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Abstract

We consider the two-dimensional six-vertex, Potts and chiral Potts models in 
lattice statistical mechanics.

Functional relations for the transfer matrices of the six-vertex model have been 
derived previously for both periodic and anti-periodic boundary conditions. We 
solve these functional relations to determine the largest eigenvalue(s) of the transfer 
matrices for both of these boundary conditions, on lattices with both an even and 
an odd number of columns. For lattices with an interface in the ordered anti- 
ferroelectric phase, we calculate the interfacial tension.

This method reproduces the known result for the interfacial tension. However, 
it is much simpler than other methods that have been used, and can be generalised 
in a straightforward manner to other models.

We then consider the chiral Potts model with skewed boundary conditions (the 
generalisation of anti-periodic boundary conditions to higher state spins). The 
functional relations for the transfer matrices of this model have been derived re
cently, and we solve them for a band of largest eigenvalues, from which we calculate 
the interfacial tension. We confirm that the interfacial tension of the chiral Potts 
model in its physical regime is the same as that of the non-physical superintegrable 
chiral Potts model when appropriate boundary conditions are applied, and that it 
is non-wetting. Our band of largest eigenvalues of the transfer matrix agrees with 
an earlier calculation of excitations by McCoy and Roan.

We also consider the critical three-state Potts model, and calculate exact parti
tion functions of this model on finite rectangular lattices with a variety of boundary 
conditions. We study linear combinations of these partition functions for the pat
terns of zeros which will give us the structure of the general solution on finite 
lattices. The partition functions are then used to test the finite-size scaling predic
tions of conformal and modular invariance.
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CHAPTER 1

Introduction—statistical mechanics 
and solvable lattice models

commonly occurring phases.
Phase changes are induced by altering various state variables such as pressure 

P or applied magnetic field H,  or by changing the temperature T. A phase tran
sition is marked by some non-analyticity of the free energy F  which describes the 
equilibrium state of the system.

Phase transitions are divided into two classes depending on the nature of the 
non-analyticity of F.  A phase transition is said to be “first order” if the first 
temperature derivative of F  is discontinuous; this is reflected as a discontinuity in 
the internal energy

Classic examples of first order phase transitions are steam condensing into water 
or sublimating into ice. The discontinuity in the internal energy corresponds to the 
emission or absorption of a latent heat.

When a system is at a first-order phase transition, the two homogeneous phases 
can co-exist in equilibrium with one another. The phases are in contact along a 
surface, the presence of which gives rise to a measurable surface (interfacial) tension 
s ; this is equal to the energy required to increase the surface of contact by unit 
area.

Alternatively, the first derivative of the free energy may be continuous through 
the phase transition, and the non-analyticity of F  will manifest itself in some other

That matter can exist in a variety of different phases has been known since 
early times; indeed, it has been remarked that the ancient classification of the 
“elements” into earth, fire, air and water is really a classification of matter into
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way, usually as a discontinuity in or divergence of a higher order derivative of the 
free energy, such as the specific heat C = dU/dT. Such a phase transition is said 
to be “second order” or “continuous.”

Archetypal examples of continuous phase transitions are the Curie point of a 
ferromagnet and the critical point of a fluid.

The former was apparently first observed by Gilbert in his treatise on magnetism 
published in 1600 [47,59]. Quantitative studies only began in the nineteenth century 
when Thomas Andrews described in his famous Bakerian lecture of 1869 his studies 
of how the liquid and gaseous phases continuously merge into a single homogeneous 
fluid phase at a certain critical temperature and pressure [103].

The similarities between the critical behaviour of these two systems was noted 
as long ago as 1895 in Curie’s classic work on magnetism [43].

Critical points often correspond to order-disorder transitions, with the ordered 
phase occurring at sufficiently low temperatures, and the disordered phase occurring 
beyond the critical point.

A convenient characterisation of a phase transition is the “order parameter” 
R; this differentiates between the equilibrium phases in the ordered (subcritical) 
regime, and is identically equal to zero when the system is disordered. The order 
parameter usually has a jump discontinuity through a first order transition, and 
vanishes continuously as a critical point is approached.

In a magnetic system, the order parameter is the spontaneous (zero-field) mag
netisation, which vanishes in the paramagnetic phase. For a fluid, one uses the 
difference between the densities of the liquid and the gaseous phases; this is iden
tically zero beyond the critical point.

Low temperature phases are generally more ordered; there are of course excep
tions, with the ferroelectric transition of the Rochelle salt being a notable one.

Beyond the critical point, the two phases are indistinguishable, and as the 
critical point is approached along the co-existence curve of the two phases, the 
interfacial tension between the phases vanishes.

The critical point is usually accompanied by other anomalous behaviour, such as 
critical opalescence in fluids, and vanishing or divergence of various thermodynamic 
quantities such as the specific heat, compressibility, and magnetic susceptibility over 
a narrow range of temperatures.
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1.1 Statistical mechanics

The theory of statistical mechanics, which was first formally expounded by 
Gibbs in 1901 [56], has proven admirable for describing systems in which phase 
transitions occur. Given the description of a system on the microscopic scale, statis
tical mechanics describes the macroscopic state by averaging over Gibbs’ canonical 
ensemble of identical systems.

The microscopic interactions of a system are described by a Hamiltonian s )
(where s describes the microscopic state of the system), and the thermodynamics 
of a system follow from a knowledge of the system’s partition function Z,

Z = e~FlkeT = Y  exp( -H( s ) / kBT)  (1.1)
sta tes

where T is the absolute temperature and kß is Boltzmann’s constant. The average 
of a quantity A(s) (for example, the internal energy, pressure, magnetisation, et 
cetera) which depends on the microscopic state of the system is given by

{A) = z - 1 Y  A(s)exp(-H(s)/kBT)
sta tes

where the summation is over all microscopic states.
In order to predict thermodynamics correctly, the “thermodynamic limit” must 

be taken; this process can be complicated to describe in general, but basically 
involves taking the number of interacting degrees of freedom in the system to infinity 
in a certain way. For a system with Af degrees of freedom, the free energy per site 
in the thermodynamic limit is defined as

—f / k ß T  = lim Af- 1 ln Z

(other limits may be needed as well, such as taking the volume V to infinity while 
keeping the density Af / V  fixed). Only in the thermodynamic limit can the non- 
analyticities in the free energy which herald a phase transition or critical point 
appear.

It is now well known that the partition function contains all of the information 
needed to describe both phases in a phase transition. What was not at all obvious 
to researchers at first is the converse; that all of the information contained in the 
partition function is needed in order to describe accurately the singular nature of 
the continuous phase transition. At the critical point, the interacting degrees of 
freedom in the system are very strongly correlated, and the correlations are very
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long-ranged. As a result, most approximate theories break down around the critical 
point. It took the exact computation of Z for a simple model of an interacting 
system, the Ising model, to render this fact apparent.

1.2 Scaling, universality, and the renormalisation group

Over the last few decades, an understanding of exactly how different critical 
phenomena can be classified has been evolving. A (very) brief survey of the status 
quo is included here.

The anomalous behaviour of a physical quantity in the vicinity of the critical 
point (the “scaling region”) is characterised by a critical exponent and a scaling 
function.

This introduces a large number of critical exponents; however making certain 
assumptions on the analytic nature of the scaling functions (namely, that they 
are generalised homogeneous functions of all of their arguments) implies simple 
relations between the critical exponents of the system.

For the simple critical points that we consider, the scaling relations reduce the 
total number of independent exponents to only two (“two-exponent scaling”), which 
are usually expressed in terms of the “scaling dimensions.”

Systems are assumed to be divided into “universality classes” which exhibit the 
same critical behaviour (i.e. have the same critical exponents and scaling functions). 
The universality class is expected to be largely independent of the “details” of the 
Hamiltonian, so a wide variety of very different physical systems could be in the 
same universality class.

The universality class depends on only the spatial dimensionality of the system 
and the symmetries of the Hamiltonian.

Examples of the scaling functions are as follows; we consider magnetic systems. 
The singular part of the free energy per site (the difference between /  for T < Tc 
and its analytic continuation from T > Tc) scales as

/s in g  ~  \t\2- ° Y (H / \ tn

where t is the dimensionless “reduced temperature” 

t = (T -  Tc)/Tc

and a is a critical exponent that describes how the specific heat diverges as t —> 0; it 
is usually positive, but a = 0 can imply either a jump discontinuity or a logarithmic
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divergence. The scaling function Y(x)  is undetermined by the theory; A is called 
the “gap exponent.”

The order parameter (spontaneous magnetisation) vanishes as 

R ~  \t\ßW(H/ \ t \A)

as t —*• 0", with scaling function W(x)  and critical exponent ß. Scaling predicts 
that these exponents are related by

a  + ß + A =  1.

As the critical temperature is approached along the co-existence curve, the inter
facial tension vanishes as s ~  (—£)M, and the exponent /i satisfies the relation

dfi = (d — 1 )(d — a)

where d is the spatial dimensionality of the system. Exponent relations depending 
on d cannot be derived from scaling alone, and require the stronger “hyperscaling” 
hypothesis; there is some doubt as to how generally hyperscaling can be applied, 
but it is believed to hold for d — 2, which is the only case that we consider.

The concepts of universality and scaling can be “rigourised” to an extent using 
the approach of the renormalisation group. The underlying assumption is that at 
the critical point, the system is scale invariant. The concept of the renormalisation 
group was introduced into statistical mechanics in the early 1970s by Wilson [111, 
112], and as well as providing a revealing insight into the concept of universality and 
a more rigorous means of justifying phenomenological scaling, it has also provided 
a framework for carrying out detailed calculations of critical behaviour.

The renormalisation group uses an iterative transformation of the Hamiltonian 
to account for correlations on all length scales, with a critical model corresponding 
to a fixed point of the transformation. Critical exponents can be calculated by 
considering the behaviour of the transformation in the vicinity of the fixed point. 
Universality classes are described as all Hamiltonians which map to the same fixed 
point under the iterated transformation, and Hamiltonians which are in the same 
universality class can differ only by so-called “irrelevant” operators. Hamiltonians 
differing by “relevant” operators have different critical behaviour, and perturbing a 
system by a relevant operator will cause it to “cross over” into a different universal
ity class, with behaviour near the critical point being described by different critical 
exponents and scaling functions. Other “marginal” operators are found also, and
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these are responsible for non-universal behaviour such as the continuously variable 
exponents in the eight-vertex model.

1.2.1 Exactly solvable models

That real physical systems have extremely complicated interactions goes virtu
ally without saying. The evaluation of the partition function of a realistic system 
is clearly unfeasable, especially for a system with a very large number of degrees of 
freedom.

In order to describe the critical behaviour of such systems, simplified models 
must be introduced, which hope to capture the salient aspects of the physical 
reality. Even then, calculating the partition function of the simplified models is 
very complicated.

One must avoid using mean field approximations to describe critical behaviour, 
and the limitations of numerical techniques such as monte carlo are well known. Se
ries expansions have proven very useful for predicting critical behaviour, although 
to derive accurate results can be computationally intensive. The renormalisation 
group, while at least in principal capable of predicting exactly the behaviour around 
critical points, can be difficult to apply, and usually involves some sort of approx
imation, such as expanding critical exponents in powers of the “small” parameter 
e = 4 — d.

The method we favour is to focus on simple models for which at least some 
interesting thermodynamic quantities can be calculated exactly. The critical be
haviour of the model is then described accurately, and universality asserts that 
there is potentially a large class of complicated physical systems exhibiting the 
same critical behaviour. These systems can be identified by their dimensionality 
and symmetries.

There is a well known class of “integrable” models, and we restrict our atten
tion to such models which reside on two-dimensional square lattices. This may 
seem somewhat restrictive, but there is any number of systems displaying interest
ing critical behaviour which takes place in two dimensions, and solutions in two 
dimensions can give important qualitative insights into critical behaviour in three 
dimensions.

The square lattice can be oriented in its “usual” way, Figure 1.1(a), or rotated 
through 45 degrees, Figure 1.1(b). For the lattice in Figure 1.1(a), there are L spins
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Figure 1.1: (a) The square L X M lattice in its “usual” orientation, shown 
here for L = M — 5. (b) The square L X M lattice rotated through 45 
degrees, shown here for L = 4 and M = 3.

in a row of the lattice, and M such rows, for a total of LM  spins on the lattice. 
For the lattice in Figure 1.1 (b), there are L spins in a row of the lattice, but 2M  
such rows, for a total of 2LM  spins on the lattice. According to universality, the 
thermodynamics of the model should be largely independent of the choice of lattice, 
and so a particular lattice is chosen more for computational convenience.

The models we analyse are the six-vertex, self-dual Potts and chiral Potts mod
els, which are defined later in this thesis. Before this, we review some aspects of the 
exact solution of the Ising model. Onsager’s solution of this in 1944 is a true wa
tershed in the theory of statistical mechanics, and is by some touted as the starting 
point for the modern theory of critical phenomena.
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1.3 The Ising model

The Ising model was proposed as a model of the ferromagnetic-paramagnetic 
phase transition, and is now known as a reasonably good description of the order- 
disorder transition in binary alloys and of the liquid-gas phase transition and critical 
point.

It is a lattice spin model; the Ising spins can be in one of two states, which are 
usually taken to be +1 and —1. Nearest-neighbour spins interact along the edges 
of the lattice with an anisotropic homogeneous interaction, with energy Ecrcr' for 
two nearest-neighbour spins interacting along a horizontal edge of the lattice, and 
Ecrcr' for two nearest-neighbour spins interacting along a vertical edge. The spins 
can also interact with a uniform external magnetic field H , with an energy Her. 
Appropriate choices of E  and E  give either a ferromagnetic or an anti-ferromagnetic 
interaction.

The energy of the system is given simply by addition;

H(s) = —E ^2 era — E era' — H <7,
horiz. vert. all spins

where the first sum is over all nearest-neighbour pairs of spins a and cr' connected 
by a horizontal edge, the second is over all pairs connected by a vertical edge, and 
the third sum describes the interaction between the spins and the external magnetic 
field. The variable s represents the state of the system, i.e. the value of all of the 
spins on the lattice.

To fully specify the model, we must also specify the conditions at the boundary 
of the lattice. Again, the boundary conditions are usually chosen for computational 
convenience, and provided that the model is “physical” (the interaction energies 
must be real), the boundary conditions of the lattice cannot possibly affect the bulk 
thermodynamics of the system.

We often consider periodic boundary conditions; this corresponds to setting 
crL+1 = (ji in each row of the lattice in Figure 1.1(a). The spin 0 \ then interacts 
with the spin ol along the bond indicated by the broken line, and this is equivalent 
to wrapping the lattice onto a cylinder. When we impose the periodic boundary 
condition in the vertical direction also, setting oq = o[M+1>> in each column of the 
lattice, we effectively wrap the lattice onto a torus; these are toroidal boundary 
conditions. We also consider anti-periodic boundary conditions, which corresponds 
to setting ol+i = — oq, so that the spin ol is interacting with the spin —oq. (Other
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boundary conditions which are sometimes considered are the fixed and free bound
aries, but we do not use these.)

For a ferromagnet, the order parameter is the spontaneous magnetisation; this 
can be defined as the average magnetic moment per site, and is given by

1.3.1 Partition function and free energy

For his Ph.D. thesis in 1925 [64], Ising considered this model on a one di
mensional lattice, and obtained the exact partition function of the model with a 
non-zero magnetic field. He found that there was no spontaneous magnetisation 
away from absolute zero, and argued that this would remain the case in higher 
dimensions.

In 1936, Peierls [101] demonstrated that in two dimensions the model has a finite 
critical temperature, and in 1941, Kramers and Wannier [78] introduced the idea 
of transfer matrices, and using these and a powerful duality relation, which relates 
high temperatures to low temperatures, exactly located the critical temperature of 
the model.

The transfer matrix formalism expresses the partition function (1.1) as the trace 
of a product of the matrices T and T, where multiplication by the matrix T or T 
corresponds to adding a row of horizontal or vertical edges to the lattice. These 
matrices have dimension 2L, and elements of the transfer matrices correspond to 
the energy of possible configurations of spins in a row of the lattice. When periodic 
boundaries are applied in both directions, the partition function can be expressed 
as

Z = trace ( T t ) M = £ A f
3 =  1

where the Aj are the eigenvalues of the matrix TT. For a physical model, the 
elements of the transfer matrices are positive, so the Perron-Frobenius theorem 
asserts that there exists a unique non-degenerate largest eigenvalue, Amax, and 
hence for large L and M, Z ~  A£fax, and the free energy per site is

—f / k BT = lim L~l In Amax.
L ,M —► oo

In his monumental paper of 1944 [93], Onsager computed the thermodynamic 
properties of the zero-field model exactly, diagonalising the transfer matrix and
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calculating the partition function for a lattice wrapped onto a cylinder which is 
infinite in one direction. The free energy per site in the thermodynamic limit is 
given by

- f / k BT
1

2w
J  d9 In 2 cosh 2K cosh 2K -f k 1 (l — 2k cos 20 + k2̂ 1/21

where

k 1 = sinh 2K sinh 2K (1.2)

and K  = E /kßT  and K = E /kßT  are the dimensionless interaction parameters. 
The free energy has a singularity when k = 1 , which corresponds to the critical 
point of the model; this confirmed the prediction of Kramers and Wannier exactly. 
Around this point, the singular part of the free energy scales as f s ~  t2\n\t\, 
which implies the specific heat critical exponent a = 0. Onsager calculated other 
thermodynamic quantities of the model, including the interfacial tension and order 
parameter, and with his student Kaufman considered the correlations.

1.3.2 Correlation function and correlation length

The critical point is heralded on the microscopic scale by long-range correla
tions throughout the system; the classical approximations ignore these, and hence 
erroneously predict behaviour about the critical point. Kaufman and Onsager [73] 
calculated exactly the degree of correlation in the Ising model.

The degree of correlation between the spins is measured through the two-point 
correlation function </(r), defined as

9(r.'j) =  { W j )  -

This depends on the distance r = |rty| between the spins cr, and oy. For a trans- 
lationally invariant system, (Oj) is the same for all sites j , and is equal to the 
spontaneous magnetisation. The correlation function is related to the probability 
that the spins crt- and oy are in the same state.

In the ordered (low temperature) region, the spins are strongly correlated over 
both long and short distances; the spins have a preference for a particular orienta
tion, so there is a correlation between the spins which is virtually independent of 
their spatial separation. This long-range order disappears beyond Tc, and in the
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high temperature disordered phase, the spins are weakly correlated over long dis
tances. However short-range order persists, with small drops of spins in the same 
state, and so the correlation function is still finite.

The correlation function for the Ising model can be calculated exactly, and 
displays fairly simple behaviour for large r = |r|. Away from the critical point, it 
decays as

g(r) ~  r~Te~r^

for r large compared to the lattice spacing, where r  is a positive number and £ 
is a parameter of the system called the correlation length; this is a measure of 
the distance over which the spins are correlated. It is infinite at absolute zero 
temperature, and diverges as the temperature approaches Tc from either side with 
a power law

£ ~  \t\~u as t —» 0*,

(scaling predicts that the exponent is the same from either side of the critical 
temperature) and this divergence is regarded as a hallmark of a critical point. At 
the critical point, the correlation function decays as

g(r) ~  r - d+2-^

for large r, where g is another critical exponent, the anomalous dimension, which 
classical theories predict to be zero.

For the Ising model, the diagonal correlations are [19]

g(r) ~  r~2e~r̂ < for T  < Tc, and g(r) ~  r -1/2e-r /£> for T > Tc

for large r, where £<* = — In A: and £>* = |  In k, with k as defined in Equation 
(1.2). It is clear that the correlations are much longer-ranged for T < Tc.

Although the correlation length is itself dependent on direction, it becomes 
isotropic in the scaling limit [89], and hence the critical exponents are independent 
of the direction in which £ is defined.

1.3.3 Order parameter

The spontaneous magnetisation has been calculated also, originally by Onsager, 
with a derivation published by Yang [119] and is M(0, T) = (1 — &2)1/8; as T —> T~, 
this vanishes as ~  (—t)1/8, with critical exponent ß = 1/8.
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Figure 1.2: A configuration of the anti-ferromagnetic Ising model, with peri
odic boundary conditions and an odd number of columns. The interface, in 
bold, meanders down the lattice.

1.3.4 Interfacial tension

Along the co-existence curves in the phase diagram (for the Ising ferromagnet, 

this corresponds to H  =  0 and T  < Tc), it is possible for domains of both up 

and down spins to co-exist, the domains containing “mostly” spins of only the one 

phase. The two phases are in contact along an interface, and this gives rise to an 

interfacial tension, which produces an excess in the free energy equal to the length 

of the interface multiplied by s, the interfacial tension per unit length.

To calculate the interfacial tension for a lattice model, we have to introduce 

an interface into the lattice. Onsager accomplished this for the anti-ferromagnetic 

Ising model with periodic boundary conditions by allowing an odd num ber L of 

spins in each row. When L is even, a perfectly ordered anti-ferromagnetic ground 

state is possible, but when L is odd, this is no longer the case. There must be 

a site somewhere in each row of the lattice which separates two regions of oppo

site anti-ferromagnetic order. As rows are added together to form the lattice, the 

so-called “anti-ferromagnetic seam,” or interface, is formed, separating these oppo

sitely ordered regions. This is illustrated in Figure 1.2. For large M , the length of 

the interface is proportional to the height M  of the lattice.
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This interface persists until the temperature is increased to the critical temper
ature, k =  1 , where the system has a transition to a completely disordered phase. 
For large L and M, the Ising model partition function on an L x M  lattice with 
an interface grows as

ln Zlm = —L M f  / kßT  — Ms /kBT T • • •

where /  is the per-site free energy; Onsager found the interfacial tension per unit 
length s to be

- s / k BT = 2(K -  tanh“1 e~2K)

in the horizontal direction. For the Ising model this vanishes as s ~  (—'t)ß as 
T  —> T~,  with critical exponent fi =  1.

Alternatively, the interface may be created by imposing anti-periodic boundary 
conditions. This works for a system with either ferromagnetic or anti-ferromagnetic 
interactions. For instance, imposing anti-periodic boundary conditions in the hor
izontal direction in the sub-critical phase of a ferromagnetic system, the spins on 
one side of the lattice will preferentially order into the state o say, where cr = +1 
or —1, as before, but because of the anti-periodic boundary, the spins on the other 
side of the lattice will prefer order into the contrary state, —o.

At zero temperature, the lowest-energy configuration of the lattice is for the 
interface to run exactly vertically down, and there are L positions in each row 
to put the interface. As the temperature is increased, the interface will begin to 
meander, “overhangs” may appear, et cetera, along with the drops of overturned 
spins in the bulk of the lattice. The interface persists until the critical temperature 
is reached. Due to the periodic boundaries in the vertical direction, the interface 
will begin and end in the same column of the lattice.

An alternative formula for the interfacial tension is due to Fisher [53]. On
sager [93] noted that the transfer matrix has two asymptotically degenerate largest 
eigenvalues, Amax and Ai, corresponding to the two possible ordered ground states 
of the system related to one another by spin-reversal, but did not investigate this 
point any further. These eigenvalues are related by Amax/Ai = 1-f exponentially 
smaller terms, which vanish as M  —► oo. Fisher notes that “by general arguments” 
(given for example in Reference [19]) the two asymptotically degenerate largest 
eigenvalues Amax and Aj are related by

A m a x / A i  = 1 + 0(e~sM/kBT) as M OO (1.3)
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where s is the interfacial tension per unit length, given by 

- s / k BT = lim M -1 ln(Amax/Ai).
M —+cc

In Reference [53] Fisher calculates s for the Ising model using this definition, and 
re-derives Onsager’s result.

The interface in the diagonal direction (which is the horizontal direction of the 
lattice in Figure 1.1(b)) can be calculated from the diagonal-to-diagonal transfer 
matrices (the row-to-row transfer matrices of the diagonally oriented lattice), which 
is done in Reference [19], with the result —s/k BT  = In k, and the same critical 
exponent /z = 1.

The interfacial tension and correlation length of the Ising model are related by

s£ = kBT ; (1.4)

this relation seems to have been satisfied for every model for which both of these 
quantities have been calculated. This is interesting; it is unclear whether or not it 
can be assumed to be a general relation.

Other methods of calculating the interfacial tension have been used, for instance 
Fisher and Ferdinand proposed a method which allows calculation of surface free 
energies as well as interfacial tensions in [52], and there is a discussion of the interfa
cial tension of the Ising model by Gallavotti and Martin-Löf [55]. The calculations 
of these papers do not generalise to the models we consider in an obvious way.
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CHAPTER 2

The six-vertex model

2.1 Origins

The six-vertex model was first proposed by Slater in 1941 [106] in an attempt 
to describe the ferroelectric-paraelectric transition of potassium dihydrogen phos
phate, KH2P 0 4, or simply KDP. This is one of the simplest crystals which exhibits 
such a transition, with a single critical temperature at ~  122 K. Slater considered 
a three dimensional model, in which the phosphate ions occupy the sites of a tetra
hedral lattice, and one hydrogen ion lies on each bond, creating a hydrogen bonded 
lattice. Rather than lying precisely in the middle of the bonds, the hydrogens tend 
to lie closer to one of the adjoining phosphate ions. The ice rule embodies the 
assumption that, on the four bonds associated with any one phosphate ion, there 
are precisely two hydrogens closer to the central phosphate ion, and two hydrogens 
closer to the adjoining phosphates. These assumptions had appeared earlier in the 
literature, in a calculation by Pauling of the residual entropy of ice [98]. Slater’s 
model of KDP was a generalisation of Pauling’s, in that the six vertices of the 
ice model possess equal energy, but that two of the allowed vertices of KDP have 
different energies from the other four, giving the crystal a preferred direction, along 
which a spontaneous electrical polarisation appears at a low enough temperature.

It was later suggested by Rys [105] that a model of an anti-ferroelectric based 
on the KDP model could be obtained by a suitable choice of vertex energies. The 
model proposed by Rys is known as the F model.

Exact solutions of these three-dimensional models have not yet been found.



2. The six-vertex model 17

Figure 2.1: The six vertices allowed by the ice rule, with their associated 
vertex energies.

2.2 The two dimensional six-vertex model

Consider the square lattice with its usual orientation (as in Figure 1.1(a)), and 
place an arrow on each bond of the lattice, pointing either up or down on the 
vertical bonds, and either to the left or to the right on the horizontal bonds. There 
are a total of 24 = 16 possible arrangements of arrows around each vertex. (The 
arrows represent the direction of the dipoles which arise as a result of the location of 
the electrons on the bonds of the lattice.) Imposing the ice rule implies that at each 
vertex there are two arrows pointing in and two arrows pointing out. This reduces 
the number of allowed vertices from sixteen to only six—the six-vertex model.

The vertices allowed by the ice rule are shown in Figure 2.1, along with their 
vertex energies £ i,. . .  ,£e* The energy of an allowed configuration of arrows on the 
lattice is assumed to be given simply by addition; if there are rrij vertices of type 
j ,  then the energy of a configuration is 

6

E  =
j = i

The partition function of the model is given by equation (1.1) from Chapter 1.
Vertices 1 through 4 have a net polarisation in one of four directions, while 

vertices 5 and 6 have no net polarisation. As a result, the six-vertex model can 
be used to model a ferroelectrically or an anti-ferroelectrically ordered crystal, or 
a completely disordered crystal, depending on the assignments of energy given to 
each vertex.
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2.2.1 The exact solution

In 1967, Lieb published an exact solution of three special but archetypal cases of 
the two-dimensional six-vertex model, which corresponded to particular choices of 
the vertex energies. The first was for the residual entropy of square ice [80,81]. For 
ice, the energy of each vertex, and hence of each configuration, is chosen to be zero; 
the partition function Z for square ice is simply the number of arrow configurations 
on the square lattice that satisfy the ice constraint. Lieb calculated Z in the 
thermodynamic limit after exactly diagonalising the transfer matrix using an ansatz 
for the eigenvectors known as the Bethe ansatz. The residual entropy is given by 
S = kß ln Z, and Lieb showed that for a square lattice with Af vertices the partition 
function scales as Z 1//Ar ~  (4/3)3//2 ~  1.54 for large Af. It is interesting to compare 
this to the simple estimate of Pauling’s [98], who by a simple approximation found 
Z 1/A,r ~  3/2. The two answers are remarkably close.

The next models Lieb solved were the two-dimensional versions of Rys’s F model 
and Slater’s KDP model, in References [82,83]. In the F model, the vertices 1 
through 4 have an energy e > 0, while vertices 5 and 6 have zero energy. Hence at 
low enough temperatures, vertices 5 and 6 will be favoured, discouraging a spon
taneous polarisation, and producing an anti-ferroelectrically ordered configuration. 
Slater’s KDP model of a ferroelectric ascribes to either the pair of vertices 1 and 2 
or 3 and 4 a zero energy, while the remaining four vertices have energy e > 0. Hence 
at low enough temperatures, a net polarisation is encouraged, giving the model a 
ferroelectrically ordered ground state. (These solutions are special in statistical 
mechanics as they are an exact solution of a two dimensional physical model in 
the presence of an applied field, although we are only interested in the zero-field 
models.)

In the same year, Sutherland solved a more general model which contains the 
models solved by Lieb as special cases [107]. This was followed closely by joint 
work with Yang and Yang [108,120], in which the solution of the general six-vertex 
model, with £ i,. . .  ,£e different from one another, was obtained.

2.2.2 Other ferroelectric models—the eight-vertex model

Lieb’s work was generalised by other authors, see for example References [12, 
19,49,84,109,113-117] and references contained therein. The most famous of these 
models is the eight-vertex model [49,109], which allows two new “doubly ionised”
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vertices, one with four arrows pointing in and one with four pointing out. For 
this model, the Bethe ansatz fails, but Baxter managed to solve the model in 
zero field, introducing the “commuting transfer matrix method’'’ and deriving a 
functional relation which defines all of the eigenvalues of the transfer matrix, and 
hence calculated the free energy [13,14]. The eight-vertex model contains the Ising 
and six-vertex models as special cases.

We mention some exact calculations that have been performed on the eight- 
vertex model. The interfacial tension was calculated by Baxter in 1973 [16] using the 
asymptotically degenerate largest eigenvalues of the transfer matrix, as mentioned 
in Chapter 1 . The interfacial tension was found to be the same for both the six- 
vertex and the eight-vertex models.

The correlation length was calculated by Johnson et al. in References [67,68]. As 
well as the two asymptotically degenerate largest eigenvalues, the transfer matrix 
has a band of complex next-largest eigenvalues. Johnson et al. demonstrated that 
this entire band of eigenvalues is necessary in order to calculate the correlation 
length, and determined £; this is related to the interfacial tension of the eight- 
vertex model via equation (1.4).

