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V

A B S T R A C T

The loop representation theory of quantum  gravity which was developed in the 

late 80’s by Rovelli and Smolin is a ra ther novel approach towards unravelling the 

strands of puzzle th a t weave about the quantum  aspects of E instein’s theory of 

general relativity. In this thesis, certain aspects of this theory will be explored and 

in particular, the theory will be set forth on a rigorous m athem atical foundation.

Several issues arising from the loop representation of quantum  gravity will be 

addressed. Briefly, they are: (i) to establish a relationship between knot states 

and the states of 3-geometries; (ii) to show the existence of a diffeomorphism- 

invariant multi-loop measure on the space of multi-loops; (iii) constructing a gauge- 

invariant prom easure on the space of Ashtekar connection 1-forms; (iv) the issue 

of implementing the reality condition in the loop representation and the question 

of a physical inner product on the space of multi-loop states.

The relationship between a judiciously chosen subset of loops defined on a fixed 

compact Riem annian 3-manifold and the geometry of the 3-manifold will be es

tablished in this thesis. Loosely put, the subset of loops chosen is a denumerable 

set of loops th a t are piecewise geodesic with respect to a fixed 3-metric and such 

th a t the base points of the chosen loops form a dense subset in the 3-manifold. 

The existence of a diffeomorphism-invariant multi-loop measure is dem onstrated 

in some depth and the construction of a gauge-invariant prom easure is also given.

The multi-loop space will be constructed in detail and its basic topological prop

erties analysed. Moreover, the existence of a manifold structure on the loop space 

will be sketched and light is shed on the inadmissibility of a manifold structure  on 

the m ulti-loop space. The space of the multi-loop functionals will also be briefly 

studied. The issue regarding the determ ination of the action of the H erm itian con

jugates of the quantum  T n-operators on the multi-loop functionals will be broached. 

And furtherm ore, the reality-conditions in the loop representation as well as the 

possible construction of a physical inner product for the m ulti-loop states will be 

tentatively delineated. Finally, an a ttem pt will also be made to endow the m ulti

loop space w ith a generalised differentiable structure.
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CHAPTER I

QUANTUM  GRAVITY: AN OVERVIEW

1.1. Introduction

It is known since early this century th a t general relativity is incom patible with 

quantum  theory. The incom patibility is indeed more profound than  the fact th a t 

gravity is perturbatively non-renormalisable in the covariant quantisation scheme. 

It ultim ately lies in the role in which space and time play in general relativity 

and quantum  theory. This is a ra ther subtle issue and is undoubtedly the main 

culprit th a t defies various quantisation approaches to gravity. A less conceptually 

subtle issue is, of course, the non-renorm alisability of gravity. This is more of a 

technical issue th an  a conceptual one. It arises from the a ttem pt to depict gravity 

as another field defined on Minkowski space-time. Here, the problem encountered 

is prim arily due to the presence of a dimensionful coupling constant—the Gravi

tational constant— (resulting from the Principle of Equivalence) th a t prevents the 

construction of a predictive quantum  theory of gravity. Indeed, the advent of quan

tum  field theory led invariably to valiant a ttem pts in quantising E instein’s theory 

of gravitation. All of which proved futile. Perhaps Isham [25, p. 8] was on the 

right track all along when he rem arked th a t ra ther than  quantising gravity, one 

should seek a quantum  theory which yields general relativity as its classical limit. 

But then, the m ain obstruction here is the lack of a starting  point to construct 

such a quantum  theory.

By assuming th a t quantum  theory is the underlying principle governing the 

behaviour of na tu re  at the fundam ental level, it is then almost inevitable th a t a 

quantum  theory of gravitation should exist.1 Perhaps a more pertinent question to 

be raised at this juncture  is the following: why quantise gravity in the first place? 

F irst, there are issues in quantum  cosmology—such as the quantum  effects of black 

holes due to their intense gravitational fields—which cannot be fully addressed 

w ithout a consistent theory of quantum  gravity. Second, it is hoped th a t a theory

1In th is thesis, it will be assum ed tacitly  th a t q uan tum  laws are the  fundam enta l laws th a t 
govern at the m icroscopic level.
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of quantum  gravity will clear up various enigmatic questions such as the structure  

of space-time at a microscopic level, causality (and hence the arrow of tim e), and 

possibly even account for the presence of singularities in classical space-times [36, 

C hapter 8, p. 256] established by Hawking and Penrose. These questions provide 

ra ther strong incentives for constructing a theory of quantum  gravity.

An early effort at quantising gravity was made by Rosenfeld in 1930 [48, 49]; 

needless to say, he headed rapidly into insurm ountable technical difficulties! This 

is hardly surprising since it is now well known th a t pure gravity is perturbatively  

non-renorm alisable at the 2-loop level and non-renorm alisable at the 1-loop level 

when coupled w ith m atte r fields. Indeed, a simple power counting argum ent will 

quickly predict the non-renorm alisability of gravity. In the early 1960’s, Weinberg 

studied the quantum  aspects of general relativity within the framework of S-m atrix 

theory [61, 62], bu t his work was hindered by hideous non-linearities encountered 

in E instein’s field equations. His task was continued by Boulware and Deser [22] 

who showed in detail th a t, provided th a t the long range interactions of gravity are 

m ediated by massless spin-2 particles, in the S-m atrix form ulation, general relativ

ity is indeed the classical lim it of the quantum  theory. However, their calculations 

were done in the low-frequency domain.

In a paper by ’t Hooft [57], it was dem onstrated th a t pure gravity is 1-loop 

renorm alisable bu t when coupled w ith m atter, the theory ceases to make sense 

perturbatively. Specifically, Deser and Nieuwenhuizen showed th a t the Einstein- 

Maxwell fields diverge at the 1-loop level [27] and the quantised Einstein-Dirac 

system also diverges at the 1-loop level [26]. In a recent paper by van de Ven 

[58], the 2-loop non-renorm alisability of covariant quantum  gravity was proved 

explicitly. And to  make m atters even worse, aside from the technical issues of non- 

renorm alisability, more conceptually profound questions posed—just to m ention a 

few— by W heeler regarding m easurem ent [24, p. 224], and the issue of causality— 

cf. for example, references [15, 40]—m ust also be explained in a satisfactory m anner 

by any candidate theory of quantum  gravity.

An initial m otivation for quantising gravity lay in the hope th a t it m ight elim

inate the divergences th a t exist in quantum  field theory—unfortunately, not only 

is such a hope dashed, but using perturbative m ethods gravity cannot be renor

malised. This clearly suggests th a t the conventional means of quantising gravity, 

th a t is, the use of (perturbative) covariant quantisation, is not the right approach; 

or perhaps quantum  theory is ultim ately not a complete theory bu t merely an
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approxim ate theory describing the behaviour of nature at the fundam ental level. 

Having said this much, this speculative note will not be pursued any further in this 

dissertation. However, the failure of gravity to be quantised perturbatively  does 

not necessarily m ean tha t a theory of quantum  gravity fails to exist.

Q uantum  field theory demands th a t the background m etric of space-time be 

fixed and th a t Poincare-invariance be preserved.2 Moreover, it assumes the sm ooth

ness of the underlying space-time manifold. In quantum  gravity, the m etric itself 

becomes a dynamical variable and the gauge group is no longer the Poincare group 

but the group of smooth diffeomorphisms. Also, it is worthwhile pointing out 

th a t quantum  gravity, should it exist, ought to determ ine (or at least, predict) the 

structu re  of space-time at the Planck scale and below— assuming the smoothness 

of space-time certainly defeats this very purpose. Furtherm ore, the presence of 

quantum  fluctuations of space-time geometry might well destroy its sm ooth struc

ture. Indeed, a num ber of researchers in this field, Penrose [30, p. 4] or [47, p. 31] 

in particular, are quite convinced th a t the smoothness of space-time geometry at 

very small distances must be sacrificed. Some researchers go a step further and toy 

with the idea th a t perhaps even topology itself ought to be quantised, whatever 

such a statem ent might imply. At least, the m otivation for such an observation is 

th a t perhaps, at the Planck scale, fluctuations in the spatial topology (of space- 

tim e) might occur, resulting in a space-time foam structure. For an account of 

space-time foams, refer to Hawking’s paper [35]. Initial moves towards topological 

quantisation was initiated in a rigorous way by Isham et a I. [39]. A ra ther eloquent 

(and  convincing) argum ent outlining the need for a non-perturbative approach to 

gravity can be found in a m onograph by Ashtekar [1, p. 3]; consult also references 

[55, §1], [31, p. 327] and [4].

1.2 . S u p ergrav ity  T heories

It should be pointed out th a t perturbative covariant quantisation of gravity 

(which failed to succeed anyway!) and the A shtekar’s quantisation program m e are 

not the only means of tackling the problem of quantising gravity. There are others 

besides those two such as the Keluza-Klein theory which currently seems to  have 

gone out of favour amongst researchers working in the m ainstream  of quantum  

gravity. Probably the two most well known ones are supergravity and superstring 

theory. Incidentally, they were also candidates for a Unified Field theory. Curiously

2 T h is is required  in order for energy and m om entum  to  be conserved locally.
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enough, string theory was originally conceived to provide an explanation for the 

behaviour of hadrons and not to quantise gravity!

Supersym m etry is the underlying principal ingredient in supergravity and super

strings. Roughly, it describes a transform ation between bosonic fields and fermionic 

fields. Indeed, supersym m etry can only be implemented if space-time is curved! 

An heuristic argum ent outlining the equivalence between the presence of gravity 

and the im plem entation of local supersym m etry can be found in [59, p. 201]. This 

fact alone is suggestive th a t perhaps quantising gravity requires the unification of 

fundam ental forces of nature. An excellent review article on supergravity can be 

found in reference [59].

In supergravity theories, each bosonic field has its fermionic counterpart (and 

vice versa). The fermionic partner of gravitational field is a spin |  field called the 

gravitino. If there are n ^  8 gravitinos, the theory is called an TV = n supergravity 

theory. TV = 0 corresponds to  general relativity theory. If TV > 8, fields of spin |  

(and higher) enter into the picture and this includes several spin 2 fields as well. 

However, the coupling of spin |  to gravity and to fields of different spins are known 

to be inconsistent, and no satisfactory coupling of fields w ith spins greater than  2 

exists. Hence, TV cannot be greater than  8.

In N  =  1 supergravity theory, bosons and fermions (which occur in pairs) form 

irreducible representations of a supersym m etric algebra3—these are the spin (2, | )  

doublets (i.e., the graviton-gravitino system), the spin (1, | ) doublets (the photon- 

neutrino system) and the spin (0, | )  doublets. It is a feature of the theory th a t 

as m any m atte r doublets may be added to the spin (2, | )  doublet as desired: in 

doing so, say, by adding one or more spin (1, | )  doublets to spin (2, | )  doublets, 

one obtains the extended (TV =  2 , . . . ,  8) supergravity theories. These theories 

possess TV Fermi-Bose symmetries (plus the usual space-time symmetries of course), 

|TV(TV — 1) spin 1 real vector fields and fields of lower spins. Moreover, they 

also have a global U( N)  group whereby the fermions ro ta te  into themselves, and 

an O(TV) subgroup which ro tates bosonic fields into themselves. In this way, the 

graviton—in TV-extended supergravity theories—is replaced by a new superparticle 

whose “polarizations” yield gravitons, quarks, photons, gravitinos, leptons. This 

unification of particles into one superparticle leads to the unification of forces.

The ultra-violet divergences appearing in supergravity theories seem to be much 

better behaved. For instance, the infinities in the S-m atrix in the first and sec-

3Very briefly, this is an algebra with both commutation and anticommutation brackets.
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ond order quantum  corrections cancel due to the sym m etry between bosonic and 

fermionic fields. Nonetheless, even the presence of supersym m etry is not sufficient 

to guarantee finiteness at all loops—at least, there are no conclusive proofs th a t 

supergravity is perturbatively renormalisable [32]. Indeed, there are strong reasons 

to suspect th a t in 4-dimensional space-time, supergravity theories will diverge at 

the 3-loop level [43]. Hence, it too is not a particularly successful theory of quan

tum  gravity. Moreover, only iV-extended m atter may be coupled to iV-extended 

supergravity.

1.3. S u p erstr in g  T h eory

Superstrings paint a more optim istic picture than  supergravity theories. How

ever, one now requires a 10 dimensional space-time with supersym m etry built in. 

In spite of th a t, gravity is a necessary ingredient in order for a consistent quantum  

theory of superstrings to exist. From this viewpoint, strings as fundam ental quanta 

are strongly supported by the presence of gravity. An introduction to Superstrings 

can be found in reference [25, p. 301] by Schwarz or Kaku [42]. H itherto, it is the 

only candidate for a Unified Field Theory. Supergravity is now understood to be 

the low-energy limit of superstring theory. More on this m atter will be broached 

in the next paragraph.
In the theory of Superstrings, the fundam ental objects are extended 1- 

dimensional objects called strings. The strings can either be open (i.e., a curve) 

or closed (i.e., a loop). In short, this extension enables ultra-violet divergences 

appearing in the Feynman diagrams to be removed. There are two basic types of 

string theory: the type I  superstring theory, wherein the strings are unoriented, 

and type I I  in which the strings are oriented. The la tter is also known as heterotic 

superstrings. Type II closed superstring theories have N  = 2 supersym m etry and 

hence contain N  = 8 supergravity modelled on a 4-dimensional space-time as a 

lim iting case. Informally, supergravity lies in the zero-mass sector of closed su

perstring theory. There, supergravity is quadratically divergent at the 1-loop level 

whereas its corresponding superstring theory is finite. Strings can interact by join

ing two ends (for open strings), or by breaking at an “interior” point (in the case of 

a loop) to form an open string. The la tter is demanded by causality simply because 

two ends of a string m ust “decide” to interact at once w ithout determ ining first 

w hether they belong to the same string or not.

The inclusion of supersym m etry to string theory means tha t, aside from general 

relativity and Yang-Mills theory being included in it, supergravity and GUT are
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also included in this theory! However, in spite of such grandiose achievements, 

pertu rbative approach to superstring theory is plagued with problems [42, p. 285]. 

Only three m ajor problems will be listed here:

(i) the low energy mass spectrum  is still wrong;

(ii) the theory cannot select the true vacuum amongst the host of possible 

conformal field theories;

(iii) although supersym m etry is preserved to all orders in perturbative theory, 

it m ust be broken down in the low energy regime.

To address these problems, researchers tu rn  towards a non-perturbative ap

proach to superstring theory. Also, note th a t for bosonic string theory, the entire 

sum of the pertu rbative expansion diverges [33, 34]. The Ashtekar loop program m e 

takes a more m odest turn: it only seeks to form ulate a consistent theory of quan

tum  gravity w ithout any thought of unifying the fundam ental forces. And more 

im portantly, the approach is non-perturbative from the outset! Indeed, the prob

lems encountered by superstring theory, which is h itherto  the sole candidate for 

a  “proper” Unified Field theory, points towards a non-perturbative approach. A 

second im portan t point to observe here is th a t the Ashtekar program m e asserts 

th a t the gravitational field can be quantised on its own w ithout any other fields, 

whereas in superstring theory, the very presence of supersym m etry necessitates the 

unification of forces in order to produce a consistent theory of quantum  gravity. 

Quite a strong contrast indeed!

1 .4 . N o n -p er tu rb a tiv e  C anon ica l Q u an tu m  G ravity

In this section, a cursory account of the canonical quantisation of gravity, to 

gether w ith the strengths and shortcomings of the Ashtekar quantisation pro

gramme, will be sketched. To condense the historical development of quantum  

gravity, it is enough to point out th a t from the late 1940’s up to the m id-1950’s, 

Bergm ann em barked on a quest to canonically quantise field theories which are 

covariant under general coordinate transform ations [18, 19, 20, 21]; here general 

relativity is of course a particu lar case those theories. He began by doing away 

with a space-time m etric and considered instead a more fundam ental field from 

which the Lagrangian of the theory was constructed. He quickly discovered th a t 

the system possessed constraints. Although his quantisation program m e was not 

successfully completed, he nonetheless laid some im portant ground work for later 

researchers. In 1966, a comprehensive analysis of canonical quantum  gravity was
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eventually carried out by DeW itt [28, 29].

In the canonical formalism of general relativity, covariance is violated and space- 

tim e is split into space and time. The resulting classical configuration space is the 

space of R iem annian 3-geometries. More of this will be discussed in C hapter 2. 

Here, it will suffice to note th a t the resulting phase space of the gravitational 

system is constrained. T hat is, the physical trajectories in the phase space lie 

on a constraint surface defined by the Ham iltonian constraint and the diffeomor- 

phism  constraints. Upon canonically quantising this classical system, the physical 

states lie precisely in the kernel of both  the quantum  Ham iltonian and diffeomor- 

phism constraint operators. In fact, this is only true for the case when the spatial 

3-dimensional slice is chosen to be compact; in the non-compact case, the wave- 

functionals m ust also satisfy an additional Schrödinger equation [25, Eqn (6.1.4), 

p. 79]. In this thesis, only the spatially compact case will be considered. Unfortu

nately, due to the intractability  of the quantum  Ham iltonian constraint equation 

arising from involuted non-linearities, not a single explicit solution is known. This 

equation is known as the Wheeler-DeWitt equation,4 and the wavefunctional th a t 

satisfies it is known broadly as the wavefunction of the universe.

Approxim ate solutions were of course found, but this involved truncating  the 

W heeler-DeW itt equation so th a t only a finite num ber of degrees of freedom are 

retained (instead of an infinite num ber of degrees of freedom in the full equation); 

this gave rise to the theory of baby universes—the mini-superspace approximation. 

At best, such solutions offer researchers a myopic insight into the convoluted na

ture  of gravity. However, it should be rem arked th a t even if the W heeler-DeW itt 

equation can be solved, there remains the question of interpreting the solutions.

Loosely pu t, the wavefunctionals describe the physical states of space-time as 

probability am plitudes of possible histories. But this implies at once th a t the 

concept of time seems to have vanished in this picture; th a t is, there is the un

palatable absence of dynamics, of evolution, of time. This disturbing dissonance 

is seemingly overcome by identifying part of the geometry as an “intrinsic” time; 

then, the W heeler-DeW itt equation is interpreted as encoding inform ation th a t re

lates to how a wavefunctional changes with respect to this newly introduced notion 

of “tim e” . But alas, by introducing a physical inner product on the Hilbert space of 

physical states, the integration integrates over “tim e” as well! Hence, the problem 

of tim e is really not resolved at all. Time, however it might be in terpreted  here, is

4 M ore accurately, the sum  of the diffeom orphism  and H am iltonian  constra in t equation  is 
known as the W heeler-D eW itt equation.
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treated  very differently from quantum  theory. See Isham [25, §6, p. 78] for a lucid 

but laconic account relating to the problem of tim e in this canonical form ulation 

and other related problems arising from quantising in the canonical formalism.

It should be pointed out th a t the riddle of timelessness only occurs for the spa

tially compact case. W hen the spatial slice of space-time is non-com pact, tim e is 

defined by a Schrödinger evolution equation. For a lively assessment of the canon

ical approach, refer to [31, §2, p. 330] by Ashtekar. Before concluding this sorry 

tale, a brief word m ust be mentioned on the Hartle-Hawking functional integral 

approach to W heeler-DeW itt equation. Aside from commenting th a t it yields, 

heuristically at least,5 explicit solutions to the W heeler-DeW itt equation, it fails 

to provide any inform ation whatsoever at the instant of creation. Also, there is 

the confounded issue of tim e cropping up tim e and time again! It is thus a fervent 

hope th a t the problem  of tim e will be resolved w ith the form ulation of a consistent 

theory of quantum  gravity.

If (2-(-l)-quantum  gravity was not mentioned earlier, then it is simply because it 

is essentially an open book! Much work has been done on it. In particular, (2+1)- 

quantum  gravity is often used as a toy-model for the seemingly intractable (3+1)- 

quantum  gravity. For more details, see for example reference [63] by W itten— 

as well as a com plem entary paper by Moncrief [45] who m ade some constructive 

criticisms regarding the conclusions drawn by W itten  in his paper—and more recent 

ones such as [44, 11], or a somewhat refreshing article by Waelbroeck [60] to  nam e 

just a few out of the p lethora of literatures on (2 + l)-q u an tu m  gravity.

This section will end w ith some comments on A shtekar’s approach to quantising 

gravity: the connection representation and the loop representation of gravity. A 

concise sum m ary and m otivation for Ashtekar’s alternative Ham iltonian form ula

tion of general relativity [2, 3]—which in itiated what is now known as the Ashtekar 

quantisation programme— can be found in the introduction of C hapter 2. It should 

suffice to m ention here th a t Ashtekar’s form ulation of “complex” general relativ

ity [3] led im m ediately to the connection representation of quantum  gravity— the 

general relativity form ulated in [3] is really “real” general relativity in term s of a 

complex  and a real variable, the Ashtekar connection and its conjugate m om entum  

respectively.

An advantage of form ulating general relativity in term s of connections (the 

Ashtekar connection 1-forms) and their conjugates—these are the soldering forms;

5T he infinite-dim ensional m easure involved in the in tegral is no t rigorously defined.



1.4. NON-PERTURBATIVE CANONICAL QUANTUM GRAVITY 9

i.e., “square roots” of metrics—is th a t th a t the conjugate variable need not be 

invertible! This differs greatly from general relativity which dem ands th a t the 

m etric be non-degenerate. An obvious conclusion to be drawn from A shtekar’s 

form ulation is th a t it yields solutions th a t are more general than  those obtained 

via E instein’s field equations. It is perhaps a somewhat tantalising speculation 

th a t A shtekar’s form ulation will yield a profound insight into the relation between 

signature changes in the space-time m etric and the changes in spatial topology of 

space-time, and perhaps even more interestingly, how these affect quantum  gravity. 

An instructive prelim inary analysis regarding spatial topological changes and the 

degeneracies of Lorentzian metrics can be found in an article by Horowitz [38]. A 

related comment, if somewhat prem ature at this stage as it pertains to the loop rep

resentation to be m entioned shortly below, relates to an intriguing paper by Smolin 

[56]: he dem onstrated tha t, using the loop representation of quantum  gravity, the 

spatial topological changes effected by creating or annihilating a special class of 

wormholes—w hat he calls minimalist wormholes, which are created by identifying 

pairs of distinct points on the spatial 3-manifold—is equivalent to general relativity 

coupled to a single Weyl fermion field!

Another positive spin-off from Ashtekar’s form ulation of general relativity is tha t 

in the connection representation, the H am iltonian constraint is greatly simplified— 

indeed, to the extent th a t some nontrivial solutions can now be found: they are 

just the Wilson loops. Unfortunately, Wilson loops are not invariant under diffeo- 

morphisms. For more details, see [46, p. 12-13] or [41, §7, p. 333]. This startling 

hitch led to the development of the loop representation of quantum  gravity by 

Rovelli and Smolin [52]. In the loop representation, solutions to all the quantum  

constraints were found—refer to [41, 52] again.

The loop representation theory was applied to free Maxwell theory w ith resound

ing success [12]. It was later applied to linearised quantum  gravity [13] and was 

shown to correctly reproduce gravitons. Applications were also made to (2+1)- 

dimensional quantum  gravity prim arily on tori [44] using the connection as well as 

the loop representation—the Dirac transform ation reveals th a t they are all equiv

alent. In the case of (2+ l)-quan tum  gravity, the loop representation yields a com

binatorial picture whereas the connection representation depicts a “tim eless” one. 

Of course, going over to (3+ l)-quan tum  gravity is a different m atte r altogether. 

There are no local degrees of freedom in (2+l)-dim ensions (due to the vanishing of 

Weyl tensor), whereas this is no longer the case with (3+ l)-gravity . For o ther work
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on (2-f-l)-quantum  gravity in the loop representation, refer to papers by Ashtekar 

et a1. [6, 11].

Unfortunately, like most theories in the real world, the loop representation of 

quantum  gravity is not free of problems. There are a num ber of unresolved issues. 

One of the problem s of the loop representation was discovered by Briigm ann and 

Pullin [23, §4, p. 239]. They noticed w ith some consternation th a t solutions of the 

quantum  H am iltonian operator represented by products of Wilson loops were also 

annihilated by a m etric determ inant operator in term s of the Ashtekar variables. It 

follows as a corollary th a t the solutions will also satisfy the H am iltonian constraints 

for a rb itrary  cosmological constant! A concise account can be found in [46, p. 13- 

14].

Another d isturbing problem of the loop representation lies in the physical in

terpreta tion  of the theory. A ttem pts have been made at interpreting the theory in 

term s of knots and weaves by Rovelli and Smolin [53, 10]. See also references [64, 

65, 66] by Zegwaard. Also, a physical inner product on the multi-loop states is not 

known: this is a problem  th a t is intim ately tied with the physical in terpreta tion  of 

the theory. Moreover, there is the pressing issue of defining physical observables 

[5, 40, 51]. Once again, all of these issues are intertwined; plus, the fact th a t very 

little is known about classical observables in general relativity does very little  by 

way of lighting a pa th  for ardent researchers.

In spite of this setback, Smolin [53, 54] has constructed a num ber of interesting 

observables in quantum  gravity: a surface area operator, a volume operator and an 

operator th a t measures the “length” of a 1-form on the spatial slice of space-time. 

The spectacular results arising from the first two operators are th a t area and volume 

in quantum  gravity are quantised in some multiple of the Planck area and Planck 

volume respectively! This seems to vindicate the conjecture th a t the structu re  

of space-time is discrete at the Planck scale— a conjecture th a t was established 

heuristically by Rovelli [49, §4, p. 1648]. Along this note, Rovelli and Smolin 

[54] also constructed a physical Ham iltonian operator (with a cosmological term  

included) which acts in essence by breaking and rejoining the points of intersections 

of loops in different ways. Moreover, it is also finite as well as diffeomorphism- 

invariant. Hope is expressed th a t the Ham iltonian operator might encode the full 

contents of E instein’s field equations in a diffeomorphism-invariant m anner.

R eturning to other obstacles present in the theory, there are technical m at

ters such as the construction of a measure on the space of Ashtekar connection
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1-forms—prelim inary studies have been made by Ashtekar et a 1. [7, 8, 9, 16]6 

and by Baez [16, 17]. The construction of a diffeomorphism-invariant m easure on 

the  multi-loop space is another issue th a t needs addressing: this is a problem re

la ted  to the absence of a physical inner product to date. On a whole, the future 

to  the Ashtekar quantisation programme is not as bleak as it seems, and aside 

from its m athem atical beauty, it is at present, a novel approach towards a non- 

pertu rbative quantum  gravity tha t has yet to reach an impasse. Indeed, recently, 

fu rther progress in the connection representation is made. Ashtekar et a 1. [10] 

perform ed a detailed study of diffeomorphism-invariant theories in the connection 

representation and they found complete solutions to the Gauss and diffeomorphism 

constraints for the following class of theories in the connection representation: the 

Husain-Kuchar model, Riem annian general relativity and Chern-Simons theories. 

Furtherm ore, they were able to endow the space of such states with a H ilbert space 

structu re , where the inner product of the Hilbert space is compatible w ith the 

reality conditions imposed on the theories.

1 .5 . S u m m ary o f  T hesis

In C hapter 2, Ashtekar’s Hamiltonian form ulation of general relativity will be 

reviewed and the loop representation presented in an informal setting. In C hapter 

3, the topological structure of the multi-loop space will be examined. It will be 

established there th a t the loop space is second countable and it moreover adm its 

a manifold structure. Unfortunately, it will also be shown th a t the multi-loop 

space does not adm it any manifold structure although it is second countable and 

m etrizable. The space of the multi-loop functionals will also be studied briefly 

and the action of the quantum  T°-operator on the multi-loop functionals will be 

discussed at length.

An exact relationship between the knot classes of a subset of Ko-l°°Ps (m ulti

loops with denum erably infinite loop components) and the 3-geometries defined 

on a compact 3-manifold will be described in C hapter 4, and in C hapter 5, a 

diffeomorphism-invariant measure on the space of multi-loops will be constructed. 

Moreover, questions regarding the H erm itian conjugates of the quantum  T n- 

operators will also be discussed therein. This then followed by the construction of a 

gauge-invariant prom easure on the space of Ashtekar connection 1-forms described 

in the following chapter. The construction differs somewhat from th a t developed

6 They constructed  a diffeom orphism -invariant p rom easure on the space of connections.
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by Ashtekar and Lewandowski [8], and so provides an alternative construction. Un

fortunately, the prom easure was not constructed to be diffeomorphism-invariant, 

unlike the construction carried out in reference [8]. Finally, in the concluding 

chapter, the loop representation will be briefly reviewed from a more rigorous per

spective and issues relating to the im plem entation of the reality conditions in the 

loop representation will be touched upon.

To conclude this introductory chapter, some conventions used throughout this 

thesis will be defined below.

(1) £  will always denote a compact, orientable, sm ooth, closed R iem annian 

3-manifold;

(2) a Riem annian 3-metric q on £  is defined as a positive-definite  (i.e., has 

signature ( +  , + , + ) ) ,  symmetric, covariant 2-tensor field on £ ;

(3) the signature of a (sm ooth) Lorentzian metric g is taken to be

( _  5 + 5  + 5  +)>
(4) units will be chosen so th a t the speed of light c and the G ravitational 

constant G are set to unity for notational convenience, although at times 

they will be w ritten down explicitly to highlight certain points.

The term  diffeomorphic will m ean smoothly diffeomorphic unless explicitly stated  

and the Einstein sum m ation convention will be used throughout: i.e., a sum is 

implied whenever identical upper and lower indices are encountered. D iff(£) will 

denote the topological group of 3-diffeomorphisms endowed with the compact C°°- 

topology—refer to §A of the Appendix for a description of this topology— and 

I d=  [0, 1].
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CHAPTER II

THE ASHTEKAR QUANTISATION PROGRAM M E

2.1. Introduction

In this chapter, a non-perturbative quantisation of canonical gravity in term s of 

the Ashtekar connections and loops will be reviewed.1 In this thesis, only vacuum 

general relativity will be considered: i.e., vacuum E instein’s field equations. The 

trad itional Ham iltonian approach to general relativity, begins with a gravitational 

phase space defined in term s of a Riem annian 3-metric and its conjugate m om en

tum . However, under this pair of canonical variables, the constraints of general 

relativity were non-polynomial in their dependence on the 3-metric. This led to 

technical difficulties in finding solutions th a t satisfy the constraints. This problem, 

together w ith works on conical singularities of the reduced phase space of spatially 

compact space-times by Arms et aI. [1], and a connection 1-form introduced by Sen 

[20], m otivated Ashtekar [3] to construct what is now referred to as the Ashtekar 

variables.

In essence, Ashtekar shifted the emphasis of trad itional canonical form ulation of 

general relativity from the metric representation to the connection representation. 

Recall briefly th a t in the metric representation, the fundam ental (canonical) vari

ables are the 3-metric and its conjugate m om entum  (a covector in the cotangent 

bundle over the space of Riem annian 3-metrics), whilst in the connection represen

tation, the canonical pair is the connection 1-form and its conjugate m om entum . 

The advantages arising from this shift in viewpoint are many. However, for the 

purpose of this introduction, it will suffice to highlight the m ain benefits of such 

an approach. For a more detailed explanation, refer to references [2, p. 19], [16] 

and of course, Ashtekar’s original article [3] on the new H am iltonian form ulation 

of general relativity. Some of the m ajor advantages are listed below.

(a) The constraint equations in Ashtekar’s new variables are much simpler in

1T he word non-pertu rbative  used here should be in te rp re ted  in the  following context: the  
theory  does no t rely on a fixed classical background m etric , and the  g rav ita tional field is quan tised  
in full; in p a rticu la r, gravity is not trea ted  as a p e rtu rb ed  field ab o u t a fixed classical background 
m etric  (which is not quantised!) and then  quantised  perturbatively .
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appearance: they are polynomial in their dependence on the new “canon

ical” pair of variables (A,E),  where A is the Ashtekar connection 1-form 

and E  is its conjugate momentum. To wit, the Ham iltonian constraint is 

quadratic in E , whilst the other constraints are linear in E.2
(b) The constrained phase space of general relativity may be imbedded into the 

phase space of complex Yang-Mills theory and hence bringing E instein’s 

theory of gravity in line with the theories th a t describe fundam ental in ter

actions of na tu re—gauge theories. Explicitly, every initial datum  (A, E)  of 

E instein’s theory is also an initial datum  for Yang-Mills theory—it satis

fies a vector and a scalar constraint (in addition to the Gauss constraint 

m entioned in (a) which is satisfied by the Yang-Mills theory).3

(c) The constraints do not depend on the inverse E ~ l of the conjugate m om en

tum  E\ consequently, Ashtekar’s form ulation is an extension of E instein’s 

theory of gravity as degenerate metrics are also possible solutions under 

A shtekar’s formalism. Hence, restricting the metrics to be non-degenerate 

in A shtekar’s formalism yields precisely general relativity. This has possible 

im plications in quantum  gravity where perhaps the change in signature of 

the m etric might become significant, and more im portantly, it m ight also 

play a  crucial role in the study of singularities of classical space-time and 

the topological changes in the spatial slice of space-time.

A shtekar’s new variables not only had a profound im pact on quantum  gravity, 

they also provided a deeper insight into the classical solutions of E instein’s field 

equations. For instance, his variables led to an alternative characterization of half

flat solutions to E instein’s field equations [4].4 It relies essentially on the fact th a t 

the Ashtekar connection A  can be either the potential ~A for the self-dual p a rt of 

the Weyl tensor or the potential +A for the anti-self-dual part of the Weyl tensor. 

The self-dual solutions are then obtained by setting +A = 0, and vice versa— see 

reference [4].

The use of loops in physics is not a new idea. A brief historical account can 

be found in [16, p. 1635] and the references cited therein. Suffice to note th a t 

Jacobson and Smolin [11] discovered nontrivial solutions to the H am iltonian con-

2In th is fo rm ulation , an additional constrain t, the  G auss constra in t, is in troduced  due to 
the add itional degrees of freedom  in troduced  by the form alism . However, the s tru c tu re  of th is 
constra in t is no t com plicated: it is linear in the  conjugate m om entum .

3M ore deta ils  concerning the relation  betw een the E instein  and Yang-Mills equations can be 
found in a p ap e r by M ason and New m an [12].

4Recall th a t  a 4-m etric  is half-flat if its R iem ann tensor is p roportional to its dual.
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stra in t of general relativity in the connection representation and this in tu rn  m o

tivated Rovelli and Smolin [17] to construct the loop representation of quantum  

gravity. And because the the loop formalism autom atically captures SU(2) gauge 

invariance, the additional constraint—the Gauss constraint—present in the con

nection representation is eliminated in the loop representation. Furtherm ore, in 

the loop representation, all solutions of the diffeomorphism constraints are known: 

they are nothing but loop functionals defined on the space of equivalent classes of 

loops, where two loops are said to be equivalent if they are related by a sm ooth 

orientation-preserving diffeomorphism; th a t is, if the two loops are knotted  in the 

same way.

