 

of available data from the Civic site, a summary of the autocorrelation of observations 

obtained during the evening peak hour of each winter. The maximum first lag auto

correlation which occurs in 1987 is 0.452 but the median value over all years is 0.290. 

It has been dem onstrated by Taylor (1985), using samples which are lognormally dis

tributed , tha t the additional effect of such levels of autocorrelation on pdf fitting errors 

will be small. Table 11.2 provides for each year an indication of the stationarity of the 

underlying processes generating the tim e series data. For both the entire year and the 

winter season of evening peak hour values, the table gives the ratio of two variances. 

The denom inator is the variance about the arithm etic mean while the num erator is the 

variance about a simple uniformly weighted moving average over 20 tim e steps (the 

results over 40 tim e steps are very similar). The ratio is substantially larger for each 

w inter period than for the entire corresponding year, reflecting stronger stationarity 

for the winter period. The difference in variance about the constant mean and moving
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average m ean is highest in 1985 and this difference is closely followed in 1987. While 

the effect of discrepancies of this level on ensuing predictions of extremes needs to be 

investigated, this analysis of the modest amount of historical data available suggests 

th a t the stationarity  assumption can be supported in most years.

An outline of the chapter is as follows. In the next section, the steps and assump

tions in the general hybrid determ inistic-statistical distribution approach of Jakeman 

et al. (1988) are reviewed. In the following section, details are provided of the deter

m inistic model and da ta  inputs used to predict mean seasonal concentrations of CO. 

Then the relevance of assuming a particular param etric form for the seasonal distri

bution of evening peak hour CO concentrations is dem onstrated. Goodness-of-fit tests 

and error perform ance criteria are applied to the six available winter data  sets in order 

to discrim inate among candidate param etric forms. This is followed by a simple im

plem entation of the hybrid approach and an evaluation of the prediction results. The 

conclusions com plete the chapter.

11.2 T h e  H yb rid  A pproach

As outlined in C hapter 2, the hybrid approach described in Jakem an et al. (1988) was 

developed to combine the different advantages of deterministic and statistical distribu

tion modelling techniques and to overcome their disadvantages. The hybrid approach 

achieves this by using a determ inistic model to predict those concentrations which 

occur frequently (eg median or arithm etic mean), in conjunction with statistical tech

niques for identifying the param etric distributional form of the air pollutant data in 

question, and estim ating extrem e values of the appropriate distribution (eg maximum). 

A suitable determ inistic model can make causal links between emissions, meteorology 

and m ean ground level concentrations. Statistical distribution models can predict the 

frequency distribution of all events about the mean, once the distributional form ap

propriate can be identified or assumed from historical observations and its param eter 

values inferred from predictions of some of its properties by the determ inistic model.
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The hybrid approach can be summarised in the following four steps:

(1) identify, from a range of alternatives, the param etric form of the probability 

distribution function (pdf) of historical observations recorded within individual periods 

of predictive interest and assess its suitability over all periods (e.g. gamma, Weibull or 

lognormal distribution for each winter season of evening peak hour concentrations);

(2) select an appropriate deterministic model to predict properties of the pdf over 

each of the desired periods (e.g. seasonal means of 1-hour concentrations);

(3) fit, for each prediction period, the predictions of the determ inistic model in (2) 

to the param etric form identified in (1) so tha t its param eters can be estim ated, and;

(4) calculate the desired extreme(s) of the pdf for each period (e.g. maximum of 

evening peak hour concentrations each winter) using the estim ated param eter values 

from (3), and if possible, estim ate the variability of the extreme(s).

The m ajor assumptions of the approach are:

(i) within each period the pdf of concentrations can be adequately and efficiently 

param eterised,

(ii) the param etric form of the pdf at a site of interest remains suitable from one 

period to another, and

(iii) the deterministic model yields sufficiently accurate estim ates of the properties 

of the pdf to calibrate its param eters.

Assumptions (i) and (ii) can often be investigated by analysis of historical concen

trations. Clearly, no guarantee can be made th a t the param etric form most applicable 

historically will not change. Therefore, the assumption (ii) means th a t the param et

ric form remains invariant to future changes in emissions and meteorology, only the 

param eter values of the assumed form vary.

Additional assumptions related to some of the pdf param eters of the statistical 

distribution model must be made if it has two or more param eters and a deterministic 

model cannot predict variability about the mean. This is the case with the deterministic 

model applied to the Canberra data in this chapter. Sometimes, however, there may
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be sufficient model input information available to drive a determ inistic model that 

some variability of the mean concentration can be adequately predicted. For example, 

Taylor et al. (1985) use the GM line source model (Chock, 1978) to produce estimates 

of the 30 to 70 percentile values of hourly average CO data recorded in Melbourne, 

Australia. This range of percentile values is then used to calibrate a two-parameter 

Weibull distribution which was selected as an appropriate distribution to represent the 

entire percentile range of concentrations.

Enhancement of the analytical tools required for construction of the statistical 

component of the hybrid approach have been the main concern of this thesis. For 

the estim ation of param eters the new maximum likelihood algorithms constructed in 

Chapter 3 for the three-param eter gamma, Weibull and lognormal distributions are 

used. These methods are computationally simpler than traditional alternatives and 

allow fitting when the value of the parent shape param eter leads to exponential shaped 

distributions. For the identification exercise, this chapter will dem onstrate the basic 

principles of the procedure developed in Chapter 12 on the basis of work on discrimi

nation and misspecification in Chapters 6 to 9.

11.3 T h e D eterm in istic  M od el

The determ inistic model applied in this chapter is POLDIF, which is a model that 

attem pts to predict the dispersion of air and noise pollution from urban road networks. 

It has been developed and made commercially available by the CSIRO Division of 

Building Research (Anderson, 1985). This deterministic model uses a combination of 

traffic volumes, emission rates and meteorological conditions to determ ine ground level 

concentrations of pollutants for a given road network. The specific data  required by the 

model include: date, latitude, time, cloud cover, wind speed and direction, inversion 

height, vehicle fleet compositions, link volumes and speeds, point source strengths and 

grid size for the receptor location. Table 11.3 contains the prim ary meteorological data 

used to produce the POLDIF estim ates of CO.
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With these data the model calculates the ground level concentration for air pol

lutants using principles of Gaussian plume dispersion (Turner, 1969). Thus, the con

centration of a gas xid/™3) at a point (x,y,z),  emitted at a rate of Q(g/s) and at 

a location and height (#', y', z'), is dispersed according to vertical (m) and horizontal 

(m) dispersion parameters and U(m/s ), the mean wind speed. For vehicle exhausts 

z can be taken as 1.2m, the effective height for the mixing area in the wake of the 

vehicle. To reduce the computing time significantly, this model replaces the integrals 

of distances between the points (#,?/, z) and (#', y\z ' )  into exponential functions and 

error functions, which can be expressed as (Taylor and Anderson, 1982)

X
Q (1 + 92)*

\/2Taj7 exp - ( z - z ' f  V(z -  z'){x-  x')
2r? ;

.[er A ^  -  e r / l ü ^ l ]

2 l/2cr? ■]

( 11. 1)
s/ZJ-y \J

where g is the gradiant in the horizontal place of the line between the end points of 

integration and oy and oz are the standard deviations of pollutant concentration in the 

horizontal and vertical directions, respectively, and V  is the terminal settling velocity 

of the pollutant at a specific location.

Each link within the network is treated as a line source, similar to the HIWAY model 

(Zimmerman and Thompson, 1975), where the concentration at any point is found by 

integrating over the line upstream of the receptor. The contribution of each link to 

each receptor point is calculated and the contributions of all links to each receptor 

are then added. The contributions of links at a distance greater than 3cry from any 

receptor are neglected.

The vehicle emissions are determined by link volumes, average link speeds and 

emission factors associated with vehicle fleet composition. The vehicle fleet composition 

has been determined for Canberra based on Australian Bureau of Statistics data for 

vehicle registrations. The fleet composition is divided into petrol, diesel, 6 cylinder, 4 

cylinder, unleaded petrol and gas-fired vehicles. Although POLDIF is not particularly 

sensitive to small changes in fleet composition (Taylor and Anderson, 1984), it should
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be noted th a t recent changes in Australian emission control regulations for new vehicles 

have not yet been included in the emission factors released with POLDIF in 1985.