We also mention the sixteen-vertex model first studied by Wu [116], in which 
all of the vertices have finite Boltzmann weights. Again, arrow conservation is lost, 
but for this model, the property of commuting transfer matrices is lost too, and 
exact results are sparse. The sixteen-vertex model reduces to the eight and six- 
vertex models in the appropriate limits, and is equivalent to an Ising model with 
two, three and four body interactions in a non-zero external magnetic field.

2.2.3 Zero-field six-vertex model

The Boltzmann weight for vertex j  is 

Uj  =  e - ^ T .

In general, the vertex weights can be distinct, but for a model in a zero applied 
external electric field, the vertex energies satisfy e\ = £2 , £ 3  =  £4 , and £ 5  =  £6, so 
in zero field we define the Boltzmann weights a, b and c as

a  = u j\ — 0J2 i b = lj 3 = û 4 and c — uj§ — co§ .

This choice of vertex weights defines the symmetric (zero field) six-vertex model.
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To calculate the interfacial tension, we consider the model with both the periodic 
and anti-periodic boundary conditions. For periodic boundary conditions in the 
horizontal direction, the first and the last arrow in each row of horizontal edges 
are identified, so that they point in the same direction; for anti-periodic boundary 
conditions they oppose one another. Likewise, periodic boundary conditions and 
anti-periodic boundary conditions can be imposed in the vertical direction, but 
we only consider the former. When anti-periodic boundary conditions are applied 
horizontally, arrow conservation from row to row is lost.

The partition function is a polynomial (multinomial) in a, b and c, which we 
denote Z(a,6, c). Consider a rotation of the lattice through 90 degrees; this will 
change the vertices with weight a into vertices with weight 6 and vice versa, and 
merely change the vertices with weight c from vertex 5 into vertex 6 and vice versa. 
When periodic boundary conditions are applied, the partition function satisfies the 
symmetry relation

Z(a, 6, c) = Z(6, a, c). (2.1)

2.3 The transfer matrix and its eigenvalues

The transfer matrices with periodic and anti-periodic boundary conditions are 
defined as follows.

Consider a row of horizontal edges of the lattice, and the adjacent rows of 
vertical edges. The arrows can be represented by “spins” /it on the bonds of the 
lattice, with /i; = +1 if the corresponding arrow points up or to the right, and 
Hi = —1 if the arrow points down or to the left. The Boltzmann weight for the 
vertex can be written graphically as

w(n,a\ß,H') =

so that the six non-zero vertex weights are given by

u>(+,+|+,+) = w (—, — | —, —) = a 

— I —, -T) = w ( —, +| + , —) = b 

rc(+, —1+, —) = w(—, + |—, +) = c.
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Denote the arrow or “spin” configuration on the lower row of vertical edges by 
ot = { a i , . . . , ax} and on the upper row by ß  = {/?!,...,/?£,}. The row-to-row 
transfer matrix V is a matrix with elements

V a|/3 = 1 M / H ,  <*i\ßu  / ^M/ ^2,  a  2 I A,  ̂ 3 ) •  • • w(fiL , a L\ßL, Hl+1 )
Ml ML

where we put /̂ l+i = Hi in the case of periodic boundary conditions, and hl+ 1 = 
~Hi for anti-periodic boundary conditions. For the anti-periodic boundary condi
tions, the transfer matrix satisfies V(u + 2ni) = —V(u) [11].

All elements of V are multinomials in a, b and c. On a lattice with periodic 
boundary conditions in the vertical direction, which requires M  be even, the par
tition function is written in terms of V in the usual way as

Z = trace {VM} = £ A f

where Aj are the eigenvalues of V ; the problem is to determine these. This can 
be done in a number of ways. When the periodic boundary conditions are applied, 
the Bethe ansatz can be used, but for the anti-periodic boundary conditions the 
arrow conservation property is lost, and the Bethe ansatz does not work. In either 
case, a functional relation can be derived from which the eigenvalues of the transfer 
matrices can be calculated.

2.3.1 The Bethe ansatz

When horizontal periodic boundary conditions are applied, the number of down
pointing arrows is a conserved quantity from row to row. As a result, an element 
V q;|/3 ^he fransfer matrix V will be zero unless a  and ß  contain the same number 
n of down arrows. Thus the elements of the transfer matrix can be arranged so 
that V is block-diagonal, with L + 1 blocks, each block corresponding to arrow 
configurations with a particular value of n = 0 ,1 ,. . . ,  L. One may restrict attention 
to a particular block of the matrix, and then choose the value of n which gives the 
maximum eigenvalue of V.

The Bethe ansatz is based on a particular ansatz for the eigenvectors of the 
transfer matrix. It was originally introduced by Bethe to diagonalise the Heisenberg 
spin chain [37], and had been used to solve a number of related problems before Lieb 
used it on the ice model. The Heisenberg Hamiltonian can be exactly diagonalised 
by assuming the wave functions are a finite sum of plane waves, with coefficients 
determined by a set of transcendental equations. Lieb noted the eigenvectors of



2. The six-vertex model 22

the transfer matrix of the six-vertex model were exactly the same as those of the 
Heisenberg spin chain, and was thus able to borrow from Yang and Yang’s analysis 
to identify and evaluate the maximum eigenvalue of the transfer matrix in the 
thermodynamic limit.

The method is complicated to apply, and a large number of equations are derived 
in a smaller number of unknowns; however, the method works beautifully, with all 
unwanted terms cancelling. The transcendental equations, known as the Bethe- 
ansatz equations, can be solved explicitly in the thermodynamic limit, and hence 
the large-lattice free energy can be calculated. Lieb accomplished this, and we re
produce the free energy shortly. The six-vertex model is even solvable in an applied 
electric field, which is rare for exactly solvable models.

The Bethe ansatz has proven to be a very powerful tool for solving statisti
cal mechanical problems, and has also been used to solve a number of colouring 
problems in graph theory [19].

2.3.2 Commuting transfer matrices and the functional relations

The method known as the commuting transfer matrix method was introduced 
by Baxter in 1971 when he solved the zero-field eight-vertex model [13,14].

For a certain class of statistical mechanical models, specifically, models whose 
Boltzmann weights satisfy the star-triangle relations, the transfer matrices form 
commuting families. Onsager was aware that the diagonal-to-diagonal transfer 
matrices of the Ising model form commuting families [94], but did not use this in 
his solution [93].

However, Baxter capitalises on this observation in his solution of the eight- 
vertex model, and derives a functional relation which determines the eigenvalues of 
the transfer matrix, and hence enables calculation of the free energy.

Baxter relates how he came across the discovery in References [33]; the Bethe 
ansatz solution of the six-vertex model clearly pointed the way, demonstrating that 
the eigenvectors of the transfer matrix V of the six-vertex model depend on the 
vertex weights a, 6, and c only via the parameter

A = (a2 4- 62 — c2)/2ab.

Hence two transfer matrices with different Boltzmann weights but the same value 
of A commute. Fixing A still leaves one non-trivial degree of freedom, the “spectral
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parameter” v; two six-vertex models with the same value of A but different values 
of v will have transfer matrices that satisfy the commutation relation

V(v)V(u) = V(u)V( v).

By considering a local “propagation through a vertex” property, it can be shown 
that there also exists a matrix function Q(u) such that

V(u)Q(v) = Q(v)V(u)

and that Q(u) and V(v) also satisfy a functional relation, which determines all of 
the eigenvalues of V(u) and Q(u); these can be solved explicitly in the thermody
namic limit, and quantities such as the free energy and interfacial tension can be 
calculated.

That the transfer matrix commutation could be established directly, with the 
condition for commuting transfer matrices being simply that the Boltzmann weights 
satisfy the star-triangle relations, pointed the way towards the solution of the eight- 
vertex model, and has been used for the solution of a great many models since.

The functional relations for the six-vertex model are different for the periodic 
and anti-periodic boundary conditions. We pre-empt our interest in the anti- 
ferroelectric model by parameterising the Boltzmann weights as

a = psinh |(A — v), b = p sinh |(A + v), c = p sinh A (2.2)

so that

A = — cosh A. (2-3)

Periodic boundary conditions

For the six-vertex model with periodic boundary conditions, a derivation of the 
functional relation is given in Chapter 9 of Reference [19]. The transfer matrix 
V(u) satisfies the functional relation

V(v)Q(v) = A -  v)Q{v + 2Y) + <j>{A + v)Q(v -  2A#)

where <f>(v) is an auxiliary (known) scalar function. As the matrices V(u) and Q(u) 
commute, they can be simultaneously diagonalised by a similarity transformation 
which depends on A but is independent of v. Hence the eigenvalues satisfy the 
functional relation
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A (v)q(v) =  (p(X — v)q(v -f 2A') + (j){ A + v)q(v — 2A'), (2.4)

where A(u) is an eigenvalue of V(u), q(v) is an eigenvalue of Q(u), and the functions 
<f>{y) and q(v) are

(j){v) = pL sinhL \ v

and

q(v) = n-i1*
j = i

(2.5)

(2.6)

The transfer matrix is block diagonal, and the integer n labels the sectors of the 
transfer matrix. The unknowns Vj satisfy the Bethe-ansatz equations

vi) ^  2X') ■ =
(j>(\ + vj) q(vj + 2A')’ J

(2.7)

which follow from (2.4).

A nti-periodic boundary conditions

The six-vertex model with anti-periodic boundary conditions was solved in 1995 
by Batchelor et al. [11]. The functional relation for the transfer matrices is derived 
following closely the working of Reference [19] for the periodic boundary conditions. 

The transfer matrices satisfy the functional relation

V(u)Q(u) = <KA -  ü)Q(ü + 2A') -  (/»(A + ü)Q(v -  2A')

and once again the matrices V(u) and Q(u) are simultaneously diagonalisable, so 
the functional relation can be written as a relation between the eigenvalues;

A(u)g(u) = (/>(A — v)q(v -f 2A') — </>(A + v)q(v — 2A') (2.8)

where is still given by equation (2.5), but now 
L

q { v ) =  JJsinh \ { v - V j ) .  
j = i

The variables vj are the solutions to the Bethe-ansatz equations

<t>(^ -  V j )  q ( v j  -  2A')
<t>(\ + Vj) q(vj +  2\' ) ’ 3

(2.9)

( 2. 10)

which follow from (2.8). In contrast to the periodic case, the number of roots is 
fixed at L.
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2.4 Solution to the six-vertex model—free energy and inter
facial tension

We solve the functional relations (2.4) and (2.8) for the eigenvalues of the trans
fer matrices of the six-vertex model with both periodic and anti-periodic boundary 
conditions, in order to calculate the free energy and interfacial tension of the model.

To determine the free energy of the model with periodic boundaries, one must 
determine in which block of V the maximum eigenvalue lies; it is usually assumed 
to lie in the subspace corresponding to n = \L  if L is even or \{L  ±  1) if L is 
odd. This has been confirmed in numerical calculations for finite T, and although 
a proof is lacking, it shall be assumed here.

Once this is established, the maximum eigenvalue and hence the free energy 
can be calculated in the thermodynamic limit, after making certain analyticity 
assumptions. The model has three seperate phases, in each of which the free energy 
assumes a different analytical form. The phases are classified by the parameter A.

The ferroelectric model corresponds to A > 1; in this phase, the system is 
“frozen” into its ground state configuration for all sub-critical temperatures, main
taining perfect, zero-temperature polarisation all the way up to the critical tem
perature, where it has first order phase transition into a disordered state. This was 
pointed out by Slater in his 1941 paper [106]. The interfacial tension between oppo
sitely ferroelectrically-ordered regions is infinite, and so this phase of the six-vertex 
model is of little interest to us here.

The region — 1 < A < 1 is rather unusual; it corresponds to the disordered 
region (containing the infinite temperature point a = 6=  c = l ) ,  but the correlation 
length is infinite for all a, b and c in this region, and hence the model is critical 
throughout the entire disordered phase. As the system is disordered, the interfacial 
tension is zero. Re-parameterising the Boltzmann weights in terms of circular 
trigonometric functions, a = p s in |(p  — w), b = p s in |(p  -f iu), c =  psinp, so 
A = — cos p, where —p < t u < p ,  0 < p < 7 r ,  the free energy per site is

r  oo
f / k BT = log p -  /

J — OO 2x sinh nx cosh fix

2.4.1 Anti-ferroelectric phase

We are mainly interested in the six-vertex model in its anti-ferroelectric phase, 
with c > a T 6, or A < -1 . The free energy is calculated in the following chapter,
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Figure 2.2: One of the two possible ground state configurations, with L even 
and periodic boundary conditions.

and can be written

/  =  Si -  kBT i(A +  v) +  5Z
m —1

exp(—mA) sinh ra( A + 
m  cosh mA

for — A < v < A.

(2 .11)

2.4.2 The interfacial tension

In the anti-ferroelectric phase the six-vertex model has a non-zero interfacial 

tension 6, given by

oo /  i I ^ 4 m  \  ^
e s / k BT  =  2 x 1 /2  J J 1 4- x l

l  V1 +  z 4m —2 ( 2. 12)

where

x = e .

The interfacial tension of the six-vertex model was originally calculated by 

Baxter for the eight-vertex model, in Reference [16], from the two asym ptoti

cally degenerate numerically largest eigenvalues of the transfer m atrix, for a la t

tice with periodic boundary conditions. This calculation was actually for the 

symmetric eight-vertex model, but the result is independent of the vertex weight 

d = e~e^ keT = e~es/keT, so is the same for both the eight- and six-vertex models.

We do not calculate it this way; instead, we force an interface in the lattice, 

and calculate the interfacial tension from the asymptotic behaviour of the partition
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Figure 2.3: One of L possible lowest-energy configuration, with L odd and 
periodic boundary conditions.

function as the lattice size tends towards infinity. There are two ways we create 
the interface, which we describe here.

First consider the lattice with periodic boundary conditions in both the hori
zontal and vertical directions, and L and M  both even. In the anti-ferroelectric 
phase, and at the absolute zero of temperature, vertices with weight c dominate; the 
ground state of this lattice is shown in Figure 2.2. The vertices all have Boltzmann 
weight c, and the lattice shows perfect anti-ferroelectric order.

If instead we take the number of columns L to be odd, then just as Onsager 
found that this produced an “anti-ferromagnetic seam” in his Ising lattice, so we 
find that an “anti-ferroelectric seam” is produced, on either side of which the lattice 
is ordered into a perfect anti-ferroelectric state. There must be an even number of 
vertices with weight c in each row to ensure the periodic boundary condition. In 
the zero temperature limit, a typical row will be composed of as many vertices with 
weight c as possible, but the requirement of an odd number of vertices in each row 
implies that the lowest-energy configuration of a row must contain a vertex with 
weight a or b. As rows are added together to form the lattice, these anomalous 
vertices form an interface running down the lattice. The interface may meander 
from left to right, but its mean direction will be downwards. The interfacial tension 
is the surplus free energy due to the presence of the interface. An example of the 
seam is shown in Figure 2.3. We take the number of rows, M, to be even to ensure 
periodic boundary conditions in the vertical direction, so that there will not also
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Figure 2.4: One of L possible lowest-energy configuration, with L even and 
anti-periodic boundary conditions.

be an interface running in the horizontal direction.
When we impose anti-periodic boundary conditions, and consider an even num

ber L of columns, the ground state configuration in Figure 2.2 is again inconsistent. 
To ensure the anti-periodic boundary condition, vertices with Boltzmann weight c 
must occur an odd number of times in each row. Thus the lowest-energy configura
tion for the row, which is favoured at low temperatures, will consist of L — 1 vertices 
with weight c, and one vertex with either weight a or b. This vertex can occur any
where in the row. As we add rows to form the lattice, the a or b vertex in each 
row forms a “seam” running approximately vertically down the lattice; it can jump 
from left to right but the mean direction is downwards. A typical lowest-energy 
configuration is shown in Figure 2.4.

Finally, we consider the effect of having both anti-periodic boundary conditions 
from left to right, and an odd number of columns. Figure 2.5 shows a ground state 
of this lattice, which has perfect anti-ferroelectric order in the zero temperature 
limit. Hence there is no interface in this lattice.

For those lattices with vertical interfaces, the interfacial tension will grow as 
the length of the interface grows; this is proportional to the height M  of the lattice, 
so we expect that for large L and M  the partition function of the lattice will be of 
the form

Z ~  exp [(-LMf -  Ms)/kBT] (2.13)
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Figure 2.5: One of the two possible ground state configuration, with L odd 
and anti-periodic boundary conditions.

where /  is the normal bulk free energy, and s is the interfacial tension per unit 
length.

2.4.3 Critical behaviour

We mention the critical behaviour of the anti-ferroelectric six-vertex model [19]. 
The phase transition occurs when a + 6 — c = 1, and near criticality we have 
T — Tc ~  t = (a -f b — c)/c; the singular part of the free energy scales as f smg ~  
exp(—c/(—f)1//2), which has an essential singularity at t = 0. The free energy 
and all of its derivatives vanish as t —> 0“ , and the transition is “infinite order.” 
The interfacial tension, correlation length and order parameter all have essential 
singularities at the critical point also, rather than vanishing or diverging as power 
laws, and so the corresponding critical exponents cannot be properly defined. This 
behaviour is interesting and rather unusual, and is due to the imposition of the ice 
rule; it does not persist in the eight-vertex model.

2.5 Results and discussion

We investigated the transfer matrices for the anti-ferroelectric six-vertex model 
with both periodic and anti-periodic boundary conditions, and considered the 
model on lattices with both an even and an odd number of columns.

The only such case that has been investigated previously is the model with
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periodic boundary conditions and an even number of columns. In this case, the 
transfer matrix has a unique largest eigenvalue which gives the free energy, and 
an asymptotically degenerate next-largest eigenvalue from which the interfacial 
tension may be calculated. This maximum eigenvalue is given by equation (3.40) 
of Chapter 3.

For the model with periodic boundary conditions and an odd number L of 
columns, the lattice has an interface (“anti-ferroelectric seam”) in its lowest-energy 
configuration, and a calculation of the partition function enables the calculation of 
the interfacial tension due to this seam. We find that the transfer matrix has a set 
of L largest eigenvalues, which are given by equations (3.71) and (3.72) of Chapter 
3. The interfacial tension is derived by performing a saddle point integration, giving 
equation (2.12), as expected.

We also considered the model with anti-periodic boundary conditions, and some 
of this work has been published in Reference [11]. When this model has an even 
number of columns, once again there is an interface in the lowest-energy configu
ration. We find that the transfer matrix has a set of L largest eigenvalues, given 
by equations (3.106) and (3.72) of Chapter 3. From these, we re-derived equation 
(2.12) for the interfacial tension.

Finally, we considered the model with anti-periodic boundary conditions and 
an odd number of columns; the ground state of this lattice shows perfect anti- 
ferroelectric order, and we find that the transfer matrix has a unique positive largest 
eigenvalue.

The detailed working is included in the following chapter.
In conclusion, we have used the functional relations to calculate the largest 

eigenvalue or eigenvalues of the transfer matrices of the six-vertex model in its 
anti-ferroelectric phase. Using these results, we re-derived the known formula for 
the interfacial tension of the model, and we feel that this method is much simpler 
than that used in an earlier calculation [16].

In the next part of this thesis, we use a similar method to calculate the interfacial 
tension of the chiral Potts model. This is an TV-state generalisation of the Ising 
model, and the generalisation of anti-periodic boundary conditions to TV-state spins 
is the skew-periodic boundary conditions.



CHAPTER 3

Calculation of the interfacial tension 
of the six-vertex model

In this chapter we present the solution to the functional relations (2.4) and 
(2.8) for both L even and L odd, obtaining explicit results in the limit L —* oo. We 
employ the Weiner-Hopf factorisation technique to solve the functional relations. 
While our working is not mathematically rigorous, we believe our assumptions to 
be justifiable, and hence claim that our results are exact.

To enhance readability of what is a rather technical chapter, we summarise each 
of the sections here.

In Section 3.1, we write the functional relation for the model with periodic 
boundary conditions, equation (2.4), as a relation between polynomials, equation 
(3.4). This is not essential to the solution, but we find it to be very convenient. In 
Subsection 3.1.1, we go on to solve this functional relation for L even, computing the 
largest eigenvalue of the transfer matrix V in the thermodynamic limit, equation 
(3.40), and hence calculate the free energy per site, deriving equation (2.11) from 
Chapter 2. Then in Subsection 3.1.2, we solve the same functional relation for L 
odd, computing a band of L largest eigenvalues, which are given by equations (3.71) 
and (3.72). From these we calculate the interfacial tension, deriving the expression 
(2.12) of the previous chapter.

In Section 3.2 we consider the model with anti-periodic boundary conditions, 
writing the functional relation for the transfer matrix, equation (2.8) of Chapter 2, 
as a relation between polynomials, equation (3.78) of this chapter. This is solved in 
Subsection 3.2.1 for even T, from which we calculate a band of L largest eigenvalues, 
which are given by equations (3.106) and (3.72). From these eigenvalues we again 
derive (2.12) for the interfacial tension.

Finally, in Subsection 3.2.2, we solve the functional relation (3.78), this time for
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L odd, and find that there is a unique largest eigenvalue of the transfer matrix.

3.1 Periodic boundary conditions

We present the solution of the functional relations for periodic boundary condi
tions and an even number of columns first. This is the simplest case to solve, and 
the method generalises to the other cases we consider.

To facilitate the solution, we define a new variable z by

2  = ev, (3.1)

so from the symmetry (2.1), the partition function is now invariant under z —> 1/z. 
All of the eigenvalues of V(u). and Q(v) are Laurent polynomials in 2 , and we 
rewrite the functional relation between the eigenvalues of V(u) and Q(u) in terms 
of polynomials in z as follows. Define the polynomials Q(z) and V(z)  as

Q(z) = -  Zi) (3.2)
3 =  1

and

V(z) = e-*in2Lp-LeLv/2A.(v)xL/2- n, (3.3)

so the functional relation (2.4) becomes

V(z)Q(z) — (1 — zx)LQ(zx~2) + xL~2n(zx~1 — 1)l Q( zx2). (3-4)

The function Q(z) is a polynomial in 2  of degree n, with zeros z i , . . . ,  zn. The right 
hand side of (3.4) is a polynomial in 2  of degree L + n, and so V{z) is a polynomial 
in z of degree L.

We will solve the functional relation (3.4) for the polynomial V(z) corresponding 
to the maximum eigenvalue of V(u), for both the cases L even and L odd. From 
the last chapter, when L is even, we expect that the partition function will grow as

Z  ~  e~LMf/kBT

as L and M  tend to infinity, where /  is the bulk free energy per site in the thermo
dynamic limit. Taking L odd will force an interface in the lattice, so the partition 
function will grow as in equation (2.13) as L and M  tend to infinity, where s is the 
interfacial tension per unit length.
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3.1.1 Even L

To calculate the maximum eigenvalue of V, we find the maximum eigenvalue 
in the n = L/2 subspace, for finite n and L, and then take the limit L —* oo with 
n = L/2 fixed, remembering that L is even. With this value of n, the functional 
relation (3.4) becomes

V(z)Q(z) = (1 — zx)LQ(zx~2) + (zx~l — \ )LQ(zx2). (3.5)

Of the many possible solutions to the functional relations, we have to deter
mine which of these corresponds to the maximum eigenvalue of V. The relation 
contains solutions corresponding to all of the eigenvalues in the particular block, 
plus possibly others that do not correspond to any eigenvalues at all. Our ap
proach is to identify the solutions corresponding to the largest eigenvalue in the 
zero-temperature limit. We describe the polynomials by determining the location 
of their zeros in the complex z plane. We then make assumptions based on this 
limiting behaviour to locate the zeros corresponding to the largest eigenvalue of 
V for non-zero temperatures. The temperature-like variable we use is x (or alter
natively A or A). When x = 0 (A = oo, A = — oo), the system is in one of two 
possible perfectly ordered anti-ferroelectric ground states, and undergoes an order 
to disorder transition as x —> 1 (A —► — 1 or A —> 0).

We are considering the anti-ferroelectric model, with c > a-\-b. Hence as A —» oo, 
the maximum eigenvalue of the system will correspond to the state in which vertices 
with the vertex weight c appear most. The periodic boundary condition from left 
to right requires that the vertices with weight c occur an even number of times in 
each row, so as L is even, then in the limit x —> 0 the maximum eigenvalue will be, 
to leading order A(u) ~  cL, and hence

V{z) ~  znx~L (3.6)

as x —> 0. We make the (self-consistent) assumption that the polynomial Q(z) is 
bounded as x —* 0, and that its zeros are order unity. The right hand side of (3.5) 
is, up to a constant (order unity) multiple,

znx~L (1 -f { - z ) nziz2.. .  zn) (3.7)

where the Zj, j  = 1, . . .  ,n are the zeros of Q(z). Substituting expression (3.6) for 
V(z) into the relation (3.5), we find the following expression for Q(z) which is valid 
in the limit x —> 0;
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Q(z) = constant • (1 + (—z)nz\ • • • zn) (3-8)

where the constant is order unity. Equating (3.2) and (3.8) we find that the zeros 
of Q(z) satisfy the following relation in this limit

(*i • • • Znf  = 1, (3.9)

and hence that

<3(°) =  (-)"*! •••*„ = ±1- (3-10)

Equations (3.8) and (3.9) imply that in this limit, the n zeros of Q(z) lie on the 
unit circle, and are the solutions to the equation

*“ =  ±1, j  = (3.11)

The ±  signs in equations (3.9)—(3.11) correspond to the two asymptotically de
generate largest eigenvalues of V. This two-fold degeneracy is unimportant in our 
calculations.

For the zeros of the polynomial V(z)\ from equation (3.6), n of these lie at the 
origin in the limit i - + 0 ,  and by the z —+ 1/z symmetry of the partition function, 
a further n lie at infinity.

Thus we have located the zeros of the polynomials Q(z) and V(z) which cor
respond to the maximum eigenvalue of V in the limit x —> 0. We wish to solve 
the functional relation for x non-zero also, so we have to determine how the zeros 
behave as x increases.

At least some of the zeros will certainly move; some or all of the zeros of V(z) 
will move from the origin and from infinity into the finite part of the z plane, and 
some or all of the zeros of Q(z) may move. If x is sufficiently small, the zeros of 
V(z)  and Q(z) should not move by “too much,” by this we mean that the zeros of 
V(z)  will still lie in some neighbourhood of the origin and of infinity, and the zeros 
of Q(z) will still lie in some neighbourhood of the unit circle. This distribution of 
zeros is indicated in Figure 3.1.

Based on these assumptions, we can factor V{z) as

V(z) = A(z)B{z), (3.12)

where A(z) is a polynomial in z of degree n whose zeros are those of V(z) that lie 
inside the unit circle, and B(z)  a polynomial of the same degree, whose zeros are
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Figure 3.1: The zeros of Q(z) (x) and V(z) (•) in the complex 2-plane, 
for periodic boundary conditions and an even number of columns L. The 
contours C+ and C- lie outside the unit circle (broken line), and the contours 
C\ and C'_ lie inside.

those of V(z)  that lie outside the unit circle. As x —> 0, all of the zeros of A(z) 
move to the origin, and all of the zeros of B( z ) move to infinity.

The zeros of the functions V(z) and Q(z) as described lie clustered around the 
origin, the unit circle and the point at infinity (at least for x sufficiently small). 
Hence there will be two annular regions in the 2-plane, inside which the polynomials 
V(z)  and Q(z) are both non-zero. Draw the curves C+ and C_ as in Figure 3.1, 
both oriented in the positive direction and both outside the unit circle. Inside C_ 
lie the zeros of Q(z) and A(z),  while outside C+ lie the zeros of B(z).  Let C be 
the curve C+ —C-. This is a curve oriented in the positive direction, the interior of 
which is the annular region between C+ and C_. Both V(z) and Q(z) are non-zero 
when 2 is inside C.

Define a function r(z) as the ratio of the first and second terms on the right 
hand side of the functional relation (3.5),

= (1 -  zx)LQ(zx~2)
(zx~l — 1 )LQ(zx2) (3.13)
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We shall construct Weiner-Hopf factorisations of 1 + r(z) and 1 + 1 /r(-2r) which 
are valid in appropriate regions of the complex z-plane, in order to factorise the 
polynomial V(z). The function r(z) is an analytic and non-zero function of z when 
z is inside C.

When \z\ > 1, then in the limit x —» 0 we see that \r(z)\ ~  |z|_n, so that 
|r(z)| < 1. Hence we can choose ln[l +r(z)] to be a single-valued analytic function 
of z when z lies inside C, and we assume that this can be done for non-zero values 
of x.

We then factorise 1 -f r(z) by defining the functions P+(z) and P-{z) as

In P±(z) = ± —t ln[l + r(u>)] , (3-14)
I'Kl Jc± w — z

The function P+(z) is an analytic and non-zero function of z when z is inside C+ (see 
for example Reference [42], §5.5), and P-(z) is an analytic and non-zero function 
of z when z lies outside C_.

When z lies inside C, Cauchy’s integral formula implies

1 + r(z) =  P+(z)P-(z) = V(*)Q(*)
Q l z x ^ ^ z x -1 — 1 ) L

(3.15)

The first of these equalities demonstrates the Weiner-Hopf factorisation of 1 + r(z) 
in terms of the functions P+(z) and P-{z). With the second we can make a Weiner- 
Hopf factorisation of V(z) as follows. Let

V+(z) = P+(z)Q(zx2) (3.16)

V.(z)  = P.{z)(\  -  z x - 1)1 !Q(z). (3.17)

The function V+(z) is an analytic and non-zero function of z for z inside C+, while 
V-(z) is an analytic and non-zero function of z for z outside C_. When z is inside 
C, we have the equality

V{z) =  V+(z)V.(z) (3.18)

and thus we have Weiner-Hopf factorised V(z) in terms of the functions P+(z) and 
P~{z). Equating the expressions (3.12) and (3.18) for V(z),  we can write

V+(z) _  A[z)_
V.(zY

which is valid when z is inside C. Both sides of this equation are analytic functions 
in their respective domains, and agree identically when z is inside C. Noting that
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as \z\ —> oo, P-(z) —> 1, Liouville’s theorem implies that both sides of (3.19) are 
identically constant, C\ say;

V+(z) = c\B(z), z inside C+ (3.20)

V-(z) = c \ l A(z), z outside C_. (3.21)

The constant C\ is left undetermined for now.
We basically repeat this working to factorise 1 + 1 /r(z). Draw the curves C'+ 

and CL, both inside the unit circle, and both oriented in the positive direction. 
Inside CL lie the zeros of A(z), while outside C'+ lie the zeros of Q(z) and B(z). Let 
C — C'+ — CL be a curve oriented in the positive direction; the interior of C  is the 
annulus between the contours C\ and CL, and inside C  the polynomials V(z) and 
Q(z) are both non-zero. These curves are also indicated in Figure 3.1.