Wilson loops and the conjugate m om entum  of the Ashtekar connection 1-forms 

play an essential role in the theory of loop representation. By taking the traces 

of suitable combinations of the complexified SU(2) holonomies and the conjugate 

m om enta, a class of observables called the T-observables are obtained. The con

strain ts of general relativity can then be recast in term s of suitably defined lim its of 

these T-observables. In short, this yields the loop representation. Unfortunately, 

the physical in terpretation of the loop representation is far from trivial. For a 

comprehensive (but intuitive) insight into how the way loops are knotted  to  give 

rise to gravity, refer to a comprehensive review article by Rovelli [16, §4, p. 1648].

2 .2 . A sh tek ar’s H am ilton ian  F orm ulation

In this section, the traditional canonical form ulation  (or the A D M  form alism ) 

of general relativity will be outlined in order to m otivate A shtekar’s H am iltonian 

form ulation of general relativity [3]. Incidentally, ADM stands for Arnowitt-Deser- 

Misner. For more details regarding the ADM formalism, consult reference [9, p. 

138] for a detailed exposition by Fischer and M arsden, or to reference [8, C hapter 7, 

p. 226] for the initial value form ulation of general relativity. The ADM form alism  

given below is based on a laconic exposition by Romano [15, §2, p. 765].

Let (X, g) be a smooth, globally hyperbolic, Lorentzian 4-manifold (which 

is bo th  space- and tim e-orientable), and i : E » X  be a spacelike sm ooth
defim bedding—th a t is, q = i*g is a R iem annian 3-metric on S . Then, S  is a Cauchy 

surface for X  [5, theorem  1, p. 88]. In fact, it may be assumed w ithout any loss of 

generality th a t X  is diffeomorphic to E x R. Let t : X  —> R be a sm ooth function 

defining a spacelike foliation (of codimension 1) such th a t for each fixed A E R , 

the 3-surface S a =* { £ | t (x) =  A} is diffeomorphic to S. Such a foliation

exists as X  is globally hyperbolic. The vector field Vt tangent to t identifies points



18 II. THE ASHTEKAR QUANTISATION PROGRAM M E

on E a for different A’s and it defines evolution via the Lie derivative CVt along the 

integral curve of vt .

2.2.1. Remark. There are strong reasons to support the restriction of the topology 

of E to be compact. If E were not compact, strong conditions must be imposed on 

X  in order for it to adm it a Cauchy spacelike surface [5, §IV, p. 94].

Let n be a norm alised, timelike vector field—th a t is, normalised relative to the
defLorentzian 4-m etric g on X : gx(n(x) ,n(x) )  = — 1 V x  G X — and set q% = 6%+narib. 

This defines a projection operator onto E a  for each fixed A  £  R .  If ^ a  <==f # | E a , 

then the induced m etric q\ on S a is given by

q\ab =* q \ a Q l\b 9 X k l  = gxab +  n \ an\b.

The timelike vector field vt may be decomposed as

v f = N n a + N a,

where N  = —n av\qab is the lapse function  which determ ines the infinitesimal 

deform ation of E a to E a+<$a in X , and N a q^v\ is the shift vector and is 

responsible for generating a 1-param eter family of 3-diffeomorphisms on E a- For 

notational simplicity, identify E with its image in X  in all th a t follows. The 

Einstein-Hilbert action S e h  =  Jx V~~ det g 4R, where 4R  is the scalar curvature 

w ith respect to the Lorentzian 4-metric <7 , can be w ritten in term s of the induced 

Riem annian 3-metric q on E as

See = (det q) 2 N(R  +  K abKa — K 2) +  surface integral,

where R  is the scalar curvature of 5 , K ab = f qaqlb(£ng)kl is the extrinsic curva

ture  of E and K  K abqab. For more details, see reference [15, §2, p. 765].

Let r j  denote the space of Riem annian 3-metrics q on E and T* its cotangent 

bundle . 5 In the ADM formalism, the evolution of the initial da ta  (q,p) 6  T * r J ,  

where p = SLe e / hCVtq and Lee ^  (det <7 ) 2 N ( R  +  K abKah — K 2) is the Einstein- 

Hilbert Lagrangian, is studied. However, in order to satisfy E instein’s field equa

tions, not every point in T * is accessible: there exist constraints. These

constraints— the diffeomorphism  and Hamiltonian constraints respectively—are

(2.2.1) C b(q,p) = D ap 0,

(2-2.2) C(q,p)  =~ \ p 2 -  =  0,

5r+  is a smooth infinite-dimensional Frechet manifold [19, pp. 267-269].
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where D  is the Levi-Civita connection of q.

Upon canonically quantising this using the m etric representation— i.e., where 

the  wavefunctions are essentially functionals \k[g] of the 3-metric q— two m ajor 

barriers are encountered: to wit, the complexity of the non-linear scalar constraint 

(2.2.2) and the problem of factor ordering. An in-depth discussion can be found 

in a paper w ritten  by DeW itt [6] in the late 1960’s. This hurdle encountered in 

canonical quantisation led Ashtekar [3] to construct what is now known as the 

Ashtekar (canonical) variables. In term s of these variables, great simplification to 

the  constraint equations are achieved when restricted to the self-dual solutions.

The Ashtekar variables will be constructed below. F irst of all, let E be sim

ply a 3-manifold with no particular (Riem annian) 3-metric specified on it. Let 

(SU(2),^>s) denote the double cover of SO(3) and let f  =  ( P | ,p | ,  E, SU(2)) and 

£ =  (P^,P£, E, S0(3)) be the principal SU(2)- and S0(3)-bundle over E respec

tively. Next, observe from Stiefel’s Theorem [13, Ex. 12-B, p. 148] th a t every 

com pact, orientable 3-manifold is parallelisable. In particular, E adm its a spin 

s tructu re  and spinor fields thus exist on E .6 Hence, if a R iem annian m etric is fixed 

on E so th a t a reduction of the frame bundle over E to the bundle of orthonorm al 

frames on E is specified, then a spin structure ip : P^ —> — ip(u • g ) =  ip(u) • <ps(g),

where g E SU(2), u E P^—can indeed be defined on E. However, because a Rie

m annian structu re  is not specified a priori on E, the concept of SU(2) spinors will 

be introduced via the Infeld-van der W aerden fields a to be defined below.

Set W  to  be a 2-dimensional complex vector space w ith W*  its dual space. 

Then, relative to a fixed basis of W  (and the dual basis of IT*), the elements 

of W  (g) W*  may be regarded as 2 x 2 Herm itian matrices. More precisely, if W  

denotes the complex conjugate of IT, then the elements of W may be regarded 

as 2 x 2 H erm itian matrices (with 4 independent real variables). Let G be a positive- 

definite, Herm itian, bilinear form on W — ipA G a 'A'lPA >  0 V ipA ^  0, w ith ipA E W  

and ipA =f ipA E W —and let e be a (fixed) nowhere vanishing 2-form7 on W:

Then, W  is linearly isomorphic to W*  under the map 'ipA ip a  given by

eBCipA G a 'C^b a  = eBCipctBA = *PB£b a  = *Pa -

6  These are just cross sections of vector bundles over E associated with the principal Spin(3)- 
bundle £ of E, where Spin(3) =  SU(2).

7  Observe that as dim^IT =  2, the space of 2-forms is 1-dimensional and hence all 2-forms e 
are proportional to one another: for if ( e i , e 2 ) forms a basis for W,  then all 2-forms are of the 
form ce 1  A e2, where c =  6 1 2  — e2 1  € K.



20 II. THE ASHTEKAR QUANTISATION PROGRAMME

Hence, W  (g) W*  ~  W  <g> W .  Refer to reference [2, p. 287] or [3, p. 1601] for a 

concise account of SU(2) spinors. Let V+ C W  <g> W*  consist of elements which, 

when considered as complex 2 x 2  matrices, are traceless and H erm itian—th a t is, 

let V+ = { A 6 M 2x2(C) I trA  =  0, A* =  A}— and let {ej}f=1 be a fixed basis 

of V+. Then, the vector space V— =* span( e\ , £2, £3 ), where — ie*, i=  >/—l 

and {ejt}^=1 is the dual basis of {e*}?= 1— (el ,e j)  =  Sl-—is the space of traceless, 

anti-H erm itian, complex 2 x 2  matrices. T hat is, V_ =  su(2), the SU(2) Lie algebra.

2.2.2. Remarks. 1. Define a m ap \ : W  —> W  by (A'*’)"4 = f —eABGßA' A'4 , where G 

is a positive-definite bilinear Herm itian form given above. Then, (A )̂"4 A^ ^  0— and 

is equal to zero i f f  A a  = 0— and (A^)"4 =  —XA . Call A"4 f -Hermitian if Â  =  A.

2. Some possible notational conflict will arise from the term  Hermiticity  used 

here and th a t used in the cited literatures: the symbol f introduced above coin

cides w ith the usual sense of conjugate transpose of a m atrix  whilst the symbol f 

defined above coincides w ith Ashtekar’s f symbol [2, 3]. In other words, f defines 

Hermiticity of spinors whereas f defines Hermiticity of matrices.

Now, consider the tensor bundle (T S  <S> su(2),p , E) over E and define C to be 

the space of sm ooth cross sections— the Infeld-van der Waerden fields— a : E —> 

TE  (g) su(2) satisfying:

(1) for each x  E S and <r, cr(x) induces a linear isomorphism su(2) «  TXE 

defined by A i—> —cr{x) • A = f Xa(x)da , where — <r(x) • A =f — tr (a(x)aX)da = 

- a ( x ) aa B XB Ada = Xa(x)da 6 TxE,

(2) — tr(cracr6) = f qab, where qab is the inverse m atrix  of the Riem annian 3- 

m etric qab defined in the natura l basis on E.

The elements of C are called the SU(2) soldering forms  on E.

2.2.3. Remark. Note trivially th a t global sections a exist on E as it is 

parallelisable— a determ ines a spin structure on E. W rite the components of a 

as (JaA B ‘ Then, the inverse a(a:)-1 of (t(x ) will be w ritten as cr(x)aA B •

Let C ^ (E ,  T E  <g)su(2)) denote the space of smooth cross sections of the bundle 

(TE  (g) V_,p, E), endowed with the compact C°°-topology. Then, it follows from 

[19, §7.2, pp. 259-260] th a t C^J>(E ,T E  <g) su(2)) is a sm ooth Frechet manifold. 

Furtherm ore, let 52 E be the bundle space of symmetric covariant 2-tensors on E 

and let C ^ ( E ,52E) be the space of sm ooth cross sections on the tensor bundle 

equipped w ith the compact C°°-topology. Then, the space T+ of (sm ooth) Rie

m annian metrics on E is an open convex cone in C ^ ( E ,52E) [7, p. 1001]. Hence,



2.2. ASHTEKAR’S HAMILTONIAN FORMULATION 21

by property (2) of er, C C TE(g)Su(2)) is open and hence a sm ooth manifold.

As a brief reminder, the compact Cr-topology is generated by a subbase consisting 

of open sets N ( f ; (<£>, Z7), (t/>, V ), A", e) of the form

{ g E Cr : s(AT) C V  and \\Dk f ( x )  -  D kg(x) || <  e, 0 < , k ^ r , V x e  <p(K)},

where K  C U is compact, (y>, {/), (ip,V)  are charts of E and D kh(x)  denotes 

D k(,ip o h o  (p~1)(x) in abused notation. For more details, see [10, p. 34] or [19].

Now, let T*C denote the cotangent bundle space over C and denote an element in 

T*C by (er, M ), where it is shown in [3, p. 1592] th a t M  is a densitized su(2)-valued 

1-form of weight 1 on C based at cr. It is related to p by pab = — tr  M ^aa b\  Let 

f[W ] =  (B ,pBi  E, SU(2), W )  be a complex vector bundle of rank 2 over E—with 

typical fibre W — associated with the principal SU(2)-bundle £. In this section, 

notations consistent with reference [3] will be used.

Fix an element (cr, M )  E T*C and define an SU(2) connection 1-form toa on P  ̂

such th a t the covariant derivative D induced by on B  is com patible w ith cr.

a B — 0 (with respect to each chart UQ)—th a t is, the SU(2) spin connection 

coefficients T aAB of uv satisfy YaAB = \ a hEB{crcAEYbca +  dav bAe ), where 

are the Christoffel symbols of q = — tr cr • cr. Next, following [3, p. 1593], define 

a  local suc (2)-valued connection 1-form A a —the Ashtekar connection 1-form— of 

the  complex vector bundle B , on each (5-trivialising) chart Ua of E, by

±A„d=

where 5UC(2) is the complexification8 of 5u(2), G is the G ravitational constant, 

s a '• Ua a sm ooth cross section on Ua , and II =  II(cr, M )  is related to the

extrinsic curvature K ab of E by K ab = — t r l l ( acr&). Explicitly, it is defined [3] by

UaAB = G(det q ) - i ( M aAB + i t r ( M 6<r ‘K / ) .

The Ashtekar connection 1-form +A  may be regarded as the anti-self-dual potential 

for the Weyl tensor 3C on E and ~A as the self-dual potential [3, Eqn (19'), p. 

1600]:

3C aid=  -G  tr(± Fcda a)ecib = -V 2 G (E ab =F i

where ^Fab is the curvature of ±A a, E ab = f Cacbdncn d is the electric and B ab =  

*Cacbdncn d the magnetic part (relative to E) of the 4-dimensional Weyl tensor C .

8If V  is a vector space, then the elements of are precisely u +  it», where u, v  G V.
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For an in-depth study, see reference [4]. In the following analysis, only the self

dual potential will be considered inasmuch as canonical quantum  gravity can be 

form ulated w ith either the self-dual or the anti-self-dual potential [3, 16]. Thus, in 

view of this restriction, denote ~A for convenience by A.

2.2.4• Remark. Since E is parallelisable and orientable, the principal S0(3)-bundle 

£ is trivial: P% = E x  S0(3). Furtherm ore, Pj  is also trivial. To establish this, fix 

a m etric and an orientation on E so th a t P£ may be regarded as a reduction of the 

frame bundle over E. The m etric determines a spin structure  (SU(2), i f > )  on E. Let 

s : E —> P^ be a (global) cross section of £ defined by x (x, e), where e =  idgo(3)- 

Then, ^ - 1 (x ,e ) =  {e+(a;), e_ (2;)} C P |.  On setting s(x) = e+(x) V x E E, it is 

clear th a t ^ 0 5  =  s on E and s is thus the desired (global) cross section of £. Hence, 

P1 =  E x SU(2) and the Ashtekar connections A  are thus globally defined on E.

It should be pointed out th a t in the process of enlarging the phase space T*T^ to 

T*C (so as to include spinor fields), in addition to the two sets of constraint equa

tions defined by equations (2.2.1) and (2.2.2), a new set of constraints is imposed 

on T*C, namely

(2.2.3) tr  M [acrb] = 0,

simply because at each point x E E, q is a six-component field whereas cr is a 

nine-com ponent field. Thus, 3 additional degrees of freedom exist at each point x 

by enlarging the original phase space to T*C. Notice th a t when constraint (2.2.3) 

is satisfied, ü a =  K ab^b.

The canonical transform ations generated by constraints (2.2.3) correspond pre

cisely to SU(2) transform ations. Now, it tu rns out th a t on T*C, each set { ^A(x )  \ 

x  E E } and { cr(aj) | x E E } forms a complete set of commuting variables with 

respect to the Poisson bracket induced by a symplectic structure on T*C, where 

cr =f (det q)^ a and q — — tr(<7 • cr):

{+A(x) ,+A(y)}  =  0 =  {“A (x ) ,_A(y)} and {a (x ) ,a (y )}  =  0 Vx, y  E E.

The details of this can be found in [3]. In particular, the Poisson bracket of ^A  

and ä is

(2.2.4) {±A^1N(x),ö%B (y)} =  ± ^ = S ‘bS / M SBN^g3(x,y).

Thus, in view of equation (2.2.4), ^A  and <7 are canonically conjugate to one 

another— cf. reference [3, p. 1594],9 In this thesis, A  = f ~A and b will be taken

9In the  s tric t sense of the  term , th is is not tru e  since A4 are com plex w hereas <x is real.
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as the fundam ental variables, with the 3-metric q being a derived quantity. In 

summary, Ashtekar obtained a canonical transform ation (er, M ) i—> (<r,A). Since 

A contains inform ation about the pair (er, M ), the constraint equations, when ex

pressed in term s of the pair (<r,A), are very much more appealing: indeed, the 

constraint dependence on the la tte r pair is at most quadratic.

W hen the constraints (2.2.3), (2.2.1) and (2.2.2) are expressed in term s of the 

Ashtekar variables (A, <j ), they are, respectively,

(2.2.5)

( 2 .2 .6) 

(2.2.7)

C1(d,A) =  Vada =  0, 

C2b(d,A) = t i (daFab) = 0, 

C3(d, A) = tr  (dadbFab) = 0,

where V  is the covariant derivative induced by the Ashtekar connection A — 

VaipM = da^M  +  G A aMN^ n ~ a n d  FabMN =* 2d[aA b]M N +  G[Aa, A b]MN is the 
curvature of A. More precisely, to obtain functions  on the new Ashtekar phase 

space, the constraints (2.2.5-2.2.7) must be smeared w ith appropriate test fields:

(2.2.5')

(2 .2 .6')

(2.2.7')

[  tr(A • Vada) = 0,
J E

j ' t r ( N aäbFab) = 0,

J  N t r ( ä aä bFab) =  0,

where A is a f-Herm itian traceless field on E, N a is a complex vector field (the shift 

vector) and ./V is a scalar density of weight —1 (the lapse function).

Note th a t in order for the pair (A, <r) to yield general relativity, they m ust 

satisfy not only constraints (2.2.6) and (2.2.7), bu t also two extra conditions: (i) d 

is f-H erm itian (but is anti-H erm itian, when considered as a m atrix), (ii) HaAB is f- 

Herm itian. Furtherm ore, observe th a t by elim inating the f-Herm iticity conditions, 

all the fields become sl(2, C)-valued and hence yield complex general relativity!

2 .3 . T h e S elf-D u al R ep resen ta tion

Let C ^ ( E ,P |)  be the space of sm ooth cross sections over the principal SU(2)- 

bundle and set

A  = < G _1s*a; -  - y G ~ l Yl(e,M) u>e Äc, s e C £f(E ,P |) and (a,M) € Sc
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to be the space of Ashtekar connections on E, where Sc C T*C is the constraint 

surface in T*C defined by constraints (2.2.5)-(2.2.7), and A : is the set of connection 

1-forms u) on P ~ such th a t for each w, 3 a w £ C wherein the covariant derivative 

induced by lj is com patible w ith uoa . Then, denoting T ^  to be the phase space over 

A  consisting of pairs (A, cr) w ith A  treated  as the configuration space, by selecting a 

na tu ra l complex polarization over the Herm itian line-bundle of quantum states 

correspond to suitable polarized cross sections of the Herm itian line bundle over 

r ^ ;  these cross sections may be represented by complex functionals T on A  th a t 

are holomorphic: th a t is, T satisfies

0

Sa \ ( x )

This is known in the literatu re  as the self-dual representation. More precisely, let 

S  C C°°{TA , R )  be a suitably chosen complex vector space. Then, the self-dual 

representation is the m ap A : S  H  given by (A(/)\k)[A] = f (/\k)[A ], where H  

is the vector space of complex functionals T =  T[A] and /  is the corresponding 

quantum  operator associated w ith the classical observable / .  The completion of 

a subset 7i C H  (equipped w ith a suitable inner product) of these functionals 

annihilated by the quantum  constraints then constitutes the physical state space 

of quantum  gravity. The description given here is of course done in a ra ther blase 

fashion. The term  “self-dual” arises from the fact th a t the Ashtekar connection A  

is the self-dual potential for the Weyl tensor discussed above in §2.2.

Upon quantising gravity via these new variables (A, d-), the quantum  operator 

A(x)  is treated  as a m ultiplicative operator on 7i  and E ( x ), where E (x )  = cr(x) 

(for typesetting convenience), is the operator —iHS/ SAa(x):

Aa( z ) t f p ] d=  and E a(x)<H[A] P ß ß r .
O-A-a\X )

The classical constraints (2.2.5)-(2.2.7), w ith the ordering th a t E  is placed on 

the right of A,  then becomes:

(2.3.1) c tf i io o .B O O W A ] =  V a f r A  =  o,
oAa{x)

(2.3.2) C2a(A (x ) ,£ (z ) ) 'I - [ A ] = trF a6( z ) H H L = 0 ,
oAb(x)

(2.3.3) c 3 (A (» ) ,g ( * ) ) t t [ 4  = t l F ^ i r r W i  vöAa{X)ÖAb(x)

It can be shown th a t constraint (2.3.1) generates infinitesimal SU(2) gauge tran s

form ations, constraint (2.3.2) generates (orientation-preserving) diffeomorphisms
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and the last constraint is responsible for “tim e” evolution of the initial da ta  (A, E)  

in In all cases, the constraints were shown to be of first class in detail by 

Ashtekar [2, 3].

To conclude this section, the m otivation for choosing the above operator order

ing will be sketched. The full details can be found in [11, §2.3, p. 308]. See also 

reference [14, §3.2, p. 12] by Nicolai and M atschull. So, briefly, the ordering im 

posed on constraint (2.3.1) implies th a t T[A] is invariant under infinitesimal SU(2) 

transform ations; th a t on constraint (2.3.2) ensures th a t the constraint generates, 

on gauge invariant functionals, infinitesimal 3-diffeomorphisms ra ther than  diffeo- 

m orphism s with a divergent term . And finally, the ordering in constraint (2.3.3) 

guarantees th a t the algebra of the constraints be consistent (i.e., no anomalous 

c-num ber term s and so forth).

2 .4 . T h e L oop R ep resen ta tion

In this section, loop variables—developed by Rovelli and Smolin [17]—will be 

introduced. The motivation for introducing loop variables arose from a result in 

an article by Jacobson and Smolin [11, §7.1, p. 333] wherein a class of solutions to 

the scalar constraint (in the self-dual representation) were determ ined and because 

the SU(2)-gauge invariance of the theory is captured by the loop formalism. More 

of these will be covered later. The main element of the construction of the loop 

variables is the complexified SU(2) holonomy defined by the Ashtekar connection 

1-form A around the loop 7 :

U[j ,A \  d=  Vef°

where V  is the path-ordering operator around 7 in the line integral; th a t is,

00 /*1 r t n rt?
U[j ,A] = Y ]  /  dtn /  d t n- v  / d^iAan(7(tn))7an(tn) . . .  Aai(7 ( t i ) )7ai(ti).

n = 0

Classical observables— the T-observables—are then build up from U[y,A\  and

Ei'fit)).
The first observable, the T° - observable ,is nothing but the Wilson loop:

T[y, A] = r t r  U[-y, A].

A general T n -observable is obtained by taking the trace of the alternating m a

trix  products of 17[7 , A] and E ( ‘j ( s ) )  and it also depends on n fixed points,
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7 (51) , . . .  , 7 («sn), on the loop 7 , where 0 <  S\ < ••• <  sn ^  1. Explicitly, let 

Tg1'" “” [7 , A](si defined by

t r ( E a i(7 (5l ))?7[7,A](5l ,62)E a2(7 (<S 2 ))t/[7 ,^ ](« S 2 ,5 i) ...E ^ (7 (5 n))t/[7 ,A ](5n ^ i ) ) ,

be an observable th a t depends on the ordering placed on the loop param eters 

s i , . . . , s n , where £/[7 ,A ](s ,f) d=  A is the parallel propagator for spinors

along 7 from 7 (5) to 7 (f). Then, its corresponding T ai,"an observable is a T n- 

observable th a t is independent on the ordering of s*; th a t is, T a 1--Mn [7 , A ](s i , . . .  s n) 

is defined by

E  0 ( g P(r)  -  M * ) )  • ■ ■ 0 ( S P M  -  * P l i ) f ö , M " ' a P M h ’ 4 (S P (1 )>  • • • - < •*»)) .
P

where P  is a (fixed) perm utation of {1, . . . ,  n},

f 1 for t >  0,
0(t) = \

[ 0 otherwise.

For n =  1, T a [7 ,A ](s) =  A]Ea(^(s))) .  Note th a t if 7 ' = 7 0 / ,  where

/  is an orientation-preserving diffeomorphism on I —i.e., a reparametrisation— 

then T a i- a"[7 , A ] ( s i , . . . , s n) =  T a i- a" [7 ', A] ( / _1 ( s i ) , . . . , / _1 (sn)). In other 

words, the T n observables for n ^  1 are reparam etrisation covariant, and the T n- 

observables thus depend only on the geometric points on the loop 7 . In the light of 

this observation, the T n-observable may be denoted by T “1-”“" [7 , A \ ( x \ , . . . ,  x n ), 

where X{ — 7 (sj) are n fixed points on 7 in E. Moreover, as reparam etrisations are 

orientation-preserving, the natu ra l linear order ^  on I  induces, in a na tu ra l way, 

an ordering ^  on the set of x i s by

Xi =4 Xj if Si ^  Sj, where 7 (5*) =  Xk.

It can be verified th a t the T°-observables are invariant under reparam etrisations.

Some comments are now due. F irst, A  may be regarded as an element of 51(2, C). 

Then, by virtue of the following algebraic identity of sl(2 ,C ),

6AB6cD + eACeDB = 6a d6c B,

the T°-observables can be shown [11, §5.1, pp .324-325] to satisfy the following 

spinor identity:

T bf * i , A ] + T h  * rt - t A ] — T bs MTV), A \
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where 7 * 77 is defined by

... _  /  7(2 t) for 0 g  ^

7 * ’? l  r?(2i — 1) for i  g i  g  1,

and 7y_(t) =f 7(1 — t) is the reverse orientation of a loop 77. Furtherm ore, the 

T°-observables also satisfy the retracing identity:

r [ 7 * c * C - ,A ]  =  r [7 ,A ] ,

where £ : I  —> £  here denotes a non-self-intersecting curve th a t starts  from a 

point on the loop 7. Indeed, these two identities imply [17, p. 105] th a t the 

T°-observables also preserve the following two relations:

T[7, A]T[?7, A] =  T[7 * £ * 77 * £_, A] -f T [ j  * £ * 7 -  * £_, A],

T[7 i * 72, A] =  T[7i * 77, A]T[72 * 77-, A] -  T[7 i * 77 * (72)- * 77, A], 

where 7 and 77 are arb itrary  loops, £ is a curve th a t connects 7 and 77, and 71 * 72 

is a loop defined by two curves 7 j, z =  1,2: 7i(0) =  72(f) and 7 i( l )  =  72(G). 

The last two relations perm it the reduction of the loop space by excising loops 

of the form 7 * 77 * 77- from it. The Poisson Brackets of the T°-observables com

mute: { T[7, A], T[t7, A] } =  0 V7,77. The Poisson brackets between T n- and T m- 

observables were worked out explicitly in reference [17, §2 .3 , p. 101]. They possess 

the general structure  of {Tn,T m} ~  T n+m" 1, where n < m.  T h a t is, the set 

T  = { T n I n  £ N } of T n-observables form a closed graded Poisson algebra. The 

Poisson brackets between T n and T m actually contained singularities of the form

(2 .4 .1) A a [7 , 77](z) =  A a[7 , 77](s) d=  i  63(^(s),r](t))ria(t)dt,

where x = 7(5). However, these can be elim inated by introducing suitable smearing 

fields [17, §2 .4 , p. 103]. This will be described in detail in §7.2 of the final chapter.

Notice th a t the T n-observables are non-local operators in the sense th a t 

for n > 1, T “1" '“" [7, A, £^](si,. . . ,  s n) takes values in T7(ai)£  <8> • • • ® T7(5n)£ , 

where in general, 7 (5^  ^  7 (sj )  for i ^  j .  In particular, T n-observables, for 

n >  1, are not conventional tensors as such; th a t is, they are not contravari- 

ant 77,-tensors defined pointwise on E. Also, note trivially th a t the presence of 

the trace in the definition of the T n-observables renders them  invariant under 

SI7(2)-gauge transform ations. Finally, due to the trace operator, it is easy to 

see th a t T ai"'an [7, A,  IS]($i, . . . ,  6n) transform s under a sm ooth diffeomorphism 

(j) £ Diff+ (£ ) to T ai'--an[(f) o 7, A ,E ] ( s i , . .. , 5„) given by

J - 1(S l ) . . . J - \ s n )dbir i h ( s i ) ) . . . d bnr ' ' ( - r ( s n ) ) Tbl- b’' h , A , E } ( s u . . . , s n),
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where J(s i)  = f <7(7(3;)) for i = 1, . . . , n ,  is the Jacobian of <f) at 7(5*) and they 

arise on account of E  being a vector density of weight one: E{x)  = (det q(x)) %cr(x), 

where q(x) = — tr(c(a;) • <7(2;)) is the 3-metric defined by the triad  cr.

2 .4 .1 . E x a m p le . There is a simple diagram m atic way of working out the Poisson 

relations. Let 7,77 be two loops such th a t 7(«s7) =  x = 77(3,7) for some £ / .

Then, there are two ways of joining 7,77 at a; after breaking them . In essence, { •, • } 

acts on the pair (7,77) of loops by breaking them  at the point x and then rejoining 

them  in two possible ways, based at x: 7 *x 77 and 7 *x 77-, where 7 *x 77 =f 7X * rjx

7 . ( 0  =
7 (t T  s7) for 0 ^  t ^  1 — s7,
7 (t — 1 +  s7) for 1 — s7 ^  t ^  1,

and
77(2 +  for 0 ^  t ^  1 — s v ,
rj(t — 1 +  sv) for 1 — sv t ^  1.

Diagrammatically, { T a[7, A](:c), T[?7, A] } is given by

Figure 2.4.1 (a). The Poisson Brackets of T 1 and T ° .

and { T a6[7, A](t1, t 2) , T c[r], A ](s)} is given by

Figure 2.4.1 (b). The Poisson Brackets of two T 1-observables.

In summary, the action of the grasp operator—i.e., the action of the Poisson 

Brackets—at the point where 77 intersects 7 (depending on the orientation of 7 and 

77) are:
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A'ty.xi] <

Afy,Ti] X X /
/X

Figure 2.4.1 (c). T he action of the  grasp operator.

where the arrows within square brackets indicate the final orientation of the loops.

The loop representation can now be concisely outlined. F irst, let A4 denote 

the multi-loop space of E; th a t is, each element of A4 is just a countable subset 

{ y1, . . . ,  j n } of loops in E, called an n-loop, with the constant loops in E identified. 

The topological structure of A4 will be given in some detail in the next chapter. For 

now, the description here will be carried out at an informal level. Let A4' denote 

the topological dual of A4, where A4 is endowed with some suitable topology—once 

again, refer to  the following chapter for more details. Then, define the quantum  

operator T[17 , A] corresponding to T[17 , A] by (T[17 , Aj'Fjjr?] d=  ^[x7 U 7], where 

J7  is a 1-loop (i.e., a loop) and 7 E A4 is an n-loop; furtherm ore, 4/ E A4' is 

assumed to  vanish on ^ 0-loops; th a t is, on loops with a countably infinite num ber 

of loop com ponents.10

The quantum  T L operato r T a[^,A \{x) is defined by

where x is a point on 7 , e E { + , — }, the crossings of the form given by the first 

term  in Figure 2.4.1 (c) of example 2.4.1 is denoted by +  whilst the second term  is 

denoted by —, n(e) is the num ber of arrows tha t need reversing at the intersection 

to m aintain  a consistent orientation, and

Referring to Figure 2.4.1 (c), for the first instance, n(-f) =  0, n( —) =  1, whilst the 

la tte r yields n (+ )  =  2 and n( —) =  0 .

10 T h is condition  is essentially equivalent to the restric tion  m ade by Rovelli and Sm olin in their 
form ulation  of the  loop represen tation  wherein they assum ed the  m ulti-loop space A4 to  consist 
only of n-loops w here n < ^ 0  •

□

(#*[7 , A](*)®)[,] =  f i E ^ - l ) n(£)A a h> '/](* )* [(7  ** 7)e]
e
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In general, a quantum  T n-observable acts on T by

( T » '- “" [7 , a }(Xi *2)*)w  = nn • y y - i r < e)A“' [7, ̂ ( * 0 . . .
ei en

A a"[7 , 7?](a:n)^ [(7  *X7 ri)€l- en],

where x 7  = { 27 , . . . ,  x n }, e; = -f, — for i = 1 , . . . ,  n, Xi are the n points where 

77 intersects 7—otherwise (Tn[y, A\$)[rj] = 0— and (7 *x7 rj)ei---en corresponds to 

2n ways of rejoining n points (the points of intersection) simultaneously. Lastly, 

71(e) = f 7i(e 1 , . . . ,  en) is equal to the num ber of loop segments resulting from break

ing and linking at the intersections which orientation requires reversing in order 

for the segments to be param etrised in a consistent m anner. Refer to Figure 2 .4.1 

(c) for clarification.

2 .4 .2 . E x a m p le . The case for n =  2 will be worked out explicitly in this example. 

W ithout any loss of generality, it may be supposed th a t 77 intersects 7  at a: and y; 

otherwise, the action of T 2 on T at 77,

( f a6[7 , A](x,y)^)[rj] = h2 ^ ^ ( - l ) n(ei’e2)A a6[7,7?](a:,7/)T[(7 *xy 77)eiC2],
e2

where A afc[7,?7](:r,y)  A a[7 ,T7]Ccc)A 6[7,riKl/) f°r typesetting convenience, van

ishes identically. This is easily seen from equation (2 .4 .1). Evaluating the expres

sion yields

(2 .4 .2)
(Tab[y, A\(x, y)^)[rj] = h2 A a['y,ri}(x)Ab['y,r]}(y)x

{ ( - l )"<+ '+>*[(7 *xS V)++] +  ( - l)" < -- -> * [(7  17)“ ]+

(_l)»(+.-)*[(7 ,)+-] + (_l)»(-.+)*[(7 ,)"+]} .

To evaluate 71(61,62), suppose for concreteness and simplicity th a t 7,77 are coordi

nate circles,11 bo th  of which are oriented in the counter-clockwise direction. Then, 

using Figure 2 .4.1 (c), 7i( +  ,+ )  =  2 =  n( —, —) and ti( +  , —) =  2 =  n( —, +) .  The 

loops (7 *xy rj) eie2 are represented diagram m atically as follows:

h2A ab[-y,r)\(x,y) GDI+T[(D ] +T[GD]+T[(a)'
Figure 2.4.2. T he action of T 1 on ^[rj].

11A loop 7 : /  —* E is said to be a coordinate circle if 3 a ch art (U , </>) such th a t 7(7) C U and  
<f> o 7 is a circle on a 2-plane in M3.
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The arrows on the loops indicate the original orientation of the loops 7 and 77, which 

are assumed to be counter-clockwise. The values of n(ei,e2) are then determ ined 

by the num ber of arrows th a t need reversing: here, for the first term  in the above 

figure, two arrows, one on each loop segment, require reversing in order for the loops 

to m aintain a consistent orientation. The first term  of equation (2 .4 .2) corresponds 

to the first sum m and in Figure 2 .4 .2 , and so on. This is the loop (7 * Xy^)+ + , and its 

structu re  will be spelt out below. The rem aining three other loops can be worked 

out from the above loop diagrams along a similar vein.

