
Errata for “D iscretization  M ethods for C ontrol System s
D esign ”

Perry A nthony B lackm ore

• pg. 12 (equation 2.2.2): right brace missing after second 7?.(s)

• pg. 13 (equation 2.2.3): N over summation should be N

• pg. 14 (last paragraph and henceforth): the notation V(s) G Cnxm is to be understood as the space of 
functions which map s into the space Cnxm

• pg. 21 (equation 3.2.18): definition is obviously only valid for square systems

• pg. 23 (equation 3.2.27): H^(s) should be Hj(z)

• pg. 25 (last equation): g(a) preferable to g(s)

• pg. 25 (last paragraph): aT~l should be (1 — o,)T_1

• pg. 29 (first sentence): remove “strictly”

• pg. 30 (equation set 3.4.13): these equation naturally apply for all ß  such that det(In — ß A) /  0

• pg. 32 (last paragraph): it should be added that, as stated in Chapter 2, the optimization is for a given 
input signal

• pg. 34 (Lemma 3.5): for consistency of notation we should have

rHz) z -  1
(T — a)z a

• pg. 38 (equation 3.5.30): space missing between equations (between 0 and AT)

• pg. 38 (last two sentences): should read “That is, the sum of the singular values squared is increased. 
Conversely, as a is decreased, the sum of the singular values squared is decreased.”

• pg. 42 (point 2): We have attempted in this thesis to isolate the factors which affect the magnitude 
of discretization errors—the Hankel singular values are one of these factors. One of the problems we 
faced was in trying to vary one of the parameters which affect discretization error, while holding others 
constant (which also have a relationship to discretization error). Despite this difficulty, the vast amount 
of simulation work that was undertaken, demonstrated to a large degree that the magnitude of the Hankel 
singular values significantly influence the magnitude of the discretization errors produced, provided they 
are viewed in conjunction with other factors. The statement on pg. 95 which states that the factors 
identified in the open-loop are not so conclusively demonstrable in the closed-loop setting is mainly due 
to the difficulty in isolating the factors.

• pg. 45 (2 paragraphs following equation 3.6.12): Naturally equation 3.6.12 is not applicable for the e = 0 
and e = 1 case. The phenomena in the limiting situation is being addressed in this section.

• pg. 47 (second last equation): dr should be dt
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• pg. 52 (Proposition 3.1 and following): The proposition that the discretization process can be modelled 
as adding a white noise source to each analog integrator clearly has some limitations. Due to the presence 
of memory, the errors generated are more lowpass in nature. Also a “sufficiently rich” input signal can 
never be perfectly achieved due to aliasing considerations. However the arguments presented in this 
section are parallel arguments to those used in the analysis of the propagation of quantization errors in 
finite wordlength applications. In the analysis of quantization errors, the whiteness assumption is never 
actually obtained. Despite this, useful practical results can still be obtained. This fact provides the 
motivation and rationale of the analysis of this section. Simulation results confirm the usefulness of the 
results obtained.

• pg. 75-77: T~(.z) represents the reciprocal transpose of T(z) and for consistency of notation should be 
replaced by T ~ (z)

• pg. 75-77: n_[ ] and n+[-] are the stable and antistable projection operators respectively and for consis
tency of notation should be replaced ^y [•]_ and [•]+ respectively

• pg. 95 (third paragraph): the 3 occurrences of k should be replaced by N

• pg. 98 (sentence after equation 4.5.8): sentence should read, “The initial degradation........”

• pg. 114 (last sentence before Section 5.3): While objections may be raised against choosing long sampling 
periods for continuous-time discretization methods, this thesis has attempted to show that good perfor
mance can still be possible in this case. Our motivation in selecting long sampling periods was basically 
twofold. As is well known, good performance can always be obtained (providing numerical problems are 
not introduced) if the sampling period is low enough. Hence it makes little sense to compare different 
discretization methods with rapid sampling. Secondly and more importantly, there are applications where 
a short sampling period is not possible due to limitations in processing power. By still being able to use 
the continuous method of discretization in these situations, the design is likely to benefit (see arguments 
in Section 1.2).

• pg. 151 (proof of Lemma 3.10): the occurrences of a should be replaced by cq, and ß by a2
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D ISC R ETIZA TIO N  M ETH O D S FO R  
CO N TRO L SYSTEM S D ESIG N

N ote to  E xam iners

The programs described in Appendix F of the thesis can be obtained via anonymous ftp 
on faceng.anu.edu.au (id number 150.203.43.3).

The following procedure is required.

1. ’’ftp faceng.anu.edu.au” with the username anonym ous, and the password given by 
your user id.

2. ”cd /pub”

3. ’’bin”

4. ’’get perry.tar.Z”

5. ’’mkdir discretization”

6. move perry.tar.Z to discretization

7. ”cd discretization”

8. ”zcat perry.tar.Z | tar xf

If you require any assistance, please feel free to email me at perry@faceng.anu.edu.au.
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A b strac t
Given the widespread use of digital computers in the analysis, design and implemen
tation of modern control systems, there exists a need for effective and practical dis
cretization methods. Motivated by this need, this thesis develops new discretization 
techniques for use in control systems analysis and design, as well as in implementation. 
Both open-loop and closed-loop methods of discretization are considered. While there 
exist other discretization methods that are commonly in use, the analysis of this thesis 
demonstrates that the new methods enjoy many advantages.

Open-loop methods applicable to control system simulation, filter design and feedfor
ward control design are developed. Factors which affect the generation and propagation 
of discretization errors are identified by analytical, heuristic and experimental argu
ments. An algorithm for open-loop discretization is presented which takes these factors 
into account. The fundamental idea of this method is the replacement of the analog 
integrators of a continuous-time system by discrete-time approximations. This is done 
in such a way as to optimize a given cost function with respect to a given input. The 
motivation of this work is to develop accurate discretization methods while limiting 
the complexity of the resulting discretized system. The work results in a better under
standing of the discretization process in the control systems context. Connections are 
made between discretization and concepts from control systems analysis.

Closed-loop discretization methods are developed for the digital re-design of analog 
controllers. Three methods are presented which are based upon the theories of signal 
invariant transformations, optimal control, and convex optimization. The re-design 
methods which are developed exhibit particular advantages over existing methods, and 

together form a powerful range of techniques for the designer.

An extensive survey of existing re-design methods found in the literature is undertaken. 
Comparisons between these methods and those developed in this thesis are made from 
an analytical viewpoint as well as from a practical and an implementational viewpoint. 
The efficacy of the schemes developed in this thesis is demonstrated.
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C hapter 1

Introduction

A utomatic control has played an important role in the advance of engineering 
xi. and science. In our modern society, control systems affect everyone’s life. For 
instance, in modern houses, the temperature and humidity are automatically regulated 
for comfortable living; in modern aviation, feedback control systems are employed for 
safe and comfortable air travel; in industry, control systems increase the efficiency of 
production; and in defence, automatic control has application in many diverse areas 
ranging from missile guidance to vibration control in helicopters.

Feedback control systems can be classified in a variety of ways. One classification 
of particular importance to this thesis involves the nature of the signals flowing in 
the control systems—systems can be classified as continuous-time, discrete-time or 
sampled-data. Many control systems occurring in nature are continuous-time—-they 
have internal signals that evolve continuously in time with control signals that flow in 
the system continuously without interruption. Many of the human body’s regulatory 
systems can be described as continuous-time control systems. Conversely, a discrete
time control systems have signals that evolve discretely in time. Many economic systems 
can be described in this framework. Systems having both discrete and continuous 
signals are called hybrid systems or sampled-data systems. These systems generally 
arise when analog signals of a continuous-time system are sampled for control purposes, 
with the control signals calculated via a digital computer. This type of system is a major 
focus of this thesis.

The digital computer has changed the methodology of control systems implementation.

1



CHAPTER 1. INTRODUCTION 2

In the past, continuous-time controllers were the norm in industry. Typically they were 
realized electrically—using resistors, capacitors, inductors, and operational amplifiers— 
or mechanically—using hydraulics and pneumatics. While continuous-time controllers 
are still used in practice, applications of digital control are becoming more widespread. 
Digital computers are now widely used in the direct on-line control of processes. This 
shift can be attributed to the advances made in microelectronics and digital signal 
processing in recent decades. Typically, digital controllers are more reliable, cheaper, 
more compact, less susceptible to ageing and have improved sensitivity to noise and 
parameter variations.

The digital computer has also impinged on the techniques of controller design. Many of 
the classical tools of control systems design—-such as Bode analysis, Nyquist analysis, 
and root-locus analysis—can be more effectively utilized using the digital computer. 
Design techniques which were formally very time consuming can now be rapidly com
puted using the digital computer. Many of the burdens of controller design have been 
eliminated. In short, the digital computer has greatly influenced the theory and practice 
of control engineering.

Of course the digital computer has limitations and introduces new problems. In the 
area of controller implementation, limitations in computing speed may introduce unac
ceptable time delays. Finite wordlength of the digital processor can lead to problems 
such as the introduction of unstable limit cycles. In control systems design, inaccuracies 
in system simulation result from discretization errors and finite wordlength effects.

The goal of the work presented in this thesis is to develop techniques to minimize 
discretization errors in systems design and controller implementation—in both open- 
loop and closed-loop. These problems are now discussed in greater detail.

1.1 The Open-Loop Problem

There are a number of instances in control systems design where a continuous-time 
system is discretized in isolation, or more specifically when a block or element is dis
cretized without considering the interaction with other elements. In this thesis, this 
shall be referred to as open-loop discretization. Some examples of applications of 
open-loop discretization are:
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Filter Design: The traditional approach to infinite impulse response (HR) discrete
time filter design involves first the design of a continuous-time filter and then 
transformation into a discrete-time filter (c.f. [62]). There are a number of rea
sons for this approach. For example, the art of continuous-time HR filter design 
is highly advanced and so it is advantageous to incorporate this approach. Also 
many useful continuous-time HR methods have relatively simple closed-form de
sign formulae. It is clear that an effective means of discretization is essential for 
the success of this approach.

Feedforward Controller Design: There are examples in control system design where 
discrete-time elements are designed in isolation—e.g. the design of discrete-time 
feedforward elements. A typical approach is to first design an acceptable analog 
element and then perform open-loop discretization.

Simulation: A major application of open-loop discretization is the simulation of a 
system containing analog elements on a digital computer. Obviously, this is inte
grally related to control system design. During the design process, the designer 
is typically concerned with how the given system responds to different inputs— 
steps, ramps, and sinusoids for example. As the controller design is refined, a 
number of simulations may be carried out for for a given controller. As a result, 
the simulation procedure is carried out many times. The importance of accurate 
and effective simulation procedures is clearly seen. In essence, the simulation of 
continuous-time dynamical systems generally requires the numerical solution of a 
set of differential equations. Discretization or approximation is a feature of these 
techniques.

For the discretization of linear, time-invariant dynamical systems where a transfer 
function description of the system exists, one can think of the discretization process as 
transforming a continuous-time transfer function into a discrete-time one. Naturally, 
there is no unique equivalence between continuous-time and discrete-time systems for 
all input signals—with any discretization method there is a loss of information. As a 
result of discretization, errors are generated and propagated—a natural concern is to 
minimize these errors. Before deciding on a particular method of discretization, the 
designer must decide which properties of the continuous-time system are important to 
preserve. There is a wide range of possible frequency-domain or time-domain properties. 
Furthermore, the complexity of the discretization method is important. Discretization 
methods which produce systems of order ten times that of the continuous prototype 
are unacceptable in many applications. Clear trade-offs exist.
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There exists a large body of literature dealing with discretizing continuous-time systems 
and in particular, simulating continuous-time systems on a digital computer. Some of 
the early methods are:

Picard’s method, which generates a series of functions which converge to the true 
solution. This method is of theoretical interest, and is really only of practical 
value when an analytic solution is available. Alternative methods are obviously 
preferable.

Taylor series methods, which apply a recursion formula to generate a series of 
solution points to the differential equation. This is a good method when analytic 
expressions for the high order derivatives are known.

R unge-K utta methods, which are derived from the Taylor series methods. Runge- 
Kutta methods are widely used, having many advantages of the Taylor series 
methods, but avoiding the problems inherent with computing high order deriva

tives.

Predictor-corrector methods, which are a family of methods involving a pair of 
formulae, the predictor and the corrector. These methods enable tight control 
over the error at each point by the repeated application of the corrector and the 
computation times are generally shorter than those of the Runge-Kutta methods. 
A disadvantage of the predictor-corrector methods is that they are dependent 
upon another method to generate a set of starting values.

Many texts are available which discuss the above methods, see for example [44].

In the survey paper of Kowalczuk [50], two broad classes of open-loop discretization 
methods are identified. The most popular are the closed-form transformations, 
in which the discretizing transformation is chosen to minimize the difference between 
the response of the digital model and the the response of the analog prototype at the 
sampling points {4 = fcT, k an integer}. The error depends on the input signal 
applied. As a result, distinctions are made according to whether the spectrum of the 
input signal is bandlimited to the Nyquist range (u) : u> < = 7r/T) or not.

Closed-form approximations can be further divided into direct transformations and 
indirect transformations. Examples of the former include signal invariant transfor
mation methods [79, 82, 84], forming element methods [11, 22, 39, 69, 47, 48, 49, 70,
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79, 81], and convolution approximation methods [78, 80]. A feature of direct trans
formation methods is that the prototype system T{s)  is treated as a whole, and an 
attempt is made to preserve the input-output relationship. The indirect approach in
volves treating T(s)  as a number of sub-systems such as integrators or differentiators. 
These sub-systems are replaced by discrete-time operators. Examples of indirect trans
formations include mapping of differentials [42, 62, 82, 84], forward and backward Euler 
approximations [42, 62, 69, 82, 84], bilinear transformations [11, 42, 62, 64, 76, 82, 84], 
and matched ^-transforms [42, 62, 84].

The second broad class of discretization methods can be referred to as open-form  
approximations [4, 35, 62, 63, 64, 70]. These methods generally involve some form 
of iterative optimization algorithm and do not result in closed form solutions. Most 
of these methods use a frequency based criterion and are quite often computationally 
expensive. In engineering, perhaps the most well-known of these methods is that devel
oped by Deczky [24, 62, 63], in which an Lp frequency-domain criterion is minimized.

In this thesis, a unified theory is presented which addresses essential aspects of the 
open-loop discretization procedure. Unlike many discretization schemes presented in 
the literature, the procedure developed attempts to first determine the magnitude of 
the expected discretization errors, and then discretize with an appropriate complexity. 
The proposed algorithm gives the designer control over the order of the discrete-time 
system. This enables the design of filters with low complexity which still retain essential 
properties of the prototype system.

Attempts are made, where possible, to examine the discretization process from an 
engineering perspective. For example, a number of relationships are found between the 
bound on the magnitude of the discretization error and the Hankel singular values. To 
our knowledge, this approach is a new contribution.

1.2 The Closed-Loop Problem

The design and implementation of sampled-data controllers motivates the study of 
minimizing discretization error in a closed-loop setting. Of course there are many 
practical issues in the design of sampled-data controllers—the design of the digital- 
to-analog converters, analog-to-digital converters, sample-and-hold elements, and anti
aliasing filters to mention a few. However the design of the control algorithm used in
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the computer is the focus in this thesis.

Discretize
Plant

Discretize
Controller

Direct
Approach

Discrete-Time 
Controller Design

Continuous-Time 
Controller Design

Figure 1-1: Methods of sampled-data controller design

Figure 1-1 represents the three choices of sampled-data design method. These are:

D iscretize P lant Approach: The given model of the continuous-time plant is re

placed by an equivalent discrete-time model. A discrete-time design method 

(such as those found in [6, 32]) is then used to generate a discrete-time controller. 
There are two main disadvantages with this approach. First, a priori decisions 

such as the choice of sampling-rate and possible sampling-skew must be made. 

But sensible choices of these quantities depend upon the performance of the fi

nal closed-loop system. If these quantities are not estimated correctly, the whole 

design may have to be repeated. A second problem of this approach is that in

tersample behaviour is ignored at the start of the design. For this reason, the 

resulting performance of the digital controller may be poor.

D iscretize C ontroller Approach: A continuous-time controller may be designed 

based on the continuous-time plant. The continuous-time controller can then 

be discretized using a number of different methods. Controller discretization 

methods can be found in [1, 32, 43, 45, 50, 52, 53, 54, 58, 60, 61, 65, 66, 67, 71, 85]. 

This approach is favourable if the designer is more familiar with continuous-time 

design. Loop shaping problems and constraint satisfaction can be achieved more 

effectively than with direct methods. Additionally, in contrast to the “Discretize 

Plant Approach” , this approach allows intersample behaviour to be taken into 

account in the design.

D irect Approach: Methods have recently been developed for the direct design of 

sampled-data controllers. These have the advantage of incorporating the true 

continuous-time specifications. Advances in this area can be found in [9, 10, 17,
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18, 19, 20, 21, 26, 38, 40, 41, 46, 73, 74, 75, 86]. In particular, the sampled-data 
H2 problem has been tackled by Khargonekar and Sivashankar [46], Bamieh and 
Pearson [9], Chen and Francis [18, 20] and Chen [17]. The sampled-data H0Q 
problem has been addressed by Toivonen [75], Bamieh and Pearson [10], and 
Kabamba and Hara [41]. Dullerud and Francis have developed theory for the L\ 
sampled-data problem. Despite the mathematical difficulties present in describing 
sampled-data systems, the above work represents a significant advance. However, 
the calculations are generally very forbidding. Experience indicates that these 
methods do not allow the designer a great deal of flexibility—there are many 
situations in which a better design can be achieved by “indirect” approaches, 
particularly if the designer has more experience in the area of continuous-time 
controller design or if there are multiple control objectives. These approaches are 
also difficult to apply to complex systems. Furthermore, the H2 sampled-data 
approach often yields digital controllers that generate large control signals. This 
can be a problem in practical settings.

There are many situations in which the “Discretize Controller Approach” is preferable, 
producing a superior performance to the “Direct Approach”. It is therefore important 
that effective controller discretization schemes exist. This thesis presents optimization 
based controller discretization algorithms which are shown to produce sampled-data 
controllers with excellent performance. The algorithms developed are shown to have 
many advantages over other discretization schemes presented in the literature.

1.3 Thesis Structure

A brief outline of the progression of ideas in this thesis is as follows:

Signal Invariant Transformations

After the problems addressed in this thesis are formulated at a conceptual level in 
Chapter 2, the introductory material of Chapter 3 presents a review of the existing 
theory of signal invariant transformations. This material is foundational for much of 
the theory presented in this thesis. The signal invariant transformation, for a particular 
input signal, allows a continuous-time system to be discretized so that the sampled 
output of the continuous-time system is equivalent to the output of the discrete-time 
system in response to the sampled input. The signal invariant transformation of a
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continuous-time system has an order typically equal to the order of the continuous
time prototype plus the order of the continuous-time model whose impulse response 
generates the input signal.

D iscretization  via  Integral A pproxim ation

The open-loop discretization method is introduced in Sections 3.3 and 3.4. The basis of 
the scheme is a modification of the Newton-Cotes formulae for numerical integration. 
Each integrator of an n-dimensional system is replaced by a Newton-Cotes type ap
proximation. The order of the approximation of each integrator may vary. The method 
is an open-form approximation technique using iterative optimization. A time-domain 
criterion is used with a formulation in terms of state space structures. Optimization 
is performed with respect to a given signal. This method gives a lower order discrete
time system than the signal invariant transformation technique without a severe loss 
of time-domain performance.

Factors which affect discretization error are then identified. These factors are incorpo
rated into the discretization methodology and a unified theory is presented. An analysis 
of the effects of state space structure is given and theory is presented which enables the 
selection of state space structures favourable for minimizing discretization error.

C ontroller D iscretization  U sing H2 O ptim al Control Theory

Chapter 4 presents the closed-loop discretization methods. Existing literature ap
proaches this problem in basically two ways:

1. Open-loop analog-to-digital conversions using, for example, the bilinear, forward 
difference, backward difference, step invariant and impulse invariant transforma
tions [6, 42, 84].

2. Closed-loop analog-to-digital design using signal invariant transformations [84] or 
other techniques [1, 43, 45, 65].

It is now well recognised that, when designing a digital controller to replace an analog 
controller, the closed-loop properties of the continuous-time system (consisting of ana
log controller and plant) should be taken into consideration. Consequently, closed-loop 
discretization generally results in better performance and as such is preferred, particu
larly when the sampling rate is low. In many cases, it is possible to reduce the sampling
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rate by a factor of 10 in comparison to the open-loop approaches. With this motiva
tion, this thesis presents three methods of closed-loop controller discretization. The 
first method, found in Section 4.2, uses an extension of the open-loop signal invariant 
transformation theory. Optimal control theory is used and a number of algorithms are 
proposed. The method is shown to perform favourably when compared with existing 
algorithms. A disadvantage of this method is that digital controllers of high order are 
produced. The sampled-data controller reduction method of [56] is shown to effectively 
deal with this problem.

C ontroller D iscretization  U sing C onvex O ptim ization  Techniques

In Section 4.3, a similar problem is solved using signal invariant transformations and 
convex optimization techniques. This theory is based on the work of [13]. The convex 
optimization technique is shown to be an extremely powerful method of design. A 
variety of constraints can be incorporated into the design which makes this the most 
flexible method of controller discretization available. Again the disadvantage of this 
method is that the resulting digital controllers are of high order.

C ontroller D iscretization  U sing Integral A pproxim ations

The open-loop discretization method developed in Chapter 3 is extended to the closed- 
loop setting in Section 4.4. Although a non-linear optimization problem results, this 
method has the advantage that model order reduction techniques are not required in 
the final phase of design. Unfortunately the method suffers from the existence of local 
minima. However a simple technique which greatly alleviates the numerical difficulties 
associated with this problem is presented.

C om parison o f D iscretization  M ethods

The controller discretization algorithms developed in this thesis are then compared to 
existing methods presented in the literature. The comparison involves a short simu
lation study in Section 4.5 and an extensive analysis in Chapter 5. The analysis in 
Chapter 5 is based on computer simulations, practical experimentation and subjective 
analysis. The three methods developed in this thesis are demonstrated to be extremely 
effective in solving the controller discretization problem.
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1.4 Contribution of this Thesis

The preceeding discussion demonstrates a four-fold contribution of this thesis:

O pen-Loop D iscretization  M ethod

• comprehensive treatment of the open-loop discretization problem

• theory for replacing the integrators of a continuous-time system by discrete
time approximants, which allows the designer to control the complexity of 
the discretization

• techniques wrhich enable the designer to identify the factors which affect 
discretization error

• theory which gives good state space structures for discretization

C losed-Loop D iscretization  M ethods

• discretization method using signal invariant transformations and optimal 
control theory

• discretization method based on signal invariant transformations and convex 
optimization

• discretization method based on integral approximations

Survey of D iscretization  M ethods

• comprehensive survey of closed-loop discretization methods

A lgorithm s

• open-loop discretization—includes algorithms for parameter optimization 
and optimization of state space structure for discretization

• controller discretization using H2 optimal control theory

• controller discretization using convex optimization

• controller discretization based on integral approximations

• sampled-data controller reduction



Chapter 2

Problem  Statem ent

2.1 Introduction

A s stated in Chapter 1, the primary focus of this thesis is to develop discretization 
1  techniques for use in the open-loop and closed-loop settings. This chapter refines 
this statement by presenting formal problem statements for both problems. The prob
lems are formulated at a conceptual level at this point, and are further elaborated and 
refined in Chapters 3 and 4.

2.2 Open-Loop Problem Statem ent

The discretization problems considered in this thesis are restricted to linear, finite 
dimensional systems. A continuous-time system can be viewed as a mapping from 
C°([0,oo),Cn) -» C°([0,oo),Cn), whereas a discrete-time system can be viewed as a 
mapping from <S(Z+, C 1) -» <S(Z+, C 1). The general problem of discretization is finding 
a transformation X) which maps a given continuous-time system Q(s) into a discrete

time system G(z), i.e.

G(z)=3)(ff(5))  (2.2.1)

Ideally the transformation would be such that the responses of both systems would 
be identical (at the sampling instances) for any input signal, not necessarily piecewise 
constant. However this is not possible in reality when realizability and complexity

11
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issues are encountered. Only some of the properties of Q{s) can be preserved under the 
D-transformation. Therefore, the discretization problem can be thought of as finding 
a X) which minimizes

& { $ (* )-G (* )}

for some distance function 50.

Assume that the continuous-time system Q(s) is driven by a signal r(£) for t > 0. 
Assume also that the discrete-time system is driven by the sampled r (t) which is denoted 
by S ^ r(t). The sampling operator (with period T) is defined in Appendix B. 
Let the continuous-time input signal r (t) be generated by the impulse response of a 
strictly proper system 7£(s). With a slight abuse of notation, let the sampled r (t) be 
represented by Sx7Z(s). Similarly, let the sampled output of Q(s) be represented by 

S t Q(s)71(s).

The minimization of

2o{St£ ( 5 W S) -  G( z)St K ( s)} 

is sought for some distance function $0 which is now defined.

Let Q{s) represent a strictly proper, linear time-invariant system. Let 7Z(s) represent a 
strictly proper, linear time-invariant reference model whose impulse response is r (£), t > 
0. Let the response of Q(s) (with zero initial conditions) to r (t) be represented by 
y(t), t > 0. Furthermore, suppose y (kT) is the sampled values of y(t) at t — kT  with 
k = 0 ,1 , . . . ,  oo for some sampling period T  > 0. Similarly, let r {kT) be the sampled 
r (t) for k = 0 ,1 ,. . . ,  oo. Let G(z) be restricted to the class of linear, time-invariant 
systems. Finally let y(kT)  be the response of G(z) (with zero initial conditions) to 

r (kT).

Define the distance function $0 to take the form of a cost function J n where
N

50{S TS(s)H(s) -  G( z)St K ( s) = J N = ||y (kT) -  y (k T) f 2 (2.2.2)
k= 0

This cost function is chosen for several reasons. It gives a good measure of error between 
the continuous-time and discrete-time systems. It is computationally easy to calculate. 
By varying N,  the discretization error during the transient response (by making N T  
small) or the steady-state (by making N T  large) can be targeted. As N  —> oo, with T  
fixed, J N is the I2 norm—in this case Parseval’s theorem indicates that J n is related 
to the frequency-domain error.

A transformation X) is sought to minimize (2.2.2) subject to the realizability of G(z). 
This is still a very broad problem and it does not address the problem of the complexity
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of G(^). Therefore a parameterization of G(z) is established so that restrictions on the 
complexity of G(z) are managed. Represent this parameterization as G(z, p) for some 
parameter p. Define y p(kT) to be the response of G(z, p) (with zero initial conditions) 
to r (kT).

The open-loop problem addressed by this thesis is to 
find a parameter p which achieves the minimization

minjyv(p)p
where

N

J n (p ) =  E lly(fcT) -  yp(*T)f2 (2.2.3)
A:=0

with

y(t) =

y(kT) = G(z, p)r(kT)

The choice of parameterization is presented in Chapter 3.

2.3 Closed-Loop Problem  Statem ent

The general aim of digital re-design is to replace an analog controller C(s) by a dig
ital controller Cfiz)  so that the performance of the closed-loop sampled-data system 
‘approximates’ the performance of the closed-loop analog system. The addition of a 
discrete element in an analog environment requires that there is a process of signal 
conversion so that the digital and analog components can be interfaced in the same 
system. Therefore analog-to-digital converters, digital-to-analog converters, sample- 
and-hold devices and multiplexers are inherent in the overall design. Naturally there 
are complex issues associated with the design and implementation of these components. 
However the following assumptions are made in this thesis:

• The analog-to-digital converters have infinite wordlength.

• The digital-to-analog converters are ideal: that is, there is zero acquisition time, 
zero aperture time, zero settling time and zero hold-mode droop.

• The hold function is a zero order hold. Although the theory of this thesis does not 
preclude other forms of hold functions, the zero order hold is the most common
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Analog Feedback Control System

r(t) o e(t)
C(s) u(t)

P(S)
y(t)

Sampled-Data Feedback Control System

Figure 2-1: Analog and digital control 

in practical applications.

These assumptions are common to most discretization methods and are reasonable for 
most applications.

Anti-aliasing filters are also a common addition in the re-design process. These are 
generally analog devices placed before the samplers. They do not appear explicitly 
in the re-design theory of this thesis. However if the dynamics of these filters have 
a significant effect on the overall system dynamics, they can be readily accounted for 
with the theory developed.

In Figure 2-1, an analog unity feedback control system is illustrated. The system 
consists of a strictly proper, linear time-invariant plant V{s)  G Cnxm and a proper 
linear-time invariant controller C(s) G Cmxn. Assume also a strictly proper linear 
time-invariant reference model 7£(s) G Cn x l, whose impulse response generates the 
reference signal r(£). The output of the analog closed-loop system is represented as 
y(t).  The sampled-data unity feedback control system shows the digital controller 
C d{z) with analog-to-digital converter and digital-to-analog converter. The output of 
the sampled-data system is represented as y(£).
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A ssum ptions: Suppose the analog controller C(s) has been chosen such that:

A The closed-loop system is asymptotically stable.

B The output tracking error ||y(£) -  r(t)|| -> 0 as t -» oo where r (t) = £ -1{7£(s)} 
is the impulse response of the reference model H(s).

Let the plant, continuous-time controller, and reference model be considered as oper
ators, mapping C°([0, oo), Cn ) -» C°([0, oo), Cn)—denote these operators as simply V,  
C and H  respectively.

The closed-loop operator of the analog closed-loop system is given by

n  :C°([0,oo),Cn) ->C°([0,oo),en ) where H  = V C (ln + TC)~X (2.3.1) 

The digital controller is an operator mapping 5 (Z +,Cn) —>• S (Z +,Cn).

The closed-loop operator of the sampled-data closed-loop system is given by

Sir = -PHt C j St CIu +  (2.3.2)

where the sampling operator St , and the zero-order hold operator H7- are defined in 
Appendix B. The operator Sjt  maps C°([0, 00), Cn) —> C°([0, 00), Cn ).

The closed-loop problem addressed by this thesis is to find 
a stabilizing digital controller C d{z) which minimizes

ZcI & t - ' H ) ' * }  (2.3.3)

for some distance function $c.