When \z\ < 1, in the limit x —> 0 we see that \l/r(z)\ < 1, so we can choose 
ln[l + 1 /r(z)\ to be analytic and single-valued when z is inside C . Again, we will 
assume that this can be done for all x.

Define the functions P+(z) and PL(z) as

\nP'±(z) ± T  l  In 
2xi Jc± 1 +

•(««).

dw
w — z

(3.22)

where P+(z) is analytic and non-zero for z inside C+, and PL(z) is analytic and 
non-zero for z outside CL- When 2  lies inside C\ Cauchy’s integral formula now 
implies that

l + l/r(z ) P+(z)P_{z) QizJ^-z(3'23)

Thus we have split 1 + 1 /r(z) into two factors, P+(z) and PL(z), where P'Az) is an 
analytic and non-zero function of z for 2  inside C'+-, and PL(z) is an analytic and 
non-zero function of z for z outside CL-

We use (3.23) to split V(z) into two factors, V[{z) and VL(2 ), with the same 
analyticity properties, by defining

Vl(z) = P!¥( z ) ( l - z x ) L /Q(z) (3.24)

VL{z) = P'_(z)Q(zx-2). (3.25)

Then from previous comments, V+{z) is an analytic and non-zero function of z 
when z is inside C+, and Vf(z)  is an analytic and non-zero function of z when z is 
outside CL- When 2  is inside CL we have
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V(z) = Vl(z)VL(z). (3.26)

Once more, equating (3.26) and (3.12), we have

YM M
B(z) VL(z)

which is valid for 2: inside C . By the same arguments preceding equations (3.20) 
and (3.21) we conclude that both sides of (3.27) are constant, say c2. Thus

V+(z) = c2B ( z ), z inside C'+ (3.28)

V_(z) = C2 1 A(z), z outside C_. (3.29)

Equations (3.20),(3.21) and (3.28),(3.29) relate the functions V^z), V-(z), and 
V[(z), Vf(z) to the polynomials A(z) and B(z). Equating (3.20), (3.28) and (3.21), 
(3.29), we find

Vl(z) = (c2 /ci)V+(z), z inside C'+ (3.30)

V!_(z) = (c2 /ci)V-(z), z outside C_, (3.31)

which eliminates the functions A(z) and B(z). We evaluate the constant c2/c! by 
considering the limit \z\ —■> 00, then using equations (3.31), (3.25), (3.22), (3.17), 
(3.14) and (3.2), to find that c2/ci = 1.

Equations (3.30) and (3.31) are used to derive expressions for the polynomials 
Q(z) and V(z) in appropriate domains of the z-plane as follows. When 2: is inside 

then equations (3.30), (3.24) and (3.16) imply that Q(z) satisfies the recurrence 
relation

Q(z)Q(zx2) = (1 -  zx)LYM
PLW

z inside C'+. (3.32)

Iterating this, Q(z) can be written as the infinite product

gw=o(o) n
m = 1

/1 -  zx4m~3\ L P[(zx4m)P+(zx4m~2) 
\1 — zx4m~l ) P\_(zx4m~2)P+(zx4m)'>

z inside C'+ (3.33)

which is an exact expression for finite L. When L is large, the functions P+(z) and 
P[(z)  differ from unity by an exponentially small amount. In the thermodynamic 
limit L —*■ 00, P+(z) and P~(z) both tend towards unity, and Q(z) becomes

00 / 1  _  ^ 4 m - 3 \  ^

Q(z) = Q(0) n L _  ~'T4m-i ) - 2 inside c ; .
m = 1 \  /

(3.34)
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This is an exact expression in the limit L —■> oo.
We repeat this working for z outside C_. Then we use equations (3.31), (3.25) 

and (3.17) and get the recurrence relation

Q{z)Q(zx 2) = (zx 1 -  1)LP-(z)
P'-{zY

z outside C_, (3.35)

which is an exact expression for finite L. We can solve (3.35) iteratively as before, 
exactly for finite L in terms of the functions P~(z) and PL(z), which in the limit 
L —» oo becomes

1 -
. 4 m - 1 z outside C_.

771 =  1
(3.36)

This is all the information needed to write down an expression for V(z)  from 
the functional relation (3.5), valid for z inside C or z inside C .

First consider the zeros of Q(z)\ we shall show that these lie exactly on the unit 
circle for all x. Let 2  = z3 be a zero of Q(z), and substitute this into equation (3.5). 
The left hand side vanishes, and using equation (3.34) for Q(zx~2) and equation 
(3.36) for Q(zx2), then in the thermodynamic limit the zeros of Q(z) corresponding 
to the maximum eigenvalue of V satisfy

[t/>(z)]L = ±1 (3.37)

where

v>(z)=zi/2fi
m — 1 \

,4 m —1 1 —  Z X— 1 m4 m - 3

ZX 4 m - 3  1 _  Z~1X4m~1
(3.38)

The ±  sign corresponds to the asymptotically degenerate largest eigenvalues; the 
zeros of Q(z) lie densely spaced on the unit circle for all x in th limit L —> oo. 
Equation (3.37) reduces to (3.11) in the limit x —> 0, as expected.

As the zeros of Q(z) lie exactly on the unit circle in the L —> oo limit, we can 
shift the contours C- and C+ and write equations (3.34) and (3.36) as

00 /  1 _  ~ T 4m —3 \  £

q (z ) = q ( o) n ( r -

Q(z) = z-  M 2

_ ,4m —1
m = l

00 / 1 - z ~ 1x4m- 3\ Lsi—,4m —1

\z\ < 1 

\z\ > T

We now calculate the function V(z) as an infinite product. When z is inside C, 
equation (3.18) implies that
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V(z) = Q{0)znx~L n
m = 1

f l  -  zx4m“1 
\ l  -  zx4m+1

1 -  z~lx4m~l \  L
1 -  Z ~ 1X4m+1 )

(3.39)

in the limit L —> oo with n  = L/2. Similarly, when z is inside Cl, equation (3.26) 
gives the same expression for the function V(z) in the L —> oo, n  = L / 2 limit. 
Hence we can take this equation for V(z) throughout the annulus between the 
contours C'_ and C+.

The eigenvalue A(u) is related to V(z) by equation (3.3), so we have, for the 
maximum eigenvalue of V(u),

oo

A(t>) = ±(p/2x)L
m=l

which is valid for z inside C and z inside C', or inside the annulus between C'_ and 
C+. The ±  signs are unimportant, and one derives equation (2.11) for the free 
energy.

1 — zx Am — 1 1 -  z~lx4m~l
1 —  z x 4m+1  1 —  Z ~ 1X4m+1

(3.40)

3.1.2 Odd L

We now consider the functional relation for L odd, and calculate a set of L 
largest eigenvalues of the transfer matrix, from which we derive the interfacial 
tension via equation (2.13). We expect the maximum eigenvalues to occur in the 
n = (L — l)/2  or (L + l)/2  subspace of V, the maximum eigenvalue in either 
subspace will lead to the same result through the symmetry under arrow reversal. 

We take

n = (L — l)/2 , L = 2n + 1

and the functional relation (3.4) now reads

V(z)Q(z) = (1 — z x )l Q ( z x ~2) + x(zx~l — 1 )l Q ( z x2). (3.41)

The right hand side of (3.41) is a polynomial in z of degree 3n + 1, and Q(z) is a 
polynomial of degree n; therefore V(z) is a polynomial in z with degree L = 2n-f 1.

We locate the zeros of Q(z) and V(z) in the x —> 0 limit and proceed as before. 
The largest eigenvalue will be dominated by the row configuration with the greatest 
number of vertices with the vertex weight c. Such vertices must still occur an even 
number of times in each row to ensure the periodic boundary conditions, but as 
L is now odd, there will be at least one vertex in each row with weight a or b. 
The maximum eigenvalue of V will correspond to a configuration with exactly one
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Figure 3.2: The zeros of Q(z) (x) and V(z) (•) in the complex 2-plane for 
periodic boundary conditions and an odd number of columns L. The unit 
circle is indicated by the broken circle, and the contours C+ and CL he outside 
the unit circle, the contours C'+ and C'_ inside. The point —t, the extra zero 
of V(z), is indicated.

vertex with weight a or b in each row. There are L places to put this vertex, which 
corresponds to the set of L largest eigenvalues of the transfer matrix (with one of 
these being positive and numerically larger than the others, by the Perron-Frobenius 
theorem).

Hence the largest eigenvalues are of the form (for x —> 0) A(u) ~  cL~l (dia-\-d2b), 
where di and d2 are numbers which are order unity as x —* 0, and the corresponding 
polynomial V(z) is

where f, to be determined, is order unity. To find an expression for Q(z) in this 
limit, we again assume that the zeros of Q(z) are bounded as x —> 0. Then the 
right hand side of (3.41) is

as x —> 0. Using (3.42) and (3.43), the functional relation (3.41) gives the low- 
temperature formula for Q(z)

V(z) ~  znx~2n(z + t) (3.42)

(3.43)
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Q(z)(z + t) = constant • (l — (—z)n+lzi • • • zn) (3-44)

where the constant is order unity. Both sides of (3.44) are polynomials of degree 
n + 1, and using expression (3.2) for Q(z) to equate coefficients of equal powers of 
z, we find

{zi - - -zn)2t = 1, (3.45)

in contrast to equation (3.9) from the previous subsection. Hence

Q(0) =  ( - ) ’'zl - - - z n =  ± r 1'2. (3.46)

In particular, setting the right hand side of (3.44) to zero gives an equation for the 
n + 1 zeros of the left hand side, that is, the zeros of Q(z) Zi,. . . ,  zn and the zero 
of V(z),  z = —t;

zn+1 =  ±(z, • • • Zn) - 1 = ± i1/2. (3.47)

Of the n -1-1 solutions to this equation, n of them make up the zeros of Q(z), 
z i , . . . ,  zn, and one of them is the zero of V{z), z = —t. The parameter t satisfies

tL = 1, (3.48)

which gives L possible values for t leading to L possible eigenvalues via equation 
(3.42), as expected. The ±  sign corresponds to the unimportant two-fold degener
acy in each largest eigenvalue.

From (3.42), n of the zeros of V(z) lie at the origin in this limit, and n of them 
lie at infinity, making up 2n -f 1 = L zeros for V (z) including the zero on the unit 
circle.

We apply the same arguments as in the previous subsection regarding the be
haviour of the zeros as x increases. We expect that the zeros will lie as indicated 
in Figure 3.2, with the n zeros of Q(z) and one zero of V(z), —t, lying in some 
neighbourhood of the unit circle, and n zeros of V(z) lying in a neighbourhood of 
the origin, n in a neighbourhood of infinity.

Hence we can factor V(z) as

V(z)  = (z + t )A(z)B(z)  (3.49)

where once more A(z) is a polynomial in z of degree n, whose zeros are those of 
V{z) that lie inside the unit circle, and B(z) is a polynomial of the same degree 
whose zeros are those of V(z)  that lie outside the unit circle.
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We define the contours C+, C_, C and C'+, C'_, C  as before, with the zero z = —t 
of V(z) lying inside C_ and outside C'+. The contours are indicated in Figure 3.2.

Define r(z) to be the ratio of the functions on the right hand side of (3.41),

= (1 -  zx)LQ{zx~2) 
x(zx~1 — 1 )LQ(zx2)

We construct a Weiner-Hopf factorisation of 1 -f r(z) and 1 -f 1 /r(z) as we did in 
the previous subsection. In the limit x —> 0, we see that |r(z)| ~  |z |“n_1, so when 
\z\ > 1 then \r(z)\ < 1, and when \z\ < 1 then l/\r(z)\ < 1. Hence ln[l + r(z)\ 
can be chosen to be analytic for z inside C, and ln[l + 1 /r(z)\ can be chosen to be 
analytic for z inside C . We define the functions P+(z) and P~(z) as in equation 
(3.14) but with equation (3.50) for r(z). Then P+(z) and P-(z)  give a Weiner-Hopf 
splitting of 1 -f r{z)i ala the first equality of equation (3.15).

Using this we define a Weiner-Hopf splitting of V(z) by defining the functions 
V+(z) and V-{z) as

V+(z) = P+(z)xQ(zx2) (3.51)

V.(z) = P-(z)(zx- 1 -  1 )l/Q(z), (3.52)

where V+(z) is an analytic and non-zero function of 2 for z inside C+, and VL(z) 
is an analytic and non-zero function of z for z outside C_. We have the equality 
(3.18) when 2 is inside C.

Equating (3.49) with the Weiner-Hopf factorisation (3.18), we have 

V+(*) A(z) (z + t), (3.53)
B(z) V-(z)

which is valid when 2 is inside C, and Liouville’s theorem again implies that both 
sides of (3.53) are identically constant, c\ say, so (3.53) can be written

V+(2) = ciB(z), z inside C+ (3.54)

V-(z) = c^l (z + t)A(z), z outside C-. (3.55)

Similarly, we factorise V(z) for \z\ < 1 by factorising 1 -f \/r{z).  Define P+(z) 
and PL(z) as in (3.22), but with equation (3.50) for r(z), and let

v;(z) =  p ;(z)( 1 -  zx)L/Q(z)  (3.56)

VL(z) = P'_{z)Q{zx~2) (3.57)

where V+(z) is analytic and non-zero when 2 is inside C'+, and V!_(2) is analytic and 
non-zero when 2 is outside C'_. When 2 is inside C\ then V(z) = V+(z)V!_{z). We 
can equate expressions for V(z) to write
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y ; ( * )  4 (*)
(z + t)B(z) VL{z)'

when z is inside C . Again both sides of (3.58) are constant, say c2, by Liouville’s 
theorem. Hence we can write

V+(z) = C2 (z -f t)B(z), z outside Ĉ . (3.59)

VL(z) = c^1A(z)1 z inside C'_. (3.60)

Taking quotients of (3.20),(3.59) and (3.21), (3.60), we have

V[(z) =  (ci/ c2 ) ( 2  + t)V+(z), z inside C+ (3.61)

V-(z) = (c2/ci)(2r + t)V!_(z), z outside C_. (3.62)

The constant ci/c2 is unity (after considering (3.62) in the \z\ —> oo limit). Equa
tions (3.61) and (3.62) imply recursion relations for Q(z) as before, and if we con
sider the L —» oo limit, so that P+(z), P-(z), P+(z )i P-(z ) are unity, the recursion 
relations are

Q(z)Q(zx 2) = x(zx 1 — l)L/(z  -f t), z outside C_ (3.63)

and

Q(z)Q(zx2) = (1 — zx)L/(z  + tf), z inside C'+. (3.64)

Iterating these, we have (in the limit L —» oo) 

°° / i  _  z- 1«w-«-n —00 / 1 -  z - lxAm~3\ L (1 + z - l tx4m- 2'
.4m —1

m = l 1 + z~1tx4m~4

and

~  / I  -  2 I 4 m - 3 \ I  / I  +  r f - ' i

<3(~) — <3( ) h j  (  i -  za;4m-l )  ( l  +  z t -1 ;

z outside C_

, 4m—2'

A m —4 / ’
2  inside Cl

(3.65)

(3.66)

From equation (3.64), we see that [Q(0)]2 = 1 /<, in agreement with equation (3.46).
The zeros of Q(z) and V(^) follow as in the previous subsection, from the 

functional relation (3.41). Using equation (3.65) for Q(zx~2) and (3.66) for Q(zx2), 
the zeros of Q(z) and V(z) that lie in some neighbourhood of the unit circle satisfy

[xp{z )}L (f)(z /t) = ±1 

where *P{z) is given by (3.38) and

(3.67)
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<t>(z) =_ . 1/2

m = 1

1 + zx4m 1 + z - lx4m~2 
1 + zx4m~2 1 -f- z~lx4m

(3.68)

Equation (3.67) has n + 1 solutions (ignoring the ±  sign, corresponding to the 
unimportant asymptotic degeneracy of the largest eigenvalues), which comprise 
the n zeros of Q(z), and the zero —t of V(z). This satisfies the equation

[i>(t)]L = ±1. (3.69)

In the limit x —> 0, this reduces to equation (3.48), as expected, and the different 
choices of t correspond to the L largest eigenvalues of V.

All of the possible values of t are unimodular, as are the zeros of Q(z), in the 
limit L —> oo. Hence as in the previous subsection, we can move the contours C- 
and C'+ onto the unit circle, and the expressions for Q(z) are as follows:

. „ . n. “  ( \ -  zx4m- 3\ L ( \  + z t - 1x4m~2\. . ,
« W - « ° ) n  ( l  + z<-1*4”- 4)  ’ 2 < 1 ,

q (z) = 2" n
m = l

1 -  z - lx4m~3\ L (1 + z - l tx4m- 2
1 , — 1 ^ 4 m - l \ z I > 1.\1 + z~l tx4m~4

Next we find the functions V(z). When z is inside C, then (considering L large, 
so P+(z) and P~(z) can be taken as unity) from (3.18)

V(z) =  V+{z)V-{z) =  x Q ( 2 x2)(1  -

where we are again suppressing the correction terms, so

00 f l -  zx4m~l

(3.70)

A(o) = ±G(z/t)(p/2x)L I ]
m = 1

1 -  z ^ x 4171' 1
1 -  zx4m+l 1 -  z~lx4m+l

where

G(z) = z 1/2(z1/2 + z - ,/2) n 1 + zx" 1 +  Z - 1 ^ 4 m

(3.71)

(3.72)
m_i V1 +  Z X 4 m ~ 2 1 +  Z ~ 1X 4 m ~ 2 )

We arrive at exactly the same expression considering 2  inside C\ so this expression 
for A(u) is valid for z inside the annulus surrounded by the contours C+ and C_.

Hence we have found L largest eigenvalues of the transfer matrix. By the Perron- 
Frobenius theorem, one of these should be real and positive, and this one should 
be the numerically largest of the set.

The two-fold degeneracy caused by the ±  sign is irrelevant for calculating the 
free energy per site and the interfacial tension in the thermodynamic limit, but 
the L-fold degeneracy with the band of largest eigenvalues, while also unimportant 
to the free energy in the thermodynamic limit, is important when considering the 
interfacial tension in the limit L —» oo. The partition function is given by
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2 =  £  A(v)M
all eigenvalues

where the sum is over all 2L eigenvalues of V. The sum is dominated by the band of 
L largest eigenvalues, given by equations (3.71), (3.72) and the solutions to (3.69). 
As L —+ oo, the sum over all values of t will become an integral around the unit 
circle,

Z  = j  R(t)[A(v)]M dt (3.73)

where R(t) is some distribution function, independent of L and M.  Substituting 
(3.71) into (3.73) then gives an integral expression for Z.

The eigenvalue (3.71) contains two distinct types of factors; those that are 
powers of T, and those that are not. The factors that increase exponentially with 
L contribute to the bulk part of the partition function, from which we calculate the 
free energy per site in the thermodynamic limit. This factor is also independent of 
t, so can be taken out of the integral (3.73). The integral is then independent of L, 
so we have, from equation (2.13)

6 - / A b T ( p / 2 x ) n
771 =  1

1 — Z X2 „ 4 m - 1 1 -  z~2x4m~l
1 -  z2x4m+l 1 -  z~2x4m+1

for the free energy per site in the thermodynamic limit. This result agrees with the 
result for periodic boundary conditions, equation (2.11).

From equation (2.13), the other factors in (3.71) make up the interfacial tension, 
given by

e - M s / k B T  _  £ R(t)[ (3.74)

This integral is evaluated as M  —> oo using the saddle point method. The function 
G(z) satisfies the relation

G(z) = G(l /z)

and hence has saddle points at z — 1 and z = — 1. The saddle point of the integrand 
is therefore

f — ^saddle — d lZ ,

through which we may deform the contour of integration. Doing so, the saddle 
point method then gives equation (2.12) for the interfacial tension.



3. Calculation of the interfacial tension of the six-vertex model 47

3.2 Anti-periodic boundary conditions

In this section we solve the functional relation (2.8) for the anti-periodic bound
ary conditions, to find the band of L largest eigenvalues for L even, and the single 
largest eigenvalue for L odd. To cast the eigenvalues of Q(u) and V(v) as polyno
mials in a variable z, we re-define z as

z = ev/2. (3.75)

Then let

Q( z ) = U i z - Z j )  (3-76)
3= 1

where Zj = cVj' 2, j  = 1 , . . . ,  L, and

V(z) = A(u)(2z/9_1)Le_7riL/2. (3.77)

We can re-write the functional relation (2.8) in terms of polynomials as

Q(z)V(z) = (1 — z2x)LQ(—zx~1) — (1 — z2x~l )LQ(—zx). (3.78)

Both terms on the right hand side of (3.78) are polynomials in z of degree 3L, but 
the coefficients of 1 and z3L vanish, so z~l V(z)  is a polynomial in z of degree 2L — 2.

3.2.1 E ven  L

We need an idea of where the zeros of the polynomials Q(z) and V(z)  which 
correspond to the L largest eigenvalues lie in order to construct the desired Wiener- 
Hopf factorisations. From the anti-periodicity of V(u) we see that V(z)  is an odd 
function of z,

V ( - z )  = — V(z) (3.79)

so its zeros must occur in plus-minus pairs.
We first consider the limit x —► 0. In this limit the partition function will be 

dominated by the state with the greatest number of vertices with weight c, and there 
must be an odd number of such vertices in each row to ensure the anti-periodic 
boundary conditions. Hence as L, the number of columns in the lattice, is now 
even, a vertex of either type a or b will occur in the lowest energy configuration of 
each row. As x —> 0, the maximum eigenvalue will be, to leading order, A(u) ~  
cL-1(dia + d26), where d\ and d2 are constants which are order unity as x —* 0. 
Hence
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2  l V(z) ~  ZL 2x L+1(/2 (yZ2 + t2̂j

as x —> 0, where t2 is order unity. Thus z~l V(z) has L — 2 zeros at the origin and a 
corresponding set of L — 2 at infinity, and two that are bounded as x —» 0. We also 
need to know where the zeros of Q(z) lie; in the previous calculations, we assumed 
that they were all bounded as x —* 0, and found that they all moved on to the 
unit circle as L —» oo. This assumption was self-consistent when periodic boundary 
conditions were applied. If we make the same assumption in the anti-periodic case, 
then as x —* 0, the right hand side of the functional relation (3.78) becomes

zLx~L (l — zLzi • - • zl) (3.80)

and so

Q(z)(z2 + constant) ~  zx~1//2 (zLz\ • • • zl — l) (3.81)

where the constant is order unity, which implies that Q(z) has a zero at the origin, 
contradicting the assumption that the zeros are bounded as x —> 0. Instead, guided 
by the form of equation (3.81), we assume that all but two of the zeros of Q(z) are 
bounded as x —> 0, the other two moving to the origin and to infinity as x —> 0. Let 
Zi and z2 be the two zeros that are not bounded, and put z\ =  a, , where
a, ß —> 0 as x —> 0. We can find out how fast a and ß approach zero, assuming 
first that as x —* 0, Q(z) has the following behaviour

Q (-z x ~ l ) ~  zLx~L, Q(-zx)  ~  Zi • • • zl,

when 2  = 0(1) (which is the case with periodic boundary conditions). Then 
equations (3.80) and (3.81) are still true, and from equation (3.76) we have

Q(z) ~  - z ß ~ l (zL~2 H------ f z3 • • • zl)

as x —> 0, so equating this and (3.81), we see that

z\ • • • zl ß = 0 ( x 1/2) and z3 • • • zl t2 ß~l = 0(x~1/2),

but the numbers z3, . . . , zl and t are all order unity, so

q , ß = 0 ( x 1//2) as x —> 0.

We can show, using the approach of the previous section, that the zeros of Q(z) 
and V(z)  satisfy
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Figure 3.3: The zeros of Q(z) (x) and V(z) (•) in the complex 2-plane, for 
anti-periodic boundary conditions and an even number of columns L. The 
contours C+ and CL He outside the unit circle (broken line), the contours C+ 
and C'_ inside. The anomalous zeros of V(z), -\-it and —it, are indicated, as 
are the anomalous zeros of Q(z), a and ß~l .

{zi •• • zL)2t2ctß~l = 1

in contrast to the similar results for periodic boundary conditions, equations (3.45) 
and (3.9), and that

Q(0) =  z i  • • • zL =  ± r  V /2/T 1/2. (3.82)

The choice of sign corresponds to the two-fold degeneracy in the largest eigenvalues.
In summary, then, the zeros of Q(z) and V(z) are as follows. In the x —■* 0 

limit, L — 2 of the L zeros of Q(z) lie on the unit circle, the other two, a and ß~l 
lying at distances proportional to x1//2 and x~1̂ 2 respectively. For V(z), there is 
the simple zero at the origin, and two zeros, -fit and —it, on the unit circle. The 
remaining 2L — 4 zeros of V(z) are divided into two sets, with L — 2 of them that 
approach the origin and L — 2 that approach infinity as x —> 0. The L zeros of the 
two polynomials that lie on the unit circle are spaced evenly around the circle.

As x is increased, the zeros of Q(z) and z~1V(z) will all shift. The zeros at the 
origin and at infinity will move into the finite part of the 2-plane, and the zeros
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that lie on the unit circle in the x —> 0 limit will also move as x increases. Thus 
Q(z) has L — 2 zeros “near” the unit circle, and two others, one (a) inside and 
one (ß~l ) outside. Both a and ß are 0 ( x 1̂ 2) as x —> 0. Also, V(z) has two zeros 
“near” the unit circle, which we call t\ and t2, one zero at the origin, and the final 
2L — 4 zeros of V(z) are made up of L — 2 zeros inside and L — 2 zeros outside the 
unit circle. This distribution of zeros is illustrated in Figure 3.3.

Hence we can factor Q(z) as

Q(z ) =  (z -  a )(z -  ß~1)Qi(z ) (3.83)

where Qi(z) is a polynomial of degree L — 2 whose zeros are 0(1) as x —> 0, and 
ct,ß = 0 ( x 1̂ 2), so a  lies inside the unit circle, ß~l outside.

Also, let V(z) = z(z — t\)(z — t2)A(z)B(z),  where A(z) and B(z)  are both 
polynomials of degree L — 2, the zeros of A(z) being all the zeros of V(z) that lie 
inside the unit circle, the zeros of B(z)  being those of V(z) that lie outside, and t\ 
and t2 are the zeros that lie on the unit circle. Since V(z) is an odd function, we 
must have /i = —t2, letting t\ = —t2 =  it, we write

V(z)  =  z(z2 + t2)A{z)B(z).  (3.84)

Draw the contours C+ and C_ in the complex z-plane, both oriented in the 
positive direction, with outside the unit circle, C+ outside C_, and such that 
there are no zeros of Q(z) or V(z) on the boundary of or inside the annulus between 
C- and C+. Then ß~l and all the zeros of B( z ) lie outside C+ (see Figure 3.3). Let 
C = C+ — C-, a contour oriented in the positive direction, the interior of which is 
the annulus between the curves C+ and C_. The polynomials V(z)  and Q(z) are 
both non-zero when z is inside C.

Define r(z) as the quotient of the two terms in the right hand side of the 
functional relation (3.78)

=  Q(~zx~1){l ~  z2x)L
Q(—zx)(l  — z2x~l )L

(r{z) has no zeros or poles on or between the curves C+ and C_). Then in the x —> 0 
limit, we see that |r(z)| ~  l l\z \L, so when \z\ > 1, \r(z)\ < 1. Thus ln[l -f r(z)] can 
be chosen to be single-valued and analytic when z lies in the annulus between C- 
and C+. Assuming that this is so for all x, we make a Wiener-Hopf factorisation 
of 1 T r(z) by defining the functions P+(z) and P-(z)  as in (3.14), but with (3.85) 
for r(z). Then P+(z) is an analytic and non-zero function of z for 2  inside C+, and
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P-{z) is an analytic and non-zero function of 2 for 2 outside C-. As |̂ r| —̂ 00, 
P-(z) —> 1. When 2 is inside C, we have, by Cauchy’s integral formula

i + ^ l  = />*(.)/>-« = <M6>

We use (3.86) to make a Weiner-Hopf factorisation of V(z)^ defining the functions 
V+(z) and VI (2)

V+(z) = P+( z ) Q ( - z x ) / ( z - ß - 1) (3.87)

V.(z) = P.(z)(  1 -  z2x~')L /{Q^zKz -  a)} (3.88)

where V+(z) is an analytic and non-zero function of z for 2 inside C+, and V-(z) is 
an analytic and non-zero function of z for z outside CL. We have split V(z)  into 
two factors, V+(z) and V-(z), with V(z) = V+(z)V-(z) when 2 is inside C.

From (3.84) we have

V+(z) A(z) z(z2 + t2), (3.89)
B(z) V.(z)

when 2 is inside C. The left hand side (right hand side) is an analytic and non-zero 
function of 2 inside C+ (outside CL), which is bounded as \z\ —> 00 and so the 
function must be a constant, c\ say. Thus

V+(z) = c\B(z), z inside C+ (3.90)

V-(z)  = c^1z(z2 + t2)A(z), z outside C_. (3.91)

When \z\ < 1, we proceed in the same way to factorise 1 + 1 /r(z). Draw the 
curves C'+ and CL, C\ inside the unit circle, C'_ inside and with a and all the 
zeros of A(z) inside C'_. Let C+ = C'+ — C'_ be a contour oriented in the positive 
direction, the interior of which is the annulus between C+ and CL, and inside of 
which both V(z) and Q(z) are non-zero.

In the limit x —> 0, \l/r(z)\ ~  |z|L, so |l/r(z ) | < 1 when \z\ < 1. Thus 
ln[l + 1 /r(z)\ can be chosen to be single-valued and analytic when 2: is inside C', 
and we assume that this is the case for x non-zero. We can then Wiener-Hopf 
factorise 1 + 1 /r(z) by defining the functions P+(z) and PL(z) as in equation (3.22) 
but with (3.85) for r(z), so that P+(z) is an analytic and non-zero function of z 
for z inside C+, and P'_(z) is an analytic and non-zero of 2 for 2 outside C'_. As 
\z\ —> 00, P'_(z) —> 1 . When 2 is inside C , Cauchy’s integral formula now implies

1 +
1

r(z)
=  p ; ( z) p : ( z) = V(*)Q(z)

Q(—zx~1)( 1 — z2x)L (3.92)
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Using (3.92), we can Weiner-Hopf factorise V(z) by defining the functions V+(z) 
and V'_ (z) as

V+(z) = i  + (z)(l -  z2x)L/ \Q ! ( z)(z -  ß  ') 

v!_(z) = P,_(z)Q(~zx~1)/(z -  a).