Let 61,52 and t i , t 2 be 7- and 77-parameters at x , y  respectively. T ha t is, 7(51) =  

x =  77(̂ 1) and 7 ( 5 2 )  =  y =  77(^2) with x 4  y. Then, (7 y )++ =  (1 * ( 2, where

f 7(2(52 -  s i ) t  +  s i )  for 0 ^  t ^  | ,

1 77(1 -  (2(*2 -  t i ) t  -  t2 +  2ti)) for \  ^ t ^ 1,

c , , =  f 712(1 -  21)  for 0 5  t S  1, 
l 1712(21 -  1) for 1 ^  t ^  1,

( i  are two loops based at 7(51), 712 =  71 * 72, with 71 (t) =  7(2(1 — s ^ ) t  +  52) 

and 72(0 =  7 (2$it — $i), and 7712 =  771 * rj2 with = 77(2(1 — t 2)t +  t 2) and 

m( t )  = rj(2Ut -  t i ) .

The second loop (7 77) =  (J * C2, where ([ = 7} * 77̂ and (2 =  (72)- * (^2)-
and 7-, 77- are defined by

t IW  =  7((^2 -  s i ) t  +  5i) , 77KO =  77((1 -  t 2)t +  t 2) * 77(M ),

and

72W  =  7 (^i^) * 7 ((! -  ^ 2 +  52), 772(0 =  *K(*2 -  *1)* +  <i)-

The convention adopted here in defining the loops £,• in the case of 72 intersections 

is th a t each loop £,• be based at the ^-sm allest point 7 (sj),  j  =  1 , . . .  ,72 — 1, tha t 

lies on it. For n = 2 , the loops are based at 7(51). As a final comment, the loops 

drawn in Figure 2 .4.2 are really one single loop with self-intersections occurring 

at x and y. Gaps in the loops were deliberately drawn purely for the purpose of 

indicating the various ways in which they can be joined again. □

This section will conclude with some remarks concerning the diffeomorphism and 

Ham iltonian constraints expressed in term s of the loop variables and the restrictions 

placed on the loop functionals T. The restrictions are:

(1) ^[7] should rem ain invariant under loop-reparam etrisations and inversions

(7 ->• 7 _);
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(2 ) ^ [ 7  U rj] — ^ [ ( 7  * 77)+] — ^ [ ( 7  * 77) ] =  0 ;

(3) 4 /(7  * 77 * 77-] =  4/(7 ], where 77 is a curve beginning at a point on 7 .

Consult reference [21, §2.2] or reference [17, §3.3]. Condition (1) follows from the 

invariance of the holonomy 1/(7 , A] under reparam etrisations. Conditions (2) and 

(3) follow from  equations (2.4.1)-(2.4.2). Refer to [17, Eqns (661)-(67b), p. 115] 

for more details. The discussion carried out extends to multi-loops in the obvious 

way. There is actually a final condition to be imposed on the loop functionals. It 

relates to  the “zero loop” . This condition will be covered in the next chapter where 

the zero loop and the multi-loop space will be defined.

Given a m ulti-loop 7 =  { 7 1, . . . ,  7 ” }, the D iff(E)-action on A4 , Diff(E) x A4 —> 
A4 , is defined by

(/,7) ^  /  • 7 = f { / 0 7 \ - - - , /  ° 7 n }•
This induces a na tu ra l linear representation L of Diff(E) on A4' by

W)*)M = n r 1 ■ 1?].
Now, let v be a vector field on E generated by a one-param eter group f t of diffeo- 

m orphism s on E. Then, the generators D(v)  of L are defined as

(2>(»)®)M d= i ( i ( / ()*)|_oM .

These generators satisfy [D{v), D(u)] =  DQu, u]) and it is sketched in reference [17, 

p. 118] th a t D(y)  may be identified with the smeared form of constraint (2.3.2):J  va(x)C2a(x)d3x.

Observe in passing th a t if T is a functional on the knot classes of E, th a t is, 

4/(7 ] =  4/[7'] whenever 7 and 7 ' belong to the same knot class, then T trivially 

satisfies the diffeomorphism constraint D(v)ty =  0.

The H am iltonian constraint is constructed as follows. Fix a chart (Ua ,(j)a ) of 

E and consider a coordinate circle 7 0 : I  —» E based at x 6  E, where <j>a o j 6 

is a circle of radius 8 E (0,1) in R 3 lying on a 2-plane. By defining C%{x) = f 

T^ab̂ [y8, A\{82, 1 ), it can be shown—see reference [2, pp. 244-245] or [17, p. 106]— 

th a t C 8(x) =  82 t v (Eb(x ) Ea(x)Fab{x)) + o ( ^ 2), and hence,

C»(A,E)  =  V m j i CHx).

Indeed, it can also be shown12 tha t

det q{x)qab{x) =  - 1  lim T ab[y6, , s S2),
Z o—>-0

where s î —> 0 as 8 —* 0 .

12Ibid.
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2 .5 . D iscu ssio n

In this final section, a link between the self-dual representation and the loop 

representation, and some remarks pertaining to some solutions of the quantum  con

stra in ts  will be made. Prior to these however, some comments regarding m ulti-loops 

will be given. The loops 7 in ^[7] may be replaced w ith multi-loops { 7 1, . . .  , 7 ” } 

in the loop representation discussed in §2.4. Thus, denoting an n-loop { 7 1, . . . ,  7 ” } 

by n7, ( T ai---an A ](ici,. . . ,  a:n)4,)[n7] is defined by

E  • • • E ( - 1 ) n ( f ) A ‘‘ 1 tu> "»?](*») • • • A“n p7, "•/](*-)®[(17 "i?)“ -**],
C l  £ n

where A a[17, n7]](x) = f n ”=i 7*](z), nV = { r/1, . . . ,  rjn } and *7 *x7 nr) =f

{ *7 *z7 771, . . .  , *7 *x7 r}n }• Restriction (3)— ^ [7  * 77 * ?7_] =  ^ [7 ]—on the loop 

functionals in §2.4 extends trivially to multi-loop functionals by

^[*7 * S  * = ^[1 7j2 7»---]-

A bridge between the self-dual and the loop representation is made via the map 

T  : hi' —» AT to be defined below [17, §4.5, p. 126]. F irst of all, observe th a t 

operators O on 77 are associated with operators O* on hi! —the conjugate self-dual 

representation— by (0*4>)(T) =  4*(OT). Then, defining a delta-distribution 8a 0 

by ^ 0(T ) d=f 4[A 0], where A q E A  is fixed, it follows [17, Eqn (90), p. 123] 

th a t (T*[7, A]6v40)(1F) =  (T [7 , Ao]^a0)(^)^ and hence, T[7,Ao] is the eigenvalue 

of T*[y, A]8a 0- The emphasis here is made on the T°-observables inasm uch as 

they form a maximal set of commuting observables th a t are well-defined in both 

representations:

f[7 ,A ]T i =  Ci[7,A]Tj, i = s, i ,

where T s (\E^) is a state  vector in the self-dual (loop) representation.

Now, because Tfy, A] is diagonal in the self-dual representation, (T[7, A]T)[A'] =  

T [7 ,A]T[A ']. As an aside, T[y,A \  may be interpreted [17, p. 123] as a creation 

operator which creates excitations of the connection localised along the loop 7. In 

the conjugate representation, T*[7, A] becomes the annihilation operator. It is also 

sketched in some detail in reference [17, §4.4, pp. 124-125] th a t (T[7, A]T)[7y] =  

T [ 7 , A]® [17].
W ithout going into any great length, T : —> given by
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sends T°-eigenvectors in 7i '  to its corresponding eigenvectors in A4 '. Some prop

erties of J- will be tersely mentioned without proofs—see reference [17, §4.5, p. 

126] for details. F irst, the T n-operators th a t act on T s and are jF-equi valent, 

where a loop operator Te and a self-dual operator Ts are said to be J~ - equivalent 

if T  o T* = Te o T . Note trivially th a t the observable T[7, A] may be regarded 

either as a (m ulti-)loop functional or a connection functional; for by fixing A, 

T[7, A] =  ^ [ 7 ]  and by fixing 7 instead, T[7, A] =  \I/S[A].
Second, the left inverse of T  exists: o T  — id. Finally, because the self-dual

internal gauge constraint is jF-equivalent to the null-operator in the loop space (as 

it annihilates the holonomy), it follows th a t the internal gauge constraint holds 

when going from the self-dual representation to the loop representation (via J7). 

Hence, only the diffeomorphism and the Ham iltonian constraints rem ain in the 

loop representation.

The m apping T  adm its a heuristic integral representation. It is effected by the 

following transform —the Rovelli-Smolin transform—which resembles the Fourier 

transform :

=  [  T [ ^ A M A } d ß(A),
J A [  SU(2)]

where fi is a m easure on the space A[SU(2)] of Ashtekar connections m odulo the 

SU(2)-gauge orbits. More of M[SU(2)] and fi will be said in a later chapter.

To conclude this chapter, a brief word about the solutions of the diffeomorphism 

and the H am iltonian loop constraints will be said. It was shown in reference [17, 

§5, p. 132] th a t multi-loop functionals T which satisfy

(1) T [77] =  0 V 77 E A4 such th a t 3 rjl E 77 th a t is either not smooth, or possessing 

self-intersections, and

(2) [̂77] =  ^[r]'] Vrj,r]' E L (t/), where L(rf) is the link class of 77 in S; i.e., 

L(r7) = { /  • 77 I /  is a sm ooth ambient isotopy } and f  -r] d= { f  o 771, . . . ,  /  o

satisfy bo th  the loop diffeomorphism and Ham iltonian constraints. Indeed, T 

when extended to  m ulti-loops 7 E M  th a t contain loop components of the form 

7* * * 77* * or 7* * f  * * 77k * ( l_ —where 7*, 77* and f  * are smooth, and connects

77 to 7— are also annihilated by the loop constraints. Thus, in conclusion, a class 

of solutions, i.e., physical states in the loop representation, is obtained and they 

consist essentially of m ulti-loop functionals on the set of smooth non-intersecting 

multi-loops. In spite of this remarkable achievement, the physical in terpreta tion  of 

the loop representation still proves to be somewhat elusive. However recently, Rov-
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elli and Smolin m ade further advances in the loop representation by constructing a 

basis on the space of multi-loops th a t are labelled by a generalisation of Penrose’s 

spin networks. The details can be found in reference [18]. The basis of linearly 

independent states constructed by Rovelli and Smolin solved the long standing is

sue of over-completeness in the loop representation arising from the M endalstam  

relations [18, §2, Eqns (2)-(3)].
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CHAPTER III

THE STRUCTURE OF THE MULTI-LOOP SPACE

3.1. Introduction

In this chapter, the topological structure of the multi-loop space A4 and the 

m ulti-loop functionals defined on it will be studied. Recall th a t in this thesis, E 

denotes a sm ooth, closed, compact, orientable, Riem annian 3-manifold. A nother 

notation  to be introduced is the following: if (X,  p) is a m etric space, then the 

symbol B e(x)  will denote an open e-ball centred about a: in X . Somewhat loosely 

worded, the multi-loop space of E is just the set of countable subsets of loops in 

E, where the constant loops in E are identified with a single point. The m ulti

loop space used in the loop representation is again a quotient of this space under 

certain  equivalence relations such as reparam etrisations. The details can be found 

in reference [9, §2.2], and the resulting quotient space is called a non-parametric 

loop space by Smolin. However, these equivalence relations will not be enforced 

because of the resulting complexity of the quotient topology on the quotient space 

and also because it will be convenient to work with param etrised loops. Instead, 

these conditions will be imposed on the multi-loop functionals. Since a topology 

will be needed on the multi-loop space in order to construct suitable measures and 

to  define continuous functionals on it, it would be fruitful to construct a suitable 

topology on the multi-loop space—this, at least, is the m otivation for analysing 

the topological structu re  of the multi-loop space.

It should be m entioned in passing th a t the multi-loop space as defined by Rovelli 

and Smolin [7, p. 107] is none other than  the topological sum of the n-loop spaces 

w ith a point representing the zero loop—the set of n-loops is ju st a set whose 

elem ents are sets of n loops. In this chapter, the multi-loop space will be made 

precise and its topological properties studied. It will be shown in §3.2 below th a t 

the multi-loop space as depicted in [7] is m etrizable as well as second countable. 

These two properties of the multi-loop space will be used in a later chapter to 

construct a m easure on it. In the th ird  section, the space of multi-loop functionals 

will be constructed and it will be seen th a t the space is just a direct sum of the space
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of ro-loop functionals. In the final section, the action of the quantum  T°-operator 

on the multi-loop functionals will be analysed.

3 .2 . T h e  T o p o lo g ica l S t r u c tu re  O f M

In this section, the properties of the multi-loop space of £  will be probed. Con

cisely, a loop is a continuous map 7 : I  —► £  such th a t 7(0) =  7(1) and 7(1) is 

homeomorphic to the unit circle 5 1, where I  [0 , 1]. In this thesis, the definition 

of a loop will be generalized to include a finite num ber of self-intersections. As 

such, the above definition of a loop will be referred to as a standard loop.

Let 7s : I  —> £  be a standard  loop in £  and let { aq ,. . .  ,£„}  be a finite set of 

points on 7S( /)  which may also be the em pty set. Furtherm ore, let 7s( /) [a q , . . . ,  x n\ 

denote the quotient space of 7S(J) such th a t the collection of points (rrq , . . . ,  }

are identified (with one another) for each i =  1 , . . .  , p ^  n, where Xa= i m (0  — n -> 

{aq =  U j= i {^ii > • • • ? x im(i) K and { j i i , . . .  ,aitm(.)} fl {x j r , . . . ,  Xjm^  }
0  Vi  7̂  j .  Then, informally, a loop associated with is a continuous m ap 7 :

1 —> £  such th a t 'y(I) is homeomorphic to 7s(J )[aq ,. . . ,  x n]. Roughly, this extends 

s tandard  loops to loops with a finite num ber of self-intersections. The formal 

definition is given below.

3 .2 .1 . D e fin itio n . Let 7 : I  —> £  be a continuous m ap w ith 7(0) =  7(1) and 

J  = { t i , . . . ,  t n } C I  be a finite subset (possibly em pty) such th a t

(1) for each distinct pair s , t  E (0 ,1) — J , 7(5) ^  7(^)5

(2) there is a unique (finite) partition  V( J )  of J —th a t is, V ( J )  = { J a • a  =

1, . . . ,  m  < n} ,  J  = | J o J a and J a IT Jß = 0  V a  ^  ß —satisfying for each 

J q € 'P (J ) , 7(5) =  7 (t) Vs , t  G J a , and 7(5) ^  7 (t) whenever s € t G

J/j and a  ^  /?;

(3) 7(1) is homeomorphic to 7s(J)[jci , . . . ,  a;n], where aq =  7(t^) for i =  1, . . . ,  n. 

Then, 7 is called a loop in £  associated with 7§.

An im portant point to note is th a t loops belonging to the set of Peano spaces, 

which exist by virtue of the Hahn-Mazurkiewicz Theorem  [8, p. 343], are not 

included in the definition of loops given here; in particular, a “closed” Peano space 

p : I  —> £ , where p(0) =  p (l)  and p(I)  = £ , is not considered to be loop in this 

thesis. This will ensure th a t pathological issues, if any, th a t might arise from the 

loop representation by the existence of loops whose images are the entire 3-manifold 

£  will not be present. This is the reason why standard  loops were defined (to be 

homeomorphic to S 1) in the first place, as the collection of “loops” defined by
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the set { 7 : /  —> E | 7(0) =  7(1), 7 continuous } would be far too large, and in 

particular, would include Peano spaces whose initial and final points coincide.

The above generalisation of loops is not  quite the whole story! In the loop 

representation, the domain of definition of the loop functionals also contain “loops” 

consisting of two loops connected by a curve.1 Explicitly, these “loops” are of the 

form 7*0*77, where 7,77 are loops in E and c : I  —> E is a curve in E th a t connects 

7(^1) in 7 to  77(̂ 2) in 77 for some 1i , 2 2 E 7:

7 * 0 * 7 7 (2 )

' 7(6*1*)

c(62 — 1)

77(6(1 -  t 2)t +  322 -  2) 

77(3t2(2t -  1)) 

c( 5 — 62)

, t (6(! -  *1)* +  621 -  5)

for 0 ^ 2 ^  | ,  

for i  g  < g  
for § ^  ^  I ,

for § = t = L 
for f  =  t =  f>
for § g  t S  1.

Strictly of course, 7*0*77 should be denoted by 7*^0*^77. Hence, m appings of the
defform 7*0*77, where 77 may ju s t be the reverse curve c_(2) =  c(l — 2), and more 

generally, 7 i *c i*72*c2* . . .  *cn_ i* 7 n—where 7; are loops and C{ are curves joining 

7 i to j i+ i— will also be included in the definition of a loop. And finally, ju st when 

it is reasonable to expect th a t the tale of the loop definition should end happily 

ever after, one discovers th a t a zero loop—a constant loop—is also included in the 

recipe of the loop representation!

Let £ 0 d=  { 7  £ T e I 7(-0 =  £75 £7 G E } be the set of constant loops. Then, 

the loop space f2s of E in this thesis is defined to be the set

= ' { 7  : f E I 7 is a loop} U Cq.

This space is endowed w ith the compact-open topology. Recall th a t this topology 

is generated by the subbase consisting of open sets of the form

M(?7, W )  =  { 7 6  I 7 (U) C W, U C I  compact, W  C E open }.

Observe from [5, Theorem  4.2.17, p. 263] th a t the compact-open topology on 

is com patible w ith the m etric topology induced by the following metric:

7) = f sup d(7 (2), 77(2)), 
te i

^ e r e ,  a curve in £  is defined to  be a topological im bedding c : / —>■£; in p articu la r, c does 
not possess any self-intersections.
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where d is the distance function on E induced by a fixed R iem annian m etric q on 

it. Furtherm ore, note trivially th a t if q\ and <72 are any two admissible Riem annian 

metrics on E, then the c^-topology and the c^-topology on E coincide, where di is 

the distance function induced by qi. In particular, d\ is equivalent to d>2. Hence, 

there is no loss of generality in fixing an admissible Riem annian m etric on E when 

defining the m etrizable topology on

A word regarding the “zero loop” should perhaps be made. In [7, p. 107], a zero 

loop was included in the definition of the multi-loop space. Because the topology 

of the space was not specified a priori, it is unclear w hether the zero loop is an 

isolated point or not. In this thesis, the zero loop—which is essentially obtained 

by identifying all the constant loops w ith a single point—is not an isolated point 

by construction. The construction of the multi-loop space to be given below is 

based on a ra ther concise description given in [7]. And whilst no topology were 

constructed for the multi-loop space by the authors of reference [7], a topology on 

the multi-loop space will be constructed here in some detail.

Let (J, C be a linearly ordered subset th a t is at most countably infinite

and th a t satisfies ti < ti+1 Vi =  1, . . . ,  n ^  Ho, where J  = { ti  \ i = 1, . . . ,  n  }. 

Then, ( J, is said to be discretely ordered.

3 .2 .2 . D efin ition . Let M  be a smooth manifold and /  : I  —> M  be continuous. 

Then /  is said to be piecewise smooth if there exists a discretely ordered subset 

J  C I  such th a t /  is smooth on I  — J.  T hat is, /  is sm ooth on ( t i , t i+1) Vi =  

1, . . . ,  n ^  Ho, where J  = { t i  \ i = 1, . . .  , n } .

Let C f is  be the set of piecewise smooth loops, [0, +oo] and Co

the set of constant loops; th a t is, loops 7 satisfying 7 (t) = 7 (s) Vs , t  E I.  A 

(topological) m etric can be constructed on in the following way. Fix a finite 

atlas 21 =  {(Ua ,(pa)} on E and define d' : Cu x Cs  —> R+ by

d'(j ,ri)  d=  ess sup{ ||D ej{ t )  -  D erj(t)|| : t € / ,  l  ^  1 },

where sup ranges over all the relevant (finite) charts, D e^f(t) denotes—in abused 

notation—the ^th differential of 7 at t, and ess means th a t the expression 

\\De~f(t) — D eq(t)\\ is defined on I  apart from a finite num ber (possibly zero) 

of points { t i , . . . , t n } C I  wherein 7 or 77 are not  differentiable. Evidently, 

p(7, 7)  =f <7(7,7) +  d'(j,r])  defines a m etric on £,%. From here on, Cs  will be 

endowed with the p-topology.
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3.2.3. Remark. The p-topology above does not depend on the choice of (admissible) 

finite atlas. To see this, let Ql denote the maximal atlas of £  and define a subbasic 

open set in Cy by

Ne(r,(Ua,Va) ,K)  d= {v e Cx I n(K)  c  ua, dK(7,7) + «?) < },

where K  C I is com pact, d x ( 7 , 7 / )  =  sup{ d(~/(t), 77(f)) \ t £ K  }, j ( K )  C 

and is ju st d' ‘restric ted ’ to those 77’s satisfying tj(K )  C UQ; more precisely, 

7 :7 ) is defined by

ess sup{ ||.D^(pa o 7(f) — D((pa o r}(t)\\ : t £ K  compact, t  ^  1 },

where each 77 satisfies rj(K) C Ua. This topology is equivalent to the p- 

topology introduced above on Cy - For given any p-open 6-ball B$(7 ), consider 

N(7 ;e ) =  f | ”=1 ^ ( 7 ;  (Uai,<-pai) ,K i ), where /  =  U ”=i #*• Then, clearly, for a su it

able choice of charts (Ua i , <Pc*i) and taking £ <C 6, 7V(75 g) C #$(7) can always be 

satisfied. Conversely, given iV^(7 ; (Z7, <p), A"), there clearly exists some 6 >  0 such 

th a t -06(7) C iV£(7; (Z7, <p), A"). In particular, given any finite intersection 7V(7;e) 

of subbasic open sets of 7 , there 36  > 0 such th a t B$(7 ) is contained w ithin it. 

Hence, the two topologies are compatible, as claimed. Since no dependence on 

the particu lar choice of finite atlas were invoked, the initial assertion made above 

follows.

A central result needed in the construction of a measure on Cy will be established 

below; namely th a t Cy is second countable in the p-topology. Observe first of all 

th a t because (0 >y , d) is second countable with respect to the compact-open topology 

[2, corollary 4.2.18, p. 263], so is (Cy , d\CY) with respect to its subspace topology. 

Hence, there exists a countable d-dense subset D  in Cy - The dense subset D  will 

be fixed in all th a t follows.

3 .2 .4 . L e m m a . For each n , m , k  £ N and 7 £ D, dehne .D7(m, n, k) to be the set 

o f all loops 77 £ Cy such that

(1) r/(0) =  7(0),

(2) d(y,tj) <

(3) ’" ) = « •

Then, % ]  =  (Jm.n.fceN U tSd Dy(m, n, k) isin Cs .

Proof. Given any 77 £ Cy , it will suffice to establish a sequence in S[p\ th a t

p-converges to 77 in Cy - N ow, since D  is a countable dense subset in Cy , there exists
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a sequence {7;}; in D  such th a t 7; ^-converges to 77. So, consider the sequence of 

sets { Z)7.771,72, fc) \ m , n , k , i  6 N}. Set svi = d '(7 ;,77) and choose ki,rii E N such 

th a t ki/(rii +  1) ^  s vi ^  ki/rii. Fix any e >  0 and choose rrii,ki >  2/e.  Then, from 

the definition of D y (m ,n ,  k )—using property (3)— 3 E D l i (mi^rii^ki) such th a t 

<  1/m^. Since ^(^,77) <  I/772;, by property (2), it follows at once tha t 

PiCiiV) — d(|i,?7) +  77) < 2 /  777j <  e. Hence, from the arbitrariness of e >  0 ,

there exists a sequence {£}; in 5 [p] which p-converges to 77, as asserted. □

3 .2 .5 . P ro p o s i t io n .  p) is second countable.

Proof. The notations introduced in Lemma 3 .2.4 above will be used in the proof 

sketched below. Fix 7 E D  and let Jk,n = Q H [777, ~] and set Am =  Q fl [0 , T ) . 

For each t E Jfc,n and ce E Am, let 1)^(7; f) C D 7(m ,n ,fc) be a countable subset 

consisting of loops 77 satisfying

(a) ^(7,77) =  t,

(b) 7; £) is d-dense in the set { £ E | d(7, £) =  a  }.

The existence of property (b) follows trivially from the fact th a t (C n , d\C%) is 

second countable. Let =f U«eAm Then, by definition,

is countable. Set D 7(tt2, n , k) = f n -Dm(751) U {7}.

Claim: D[p] = f IJ7€d Un,m,fceN T>7(tt7, n , k )  is p-dense in £ s .

It is clear from the construction th a t D[p] is denum erable as it is a countable union 

of countable sets. Notice also th a t given any d > 0 and 77 E £ s ,  B7 E T  such tha t 

d (7 ,77) <  d as D  is d-dense in £ e .

To verify the claim, it will suffice to show th a t for each 77 E £ e , there exists a 

sequence {(t}i in D[p] such th a t (i —* 77 as i —> 00 in the p-topology, for invoking 

lemma 2.2 will complete the proof. So, fix 77 E £ e and for each i > 0 , consider 7 i E 

D  such th a t ^(7^,77) < 1/ 2«. Set Sfp =  < '̂(7 ,̂77). Now, given any £ E D ^ m ^ n ^ k )  

and d >  0, it will be established below th a t th a t 3 (j E D y ( m ' , n ' , k ' ) ,  for some 

m ' , n ' , k '  E N and 7 ' E D , such th a t p(C? Cö) <  d.

F irst, recall th a t the d-denseness of D  implies the existence of a sequence in 

D  such th a t 7 i d-converges to (.  Hence, for i sufficiently large, it is always possible 

to choose m ' , n ' , k '  E N such th a t (  E Z)7|.(m 7, n \  k'), where k ' /n '  <  ^d, m'  >  4 /d. 

By definition, for any t E dfc',n' and a  E Am/ w ith i large enough, 3 £ E 

such th a t p(C,7i) =  d(C,7i) +  d '(C ,7<) <  jd  +  £d =  |d  by properties (b) and (a). 

Hence, by taking i to be sufficiently large so th a t d(7*,C) < |d ,  the above choices 

of m ' , n ' , k '  imply th a t d '(7i,C) <  jd . W hence, p(C, C) = KC, 7») +  p(7uC) <
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I}6 -f- |<5 =  S, as claimed. As an aside, note th a t D 7(m ,n , k) is not to be confused 

with D 7(m ,n , k ); the former is denum erable whereas the la tte r is not.

Now, by Lem m a 3 .2 .4 , 3 in S[p] such th a t £; ^-converges to 77. However, 

from the observation m ade in the previous paragraph, for each e >  0 and £,• £ 

D l i {rrii^ni^ki)^ 3 £i £ D 7? ( m \ , n f , kf)  such th a t d'((i ,£i) < £■ Hence, a sequence 

in D[p] can be constructed from {£;}; in S[p] to obtain the desired p-convergent 

sequence. Explicitly, let {C*j} i be a sequence in D[p\ such tha t lim (ij = 

for each i. In particu lar, it is possible to choose the sequence such th a t for some 

sufficiently large N  > 0 , d'{(ij-,r}) <  l / 2z whenever j  ^  N  for each z. Hence, 

for each z, p((ij,rj) <  1/2z +  l / 2z =  1/z whenever j  ^  N  and, consequently, the 

sequence {C*}*? where (i = (iN, in D[p\ p-converges to 77, and £ e is thus second 

countable as claimed. □

Now, define an equivalence relation 7Z C £ e x £ e on £ e by 1Z =  { ( 7 ,77) | 7 , 77 £  

£0 }. Let £ e =  £ e / dZ denote the quotient space, fr : £ e —> £ e  the na tu ra l map, 

and set Os =  ft (7) V7 £ Co- By construction, 7r|(£ e — £0) =  id^ |(£ e — £0). 

Consequently, the neighbourhood system of £ e will be completely determ ined if 

the neighbourhood base at 0 e  is known. It is clear from the definition th a t for 

each neighbourhood N qe of 0e in £ e , 7t - 1 (AroE) is a neighbourhood of Co in £ e - 

Hence, it follows at once th a t the neighbourhood system of 0e is the following base 

(at 0e )-

■A/oe

where J\f7 is the neighbourhood base of 7.

3 .2 .6 . L e m m a . Co is closed and nowhere dense in £ e -

Proof. Let {7n}n be a sequence in Co which converges to 70 £ £ e - By definition, 

7n( J) =  £ E V 77 and E is compact Hausdorff together imply th a t 3 :ro £ E

and a subsequence {^nfc}fc C {xn}n such th a t x nk —> xo. Hence, Ve  >  0,3  N£ >  0 

such th a t p(7n,7o) =  sup*G/ d(xn , jo(t ))  +  ess sup{ ||.D*7o(*)|| : t £ I ,  1} < £ 

whenever n >  N e. However, this implies at once th a t 70(t) = xo on / ;  thus, Co is 

closed.

Finally, to  complete the proof, suppose th a t the interior Cq ^  0 . Then, for any 

fixed 77 £ £5, there exists a <$-ball Bs(r)) C £JJ for some S > 0 . However, it follows 

from the definition of p th a t this clearly cannot be true: for there certainly exists a 

non-constant loop 7 such th a t 0 <  d(7,77) ^  j S  (say) and 0 <  ess sup{ ||£ ^7 (t) || :
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t E I ,  £ ^  1}  ^  \S .  Hence, 5,5(77) (jt_ £0, which is a contradiction. Consequently, 

the interior £Jj =  0 ,  as required. □

3 .2 .7 . L em m a, tt : £ s  —> £ s  is closed.

Proof. To establish this claim, it is enough to show th a t tt m aps closed neigh

bourhoods Cj) of 77 G £0 into closed neighbourhoods of Os- Invoking the quo

tient topology, it will suffice to verify th a t tt~ 1 o tt(C v) is closed in £ s -  Since 

7r~1 o ^(C ^) =  C tj U £0 by definition, Lemma 3.2.6 yields the assertion. □

Notice however th a t tt is not an open m ap. For given any neighbourhood N v 

of 77 6 £0 satisfying £0 (f. N v , t t ~ x 0 n (N v) = N v U £0 which is neither closed nor 

open (by Lemma 3.2.5). Nevertheless, for each neighbourhood N  of £0, ff (TV) is a 

neighbourhood of Os by definition.

3 .2 .8 . P ro p o s itio n . £ s  is metrizable and second countable.

Proof. To verify th a t £ s  is metrizable, it will suffice to show th a t £ s  is first 

countable [5, Theorem  4.4.17, p. 285] by Lemma 3.2.7; and from the definition 

of 7f, it is enough to verify th a t Os has a countable neighbourhood base. Let 

03  ̂ =  { 5^(77) I n G N } be a countable neighbourhood base at 77 6  £0 in £ s  and 

recall th a t U tjĝ o ^(-®t (77)) is a neighbourhood of Os in £ s -  The collection Q3os 
defined by

<80e =  <J U  » (B jfo )) 77. E N

is clearly a countable neighbourhood base of Os- Hence, £ s  is m etrizable, as 

required.

The second countability of £ s  follows trivially from the definition of tt and the 

second countability of £s- For let 03(£s) be a countable open base of £ s  and let 

03o(£s) C 03(£s) such tha t VG E 03o(£s), Gf l £o =  0 .  Then, 7f (G) = G is open 

in £ s  VG E 03o(£s) and hence 7r(Q3o(£s)) U 03oe forms an open countable base 

for £ s , where tt(03o( £ s )) =* { ff((r) \ G G 03o(£s) }, as required. □ .

Now, let £ |?  be the countably infinite Cartesian product of £ s  and given any 

element 7 E £ ^ >, let [7] =  { l l l 2■> • • • } denote the set of the com ponents of 7 =  

(7 * )^ 1. Define an equivalence relation 77. C £ ^ > x £s* on £ i f  by

^={(7 ,»7)G£S, x£g>:[7] = h]}
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and let M  /7Z be the quotient space (endowed w ith the quotient topology)

with 7r : —> M  the na tu ra l map. This map is defined explicitly by

*  ■ (tS tV-O ^

3 .2 .9 . L em m a. The m ap n : Cs? —> M  is both open and closed.

Proof. Let d : x —> R + be a m etric compatible w ith the quotient topology on

Cz- Fix some 70 £ Cs? and consider, w ithout loss of generality, a neighbourhood 

of 70 of the form N e(70) =  J l S i  -W*> where JVj =  -B£(7q) is a d-open e-ball in 

for z — 1 , . . . ,  77., and Ni = V z > n. Then, it is clear from the definition of 7r 

th a t
00

7T_1 o 7r(iV£(7o)) =  ( J  n  N a{i) U G£(7o),
cr i = l

where <7 is a perm utation  of N and G£(7o) is the union of open subsets of the form

mi ni m2 00Yl X Y[ N u  x  Yl X X JJ x  Yl
1 i = l  1 1=1 1

with (i) rii ,mi < N0 for i =  1 , . . .  ,£ <  No, (ii) Nki £ { -B£(7o) I i  — F  • • • } for
k = 1 , . . . ,£ and each z, where 7V)t ■ =  5 £(7q) Vj =  1 , . . . ,  n for at least n of Nki-

Consequently, the fact th a t 7r_1 o 7r(iV£(7o)) is open implies th a t 7r m ust also be 

open from the definition of the quotient topology.

Finally, it rem ains to  show th a t 7r is closed. Let N  C be closed and set 

N  = 7T_ 1 o ir(N).  Let {7n}n be a sequence in N  which converges to 70 in 

Then, the continuity of 7r implies at once th a t 7r(7n) —> 7r(7o). It is clear from the 

definition of 7r th a t Vn, 3 r/n £ N  fl ^ - 1 (7r(7n)) such th a t {pn}n is a convergent 

sequence in . To see this, it is enough to note th a t 7« —*► 70 => 7^ —> 7q for 

each fixed z. Hence, by choosing 77̂  =  7^ for each z so th a t rjn = £ N  for

each n, yields the desired sequence. So, N  is closed implies th a t 770 £ N.  T ha t is, 

7r(7o) =  7t(t7o) £ iV, and 7r is thus closed. □

Furtherm ore, as m etrizability is an invariant under a surjective closed-and-open 

m apping [5, Theorem  4.4.18, p. 285], Lemma 3.2.9 yields the following corollary.