The operator $c is algorithm dependent. Stability in this sense means exponential sta
bility; input-output stability is not addressed by the algorithms developed. Appendix 
B contains a discussion of stability of sampled-data systems. For a detailed treatment, 
see [19, 29].

The closed-loop problem can be alternatively stated: find a stabilizing digital controller 
C d{z), such that

$ c { y { t )  -  yW}

is minimized for some distance function J c, in response to a reference signal r(£).



C hapter 3

O pen-Loop P rob lem

3.1 Introduction

rTTI his chapter presents a comprehensive treatment of the open-loop discretization 
JL problem. As stated in Chapter 1, the general aim of the discretization method 

developed in this thesis is to give the designer control over the complexity of the dis
cretization. This is achieved by first identifying the factors which influence the mag
nitude of the discretization error and then adjusting the complexity accordingly. For 
example, if a large sampling period is used which is conducive to large errors, then a 
complex discretization method may be warranted.

In this chapter, the signal invariant transformation is used as the benchmark of open- 
loop discretization performance. It is also used extensively in the closed-loop techniques 
of Chapter 4. Because of its important role , this chapter presents a detailed treatment 
of signal invariant transformations. As mentioned in Chapter 1, this transformation 
allows a discretization which gives perfect matching in response to a reference signal. 
If ni is the order of the analog system and 772 is the order of the model that generates 
the input signal, then the order of the discrete system produced by a signal invariant 
transformation is typically equal to 77,1 +772- This complexity may be detrimental 
to performance in some applications, for example in an environment where there are 
restrictions on the computational time. A lower order discretization is generally sought 
in such cases. A fundamental concern of this chapter is finding a discretized system of 
lower order (if one exists) which allows “near perfect” matching.

16
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The particular parameterization used in the open-loop discretization method is based 
on a Newton-Cotes method of integral approximation. In an n-dimensional continuous
time system there are n integrators. The discretization method replaces each of these 
integrators by a modified Newton-Cotes discrete-time approximation, parameterized 
by a vector p. The parameterization allows the designer to control the complexity of 
the discretization by allowing each analog integrator to be replaced by either a zeroth, 
first, or second order digital approximation. An optimization is then performed to find 
a p which minimizes the open-loop cost function (2.2.3), introduced in Chapter 2. The 
discretization problem is formulated in terms of a state space description.

A major emphasis of this chapter is to identify the factors which contribute to and 
affect the magnitude of discretization errors. These factors are identified by analytical, 
heuristic and experimental means. As mentioned in Chapter 1, these factors are linked 
to concepts found in control theory, such as the Hankel singular values. The effect of 
state space structure on the generation and propagation of discretization errors is also 
investigated in this chapter.

This chapter is organized as follows. Section 3.2 presents the theory of signal invariant 
transformations. A motivation of the open-loop discretization scheme is given in Section 
3.3. The open-loop problem that is initially formulated in Chapter 2 is fully formulated 
in Section 3.4. A number of special cases are looked at in Section 3.5 in order to gain an 
insight into the parameterization used. By looking at the effects of approximation order 
on discretization error, the factors which affect discretization error are then identified 
in Section 3.6. The effects of state space structure on discretization error are identified 
in Section 3.7 and an algorithm which givens an “optimal” state space structure is 
presented. A summary of results appears in Section 3.8 and the discretization algorithm 
is presented. Simulation results are presented in Section 3.9, with conclusions drawn 
in Section 3.10.

3.2 Signal Invariant Transformations

3.2.1 C oncept

Figure 3-1 gives a diagrammatic representation of the signal invariant transformation. 
A continuous-time system G(s) with a continuous-time input and output is shown. 
The system G d(z) is the signal invariant transformation of G(s) with respect to the
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Figure 3-1: Representation of the signal invariant transformation

input signal if the sampled input applied to Gd(z) yields an output equivalent to the 
sampled output of G(s). This relationship is shown in the figure.

3.2.2 Theory

Consider a continuous-time transfer function matrix 'H(s) having a minimal state space 
representation

« (s )  =  C 1(äI„l - A 1)_1B 1 (3.2.1)

In the special case where 9i(s) is single input, single output (SISO), the transfer func
tion is denoted by

H(s) = c f (s lni -  A i)-1bi

The impulse response, h (t), with respect to an impulse at time 0, is given by

m  = crl{U(a)}
C 1eAltB 1 t > 0 
0 t < 0

(3.2.2)

where C denotes the Laplace transform operator. The z-transform H t {z ) of the uni
formly sampled values {h(fcT); k non-negative integer} of h(t) is given by

H t (2) = Z{CieAl*TBi} =  zC!(a ni -  F i)_1Bi ; F, =  eAlT (3.2.3)

D efin it ion  3.1 The discrete-time system Ht (z ) in (3.2.3) is said to be the impulse 
invariant transformation of'H(s), and is written

H t (z) =  ZT {U(s)} (3.2.4)
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The subscript T  is used to explicitly indicate that Ht {z) depends on the sampling 

period T.

L em m a 3.1 (i) The impulse invariant transform Ht (z) oPH( s ) in (3.2.1) is a proper
discrete transfer function given by

H t (z ) =  Q B j  + CMzIn, -  F 1) - ‘F 1B i ; F ,  =  eA'T (3.2.5)

(ii) Ht (z ) is strictly proper if and only if  C 1 B 1 = 0 .

(Hi) For C 1 B 1 ^  0 , the Smith zeros of Ht (z ) are given by the eigenvalues of 

In the SISO case, there are n\ zeros of Ht {z).

(iv) In the SISO case, if  c fb i  =  0, then His) has relative degree of at least 2, but 
H t (z ) has relative degree 1 for almost every sampling period T.

P ro o f: Parts (i)-(iii) follow by expansion of (3.2.3). Now suppose c f b i  =  0. Then

Ht (z) is of relative degree 1 if and only if c ^ F ib i ^  0. But F i (see (3.2.5)) is an 

analytic function of T, and so c f F ib i  does not vanish for almost every T.  This proves 

part (iv).

The z-transform H t^ (z) of the uniformly sampled values {h(kT  +  £); k non-negative 

integer, 0 < £ < T} of h (t) is given by

H Tl€W =  Zt s {H(8)}  (3.2.6)

=  2 { C ,e Al(,!r+?)B 1} (3.2.7)

= C ie A‘{B! +  C 1eAl«(zI„1 -  F O - 'F iB j  ; F , =  eA' T (3.2.8)

Note that H ^  ^(z) is proper, but not strictly proper, for almost all values of T  and £.

D efin ition  3.2 The discrete-time system Ht ,z(z) in (3.2.6)-(3.2.8) is said to be the 
£-offset impulse invariant transformation of His),  and is written

H t ,( (z ) = Z(3.2.9)
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Some properties of the impulse invariant transformation of cascaded systems are now 
examined. Suppose

UG(s)=-H(s)Q(s)  (3.2.10)

where the strictly proper K(s) is given by (3.2.1), and the proper system C?(s) has a 
minimal state space representation

S(s) = D 2 +  C2(sI„2 - A 2)_1B2 (3.2.11)

Then a state space representation of 'HG(s) is given by

H6(s )  = U(s)D 2 + C(sI„,+„2 -  A )- 'B  (3.2.12)

where

; C = [ Ci 0 ] (3.2.13)

In the SISO case, the representation of LiQ(s) in (3.2.12) is minimal if and only if there 
are no pole-zero cancellations between 'H(s) and Q(s).

L e m m a  3.2 The impulse invariant transformation HG'r(z) of'HG(s), when 'H(s) 
and Q(s) have different poles, deßned by (3.2.12) and (3.2.13) is given by

HG T(z) = H t (z)D2 + H G i(z) (3.2.14)

where
H G iW  = C i(2lBl -  +  (zl„2 -  FjJ-'F jIBs

where H t (z) is given by (3.2.5), and where the m  x n2 matrix F i2 is given in terms of 
an rt\ x n2 matrix P i2 by

F i2 = P i2F2 - F 1Pi2 (3.2.15)

P i2A2 — A iP i2 =  B iC2 (3.2.16)

In particular, when D 2 = 0, HG^(z) is strictly proper.

Proof: Define the (nx + n2) x (ni +  n2) similarity transformation

0 Iri2

Ai B iC ,
o a 2

B
0

B2
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where P i2 is defined by the equation (3.2.16). From the theory of Sylvester equations 
(see [7] for example), P i2 is uniquely defined because by assumption A i and A 2 have 
different spectra. From (3.2.13)

P _1A P =  Al °
0 A2

Moreover, from (3.2.13), CB = 0 and so from Lemma 3.1

H G T(z) =  H T(z)D2 + C (zlni+n2 -  F ) - 1FB ; F = eAT

Then
A P T n - l Fi

0
F l2

f 2
F 2 £  eA*T

where F i and F i2 are given by (3.2.3) and (3.2.15) respectively, which then gives 
(3.2.14). When D 2 =  0, HG(z) is strictly proper. |

A similar result can be derived for the ^-offset impulse invariant transformation H G ^ (2 )  
of 'HQ(s). Note that even when D 2 =  0, H G ^ ^ z ) is almost always proper and not 
strictly proper for f  7̂  0.

D efin ition  3.3 Consider a signal v(t) = C 1{V(s)}. Then the discrete-time system 
Ht (z) written

H vT(z) = Z^{U(s)}  (3.2.17)

where

ZvT{n (s ) }  = Zt {H (s)V(s )}[ZrlVfs)}]“ 1 (3.2.18)

is said to be the signal invariant transformation of'H(s) in (3.2.1) with respect to v(t).

The subscript T  and superscript v on the operation Zj.{-} in (3.2.17), (3.2.18) indicate 
that a signal invariant transformation depends explicitly on both the sampling period T 
and the reference signal v(£). The relationship in (3.2.18) says that the continuous-time 
convolution of v(t) with h (t) in (3.2.2), followed by sampling, is equal to the discrete
time convolution of the sampled values {v(A:T)} with the sampled values (h(/cT)}. 
In the general multivariable setting, a restriction applies on the signal model V(s) to 
guarantee the existence of the inverse in (3.2.18). From Lemma 3.1, a necessary and 
sufficient condition for the existence of this inverse is that C 2B2 is invertible, given
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V(s) = [A2 .B 2,C ‘2]. It will be shown shortly that in the SISO case, this condition is 
not required.

By a slight abuse of the definition, H^(z) in (3.2.3) was called an impulse invariant 
transformation. However there is actually no signal v(t) such that

V(s) = £{v(i)} = I„2 ; ZT{V{s)} = Z{v(kT)}  = I„2

Definition 3.4 Consider a signal v(t) = C 1{V(s)}. Then the discrete-time system 
written

H VT ^ (z) = z ^ { H ( s ) }  (3.2.19)

where

Z ^ m s ) }  = ZTA{U(s)V(s)}  [Zt {V(s)}]-1 (3.2.20)

is said to be the ^-offset signal invariant transformation of'H(s) in (3.2.1) with respect 
to v(i).

E xam ple 3.1: A state space realization of the ^-offset step invariant transformation 
of EL(s) in (3.2.1) is given by

rT  r t,Ai T , /  eAlTB 1dr,CieAl^,Ci [  eAlTB x dr  
Jo Jo

(3.2.21)

To conclude this treatment of signal invariant transformations, some results for SISO 
systems are presented.

Corollary 3.1 (i) Suppose

V(s) =
1

s +  a
and H{s) = c j (slni — Ai) has no poles at s = —a. Then

tfKz) = cf(zIn1- F , ) - 1f12

where
fi2 = (F1 - e - ° 7'lni)(A1 + a I „ 1) - 1b 1 ; F, =

(3.2.22)

In particular, when 'H(s) has no poles at s = 0, the step invariant transformation H^(z) 
(corresponding to a = 0) is given by

Hj-(z) = c f ( z l ni-  F i )~ l (Fi -  InJAf'b , (3.2.23)
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(ii) Suppose

and 'H(s) has no poles at s = —a. Then

H t {z ) = di + c f(2 lni -  Fi) :gi (3.2.24)

where

di = c^(F1 - T e - “TA 1- e - aT(l +  aT )In,)e“r T - 1( A i + a I ni) - Jb l 

gi — (—dTAi + A[ — a"TInt +  aT A iF i — ea^ A iFi + a^TFi — A iF i

H -e ^ A ^ f jT -^ A i + a I „ , ) - 2A 1- 1bi

In particular, when 'H(s) has no poles at s = 0, the ramp invariant transformation 
Hj (̂z) ofH(s) (corresponding to a = 0) is given by

where H^{z) and H^(z) are given by (3.2.23) and (3.2.25).

T h e o re m  3.1 Suppose

H(s) = c [ (slni -  A i)_1bi ; Q(s) =  (sIn2 ~ A2)_1b2

Then:
(i) The signal invariant transformation H^(z) oPH(s) with respect to the signal g(t) =  
£ -1{<2(s)} is given by

Ht (z) =  di + c j ( z l ni -  FO lgi (3.2.25)

where

di =  c f tF , - T A ,  - I n J T - 'A ^ b ,  

gl =  (Ini - 2 F i  + F ? )T -1A f2b 1

(Hi) Suppose

V(s) =  ^  ^s sz (3.2.26)

and H(s) has no poles at s =  0. Then

-  l)H}(z)+T2THi.(z)] (3.2.27)

H 9t {z)
c[(z l„ , -  F Q ^ F u lIn , +  (zl„2 -  F 2) - 1F 2]b2

ZC$(zln, -  F 2)_1b2
(3.2.28)
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where

F i -  eAlT ; F 2 =  eAiT (3.2.29)

and Fi2 satisfies (3.2.15), (3.2.16).

(ii) Hj (z)  is proper with at most n\ 4- n2 poles.

(Hi) Hji(z) is strictly proper if  g(0) /  0 (i.e. c2b 2 ^  0) with relative degree 1 for almost 
all sampling periods T. The n\ +  n2 poles of H^(z) are then given by the n\ eigenvalues 
of F i and the n 2 eigenvalues of F 2 where

F 2 = F 2 - F 2b 2 ( 4 b 2) " 1c |' (3.2.30)

(iv) I fH(s)  is asymptotically stable and Q(s) is stable (with no poles at the origin) and 
of minimum phase, then H^(z) is asymptotically stable for T  sufficiently large.

(v) I f  both R(s) and Q(s) are stable and of minimum phase, then H^{z) is of minimum 
phase for T  sufficiently large.

Proof: The expression for Hj^(z) in (3.2.28) follows from (3.2.14) and (3.2.3). It is

then evident from (3.2.28) that the poles of H^(z) are given by the n i eigenvalues of 

F i,  and the n2 zeros of zdT(zIn2 — F 2)_1b 2.

When c ^ b 2 /  0 (ie when g(0) /  0), the zeros of zc^ (z ln2 — F 2)_1b 2 are given by the 

eigenvalues of F 2 in (3.2.30).

Parts (ii) and (iii) then follow from Lemmas 3.1 and 3.2. To prove (iv), first observe 

that if H(s)  is asymptotically stable, then the eigenvalues of F i are inside \z\ = 1. Now 

by (3.2.23)

C2 (^In2 — F 2)-1 b2 = Zt {H( s)}

where
U(s) = -  A 2) - ‘A 2(F 2 -  I„2) - ‘b 2

That is, c j ( z ln.2 — F 2)_1b 2 is the step invariant transformation (zero order hold equiv

alent) of H(s).  Hence by Astrom et al. [5], all limiting zeros of c ^ (z ln2 — F 2)_1b 2 

approach z =  0 as T  -* oo if H(s)  is stable and if 7il(s) has no zero at s =  0. Further

more, 74(0) = 0 if and only if c^ (F 2 — In2)-1b 2 /  0. That is, 74(0) 7̂  0 for almost all 

sampling periods T.
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3.3 M otivation for the Open-Loop Discretization Scheme

This section presents some basic theory and a simple example to motivate the open-loop 
discretization method of this thesis.

Given a C2 scalar function g{s), a sampling period or discretization size T, and some 
integer k 1 the integral

rkT+T
/ g(a) der (3.3.1)

JkT

can be approximated via the first order Newton-Cotes approximation

I lg(kT) + g(kT + T)}(3.3.2)

This is more commonly referred to as the trapezoidal rule. Many elementary calculus 
books show that an error of 0 (T 3) is associated with the above approximation. The 
error is also proportional to the second derivative of the function g(s).

Suppose the integral is approximated by

ag(kT) + ßg{kT +  T) (3.3.3)

where a, ß E R  The basis for this approximation is the fact that by the intermediate 
value theorem, there exists ä, ß  such that

LkT+T
g(s) ds = äg(kT) 4- ßg{kT + T)

It should be noted at this point that for general a and ß, and g(s) in some class, a 
meaningful error bound can not be calculated. Note that if ä  and ß are known a priori, 
or at least approximately known, then a significant improvement can be obtained in 
the integral approximation in some cases.

Clearly the trapezoidal rule is a subset of the approximation scheme corresponding to 
a = ß = T/2. Further, the two other “classical” approximations—the backward Euler 
and forward Euler—correspond to a = 0, ß = T  and a = T ,ß  = 0 respectively. Further 
appreciation of the role of a and ß can be gained from Figure 3-2. Setting ß = T  -  a, 
the area under the curve between kT  and kT + T  is approximated by area “A” plus a 
fraction, a T -1 , of area “B”. The three “classical” approximations—the forward Euler, 
backward Euler and trapezoidal rules—correspond to different proportions of the area 

“B”.
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Figure 3-2: Approximation of integrals

Consider now the first order dynamical system

x(t) = —ax(t) -I- au(t) ; u(t) = cos(wt) (3.3.4)

y{t) = x{t) (3.3.5)

Equations (3.3.4) and (3.3.5) can be written in integral form, i.e.
rk T + T

y (k T +  T) = y(kT) + / — ay(cr) 4- au(o) da (3.3.6)
JkT

If the integral in (3.3.6) is approximated according to (3.3.3), one may ask how sensitive 
this approximation is to variations in a and ß. To address this question, simulation 
results were generated using the open-loop cost function j7/v(p) introduced in Chapter 
2; that is

N

J n (P) =  E  ||y(fcT) -  (3.3.7)
k=0

as a measure of discretization error.

The quantity (3.3.7) was. calculated in the case a = ß = ^ i.e. the bilinear transfor
mation, and for a,/? generated according to the optimization technique developed in 
Section 3.8. In both cases the quantity N  was chosen to be iV = 2l0 — 1 (the reason 
for this odd number will become apparent when the algorithm is introduced in Section 
3.8). The sampling period was selected to be T = 1  second and the quantities a and 
w were varied such that 0 < u)T < \  and 0 < aT < The results are displayed in 

Figures 3-3 and 3-4.

Even for this simple first order system, it is evident that substantial improvement 
in discretization performance can be achieved through parameter optimization. This
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Figure 3-4: Discretization error - optimized
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is particularly evident as u> and/or a become large. The importance of parameter 
optimization is even greater for higher order systems.

3.4 Problem Formulation

The key idea associated with the open-loop discretization scheme is the replacement 
of integrators of the continuous-time system by digital approximations of different or
ders. In this section, the basic theory is developed which enables this procedure to be 
performed.

3.4.1 F irst Order Case

In Section 3.3, the approximation of the integral

was considered where g(s) is a scalar function. This idea is now extended to the approx
imation of a continuous-time system with a transfer function description which is 
realised using a number of integrators. Consequently, if g(s) is a vector function, 
i.e. g(s) =  [gi{s) 2̂ (5 ) . . .gn(s)]T , the method generalizes to

■kT+T
g(<j) da (3.4.1)

kT

kT+T

&ig\{kT) -|- ßigi(kT  4- T) 
&292{kT) 4- ß2g2(kT 4- T)

g(<r) di'a « (3.4.2)
kT

angn(kT) +  ßngn(kT + T) 
=  ag(fcT) + ßg{kT  -I- T) (3.4.3)

where

(3.4.4)

Suppose a strictly proper analog system Q(s) = C (s ln — A) with input u and 
output y has a state space representation

x ( t )  =  Ax ( t )  4- Bu(f) 

y (t )  =  c  x { t )

(3.4.5)

(3.4.6)
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where A =  { } ,  B = {6^}, C = {cij}. Write

x(t) =  Äx(t)  + Äx(£) + Bu(t) (3.4.7)

where Ä is a matrix with all its eigenvalues strictly in the left half plane and A = A —A. 
This gives

»ifcT+T 

'kT

The continuous-time system evolves according to (3.4.8), and discretization of the sys
tem requires numerical evaluation of the integral on the right hand side.

r k T + T  _
(kT) + / eA{kT+T~a){Ax(a)  +  Bu(a)} da (3.4.8)

JkT

Using the Cayley-Hamilton theorem, one can write

n —1
eAt =  ^ U ( £ )  A1 (3.4.9)

i=0

where Tl(t) are scalar functions of t. Therefore (3.4.8) can be written as

rkT+T n ~ l
x(kT  + T)  =  eATx(kT) + / Y ,   ̂<t)Ä!{A x(ct) +  B u (ct)}

J kT i=o

_ rkT+T
= eATx(kT) + Y  k l r t(kT + T -  a){Ax(a) + B u (a)} da

JkT

Denote approximations to x(-) and y(-) by x(-) and y(-) respectively; that is

x ( .)« x ( .) ,  y ( 0 ~ y ( 0  (3.4.10)

An approximation to x(kT  -1- T) is given by

n —1
x(kT  + T) =  eATx(fcT) + £ Ä T i(T )a{ Ä x (* :X ) + Bu(fcr)}

2 =  0 
n —1

+ Y  Ä T,(0 ) ß  + B u + T)}
2 =  0

In effect, the integral corresponding to each state is approximated differently. Thus

x(kT + T) = eATx(kT)  +  eÄTa{ Ax ( kT)  +  Bu(fcT)}

+/3{Ä x(kT  +  T) + B u (kT + T)}

(In -  ß A) x ( kT  + T) = eÄT(In 4- aA)x(kT)  + eATaBu(kT)  +  /3Bu(kT +  T)

y (kT) =  Cx(kT)

(3.4.11)

(3.4.12)
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Introduce
rT~'

P (Q; i , • • • , Qcn , f3\, ■ • • , [3n )

a 2n-dimensional parameter vector. Define the resulting discrete system defined by 
equations (3.4.11) and (3.4.12) as G (z,p). The following result gives the state space 
representation of G (z,p) in the general case.

Lem m a 3.3 Suppose a strictly proper analog system Q(s) has a state space repre
sentation given by [A ,B,C]. Then G(z, p) has a state space representation given by 
[Fp, G p, H p, J p] where

F p =  ( I n - M r ' e ^ I n  + aÄ )

G p = ( I „ - /3 Ä ) - 1eA:r{aB  + (In + a Ä ) ( I „ - /3 Ä ) - 1l3B}

H p = C

J p =  C (In -  ß Ä ) - l0 B  (3.4.13)

and the matrices a  and ß  are given by (3.4.4).

Proof: The result follows by the manipulation of (3.4.11) and (3.4.12) and using the
fact that

zH (zIn -  F )-1G = HG + H (zl„ -  F )_1FG

I

3.4.2 Second Order Case

The above ideas can be carried over to second and higher order integral approximation. 
For the second order Newton-Cotes approximation, the basic idea is to approximate 
the integral over two sample periods. This gives a modified Simpson’s rule of the form

rkT +2T
/ g(cr) der ~  ocg(kT) + ßg(kT  + T) + 7 g(fcT + 2T) (3.4.14)

JkT

The discrete system is now defined in terms of p with

P =  (o!i, ocn /3n, qq, ••■In)

a 3n-dimensional parameter vector. In addition to a  and ß  defined in (3.4.4), define

7  = diag(7i,72,...,7m ) (3.4.15)
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Lem m a 3.4 Suppose an analog system &(s) has a state space representation 
[A,B,C] Then the discrete system G(z, p) resulting from a second order approxi
mation of the integral in

rkT +2T
x(kT  + 2T) = e2ATx(kT) + /  eA<'cT+2T'-,T>{Ax(a) + Bu(<r)} da(3.4.16)

JkT

is given by

x(kT  + 2T) = A!x(A:T + r ) +Aox(/cT) + B0u(/cr) + Biu(A;T + T)

+ B 2u(/cT + 2T) (3.4.17)

y (kT) = Cx(kT)  (3.4.18)

where

A0 = ( I „ - 7 A ) _1e2Ar(I„ + aA) (3.4.19)

A! = (In - y Ä ) ~ leATß Ä  (3.4.20)

B0 = (I„ -  7 Ä )-1e2ÄTaB  (3.4.21)

B! = (In -  7 Ä ) -1eÄ7'l3B (3.4.22)

Ö2 =  (In - 7 Ä ) _ 17B (3.4.23)

and ö , ß and 7  are given by (3.4.4) and (3.4.15). Additionally define a transformation: 

( l )
P (kT) = x(kT) -  B2u(kT) (3.4.24)

(P (kT) = x(kT  A T ) -  B2u (kT A T )  -  (Bx + A !B2)u(/cT) (3.4.25)

and matrices

Äi = Bi + A iB2 (3.4.26)

Ä2 =  B q A A0B 2 + A 1B 1 + A^B2 (3.4.27)

Then the second order system given by (3.4.17)-(3.4.23) is equivalent to the first order 
system

P (kT A T)
(2)
P (kT  + T) _ 

y (kT)

0 In 
A q Ai

P (kT)

P (k
+

Ai
a 2

u (kT)

c 0
P (kT) 

P (kT)
+ CB2u (kT)

(3.4.28)

(3.4.29)

Proof: The proof closely mimics the first order case. 1
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3.4 .3  M ixed  Order Case

In the previous sections, all integrals were replaced by either a first or second order 
method. One can of course envisage mixing first and second order approximations—this 
can easily be done using the above framework.

Introduce a diagonal matrix A which has zeros and ones on the diagonal. Transform 
the diagonal matrices ß  and 7 according to

ß  => ß  + (I„ — A)a (3.4.30)

7 => ß  + A(a + ß) (3.4.31)

Under this transformation with special conditions on Ä (see Section 3.5) and particular 
state space structures, some of the second order digital integrators resulting from the 
application of Lemma 3.4 are reduced to first order. In particular, a zero on the 
ith (1 < i < n) diagonal element in A will result in the itk digital integrator being first 
order, and a one on the j th (1 < j  < n) diagonal element in A will result in the j th 
digital integrator being second order.

3.4 .4  T he O pen-L oop P rob lem  S tatem en t

The open-loop problem statement of Chapter 2 (c.f. equation (2.2.3)) is now restated in 
view of the preceeding theory. The optimization problem is one of finding the parameter 
p which achieves the minimization:

min Jjv(p)p

where

N
J n (P) =  £  lly(fcT) -  y v(kT)\\l (3.4.32)

k=0

The optimization may be performed over the different orders of discretization developed 
in Sections 3.4.1-3.4.3. For a given p, there corresponds a discrete system G(z, p). The 
optimal discrete system is labelled G(z,p*).
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3.5 Special Cases to  G ain Insight into th e  P rob lem

This section deals with the selection of Ä. For particular choices of A. special properties 
manifest themselves. Of particular interest is: whether or not the cost function is 
convex in p; whether stability of the analog system is preserved under discretization; 
whether an elegant discretization error analysis exists, in which case an evaluation of 
performance is possible; and whether mixed order integral approximation is possible. 
These ideas are expanded upon in what follows. For an arbitrary choice of Ä, none of 
the listed properties are guaranteed. Only for special selections of Ä do some of these 
properties become apparent.

3.5.1 Sp ecia l C ase A =  0

In the first order case, equation (3.4.8) reduces to
• kT+T[ K l  -t- 1

x(kT  +  T) =  x(fcT) + / Ax(a)  + B u(<t) da
JkT

In fact, equations (3.4.5) and (3.4.6) can be written as

(3.5.1)

(3.5.2)x( t )  =  v k (t)  ; k = 1,2,-•• ,n
n p

v k{t) = ^ 2  akjx j { t ) + (P — number of inputs) (3.5.3)
3=1

n
Vk(t) =  ^ 2 ckjXj{ t )  

3= 1

i= l

(3.5.4)

Then a digital system G(z, p) generated via the approximation to the integral in (3.5.1) 
can be defined by the state space representation

xm(kT A T ) -  Xm{kT) = ocmvm(kT) + ß  mum(/cT + T) (3.5.5)
n P

vm{kT) =  Y Jamjij{kT) + Y ,b m M k T )  (3.5.6)
j=1 i= 1

n
Vm(kT) = ^ C n j X j i k T )  (3.5.7)

3=1

In this case, the discretization scheme corresponds to some of the classical methods of 
discretization. Recall that under the bilinear transformation, each integrator s~l in 
the continuous-time system is replaced by 0.5T(z + l)(z -  l ) -1 to give an approximate 
discrete-time system. When Ä = 0, each integrator of the n-dimensional system is 

replaced by
j =  1,2,. .. ,„

z  —  1
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In particular, when

G(z, p) is a bilinear transformation of £(s), when

a  =  TIn; ß = 0In

G (z,p) is a forward difference approximation of Q(s), and when

a  = 0In; ß = T ln

G (z,p) is a backward transformation of £($).

It is well known that the bilinear transformation maps a stable continuous-time system 
into a stable discrete-time system. However for arbitrary p (i.e. an arbitrary choice 
of ai,ßi in the first order case), a stable Q(s) does not guarantee a stable G (z,p). 
Consider

for some invertible mapping /(•) of the s-domain into the z-domain. It is of interest 
to know the conditions on /(•) for the preservation of stability of Q(s). The following 
results consider this problem for particular /(•).

L em m a 3.5 Let a continuous-time system G(s) be mapped into a discrete-time 
system according to equation (3.5.8) where

Proof: This proof and the next use the Schur-Cohn Theorem found in [57]. Without
loss of generality assume T  = 1. The mapping is generated according to

G(z ,p)  =  g ( f ~ 1(z)) (3.5.8)

Then
f ({s  : R(s) < 0}) C {z : \z\ < 1}

i f  and only i f  a <T/ 2 .

1 (1 — a)z -I- a
s z — 1

(3.5.9)

which can be rewritten as

s s
(3.5.10)
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Let s = a + ju) with a < 0. For \z\ < 1, Vcr < 0,a; one must have

— a  —
l l cv —  1

( 7  ( T

—- — b a — 1 —a -----cr—jui <T—JU

2au2 + 2 acr2 + 2 a — o2 — uj2
o2 + uj2

< 0

That is

i.e. if and only if a < 1/2.