(3.93)

(3.94)

We have split V(z) into two factors, V[(z) which is an analytic and non-zero func
tion of z for z inside C+, and Vf(z)  which is an analytic and non-zero function of z 
for z outside C'_- When z is inside C\ we can write V(z)  = V+(z)V!_(z), and using 
(3.84), we have

*?(*) = zA(z)
z2 + t 2) Vf{z)

where now the left hand side (right hand side) is an analytic and non-zero function 
of 2 for z inside C\ (outside C'_). The right hand side is bounded as |z| —* oo, so 
by Liouville’s theorem, both sides of the (3.95) are constant, c2 say, and we have

V+(z) = c2(z2 + t2)B(z), z inside C\ (3.96)

W(z) = C2 1z A ( z ) ,  z  outside C'_. (3.97)

From equations (3.90), (3.96) and (3.91), (3.97), we have

V+(z) = (c2/ci)U+(z)(z2 -f 2̂), z inside C\ (3.98)

VL(z) = (ci/c2)V^(z)(z2 + t2), z outside Ul. (3.99)

To evaluate the constant ci/c2, consider (3.99) in the limit |z| —> oo; we noted 
earlier that P-(z), PL(z) —> 1 as |z| —> oo, so Ci/c2 = 1 .

We use equations (3.98) and (3.99) to derive recurrence relations satisfied by 
(2(z), which we can solve explicitly in the L —» oo limit.

From equations (3.98), (3.93) and (3.87), we deduce

Q{z) Q (-zx )  (1 -  z2x)L
( z - a ) ( z - ß  1) P[ ( z ) 

(z2 + i2) P+(z)’ (3.100)

which is valid when z is inside C'+. In the limit L —> oo, the P+ and functions 
—> 1, so we find that Q(z) is given by

q(o) n i -  z V “ - 3\ I ( i  +  22r l i ta - !

m = l l  — Z2X 4m~ 1 J  (1 +  Z2t ~ 2X— 2 ™ 4 m  — 4

(1 -  z a - 1x2m- 2) (1 -  z0x2m- 2)

)

)

(1 + za~1x2m- 1) (1 + zßx2"1- 1) (3.101)



3. Calculation of the interfacial tension of the six-vertex model 53

up to correction terms that vanish exponentially as L —» oo. This expression 
contains the still undetermined parameters t, a and ß. From (3.100) in the L —> oo 
limit, setting z — 0 implies

[Q(0)]2 = r ’a /r 1 (3.102)

in agreement with (3.82).
From equations (3.99), (3.94) and (3.88), we get the recurrence relation

« ■ > ifj
which is valid for 2 outside C_. Taking the limit L 
functions P-(z) and Pf(z)  —» 1 , and iterating, we get

1 -  z- V ”*-3\ L (1 + z - 2t2x4m~2)

(3.103) 

oo once more, so that the

q(z) = * n
m=l 1 — z~2x4m~l j  (1 -f z~2t2x4m~4)

(1—2 iax2m 2) (1 —2 A/? 1x2m 2) 
(1 + z~l ax2m~l ) (1 + z~lß~1x 2m~l )

(3.104)

Following the working of the two previous calculations, we can now determine 
formulae for the zeros of Q(z) and V(z)  from the functional relation (3.78) by 
setting the right hand side to zero, and substituting the formulae just derived for 
Q(z).  We defer this step, and proceed to find an expression for the set of largest 
eigenvalues of the transfer matrix, and find a relation between the parameters a, ß 
and x.

When 2 is inside C, from Equations (3.87) and (3.88),

V(z) = V+(z)V.(z) = Q(- 1 -

whereupon

V(z) ±Q{0)zLx L(1 - t 2/ z2) J I
m=l

1 -  z2x4m~1 
1 -  Z 2 x 4 m+1

1 -  z~2x4m~4
1 -  Z~2X4rn+1

1 + 2ft~1a:2m~1 1 + zßx2m~l 1 + z~lctx2m~l
1 — za~lx2m 1 — zßx2m 1 — z~lotx2m~2 

1 + z - ' ß - ' x 2™-1 1 + z2t~2x4m 1 + z~2t2x4m
1 — z~lß~lx2m~2 1 -F z2t~2x4m~2 1 + z~2t2x4m~2

L

using (3.101) for Q(—zx) and (3.104) for Q(z).
This rather cumbersome expression simplifies when we remember that V(z)  is 

an odd function of 2. Thus all the poles and zeros of V(z)  must occur in plus-minus 
pairs. This is the case for the factors in this expression that depend on 2 through
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z2\ those that contain 2 only linearly must cancel in some way. On closer inspection 
of the product, we see that the single poles and single zeros do in fact cancel if a  
and ß are related by

aß = —x. (3.105)

Using this, Equations (3.77) and (3.102) imply that the eigenvalues are given by
L

A(u) = ±G{z2/ t 2)(p/2 x ) l  J ]
1 —  Z X2 ~ 4 m —1 1 -  z - 2x4m~l

m = l 1 -  z2x4m+1 1 -  Z ~ 2X 4m+1
(3.106)

where G(z) is given by (3.72). Equation (3.106) is valid for z inside C.
With relation (3.105) between a, ß and £, the expression for V(z) for z inside 

C  simplifies also, producing exactly the same expression for A(u).
Using (3.105), the expressions for Q(z) become