Link volumes and speeds are determined by a local area traffic model, MULATM 

(Anderson and Taylor, 1988). MULATM predicts traffic movements based primarily 

on origin-destination data and intersection controls. The predicted link volumes and 

speeds have then been calibrated to reflect observed data within the Civic network dur

ing 1985-86. It must therefore be assumed tha t 1985-1986 volumes are not significantly 

different to other years for which the model has been run here (1985-1987).

The dispersion param eters are calculated in POLDIF using the angle of the sun 

and average cloud cover, to determ ine incident solar radiation, and average wind speed. 

Miles et al. (1989) calculate mean annual concentrations of CO in Canberra assuming 

th a t neutral atmospheric conditions (i.e. adiabatic lapse rate equals environmental 

lapse rate) best represents the average hour for any given year in Canberra. This is 

achieved by selecting an average length day (22 March or 22 August) to calculate inci

dent solar radiation. For the calculation of mean seasonal concentrations of pollutants, 

the shortest day (22 June) and the longest day (22 December) could be used to produce 

more stable and unstable conditions, respectively. In this chapter, we use the former 

to predict m ean winter concentrations for the evening peak hours.

Tem perature inversions, which restrict the vertical distribution of air pollutants, are 

also taken into account by POLDIF. The model allows the vertical dispersion param eter 

to vary downwind until crz =  h i/2.15 where hi is the inversion height (m). It is held 

constant from then on. The average inversion height varies seasonally in Canberra. 

From the lim ited data available it can be assumed tha t the mixing depth for Canberra 

in sum m er varies between 1500-2000 m (MacNicol, 1982). In winter, however, much 

lower, stronger, surface tem perature inversions can occur during the night and early 

morning (Ferrari et ah, 1986). The average winter inversion height has been assumed 

to be 80 m.

The results of applying POLDIF to the prediction of seasonal mean CO concen-
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trations in Canberra for 1985-87 are reported in Table 11.4. The seasonal mean con

centrations predicted by the POLDIF model for the peak hour are generally within 

a factor of two of the observed concentrations. The factor of two is often regarded 

as an acceptable level of accuracy for modelling air pollution given the limitations of 

modelling illustrated by Hanna (1982). However, there is a bias in that the model 

underpredicts the observed means by around 30 per cent in 1985 and 1987 and about 

6 per cent in 1986. This is to be expected since no attempt has been made so far to 

include background concentrations before the 1800-1900 evening peak hour.

In order to estimate background concentrations, an approach used by Tiao et al. 

(1975) could be applied. It can be argued that CO concentration at time (hour) t is 

likely to be a function of immediate traffic emissions and traffic emissions in the recent 

past exponentially discounted because of dispersion with time. Thus, the effective 

emission factor Qet at time t could be written

Qt = Qt 4- SQt-i 4 ö2Qt - 2 4 &3Qt-3 4 • • • (11 -2)

where 0 < S < 1.

In this way the effective concentration xe? which is background plus concentration 

due to emissions at time t only, could be predicted as a seasonal mean by replacing Q 

terms in the deterministic model (11.1) by Qet to obtain

Xt = Xt 4 f*Xt-i 4 S2Xt- 2 4 S3Xt-3 4 • • • (H-3)

Use of equation (11.3) requires running POLDIF for hours prior to the evening peak 

hour (where t = 1800 -  1900) to obtain Xt-j Ü =  1 ,2 ,...)  and calibrating 6 in (2) with 

the latter predictions of concentration and the observed concentrations which should

be Xt-

Lack of meteorological data prevents this exercise from being undertaken compre

hensively here. Wind speed data were recorded only as 10 minute averages at 3 hourly 

intervals and the wind speed used for the 1800-1900 hour was recorded from 1755-
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1805. Further evaluation of the deterministic model component would also be useful 

to appreciate the errors involved in predicting \ t - j  in (2) and hence in obtaining un

certainty bounds for the decay factor 6. We do not wish to dwell on these aspects here. 

The m ain purpose of the chapter is to show how a hybrid modelling approach can be 

used to infer extrem e concentrations. The selection of a suitable deterministic model 

and its m ethod of calibration will be undertaken in the same way, whether means 

or extrem es are to be predicted. For the present purposes, we are satisfied with the 

P OLD IF model performance as it is well within the limits of accuracy tha t could be 

achieved and as it underpredicts when background concentrations are not considered. 

However, we conclude this section with some assessment of the credibility of the level 

of unuerprediction.

Therefore, we assume for the moment tha t POLDIF accurately predicts the non- 

background concentration. Later in the chapter we consider the sensitivity of our 

results to this assumption when predicting the seasonal maximum concentration of 

evening peak hour CO. If this assumption were true, then background in 1985 and 

1987 for the peak hour is 1.0 m g / m 3 on average. Note th a t it is lower in 1986 because 

of b e tte r dispersive conditions as indicated by the higher wind speeds in Table 11.3. 

Also, the average predicted Xt (t =  1800 — 1900) for these years is 2.3 m g / m 3. Further 

X t  is our best estim ate of Xt-i  since the m ajor meteorological variable, wind speed, 

is measured during the last five minutes of the earlier interval t — 1 and the first five 

minutes of the following interval t and traffic levels are very similar for both intervals. 

Hence from (11.3) where

Xt — Xt — f>Xt-i +  ö2Xt - 2  +  ö3Xt- 3 H-----  (11*4)

the approxim ation

8 =  X t - X ±  (11.5)
X*

can be applied to  obtain an upper bound for 8 by neglecting higher order terms in 8

274



and setting \ t - 1 =  Xt• The value of 8 then for 1985 and 1987 is 1.0/2.3 =  0.43 which 

can be compared with the value of 0.34 obtained by Tiao et al. (1975) for downtown 

Los Angeles using non-linear least squares estim ation methods and a causal statistical 

model of carbon monoxide generation.

Note th a t the value of 8 computed by (11.5) instead of (11.4) can be regarded as a 

background factor calculated by reference to the single previous hourly concentration 

prediction.

11.4  P aram etr ic  Form  o f A nnual and Seasonal 
D istr ib u tio n s  o f  H istorica l C on cen tration s

Since the POLDIF model and available input data  do not directly allow generation of 

the variability of concentrations within a seasonal period, we now consider the para

m etric form of the distribution of evening peak hour CO concentrations over winter 

seasonal periods is now considered. For each of the calendar years 1982-1987, two- 

and three-param eter versions of the Weibull, gam m a and lognormal distributions were 

fitted by m aximum likelihood estim ation to these historical pollutant data sets. As 

noted in previous chapters, these shape-scale-location param eter distributions are felt 

to cover a large range of possible forms from which air pollutant concentration data 

could be assumed to be derived.

The procedure followed to identify the most appropriate candidate from the selected 

set of distributional forms can be considered in two principal steps as given in Chapter 

10. F irst, a param etric candidate can be eliminated from consideration if it leads to 

substantially inferior fitting of the quantities of predictive interest in historical data 

sets. Here these are the higher percentiles and especially the maximum. The errors 

of model fits can be calculated on historical data  sets as deviations from observed or 

recorded values. Table 11.5 shows the relative root mean squared errors in predicting 

the observed evening peak hour maximum in each of the winter periods from 1982- 

1987. It shows the mean, standard deviation, minimum and maximum error for these
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6 years. Note tha t the three three-param eter distributions and the two-parameter 

lognormal distribution lead to much larger errors than do the two-parameter gamma 

or Weibull distributions. The error in the worst case year for any of the former has been 

from 83 to 242 per cent, while the maximum error encountered for the la tter is under 25 

per cent. The mean and standard deviation of the rrmse from the observed maximum 

over all years are also substantially lower for the two-parameter gamma and Weibull 

distributions. Of these the gamma is clearly superior overall in predicting the observed 

maximum. The poor performance of the lognormal distribution is to be noted to help 

dispell any remaining traditional beliefs tha t lognormal distributions can generally be 

used to param eterise frequency distributions of air pollutant concentrations.