2cr
ot <  - ( 1 ------ö-------ö2 a 2 -f uj2

(3.5.11)

(3.5.12)

(3.5.13)

I

The bilinear transformation and the backward Euler rule satisfy the conditions of 
Lemma 3.5. The following result is for the second order case.

L em m a 3.6 Let a continuous-time system Q(s) be mapped into a discrete-time 
system according to equation (3.5.8) where

/ ( z ) = ( 2T - a - p ^  + ßz + a  ^  g  R

Then

z2 — 1

/({s : 3R(s) < 0}) C {z : \z\ < 1}

if  and only if  a, ß satisfy

{a,ß : {2a + ß < 2 } 0 { ß <  1}} 

which corresponds to the shaded area of Figure 3-5.

(3.5.14)

Proof: The proof proceeds similar to the first order case. From the Schur-Cohn
Theorem, the roots of the equation

-  +  a +  ß  — 2 \ z 2 — ßz  — -  — a =  0
s ) s

lie inside the unit circle Vs = a -b j u, o  < 0 if and only if

a+JZ A j Z  + »  +  ß ~ 2  < o
- k -  + a  + ß - 2  -J ,

— O' — 

cr-juj a - j u j

(3.5.15)

(3.5.16)

and

a + j u

~ ß

— a a + 0 - 2  + - ia+ju j
1

a  +  ß  -  2 +

- ß

a+ju j

0
— a

l

a + 0 - 2 + - t<7— ju>

(T-jU a
0

- ß
a + ß -  2 +

- ß
l

O-ju) — a

> 0
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- -  2T

(Bilinear Transform)

Guaranteed Stability 
Region

Figure 3-5: Stability region when A = 0

(3.5.17)

The first inequality is satisfied in the region described by

{a, ß  : {2a + / ? < 2 } n { / ? < 2 } } U { { 2 a  + / ? > 2 } n { / ? > 2 } }  (3.5.18)

and the second inequality by

{a,/? : ß  < 1} (3.5.19)

which correspond to the region described by the set (3.5.14).

It is interesting to note that Simpson’s rule with a = T/3,/3 — 4T/3,7 — T/3  does 
not satisfy the conditions of the lemma. The special case Ä =  0 allows a formulation 
in which the integral associated with each state may be approximated with any order 
discrete approximation. This special case also has the advantage in effectively being 
an extension of the traditional methods of discretization. A further advantage of the 
case Ä = 0 is that the integrators of </(s) are preserved in G(p, z). This fact is a 
consequence of the particular structure of the transformation; that is, the presence of 
z — 1 in the denominator. Signal invariant transformations and other discretization 
schemes do not necessarily have this property. This has important consequences in 
digital controller re-design.

Simulation studies have shown that the choice Ä = 0 can produce numerical problems 
due to the fact that F p can be singular for some particular choice of the parameter p.
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Hankel Singular Values

It was noted in [34] that the Hankel singular values of a continuous-time system are 
identical to those of the corresponding discrete-time system produced by the bilinear 
transformation. In this section the relationship between the Hankel singular values and 
the parameters a  and ß  is explored. To enable the analysis, the first order case is 
considered with a  and ß  restricted to be scalars.

For the case A = 0, the discrete system is given by G(z, p) = H (zln — F) -t- J with

F = (I„ + aA )(In - /3A)-1 (3.5.20)

G = (al„ + (In + aA)(I„ — /3A)-1 /3)B (3.5.21)

H = C(I„ — /3A)_1 (3.5.22)

J = C(ln -  ßA)~l0B  (3.5.23)

The controllability gramian is given by the solution of the discrete Lyapunov equation

K = FKFt + GGr (3.5.24)

Substituting (3.5.20) and (3.5.21) into (3.5.24) and simplifying yields the equation

(a -  ß ) A K A T + AK + K Ar + (a + ß)BBT =  0 (3.5.25)

Similarly, substitutions of (3.5.20) and (3.5.22) into the discrete observability Lyapunov 
equation

W = FW Ft + Hr H (3.5.26)

gives

(a -  ß)ATW A  +  At W  + WA + ^ - ^ C TC = 0 (3.5.27)

Lem m a 3.7 Assume a + ß = c for some constant c > 0, and assume y' G [0, a — ß\. 
I f |YAi(A) -t- 11 — 1 is o f one sign for all i =  1, . . . ,  n, then the solution K to equation 

(3.5.25) and W  to equation (3.5.27) satisfy

K > K0 and W > W 0 if |a | > \ß\

K < K0 and W < W 0 if |a | < \ß\

(3.5.28)

(3.5.29)
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where Ko and W q are the solutions to equations

A K0 + K 0 AT + cBB t -  OAr W 0 + W 0A + i c TC = 0 (3.5.30)
c

Proof: The result follows from Lemma E.3 in Appendix E with 7 = a — ß; k =
and k = .

a  +  /3;

I

T heorem  3.2 Assume 7 ' G [0, a  — ß). I f  |7 'A*(A) + 1 | — 1 is of one sign for all 
i = 1, . . .  ,n, then the solution K to equation (3.5.25) and W  to equation (3.5.27) are 
such that

K W  > K 0Wo and W  > W 0 if  |a| > \ß\ (3.5.31)

K W  < KoW 0 and W  < W 0 if  |a| < \ß\ (3.5.32)

where Ko and Wo are the solutions to equations 3.5.30 and 3.5.30 respectively.

Proof: Note that equations (3.5.25) and (3.5.27) are linear equations and so the
product K W  is invariant along a — ß ^constant with a + ß varied. Now any change 
in a  and ß can be projected as a change in a + ß and a change in a — ß. Hence the
function K W  is dependent only on the change in a — ß and the result follows from the
previous lemma.

From the preceeding results one can see that starting from the bilinear transformation, 
if a is increased so that the discretization tends to the forward Euler scheme, then both 
the controllability and observability gramians will both increase. As a result

trace(KW ) > trace(KoWo)

That is, the sum of the singular valued squared is increased. Conversely, as a is 
decreased the sum of the singular valued squared is decreased.
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3.5.2 Special Case A =  A

In the case Ä = A, equation (3.4.8) becomes

r kT+T
x{kT A T) = eATx{kT) 4- / eMkT+T~s)B u (s) ds (3.5.33)

JkT

and Lemma 3.3 is greatly simplified with

F p = eAT, Gp = eAT(a  + ß)B, H p = C, J p =  C/3B

The following result can be stated about the convexity of the cost function in the case 
Ä = A. Only the first order case is stated but higher order results follow naturally.

L em m a 3.8 Given the continuous-time system

rkT+T
x{kT A T )  = eATx(kT) A / eA(A:T+T~<r)Bu(a) da; y{kT) = Cx{kT)

JkT

and the discrete system

x(kT  A T )  = eATx(kT) A eATaBu{kT) A /3Bu{kT A T); y (kT) = Cx{kT)

the cost function J{p) given by

J » ( P) = £  Uy(kT) -  y p(kT)l\l 
k=0

is convex in p.

Proof: The result follows simply from the fact that yp(kT) is linear in the parameter
p and so J n {p ) is quadratic in p. The positivity of J n (p ) then implies convexity in p. |

When Ä = A, preservation of stability for all parameter values p is guaranteed. This 
immediately follows from the fact that the eigenvalues of the analog system are mapped 
according to enXiT. Here A; denotes the eigenvalues of the analog system, and n denotes 

the order of the integral approximation.

Two other observations about the case Ä = A are made at this point. The first is that 
this case is amenable to error analysis; these results appear in Section 3.6. Second is the 
fact that there are restrictions on which states can be approximated with first order and 
which states with second order approximations. States corresponding to eigenvalues
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occurring in conjugate pairs must be approximated either by both first order or both 
second order, but not a mixture of first and second order. This is due to the fact that 
eigenvalues corresponding to the analog system are mapped according to enXlT. In 
the case of a conjugate pair of eigenvalues, the eigenvalues can not be “dissected” by 
trying to make one correspond to a first order approximation and the other correspond 
to second order. This is in some ways similar to standard model order reduction via 
balanced truncations where Hankel singular values with multiplicity greater than one 
can not be “dissected”. In the case Ä = A, for the allocation of first and second order 
digital integrators to be meaningful, it is assumed that the state space structure of Q{s) 
is in modal canonical form. That is, for Q{s) = C (sln — A )-1B, the A matrix is a 
block diagonal matrix made up of 1 x 1 and 2 x 2  blocks. The l x l  blocks correspond 
to real eigenvalues and and 2 x 2  blocks have eigenvalues in complex conjugate pairs.

3.5 .3  Sp ecia l C ase A =

Consider the special case, Ä = {aijSij}, where Sij is the Kronecker delta function. In 
this case equation (3.4.8) becomes

xi{kT + T) = eailTxi (kT)
I rj-1 J )

+ [  eau{kT+T~a){ai2x 2(a) 4- • • • + ainx n(a) + bXju3(a)} da (p = #  inputs) 
JkT  j = i

x 2( k T - h T ) =  ea22Tx 2(kT)
r k T + T  P

+ /  ea2̂ kT+T - ^ { a 2ixi(a)  + a23xs(a) 4------ b a2nx n{a) +  ^  b2jUj(a)} da
J kT j — i

xn(kT + T) = ea™T xn(kT)

+ [  eann{kT+T~a){anixi{a) + an2x 2(a) 4----- +  an(n-i)®n-l(^) +  Y ^b njUj(a)} da
JkT  j - i

Convexity of the cost function and preservation of stability are not guaranteed, and 
error analysis are not readily amenable to this case. The main advantage of this method 
is that the integrator corresponding to each state can readily be approximated by either 

first or second order.



CHAPTER 3. OPEN-LOOP PROBLEM 41

3.6 The Effects of Approximation Order on Discretization  

Error

Given the task of discretizing an analog system by approximating each analog integrator 
by a digital approximation, performance advantages may be expected using higher order 
integral approximations. Increasing the order of the approximations will not degrade 
the performance of the discretized system. Moreover, experimental evidence confirms 
that increasing the order of the approximations generally improves the performance of 
the discretized system. However, it is undesirable to produce very high order digital 
approximations due to the increased complexity of the discrete-time system.

The quantitative relationship between approximation order and discretization error is a 
complex one. A complete quantitative analysis of discretization errors produced by first 
or second order approximations does not appear to be possible. At best, results can 
be obtained which are in no way elegant and do little to illuminate our understanding. 
Bounds do exist for special selections of a , /3, 7 —for example, values corresponding to 
the Newton-Cotes methods. These bounds have been wrell documented in the literature 
and can be found in many undergraduate calculus textbooks; see [51, 72] for example.

The error bounds associated with the Newton-Cotes methods are generated using a 
collocation polynomial. A collocation polynomial is a polynomial which takes on the 
same functional values at certain points as the original function. These points are called 
points of collocation. There exists an error bound between the collocation polynomial 
and the original function, and this bound is used to generate an integral approximation 

bound.

Unfortunately this technique can not be applied in the general parameter case. The 
general parameter case uses approximating polynomials which do not necessarily match 
the original function at any point. As a result, tight error bounds can not be found. In 
fact, the discretization error can be made arbitrarily large with arbitrary p. Naturally 
there are additional problems associated with finding discretization error bounds for 

multivariable systems.

Faced with these difficulties, there are two options available. The first is to consider 
some simpler problems and try to draw some conclusions from them. In the rest of 
this section, a selection of simpler problems are presented. The second approach is to 
perform extensive simulation work. This has been done and a selection of results are
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presented in Section 3.9.

Of ultimate interest is the generation of a scheme, which, for a given state space realiza
tion, allows the designer to select which states require first order integral approximation 
and which states warrant second order. The factors which effect discretization error, 
and hence enable the designer to make a sensible allocation, are:

1. Sampling period

2. Hankel singular values

3. Bandwidth (with related undamped natural frequency and damping ratio)

4. Input spectrum

The relationship between these properties and discretization error are explained in 
Section 3.6.4. First some analytic results are obtained.

3.6.1 Scalar R esu lt

Define the discretization error at the output by

K u tp u t = sup Iy{kT) -  y{kT) \ (3.6.1)
k

The following result gives a bound on this error.

L em m a 3.9 Consider the scalar system

x(t) =  — ax{t) +  bu(t), a>  0 

y{t) = cx{t)

(3.6.2)

(3.6.3)

Let the integral be approximated via the trapezoidal rule (i.e. A = A with a  =  ß — j )  

and let the applied input be

u(t) = U cos(cctf), <jj > 0, A > 0 (3.6.4)

Then

Eoutput < \a U (u T  + a T f  +  0 (T 3) (3.6.5)
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where a is the Hankel singular value. 

Proof: See Appendix D.l.

By similar arguments, the discretization error bound at the output in the case when the 
second order Simpson’s rule (a = y = j , ß  = used as the integral approximation,
is given by

Eoutput < L aU(uT + + 0 (T 5) (3.6.6)

The error formula in both cases is made up of three components:

1. A multiplicative term cr, the Hankel singular value which is related to the “im
portance” of a particular state.

2. A term u T  related to the steady state error. Recall that the Nyquist sampling 
theorem says that the sampling period should satisfy coT <

3. A term aT related to the transient response of the system. In fact, a-1 is the 
time constant of the system so a sensible choice of sampling period should have 
aT <

One sees that provided (co -I- a)T < 1 , the second order approximation yields better 
results. Furthermore, the error is proportional to the Hankel singular value.

3.6 .2  Second Order R esu lt

The previous analysis is now repeated in the case of a second order system.

L em m a 3.10 Let Ä = A and consider a second order system in the form

x (t) =  Ax(t) A bu(t) (3.6.7)

y(t) = c Tx(t) (3.6.8)

with a real canonical realization

; cT = [ 1 0 ] , (ai > 0) (3.6.9)
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Let the integrals be approximated via the trapezoidal rule, and let the applied input 
be

u(t) = U cos (cot) (3.6.10)

Then

Eoutput ^ (loT  -f- (a i +  \a,2\)T)^ (3.6.11)

Proof: See Appendix D.2. I

The quantity O.ba^1 \Jb\ + b\ is of some interest. From the earlier discussion of the 
scalar example, one might expect that it is related to the Hankel singular values. The 
analytic expression for the Hankel singular values of the system at hand is very unattrac
tive, taking up about 10 lines of Maple1 output. However in the limit as «2 —>• oo, the 
sum of the Hankel singular values is in fact equal to 0.5ajf1y'6f 4- The discrepancy 
for other smaller values of a2 is not great, as seen by the following experiment. A num
ber (10000) of random systems were generated with &i,&2?ß2 selected to be normally 
distributed random variables with zero mean, variance equal to 1 (i.e. 02 small com
pared to 00). Also a\ was created by taking the absolute value of a normally distributed 
random variable with zero mean, variance equal to 1. A histogram of the ratio

E l=  1 g»

\Jb 1 +  6 2 / 2 0 1

is shown in Figure 3-6. The figures shows that a high proportion of systems have a ratio 
approaching one, i.e the quantity 0.ba^1 \Jb\ +  b\ is related to the sum of the Hankel 
singular values.

A second point of interest is the appearance of the quantity ai + |a21 which is related 
to the magnitude of the eigenvalues of A, or the undamped natural frequency of the 
system.

Finally, consider the canonical second order system with transfer function

S 2 -I- 2 (̂ LOn S -I- UJ%

1 Maple is a registered trademark of Waterloo Maple Softwaxe.
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4500

Ratio

Figure 3-6: Relationship of the error bound to the sum of Hankel singular values

where u n is the undamped natural frequency and £ is the damping ration. One state 
space realization corresponds to the choices

«1 =  Cwn, «2 = U nJ  1 — ( 2, b\ =  0, 62 =  - /-
VI -  C

in the system described in (3.6.9). In this case (3.6.11) becomes

Eoutput < ^ U — ^ = = ( u T  +  w„(C + A  -  C2)T)2 (3.6.12)

Notice that (3.6.12) is unbounded in the undamped (£ = 0) and critically damped 
(£ = 1) cases and unmeaningful for the overdamped (( > 1) case. The unboundedness 
for the (  = 1 case is an artefact of the state space realization. Specifically, since there are 
no oscillatory modes when (  = 1, the realization is inappropriate and unboundedness 
occurs. This is an indication of the importance of a good state space realization!

The C — 0 result is to be expected. As (  ► 0 the system approaches instability and
the errors become unbounded as signals get out of phase. This is an indication that 
higher order discretization methods may be appropriate for systems with low damping 
and corresponding large signals.

3 .6 .3  C om paring D iscrete  S ystem s A pproach

There is an inherent difficulty in comparing the difference between a discrete-time 
system and a continuous-time one. In this section, the error between a discrete-time
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system and a fast sampled discrete-time system is examined. Suppose a SISO system 
Q(s) has a state space representation given by

x(t) = Ax(£) + bu(t) A,(A) < 0 (3.6.13)

y(t) = c Tx(t) (3.6.14)

Denote a system discretized according to Lemma 3.3, with sampling period T, by

G(z, p ,T)

Denote an error system by Ge(z,p, N),  corresponding to the difference between a 
discrete-time system at a sampling rate T, and a discrete-time system at a sampling 
rate N  > 0, i.e.

m

Ge{z, P, N) = G(z, p, T) -  G{z, p, —) (3.6.15)

L em m a  3.11 Let a discrete-time error system Ge(z ,p ,N)  be formed according to 
(3.6.15), with Ä an arbitrary stable matrix, and the constraint

a  + ß  = T ln (3.6.16)

where T is the sampling rate. Assume u(t) is a stochastic process with

E{u(t)u(t  — r)} = e~qT, <; > 0

where E  denotes expectation.

Then a bound on the H2 norm of the error system Ge(z, p, N) as N  —> 00, is given by

||Ge(z,p,JV)||2 < T i { l - e - ' : r } ||a(ä)||2 (3.6.17)

Proof: The proof uses “blocking” techniques and is found in Appendix D.3.

Assumption (3.6.16) is not unreasonable, as simulation studies reveal that for T small 
compared to the system time constant, the optimal parameters do approximate this 
equation. Furthermore, the bound supplied by Lemma 3.11 is found to be reasonably 

tight in most examples.

Note that  ̂ -» 00 corresponds to an uncorrelated input signal. In this case, two points 

can be noted:
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• From equation (D.3.13) in Appendix D.3, ||Ge(z, p, iV)112 is in fact the H2 norm 
of the step invariant transformation of the original continuous-time system.

.  ||Ge(z,p,iV)||2 < T 5 | |a (s)||2

Taking the inequality (3.6.17) further yields

l|Ge(z, p, JV)H2 < T 5 { l - e - ' r }||e(s)||2

Hewn,
< r i {  i - e - ^ }

< min{cT 2, T 2} < r](n + 4)
i=l

n
Y  On 
i— 1

(3.6.18)

where o\ are the Hankel singular values of the continuous-time system, and 77 is a 
quantity related to the bandwidth given by

77 = inf{771 : \Q(ju)\< m \\G U v)\\o o  Vw > 771} (3.6.19)
juj + 771

The discretization error measured in a two norm sense is bounded by a product involving 
the sampling period, the bandwidth, the sum of Hankel singular values and a factor 
which relates to the correlation of the input signal.

If the preceeding analysis is extended to the second order discretization, it can be shown 
that the same bounds are achieved. This is not surprising for two reasons. The bounds 
calculated are worst case bounds—one would not expect an improvement in going to 
second order. Also simulation results show that unless the parameters are optimized, 
second order discretization performs no better than first order.

It is interesting to apply inequality (3.6.17) to a scalar system (with state space real
ization [a, 6 , cj), in the case when the input signal is a sinusoid. For u(t) =  U cos(uit), 
the autocorrelation is

1 f 27r U2
R(t ) =  — / U cos(ut).U cos(uj(t — r)) dr = —  cos(o;t )27r Jo 2

Normalising so that R(0) =  1 gives the normalised autocorrelation between sample 
points equal to R{T) = cos(u;T). Making the approximation

e~cT = Â - 1  «  R(T) = cos(cjT)
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and using inequality (3.6.17) gives

||Ge(z,p,iV)||2 < T 5{l-cos(w T )} ||e(s)||2

V2

(3.6.20)

(3.6.21)

Interestingly, the quantities aT, o and ljT  appear again.

3.6 .4  Sum m ary o f Factors w hich A ffect D iscretiza tion  Error

In Section 3.6 it was stated that there are four predominant factors which appear 
to affect discretization error. The preceeding analysis and heuristic arguments are 
now used to explain these factors. In addition, the problem of allocating different 
order integral approximations is considered and a set of criterion for selecting integral 
approximation order is outlined.

In the last three analytic results, it can be seen that the discretization error increases 
with increasing sampling period. The rate at which this increase takes place is de
pendent upon many factors, including the selection of the error norm used. This is a 
fairly intuitive result, suggesting that greater gains can be obtained with higher order 
approximation as T  increases, especially when the sampling frequency is slow compared 
to the cutoff frequency of the system. However, if the sampling frequency is less than 
the Nyquist sampling frequency, then the improvements with higher order are more 
dependent upon the particular example.

The discretization error is dependent upon the Hankel singular values. In a sense this 
is not surprising. It is well known in model order reduction (see [34] for example) that 
states which are “not important”, as measured by a small relative size of the Hankel 
singular value, may be removed with less penalty (in a system norm sense) as compared 
with states with large Hankel singular values. The importance of the Hankel singular 
values is seen in the preceeding results. This suggests that states associated with small 
Hankel singular values should have their corresponding integrals approximated by first 
order approximations, whereas the “more important” states, corresponding to large 
Hankel singular values, benefit proportionally more from higher order approximations.

In Section 3.3, a comparison is made between the bilinear transformation and a par
ticular first order discretization which is optimized with respect to the cost function
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(3.4.32). Figures 3-3 and 3-4 show this comparison and demonstrate that as a increases, 
greater improvements are obtained using the optimized approach. In this motivational 
example, it should be pointed out that as a is varied the Hankel singular value remains 
constant. Note also the presence of the term aT in the relationship (3.6.5). These facts 
along with results (3.6.11) and (3.6.19) suggest that the bandwidth or the predominant 
undamped natural frequency of the system plays a role in discretization error. Fur
thermore, result (3.6.12) suggests that larger errors may be expected in the case where 
£ —y 0, and so the discretization may benefit from higher order approximations.

The reason that larger bandwidth systems are associated with larger errors is a little 
counter-intuitive. The reasoning is similar to that of the £ -> 0 case just mentioned. 
In general, for a classical low-pass system, the higher the bandwidth the lower the 
attenuation for an input signal of a given frequency content. For example in the Bode

Figure 3-7: Attenuation of signal with u = Ui

plot of Figure 3-7, system 1 has a gain of around -30  db for an input signal of frequency 
ui = Ui. System 2, which has a larger bandwidth, has a gain of around —2 db at the 
same input frequency. All factors considered equal, large bandwidth systems have 
larger internal signals than small bandwidth systems. The larger signals will result 
in proportionally larger discretization errors. Conversely, smaller errors are associated 
with input signals having a high frequency content, due to greater attenuation of these 

signals.
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3.6 .5  Selection  C riteria for th e A llocation  o f A pp roxim ation  Order

A method for allocating different order approximations to different state integrals is 
presented below. This method is founded upon the factors that affect discretization er
ror that have been outlined in the previous section. These factors have been determined 
by considering the system as a whole. However, in order to apply this theory, certain 
sub-systems of a given system are isolated and compared in order to allocate different 
order approximations. It is assumed that the designer desires to use predominantly 
first order approximations, but wishes to determine which states justify second order.

The following method has been found to be successful:

1. If loT <£ ^  ( cj the input frequency) and u;CT - C  \  (ojc the system’s cutoff fre
quency), significant improvement with higher order approximation is unlikely, so 
approximate all terms to first order. As a rule of thumb, higher order discretiza
tion is has little effect if cjT  and cjcT  are less than 0.05.

2. Determine the Hankel singular values, cq. The order of the system can be de
creased at this point using standard model order reduction.

3. Next isolate the sub-systems. Given the state matrix A of the analog system, 
form a new state space system [A, 7r, i r T ]  where i t  is a column vector of zeros 
apart from a one in the position corresponding to the state of interest. This 
system may be non-minimal, so it is brought into a minimal form with new state 
matrix A'. The natural frequencies and damping ratios associated with the given 
state can easily be determined from A'. The bandwidth of the sub-system can 
be approximated by the largest natural frequency.

This process is greatly simplified if the system is in modal canonical form.

4. The bandwidths of each of the sub-systems must be weighed against the spectral 
properties of the input signal. Those sub-systems with large bandwidths are 
likely to benefit from higher order approximations, especially if they correspond 
to states with large Hankel singular values. The damping ratios associated with 
the given state, give additional aid in the selection.

Simulation results which show the validity of this procedure are presented in Section 

3.9.
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3.7 The Effects of State Space Structure on Discretization  

Error

Through simulation studies, it has been found that the particular analog state space 
structure used for discretization has a significant effect upon the quality of the dis
cretization. Inequality (3.6.12) also suggests a correspondence between state space 
structure and discretization error. Naturally, one would like to find state space struc
tures which reduce discretization errors.

The approach taken at this point is based on a physical problem: noise in an operational 
amplifier. The argument presented in this section demonstrates that a parallel exists 
between noise present in an operational amplifier acting as an integrating circuit, and 
the “noise” induced by approximating an analog integral by a digital approximation.

3.7.1 A n E xcursion  Into O perational A m plifiers

c

Figure 3-8: Analog integrator with noise

Consider the operational amplifier circuit in Figure 3-8 in which Vin is the input voltage, 
Vout is the output voltage, and R  and C are the values of resistance and capacitance 
respectively. Initially, assume ie = 0. Assuming an ideal operational amplifier (infinite 
input impedance, zero output impedance, high gain), the summing junction S  is kept 
at zero potential (5 is a virtual ground). The input-output relationship is then given

by

1
RC

(3.7.1)

dt (3.7.2)
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and so the output voltage is the integral of the input signal.

One of the properties of a “real” integrating circuit is noise associated with the oper
ational amplifier. This noise is modelled as an independent white, zero mean current 
source ie, where the point S is assumed to remain at zero potential. One then has

For a system

1 O f  .
V o u t  =  y i  I  i + ie d t

c  J t o
(3.7.3)

- - w C v" d,+
■«/

ie d t
0

(3.7.4)

x — ax + bit (3.7.5)

y = cx (3.7.6)

in which the integrator is modelled by the noisy integrating circuit of equation (3.7.4). 
If the state x is equivalent to Vout , then

• a b 1 .
'  out RC R C U C ^

y =  (A out

(3.7.7)

(3.7.8)

Therefore, using this particular noise model, the integrator noise appears directly in 
the state equation but does not appear in the output equation.

The minimization of the effects of this integrator noise is a common problem in elec
tronic engineering. For example, a common practical problem is: given n integrators 
of variable quality, how should one select the position of each integrator as a function 
of its quality, so as to minimize the effect of integrator noise on the amplifier output?

P ro p o sitio n  3.1 The minimization of discretization error is closely associated with 
the minimization of integrator noise in an analog operational amplifier circuit.

This claim is supported by the fact that when an digital integrator approximates an 
analog integrator, an error is introduced. If the input signal into the integrator is “suf
ficiently rich”, then one would expect that the error made from one sampling period to 
the next would be “reasonably uncorrelated”. Heuristically, the discretization process 
can be thought of as being equivalent to replacing each ideal analog integrator by an 

analog integrator plus an independent white noise source.

Minimization of discretization error and minimization of integrator noise are not en
tirely analogous due to the presence of memory associated with integration. The white-
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ness assumption that will be made on the discretization error does not strictly hold, 
however simulation studies suggest that the proposition is well supported.

3.7 .2  O ptim al S ta te  Space Structure for th e M in im ization  o f  
Integrator N oise

In this section, the problem of determining the state space structure which minimizes 
the effect of integrator noise on the output of a given system is studied.

An n-dimensional system is associated with n integrators. It is well known that, for a 
given input-output transfer function, there are an infinite number of realizations using 
the n integrators. However if each integrator is not a “pure” integrator but has noise 
associated with it, then there are some structures which are better than others, in the 
sense of minimizing the combined effect of the integrator noise at the output.

Assume that the state space model of our system without integrator noise is given by

x(t) = A x(t) + Bu(f) (3.7.9)

y{t) = Cx(t) (3.7.10)

In accord with the Section 3.7.1, associate with each integrator a noise source rji (1 < 
i < n). Model the noise as appearing at the input of each integrator with each 77* white, 
Gaussian and zero mean. Let the variance of noise source rji be u =  E{rjf}, where E  
denotes expectation. Let

riT(t) m{t) m(t) ••• Vn{t)
-|T

(3.7.11)

with

E{ri(t)rjT (T)} = diag(cji,a;2 , • • •, wn) = Etv 6{t -  r) (3.7.12)

where <$(•) is the Dirac delta function and f lv is a diagonal matrix containing the 
covariances of each of the rji(t). The state space model which represents the effect of 
integrator noise is then given by

x(t) =  Ax(t) 4- rj{t) + Bu(f) (3.7.13)

y (t) = Cx(t) (3.7.14)

Let P denote the the steady state covariance of the state x(t) due to the integrator 

noise. The matrix P satisfies the Lyapunov equation

AP + PAr + Qv =  0 (3.7.15)
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whereby P  satisfies

P =  f ° °  eA t n „ e ATt dt  
Jo

(3.7.16)

The steady state covariance of the output y (t) due to rj(t) is then given by

E„ =  C P C r (3.7.17)

Also, assume that the system input u (t) is an independent white noise process of a 

given intensity, f iu. Assume that the covariance of the output due to u( t )  is given by 

£ u, and let

{ ^ u ) j j  b  i j  — 1? 2 , . . . ,  riy (3.7.18)

where n y is the number of outputs. Define

W u = d iag  (i/f, i ^ ) (3.7.19)

Finally, define an output noise gain

K =  t r ( W - 'S , ) (3.7.20)

The noise gain reflects the effects of the integrator noise on the output 

external input. The output noise can be calculated from

weighted by the

k = t r t W ^ C  ^  eA t n veATt dt C T ) 
Jo

(3.7.21)

= t r (tor, [° °  eAT tC T W ~ l C e At dt)
Jo

(3.7.22)
roc T

= t r ( f lv /  eA tC T C e At dt) 
Jo

=  tr(f2T?Q)

(3.7.23)

(3.7.24)

where Q satisfies the Lyapunov equation

Ar Q + Q A  +  C r C =  0 (3.7.25)

and C =  W u“ 1/2C j.