1 -  z2x4m~3\ L (1 + z2t - 2x4m~2)
Q(z) = g(o)(i -  M -1) n

m = 1 

00

Q(z) = zL'2( 1 -  n

1 —  Z2X2 ™ 4m -l (1 + z2t - 2x4m- 4Y
1 — z —  2 ~4m  — 3 \  ^

* ~~~ 2 nr» 4 771 —  1
771 =  1

(1 + z~2t2x4m~2) 
(1 + z~2t2x4m~4) ’

(3.107)

(3.108)

where the first expression is valid for z inside C , the second for z inside C.
We now derive an expression for the zeros of Q{z), following the method used in 

the previous two calculations, and assert that the free energy is once again analytic 
across the unit circle. Consider the functional relation (3.78); when z is a zero 
of either V(z) or Q(z), then the left hand side vanishes. In particular, we can 
substitute z = it or — it, and hence derive an equation which describes the possible 
values of t. As t is order unity, \tx\ < 1 and \tx~l \ > 1, so we use (3.107) for 
Q(—zx), and (3.108) for Q(—zx~1). We then derive an equation for the variable 
U which still contains the unknown a. Demanding that this equation be valid for 
both 2 = it and z = —it gives the following relation between t and a

a 2 = t2x (3.109)

whereupon t must satisfy

[i>{t)]L = ±1

where 'ip(z) is given by equation (3.38). Hence t lies on the unit circle for all x, and 
we have L eigenvalues of the transfer matrix. The right hand side of (3.78) also 
vanishes when z is a zero of Qi(z) so in the same way we show that the zeros of
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Qi(z) lie exactly on the unit circle for all x. As the zeros lie exactly on the unit 
circle, we may shift the curves C_ and C\ so that they just surround the unit circle. 
Hence equation (3.107) is valid for \z\ < 1, and (3.108) is valid for \z\ > 1.

The rest of the working is now exactly the same as at the end of Subsection 
3.1.2; we have the same function G(z), and are integrating over the same contour 
(the unit circle), and so arrive at the same expression for the interfacial tension, 
equation (2.12).

3.2.2 Odd L

Finally, we consider L odd. We expect that there will be a unique maximum 
eigenvalue of V, and that this will give us the same free energy per site as the 
calculation in Subsection 3.1.

The right hand side of the functional relation (3.78) is a polynomial of degree 
3L, but the first and last terms cancel, as they did in the previous subsection, so 
z~l V(z) must be a polynomial of degree 2L — 2.

We have to locate the zeros of Q(z) and V(z) corresponding to the maximum 
eigenvalue of V in the limit x —> 0 once more. The maximum eigenvalue again 
corresponds to the state with the greatest number of vertices with weight c, which 
once more has to be odd to preserve the anti-periodic boundary conditions, but this 
time the odd number of columns is consistent with the fully anti-ferroelectrically 
ordered ground state. Thus in this limit, the maximum eigenvalue corresponds to 
A(t>) ~  cL and so V(z) ~  zLx~L as x —> 0, which is the same form as the periodic 
boundary conditions with even L, equation (3.6). We again assume that the zeros 
of Q(z) are bounded as x —> 0, so in this limit the right hand side of the functional 
relation is proportional to zLx~L ( z L Z\  • • • zl + l) . Hence Q(z) is

Q(z) = constant • (zLz\ • • • zl + l)

where the constant is a number which is order unity as x —> 0, and carrying out 
the working as before, the z i , . . . , z i  satisfy (zi • • • z i)2 = — 1, whereupon

<3(0) = - z i  • • • zL = ±i.

Hence Q(z) has L zeros that lie on the unit circle as x —* 0, and z~1V(z)  has L — l 
zeros which lie at the origin and the same number which lie at the point at infinity.

As x increases, we make the usual assumptions regarding the behaviour of the 
zeros as a function of x. The zeros at the origin and at infinity will move into the
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finite part of the 2-plane, and the zeros on the unit circle might move slightly away 
from the unit circle.

We draw the contours C+, C_, C'+, C'_ and define C and C  as usual, so that 
inside C and C  the polynomials V(z ) and Q(z) are non-zero. We can factor V(z) 
as

V{z) = zA(z)B(z)

where both A(z) and B(z) are polynomials in z of degree L — 1, the zeros of A(z) 
are the zeros of z~l V(z) that lie inside the unit circle, and the zeros of B(z)  are 
those of V(z) that lie outside.

Define
_  (1 -  z2x)LQ( - zx~1)

(1 — z2x~1)LQ(—zx)'

the ratio of the terms on the right hand side of the functional relation (3.78). 
As in the earlier calculations, |r(z)| ~  \z\~L as x —> 0, so for \z\ > 1 we can 
choose ln[l -f r(z)] to be analytic and single-valued, and for \z\ < 1 we can choose 
ln[l + 1 /r(z)] likewise. We construct a Weiner-Hopf factorisation of 1 + r(z) and of 
1 + 1 /r(z) as in the previous calculations. Define the functions P+(z), P-(z),  P+(z), 
and PL(z) as in equations (3.14) and (3.22), where they have the usual analyticity 
properties. Then we can define a Weiner-Hopf splitting of V(z) as follows; for z 
inside C, then V(z) = V+(z)V_(z) where

v+iz ) = -P+(z )Q(~zx),  V-(z) = P-(z)(  1 -  z2x~l )L/ Q(z)

and for 2 inside C , V(z) = V+(z)V!_(z), where

V[{z ) = ^+W (1 “  z2x)L/Q(z ), Vi(z) = P'_{z)Q(-zx~l ).

Equating expressions for V(z) in their respective domains, we can write

V+(z)/B(z)  = zA(z)/V-(z),  Vl(z) /B(z)  = zA(z)/V!_(z)

when 2 is inside C and C  respectively, which, using Liouville’s theorem as in the 
previous subsections, implies that

V+(2) = CiB(z ) ,  V-(z) = c~lA(z)

when z is inside C, and

Vl(z)  = c2B(z), VL(z) = c?A(z)
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when z is inside C', with C\ and c2 constants. Taking ratios of these equations, we 
find

V+(z) = (ci/c2)V+(*), and V-(z) = (c2/ ci)VL(z)

when 2 is inside C\ and outside C_ respectively, and we see that c2/ci = 1 by 
considering the limit \z\ —* oo. We can almost quote the working in Subsection 3.1; 
considering L large, we find recurrence relations for Q(z);

Q(z)Q(—zx) =  (1 — z2x)L when z is inside C

and

Q(z)Q(—zx~l) = (1 — z2x~l )L when z is inside C

and thus

<?(*)=q(o) n
m —1

l -  z V - V
1 — z2xAm~l )

when z is inside C (3.110)

and

o° ( \ — z~2 x4m~'i \ L
Q(z) = zL when 2 is inside C. (3.111)

m=1 V 1 Z X J

We can then check that in the limit L —> 00 the zeros of Q(z) lie exactly on the unit 
circle, and thus that these expressions are valid all the way up to the unit circle, 
that is, (3.110) is valid for \z\ < 1, and (3.111) for \z\ > 1. Then the polynomial 
V(z ) and the eigenvalue A(u) are calculated as before, giving equation (3.40) for 
the unique maximum eigenvalue of V in the thermodynamic limit, and equation 
(2.11) for the free energy, as expected.
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CHAPTER 4

The chiral Potts model

4.1 Origins

The chirally asymmetric clock model was introduced into statistical mechanics 
in 1981 by Ostlund [97] where it was proposed as a simple nearest-neighbour model 
with a spatially modulated ground state and a commensurate-incommensurate 
transition. Ostlund, and later that year Huse [61], considered a special case which 
we refer to as the Ostlund-Huse model, using a variety of approximation tech
niques [61] and a renormalisation group analysis [97] to determine the model’s 
phase diagram, especially for the case N  = 3.

In 1982 and 1983, Huse et al [62,63] further considered the three-state chiral 
clock model, concentrating on the universality class of the order-disorder transition 
along the chiral melting line and the nature of the wetting curve. This subject was 
taken up by a number of authors in the following years, and we mention some of 
the resulting controversey shortly.

Also in 1983, Howes et al [60] considered the closely related three-state chiral 
Potts quantum spin chain, concentrating on what we now call the superintegrable 
model. Using series expansion techniques, they computed mass gaps and the order 
parameter, finding that these seem to have an extremely simple form.

Intrigued by these results, von Gehlen and Rittenberg [58] considered the self
dual symmetric quantum spin chains, which are an N -state generalisation of 
the Ising model spin chain and the model considered in [60]. They find that these 
models satisfy the Dolan-Grady criterion [46], and that the simple result for the 
mass gap persists in these higher-state models, and conclude that their models are 
“probably integrable.1'

The study of the integrable lattice model was initiated in 1987 by the authors 
Au-Yang, McCoy, Perk, Tang, Yan, and Sah in References [7,8,90,100], when the
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star-triangle relation for a chirally asymmetric, Z^-symmetric model was consid
ered. This is an integrable chiral clock model whose transfer matrix commutes with 
the aforementioned spin chains. Solutions to the star-triangle relation were found 
for particular values of N  for both the self-dual and non-self-dual models. The 
edge Boltzmann weights thus determined were found to depend on two “rapidity” 
variables, but had the unusual property that they do not depend simply on the 
differences between the rapidity variables, so the weights cannot be uniformised by 
elementary functions. This behaviour had been observed in some non-integrable 
models, but was in contrast to all previously known exactly solved models, for 
which this “difference property” plays an important part in the solution.

The most general solution to the star-triangle relation for a chirally asymmetric 
ZN model was discovered by Baxter, Perk and Au-Yang in 1988 [22], when the 
Boltzmann weights for the integrable non-self-dual classical lattice model were de
rived for general /V, and the function R which enters into the star-triangle relations 
was conjectured. The proof that the Boltzmann weights satisfy the star-triangle 
relations is presented by Au-Yang and Perk in Reference [9].

Work progressed rapidly in the following years on both the physical classical 
lattice model and on the non-physical superintegrable model (a much simpler case of 
the model, but with complex Boltzmann weights) as well as the associated quantum 
spin chain.

Baxter calculated the free energy of the model in 1988 [24], using the “399th” 
method he and Enting had introduced to solve the Ising model [17]. This solution 
relies only on the star-triangle relation, and the result is very complicated, but 
simplifies significantly in the scaling region, enabling the calculation of the specific 
heat critical exponent, a = 1 — 2/N.

Functional relations for the transfer matrices of the model were conjectured 
and derived in 1989 and 1990 [2,27,35], and Baxter used these to calculate the free 
energy again in 1990 [28,29], producing a much simpler result. It has recently been 
shown that these results agree exactly in the scaling region and at criticality [34], 
but otherwise, the expressions have yet to be reconciled. The functional relation 
determines all of the eigenvalues of the transfer matrices, and also enables the 
calculation of other large-lattice quantities, such as the interfacial tension and the 
correlation length.

The interfacial tensions were considered in later publications by Baxter. In 
References [30,31], the functional relations were re-derived for the model with



4. The chiral Potts model 61

skewed boundary conditions; these were found to be only slight modifications of the 
functional relations for the periodic boundary conditions. The interfacial tensions 
were then calculated for the model in the zero-temperature limit as a first step 
towards a calculation valid for arbitrary temperatures. The interfacial tension was 
found to be independent of the vertical rapidity variables, as expected from Z- 
invariance.

This independence implies an alternative method of calculating the interfacial 
tension of the physical model at arbitrary temperatures. The vertical rapidities 
can be chosen so as to make the model superintegrable. This is a non-physical 
case of the model, for which the functional relations and transfer matrices take 
on a simpler form, rendering the model easier to solve. This should then give 
the interfacial tension of the model in its physical regime. In Reference [32], the 
interfacial tension was calculated for the superintegrable chiral Potts model. It was 
then argued using Z-invariance that this is the interfacial tension of the physical 
chiral Potts model. However, there is a potential problem with this argument, as 
the results of Z-invariance do not necessarily apply to a model whose Boltzmann 
weights are not positive [18].

We directly calculate the interfacial tensions of the physical chiral Potts model, 
without reference to the superintegrable model. We consider the functional rela
tions of the model with skewed boundary conditions at sub-critical temperatures. 
We find that the method of solving the functional relations in [28] and [29] for 
the model with periodic boundary conditions generalises with only minor modifica
tions to the skewed case. We solve the functional relations for a band of L complex 
largest eigenvalues, and from these we calculate the free energy and interfacial ten
sion. We find that this is the same as the result calculated for the superintegrable 
model in [32] and hence that the Z-invariance arguments must hold.

In References [28] and [29], the free energy was calculated for the homogeneous 
model (with all vertical rapidities equal) and for |A9| < 1. Here we consider an 
alternating model (with the vertical rapidities alternately p and p' along the row), 
and with |A9| > 1. We find our result to be the analytical continuation of the |A9| < 
1 result, and that the free energy of the alternating model is simply the arithmetic 
mean of the free energy of the homogeneous model with vertical rapidities p and 
p', as we expect from Z-invariance [19].

As well as this, our result seems to agree with a calculation by McCoy and 
Roan regarding some of the excitations in the spectrum of the chiral Potts transfer
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Disordered

Incommensurate

Commensurate
Ferromagnetic

Figure 4.1: The phase diagram of the three-state Ostlund-Huse model, 
showing the ferromagnetic, disordered, commensurate and incommensurate 
phases. The Potts model critical point P is indicated, as well as the Lif- 
shitz points L+ and L_. We indicate the wetting line AW(T), along which 
the model has a wetting transition; and just below it, the integrable line, 
Aint(T), along which the model is exactly solvable. These two lines are very 
close, but not identical.

m atrix [91,92].

4.2 The three-state chiral clock model

The chiral clock models describe a two-dimensional system in which an adsorbed 

commensurate surface phase melts continuously into an incommensurate or disor

dered phase. Real physical systems can be chirally asymmetric on the microscopic 

scale, so tha t the interfacial tension sa ,b due to an A phase on the left of a B  
phase is in general not equal to sb ,a • This chiral asymmetry is described by the 

param eters A and A in the three-state model.

The anisotropic three-state chiral clock model has Hamiltonian
27t — _r 2tt —

7i = - K  cos —  (<Xj “  ai+1 +  A) -  K  Y2 cos —  (o-t -  cri+1 +  A)

where the sums are over all nearest neighbour sites, the first in the SW —»NE di

rection, and the second in the SE—>NW direction. This model is equivalent to the 

three-state Potts and clock models when the chirality A and A vanishes.
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Two cases of this model have received much attention; the symmetric model, 
with S(n) = £(n), i.e. K = K  and A = Ä; and the Ostlund-Huse asymmetric 
model, for which K = K  once more, but now A = 0, while A is a free variable.

We reproduce the phase diagram in Figure 4.2, for the Ostlund-Huse model. 
This model has been quite widely studied in the literature, [63] and references con
tained therein, and there is still some uncertainty about its exact structure. There 
has been some controversey surrounding the relevance of the chiral symmetry- 
breaking operator A at the pure Potts point (A = A = 0), and the relation 
between the wetting curve of the Ostlund-Huse model and the integrable chiral 
Potts model.

4.2.1 The crossover phenomenon

At vanishing chirality, A = A = 0, the ferromagnetic-to-paramagnetic phase 
transition is that of the three-state Potts model, and the critical point, labelled P 
in Figure 4.2, occurs at the Potts model critical temperature Tc°.

It is not clear a priori whether the chiral symmetry breaking field A is relevant, 
irrelevant, or marginal at the pure Potts critical point. If irrelevant, the phase 
transition along the boundary between the ferromagnetic and paramagnetic regions 
is simply that of the three-state Potts model. If the field is relevant at the pure 
Potts point, the phase transition will have different critical exponents along this 
boundary, producing a new chiral universality class. A discussion of this is presented 
in [63], citing a number of analyses, which had predicted all three possible types of 
behaviour.

By scaling theory, near P, the interfacial tension gr(T, A) is expected to scale 
as

£r(T,A)  ~  |t|"S(A/|i|*) (4.1)

where /i is the pure A = 0 Potts exponent, i.e. the critical exponent for the N = 3 
Potts model interfacial tension, S(z) is the corresponding scaling function, and t is 
the reduced temperature t = (T — Tc°)/Tc°. The chiral field is relevant if and only 
if <f) is positive.

In [63], Huse et al. analyse high temperature expansions of the susceptibility 
and low temperature expansions of the surface tensions, and conclude that the 
chiral field is relevant, with (f) = 0.19 ±  0.06. Our exact results confirm this, with 
<J) = 1/2 -  1/N [10].
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4.2.2 The wetting transition

Huse et al. also discuss the wetting line for both the symmetric and Ostlund- 
Huse models. The wetting line is the locus on the phase diagram at which wetting 
becomes favourable, and this line is indicated by the broken line marked AW(T), 
which begins at zero temperature at A = 1/4, and ends at the pure Potts critical 
point. The wetting transition occurs when [104]

£2(T,A) = 2 £i (T1,A).

Huse and Fisher calculate this locus to leading order in T, valid around T = 0, 
finding that for the symmetric case, the wetting line is given by

a m  _  I _  J t  •„-! h 3 /2  .

and that for the Ostlund-Huse case, the wetting line is 
1 Sz2

A»(r > = i - 2 + -
where z = e-3A/2. These results are only approximate, and valid for very low 
temperatures, ignoring “overhangs” in the interfaces and “drops” of overturned 
spins in the bulk phases.

Also, in Reference [9], Au-Yang and Perk consider the integrable chiral Potts 
model, calculating (exactly) the integrable line for both the symmetric and the 
Ostlund-Huse model, finding the integrable lines to be

A //m 1 3 . , In 2A,„,(T) = i  —- Sm- —  +

and

a^  = \ ~ V k  + -
respectively. The wetting and integrable lines begin and end at the same points, 
and seem to have roughly the same shape. Au-Yang and Perk speculated that these 
two very special lines were in fact one and the same (so the approximations used 
in [63] were not as accurate as previously assumed).

As a result of the exact calculations of Baxter and O’Rourke, References [32,96], 
we can conclude that all of these results are accurate, and that the integrable chiral 
Potts model lies in the non-wetted region. The lines are, however, very close to 
one another, and are indicated in Figure 4.2. The integrable line lies just inside 
the wetting line. Further detail is included in the review by Au-Yang and Perk, 
Reference [10].
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4.3 The chiral Potts model

The chiral Potts model is an TV-state spin model, with spins living on the sites of 
the U x M "  lattice shown in Figure 4.2. The spins take on the values 0 ,1 ,. . . ,  — 1,
and at sufficiently low temperatures the system is ordered into one of N  possible 
equi-likely ferromagnetic ground states, and the system has an order-disorder tran
sition at a critical temperature Tc. We use a temperature-like parameter &, similar 
to the Ising model (1.2); the phase transition occurs when k = 1.

The Boltzmann weights of this integrable model depend on a set of “rapidity” 
variables lying on the medial lattice, each carrying a variable p, q, . . .  chosen from 
some manifold. The weights do not have the usual difference property, i.e. they do 
not depend on the rapidity variables simply as the differences of the two rapidities. 
The Boltzmann weights satisfy the star-triangle (Yang-Baxter) equations 

N
J2 Wqr{b -  d) Wpr{a -  d) Wpq(d -  c)
d=l

= Rpqr Wpq(a -  b) Wpr(b -  c) Wqr(a -  c), (4.2)

which holds for all values of the spins a, 6, c and all rapidities p, q, r; that this is the 
case is proven in Reference [9]. As a result, the model is exactly solvable, and one 
should be able to calculate such thermodynamic quantities as the free energy per 
site, interfacial tensions, correlation lengths, and spontaneous magnetisation in the 
large lattice limit. The function Rpqr which enters into the star-triangle relation is 
defined shortly.

The medial lattice is indicated by the broken lines in Figure 4.2. The vertices of 
the medial lattice lie on the mid-point of the edges of the original lattice, and the 
vertices of the original lattice lie inside the faces of the medial lattice. In general, 
the vertical rapidities are allowed to be different on each row and column of the 
medial lattice, and we denote the rapidity variables associated with the columns 
Pi ,P2, . . .  , p l , and those associated with the rows <71, q2, . . . ,  qiM] such a model is 
completely inhomogeneous. However, we find that a “sufficient level of generality” is 
to consider the “alternating” model, in which the vertical rapidities are alternately 
p and p', and the row variables are all the same value q. We sometimes consider 
the fully homogeneous case, in which all the vertical rapidities have the same value 

P-
The Boltzmann weights of the chiral Potts model are
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Figure 4.2: The square lattice with L sites per row and M=2. The Boltzmann 
weights Wpq and Wp>q in the SW —> NE and SE —* NW directions respectively 
are indicated. Also shown is the horizontal rapidity variable <7, and the 
alternating vertical rapidities p and p1.

H" ,"> = ( 7, )  f l  „
yq - u JXt

uo3 x ,
W„(n) = (nPii,)n I ]

LOXp -  LOj Xq

j= 1 yq ~ u j yp
(4.3)

which satisfy the periodicity restriction

Wpq(n) = Wpq(N + n), Wpq(n) = Wpq(N + n) (4.4)

and we specialise to the normalisation

w pq( 0) = Wpq{ 0) = 1.

The variables xq,yq,pq are collectively known as the “<7-variables,” and similarly 
■a;p, yp, [ip are known as the up-variables.” These are complex numbers which can be 
thought of as representing points on the algebraic curve described by the equations

X9 + Vg = /c ( 1 + Xq y*)' kxq = 1 ~ k'PqN> and kVq = 1 -  k>Pq (4*5)

(with the p variables satisfying analogous relations). Here, k and k' are real positive 
numbers which are related by

k2 + k'2 = 1 (4.6)

with 0 < A:, k' < 1 . Fixing any one of these ^-variables determines the other two up 
to choices of A -̂th roots of unity, so there is only one free parameter in each set. 

Let 77 be the real solution to
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VN = (1 -  * ')/(! + *')> (4.7)

which is another temperature-like variable. We also define two other variables, tq 
and A9, which prove to be particularly useful in our calculations,

tq %q yq, Xq flq

which are related to one another by

\q + l / \ q  = (l + k ' 2 ~ k2tq ĵ / k \  J j
v~N - t F

The periodicity requirements (4.4) imply that

Xp/Xq and —  X p X g ,

and we also have the identities

(4.8)

k \ tNv -  t") = t f ( z "  -  z?)(y? -  s f ) = -  -

There are many automorphisms of the rapidity variables, which are listed in 
Reference [27]; we make use of the automorphism R,

R : {xq, yq, ß , }  - *  { y q,ojxq, y q1)  , (4.9)

and also the the automorphisms q and q

q(k,l) : q -> {ukxq, d y q, pq} 

q(k,l) : q -> {ujkxq, J y q, }

with R  = g(0,1). When the meaning is clear, we will write q(k, l) and q(k, /) as qkl 
and qkl. Also

t qk l  —  t qk l  —  U) t q .

The function Rpqr from equation (4.2) was conjectured in [22] and the conjecture 
was proven by Matveev and Smirnov in [85], being

R p q r  —

f p q f q r

fpr
where f pq is a. complex-valued function of the p and q variables, with its ATh power 
being

fZ  = d e t w pq(i -  ;)] /  n Wp,(n ) ,
/  n = 0
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where det tv Wpq(i — j)  is the determinant of the cyclic N  x N  matrix whose (i, j) 
element is Wpq(i — j); explicitly

det Wpq(i -
N - l

Wpq{0) N N / 2 e MN-l)(N - l ) /«  J] [tp UJJtq)J
j = i

We also define a related function, gpq, with Nth. power

N - l

n=0

Both of these functions are independent of the state of the system (i.e. the spin 
configuration of the lattice). We have the following identities for the function f pq

f p p  — 9 pp  11 f p , R q f q p  — Nk  ̂ ^  W p ^piqWqp

r  r i\ t(xP ~ x<l) (yp-yi ) ( tP - ^ )  
g pq9qp -  JpqJlp-  {XH _  x N ) { y N  _  y N ) { t p  _

4.3.1 Transfer matrices

As ever, we can choose the boundary spins of the lattice in a number of ways. 
If we identify the ith spin in the first (bottom) row of the lattice, <j T ,  with the 
zth spin in the 2M  + 1th (top) row of the lattice, <r\2M+l\  for all columns i of the 
lattice, we have periodic boundary conditions in the vertical direction. Doing the 
same in the horizontal direction, imposing periodic boundary conditions from left 
to right, will give us toroidal boundary conditions on the lattice, which were the 
boundary conditions originally used to solve the model [24].

To calculate the interfacial tension, we are interested in imposing the skewed 
boundary conditions in the horizontal direction. In each row, the first and last 
spins, ctj and ol+i , are related by

<7L+i = V i - r ,  (4.10)

where r, the “skew parameter,” is an integer which we can without loss of generality 
restrict to the set 0 ,1 ,. . . ,  iV— 1. With the choice r = 0, one regains normal periodic 
boundary conditions in the horizontal direction. We retain the periodic boundary 
conditions in the vertical direction.

The transfer matrices T and T are defined in the usual way. Consider three 
consecutive rows of spins in the lattice, as indicated in the bottom three rows in
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Figure 4.2. The spins in the lowest row are cr = {<Ti,cr2, . . .  ,ox+1}, in the row
above cr' = {<rj, cr^,. . . ,  cr'L}, and in the third row, cr" = jcr", c^',. . . ,  cr^+i}- The
row-to-row transfer matrices T and T are the N L x N L matrices with elements

= n  w Pi(a> -  1 -
i=i

=  n  -  »7+I) (4.11)
j = 1

where the spins <jl+i and cr̂ +1 are given by (4.10). We will generally regard both 
p and p' as fixed, so the transfer matrices are matrix functions of the single vari
able q\ this dependence is exhibited by the subscripts T , and T ,. Indicating the 
dependence of the partition function on the skew parameter r, we have

/  *  \  M ,
Zr =  trace (T ,T ,J . (4-12)

The star-triangle relation (4.2) ensures the existence of a family of commuting 
transfer matrices, and the following commutation relations are derived in Reference

[27],

T ,T S = ( f p ' q f p s / f p q f p ' s ) L  T ST, (4.13)

and

T ,T S = ( f p q f p ’s / f p ' q f p s ) 1  T ST,. (4.14)

The spin-shift operator X is the N L x N L matrix with entries

= i p ( ^ ; +i)
3=1

where the Kronecker-delta function is

c/ ( 1  if a = b modulo N
i (a - b) = \  0 otherwise,

and this commutes with the transfer matrices T , and T ,,

X T , = T ,X  and X T, = T ,X .

There are many identities satisfied by the transfer matrices which are derived 
and listed in [27], but we do not use any of these directly and so do not reproduce 
them here.
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4.3.2 Diagonal representation

A consequence of the commutation relations (4.13) and (4.14) is that the ma
trices T q and T q can be simultaneously diagonalised by the coupled similarity 
transformations

Tg —* P - 1T 9Q, T q —* Q- 1TgP

where P and Q are “constant” matrices, independent of the vertical rapidity q. 
The “eigenvalues” and “eigenvectors” of T q and T q are the solutions of the coupled 
vector equations

Tgy = T9x , f  9x  = Tq y

where x and y are the eigenvectors, which are independent of q, and Tq and Tq are 
the corresponding eigenvalues.

The commutation property (4.13) also implies that the diagonalised transfer 
matrices are related by

h f ag =  ( f p q / f p ' q ) LD T® 1* (4.15)

where D is a diagonal matrix which is independent of q. For the homogeneous 
model, p = p', this reduces to

Tg = TgS R =  SflTg

where Sr is the spatial translation operator, with eigenvalues Hr /L, Ir =
0 , 1 , . . . , L - 1  [1].

4.3.3 Physical model

The Boltzmann weights (4.3) of the integrable chiral Potts model are in general 
complex. For the lattice model to be physical, they must be real and positive; this is 
possible when we restrict the variables to a certain manifold. For the homogeneous 
model, if we choose the p and q variables xp, yp, xq, yq so they lie on the unit circle, 
and are arranged in the following order,

arg(xp) < arg(z9) < arg(yp) < arg(yq) < arg(ujxp) (4.16)

and

arg{tp) < arg(<,) < arg(utT), (4.17)
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then the Boltzmann weights are real and positive, as required. This is particularly 
convenient for analysis as the Perron-Frobenius theorem can be applied to the 
transfer matrices.

For the spin chain, one is instead interested in the Hermitian case. This does 
not correspond to positive Boltzmann weights so the Perron-Frobenius theorem 
does not apply, and there is the possibility of ground state level crossing. The 
model is Hermitian when up,upi,uq — tt/2N  and uq — 7r/2N are all pure imaginary, 
vp,vpi and nq are real, and \pp\ = \pp>\ = 1. Then xq,u>~l/2yq,u;l/2tq and Xq are 
all real and positive, Xq > \/k' ,  yp = x* and Wpq(—n) = Wpq(n)* (similarly with 
p —» p'). Hence T g is the Hermitian conjugate of T g, so the transfer matrix T gT g 
is Hermitian, and its eigenvalues TqTq are real.

This Hermitian case intersects with the real one at the symmetric point up = 
up< — 0, uq = vq = tc/2N.

The superintegrable model is discussed later in this chapter; analysis of this 
model is particularly simple for a number of reasons, but unfortunately the super
integrable model does not have a physical sub-case.

4.3.4 The interfacial tension

The interfacial tension has been defined earlier; we use the skewed boundary 
conditions to force an interface, but for an TV-state model we also have to consider 
the possibility of interfacial wetting occurring [104], which we describe here.

For a lattice with toroidal (un-skewed) boundaries in each direction, at zero 
temperature, the system will order into one of N  possible equi-likely ferromagnetic 
ground states, in which every spin in the lattice takes on the same value <r, for 
some 0 < a < N  — 1. This ferromagnetic ordering is completely consistent with 
the periodic boundaries, with the left-most and right-most spins in each row being 
related by V\ = <rL+1.

However, when the skew parameter r is non-zero, the boundary conditions cease 
to be compatible with the completely ordered ferromagnetic ground state persisting 
throughout the system. Instead, the spins near the left-hand boundary of the lattice 
will all be in a state cr, while those near the other boundary will be in the state 
cr — r. Clearly there is a jump or a series of jumps in the values of the spins from left 
to right along the lattice, breaking the ferromagnetic ground state configuration.

Consider r — 1 first, so that down the left-hand boundary of the lattice the
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spins take on some value <7, while down the right-hand boundary they take on 
the value <7 — 1. Hence a completely ordered ferromagnetic ground state is no 
longer possible, and the favoured lowest-energy state consists of the system settling 
into two juxtaposed ferromagnetically ordered states, one adjoined to the left-hand 
boundary, in a phase <r, and the other adjoined to the right-hand boundary, in phase 
cr — 1. These are separated by an interface, across which the spins jump from <7 to 
<7—1. The interface may meander from left to right, especially as temperature is 
increased, but its mean direction will be approximately vertically down the lattice, 
as a result of the periodic boundary conditions in the vertical direction. There are 
L positions in each row of the lattice where the interface may occur.

We denote the resulting interfacial tension between phases o and <7 — 1, as e\. 
(Note that as a result of the chirality of the model, this is not equal to e_i =  £;v-i, 
the interfacial tension due to an ordered <7 — 1 phase on the left, and an ordered <7 

phase on the right of the interface.)
When r = 2, we have near the left-hand boundary of the lattice a ferromagnet

ically ordered phase in a state <7 ,  and near the right-hand boundary of the lattice a 
similarly ordered phase, but in a state <7 — 2. In between, there are a priori two pos
sibilities. Either there is a single interface running down the lattice, across which 
the spins jump from <7 to <7 — 2, or else this interface breaks into two interfaces, 
with a phase <7 — 1 interposed between the phases <7 and <7 — 2. In the former 
case, the interface will once again run approximately vertically down the lattice, 
and the corresponding interfacial tension is denoted as £2, corresponding to a jump 
from phase <7 to phase <7 — 2. In the latter case, the two interfaces will also run 
approximately vertically down the lattice, and as they meander from left to right, 
they can merge into a single interface, but not cross one another. The interface 
between the <7 and the <7 — 1 phases has interfacial tension £j, as does that of the 
interface between the <7 — 1 and <7 — 2 phases, and so the total interfacial tension 
of the two interfaces is 2e\. In this case, the phase <7 — 1 wets the <7, <7 — 2 phases.

Whichever interfacial structure has lowest energy will preferentially occur, so 
the system will be in a wetting phase if 2ci < e2, and a non-wetting phase if 
£2 < 2 £\. The special case £2 = 2£i is called “superwetting,” when either interface 
structure could occur with equal probability.

For r > 2, we have the obvious generalisation of the r = 2 case. There are spins 
in phase o on the left-hand side of the lattice, in phase <7 — r to the right, but in 
between there are now a priori many possibilities.
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The discussion for r non-zero has assumed thus far that the system is at zero 
temperature. We are most interested in the critical behaviour of the interfacial 
tensions, so have to consider what happens as k' increases. At non-zero temper
atures, the phase we call o will contain “mostly” spins with the value cr. Drops 
of overturned spins will typically begin to form, and the interfaces begin to mean
der more, form overhangs, and begin to widen and start to blur. The interfacial 
structure persists until the order-disorder transition at k' = 1. The system has a 
phase transition to a completely disordered state, in which the different phases are 
no longer distinguishable from one another, and the interfacial tension vanishes.

Below the critical temperature, the interfacial tensions are defined as usual. For 
large L and M, the partition function (4.12) grows as

Zr -  exp [(-2LMxP -  Mer)/kBT] (4.18)

where xp is the free energy per site in the thermodynamic limit, defined as

- t p/kBT = lim (2LM)~1 In Zr (4.19)
L ,M —*oo

and the interfacial tension per unit length between phases o and <r — r is defined 
as

—er/kBT  = lim M~l \n(Zr/Z0) . (4.20)

We only calculate the interfacial tensions in the horizontal direction (or the 
diagonal direction for the lattice oriented as in Figure 1.1). In Reference [10], Au- 
Yang and Perk note the anisotropy of the interfacial tensions of the chiral clock 
models. In particular, the diagonal interfaces will wet at zero temperature, whereas 
the horizontal interface will only wet at zero temperature for the symmetric model.

The interfacial tension is usually expected to become isotropic in the scaling 
region, which implies that the critical exponent \i is independent of direction. This 
is in contrast to the non-physical superintegrable model, which Baxter found to 
violate critical isotropy [26], producing different critical exponents for the interfacial 
tension in the horizontal and vertical directions.

4.3.5 The functional relations

The transfer matrices satisfy a set of functional relations, which define the 
matrices’ eigenvalues, and hence the partition function, completely. The functional 
relations involve a family of associated matrices, denoted r ; (t,), j  = 0 ,1 , . . . , IV,