3 .2 .1 0 . C orollary . M  is a metrizable space. □

3.2.11. Remark. The n-loop space M n of E is defined by M n = {7  £ M

7 =  {71, . . . , 7 n} }, where 7* £ for each z (and 7* ^  7-? Vz ^  j ) .  Clearly,

M  = U n=i M n U Moo  (as sets), and by definition, M n (T M m — 0  V n ^  ttz;
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moreover, for each fixed m  >  1, M i  C d M m <  m.  It is easy to see th a t 

M n = Ur=i Vn >  0, and in particular, Moo = M ; th a t is, Moo  is a dense 

subset of M . Finally, it is also clear th a t M  is second countable as 7r is open and 

Cs? is second countable. As a consequence, Moo  is bo th  second countable and 

m etrizable.

Now, as w ith the case of M , let 7Zn = { (7 , 77) £ £ £  x : [7 ] =  [7] } define 

an equivalence relation on and let 7rn : —> C^/TZn =  1J =̂1 M k ,  given by

(q 1, . . . ^ 71) 1—► {7 1, . . . ,  7 ” }, denote the na tu ra l map. Then, 7rn is bo th  open and 

closed. By Rem ark 3.2.11, it is clear th a t M n =  £ g /7 7 n, and in particular, it 

is not difficult to verify tha t (JJJZJ M k  is closed in M n- Hence, M n is open in 

M n Vn > 0. Since 7rn is both open and closed, C^/7Zn is m etrizable, and hence 

M n is also, for each n. From the construction, M \  is homeomorphic to and 

hence M \  =  as 7Ti =  id ^s . Furtherm ore, for each n, A fn is second countable.

In summary, the above analyses reveal th a t each n-loop space M n , for 1 Z 

n Z 00, is bo th  metrizable and second countable. The m otivation for constructing 

the space M  is essentially to determ ine the topological properties of Moo- In [7, 

p. 107], the multi-loop space M  was defined to  be the sum of the n-loop spaces 

M n , for n < 00. However, in this thesis, the ^o-l°op space Moo  will be included 

because in the following chapter, an exact relation between a subset of -loops 

and the space of Riem annian 3-geometries is shown to exist; this in tu rn  suggests 

th a t there might be functionals on M  0 0  which are physical states of gravity in 

the loop representation. So, following [7, p. 107], define M  to be the topological 

sum  of Ad„’s; th a t is, M  M n ®Moo,  where relative to the sum topology,

D  C M  is open i ff  D f ] M n is open in M n Vn. Since the (countable) sum operation 

preserves m etrizability and second countability [5, Theorem  4.2.1, p. 258], M  is 

again m etrizable and second countable.

3.2.12. Remark. Rayner [6 , §2, p. 652] outlined two alternative ways of con

structing the multi-loop space; however, the constant loops were excluded from 

the construction and no topologies were specified. Moreover, the two multi-loop 

spaces constructed were not equivalent nor indeed do they coincide as sets. And 

on a slightly different note, it is of interest to note th a t Di Bartolo et a 1. [4] in tro

duced a set of coordinates on the space of non-param etric loops—i.e., the space of 

equivalence classes of closed oriented paths. Consult reference [4] for more details. 

They then showed th a t the space adm its an infinite-dimensional manifold struc

ture. However, it should be pointed out th a t the space they introduced is different
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from constructed  above; moreover, the non-param etric loop space adm its a 

group s tru c tu re  whereas £ e does not.

3 .3 . M an ifo ld  S tru ctu re  o f  th e  L oop Space

In this short section, the manifold structure of will be briefly sketched and 

the failure of A4n, for each n , to adm it differentiable structures will be clarified. 

Let (T E ,p s ,  E) denote the tangent bundle over E and consider a real vector space 

T (7), for each 7 E £ e , defined by T (7) =f { u : I  —> TE | ° u =  7 }. Observe

trivially th a t as p s  is sm ooth, u m ust be piecewise smooth. Now, define ||u ||7 by

I M I 7 d=  S U P  I K O I I 7 B )  +  e s s  S U P  llw ( f c ) W I I -
te i  k^.i,tei

Notice th a t ess supk>i,tei  | |w ^ ( t) || < 00 follows from the construction of £ e - 

3 .3 .1 . P r o p o s it io n . (T (7), || • ||7) is a Banach space.

Proof. It will suffice to show th a t (T (7), || • ||7 ) is complete. So, suppose th a t {u n}n 

is a sequence in T (7) such th a t ||u n ||7 <  00. By definition, 3 J n C I  for each u n

such th a t J n is countably linearly ordered. In particular, J  =  (Jn J n is countably 

linearly ordered. Hence, u n is smooth on /  — J  by construction. Since

E u"
def— sup E  “«(*) -f ess sup (e ^ En t e i

7 n 7 « ) \ n  /

= E  SUP IKWIU*) + E  eSS SUP H^MII
n t e I  n  k ^ l , t e l

-  E  (sup +ess sup llwLfc)wil)
n V G /  k ^ . l , t e l  J

= E  \\Un\\y < 00
n

by assum ption, it follows at once th a t u E T (7) and (T (7), || • ||7 ) is thus complete.

□

3 .3 .2 . T h e o re m . £ e is a Banach manifold.

Proof (Sketch). Fix 7 E E s and set Xt =  7 (t). Consider Xt > 0 such th a t expx< : 

L?At(0) =  B \ t ( x t ) for each t E / ,  where exp is the exponential map exp : T E  —> E. 

Set A7 =  inf{ \ t I t E I }, and consider a A7-open ball L?a7(0) C T (7) and a map 

V>7 : B \ i (0) -7- £ e defined by

u exp“ 1^ ) ,
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where r)(t) =f e x p i s  a piecewise sm ooth loop. Then, T>a7(t ) =* 

ip-y(Ba (0)) is open. To verify this, suppose th a t D a7 (7 ) is not open. Then, 

3 77 E D a7(t ), where u E jBa7(0) and 77 = exp (it), such th a t for any 5 >  0, 

Bs(r]) (Ji D a (7 ). In particular, for any decreasing sequence {<$n }n w ith <5n >  0 and 

Sn —» 0 as n —> 0 0 , 3 r n E Bsn(r]) such th a t ||un ||7 >  A7, where =f '0“ 1(Tn). How

ever, for each n > 0, rn E Bsn(rj) implies th a t ess supk>i,tei \\Dkrl(t) — D kTn(t)\\ = 

ess supfc>1)tej  \\Dk exp7(w — vn)|| <  6n for each n. This in tu rn  implies th a t 

37V >  0 large enough such th a t ess supfc>l te / <  e Vn >  TV,

where e = |(A 7 — ||it||7), and hence, for n >  0 sufficiently large, ||i;n ||7 <  A7 

which contradicts the assumption. Hence, for each 77 E D a (7 ), 3 ^  >  0 such th a t 

Bfi(ri) C D a (7 ), and D a (7 ) is thus open. Finally, it is easy to  see th a t 7 is 

sm ooth and it maps B a7(0) bijectively onto D a (7 ). □

It is ra ther unfortunate tha t Cy, is not a manifold, for Os does not possess 

a neighbourhood homeomorphic to any open neighbourhood about the 0 of any 

topological vector space. Thus, is a manifold w ith a cusp a t Os- In particular, 

the spaces M .n and A4 do not possess manifold structures. However, it is not very 

difficult to verify th a t for each n E N, A4n is the union of an open subset which 

adm its a manifold structure and a nowhere dense subset which is not a manifold. 

In spite of this setback, the concept of derivatives can still be defined on the m ulti

loop spaces. Prelim inary attem pts will be delineated in §B of the Appendix. The 

prim ary m otivation here being the desire to express the loop H am iltonian constraint 

in term s of derivatives defined on the loop space in order to gain a deeper insight 

into the loop Ham iltonian constraint. It should however be noted here th a t various 

authors [2, 3] have attem pted  to find alternative expressions for the quantum  loop 

constraints. A ttention should be drawn in particular to  Blencowe [2] who derived a 

generalised loop Ham iltonian constraint so th a t the resulting H am iltonian operator 

is defined on loop functionals th a t do not vanish on self-intersecting loops.

3 .4 . T h e M u lti-loop  Functionals

The aim of this section is to provide the necessary foundational work for the 

determ ination of the H erm itian conjugates of the T -operators. Note in h indsight— 

cf. §5.4 or reference [6 , p. 656]—th a t the explicit form of a physical inner product 

is surprisingly not needed for the determ ination of the H erm itian conjugates of the 

T-operators. The Herm itian conjugates of the T n-operators for n ^  1 will not be 

covered in this section; they will be considered in §5.4 instead.
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From here on, given a functional T on the n-loop space, the unwieldy notation 

^[{T 1, . . . ,  7 n }] will be w ritten  as , . . . ,  7 ”] for simplicity. Let M \  = f { 0  : 

M i  —► C I 0  continuous} be the topological dual of M i .  Then, M \  can be 

trivially made into a C-linear space in the following m anner. Given any 7 £ .Mi 

and 0 , 0 £ C i, define addition and scalar m ultiplication on Ci by

(1) (0 + <0) [7] = 0[7] + 0[7],
(2) 0[7] =  0, where 0 is the zero functional on M i ,

(3) (c0)[7] =  c0[7], Vc £ C.

Note also th a t M \  possesses a natu ral algebraic structure  defined by the m ultipli

cation • as follows:

0  • 0 [7 ] EE 0  [7] ̂ >[7], V7 £ Ml ,  0 ,0  £ M\.

A subset M 2 C M '2 of 2-loop functional will be constructed via a symmetric 

tensor operation to be defined below. Let 0 , 0 £ M\  and define the usual 

sym m etric tensor product 0  0  0 of 0  and 0 by

(0 0  0 ) [{71, 7 2}] =  | ( 0 [7 1]0 [72] +  0 [7 1]0 [72]),

where 7 1,7 2 £ M\.  In particular, (0  0  0 ) [{71 ?7 2}] — 0 [71 ]0[72]* Thus, 0  (8) 0 is 
a continuous functional on the Cartesian product M \  X M\.  Unfortunately, it is 

strictly not a functional on M 2  simply because the quantity  $ [7 ,7 ] is not defined 

for a given functional T of M 2  (as {7,7} =  {7} ^ M 2). To rectify this problem, 

consider the m ap e2 \ M 1 x Mi  —> {0,1} given by

def 1 if 7 7̂  77,
0 if 7 =  77.

From this, it is clear th a t if T £ (Mi x Mi ) ' , then e2 -T £ M'2. This motivates the 

following definition of an M -tensor : given a pair of loop functionals 0 ,0  £ M \ ,

0  0 = f ei A e • 0  0  0 ,

n t im es

where ei Aei =  e2. In general, define 0 i 0 'v< .. .0 ^  0 n =  ei A • • • A ei -0 i 0 - • *0 0 n , 

where
n t im es

ei A ~ e i  [71, . . . ,  7"] =* (  q

with i, j  = 1, . . . ,  n. Denote ei A • • • A <7 by en . 

th a t en can be decomposed into e2’s as follows:

if 7* 7̂  l 3 Vi ±  j ,  
otherwise,

Furtherm ore, note out of interest

[71,..., 7"] = e2[71,72]... ̂ [71,7n]e2[72,73]... 62[72,7"]... e2[t"-1,7"]
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Now, define M.\ t°  be the space spanned by elements of the form </>, where

G M.\. T hat is to say,

^ 2  =  \  ® M $ i2
f i  ,*2

a ili2 G C, > ,

where a tl j2 = 0 for all but a finite num ber of z 1, z2 £ N. 

Then, functionals belonging to the space M \  defined by

M l  d=  \ Y ,  C» ^n  € M '2
n= 1

C n  £ C, T n G M '2 Vn G N

will be considered below. It is highly unlikely th a t this space will coincide w ith the 

entire space AT2 of all continuous functionals on A42- However, for the purpose of 

this section, this fact will not m atter.

It should thus be obvious by now th a t Af* can be defined inductively from 

jA/fj’s. F irst, note trivially th a t for each functional T n G (Af™)', en • T n G M.'n. 
Hence, let

M 'n Q=  { J 2  <*<,... i > i i  V i„
i i

e c, Vi,' e A*i >,

where ...jn = 0  for all but a finite num ber of i \ , . . . ,  in G N. Here, the n sym m etric 

tensors of ’s are defined in the usual way:

( V i ,  =  ^ j 5 Z ^ » ( i i ) [ ' T 1] - - - ^ ( . - n ) t 7 n ]i
<7

where sum over all perm utations o of {1 , . . . ,  n} for each n  > 0 . In this

way, one arrives at the definition of the space jCi*n:

fc=1
C f c G C ,  * k e M'n V fcGN .

Note in passing th a t the spaces Af* could be restricted further by considering 

only functionals tha t satisfy the suprem um  norm

def| |T ||n =  sup{ |T[7]| : 7 G M.n }

so th a t they become Banach algebras under the uniform norm  topology induced by 

II • I I H o w e v e r ,  this will not be done here as it will not have any physical significance
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when it comes to singling out the relevant subspaces of physical interest. As such, 

no further restrictions will be placed on A4* other than  w hat is already imposed 

on it. And indeed, for the sake of simplicity, a ttention will be restricted to A f* ’s 

instead of A f^ ’s in all th a t follows.

For completeness, the space A4^Q will be constructed although it will not be 

used in §5.4. Given a finite set of loop functionals xpi £ M \ , for i = 1, . . .  , n, define 

Vt © • • • ©V’n on M i  by

=f ^1 [T1] +  " •  +  ^n [7 n]-

Observe th a t ipi © . . .  is not, in general, a symmetric functional on A4™. Let 

=  {'tpj £ M \  I j  £ N } be a denumerable set of loop functionals th a t satisfies 

the following two conditions:

(1) lim (In 'f/vm© • • • © lnVV(n)) is well-defined on A4 J0 for each a £ A^,
n —>oo v y v ' --^oo

(2) for each fixed 7 =  (7 ™ ) ^  £ A 4oo,theset { |0n=1 ln(Vv(n) [7 n])l : cr £ A^ } 

of num bers is bounded by some constant J£7 > 0 ,

where A^ is the set of perm utations a of the set 4/ and cr(ipn ) is denoted by if>a(n) 

for notational clarity.

Condition (1) guarantees th a t for each 7 £ A4 00 and a £ A ^, the sum 

lim (ipa(lll/T1] +  • • • 4- V’o-troh'” ]) <  00 and condition (2) ensures formally at least 

th a t the infinite tensor product lim (7/7 ipn )[7] <  00 for each fixed
n —>-oo

7 £ Moo.  Continuing w ith this informal construction, let T  denote the set of in

finite A4-tensor products of the elements of tl/’s, where each set 4/ satisfies criteria 

(1) and (2). The space A 4^  can now be defined as
( 00

m u  =  \£ c* • * » e  M '° °
\  n — 1

Finally, extend the definition of T £ A4* for each n so th a t T[7] =  0 V 7 £ A f f c  

whenever k ^  n, and define A4* =  @ n A4* © A f^  to be the direct sum of A4* ’s. 

Hence, unconstrain t gravitational states in the loop representation are just direct 

sums of n-loop functionals: T =  an ^  n, where an = 0 for all bu t a finite set of 

a n’s and £ A4* for each n.

3 .5 . D iscu ssio n

This chapter will close with a brief discussion on the quantum  T°-operator 

T[7, A]. Rovelli and Smolin defined the T°-operator to act on a multi-loop func

tional T by T[7, A]T = f ^ [7 , • ]. The significance of this definition will be elaborated 

somewhat below.
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An intuitive grasp of the definition of the quantum  T°-operator can be found in 

a paper on the loop representation of the quantum  Maxwell field by Ashtekar and 

Rovelli [1, §3.3, p. 1134]. T hat having been said, this operator will be exmined in 

greater depth. Recall tha t an n-loop functional is a totally symmetric functional 

of the form • • • , 7n]» where {71, . . . , 7n } £ M .n- This merely follows

from the definition of A4n which is essentially the set of all subsets of n loops. 

However, this also means in particular th a t T ^ 1, . . .  , 7n] is not defined whenever 

7* =  yJ for some i ^  j;  tha t is, if {71, . . . ,  } =  {7*1, . . . ,  7*n_1}, for instance.

Hence, strictly, the map T fy1, A] : M 'n —> should be defined by

(3.5.1) (T[7\ A ] T n)M
^ n b f 1^ ]  if  7 1 ^ 77,

0 if  7 1 £  7 ,

where 71 £ Adi,  4/n £ M!n is an n-loop functional and 7 £ M n- i -

In this section, T u will be restricted to the spaces A4* constructed in the previous 

section. Explicitly, if $  =  ^  0 -^ . . .  0 *  ̂ </>in , then T[ y , A] $  is

T h , A } $  = Y ,
ii

'y  'j a ii  ••■in ^  v  •  • •  ^crtin)
Ü  r *  ft

— a ii ...in I  f ih  [7] Zn — 1 • ^ 1 ( 1 2 )  • • • ‘ ‘ +

*1 > • • • j*n n ^1

[7 ] y   ̂ £n — l  ' ^(Tnt i i )  • • •  4* (Tn ( i n - 1) | ’
(*n )

where 07 is the perm utation of the (n — l)-elem ent set { zfi,. . . , i k - \ , ü + i ,  • •. ,zn }• 

Thus,

_  ̂  ̂ 7 1 _>
T[7]<1» =  CLj1...irx — 4>ik It ] / -|\j £n - 1 • ^(Tkiik. 1 ) • • • ^ f c b f c . n - 1 )

k= 1 (?k

1 n
= ~ Y l  a * l - * n  ®M -- -®M tik.n- 1 »

U h,...,in k= 1

with { Zjfc, 1, . . .  , ü , n - i  } =  { « 1 , . . .  , i n  }  -  {* * }•

It should be noted th a t for each pair (7, A), the C-linear m ap T[7,A] : A4* —> 

A4*_! is neither an epimorphism nor a monomorphism. The fact th a t T[y,A]  is 

not an epimorphism follows im mediately from (3.5.1): any T n_i £ A4*_! such 

th a t T n_i is nowhere zero on A4n_i cannot be of the form Tfy, A ]Tn for any pair
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(7, A) and 6 Ad*. T hat T[t , A] is not a m onomorphism is also obvious from 

its definition: consider two distinct n-loop functionals \Dn and 4>n such th a t they 

coincide on the subset consisting of all loops of the form {7} U 77 V 77 £ Adn_ 1, 

where 7 £ Adi is fixed, but differ elsewhere on Adn. Then, by definition, ^  4>n 

although T[7, A ] $ n = T fr, A ]$n.

This section will conclude w ith a small rem ark on the eigenvalue equation2

(T[7p  OIU1, • • •, ,?!_1}] = , «T 1}]

— here, m eant in the sense th a t for some T £ Ad*, T |A dn =  $ n Vn > 0—can only 

be solved by elements in Ad* of the form

(3.5.2) =  0  0  (n factors),

for some 0  £ Ad*. See Equation (94) of [7, p. 124]. In other words, the present 

form ulation of Ad* is entirely consistent with the formal considerations given in [7]. 

In summary, is clear from the brief discussion above th a t any multi-loop functional 

of the form given by Equation (3.5.1) is an “eigenstate” of the T°-operator.
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C H A P T E R  IV

KNOTS AND CLASSICAL 3-GEOM ETRIES

4.1. Introduction

In reference [5, p. 1661], Rovelli sketched a proof showing how a special collection 

of n-loops1 which he called weaves, are related to the flat 3-metric. He then  made 

a ra ther fascinating conjecture th a t perhaps there exists a relationship between 

n-loops, for n <  oo, and 3-metrics. The relationship between n-loops, for n <  oo, 

and 3-metrics will not be solved in this chapter (and so, it may still rem ain an open 

question to date); however, what will be established in this chapter is th a t there 

exists a precise relationship between 3-geometries and a subset of Ho-knots, where 

an n-knot is defined to be an equivalence class of n-loops under (sm ooth) am bient 

isotopies— cf. §4.3. The approach given here is ra ther different from th a t outlined 

by Rovelli [5].

To delineate Rovelli’s construction in brief, he set out to define a m ap from the 

graviton states derived from the linearised theory [1] into the knot states of the full 

theory [6]. This entailed the introduction of a lattice spacing—the distance between 

parallel non-intersecting curves—on the 3-manifold to define the weaves. He then 

m ade the following ansatz: suppose tha t ip is a graviton state  of the linearised loop 

representation and is a knot state  of the full theory. Then, ip [Os, Os, Os] =  4/ [A] 

whenever ip = A44b where A4 is a map [5, p. 1658] defined up to first order in 

the G ravitational constant G th a t relates \]/ to ip , A is a weave and Os is the zero 

loop. In this way, after some effort, he obtained his conclusion regarding weaves 

and flat metrics; this, in turn , m otivated his conjecture. Here, no assum ptions of 

a lattice spacing will be made and the results are thus purely “topological” . The 

work given here is based on reference [7].

The attention here will be focused on a compact, R iem annian 3-manifold. The 

fact th a t such a 3-manifold is separable is crucial in the construction: this, a t least, 

explains why Ho-loops are used ra ther than  n-loops for n < oo. The m ain interest

1 Recall th a t an n-loop 7 1=* { 71, . . . ,  7n } is ju s t a subset of the  loop space consisting  of n  
loops; i.e., 7*, for each i =  1 , . . .  , n,  are (d istinct) closed curves in E.
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in Rovelli’s conjecture is th a t it will provide a tentative physical in terpretation  of 

the loop representation of quantum  gravity [6]: it yields a possible insight into the 

interweaving of topology and geometry at the quantum  level. More will be said in 

§4.5.

Some notations introduced in previous chapters will be briefly recalled again. 

In all th a t follows, the spatial (Riem annian) 3-manifold, denoted by E, is assumed 

to be sm ooth, orientable, closed and compact; R+ =f { . s E R | . s ^ 0} and 

I  = f [0,1]. Lastly, let Diff+ (E) denote the group of smooth, orientation-preserving, 

diffeomorphisms on E. An overview of this chapter runs as follows: in section 2, the 

required notations and definitions will be introduced and in section 3, the property 

of the space of Ko-knots of a subset of ^o-loops will be examined. This space 

will establish the sought for correspondence between topology and geometry. In 

section 4, a variant of the Rovelli conjecture will be form ulated precisely and then 

verified. Finally, in section 5, some speculations—which hopefully will prove to 

be illum inating ra ther than  be a gross caricature of reality—regarding the results 

established in section 4 will be outlined.

4 .2 . P re lim in a ry  D efin ition s and N o ta tio n s

The space C£ of piecewise sm ooth loops defined in §3.2 will be considered here 

instead of its quotient space jC% . As a brief rem inder, is endowed with a topology 

induced by a m etric da : x —> R+ defined by

=  sup d(7(t), 77(f)), 
te i

where d is a distance function on E compatible with its topology.

The concept of a ^-geodesic, where q is an admissible Riem annian m etric on E, 

will now be introduced. These curves will provide a basis for constructing a count

ably infinite set of loops th a t relates to the geometry of E. The m otivation springs 

from the observation th a t because E is a separable m etric space, its geometry can 

be reproduced by wisely choosing a countable set of loops such th a t the closure of 

the union of their images is precisely the underlying 3-manifold E.

A curve in E is said to be a q-geodesic if it is a geodesic in E relative to the 

Riem annian m etric q. Also, if 7,77 are curves such th a t 7(1) =  7(0), then define 

7 * 77 by
for 0 ^  t ^  | ,

7 * 77(f) ^
7(21)

r](2t — 1) for I  ^  t ^  1.
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4 .2 .1 . D efin ition . Let 7 £ Cy - Then, 7 is said to be a piecewise geodesic loop 

if there exists a Riem annian m etric q on E and n smooth g-geodesics 7 1 , . . . ,  7n • 

I  —> S , 1 ^  n < 00, such tha t 7 =  71 * • • • * 7n -2

Let r+  denote the space of (smooth) Riem annian metrics on E (endowed with 

the  compact C°°-topology3 4) and D y C E a countably dense subset of E. Now, 

define M.oo[q\, for each q £ T j ,  to be the set of all countably infinite multi-loops 

7 =  { 7* I * £ N } satisfying the following two properties:

(1) for each z, 7* £ is a piecewise (affinely param etrised) g-geodesic loop in

E,
(2) the subset 7 is in bijective correspondence w ith D y under the m ap 7*

7*(0).

Finally, set A4 00 [T^] =  jj^ e r + A4oo[<z]- An im m ediate consequence of the definition 

is the following two observations. Suppose 7 £ Aioo[q] fl A400[q']- Let T(q) and 

I V )  be the Riem annian connections of q and q' respectively. Fix an admissible 

atlas {(Ua ,tl>at)}a on E. Then, with respect to each chart Ua ,

( % ) ' +  =• 0 and ( 7 7  +  r a(q% ( Y a)k( fay  ^  0

on 7*(/) fl UQ for each i (no sum m ation over ct, obviously), where F( t)  a==’ 0 

means F(t)  = 0 on I  apart from a finite num ber of points in I .  Hence, 

(r a{q)ij ~  r a (9#) i j ) ( 7 i ) fc(7 i) J = ' 0 V f  £ 7 and a . Thus, by property (2), 

F (q)kj(x ) =  T(q ' ) i j (x ) on a dense subset of E simply because (J{ 7 l( / )  | 7* £ 7 } =  

E by property (2). Hence, invoking the continuity of T(/i) for h = q,q', it follows 

at once th a t T(q) =  T(g') on E. Now, with respect to a local coordinate basis, 

T(qykj = \ q lh(dkqhj +  djqhk ~  dnqkj) (and likewise for q')\ consequently, q and 

q' are related homothetically; th a t is, 3 c > 0 constant such th a t q' =  cqfi More 

generally, g, q' are related by some coordinate transform ation, as is shown below.

Let /  : E —> E be a smooth diffeomorphism, where E =  (E ,g) and set E /  =  

/ ( E )  ( E , ( / - 1 )*g). Clearly, if 7 : I  —>■ E is a g-geodesic, then 7 : I  —> E /  is an

( f ~ 1)*q~geodesic in E /  and conversely, by sym m etry (as isometries m ap geodesics 

into geodesics). Hence, in view of these two observations, each 7 £ AdoojT^] is

2 Note that each 7; in 7 is still a g-geodesic with respect to its new parametrisation [^ T , Ä]? 
as the reparametrisation 7i(t) —*■ 7i (nt  -  i +  1) =  7|[1̂ - ,  is clearly an affine transformation. 
Another important point to note is that the definition of “piecewise” given here is strictly finite; 
that is, n <  Ko unlike the notion of “piecewise” introduced in Definition 3.2.2 wherein n =  No is 
allowed.

3The compact C°°-topology is defined in §A of the Appendix.
4 Note trivially that as q,q' are positive-definite, c < 0 is not an admissible solution.
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assigned to  a unique 3-geometry of E, where the space of 3-geometries is defined 

to be the quotient space Q ^  Y^ /  Diff+ (E). Recall th a t each element [q} E Q 

is defined by [q] = { f*q  \ f  E Diff+ (S ) }. Let 7T+ : T j  —» Q denote the na tu ra l 

projection. Then, 7T_|_ is open [2, §3.1, p. 317] and Q is a second countable, 

m etrizable space [2, Theorem  1, p. 318].

As a converse rem ark, notice th a t if E were not separable or th a t 7g — { 7g | i E 

N } were not chosen to  satisfy property (2), 7g need not uniquely determ ine [q] E Q. 

For want of a be tte r term , call A4oo[r^"] the space of piecewise geodesic -loops. 

A suitable topology can be defined on this space. This will be done below.

Let Loo be the set of affinely param etrised, piecewise geodesic loops in E and let 

denote the countably infinite set-theoretic product of L e - Define an equivalence 

relation R e C L ^  x L g3 by

R z =  { ( 7 , 7 ' ) C i g >x ^ : [ 7 ]  =  [7']},

where [//] (= { r/1 | i G N } is ju st the set of components of // *=* ( v ‘ )T=i- Let
def7te : —► M e =  L ^ / R e denote the natura l map. Then clearly, as a subset,

- ^ o o [ r + ] c M s .

Now, let M qo C be a subset satisfying

(i) for each 7 d=  (7 ^ 1  > 7* /  7 J V i ^  j ,
(ii) 7rs(Moo) =  A foo[rJ].

It is clear from the definition of M ^  th a t there exists a family of subsets M a C M ^  

such th a t

(a) Moo =  U„
(b) Mo n M„’ = 0  V d ^ t r 1,

(c) tteIMo- : M a —> A foo[rJ] is a (set-theoretic) bijection.

Let hu =f 7Te IM a and for each 7  E A4oo[rJ], set 7^ =  h “ 1^ )  E Mcr.5 Now, fix
defa finite atlas 21 on E. Then, for any pair 7 ,7  E let da(7 , 7 ) =  sup^ 0̂ ( 7 *, 77*) -f 

sup, ^ ( 7 l , 7 l)5 where

d 'n(Y ,rjl) = f ess sup{ ||£ > V W  -  T>VW II : < E I ,  A; ^  1 }

with sup running over all relevant (finite) charts (U,ip) E 21, ess denoting th a t the 

expression ||D fc7 *(t) — -Dfc77*(t)|| is not defined only on a finite (possibly zero) set of 

points in I  wherein 7 * and are not differentiable, and D ky ( t )  denotes the kth. 

differential of 7 * at t in abused notation.

5T he subscrip t <7 on will be om itted  should no confusion arise from the  context.
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U nfortunately, a slight complication could arise from the current choice of M a 's: 

to wit, dfj need not be well-defined at each pair of points in M a. Equivalently, the 

set Adoo[r+] may be far too large for da to be a well-defined function on M a x M a. 

To avoid th is potential em barrassm ent, consider a maximal subset Adoo[r^~] C 

A foo[rJ] such tha t by replacing A foo[rJ] in the defining sets of properties (i) -  

(ii) and (a) -  (c) with A4oo[r^], each pair of points 7 ,7 ' £ M a for each cr satisfies 

d<r(7 ,7 ;) <  00. In this way, an impending disaster is averted and da is well-defined 

on M(j x Ma- for each cr. It is routine then to verify th a t da is indeed a metric. 

In all th a t follows, Ma will be endowed with the da-topology. Moreover, M a's will 

also be chosen so tha t they satisfy the following additional property:

(d) V<$ > 0 and 7 £ M CT, dry £ M a such th a t ^ (7 ,77 ) <  6 .

Note th a t from here on, whenever the defining properties (i) -  (d) of M a's are 

m entioned, it will be tacitly assumed th a t .AdooITT ] is replaced w ith Adoo[E^] so 

th a t da is a well-defined metric on M a for each cr.6

4 .2 .2 . P ro p o sitio n . The da-topology does not depend on the particular choice 

of (admissible) finite atlas 21 of  E and hence is a well-dehned topology.

Proof. To dem onstrate this claim, let 21 denote the maximal atlas of E and define 

a topology on M a to be generated by subbasic open sets N e(7; (Ua^ p  <̂ a ( i) )S i > AT) 

in M a —to be constructed below—where K  C I  is compact, 7*(Ä") C Ua^  and 

(Ua(i),Pa(i)) £ 21 Vi. Denote { a ( i)  | 1 ^  i ^  00 } by a  and (27a (i), ¥>«(«))*

(£7, ip)a for notational simplicity, and let

d'craA7 *, rf)  = f ess sup{ IID kcpa(i) o Y ( t )  -  D kifa(i) o 77lO)ll : t £ K ,  k ^  1 }

whenever 7 l( / i ) , ryl(A ) C Ua(p Vi. Then, for a fixed 7 £ M a such th a t 7 l(K )  C 

Ua(i) Vi, let N e(y\(U,(p)a i K )  d=  { ry £ M a | ^ « ^ (7 ,7 7 ) <  e, rjl( K)  C Ua(i) V i} , 

where

dcjaK(7,r]) d=  supdfi(7 t ,ryt) +  su p ^ ^ ( 7 * ,  ryl). 
i i

T hat this topology is equivalent to the d^-topology on M a may be seen as follows.

F irst, given any da-open <$-ball A,5(7) about 7 in M a , consider a finite 

(com pact) covering {Ah}”=1 of T. I  = |J™=1 Ah, Ah compact. Set N e(7) =  

( X = i N e(r,(.U,(p)Qi,K i) ,  where {U,ip)Qi = { (^a,(/), I I = 1 , 2 , . . . }  and

6 A m ore rigorous p resen tation  could certain ly  be given; however then , the  en tire  analysis will 
get laborously tedious and out of hand: a situa tion  to  be clearly avoided!
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7 l(K i)  C Uai(i) Vz =  1, . . .  , n.  Clearly, from the definition of the subbasic neigh

bourhoods of 7 and the finiteness of 21, choosing e < 8 to be sufficiently small, there 

exists a suitable choice of compact covering {K i} i of I  and charts (Uaip y  y?a .(/)) G 21 

for each / ^  1 and i =  1, . . . ,  n, such th a t N e(7) C #<5(7)- Conversely, given any 

subbasic neighbourhood iVe(7; (17, </?)«, i f ) ,  it is obvious from property (d) above 

th a t there exists some > 0 small enough such th a t B ^(7) C ^ ( 7 ;  (?7, c/?)a , iG). 

Hence, it follows at once th a t given any finite intersection of subbasic neighbour

hoods of 7, there exists some 6 >  0 so th a t B s(7) is contained within it. Con

sequently, the  two topologies are equivalent, as claimed. In particular, the da- 

topologies on M a defined relative to any two finite atlases of E are equivalent. 

Hence, in th is sense, the d^-topology is well-defined as it does not depend on the 

choice of ßn ite  atlas 21 on E. □

A topology on .Adoo[r^] can now be constructed. F irst, let J- denote the fam 

ily of subsets M a G Moo satisfying properties (a) -  (d). It is evident th a t each 

pair of spaces M a,M a> G T  are homeomorphic—define haai : M a —► M a' by 

7<r 7<t', where ha(y a ) =  7 =  ^ ( 7 ^ / ) .  The existence of the hom eom orphism

haa> follows im m ediately from properties (i), (c) and (d). Hence, it is possible 

to endow Adoo[r^] w ith a topology Too so th a t each ha : —> A foo[r^] de

fines a hom eom orphism : h ^ r # )  =  r 00, where is the d^-topology on M a. This 

will be the topology defined on Adoo[r^]. Denote Afoo[r^] with this topology by 

As an aside, if Moo is given the sum topology, Moo =* M a , then 

h : Moo —* -Ad^ofr^] given by h\M a ha defines a continuous open surjection.

To conclude this section, it remains to verify th a t the topology on A d ^ jr J ]  is 

independent of the choice of the family T7, and hence implying at once th a t the 

topology on Adoo[r^~] is well-defined once again.