Let z (t) =  T zx ( t )  define a new state space representation of the system given by 

equations (3.7.13) and (3.7.14). Then it is straightforward to show that the output 

noise gain k becomes

k =  t r ( 0 T?T j Q T 2) (3.7.26)

where Q is given by (3.7.25).
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Given u (t) an independent white noise process of intensity, Plu, a scaling condition is 
imposed upon the states. The scaling condition is given by

{ T r 'K f T “ 1)7, =  1 ; j  =  1 , 2 ( 3 . 7 . 2 7 )

where

AK + KAt + B B 7 = 0 ; B = BEllJ 2 (3.7.28)

Scaling guarantees that the integrator outputs are neither “too small” nor “too large” 
in the L2 sense. A small integrator signal means a poor SNR, while a large integrator 
signal will produce significant overflow and integrator distortion.

The aim of the problem is to find an invertible similarity transformation T 2 such that 
the output noise gain given by (3.7.26) is minimized according to a scaling condition 
(3.7.27). This is a well known problem (see for example [84]) whose solution is given 
by the following lemma.

L em m a 3.12 Suppose [A(= A), B, C] is a minimal asymptotically stable nth order 
system such that [A, B, C] is in input balanced form with

K  = In ; Q = E2 = diag(o2, o\ , . . . ,  o'2).

Then the class of state space realizations [A, B, C] where

A =  T J1Ä T2; B = T ^ B ; C =  CT2

which minimizes (3.7.26) subject to the L2 scaling constraint (3.7.27) is defined by the 
transformation T 2 with singular value decomposition

T 2 = U n V T (3.7.29)

in which U, II and V are chosen such that:

1. D =  U t £ U  is diagonal

1 n2. n 2 = X ft- 'D -1 ; A = — O k w h e r e  theuk are defined by equation (3.7.12)
nt i

3. { v n , D V T} M =  X vfc

Under these conditions

k* = argminK = -  f  ̂  ok\  ; 0 = * ~ (3.7.30)
T. n Vfctl /  S*=l ^
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Proof: See [84], result 4.4.5.

In [84], this result is presented in relation to the problem of minimizing the effects 
of quantization. Furthermore, the result is used to argue the optimal assignment of 
different wordlengths to each state. It is reasoned that if an assignment of wordlengths 
is made to mimimize the total output roundoff noise, then the transformation (3.7.29) 
should be such that T 2 = In, i.e. there is strong justification for choosing the input 
balanced realization. Those states associated with large Hankel singular values should 
be targeted for reducing the output noise gain by placing a high order digital integrator 
on the state integral. This again confirms what was stated in the Sections 3.6.4 and 
3.6.5.

Simulation results confirm that the state space structure obtained from Lemma 3.12 
is effective in reducing discretization error. This is demonstrated in Section 3.9.3, see 
Table 3.4. Also the input balanced realization is shown to be good.

3.8 T h e D iscretiza tio n  A lgorith m

In this section, the general discretization algorithm which minimizes the cost function 

J n {v>) is presented.

Figure 3-9: Error System

Referring to Figure 3-9, assume the input signal r (t) is generated via the impulse 
response of a strictly proper linear time-invariant system 7Z(s). Denote the signal 
invariant transformation of &{s) with respect to r(t) by G^(z). Recall the cost function
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(3.4.32) written as
N

J n ( p ) = E  ! l e ( f c T ) l l 2
k = 0

where e(kT ) is the signal generated by the difference of the responses of G (z,p) and
G rT (z).

Introduce r(A;T), a discrete signal generated by sampling r (t). The signal r(kT) can 
be generated via the discrete impulse response of R t (<2:), where R t (z) is the impulse 
invariant transformation of 7£(s). In the general second order case, the system G(z, p) 
is described by equations (3.4.28) and (3.4.29). Denote a state space realization of the 
cascade of G(z, p) and R t (z ) by [Fp, G p, H p, J p]. Denote a state space realization of 
the cascade of G^(z) and R t {z ) by [Fr , G r , H r , J r]. Form a state space error system 
[F, G, H, J] with

F

J

H = [H„ -  Hr] ;

(3.8.1)

The signal e(kT ) is generated via the impulse response of the system (3.8.1) i.e.

x{kT + T) = Fx(kT)  4- G 6{hT) 

e(kT) = Hx{kT) + J5{kT)

(3.8.2)

(3.8.3)

where £(•) is the Kronecker delta function.

In creating an algorithm for the minimization of p), ideally the knowledge of the 
cost function and its gradient at a point p should be available. The technique of solving 
a discrete-time Lyapunov equation can be used if the eigenvalues of F are guaranteed 
to lie strictly inside the unit circle. However, this is not always going to be the case, 
especially if the reference signal model has any poles on the unit circle.

The method found most effective is the doubling algorithm for discrete-time Lyapunov 
equations. This algorithm is reviewed in [2]. It allows the rapid computation of the 

quantity
N

Xnpo„ „  = E F 'G G r (Fr )*, N  = 2"—  -  1
1=0

which in turn gives p) = tr(H X npassesH T + J J r ). The quantity npasses gives the 
number of passes through the algorithm about to be presented. The limit as N  —)• oo, if 
it exists, can be calculated very quickly. Furthermore, the partial derivatives of
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with respect to the parameters p can also be calculated quickly using this algorithm. 
The doubling algorithm with gradient calculations is now outlined.

A lgorithm  3.1 (Doubling algorithm)

X 0 := G G t

FOR i = 1 TO 3n
CALCULATE ^
Wn ' '=  —' Op

NEXT i

Y 0 := F
FOR j  = 1 TO Tipasses

FOR i = 1 to 3n
:= W j - i X j - t f  j_,  + Y j_1X j_1W j_ 1 + Y j - i flx ,■ _  t

Ops YT-1 +
ax,_i

Opi

w j , i  :=  +  W j _ i , i Y j _ i

NEXT i
Xj := Yj_! + X j.!

Y j  : =  Y U
NEXT j

The cost function is given by

J w(p) = tr(H X npo„ „ H r  + J J T')

and the gradient by

9 J n { p )
dpi

tr ( | l j r  + + H 0X, H t
\ dp\ öpi dpi

+ | 5 x
d Pi Tip a sses t r  + HX T ip asses

^H r \  
^Pi )

With this information, the quasi-Newton method with a cubic polynomial line search 
method available with MATLAB’s Optimization Toolbox has been found to be an 
effective algorithm for the minimization of J n {p )- This method is fast even for large 

N  and n.

In light of the preceeding results, the following method is proposed.

1. Select A—generally A = {aij5tj} is a good first choice.

2. Determine a state space realization of the continuous-time system. This can 
be generated according to Lemma 3.12. Alternatively, an internally balanced
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realization is generally quite satisfactory. The selection A = A with a modal 
canonical realization has been found to have the best numerical properties for 
systems of high order.

3. Use the procedure outlined in Section 3.6.5 to determine the importance of each 
state in relation to discretization—recall that this involves determining the Hankel 
singular values of the system and the bandwidths of sub-systems. A state may 
even be removed at this point, as in standard model reduction.

4. Select npasses, the number of passes through the algorithm. Typically npasses ~  
4 — 5 is appropriate if the transient response is the major concern, while npasses «  
15 is suitable if the steady-state performance is important.

5. Initialize the parameter p to correspond to a standard Newton-Cotes value.

6. Form a state space error system according to equation (3.8.1).

7. Find the optimal p using the algorithm of this section.

This algorithm has been implemented in MATLAB code; a description can be found 
in Appendix F.

A further point concerning steady state performance is worth mentioning. Preservation 
of the frequency characteristics is often the main objective of discrete approximation, 
and in [15] necessary and sufficient conditions are given for the retention of sinusoidal 
steady-state properties of the prototype system, as well as conditions for the stability 
of the discretized system. The algorithm presented here does not have any stability 
constraints or any mechanism to guarantee the retention of sinusoidal steady-state 
properties. However in practice this does not seem to be a problem, especially if n paSses 

is large.

3.9 Simulation Results

It should be stressed that many of the statements and conclusions appearing in Sections 
3.6 and 3.7 have been drawn from the results of extensive simulation studies. In this 
section, a selection of these results are presented and it shown that they support the 
relevant assertions. The results were obtained by using the discretization algorithm of 

Section 3.8.
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3.9.1 E xam ination  o f th e Effects o f B andw id th  upon D iscretiza tion  
Error

In the first study, the relationship between discretization error and bandwidth was 
investigated. A third order system, comprised of a parallel connection of a canonical 
second order system with a first order system, was used. The realization [A, b, cr ] used 
was

The input was a sum of sinusoids,

u(t) = sin(cJi<) + cos(cj2t)

The optimization was performed over npasses =  15 passes, with all initial states equal 
to zero. Although Ä = A, the choice of Ä did not greatly affect the final cost function 
in this particular study.

A number of experiments were performed, first with T  = 0.08 seconds. The results are 
summarized in Tables 3.1.a-3.1.d. The column “HSV” gives the Hankel singular value 
corresponding to each state, “BW” gives the approximate bandwidth corresponding 
to each sub-system, and “allocation” gives the order of the integral approximation 
corresponding to each state.

Trials A1-A4 illustrate the case when the input frequencies are outside the bandwidth 
of a particular sub-system, specifically the sub-system formed by the first and second 
states. Notice that increasing the order of discretization has little effect. Trials A5-A8 
again illustrate this, however the improvement due to second order discretization is 
not as great when the product of the input frequencies and the sampling period are 
significantly less than 0.5, i.e. u){T 0.5.

Selecting a higher order discretization on any of the state integrals results in an im
provement. This is evidenced in trials A9-A12. Neither sub-system attenuates the 
input significantly, and u>tT  is large. Trials A13-A16 are basically the reverse of A1-A4. 
It is interesting to note that the scalar sub-system with effective damping ratio 1 can 
still benefit from the use of higher order discretization. This appears to be supported 

by result (3.6.12).

In Table 3.2, A9-A12 are repeated for a larger sampling period, T = 0.2. A large
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Trial Ul ^n C a c HSV BW Allocation Error

0.7056 0.1 1

A l 3 6 0.1 0.7 10 1 0.1801 0.1 1 1.4489

0.4745 10 1

0.7056 0.1 2

A2 3 6 0.1 0.7 10 1 0.1801 0.1 2 1.4489

0.4745 10 1

0.7056 0.1 1

A3 3 6 0.1 0.7 10 1 0.1801 0.1 1 0.1073

0.4745 10 2

0.7056 0.1 2

A4 3 6 0.1 0.7 10 1 0.1801 0.1 2 0.1073

0.4745 10 2

Table 3.1.a: Relationship between discretization error and bandwidth

Trial UJl U)2 ^ n C a c HSV BW Allocation Error

0.7056 0.1 1

A5 0.5 1 0.1 0.7 10 1 0.1801 0.1 1 0.1233

0.4745 10 1

0.7056 0.1 2

A6 0.5 1 0.1 0.7 10 1 0.1801 0.1 2 0.1233

0.4745 10 1

0.7056 0.1 1

A7 0.5 1 0.1 0.7 10 1 0.1801 0.1 1 0.1044

0.4745 10 2

0.7056 0.1 2

A8 0.5 1 0.1 0.7 10 1 0.1801 0.1 2 0.1044

0.4745 10 2

Table 3.1.b: Relationship between discretization error and bandwidth
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Trial COl ^ n C a c HSV BW Allocation Error

1.1480 10 1

A 9 3 6 10 0.7 10 1 0.0109 10 1 1.8392

0.1589 10 1

1.1480 10 2

A10 3 6 10 0.7 10 1 0.0109 10 2 0.3258

0.1589 10 1

1.1480 10 1

A ll 3 6 10 0.7 10 1 0.0109 10 1 0.2800

0.1589 10 2

1.1480 10 2

A12 3 6 10 0.7 10 1 0.0109 10 2 0.2740

0.1589 10 2

Table 3.1.c: Relationship between discretization error and bandwidth

Trial v  1 lt>2 ^ n C a c HSV BW Allocation Error

0.7460 10 1

A13 3 6 10 0.7 0.1 1 0.1844 10 1 0.0802

0.4384 0.1 1

0.7460 10 2

A14 3 6 10 0.7 0.1 1 0.1844 10 2 0.0715

0.4384 0.1 1

0.7460 10 1

A15 3 6 10 0.7 0.1 1 0.1844 10 1 0.0741

0.4384 0.1 2

0.7460 10 2

A16 3 6 10 0.7 0.1 1 0.1844 10 2 0.0715

0.4384 0.1 2

Table 3.1.d: Relationship between discretization error and bandwidth
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Trial LO\ UJ2 ^ n C a c HSV BW Allocation Error

1.1480 10 1
B1 3 6 10 0.7 10 1 0.0109 10 1 56.7932

0.1589 10 1

1.1480 10 2

B2 3 6 10 0.7 10 1 0.0109 10 2 0.6844

0.1589 10 1

1.1480 10 1

B3 3 6 10 0.7 10 1 0.0109 10 1 0.6739

0.1589 10 2

1.1480 10 2

B4 3 6 10 0.7 10 1 0.0109 10 2 0.6687

0.1589 10 2

Table 3.2: Relationship between discretization error and bandwidth

improvement is seen in going to higher order approximations.

3.9 .2  E xam in ation  o f th e Effects o f th e H ankel Singular V alues upon  
D iscretiza tion  Error

Next, the importance of the Hankel singular values was examined. The system of 

interest was given by

Q(s)
s -T 2 -f- e

(s +  2)(s +  1) 

Realization 1 had a state space structure given by

A =
-1  0 
e - 2

; b ; c l l

corresponding to the cascading of

1 s “I- 2 -T e
------  x ---------—
s +  1 s ■+■ 2

while realization 2 had a structure given by

I

1 to o e

A =
1  - 1

; b  =
1

; c T  = 0  1A
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corresponding to the cascading of

s 4-2 + 6 1-----------  x ------
s 4“ 2 s + 1

Only realization 1 was used in this case, and A = {ciijSij} was selected. The input was

u(t) = sin(0.2£) + cos(0.4£) 

and the results are presented in Table 3.3.

The results are very similar to those seen in standard model order reduction. The states 
corresponding to large Hankel singular values benefit more from the application of high 
order discretization, especially for larger sampling periods. As the order of magnitude 
of the Hankel singular values becomes comparable (as seen in C9-C12), it becomes less 
critical where the higher order approximations are assigned.

3.9 .3  E xam ination  o f th e Effects o f S ta te  Space Structure upon  
D iscretiza tion  Error

In this case, the importance of state space structure was considered. The choice A = 
{ciijdij} was retained throughout the simulations of this section.

Trials C5-C8 were repeated for the cascade realization 2 referred to in the last section. 
The difference can be seen particularly clearly by comparing C6 in Table 3.3, to D3 
in Table 3.4. This difference can be explained by the fact that large discretization 
errors generated in the state corresponding to the large Hankel singular value do not 
propagate through the whole system in D3.

Next a number of state space structures were examined. The system of the last section 
was used, with e = 1 x 10—4, and the optimization was done with respect to a simple 
input

u(t) = cos(0.4i)

All integrals were approximated to first order. The results are displayed in Table 3.5. 
An error is not presented for studies E7-E10 in Table 3.5 due to the fact that a global 
minimum was difficult to obtain because of the extremely poor numerical properties of 
the realization. Notice that the input and output balanced realizations are good, as 
is the cascade realization with the “more important” state second in the series. The 
optimal state space structure using the theory of Section 3.7 is also included (E ll). 
The selection f l u = 1 and f 2̂  = IOOI2 is used to obtain this realization.
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T ria l e H S V T A llo c a tio n E r r o r

C l 0.01 0 .5028 0.2 1 0 .0252

0 .0003 1

C 2 0.01 0 .5028 0 .2 1 0 .0252

0 .0003 2

C 3 0.01 0 .5028 0 .2 2 0 .0251

0 .0003 1

C 4 0.01 0 .5028 0 .2 2 0 .0251

0 .0003 2

C 5 0.01 0 .5028 1 1 0 .1543

0 .0003 1

C 6 0.01 0 .5028 1 1 0 .1502

0 .0003 2

C 7 0.01 0 .5028 1 2 0 .1300

0 .0003 1

C 8 0.01 0 .5028 1 2 0 .1 2 9 7

0 .0003 2

C 9 1 0 .7854 1 1 0 .2580

0 .0354 1

C IO 1 0.7854 1 1 0 .2403

0 .0354 2

C l l 1 0 .7854 1 2 0 .2303

0 .0354 1

C 12 1 0 .7854 1 2 0.2211

0 .0354 2

Table 3.3: Effect of Hankel singular values
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Trial € HSV T Allocation Error

D1 0.01 0.0003 1 1 0.1543

0.5028 1

D2 0.01 0.0003 1 1 0.1292

0.5028 2

D3 0.01 0.0003 1 2 0.1304

0.5028 1

D4 0.01 0.0003 1 2 0.1254

0.5028 2

Table 3.4: Importance of state space structure

Trial S tructure Error

E l parallel (modal canonical) 0.1602

E2 cascade realization 1 0.1268

E3 cascade realization 2 0.0894

E4 balanced 0.1264

E5 input balanced 0.0956

E6 outpu t balanced 0.0953

E7 controllability -

E8 observability -

E9 controller -

E10 observer -

E l l optim al 0.0701

Table 3.5: Importance of state space structure
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Eigenvalue Damping Frequency HSV
-0.0030+1.OOOOi 0.0030 1.0000 4.9594x 102
-0.0030+l.OOOOi 0.0030 1.0000 4.9880x 102

-0.2921 1.0000 0.2921 6.5085 x 10°
-0.3894 1.0000 0.3894 2.4159 x 10-2

Table 3.6: System properties

Simulation studies reveal that the state space structure plays the largest role when 
there is a large divergence between the Hankel singular values. For instance, inequality 
(3.6.12) suggests that, as £ —> 1, the discretization errors may become very large for a 
canonical second order system realized by a real canonical form. However, in practice 
the state space structure is not overly critical for canonical second order systems with 
0 < C < 1- This can be attributed to the fact that the Hankel singular values for such 
systems are not widely divergent.

A major point to be made here is that the ease with which the global minimum of 
the discretization error can be found may depend heavily on the state space structure, 
even if the value of the global minimum does not. For example, numerical problems 
are experienced with the algorithm when a second order system is realized with a real 
canonical form and £ —*■!.

3.9 .4  C ase S tudy

In this section, the techniques outlined in this chapter are applied to the discretization 
of a fourth order system. The system under consideration is

. 5.4808s3 -  3.3826s2 + 0.3449s + 0.8349 
“  s4 + 0.6874s3 +  1.1178s2 4- 0.6821s +  0.1137

A low order discretization is desired with only one state integral able to be approximated 
via a second order numerical approximation. Again, the input is a sum of sinusoids with 
frequencies 0.5 and 0.2 rad/sec. The sampling period is chosen to be T =  1 second, and 
Ä = A with a modal canonical form is selected because of numerical considerations.

Table 3.6 summarizes the system properties. Because of the conjugate pair of poles, 
the selection of Ä limits the application of second order approximations to either the 
third or fourth state. This is not necessarily detrimental as seen from the previous
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Trial Discretization method Cost
FI Bilinear transformation 8.2285 xlO3
F2 Optimized 1 1 1 1 6.1767 xlO2
F3 Optimized 2 2 2 2 2.4960 xlO1
F4 Optimized 1 1 2  1 6.2350 xlO1
F5 Balanced square root truncation 1.2370 xlO6
F6 Balanced stochastic truncation 4.1026 xlO5

Table 3.7: Results of case study

sections—states which correspond to a damping factor equal to one are often sensitive 
to the order of the discretization. However it could be argued that, due to the fact 
that the first two states are poorly damped, they could be very sensitive as well. The 
natural frequencies of the third and fourth states are similar, but the third state has 
a large Hankel singular value in comparison to the fourth state. Therefore the third 
state was chosen for the second order approximation.

The optimization algorithm was run, and the results are summarized in Table 3.7 and 
Figure 3-10.

The standard bilinear transformation is included for comparison in trial FI. It should 
be noted that pre-warping does little to improve this result. Trials F2-F4 show the 
optimized scheme with corresponding orders of approximation. Notice the cost in F4 
is still large compared to F3, indicating that the other states would certainly benefit 
from second order discretization.

In trials F5-F6, all of the state integrals were approximated by second order discretiza
tion. In this case, the optimization was performed, followed by a model order reduction 
in order to bring the discrete system back to fifth order. This clearly shows the efficacy 
of the method outlined in this chapter. Blindly optimizing with all state integrals ap
proximated to second order and then model order reducing is not an effective method 
of discretization.
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bilinear

-  - optimized 

----- continuous

Figure 3-10: Comparison of trials FI and F4

3.10 C onclusion

This chapter has been concerned with the development of an algorithm for open-loop 
discretization. The algorithm produces a discretized system of low order, with small 
discretization error compared to the standard Newton-Cotes schemes. Using an appro
priate selection of state space structure and a judicious selection of discretization order 
for particular states, the discretization error can minimized without resorting to high 
complexity.

The analysis of this chapter also contributes to the understanding of the factors which 
effect discretization error and gives some new mathematical and engineering insights. 
The inherent difficulties of discretization have been captured and the experience and 
intuition gained is relevant to all forms of discretization, be it open-loop or closed-loop. 
Consequently, the techniques developed form the basis of a procedure for the digital 
re-design of analog controllers presented in Chapter 4.



C hapter 4

Closed-Loop P rob lem

4.1 Introduction

r I 1 his chapter outlines three methods of digital re-design or closed-loop discretization 
1 —the first based on signal invariant transformations and H2 optimal control

theory, the second based on signal invariant transformations and convex optimization 
theory, and the third based upon an extension of the integral approximation method 
presented in Chapter 3. In general, each method has a different choice of the closed-loop 
distance function $ c to be used in criterion (2.3.3), introduced in Chapter 2.

The first method involves a two part optimization procedure—a primary optimization 
and a secondary optimization. The primary optimization solves a # 2  optimal control 
problem using Youla parameterization, factorization theory and projection mappings. 
The secondary optimization encompasses some freedom and attempts to find a digital 
controller with good intersample behaviour. The performance of the resulting digital 
controller is shown to be very good compared to existing discretization schemes, from 
both a time-domain and frequency-domain perspective.

The second method, based on convex optimization, is motivated by two factors. The 
first is the great flexibility that the method allows. A number of different choices of 
£c can be made and a number of constraints can be incorporated into the design. The 
second factor is the numerical robustness of convex optimization algorithms. In some 
cases, the first method suffers from numerical difficulties in finding the optimal Youla 
parameter Q(-)—this is alleviated using this algorithm.

70
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The third method is motivated by the fact that the first two methods produce a digital 
controller of higher order than the original analog controller. As a result, some form of 
controller reduction is generally required. This is not the case with the third method. 
At the outset of the design, the order of the digital controller is selected. In some 
applications, this can prove advantageous.

This chapter is organized as follows. Section 4.2 presents the theory of the H2 opti
mal control method of controller discretization. The convex optimization method is 
presented in Section 4.3. The final method based on integral replacement is given in 
Section 4.4. Simulation results are presented in Section 4.5 with conclusions drawn in 
Section 4.6.

4.2 H 2 O ptim al C ontro l M ethod

4.2.1 In trodu ction

In the open-loop case, the use of signal invariant transformations enables the design of 
a digital system whose output matches perfectly a given analog system at the sample 
points. Using similar techniques, matching can be achieved in the closed-loop setting. 
More precisely stated, in response to a given reference signal, it is possible to digitally 
re-design an analog controller such that the output of the closed-loop sampled-data 
system matches that of the original analog system, either at the sample points or at 
any intersample point. However unstable pole-zero cancellations may result from this 
approach. A technique which avoids this problem is introduced. The methodologies of 
signal invariant transformations, Youla parameterizations [87, 88] and optimal control 
theory underpin this method. The method has two parts: a primary optimization and 
a secondary optimization.

The goal of the primary optimization is to find a digital controller which minimizes 
the difference between the I2 norm of the sampled-data system output and that of the 
analog system at time kT  + £, where T  is the sample period, f is an intersample point 
(i.e. 0 < £ < T), and k is an integer. The optimization is performed in response to a 

given reference signal.

The need for a secondary optimization arises form the fact that the primary optimiza
tion minimizes the I2 norm at a given £, but does not consider other intersample points.
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This problem is addressed by re-designing the analog controller based on the optimiza
tion at a particular intersample point £*, where is selected such that the behaviour 
at other intersample points is in some way optimized. The choice of a secondary opti
mization criterion allows some freedom.

As with the approach due to Anderson et al. [1, 43], a digital controller of comparatively 
high order results with this method, and consequently, standard model reduction meth
ods may need to be employed. A reduction technique for sampled-data systems is given 
in [56]. As the sampling rate is decreased, the digital controller becomes necessarily of 
higher order to enable the preservation of performance.

4 .2 .2  Prim ary O ptim ization  - l2 M in im ization  o f D iscretiza tion  Error 

at an Intersam ple Point

In this section, theory is developed which enables matching at a single intersample 
point. More precisely, a digital controller is found which minimizes the l2 norm between 
a closed-loop analog control system and a closed-loop sampled-data system at a single 
intersample point £, 0 < £ < T; the minimization performed with respect to a given 

reference signal.

The strictly proper linear time-invariant system 72.(s) 6 Cnx l, whose impulse response 
generates the reference signal r(f), is assumed to be of the form

T
7t(s) = n ( s ) r2(s) rn(s) (4.2.1)

with 6(ri(s)) =  1, i =  1 ,2 ,. . . ,  n. This restriction on the relative degree is necessary for 
the realizability of the digital controller generated from the discretization algorithm— 
an improper controller may result otherwise. If this condition is not satisfied for a 
particular rj(s), then a modification is required. It may be sufficient to alter the phase 
of a particular rj(s). For example, if the desired reference trajectory is r(t) = sin(u;t) 
then TZ(s) = u{s2 + u ;2)-1 which is unsatisfactory for this method. By changing the 
reference signal to r(t) =  sin(u;£+|) =  cos(u;£) with TZ(s) = s(s2+ a;2)-1 , the difficulties 
are rectified. Another solution to this problem is to cascade the ri(s) with an improper 

low pass filter, i.e. define a new r;(s) by

r M  = rt{s) x

In this case, via a careful selection of u c, 
frequency range of interest.

( u c +  s ) ^ » » - 1 
LOc

it is possible to make ri(s) ~  r{(s)

(4.2.2) 

over the
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Define P f  (2) and P f^ (2) to be the step invariant transformation and ^-offset step 
invariant transformations of V{s) 6 Cnxm respectively (with sampling period T). Let 
Rr(z) be the impulse invariant transformation of 'ft(s). Let the closed-loop transfer 
function 'H(s) of the analog system be defined by

U(s) = (I„ + -P(S)C(s) ) - 1-P(s)C(s) (4.2.3)

and define

y(s)  =  (4.2.4)

Finally, define

Y t,£(*) =  ZT,( {y { s ) }  (4.2.5)

which can be written as

Y T,((z) = H ^ (z )R r (z) (4.2.6) 

where is the ^-offset signal invariant transformation of 'H(s) with respect to

r (*)■

With these definitions, the impulse response of Y ^ (z )  generates the sequence y(fcT + 
0 ,  k — 0 ,1 , . . . ,  00. Moreover, the impulse response of the system formed by

P f ,?(z)(In + C d(z)Pf.(z))-1C(i(z)RT(z) (4.2.7)

generates the sequence y (kT +  )̂, k = 0 ,1 ,. . . ,  00.

Introduce a cost function J(Cd(z),£) where

J(Cd(z) , i )  = ||y(fcT +  0  -  y(kT +  £)ll2 for some 0 < $ < (4.2.8)

=  ||{Pf,?(z)(I„ +  Cd(z)Pf,(z))-1Cd(z) -  H ^ 5(z)}Rt (z)||1 (4.2.9)

A stabilizing digital controller C d(z) is sought which minimizes (4.2.9). Before giving 
the solution, a number of observations will be made. In Figure 4-1, a diagrammatic 
representation of the cost function J(Cd{z),£) is shown. The diagram shows that the 
states o fH ^ ( z )  and R t {z) are uncontrollable from Cd{z). The assumption of stability 
in the analog closed-loop system ensures the stabilizability of the states of H^^(z). 
Furthermore, if the reference model is stable then the entire system is stabilizable. 
However, if this is not the case, for example when the reference model has poles on the 
unit circle, then the problem is not as straightforward.
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Figure 4-1: Block diagram representation of cost function

Consider the case when £ = 0. In this case, the block diagram of Figure 4-1 simplifies 

in that the top branch reduces to the standard unity feedback arrangement with C d(z) 
in series with P ^(z). Let the state space representation of R t {z ) be

R-r(z) =  [Qd> Rd,Sd,Td] (4.2.10)

The signal r (kT)  is generated by the impulse response of R t (z). Suppose the step 

invariant transformation of the plant, P f(z )  has a state space representation,

P t W /= [ F ,G ,H ,J ]  (4.2.11)

It is known [30], that a necessary condition for perfect reference tracking is that each 

mode present in r {kT) must also be present in the open-loop discrete model of the 

plant. That is, the eigenvalues of in (4.2.10) must form a subset of the eigenvalues 

of F. If this is not the case, then those eigenvalues that are not present must be supplied 

by C d{z).

Specifically, assume without loss of generality that the matrix in (4.2.10) is in block 

diagonal form

Q d =  block diagonal{Q i, Q 2},

where all eigenvalues Aj(Qi) of Q i and \j(Q,2) of Q2 satisfy the respective conditions

|Aj(Qi)| <  1 ; |Ai(Q2) | > l .

For asymptotic tracking, only the eigenvalues of Q 2 need to be included in P^(z)C d(z). 