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the elements of which are polynomials in the single variable tq with degree at most

0  -  1 )L.
We use the following notation; for m and n integers, and x and y complex 

numbers,

{x, y)m,n

n

(x — cj^y), n > m
j= m + 1 

m
J I  (x n < m,

j = n + 1

and define the following functions, for all integers j, k and /, where j  = k + /,

a(*.0q
{ypi Xq)o,l-l(yqi Xp)-k,o{yqi yp')o,N-k-l

L i

(4.21)
N ^~ky}p>{Xp>, Xq)-l,/_l

tq̂ —
v II /(Vp -  x <)

L
(4.22)

II'tq tq)j-i,N-i/(X~
1L

(4.23)

Define the matrix as

S<j) = u rkA[k^ (4.24)

where T jh = rT(uiky<n u)’x q, p~'). It is shown in [30] that depends on the 
integers k and l only through the sum j  = k + l. We then have the functional 
relation

T . S «  = H ^ r j i t , )  + J ’-X’H $ T N. i (uStq). (4.25)

The matrices T j ( t q) in this equation are defined iteratively as follows. First, define 
the functions

z {tq) ~ \UJfJ,pfJ/p'{tp tq){tp' <̂?)]

= M v? -  < )(y? -  < ) M']L 
= I K ' i vp  ~  y ?) ( y$  ~  y q ) l k'\L

where we can write

aq = |V(1 — ApAg)( l  — \ pi \ q) j k 2Aq 

a , = [fc'(\ q -  \„)(\q -  \ v.)/ k2 ,

so if we write a q — a ( \ q), then ä q = a(l/A 9). We also have the relation

^ ( t g ) * ( ^ t q )  * " * z(u) tq )    O q Q q .

(4.26)

(4.27)

(4.28)

(4.29)
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The matrices T j ( t q) satisfy the recurrence relations

T 0 ( t q)  =  0, T i ( t q )  =  I

T j ( t q ) T 2{ u J~ l iq)  = z(up-Hq)wr X T j - ^ t q )  + T j + l ( t q) (4.30)

T j ( u t q) T 2 ( t q) =  z { u t q)u>r X T j - i ( w 2t q) +  T j + i ( t q) (4.31)

T N + i ( t q) = z(tq)u;r Xrjv-i(^iq) + (aq + äq)I (4.32)

where (4.30) and (4.31) are equivalent. Finally, we have the following relation 
between the matrices T(xq, yq, pq) and T2(tq);

' r 2  (̂ <j) T ( x<7, f l q) = LJrX bJf l pf ip t ^Xp y q ) { i p '  ĝ)

+

Vp' -  Vq

{yP' - u y q)(tp -u>tq)
%p ^ y q

^ ( ^ 9? Vqi t^q)

T(xq, u 2yq, nq). (4.33)

In Reference [30], the Boltzmann weights are re-parameterised for the real man
ifold, and these functional relations are put into an explicitly real form. We do not 
make use of this, but it demonstrates that when the Boltzmann weights are real, 
i.e. when the p and q variables lie on the unit circle and are arranged as in (4.16) 
and (4.17), the functional relations and transfer matrices are explicitly real also.

Finally, we have the matrix S{xq,yq, pq)

s ( X q , y q, p q) =  c ( z ^  - t / gN )
( N- l ) L N - 1

V,) (4-34)

where c is the ^-independent constant c = N~NL^2(Xp\p'YN~l L̂ 4̂. In References 
[28] and [29] it is shown that the matrix elements of S(xq,yq) are polynomials in 
the single variable Xq with degree at most (N — 1 )L, so one can write S(Ag) = 
S (xq,yq, pq). Hence the elements of the matrix S(Ag), defined by

S(A,) = A<'v- 1>i S(l/A,) (4.35)

will be polynomials in the single variable Xq of degree at most (N — 1 )L. Explicitly, 
we have

S(A,) =  c A f - 1 )t( ^ - < ) <'V_1)tf f  (
j = 1 V

-  t J

Xpi
iOJXq

ujix,

JL N - ln x,).
3 =  0

(4.36)

The matrix S(Ag) commutes with Tg, and hence the eigenvalues of S(Ag) are also 
polynomials in A9 with degree at most (N — 1 )L.
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The matrices T j ( t q) ,  j  = 2 , and the matrices S(A9) and S(Ag) are di- 
agonalised by the same similarity transformation which diagonalises the transfer 
matrices. This leads us to a notational simplification. If we let T j ( t q ) represent 
an eigenvalue of the matrix T j ( t q) ,  then post-multiplying the functional relations 
of the previous subsection by the appropriate eigenvectors x or y will effectively 
replace the matrices by their corresponding eigenvalues. Hence we can re-write all 
of these equations in terms of the corresponding eigenvalues, and it is the rela
tions between the eigenvalues which we will solve, in particular for the numerically 
largest eigenvalue(s) of TgTg.

The functional relations for the model with skewed boundary conditions are 
very closely related to the relations for the model with toroidal boundaries. The 
only difference is to replace the spin-shift operator X  everywhere by ujtX.  Thus 
the functional relations have the same set of solutions, but a different set are chosen 
for the model with skewed boundaries.

We now summarise the exact results for the free energy of the model.

4.3.6 Free energy

The free energy of the chiral Potts model was first derived by Baxter in Reference 
[24], and is given by equations (5.37), (5.10), (5.18), (5.5), (4.13), (4.12), (3.45), 
(3.46), (3.44), (3.41) and (3.42) of this reference. The final result is too complicated 
to include in full. The derivation does not depend on the functional relations of 
Section 4.3.5, but rather adapted the “399th” solution of the Ising model [17]. 
Basically, the star-triangle relation implies certain functional relations for the free 
energy and correlations of the chiral Potts model, which can be solved, although 
the results can be extremely complicated. We include the free energy of the model 
in the scaling region, i.e. the limit k —> 0 (k1 —> 1); in this limit, the difference 
property is restored, and the inversion relation [20] can be used to calculate the 
free energy. Letting u = uq — up, the free energy per site on a square lattice is

r°° sh ux sh (tt — u)x sh (N — \ )ttx 
pq J o  X  ch 2 7tx ch N ttx

-  ^  ■ - k2(ug -  up) cos(up + uq) + 0(/c2+4/7V),
Z D I  TT

and, as the reduced temperature is proportional to k2 for small k , we have as the 
specific heat critical exponent a = 1 — 2/N. At criticality, k —> 0, this is exactly 
the free energy of the Fateev-Zamolodchikov model [50].
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A more compact way of writing the free energy can be found by solving the 
functional relations of the transfer matrices. Exactly how this is done will be the 
subject of the following chapter. The results will be stated here.

The free energy is defined terms of the following functions [29]. Let |Ap|,|Ag| < 1 
and —2ir/N < arg(ip), arg(2g) < 0. We define

A, = h r e V  -  j )  In -  u^/%]
-  v*9 J=1

(4.37)

Bpq

X

1 /** y2» 1 + \ peie 1 + A,e
87T2 Jo J o  1 — Ape'9 1 — A,e‘*
N - 1

£  (JV -  2j) In [w-J72A(0) -
j = 1

and

a
1 r^

27r io 1 /VPC j=l

(4.38)

where the function A(0) is

A(9) = [(1 + kn -  2/fc'cos0)A-2]1/A

and we choose A(0) real when 6 is real.
These functions can be analytically continued outside the stated domains, and 

we are especially interested in the continuation to |Ag| > 1 and 0 < arg(/g) < 
2tt/N.  (This is equivalent to applying the automorphism R  of equation (4.9).) The 
function Apq does not depend explicitly on Ag, and can trivially be analytically 
continued as tq passes through unity. The function Aqp is slightly more complex, 
as it depends explicitly on \ q. We derive the analytical continuation formula for 
Aqp by substituting A = eld and writing the integral as a contour integral around 
the unit circle in the A-plane. Deforming the contours as Xq crosses the unit circle, 
we can write the analytical continuation formula

N —l
Aac{^q,tp) = - A ( l / \ q,tp) + 2 ^2 (N -  j)  In (uj~j/2tq -  u J,2t^) . (4.39)

7=1

Doing the same for Bpq — B( Ap, Ag), we find

^ac(Ap, Ag) — — B ( \ p, 1/Xq) + A(AP, tq) — C(Xp, tq). (4.40)
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In [29], Baxter calculates the maximum eigenvalue of T qT q when r = 0, i.e. 
when toroidal boundary conditions are applied to the lattice. The expression there 
derived for the homogeneous model, p = p', is valid for |AP|, |Ag| < 1 and —27t/N  < 
arg(tp), arg(tq) < 0, the maximum eigenvalue being

M n(7yf,) =  2L (N  Ingpq + \ (N  -  l)ln(A,/A„) + Apq -  Aqp -  Bpq) (4.41)

which implies that the free energy per site ip is

-N ip /kß T  = N \n g pq + \ ( N  — l)ln(Ag/Ap) + Apq — Aqp -  Bpq.

When I Ag| > 1, the eigenvalue TqTq will be given by (4.41), but with the integrals 
A and B  replaced by their analytic continuations; we have for |A9| > 1

N\n(TqTq) = 2LEpq (4.42)

where

Epq = N \ngpq T (̂./V — 1) In (Xq/Xp) + A(A9 tp) -f C(AP, tq) + B ( \ p, Xq 1)
N - 1

-  2 ^2  (N-  j )In u 1,2tq -  u>j/2<p] , (4.43)
J =  l

so the free energy is

■Nip/kBT = Epq. (4.44)

For the alternating model, which we consider in the following chapter, we find the 
free energy to be simply \{Epq + i y 9), as expected from Z-invariance. We derive 
these results directly for |A9| > 1 in the following chapter, and our results agree 
with the analytical continuation of Baxter’s earlier calculation.

Calculating the free energy using the functional relations is much simpler than 
the method used in the original calculation. In References [28,29] the free energy 
above is put into a form which is more useful in the scaling region; one finds the 
same specific heat critical exponent, and the ensuing expression for the free energy 
reduces to that of the Fateev-Zamolodchikov model once more [34].

4.3.7 JZ-invariance and the interfacial tensions

Consider a fully inhomogeneous model, with the column rapidity variables tak
ing the values pi,p2, • • • ,P2L- It follows from equation (4.20) that the interfacial
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tension is invariant under any permutation of these rapidity variables, being a ratio 
of two Z-invariant partition functions.

Provided L is large enough, a single interface, separating spins in the two differ
ent phases, is not expected to pass through every column of the lattice; the vertical 
periodic boundary conditions ensure that the interface begins and ends in the same 
column of the lattice, and energetic considerations will suppress it from wandering 
too far to the left or to the right. Using Z-invariance arguments almost identical to 
those used in Section 5 of Reference [18], one can show that the interfacial tension 
can depend only on the rapidity variables of the rapidity lines through which the 
interface passes, and is completely independent of the other rapidity variables.

Hence the interfacial tension must be independent of all of the vertical rapid
ity variables p i,p2, • • • ,P2L- Thus the interfacial tension of the fully inhomoge
neous model must be the same as that of the alternating model, with rapidities 
p, p',p, p' , . . . ,  and also the same as that of the fully homogeneous model, with all 
vertical rapidities equal to the common value p.

Also, the interfacial tension of the physical chiral Potts model should be the 
same as the interfacial tension of the superintegrable model, which corresponds to a 
particular choice of the alternating vertical rapidities. This observation, pointed out 
in [30], simplifies the calculation of the interfacial tension. At the superintegrable 
point, the functional relations for the transfer matrices simplify, greatly facilitating 
their solution. An ansatz for the eigenvalues Tq is proposed in References [3] and 
[44], which is shown to follow directly from the functional relations in Reference [30]. 
The ansatz is then generalised to the alternating model with skewed boundary 
conditions. As a result, the simplest method of calculating the interfacial tension 
of the physical chiral Potts model should be to calculate the interfacial tension of 
the superintegrable chiral Potts, and to use Z-invariance to argue that the quantity 
is the same for the two models.

There is however a potential flaw in this argument. The superintegrable chiral 
Potts model is a non-physical model, in that its Boltzmann weights are in general 
complex. The Z-invariance argument may not hold for a system with non-positive 
Boltzmann weights; for such models, the interfacial tension (as well as other quanti
ties such as local correlation functions) may be sensitive to the boundary conditions 
imposed on the lattice. This is demonstrated explicitly for the chiral Potts model 
in References [26,32], where the interfacial tensions are calculated for the model 
with two different kinds of boundary condition; this yields different expressions,
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and different critical exponents. These calculations are summarised in the next 
section. For a physical model, the interfacial tension should be independent of the 
boundary conditions, and the discrepancy can only be due to the non-positivity of 
the Boltzmann weights. Due to this unphysical behaviour, it is not clear that the 
results of the superintegrable model can be reliably applied to the physical case; a 
direct calculation of the interfacial tension is certainly desirable.

4.4 The superintegrable chiral Potts model

The most extensively studied case of the chiral Potts model is the so-called su
perintegrable model. This corresponds to the alternating column rapidity variables 
satisfying

V  = 2/p, yv> = xp, and yv< — . (4.45)

This choice of variables simplifies the functional relations. It has a Hermitian 
subcase, and so is important in the theory of the chiral Potts quantum spin chain. 
Unfortunately, the choice of vertical rapidities excludes the possibility of positive 
Boltzmann weights, so the lattice model is not of direct physical interest.

We summarise the two calculations of the interfacial tension of the superinte
grable model.

4.4.1 Cylindrical boundary conditions

We summarise the work of References [1,23,26]. For the homogeneous super
integrable model, xp = yp = xv< = yv< — 1, it was shown in References [1,23] that 
the row-to-row transfer matrix has a set S of eigenvalues which have a particularly 
simple form; if the largest eigenvalue of T is contained in S the bulk free energy is 
easily calculated. In [2] it is shown that for toroidal boundary conditions the largest 
eigenvalue is not contained in 5, but in [23,26] it was commented that if fixed spin 
boundary conditions are placed at the top and bottom rows of the lattice, and 
periodic boundary conditions are imposed from left to right, then only eigenvalues 
in S can contribute to the partition function. Such a lattice is illustrated in Figure 
4.3. In [26], the partition function on such a lattice, with finite but arbitrary size, 
is calculated exactly, and from its asymptotic behaviour is calculated the bulk free 
energy per site, surface free energy per unit length due to the fixed and free bound-
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a a a a a a

0 0 0 0 0 0

Figure 4.3: The square lattice with periodic boundary conditions horizon
tally, but with fixed boundary conditions vertically; with all spins being 0 on 
the bottom row and all spins being a on the top row, where 0 < a < N — 1.

ary conditions, correlation lengths and interfacial tensions per unit length in both 

the vertical and horizontal directions, along with the associated critical exponents.

When k' < 1, for large L and M , the partition function Za should grow as

In Z a =  —2 L A l f  — 2L{2fs +  sa) +  • • •

where /  is the free energy per site, f s is the surface free energy due to the fixed-spin 

top and bottom  boundary conditions, and sa is the horizontal interfacial tension 

between ferromagnetically ordered phases 0 and a. We have om itted an entropic 

term  as well as other terms that are exponentially smaller, and are used to calculate 

the horizontal and vertical correlation lengths. Expressions for these quantities are 

given in [26], and we do not reproduce them  here. We do remark tha t the interfacial 

tensions thus calculated indicate tha t in this model, wetting becomes favourable 

when N  is sufficiently large. The critical exponents are calculated in [26];

Ol — 1 2 j N , — 2 2 /TV, /̂ hor =  ^hor — 2/TV, — ^vert =  1 •

It is unexpected to find tha t the critical exponents can depend on direction, as these 

do; the interfacial tensions and correlation lengths are usually expected to become 

isotropic in the scaling region. The hyperscaling relation dv =  2 — a  is violated in 

this case, and the directional dependence of the exponents can only be a result of
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the different boundary conditions in the different directions and the non-positivity 
of the Boltzmann weights.

4.4.2 Skew-periodic boundary conditions

model are re-derived for the case of skewed boundary conditions, and the interfacial 
tension is then calculated in the low temperature limit. This result agrees with the 
expectation from Z-invariance that the interfacial tensions in the vertical direction 
should be independent of the vertical rapidities p and p', and also indicates that 
the physical model should be non-wetting in the k' —» 0 limit.

Hence Baxter concludes in [30] that the interfacial tensions of the superinte- 
grable chiral Potts model, with vertical rapidities given by (4.45), should be the 
same as the interfacial tension of the physical model.

In [32] the partition function is calculated for the lattice with cyclic boundary 
conditions from top to bottom, and skewed boundaries from left to right, the same 
boundary conditions as used in [30], and also in our calculation of the physical

which the free energy and interfacial tension are calculated. These eigenvalues are 
of the form

where /  is the free energy per site of the superintegrable model, and the function 
vr is given by

In [30] the functional relations for the transfer matrices of the chiral Potts

model [96].
In Reference [32], a set of L largest eigenvalues of T 9T g is determined, from

\n(TqTq) = - 2 L f / k BT - 2 v r (4.46)

(4.47)

where the functions A(t), h(t) and ty(\, t) are
r

(4.48)

h{t) = A(u>-l/2t)A(u>ll2t) (4.49)

and
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\P(A, t) = tan 1
A — 1 (r,-N - t N \ 1/2‘ 
A + 1 [ t N - t]n )

(4.50)

when T] < t < Tj 1. The eigenvalues depend on the complex number m 
where s is one of the L solutions to 

L

— s/tj

' j S ! h ± L \  -  -Qr 
uj~tI2s + 1J W

different values of s corresponding to different eigenvalues of T gT g. The free energy 
is independent of r, so when L is large one can write

where the sum, originally over the N L eigenvalues of T gT g, is approximated expo
nentially well by restricting the sum to the L largest eigenvalues defined by the L 
possible values of s. As L —> oo, the values of s form a dense distribution over the 
positive real axis, so

r oo
Zr/Z0 = L / R(s)e~2Mvrds 

Jo

where the distribution function R(s) is independent of L and M.  To calculate this 
integral as M oo, one uses the saddle point method, deforming the contour of 
integration to pass through the saddle point of vr in the complex s plane, giving 
for the interfacial tension

Cr/kBT = 2(t>r)saddle (4.51)

where by (^r)saddie we mean equation (4.47) evaluated at its saddle point in the 
complex 5-plane.

By arguments given in the preceding paragraphs, this is expected to be the 
interfacial tension not only of the superintegrable chiral Potts model, but also of 
the physical model. Baxter [30] argues that this formula should be valid all the 
way up to the order-disorder transition at k' = 1, even though the superintegrable 
model seems to have an earlier transition to an incommensurate phase [2,4,65]. 
This is because this result is expected to be valid for sufficiently small k ' , and there 
should be no non-analyticities in the result for the physical model as k' approaches 
the critical value k' — 1.
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4.5 Results and discussion

Our calculation for the chiral Potts model in its physical regime, which makes 
no such Z-invariance assumptions, is presented in the following chapter. We con
clude that the interfacial tension of the physical model is indeed given by equation 
(4.51). We quote some further results based on this due to Au-Yang and Perk [10]. 
They write the low-temperature interfacial tension in a new form, and consider the 
symmetric model, where the interfacial tension simplifies significantly; the symmet
ric point corresponds to tq = a;1/2, (A9 — 1)/(A9 + 1) = r/^/2, tp = 1; the saddle 
point occurs when 5 = 1, and the interfacial tension becomes, from [10],

8 , sin(7rr/iV)0  w£r/kBT = -  dy-
7T JO

tan -l N N \  V 2v -  y \ (4.52)
1 + 2y cos(7rr/CV) + y2 \ l —rjNyNJ

In the scaling region, this can be expanded as a series of beta functions [10,32]

e r / W  =  v r / N ^ »

-  8gJ f f 4)2) sin(2*r/ N)VN^  + 0 ( VN^ %

and so the interfacial tension scales as

which implies that the critical exponent is 
1 1

^ ~  2 + N '
The crossover exponent was calculated by Au-Yang and Perk [10]. It is defined by 
the scaling law in equation (4.1) for the N  = 3 model; for general TV, it is assumed 
that there is a single relevant chiral field Ai, and then in the scaling region of the 
integrable model, for k small, we have t ~  k2 and t ~  Aj for small Al5 which 
implies that the crossover exponent is

4>=-  
2 N

The crossover exponent is therefore positive when > 2, and the chiral symme
try breaking field in the three state chiral clock model is relevant, with crossover 
exponent </> = 1/6, which is consistent with Huse et al. [63].

Finally, in both the low-temperature and scaling limits, the interfacial tensions 
satisfy the inequality tj < + t\ where j  = k + l mod N. Hence in both of these
limits the system is non-wetting, and is presumably so in the entire sub-critical 
region 0 < k' < 1.



4. The chiral Potts model 85

4.5.1 Excitations in the spectrum of T9

Excitations of the chiral Potts transfer matrix have been considered by Mc
Coy and Roan [75,91,92], in terms of the excitations of the associated quantum 
spin chain. This is a quantum mechanical model which has a Hamiltonian which 
commutes with the chiral Potts transfer matrix.

McCoy [92] and McCoy and Roan [91] calculate the ground state and excita
tions of this spin chain Hamiltonian, in the thermodynamic limit, by solving the 
corresponding classical lattice model, and then finding the eigenvalues of 77, which 
are related to the eigenvalues of the transfer matrix of the classical lattice model 
T(xq,yq) by

The additive constant is the same for all eigenvalues.
McCoy and Roan find the eigenvalues of the transfer matrix are of the form 

(4.46), i.e.

In Tq = vmp + ground state terms

where the bulk terms are given in References [91,92], and the excitations depend 
on the function

Vmp = Cp -  rnp In y q -  In f(-u>~1/2tq)

where the contour C\ traverses the unit circle in the positive (anti-clockwise) direc
tion, ('p is a ^-independent normalisation constant, and f ( t ) is the polynomial

and the numbers v3 can be expressed as solutions to a set of Bethe ansatz-type 
equations.

The function vmp is very similar to our function vr. In fact, analytically con
tinuing our result to the region |A9| < 1 (which we describe in Subection 5.5.1 of 
the following chapter), we find that our band of L largest eigenvalues agrees with 
McCoy’s excitations exactly when mv = r.

+ const.

(4.53)

/(*) = I P 1 +  tv i ) ’
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This comparison is interesting because McCoy and Roan’s result is based on an 
assumption of the dominant behaviour of the polynomials r2{tq) corresponding to 
excitations of the transfer matrix, writing

where h+(t) and h~(t) are known functions (expressed as integral formulae) given 
in [92]. For the superintegrable model, this expression is explicitly a polynomial, 
but for the more interesting Hermitian and physical cases, it is not. McCoy and 
Roan assert without justifiaction that this form for T2{tq) is still correct for these 
cases in the limit L —* oo, and that for finite L the expression is correct up to 
subdominant terms, which make the expression for r2(tq) explicitly a polynomial, 
and which vanish sufficiently fast as L —> oo.

Ti(t,) = h+(tq) (4.54)



CHAPTER 5

Calculation of the interfacial tension 
of the chiral Potts model

In this chapter, we present our calculation of the free energy and interfacial 
tension of the chiral Potts model. All of our results have been presented in the 
previous chapter, and in this chapter we include many details that were omitted 
from the calculation published in Reference [96].

The format is as follows. In Sections 5.1 and 5.2, we define the low temperature 
limit that we consider, and then review the work of Baxter in References [30,31]. 
We then consider the functional relations for the periodic boundary conditions, and 
determine the polynomials Tj(tq) which correspond to the maximum eigenvalue of 
the transfer matrix. Subsection 5.3.4 considers the effect of skewing the boundary 
conditions, and the results for the low temperature limit are summarised at the 
end of Subsection 5.3.7, before an expression for the desired eigenvalues of the 
matrix t2(£9) is derived for arbitrary sub-critical temperatures, equations (5.25) 
and (5.28).

In the following sections, the required eigenvalues of the matrix S(A9) are de
rived, given by equations (5.36) and (5.37), after first considering the low-temperature 
limit.

Then in the final section, the free energy and interfacial tension, which we have 
presented in the previous chapter, are derived.

5.1 The low-temperature limit

The low-temperature limit of the chiral Potts model has been considered in 
References [28-31]. We consider the same low temperature limit as that used in 
References [30] and [31], and note that this is different from the limit considered in
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References [28] and [29].
When we take the limit k' —> 0, from equations (4.5), provided that |AP| and 

|Ap/| are both larger than k', then x ^  and x^, —> 1 as k' —» 0, so we can choose 
xp,x p' —> 1 as k' —> 0. Further, if |AP| and |AP»| are smaller than 1 / k \  certainly if 
they are smaller than unity, we have and yp, —> 1 as k1 —> 0, so we can also 
choose yp,yp' —► 1, and hence tp, tp< —> 1. Correspondingly, if |A9| is greater than k', 
we can choose xq —> 1 as k' —> 0, and if |A9| is sufficiently greater than unity, then 
we can keep yq different from unity, i.e. as a free variable. We then have tq = yq, 
and are free to choose 0 < arg(tq) < 2tt/N.

In summary; we take k' —► 0, with xp,x p>,xq,yp,yp' —* 1, while = yq is a 
variable. For a physical model, we are interested in tq on the unit circle, tq = e2lUq, 
where 0 < uq < tt/N.  We also have k' < |AP|, |AP»| < 1, and 1 <C |Ag| < 1/k'.

With these choices, in the zero temperature limit the Boltzmann weights (4.3) 
become

Wpq{n) = (fip/fiq)n f [  j — and Wpq(n) = {fipfiq)n f [  j (5.1) 
j=i 1 ”  ^  j=l h  ~ u

5.2 The Bethe ansatz calculation

We first review the work on the low-temperature limit that was reported by 
Baxter in References [30] and [31].

The limit k' —► 0 was considered, with fip and yp< order unity, and fiq = 
0(fc'_1/W), while the Boltzmann weights Wpq(n) and Wpq(—n) are both 0 (k ,n/N). 
Let ß = up!2 .

Consider the sets of spins <r and cr' which determine the elements of T; ele
ments of T will be order k'r N̂ when the sequence of spins <Ti, crj, cr2, • • •, 0^, o'l+i 
is monotonic and non-increasing, with all the other elements of T  being of higher 
order in k' .

The transfer matrices can then be “truncated,” retaining only elements corre
sponding to such spin configurations, and neglecting all configurations which give 
smaller matrix elements. Doing this, the lattice splits into domains of equal spins, 
separated by r interfaces, as indicated in Figure 5.1. These interfaces run approxi
mately vertically down the lattice. The interfaces may coalesce, but not cross, and 
each interface will pass through each row exactly once.

For r = 0, the only allowed configuration is the TV-fold degenerate ground state,
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Figure 5.1: The lattice in the k' —> 0 limit with skewed boundary conditions. 
The r interfaces (for r = 2) are indicated by the broken lines. In this limit, 
the interfaces must move monotonically up the lattice, and each interface 
passes through each row exactly once. The interfaces may coalesce but not 
cross.

in which all spins in the row are equal to some common value a, so the truncated 
transfer matrix Tg is simply the N x N  identity matrix.

For r non-zero, the transfer matrices will be of dimension = L\/r\(L — r )!, 
and there is a conserved quantity, the number r of interfaces in each row. The 
problem is amenable to a Bethe ansatz calculation, which Baxter performs explicitly 
for r = 0,1,2 and then generalises to arbitrary r in References [30] and [31].

The Bethe ansatz equations of the low-temperature chiral Potts model are very 
closely related to those of the six-vertex model in a horizontal field [57,84], the 
field vanishing when ß = 1. Baxter notes that this is another manifestation of the 
connection between the chiral Potts model and the six-vertex model [35].

The eigenvalues of TgTg are found to be

T f  _f r  sin2(ttg -  Qj)
q  ~  1 1  2 - • /  \ \ 5J=i 7?g sin ay sin (ay -  A)

where T), = e7̂ 2'' , and the o3 are given by the Bethe ansatz equations

sin(aj -  A)\  g . L  . - Q  t t  sin(A -  07 -  ctj)
)  1 J M sin(A — a j  —  a;)’sin ctj



5. Calculation of the interfacial tension of the chiral Potts model 90

From this, one can calculate the interfacial tensions er. Baxter explicitly calcu
lates £\, and shows that

£ \  < 2^2

in the k' —> 0 limit. This means that phase 1 will not wet the phase 0 — phase 
2 interface, but rather that it is energetically favourable for the system to jump 
straight from phase 2 to phase 0. This result is true for 0 < uq < tt/N , in the limit 
k' -> 0.

Further, it is noted that in the r = 2 case, there are two types of eigenvectors, 
“plane waves” and “bound states,” with the fully bound states giving the greater 
contribution to the partition function. Baxter then suggests that for arbitrary r, 
the dominant contribution to the partition function comes from states with the 
interfaces bound together, intermediate phases not wetting the interfaces. For L 
large, the bound states correspond to

\ßr sin(ai — r n /N ) /sin ct\ | = 1 and etj = c*i + (1 — j)7r/N. (5.2)

The band of largest eigenvalues is calculated and the interfacial tension is expressed 
as a contour integral over this band of eigenvalues. The integral can be evaluated 
by the saddle-point method, and the location of this saddle point is discussed.

In this limit, the only dependence of the transfer matrix elements on p and p' is 
through ß. The interfacial tensions are independent of /?, and hence are independent 
of the vertical rapidities p and p\ as is expected from Z-invariance.

We consider the functional relations in the low-temperature limit, and derive 
expressions for the polynomials t2(£q) and S(Xq) which correspond to the maximum 
eigenvalues of TgTg.

5.3 The polynomial r ^ i t q )

5.3.1 Periodic boundary conditions

First, we consider the low-temperature limit for periodic (unskewed) boundary 
conditions. This is considered in [29], but in a different low temperature limit. The 
work with periodic boundary conditions serves as a framework for the subsequent 
work with the skewed boundaries.

When we impose periodic boundary conditions onto the lattice, the ground state 
of the row will be the ferromagnetically ordered state with all of the spins taking
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on the same value a. The transfer matrix will have a unique largest eigenvalue, 
and from equation (5.1), the maximum eigenvalue of Tg, will be order unity. The 
functional relation (4.33) simplifies significantly in this limit, and we see that the 
eigenvalue of the matrix T2(tq) corresponding to the largest eigenvalue of Tg is

t2(*9) = ceL (1 -  tq)L + (1 -  wtq)L (5.3)

where c = and e = |/ip/v l (where e > k'2̂ N).

5.3.2 The limit e —► 0

This is a very simple polynomial, and we are particularly interested in the 
location of its zeros.

First, consider the limit e —> 0; then (5.3) becomes

T2{tq) = (1 - u t q)L. (5.4)

This is a polynomial in tq with degree I ,  and a zero of multiplicity L at the point 
a;-1. Now consider e small, (we always consider |AP| and |AP#| smaller than unity) 
but non-zero; r2(tq) is given by (5.3), a polynomial in tq of degree I ,  which has 
zeros at the L points (to lowest order in e)

u -1 + const • e e2?rt̂ L, £ = 0 ,1 ,. . . ,  L — 1,

where the constant is order unity. Therefore the zeros of r2(tq) lie evenly spaced 
around a circle centered at the point cj “1, and with a radius which is proportional 
to £.

Note that changing e from zero shifted the zeros of the polynomial from a 
root of unity to a small circle surrounding tu_1. We find similar behaviour in the 
polynomials Tj(tq), j  = 3 , . . . ,  TV which we consider next.

These polynomials are defined by the recurrence relations (4.30) and (4.31). We 
consider the £ —> 0 limit first; when e = 0, relation (4.31) reduces to

Tj+l{tq) = Tj(UĴ q)T2 (̂ 9 ) 

whereupon

Tj(tq) =  J] T2(U >k- \ )  = I P 1 - ukU)L- (5-5)
fc=l k=]

Thus the polynomials T3(tq), j  = 2 , . . . ,  TV are polynomials in tq with degree (j — 1)L, 
and have L zeros lying exactly at the points . . .  ,u>”J'+1. We emphasise
that all of the polynomials r2(tq) , . . . ,  Tjv(tq) are non-zero at and in a neighbourhood
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5.3.3 Location of the zeros for e non-zero

For e non-zero, the functional relation (4.31) becomes

Tj+l{tq) = h 'K )  r2(M -  CeL (! -  ^L )2L

with to(L) = 0 and Ti(tq) = 1, and c an unimportant order unity constant. The 
solution to this is

^ )  = E 7 r ^ n i  n V - < A ) t . (5-6)
k= 0 VA w  L<ll 1=0

a polynomial in tq of degree (j  — 1 )L\ this is an exact expression for the polynomial 
Tj(tq) in the k' —> 0 limit. We wish to describe the polynomial T3[tq) by locating 
its zeros; we do this as before, setting e to zero, and then considering e small but 
different from zero. We consider j  — 3 first to demonstrate the method; then from 
equation (5.6)

r3(tq) = (1 -  ojtq)L (1 -  u 2tq)L + ceL (1 -  tq)L (1 -  u 2tq)L 

+ c2 e2 (1 -  tq)L (1 - i ü t q)L.

When e = 0, r3(tq) has L-fold zeros at uj~1 and uj~2. For £ non-zero, we expect 
to find L zeros “close to” both of these points, lying on small circles surrounding 
them.

Let be a zero of r3(tq) lying “near” u;-1, so h itself must lie in some
neighbourhood of unity. We find an equation for h by substituting for tq\ the 
left hand side vanishes, and we have

0 = (1 — h )L (1 — loI\)l + c£L (1 — u>~l li)L (1 — ujI\)l

+ c2 £2L (1 — u;_1/1)L (1 — li)L. (5.7)

This is a polynomial equation in l\ with degree 2T, and so it has 2L solutions, rather 
than the L we are seeking. However, only L of these should lie in a neighbourhood of 
unity, at least for e sufficiently small. Note that the terms (1 and (1 — u>-1/i)
are order unity when l\ lies in a neighbourhood of unity, and that the first two 
terms on the right hand side of (5.7) will clearly be the largest of the three. Hence 
we can approximate this equation exponentially well by discarding the third term. 
Doing so, we obtain

0 = (1 — l\)^ + ceL,
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an equation for l\ which has the L solutions /i = 1 -f 0(e) e27rt̂ L, f  = 0 ,1 , . . . ,  L — 1, 
which implies that r3(tq) has L zeros lying on a small circle centered at u;-1 with a 
radius proportional to e, i.e.

w“1 -f const • e e2,n̂ L, i  = 0 ,1 ,. . . ,  L — 1.

By substituting back into (5.7), we see that our assumption regarding which of the 
three terms were dominant is indeed consistent. To locate the other L zeros of 
t3(29), let lo~212 be a zero that lies “near” u -2, where l2 lies in some neighbourhood 
of unity. Then l2 satisfies the equation

0 = (1 — l2)L (1 — oj l l2)L T ceL (1 — u  2l2)L (1 — C)L 

+ c2 e2L (1 -  u j ~ 2 12 ) l  (1 -  u~l l2),

which again should have only L solutions which lie in a neighbourhood of unity, 
and indeed when this is the case, the factors (1 — u>~l l2) and (1 — l o ~ 2 12 ) are order 
unity. We need to discard one of these terms, as we did in the equation for /i. If 
we assume that the second term is the smallest, i.e. that (1 — l2)L < eL, then we 
can approximate the equation exponentially well by

0 =  (1 -  l2)L +  0(e2L)

which has solutions l2 = 1 + 0(e2) e2nt^ L, f  = 0 ,1 , . . . ,  L — 1. Hence the corre
sponding zeros of r3(tg) are at the points

uj~2 + const • e2 e27n̂ L,  ̂= 0 ,1 , . . . ,L  — 1,

and once more we confirm that the assumption we made is consistent by substitu
tion. These are all of the zeros of T3(tq) for r = 0 and t small.

Next consider the zeros of the polynomial Tj(tq). When e = 0 we know that 
zeros of multiplicity L lie at the points u;~p, p = l , . . . , j f  — 1. When £ is non-zero, 
we expect that the zeros lie on small circles surrounding these roots of unity, which 
we confirm next.

Let l o ~ p I p  be a zero of Tj(tq) which lies near u;-p, where lp lies in some neigh
bourhood of unity. For j  = 3, for the zeros lying near a;-1 we approximated the 
equation for l\ by keeping the first and second terms, and for the zeros near cj- 2, we 
approximated the equation for I2 by keeping the first and third terms. We might 
expect that for the polynomial Tj(tg), the equation for lp determining the zeros