4 .2 .3 . L e m m a . Let M , M ' C Moo such that the m appings h =f tt\M  : M  —> A 40Q 

and h' = f 7r|M ' : M ' —> Ad 00 are bijective. I f  M  and M ' are endowed with the  

d-topology, where given  7,77 G M 00,

d(rt, 7 ) =f sup d n (Y ,r]1) +  sup <^(7% 77*),
i  t

and sa tisfy  property  (d), then M  and M' are homeomorphic.7

Proof. Suppose th a t M  ^  M '; otherwise, there is nothing to proof. Let i : M  —> M ' 

be the com position i =  h '-1 o /z. By definition, i is bijective. Fix 7 G M  and let

7Observe trivially th a t the m etric da is just the restriction d\Ma x Mcr.
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B e(y)  C M  be an open e-ball about 7. Set D e(7) =  i (Be(7)) and fix a point 

7/  E D £(7), where 7/  =  i(rj) for some 77 E If V<$ > 0, Bs{rj') (jL D e(7), then

for each <$ > 0, El r '  E B ^ ( t]') such th a t s u p - +  sup^ < ^(7 * ,  t 1) > e, where 

t  =  This clearly cannot be satisfied by taking S >  0 to be sufficiently

small (which is possible by (d)). Hence, D e(7) is open in M'  and i is thus an 

open mapping. Since i is a bijection, invoking sym m etry8 yields the continuity of 

i. Hence, i defines a homeomorphism, as claimed. □

4 .2 .4 . C orollary. For any pair o f families T \ and T2 satisfying properties (a) -  

(d),

Proof. By Lemma 4.2.3, M \0 = M 2a E F \ and M 2a E JF2. Since

A 4 5 [T+] =  M ia and T^] =  M 2x by definition, it follows at once tha t

M ^ [T + ]  = □

In view of this cororllary, M  ̂ [T ^] may be denoted by A4oo[rJ] since the  topol

ogy does not depend on the particular choice of T —in particu lar, a family F  may 

be fixed w ithout any loss of generality. Hence, in the analysis to  be carried out 

in the next section, a family F  satisfying properties (a) -  (d) is understood to be 

fixed once and for all.

4 .3 . T h e Space o f  Mo-Knots o f  A4oo[rJ]

First of all, some notations and elem entary properties of the space of equivalence 

tto-loop classes will be established. Let Qff be the set of (sm ooth) orientation

preserving, ambient isotopies on £ . T hat is, Qff C C °°(E x / ,  S  x I)  is the following 

set:

{ F : S x 7 —» S x / |  F(x, t )  d=  (F,(x),t), F0 = i d S) Ft G D iff+(E) ' i t  e l }  

and define composition 0 on by

(F' o F ) : ( x , t ) ^ ( F [ o F t{x),t).

Then, clearly, F'  o F  E Qff and l s x /  =* ids x id / E G&. It is straight forward to 

check th a t ((/+, o) forms a group under o, where the inverse F -1 of F =  (F * ,id /) 

is defined to be (F t- 1 , id /). In particular, o is com patible w ith the compact C°°- 

topology on Qff— cf. [3, Ex. 9, p. 64].

8 T hat is, repeating the same argument for i 1.
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Now, because Diff+ (E) is the subgroup of sm ooth diffeomorphisms th a t are 

connected to the identity ids of E, it follows th a t is closed in C °°(E x J , E x J )  

with respect to the compact C°°-topology. To verify this claim, it will suffice to 

consider a sequence {Fn}n in Q+ th a t converges to Fq G C°°(E x / ,  E x I). By 

assum ption, Fn —* F q => Fn(-,t) —> Fo(-,t) uniformly on E for each fixed t. In 

particular, since F n(-,0) =  ids Vn, the uniform convergence F n(-,0) —* To(-,0) 

implies at once th a t Tq(- ,0) =  id s , as desired.

If 7, 77 G /Is  are any pair of loops and 7 is am bient isotopic to 77 under some 

F  G Q*, denote this by F  : 7 ~  77. Now, given any pair of fto-loops 7 ,7 7  G M oo[rJ], 

define an equivalence relation R  generated by ~  on Afoo[r^] as follows:

7 ~  77 3 F  G Q such th a t T1 • 7 =  77,

where F  • 7 { F i 0 7 ^ 1  0 7 2, . . . }  and F  : 7* ~  rj1 Vz. Then, the space /C [Tj] 

of equivalence classes of fto-loops in A4oo[r^~] defined to be the quotient space 

M o o F t V G t -  Henceforth, for simplicity, the term  (piecewise geodesic) fto-knot 

will m ean an element of the quotient space /C[Tj]; th a t is, an ft0-knot denotes 

an equivalence class of fto-loops under a smooth, orientation-preserving, am bient 

isotopy. The space /C[T^] will be called the (fto,T ^ - k n o t  space of A4oo[rjj~]. Let 

/Cqo • AdoojT^] —> /C[T+] denote the natura l map, where /C[T^] is endowed with the 

quotient topology.

4 .3 .1 .  L em m a. The natural projection K o o  : M o o [T^] — > /C[Tj] is open.

Proof. A sketch of the proof will be given. To see th a t Koo is an open m apping, it 

is enough to note th a t for each open subset N  C A4oo[T^],

« 7  o Koo(N ) = U F - N ,
F&G+

where F - N  = { F  • 7 | 7 G N  }. Since F  • N  is open in A4oo[T^], the quotient 

topology implies th a t Kjjf o Koo(-N), and hence /Cqq, m ust also be open. □

4 .3 .2 . P ro p o s itio n . is Hausdorff.

Proof. By Lemma 4.3.1, it will suffice to show th a t the equivalence relation R  

generated by ~  is closed in M  00(^2} x M 00[rjJ~] [4, Theorem 11, p. 98]. Let 

{(7 n>77n ) } n be a sequence in R  which converges in Moo[Pt]  x ^oo[r^~] to (70,770). 

By definition, 3 a sequence {-Fn}n in such th a t Fn : — 77n for each n. So,

( l n , F n - 7 „ )  —> (70,770) => Fn • 7 n -* 770 and 7 n -> 70, and hence implying th a t
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{Fn }n is a convergent sequence in Qfj. Consequently, Q+ is closed implies tha t 

Fn —> Fq E Qfj for some Fq. W hence, rjo = Fq • 70 and R  is thus closed, as desired. 

□

In the interest of simplicity, call 7 6 M .0o[T^] a -piecewise (N0, q)-geodesic loop 

whenever the 3-metric q is required to be specified.

4 .3 .3 . L e m m a . Let 7 ,7  E Afoo[T^] be piecewise (No,q)~ and (No,g)-geodesic 

loops respectively. I f  7 ~  7, then 3 f  E Diff+ (£ ) such that q = f*q.

Proof. Let F  E Qff be an am bient isotopy of 7 and 7: F-7 =  7. Then, evidently, 7 is 

a piecewise (No, (Ff~l )*g)-geodesic. However, 7 is also a piecewise (No, g)-geodesic; 

hence, by §4.2 (2), 3 /  E Diff+ (£ )  such th a t q = f* q , as required. □

4 .4 . N o-K nots a n d  C la ss ica l G e o m e try

In this section, the relationship between the equivalence classes of N0-loops in £  

and the (classical) geometries admissible on £  will be studied. This correspondence 

can be easily sought by simply noting th a t each element in A foo[rJ] corresponds 

to a unique 3-geometry [q] of £  by construction. The modified form of Rovelli’s 

Conjecture can now be form ulated.

4 .4 .1 . T h e o re m . There exists a continuous, open surjection y  : A foo[rJ] —> Q 

given by 7q 1—> [q], where y q is a (piecewise) (Üq , q)-geodesic loop and  g E [q\.

Proof (Sketch). F irst, y  is well-defined from the definition of AfoofT^]. Second, 

the surjective property of x is also clear. Third, in this proof, Tj will be identified 

w ith its image under the (topological) imbedding j°°  : T j  <—> C (£ , </°°[p e ]), where 

d°°[pE] is the C ^ - je t  bundle of cross sections of 5 ^ £ ,  and 5 ^ £  is the bundle 

of symmetric covariant 2-tensors over £ . 9 So, Q =  j ° ° r ^ / Diff+ (£ )  and 7r+  :

i ° ° r +  -> Q.

Now, fix some 70 E A loo[rJ] and let N(qo) = p |”=1 M(Ki ,  ( ^ t )~ 1{Un i)) be 

a neighbourhood of go in Tjj~, where n; E N, n <  00 and qo E x(7o) — [<7o] is 

a representative of the go-equivalence class. Set iV([go]) =  7r_|-(iV(go)). Then, 

# ( [ » ] )  =  ])) =  Ll{ /*  o N(qo) \ f  e  Diff+ ( S ) }, where / * o

{ f * q  I 0. € N (qo)} .  Let D e(70) be an e-neighbourhood of 70 defined by 

B £(h ~ 1(70)) =  h - \ D £(y0)) V <7. Then, V77 E D £(70), <fo(7o<r, +  d'u (Y0a,rjla) <

6 V i and <r, where h ~ 1(7) y a .

9 T he nota tions used here— th e  C °°-je ts and com pact C °°-topology—can be found in the A p
pendix , §A.
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Next, observe from the definition tha t

(4.4.1) (7V  +  ng)kj(Y)k(yy = ' o Vi <E N and t  =  1 ,2 ,3 ,

where T(q) is a R iem annian connection determ ined by the 3-metric q (with the 

connection coefficients w ritten with respect to the natura l frame for simplicity). 

So, by choosing e >  0 to be sufficiently small, and by fixing any cr— and setting 

7o =  7 o ^ \  7* — — h  follows tha t \rjl — -yjl <  £ and \ i ) 1 — 7 5 1 <  £ (almost

everywhere), and in particular, using (4.4.1),

+ngv)iM)k̂ y
«■' +  0 ( e ) Y  +  T(gv) i j ( Y  + 0 ( e ) )* ( ^  +  0(e))>

« 7  +  r ( ? , ) L ( » ? T w y  +  o (e )

O(e) a.e. on / ,

where g, 6 x(i?)- W hence, KTo/  +  r(g,)I. J(7Ö)fc(7Ö)-' I = ' 1(75)* +

r(«,)ii('r5)*('r5>'' -  Wi) * ~  r(«,)«(7i)*(7Syi = |(r(*,) -  ~
0 (e )  a.e. (from above) V i £ N => |T (g^)^ — T(go)i; | is small on S  for each fixed 

£, b, j  whenever £ >  0 is small enough by appealing to property (2) in §4.2 and 

the continuity of I \  Thus, from the equality T(q)£kj = \ q th(dkqhj +  djqhk ~  dhqkj) 

(in the na tu ra l fram e), it follows tha t 3 /  £ Diff+ (£ ) such th a t f*qv and q0, to 

gether with their k th  derivatives, must be close to one another. In particular, 

f* q r](Ki)  C (tTs * ) - 1 ( ^ n‘) Vz — 1 , . . . , n .  So, f* q r] and hence q^ m ust both  belong 

to iV([g0]) for e >  0 sufficiently small. W hence, x(.D£(7o)) C iV([go]), and the 

continuity of x follows.

Finally, to conclude this proof, observe th a t for any 7 £ A foo[r^], X-1 o x (y )  — 

{ /  0 7 I /  £ Diff+ (S ) }, where /  0 7  d=  { /  0 7 1, /  0 7 2 Hence, for any 

e-neighbourhood D e(7 ),

X l o x ( D £( j ) )  = U  f ° D e(7 ),
f e  Diff + (E)

and x is thus open, as desired. □

In spite of the divergent approach given here with Rovelli’s original idea, the 

following corollary could perhaps be christened as the weak Rovelli conjecture inas

much as the notion of relating knots with geometry originated from Rovelli [5].
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4 .4 .2 . C orollary  (W eak R ovelli C o n jectu re). The m ap x  induces a continu

ous, open surjection x  ■ £ [ r j ]  -> Q given by [7 ,] h-> x ( y q), where y q £ «^([Tg]) is 

any hxed representative.

Proof. This m ap x  is well-defined by Lemma 4.3.3. The result now follows imme

diately from Theorem  4.4.1, Lemma 4.3.1 and the com m utativity of the following 

diagram:

A<oo[r+] -*  Q

£[r+! - Q .

f . f . S.  Remark. It is worthwhile pointing out th a t none of the results obtained 

thus far will be affected by relaxing condition (2) of §4.2 to the following weaker 

condition:

(2') the m ap 7 —> D y given by 7* 1—> 7*(0) is a surjection.

Two comments regarding Theorem 4.4.1 and its corollary are now in order. First, 

it is certainly evident th a t if E be separable (which, here, it is in any case!), then 

it is sufficient to characterized its 3-geometries by the ^0-loops in AfoojT^] since, 

by construction, { 7 l(0) | i £ N } =  E, whereas using this construction, n-loops, for 

n <  00, are not sufficient to determ ine the 3-geometry uniquely (as might well be 

expected): cf. §4.2.5 for a detailed account.

Second, it has been established elsewhere— cf. for example, [6, §5.1, p. 132] using 

the diffeomorphism constraints of general relativity (in the loop representation)— 

th a t functionals on Cy which describe gravitational states are constant on the 

^ - o r b i t s  of Cy ’- ip[y\ =  ^[7'] '^7,7^ £ [7], where if : Cy —> C is a loop functional. 

This can be easily seen from §2.2.4:

V>[7 '] =  ^[7] V 7 ,7 ' £ [7] =4> (D(v)4O H  d=  lim =  0,

where (f)t £ Diff+ (E) Vt and v is a vector field on E th a t generates the 1-param eter 

group of diffeomorphisms {</><}*, and D(v)  is the diffeomorphism constraint in the 

loop representation defined in §2.2.4 by (Z7(^)^) [77] =  o 77]) |t=o-

However, surprisingly enough, this condition follows imm ediately from Corollary 

4.4.2. This can be easily seen as follows. Functionals on T̂ " th a t describe gravita

tional states are those which are invariant under Diff+ (E): i.e., they are essentially 

functionals on Q in the m etric representation. Let C(Q,  C) be the set of continuous
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functionals on Q and let C (/C [rJ],C ) be the set of functionals on /C[rJ]. Then, 

V T G C(Q,  C), T o X G C(/C[T+],C); th a t is, X*(C (Q ,C )) C C(/C[T+],C), and 

the assertion thus follows. This concludes the classical description of -knots and 

their relationship w ith 3-geometries.

4 .5 . D iscu ssio n .

In this final section, a possible physical in terpretation— albeit a highly specula

tive one!—regarding knots and gravity will be sketched. As was pointed out be

fore, the separability of E guarantees th a t X in Theorem 4.4.1 remains well-defined. 

Furtherm ore, as classically, gravity—or equivalently, the 4-metric—of space-time is 

determ ined by the distribution of m atter in the universe via E instein’s field equa

tions, gravity is a “global” concept. In this sense, if n-loops can describe gravity in 

any way, then, provided th a t space-time be separable, loops th a t will best describe 

it are Ko-loops. Indeed, a judicious choice of ^o-loops—such as those given in the 

preceding sections—enables one to recover the underlying R iem annian 3-manifold 

E simply because { t J(0) | i G N} =  E, and X(qg) =  [q]. In the light of this ob

servation, it is not unreasonable to conclude th a t gravity is the result of the way 

3-space (and hence, space-time) is knotted, where (E ,g) is said to be [7 ]-knotted\ if 

xCM) — [<?]• And since X is not one-one, E can be knotted in two t/^-inequivalent 

ways and yet give rise to the same gravitational configuration (determ ined by X). 

In short, having determ ined A4 00 [T 2"] from E, each element in Adoo[T^] contains 

the necessarily inform ation to reconstruct E. Along this note, Rovelli [5, §4.2.3, 

p. 1660] delineated an interesting argum ent showing how gravitational states in 

the loop representation may be interpreted as the way loops are entangled w ith a 

given weave. His construction leads to a fascinating conclusion th a t the struc tu re  

of space-time is discrete at the Planck scale!

To conclude w ith an untam pered speculative note on the quantum  aspect of a 

knot [7 ], a knot state | [7 ]) might be heuristically interpreted to correspond to the 

pair [(E,g)], where [(E,g)] =  { (E , g) | q G x([t ]) }- In particular, | [7 ]) is associated 

w ith a particu lar 3-geometry X([7]). Thus, |[7 ]) corresponds to the global degrees 

of freedom of gravity: and since gravitons are associated w ith the local degrees 

of freedom of gravity, it has no direct relationship w ith a knot state. This is 

of course expected as gravitons are essentially linearised gravitational states. In 

the full quantum  theory, it is quite reasonable to expect th a t | [7 ]) will not span 

a Hilbert space due to the highly non-linear natu re  of gravity and the violation 

of the asym ptotic freedom condition. Hence, a knot state  most probably cannot



REFERENCES 65

be in terpreted  in the usual quantum  field theoretic sense in th a t it lies in some 

Hilbert space, although it is tem pting to conjecture th a t the knot states lie in some 

-dim ensional sm ooth Kahler manifold.
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CHAPTER V

DIFFEO M O RPHISM -INVARIANT MULTI-LOOP M EASURE  

5.1. Introduction

The question regarding the existence of a measure on the multi-loop space of 

a sm ooth, R iem annian 3-manifold tha t is independent of the underlying m etric 

structu re  of the manifold and invariant under smooth diffeomorphisms on it was 

raised in [3, p. 336]. It plays an im portant role in the loop representation theory of 

quantum  gravity. Indeed, it was used as a heuristic device to go from the self-dual 

representation theory of quantum  gravity to the loop representation theory:

where ^[7, A] is the trace of the complexified SU(2) holonomy, d^ is a loop m easure 

and ip, ip are, respectively, the connection and the loop functionals. In this chapter, 

the existence of a diffeomorphism-invariant loop measure will be settled for the case 

when the R iem annian 3-manifold is smooth, orientable, closed and compact.

The purpose of constructing a measure on the multi-loop space is—very briefly— 

to define a physical inner product (ultimately!) on the space of multi-loop function

als. Indeed, it is also interesting to note in passing th a t Rayner [4] got around this 

problem — the lack of a m ulti-loop measure—by using a discrete sum ra ther than  

an integral in his construction of an inner product on the space of multi-loop func

tionals. A nother physical m otivation for proving the existence of a diffeomorphism- 

invariant m easure on the m ulti-loop space arises from an interesting result of Jacob

son and Smolin [3, p. 337]: it states th a t given the existence of a diffeomorphism- 

invariant m ulti-loop m easure, there exists a space of physical quantum  states of the 

gravitational field on E which is spanned by a basis in one-to-one correspondence 

with the knot classes of E.

The definition of a measure will be recalled here. For more details, refer to 

reference [2]. Let X  be a non-em pty set. A a-algebra A  of X  is a subset of the 

power set 2X  of X  satisfying

(a) X  e  A ,
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(b) A £ A  => Ac E A, where A c =  X  — A, and

(c) if is any sequence in A , then (J”=1 A; € A.

The pair (X , A )  is called a measurable space. If U C X  is an element of A, then U is 

said to be A-measurable. If T  C 2X is any subset, then the <r-algebra generated by 

T  is the smallest cr-algebra th a t contains T  as a subset. This cr-algebra is unique. 

Finally, a Borel cr-algebra of a topological space is the cr-algebra generated by the 

collection of all open subsets of the space.

5 .1 .1 . D efin ition . Let X  be a non-empty set and A a cr-algebra of X .  Then, a 

measure fi on X —or more precisely, a measure on A—is a non-negative set-function 

li : A —> [0, +oo] such tha t

( 1 ) fi(0) = 0 ,

(2) n is (7-additive; th a t is, / i ( ^ - n )  =  A*(-An) whenever the sequence

{ A n }n is disjoint.

The pair (X , A, fi) is called a measure space.

If condition (2) above only holds for finitely many disjoint subsets A i , . . . ,  An , 

then fi is said to be a finitely additive measure. In this thesis, a m easure will always 

m ean a cr-additive measure.

The contents of this chapter are based on reference [5]. A cursory survey of 

this chapter runs as follows. In section 2, a diffeomorphism-invariant measure 

on the space of piecewise smooth loops of £  will be constructed. This will lead 

to the existence proof of a diffeomorphism-invariant measure on the multi-loop 

space in section 3. A brief sketch of the H erm itian conjugates of the quantum  

T n-operators will be made in the last section. It will be shown th a t whilst the 

H erm itian conjugate of the T°-operator is indeed independent of the choice of 

inner products, the same is not true for the T n-operators, where n > 0— there is 

an implicit dependence on the type of inner product chosen.

5 .2 . D iffeom orp h ism -in varian t B orel M easure on

The existence of an outer-regular Borel measure on will be established in 

this section. From this, an outer-regular, diffeomorphism-invariant Borel measure 

on will be constructed. The notations used here will be identical to th a t used 

in C hapter 2. In particular, denotes the space of piecewise-smooth loops on £  

and C z  denotes the quotient space after identifying all the constant loops in it 

w ith a single point.
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Let £ £  = {ip : —> E | ip continuous } and /C (£s) C £ £  be a subset of

(bounded) loop functionals such th a t for each 'ip G /C(£e ), 3 <5 > 0 and 76 G 

satisfying supp (ip) C Also, let )C+(£•$:) *=* { ip G /C (£s) 1^ =  0} and set

N iB s i j s ) )  d=  { ip £ £ ( £ e ) I SUP P W  C ^ ( 75) }•

The space /C (£s) will be endowed with the topology induced by the sup-norm: 

||^II ^=f sup{ 1*0 (7 ) I : 7 G }• Finally, a linear functional I  on JC(Cs) is said to be 

positive if I  (ip) ^  0 V 0  G /C+(£e ).

5 .2 .1 . L e m m a . For each 6 >  0 and 76 G sup{ |0 (7 )| : 7 G ip £ 

Â (5 ö(76)) } < 00.

Proof. Suppose the contrary. Then, for each n >  0 , 3ipn G N (B s ( /ys)) such th a t 

110n II >  n. Choose 7 n £ — su p p (^n) so th a t p(7n , supp(?/>n)) is small, and

choose some small 6n >  0 satisfying supp(xpn ) C l?6n(7n)- Since ipn is continuous 

(by definition), given any £ >  0, 3 S£ >  0 such tha t

(5.2.1) 7 G Bse{7n) ^  \'lPn{'y) ~  1pn(jn)\ =  ^ « ( t )! ^  e -

Clearly, by taking n >  0 to be sufficiently large, and setting e = n, may take 

S£ = 6n. However then, ||?/>n || >  n implies th a t (5.2.1) cannot be satisfied, yielding 

a contradiction. Hence, the Lemma follows. □

5 .2 .2 . C o ro lla ry . Let I  be a linear functional on /C (£s). Then, sup{ |/ ( 0 ) | : ip G

iV(56(76)) } < 00 for each 8 >  0 . □

5 .2 .3 . L e m m a . Let G =  ( J • Gi be open, ip G K(Cjf) and supp('0) C G. Then, 

B'ipi G /C (£s) with su p p ^ * ) C Gi such that tp = Y l i ^ i -  particular, i f  ip G 

/C + (£s), then xpi G /C-j_(£e ) exists for each i.

Proof. Given ip above, set C = supp(^). Since {Gi}i is an open covering of C  and 

C is paracom pact (as it is closed and m etrizable), there exists a partition  of unity 

{ei}i subordinate to {£?;}*: J T  ^ ( 7 ) =  1, 0 ^  e;(7 ) ^  1 and supp(e*) C Gi Vi. 

Set ipi = ipei, where ipi(j)  *=* ip(‘j)ei('y). Then, by construction, supp (ipi) C Gi 

and ip = ip J T  ei = ]>T ipii as asserted. The second statem ent follows trivially from 

the fact th a t e; ^  0 for each i. □

5 .2 .4 . T h e o re m . Cy, admits an outer-regular Borel measure.

Proof. Fix a positive linear functional I  on JC(C^) and define p* on the collection 

of open subsets U of in the following way:

U (C )  d=  sup{ /(</>) I V> G A:+(£e ), supp(;/>) C U }.(5.2.2)
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This is well-defined by Corollary 5.2.2. Next, extend /i* to the power set 2^s of 

Cy by

(5.2.3) /i*(A) =* in f{ H*(U) \ A  C U, U open }.

Claim: fi* : 2^ s —> M+ is non-trivial.

To establish this assertion, it will suffice to show—from (5.2.3) and the fact tha t 

Cy  is second countable (Proposition 3.2.4)—th a t fi* is non-trivial on the collection 

of open balls in Cy - Recall th a t the second countability of Cy implies th a t every 

open subset in Cy can be expressed as a countable union of open balls. So, to this 

end, consider any open £-ball B e(7) in Cy for some fixed 7 E Cy - Set =  \ e  and 

82 — f  £• Since Cy is a m etric space it is norm al and hence, by Urysohn’s Lemma, 

3 ip : Cy —► [0, 1] continuous such tha t

f 1 V77 E B 6l{7),

IO  V 77 E R<52(7)c,

where Bs 2{7)° =f Cy ~  B&2(~/). In particular, supp(,0) C B e(~f) by construction 

and H^ll =  1. Hence, /i *(B£(7)) ^  /(?/>) >  0 and /i* is thus a non-trivial function 

on 2^s .

It is evident from the definition th a t /i*(0 ) =  0 and /i*(A) ^  H*(B) whenever 

A C S .  Now, let be a sequence of open subsets in Cy  and set G = IJ-G i.

By Lemma 5.2.3, supp(^) C G =>> Bipi E )C+(Cy ) such th a t supp(V’i) C Gi and 

=  S i  *Pi‘ Hence,

H*(G) = sup{ /(</>) I e  JC+(Cy ), supp(^) C G }

sup =  E*̂ *’ e  ^ + (^ s ) , supp(V-i) C G; j
^ E ^ ( G*)-

Next, let A =  (J • Ai E 2^s . By (5.2.3), 3 Gi open such th a t A; C Gi and fi*(Gi) ^  

H*(Ai)+e/2 l for each i. Consequently, (jl*(A )  ^  ^*(G) ^  S i  ^ ( ß i )  =  S i  A**(^*) +  

e, and so, the arbitrariness of £ >  0 implies th a t fi* is an outer measure. Note th a t 

outer-regularity follows im m ediately from (5.2.3).

To complete the proof, it is enough to show th a t Borel sets are /i*-measurable. 

For then, restricting [i* to  the Borel cr-algebra Q5(£s) of Cy yields the desired 

(Borel) measure on Cy [2, Theorem  1.3.4, p. 18]. T hat is, one m ust show th a t for 

each Borel subset G,

p * ( A n  G) +  n\An Gc) =  n*(A )VA € 2£e w ith / / ( A ) < oo,
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where Gc = Ce — G. Now, because £ e is separable, it is sufficient to verify th a t 

Bs(7) is ^ -m ea su rab le  for any 8 >  0 and 7 G £ e -: And since (i* is cr-subadditive 

(as it is an outer m easure), it is enough to establish th a t V A  G with ß*(A) <  00, 

//*(A) ^  0  Bs(7)) +  /U*(A n £5(7)°). Using (5.2 .3), choose an open subset

D, < 00, so th a t A  C D and ^  p*(A) +  Using (5.2.2), consider

G /C+(£e ) such th a t supp(?/>£) C D Pi Bs(7) and //*(.D PI #$(7)) ^  /(V’e) +  §£• 

Set C£ =  supp(,0£). Then, clearly, 3 </>£ G /C +(£s) such tha t supp(</>£) C D  D 

Cg and n*(D fl CJ) ^  I(</>£) +  §£ (as C\  is open and < 00). W hence,

fi*(D fl Bg(7)) +  n*(D D Bs(7)c) ^  /(V’e) +  J(<£e) +  f  £• However, by construction, 

A n  B s(g ) c  n  Bs(7) and D PI #<5(7)° C D fl CJ. Consequently,

/d*(A n  -0,5(7)) +  H*(A PI Bs(^f)C) ^  -f(V>e) +  ^(<^e) +  | £ =  +  4>e) +  §£•

Since su p p (^£) C D f l  #$(7) and supp(</>£) C D PI Cc£, supp(?/;£) U supp(</>£) C 

and hence I(t/>£ +  4>e) =  /i* (-D ). Thus,

^*(A PI #5(7)) +  ^*(A PI Bs(7)C) ^  I(lpe +  0 e) +  f £ = P*(A) +  £

implies, from the arbitrariness of e > 0, tha t #5 (7 ) is ^ -m easu rab le , and the result 

thus follows. □

5 .2 .5 . C orollary . £ e admits an outer-regular Borel measure 11.

Proof. Fix an outer-regular Borel measure p on £ e (induced by some positive linear 

functional I— cf. the proof of Theorem 5.2.4). Since for any subset A  C £ e 5

__! f A u £ o  i f f o n d / 0 ,
7T o 7t(A) = <

v ; \  A  if Co n  A = 0 ,

and / i ( £ 0 ) — 0 by (5.2.3) as it has em pty interior, it follows th a t fi : 33( £ e ) —» R+ 

given by fi(G) = f p{fk_1(G)) is a well-defined outer-regular Borel m easure on £ e - 

□

This section will conclude with the construction of a Diff+ (E)-invariant (outer- 

regular) Borel m easure on £ e 5 where Diff+ (E) is the set of sm ooth, orientation

preserving diffeomorphisms on E. Let R% C Ce x £ e be an equivalence relations 

generated by ~  in the following way:

7 ~  7 3 f  G Diff+ (E) such th a t 7 =  /  0 7.

1T h a t th is is the  case follows trivially from the fact th a t for a m etric space, separab ility  is 
equivalent to second countability . T his in tu rn  im plies th a t every open subset in can be 
expressed as a countab le  union of open balls.
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Let L v *=* £ e / R z  denote the quotient space and i : £ e —> Lv denote the natural 

m ap ) h  [7], where [7] =f { / 0 7  | /  G Diff+ (E) } and /  oOe =* Oe V /  G Diff+ (E). 

It is easy to see th a t 7 is an open map, for if G C £ s  is open, then 7f£1 o 7rz(G) = 

U/eDiff+(E) f '@i  where f - G d= { / 0 7  | 7 G G }, is also open as f - G  is open for each 

/ .  Note th a t because £% is second countable, the second countability of L £ follows 

im m ediately from the openness of 7r£. Finally, note also th a t a Diff+ (E)-invariant 

m easure on £ e is equivalent to a measure on L t -

5 .2 .6 . L em m a .  Let B £(7) C £ e for any £ > 0 and 7 G £ e and set D £)7 =  

tt̂ 1 0 7Ts(^e(7)). Let S  = { e v | 77 G D £)7 } be a set of positive numbers, where 

en sup{ 6 : Bs(rj) C D £)7 }. Then, S  is bounded.

Proof. Suppose th a t 5  is not bounded. This means th a t there exists an unbounded 

increasing sequence {en }n in S  such th a t B £n(rjn) C D £)7 Vn by definition, where 

lim £n =  00. However, because for any f  G £ e , lim L?r(£) = — since given
n —>00 r —>-oo

any 7 G £ e , 3 N  > 0 sufficiently large such th a t 77 G f?r (<0 whenever r  >  TV—it 

follows from the finiteness of £ > 0 th a t such an increasing sequence cannot exists. 

Hence, 5  m ust be bounded. □

5 .2 .7 . T h e o re m .  There exists an outer-regular Borel measure on L j .

Proof. Let p denote an outer-regular Borel measure on £ e and define fi* on the 

set of open subsets of L^ as follows. For each open subset D C L j ,  consider the 

pair (7 ,e 7), where 7 G 7r^ 1(D) and e7 is the largest positive real num ber (possibly 

00) such th a t B £y (7) C 7i>1 (D). Let S(D) = { (7 ,£ 7) | 7 G 7r^ l (D ) }. Then,

fi*{D) d= s u p { /i(5 £7(7)) I (7 ,e 7) G S (D )}

is a well-defined function on the set of all open subsets in L^ by lemma 3.6. Next, 

extend fi* to the power set 2L£ of L^ by

p*(A) d=  inf{ p*(U) I A  C U, U open }.

It is obvious th a t fi* : 2L£ —> ]R+ is a well-defined but non-trivial function by 

construction.

It is not difficult to show th a t ft* is an outer measure. Indeed, to this end, 

it is enough to verify th a t ft* is cr-subadditive since p*(0 ) =  0 and ft*(A) ^  

p*(B)  VA C B. So, first, let {Gi}i be a sequence of open subsets in L j .  

Then, it is evident th a t £ * ( U i  Gi)  =  sup{ p ( B £  ̂(7)) | (7 ,£ 7) G S ' ( I J t G i ) }  =
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SUP{ K B e i i l i ) )  I (7*>£*) C S ( G i ) }  = S z  SUP{ I (7 5£7) C ^ ( £ 0 }  -
^ . £i*(Gi). Now let {A*}* be a sequence of subsets in L Fix any e > 0 and con

sider open subsets Gi C Tv such th a t A{ C G{ and ß*(G{) ^  ß*(Ai) -\-e/2l for each 

i. Then, by construction, /z*((J-A;) ^  A*(Ui ^*) =  12ifr*(Gi) =  ]Ci£*C^*) +  £- 
Consequently, £ >  0 is a rb itra ry  implies th a t ß* is (j-subadditive and hence an 

outer measure. By construction, //* is outer-regular.

To conclude this proof, it rem ains to verify th a t Borel subsets are //^-measurable; 

for then, restricting ß* to  the Borel cr-algebra of L t  will provide the desired m ea

sure. In particular, it is enough to show th a t for any open subset D  of L j ,

ß \ A )S  ß •(AD D ) +  ß * (A Cl Dc)V A 6 with < oo.

Fix any e > 0 and choose an open subset G C where ß*(G) < 00, such th a t 

A C G and ß*(G) g  ß*(A) +  \e.
Note first of all th a t given any e > 0, there exist open subsets U'£, U£ satisfying

U'£ C G n D c C U£ and ß*(U£) g  ß*(U'£) +  ±£.

Hence, for the given e > 0, ß*(G (7 D c) ^  ß*(U£) ^  ß*(U'£) +  Furtherm ore, 

since 7r 1̂(U£) (7 7r 1̂(G fl D) =  0  and U[ C G (7 D c, it follows th a t (U'e) U 

nfA^G D D) C 7r^1(C!) and hence ß*(U'£) +  ß*(G 17 D) ^  ß*(G). W hence, the fact 

th a t A n  D C G O D  and A f7 D c C G 17 D c imply th a t ß*(A 17 D) +  ß*(A (7 D c) ^  

ß*(G) -\- “A ß*(A) -f e, and the arbitrariness of e > 0 thus yields the assertion. 

□

5.3 . A  Diff"l"(£)-Invariant M easure on A4.

The construction of a Diff+ (E)-invariant measure on A4n will be made first for 

n > 1 and then followed by a diffeomorphism-invariant measure on A4. Observe 

th a t as A fi is identical to an outer-regular Borel measure trivially exists on it. 

By theorem  5.2.7, a Diff+ (E)-invariant measure exists on Cy, and hence on A4 
Denote this Diff+ (E)-invariant measure on A4\ by v\.

5 .3 .1 . T h eo rem . For each n > 0, an outer-regular, Diff+ (E)-invariant Borel 

measure exists on the n-loop space A4n.