Given that this condition is satisfied and C d{z) is a stabilizing controller for the top 

branch, then y(kT)  -* r (kT)  as k —> 00. Since y (kT) —> r (kT)  asymptotically by 

nature of the design of 'H(s), then e(kT) —* 0 as k —> 00. Given that the rate of 

convergence is exponential, this suggests that it is possible to achieve a finite cost 

function (4.2.9), even for unstable reference models. A variation of this argument can 

be made for £ ^  0.
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Stable 7£(s)

Let a doubly coprime factorization of the step invariant transformation of V(s)  be

Pf(z) =

Vfl(2) U r(2) ' Dfi(z) -U t(2 )  ’ I m  0
_ -N i(2 ) Dt(2) _ _ N r(2) 0 In

Pf,£W = N{(z)D^(z)

Define quantities Ti(z), T 2( )̂, T3(z) by

Ti(z) =  N ( (z)Ufi(2)RT(2) - H ^ ( z ) R r ( ^ C lxl 

T2(z) =  N ?(z) E C ixm 

T 3(z) = D l (z)Rt (z) E C ^ 1

(4.2.12)

(4.2.13)

(4.2.14)

(4.2.15)

(4.2.16)

(4.2.17)

T heorem  4.1 (See Figure 2-1) Consider an asymptotically stable analog unity 
feedback control system where the strictly proper plant 'P(s) E Cnxm, the strictly 
proper stable reference model 'R.(s) E Cnxl, and the proper analog controller C(s) E 
Cmxn are all given.

Consider also a sampled-data unity feedback control system with plant 'P(s), reference 
model 7£(s) and digital controller Cd{z) with zero order hold. The internally stabilizing 
digital controller C*d(z) which minimizes the cost function (4.2.9) is given by

CJ(2) = (VR(z) -  Q 'W N tW J-U Ufifz) + Q'(z)DL(z)) (4.2.18)

Q*(z) is given by

Q*(z) = - T 2» i r  T2((z)T i (2 )T3c.(z) T j » g r- 1 (4.2.19)

where the quantity Ti(z) is defined in equation (4.2.15). The quantities T 2(z) and 
T3(z) defined in equations (4.2.16) and (4.2.17) have been factored by an inner-outer 
factorization on T 2(z) and a co-inner-co-outer factorization on T3(z), i.e.

T 2 (2 ) = T2,(z)T2o(z) 

T3(2) = T3co(z)T3cj(2)

(4.2.20)

(4.2.21)
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The optimal value of (4.2.9) is given by 

||n+[T2j(z)T ,(z)T £j(z)]||| + I I T ^ T ^ X I i  -  T S » T 3 -(,))||!

+  ||(In - T 2j(z)T5;(z))T1WT5;i(z)||| +  | | ( I „ -T 2jW Tj((^))T1(2)(I1- T 3 cj(^)T3cj)|li
(4.2.22)

Proof: Assuming the standard stabilizability and detectability assumptions on the
continuous plant 'P(s), then provided a non-pathological sampling period (i.e. the dis
cretization of the loop does not introduce unstabilizable or undetectable modes), P^{z) 
is both stabilizable and detectable (see [29]). From the Youla parameterization theory 
of [87, 88], given coprime factorizations of P^(z) as described by the equations (4.2.12) 
and (4.2.13), the class of all stabilizing controllers for P f ^ )  is described by

c i(z) = ( VR(z) -  Q[z )NL(z))~1(UR(z) + Q{z)DL(z)), Q (z ) e

(4.2.23)

From the stability theory of sampled-data systems presented in [29], we know that 
this Cd(z) also stabilizes the sampled-data system (under the same non-pathological 
sampling period condition). Substituting (4.2.23), (4.2.12) and (4.2.14) into the cost 
function expression (4.2.9) and simplifying gives

J ( Cd(z),{) = J ( Q( z ) , 0

= ||N {(z)U R(z)Rr (z) -  H ^ e(z)Rr(z) +  N {(z)Q(z)Dt (z)RT(z)|ß 

= ||T 1(z) + T 2(z)Q(z)T3(z)||2 (4.2.24)

where the quantities Ti(z), T 2 (z), Ts(z)  are defined according to equations (4.2.15), 
(4.2.16), and (4.2.17). Perform an inner-outer factorization on T2(z) and a co-inner- 
co-outer factorization (see Theorem A.l) on T 3(2) according to equations (4.2.20) and 
(4.2.20) and apply a unitary transformation, i.e.

^(QW.O l|T i(z) + T2,(z)T2o(z)Q(z)T3„(z)T3c((z)lll
T £ ( z)

I „ - T 2i(z)T2~(z)
(T i(z) +  T 2i (z)T2o (z)Q(z)T3co (z)T3ci (z)}

2

X T&(*) I i - T 3ej(z)T3cj(z)

||T2|(z)T,(z)T5;j (z) +  T 2o(z)Q(z)T3co(z)||2

+ ||T2i(z)T1( z ) ( I , - T 3ci(z)T3c,(z))lli 

+ l l ( I „ - T 2l(z)T5r(z))T1(z)T5;i (z)||22 

+ II(I„ -  T 2,(z)T5'(z))T l (z)(I1 -  T3ci(z)T3J ||I (4.2.25)
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Only the first term depends on Q(z) and can be written as

l i n - I T ^ m M T ^ z ) ]  + T 2„(*)Q(z)T3„ ( z)||1 + ||n+[T2'jW T 1(z)T^(*)]||i

The minimizing Q(z) E RH°° is then given by equation (4.2.19) and the optimal cost 
(4.2.22) follows. I

The case of perfect matching is of particular interest, i.e. the case when the cost function 
(4.2.9) can be made identically equal to zero. From equation (4.2.24), this is only 
possible when T 2 (z) E Cnxrn and Tg(^) E Cnxl have stable inverses. Clearly this can 
only occur for SISO systems. This gives the following result:

C orollary 4.1 Necessary conditions for the cost function (4.2.9) to be made iden
tically zero are:

1. The plant V{s) is asymptotically stable

2. Pf^(z)  is minimum phase for £ E [0, T)

3. Rt {z) haß a stable inverse.

The following result is for SISO systems in the case £ = 0.

C orollary 4.2 Given S(IZ(s)) = 1 and Pj>(z) both asymptotically stable and of 
minimum phase then

Zr {P(s)C(s)f(S)} 
A  1 ZT {S(s )}Pf (z )

where Pf (z)  is the step invariant transformation of the plant V(s) and

(4.2.26)

£{s) = ns)
1 + V(s)C{s)

(4.2.27)

For zero initial conditions and any impulse applied at t = 0, we have

y(kT) =  y{kT) ; integer k > 0

In particular, for almost all sampling periods:
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(i) Cd{z) is of order nr + np + nc where V{s) and C(s) are of  order np and nc poles 
respectively, and 7Z{s) has nr poles not contained in V(s)C(s).

(ii) Cd{z) is proper with 5{Cd{z)) — 0 .

(Hi) I fP(s)  is asymptotically stable and S(s) is of minimum phase, then Pf(z)C(z) is 
asymptotically stable for T  sufficiently large.

(iv) I f  both P(s)C(s) and £(s) are of minimum phase, then Pf(z)Cd(z) is of minimum 
phase for T  sufficiently large.

Proof: The results follow by straightforward algebraic manipulations. Property (ii)
follows from previous arguments and properties (iii)-(iv) follow directly from Theorem

Unstable 7l(s)

In this section, a method is outlined which deals with an unstable reference model 
(i.e. writh poles on the ju) axis or in the right-half plane). A variation of the preceeding 
theory is used. Redefine the quantities Ti(z), T 2(2) and Ts(z) (first defined in (4.2.15), 
(4.2.16), and (4.2.17) respectively) as

with Q(z) e Cmxn and Q(z) G RH°° (c.f. (4.2.24)). Given the structure of 72.(s) 

(c.f. equation (4.2.1)), R t (z ) has the form

A necessary condition for a finite cost in (4.2.31) is that any unstable poles in the fi(z) 
are cancelled by corresponding transmission zeros in T i(z) + T 2(z)Q(-z)T3(z). These 
zeros must be positioned by imposing interpolation constraints on Q(z).

3.1. I

Tit*) =  N ?(z)UR(z) -  H ^ ( z )  € C"xn 

T 2(z) = N {( z ) e C " m  

T 3(z) =  D t ( z ) e e x"

(4.2.28)

(4.2.29)

(4.2.30)

Then the minimization of J(Cd(z),£) is equivalent to the minimization of

J(Q(*),?) = II{T!(z) + T 2(z)Q (z)T 3(z)}Rt (2)|H (4.2.31)
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If ri(z) has an unstable pole (for simplicity assumed to be a simple pole) for some 
i, 0 < i < n at 2  = Zj, then a sufficient condition for the pole-zero cancellation is that 
T i(z) + T 2 (z)Q(z)T 3 (z) is identically equal to zero for all elements in the ith column 
when z = Zj, i.e.

T f ( 2j) + T ^ Q C ^ l f  (*;) =  0 (4.2.33)

where (•) means the l11' column of T  * (•). The problem is now to find all stable Q(z) 
that satisfy equation (4.2.33).

The problem given by equation (4.2.33) is related to the tangential interpolation prob
lems discussed in [7, 8]. The tangential interpolation problem involves finding all stable 
W (z) G Cnxm such that

x f {zk)W (zk) = y T\ z k), fc =  l , . . . , n  (4.2.34)

where x(z) G Cnxl, y(z) G Cm xl. An elegant solution exists to this problem. However, 
the problem (4.2.33) with matrix functions on both sides of the Q(-) has not been well 
studied.

The following lemma provides a parameterization of all solutions to (4.2.33).

L e m m a  4.1 Let Q(z) = Q(z) G RH°° be any solution to equation (4.2.33). Then 
provided

x 2 (^ ) [T2 ))# t W ) [t W )] # T W ) = T f (*;) (4.2.35)

then Q(z) can be written as

Q (Z) =  - ( T 2(z3)]#T I1, |(z,)[T>‘1(2j)]# -  T 2(z3)[T2(zJ)]# M f[T |j1(zJ)]#TS),1(%)

+ M f +  Q Ft ( z ) ^ i  (4.2.36)
z Qj

where 0 < Q < l, M j  is any m  x n matrix, and Q j (z) is any m  x n rational transfer 

matrix in RH°°.

Proof: Follows from standard linear algebra, see for example [84].

The disadvantage with this particular parameterization is that it is composed of a free 
rational transfer matrix and a free constant matrix. This is in contrast to the problem 
given by equation (4.2.34), where the solution can be written as an affine function
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of a free rational transfer matrix only. Nevertheless, this lemma enables a series of 
interpolation constraints to be imposed according to the unstable poles of the reference 
model. The problem then involves an optimization over the free parameters Q f (z) and 
M f . The optimization is in fact convex.

To demonstrate the method assume that only one constraint is present at z = z\. The 
cost criterion (4.2.31) can be written as

J ( Q( z ) , 0  = ||T i(z) +  T 2(z)Q f ( z ) f 3(z)||! (4.2.37)

with

T iM  = T i (z) +  T 2(z){ -[T 2(z,)]#t W(z1)[t W(z1)]#

- T 2(z1)[T2(2 i)]# M f  [ i f  (*i)]# T f  (*i) + M f }R T(z) (4.2.38)

f 2(z) =  T2(z) (4.2.39)

T 3(z) & ^ 4 i T 3(z)Rr (z) (4.2.40)
z  ~  Ci

The optimization is then performed as in the stable case by first finding an expression 
for the the optimal Q f (z) in terms of M f. The resulting cost (c.f. equation (4.2.22)) 
is then given in terms of M f and so a secondary minimization can be performed with 
respect to this parameter. The optimal M f found can be substituted back into the 

expression for Q f(z).

It should be pointed out that the above theory is greatly simplified in the SISO case, 

with equation (4.2.36) simplifying to

Q(z) = ~
Ti(zj)

T2{zj)T3{zj) + QLC^f} (4.2.41)

Further discussion of the unstable reference model case appears in the next section.

4.2.3 Secondary Optimization and Main Algorithm

To this point, techniques have been developed to enable the l2 minimization of the 
difference between the output of analog system and the sampled-data system, with 
respect to a given reference signal, at a given intersample point. The question now 
posed is whether a digital controller can be found such that the behaviour of the 
analog and sampled-data systems can be made “close” in some sense, over the entire 

intersample period.
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It must be kept in mind that the sampled-data system operates in open-loop between 
the sample points (given the zero-order hold), so there are fundamental limits imposed 
upon the success of matching for a given reference signal class. It is well known [6] 
that for a general continuous-time reference signal, a sampled-data system may exhibit 
non-zero steady state tracking error, despite having zero tracking error at the sample 
points. This phenomenom, called hidden oscillations or simply ripple, is now discussed.

Ripple is defined as error between sampling instants when there is zero error at the 
sampling instants. Ripple may have a constant amplitude or it may decrease with 
time. It is even possible to demonstrate that a system can have zero error at sampling 
instants yet have ripple with growing amplitude.

It is known that if the steady state of either the reference input or the disturbance is 
not constant (e.g. ramps, sinusoids, polynomials, e.t.c.), then a sampled-data controller 
using zero-order hold will give rise to ripple error. That is, intersampling error exists 
and does not decay, although the steady-state error is zero at the sampling instances. 
As discussed in [6], ripple can also occur if the observability of the open-loop system 
is lost due to sampling or if the unobservable open-loop modes due to sampling are 
oscillatory. Ripple may also occur if poorly damped process zeros are cancelled by the 
regulator.

To eliminate intersample ripple, two methods are generally employed:

1. A higher order hold function may be employed. An example of this approach can 

be found in [77].

2. A continuous-time internal model of the reference model can be inserted into 
the control loop. In [31] an internal model principle for sampled-data systems is 
given. In a sampled-data system, the necessary and sufficient conditions for the 
continuous response to be ripple free are that the continuous plant is controllable 
with discrete inputs at period T and that the combination of plant plus hold plus 
compensator must have a continuous internal model of the exogenous input, that 

is observable from the output.

The significance of the second method is that it presents an alternative to the theory 
presented in Section 4.2.2. The sampled-data internal model principle means that the 
interpolation conditions (c.f. equation (4.2.33)) are automatically satisfied. However 
the designer must decide upon the relative merits of a design with some ripple, as may
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be achieved using the theory of Section 4.2.2, or a design which is ripple free, obtained 
by using a sampled-data internal model.

With these thoughts in mind, the following discretization scheme is proposed:

1. Given an intersample point £, a digital controller is found using the method 
developed in Section 4.2.2, such that the “primary” cost function (the 0  norm) 
is minimized at £. Define C*d^(z) as

C £{(z) =  arg min ||y(feT+ «) -  y(fcT +  Oll! 0 < ? < T  (4.2.42)
Crf(z)

= a rg m in ||P fi?(I„ + Pf.(2)Cd(2) ) -1C«1(z)R r(2) -  YT,<(z)|ß
Cj M

(4.2.43)

2. Given C ^ (z ) , a “secondary” cost function is then calculated which reflects the 
discretization performance over the whole intersample period [0,T). The choice 
of this “secondary” norm will be discussed.

3. The controller which corresponds to the £ which minimizes this secondary norm 
is chosen as the “optimal” digital controller.

4. It may be desirable for the resulting digital controller to be reduced in order via 
a number of methods such as balanced truncations or the method of [56].

The selection of the secondary cost function encompasses some freedom. This free
dom gives the designer additional control over the final sampled-data controller. Four 

possible choices of secondary cost function are:

3 -i(c;,f (2)) = z  Hy(k T +  f ) -  y (fcT + f  )Mi <4-2-44)
z=0

This choice of secondary cost function is appropriate only if conditions are met 
so that the intersample ripple tends to zero as time goes to infinity (see previous 
discussion). Unless these conditions are met, given a primary optimization at a 
point £ which may have a zero steady state tracking error at £, the error may 
be non zero at other intersample points. If this is the case, the secondary cost 
function will not be finite (a possible solution to this is to evaluate a truncated 
/2 norm by summing only a finite number of terms in the time-domain response).
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2 .

$ 2 (C ^(z )) = sup ||y(A;T A ß ) -  y {kT + ß)\\l (4.2.45)
ß

This selection requires the same conditions as the first.

3.

$ 3 (C ;^(z)) = supsup ||y(fcT A ß ) -  y (kT A ß)\\\ (4.2.46)
ß k

This secondary cost criterion can be used in the case of non zero ripple.

4.

d^(z)) = sup limsup \\y(kT A ß ) -  y {kT A ß)\\% (4.2.47)
ß k

This criterion can be used for looking at steady state performance.

Obviously there could be other appropriate choices of secondary cost criterion.

The first two choices of cost criterion are generally preferable because of the ease of 
computation (the last two are difficult to calculate). Because of this reason, algorithms 
which use these are now developed. These are the algorithms which are used in the 
simulation results which follow. Reiterating, these may by used in the case when 
conditions that guarantee zero steady state ripple are met.

Both algorithms require the ability to calculate the quantity

$(C ^(z),/3) = ||y(M’ + /J ) - y (* r  + /3)ll! (4.2.48)

for all points ß £ [0, T). Furthermore the calculation of the partial derivatives of 4> 
with respect to ß  are required for the calculation of $2(0• As with the evaluation of the 
cost function in Chapter 3, the method found to be most effective for the evaluation 
of (4.2.48) is the doubling algorithm (c.f. Algorithm 3.1). The method proceeds as 

follows.

For a given C*d^{z) let a state space realization of (In + Cd^{z)P^{z))~l C d^{z) be

[F,G,H,J]

Notice that this is independent of ß. Further, let a state space realization of P sT ß[z) 

be
[Fp, Gp, Hp(ß) , Jp(ß)]
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Notice that Hp and Jp  depend upon ß. Recall that this realization can be given by 
(3.2.21). Finally let a state space realization of Y t ,q{z) be

[Fl-, G y . Hy (/?), Jy (/?)]

with these quantities obtainable via equation (3.2.8). A realization of the system

P sT ß (z)(In + C l ( (z)P‘T( z ) ) - lC'dA(z) -  YT,p(z)

is then given by

F p GpH 0 GpJ
0 F 0 G

l

Pmoo Gy
, [ H P(0)JP(/?)H - H Y (0)

A F,G,H(/?),J(/J)

, J P( ß ) J - J Y (ß)

(4.2.49)

The quantity $ (C ^(z ),/? ) is evaluated numerically via

N ~ T
X k = F'GG (Fr ) \  N  = 2k -  1

z=0

which is evaluated using the doubling algorithm. This in turn gives

4 > ( C ß) =  tr (H(/3)Xt H T(/3) + 3(0) as k -+ oo (4.2.50)

Typically k «  15 is adequate. The partial derivatives of <f>(C*d^{z)^ß) with respect to 
ß can also be calculated quickly using this algorithm. Notice that is independent 

of ß  and so

mc*u(z),ß)
dß

tx (ß A p .x kÜT{0) + dH[(0)
dß dß

+m d~JT (ß) \ 
dß )

using the commutativity of the trace operator and the derivative operator.
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Algorithm  4.1 

Phase 1

FOR f = 0 TO T -  Ci STEP ft (where ft «  0.05 * T) 
CALCULATE C ^ (z )
CALCULATE 4>i(C^(z)) for N« 2 

NEXT £
RECORD BEST ft (=£*)

Phase 2

FOR £ =  max{ft -  ft,0} TO min{ft +  f t ,T  -  ft} STEP ft (where ft «  0.005T) 
CALCULATE C*d^ z )
CALCULATE $i(CJ^(z)) for A «  10

NEXT £
RECORD BEST £

A lg o r ith m  4.2

FOR £ = 0 TO T-ft STEP £ (where ft «  0.05 * T)
FIND C ^ (z )  
ß : =  0.5 * T
via the calculation of $(CJ^(z), ß) and d ^ ( C d^(z) ,ß)/dß  perform 
a gradient ascent type algorithm to find 4>2

NEXT f
RECORD BEST £

The method outlined earlier for the computation of d${Cd£l {z) ,ß)/dß  can be used in 
evaluating the supremum in $ 2(C ^(z )).

Although both algorithms are basically linear search type algorithms, they are found 
to be rapidly convergent due to fact that the optimization is over only one variable £ 
in a finite domain £ E [0, T).
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4.3 Convex O ptim ization  M ethod

4.3.1 Introduction

The authors of [13] observe that there are two basic schemes for the design of linear 
time invariant controllers:

1. The first involves some form of parameter optimization. Whilst simple systems 
with only a small number of parameters can be effectively designed in this man
ner, more complicated multi-input, multi-output systems with many parameters 
pose problems. Even with the modern computer, systems which have a param
eterized controller often have closed-loop cost functions which are non-convex in 
the controller parameters. Consequently, global minima are difficult to find.

2. The second form of control design is based on analytical methods which optimize 
with respect to some well defined criteria. These are generally quite limited in 
scope. It is often difficult to impose design constraints using such methods.

The claim of the work of [13] is that a wide variety of controller design problems can 
be formulated els a convex problem. The classical H2 ,H 00 and L\ objectives form part 
of the available design objectives. Furthermore, design constraints such as asymptotic 
tracking, overshoot, undershoot, settling-time, signal peaks, e.t.c. can be incorporated. 
A disadvantage of this scheme is the fact that controllers of high order are generated but 
as the authors point out, this may not always be a problem. The resulting controller 
may be reduced in order through some form of model order reduction. Alternatively a 
special purpose architecture may be implemented.

This section demonstrates that the controller discretization problem can be formulated 
in terms of a convex optimization problem and can be solved efficiently using convex 
optimization algorithms. The motivation behind this work and the convex optimization 
algorithms used are found in [13, 14]. This work is based upon the parameterization of 
all controllers which stabilize a given plant [25, 83, 87, 88].

As mentioned in the introduction to this chapter, the numerical difficulties that are 
sometimes encountered in the previous method provide motivation for the use of a 
convex optimization approach to the problem of controller discretization. The optimal 
value of the primary cost function can be very sensitive to variations in the optimal
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Youla parameter Q. In some examples, the optimal controller is difficult to find. The 
algorithm to be presented does not suffer from these problems.

A further point is in relation to the unstable reference model case of the previous 
method. It is clear that the interpolation constraints may be difficult to enforce, par
ticularly in the multivariable setting. However, it will be demonstrated that the convex 
optimization method automatically satisfies these constraints under certain conditions.

The convex optimization method can be formulated in an identical manner to the 
previous method. However a slightly more general formulation is presented which 
allows different selections of £c.

4 .3 .2  P ro b le m  F o rm u la tio n

Again define (2) and to be the step invariant transformation and ^-offset step
invariant transformations of 'P(s) respectively (with sampling period T). Let R/r(z) 
be the impulse invariant transformation of 7l(s). Let the closed-loop transfer function 
Ti{s) of the analog system be defined by

H(s)  =  (I„ +  T’ OOCM r'POOCfs) (4.3.1)

and define

y(s )  = -H(s)Tl(s) (4.3.2)

Finally, define

Y t,{(z) = ZT,f{}>(S)} (4.3.3)

which can be written as

Y T,e(2) =  H ^ (z)R r (z) (4.3.4)

where is the ^-offset signal invariant transformation of 'H(s) with respect to

r (t).

With these definitions, the impulse response of Y t^ ( z) generates the sequence y(kT  + 
£); k — 0 , 1 , . . . ,  00. Moreover, the impulse response of the system formed by

P ^ (Z )(I„  +  C d(z)PsT ( z ) r l Cd(z)RT (z) (4.3.5)
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generates the sequence y (kT + 0 ;  ^ = 0 ,1 ,. . . ,  oo.

Define an error system ET^(z) by

where

(4.3.6)

ET,i,(z) =  P f ,{iM (I„ + Cd(Z)Pf.(2) ) -1C d(^)RT(^) -  Y T A (z) ; * =  1,2,--- , JV
(4.3.7)

Figure 4-2, shows a diagrammatic representation of ET ^(z). In this diagram, the Z{ 

for i = 1. . .  N  are the difference in the outputs of the analog system and the hybrid 
system for a series of intersample points £1, £2 , • • •, £/v, 0 < & < T. The selection of the 
C encompasses some freedom, but generally a uniform distribution of & in the interval 
[0,T) is adequate. Typically N  «  4 — 6 is adequate. The input w(kT) is the Kronecker 
delta function.

If z is defined as

_ A
Z = Z l  Z2 (4.3.8)

then ET r̂(2:) is the transfer function matrix from w to z. The problem of this section 
is now stated.

Find a stabilizing digital control Cd{z) which minimizes the norm o f E T ^(z), where 
ET ̂ (z) is the transfer matrix from w to z in Figure f-2.

As already stressed, a major advantage of the convex optimization approach is that 
there is great freedom in the choice of norm. Again there are some restrictions and 
considerations in tracking- unstable reference signals—a short discussion of these is given 
in Section 4.3.4. Recall that constraints may also be imposed during the minimization.

Figure 4-2 can be transformed into Figure 4-3, a standard two-port system. The quan
tity P(.z) is a generalized plant with description
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Figure 4-2: Analog and digital control

and P (z) is given by

- H rT4l(z) P ‘Ti(l(z) -

x R j ’(z)

. - H ^ ( z )  P ^ „ ( z ) .

R r (z) - P f ( z )

Let P (z) have a state space realization given by

x(kT  A T )  = Ax(kT) A B ww(kT) +  B uu(A:T) 

z(kT) = Czx(kT) + T>zWw(kT) A E>zUu(kT) 

y(kT)  = Cyx(kT) A D yww(kT) A D yuu(kT)

(4.3.10)

(4.3.11)

(4.3.12)

(4.3.13)



CHAPTER 4. CLOSED-LOOP PROBLEM 90

Figure 4-3: Analog and digital control

Let the order of /H(s),7t(s),'P(s)  and P(z) be 7ih,nr,np and np respectively. Then

np < rih + nr + np

As evidenced from Figure 4-2, P(z) contains nr +  nh modes that are uncontrollable 

from u—the states of FU(z) and the states of H ^ ^ (z ) , i =  1,2,-•• ,N .  Following 

from assumption A in Section 2.3 of Chapter 2, the states of H ^ .  (z) are stabilizable. 

If LZ.(s) is stable then P (z) is stabilizable. Again the discussion of unstable 4Z(s) is 

postponed until Section 4.3.4.

4.3 .3  T he U se o f “qdes”

The authors of [13] have, provided a convex optimization package “qdes” which is avail

able at the public ftp site “isl.stanford.edu”. In the directory “/pub/boyd/qdes” is the 

series of programs compressed in “qdes_dist.tar.Z” . In order to use this material, the 

following results are needed.

Assume K  is chosen such that A — B UK is stable and L such that A — L C y is stable. 

Then from [83] a doubly coprime factorization of P yu can be found such that

P yu =  N D '1 =  D -1 N  (4.3.14)

with

Y X 

- N  - D

D - X  

N  Y
= Im+n (4.3.15)
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where

N(z) =  C y ( z l n . — A  +  LCy) 1 (Bu — L D yu) +  D yu (4.3.16)

6 (2) =  In — C y ( z l n . — A + LCy) (4.3.17)

N(z) =  ( C - D yuK )(zIn. - A  + B uK) (4.3.18)

D(z) =  Im -  K (z ln  ̂ -  A +  B UK )_1B U (4.3.19)

X(z)  =  K (z l„ . -  A + L C y)_1L (4.3.20)

Y(z) =  Im + K (z ln  ̂ — A + LCy) L(BU — L D yu) (4.3.21)

X(z) = K ( z l nj} -  A 4- B UK )-1L (4.3.22)

Y(z) =  In + (Cy — DyUK )(zIn  ̂ — A +  B UK) (4.3.23)

From [2], a controller which internally stabilizes P yu is such that

T 1 - 1
I m Cd{z)

~~̂ *yu{z) In

is stable and proper. One such controller is given by

xc{kT + T) =  (A -  BUK -  LCy)xc(kT) +  Ly(fcT) 

u(kT) = K xc(kT)

From [83], the class of all stabilizing controllers is given by

Cd(z) =  (Y(z) -  Q (z)N (z))_1(X(z) +  Q (z)D (z))

(4.3.24)

(4.3.25)

(4.3.26)

(4.3.27)

and the stable closed-loop transfer function from w to z, ET ̂ (z) is given by

E T l {z) =  Ti{z)  +  T 2(z)Q (z)T 3(2 ) ; Q(z) G RH°° (4.3.28)

with

T ,(z ) T  2(z) 
T3(z) 0

= CT(zhnf - A T) - lBT + DT (4.3.29)
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where

(4.3.30)

(4.3.31)

(4.3.32)

(4.3.33)

(4.3.34)

The closed-loop transfer function is in a form that is affine in Q(z) (c.f. (4.3.28)). Hence 
an infinite dimensional convex optimization problem can be formulated to minimize 
(4.3.28) for some norm.

The authors of [14] give an outline of the Ritz method [23, 55] for obtaining an approxi
mate solution to this problem. The basic idea is to approximate the infinite dimensional 
problem by a finite dimensional one, by restricting Q to a large, but finite dimensional, 
space. This is a achieved by setting

n-tap

Q (z) = Qo(z) T ^2 xiQi(z ) 5 Xi E R, Q*(z) e RH°° (4.3.35)
i— 1

The Qj(z) are fixed basis functions and n-tap is the number of basis functions used. 
The problem is to find

X  =  [ X i ,  %2i '  ‘ * )  %n-tap\

the decision variable, which minimizes (4.3.28) subject to any constraints that may 
be imposed. Corresponding to the optimal x is the optimal controller C^(z). The 
numerical procedure outlined in [13] requires the evaluation of the impulse responses 
of T i(z ) ,T 2(z) and T 3 (z) to a length of nsam ple. For further details refer to [13].

A t

C'p — 

D7 =

A - B UK
LCy A -  BUK  -  LCy

Bu 
B u

c z d 2Uk

C , - C y

B i w  D z u  

Dj/w 0

4.3.4 Unstable ^ ( 5 )

The theory presented to this point is suitable when the reference model 7Z(s) is stable. 
To conclude this section on the convex optimization method of controller discretization, 
a short discussion of the unstable reference signal case is given.
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As stated in Section 4.2.3, the unstable reference signal case can be dealt with by 
imposing interpolation constraints on the Youla parameter Q(z) or by ensuring that 
a continuous-time internal model of the reference signal is present in the open-loop 
dynamics.