In addition to the high percentiles, the distribution chosen should be capable of 

fitting the higher frequency percentiles well since the hybrid modelling technique cal

ibrates the param eters of a distribution with various properties of its pdf tha t are 

predicted by the deterministic model. In this case it is the mean, but in other cases 

there may be sufficient input information available for applying a deterministic model 

which yields reliable output over a range of mid-percentile values. In general, we use 

statistics based upon the likelihood value of a distribution to aid selection of an ap

propriate model. The likelihood is a measure of the overall fit, especially weighting 

higher frequency percentiles more. It also allows adoption of a formal discrimination 

approach based upon information criteria.

The second step in the identification procedure is therefore to calculate the like

lihood of remaining candidates. Then the likelihood is inserted in a discrimination 

statistic  or generalised information criterion which allows selection of the superior or 

not significantly inferior distributional candidate for the m ajority of data sets. The 

development of this generalised information criterion (GIC) was given in Chapters 6 

and 8. Essentially, it allows evaluation of candidate distributional forms in terms of 

the likelihood plus a tolerance which varies according to the num ber of parameters in 

the distribution and the significance level required. In this chapter we have considered 

selection at the 98 per cent confidence level, although sensitivity to the level chosen
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can easily be investigated. For non-nested model candidates, the GIC statistic, at the 

98 per cent confidence level, accepts an alternative model i for a given set of samples 

within a period if

GIC = - 2  log Li +2.1089 > - 2  log L{ (11.6)

where log L\ is the highest value of the maximum likelihood over all parametric candi

dates and log Li is the value of the maximum likelihood of alternative distributions.

Table 11.6 shows the results of applying GIC and other standard criteria to data 

sets of evening peak hour CO for the six winter periods from 1982-1987. Only the two- 

parameter gamma and Weibull distributions are considered as candidates, the other 

distributions being rejected after the first step. Both parametric forms perform ade

quately at this step in terms of GIC but the other results indicate the danger of applying 

some traditional statistical tests which are out of context with the specific objective of 

the discrimination exercise. The ML criterion merely selects the parametric form with 

the highest maximum likelihood value while the AIC (Akaike, 1974) and SIC (Schwarz, 

1978) statistics adjust the likelihood value with a penalty for the number of parameters. 

The SIC also adjusts for sample size. All three statistics infer a strong superiority for 

gamma over Weibull. The chi-square (CHI) and the Kolmogorov-Smirnov (KS) tests 

(Kendall and Stuart, 1979) are both equally divided in their selection between gamma 

and Weibull distributions. The GIC finds that the gamma and Weibull distributions 

are not significantly different at the 98 per cent level in terms of likelihood. Consis

tent with step one, the result infers that use of either distribution is appropriate. The 

gamma is selected here because of its slightly better performance in fitting historical 

maxima.

11.5 A Hybrid M ethod and Prediction

One possible implementation of the hybrid approach is demonstrated for predicting 

the winter frequency distribution of evening peak hour CO concentrations. In selecting
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a m ethod it must be appreciated tha t the deterministic model POLDIF, when driven 

by the basic meteorological data available and when used in isolation from statistical 

models, predicts only mean values with reasonable accuracy. Because the distribution 

for CO is two param eter (i.e. with positive shape and scale and zero location value), two 

pieces of information are needed to describe it. Yet no variability of the mean provided 

by POLDIF is available as model output. In order to circumvent this difficulty, a 

simple strategy used in Jakem an et al. (in press) for predicting water quality extremes, 

where the concentrations conform to a two-parameter Weibull distribution, can be 

analogously invoked.

The strategy adopted is the following: use the POLDIF model to provide the mean 

of the gamma distribution; assume a range of values for its shape param eter; compute 

the scale param eter from the mean and shape; infer the percentile result of interest; 

and evaluate the sensitivity of the result both to values within the shape range and to 

errors in the deterministic prediction of the mean. Table 11.7 contains the results for 

the maximum concentration, the most difficult percentile of the distribution to estimate 

accurately. The results are reasonably insensitive to the variation in shape value as any 

of the shape values yield sufficiently accurate results by accepted standards (Hanna, 

1982). Also, the range of shapes addressed in Table 11.7 covers those found from fitting 

two-parameter gamma distributions to the annual historical winter concentration data 

sets from 1982-1987. The shape param eter ranged from 0.84 to 1.31 in those fitted 

data  sets. Its mean is 1.16, median is 1.21 and standard deviation is 0.15. The table 

gives the estim ate of the winter maximum assuming the POLDIF model predicts the 

observed mean precisely. It also shows predicted maxima for errors of 30 per cent in 

the mean. The errors of 30 per cent in the mean were felt to represent the maximum 

errors tha t might be obtained by using POLDIF in conjunction with a crude model of 

background concentrations to predict the effective mean concentration. However, only 

further application of POLDIF to other years of data  for which traffic and CO data 

are available can confirm estimates of the mean error.

278



11.6 C onclud ing  R em arks

Air quality management often has as an objective the prediction of annual extremes 

of pollutant concentration in response to possible emission and meteorological condi

tions. A method has been constructed to extend the utility of a traditional and simple 

physically based model of pollutant dispersion from line sources in an urban area to pre

dict seasonal extremes of concentrations. The extension requires the use of additional 

prior knowledge based upon analysis of the param etric form of historical concentra

tions. It also requires simplifying the objectives of the modelling exercise to prediction 

of concentrations for separate hours within seasonal periods to overcome problems of 

nonstationarity and autocorrelation. The three assumptions of the m ethod were shown 

to apply for CO for the years available. The accuracy of predictions of the deterministic 

component of the hybrid model could be quantified further when other traffic and am

bient concentration measurements become available. Alternatively, POLDIF or other 

deterministic models could be applied with more detailed model inputs if additional 

meteorological information were known. On the other hand, the m ethod here offers a 

simple and often adequate means of inferring short-term  extremes, particularly when 

only basic information is available.
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Figure 11.1: Diurnal variation of 1-hour CO (mg/m ) averaged over the 1987 winter
season
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Figure 11.2: Time series of evening peak hour (1800-1900) concentrations of CO (mg/m) 
in 1987
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T A B L E  11.1
A u to c o r r e la t io n  a t  la g  k  in  w in te r  t im e  se r ie s  o f  e v e n in g  p e a k  h o u r  c o n c e n tra t io n s  o f  C O

fro m  1982-87  a t  C iv ic  s i te , C a n b e r r a .

Y e a r S a m p le  S ize k = l
A u to c o r r e la t io n  a t  L ag  k 

k = 2  k —3 k = 4 k = 5

1982 156 0.312 0.131 0 .070 -0 .010 0.003

1983 97 0.006 0 .072 0 .083 -0 .085 -0 .037

1984 77 0.226 0 .034 0.000 0.038 -0 .090

1985 96 0 .274 0 .114 0 .030 0.048 -0 .057

1986 148 0.306 0 .127 0 .0 3 7 0.110 0 .207
1987 178 0 .452 0.323 0 .190 0.136 0 .074

T A B L E  11.2
A m e a s u re  r  o f  s t a t io n a r i ty  fo r  a n n u a l  a n d  w in te r  t im e  se rie s  o f  e v e n in g  p e a k  h o u r

c o n c e n tr a t io n s  o f  C O .

Y e a r a n n u a l
r  v a lu e

w in te r

1982 0 .777 0 .947

1983 0 .890 0.993

1984 0.901 0 .973

1985 0 .736 0 .843

1986 0 .772 0 .892

1987 0 .733 0.858

N o te : T h e  m e a s u re  r  o f  s ta t io n a r i ty  is th e  r a t io  o f  th e  v a r ia n c e  o f  c o n c e n tra t io n s
a b o u t  a  u n ifo rm ly  w e ig h te d  m o v in g  a v e ra g e  o f  20 v a lu e s  to  th e  v a r ia n c e  
a b o u t  th e  c o n s ta n t  a r i th m e t ic  m e a n .
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T A B L E  11.3
M e te o ro lo g ic a l  d a t a  u se d  to  p ro d u c e  th e  d e te r m in is t ic  m o d e l  e s t im a te s  o f  th e  e v e n in g  

p e a k  h o u r  C O  c o n c e n tra t io n  fo r  th e  w in te r  s e a so n s  o f  1985-87 .