Proof. Recall from §3.2 th a t 7rn : £ £  —> |J^_ 1 A /l l is a continuous, closed and 

open surjection, and th a t A4n C (J”=i -M* is an open subset. Also, the case for 

n =  1 has already been established above. Let *Bn be the Borel cr-algebra of
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generated by 031 x • • • x 031 (n-tim es), where 031 is the Borel cr-algebra of and let 

fln • $3n —► I&+ denote the Diff+ (E)-invariant product measure on induced from
defi/i: An(-Si X • • • x B n) =  u i (B i ) . . .  v \ (B n). Define is* on the set of open subsets 

in Adn in a similar way to /}* in the proof of theorem  5.2.7. T hat is, given an open 

subset D  C Adn, let S ( D ) =  { ((7 i,£ i) , • • • >(7n,£n)) I (7 i>---»7n) G 

where £ i , . . . , £ n are the largest positive num bers (possibly oo) for the given 72-  

tuple (7 i , . . . , 7 „) G 7t̂ ( D )  satisfying H£l(7 i) x ••• x B Sn{ j n) C Then,

define is* by

V*(G) =  sup{ A n(^£l(7 l) X •• • X B £n(~fn)) | ( (7 i, €1 (7n, £n)) € S ( D ) }  

and extend is* to the power set 2Mn of Adn by

K ( A ) =  in f{ K ( G ) I A C G , G  open }.
• • • • dcfThe set-function is* is well-defined by lemma 5.2.6 and the verification th a t isn =

i/*|03„, where 03n is the Borel cr-algebra of A»dn , is indeed an outer-regular Borel

m easure on Adn is identical to the proof of theorem  5.2.7. Last, notice th a t isn is

Diff+ (E)-invariant by construction as is\ is Diff+ (E)-invariant. □

The construction of an outer-regular Borel measure is^ on requires some

modification. An infinite product measure cannot be constructed from is\ on Moo 

as is\ is not a bounded measure on Ad1. However, observe from the proof of theorem  

5.2.4 th a t may be replaced with any second countable m etrizable space. In 

particular, the theorem  holds for Ad 00 as it is second countable and m etrizable— 

see rem ark 3.2.10. Hence, an outer-regular Borel measure fi00 on Ad 00 exists. Now, 

let R oq C Af 00 X Ad 00 be an equivalence relation generated by ~  in the following 

way:

7 ~  77 4=7 3 f  G Diff+ (E) such th a t rjl =  f  o 7 * Vi

(by reordering the elements of rj if necessary). T hat is, /  • 7  =  77, where /  • 

7  d=  1 / 0 7 * I 7 1 € 7 }. Let L *=* Moo/Roo  denote the quotient space and 

TToo ' Ad00 —► denote the quotient map. It is not difficult to check th a t 7Too is

open. Then, in the light of the proof of theorem  5.2.7, it is possible to construct a 

non-trivial outer-regular Borel measure on L+ , induced from the measure on Ad 00 

in an identical fashion. To wit, if /ioo is an outer-regular Borel measure on Ad oo, 

then ji*00 : 2M00 —> K.+ defined in the identical way as fi* was defined in the proof 

of theorem  5.2.7 yields a well-defined outer-regular Borel measure on L+,. Since a 

m easure on L +, is equivalent to a Diff+ (E)-invariant measure on Ad oo, the following 

proposition is established.
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5 .3 .2 . P r o p o s itio n . There exists an outer-regular, Diff+ (E )-invariant Borel m ea

sure Vqo on M oo. D

The principal result of this paper is now due and, with it, this paper will be 

brought to  a timely conclusion.

5 .3 .3 . T h eo rem . A4 = © ^ I j  A 4n ® Aioo has an outer-regular Borel measure 

that is invariant under Diff+ (E).

Proof. Let 03 be the Borel cr-algebra of A4 and define u : 03 —> R+ by

oo

v(G ) = vn(G  n M n)-
n = 1

Then, it is enough to show th a t v defines a measure since the outer-regularity 

of v follows trivially from the outer-regularity of vn for each n ^  oo. Clearly, 

i/(0 ) =  0. Now, suppose th a t Uj ©  £ ® is any disjoint union; then, i/((J • Gf) —

Y Y n ^ « (U i G i  C A4n) =  Y i n  YYi v n { G i  (T A4n) = Y l i  Y in  Vn ( G i  H A4 n )  =  YYi K G i ). 

So, v is a m easure, as required. □

5.3.4- Remark. The constructed measures did not depend on a particular choice 

of (R iem annian) 3-metric of E in anyway—this is, of course, a crucial point in 

quantum  gravity. It is also clear th a t the constructed measures are by no means 

unique.

From the definition of v on A4, it is clear th a t not every open subset in A4 

is ^/-finite. However, it is obvious th a t if G =  G ni U • • • U G ni C A4 is a fi

nite union of open subsets G nj C A4nj , and uUj (Gnj ) < oo for each nj ,  then 

v{G) < oo. However, this m inor point regarding the construction of v need not be 

of any concern since the m easure th a t defines the physical inner product would be 

of the form c[q] dz/(7 ), where c[q] is some suitable weight determ ined by the Her- 

miticity condition imposed on the observables—in particular, by the T-observables: 

(if , T n(j)) = ( ( Tny i f  , <j>) (and hence by the reality conditions). And most im portan t 

of all, this factor would render the physical measure c[j\ di/(q) finite: (if , if) < oo 

for each unnorm alised physical state  l^). The crucial point to be emphasized here 

is the existence of a diffeomorphism-invariant multi-loop measure.

This section will end w ith a sum m ary of the main results obtained. The following 

results—independent of the 3-metric on E—were established: (i) the existence of 

a Diff+ (E)-invariant, outer-regular Borel measure on A4n, for each n ^  1, and (ii) 

an outer-regular, Diff+ (E)-invariant Borel measure on A4.
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5 .4 . D iscu ssion

In this final section, the Herm itian conjugates of the quantum  T n-operators 

will be explored.2 And apart from making some tentative rem arks regarding the 

question of an inner product, this question will be covered in the final chapter where 

the issue of the reality conditions in the loop representation will be broached.

F irst, the H erm itian conjugate of the T°-operator will be analysed and then 

followed by the H erm itian conjugates of the T n-operators. As a prelim inary ob

servation, one might suspect at first glance th a t the explicit form of the action of 

the H erm itian conjugate ^ [ 7 , A] on T n depends on the explicit choice of inner 

products used. Surprisingly, this is not the case, as will be dem onstrated below.

Now, suppose an inner product is defined on Ad*, or at least, on a non-trivial 

subspace in it and consider the following requirem ent for H erm itian conjugacy:

(5.4.1) =

It is clear from (5.4.1) th a t the right-hand side is well-defined if T G when

ever G A4'n; hence, in order for the left-hand side of the inner product to be 

well-defined, it is required th a t T*[7 , A] be a “raising” quantum  operator. T ha t is, 

for the left-hand side of the equality, it is required th a t T*[7 , A]\F G A4'n for consis

tency as 4» G M 'n. This im mediately suggests th a t IT  [7 , A] acts on an (n  — l)-loop 

functional T n_i by

' I ' n - l h -  {71}] If 7 1 £
0 if 7 1 ^ 7,

where rj G A4n and 7 1 G M \ .  Thus far, the definition of T^[7 ,A]'F is consistent 

w ith th a t given by Rayner [4, p. 656]. Indeed, the astonishing result here is th a t 

the definition of the Herm itian conjugate of the T°-operator did not depend on the 

explicit definition of the inner product at all: it merely followed from a consistency 

requirem ent. From §3.5, the explicit form of ^ [ 7 , AJ'I'n, where 4/n G A4*, can 

indeed be constructed. To do this, define a loop Kronecker function  <$7 : A4i —>

{0, 1} by
1 if 7 =  7 ,
0 otherwise.

Then, it is evident th a t the map ^ [ 7 , A] : A4*_2 —» A4* is ju st given by 

f t [ 7 ,A ]4 'n =  <Sn ®M

2Strictly, to be consistent w ith the no tations in troduced  in Rem ark 2.2.2, the term  H erm itian  
here should really be f-H erm itian . However, for convenience, f  will be left out.
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Next, the H erm itian conjugate of the quantum  T 1 -operator will be considered 

and then the generalisation to the T n-operator will be made. For simplicity, the 

unsm eared operators will be used in the following analysis. As a brief rem inder, 

(T a[7, A]^n)[7n], where T n £ M ' n and £ Adn, is defined by

T a[7 , A] ( s ) ^ [ jn] = - ^ A a[7 ,7n] ( s )^ [7 * 7 n] +  /zAa[7, 7n](«s)^[7 * 7n-],

where (i) 7 n £ Adn , j n = { 7 1, . . .  , j n } and 7 * 7  n is the abbreviation for {7  * 

7 1, . . . ,  7 * 7 n }; (ii) 7n_ =  { 7 ! , . . . ,  7 "  }, (iii) s corresponds to the point where 7 

intersects 7* (at 7(5)) in the definition of 7 * 7 \  for each z; (iv) the distribution 

A a bb7n](s) d=  Xa= i A a[7 ,7 l](s), where A a['y,Y](s) given by

A “[7 ,7 ']W  = 6^ ( s ) , m ) ( f y ( t ) d t .

Note in hindsight th a t the concept of a distribution is needed in order to define 

the H erm itian conjugate of the T-operators. The details of a d istribution can be 

found in [1, p. 437]. In this section, the term  “distribution” should be taken w ith 

a grain of salt simply because the multi-loop spaces are not locally compact nor 

indeed is the concept of derivatives defined on them , whilst distributions (in the 

strict sense) are functionals belonging to the dual of the space of sm ooth funtions 

with compact support. A rigorous development would lead one far afield from 

the original aim  of this section. As such, one shall be content w ith an informal 

presentation given here and realise th a t the definition of distributions introduced 

below are strictly  directed at a heuristic level.

It will be assum ed here for concreteness th a t the inner product ( • , • ) „  is defined 

by the m easure c„[7] di/„(7) for each n, where cn left unspecified in this section, such 

th a t there exists a non-em pty subspace in Ad* whose elements have finite norm s 

with respect to the inner product. In fact, for the convenience of the following 

discussion, it will be assum ed th a t Ad* can be endowed with an inner product 

defined by vn for each n.

5 .4 .1 . D e fin itio n . Let S7 be a d istribution on Adi th a t satisfies

(1) (<$7 , <j>) 1 =  <j>[ 7] \f (f) £ M [  and 7 £ Adi,

(2) (67 i </>) 1 =  (S7 ,</>)i,

where the inner product ( • , -)i is defined with respect to rq. Then S7 is called a 

Dirac v\-distribution  on Adi.

5.4.2. Remark. Let = {71, . . .  , 7 ” } and set 6™n =f S71 0 ^  . . .  0 ^  <$7n. Then, 

(<$7n ,^ n )n  =  ^ n [7n]- To see this, it is enough to note th a t 6”n [rjn] = 0 whenever
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Tjn ^  7n by definition, where r]n E M n• Call 6™n the Dirac vn -distribution on 

A4 n • Finally, it should be pointed out th a t the inner products defined here have 

no physical significance; and indeed, their introduction were carried out in a ra ther 

cavalier fashion.

It should also be emphasized th a t just by assuming the existence of an inner 

product on A4 * w ithout any specification on the type of inner product chosen, ex

plicit forms of the Herm itian conjugate of the T n-operators can be defined! How

ever, a clearer analysis will destroy the illusion th a t the H erm itian conjugates of 

the T n-operators for n >  0 can be defined independently of the choice of inner 

products—this will be seen shortly below. Briefly, this misleading conclusion arises 

from the observation (see below) th a t the definition of 67 or 6"n defined above 

depends  implicitly on the precise choice of inner product used.

A heuristic sketch for finding the Herm itian conjugate T a [7, A ]t(s) of T a [7, A](s) 

will now be illustrated. Let iß,(j> E At*. Then,

{i> , T a['y,A](s)<f>) = - h J  ^[?7]Aa[7,77](s)<£[7*?7]di/i(77)

A h j  V5[77]A a[7 ,ry](s)^[7 * 7_]di/i(r/).

However, J  2p[r]}Aa[^,r]}6^v[\}(f)[X}diy1(\)diy1(r]) = J  ^[rj] A a[7, 77] <£[7 * r}]dui(rj). 

Thus, this suggests th a t T a[/y, A ] \ s )  should be defined by

( f a[1 ,A] \s ) ' i ) [ r1} = - h  J  ^[A]Aa[7, A](s)ä7*aM  d 17(A)

A h  J  xj)[ A] A a[7, A](s)<$7*a_ [rj] di/i(A).

5 .4 .3 . P ro p o sitio n . Let  4» E At*, 77, A E A4 n and  7 E M.\.  Then, the map  

T a[/y, A ] \ s )  dehned on At* by

(T -[7 ,A ]t(a)* )[ ,]  =  - f t  J  *[A]A‘ [7 ,A](«)fiJ,AM d Vn(A)

+ h j  $[A]A“[7,A](s ) ^ » a_[ij] dz/„(A)

deßnes the Hermitian conjugate o f  T a [7, A](s).3

3Strictly, the T n-opera to rs and the ir H erm itian conjugates do not define m aps from  A4* into 
itself unless they are sm eared w ith suitable sm earing functions. T h is will be ignored in th is 
inform al section in the  in terest of simplicity.



78 V. DIFFEOMORPHISM-INVARIANT MULTI-LOOP MEASURE

Proof. Let T , 4? E A4* and set I  = (T , T a[7, A](s)4>), f i  =  (T a [7, AJ^T , 4>). Then,

1—
1 

—
h

i

II 1 J  A a [7 ,  A ] ( 5 ) T [ A ] ^ A[7 ] $ [ ? 7]dz/n ( A ) d i / n (r / )

+  fi 1  ^ “ [7 ,  A](s) T [ A ] ^ a_ [r}]$[rj]dvn(\)disn(ri)

= —h j  A a [7 , A ] ( 5 ) * [ A ] < % * A ] d ^ ( A )

A h 1  A a [ 7 , A ] ( s ) T [ A ] $ [ 7 *  A _ ] d i / n (A )

= I. □

It is not difficult to  deduce th a t the corresponding Herm itian conjugate of 

T “1'"“" [7, A]^(si , . . . ,  s n ) has the following form:

T“ - -  [7, A]t(s,, . . . ,  ,„)«m  = -h n £ ( - l ) " (e) J *[A]A** [7, A](a,)...

A “" [7, A](s„ ) i5(E a). [t?]di/*(A),

where 4/ E A4*k, A, 7 E AAm and e = e\ . . .  en for typesetting convenience. For more 

details regarding the notations used, refer to §2.4.

A short comment on the physical inner product will be made before closing this 

chapter. F irst, recall from the last paragraph of §3.4 th a t a multi-loop state  is 

really the direct sum of n-loop functionals. This means th a t any inner product 

defined on the space of m ulti-loop functionals is of the form
00 

n =  1

where each inner product ( • , • ) „  is determ ined by the measure c„[7] dvn(^)  with 

cn being some predeterm ined functional on A4 n .

Second, observe th a t the equality in (5.4.1) is really of the form ( - , - ) n_i  =  

( • , • ) „ :  the inner products are defined on two distinct spaces! So, a necessary 

step towards finding the correct physical inner product is the determ ination of a 

sequence of n-loop functionals {cn}n such th a t

[  di/n_ i(7 )c n_ i[7 ]T [7 ](f[7 1, A]$)[7] =  /  dvn(~j)cn[~i}(Ttfy 1, A]'F) [7] <f> [7]
J rx — 1 ^ n

for each n. However, a closer scrutiny will quickly reveal th a t the inner product is 

identically equal to zero! To see this, it will suffice to note th a t TH 71, A ]Tn_i =  

T n_i  (g)-̂  811. By definition then, T ^ 1, A ]Tn_i is zero outside of the subset

S( 7 1 )  = f { 7  £  M n 71 G 7 }-
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However, S (7 1) is nowhere dense in A i n (as it is homeomorphic to A4n_ i)  and 

hence v \-null; consequently, the inner product collapses to zero and no inform ation 

regarding the functional form of cn can be retrived from it. There is however one 

saving grace: these T-observables are not physical observables.

In conclusion, the determ ination of {cn}n and hence the physical inner product 

requires the explicit im plem entation of the reality conditions in the loop repre

sentation. An attem pt towards implementing the reality conditions in the loop 

representation will be outlined in C hapter 7.
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CHAPTER VI

A PROM EASURE ON THE SPACE OF 
ASH TEK AR CONNECTION 1-FORMS

6.1. Introduction

A prom easure (also known as a cylindrical measure) on the space A  of Ashtekar 

connection 1-forms defined on E will be constructed in this chapter. This in tu rn  

will be used to construct a prom easure on the SU(2) moduli space A[SU(2)]— the 

space of SU(2)-gauge orbits of A . Any two representatives of a coset in A[SU(2)] 

are related by an SU(2)-gauge transform ation. Like the multi-loop measure, the 

main interest in the construction of a prom easure of A[SU(2)] lies in its application 

to the loop representation of quantum  gravity— see, for example, [10, Eqn (3.40), p. 

1644] and its accompanying footnote, or references [11] and [12, §6]. Very briefly, 

given a prom easure /i on A , a relation between the functionals T[A] on A  and the 

functionals 4/[7] on the space of piecewise sm ooth loops of E can be obtained via

^[ 7 ] =  /  h[y^]^f[A]dfi(A),
J A

where h[7, A] is the trace of the complexified SU(2) holonomy. A second reason for 

constructing a m easure lies in the attem pt to define a physical inner product on 

the physical state  space of the self-dual representation theory of quantum  gravity.

A ttem pts at constructing promeasures on the space of connection 1-forms were 

also m ade by various researchers: prim arily Ashtekar, Lewandowski and Baez 

[1, 2, 3, 5, 6]. A ttention should be drawn to reference [2] in particular, where 

Ashtekar and Lewandowski constructed diffeomorphism-invariant prom easures on 

the space of connections and where the family of finite dimensional spaces defining 

the prom easure is a family of compact Hausdorff spaces. However, the program m e 

is still not quite complete although a lot of advances have been made: for instance, 

in reference [4], a detailed exposition of the construction of a physical inner product 

for a class of diffeomorphism-invariant theories is given.

This chapter is based on the work done in reference [13]. It provides an alter

native but possibly simpler approach towards the construction of a prom easure on
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the space of Ashtekar 1-forms. The projective family of spaces used here is a family 

of finite dimensional manifolds. A drawback of the construction described in this 

chapter is th a t the promeasure is not diffeomorphism-invariant.

The definition of a promeasure taken from [7, p. 576] will be briefly recalled here. 

For more details, refer to [7, §D, p. 573]. Let X  be a locally convex, Hausdorff 

topological vector space and

r l p f  ,
F ( X )  = { H  ^  X  I H  a closed subspace w ith dim ( X / H )  < oo }

be the set of closed, finite codimensional subspaces H  in X  th a t is partially  ordered 

by the set-inclusion C relation. Then, F ( X )  generates a projective system  (or an 

inverse system ) ( X / H , p v w )  of finite dimensional quotient spaces of X  via

pw  : X  —■> X /W, pvw  • X / W  —> X /V , and p y  =  pwv  0 Pw •>

where IV, V  £ F ( X ) ,  W  C V, and p w ,p v w  are canonical mappings.

6 .1 .1 . D efin ition . A promeasure (or cylindrical measure) on X  is a family p = 

{ p y  \ V  E F ( X )  } of bounded measures p y  on X / V  such tha t

(1) p y  = p w  0 P y w  whenever IV C V, and IV, V  6 -F(X), and

(2) p y { X / V ) =  p w { X / W )  V IV, V  E F { X ) — p y { X / V )  is called the total mass 

of the prom easure p and is denoted by p( X) .

Let C yl(X ) be the cylindrical a-algebra of X ; th a t is, C yl(X ) is a cr-algebra 

generated by cylindrical subsets p y l (B)  V k  E F ( X )  and Borel subsets B  C X / V .  

Then, a prom easure p of X  defines a finitely additive measure p : C yl(X ) —» R+ 

via p ( B ) p y ( B ), where B  =  p y 1(B).  Note th a t p is in general not cr-additive 

simply because cylindrical subsets do not necessarily have to be inverse images of 

Borel subsets from a fixed quotient space X /V , for some fixed V  E F ( X ) — V  is 

allowed to vary.

The contents of this chapter are organised as follows. In section 2, the definition 

of the Ashtekar connection 1-forms on E will be briefly reviewed and some topo

logical aspects of the space A  of Ashtekar connection 1-forms will be studied. In 

section 3, a prom easure on A  will be constructed. This is followed by the construc

tion of a prom easure on ^4[SU(2)] in section 4. In the final section, some possible 

ways of constructing a diffeomorphism-invariant prom easure on ,4[SU(2)] will be 

sketched, where ideas from Ashtekar et a 1. [2] and Baez [6] will be tentatively 

im ported.
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6 .2 . T h e Space o f  A sh tekar C on n ection s

The space of Ashtekar connection 1-forms will be briefly recalled. The details 

can be found in §2.2. Let (TE  ®su(2),p, E) be a tensor bundle over E and define 

C to be the space of sm ooth cross sections a : E —> TE  ® su(2) satisfying:

(1) for each x £ E and a , &(x) induces a linear isomorphism su(2) ~  TxE 

defined by A i—> —<x(x) • A = f Xa(x)da: where —o"(x) • A — tr(cr(x)a X)da =  

- a ( x ) aABXB Ada = Xa(x)da e  Txe ,

(2) — tr(cra(j6) = f qab, where qab is a R iem annian 3-metric on E in the na tu ra l 

basis.

Then, the Ashtekar connection 1-form when restricted to the constraint surface of 

the phase space of general relativity is given by

A  = s*uv -  ^ K ( c r ) ,

where s : E —> P^ is a sm ooth cross section of the principal SU(2)-bundle £ =  

(P^, E, SU(2)), cjo- is an SU(2) connection 1-form on P£ compatible w ith cr, and K  

is the extrinsic curvature of E with / i ( ( j ) aj4 ß ^=f K af,crAB. Finally, recall th a t A is 

an suc -valued 1-form on E.

Now, observe th a t as suc (2) «  su(2) ® su(2), it follows from the definition of 

A £ A th a t A(x)  may be identified with an element in T*E ®su(2) ® T*E ® su(2) 
for each x £ E. Hence, the identification A  C CT°(E ,A (E)) can be made, where 

E ( E) =f T*E ® su(2) ® T*E ® su(2) and C ^ ( E ,P ( E ) )  is the space of C°°-cross 

sections of the tensor bundle A (E) —> E. Let 21(E) denote the m axim al atlas of 

E and 2l(A (E)) th a t of E ( E). Given e >  0, r  £ N and K  C U compact, let 

7VJ(A; (U, ip), (V, 0 ), AT) denote the set of elements A'  £ A such th a t

sup{ ||Z)fc0  o A o (/7_1(a:) — D kip o A 1 o (^_1(a:)|| : x £ </?(A"), 0 ^ A : ^ r } < e .

Let Tr be the set of all subsets A J(A ; (Z7, </?), (V, 0 ), AT) for each A £ A, £ >  0, 

(£7, <£>) 6 21(E) and (V, 0 )  £ il( A (E)). Then, (J r Tr forms a subbase for the compact 

C ^-topo logy  of A .

6 .2 .1 . P ro p o s itio n . A  is second countable and completely metrizable.

Proof. F irst, recall th a t a countable Cartesian product of second countable, com

pletely m etrizable spaces is again second countable and completely m etrizable. Let 

A r denote the space of Ashtekar connections th a t are of class C r (endowed with 

the compact C r-topology). Then, A r+1 C A r V r £ No =  N U {0}, and hence,
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{(A r , *x_ i , No)} defines an inverse sequence, where i x_ 1 : A r c—> A r- \  is the in

clusion map. Since £  is compact and D (E) is second countable and completely 

m etrizable, so is A q. Furtherm ore, because A r is second countable and completely 

m etrizable for each r  as well, it follows th a t A  =  ^im A r . the inverse limit of A r, 

is second countable and completely metrizable, as the inverse limit A  is a closed 

subset of rirGNo ^ r  (which is second countable and completely m etrizable). □

It will be shown next tha t A  is an infinite-dimensional manifold. Fix Ao E A  and 

define T ( A 0) = { v : £  -» T D (£ ) | 7tE(e ) 0 v = A 0 }, where (T D (£ ), tte ^ ,  E (E )) 

is the tangent bundle of D (£). Let exp : T E (E ) —> E (E ) be the exponential map. 

Then, for each x E £ , there exists a neighbourhood B sx( A q(x )) of Ao(x)  in E( E)  

for some 6X >  0 such th a t expAo(l) : Bsx(0X) =  Bex( A 0(x)),  where Bsx(Ox ) is a 

<$x-ball about the zero vector 0X in the tangent space Ta 0(x) E (£ ) , and Bsx(Ao(x))  

is a <$x-ball in E ( E ) —both of which are defined relative to the respective metrics 

com patible with the topologies of Ta 0(x)E(E)  and E(E) .

Let {A h}”=1 be a (finite) compact covering of £ ,  where K i  C Ui lies in a chart 

of £  for each i and set N^(Ao)  = p |”=1 N£'(A°; (Ui, <,£*), (V, ^ i) , Ki) ,  w ith e =  

in f{£ x : x E £ } .  Define : iVJ(O) —* iVJ(Ao) by v t—> A  =  expAo u, where 

A{x)  =  expAo(x) v(x)  on £ , and 7V£r (0) =  p |”=1 (0; (Uit </?*), Ki) .  It is clear

th a t tyyio is injective: expAo^x^v(x)  = expAo(x) v' (x) => v(x) = v’(x)  for each 

x  E £• To see th a t is surjective, let A  E iVJ(Ao). By construction, since 

e x p ^ x  ̂A(x)  E Ng (0X) for each x E £ , set v = exp^J A.  Then, ^ ^ ( u )  =  A  and 

is thus surjective and hence a bijection. The continuity of follows trivially 

from the continuity of expAo x̂y  Likewise, the continuity of 'F'^J follows from the 

continuity of e x p ^ * ^  and is thus a homeomorphism. Finally, if (Ua , 'Fa ) and 

{Ua ' i ^ A ' )  are two overlapping charts, then the smoothness of expA(x) for each x 

implies th a t ^  a 1 o is also smooth. Hence, A  is a smooth manifold modelled 

on Va i  where Va  is a linear space smoothly diffeomorphic to T( A)  for any A  E A.  

Denote the tangent space T( A)  at A  by Ta A  from here on.

6.2.2. Remark.  Since T *£  w £  x E 3 and £ , M3 and su(2) are geodesically com

plete, so is E(E) .  Hence, expA is defined on Ta A  and in particular, there exists a 

neighbourhood in A  th a t is homeomorphic to Ta A  under *Fa -

6 .3 . A  P rom easu re  on A

Let D e C £  be a countably dense subset of £  and let c[Ds] be a countable cover 

of D e such th a t VG E c[De ], G C D e and \G\ < Kq. Set c[De ] =  { G an | ce,n E
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N }. Each Gan defines an equivalence relation R an C A  X A  by 

A  ~  A' <=> A(xi)  =  A'(xi)  \/ Xi G G an■

def
Let pan • A  —> Acm =  A / R a n  denote the natural map and endow A an w ith the 

quotient topology.

6 .3 .1 . L e m m a . pan • A  —> A an is an open and closed mapping.

Proof. Fix A q £ A  and let N f(A o )  = N f(Ao;(U ,(p) , (V , ip ) ,K )  for some e >  0. 

Set N f ( A 0) = p~\  o p a n ( N f ( A 0)), and fix B  G N f ( A 0). Then, by definition, 

3 Bo G N f(A o )  such th a t Bo(xi) = B (x i )  Vaq G G an• Choose 8 < e and s > r 

so th a t JV |(B0) = ' n r =1 N ( ( B o\AT ;)—where A, C U, and {A,}"=1 

is a finite compact covering of E—is contained in iVJ(Ao), and set S' =  and 

6' =  2s. Recall th a t for any B'  G Ng, (B) = f l ^ i  N s ' (B \ W , $ ) , l f i ) ,

B'  =  s '* a v  -  - ^ K ' ( a ' )  and J\(cr)aAS =f I<ab^bAB•

To show th a t N$,(B)  C iVJ(Ao), it is enough to verify th a t for each B'  G 

Nj-,(B), 3 B  G Nj-(Bo) such th a t pan(B ')  — pan(B).  Since sup{ ||ZV\B'(:r) — 

-Dfc-B(x)|| : 0 ^  ^  s ', :c G E } < <$' (in grossly abused notation), the

equality B (x i )  = B 0(xi)  on G an => \\Bo(xi) — B'(xi)\\  <  8' on G an for any 

B'  6 Ng,(B).Hence, for any Bd=  -  ^ Ä '( d )  6 Ng,(B0) and 6  Ng',(B),

||B (x j) — B '(x { ) || <  28' = 8 on G an• Since E is parallelisable, for any distinct finite
A /

num ber of points x \ , . . . ,  x n G E and any fixed B'  G Ng, (B),  it is always possible to 

choose suitable (global) cross sections K , <r, s of appropriate tensor bundles over 

E so th a t s*u>cr(xi) = s'*iL>a>(xi) and K (d ) (x i )  = K'(cr')(xi)  Vz =  l , . . . , n  <  oo. 

Consequently, for each B'  G Ng,(B),  3 B  G N f ( B 0) such th a t B '(x i )  = B (x i )  on 

Gan• Hence, N g,(B)  C N f(A o )  and pan is thus open from the definition of the 

quotient topology.

Finally, to show th a t pan is closed, it will suffice to show tha t given any point 

[A] G A an and any neighbourhood M  of p ~ \( \A ]) in .4, there exists a neighbour

hood N[A\  of [A] such th a t p~f(N[A})  C M .  So, given [A], let M  be a neighbour

hood of p~n([A\). For simplicity, denote pQn{A) and p~„ o pan( A ) by the same 

symbol [A].

First, recall from the proof of the open property of pan above th a t given any 

pair B , B '  G [A], there exist neighbourhoods Vb  and Vb < of B  and B'  respectively 

in A  satisfying

(1) V B'  G Vb >, 3 5  G Vb  such tha t pan{B')  = p an{B),  and

(2) V 2? G Vb , 3 B '  G Vb ' such th a t pan{B)  =  pan{B').
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Hence, given a neighbourhood Vb of B , there exist neighbourhoods Vb ' of B'  £ [B] 

such th a t p~\ o pan{ y s )  =  (J{Vß'  | B'  £ [B]}. So, for any B  £ [A] and any 

neighbourhood Vb  of B  in M , if p “^o p an(Vß) (f_ M ,  then, because p~^opan (Vjg) =  

1J{ Vb ' I B'  £ [A] }—where, for each B'  £ [A ], the pair (Vb , Vb >) satisfies properties 

(1) and (2)— 3 Vp £ { Vb > \ B'  £ [A]}, for some B  £ [A], such th a t Vp (£_ M.  

However, since Vb  is an arb itrary  neighbourhood of B  in M  and M  is open, this is 

not possible. Otherwise, this implies th a t 3 B  £ [A] such th a t each neighbourhood 

N p  of B  satisfy N p  (jt M , which is clearly impossible as B  £ M .  Thus, for any fixed 

B  £ [A], there exists a neighbourhood N b  C M  of B  such th a t p~\ opan(N ß )  C M  

and Pan(Nb ) is thus the required neighbourhood of [A] in A an • So, pan is also 

closed. □

Now, given any A £ A, let T u]A  ==f (J{ T a A  : A £ [A] }, where the space is 

endowed with the subspace topology on the tangent bundle TA. Then, as before, 

each G an £ c[J9s] induces an equivalence relation R an C TpqA X Tj^qA on Tj^qA

by

v ~  v' u(aq) =  v'(xi)  V £ G an-

Let TyA\Aan = f TyA]A /R an  denote the quotient space (endowed with the quotient 

topology) and pan* • Tya\A  —> Tyy^Aan the natu ra l map. Then, by construction, 

Pan*{TAA )  = TyAyAan for each A £ [A]. By definition, pan* an open mapping.

6 .3 .2 . L e m m a . TyA] A a„ is a ßnite-dimensional linear space.

Proof. F irst of all, observe th a t TyA]Aan can be endowed w ith a vector space struc

ture: define +  and • by

[t?] +  [u] ==f [u -f u] and c • [u] *=f [cv] Vc £ R.

These operations are well-defined since pan*{u +  v) = [u +  u] =  { u' -f v' : u\Gan =  

u'\Gan and v\Gan =  v'\Gan } =  Pan*(u)+pQn*(v), a n d Pan*(cu) =  { c u 1 : u'\Gan =  

u\Gan } =  c • Pan*(u) Vc £ R.

To check th a t this vector space structure is compatible with the quotient topol

ogy, it m ust be verified tha t +  • Tyjq A an X  TyA]AQn —•► TyA^Aan and • : M. x 

TyA]Aan — > TyA}Aan are both  continuous. Because {pan*\TAA)(TAA) = TyÂ Aan, 
there is no loss of generality in fixing some A £ [A] and considering Ta A  instead
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of T{A}A  in the discussion th a t follows. So, consider the following diagram:

Ta A  x Ta A

P a n * X p a n *

T[A] A a n X

It is clear from the definition th a t the diagram  commutes: +  o (pan* x pan*) =  

Pan* 0 +• Hence, the continuity of +  follows from the surjectivity of pan* X pan* 

and the continuity of p an*, -f- and pan* X Pan*- In a similar way, it can be verified 

easily th a t • is continuous. W hence, T[A]A an is a linear space.

Set Van = n i l i ( T x*.S ®su(2)) ® (T*.E 0su(2)), which is linearly isomorphic to 

R 18n (and hence finite-dimensional), and define L an : T[A}Aan —■► Van by

M ^  (v (x1) , . . . , v ( x n)),

where v is any representative of [v] and (T*. E05u(2))®  (T*. E0su(2)) is identified 

with its tangent space for each z. By definition, L an is linear and injective as 

v\Gan =  u\G an [v] =  [u]. Fix u = (w*)”=1 G Van- It is obvious th a t 3 v G Ta A  

such th a t v(xj )  = u l Vz =  1 , . . .  ,n  as Ta A  is a vector space. Hence, L a n(M ) =  u 

and L an is thus onto. So, L an defines an isomorphism, as required. □

6 .3 .3 . T h e o re m . A an is a finite-dimensional, paracompact, Hausdorff, second 

countable manifold modelled on Van.

Proof. Note th a t as m etrizability is an invariant under closed surjective m appings 

[8, Theorem  4.4.18, p. 285], by Lemma 6.3.1, A an is m etrizable and hence para- 

compact and Hausdorff. Lastly, because pan is open and A  is second countable by 

Proposition 6.2.1, so is A an-

Given [A] G A an-, fix a representative A  of [A] and consider the following dia

gram:
Ta A  T[A]A an

A

where : [r>] h ->  and pan* is understood to be the restriction pan*\TAA.

Note firstly th a t is well-defined; th a t is, it does not depend on the choice of 

representative A  in [A]. For suppose (UA,, T^,1) and (UA , T ^ 1) are two overlapping 

charts w ith [A] = [A1]. Choose some v G Ta A  and v' G Ta <A such th a t =

+ -> TAA an

P a n *

rP[A]Aatn-
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A = ^ a '{v') for some Ä G J7^/. Then, ^ a* (H ) =  [ ^ a ( v)] =  [ ^ ' ( V ) ]  =

'La '* ([^ ,])5 as expected.