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around u;~p can be approximated exponentially well by keeping only the first and 
p + 1-th terms. We find that this is so.

To determine an equation for /p, substitute tq = to~plp into equation (5.6); the 
left hand side vanishes, and we have

j - 1

o = E
Ck £ k L 3 - 1

n ( i - ^ - % ) L, p = i  i —i-
k= 0 ^  Pl p ) ‘ 1=0

If we write the right hand side of this out in full, we see that it is a sum of j  terms, 
each consisting of a power of eL multiplied by an uninteresting constant which is 
order unity, multiplied by j  — 1 factors (1 — u nlp)L, where n is a positive integer. 
The terms in the sum corresponding to k = 0 and k = p appear to be the largest; 
the former does not have a power of £L, and the latter does not contain the factor 
(1 — /P)L; the other j  — 1 terms contain both of these “small” terms. Hence the 
equation for lp can be approximated exponentially well by discarding the smaller 
terms, giving

(1 — lp)L -f- const • epL = 0

where the constant is order unity. (We are implicitly assuming tha t (1 — lp)L < 

£(p- i )l ) ^  solutions of this are lp =  1 +  const • ep e2ni£/L, i  =  0 , . . . ,  L — 1, for

p = 1 , . . . ,  j  — 1 which is consistent with the assumption we made. There are p — 1 

such equations, for p =  1 , . . .  — 1, and the (j — 1 )L zeros of T j ( t q ) are therefore

U3~p 4- const • e p  e27rt̂ L, £  =  0 ,. . . ,L  —  1, p  =  1 ,2 ,... —  1.

They do indeed lie on circles surrounding various roots of unity, as expected.
We re-do this working to determine and consider the effect of the skewed bound

ary conditions.

5.3.4 Maximum eigenvalues for skewed boundary conditions

When we apply the skewed boundaries, the maximum eigenvalue of T g is no 
longer order unity. The lowest energy configuration of a row of the lattice is no 
longer the completely ordered ferromagnetic ground state, instead, the spins must 
configure to match the new boundary condition.

In Section 5.2, we mentioned that the maximum eigenvalue of T g corresponds to 
the sequence oq, cr[ , (J2, . . . ,  <7̂ , ol-i-i being monotonic non-increasing, with <jl+i = 
<j\ — r; when this is so, we have
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<7 <7 — 1 <7 — 1

IV(-1) = 0 W > ^ |
UJ — I

<7 <7 — 1 <7 — 1 <7 — 1

<7 <7 — 1 <7 — 1

W ( l )  =  ( Vp / P i ) t — -
1 — CO

1

Figure 5.2: Two of the 2L possible lowest energy states for a row of the 
lattice with skew parameter r = 1. These are generic cases corresponding to 
the maximum eigenvalues of T q.

T, = *|-rF (<.) (5.8)

where the elements of the matrix F (tq) are all polynomials in tq with degree at most 
r. The eigenvectors of T q are independent of <?, so the eigenvalues F(tq) of F (^) 
are also polynomials in tq of degree at most r. In the limit k' —» 0, the functional 
relation (4.33) simplifies

T2(tq)F(idtq) = u r+Q [üüfipfip'( 1 -  tq)]LF(tq) + (1 -  u>tq)LF(ijj2tq) (5.9)

which we have written as a relation between the eigenvalues r2(£g) and F(tq) of the 
matrices r 2(t9) and F (tq).

We need to determine the largest eigenvalues of F(fg), which correspond to 
the configurations of the row with the largest Boltzmann weights. In the previous 
section, we considered r = 0; we next consider r = 1 and r = 2.

When r = 1 there must be an interface somewhere in the lattice, with a single 
jump corresponding to the configuration with the lowest energy. The maximum 
entries of T 9 correspond to the archetypal configurations shown in Figure 5.2, with 
corresponding weights for the rows indicated in the figure. There are N  choices of 
the spins <7 on one side of the interface (which determines the spins on the other 
side), and a choice of 2L locations for the interface. To leading order, the maximum 
eigenvalue of Tg will be
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Tq = ci W(\ )  + c2W ( - l )

where C\ and C2 are order unity. When we consider the limit e —> 0, the weight 
W( — 1) will clearly dominate, so we have

F(tg) O C . t g - 1

as the maximum eigenvalue of F (tq) when r = 1. There are L places to put the 
interface in the W  direction, giving us a set of L such largest eigenvalues. When e 
is small but non-zero, we see that the zero of F(tq) will shift from unity to another 
point lying a distance of order e from unity, as we saw in the previous sections with 
the zeros of the polynomials T j ( t q ).

Taking r = 2 is more complicated. Now there are five distinct (in the sense 
that they have a different Boltzmann weight) possibilities, which are illustrated in 
Figure 5.3. The first two of these configurations corresponds to the two interfaces 
lying on the same bond, so phase o jumps straight to phase o — 2, without phase 
o — l wetting the interface.

Again consider the limit £ —> 0; then the dominant weights will be W ( —2) and 
W( — l)2, both being of order £-1. However, writing tq = e2tu<J, we see that

W ( - 1)2
sin(ug 4- x/iV)

2 sin uq cos n/ N
for 0 < uq < 7r/N

so the dominant weight will be W( —2). As a result, the maximum eigenvalue of 
F (tq) will be

F(tq) OC (iq -  1 )(tq - U  1).

Thus the maximum eigenvalue in this limit corresponds to the two interfaces 
being bound together, and the intermediate phase o — l not wetting the phase o— 
phase 0 — 2 interface.

For general r, the maximum eigenvalue in the e —► 0 limit will correspond to 
the configuration(s) with the highest power of //p in the denominator. For r = 3, 
there are the possibilities W ( —3), W ( —2)W(—1) and W( — l)3, and we can show 
that W ( —3) is the dominant configuration for 0 < uq < 7r/JV, so that

F (<,) = (1 - < „ ) ( ! -  -  uT%).

Looking at larger values of r, we see that in general the maximum eigenvalue 
corresponds to W ( —r), and so
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a a — 2 <7 — 2

(7 a a — 2 a — 2

a a — 2 a —2

a a a — l a — 2

a <j —1 <7 — 2

a <7 — 1 <7 — 2 a — 2

a <7 — 1 <7 — 2

<7 <7 <7—1 <7 —  1

w ( i y  = („„//*»)

|2  -

t q -  LO t q —  LO2

1 —  LO 1 — LO2

- 2  ^q  _ 1 t q —  LO_1

LO —

T-H1313
1 t-h1

"V
V I - LO )

W2 {tq
\ L 0 - 1 /

. — 2 t q  ~ ■ 1 t q —  LO

LO —  1 1 —  CO

Figure 5.3: The five distinct possible lowest energy states for a row of the 
lattice with skew parameter r = 2. These are generic cases corresponding to 
the maximum eigenvalues of T q.
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F(tq) oc (1 -  *9)(1 -  CO l tq) ■ ■ ■ (1 -  to r+ltq) (5.10)

for 1 < r < N  — l.
This agrees with the maximum eigenvalue of F(tq) corresponding to the fully 

bound state eigenvectors mentioned towards the end of Section 5.2. In the limit 
£ —> 0, the ß of that section vanishes, so to maintain the first equality of (5.2) we 
have to choose ou = 0, and the other ctj are determined by the second equation of 
(5.2). This leads to precisely the expression (5.10) for F(tq).

Having determined the polynomial F(tq) which is the maximum eigenvalue of 
the matrix F (tq), we can now use the functional relations to determine the corre
sponding polynomials Tj(tq), j  = 2 , . . . ,  TV and 5(Ag).

First we use equation (5.9) once more to determine the Tj(tq) polynomials. We 
consider the limit e —> 0, and then vary £ as in the previous subsection to determine 
the location of the zeros of the polynomials for £ non-zero.

5.3.5 The limit e —> 0

Taking the limit e —> 0, the relation (5.9) becomes 

T2(tq)F(fjjtq) = (1 -  u t q)LF(uj2tq) 

where F(tq) is given by (5.10) so it follows that r2(£g) is given by 

T2(tq) = (1 -  ^ g)L_1(l -  u /+4 g),

a polynomial in tq with degree T, which has a zero of multiplicity L — 1 at u;-1, and 
a simple zero at tu-7’-1. This reduces to equation (5.4) when r = 0, so the non-zero 
skew parameter simply shifts one of the zeros of r2(tfg) from co~l to another root of 
unity. This is what we find the skew parameter does in general.

We can also calculate the other functions Tj(tq) in this limit. Taking e —* 0, the 
functional relation (4.31) becomes

Tj+i(<,) = Tj(farft)r2(t,)

(because z(tq) —► 0 as £ —* 0), which implies that Tj(tq) is given by 

Tj(tq) = n W - ' M  = S ( 1  — % )L- ‘ (1 — r+T ) (5.11)
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for j  = 2 , . . . , TV. Each T j ( t q) is a polynomial in t q with degree ( j  — 1 )L, with 
zeros of multiplicity 1, L — 1 or L at the roots of unity a;-1, u;-2,
Comparing the expressions (5.5) and (5.11) for Tj(tq), we see that once again the 
skew parameter has merely shifted some of the zeros of the polynomials. Note in 
particular that the polynomial T j ( t q) has at most a simple zero at unity itself.

5.3.6 Location of the zeros for e non-zero

Next we wish to locate the zeros of the polynomials F(tq) and Tj(tq) when e 
has some small but non-zero value. We expect to find that when we increase e, the 
zeros will move onto small circles surrounding the roots of unity, rather than lying 
exactly on the roots of unity themselves.

The zeros of F(tq) will move, but will still lie within some ^-neighbourhood of 
the roots of unity l,u;-1, . . .  ,u;-r-1 . We accommodate the expected shifting of the 
zeros by generalising (5.10) to

c(*,) = I l K
j = i

J - 1 (5.12)

where the numbers dj, j  = 1,2, . . . , r  lie within some ^neighbourhood of unity. 
When e = 0, then a j  = 1, j  = 1, . . .  ,r. Consider the functional relation (5.9) once 
more. The left hand side vanishes when t q = u>~Jdj, so substituting this value for tq, 
we get the following Bethe-ansatz type equations for the numbers d j , j  = 1, . . .  , r

L

kJi ak -  u k- i ~ l aj

/ j+i n .
^ _  _ i(JQ+r +L£ L 1 — LÜ Jdj

1 —  cj1~JaJ
(5.13)

where there are r such equations, corresponding to j  = 1,2, . . . , r .  We can solve 
these equations for the d3 to leading order in e as follows. The dj are of the 
form 1 -f O(e^), where #  represents some positive number. We approximate the 
r equations by collecting all of the factors which are order unity into a “constant” 
term, and only writing out explicitly factors which are smaller than 0(1). Such 
terms are factors like (1 — dj) or (d{ — a^), 1 < z, j, < r. Doing so, we get r — 2 
equations of the form

a j - 1

aj+i aj 
and two others,

dj T— const • e , j  = 2 , . . . ,  r -  1

= const • eL and ar_j — ar = const • e1
a2 — ai
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Multiplying these r equations together gives 

(1 — öi)L = const • erL

which indicates that we have L choices for the parameter cq, of the form

öi = 1 + const • ere2nt£/L, £ = 0 ,1 ,..., L — 1, (5.14)

corresponding to the L largest eigenvalues of T g. The other a3 follow, being

dj = const • e(r~i+PL for j  = 2 , . . . ,  r. (5.15)

The zeros of F (tq) form a “string” of length r in the complex plane, and once the 
value of cq is chosen from the set of L possible values, the other aj are determined 
as above. Also, as L —> oo, all of the dj converge to d\ (and the zeros of F (tq) 
converge to the points ud“JGq, j  = 1 ,... ,r), and so in the thermodynamic limit, 
there is really only the single parameter, Gq, which is of interest; we let d = cq. We 
also remark here that we have found a set of L largest eigenvalues of F(£9), which 
are the eigenvalues required to calculate the free energy and the interfacial tension. 
Thus we are in a similar situation to the one we were in when considering the 
low-temperature limit of the six-vertex model with either antiperiodic boundary 
conditions and an even number of columns or periodic boundary conditions and an 
odd number of columns, in Chapter 3.

5.3.7 Zeros of T2(tq)

We can use this information together with the same functional relation to locate 
the zeros of r2(^g) when k' —> 0 and e is small but non-zero. From the result 
when e = 0, we would expect to have L — 1 of the zeros of T2(t9) lying in some 
neighbourhood of the point <j_1, and one zero lying in some neighbourhood of the 
point .

Once more, we use the functional relation (5.9). Let a zero of t2(£9) near u;-1 
be a;-1/, where / lies in some neighbourhood of unity, and / —> 1 when e —> 0. We 
wish to find some equation for this number /. We consider the cases r = 1 and 
r > 1 separately.

When r = 1, making our usual approximation (collecting all order unity func
tions into uninteresting “constants”), the functional relation becomes

r2(u) 1 / ) (<2 -  /) = c1 eL + c2 (1 -  l)L
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where c\ and c2 are order unity “constants.” The right hand side is a polynomial 
in / with degree L; one of its zeros corresponds to the factor (a — /) on the left hand 
side, and the other L — 1 zeros correspond to the L — 1 zeros of r2(tq) that lie near 
co-1. The zeros of the right hand side are at the points

/ = 1 T const • e e27r,̂ L, £ = 0 ,1 ,. . . ,  L — 1

and one of these must be exactly the point a = 1 -f 0 (e), the other L — 1 being the 
zeros of t2(u>- 1/), when / is in a neighbourhood of unity. The other zero of Tj(tq) 
lies near lo~2 (remembering that r = 1); let this be uj~2a, and substitute this value 
in for tq. Then we can approximate the equation by

T2(uT2a) = ci eL + c2 (a -  a)

so a = a + 0(eL), and r2(tq) has a zero at u>~2a -fi 0(eL).
Next, when r > 1, the functional relation becomes

T2(uj~l l)(a — l) =  Ci eL (a2 — l) -f c2 (1 — l)L

where c\ and c2 are order unity. The right hand side is a polynomial in / of degree 
L , and the zeros of this polynomial must be the zeros of the left hand side, i.e. the 
L — 1 zeros of t2(u>-1 l) that lie near unity (corresponding to the L — 1 zeros of r2{tq) 
that lie near u;-1), and the single zero at l = a. We will determine the zeros of 
the right hand side; first, write a2 = a — ê r_1 L̂, where we will suppress constants 
which are order unity for the moment. Then the right hand side becomes

eL (a — /) + erL + (1 — l)L. (5.16)

This must contain the factor (a — /), as it is a factor of the left hand side. Using 
the identity

n —1

an - b n = (a -  6) £  ak bn~k-1 
k = 0

we can write the second and third terms of (5.16) as

erL + ( l - l ) L = ( l - e r - l )  (e'V-V  (1 -  , 

but the factor (1 — er — l) must be exactly (a — /), so the right hand side becomes 

(a — /) (eL + er*L-1) + • • • + (1 — /)i_1)

which explicitly contains the factor (a — l) as required. Hence
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7*2(0; 1l) = eL + er(L - f -----h (1 -  /)L 1

where again we have suppressed all constants which are order unity. We can locate 
the zeros of this polynomial easily, noting that when r > 1 the first and last terms 
dominate, so the equation can be approximated exponentially well by ignoring all 
but these two terms. Then the zeros will occur at / = l + 0 (eL̂ L+1̂ ) e27r,̂ (L_1), t  — 
1 ,2 ,. . . ,  L — 1. We can also locate the other zero of T2(2g), which we expect will lie 
in some neighbourhood of the point uj~r~l . Let this zero be uj~r~l a, and substitute 
this into the functional relation as before. The resulting equation is (suppressing 
any constants which are order unity)

7*2(tq) = eL + ar -  a

which implies that r2(fg) has a further zero at uo~r~lar -f 0(eL). (In the limit 
L —> 00, this zero approaches the point Lü~r~1a.)

In summary, then, we have shown that the zeros of T2(tq) are made up of a 
set of L — 1 which are distributed around a circle centered at u;-1, with a radius 
proportional to eL when r = 1, and to eL/(L~P when r > 1; and a single outlier 
which lies within a distance 0(eL) from the point ar.

The zeros of the polynomials Tj(tq), j  =  2 ,3 , . . . ,  TV — 1, were found to lie 
clustered around the roots of unity u;-1, u>-2, . . .  ,u>-A/+1, and each polynomial has 
at most a simple zero at or near unity itself.

Hence there exists a domain in the tq-plane which excludes the roots of unity 
u;-1,o;-2, . . .  ,u;-7V+1, and also excludes the zeros of all of the polynomials Tj(tq), 
j  = 2, ... ,7V which lie near these roots of unity. We call this domain V t. The 
polynomials have at most a simple zero at tq = a lying inside V t, and this zero lies 
in some neighbourhood of unity.

5.3.8 Non-zero, sub-critical temperatures

We can use this information to work out integral formulae for the polynomials 
7*2(tq), r3(/g), . . . ,  Tjv(tg), in the large-lattice L —> 00 limit, which are valid at non
zero temperatures. We use Cauchy’s integral formula to write expressions for the 
polynomials by surrounding their zeros by contours, and obtain integral expressions 
which are valid outside the contour.

We have located the zeros in the limit k' —> 0, and for e small but non-zero. We 
wish to vary k' also, so our results will be useful at arbitrary temperatures, and in 
particular valid as the system approaches criticality.
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Figure 5.4: The cut complex /g-plane, with N = 3, with the branch cuts for 
Xq as a function of tq indicated by the bold lines. The zeros of T2(tq) with 
r = 1 are indicated (x), with L — 1 of them surrounding a;2, and one at ua. 
The contour indicated, surrounds all the zeros of r2(tq) except wa. The 
domain Vt lies outside the two contours.

The zeros of T2{tq) may move further as k' increases, and the ring they lie on will 
surround the branch cut for \ q as a function of t q. The zeros of T3 (tg),. . .  ,Tpj(tq) 
will move likewise as we increase k \  but for k' small enough, will still lie in a 
neighbourhood of their “parent” roots of unity.

The domain V t excludes all of the branch cuts for Xq as a function of tq, apart 
from the one between 77 and I / 77. The domain is illustrated in Figure 5.3.9 for 
N  = 3; this lies outside the contours which encircle the roots of unity lj and w”1, 
and the polynomials Tj(tq) have at most a simple zero in at tq = a.

5.3.9 The polynomial T^tq)

We follow the method of References [29] and [28]. From equations (4.31) and 
(4.32), we see that

T2(iq)T2(utq) ’ * ' T2{uN~1tq) = Oq + Qtq + £ (5.17)

where £ represents a sum of products of the polynomials r2 and z. The left hand 
side of (5.17) is a polynomial in of degree L, which we will call M(tq). Let its 
zeros be the points a ^ , . . . ,  a^,  so



5. Calculation of the interfacial tension of the chiral Potts model 104

M ( < , ) o c n « - o -  (5-i s )
3=1

(In the limits k', e —> 0, we found a1̂  = 1, j  =  1 , . . . ,  L\ for k' and e different from 
zero, we expect the a,j to lie in some neighbourhood of this point.) Following our 
comments regarding the location of the zeros of r2(tq) in the k' —» 0 limit, we can 
write

L
T2(tq) oc (cq -  ty +ltq) J J ( a j  -  iotq). (5.19)

3=2

If we indicate the dependence of the polynomial r2(tq) on the skew parameter r by 
the subscript r2(tq)r, we have

r2(tq)r = ——  tqr2{tq)r=0 (5.20)CL\ — U3tq
and so introducing the skew parameter r once again shifts one of the zeros of the 
polynomial.

The zeros of M(tq) will occur in N  sets of L points, clustered around the roots 
of unity 1, u;, . . . ,  Let Ct be a simple closed contour oriented in the positive
direction which surrounds all the zeros of M(tq) that lie near the point u>-1, i.e. Ct 
just surrounds the hole in V t around u>-1. This contour is also indicated in Figure 
5.3.9. Inside Ct lie the L — 1 zeros of r2{tq) that are made up of the L original zeros 
of the polynomial, less the one that was shifted; and the shifted zero of T2(uj~rtq).

Let 0  = 0 !, so uj~la is the zero of r2(tq) which gets shifted when the boundary 
conditions are skewed. Then using Cauchy’s integral formula and equation (5.19), 
and integrating, we can write

'■ ■ S! i - '»T , " O '“ <s-21»
where C is a constant of integration, to be determined. This form of r2(s) is valid 
whenever s is outside Ct.

Consider the limit L —> oo. From the low-temperature limit, when k' and e —> 0 
with k' <C £N//2, we note the following;

q9 = 0(1), OLq = 0 (eNL), z(tq) = 0(eL), r2(tq) < 0(1). (5.22)

With this in mind, the dominant term in equation (5.17) for M(t)  is ä g, all the 
other terms decaying exponentially to zero as L —> oo. If we assume that this 
behaviour persists for general k' and e, then in the L —> oo limit, we may replace 
M( t q) with Qg. Substituting this into equation (5.21), we have the exact expression
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ln { T2(s) = 2 h£ln C(s -  7c1110(A) dt (5-23)
for L large and s outside Ct. The A occurring in the integrand is chosen so that 
IAI > 1, to be consistent with the low-temperature limit calculations. This integral 
is taken around the contour of integration Ct on the |Ag| > 1 sheet of the tq Riemann 
surface. However, the integrand of (5.23) is now analytic inside the part of the cut 
tq-plane that lies inside Ct (the function ä(A) has zeros when A = Ap or Ap/, but 
as I Ap I, I Ap/1 < 1, the zeros of ä(A) lie on the other tq-plane). We can thus shrink 
the contour of integration down until it just surrounds the branch cut from 
to .

As t goes around this branch cut in the t —plane, A goes once around the unit 
circle in the A-plane in the positive direction. Changing variables from t to A in 
the integral, then

ln {T2(S) £ = £ ^ 7 } =  2h k  ^ C ( s  -  t ) ^ l n ä ( \ )  dX, (5.24)

where C\ represents the unit circle in the A plane.
The constant C is evaluated from the L —> 00 limit of (5.17). We make the 

substitution A = e,e, so t — lo~1 A(0); then replacing s by we have

ln
a — iotq \  _  L r2n f 1 -V \ vel6

a — Lür+1tqf  47T Jo \1  — \ vel6 +
1 -\- Ap.elg\  
1 -  Ap>ete)

ln [A(0) — Lotq] dO 

(5.25)

as our integral formula for T2 ( t q).  This agrees with equation (5.20), and is exact 
subject to our assumptions about the location of the zeros, for tq outside Ct and L 
large.

5.3.10 The polynomials T j ( t q)

We can use equations (4.30)-(4.32) together with (5.20) to derive an expression 
for the functions r3(tg) , . . . ,  Tjv(tq) in the limit L —> 00. Iterating (4.30)-(4.32), we 
have

Tj(tq) = r2(tq) T2(u>tq) • • * T2(u>J~ % )  + (5.26)

where is a function made up of sums of products of r2 and z functions as before. 
As long as i q is not a zero of any of the t2 functions appearing in this formula 
(i.e. for tq in T>t), the z functions will be exponentially smaller than any of the r2 
functions, and therefore negligible as L —> oo. Therefore, we have
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Tjiu) = n r^ k %)> <5-27)
k=1

which is valid for L large and for tq £ V t.

5.3.11 Possible values of a

We noted that there were L values a could take in the k' —> 0 limit, each one 
corresponding to a different bound-state eigenvalue of the transfer matrix. For 
general k' we derive an equation for the possible values of a as follows. Consider 
the j  = N  — r case of equation (4.25). In the k' —> 0 limit we see from (5.8) and 
(5.12) that Tq has a zero when tq = a, and we see later that this is true for k' non
zero also (though we do not assume it here). From (5.20) and (5.26), remembering 
that when r = 0 the zeros of T2(tq) are clustered around cj - 1, we can see that 
the polynomials rr(u;N~rtq) and TN-r(tq) are both non-zero at tq = a. If we then 
substitute tq = a into (4.25), the relation becomes

H("-T) / H ^  = -

which can be written using (5.27) and (5.25) as

L In (ufipUp'Y Y[(tp -  LÜ Ja)(tp'-u> Ja) 
j = i

= Q Into

L r2ir f  1 +  \ v e l6 1 -f Ap/et0\
^ 4 tc Jo — Apetö 1 —Ap>ete)

x YIn [(A(0) -  -  u>-J+1a)
j = 1

de. (5.28)

This integral equation is exact in the limit L —*• oo, and for finite L it is exact up 
to terms that vanish exponentially with L. We have plotted the various allowed 
values of a in Figure 4, numerically solving the equation for L = 60, and k' = 0.104, 
tp = 11/20, /ip = 1/2. Note that there are L possible values for a, that they lie 
on a closed contour surrounding the branch cut for Ag as a function of and that 
they are distributed non-uniformly around this contour. As L —» oo, the solutions 
to (5.28) become densely spaced on this contour.
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Figure 5.5: Possible values of a for N = 3, r = 1, k' — 0.104, Xp = 1/8, 
tp = 11/20 and L = 60. The branch cut for Xq as a function of tq is shown 
in bold, between the branch points 77 and I / 77.

5.4 The polynomial S(Xq)

5.4.1 The limit k' —* 0 again

We also need to determine the zeros of the polynomial S(Xq), which is defined 
by equation (4.36), in this limit. Call the right hand side of the functional relation 
(4.25) rj(tq, Xq), j  = 0 ,1 ,. . . ,  N  — 1. The zeros of rj(tq, Xq) are zeros of any of the 
functions on the left hand side of (4.25), i.e. zeros of either Tq, Tqjo or A^,0h 

In the limit k' —» 0, equations (4.21),(4.22) and (4.23) become

A^’0) ( V r N) L, H pq a  { W P- " ) L » Hp'l «  (Vp'~J/ k ' ) L »

where the proportionality constants are order unity. As we have mentioned, in this 
limit Tq is order unity so the zeros of Tj(tq,Xq) in the Ag-plane are the zeros of 
Tqj0 , and hence of S(Xq). It is now simply a matter of locating the zeros of the 
function rj(tq,Xq). The polynomials Tj(tq) are order unity also, so the expression 
for r3{tq, Xq) simplifies, becoming
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rj(tq, Aq) cX Cl e(N AqL + c2 k'L

for j  = 1 , . . . ,  TV — 1, where C\ and c2 are order unity. The zeros of the functions r3 
for j  = 1 , . . . ,  TV — 1 lie on circles centered at the origin and with radii proportional 
to / k' , while r0 is order unity. All (TV — 1 )L of these zeros are contained inside 
the annulus 1 < |Ag| < 1 / k r, and these make up all the zeros of S(Xq).

5.4.2 Skewed boundary conditions

Guided by the results of the last section, we expect that when we apply the 
skewed boundary conditions, some of the zeros of S(Xq) will shift. From equations 
(5.9), (5.12) and (5.14), we see that when tq G T>t, then Tq oc (er — k'Xq), with a 
proportionality constant which is order unity. Also, Tj(tq) and r^-j{ujHq) are order 
unity unless 0 < j  < N —r—1 when r^-j(ioHq) oc (er — k'Xq), or TV—r+1 < j  < TV—1 
when Tj(tq) oc (er — k'Xq). The functional relation (4.25) becomes

rj(tq, Xq) oc Cl Tj(tq) X~L + c2 k!L TN-j (u j tq) (5.29)

where Ci and c2 are order unity, and Tj(tq) or T^^j(ujHq) is either order unity or 
proportional to (cr — k'Xq) depending on the value of j .  There are TV such equations, 
with j  = 0 ,1 , . . . ,  TV — 1.

The zeros of r3 and Tqj0 are as follows; when j  = 0, then r0 oc (er — k1 Ag), and 
so r0 has only a single zero, which in fact corresponds to the zero of Tq. Thus Tq00 

is order unity.
When l < j < T V  — r — 1, then r3 has L zeros lying on circles centered at the 

origin and with radii proportional to £N-j~r/L/ k \  and one outlier at a distance 
proportional to er/k'. This outlier must belong to Tg, the L zeros lying on each of 
the circles belonging to Tqjo.

When j  = TV — r, the L zeros of rj lie on a circle centered at the origin and with 
radius proportional to er/k 1. One of these must belong to T9, and so the zeros of 
2f(N-r,o) are the remaining L — 1 zeros that lie on the circle.

Finally, when TV — r+ 1  < j  < TV — 1, the zeros of r3 consist of L — 1 points lying 
on circles centered at the origin and with radii proportional to £iN- ^ LPL~P/k' and 
one outlier at a distance proportional to er jk! . The outlier belongs to Tg, the L — 1 
zeros spaced around each of the circles to Tqjo.

All the zeros of Tqjo, j  = 1,2, . . . ,  TV — 1, are zeros of S(Xq), and thus we have 
located (TV — 1 )L — r zeros of S(A9), all of which lie outside the unit circle, in the 
annulus 1 < |A9| < 1 /k!.
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Let S j( \q), j  = 1 ,2 ,.. . ,  TV — 1, be the polynomial in Xq which has the same 
zeros as rj(tq, \ q) when tq G T>t. (The j  = 0 polynomial is simply a constant.) Then 
each Sj(Xq) is a polynomial of degree L + l if j  = 1 ,. . . ,  TV — r — 1, and degree L if 
j  = N  — r , . . . ,  TV — 1. They all contain the factor (Xq — Aa), where Aa is the value of 
Xq corresponding to tq = a, with |Aa| > 1. (This factor belongs to Tq in each case, 
and not to S(Xq).) Otherwise all of their zeros lie on circles centered at the origin 
and which lie inside the annulus 1 < |Ag| < l/k' ,  and S(Xq) contains the factor

j = i

However, the polynomial S(Xq) must have (TV — 1 )L zeros, so there are r still to 
locate. We have only found the zeros that lie outside the unit circle, so there must 
be r zeros inside the unit circle. Consider the polynomial S(Xq) defined by (4.34). 
The product of the Tfcu-7xq,yq) functions becomes a product of F ^ t q )  functions 
in the k' —> 0 limit, so 5(A9) a  (ai — Tg)(a2 — <,)••• (ar — tq), when tq G XV Denote 
the corresponding zeros in the Ag-plane as Aai, Aa2, . . . ,  Aar, where each of the Xaj, 
j  = 1 , . . . ,  r are chosen so that |Aa ■ | > 1, so that S(Xq) also has the factor

n C  -  O  ■
7 = 1

Hence in the k' —> 0 limit, we have located all (TV — 1 )L zeros of S(Xq). We have 

(A, -  A-1) . . .  (A, -  A-1) N-1
S(Xq) O C

(A ,-A a)N - 1 n s a \ )
j = i

(5.30)

where the proportionality constant is order unity.
Hence the skew parameter has sent r of the zeros of S(Xq) inside the unit circle.

5.4.3 The polynomial S(Xq) for k’ non-zero

We can also work out an integral equation for the polynomial ^(A,), when k' 
is non-zero and L large. As L —> oo, then aj —> a, j  = l , . . . , r ,  so XUj —> Aa. 
Hence for L large, 5(Ag) has a zero of multiplicity r corresponding to the factor
( \ - A a- 7 .

For k' non-zero, we expect that the zeros of rj(Xq) will still lie in largely the 
same distribution as they do in the k' —> 0 limit, but that perhaps they will shift as 
k' increases. We still expect (TV — l)L — r of the zeros to lie inside the annulus 1 < 
J Aq I < l / k \  and that the r-fold zero at A"1 will lie inside the annulus k' < |Ag| < 1.
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The zeros outside the unit circle can be surrounded by two contours, one lying just 
outside the unit circle, called U_, and one lying outside C_, called C+, as indicated 
in Figure 3. Both contours are contained inside the annulus 1 < |Ag| < 1 / k \  and 
are oriented in the positive direction.

Using Cauchy’s integral formula as in the previous section, we have

= hL r ^ Ä lnrj(A,) ~bk. A ^ lnrj(V)’
j  = 1 , . . . ,  jV — 1, which is valid when either A is inside C_ or outside C+. This 
expression is exact for finite T, and it simplifies in the limit L —* oo. From the 
k' —> 0 limit, we see that on C+ the second term of (4.25) dominates, while on C_, 
the first does. Define the polynomial f(A) by

« A ) = n 1t o  (5.31)
j=1

Then integrating with respect to A, we have for A outside C+ and t' £ V t

f f  r n . i i J t ')
j=i

-  - h  /  d\'ln(A - A') T i n2tti J c .  d\' n
3=1

(5.32)

where c\ is a ^-independent constant of integration.
As the functions and appear as logarithmic derivatives in the in

tegrands, we can neglect any factors they possess that are independent of the 
g-variables (as these do not contribute to the integrals); we have

« (A'-A^<"-Tn
3 =  1 3=1

n Rp ' i « [AvtA'-vir’T h - ^ f .  (5.33)
3=1 3=1

Substituting these and (5.32) into (5.31) and expressing the integrands in terms of 
t' and A' only (rather than x \  y' etc.), and evaluating the integrals that contain 
only A', we get

lnf(A)

+

c2 + (N -  1) In aq

TTT T N - j j u 3 ? )

M  (t, -

n  Ti ( 0 ( v  - (5.34)
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Figure 5.6: The cut Ag-plane, showing the branch cuts for tq as a function of 
Xq. The zeros of the polynomial 5( \ q) are indicated (x), with (N — 1 )L — r 
of them lying between the contours C+ and C_, and r lying inside the unit 
circle (the broken line), where we indicate the case r = 1.

(where c2 is a new ^-independent constant of integration). The next step, following 
[28] and [29] would be to integrate this expression by parts. However the integrands 
have branch points when the factor (a—t) occurs in the argument of the logarithm in 
the integrands, corresponding to branch points at 0, A“1, Aa and oo in the Ag-plane. 
We use (5.20) and (5.27) to manifest the factors (a — t) explicitly, writing them as 
aN — tN, which is an analytic function of A. Once these factors are removed, the 
functions remaining in the integrands contain no branch points, so the integrals are 
then single-valued around their respective contours, and hence we can perform an 
integration by parts. In fact, the resulting integrands have no zeros at all between 
the contours C+ and C_, so both of these contours can be shifted to the unit circle, 
and the integrals combined, to give

In {(A) = C\ T (TV l) ln otq T (./V v 1) ln(A Aa) 

+ (N — 2r)ln [(A — A~')/A)J

where
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g(t)=n(a - u jt) /  n («-^)
j =1 / j=r+l

(5.35)

and
N - 1

{ /[*] =  ln (*p - w ^ ) jL(V  -  w ^ )jLTj(^)r=o/rjv-j(a;Jt)r=:o
j = i  

N-i
= 51 { i^ ln [(*p + (N -  2 j)\n r2(u;:,~1t)r=o} .

i=i

The polynomial S(Ag), is related to £(Ag) by (5.30) and (5.31), so we get

ln5(A9) = c3 + {N -  l)\näq + (N -  r ) \n ( \q -  \~ x) -  r \n ( \q -  \ a)

~ I«  -  2.) 1» A, + £ .  /  5 ^ 1  ln»«') -  J -  /  1/«'].

(where C3 is independent of <7) for |Ag| > 1. Finally, we can replace l/(Ag — A') with 
(Ag + A')/[2A''(A9 — A')] while only adding on a ^-independent constant, so if we let 
A' = e*0, and C = A(0), we get

ln 5(Ag) = c4 + {N - l ) l n ä q -  N  I { \q)

_  2 A{^q X,tp) + ^(A“\  V ) + A ql ) + B(  Apf, A? *)

+ (N - r )  ln( A, -  A“1) -  r ln( A, -  Aa) -  (N -  2r) ln A9 (5.36)

where

T/ \ \ 1 /  d A ' Ag +  A' ,
/ w ^ l y i T v ln}li)

when I Ag | < 1.

(5.37)

5.5 The free energy and interfacial tension

Consider once again equation (4.25), taking k = j, / = 0. From the limit 
k' —> 0, we see that when |A9| > 1 and L is large, the second term of the right hand 
side exponentially dominates the first. Thus in the L —> 00 limit, we have

Tq A^’°) Tqjo = TN-j^LüHq) + an exponentially smaller term. (5.38)

We take the product of this equation over j  running from 0 to N — 1, and ignore 
the second term which is negligible for large L. From equations (4.21) and (4.22) 
we have
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and

TV-1

n =
J = 0

N - 1

n ^  =
3 =0

( u ß p ) N ( N  1)/2 ^Tf1/ j , j ,  N - i - 1  V
"NN(yP- x<l)N I I  ( y p ' - u  y i Y v i Y

n (*p .TV-

( v ? - * ? ) "  &
so using these and equations (4.36) and (4.15) we derive an expression for the 

eigenvalues TqTq:

( T , f , ) W5(A,)2 =  e - ' i i ' iV- 1)(Ar- 2>/3 (A2/A pA2 ) ('V“ 1)L/2(ä ,)2<'V' 1)

x  (.9pq9r ' q ) N L D N  n TN - j ( u Jt qy  

TV—1
3=0

X n  [(tq -  ^ Jtp) (tq 
i = i

—2(TV—j)L
(5.39)

We take logarithms, substitute in the expression for S(Xq) from the previous section, 

and also note that
TV-1
^  ln TN- j ( u j 3t q) =  I  [C(Ap,2g) + C ( \p>,tq)\ + L n i(N  -  1)(2N -  l) /6
3=0

-  r\n (aN -  t^ )  +  7V ^)ln (a  —U3j tq).
3=0

Equation (5.39) contains an unknown multiplicative term, the matrix Z)N, which 

is independent of q. Because there is already an unknown term (the integration 

constant appearing in (5.36)), we can in fact write all terms which are independent 

of q as a single constant, mpp/, which w ill be determined shortly. We write (5.39) 

as

N  In [ r qT ^  — rrippi *f Epq + Epiq -f 2N Fq. (5.40)

The function Epq, which is proportional to L, and therefore contributes to the bulk 

part of the partition function was given in equation (4.43), and the function Fq, 

which is independent of L, is given by

r  —1

Fq =  —r  In fic
3=0

This depends on p and p' only through a (and also Aa), and contributes to the 

interfacial tension.
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The constant m pp> is calculated as follows. Consider the j  = N  — 1 case of 
equation (5.38); ignoring the exponentially small corrections (i.e. assuming L is 
large), the right hand side is an exactly known function (the r^_j function in this 
case being unity). Applying the automorphism R  to both sides, we find

TRqTq = (gpqgqp)L and Tqf Rq = (gp>qgqp>)L . (5.41)

From (5.40), we see that the constant mpp/ is therefore given by

2m pp> = f p T ipi — 2N(Fq T FRq)

where

fp — NL \n(gpqgqp) Epq EPyRq.

The function EPiRq is defined by the analytic continuation formulae and and we find 
that fp + fp> = 0. The function FRq is defined in terms of the analytic continuation 
of / ( Xq) to |A9| < 1 , and we find that / ( Ag) defined by (5.37) has the analytical 
continuation formula

4c(A,) + J(l/A ,) = In g{tq)

when |Ag| < 1, and where g(tq) is given by (5.35). Hence we find that

mpp, =  - N { F q + FRq) = —N\n( — Xak'/k2). 

Let 2vr = 2Fq -f mpp/, so

r  — 1

vr = r In gq — ^  ln(a — ioJtq) + In (Ag - A a1)/Â  
j=o

+ I ln(—k'Xa/ k 2) + 7(Ag).

(5.42)

(5.43)

We can re-write (5.43) so that it depends only on a, rather than on both a and 
Aa. The contour of integration of I(Xq) as defined by (5.37) is around the unit circle 
in the A'-plane; if we change the variable of integration to t ', where t1 and A' are 
related by (4.8) then we integrate around the branch cut between rj and 1 / 7 7  in the 
t'-plane. Writing this as a line integral along one side of the cut, we can rewrite 
I(Xq) as

/(\ )
1 r1/7? d
-  dt'ty(Xq, t ,)— \nh(-L;r/2t ' / a ) - \ - r \n a - ln  (Xq - X ~ 1)/X̂
7T Jn dt
\  ln( —Aak'/k2) + I In h(—u;r^2/a)