1985
Y e a r
1986 1987

w in d  s p e e d  
(k n o ts )

3 .05 3 .44 2.79

w in d  d ir e c t io n  
(fi’o m  n o r th )

315 315 315

c lo u d  co v er 
{ 1 0 t h s )

4 .84 4 .75 4 .53

in v e rs io n  
h e ig h t  (m )

80 80 80

T A B L E  11.4
C o m p a r is o n  o f  m e a s u re d  w ith  p r e d ic te d  m e a n  w in te r  v a lu e s  o f  e v e n in g  p e a k  h o u r  C O

c o n c e n tra t io n s  ( m g /m )

Y e a r
M e a s u re d

M e a n
P O L D IF

1985 3.39 2.31
1986 2.41 2.26
1987 3.19 2 .36
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T A B L E  11.5
D e s c r ip t iv e  S ta t i s t ic s  fo r R R M S E  f i t te d  to  th e  o b s e rv e d  m a x im u m  o f  e v e n in g  p e a k  h o u r  

C O  c o n c e n t r a t io n s  o v e r th e  w in te r  sea so n s  1982 - 1987 fo r  tw o - a n d  th r e e - p a r a m e te r  
g a m m a , W e ib u ll a n d  lo g n o rm a l d is t r ib u t io n s

S ta t i s t i c s S ix  E s t im a te d  M o d e ls
fo r  R R M S E G 3 G 2 W 3 W 2 L N 3 L N 2

M E A N 0.302 0.105 0 .851 0 .876 0 .676 0.116

S D 0.263 0.061 0 .603 0 .617 0 .808 0.072

M IN 0.019 0.023 0 .296 0 .287 0 .040 0 .016

M A X 0.829 0.190 2 .101 2.072 2 .423 0.248

T A B L E  11.6
F r e q u e n c y  o f  a c c e p t in g  th e  e s t im a te d  tw o - p a r a m e te r  g a m m a  a n d  W e ib u ll  d is t r ib u t io n s  fo r  

e a c h  o f  t h e  e v e n in g  p e a k  h o u r  w in te r  C O  d a ta  s e ts  ( f ro m  1982-87 ) u s in g  tw o  te s ts  a n d
fo u r  c r i te r ia

E s t im a te d T e s ts  a n d  C r i te r ia
M o d e l G IC K L A IC S IC C H I K S

G 2 6 5 5 5 3 3

W 2 6 1 1 1 3 3
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T A B L E  11.7
C o m p a r is o n  o f  o b s e rv e d  w i th  a  p r e d ic te d  r a n g e  o f  m a x im u m  w in te r  v a lu e s  o f  e v e n in g

p e a k  h o u r  C O  c o n c e n tr a t io n s

Y e a r
R e la t iv e  E r r o r  

in  M e a n  P r e d ic te d
P r e d ic t e d  M a x im a  vs S h a p e  

0.75 1 .00  1 .25 1 .50
O b se rv e d
M a x im a

0% 20.79 17 .73 15.75 14.34

1985 -30% 14.56 12.41 11.02 10 .04 18.10

+  30% 27.02 23 .05 20 .47 18 .64

0% 16.17 13 .69 12.09 10 .97

1986 -30% 11.32 9 .58 8 .47 7.68 14.30

+ 3 0 % 21.02 17 .79 15.72 14.26

0% 22.15 18 .70 16.49 14 .94

1987 -30% 15.50 13 .09 11.55 10.46 17.00

+ 3 0 % 28.79 2 4 .3 2 21 .4 4 19.42
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C hapter 12

On the Variability o f the W ind  
Speed Exponent in U rban Air 
P ollution  M odels

12.1 Introduction

Benarie (1978, 1980, 1980a) has provided experimental evidence based on regression 

analysis tha t the assumption of simple inverse proportionality between pollutant con

centration x  and wind speed U is not always valid for urban areas. In particular, 

Benarie (1980a) used a generalised box model of the form

' X =  CQUb (12.1)

to investigate seasonal variations in the wind speed exponent b for 24-hour SO2 and 

black smoke (reflectivity) data. C is the atmospheric stability factor and Q the source 

strength (see Chapter 2). For both pollutants, he used data  sets recorded over three 

years at three sites from Rouen and recorded over two years at five sites in Strasbourg, 

France. In both cities the spatial average of the exponent for SO2 in summer was not 

significantly different from zero whereas during the winter heating season the spatial 

average of the exponent was -0.25. For black smoke the summer exponent was near 

-0.2 and in winter it varied from -0.3 to -0.5. The model described by equation (1) is 

commonly employed assuming an exponent of -1 (e.g. Hanna 1971).
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It is argued by Benarie (1980a) tha t in real urban situations the exponent will be 

between 0 and -1. The value of the exponent is considered to depend on the extent 

of the urban area, the siting of the air quality monitors within it and the intensity 

of vertical mixing relative to advection. The argument is based on consideration of 

idealised situations. At one extreme, an infinite, relatively sourceless plane requires 

the wind speed exponent to be -1 as in the usual box model. At the other extreme, 

a constant ground concentration from uniform emissions over a sufficiently extended 

plane will not be strongly affected by wind speed so tha t the exponent tends towards 

zero.

In this chapter we investigate the seasonal variability in the wind speed exponent of 

model (1) for 24-hour average to tal suspended particulates TSP, /^-scattering and CO 

data  collected in Canberra, Australia. It is recommended tha t the ensuing generalised 

box model should be used in preference to the standard model and its use in predicting 

extremes and for forecasting is briefly explored.

12.2 T h e  D a ta  Set and A irsh ed  C h aracteristics

TSP da ta  have been collected in Canberra since 1980. The monitoring sites are in 

the m ajor town centres of Civic and Woden, and, since 1981, in Belconnen and Kam- 

bah. TSP concentrations are recorded at each site and are based on 24-hour samples 

collected every 6 days, ^-scattering and CO measurements are also taken and these 

are investigated for the year 1982 only, /^-scattering and CO concentrations as 1-hour 

averages are measured at the Civic site only.

Meteorological data are collected at two monitoring sites; one near the Civic site 

and the other at the airport. W ind speed measurements at the sites differ greatly but 

the Civic site is considered to be more representative of the wind speeds affecting the 

level of air pollution concentrations.

Sources of particulate m atter in ACT can broadly be divided into two categories: 

anthropogenic and natural. As Canberra has only light industry, the two most sig-
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nificant sources of airborne emissions are motor vehicles and wood fire burning both 

for heating and cooking. The m ajor natural source of particles is non-carbon m atter. 

For carbon m atter from wood fires and non-carbon m atter, seasonal variation is sig

nificant. Traffic levels and hence the associated carbon m atter emissions vary little 

seasonally. Taylor and others (1987) estim ate tha t wood fires contribute nearly 50 % 

of the non-background particulate pollution in Canberra’s commercial areas and about 

80 % in suburban areas during the winter months. In the summer months a much 

higher non-carbon and organic m atter component will be contributed because of the 

drier conditions.

The next section will a ttem pt to quantify the broad influence of wind speed on TSP, 

/^-scattering and CO as well as the carbon and non-carbon components of TSP. The 

variability of the influence of wind speed between seasons is significant. The winter 

season is taken to cover the months from April to September inclusive and the summer 

season the remaining months.

12.3 M eth o d  and R esu lts

Time-wise regressions were applied firstly to the logarithmic form of the model (12.1), 

viz.

\ogx = a + b\ogU (12.2)

where a denotes the natural logarithm of the atmospheric stability term  C times the 

emission strength Q. These were performed for the annual summer and winter periods 

at individual sites. For TSP, the data  were also am algam ated to obtain both a seasonal 

spatial average across the four monitoring sites in each year and a seasonal tim e average 

over the years at each site.

The results of the annual analyses are shown in Table 12.1 for TSP and in Table 

12.2 for the carbon and non-carbon components of TSP, for /^-scattering and CO. 