Since ^  A* o pan*(v) = vFa*(M) =  [Va v ], for v G Ta A ,  and pan o 4>a (v) =  

P an*(^a v ) =  [T^u], the diagram commutes. Furtherm ore, as pan, a  and pan* 

are open and pan is surjective, the com m utativity of the diagram  implies tha t 

\Fa * is also open. Likewise, is continuous. Set iV([A]) =  \F,4 * o p an*(T/iA.); 

then  \F,4 * maps T[A]Aan(= Pcm*(T4 ,4)) bijectively onto 7V([A]). To verify this, 

only the injective property of Tyi* needs any verification since T a * maps Tj^p4an 

onto 7V([A]) by construction. If ,Fa*(M ) =  T^*([w]), then and

hence, the fact th a t is injective implies at once th a t [u] =  [u], and \Fa * is thus 

injective. Consequently, maps 7V([A]) homeomorphically onto T[A]Aan and 

the pair (JV([A]), thus constitutes a chart at [A]. □

For any Gan,G a'n' G c[D^} w ith Ga>nf C G an and n' < n, let p",nn, : A an —> 

A a'n' denote the natural map [A]an i-> [A]a/n/, where [A]ßm { A 1 j A'(xi) = 

A (x i)  \/X{ G Gßm }• This map is clearly a continuous surjection. It is not difficult 

to see th a t it is also an open map as p "”n, o pan = pQin> and pan is onto. Order 

c[Ds ] w ith =$ by G' =4 G <£> G1 C G. Then, {(.4an ,p",nn,) \ Ga>n> =$ G an , n' rg 

n, n ', n G N } defines an inverse sequence.

Suppose m  <  n and Ga (m)m C G a(n)n. Define Pa^Tn̂ rn • "F"a(n)n * Fo,(m)m by

- a ( n ) n  def  / at(n)n \ r —1
P a ( m ) m  a ( m ) m  0  vPc*(m )r n l*  0  a ( n ) n ’

where (p"(™ pj* : T[A]A a(n)n -> TpqAa(m)m is a m ap induced by p " ^ ^  : 

A a(n)n -* A a(m)m. In all th a t follows, ( p ^ p j *  will be identified with p " ((^ ”m 

and T^A\Aa^n^n with for each [.A] G A a(n n̂.

Let V  = lim Va(n)n denote the inverse limit of Va (n)n, where Va (n)n «  R 18n for 

each n. Then, V  is a locally convex Hausdorff space. By [7, Theorem , p. 582], 

given a positive definite quadratic form Q : V  —> K. on the topological dual V  

of V,  there exists a unique Gaussian prom easure A of variance Q. T ha t is, its 

Fourier transform  is e_c^/2. So, let A =  {(Aa (n)n, Va(n)n)} denote the Gaussian 

prom easure on V  of variance Q : th a t is, Aa(n)n is a bounded m easure on Va (n)n, 

^ a t ( m ) m  ^ a ( n ) n  0  Pa(n)n ’ where 171 <C 72, G a r̂n r̂n C and Aa (n)n( V ,̂(n)n) —

/̂ a(m)m(f/Q.(m)m ) V Tl, 771.

6 .3 .4 . L e m m a . Let m  < n and (Uni,(f)ni) be a chart in A an about the point [A]n .
def

Then, Umi = Pam(Uni) is a chart in A am about the point [A]m =  p " ” ([A]n ).
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Proof. F irst, let (f)mi : Umi — Fam be a chart in A am about [A}m so th a t the 

following diagram  commutes:

Vo Vn

* n i <t>~A

Ac Ac

Second, observe trivially from the definition th a t Uni = f nj (V an) and p " ^ (F an ) =
defVam• Hence, the com m utativity of the diagram  implies at once th a t Umi =

Pam(Uni) = P a m  0 ♦ J W  =  <t>m\ 0 =  , as claimed. □- 1

Note th a t if {(Uni, f ni)} is an atlas on A an with an associated partition  of unity  

[0ni] subordinate to it, then there is a partition  of unity {#mi-} subordinate to 

{(Pam(Umi), <t>mi)} SUch th a t 0ni = 0mi 0  p™ .

6 .3 .5 . L em m a. Let m  < n and (Uki, <f>ki) de a chart in A ak about [A]k for 

k = m , n, where Umi = Pam(Uni), and set [A\m = p “m (W n)- Then, for any subset 

Dm C A am , f>Zn 0 <f>mi{Dm (T Umi) = <t>ni(Pan (D m)  H Uni) for each i.

Proof. Let [u]n G p*™ o (f>mi(Dm fl Umi)- Then, =3 [A]„ G Uni such th a t </>ni([A]n ) = 

Mn- Since PamdMn) = PZm 0 <t>ni([v 1«) € Umi H D m by definition, it follows 
im m ediately th a t [A]n G Uni fl p%™(Dm ). Hence, [u]n G <f>ni(p%n(Dm) H Uni) and 

Pan ° <f>mi{Dm Id Umt) C (f>ni(Pan (D m) fl Uni).

Conversely, suppose [u]n G </>ni(p%n(Dm) H Uni). Then, 3 [A']n G Uni such th a t 

</>ni([A']n) = [it]„, and p%m([A']n) = [A'}m E Dm fl Umi by definition, as Umi = 

Pam^Dnf)' Hence, (f>mi(\A ]m) G fmiiJJmi C ^ m )  and [w]n G Pan 0 fmi^Umi C Dm), 
yielding the  converse set-inequality fni(Pan (Dm) H Uni) C p^n 0 <t>mi{Dm fl Umi), 
as desired. □

6 .3 .6 . T h eo rem . A induces a promeasure on A.

Proof. Let p a (n)n : F  —> Fa(n)n be the canonical projection v [u]0(n)n. Then, 

Pa(n)n defines a transposition pta(n)n : V f (n)n -> V  given by (pta(n)n( / ) , v) =  

(/)Pa(n)nW >a(n)r» where V  and F '(n)n are the topological duals of F  and Fa(n)n 

respectively, v G F, /  G F^(n)n, and Q n d=  Q o p \ {n)n : Fa(n)n -> R defines a 

positive-definite quadratic form on Fa(n)n, with V'a^ n identified w ith Fa(„)n.

Choose a basis in Fa(n)n so th a t Q n(x) = J2 iL i an,i(x1)2, where an î G R are 
constants, N  =  18n, and set dAfln = f e~DlT/^anii ^ x i '£]ieI1?

^a(n)n ^anii ® ’ C Aflri ^
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defines a Gaussian measure on Va (n)n of variance Qn. Let { { U n i, (f)n i ) }  be an atlas 

on A a ( n)n  such th a t there exists a partition  of unity subordinate to it. Note

trivially th a t the atlas may be taken to be countable as A a(n)n is a Lindelöf space.1 

Given a chart (U n i-,(j>n i ), define an iV-form u;n; on U n i by

def ~
Uni(x) = (dAan x A • • • A d \ an N)((j)ni(x)).

Then, (0 n i ■ ton i ) ( x )  d=  On i ( x ) u : n i ( x )  is well-defined on *4a (n)n as 0 n i ( x )  =  0 V x  £  

U n i , and hence (0n i • cjn;)(:r) =  0 on U nj  for j  ^  i, irrespective of w hether con i is 

defined on U nj .  Thus, u)n  * = = *  ^  • 0 n i • ujn i is a well-defined iV-form on A a(n)n.

Now, observe th a t given a smooth diffeomorphism /  on A,  it induces a sm ooth 

diffeomorphism /  on *4a(n)n such th a t the following diagram  commutes:

A  — A

P a ( n ) n Pa(n)n

A a( n)n A a ( n ) n •

To verify this, let /  be a map on A a(n)n so th a t the diagram  commutes: pa(n) o 

/  =  /  °  P a (n )n -  To see tha t /  is injective, suppose f([A]n) =  f([A']n) for some 

[A]n ,[A ']n £ -4a(n)n- Then, there exists A. A! E A  such th a t pa (n)n(^.) =  [A]n 
and pQ(n)n(Ä') = [A']n. From the com m utativity of the diagram , pa(n)n ° f{A) =  
f  o pa(n)n(A) = f([A]n) and pa{n)n O f(Ä') = f  o Pa(n)n{A') = f{[A']n) imply 

th a t [f(Ä)]n = [f(Ä')]n, where [A]n =f pQ(n)n(A). Whence, the fact th a t /  is 

injective yields the equality [A]n = [A']n. The surjectivity of f  is equally trivial 

to verify: given [B]n E A a(n)n , 3B  E A  such th a t pa(n)n ° f (B)  — [B]. Since

P a ( n ) n  0 f ( B ' )  /  0 P a ( n ) n ( - ® ) )  Set [-S]n P a ( n ) n ( B ' ) .  Then, . / ( [ - ^ j n )  [ - ^ ]n  3-Ild
/  is thus onto. Finally, th a t /  is a homeomorphism follows from the surjectivity 

of p a (n)n  together with the continuity and the open property of p a {n)n  and /•  

Likewise, the smoothness of /  follows from the smoothness of p a (n)n  and /•

It follows from the above discussion th a t given a vector field v and a 1-form 

w on A,  the scalar (v ,w)  on A  defines a scalar (vn , w n) on A a(n)n via (v ,w) =  

(vn , w n) o pa(n)n, where vn and w n are suitably chosen vector and covector fields 

respectively on A a (n )n  (as a diffeomorphism f  on A  induces a diffeomorphism /  on 

^4a (n)n)- Fix a fiducial point A q E A  once and for all and let q denote the set of all 

admissible and hence unbounded equivalent (topological) metrics p : A  x A  —> R+

1 It follows from T heorem  6.3.1 th a t *4a (n)n is paracom pact and  second countab le. T his in 
tu rn  im plies th a t it is Lindelöf; i.e., every open covering of A a (n)n has a countable subcovering.
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on A  com patible w ith its underlying topology. Next, consider a vector field v 

and a 1-form w on A —which are not nowhere zero in general—such th a t (v , w) is 

unbounded on A  in the following sense: given any sequence { A n}n in A ,

lim |(u ,ie )(A n)| =  oo whenever lim p(Ao, A n ) = oo V p £ Q.n—kx> n —>oo

T hat is, |(v , rc)| is unbounded on A  with respect to Ao; and for each n, choose a 

vector field vn and a 1-form w n so th a t (v ,w) = (vn , w n) o pa(n)n.

Let {(Uni , (ftni)} be an atlas on A a(n)n associated w ith a partition  of unity {#m };, 

and let {(Umi, be an atlas on A a(m)m for m  <  n, where P ° \ ^ m(Uni) = Umi

(which is possible by Lemma 6.3.4), with its associated partition  of unity 

satisfying 6ni = 0mi o If D m C A a(m)m is any subset, define

S>m [Dm Cl Urni] — SUp{ |('Cm 5 ^m )(A )| ! A  £ D m H Umi }.

The “set-function” S n is well-defined as (vn , w n) is continuous on A a (n)n, and for 

each z, 3 ^  >  0 such th a t Uni C B 6i(A0) = { A £ A a(n)n | pa(n)n(A, A0) <  Si } for 

some Si >  0 large enough, where pa(n)n is a m etric on A a (n)n compatible w ith its 

quotient topology. Note th a t S n is of course unbounded on the set { Uni : i £ N } 

by construction. Furtherm ore, the fact th a t (v ,w) = (vn , w n) o p a(n)n Vn and 

Pa(m)m = Pa(m)m 0 Pa(n)n for m  < 1 2  will imply th a t (vn , ltf„) = (vm , Wm) O >
and

S n b  n  Uni] =  sup{ |(o„,u)„)(A )| : € ) n  Uni }

= sup{ \(vm ,wm)(A)I : A 6 n  Uni) }

=  sup{ \ {vm , wm)(A)\ : A  e  D m fl paa\n2,)m(um) }

=  sup{ |(vm , wm)(A)| : A  £ D m fl Umi }

= [Dm n Umi\.

As a corollary, setting D m = Umi yields S n[Uni] = Sm[Umi] for each m ,n  >  0. 

Now, define an iV-form CSn on A a (n)n by

oo 

i= 1

and choose the pair (v ,w)  on A  and hence (vn , w n) on A a(n)n so th a t the sum 
below is bounded:

< oo.
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This means in particular tha t Y i  e Sn^ n*̂ fjj . 92ni is bounded as \9ni\ ^  1 for 

each i. Then, £jn defines a bounded measure Aa(n)n on A Q(n)n by

^ a ( n ) n ( - ^ )  /  ^ n
def

oo r

5/ 9 n i  '
i=1 JDnVni

where {0ni} is a partition  of unity subordinate to the atlas {Vni} and D is a subset 

in A a(n)n such th a t for each i , (j)ni(D ft Vni) is Aa(n)n-measurable.

This definition is clearly independent of the choice of partition  of unity {0ni} 
chosen. For let {0'ni} be another partition  of unity subordinate to  the atlas { VT}. 

Then, Öni(A) =  1 =  6'ni(A)for each A  => E i  h i  =  ■
Con =$■ Y i  f  4 @ni ■ &n =  X4 This is not to be confused w ith {0ni} which is

part of the definition of the 1-form Cjn. Since 0ni is arbitrary, one may set 0ni = 0ni 
w ithout any loss of generality and hence take Vni =  Uni for each i. Note th a t the 

definition of Aa (n)n assumes tha t A an is orientable. If it is not, then construct con 
to be an odd form [7, p. 212] and denote it by the same symbol.

The system A =f {(Aa(n)n, *4a (n)n)} defines a prom easure on A. To verify this 

final p a rt, it is enough to check th a t for m < n, Aa(m)m =  Aa(n)n o Fix a

m easurable subset D C Then,

(D ) =  ^ e
i '

/  ®mi ' 10mi
J DnUmi

— 'y  ̂e~Sm[Umt] 
i

I (9mi o 4* mi) dAa(m)m
7 ÖmiiDnUmi)

_  ^ ^ e-Sn[Uni] Jf . )m (Vrn, 0 </>-] 0 dAa(n)n

i J
[  . . {@ni 0 ^ni ) d^a(n)n
MrZftXrmnVn,)

— y   ̂0 ~ Sn [ Un t ]
i J

1 , @ni * wni

\ a(m)— Aa(n)n 0 Pa(n),I’m

where Xalmjm =  Aa(„)„ o Pa{n)n was used in the th ird  equality, and 0„, =  6mt o

P a m  and p“(m)"m 0 4ni =  t m i  0  Pa(m)m together w ith Lemma 6.3.5 in the fourth 
equality. From this, it follows as an im m ediate consequence th a t Aa(n)n(^4a (n)n) =  

A a ( m ) m ( ^ a ( t n ) m ) V tT.,771. d]
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6 .4 . A  P ro m ea su re  on th e  A shtekar M od u li Space

Let DifF(P^) denote the group of smooth diffeomorphisms (endowed with the 

compact C°°-topology) on the bundle space P £ and let Q C Diff(P^) be the set of 

elements /  E Diff(P^) satisfying

(!)  f ( u9 ) =  f ( u ) g  Vw E P^ and g E SU(2),
(2) 7T£ o /  =  7T£, where 7i£ : P^ —» E is the bundle projection.

Note th a t the bundle is actually trivial and hence P^ = E x  SU(2) (which is 

com pact).

Identify P^ w ith S  x SU(2) and let p2 : E x SU(2) —► SU(2) be the projection of
defthe second factor, (x ,g)  i—> g. Set f f  = P2 ° f  for any /  E Q. Define an equivalence 

relation 1Z C A  x  A  on A  by

A  ~  A' A' (x)  = A ( x ) f f ( x )  +  d</>f(x),

and denote A'  by A ^ P  Then, the SU(2) gauge-equivalence class A of A is the set 

{ A ^ f I /  E Q }. Let 7Tsu(2) : A  —> A[SU(2)] be the natural map and A[SU(2)] 

be given the quotient topology. Observe th a t </>f  induces a homeomorphism /  : 

A  —> A  by A I—> A ^ f and hence, if N$(A)  is any neighbourhood of A in A,  then 

&f ( N £( A) )  d=  { AAj I A E Nf i (A)}  is open. Consequently, 7Tgu(2) is an open 

m apping as

*SÜ(2) 0 *SU(2)(JVJ(A)) =  U  */(JVf(A)).
f e o

6 .4 .1 . P ro p o s itio n . A[SU(2)] is H&usdorff.

Proof. Since 7Tgu(2) is open, to verify this proposition it suffices to show th a t 1Z 

is closed in A  x A.  Let {(An,A ^/n )}n be a sequence in 7Z which converges to 

( B 0, B q) E A  x A.  So, An —» Bo and A„/n —> Bo in A  as n —> oo with re

spect to the compact (700-topology. Thus, given any e > 0, r  E N and a fi

nite compact covering )C = f {7ih}”=1 of E, where Ki  C Pi, set Nf(Bo;JC) = 

n r = i^ e ( - Bo](Ui,<l>i),(Vi,rl>i),Ki). Then, 3 7V£)r >  0 so th a t An E N f ( B 0])C) 

whenever n > N Ejr. However, because Anfn —» Bo as n —> oo, it follows at 

once th a t A^/n E 7 r^ (2) 0 7rsu(2)(-PJ(Ĵ o; £ ) )  whenever n >  i\re>r. Consequently, 

Po G ^"su(2) 0 7rsu(2)(^ r£r (Po;/C))- Now, suppose th a t P 0 0  Tsu(2) 0 7rsu(2)(Po). 
This means th a t 3 i  > 0 sufficiently small and some f  >  0 large enough so 

th a t Bo 0  7rsu(2) 0 7FSU(2)(^ rJ(P o ; P )); however, from the assum ption of con

vergence (An,An/n) —► (Bo, Bo), 3 N  > 0 such th a t An,A„/n E ^ sv ( 2 ) o
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^su (2)(N J(i? o ;£ ))  Vn > TV, but B 0 g  ttsi}(2) o ^ su(2) ( ^ ( B 0-, AT)), which is a 

contradiction. Hence, B q E 7rsu(2) 0 7rsu(2)(^ o )5 and 7Z is thus closed, as required. 

□

To construct a promeasure on M[SU(2)], one m ust define spaces Man [SU(2)], 

the analogues of A an• To this end, observe first of all th a t if A(xj)  = B ( x i ) for 

i =  1 , . . .  , n ,  then A^(a:*) =  B ^ f (z ;) for each i = 1 , . . .  , n  and /  E Q. Hence, each 

G an E c[D s] generates an equivalence relation R an C M[SU(2)] x M[SU(2)] by

Ä ~ B A(xj) =  B(xi)  on

where A E A and B  £ B  are any fixed representatives such th a t A ^ f (xi) = B ^ f (x{) 

on G an for each /  E Q. Denote the quotient space by A an[SU(2)] and pan • 

A[SU(2)] —* A a n [SU(2)] its natural map. Moreover, define a m ap 7ran : A an 

Aan  [SU(2)] such th a t the following diagram  commutes:

A Pa n A a n

7rS U ( 2 ) T* a n

-4[SU(2)] -4on[SU(2)];

th a t is, it a n  0 P a n  =  P a n  0 7rsu(2)- It is easy to verify th a t 7rQn is a continuous 

surjection.

A prom easure on M[SU(2)] can now be constructed. F irst, : A an —■► A ß m 

induces a m ap pg” : A an [SU(2)] —> M/?m[SU(2)] given by [A]an h-> [A]ßm such th a t 

the following diagram  commutes:

Ar

A*n[SU(2)]

P/3> Aßi

T t ß r n

-an
P ß m

■A„m[SU(2)].

So, define p an by Han =  Aan ott“ *. Then, fian defines a measure on A an[SU(2)] as 

Aan is a bounded measure. Thus // = f {(Aa (n)n[SU(2)], Ha(n)n)} defines a prom ea

sure on M[SU(2)]. To verify this, recall th a t Aa(m)m =  \ ß ( n)n o pßJ ^ ”\  and for 

each n, Aa(n)n is bounded. Hence, the relation 7rß(rn)m o pQß[ ^ m = p ^ y m  0 M « )«  

together w ith the surjectivity of the maps imply th a t Hß(m)m = ^ß(m)m°^ß lm)rn =
\ ß ( m ) m  —1 ~ ß ( m ) m  ■ nAa(n)n o P a ( n ) n  O 7T/3(m)m =  pa(n)n o pa(n)n , as required.
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6 .5 . D iscu ssio n

This chapter will end w ith a tentative sketch of the construction of a prom easure 

on A  th a t is sim ultaneously SU(2) gauge-invariant and Diff+ (E)-invariant. The 

construction will in fact tu rn  out to be amazingly simple. F irst, some notations 

will be introduced. Let d s  : A  —> ÄP  denote the quotient m ap, where A s = f 

A /D iff+ (E) is the space of Diff+ (E)-equivalent connection 1-forms:

A  ~  A! <=> A' = f * A  for some /  E Diff+ (E).

Now, fix any /  E Diff+ (E) and consider A, B  E A  such th a t A(xi)  =  B ( x i ) Vz =  

1 , . . . ,  n. Since under a coordinate transform ation induced by / ,  A a(xi)  —* A'a(yi) =  

I j z f xf iA b(xi)  and B a(xi)  -> B'a(yl) = ~ ^ B b(xi)  for each i = 1 , . . . , n ,  where 

rc; =  f ( y i ) ,  it follows at once th a t f * A ( y i ) =  f * B ( y i ) for each z. Hence, the 

following equivalence relation ~  on A an given by

[A]an ~  [A']an 3 /  E Diff+ (E) such th a t f * A (x i )  = A ' (x i )  Vz =  1 , . . . ,  n,

where A (resp. A ') is any representative of [A]an (resp. [A']an ) is well-defined.

Denote the coset of [A]an under ~  by [A]^n and the quotient space 

A an/D if f+ (E) by A ^n. Furtherm ore, let 7tan : A an —* A ^n denote the quotient 

map. Then, the following diagram  commutes:

A Pan 
-------------> Ac P

a n 
a m 
----------> A am

7TS

AE PQ" A £  1
r»

a n 
a m* AP^ a m i

where p'an (resp. (p')Sm) is a projection induced by pan (resp. p " ” ). Finally, 

given /  E Diff+ (E) and an SU(2) gauge transform ation (f)g, where g E Q, set

f * D  =f { f *  A  I A € D  } and =  { A*> e  D  }, where and A*‘ =

< t> p M g  +  <t>glM g -

6.5.1. Remark.  It is easy to see th a t given any subset D  of A an such th a t D  ^  A an , 

flan 0 n an (D) ^  Aomi where Han =  ^an  ® ^an &nd IIan =  7Tan 0

6 .5 .2 . L e m m a . For each D  C Acm, B an o n an(D) =  n an o IIan (D).

Proof. Now, given /* (A ^) E 0 an o n an(D ), where A E D  and D  C A an , f * ( A ^ )  = 

o f ) ~ l f*A{(j) o / )  +  (<£ o / ) - ! / *  d<£. So, set B  = /* A  and <p =  f  o / .  Then,
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d<p = f*  d (f) and

r{A*) = (4 o Of)+ (4,0 Z)-1/* A4,
=  <p~l Bp> + d<̂ >

= b * e n a„ o n an(D).

Hence, H q o C Ha^ o Han(D ^.

Conversely, consider any element (f*  A G n an o I lan(D ), where A  £ D, set 

p> =  (f) o / - 1 . Then, d(£> =  ( / _1)* d0 and

( f A p  = 4 ~ 1r A 4  + 4 ~ 1d4

= 4 ~ 1r A 4  + 4 ~ l r  ° ( r 1y d 4

=  f* (ip~ 1A if +  y -1 dy>)

= f*(Av) e n „ o n m (D).

Hence, IIan o n an (D ) C n an o IlanfD ) and the assertion thus follows. □

6 .5 .3 . T h eo rem . A an adm its a (bounded) measure van that is sim ultaneously  

Diff+ ( £ ) -invariant as well as SU(2) gauge-invariant.

def ~Proof. Set V a n  =  Aan o n^n o n an. By rem ark 6.5.1, î an is not a “triv ial” measure 

in the sense th a t the equality uQn(D ) =  i/an(A an) for each m easurable D  w ith non

em pty interior will not hold in general. And by lemma 6.5.2, van = Xan o n an o 

f lan . Hence, for each Aan-measurable subset D  C Aan-, van (f* {D ^)) = Van(D) — 

vQn ( { f * V /  E Diff+ (S ) and any SU(2) gauge transform ation (j>, and it is thus 

the desired Diff+ (E)- and SU(2) gauge-invariant prom easure on A an• □

The following result is now im m ediate and it will conclude this paper.

6 .5 .4 . C orollary . A Diff+ (E )-invariant and SU(2) gauge-invariant promeasure v 

exists on A .

Proof. Set v =  {(^a(n)n, ^a(n)n)}- Then, the proof th a t v is a prom easure follows 

from the com m utativity of the following two diagrams:

*̂ a(n)n * *̂ c*(n)n *

.SU(2)
a ( n ) n _4SY(2> -4E( ,a ( m ) m  at(n)n A Ea { m ) m  ’

for each m  < n, where A ^ (2) =f A a fc[SU(2)] for typesetting convenience. □
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In the previous section, the existence of an SU(2) gauge-invariant prom easure 

on A  was dem onstrated. This chapter will close with an alternative (but somewhat 

speculative) construction of a diffeomorphism-invariant prom easure on ^4[SU(2)]. 

The results developed by Ashtekar et a 1. in reference [2] applies to a projective 

family of compact Hausdorff spaces whereas the projective family of spaces in tro

duced above are non-com pact. Perhaps the concise ideas expressed along the lines 

introduced by Ashtekar et a 1. in reference [2, §3.3, Eqns (3.13a) -  (3.13c)] will 

yield a diffeomorphism-invariant promeasure. The details, of course, are yet to be 

worked ou t.2

The ideas regarding an alternative construction of a diffeomorphism-invariant 

prom easure on *4[SU(2)] revolve around a result obtained by Baez [6, §4, Theorem  

5]. Using notations consistent w ith Baez [6], define A 7 to be the set of spinor 

propagators along a pa th  7 defined by the Ashtekar connections A  E A . There 

are subtleties involved such as the requirement th a t the pa th  7 be piecewise real- 

analytic (as opposed to piecewise smooth); however, for the sake of brevity, these 

technicalities will be ignored here. Only the m ain ideas will be of interest.

It is known th a t D iff(S) is a locally Frechet C°°-group [9]. Conceivably, it is not 

very difficult to modify the theory of promeasures on locally convex linear spaces 

to manifolds modelled on locally convex linear spaces to construct prom easure on 

the manifolds. So, suppose th a t a non-trivial prom easure p can be constructed via 

a projective family of left Haar measures defined on a family of finite dimensional 

projective topological groups of Diff+ (E). Then, appealing to Theorem  5 of article 

[6] by Baez, the convolution p * A defines a Diff+ (E)-invariant prom easure on A , 

where A is a prom easure on A  and the convolution p * A is defined [6] by

0 * A) ( / ) = f f  f { g A ) d p ( g ) d \ ( A ) ,
7Diff+(E)xA0

where (j> is an em bedded graph [6, §3] in E, A $ = f *^7 1S the Cartesian

product of (finite) edges 7 of the graph </>, E((j)) denotes the (finite) set of edges 

of 0, and D iffJ(E ) =  Y lxev(<f>) DifF+ (E) with U(</>) being the (finite) set of distinct 

vertices of <j). Having obtained a Diff+ (E)-invariant prom easure on A , one can 

then project the prom easure down to ^4[SU(2)] which was shown in detail in the 

previous section.

It is im m ediately obvious here th a t the burden of constructing a Diff+ (E)- 

invariant prom easure on .A[SU(2)] is now shifted towards the task of constructing

2 Keeping fingers crossed for good measure!
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a suitable prom easure on Diff+ (E) and then modifying the analysis given in refer

ence [6] so th a t the results there applies to the ideas delineated somewhat tersely 

here. Assuredly, the entire analysis sketched here is delivered in a ra ther cavalier 

and rushed manner; however, hopefully, the essence of the ideas to be conveyed is 

not lost in the flurry!
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CHAPTER VII

SPECULATIONS AND CONCLUDING REM ARKS

7.1. Introduction

In this final chapter, an a ttem pt at expressing the reality conditions 

E a = (EaY  and A a +  a \ = 2Ta,

where Ta is the spin-connection coefficients, directly in term s of the loop variables 

will be made. For more details regarding the reality conditions, consult references 

[1, Chpt 8, p. 101], [2, Chpt 7, p. 102], [4, §3.1.3, p. 1636] and [3, p. 305].

Briefly, the way the reality conditions relate to the physical inner product can 

be explained as follows. Consider a gauge-invariant observable P fq , A], which will 

be assumed here to be a function of both  the loop as well as the Ashtekar con

nection 1-form. Suppose th a t it commutes (weakly) with the diffeomorphism and 

Ham iltonian constraints. Furtherm ore, suppose th a t an inner product on the space 

of multi-loop functionals is also defined. Then, because P[y,A] is a physical ob

servable, P[j,A]  m ust be H erm itian with respect to the physical inner product of 

the theory. Hence, any potential physical inner product m ust satisfy

(pt[7,A]V>|<£) =  I P[l->

The next criterion th a t the inner product m ust satisfy is th a t it m ust be defined 

in such a way th a t A a +  A\ = 2Ta also holds.

It is not at all obvious how the reality condition can be im plem ented in the loop 

representation directly. This will be the contents of section 3. In section 2, the 

smearing of the quantum  T n-operators will be described. The final section will 

summarise the m ajor results obtained in this thesis.

7.2. The Loop Representation Revisited

In this section, the smeared version of the T-operators will be constructed. The 

construction here is based on a ra ther brief description given in reference [5, §3.6,
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p. 118]. A word regarding the M andelstam  identities [2, p. 274] will also be 

m entioned. Let A4 J be a subset of M \  spanned by loop functionals tp satisfying

(1) ip[y] =  tp[7'] whenever 7 ' ~  7 ,1

(2) ^ [7  * 77 * ?y_] =  ^[7] V 7 ,77 E Adi,

(3) t/>[0e * 7] =  2^[7] V7 E M i ,

where 7 ,7 ' are loops and 77 is a curve based at a point on 7.

In the construction of A4* for n > 1 given in §3.4, replace M \  w ith A4*, and 

consider the resulting smaller subspaces A4* arising from the replacem ent of M \  
w ith Ad* in all the discussion th a t follows. Then, it is clear from the definition of 

M*  th a t each 4>n E A4* satisfies

(a) $ n [7n] =  $n[7n]> where ^  =f } and 7n ~  7n5

(b) [71 *»?1 * 7 - : 7 2? • • • 5 7 n] =  ^ n [7 1»---»7n]>

(c) $n[0S * 7 1, • • . ,  Oe * 7 n] =  2 * n [7 1, . . . ,  7 n].

A final non-linear condition will be imposed on the elements of A4*. This non

linear condition is a consequence of the spinor identity T[7 * 77, A] +  T[7 * 7y_, A] = 
T [7 , A]T[t;, A] m entioned in C hapter 2:

(d) $ n [7 * 7?, • • • ] +  $n  [7- * 7, • • • ] ~  $ n + 1 [7» »/»•••]= °*

From these, it can be shown th a t $[7] =  $ [7 -] and hence 4>’s are also invariant 

under orientation-reversing reparam etrisations.

W hat was not mentioned in §2.4—or at least, deferred to this section—was 

the M andelstam  identities. They are a set of conditions, often “non-linear” ones, 

imposed on the Wilson loops. They will not be given here bu t can be found, for 

example, in a well w ritten article [2, p. 274] by Loll on the loop representation. It 

should suffice to mention here th a t these conditions m ust also be included in the 

loop representation theory although, things being the way they often are in the 

real world, they greatly complicate the theory. Fortunately however, Rovelli and 

Smolin recently overcame the hurdles imposed by the M andelstam  identities in the 

loop representation—the details of which can be found in reference [6].

R eturning to the main topic of this section which is to construct a rigorous 

smearing procedure for the T-operators, the idea of a loop with “fattened” regions 

will now be defined. Given a loop 7 E A4i, let Vn( I , 7) denote the set of pairs 

(P, J (P ) ) ,  where P  =  { 0 ^  si <  • • • <  s n < 1 } is a partition  of / ,  and J ( P )  is the

1 y  ^  7 denotes th a t 7 ' is a reparam etrisa tion  of 7.
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finite set { J ( s i )  : i =  1, . . . ,  n  } of closed intervals satisfying

(i) J(si )  C I  is a closed interval,

(ii) J(si )  Cl J( s j )  =  0  V« ^  j ,

(iii) if si =  0, then J (> i) =  J{0) =f [0,e+] U [e_ ,l] with [0,e+] fl J ($ 2) =  0  

and [e_, 1] H J ( s n ) =  0  for some e± G J.

For any pair (P, J )  G P „ ( I ,7 ), consider a continuous m apping 7n : 72 x 7 —► S 

th a t satisfies the following:

(1) for each a  G 72, 7«,a =* 7n(<A •) is a loop in E;

(2) 7 n (2 1 2> * ) =  75
(3) 7n(cr, w) =  7 (w) V (<7, w) G 72 x (7 -  u r= i

(4) suppose th a t J ( s l) = [s“ ,5+]. Then, • )| J ( s l ) is a curve in E th a t

connects 7 (s~ ) to 7 (3* ) for each a G 72;

(5) 7 „ ( /2 x J ( s t-)) n 7 „ ( /2 x J(s j ) )  = 0  \ / i ^ j  unless 7 (3*) =  7 (3,) .

Call 7n a 2-parameter congruence associated with (P, J ) .

Let A1(E) be the space of smooth 1-forms on E and D n( E ,7 , 7 ) be the space 

spanned by ro-forms /  along 7n of the form

/ ( 7n((Jl,S i)),. . . ,7„(<7„,3„)) =  /l(7„(<7i,S i)) A • • • A /n(7n(crn ,<5n)j,

where / i ( 7„(<7i, s*)) =* Si))> /* C A*(E) for each z, and ef : 7 -> 7

is a sm ooth function w ith support supp(e” ) =  J($ j) for each i. The functions e” 

ensure th a t P a ,(7 («s)) rem ains within the intervals J(si).  See [5, §3.6, p. 118] for 

an equivalent form ulation.

Now, given a T -operator T n[7 , A ](si, . . . ,  s n) =  T 01'"“71 [7 , A ](s i, . . . ,  s n), its 

smeared version T n [7n, A]( f )  is defined by

J d2<Ji ... d2 ern J dsi . . . d s n/ ( 7 n( a i , 5 i 7n((jn , s n ) ) - T n[7 ,A ] ( s i , . . . , s n),

where 7n is a 2-param eter congruence associated w ith some (P, 7) G P n(7 ,7 ) and 

/  G 7)n( E ,7 ,7 ). To simplify notations, the Ashtekar 1-forms in the T-operators 

will be assumed fixed and not spelt out explicitly in the T-operators.