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where the functions A(£), h(t) and T(A,2) are defined by (4.37), (4.49) and (4.50) 
respectively. Letting m = —L0 r/2/a, we find that vT is given by (4.47).

The variable a can take on any of the L values allowed by equation (5.28). Thus 
we have the following expression for the L largest eigenvalues of the transfer matrix;

To calculate the partition function, for large T, the sum will be dominated by 
these L bound-state eigenvalues. As L —> oo, the sum becomes an integral over the 
allowed values of a, so we write

where p(a) is some distribution function which is independent of M  and L. Noting 
that Epq is independent of a, then the free energy is

(which reduces to the analytical continuation of the ground state eigenvalue of the 
system calculated in [29] when p = p'). Thus the interfacial tension is given by

For M  large, this integral can be evaluated by the saddle-point method; the integral 
is dominated by the contribution from its saddle point, and so as M —> oo the 
integral is given by the value of its integrand at its saddle point, together with 
some multiplicative factors with which we are unconcerned.

We can now follow the arguments of References [30] and [32] regarding the 
location of the saddle point. In [32] it was demonstrated that in the limit k' —> 0, 
the function vr possesses a saddle point which is independent of p and p\  and 
hence the integral can be evaluated by deforming the contour of integration to pass 
through this saddle point. Assuming that this holds for general k', then we arrive 
at equation (4.51) for the interfacial tension. As expected, this depends on q but 
not on p or p'.

Further comments are included in Section 4.5 of Chapter 4.

5.5.1 Continuation to \ \ q\ < 1

(5.44)

— Ntp/kBT = \  (Epq + Epiq)

e - M t r / k BT _  f (5.45)

To compare this to the work of McCoy and Roan mentioned in Section 4.5.1, we 
have to analytically continue our band of eigenvalues back to the region |A9| < 1.
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When |Ag| > 1 and 0 < arg tq < 2ir/N, the eigenvalues are given by equation 
(5.44), where vr is given by equation (4.47) when we choose m = —u //2/a , or 
equivalently, by equation (5.43). We consider the latter expression.

To analytically continue this to |Ag| < 1 and —2tt/N  < arg tq < 0, we use the 
analytical continuation formula (5.42) for I ( \ q) for |A9| < 1.

Re-writing equation (5.35) defining the function g(t) as g(r, a,t), to exhibit its 
dependence on a and r explicitly, we have the relation

9 {r,a,t)
cur (1 - r )

g(N -  r,u;~ra, t) ’

so if we write vr = u(r, a,tq, \ q) when |Ag| > 1 and 0 < arg tq < 27r/N, and the 
analytic continuation of the function to the region |A9| < 1 , —2t /N  < arg tq < 0 
as uac(r, a, tq, A9), we have

Vac(N -  r,uj ra, tq, \ q) = v(r ,a ,u tq, A^1)

when jAq | < 1 and —27r/N < arg tq < 0. Hence applying the rotation R, which 
changes tq to totq and \ q to 1/Ag, has the effect of changing r to N  — r and a to

—  ruj a.
Hence for |Ag] < 1, we can write

= - r  ln *  -  t  ln(« -  a>%) -  ±  ^

where j(t) = (a — t)(a — tot)2 • • • (a — u>r~lt)2(a — cort). This is identical to equation 
(4.53) if we take mp = r, and

Vj = u J- ll2/a, j  =  l , - - - , r

and also replace our tq by a; 1tq (due to the different convention adopted concerning 
which values of tq correspond to which choice of \ q).



Part III

The Potts model



CHAPTER 6

The Potts model

Generalisations of the Ising model to higher-state spins have been introduced by 
a number of authors. Notable have been the Ashkin-Teller model, a generalisation 
to four-state spins, introduced in 1943 [6], and the Potts and clock models, which 
were introduced by Potts in 1952 [102], and independently studied by Kihiara et 
al. in 1954 [76]. Potts located the critical temperature of the model for all values 
of N  using a duality relation similar to that introduced by Kramers and Wannier 
for the Ising model [78].

For the Potts model, spins a = 0,1, . . . ,  ./V — 1 sit on the sites of the lattice and 
interact with a delta-function interaction energy —J 8(0,0') or —J 8(0, 0'), and the 
total energy is given by

-H( s)  = - J  Y ,  a') ~ 3 O -
horiz. vert.

The partition function is defined as usual, and we are interested in the partition 
functions of the model on finite lattices with skewed boundary conditions.

For an L x  M  lattice with toroidal boundary conditions, we identify the first and 
last spins in each row and the top and bottom spins in each column. If we skew the 
boundary conditions, we instead identify 0\ = 0l+i + h, cr-1̂ = -f v, where h
and v are the horizontal and vertical skewing parameters, and 0\ ,0l+i are the first 
and last spins in a horizontal row, and cr-1\<T-M+1 ̂ are the bottom and top spins 
in column i. We shall denote the partition function of the model on the L x M  
lattice with skewing parameters h and v as Z*VM. For a Z^  invariant model, we can 
restrict the skew parameters h and v to take the values 0 ,1 , . . . ,  — 1 without loss
of generality.

The two-dimensional Potts model is related to a number of other problems in 
statistical mechanics and graph theory, which are discussed in for example Refer
ences [19,88,118] and references contained therein.
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Among other subjects discussed in Reference [118], some duality relations for 
the Potts models are given. These relate partition functions in the high and low 
temperature phases, and can be used to determine information about the phase 
diagram of a model, and especially to locate its critical point. We mention one 
duality relation here for the TV-state models which is not mentioned in Reference 
[118], but which can be derived easily by following the derivation of the duality 
relation of the superintegrable chiral Potts model in Reference [26],

N - l  N - 1

iolh+mvZ hv = N Z m (6.1)
h=0 v=0

For N  > 2 the Potts model is exactly solvable only at criticality [15]. The so
lution was obtained by Baxter in 1973, by relating the Potts model to a staggered 
six-vertex model on a related lattice. The staggered vertex model has different 
Boltzmann weights on the two sub-lattices, and is in general not exactly solvable. 
However, when the weights on the two sub-lattices become equal, it reduces to the 
usual homogeneous six-vertex model, which can be solved exactly in the thermo
dynamic limit. This corresponds to the Potts model being critical, and also to the 
model being self-dual [19]. As well as calculating the free energy per site, Baxter 
also deduced that the Potts model has a continuous transition when N  < 4 and a 
transition of the first order when N > 4.

The Potts model is critical (self-dual) when its interaction coefficients satisfy

( e J / kBT _  l ) (eJ/kBT -  1) =  N,

and the free energy per site of the critical Potts model can be written in terms of 
the free energy of the six-vertex model, which was given in Chapter 2.

As well as the free energy per site in the thermodynamic limit, we are also 
interested in exact solutions on finite lattices. The partition function of the Ising 
model has been calculated explicitly and exactly for an L x M  lattice of finite but 
arbitrary extent, with toroidal boundaries imposed. This was achieved by Onsager’s 
student Kaufman in 1949 [72], wherein the partition function is expressed as a sum 
of four terms which are finite products of elementary functions. The only other two- 
dimensional lattice model whose partition function has been calculated exactly and 
explicitly on a finite lattice is the superintegrable chiral Potts model, by Baxter 
in 1989 [25,26]. The partition function on a lattice with cylindrical boundary 
conditions was calculated as a single product of a finite number of terms. Also, 
the partition functions of other models such as the six- and eight-vertex models
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can be calculated on finite lattices, but only in terms of the solution of sets of 
transcendental equations.

We consider the solution of the critical three-state Potts model on finite lattices, 
and attempt to generalise a result of the Ising model to the Potts model. Given 
that the three-state Potts model is such a simple generalisation of the Ising model, 
and that the critical model is integrable, we might hope that this is possible, but 
unfortunately this does not seem to be the case.

A large part of our investigations involve calculating exactly the partition func
tions of the critical Potts models on finite lattices with toroidal boundary conditions 
skewed in both the horizontal and vertical directions. The partition functions are 
expressed as polynomials in a particular variable, and we analyse the zeros of the 
polynomials and of certain linear combinations of the partition functions, and at
tempt to find simple contours on which they lie.

There have been many studies of the zeros of the partition function of lattice 
models since Lee and Yang’s famous circle theorem in 1952 [79], and studies for the 
Potts models have been carried out in for example References [21,86-88].

Baxter has studied the zeros of the partition function of the zero-temperature 
anti-ferromagnetic W state Potts model on the triangular lattice, expressing the 
partition function Z as a polynomial in the variable N. Martin et al. consider 
the three-state Potts model on triangular and square lattices in two and three 
dimensions, expressing the partition functions as polynomials in a temperature-like 
variable. Here we study the square-lattice models at criticality, expressing Z as 
a polynomial in a variable 2  related to the anisotropy (often called the spectral 
parameter) of the model.

We also use our results to investigate the finite-size corrections of the three state 
Potts model at criticality. There has been a large amount of theoretical work done 
on finite-size corrections for critical lattice models in recent years, and we present a 
brief summary. The finite-size corrections of a model with toroidal boundaries are 
characterised by the so-called modular invariant partition function, Z(q), where q 
is the modular parameter, which is related to the dimensions and anisotropy of the 
lattice. For a lattice with N  sites, the partition function Zy is related to the free 
energy per site of the infinite system /  by

ln Zy = —Af f / kßT  + In Z(q) -f correction terms, (6-2)

where the correction terms should vanish as Af  —> oo.
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Given the relatively small sizes of the lattices considered, we find this relation 
to hold to a remarkable degree accuracy. In particular, for a spatially isotropic 
model on a square L X L lattice, for which ln Z(q) ~  1, the correction terms seem 
to approach zero as 1/L, with a small (~ 0.04) numerical coefficient.

Our results have been published in Reference [95].

6.1 The Pfaffian solution of the Ising model

An alternative solution to the Ising model was discovered in 1963 by Kasteleyn 
[71]. This combinatorial solution was based on the solution of the dimer problem, 
which was found independently and simultaneously in 1961 by Kasteleyn [70] and 
Temperley and Fisher [110].

The partition functions of the zero-field Ising model on finite square lattices 
with a variety of boundary conditions can be related to the Pfafhans of certain anti
symmetric matrices. For lattices with free boundary conditions in both directions, 
or with cylindrical boundaries (periodic in one direction and free in the other), anti
symmetric matrices Aj  and Ac can be found such that the partition functions can be 
written as the Pfaffian of the corresponding matrix, Pf Aj  and Pf Ac. Unfortunately, 
while the elements of the matrices are known, the structure of the matrices is such 
that their determinants have never been evaluated explicitly.

However, for lattices wound onto a torus, the partition function can be expressed 
as a linear combination of the Pfaffians of four matrices A,, i = 1,2,3,4;

and the Pfaffians of the matrices A{ can be written out explicitly. Defining

Zi = tanh Ei/kßT, z2 = tanh E2/1zbT. 

they have determinant

det At = p[ [(1 + zj)(l + z]) — 2z\ (1 — z\) cos — 2^(1 — Z\) cos 02] (6.4)

where the product is over #i = 27tI/L if i = 1,2, and is over 0\ — n(2l — \ ) / L 
if i = 3,4 (/ = 1 ,2 ,. . . ,  L)\ the product n#2 is over ^2 =  27tm / M  if z = 1,3, and is

The Pfaffian is related to the determinant of the anti-symmetric matrix by

Z = I [-P f Ai + Pf A2 + Pf A3 + Pf A4] (6.3)

61,62

over 02 = 7t(2m — 1 ) /M if 1 = 2,4 (m =  1 ,2 ,.. . ,  M ).
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Figure 6.1: The zeros of the Pfaffian Pf A4 for L = M — 4.

and hence given the determinants, we only know the Pfafhans in equation (6.3) 
up to a choice of dh signs. These must be determined, and this can be done by 
considering high and low temperature limits, as in Reference [89], where the signs 
are found to depend both on the temperature, and whether or not the model has 
an interface in its low-temperature configuration.

We consider only the critical model on finite lattices. The Ising model is critical 
when k = 1, with k given by equation (1.2), which corresponds to |«i^2| + |^i| + |^2 | =  
1. We write z\ = 1/(1 + 2x) and z2 = x/ ( l  + x), so that the Boltzmann weights of 
the critical model become

VT(0) = i - t f , W(0) =  1 + lx.  (6.5)
X

The expression for the determinants becomes 

det A{ = [(1 +  x)(l +  2x )]~2LM

x JJ  [(1 4  2x + 2x2)2 — 4a:2(l 4- x )2 cos 6\ — (1 4- 2x)2 cos 02 ,
6\ 62

so at criticality, det A\ = 0.
We denote the partition function of the Ising model on a toroidal lattice with 

periodic boundaries in both the horizontal and vertical directions by with
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Figure 6.2: The zeros of the partition function of the three-state self-dual 
Potts model on a 3 X 3 lattice with toroidal boundary conditions, in the 
complex 2-plane.

anti-periodic boundaries in the horizontal direction by Z“̂ , in the vertical by Z+“ , 
and in both directions by Z~~. From Chapter V of [89], we have, for the critical 
model,

z 1m(x ) = \p{x ) (det A2)1/2 + (det A3)1/2 -f (det A4)1/2 

Z1m(x ) ~  \p(x ) -(d e t A2y 12 + (det A3)1/2 + (det A4)l/2 

Zlm(x ) = \p(x ) (det A2)1/2 -  (det >13)1/2 + (det A4)1/2] 

z Im(x ) = \p(x ) (det A2y 12 + (det A3)1/2 -  (det Aj)1/2]

where

p(x) = [(1 + x)(l + 2x)\ ML

and the square roots are chosen to be positive. Thus the partition functions of the 
critical models depend non-trivially on the Pfaffians of only three matrices, and we 
have the self-duality relation

Z1m(x ) = Z1m(x ) + Zlm(x ) + ZLM{x).
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Figure 6.3: The zeros of the partition function of the three-state self-dual 
Potts model on a 4 X 4 lattice with toroidal boundary conditions, in the 
complex z-plane.

These linear relations can be inverted, to give the following;

2p(x)(det A2y /2 = Z~+(x) + Z--(x)

2p(x)(detA3)1/2 = Z+-(x) + Z~+(x)

2p(x)(det A4)1/2 = Z+-(x) + Z " ( x )

which demonstrates that particular linear combinations of the skewed-boundary 
partition functions are equal to single Pfaffians.

The zeros of the various partition functions are very complicated, and only 
asymptote to lie on simple contours as the thermodynamic limit is approached. In 
contrast, the zeros of the Pfaffians formed by taking the above linear combinations 
of the partition functions are extremely simple, and lie exactly on simple contours 
for finite L and M. As an example of this, we have plotted the zeros of the Pfaffian 
Pf A4 for L = M = 4 in Figure 6.1. The zeros lie exactly on the circle |a: + l/2 | = 1/2 
and the line Re(;r) -f 1/2 = 0, for finite L and M, in contrast to the zeros of the 
partition functions, which are much more complicated.
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Figure 6.4: The zeros of the partition function of the three-state self-dual 
Potts model on a 5 X 5 lattice with toroidal boundary conditions, in the 
complex 2-plane.

6.2 The critical three-state Potts model

The Boltzmann weights of the N  = 3 self-dual Potts model can be parameterised 
as

W(0) = (1 + x)/x,  W( \ )  = W{2) = 1 (6.6)

1^(0) = 1 + 3*, W(l)  = W(2) = \. (6.7)

This parameterisation is an obvious generalisation of that used for the Ising model 
in the previous section (6.5). The variable x is related to the spatial anisotropy 
of the lattice, with x = ± l / \ /3  corresponding to an isotropic lattice. The parti
tion function will be a Laurent polynomial in the variable x whose coefficients are 
positive integers; it can be written as x~2ML multiplied by a polynomial in x with 
degree at most 4ML.

Replacing x by l/3x  interchanges W(0) and W(0), which corresponds to rotat
ing the lattice through 90 degrees and interchanging L and M. When unskewed 
toroidal boundary conditions are imposed onto the lattice, this substitution leaves 
the partition function invariant, and so Z in this case can be expressed as a poly
nomial in the variable y = x -f 1 / 3a:, with degree at most 2ML.



6. The Potts model 126

Figure 6.5: The zeros of the partition function of the three-state self-dual 
Potts model on a 6 X 6 lattice with toroidal boundary conditions, in the 
complex 2-plane.

6.2.1 Toroidal and skew-toroidal boundary conditions

In general we expect nine partition functions with the different skewed boundary 
conditions. Using obvious symmetries, these nine functions reduce to five, and only 
four for a square lattice. Reflecting the lattice horizontally or vertically, we have

Z l l ( x )  = z r i’ (T ) = ZLV  ( £ )  = Z 2 - ’(x),

and so we are just left with the following five partition functions:

Z ? J x )  = ZLM(x), Z ? J x )  = Z?M( =

Z l 'J x )  = Z?u (x), Z?M(x) = Z l'J

Rotating the lattice through 90 degrees is equivalent to interchanging W(n)  with
W(n)  and L with M.  This gives the symmetry relation

so on a square L x L lattice, we also have the relation

Zl\{x) = Z“  (*)
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Figure 6.6: The zeros of the partition function Z®l(z) on a 4 X 4 lattice with 
the skew-toroidal boundary conditions h = 0, v = 1.

so there are only four different partition functions on a square lattice.
Finally, we observed the self duality relation (6.1)

Z?M(x) = Z l 'J x )  + Z?M(x) + Z"M(x) + Z?M(x).

6.2.2 Large-lattice free energy

To end this section, we include the results for the Potts model free energy per site 
in the thermodynamic limit. The exact solution indicates the analytic properties 
of the free energy per site / ,  and this in turn tells us the contours towards which 
the zeros of the finite-lattice partition functions will asymptote as the lattice size 
increases. Guided by the results of the Ising model, we hoped to be able to find 
linear combinations of the skewed-boundary partition functions which would have 
zeros lying exactly on these contours. The exact free energy per site is used in 
a later section, when we consider the finite-size corrections of the model in the 
context of the modular invariant partition function.

The free energy of the Potts model at criticality can be found either by its 
Temperley-Lieb equivalence to an ice-type model as in [15,19], or by the inversion 
relation method [20]. We reproduce some of the details of the latter method here,
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Figure 6.7: The zeros of the partition function Z\\(x) on a 4 X 4 lattice with 
the skew-toroidal boundary conditions h = 1, v = 1.

along with the exact solution.
Following [20], we use the variable /i, where 2 cos fi = y /N , so /i = 7t/6 for the 

N = 3 model. We then re-parameterise the anisotropy x in terms of the spectral 
parameter u,

1 sin (fi — u) 
y/3 sin v

and the Boltzmann weights become

W( 0) =
sin(// + u) 
sin(fi — v) ’ W (  0) =

sin(2/i — v) 
sinv

( 6.8)

the others remaining unity. Regarding v as a variable, we denote the partition 
function per site for a finite lattice as aclm(^ )  = (Zl m )1̂ 2 L M and for the infinite 
lattice

ac(u) = lim /cLMW ,
L,M—+oo

where the limit is taken through large values of both L and M.
In Reference [20] a number of relations for k ( v ) are given, including the inversion, 

periodicity and crossing symmetry relations. The latter two are
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Figure 6.8: The zeros of the partition function Z\\(x) on a 4 X 4 lattice with 
the skew-toroidal boundary conditions h — 1, v = 2.

k (i>) =  k( 7t +  u), k (v) =  tz(p — u). (6-9)

To match the normalisation of the weights (6.8) w ith those used in [20], we should 

take the constant p0 therein to be

sin p sin 2p
Po =  ------ 7-7--------7-sin v sin[p — v)

The inversion relations for k (v ) then read, from Reference [20]

K(v)Kac(—v) =  po sin(/z +  u) sin(/x — u ) / sin2/i (6.10)

K(v)Kac(2p — v) =  pi sinusin(2/i -  u )/s in 2 p (6-H)

K{v)Kac(n — v) =  —plsm(p — v )sm (p - \ -v ) /sm 2p (6.12)

k (v)kac(7r +  2p — v) =  — pi sin v sin(2/i — v ) / sin2 p (6.13)

where Kac(v) is the analytic continuation of k (v) through the point v =  0, defined 

in [20]. To get the free energy from the inversion relations, one uses equations 

(6.10) and (6.11) when 0 < Re(v) < p, (6.11) and (6.12) when p <  Re(u) < 7r/2, 

(6.12) and (6.13) when n/2 <  Re(u) < p +  7r/2, and equations (6.13), (6.10) and 

(6.9) for p +  7t/ 2 <  Re(u) < 7r.
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This divides the complex u-plane into four regions, in each of which /c(u) has 

a different analytical form. The physical regime is when 0 < Re(u) <  /z, where 

all the Boltzmann weights are real and positive. The expressions for k(v) in each 

of the regions can be found from the appropriate inversion relations together with 

some analyticity assumptions [20] on /c(v), and the results are presented here for 

completeness.

(i) For 0 < Re(u) < /z:

In /c(u) =  In po +  2 J
(ii) /z < Re(v) < \ k :

In /c(u) =  In po +  2 J

00 cosh(7r — 2/z) t sinh v t sinh(/z — v) t 
t sinh 7r t cosh /z t

00 sinh(v — fi) t (/>(v) ^
-oo t sinh 7r t sinh(7r — 2/z) t

where

(6.14)

</>(v) =  sinh(7r — /z) t sinh(7r — 2/z — v) t + sinh /z t sinh(u — 2/z) t

(iii) r < Re(u) < /z +  :

1 . . . r°° cosh ut cosh(7r — 2/z) t — cosh 2nt cosh(2v — ir — a) t
In k(v) =  lnpo +  / ------------------

J  — OO

(iv) /z +  | tt < Re(u) < 7r :

t sinh 7Tt cosh fit dt

r °
In k(v ) = In po +  2 /

J  — c

sinh(7T — u) t(j)(7T — V + /z) 
i sinh irt sinh(7r — 2/z) t

Equation (6.9) is used to find ln/c(u) outside the range 0 < v < 7r. Since /z =  7r/6 

is a rational fraction of 7r, we can reduce these integrals to infinite series. For the 

physical regime, equation (6.14) thus gives

In k (v ) = 1 In 3 + ± f) \  -  In cot 3 ,
n = l ( 2 n -  1 ) 2

. sin /z +  r  sin 2/z - r  1 . . ..
+  I n ------— ------- — ------- - +  -  In tan utan(/z — u)].

sin(/z — v) sin v 3
(6.15)
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6.3 Results

We calculated the partition functions for the lattices using edge transfer matri
ces, Reference [19,20], to build up the lattice one edge at a time, calculating the 
coefficients of the polynomials using FORTRAN and modular arithmetic [77]. The 
length of the largest coefficient in the polynomials seemed to increase exponentially 
with the size of the lattice, and for the 6 x 6  lattice, the longest coefficient was al
ready an integer of order 1066. Expressed as a function of y = x + l/3z , the longest 
coefficient of the polynomials was approximately halved, which made the polyno
mials significantly easier to handle. The partition functions for the l x l  through 
6 x 6  square lattices have been included in appendix A. It is important that the 
polynomials be computed exactly, as the location of the zeros of the polynomials 
can be very sensitive to small errors in the coefficients.

In the thermodynamic limit, we expect the zeros of the partition function to lie 
on the boundaries between the different phases, which is when Re(u) = 0, //, 7t/2 
or / i  + 7t / 2 .

We actually plotted the graphs in terms of the variable

_  2i. _  (1 - U 2 ) X - U J 2

(1 — co2)x + 1

so the boundaries between the phases are the rays arg(2:) =  0,7r/3,7r, and 47t/3  

(which correspond to the line Re(x) = —1/2 and the circle \x -f 1/3| = 1/3).
The zeros in the z-plane for the 3 x 3 ,  4 x 4 ,  5 x 5  and 6 x 6  lattices are shown 

in Figures 6.2, 6.3, 6.4, and 6.5. They are beginning to fall on the expected rays, 
with some scatter at the ends of each ray. Also note the line of zeros for the 3 x 3  
and 5 x 5  lattices, with arguments of approximately ±27r/3. For the lattices we 
looked at, (1 x 1 through 6x6) ,  these occured when L and M  were both odd.

Also, in Figures 6.6, 6.7 and 6.8, we plot the zeros of the partition functions 
Z°l(z), Z \\(z) and Z™(z) in the z-plane, to demonstrate the effect of skewing the 
boundary conditions. We see that the zeros are distributed in much the sane 
pattern, but are shifted slightly.

As well as this, we also attempted to find linear combinations of the partition 
functions with various boundary conditions which have particularly simple zeros, 
reminiscent of the zeros of the Pfafhans mentioned at the start of this chapter, but 
were unable to find any convincing combinations.

As a side-note, we can verify the calculation in [20] of the density of zeros lying
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L
1 2 3 4 5 6 7 8 9

1 0.0341 0.0852 0.1580 0.2342 0.3078 0.3781 0.4458 0.5119 0.5771
2 0.0852 0.0194 0.0251 0.0360 0.0479 0.0603 0.0728 0.0852 0.0974
3 0.1580 0.0251 0.0132 0.0140 0.0170 0.0206 0.0242 0.0279 0.0317
4 0.2342 0.0360 0.0140 0.0099 0.0098 0.0110 0.0124 0.0139 0.0154
5 0.3078 0.0479 0.0170 0.0098 0.0079 0.0077 0.0082 0.0089 0.0096
6 0.3781 0.0603 0.0206 0.0110 0.0077 0.0066 0.0064 0.0066 0.0070
7 0.4458 0.0728 0.0242 0.0124 0.0082 0.0064 0.0057 0.0055 0.0056
8 0.5119 0.0852 0.0279 0.0139 0.0088 0.0066 0.0055 0.0050 0.0049
9 0.5771 0.0974 0.0317 0.0154 0.0096 0.0070 0.0056 0.0049 0.0045

Table 6.1: Correction terms Clm  for the isotropic model

on each contour of the phase diagram. According to equations (5.15) of [20], one 

would expect to find for an L x M  lattice the fraction (tt — 3/x)/(7r — 2fi) = 3/4 of 

the zeros on the rays arg z =  0 and 7r/3, and the other /x/(7r — 2/x) =  1/4 of the zeros 

on the rays arg z = 7r and 47t/3. That this is the case can be verified simply by 

counting the zeros which are “on” each of the rays in the included graphs, Figures 

6.2, 6.3, 6.4, and 6.5.

6.4 Finite Size Corrections

6.4.1 Conformal and Modular Invariance

The partition functions we have calculated can be used to test the predictions 

of finite-size corrections due to conformal and modular invariance. Many reviews of 

these subjects exist including [39-41,66,99], and only a summary of the necessary 

results will be presented here.
At criticality, various observables of a statistical mechanical system are believed 

to be invariant under scaling and conformal transformations. This assumption, 
which originally led to predictions of relationships between the critical exponents 
[69] has been later developed into a classification of universality classes of the critical 
behaviour for two-dimensional systems (determined by a param eter c, the central 
charge of the Virasoro algebra associated with the model) [36], and more recently 
to a classification of the modular invariant partition functions on a torus [38].

It was shown in [54] tha t for a statistical mechanical system with an herm itian 
transfer m atrix, corresponding to a unitary conformal field theory, if c < 1 then c 
is restricted to take on the values
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L
1 2 3 4 5 6 7 8 9

1 0.0256 0.0266 0.0385 0.0505 0.0625 0.0746 0.0867 0.0988 0.1111
2 0.0266 -0.0090 0.0141 0.0109 0.0116 0.0115 0.0110 0.0103 0.0095
3 0.0385 0.0141 -0.0042 0.0085 0.0086 0.0077 0.0076 0.0074 0.0069
4 0.0505 0.0109 0.0085 0.0001 0.0057 0.0070 0.0065 0.0062 0.0060
5 0.0625 0.0116 0.0086 0.0057 0.0021 0.0045 0.0057 0.0056 0.0053
6 0.0746 0.0115 0.0077 0.0070 0.0045 0.0028 0.0039 0.0047 0.0048
7 0.0867 0.0110 0.0076 0.0065 0.0056 0.0039 0.0029 0.0035 0.0040
8 0.0988 0.0103 0.0074 0.0062 0.0056 0.0047 0.0035 0.0029 0.0031
9 0.1111 0.0095 0.0070 0.0060 0.0053 0.0048 0.0040 0.0031 0.0028

Table 6.2: Correction terms Clm for the anisotropic model

h ( h - l )  

where h = 4, 5, 6, . . . .

Modular invariance predicts the leading corrections to the partition function 
should take the form of equation (6.2), with Af = 2LM,  and /  is the free energy 
per site in the thermodynamic limit. The modular invariant partition function, 
Z(q),  describes the leading finite-size corrections in the limit of L, M  large, with 
the ratio L / M  fixed. Here q is the modular param eter, given by [99]

q = e2™, r  =  e ' ^ - e)L /M,  (6.16)

where 6 =  6u, where v is the spectral parameter.
One requires Z(q)  to be invariant under the action of the modular group, which 

maps a torus formed by identifying sides of a parallelogram in the complex plane 
with edges 0, 1, r, and 1 +  r onto itself. The modular group acts through the 
generators T  and 5 , where

T  : r —> 1 +  t 

S  : r  —> —r -1 .

Note tha t the rotational symmetry x —> l/3ar of Z LM corresponds to the la tter of 
these.

These requirements place very stringent constraints on the form of Z(g), and 
in fact lead to a complete classification of all possible modular invariant partition 
functions for c < 1 theories, which are labeled by the A, D  and E  Lie algebras [38].

The three state Potts model is related to the minimal conformal field theory 
[38] with c =  4/5, h = 6 [48]. The corresponding modular invariant partition 
function reads

Z{q) =  |x i,l (?) + X4 ,l ( ^ ) | 2 + 1x 2 ,l (̂ ) + X3 ,l (<?) |2 + 2 |X3,3( <?) |2 + 2 |X4 ,3 (<7 ) | 2

(6.17)

where Xr,s is the character of the representation of the Virasoro algebra, given by
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Figure 6.9: Next-order corrections to the modular invariant partition func
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Xr,£ =? - c/24n d e
[ 2 h ( / i - l ) n + h r - ( h - l ) ä ] 2 - l  q 4 h(  / i —i )
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n=l

6.4.2 Numerical Results
In this section, we shall verify the predictions of modular invariance by numer

ically evaluating the correction terms in (6.2) for various lattice sizes and demon
strating that they vanish as the lattice size increases. Writing the correction terms 
as Clm, we can write (6.2) as

In ZLM(v) = - 2 L M f / k T  + In Z(q) + CLM, (6.18)

and we expect that

CLM —> 0 as L, M  —> oo. (6.19)

It is computationally easier to evaluate the partition function ZhM numerically 
for a particular value of x than it is to evaluate the entire polynomial, and so 
for these calculations we are able to use larger lattice sizes than before. Here, we 
present results on up to 9 x 9 lattices.

For the numerical studies, we considered an isotropic (6 = 7r/2) and a particular 
anisotropic (9 = 7r/4) case of the model. From (6.15) and (6.16) we have

(i) 6 = tt/2, q = e~2*L/M y f / k T  = 2.0702
(ii) 9 = jt/4, q = e-Vi*(i+i)L/M' _  2.3150,
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where (i) and (ii) correspond to the isotropic and anisotropic cases respectively. 
Using these and the numerical values of ZLM, we calculated CLM. They are given in 
tables 1 and 2 for all L x M  lattices with 1 < L, M  < 9. The correction terms are 
close to zero as expected, and vanish as the lattice size increases in both directions.

We next restricted our attention to just the square L x L lattices. In this 
case, we have for the isotropic model (i)lnZ(^) = 1.0479 and for the anisotropic 
model (ii)ln Z(q) = 1.0535. Figure 6.9 plots CLL against 1/L for the square lattice 
models. Both of the curves are clearly converging towards zero as expected. For 
the isotropic model, the curve is approximately linear, with equation

Cll =  0.04 L - \

The results are less clear for the anisotropic model, but still compatible with (6.19).



APPENDIX A

The partition functions for the 
three-state self-dual Potts model

We have calculated the partition functions from Chapter 6 for all values of L and 
M  in the range 1 < L . M  < 6, and all values of h and v. Here we present only 
the square lattice non-skewed partition functions for =  1, . . . ,  6. It is convenient 
to  divide each of them  by a factor of 3L and (using our earlier remarks) to  exhibit 
them as polynomials in y = 3x +  3 +  l / x ,  so we actually present

P n i y )  = 3 LZLi(y)i

Pu {y) — 3 +  2 y +  y 2

P22(y) = 243 + 648y +  324 y2 -  72 yz +  534 y4 -  184 y5 +  92 y6 -  8 y 7 + ys

P33(y ) =  177147 + 1062882 y + 2302911 y 2 + 2047032 + 1377810
+2913084 y5 +  3158028 y6 +  664848 y7 + 103518 ys +  930852 y9 +  306666 yw  
-270864 j,11 +220374 y 12 -62532y 13 +16956 y14 -2160  y15 +297 y16 -1 8  y17+ y 18

P„(y)  =  1162261467 +  12397455648 y + 55788550416 y2 +  136372012128 y3 
+214315274952 y4 +  324629671968 y5 +  582654906288 y6 +  750632777568 y7 
+607521384972 y8 +  795120766560 y9 +  965737104624 y10 +  130605470496 y11 
+322442584488y12 +  916063289568y13 -  526868886960y14 +  147997956384 y15 
+596145500838 y16 -  737714208096 y17 +  610533631440 y18 -  343154709792 y19 
+  156664410984 y20 -  55836596448 y21 +  16860264048 y22 -  4098594336 y23 
+856735500 y24 -  143074912 y25 +  20606608 y26 -  2274208 y27 +  2 1 75 60 y28 
-14816 y 29 +  880 y30 -  32 y31 +  y32

Pbb(y ) =  68630377364883 +  1143839622748050 y +  8578797170610375 y2
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+38127987424935000 y3 +  114511055566221450 y4 +  268776892687508460 y5 
+589388078205374850 y6 +  1246116772225702800 j/7 
+2209159127195440650 y® +  3194839081210230900 t/9 
+4647346048981897830 y10 + 7079557052341783800 t/11 
+8225530257835830150y12 +  7279248720513503700 t/13 
+9357732890461402200 y14+  11647930212445937760 y15 
+5762094309484412175y16 +  3517524430230368250y17 
+9571985653589609175y18 +  4023612873756685800y19 
-2229800910702224940y20 +  4898159054026700400y21 
+2681786734169855850 y22 -  3147689863270981800 t/23 
+2051627825339895150 y24+  1388963485815183972 t/25 
-2128929001082085150 t/26 +  1331521145545374000 t/27 
+57684225191190300 y28 -  746264103632814600y29 +  794712829019154840 t/30 
-530326171478212200y31 +  272216641223522475y32 -  112688467988737950y33 
+39181982508236025 y34 -  11549532336644520 t/35 +  2939341744610550 t/36 
-645489038603700y37 +  1237640448946501/38 -  20572630471200 t/39 
+29948725555201/40 -  376168331200 y41 +  412749984501/42 -  38507158001/43 
+3118873001/44 -  208909601/45 +12018001/46 -  54000 y47 +  20 251/48 -  501/49 + 1/50

pe6(y) =  36472996377170786403 +  875351913052098873672 y
+97747630290817707560041/2 +  67337256422563309652472 t/3 
+3236775800716256344452901/4 +  11905110221920786200040561/5 
+36877225245167252555712361/6 +  10401597851065757493067944 y7 
+269595659694026914595523991/8 +  61845999495375641704282080 t/9 
+1256470986226015018202372641/10 +  240022887437101067312705280 t/11 
+4415196132640379858826691801/12 +  7331070950978537453410735201/13 
+10803977995953068944645509361/14 +  15837296830050965630427928801/15 
+23283236465504849688885094861/16 +  28385045384538727714967765281/17 
+29983115523253057348464686161/18 +  39918777670987569511159491361/19 
+4841333866013199882396682320 y20 +  31963790486730758025268442881/21 
+34599767398603255006687222561/22 +  64267023696135698500640377921/23 
+ 19396885487298386686853184721/24 -  457551945244662440234350464 y25 
+81828861354678734655436255681/26 +  6471555414842003993150866561/27 
-63059925091488563158002683641/28 +  11164667532761798736232383792 y29 
-1150370452169839095281894232 y30 -  10170820705742127098799351120 y31 
+  15080066343487511690021765802 y32 -  6545462183956141046776619856y33 
-6614535334864417091310887640y34 + 14961839991856014933636679152y35
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-13287446525918243133502386732 y36 +  5052764542237547744805308208 y37 
+3710788464236653463646633048y38 -  8724170242510213586259010896 y39 
+9453474078656450703547435326 y40 -  7536505183924558142291909184 y41 
+4912333469209503026020498320 y42 -  2732858726369737791501547488 y43 
+1328953157744139878205736584 y44 -  573003033228624489951865824 y45 
+221265893896873972193256048y46 -  77042463342163082535246048 y47 
+24316662276395540272971270 y48 -  6982429693990831900853904y49 
+1829455359148989531820728y50 -  438142591960330687398288y51 
+96056171357387832168552y52 -  19284941557166092999776 y53 
+3546892729335283210944y54 -  597104519391976825152 y55 
+91957291943362083756y56 -  12928508324628240384y57 
+1657229052282802272 y58 -  192992758661806560 y59 +  20382424207664976 y60 
— 1941330716173728 y61 +  166448903581008y62 -  12734381143296 y63 
+868496151105 y64 -  52033203144 y65 +  2742705468 y66 -  123785496 y67 
+4816638 y68 -  152280 y69 +  3996 y70 -  72 y71 +  y72
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