They largely corroborate the findings of Benarie. The wind speed exponent in Table
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12.1, for example, varies from -0.16 to -0.63 in winter, depending on the site and the 

year. In summer, the associated t-values indicate tha t the exponent is not estim ated 

as being negative with any reasonable statistical significance. Indeed, the exponent 

generally seems to be positive in summer. Histograms of concentration against wind 

speed categories of 1 m /s width confirm the strength of the inverse relationship in winter 

and the weakness of it in summer. Figures 12.1-12.4 for the Civic site in 1984 and 1981 

are typical results. Indeed, the inverse relationship holds for all sites and all years in 

winter. The associated t-values corroborate this as do the associated plots (not shown 

here) which are of similar behaviour to those of Figures 12.1 and 12.3. Conversely, for 

sum m er the t-values and the corresponding plots confirm th a t no inverse relationship 

can be assumed.

The estim ate of the exponent b is reasonably constant from year to year in winter 

at individual sites. Except for the one odd result at Woden in 1982, at individual 

sites the variation in the mean value of the exponent in a given year is within one 

standard error of the mean in any other year. Observation of Figure 12.2 and the 

corresponding plots for the other sites suggests th a t the TSP concentration in summer 

does not decrease and perhaps increases with wind speed. For ^-scattering and CO the 

seasonal variation is similar but the estim ated exponent remains negative in summer 

as shown in Table 12.2. This is a situation we might expect since summer is a much 

drier season and in the case of TSP, wind may im port dust as well as re-entrain it. 

Also, TSP is a measure of to tal particle mass. As wind speed increases larger particles 

may be suspended in the atmosphere. A few large particles would have a significant 

effect on TSP concentrations. It can be shown also tha t both the carbon and non

carbon components exhibit an inverse relationship with wind speed in winter but not 

in summer. Taylor and others (1987) have undertaken an elemental analysis of all TSP 

samples from the Civic site in 1981. Figures 12.5 and 12.6 show the contribution to 

TSP from carbon sources against wind speed class in winter and summer, respectively. 

Figures 12.7 and 12.8 show the same plots for the non-carbon component of TSP. Table 

12.2 shows the estim ated param eter values for model (12.2).
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12.4  H y b rid  M od ellin g  A pproach

The generalised box model has many good features which facilitate its use for construct

ing hybrid models to predict frequency distributions of air pollutant concentrations. 

As a determ inistic component, it is simple but functional, linking the m ajor metero- 

rological and emission variables, such as wind speed and emission sources. Jakeman 

and Taylor (1985) introduced the box model structure as a component in the hybrid 

approach to develop a m ethod for predicting the distribution of acid gas concentrations 

in an urban airshed. Their results were dem onstrated for the 98-percentile predictions 

of 24-hour average data  over annual periods at six monitoring sites.

Analysis of the seasonal variability in the exponent of wind speed for a box model 

confirms th a t the assumption of the exponent being equal to -1 can be inaccurate. To 

improve model performance, seasonally calibrated generalised box models should be 

used to predict aggregate properties of the seasonal distribution of urban air pollutant 

concentrations. Seasonal models for urban pollutants are also im portant when it comes 

to predicting extrem es of concentrations. As shown in Chapter 11, stronger stationarity 

of the d istribution is possible if periods of analysis are restricted to seasonal rather than 

annual urban pollu tant concentrations.

One way to implement the generalised box model in a hybrid approach is to derive 

the analogue of the Simpson et al. (1983) treatm ent of the standard box model. This 

generalised analogue is

Y -------------
p ”  Ubu 1 0 0 - p

(12.3)

where X p is the p-percentile of concentration and t/ioo-p is the opposite percentile 

of the distribution for wind speed. This model may work well over a mid-percentile 

range so th a t the two- or three-param eters in any param etric model of the frequency 

distribution can then be calibrated. In contrast to the POLDIF deterministic model 

of the last chapter, the model (12.3) has the potential to predict more than just the 

m ean of the distribution of concentrations.
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12.5 U se  o f F ilter in g  and S m ooth in g  A lgorith m s

The analysis has concentrated on a broad tem poral exploration of behaviour to find 

average exponent values over a season. Of course it is unlikely tha t the exponent 

value is best represented over a year by two step functions which are discontinous 

at an arbitrarily chosen change of season. It is more likely to change smoothly over 

time. There are straightforward techniques available which allow the estimation of 

tim e variable param eters in linear models. E ither or both of the param eters a and 

b in equation (12.2), for example, can be allowed to vary with tim e and estimates 

can be derived at each tim e point based upon a weighting of the observations of the 

dependent and independent variables. The simplest moving average model applied at 

tim e t would weight observations by unity in the interval (t — k, t +  k) and by zero 

outside this interval. The larger the value of k the larger the degree of smoothing of 

the estim ate. It must be chosen as a compromise between achieving a good resolution 

of the param eter estim ates over tim e k and sufficiently damping the effects of noise on 

the observations.

O ther more sophisticated but algorithmically straightforward techniques (e.g. Jake- 

man and Young, 1984; Young, 1984) are based on assuming flexible but simple param- 

eterisations of the param eter changes over time. Gauss-Markov process assumptions 

allow use of Kalman filtering and smoothing algorithms. The degree of resolution em

ployed in the estim ation of the value of the changing exponent should obviously depend 

on the quality and quantity of observations available and the accuracy required for the 

model predictions. In our case, TSP observations are made at most every 6 days so 

tha t little  more is warranted than the estim ate of the season step functions. Even in 

this case, however, the model (12.1) can be augmented with a param etric probability 

distribution component to provide, in addition to the mean, hybrid model estimates of 

extreme values.

To dem onstrate the application of a more sophisticated smoothing procedure, the 

weekly average CO data collected in Canberra, Australia has been used. A random
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walk process has been used to describe the parameter variation in time and a Kalman 

smoothing type algorithm to generate the parameter values. Results of estimation of 

the param eter b and K  are shown in Figure 12.9. Note the consistent pattern in the 

param eters from year to year.

In Figure 12.9, the parameter b varies between - 1.892 and 0.755, and the parameter 

K  between -1.287 and 0.040. This model yields a very good fit to the data as shown in 

Figure 12.10, the value of R 2 being 96 per cent. Note that the CO time series has been 

normalised by its average annual weekly value and then logorithmically transformed so 

tha t the linear model form (12.2) can be used. Figures 12.10 and 12.11 show the time 

series of historical CO concentrations and wind speed data.

The above smoothing algorithm employs all the data to derive a smoothed estimate. 

Filtering estim ates, on the other hand, of a parameter at a particular point t in time use 

all the data up to time t only. By incorporating the present meterological information 

and CO levels with historical fluctuations of the parameter b and K , CO concentration 

could be forecast short time steps ahead. This filtering of box model parameters for 

forecasting applications is explored in a forthcoming paper by Jakeman, Bai and Young.

12.6 Concluding Rem arks

This chapter has investigated the seasonal variability in the wind speed exponent of 

the generalised box model for 24-hour average total suspended particulates (TSP), ß- 

scattering and CO data collected in Canberra, Australia. From the results here and 

those of Benarie, it is clear that the assumption of the exponent of the horizontal wind 

speed in urban air pollution models being equal to -1 is incorrect. Since the sensitivity 

of predicted concentration by a box model is high with respect to the exponent value, it 

can be argued that calibration of a generalised box model for even just a single season 

is likely to lead to much better predictions in future years than simply assuming an 

exponent value of -1, as is the present practice. It is also suggested that if extremes of 

the distribution of urban pollutant concentrations are required, a seasonal box model
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component could be used in a hybrid modelling approach. This chapter also notes 

the relevance of the generalised box model in forecasting applications. A recursive 

methodology, which employs Kalman filtering algorithms in handling the data sets and 

updates of generalised box model parameter estimates, can be used.
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WIND SPEED AND POLLUTANT DATA IN CIVIC SITE
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Figure 12.1: Histogram of TSP concentration against wind speed category for the Civic 
site in winter 1984. All figures also include raw pollutant measurements and regression 
model output for Equation (2). Wind speeds are in m s-1 and concentrations in ggm~3
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Figure 12.2: Histogram of TSP concentration against wind speed category for the Civic 
site in summer 1984
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WIND SPEED AND POLLUTANT DATA IN CIVIC SITE
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F igu re  12.3: H istogram  of TSP concentration against w ind  speed category fo r the  C iv ic  
s ite  in  w in te r 1981
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F igure  12.4: H istogram  of TSP concentration against w ind  speed category fo r the  C iv ic  
s ite  in  sum m er 1981
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W IND SPE E D  DATA AND POLLUTANT DATA IN CIVIC
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Figure 12.5: Histogram of the C component of TSP concentration against wind speed 
category for the Civic site in winter 1981
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Figure 12.6: Histogram of the C component of TSP concentration against wind speed 
category for the Civic site in summer 1981
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W IN D  SPEED  DATA AND POLLUTANT DATA IN C IV IC
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Figure 12.7: Histogram of the non-C component of TSP concentration against wind 
speed category for the Civic site in winter 1981
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Figure 12.8: Histogram of the non-C component of TSP concentration against wind 
speed category for the Civic site in summer 1981
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Figure 12.9: Weekly variation of box model parameters
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Figure 12.10: Time-varying model fit of the logarithm of weekly CO concentration as 
a proportion of annual weekly CO at the Civic site
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Figure 12.11: Weekly Variation in windspeed (m/sec) at Civic site