If N  > 1, then in general, an internal model must be present to ensure that z\ —> 0 
(i = 1 ,2 , . . . , iV) as t —» oo (which gives asymptotic tracking). This is necessary for 
a finite ||ET |̂| in the case of l\ and 0  norms. However there will be cases, especially 
for small N , in which interpolation constraints can be imposed to ensure a finite norm. 
The beauty of the Ritz method is that the interpolation conditions appear as linear 
constraints on the Xi. Once the Qj(z) are specified, the poles of Q(z) are determined. 
The Xi then determine the zeros of Q(z). Provided n.tap is large enough, the Ritz 
method automatically enforces the interpolation constraints because the optimal solu
tion must be contained in the subspace generated by the constraints. Thus, the convex 
optimization method of controller discretization is a very appealing algorithm from a 

numerical perspective.

4.4  In tegral A pp roxim ation  M eth od

4.4.1 In trod u ction

The underlying motivation of the method presented in this section is that the techniques 
of Sections 4.2 and 4.3 are in one sense indirect. That is, the optimization procedures 
produce digital controllers of high order which generally require some form of model 
order reduction. The techniques developed in this section approach the problem more 
directly. That is, the digital controller produced is of low order (typically equal to that 
of the analog controller), and as a result, no reduction of order is necessary in the final 

phase of the algorithm.

A secondary motivation is to bring the insights gained in the open-loop discretization 
method into the closed-loop setting. Therefore, the method developed in this section 
is primarily an extension of the theory developed in Chapter 3. Each integrator of the 
continuous-time controller is replaced by a modified Newton-Cotes type approximation. 
The order of the approximation of each integrator can vary, but is typically zero, one, 
or two. The modified Newton-Cotes formulae are parameterized and then optimized 
with respect to a given signal, generated via the impulse response of a linear, time-
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invariant system. Again the allocation of different discretization order to each integral 
is discussed, as well as the motivation for selecting certain state space structures before 
discretization.

4.4 .2  P rob lem  Form ulation

Assume that the digital controller is in fact parameterized according to the method 
of Chapter 3 and represent the parameterized controller as Cd(p, 2 ), where p is the 
parameter vector.

The closed-loop operator $c is chosen to be a cost function j7)v(Cd(p, z)) where

N

J n {Cd(p, z)) = max llyp(kT  + &) -  y {kT -h ^*)||5 0 < & < T, i = 1,2, . . . ,  M
fc=0 (4.4.1)

with y (kT + £i) the sampled output of the analog system at an intersample point & and 
yp(kT + £i )  the sampled output of the sampled-data system at an intersample point £*.

The problem can be stated as follows:

For a given N  and set of z =  1,2, . . . ,  M , find the parameter p and resulting C^(p, z) 
such that j7)v(Cd(p, z)) given by (4-4-V is minimized.

4.4 .3  T he A lgorithm

Given a parallel problem formulation to the one in Section 4.2.2, let the state space 
realization of

P f ,{j M (I + Pf(z)C«i(p, 2)Rt (2) -  YT,{j

be [Fj, Ji]. The computation of (4.4.1) involves the computation of the sum of
impulse responses squared for each of the M  systems [Fj, G;, H t, Jj].

As is shown in Chapter 3, this can be effectively calculated using a doubling algorithm 
for Lyapunov equations. Again, gradient calculation can be readily extracted. The 
doubling algorithm is effective for large N  with N  «  210-15 giving a good approximation 
to the H2 norm. Because N  is restricted to be finite, unstable 7£(s) poses few problems 
compared to other discretization methods. Conversely, there is no guarantee of finding
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a stabilizing controller. However if N  is chosen large, a stabilizing controller is generally 

found.

The m inim ax algorithm of MATLAB has been found to be quite effective in the 
solution from this point. The problem of local minima is more of a problem here than 
in the open-loop problem. However a simple technique has been found which greatly 
alleviates this problem.

The technique is to run the minimax algorithm in two passes. The first pass is done 
with a small value of k , typically 2-3. The final parameter value of the first pass is then 
used as the initial parameter for a larger value of k. It appears as if the result of the 
first pass places the initial parameter to the second pass in the neighbourhood of the 
basin of attraction of the global minimum for large k. The second pass then rapidly 
finds the global minimum.

A value of M  ~  4 seems to work well for most problems, with the intersample points 
uniformly spaced in the interval 0 < & < T.

In Chapter 3, a number of factors which affect discretization error were identified— 
these results are applicable to the open-loop discretization problem. These factors 
enable the designer to effectively allocate different order integral approximations to 
the different states. For the closed-loop problem the results are not so conclusive, 
although it generally appears as if the Hankel singular values weighted by the closed- 
loop transfer function and the controller state space structure play the greatest roles. 
The same criterion (weighted Hankel singular values) used for the controller reduction 
schemes [3, 27] are generally a good guide for selecting which order discretization should 
be applied to which states. Furthermore, simulation studies reveal that, again, the 
internally balanced state space structure is generally a good one.

4.5 S im ulation  S tudies

This section presents the results of simulation studies that were obtained using the 
controller discretization methods developed in this chapter. The simulations were per
formed using MATLAB (a description of the MATLAB code can be found in Appendix 
F). The methods were applied to the benchmark problems of Rattan [65] and Katz 

[42].
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These studies are only a preliminary investigation into the performance of the algo
rithms. A more complete study is undertaken in Chapter 5.

The Rattan example is a unity feedback control system with plant’s transfer function 
given by

H(s)
10

s(s 4- 1)

and the analog controller’s transfer function given by

C(8) =
0.416s + 1 
0.139s+ 1

(4.5.1)

(4.5.2)

The Katz example has the same unity feedback configuration with

n(s)
863.3

s2

and controller

. 2940s + 86436
C(S) =  “ (7+294)2“

(4.5.3)

(4.5.4)

4.5 .1  H2 O ptim al C ontrol M ethod

For both benchmark examples, digital controllers were designed using Algorithm 4.1. 
Simulation results are compared to to three existing methods, [1, 45, 65].

R attan’s Example

As with the original paper [65], the digital controller was designed with a sampling rate 
of T  = 0.157s. The optimization was performed with respect to a step, i.e. 7£(s) = 1/s. 
The resulting third order digital controller is

^  N 2.273z3 -  1.826z2 -  1.249z T 0.982 ,, K ^
d^  ~  z3 -  0.027z2 -  0.785z + 0.135

In Figure 4-4 a comparison between the new method and the methods of Anderson 
and Keller, and of Rattan is shown. It should be noted that the Anderson and Keller 
digital controller (designed via the “stability margin method”) is also third order while 
the Rattan digital controller is first order.
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time(seconds)

-------- Analog
------  Rail an

Anderson
o o o o New method

Figure 4-4: Rattan’s example - Step responses of existing discretization schemes com
pared to the H2 optimal control method, T = 0.157s

0.15
time( seconds)

-------- Analog

------  Anderson
Kennedy

o o o o New method

Figure 4-5: Katz example - Step responses of existing discretization schemes compared 
to the H2 optimal control method, T = 0.03s
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K atz Exam ple

Initially a digital controller was designed with a sampling rate of T = 0.03s. The 
resulting digital controller is

Cd(z)
1.551 z2 -  2.1602 + 0.609 

22 -  0.2252  -  0.306
(4.5.6)

In Figure 4-5 a comparison between the new method and the existing methods is shown. 
The corresponding control signals for the analog and digital controllers are shown In 
Figure 4-6.

Figure 4-7 shows simulation results for a digital controller designed with the sampling 
period increased to T = 0.05s. At this sampling period, the other schemes can not 
provide a stabilizing controller. Results for a third order digital controller and a second 
order controller corresponding to

Cd(z) = 0.7412s + 0.12622 -  0.7012 -  0.166 
23 + 1.69422 + 0.7932 + 0.0794

(4.5.7)

and

0.73422 -  0.0902 -  0.643 
Cd[z) ~  22 + 1.4342 + 0.478

(4.5.8)

respectively, are plotted. The degradation of performance, as the controller order is 
decreased, is evident.

A frequency-domain comparison is also made for this example. Obviously a problem 
arises between the comparison of a continuous-time system with a sampled-data sys
tem. For a discussion of the frequency response methods used in these studies refer 
to Appendix C. In Figure 4-8 the frequency responses of the following quantities are 

plotted:

1. the continuous-time closed-loop system;

2. the step invariant transformation of the continuous-time closed-loop system;

3. closed-loop system formed with the digital controller designed using existing dis
cretization schemes, and the continuous-time plant replaced with its step invariant 

transformation equivalent.

It can be seen that the digital controller generated with the H2 optimal control method 
(with T = 0.03s) has a fairly similar frequency response to Kennedy’s two degree of
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Figure 4-6: Katz example - Analog control signal and digital control signal of H-i 
optimal control method
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Figure 4-7: Katz example - Step responses of H2 optimal control method with T = 
0.05s
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Figure 4-8: Katz example - Closed-loop frequency responses of existing discretization 
schemes and H2 optimal control method
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Figure 4-9: Katz example - Nyquist plots of existing discretization schemes and H2 
optimal control method
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freedom controller. The fact that the controller designed with T = 0.05s has a fairly 
acceptable performance is significant.

Also shown in Figure 4-9 is the Nyquist plots of the discrete-time loop transfer functions. 
Of particular importance is that digital controller (with T = 0.03s) designed using the 
H 2 optimal control method has superior gain and phase margins compared to other 
schemes. Also with T = 0.05s the design has better margins than those of the Kennedy 
design with T  = 0.03s and better phase margin than that of Anderson with T  =  0.03s.

Even though the design method is based upon time-domain methods, it has been shown 
that the frequency-domain results are also good. This is accounted for in part by the 
fact that an I2 time-domain design quite often has good frequency-domain properties 
(c.f. Parseval’s Theorem).

4 .5 .2  C onvex O ptim ization  M ethod

Using the “qdes” package in conjunction with the theory presented in Section 4.3.2, a 
practically very satisfactory method of controller discretization is achieved. As already 
stated, a variety of optimization problems can be formulated to yield a discretized 
controller. In this section the convex optimization procedures are used for the controller 
discretization problem of Katz.

Again the design was initially performed with a sampling rate of T  = 0.03s. The “qdes” 
program enables a number of norms to be chosen for the minimization of ||E'T ^(z)||. 
The Ü2 norm was chosen, as the Katz problem allows this (so the objective cost is 
simply the sum of squares of the N  regulated outputs Z{) .  Initially no constraints were 
imposed. The selection N  = 4 was adequate for this problem. An initial controller 
was generated using equations (4.3.25)—(4.3.26). The convex optimization parameters 
ri-tap and n s  ample were set at

n.tap = 20 ; nsam ple  =  300

Making the the number of taps of Q larger resulted in little improvement for this 

example.

The convex optimization algorithm was executed and a stable digital controller of 
order equal to 27 was generated. The total computation time was 6.72 seconds CPU 
on a SPARC 10. In Figure 4-10 the step response is shown and in Figure 4-13 the
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corresponding digital control signal. Figure 4-12 show the step response of the digital 
controller designed with a sampling period increased to T = 0.05 seconds. As seen, the 
convex optimization method yields a very acceptable sampled-data system performance.

M odel Order Reduction

As previously mentioned, the sampled-data model order reduction method [56] proves 
very effective for the purposes of this thesis. A frequency weighted balanced truncation 
technique was applied to the stable part of C(z) (in fact the 27th order controller 
generated in the last two examples is stable). The method was applied to the controller 
corresponding to T  = 0.03 seconds. A second order controller Cr(z) such that

-CrMFMiioo

is minimized was found, where V(z) ,W(z)  are weighting function generated according 
to the algorithm. The fast sampling factor N  (a parameter associated with the model 
order reduction algorithm), was set equal 6. The resulting digital controller is given by

1.7343z2 -  2.9997z + 0.5778 
“  z2 -  0.0468z -  0.4327

The step response and control signals are plotted in Figures 4-13 and 4-14 respectively.

Constraint introduction

Assume the digital control signal is to be limited. This is easily incorporated in by 
adding an extra regulated output zyv+i corresponding to the control signal u. In this 
example a constraint of

|u| < 1

was enforced during the design(with a sampling period of T  = 0.03s). Figures 4-15 and 
4-16 show the resulting step response and control signal respectively.

4.5 .3  Integral A pp roxim ation  M ethod

Finally the integral approximation method was applied to the Katz example. Again a 
sampling rate of T  = 0.03s was chosen. A selection of Ä = A was chosen and all state
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Figure 4-10: Katz example - Step response of convex optimization method, 27th order 
controller, T = 0.03s
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Figure 4-11: Katz example - Digital control signal of convex optimization method
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Figure 4-12: Katz example - Step response of convex optimization method with 
T = 0.05s

Figure 4-13: Katz example - Step response of convex optimization method, model 
order reduction applied to controller to bring it down to 2nd order, T = 0.03s
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Figure 4-14: Katz example - Control signal of model order reduced controller
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Figure 4-15: Katz example - Step response for convex optimization method with 
limited control signal, |n| < 1, T = 0.03s
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integrals were approximated by first order. Selections of M  = 4 and N  = 29 — l were 
used. The resulting digital controller is

Cd(z) 1.2757 x 1 0 V  -  1.2299 x 10° -  2.4593 x 1(T5 
z2 -  2.9550 x 10~4 + 2.1830 x 10~8 (4.5.9)

In Figure 4-17 the step responses of the analog system and the hybrid system are 
shown. This result compares favourably to the other methods developed in this thesis 
and especially with existing methods published in the literature.

4.6 Conclusions

In this chapter, three methods of controller discretization have been presented. The 
methods are such that the closed-loop properties of the original system are respected. 
Each method is based on optimization principles and the optimization is primarily in the 
time-domain, although the convex optimization scheme does allow frequency-domain 
criteria.

Experience indicates that, from the point of view of tracking a reference signal, the 
proposed methods outperform other methods found in the literature. The signal in
variant transformation method offers flexibility and good performance. The price to 
be paid is that the controller may be of high order. Model order reduction, taking into 
account the closed-loop properties to be preserved, can alleviate this problem. The 
frequency-domain properties of the design using this method are shown to be good as 
well.

The efficacy of the convex optimization method for the digital re-design of analog 
controllers has been illustrated. The method is numerically reliable and fast, offers great 
flexibility, and when incorporated with sampled-data model order reduction techniques, 
offers a very practical method of digital controller design.

The integral replacement method has the benefit that the resulting digital controller is 
of low order and so avoids the need of model order reduction in completing the design. 
The digital controller is shown to possess good performance on the benchmark example 
of Katz.
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Figure 4-16: Katz example - Convex optimization method with limited control signal
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Figure 4-17: Katz example - Step response of analog system and hybrid systems with 
digital controller produced via the integral approximation method T = 0.03s



C hapter 5

Evaluation of Closed-Loop 
M ethods

5.1 Introduction

■y n this chapter, methods of closed-loop continuous-time controller discretization 
1 that have appeared in the control literature are surveyed and compared to the 
methods developed in Chapter 4. Again, closed-loop discretization in this context 
refers to those methods which take the plant into account during the discretization. As 
stated in Chapter 1, methods of closed-loop controller discretization can be found in 
[1, 32, 43, 45, 50, 52, 53, 54, 58, 60, 61, 65, 66, 67, 71, 85]. Furthermore, the direct 
methods of sampled-data controller design, also mentioned in Chapter 1, can also be 
manipulated so that they can be used for controller discretization.

A restriction is imposed oh the closed-loop discretization methods considered. The ana
log controller must be implementable with a unity feedback structure using a simple 
hold function and must have a transfer function description. This excludes discretiza
tion methods based on state-feedback controllers [52, 53, 54, 59, 85] and methods which 
use generalized-hold functions [68]. Multi-rate sampling is not considered.

The methods that are surveyed are those found in [1, 17, 43, 45, 58, 65] along with the 
three methods developed in Chapter 4. We believe that these represent a near complete 
cross-section of the available algorithms. The algorithm proposed by Nordstrom [61]

108
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is not considered. It is an L 2 based optimization scheme involving sampling, spectral 
factorization and linear matrix equations. It appears as if the digital controller obtained 
by this method has similar properties to that obtained using the H2 optimal control 
approach. As pointed out in Chapter 1, the direct design of H 2 and H ^  sampled-data 
controllers is possible. In this survey, the direct H 2 method found in [17] is used as 
a method of discretization. A method of controller discretization could also be based 
upon the H ^  methods. However, it was believed that the results would mimic those 

of [1],

The survey proposed can be divided into three areas:

1. Implementation: Given that the algorithms that are surveyed have not been 
widely available to this point, it is important that they are easy to implement. We 
give a subjective analysis of each of the algorithms as far as ease of implementation 
is concerned.

2. Analytical comparison: In the work of [12] and [42], an analytical compar
ison of open-loop discretization methods is given. Using different methods of 
discretization, system properties such as bandwidth, gain and phase margin, step 
overshoot, e.t.c. are compared. A similar comparison is made of closed-loop dis
cretization methods in this chapter. Along with the properties compared in [12] 
and [42], the order of the resulting digital controller is included.

3. Practical comparison: The discretization methods are also applied to a labora
tory system. The system is a “two-tank apparatus” which we describe in the next 
section. We believe that this practical perspective is an important contribution.

This chapter is organized as follows. Section 5.2 gives a description of the two-tank 
apparatus used for the experimental work. An outline of the identification procedure 
is given. The analog control design is also outlined. In Section 5.3 the controller 
discretization algorithms surveyed are described. General observations are made for 
each algorithm. The parameter selections used with each algorithm are also given in 
this section. The results of the survey are presented in Section 5.4 and an analysis is 
undertaken in Section 5.5. Conclusions are drawn in Section 5.6.
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5.2 T he A pparatus

A diagrammatic representation of the two-tank apparatus is shown in Figure 5-1. For 
the purposes of our experiment, the voltage applied to Pump 3 (P3 - pumps water from 
the reservoir to Tank 1) is the control variable. Pump 1 (PI - pumps water from Tank 
1 to Tank 2) is inactive. Pump 2 (P2 - pumps water from Tank 2 to the reservoir) is 
generally inactive, although we use it to provide step-like disturbances as we investigate 
the disturbance rejection properties of the system. The valve associated with Tank 1 
remains closed, whilst the valve associated with Tank 2 is set at about three quarters 
open. The valve between the two tanks is fully open. The height of water in both tanks 
can be measured via pressure transducers (TR1 and TR2), although only TR2 is used 
for control purposes.

Dimensions of the system are:

• Tank Size - 100 mm x 100 mm x 480 mm

• Pump Capacity1 - PI and P2: 500 gallons/hour, P3: 1100 gallons/hour 

The control system was implemented using RTSHELL2.

5.2.1 Identification

The method of system identification used was a least squares fit to a non-linear model. 
By Toricelli’s Law, a model of the system represented by Figure 5-1 is given by

where h\ and /12 are the heights in tanks one and two respectively, u is the flow rate 
into tank 1, and 71,72 are constants. The rate of flow u was assumed to be a quadratic 
function of the voltage (V) applied to Pump 3, i.e.

1 Pumps produced by Rule industries inc., Gloucester MA, USA
2 Multi Tasking Real Time Shell, developed by T. Hesketh and D.J. Clements, Department of Systems 

and Control, University of New South Wales, Australia

(5.2.1)

(5.2.2)

u = a \V 2 + a 2 V  -I- a3 (5.2.3)
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Figure 5-1: Two Tanks - Control Block Diagram

A constant term ß\ added to equation (5.2.2) yields a better fit. The system could then 

be described by the equations

7 7 - =  Oi\V2 +  a 2 V  +  c*3 -  7 i \ A i -  h2 (5.2.4)
at

7 7 - =  7i \A i  “  h2 -  72 V h 2 +  ßi (5.2.5)at

A series of step changes in V  were used to excite the system, with data being recorded 

every T  = 200 milliseconds. Approximating the derivatives by

dhi(kT) 8{hi (kT  + T ) - h l( k T - T ) ) - { h l(kT + 2 T ) - h l ( k T - 2 T ) )  . 1 n
~ 0 ~  = ---------------------------------------12T---------------------------------------’ i =  1 ’ 2

(5.2.6)

yields the parameters

qi =  -0.9034, a 2 =  21.0019, a 3 =  -49.3758 

ßi = -20.8526, 71 =  3.9183, 72  =  1.6626

A comparison between the simulated model and the actual system data is shown in 

Figure 5-2. Clearly, the result is very satisfactory.
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Figure 5-2: Actual system (solid line) and simulated model (dashed line)

Linearization was performed about Vo =  6 V, i.e. V  =  Vb +  AV . Defining

A l =  ; s - . „  a .
71

2(aiVr02 + a2Vb + a3) 
resulted in a state space model

ßi +  &iVß +  a2V0 +  a3

' h i ' = ’ —A i A i ’ fix '
+

2cxi Vo +  q 2

h2 A i —A i  +  A 2 A2 0

-0.1740 0.1740

0.1740 -0.2334
’ hi ' 10.1611

h2 0

A V

A V

h2 0 1
hi
h2

A transfer function description between A V  and is given by

v ( s ]  = ____________________
'  s2 +  0.4075s + 0.0103

This is the nominal model which is used for the controller design.

(5.2.7)

(5.2.8)

(5.2.9)

(5.2.10)

(5.2.11)

5.2 .2  A nalog C ontroller D esign

An LQG controller was designed with integral control action in order to reject constant 

disturbances appearing at the output. Its transfer function is given by

0.4014s2 + 0.3502s +  0.0270
C(s) (5.2.12)

s3 +  1.7780s2 +  2.3424s
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Figure 5-3: Bode Plot of Linearized System

and is implemented with a unity feedback arrangement. The Bode plot of the open- 

loop linearized system is displayed in Figure 5-3. The closed-loop frequency response 

is shown in Figure 5-4.
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Figure 5-4: Closed-Loop Frequency Response of Linearized System

The system properties can be summarized cis follows:

• Closed-loop bandwidth equal to 0.90 rad /s

• Damping coefficient of dominant poles equal to 0.51

• Gain margin equal to 11.53 dB

• Phase crossover frequency equal to 1.28 rad /s

• Phase margin equal to 41.05 degrees
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• Gain Crossover frequency equal to 0.48 rad/s

• Maximum closed-loop frequency gain equal to 3.15 dB at 0.44 rad/s

• Step overshoot equal to 32%.

The sampling period for the implementation of digital controllers is chosen to be T — 2 
seconds. This corresponds to approximately 3.5 times the closed-loop bandwidth, or 
approximately 6.5 times the gain crossover frequency. A rule of thumb [32] suggests 
that the sampling frequency be selected at least 10 times larger than the closed-loop 
bandwidth, so the sampling-rate used is likely to cause problems. These problems 
are desirable in this study, as it is well known (see [6]) that even open-loop controller 
discretization methods can perform reasonably well in many applications if the sam
pling rate is sufficiently high. Therefore, a low sampling rate that “challenges” the 
discretization methods is chosen.

5.3 A lgorithm  D escriptions

In this section, a brief description of the controller discretization methods surveyed in 
this chapter are given. Naturally, the interested reader should refer to the references 
given for a fuller description of the algorithms. The advantages and disadvantages 
of each algorithm are subjective. These opinions are based on our experience gained 
from implementing each scheme. For obvious reasons, descriptions of the algorithms 
developed in this thesis are omitted.

Bilinear Transformation Ben-Zwi and Preiszler in [12], perform extensive work com
paring the performance of a discretized controller to the performance of an analog 
design. The work is restricted to open-loop methods. Katz summarizes this work 
in [42]. Katz makes the conclusion that the bilinear transformation is the best 
open-loop discretization method. It is for this reason that this method is included 
as a benchmark in the study of closed-loop methods.

Advantages The bilinear transformation is simple to understand and imple
ment. The order of the analog controller is maintained.

Disadvantages In the closed-loop setting, stability not guaranteed.
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R attan’s M ethod Rattan’s algorithm [65] is a frequency-domain method of controller 
discretization. The method uses complex curve fitting to minimize the error 
between the continuous-time system and the sampled-data system. The criterion 
is a mean square type of the form

(5.3.1)

where F(-) is the closed-loop transfer function of the analog closed-loop system. 
If Gd(') is the closed-loop “transfer function” of the sampled-data closed-loop 
system, then N(-) and M(-) are the numerator and denominator of Gd(-) respec
tively. The digital controller is parameterized and substituted into (5.3.1). This 
equation is then differentiated with respect to the parameters and the minimum 
is found. The designer is responsible for the selection of 71 and 72 and also the 
selection of the order of the digital controller.

An extension on the basic method has also appeared in [66]. The extension takes 
into account the effect of the zero-order hold and any computational delays.

Advantages The designer has control over the order of the digital controller.

Disadvantages A recent paper by Hall [37] makes some comments on the meth
ods in [65, 66]. Two main points are made. First, there are a number of 
errors in [66] that significantly affect its conclusions. Second, neither of the 
methods are guaranteed to produce a stable closed-loop system even if the 
original closed-loop system is stable. In fact, the two methods generally lead 
to unstable closed-loop system when the order of the digital compensator is 
large. Hall argues that the agreement between the two transfer functions is 
not a good measure of stability.

Our experience has confirmed these statements. Further disadvantages are 
that the algorithm is computationally expensive and reasonably difficult to 
implement. There are no guidelines for selecting the frequency range of 
matching (i.e. 71 and 72). Finally there are many confusing typos in [65].

Keller and Anderson’s M ethod Keller and Anderson introduce two methods of 
controller discretization in [1]. The first method is the stability margin approach. 
The design of the digital controller is first framed in terms of a perturbation of 
the original continuous-time controller. Using a variant on the small-gain theo
rem [25], the authors use a measure of performance which guarantees closed-loop 
stability. A second method, the closed-loop transfer function approach basically 
attempts to minimize the F/oo norm between the analog closed-loop system and 
the sampled-data closed-loop system.
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Both methods use the techniques of “blocking” and “lifting” to approximate lin
ear and periodically time-variant operators by discrete time-invariant operators. 
The digital controller is found by solving a discrete H ^  problem. The closed-loop 
transfer function approach requires the designer to select an input weighting func
tion. Both methods require the selection of N, the fast sampling rate associated 
with the blocking and lifting. Model order reduction is generally required.

A dvantages The algorithms are easy to understand and implement. They are 
computationally fast and reliable. Computational delay can be accounted 
for.

D isadvantages The stability margin approach is basically restricted to open- 
loop stable controllers. The weighting function associated with the closed- 
loop transfer function approach can be difficult to determine—the designer 
requires some experience in this area. The order of the discretized con
troller is typically greater than the analog controller, requiring some form 
of controller reduction. Integral action in the controller is not necessarily 
preserved.

K ennedy  and Evans’ M ethod This method was one of the earliest closed-loop dis
cretization methods developed. The motivation for this method is based on the 
model matching techniques presented in [6]. A series of polynomials A, B , Am, 
B m, B+, B ~, Bp, Bc, Be, B*, Bp are generated which are related to the hold 
equivalences of the plant and closed-loop system. The method necessitates the 
solution of a Diophantine equation. The resulting controller consists of a feedfor
ward and a feedback part. The designer has some freedom with the selection of 
certain polynomials.

A dvantages The order of the analog controller is maintained. The method is 
very suited to tracking control problems.

D isadvantages A two-degree-of-freedom controller results. The discretization 
algorithm is not readily implementable on a digital computer. The intersam
ple behaviour is not considered and closed-loop properties such as distur
bance rejection are not addressed. The method does not preserve controller 
integral action and is applicable to stable plants only.

M arkazi and  H o ri’s M ethod  Markazi and Hori develop simple method of controller 
discretization in [58]. The method guarantees closed-loop stability for almost all 
sampling frequencies [58]. In this method, a sampled-data control system is de
signed such that the control input of the sampled-data control system approaches
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that of the continuous-time control system as the sampling frequency is increased. 
As with Kennedy and Evan’s method, polynomials are manipulated according to 
certain rules and the designer is responsible for making certain selections.

Advantages The method guarantees closed-loop stability for nearly all sampling 
periods. It is simple to implement.

Disadvantages The resulting performance is difficult to predict. Controller in
tegral action is not preserved.

Chen’s M ethod In the work of Khargonekar and Sivashankar [46], Bamieh and Pear
son, [9, 10] and Chen [17, 20], the sampled-data H2 has been solved. These 
methods use a generalized H2 continuous-time performance measure. The plant 
is given in the now popular generalized or two-port description. Strictly speak
ing, these methods have been developed for the direct design of sampled-data 
controllers. However in this survey, a generalized plant description is used which 
allows the controller discretization problem to be recast so that the H2 direct 
method can be used. This is achieved by setting the problem up in the form of 
Anderson’s closed-loop method. The simplified method of Chen [17] is then used. 
The designer must select the input weighting function.

Advantages The method is analytically attractive and numerically efficient.

Disadvantages The method is reasonably difficult to understand and to im
plement. The choice of norm is restrictive and the order of the resulting 
digital controller is large compared to that of that of the analog controller. 
Controller integral action is not preserved.

H2 Optimal Control M ethod This method is described in Section 4.2.

Advantages The algorithm allows some flexibility in the choice of norm. Con
troller integral action is preserved.

Disadvantages The algorithm is reasonably complicated and difficult to im
plement. It is moderately computationally expensive and can suffer from 
numerical difficulties. The order of the discretized controller is typically 

greater than the analog controller.

Convex Optimization M ethod This method is described in Section 4.3.

Advantages This method gives the designer great flexibility in the choice of 
norm and allows numerous constraints to be imposed in the discretization 
process. The algorithm is numerically very efficient.
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Disadvantages A digital controller of very high order results. A convex opti
mization algorithm must be available.

Integral Approximation M ethod This method is described in Section 4.4.

Advantages The designer has control over the order of the resulting digital 
controller—the order of the analog controller can be maintained. Controller 
integral action can be preserved.

Disadvantages The algorithm is computationally expensive due to non-linear 
optimization. The algorithm is fairly difficult to use because of the large 
number of parameters that must be selected.

All these algorithms have been coded in MATLAB. The code is summarized in Ap
pendix F.

5.3.1 P aram eter Selections

Most of the above algorithms require the selection of certain key parameters or other 
decisions. For a description of these, the reader is asked to refer to the associated 
work. In this section, the choices used for application to the two-tank experiment are 
summarized.