3 .4 .1 . E x a m p le . The smeared com m utator between T 1 [71 ] ( /)  and T[r)] will be 

worked out below, where 71 is a 2-param eter congruence associated w ith (P, J )  G
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7M/,7) and/€!>,(£,/, 7).

« r ‘ [7 i] ( /) ,rM ]# ) [a ]

=  I  d2u ds/(7i(<j, s)) - T 1 [71](•s)'!'[?7 \J a] — J  d2cr d s /„ (71(17, s ))T [j/]-

S ^ ( - i r (i»A*[7 l ,a l ( S)^ [ (Tl,„ * a ) " “ »]
£

= j  d 2crd5/a(7i(c7,<s ) ) ^ ^ ( - l ) n(e)A a[7i,77 U <*]($)$[(71 ><y * (a  U r))e] -  

j  d 2o-d5/a( 7 i ( c r , 5 ) ) / i ^ ( - l ) n(e)A a[7i,Q;](s)^[77 U (71,a * a) €]

=  /  d2crd3/a(7i(cr,5) ) ^ ^ ( - l ) n(e) { A a[7 i ,a ] (5 )^ [ (7 i j(T * a ) e U t/] +
J  e

A a[7i>»?](s)^[(7i,<T * tjY U a]} -

f  d 2<7d3/a( 7 i ( c r , s ) ) ^ ^ ( - l ) n(c)A a[7 i,o ;](s)^[(7 i)CT * a ) e U 7]
^ £

=  /  d2a d s / a( 7 i ( c r , 3 ) ) ^ ^ ( - l ) n(e)A a[7 i,7 ](3 )^[a  U (7 i )(T * 7)e]
J  e

= (  d 2crd3dw /a(71( ( 7 , 5 ) ) ^ ^ ( - l ) n(e)77a(u)<53(7(w ),7i(cr,3))^[(7li(T * 7/)e U a]
^ €

=  ^ ^ ( - i ) n(e) /  d u /a(7(u))7a(u )^ [(7 i(c r(u )),')  *7?)e Ua] 
e ^

= r^ ( - i )"(<) jf /  • f  i[(7i,^.) * »»mH,

where <7 =  cr(u) is now regarded as a function of u, a : I  —* I  x I. Whence,

[r1[7i](/),i,M] = f i^ ( - i)nw j f /  • *i/)n(<)]. □

In general, T a i’"°n [7 ](s i,. . . ,  s n) may be regarded as a d istribution belonging to 

the space L'n(E ,7 ) (8) where T n(E ,7 ) (equipped w ith a suitable topology)

is the space of test functions </? which regularise T ai‘"an[/y](si , . . . ,  s n), L'n(E ,7 )  is 

the topological dual of L n(E ,7 ) and L(M*)  is the space of linear transform ations 

on jCt*. T ha t is, T n ['yn]((p) : M.* —> Af* is a linear transform ation.

The phrase “loop representation11 is m eant in the following sense. Let %n 

denote the space of the T n-observables and define the T-algebra % to be the
def *

graded sum of Xn’s: % =  © ne^ T n- i -  Finally, let An : %n —> M*  be given
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by An ( T a i " ,an [7 , A])T =  T ai- , -a" [7 , A]T. Strictly, An ( T a i ’" an [7 , A]) has to be reg

ularised; bu t in order to keep the discussion simple here, th a t bit of technicality 

will be skipped. Then, the loop representation is the m ap A : X  —> Ad* is defined 

by its restriction to %n\ A|%n = f An .

7.3 . R ea lity  C on d ition s

The work explored in this section is purely speculative and should only be con

sidered as such. Here, an a ttem pt is made to seek for an explicit expression of the 

reality condition A^ +  (A^)1 =  2Tla in the loop representation .2 The m otivation can 

be found in the quantum  T 1-operator. F irst, observe th a t the following expansion

0 0  r 1 /**2

?7[7,A] =  1 + V  / dtn- • • / dtiAan(7(tn))7a”(tn) . . .  Aai(7(^i))7ai(ti)
„ - 1Jo Jo

of the complexified SU(2) holonomy implies heuristically at least th a t the quantum  

operator T[7 ,A], where T[7 ,A] =  tr?7 [7 , A], can be expressed as an infinite sum

rb,A] = T,7=o q P l where

This property  together with the definition of the action of T° on the multi-loop 

functionals— cf. Eqn (3.5.1) in §3.5— act to m otivate the following ansatz:

£ j[A ]#ro def T m[7 , •] if m =  n, 
0 if m  ^  n,

where T m is an m-loop functional. For the case when n — 0, set i  =* f°[A] and 

define it as follows:
.  def f T if T 6 c,

( 0  if T C Ad* for n > 0,

where the space Ad5 °f constant multi-loop functionals is identified w ith C.

Next, observe th a t f^[A]— and more generally, the f” [A] operators—may be 

w ritten potentially as either

(7.3.1) i\[A] = t r f  d tA a(7 (t))7 a(t) or i\[A \ = t r  f  df7 a(t)A a(7 (f)).
Jo Jo

2 As far as the  au th o r is aware, im plem enting the  reality  conditions explicitly in the loop 
represen ta tion  has no t appeared  in any lite ra tu re .
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Because the former involves the product of two operators at the same space point 

7 (f), there is the question of operator ordering—7aA a or Aa7 a—to be resolved. 

And indeed, as neither A a$  nor 7 “^  are known a priori, the question is moot. 

Hence, only the la tte r case will be considered in this analysis. However, the point to 

note about (7.3.1) is th a t if the explicit m anner in which the operator j a( t)Aa(j( t))  

acts on T is known, then in principle, the im plem entation of the reality conditions 

in the loop representation would be an easy task to accomplish.

Consider a loop functional ip (E A4* and the action f* [A] on it: (f* [A]^) is a 

constant loop functional on M \  with the value -0[77]. T hat is,

(7.3.2) d t7 a( * ) ia(7(*)>/^ [7] =  V’M V 77 E M i .

It thus remains to come up with a suitable definition for the action of A a(pf(t)) 

on so th a t (7.3.2) holds. Then, one can proceed to solve explicitly how ftj[A] 

acts on Wn, an n-loop functional, to yield the (n — l)-loop functional ^ „ [7 ,-]. 

However, even assuming th a t the action of A  can be solved, implem enting the 

reality conditions might even then prove to be somewhat obscure.

So, returning to (7.3.1), another alternative is to proceed along the following 

lines. Consider the following ansatz:

t\[A\ip d=  f  dtA a(7 (t))7 a( t ) 0  
J o

This is quite reasonable since being in the loop representation, it is only natural 

to expect th a t the loop takes on the active role as an operator ra ther than  the 

connection 1-form. Furtherm ore, in this form, it is an easy m atter to implement 

the reality condition. Thus, one has only to emerge w ith a suitable definition for 

the quantum  loop operator 7 a(t) to act on t/> so as to recover the equality given in

(7.3.2) . Unfortunately, this problem is yet to be solved.

There is, however, a less appealing aspect of the T°-operator th a t could bring 

the entire analysis to a halt: to wit, the fact th a t T[7 ,A]T = ^ [7 , •] VA E A  

strongly suggests th a t the operator T[7 , A] is independent of A\ This impasse 

would of course prove to be somewhat of an em barrassm ent.3 Work is currently in 

progress along all possible avenues of thought.

3 A somewhat rash— if not desperate, and hopefully not too incongruous—quick fix to this 
problem might be to consider the former case of (7.3.1) and set A a to be the identity operator

1. Then, the reality condition A a +  a \  =  2Ta would imply that f  a =  1 =  Ä Ä . Perhaps in the 
light of the action of the T n-operators on ^  for n 6 No, this suggestion might not be as inane as 
it seems since the operators do not appear to have any dependence on A whatsoever.
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7.4 . C on clu sion s

In this thesis, a brief historical perspective of quantum  gravity was traced out. 

Arguments were pu t forward in favour of a non-perturbative treatm ent of quantum  

gravity, and the pros and cons of quantising gravity in the loop representation ou t

lined. A shtekar’s H am iltonian formulation of general relativity was given in some 

detail in C hapter 2 and the self-dual representation as well as the loop representa

tion theory of quantum  gravity sum m arised therein.

In C hapter 3, the topological structure of the multi-loop space M. was analysed 

and it was found to be a second countable metrizable space consisting of the dis

joint union of the n-loop spaces. Moreover, a subset of the space of continuous 

multi-loop functionals was also constructed. In C hapter 4, a precise relationship 

between a subset of ^o-loops and the 3-geometries of S was established w ithout the 

introduction of a lattice spacing, and a non-trivial diffeomorphism-invariant, outer 

regular Borel multi-loop measure was constructed in C hapter 5. Furtherm ore, the 

H erm itian conjugates of the T n-operators were also evaluated explicitly in th a t 

chapter.

An SU(2) gauge-invariant prom easure was constructed on the space of Ashtekar 

connection 1-forms in C hapter 6, and some basic properties of A  was established. In 

particular, A  was shown to be an infinite-dimensional manifold. Some speculations 

concerning the possible construction of a diffeomorphism-invariant, SU(2) gauge- 

invariant prom easure was also described. Finally, in this chapter, the form ulation 

of an explicit expression for the reality condition in the loop variables was essayed 

although the program m e was not completed.

All in all, form ulating a theory of quantum  gravity in the loop representation 

proved to be ra ther rewarding even though there are problems still associated 

with it. The loop representation has given researchers a much deeper and richer 

insight into the convoluted state  of gravity at the quantum  level. Yet the ultim ate 

question still remains: is it possible to have a consistent theory of quantum  gravity 

or is general relativity intrinsically incom patible with quantum  theory? Certainly 

the loop representation holds a great promise towards solving this tim e-honoured 

conundrum , unless belike, there lies a more profound m ystery behind the scene 

th a t natu re  is loth to yield! Or as Shakespeare’s Hamlet [7, 167-168, p. 805] so 

aptly puts:

“There are more things in heaven and earth, Horatio,
Than are dreamt of in your philosophy. ”

— Hamlet, Act I, Scene V.
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A PPEN D IX

A. The Com pact C°°-Topology

The definition of a compact C°°-topology will be reviewed [5, pp. 32-33, §§4.1— 

4.3]. Let J n [E] be the space of C n-jets from E into E and denote an element 

in J n [E] by either j n( f ( x) )  or [f , x]n (which ever proves more convenient). Fix 

an atlas =  {(Ua ,xpa )}aeA on ^  and set 2ls(?7a ) =  { U C Ua \ U open }. 

Then, = U a2ls(?7a ) forms a base for E. Let J°[E] =  E x S and let 7rJ : 
J 1[E] -► J°[E] by iV ( p )  h* (p,(J)(p)). Set U la, = ( ttJ )_1(Z7a x Ua>) and define 

p± : J 1[E] —> E by p \  : j 14>(p) i—> <t>(p) and p]_ : j 1(f)(p) i—>► p. Then, it is clear th a t 

U l Q, = ( p l ) - \ U a ) n ( p \ ) - \ U al). Finally, let 2 1 ^ ' = { ( tt" ) ~ \ U  x U') \ U x U' C 

Ua x open }. Then, 931 =  (Ja a , 2laa , forms a base for J 1[E]. Following [6, 

Definition 4.1.5, p. 94], define \&da , : U*a, = 3B £a(xa ) x 3B £a, ( x Q<) x NlB ei( x i)  

by

[<£,p]i ^  (Vv*(p)>^K^(p))> A*(jV(p))),

where nB £(x)  is an open e-ball in R n and D aj 1(j)(p) =f j  ^fr^aa'CV’oO5))} for some

N i  E N such th a t D aa> : U 3 a , =  N l B S l ( x i)  and (f)a a > =  i p a i o cf) o t j ) ~ l . The pair 

\F^a ,) defines a chart on J 1[E]. Denote \Faa , symbolically by ij)a  x i p Qi x D a .

Now, define p \  : J 2[E] —» E by p2_ : j 2(f)(p) i-> p and p \  : j 2(f>{p) •—> </>(p). 

Furtherm ore, define ^  : J 2[E] —■> J°[E] by 7r5 (i2 0(p)) =  (p> <^(p)) and let ^ 2a / = f 

(7r2 )~ 1(^<a x {/<>')• Then, £/2a, =  (p?_)_ 1 (l7a ) fl (p^.)- 1(CfQ(»). And as with the case 

for J l [E], the pair (U2a#, T 2^ )  defines a chart in J 2 [E], where \F2 a , =f x t /v  x 

D q, x D 2a and D 2 : U2a, = N2B £2(x 2 ), for some 62 >  0 and some N 2 E N, is defined 

by D 2a ( j 2(J)(p)) =f { ^ T r ^ r ^ a 'W a ( p ) ) } .  < . • Also, define tt̂  : J 2[E] -> J X[E] by 

[<^,p]2 [<̂>, p] 1 . Then, by definition, n® = 7rJ o t̂ \ and ^ ( ^ a ' )  ~  ^ a a 1-1 Finally,

let 21L '  =  { M ) " 1^  X L ')  I L  x [/' C  x t v  open }; then, <B2 =  (J«,«' 2l2a , 

forms a base for J 2[E].

1 For j x4>{p) € tfa a / => ttiO'1^ ) )  =  CP,<I>(P)) G t/«  x C/a / =X j 2<Kp) G t / 2a , and so, U ^ ,  C
4 ^ / ) '  Conversely, j l <t>'(p') € => j 2<t>'(p') G £/2a , => (p ', <t>'{p')) e  Ua X Ua, => the
converse set-inequality , as required .



B. DIFFERENTIAL CALCULUS ON M 107

By induction, given J n[E], (^n )_1(^ a  X Ua') =  (pü.)_1(^a) H (p+ )- 1 (I7a/ ) and 

7r^_1( ^ a / ) “  C ' 1, Furtherm ore, the pair ( ^ a/ , ^ J a») forms a chart on J n[E] 
as follows: = f X i/>a' x n ”=i where

w ith some iV* G N such th a t D ea(U^a,) = NlB £l(xe). Tersely, \I>™a/ : U™a> = 

3B £a ( x a ) x 3B £a, ( x a>) x n r =1 N i The  topology on J n[E] is generated by the 

base 93n =  U aa, 2l£a ,, where 2l"a , =  { (7r°)-1 (?7 x 17') | U x U1 C x C7a» open }.

It follows from the construction tha t { J n [E], 7r” 1, N} forms an inverse sequence.
Hpf

Let J°°[E] =  ^im J n[E] denote the limit of the inverse sequence. Then, Q3°° =  

{(7rn )- 1 (?7) I U E V n} defines a base of J°°[E], where 7rn pn |J°°[E] and 

pn : riigN *7*P] J n[^\ is the n th  projection. Observe from [3, Proposition 2.5.1,

p. 98] th a t J°°[E] is closed in the Cartesian product

The compact (or weak) C°°-topology on C °°(E ,E ) is the topology induced by 

the map j ° °  : C °°(E ,E ) —> C (E, J°°[E]) defined by /  t-> j ° ° f  = f [ / , - ]o o  such 

th a t it is a  topological imbedding. Let Diff(E) C C °°(E , E) denote the set of C°°- 

diffeomorphisms on E. The composition m apping o : Diff(E) x Diff(E) —> Diff(E) 

given by ( f , g)  f  o g defines a group structure  on Diff(E). Indeed, the group 

structu re  is compatible with the compact C°°-topology on Diff(E) [4, Ex. 9, p. 

64]. Lastly, observe from [4, Theorem 1.6, p. 38] th a t Diff(E) is open in C °°(E ,E ) 

(as E is compact implies th a t the weak and strong C°°-topology coincide).

This section will conclude with a brief sketch of the compact C°°-topology on 

the space T̂ ~ of (admissible) Riemannian metrics on E. Let p s  : S ^ E  —> E be the 

sym m etric covariant 2-tensor bundle over E and p ^ n : J n [ps] —» E be the C n-jet 

bundle of the cross-sections of E. Then, defining : J 1^ ]  —» S  x E as

above by j 1q(x) i—> (x ,q(x))  and 7T™n : J h\p e ] —> Tm[ps] by j nq{x ) l—► j mQ{x )
whenever m  ^  n, one again obtains an inverse sequence { J n[px;], T4}, where

J°[pz] d= E  x E. Finally, let J°°[p e ] denote the inverse limit of the sequence 

and set 7rg =f P§|«/°°[pe], where pg : üt^N » J n[Pa] is the n th  projection.

The topology of is then defined by the (topological) imbedding j° °  : T+ «—>

C ( E ,J ~ [ p e ]).

B . D ifferen tia l C alculus on M n

Here, the concept of derivatives will be form ulated on locally pa th  connected, 

m etrizable spaces. The motivation originated from the a ttem pt to express the
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loop constraints as derivatives of loop functionals. However, this a ttem pt failed 

to eventuate. The construction sketched here extends the concept of differential 

calculus defined on linear spaces to non-linear spaces th a t do not adm it manifold 

structures modelled on a locally convex linear space.

Now, consider a locally p a th  connected m etric space (X , d) and let {Cß}ß^ß  be 

the set of (path) components of X  th a t partitions it: th a t is, U/3gB Cß = X . Fix 

an Xß E Cß for each ß  E 7?, and regard Cß as the pointed subspace (Cß, Xß ) in X  

in all th a t follows. From here on, will be denoted by 0^.

Given e E M., if H £ : X  =  X  is a homeomorphism such th a t d( H£(x),  x)  = 

|£| \ / x  E X , call H e an e-isometry on X . Let H  = { H£}£^r be a 1-param eter 

group of isometries on X  such th a t each H £\Cß : Cß = Cß V /? E B.  Next, consider 

1-param eter groups {H } of isometries such th a t each H  generates a set of curves in 

Cß th a t foliates it for each ß  E B.  T hat is, on each C/j, there exists a set A(/?) C Cß 

such th a t the family hß = {hß,x}xeA(ß)  of curves hß,x : R —> Cß in Cß defined by 

hß)X(t) = f Ht ( x ), where hß,x(0) =  x , satisfies:

(i) Cß = UxGA(/3) hß,zfö) i
(ii) hßtX(R)  n  hßjX>(R) =  0 ,  V x ±  x \

(iii) for each x E A(/3), hßiX(t) = hßtX(t') => t =  t ' ,

This 1-param eter group H  is called a d-translate on X  and H £ E H  is called an 

£ d-translation  on X . Let T (X , d) denote the set of all d-translates on X . The 

family hß of curves induced by H  E T (X , d) is called an H-f low on X .

Let 71)(X , d) C T (X , d) be the set of all d-translates such th a t (a) for each 

ß  E B  and x E Cß,  there exists a unique H  E 7o (X ,d) w ith hß,oß(e) = x for some 

£ E R ,  where hß is an i7-flow on X , (b) given a pair 7,77 E C73, 3 r  E M, E Cß 

and some H  E 7o(X, d x )  such th a t hß,oß(r) = 67tj and hßn (r) = rj for some 

r, r  E R, and (c) given an H -flow {hß,x}X£A(ß) and an H '-flow {h'ß x}xeA(/?) with 

H , H '  E To(X,c?x), there exists a continuous m ap Rß  : I  x Cß —» Cß such th a t 

Rß  1 o hß,x =  h'ß x for each x  E A(/9), where Rßt  *=f Rß( t , •). Denote this unique 

d-translate by H[x \.2 In other words, H £[x](0ß) = x for some e E M and condition 

(b) translates to =  77. Finally, in all th a t follows, if (X, d x ) and (Y, dy)

are locally p a th  connected m etric spaces, let

+ (x)  def f dx (0ß, x)  if x  E Cß [X],
£ (X) ~  \  dy(0  ’ß ,x)if x € C ß \ Y ] ,

2Clearly, H[x] =  H[y\ iff x and y both lie on the same “orbit” ; th a t is, 3 8 x ,8 £ M such that
H s A x](°ß) =  x and H Sx +s[x](0ß) = y.
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where Cß[X] denotes a path  component of X  etc., for each ß, with Cß[Y] regarded 

as the pointed space (Cß[Y],0'ß), and set

, def f £+(x) if f f e+(x)[x](0ß) = X,  

l  - £ + (â ) if H_£+(x)[x](0ß) = x.

B . l .  D efin it ion . Given a continuous function /  : X  —> R, a fixed point x 6 Cß 
and any point y G Cß, define

Df ( x - y ) def
Jim / ( * % ] ( * ) ) - / ( » )  if „  + Xßf

0 if y  =  Xß ,

where the limit is defined with respect to the d-topology. If the limit D f ( x ; y )  

exists, then /  is said to be d-differentiable at x along H[y],  and Df(x ' , y )  is the 

d-derivative of /  at x along H[y\. The notations Df(x ' , y ) ,  Df ( x ) ( y )  and f ' ( x \ y )  

will be used interchangeably.

The following properties of D  are easy to verify:

(1) D  is a derivation; th a t is, D ( f ( x ) +  cg(x )) =  D f ( x ) -f cD g(x ), and 

D( f ( x)g{x ) )  = f ( x )D(g( x) )  + g ( x ) D( f ( x ) )  V d-differentiable / ,  g G

C(X,  R) and c G R;

(2) D f ( x )  = 0 Vx € Cß f  is constant on Cß.

The second derivative D 2 f ( x )  at x is defined to be

D 2 f(x: u , v) =  lim
J v y t-+o

D f ( H t [v](x); u)  -  D f ( x \ u )  
t

Unfortunately, D 2 f ( x )  : Cß x Cß —> R i s  not a sym m etric m apping in general. 

However, if need be, the symmetrised derivative operator can always be defined as

D 2s f ( x ; u , v )  d=  \ ( D 2 f ( x \ u , v )  +  D 2 f ( x ;  v, u)).

More generally, /  is said to be n-times d-differentiable at x if /  is d-differentiable 

and D f  is (n — l)-tim es d-differentiable at x. Lastly, D f ( x )  is called the differential 

of /  at x,  and it will also be denoted by f ' ( x ) .

It is clear th a t if d and d' are two equivalent m etrics on X , then a real function /  

on X  is d-differentiable iff it is d'-differentiable. The above definition can trivially 

be extended to complex functionals on X . Moreover, it is also clear from Definition 

B .l th a t continuity is a necessary condition for d-differentiability. The concept of
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“topological” differentiation can be generalised to mappings between two locally 

pa th  connected m etric spaces. This is done in the following way.

Let (X , d x )  and ( Y , d y )  be any pair of locally pa th  connected m etric spaces, 

/  : (X, d x )  —> ( Y , d y )  be a continuous map, and suppose th a t f (Cß[X})  C Cß>[Y] 

for each ß.  Recall also th a t for any fixed point a?o E Cß[X],  H[xo] E T o ( X , d x )  is 

defined to be the unique d x -tran sla te  th a t joins 0ß to a?o; th a t is, # £(Xo)[®o](0/?) =  

x 0.

B .2 . D efin it ion . Given a continuous m apping /  : X  —> Y  with f ( Cß[ X\ )  C 

Cß'[Y],  fix a point a?o E Cß[X] and consider an arb itrary  point x E Cß[X],  Then, 

/  is said to be ( d x , dy)-dif ferentiable (or metrically differentiable for brevity) at xq 

along H[x] E 7q(X , d x )  should the following limit

exist. Again, all three symbols D f ( x oja;), Df ( xo) ( x )  and f ' ( xo]x)  will be used 

interchangeably.

It is intuitively clear from the construction th a t D f ( x o) : Cß[X] —> Y  is contin

uous. This will be verified below. F irst, for each fixed f E R, let T o ( X , d x ] t )  = f 

{ H t E H  I H  E 7o(X , dx )}  and set T0(X ,d x -,R ) = (Jtem% ( X , d X ]t). Endow 

7o(X, dx]  R) w ith the topology of pointwise convergence. Recall th a t this topology 

is generated by all basic subsets N ( f ;  aq , . . . ,  x n , U\ , . . . ,  Un) defined by

for each /  E Tq (X , d x ; R) and finite collection of points {aq, . . . ,  a;n } E X  together 

w ith open subsets Ui C Cß>[Y] of f ( x i ) .  If Ui — B e. ( f (xi ) )  for each i, denote

B .3 . L em m a. Let  ipß : R x ( C ß[X] —{ 0 ß } ) % ( X , d x ] ^ )  be defined by ( t , x)  

H t [x]. Then, tpß is a continuous surjection.

Proof. By definition, 'tpß is surjective. Hence, it only remains to establish th a t 

it is continuous. Fix (to,xo)  E R x (Cß[X)  — {0/?}) and consider a neigh-
defbourhood N( ^ß( t o ,  x 0)) = N ( H to [x0]; a q , . . . ,  x n , £1 , . . . ,  en ) about i fß( to, x0) in 

T0(X ,d x ;R ) . Let 6+ = dx (xo,Xi),

D f ( x o ; x) = l i m H £{xß H ^ £{fixo))l f ( x 0)}( f (Ht [y}(xo)))](0'ßl)

{g  E T0(X ,d x ;R )  I g(xi) E Ui, Vi =  1 , . . .  , n  <  oo }

N( f ]  aq , . . .  , x n , Uu  . . . ,  Un) by N ( f ;  a q , . . . ,  x n , e \ , . . . ,  en ) for simplicity.

S i  if # 6+[z0](zo) =  Xi, 

- 6 +  if H _ sf  [aj0](aJo) =  aq
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and set T(B$(xi ) )  = H - s i [xo](Bs(xi))1 where 6 = |  min{ e \ , . . .  , e n }. Then, by 

definition, T(B$(xi ) )  is open and xo £ T(Bs(x i ) )  for each i. Consequently, D Xo ^  

n r= i T ( B t ( x i)) ls a neighbourhood of xq in Cß[X]. Let e >  0 be any radius such 

th a t B £(xo) C D xo and set £ = Furtherm ore, let 6 = and define C Cß 
to be the subset

X i  d=  { H t(0) I d x ( H t ( x i ) , H to[xo](xi)) £ (e* -  <$,£*), t £ (to -  M o  +  8) },

where 8 £ (0, 18) is any fixed small positive number. Finally, let r  =

I  inf{ d x( x ,  â o) : x £ Xi ,  i = l , . . . , n }  and e =  min{e, r}. Then, from the con

struction, given any ( t ,x)  £ (t0 -  8 , t0 + 8) x  B £(x0), Ht [x](xi) £ B £i( H to[x0]{xi)) 

for each i, where d /M l =  i/>(t,x), and continuity thus follows. □

B .4 . C orollary. Let f  : X  —> F  be continuous and set f Xo(t) = 

H _ £(f(Xô [ f ( xo ) ] ( f ( Ht [x](0ß))). Then, for each fixed t, f Xo(t) is a continuous m ap

ping with respect to x £ C/j[X].

Proo/. Set f Xo(t)(x) = f f 0(t). Then, f Xo(t) = H _ £(fixo))[ f (x0)] o f  o H t [-](0ß ) is a 

composition of continuous functions. □

B .5 . P ro p o sitio n . D f ( x o) : Cß[X] —> Cß>[Y] is continuous.

Proof. Recall th a t for any x £ Cß[X], D f ( x 0;x) = \ i mH£^ [ f f o{t)}(0'ß,). Since 

lim id£(.)[ • ](0^/) is continuous in x by Lemma B.3 and D f ( x o) =  fim/i£(.)[ • ](0^/) o 

f x o(£)(•)> continuity of D f ( x o) follows at once from Corollary B.4. □

It is easy to see th a t if f  is not continuous, then it is not metrically differentiable. 

Note also th a t if d'x  and d'Y are two metrics equivalent to d x  and dy respectively, 

then /  is (d x , dy )-differentiable i ff  f  is (d'x , d'Y )-differentiable. Finally, it follows 

from the definition th a t D  idx(^o)  =  id x  |C^[X] for each ß.

B .6 . T h eo rem . Let f  : X  —► Y  and g : Y  —* Z  be metrically differentiable 

on X  and Y  respectively. Fix Xo £ Cß[X) and set yo = f ( x o) £ Cß>[Y]. Then, 

D(g o f ) ( x o) =  Dg(yo) o D f ( x o). In particular, this holds for Z  = R.

Proof. Let x £ Cß[X] be any point. Then,

D{g 0 f )(xo' ,*) = lim H £{x)[H_£{gof{xo))[g o f ( x 0)](g o f ( H t [x\(xo)))](0^). 

Moreover, observe from the definition of f ' ( xo ; x )  th a t Ve >  0, 3<$£ >  0 such tha t 

dY ( f ( H t [x](x0)), H t [ f  (x0; x ) ] ( f ( x0))) < £ V x  £ Cß [X]
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whenever \t\ <  8e. In particular, V x G Cß[X],

lim dY ( f ( H t [x](x0)), H t [ f  ( x0; x ) ] ( f ( x0))) = 0.

Hence, this together w ith the equality e ( f ' ( x o;^)) dy(0'/?, , f ' (xo; x)) = e(x)

imply at once th a t

lim H eix)[H^e(gof(xo))[g o f ( x 0)](g o [x](ar0)) )](0 ^ )

=  H e(f,(xo.x))[H_t(g(yo))[ff(yo)] O g ( f ( H , [ / '( x 0; x)](y0)](0^,)

=  lim  H c(. )[•ff-e(,(j,„))[s(yo)](s(.ff([ • ](yo)))](0'„.) o f ' ( x 0; x).

W hence, the arbitrariness of x G Cß[X]  implies th a t (g o f ) ' ( x o) =  g'(yo) 0 f ' ( xo)> 

as required. To establish the last assertion, it will suffice to note th a t for any

« e cß[x],

( g °  f ) ' ( xo- v)  = lim

=  lim
>-0

=  lim
t —*-0

=  lim 
t - +  o

g o f ( H t [v](xo)) -  go  f { x 0) 
t

g( f (Ht[v](x0))) - g ( f { x o)) 
t

g ( Ht [ f ' (xo;v)]( f (x0))) -  g ( f ( x o)) 
t

g ( Ht [‘] ( f ( x0))) -  g ( f ( x 0)) _ A
o J ( Xq, V) □

The definition for higher order derivatives can also be defined. Suppose th a t 

/  : X  —> Y  is of class C 1; th a t is, D f  : Cß[X)  x Cß[X]  — > Cß>[Y] is continuous for 

each ß.  Fix a  pair ( x0, x)  E Cß[X]  x Cß[X]  and consider u G Cß[X].  Then, the 

second derivative of /  at Xo is defined as

f " ( x 0-,x)(u) d=  lim He(u)[H-e( f  (Xo-,x))[f'(x o’, x)](f ' (Ht[u](xo));  x)](0 ^/)

provided th a t the limit exists. f " (xo;  x)(u)  will also be denoted by f " ( x o ; x , u )  

or D 2 f (xo) ( x ,  u), etc. In general, /  is n-tim es differentiable if /  is differentiable 

and D n~ 1 f  is also differentiable. It is again ra ther unfortunate th a t for each 

n > 1 , D f n( xo) : Ca[X]  —■» Y  is not, in general, a totally symmetric m apping, 

unlike differentials defined on locally convex linear spaces (which are sym m etric 

m appings).

B .7 . T h eo rem . Ce is locally path  connected.

Proof. Fix a 7  G Ce and define C( j )  to be the set of all points in Ce which can be 

joined to 7  by a curve. Explicitly, it consists of all 77 G Ce such th a t 3 p : I  x I  —> £
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continuous with p(0, •) =  7 and p ( l , - )  =  77. F irst, observe th a t as E is path  

connected, C (7) is never trivial; th a t is, C ( j )  ^ {7}. Second, note trivially th a t if 

71,72 £ C(7),  let hi : I  x I  —> E be a homotopy from 7 to 77, i = 1,2. Then, /ii2 

given by

defines a homotopy from 71 to 72. Consequently, it is enough to show th a t (7(7) is 

closed in £ e .

( t)  sup{d(7„(*),7(*)) : * £ 1 }  +  ess sup{||T>%n(t) -  D ej(t)\\  1 } <  £

whenever n > N .  Hence, it is evident from (f) th a t by taking N  > 0 sufficiently 

large (i.e., by making e >  0 sufficiently small), there exists a curve from 7n to 7. To 

show this, set cln = y ln ~  7*, * =  1,2, 3 (working with local coordinates now). Then,

a sser tio n  is  e sta b lish ed . □

Since local pa th  connectedness is invariant under quotient m appings and is also 

preserved under finite Cartesian products [3, 6.3.10(b), (c), p. 376], the following 

corollary is evident.

B .8 . C orollary. M .n is locally path connected for 1 ^  n < 00. □

Hence, the m etrizability of M  n for each n <  00 means th a t differentiation can be 

defined on it. It is easy to see th a t E is simply connected iff  £ e is pa th  connected 

(and hence iff  M n is, for each n). However, since no restrictions regarding the 

connectivity of E were made a priori (aside from being connected), it is unclear 

off-hand th a t £ s  is pa th  connected. And indeed, it is not expected of a Cauchy 

spatial 3-slice of a general space-time th a t it be simply connected. The ultim ate 

aim here is to a ttem pt to obtain alternative—but hopefully illum inating—forms of 

the quantum  loop constraints. Unfortunately, the program m e appears to reach an 

impasse! To conclude this appendix, it will suffice to rem ark th a t alternative (but 

equivalent) expressions for the quantum  loop constraints already exist [1, 2].

def  f ^ i ( l  — 2 s ,t) for 0  ^  s ^

I h2(2s — 1 ,t)  for I  ^  s ^  1,

Let {7n}n be a sequence in C (7) which converges to 7 £ C z . Recall th a t y n —► 7 

in the p-topology of £ s  means th a t given any e > 0, 3 N  > 0 such th a t

by (t) , cn C £ e and T*(t) = y'n -  tc ln defines a curve joining y n to 7: T(0) =  y n 

and T (l) =  7, where n is any fixed integer satisfying n > N .  So, 7 £ ^ (7 )  and the
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List o f  N o ta tio n s

For the sake of being concise, let X  denote a topological space, U C X  and S  a 

non-em pty set.

1 Xi id x  -  the identity map of X.
2X -  the power set of X\  i.e., the set of all subsets of X.

-  the cardinality of N.

A  -  the space of Ashtekar connection 1-forms.

B £(x ) -  a ball of radius e centred about x. 
ip -  the complex conjugation of ip.
Diff+ (£ ) -  the group of orientation-preserving smooth diffeomorphisms on £ . 

r j  -  the space of Riem annian 3-metrics on £ . 

e -  exponential map.

I  -  the unit interval [0,1].

In -  na tu ra l logarithm.

M. -  the multi-loop space.

A i n -  the n-loop space.

N0 -  NU {0}.

\S\ -  the cardinality of 5.

R+ -  the closed semi-infinite interval [0, -foo].

£  -  a closed, connected, compact Riem annian 3-manifold.

X '  -  the topological dual of X .
X n -  the Cartesian product of n copies of X .

X°° -  the countably infinite Cartesian product of X .

U -  the closure of U.
U° -  the interior of U .

Uc -  the complement of U: X  — U.