298



T
A

B
L

E
 1

2.
1

E
st

im
at

ed
 w

in
d

sp
ee

d
 e

xp
on

en
t 

b 
an

d 
k 

( =
 C

Q
) 

va
lu

es
, 

an
d 

av
er

ag
e 
x 

of
 m

ea
su

re
d

 v
al

u
es

 
fo

r 
C

an
b

er
ra

 T
S

P
00 00 tP O CO o O  CO b- o
b- b- co co CO TP TP TP WO CO

tP
o 44 q  q b- q O  GO o  o
I d  t-# Tp CO co o d  d d  d

00
rH 00 «  CO w  wo 2  o

S 9  rH CO 2  co 2  co 9  CO
9  o 9  © 9  O 9  o 9  o
00 CO 00 o CO o O  CO CO oCO wO CO i.0 CO CO 'P CO WO "P
o  co rH WO CO CO b- o O  Ci

TP b- co rH ^ rH rH oo q q  q
00 CO rH d  co C0 rH wo d d  b-o
rH b- tP b- CO CO CO CO rH wo co

o o  wo CO co 00 rH ^  00
s 2  O «1 CO 9  o wo q 2  o

9  © 9  O 9  o d  d 9  ©

o  g WO rH CO b- W0 TP CO CO
CD 00 CO CO CO WO WO t>

O  CO o  o O  b- a  co b- COCO
00 44

q  q oo q wo q q  00 q  q
orH co co CO W0 CO CO CO CO Tp Tp

2  co 2  <o £  rH 2  °o q  co
S 2 3 3 q  ^

9  O 9  o 9  O 9  O 9  o
b- 00 CO co b- o CO CO Ci 00
00 b~ b- W0 CO TP TP TP WO wo
co wo CO CO b- CO CO 00 WO woco q  n b- GO q  co CO b- rH rH

GO d  b~ oo co oo co rH CO wo wo
rH

r? oo o  o q  o oo b-
s 9  o q  co q  rH 2  CO ^  rH

9  © 9  © 9  o 9  © 9  ©
CO b~ f-H o O  P
O  b- wo wo b- CO

00 o O  wo rH rH
rH 44 q  oo b- q

i i , , q  q
a
rH O  CO kO co t- iO

£  » - £ :
s 2  rH co rH 1 1 2  rH

©  d 9  © 9  o

0

u
2  s

. u
2  S

• r*
3  S

HJ a

. u
1  3

. u
1  s

c§ • a  g . 3  g . 2  S .2 2 2w
^  C/3 ^  cn £ j ; ^  C/3 ^  cn

a
a
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A p p en d ix  1:
H istory , G en eration  and C lassification  o f A ir  
P o llu tio n

A l . l  H istorical R eview  of Air Pollution  Problem s

The incidence of human-induced or anthropogenic air pollution can be traced as far 

back as the discovery of fire. While cooking and warming improved the function of the 

human health and life, the fire also represented the beginning of air pollution created by 

human beings. Air pollution history follows closely the evolution of social communities 

and the revolution of industry, science and technology. If one were to use a convex 

curve to express the level of air pollution over time, the peak of air pollution levels 

would be located somewhere in the past few decades, and the turning point would be 

at the tim e when the quality of our atmosphere was recognised as an im portant factor 

in quality of life and life support systems (Chambers, 1976). Of course, this assessment 

ignores the continuing build up of greenhouse gases globally.

Originally, many of the m ajor air pollutants arose from natural causes during earth ’s 

early beginnings. Restricted meteorological conditions occurred from tim e to tim e and 

resulted in crucial air pollution effects. High tem peratures and poor ventilation caused 

grass, brush or forest fires and subsequently produced contam ination of the air by 

thick palls of smoke. Ocean evaporation and sea sprays increased in hot weather, 

transferring trace gases and particulate m atter into the atmosphere. Sandstorms bore 

deep layers of dust carried from deserts by Trade Winds. Volcanoes released large 

amounts of sulfur dioxide and particulates. Forests released volatile hydrocarbons 

which significantly affected world climate and participated in photochemical reactions 

during sunny weather (W helpdale and Munn, 1976). All the natural sources were 

m ajor em itters yielding global background concentrations in the early stages of air
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pollution history.

However, air pollution problems are generally associated with emission sources re

lated to human activities in the urban, industrial and agricultural sectors. The term ‘air 

pollution’ is normally defined as the presence of foreign substances in the atmosphere. 

When air pollution occurs, it indicates that the concentrations of these substances are 

substantially above their normal ambient levels, effectively change the characteristics 

of air, significantly increase the duration of pollutants in the environment, and cause 

dangerous damage, such as injury to human health, ecosystems or property and ma

terials. These foreign contaminants may be in gaseous, vaporous or solid particulate 

states.

A ir P o llu tio n  R ela ted  to  E nergy

In the early stages of air pollution in human history, air pollution was mainly 

regarded as a local problem. Highly developed industry and rapidly increasing popula

tions in the centralised cities became two key factors for air pollution increases. With 

the discovery of the energy potential of coal, its extensive usage culminated in the 

Industrial Revolution and major economic improvements. However, coal smoke and 

associated gases as traditional pollutants occupied the centre stage from the beginning 

of the fourteenth century to the early part of the twentieth. Even though there was 

very early recognition of a public health problem and public protest, coal-based indus

trial economies continued to develop without restriction in large cities, so that finally 

some major air pollution disasters occurred:

* In 1930, a strong atmospheric inversion settled over the Meuse Valley in 

Belgium, and black smoke which chiefly contained oxides of sulfur, inor

ganic acids, metallic oxides and soot caused sixty-three deaths and several 

hundred others became ill.

* In 1948, during a particularly calm and meteorologically stable period,
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the Donora Smog in Pennsylvania resulted in twenty deaths and several 

thousands persons were hospitalised.

* In 1952, the great London Smog lasted 5 days last over the period De

cember 5 through 9, and caused 4000 deaths.

The three most well-known air pollution disasters in this century threatened per

sonal survival, and led to public reaction, legislative action and enforced emission 

reduction. Since then, the prevention of high smoke episodes has achieved substantial 

success in most cities of the world.

After more than 400 years of burning coal, the industrial world has rapidly shifted 

to petroleum  and natural gas in recent years. The combustion of oil and gas has 

not only diminished the coal smoke nuisance, but has also resulted in a revolution 

in machinery and transportation, and provided the raw m aterials for petrochemical 

products. Unfortunately, this has led to the introduction of new forms of air pollution. 

Secondary air pollutants such as those in photochemical smog are now generated from 

a complex sequence of chemical reactions involving the exposure to sunlight of mix

tures of olefins and other reacting petroleum products which contain organic nitrogen 

components and nitrogen oxides. It is recognised th a t such pollutants have intrinsic 

toxic or irritative potential at relatively low concentrations (Faith and Atkisson, 1972), 

the photochemical reaction affecting biological systems as well as restricting visibility. 