It should be noted that some of the methods produced controllers of high order. The 
sampled-data controller reduction procedure of [56] has been used to reduce the order 
so long as the performance of the controller is not significantly degraded. In all cases 
this resulted in digital controllers of order equal to 3, the same as the analog controller. 
This method reduces the order of the controller such that

- \\W(z)[C(z) -  CVMlVMIIoc

is minimized, where V(z)  and W(z)  are weighting functions generated according to 
the algorithm, C(z) is the original high order controller and Cr(z) is the reduced order 
controller. The fast sampling factor N  required by the controller reduction algorithm 

was set equal to 6.

Bilinear Transformation No selections were required.
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R attan’s M ethod A stabilizing controller could not be found for either 3rd or 4th 
order. Many choice of 71 and 72 were tried. The 3rd order controller found was 
obtained with 71 = 0.001 and 72 =  200. The numerical integration was performed 
via MATLAB’s Adam’s method.

Keller and Anderson’s M ethod The weighting function chosen was a 3rd order 
Butterworth filter with cutoff frequency uq = 7r/(0.9T) cascaded with a first 
order transfer function with the zero at 7t/ (4T), the pole at —0.00001, and the 
gain equal to 1.4. The fast sampling factor N  was set equal to 10. As a result a 
6th order controller was generated. The controller was reduced to 3rd order.

K ennedy and Evans’ M ethod The following polynomial selections were used:

A(z) = z2 -  1.4145z + 0.4427

B(z) = 2.7346z + 2.0861

Am{z) = z5 -  1.2827z4 + 0.5948z3 -  0.1367z2 -  0.0220z -  0.0126

Bm(z) = 0.4062z4 + 0.2074z3 -  0.5045z2 + 0.0150z + 0.0165

B?(z) = 1

B~(z) = B(z)

Bp(z) = 1

Bc(z) = ( z -  0.8429)(z -0.2108)

B e(z) = 0.4062(z + 1.4011)(z + 0.1632)

b ;(z) = 0.2023(z + 0.1632)

Bp(z) = 1

Markazi and Hori’s M ethod No choices were necessary as the plant is stable.

Chen’s M ethod The problem was set up in the same form as Anderson’s method with 
identical weighting function. The discrete exogenous input term was introduced 
with D2\ =  0.0001. A Kalman filter (as opposed to predictor) was used in the 
solution of the H2 problem. A 21st order controller was reduced to 3rd order.

H2 Optimal Control M ethod The reference model for a step was used with Algo
rithm 4.1. The resulting 8th order controller was reduced to 3rd order.

Convex Optim ization M ethod The reference model for a step was used. The num
ber of intersample points N, was set equal to 6 with nsampie = 50 and n tap = 20. 
The resulting 25th order controller was then reduced to 3rd order. This was 

repeated for the l2 norm and the norm.
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In teg ra l A pproxim ation  M ethod The reference model for a step was used. The 
number of intersample points was equal to 4, and Ä = 0. All analog integrators 
were approximated by 1st order digital approximations.

5.4 Results

Each of the methods described in Section 5.3 was applied to the controller described by 
equation (5.2.12), using the plant information given by equation (5.2.11). The results 
are recorded in Table 3.1. Tables 3.2 and 3.3 summarize the system properties. A 
discussion of the sampled-data frequency-domain methods used is given in Appendix C. 
The step responses of the hybrid systems, each comprised of the nominal continuous
time plant (5.2.11) and the digital controllers derived via the various methods, are 
recorded in Figures 5-5 to 5-9.

Whereas Table 3.3 compares the performance of the various discretization schemes in 
an analytical sense, comparisons were also made when the schemes were applied to 
the real system. First, the digital controllers were implemented with a block cascaded 
with the real plant at the input side. The block enabled variations in the gain and 
also a delay to be introduced. The gain and then the delay were increased until the 
system reached a point of instability, identified by the point just before the onset of 
an unbounded oscillation. This procedure was not performed for a given discretization 
scheme if large oscillations were present without additional gain or delay. The results 
are summarized in Table 3.4.

Each scheme was applied to the real system and a number of tests were performed. 
First, the response to step changes in the reference signal was recorded. This was 
achieved manually through the RTSHELL program. In addition, the application of 
a constant output disturbance (as applied by P2) was recorded. These results are 
recorded in Figures 5-10 to 5-16.
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DISCRETIZATION FEEDBACK FEEDFORW ARD
M ETHOD CONTROLLER CONTROLLER

Analog 0 .4014s2+ 0 .3 5 0 2 s+ 0 .0270 
s 3 + 1 .7 7 8 0 s2+ 2 .3424s -

Bilinear 0.1521 z 3+ 0 .0058z2 —0 .1 3 1 0 z + 0 .0153
23 —0.4757z2 —0.21882—0.3055

R attan 0 . 1 7 6 9 z 3 + 0 . 4 9 6 1 z 2 + 0 . 4 6 1 0 z + 0 . 1 4 1 9
z 3+ 2 .9 7 3 0 z 2+ 2 .9 4 4 3 z+ 0 .9 7 1 3

Anderson and Keller 0 .1896z3 —0 .0795z2 —0 .1 5 3 9 z+ 0 .0542
z 3+ 0 .0 0 5 2 z 2 —0.7 9 2 5 z—0.2611

Kennedy and Evans 0 .0 5 4 5 z—0.0347 0.2023z3 - 0 .1 8 0 1 z 2+ 0 .0 0 1 2 z + 0 .0059
z 3 + 0 .1 3 1 9 z 2+ 0 .3 3 8 7 z+ 0 .1 3 4 9 z 3 + 0 .1 3 1 9 z 2 + 0 .3 3 8 7 z + 0 .1 3 4 9

M arkazi and Hori 0 .2313z2 -0 .3 1 1 4 Z + 0 .0850 
z 3 —0.1506z2 —0 .4305z—0.4189 -

Chen 0.2643z3 —0 .1357z2 —0 .1 2 7 6 z+ 0 .0391
z 3+ 0 .1 3 9 0 z 2 —0 .8 1 0 6 z—0.3136

# 2  optim al control 0 .1357z3 —0 .0 1 3 2 z2 —0.154 l z + 0 .0464
z 3 —0 .1754z2 —0 .5477z—0.2768

Convex (I2 ) 0 .1591z3 -0 .0 8 9 5 z 2 -0 .0 7 9 1 Z + 0 .0194
z 3 —0 .3377z2 —0 .3 9 2 4 z—0.2698

Convex (/00) 0 .1546z3+ 0 .0 1 75z2 —0 .2 0 8 9 z+ 0 .0599
z 3 + 0 .1 9 4 7 z 2 —0 .8 8 1 1 z—0.3136

Integral 0.1629z3 —0 .0651z2 —0 .1 1 8 5 z + 0 .0398
z 3 -0 .1 8 9 2 z 2 -0 .5 9 5 6 z -0 .2 1 5 2

Table 3.1: Controllers
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PR O PER TY ABBREVIATION UNITS

Closed-loop Bandw idth CJC rad/sec

Dam ping Coefficient of Dominant Poles C d -

Gain Margin GM dB

Phase Crossover Frequency UJl rad /  sec

Phase Margin PM degrees

Gain Crossover Frequency CJ2 rad/sec

M aximum Closed-loop Frequency Gain Mp dB

Frequency at AIP rad/sec

Step Overshoot <7 %

Table 3.2: Abbreviations

DISCRETIZATION

M ETHOD

Ll)c C d GM UJl PM UJ2 Mp CJ3 <7

Analog 0.90 0.51 11.53 1.28 41.05 0.48 3.15 0.44 32

Bilinear 0.85 0.15 3.05 0.62 15.37 0.47 12.49 0.51 91

R a tta n  (unstable) 0.74 0.15 - 0.59 - 0.46 10.05 0.49 58

Anderson and Keller 0.85 0.58 8.56 0.93 46.73 0.40 2.06 0.44 28

Kennedy and Evans 0.82 0.51 11.26 0.40 109.57 0.05 2.83 0.43 32

M arkazi and Hori 0.89 0.51 5.06 0.60 46.89 0.28 3.24 0.45 31

Chen 0.95 0.53 9.38 1.14 41.17 0.45 3.06 0.45 31

# 2  optim al control 0.81 0.52 7.25 0.78 43.30 0.37 2.79 0.43 34

Convex (I2 ) 0.80 0.48 7.87 0.87 43.19 0.38 2.73 0.42 30

Convex (Z^) 0.80 0.52 8.14 0.84 42.75 0.38 2.80 0.41 34

Integral 0.80 0.52 8.09 0.86 42.71 0.38 2.81 0.42 34

Table 3.3: System properties
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Bilinear

time (seconds)

Rattan

time (seconds)

Figure 5-5: Step Response

Anderson and Keller

time (seconds)

Convex l_2

time (seconds)

Figure 5-6: Step Response
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Convex l_inf

time (seconds)

H_2 optimal control

time (seconds)

Figure 5-7: Step Response

Integral

time (seconds)

Kennedy and Evans

time (seconds)

Figure 5-8: Step Response
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Markazi and Hori

time (seconds)

1.5-

Ohen

time (seconds)

Figure 5-9: Step Response
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Figure 5-10: Analog Controller
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300

1 50

1 OO 2501 OO IO 200
time (seconds)
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3001 OO O 200
time (seconds)

250 350

Figure 5-11: Bilinear Transformation Discrete Controller
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Figure 5-12: Rattan Discrete Controller
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Figure 5-13: Anderson and Keller Discrete Controller
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Figure 5-14: Kennedy and Evans Discrete Controller
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200 2 5 0 3 0 0 3 5 0 4-00100 1 5 0
time (seconds)

4 0 02 5 0 3 0 0 3 5 01 OO 1 5 0 200
time (seconds)

Figure 5-15: Markazi and Hori Discrete Controller
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Figure 5-16: Chen Discrete Controller
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Figure 5-17: H2 Optimal Control Discrete Controller
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Figure 5-18: Convex Optimization l2 Discrete Controller
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Figure 5-19: Convex Optimization Discrete Controller
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Figure 5-20: Integral Approximation Discrete Controller
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DISCRETIZATION

M ETHOD

Maximum

Gain

M aximum

Delay

(seconds)

Analog 2.5 0.88

Bilinear - -

R a ttan  (unstable) - -

Anderson and Keller 1.18 1.08

Kennedy and Evans 1.03 >20

Markazi and Hori - -

Chen - -

# 2  optim al control 1.27 1.08

Convex {0) 1.38 0.98

Convex (Zoo) 1.26 1.32

Integral approxim ation 1.40 1.32

Table 3.4: System properties
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5.5 A n a ly s is

In this section, the results of Sections 5.4 are reviewed. Attempts are made to draw 
attention to points of interest rather than provide an extensive analysis. The reader is 
encouraged to examine the figures and tables of Section 5.4 more closely to verify the 
conclusions made.

Analog Controller The step response of the analog system model can be seen in 
Figures 5-5 to 5-9. In Figure 5-10, the response of the real system is shown. From 
time t = 0 to t «  35 seconds the regulating properties of the controller are shown 
as the system operates at an equilibrium point of 200 mm. A step is then applied 
such that the reference signal is changed to 224 mm. At t ~  70 seconds, the 
reference is returned to 200 mm. At t «  90 seconds, one sees the introduction of a 
constant output disturbance which is removed at t «  140 seconds. The controller 
performs very satisfactorily throughout, with well behaved control signals. Notice 
that the 30% overshoot in the design is only seen in the downward reference step 

change.

Bilinear Transformation In Figure 5-5, the linearized model's step response is shown 
and the real system is shown in Figure 5-11. The performance is totally unac
ceptable, with wildly oscillating control signals seen in the real system (notice the 
scaling on the axes). This behaviour does not disappear. Notice the introduction 
of the constant disturbance at time t ~  230 seconds.

R attan’s M ethod As is mentioned in Section 5.3.1, Rattan’s Method is unable to find 
a stabilizing controller. The step response displayed in Figure 5-5 does “blowup’’ 
after sufficient time. Despite this, the controller was applied to the real system. 
Figure 5-12 shows the result—the unstable controller for the model is also unstable 

for the real system.

Keller and Anderson’s M ethod Figures 5-6 and 5-13 show the relevant time re
sponses of Anderson’s controller. It should be noted that the “rough” appearance 
of the real system’s response is accentuated by the scaling used. Anderson and 
Keller’s controller has the lowest overshoot of any of the digital controllers as 
seen in Table 3.3. Notice the steady state offset, due to the lack of preservation 
of the integrator, in response to the step change in reference (Figure 5-13). The 
recovery after the disturbance is significantly longer than the analog design.
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This method allows less additional gain in the real system than most of the other 
methods, as seen in Table 3.4.

Kennedy and Evans’ M ethod Figures 5-8 and 5-14 display Kennedy and Evan’s 
controller performance. It showed the best regulation properties around the equi
librium point. However there is a large steady state error associated with the 
reference step (due to lack of integral action) and the controller could not deal 
with the step disturbance.

Notice the extraordinary phase margin (Table 3.3) and allowable delay (Table 
3.4) due to the two-degree of freedom structure. The gain margin is very large in 
the theoretical sense, but this is not reflected in the real system.

Markazi and Hori’s M ethod Markazi’s control scheme performance is seen in Fig
ures 5-9 and 5-15. The delay in the step response can be seen due to the strictly 
proper nature of the digital controller. The controller applied to the real system 
has very poor performance. Notice the change from turbulent flow to laminar 
flow at t & 250 seconds (an unexpected disturbance!!).

The theoretical gain margin is the smallest of all controllers apart from the bilinear 
transformation and Rattan’s method.

Chen’s M ethod The final scheme surveyed has its results displayed in Figures 5- 
9 and 5-16. Chen’s method has the largest bandwidth of any of the schemes 
(analog included). However this causes problems in the real system with very 
large control signals resulting.

The step response of Figure 5-9 is very revealing. Chen’s method uses a norm 
which takes into account the fact that the input signal may not coincide with the 
sampling point (i.e. the input signal may come in during the intersample time). In 
an attempt to compensate for this, the rise time of the step response is smaller. 
Larger control signals are needed to achieve this. In the practical setting, the 
resulting digital controller output signal is wildly oscillating.

Note that the output disturbance is removed at time t «  200 seconds (possibly a 
little prematurely).

# 2  Optimal Control M ethod Figures 5-7 and 5-17 display the responses of this 
method. The performance is quite good, although there is a long transient time 
for the system to return to the equilibrium point after the step disturbance is 
removed.
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Convex Optimization M ethod - l2 The results are seen in Figures 5-6 and 5-18. 
Table 3.3 reveals that the damping coefficient of the dominant poles is smaller 
than the other methods. This is not reflected in the step overshoot of the model 
system, but it is seen in the real system. Disturbance attenuation is quite slow 
in the real system. The control signal is very well behaved in the real system.

This method is comparatively robust with respect the additional gain placed in 
the real system but not with respect to the time delay.

Convex Optimization M ethod - Figures 5-7 and 5-19 show the time responses 
of the convex /<*, optimization method. The controller applied to the real system 
is more “aggressive” than the I2 controller. The step response is quite poor 
bearing little resemblance to the analog system. Disturbance attenuation is very 
good. Notice that the initial disturbance appears at t «  130 seconds. At around 
t = 160 seconds the flow through the valve at the bottom of Tank 2, changed 
from turbulent flow to laminar flow.

This method allows a good margin of additional delay in the real system.

Integral Approximation M ethod Integral approximation time responses are seen 
in Figures 5-8 and 5-20. This method has one of the better performances although 
it does take a long time to totally remove the step disturbance.

It accommodates a very good additional gain and delay in the loop.

5.6 Conclusions

This chapter has been concerned with comparing the performance of existing analog 
controller discretization algorithms. This comparison has been aided by practical work 
performance on a “two-tank” apparatus.

Perhaps a complaint that could be levelled against this work is that the dynamics of the 
linearized model that has been used are not sufficiently complex. This has resulted in 
a theoretical table of results (c.f. Table 3.3) that does not greatly differentiate between 
the properties of many of the resulting controllers. This objection is accepted. However, 
it should be added that theoretical and simulated results do not always bear witness to 
the performance of the controller applied to the real system. The results of this chapter 
support this statement.
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It should be pointed out that this survey is not intended to be the final word on con
troller discretization. The methods applied to one practical apparatus are not sufficient 
to make conclusive judgements about the superiority of one scheme over another.

This said, some conclusions can be drawn. For large sampling periods, it has been 
demonstrated that the bilinear transformation is totally unacceptable as a method of 
discretization. Further, the difficulties in finding a stabilizing controller using Rattan’s 
method suggests its ineffectiveness. The amount of numerical computation and the 
reasonable difficulty in implementing the scheme are also negative features. Markazi 
and Hori’s method although valuable in finding a stabilizing controller, does not ad
dress performance issues. Kennedy and Evans’ method possesses a number of positive 
features. However, the lack of disturbance attenuation and lack of integral action are 
major drawbacks. Chen’s method, which is reasonably difficult to implement, produces 
a controller which has very large gains. In the practical setting this is a problem. The 
integral approximation method is one of the better methods as far as performance is 
concerned, but it suffers from the fact that a non-linear optimization problem must 
be solved. Hence, it is numerically very intensive. The H2 optimal control and con
vex optimization methods also have good performance. The former method can suffer 
from numerical difficulties; the latter is very satisfactory from a numerical perspective. 
They are however, fairly difficult to understand and implement. Keller and Anderson’s 
method has slightly inferior performance than the three methods of this author, but is 
easy to understand and implement. It has been found to be numerically quite a good 
algorithm.



C h apter 6

C onclusions

6.1 Overview of Thesis

IV /¥  ° ^ vate<i by the requirements of modern control systems design, this thesis has 
XV-L considered issues associated with discretization from an engineering perspec
tive. Two applications of discretization were identified: the open-loop problem asso
ciated with filter design, feedforward controller design, and simulation of continuous 
time systems; and the closed-loop problem associated with the digital re-design of a 
continuous-time controller. The first problem is a mature mathematical problem— 
dating back perhaps hundreds of years. The second problem has been motivated by 
technological advances and has only been considered in the last decade or so.

6.1.1 T he O pen-L oop P roblem

While a portion of the theory presented is an extension and modification of existing 
mathematical techniques, the techniques developed in this thesis give important engi
neering insights.

The concept of signal invariant transformation has been reviewed and a comprehensive 
theory presented. Signal invariant transformations enable the design of digital systems 
whose output matches perfectly a given analog system at the sample points. If dis
cretization is performed with the objective of minimizing the difference between the

136
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sampled output of the the analog system and the output of the discrete system, with 
respect to a given reference signal, then the signal invariant transformation is the op
timal discretization. However the signal invariant transformation typically produces a 
discrete system with an order equal to the sum of the orders of the analog system and 
the reference model whose impulse response gives the reference signal. This thesis has 
addressed the problem of finding a discrete system of lower order that still produces a 
small discretization error with respect to the reference signal.

A parameterization of discrete-time systems was introduced by approximating each in
tegrator of the continuous-time prototype system by a modified Newton-Cotes scheme. 
This parameterization wets implemented in a number of different ways by selections 
of a matrix Ä. The order of the integral approximation could be varied so that the 
complexity or order of the discretization could be controlled (parallels were drawn with 
model order reduction techniques). An iterative optimization scheme was developed to 
find the parameter p which minimizes a “sum of squares” cost criterion.

A number of interesting results regarding the stability of the discrete-time system, the 
error resulting from discretization, and convexity of the cost function were presented. 
Interesting results were also obtained showing the dependence of the Hankel singular 
values (as well as the controllability and observability gramians) of the discrete-time 
system on the parameter p.

A major focus of this work has been the identification of the factors which affect dis
cretization error. By identifying these factors, the designer can determine the required 
complexity of the discretization. Furthermore, techniques were developed to determine 
the complexity of the integral approximation required for each integrator of the analog 
system. A scheme has been proposed which allows the designer to decide the required 
order of discretization as well as the order of the discrete approximation required for 
each integral.

The discretization method introduced in this thesis is a state space approach. Therefore 
the effect of the state space realization upon discretization error has been considered. A 
theory has been developed which is based upon the observation that parallels exist be
tween the minimization of discretization error and the minimization of integrator noise 
in an analog operational amplifier circuit. A theorem has been presented which gives 
the state space structure required to minimize the output noise gain in an operational 
amplifier. From this, state space structures which are favourable for discretization were 

proposed.
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Finally a large body of simulation work was undertaken which supported the above 
theory.

6.1 .2  T he C losed-L oop Problem

During the early years when digital computers were first implemented for control pur
poses, a simple controller discretization approach was typically used for algorithm 
design. A continuous-time controller was designed using the large body of available 
techniques and then a simple form of open-loop discretization was performed. The 
fact that the controller was operating in closed-loop was ignored. For small sampling 
periods this is not necessarily a problem, but it was discovered that the final design 
could be extremely unsatisfactory for larger sampling periods. Engineers realized that 
the closed-loop properties of the system had to be considered during the discretiza
tion phase, and as a response to this problem, a number of closed-loop discretization 
methods were developed.

This thesis has been concerned with developing closed-loop controller discretization 
methods based on optimization theory. The open-loop signal invariant transformation 
techniques have formed the basis of much of this theory. Three techniques have been 
successfully developed which were shown to perform well compared to existing methods.

The first approach discussed was based on signal invariant transformations and optimal 
control theory. A two-phase algorithm was developed—the first phase optimizing at 
a single intersample point; the second taking into account all the intersample points. 
Typically some form of min-max approach is taken in the second phase. This method 
was shown to perform well on benchmark problems. The main disadvantage with this 
method is the fact that a controller of large order is produced. It was shown that, 
if necessary, this problem could successfully be overcome by sampled-data controller 
reduction methods.

A second method presented was based on signal invariant transformations and convex 
optimization theory. This method displays a number of attractive features—flexibility 
in the choice of cost criterion; the ability for a variety of constraints to be incorporated 
into the design; and numerical reliability. Again the main disadvantage is the resulting 

high order of the digital controller.

The final method presented was an extension of the open-loop integral approximation
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method. Again signal invariant transformations were the tool used to convert the hybrid 
system into a pure discrete-time system which allows the solution to the problem. The 
motivation of this work was the fact that no model order reduction is required at the 
end of the design as with the other methods. The order of the digital controller is 
decided at the outset. This was again shown to be a very effective method of controller 
discretization. The main problem of this method is the resulting non-linear optimization 
problem that results. A technique that overcame this problem to a large extent was 
proposed.

An extensive comparison was made between the methods presented in this thesis and 
the other techniques available. This comprised a study of the methods applied to 
a two-tank apparatus. Comparisons were made in a theoretical and practical sense 
and attempts were made to give some impression of the implementational problems 
encountered with the algorithms.

6.2 Further Work

This section presents some open problems related to the work in this thesis.

• The # 2  optimal control method of controller discretization is very effective for 
achieving good performance. The major step in the algorithm involves finding the 
Youla parameter Q(z) which minimizes the I2 model matching problem. While 
an elegant analytical solution is available, the numerical problem is significantly 
more difficult. The optimal cost is very sensitive to variations in the optimal 
Q(z). It would be very useful if effective numerical techniques were developed 
for this problem. Perhaps particular state space structures could be utilized. Of 
course this would have benefits in many applications of optimal control theory.

• Also related to the H 2 optimal control algorithm is the problem of dealing with an 
unstable 7Z(s). As was shown the problem reduces to a two-sided interpolation 
problem (c.f. equation (4.2.33)). As mentioned in Chapter 4 a considerable body 
of knowledge exists for related problems—such as finding all the W (z) 6 Cnxm 

such that
xT(z*:)W(za;) =  y T{zk), k =

A starting point for the two-sided problem may be to represent the unknown 
matrix function in terms of a Taylor series expansion around some point. Then
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the collection of interpolation conditions can be represented as a system of (a- 
priori infinite) linear equations of the (infinitely many) Taylor coefficients. If 
a-priori there is no particular point where the matrix function is assumed to be 
analytic, then one could write the equations for Laurent coefficients.

Another point in relation to the unstable reference model case is in relation to 
the procedure proposed in Chapter 4. The final optimization involves a convex 
optimization over matrix functions and constant matrices. An efficient numerical 
scheme would be useful for this problem. This would have benefits in other fields, 
for instance there are problems in robotics which require this form of optimization.

• Again in relation to the H2 optimal control method is the issue relating to the 
relative degree of the reference model 7l(s). A sufficient condition for the realiz
ability of the digital controller is that the relative degree of all the components of 
7Z(s) equal one (c.f. Section 4.2.2). This implies, for example, that the method 
is suitable for a cosine reference model, but not a sine reference model. This is 
intuitively puzzling. It would be interesting to understand this problem more 

fully.

• A more general problem of discretization methods for non-linear systems needs 
to be addressed. At this point closed-loop discretization schemes for non-linear 
systems do not exist. In many applications, for instance in robotics applications, 
the dynamics of the system to be controlled may be highly non-linear. Such a 
system may be controlled using either a linear controller or a non-linear controller. 
Given that the digital computer is becoming more widely used for control tasks, 
the need for effective discretization is apparent.

It would be interesting to consider if some form of non-linear signal invariant 
transformation theory exists.



A ppend ix  A

Factorization Theory

Suppose [A, B, C, D] is a minimal realization of a transfer function matrix

G (z) = D + C(zl„x -  A)-1B 6 C 11 xn2 

which has no poles at 2  = 0. A realization of G~(z) is given by

[ - ( A - ‘)r , (CA“1)7 , - ( A - ‘B)t , (D -  C A - ‘B)r ] (A.0.1)

G (z) is said to be inner if

G - ( z ) G ( * ) = I n2

and co-inner if

G(z)G~(z) = Ini

A stable function G(z) (i.e. G(z) G RH°°) is said to be outer if G(z) has full row rank 
ni, V|z| > 1. A stable function G(z) is said to be co-outer if G(z) has full column 
rank 712, V \z\ > 1.

Given any G(z) G R H °°, the factorization

G(z) = G t(z)G0(z)

where G x{z) is inner and G0(z) is outer is said to be an inner-outer factorization. The 
factorization

G(z) =  Gco(z)Gc;(z)

where Gco(z) is co-outer and Gd(z) is co-inner is said to be an co-inner-co-outer 
factorization.
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T heorem  A .l  Consider the n\ x 77.2 (fti > 712) transfer function matrix

G(z)  =  D + C (zlnx -  A )_1B e RH°°

Suppose

(a) . G (z) has no poles at z = 0.

(b) . G~(z)G{z)  > 0 ; 2 = e>e ; VO e [0, 2tt]

(c) . G_ (2 )G(2 )|z=00 has full rank n2

(d) . Dt D > 0

Then G(z) has an inner-outer factorization

G(z) = Gi (z)G0(z)

where

Gj(z) =  DM  + (C + DL)(zInr — (A + BL))_IBM  

G„(z) = M -1 -M -'L (z I ni -  A)-*B

and

M = (Dr D + Br X B )-1/2 

L = - ( D TD + B r X B )~1(DTC + B r XA)

and where X is the stabilizing solution of the discrete algebraic Riccati equation

X = ATxA -  ATXB(In2 + Bt X B )_1Bt XA + Q 

Ä = A -  B(D tD )-1D t C ; B = B(D r D )-1/2 

Q = CT(Ini — D (D tD )- 1D t )C

Proof: See [36] 1

An analogous result for finding a co-inner-co-outer factorization exists.



A ppend ix  B

Stab ility  T heory for 

Sam pled-D ata  System s

In this appendix, a summary of stability theory for sampled-data systems is given. The 

material presented is based on the treatment in [19, 29].

First define a number of linear operators. The sampling operator St  '■ C°([0, oo), Cn ) —>• 

5 (Z +,Cn ) is defined by

y =  S-rii y(0) =  0, y (k) = u (kT) for k > 1 (B.0.1)

Similarly define the zero-order hold operator : 5 (Z +,C n ) —> C°([0, oo), Cn ) by

y =  H tu  <=> y(0) = u(0), y (t) = u(k)  for kT  < t < (k + 1 )T (B.0.2)

The backward shift operator U : *S(Z+, C 1) —> 5 (Z +,C n) is defined by

y = U u y(0) = 0, y (k) = u (k — 1) for k > 1 (B.0.3)

Similarly the adjoint operator, the forward shift operator U* : <S(Z+, C 2) —> <S(Z+, C 1) 

is defined by

y =  U u <=> y(0) =  0, y(A;) = u (k +  1) for k > 0 (B.0.4)

Consider the sampled-data system depicted in Figure B-l where the linear time-invariant 

system P c has a state model

xc =  A cx c -1- B cu (B.0.5)

y =  Ccx c + D cu (B.0.6)
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(B.0.7)

(B.0.8)

and the digital controller K  has a state model

+ 1) = A**(fc) +  B k u ( k )  

1>(k) = C k£(k) A D*i/(fc)

Kc

Figure B-l: Sampled-data system

The authors of [29] propose that a state for the sampled-data system can be given by

Xhybrid

X c

UTtp
H t U*£

(B.0.9)

A state at time t  gives sufficient information to compute all future values of all signals, 
given the present and future inputs. It is straightforward to show that (B.0.9) gives 
this information, and hence that x-hybrid is a state for the sampled-data system.

By moving the sampling operator and the zero-order hold operator around the loop in 
Figure B-l, a discrete-time feedback system is formed as in Figure B-2.

Figure B-2: Discrete-time system

Define P  — St P cH t - According to (B.0.5), P  has a discrete-time state model given 

by

x c(kT + T) 

i'{k)

rT
eAcTx c(kT) + / eXcT dT~Bcxj>(k)

J o
C cx c(kT) + E>Mk -  1)

(B.0.10)

(B.0.11)
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With D c = 0 this is a standard state model, however in general (Dc 7̂  0) the state of 
P at time k is given by

xc(/cT) 
if>(k — 1)

with state parameters

A, =
eAcT 0

0 0

C r  D r

B , = fo eAcT drB t

In

D , = 0

(B.0.12)

Of interest is the relationship between the stability of discrete-time feedback system of 
Figure B-2 and that of the hybrid feedback system of Figure B-l.