The first publicised photochemical smog problem was th a t of Los Angeles where most 

of the energy supply derives from petroleum rather than  from burning coal. W ith 

stable atmospheric conditions in the late summer of 1943, large quantities of photo

chemical smog appeared as a grey-blue pall settled over the city causing burning eyes, 

chafing throats and damaging green leaves. Mainly it is produced in exhaust gases 

from internal-combustion engines. Photochemical problems have now become common 

pollutants in most cities of the world th a t are reliant on mechanised transportation.
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Air Pollution by Industry and Agriculture

There is no doubt th a t the usages of energy are the m ajor air pollution sources in 

the urban and industrial sectors. Most factories with modernized production have also 

contributed to air pollution concentrations. For example, the chemical industrial fac

tories turning out products such as fertilizer, plastic materials, and medicine or daily 

chemical articles like skin cream and perfumery, cannot operate without discharging 

high concentrations of various substances. The cement industry, open cast mining in

dustry and even building industry normally em it large quantities of particulates into the 

air. Paper mills not only pollute water resources but also spread their contam ination 

into the atmospheric environment. Different industries, whether as large as iron and 

steel plants or m anufacturing companies, or as small as flourmills, wool, cotton or food 

processing shops, and even electronic industries involved for example electroplating, 

acid, polishing treatm ents, are all contributors of harm ful m aterial to the air. In high 

density population centres and industrial areas, the collection of all individual em itters 

result in large volumes of emissions and high levels of air pollution concentrations, 

leading to serious air pollution problems.

Generally there is no argument tha t the urban and industrial sectors are m ajor 

contributors of air pollutants concentrations. However, it is easy to ignore the exis

tence of other im portant pollution sources. Anthropogenic emissions discharging to 

the atmospheric environment should also take into account the significant quantities 

deriving from agricultural and forest practices over large rural areas. It is recorded 

history th a t agricultural mismanagement has resulted in deserts such as the R ajasthan 

desert (W helpdale and Munn, 1976) and increases in soil erosion from wind-blown dust 

during dry weather.

Over many centuries, slash burning has been used to prevent development of disease 

organisms, to reduce fire hazards and to produce ash content for fertilizers. Also, 

decaying farm wastes such as animal and vegetable wastes are regarded as quality 

fertilizers even now in many countries. They release a wide variety of substances into
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the atmosphere, such as ammonia, hydrogen sulfide, m ethane, sulfides, m ercaptans, 

carbon monoxide and carbon dioxide. W ith the development of new chemical fertilizers 

and the introduction of modern operational procedures, new forms of pollution were 

also introduced. Large quantities of fertilizers, especially chemical types, directly or 

indirectly enter the atmosphere every year. Pesticides are recommended for agricultural 

and forested treatm ent in many countries. Spraying operations, especially aircraft 

spraying, pollute the atm osphere on a large-scale and an extensive range of substances 

is used.

A l.1 .2  G lobal pollu tion  problem

Over the last several hundred years, traces of substances em itted from human ac

tivities from different pollutant sources have gradually accumulated into larger and 

larger volumes of air and have been distributed around the world. In other words, the 

local-scale pollution problems have extended to continental and global scale pollution 

problems. Certainly some atmospheric processes can dilute pollutants through “sink 

mechanisms” , deposition of particles by gravity forces, scavenging by precipitation, or 

absorption at the surface of the earth. Chemical transform ation in the atmosphere 

itself can decrease a related substance such as sulfate particles. However, the gen

eral assimilative capacity of the atmosphere is not unlimited. Basically, continental or 

global air pollution problems involve the two aspects covered seperately in the following 

sections.

N eigh b ou rh ood  Influence

The effects of air pollution em itted either from urban and industrial areas or rural 

areas are not only strictly constrained to local regions because the air is not defined by 

political boundaries. Undesirable effects can significantly influence large areas or trans

fer to other places. For example, it has been found th a t sulphur dioxide and nitrogen
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oxide pollutants contributed from industry areas can cause increases in the acidity of 

rainfall. This can spread over many countries and affect ecological systems, especially 

agricultural production. Photochemical smog clouds can cover areas of thousands of 

square kilometers, autom atically extending the problem to neighbouring countries as 

has already found in Europe (Guicherit, 1976). Long range transport of concentrations 

of pollutants and photochemical smog has led to problems on a global scale. The se

riousness of air pollution episodes has sometimes only been recognised well after the 

related occurrence of specific diseases when statistical studies and medical research 

brought excess m ortality and m orbidity to light. Such neighbourhood influence over 

countries need to be controlled by international cooperation.

G reenH ouse and O zone Layer E ffects

In recent years greenhouse effects and depletion of the ozone layer has become of 

m ajor concern as a continental and global air pollution problem. Carbon dioxide is not 

often considered to be an air pollutant, although it can have significant meteorological 

and physiological effects when reaching high levels. There is a consensus among sci

entists tha t high levels of carbon dioxide with other trace gases could lead to climate 

slowly warming, particularly in the cold and tem perate latitudes. Change of climate 

could have other strong consequences such as more floods and droughts, more southern 

cyclones and less snow, even catastrophic sea-level rises in the future. M easurements 

of trace gases began at the M auna Loa Observatory in Hawaii and at the South Pole 

in 1958. Since then it has been realised tha t the concentrations of carbon dioxide 

have been increasing steadily in the atmosphere world wide. In general, the biological 

and geochemical process of the atmosphere can provide a sufficient natural disposal 

system for CO 2 . Unfortunately since the beginning of the tw entieth century, the ex

tensive burning of fuels has generated high concentrations of carbon dioxide so high 

as to break carbon balance between the rate of emission and disposal, especially after 

deforestation caused by industry or bush fire. The continue increase of CO 2 could be
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a potential danger to our society and ecological systems.

Similarly, the depletion of the ozone layer has also recieved much more attention 

from both scientific researchers and the public recently. It is known tha t the ozone 

layer is a thin layer in the stratosphere, absorbing m any harmful sunlight frequences, 

such as ultraviolet. Ultraviolet light can cause many health problems, such as sunburn, 

skin cancer and eye cataracts, and can also destroy vegetation in biological systems. 

Recently, it has been found tha t a special group of chemicals named Chlorofluorocar- 

bons (CFCs) can damage the ozone layer and release harmful ultraviolet rays leading 

to the risk of deterioration of our living environment. CFCs have been widely and 

routinely used, for example, furniture, fridges and air conditioners. Their effects might 

become even more serious a problem in the future w ithout restrictions on their use. 

Much research is required in the understanding of atmospheric behaviour, the complex 

chemical interactions and the possible legislation, standards and control mechanisms.

A1.2 The Atmosphere and Air Pollutants

A l.2 .1  T he C oncept o f th e  A tm osp h ere

The term  ‘atm osphere’ is commonly defined as the layer of a gaseous m ixture en- 

voloped around the earth. Gaseous density of the atm osphere is distributed crudely in 

the following way: about 50% at the earth ’s surface which is below 3.5 miles and 99% 

below 18 miles. Beyond the la tter distance its density rapidly decreases with increasing 

height.

Based upon its molecular composition, the atm osphere can be divided into the 

homosphere and heterosphere (Urone, 1976). The homosphere extends outward to 

some 55 miles from earth  and is a result of the continuous turbulent movements of 

the air and winds in the lower regions of the atmosphere. The heterosphere has four 

distinguishable layers: the first layer is from approxim ately 55 to 125 miles, the second 

from 125 to 700 miles, the third from 700 to 2000 miles and the fourth 2000 to 6000
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miles from the earth. It helps filter out the highly energetic portions of the sun’s rays 

and forms a very strong oxidation reservoir for impurities.

On the other hand, according to its characteristic tem perature, the atm osphere can 

be distinguished by four tem perature regions: troposhere, stratosphere, mesophere and 

therm osphere. Up to 5-10 miles height is the troposhere whose lapse ra te  of tem perature 

for a given locality varies with ambient weather conditions and is im portant with 

respect to the effect on the turbulent vertical movements of air. The stratosphere has 

a height of approxim ately 20 miles and forms a stratified cover to the troposphere as 

tem perature stabilised air. The mesosphere is located with increases of tem perature to 

about 30 miles. Above the mesosphere, is the thermosphere. Air becomes extremely 

th in  and the molecules and atoms acquire high kinetic energy. In addition, between 

the troposhere and the stratosphere is the tropopause, between the mesosphere and 

the  stratosphere is the mesosphere, and between the mesosphere and the thermosphere 

is the mesopause.