L em m a B . l  Assume A c (c.f. B.0.5) satisfies the following

1. whenever p is an eigenvalue of A c with nonnegative real part, none of the points 
p j2ixk/h, k ^  0, is an eigenvalue of A c

2. none o f the points j2irk/h, k ^  0, is an eigenvalue of A c

Then, if  (AC,B C) is stabilizable in continuous-time, so is (AS,B S) in discrete-time. 
Similarly, i f  (Cc, A c) is detectable in continuous-time, so is (Cs, A s) in discrete-time.

The conditions of this lemma ensure that the discretization of the loop does not intro
duce unstabilizable or undetectable modes.

D efin itio n  B . l  (Discrete-time) The state x converges exponentially if, for zero 
input, there exists positive constants a and ß such that, for every initial time k0 and 

initial state x(ko)

||x(fc)|| < llx ^ ll/J e -“'*-*0», k > ho (B.0.13)

D efin itio n  B .2  (Continuous-time) The state x^ybrid converges exponentially if, for 
zero input, there exists positive constants a and ß such that, for every initial time to
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and initial state Xhybrid(to)

\\Xhybnd{t)\\ <  \\Xhybnd{to)\\ße ° (< to\  t > t0 (B.0.14)

If yip-K is the sampled hybrid state, i.e. xp-x{k) = {Spy-hybrid)(&) then the following 
result relates the stability of a hybrid system and that of the corresponding discrete
time system.

Theorem B .l Assume A c satisfies the conditions of Lemma B.l. I f  xp-x is expo
nentially convergent, so is Xhybrid-

Under the same conditions as Lemma B.l, it can be shown that the hybrid system is L ^  
input-output stable. However the authors of [19] note that L2 input-output stability 
is not guaranteed, due to the fact that the sampler does not map every continuous 
function in Lq into 0- This problem can be alleviated by introducing a strictly causal 
stable continuous-time filter prior to the sampler.



A ppend ix  C

Sam pled-D ata Frequency  

R esponse M ethods

Consider Figure C-l where a continuous-time signal r  is sampled, processed by a digital 
controller C{z), and then applied to a continuous-time process P(s) via a zero order 
hold.

Digital
Controller ZOH Process

Figure C-l: Block diagram of sampler, digital controller, zero order hold, and 
continuous-time process

Let R(s),R*(s),U(s),Y(s)  be the Laplace transforms of the signals r, r* ,u ,y  respec
tively. The notation R*(s) is used to symbolize the Laplace transform of r*(t), the 
sampled or impulse-modulated r(t). It is well known ([32]) that

i  00
R*{s) =  -  R { s - j n u s) (C.0.1)

n = —00

where T  is the sampling period and ujs is the sampling frequency in radians per second 

(cjs = 2irT~1). Also

C(z ) =  C*{s)\esT=z (C.0.2)

The continuous frequency response of the sampled-data system is given by

1 00 1f  E ; ( l - e - sT)P W C W |z=e. r | s=JWn (C.0.3)
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where u in  =  uj + 2nnT 1, (n =  . . . ,  —2, — 1,0,1, 2, . . . ) .  The n =  0 term corresponds to 
the fundamental component, and is equivalent to

C ( z ) P ( z ) \ z=ejuT (C.0.4)

where P{z) is the discrete hold equivalent of P(s). For n ^  0, the frequency response 
for the individual alias components are obtained. In this thesis, the quantity (C.0.4) 
is used as an approximation to (C.0.3). The approximation is a very good one, with 
significant deviations occurring near the Nyquist frequency only.

As a final note, Cessing [33] suggests the utilization of Bode plots of the control index 
[28] for frequency analysis. This plot is the magnitude of the frequency transfer function 
from the reference signal to the error signal in a classic unity feedback configuration. 
This is not used in Chapter 5 as it adds little to the analysis.



A ppend ix  D

D erivation  of E rro r B ounds

D .l Proof of Lemma 3.9

The integral solution of equation (3.6.2) is given by

-k T +TrKi  + 1
x(kT + T) = e~aTx(kT) + /  e - a{kT+T- a)bu{a) da (D.1.1)

JkT

x(kT)  + [  e~atbu{kT + T  — t) dt (D.1.2)
Jo

- a T ,

In the case where the integral is approximated by the trapezoidal rule (a =  ß = ^), 
one has

x{kT + T) = e -aJx(A:T) + y[u(fcT  +  T) + e“a:ru(/cT)]

{e~atu{kT + T -  t)}\t=(k 0 < < T  (D.1.3)

- ° T :

T 3b d2 
12 dt2

The last term in equation (D.1.3) is the error term associated with the trapezoidal rule. 
If x (kT ) is the approximation of x (kT ) at time fcT, then the error at time kT  is defined 
by E(kT),  where

E(kT) = x(kT) -  x(kT)

By iteration, one can show that

E{kT) =
- b T 3 k - 1

E
3= 0

, - a T ( k - j - l )  r - a td2 {e-atu((j + l ) T - t ) } \ t^ k 0 < < T
(D.1.4)
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Calculating the derivatives gives

E{kT) = V P -  Y ,  +  1)T -  t)
u  j =o

+2ae~â u { ( j  + 1 )T -  t) +  e~â u{{ j  + 1 )T -  £)}

It follows that

\E (kT)\  < ! ^ i l !  ^ e - “T<t - ^ 1){a2|u m oI| +  |2aUmox| +
3=  0

Define

then

E < W T* 
12 

_1_
12

1 — e~aT

E = sup \E(kT)\
k

{a \umax I d~ l^^^maxl d- l^maxl}

T 2{a2\umax \ +  \2aumax\ +  |^maxl} d" O iT 6)

Given the input u(t) = U cos(ut),

E  < —  
~  12

l _

12

T 2{a2U +  2 aUu  +  U u2} +  0 (T 3) 

U{ujT  +  a T )2 +  0 (T 3)

The error at the output can be written as

Eoutput —
1< — 

12
U{ouT + aT)2 + 0 ( T 3)

=  -<j U(u>T +  aT)2 T 0 ( T 3) 
6

where a is the Hankel singular value.

D.2 Proof of Lemma 3.10

Using the fact that

e x t  =  e - a i t cos(d21)  sin(a20
— sin(a2f) cos(fl20

(D.1.5)

(D.1.6)

(D.1.7)

(D.1.8)

(D.1.9)

(D.1.10)

(D.1.11)

(D.1.12)

and defining
E0utput{kT) = y{kT ) -  y{kT)
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it can be shown that

E o u tp u t ( kT )
- T 3 r 
12 -

1 0
k-l
E
3= 0

e - a , i T ( k - j - l )

cos(ci2T(k — j  — 1)) sm(ci2T(k — j  — 1))

-  s'm(a,2T(k -  j  -  1)) cos(a2T(k -  j  -  1))

dp{e~axt\!b\ +  ^2 sin(a2< +  arctan(j£))u(/cT +  T  -  

j j i { e~ait\Jb\ +  6̂  sin(a2t -  arctan(^))w(A:T +  T  -  i)} |t=^2

from which it can be shown that for u(t) = U cos{ujt),

\Eoutput(kT)\ < + %(" + (“ i +  l«2|))2 E
3=0

x  { |  COS (a2T(k  - ; - ! ) ) !  + I sin (a2T(k  -  j  -  1 ) ) | }

This bound is not heavily dependent upon ß. Taking the supremum over k gives

Eoutput S: (loT  4- (ai +  |a2|)T)2 (D.2.1)

D.3 Proof of Lemma 3.11

A fast sampled system of sample period iV -> oo is generated according to Lemma 

3.3. Using “blocking” techniques the fast sampled system becomes

x F{kT + T)  =  F ^ x F(fcT) + TT'iV — 1-T p Orp r  p ■2G„ . . .  G p ’

y F ( f c T )  =  H p X F ( f c T )  + Jp 0  . . .  0 SÜ

where ü is given by

- u(kT)
u(kT  +  jj)

(D.3.1) 

(D.3.2)

(D.3.3)

. u(kT + ( N -  1)£) .

and S  is a matrix which determines the correlation of the elements of ü. One would 

expect that, if a sensible choice of sampling period has been made, then the elements of



APPENDIX D. DERIVATION OF ERROR BOUNDS 152

the vector ü would be in some sense correlated for a given N.  The correlation matrix 
of ü is given by

R„ =  S S T

1 A A 2 • A ^ - 1 '

A 1 A A 2 • • • A ^ - 2

A 2 A 1 A A 2 . . A ^ - 3

_ A * - 1 X N - 2 1

(D.3.4)

where A =  e~N~x. The constant is a quantity which determines the amount of 
correlation between the members of ü, with smaller correlation as q —> oo. Performing 
a Cholesky decomposition on R u shows that one choice of S  is

1 0  0  • • • 0

A >/l -  A 2 0  0  • • 0

A 2 W l  -  A 2 V l  -  A 2 0  0  • 0

[  X N ~ l A ^ - ' V l - A 2 • • • • • x/T^Ä2 J

(D.3.5)

The discrete system with period T  is given by

xs (fcT + T) = +

ys (kT) =  HpXs(fcT) +

f ^ - 1g p +  f ^ - 2g p +  --- +  g p 0

jp 0

A state space description of Ge(z, p, N)  is then given by

where

x s (kT + T) 
xp(kT  +  T)

= $
x s {kT) 
xf {kT)

e(kT) = ys(kT) — yF{kT) =

$  =

r =

Fp 0
0 F "

H p -H p

and
0 e1

+ r 5ü

xs {kT)
x F{kT)

F^-'Gp
>/V-2Fp _1G P + Fp 2GP + • • • +  G?

'AT—2|

0
FpV-2Gp

a u

(D.3.6)

(D.3.7)

(D.3.8)
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The # 2  norm of the system (D.3.8) as ./V —» oo is now computed. This requires the 
solution of the Lyapunov equation

p N = $ p w$ r + r R ur T' (D.3.9)

in the limit as N  -» oo. When the product TH is calculated, it can be seen that each 
element in the matrix takes the form of a geometric series. Summing each series gives

r _  = [ (AI„ -  F p rU A 'X  -  F~)G P vT ^ F (A I„ -  FpJ-'fA^-'ln -  F « - ')G P
(In — Fp)_1(I„ — Fp)Gp 0

VT^Ä2(AIn - F p) - 1(A,''-2I „ - F " - 2)G!, .............  V l ^ G p  ‘

0 ............  0

(D.3.10)

The Lyapunov equation is analytic in its arguments so the limit may be taken before 
the formation of the infinite sum. Thus, in the case a  +  ß  =  T In, it can be shown that

e_<rr JoT e(A_Kln)r d rb  0 
/ 0T eAr dr b 0

as N

The solution to the Lyapunov equation (D.3.9) in infinite sum form is

E
fc=0

ekATe 2<:T{Jq e(A‘Kln)r d r)bbT(/(̂r e(A+?In)r dr)T ekA~TT 
ekATe~<;T(f(f  eAr d r)bb7 (/0T e(A+An)r dr)TekA~TT

ekATe~<;T(Jq e Â+?In T̂ dr)bbT (Jq eAr dr)T ekATr
ekAT( t f  eAr d r)bbT(/0 eAr dr)Te\T  „k A TT

(D.3.11)

(D.3.12)
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Thus

\\Ge(z, p, oo) |||

=  £  cTekAT{e~*T( [  e<A+^ > T d r)b b T( f
k=0

; ( A + a „ ) T  d r ) T

+ ( [  eAr d r ) b b ' ( [  eAr dr)T -  ' r ( /  eAr d r )b b r (
Jo Jo Jo Jo

-  e-sT ( [ T e(A+,;I”)T dr)bb T( T  d r)r }e'iA7'r c
Jo Jo

°o „ J 1
J '^ k A Ty J  eAr dr — e qT( j  e(A+<̂ ) 'r  d r)]b b r

/c=0 
’•T

x [ /  eAr d r -  e-?T( /  e(A+^«)^ dr)]TefcAr7c 
Jo Jo

oo />T
< cTekAT J [eAr -  eAr+<rI^ r - T)]bbT[eAr -  eAr+cI"(r -

/c=0

oo
T J A TT V  cTekAT [  {1 -  e ^ - r )}2eAW e A7> dr 

fc=o 70

< T{1 — e_ T̂}2 V  cT [ T ekAT+Arb b T
P i  70

=  T{1 -  e"cT}2cT /° °  eArb b TebArT d r c 
Jo

ekATTc

e k A TT + A TT dT  c

=  T { l - e - ' T}2| |e(S)|||

e (A+cIn)r d r ) T

(D.3.13)

r > f  dr ekATTc 

(D.3.14)

(D.3.15)

Inequality (D.3.14) follows by application of the Cauchy-Schwartz inequality.
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T he C ontinuous-D iscrete  

Lyapunov E quation

Consider the equation

7 AXA t +  AX +  X A 7’ + kQ = 0 Q =  Qr  > 0 (E.0.1)

for 7 7̂  0, which shall be called the Continuous-Discrete Lyapunov Equation because of 
its similarity to both types of Lyapunov equations. Assume A E Rnxn, and denote the 
linear space of all n x n real valued matrices, with the usual rules of multiplication and 
addition, by (A, IR). The dimension of (A, IR) is n2. Corresponding to (E.0.1) introduce 
the operator Z

Z  : (A, IR) -> (A, IR) where Z ( X)  =  yA X A T + AX + X A T VX E A (E.0.2) 

Consider

X = (E.0.3)

where is an eigenvector of A; i.e.

M i  =  M i  (and At  = XjdJ)

Then

= y A ( t( j A T + A ( t(J' + ( i( f A T (E.0.4)

= (E.0.5)

= ["T A * Aj +  \ i  + (E.0.6)
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So is an eigenvector of Z  with eigenvalue yXiXj + \  + Aj. This motivates the 
following results.

T heorem  E . l  Let Z  be the operator defined in (E.0.2). Let A*, A; be the distinct 
eigenvalues of A for i , j  = 1,2, . . . ,  m < n . Then yAjAj + A* + A j is an eigenvalue of Z.  
Conversely, let rjk, k = 1,2, . . .  ,p < n2, be the distinct eigenvalues of Z,  then for each 
k,

Tjk — yX{Xj T Aj -t- A j

for some i and some j.

Proof: Recognizing that Z{X.) can be written as

Z{X)  =  ![ (7 a  + i „)X(7a  + I„)r  -  X] (E.0.7)
7

which is just a transformation of the discrete-time Lyapunov equation operator, the 
result follows. See for example Theorem F2 in [16].

C orollary E .l  Any matrix representation of the operator Z  is nonsingular if and 
only if yXiXj + Xi + Xj ^  0 Vi,j.

Proof: Since the linear operator Z  maps an n2 dimensional linear space into itself,
it has a matrix representation, i.e. one can write the n2 equations corresponding to 
(E.0.1) as Äk = q. The determinant of Ä is the product of its eigenvalues, from which 
the result follows.

T heorem  E.2 IfyXiXj  + A* + A; /  0 Vz, j, then, there exists a unique solution to 
equation (E.0.1). If, in addition, lyA^A) + 1| < 1 then the solution can be written (i)

oo

X = 7« E ( 7 A + I-.)*Q(7A r +  I„)‘ (E.0.8)
k- 0

or (ii)

X = X 0 + 7X 1+ 72X 2 + ... (E.0.9)
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where Xo is the solution o f the continuous-time Lyapunov equation

A X 0 +  X 0 A r  +  7 kQ =  0 (E.O.IO)

and, for n > 0, X n is given by the solution o f the continuous-time Lyapunov equation

A X n +  X nA T +  A X n_i A r  =  0 (E.O.ll)

for n > 2.

Moreover, i f [ A , Q [^2} is completely controllable then

X =  X T > 0 i f  |yAj(A) -I- 11 < 1 and j k  > 0

X  = X 7 > 0 i f  |7A;(A) +  1| > 1 and yn  < 0

X = X r  < 0 i f  |7A;(A) -h 11 < 1 and yn  < 0

X =  X T < 0 i f  |7Aj(A) +  1| > 1 and yn  > 0

P roo f: Uniqueness follows from Corollary (E.l). Also using (E.0.7), equation (3.5.25)
can be rewritten as

(7A +  In)X (7A  +  In)T -  X -f 7«:Q =  0 (E.0.12)

By standard Lyapunov theory, the solution of (E.0.12) may be written in the form of 

(E.0.8) if |A<(7 A + 1) \  < 1, i.e. |7 Ai(A) +  1| < 1.

Part (ii) of the lemma follows via substitution.

It should be noted that complete controllability of [7A +  In,7«:Q] is equivalent to 

complete controllability of [A, Q 1' 2]. This can be shown using the PBH eigenvector 

test for controllability. [A, Q 1/2] is controllable if and only if there is no left eigenvector 

of A orthogonal to Q 1//2:

v t A  = Avr v t A  =  - — -w 7 <*=> y v T A + v T = AvT v r (yA + In) = Avr
7

where Ä =  7A +  1. The positive/negative definiteness of the solution follows from The

orem 3.3 in [34]. If 7«; > 0 and 7r(yA +  In) =  0, then i/(X) = 0  => X > 0 . Also, 

if yn  > 0 and u{yA + In) =  0, then 7r(X) = 0  =>• X < 0 . The cases 7« < 0 follow 

naturally.
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The next result follows from equation (E.0.1) and continuity.

Lem m a E .l  From Theorem E.2, if  |7Aj( A) + 1| < 1 with

oo

x = 7« I > A + I„)*Q(7AT + 1/
k=0

then

l i r n X ^ K  J  eAtQeATt dt (E.0.13)

L em m a E .2 Assume k is independent of 7. I f \ y \ i (A)  + 1| — 1 is of  one sign for all 
i = 1, . . . ,  n then the partial derivative o fX  with respect to 7 satisfies

P 7X > 0 if  yn > 0 (E.0.14)

£>7X < 0 if  7« < 0 (E.0.15)

Proof: Using equation (E.0.1) and taking partial derivatives with respect to 7 gives

y A V 1X A T + A P7X + P7X A r + A X A r = 0 (E.0.16)

Using Theorem E.2, r>7X > 0 if |7A*(A) + 1| < 1 and X > 0 (with A full rank). 
However if X > 0 , then this can only occur if 7«: > 0. Alternatively P 7X > 0 if 
|yAi(A) -h 11 > 1 and X < 0. However if X < 0, then this can only occur if 7« > 0. 
The first inequality is thus proved. The second inequality follows by similar arguments.

1

Lem m a E .3 Assume k is independent of 7 and 7' £ [0,7]. I f \ y ' \ i (A)  + 1| — 1 is of  
one sign for all i = 1 ,... ,n  then the solution X to equation (E.0.1) satisfies

X > Xo if  yn > 0 

X < X 0 if  yn < 0

where X q is the solution to equation (E.0.1) in the case 7 =  0.

(E.0.17)

(E.0.18)
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Proof: Using Taylor’s theorem write

x = x0+ r p 7x(V) drf
Jo

(E.0.19)

If P 7X > 0 then X > Xo- From the previous lemma this occurs when 7 k > 0. Again, 
the second inequality is argued similarly.



A ppendix F

A lgorithm s D eveloped

This appendix lists the specific algorithms developed through the work of this thesis 
and outlines their function and use. The algorithms have been coded in in MATLAB,1 
and many require the Control System, Robust Control and Optimization Toolboxes for 
their use. A few of the algorithms require the SIMULINK package.

Figure F-l shows all the programs and sub-programs developed along with the hierar
chical structure of their operation. Note that the “starred” programs were not written 
by the author of this thesis.

F .l  Algorithms of Chapter 3

integrals.m This is the fundamental program used in Chapter 3. Its purpose is to 
implement the open-loop discretization algorithm. The program calls system s.m  
which contains all the essential parameters related to the examples of Section 3.9. 
The value of the parameter EXAMPLE  determines which example is selected. 
The optimization is performed via the MATLAB optimization function fminu. 
The optimal discretized system is returned in the state space system [F, G, H , J]. 
A plot of the output of the signal invariant transformation and the optimal system 
is also produced (in response to the reference signal).

Generally the algorithm converges rapidly to the global minimum. However there 
are examples which are sensitive to the initial parameter selection. A few different

1 MATLAB is a registered trademark of The MathWorks, Inc.
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integrals.m sit.m

doublef.m doubleg.m systems.m

opt_struct.m

L2_scale.m

rattanjnt.m

phi_l.m
I

sit fn.m

hybrid.m

stable, m

i r
coprime.m* star.m stable.m in_out.m in_out_scalar.m hybrid_sim.m

control.m
minrealx.m*

model.m

ricjt.m

chen.m markazi.m anderson_cl.m anderson_st.m

Thdot.m Uhdot.m Vhdot.m Whdot.m extract.m H2.m block.m block.m

integrals_cl.m integrals l_cl.m

doublef_cl.m doubleg_cl.m doublefl_cl.m doublegl_cl.m AUXILIARY qdes* convex_source 
MATLAB FILES*

mat2qdes*

* Denotes algorithms not written by the author of this thesis

Figure F - l:  P rogram s developed

starting points should be tried in these cases.

system s.m  This file contains all the parameters related to the examples of Section 
3.9. This includes a state space description of the system ([ac, 6c, cc, dc]) and 
the signal model ([ar,br,cr,dr]). Other parameters are: the discretization period 
(T), the number of passes through the doubling algorithm (iV), Ä (a6ar), the 
integral approximation order (L), the options parameter required for the MAT- 
LAB optimization function fminu (options), the initial value of p (x), and finally 
the number of points to be plotted in the result (N N ). The optimal discretized 
system is returned in the state space system [F, G, id, J].

doublef. m This function is called by integrals.m through the MATLAB optimiza
tion function fminu. It evaluates the cost function (3.4.32) using the doubling 
algorithm for Lyapunov equations (c.f. Algorithm 3.1).

doubleg. m This function is also called by integrals.m through fminu. It evaluates 
the gradient of the cost function (3.4.32), again using the doubling algorithm.

opt_struct.m This function implements the theory of Section 3.9.3 to give a state 
space structure which minimizes the output noise gain, subject to a unity L2 seal-
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ing constraint. The user must supply the integrator noise intensity f tv (omega-eta), 
and the input noise intensity Vtu (omega.u).

L2_scale.m Given a diagonal matrix D e Mnxn, this function finds an orthogonal 
matrix V such that (V D V r )jj = tr(D )/n  Vj.

F.2 A lgorithm s of C h ap te r 4

sit.m  This program implements Algorithm 4.1 for the # 2  optimal control method 
of controller discretization. The user must input the state space description of 
the plant ([ap, bp, cp, dp]), the controller ([1ac,bc,cc,dc\) and the reference model 
([ar, 6r, cr, dr)). Other parameters that must be selected are: the sampling period 
(T), the grid sizes ^1 , ^ 2  corresponding to phase one and two of the algorithm re
spectively (xl,x2),  and the time interval for the plots (t). The optimal discretized 
controller is returned in S-Cstar.

phi_l.m  This function is called from sit.m  and evaluates the cost function dq. The 
user must specify the grid size N .

sit-fn.m  This function solves the primary optimization problem associated with the H 2 

optimal control method of controller discretization. The user may have to adjust 
([ai,bi,ci,di]) to ensure a continuous-time internal model (c.f. Section 4.2.3).

star.m This function finds the discrete-time adjoint of a system S.

stable.m  This function decomposes a discrete-time system 5 into a sum of its stable 
and unstable parts. The user can specify a tolerance (tol) to distinguish stable 
poles from unstable poles.

in_out.m This function computes an inner-outer factorization of a system S  in discrete
time. It is based on the theory of [36]. The user can include an optional second 
argument to specify that the Riccati equations are to be solved by iteration using
ricJt.m .

in.out.scalar.m  This function computes an inner-outer factorization for a SISO sys
tem S. The algorithm simply reflects poles and zeros across the unit circle.

ricJt.m  A function for solving the discrete-time Riccati equation by iteration. The 
user specifies the number of iterations in the function call.
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convex.m This program implements the convex optimization algorithm for controller- 
discretization. The user must specify the state space descriptions of the plant 
([apc,bpc,cpc,dpc]), the controller ([ac, be, cc, dc\), and that of the reference sys
tem ([ar, br, cr, dr}). The sampling period (T), the number of intersample divisions 
(N ), and nsample  are also needed.

qdes This is an executable C program called from convex.m for solving the convex 
optimization problem. This version is compatible with a sun4 computer.

convex-source This is the source file called from convex.m and used by qdes. The 
user must specify the number of exogenous inputs (n-exog), the number of reg
ulated outputs (rureg), the number of sensed outputs (n s e n s ), the number of 
actuator inputs (n s e t ), and the variables nsam ple , and nJap  that appear in 
Section 4.3.3. The norms used in the optimization and the constraints must also 
be input.

A U X ILIA RY  M ATLAB FILES This range of functions not written by the author 
of this thesis includes fir2ss.m, loadq.m, q2comp.m, gethzw.m, kl2ttt.m . 
kl2ttt_fn.m, and midimpulse.m. These functions are called from convex.m  
and are used to process the numerical data to and from qdes. These functions 
are included in the qdes distribution file. A full description of these function is 
available from the distribution site.

mat2qdes This is an auxiliary C program used by qdes to write impulse response 
data to disk files.

minrealx.m This is a modified version of the MATLAB function minreal. It has a 
high tolerance value for determining unobservable and uncontrollable states of a 
system.

coprime.m This function returns state space realizations of elements of a doubly 
coprime factorization of a system [A, B,C, D] based on a state feedback gain 
Ks f b  and an observer gain Lobs (A — B x Ks f b  and A  — Lobs x C must be 
stable).

integrals_cl.m This program implements the integral approximation method of con
troller discretization. The user must give the state space description of the 
plant ([ap,bp,cp,dp]), the controller ([ac, be, cc, dc\), and the reference model 
([ar,br,cr,dr]). A number of parameters need to be specified: the sampling 
period (T), the number of passes through the doubling algorithm (N ), Ä (abar),
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the order of the integral approximations (L), the number of intersample divi
sions (division), the initial parameter p (x), the upper and lower bounds on 
the parameter region (vlb,vub), the number of intersample divisions (division), 
and the options for the MATLAB function minimax (options). The state space 
description of the discretized controller is returned in [F, G,H,J\ .

Generally the algorithm should be run two or three times, first with a small value 
of N  (typically 2 or 3) and then with a larger value. The optimal p found at each 
step should be used as the value of x in the next iteration.

doublef_cl.m This function evaluates the cost function (4.4.1). This is called by in- 
tegrals_cl.m through minimax.

doubleg_cl.m This function computes the gradient of (4.4.1). This is again called by 
integrals_cl.m through minimax.

integralsl_cl.m , doublefl_cl.m, doublegl_cl.m  These are equivalent functions to 
integrals_cl.m, doublef.cl.m , and doubleg-d.m  except that the integral ap
proximations are restricted to first order, which alleviates some of the numerical 
problems of the general algorithms. Obviously the parameter L is not required.

hybrid.m This function performs a sampled-data controller reduction using the algo
rithm of [56]. The function has input parameters comprised of: the continuous
time plant (S), the digital controller (S-C), the fast sampling factor (N ), and 
the sampling period (T). An optional parameter (cr.order) which specifies the 
order of the reduced controller can be included. If this is not present, the order is 
asked for at a later point. The outputs are the reduced order controller (S-CR), 
the discrete-time closed-loop system with reduced controller (S-CLR),  and the 
weighted Hankel singular values (H S V ).

F.3 Algorithms of Chapter 5

m odel.m  From experimental data (contained in file identification.dat), this program 
finds the parameters (ai, o<2 , 0 3 , /?i, 7 1 , 7 2 ) corresponding to the non-linear model 
of the two-tank apparatus (equations (5.2.4) and (5.2.5)). It also generates a 
linearized model of the system in state space form ([A, B,C,D]).

extract.m  This function is called by model.m and is used to extract data from the 
file identification.dat.
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control.m This program is used for the design of the analog LQG controller for use on 
the two-tank apparatus. In order to reject constant disturbances at the output, 
the design includes an integrator.

rattan.m This program implements Rattan’s method of controller discretization. The 
designer must specify the state space descriptions of the plant ([*4, B , C, D]) and 
the controller ([Ac,Bc,Cc,Dc]) must be supplied by the user. Furthermore the 
sampling period (T) and the range of integration (gammaA, gamma-2) must be 
given. Options related to the step sizes used in the Adams integration method 
can also be included. The digital controller is returned in [Acd, Bed, Ccd, Dcd\.

Thdot.m , Uhdot.m , Vhdot.m , W hdot.m  These are functions called by rattan.m
to calculate the integrands of the four integrals associated with Rattan’s method.

rattanJnt.m  This is a block generated by SIMULINK which is called through rat
tan. m. It sets up the call to the four previous functions.

anderson_cl.m,anderson_st.m These programs implement Anderson and Keller’s 
closed-loop method and stability method of controller discretization. The user 
must specify state space descriptions of the plant ([ap,bp,cp,dp]), and the ana
log controller ([ac, 6c, cc, dc]). A weighting function ([aw, bw, cw, dw]) must also 
be specified in the closed-loop method. The sampling period (T) and the fast 
sampling factor (N) must be specified. The resulting sampled-data controller is 
returned in [acp, bep, ccp, dcp\.

block.m This is a function called from anderson_cl.m and anderson_st.m to per
form the “blocking”.

markazi.m This program implements Markazi and Hori’s method of controller dis
cretization in the case when the plant is stable. The user must specify trans
fer function descriptions of the plant (nump, denp) and the analog controller 
(numc,denc). The digital controller is returned in [numed, dened].

chen.m This program implements Chen’s direct method of H 2 sampled-data con
troller design for the problem of controller discretization. The user must spec
ify state space descriptions of the plant ([ap,bp,cp,dp]), the analog controller 
([ac, 6c, cc, dc), and a weighting function ([aw, bw, cw, dw]). The sampling period 
(T) and the fictitious noise source intensity (rho) must also be specified. The 
optimal digital controller is returned in [acp, bep, ccp, dcp]).

H2.m This function is called from chen.m which solves the discrete-time H 2 problem. 
The function utilizes the discrete-time Kalman filter (rather than predictor).
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hybrid-sim.m This is a SIMULINK block which enables the comparison of an ana
log closed-loop system and a hybrid closed-loop system. The following must 
be entered in the MATLAB workspace: the continuous-time plant ([A, B , C, D}), 
the continuous-time controller ([Acd, Bed, Ccd, Dcd}), the sampled-data controller 
([Ac, Bc,Cc, Dc\), and the sampling period (T).
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