Finally, in term s of its chemical and physical properties, the atm osphere can be 

separated into two parts: the chemosphere and the zonosphere. The chemosphere 

exhibits the chemical properties of the atmosphere, and it includes the ozone layer, 

atom ic oxygen, hydrogen and hydroxyl and hydrogen oxide, as well as radicals. The 

zonosphere contains relatively large numbers of ions and is recognised by its ability to 

reflect radiowaves. It can be also partitioned into several layers categorised simply as 

D, E, F l, F2, and G but the interested reader should seek more detail in (Urone, 1976).

A l.2 .2  T he C o m p osition  o f C lean Air

Generally, the term  ‘clean air’ is very much concerned with the original volume 

percent composition of the air in the homosphere on a dry basis. In chemical analysis, 

it is known th a t the relationships of mole percent and volume percent are numerically 

equal, and th a t the partial pressures of the individual components of a gaseous mix

ture are proportional to either the volume or mole percent. The substances of dry air
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normally include: nitrogen, oxygen, argon, carbon dioxide and all others, and compo

sition is approximately to be assigned an average “molecular” weight of 28.96. It has 

been determined that nitrogen occupies 78.09% of the volume of the atmosphere, oxy

gen 20.94%, argon at slightly less than 1%, carbon dioxide 0.032% and all others only 

0.004%. Nitrogen is the most abundant gas and relatively inert except under special 

conditions, such as at high temperatures or pressures or in the pressure of lightning. 

Oxygen is an essential gas to life and is the necessary ingredient for metabolic pro

cesses. It is very active in chemical reaction with both living and inert matter. Argon 

is essentially inert and relatively heavy and is generally ignored in consideration of 

atmospheric processes. Carbon dioxide is the most abundant of the minor gases. All 

the gases found in the air including helium, neon, ozone, krypton, hydrogen, xenon 

and methane are essentially inert, forming a rare compounds under special conditions.

A l.2 .3  B ackground P o llu tan t C oncentration s

The goals of air quality management cannot be determined by analysis of the chem

ical composition of air since the atmospheric environment was naturally polluted in the 

first place. It has recognised that the total global mass of some trace gases emitted 

by nature exceed those emited by man by several orders of magnitude. (Urone, 1976). 

Obviously, even neglecting the contributions of pollutant concentrations from human 

activities, the atmosphere can still never have lower concentrations of any pollutants 

than the atmospheric background concentrations. Therefore, the definition of ’clean 

air’ must depart from the results of pure chemical analysis and depended on the esti

mation of global background concentrations.

Global background concentrations have been estimated in the unit of parts per 

million. The results were reported by Robinson and Robbins (1972), and by Newill 

(1976), in micrograms per cubic meter (mg/m3). Since atmospheric background con

centrations are the lowest concentrations that can possibly be achieved, they become 

important references when setting air quality goals and air quality standards. However,
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jhouLuLuluLuluhd be noticed that the background concentrations of different pollutants vary 

m tiitiitiitiitirinne to time, and may be either decreasing or increasing. There are requirements 

botbtbtbtbtithi a world-wide monitoring network and global air pollution modelling in or- 

to p  p p p j provide information on changes in global background concentrations. Australia 

rentntntntntitlly contributes to both the monitoring and modelling work.

.2 .4 .4 .4 .4 .4 4  Classification of Air Pollu tants

Accccccccccxcording to statistical analysis in 1972 by Robinso and Robbins, there are on a 

rld-w-\i-\v\i-v-wdde basis, more than 6 billion tons of pollutant discharged annually into the 

lospspspspspiplhere from pollution sources, of which H2S comprises 24%, CO 30% and others 

'ft. Ii h L b him recent years, air pollution control has made significant progress. Emissions of 

le p< p p< p ppollutants such as CO and S 02 have decreased in large quantities from developed 

intritribriorkriries. However, some pollutants such as N 02 seem to have undergone increases.

At yt yt yt yt y p>xesent there are more than 100 substances regarded as air pollutants discharging 

o tbththththhe atmosphere from emission sources. Major air pollutants can be classified into 

3 catatatatalategories. A brief discussion follows (Leithe, 1972).

Cafafafafaiarbon compounds in the air comprise an almost infinite number of compounds 

utedecececeed only by the sensitivity and selectivity of the analytical method used. Hydro- 

bonDnDnonDmns and oxygenated hydrocarbons are of major concern because they react to form 

Dtococococooclhemical oxidants and secondary photochemical products, and occupy the layer 

ere e e e e e the predominant one is ozone. Carbon dioxide contributes mainly to the green- 

use <e <e ie <e e effect, and the temperature of the atmosphere slowly increases from the increase 

conononononncentrations of C 02. Carbon monoxide is regarded as a potent poison. 

SuEuSuSuSuhlifur compound gas is an important gaseous air pollutant. There are several of 

fur ir ir ir ir r oxides. Sulfur dioxide and sulfur trioxide used to attract more attention and are 

ijardrdrdrdrdded as major atmospheric pollutants. Sulfur dioxide affects the respiratory organs 

d thtbtbtbthhis is facilitated by the presence of water vapor and smog. Polluted respiratory air 

s ananananann adverse effect on persons suffering from bronchitis and can lead to a significantly
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higher m ortality rate. Low concentrations may lead to acute damage in the form of 

localised destruction of leaf tissues. In air, sulfur dioxide rapidly combines with water 

to form sulfuric acid (H2SO4), and they are apparently responsible for the noxious 

effects of flue gases in respiratory air and are frequently associated with poor visibility.

The oxides of nitrogen include a number of products. However, only three of them , 

nitrous oxide (N2O), nitric oxide (NO), and nitrogen dioxide (NO2) are found in any 

appreciable quantities. NO and NO2 are often treated together in air and are lumped 

as “nitrogen oxides” and given the symbol NO*. Normally, N2O has no toxic chemical 

efFects at room tem perature unless the gas is compressed to high concentrations which 

might lead to the nasotic effect occurring.

Suspended particles are very common pollutants. For nonviable particles, the coarse 

dust and fine dust cause damage to materials, such as linen, clothing and buildings. 

They also pollute residential areas and cause eye irritation or injury. These dusts can 

also damage plants and vegetables. Very fine dust will stick on surfaces because of 

therm al diffusion. Some chemical particles may lead to poisoning. For viable particles, 

problems caused include asthm a, high fever, sinusitus, catarrh , bronchial problems, and 

forms of derm atitis. Microorganisms may cause airborne infection, spread of respiratory 

diseases and many bacterial diseases.

It is well-known th a t radioactive radiation, such as a , ß , and 7 radiation is dan

gerous to life. However, the chemical nature of the carriers, known as radio-nuclides, 

are also a m ajor concern. For example, the ß  em itter Srgo is considered a very harmful 

substance which can deposit in the bones, having affinity for calcium. O ther radio

nuclides, such as I131, can accumulate in the human thyroid gland or get into anim als’ 

milk after only a short time.

A l .2.5 A P roced u re  for S e ttin g  A ir Q uality S tandards

The setting of air quality criteria either as legislated standards, goals or guidelines 

by public authorities has been one of the m ajor steps towards controlling widespread

312



air pollution. Another m ajor step has been the establishment, often through Clean 

Air Acts in developed conntries, of targets for emission levels. A possible sequence of 

setting or developing air quality standards can be described as follows (Newill, 1976):

a. Based on dose-response analyses, determine air quality criteria.

b. In term s of air quality criteria, evaluate acceptable concentrations of 

pollutants and establish air quality goals.

c. Give consideration to feasibility of achievement in the light of nationally 

available air quality control technology, as well as economic, social and 

political issues, in order to select appropriate and achievable air quality

levels.

d. Using the defined air quality criteria, goals, and the achievable air quality 

levels, set up air quality standards for the region, state  or country.

e. Establish a standard for measurement and testing of the ambient air and 

air pollution effects must be set up so tha t air standards can be measurable 

directly.

f. Examine the consequence of the draft of air quality standards performed 

in practice, and modify them  if necessary.

g. W ith economic, social and political progress and improvements in air 

quality control technology, progressively update the quality standards in 

order to achieve higher levels of air quality.
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