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Abstract

This thesis examines the convection produced by turbulent plumes in confined 

regions. I extend the “filling-box” model of Baines and Turner (1969) to consider (i) the 

circulation patterns in the box, (ii) plumes that descend slopes, (iii) the interactions of 

multiple plumes and (iv) the modifications that result from overflows across a sill when 

the box is divided into two basins. A combination of theoretical models, analytical and 

numerical solutions and laboratory experiments is used. Each of the four extensions has 

relevance to processes in the oceanic thermohaline circulation.

The experiments show that when a turbulent plume forms a bottom outflow into a 

long tank, a series of counterflowing shear layers is generated. These layers are 

supported by the stable density stratification produced by the plume and are superimposed 

on the vertical advection and entrainment inflow of the “filling-box” circulation. The 

timescale for the velocity structure to adjust to changes in forcing is proportional to the 

time for long internal gravity waves to travel the length of the tank. I interpret these shear 

layers in terms of internal normal modes.

Models of plumes descending slopes are formulated and extended to include the 

resulting “filling-box” convection in confined regions. I develop a new streamtube model 

of the downslope plume that likens the slumping of the plume across the slope to the 

spreading of gravity currents. Analytical results show that this downslope plume has 

properties that have the same dependence on distance as those of a plume falling vertically 

far from side boundaries. Mixing between the plume and the environment depends on the 

angle of the slope. There is also experimental evidence that if mixing in the plume is 

thorough, as is the case for highly turbulent plumes on steep slopes in the laboratory, then
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the “filling-box” circulation patterns in the environment are similar to those of the 

vertically-descending plume.

It is known that when two or more buoyancy sources produce well-separated 

plumes, the source with the largest buoyancy flux produces the plume that gives rise to 

the “bottom waters” while each plume from a source with a smaller buoyancy flux 

produces a mid-depth intrusion. I present a model for a number of buoyancy sources 

filling a single basin and give numerical solutions for the case of two sources. A large­

time analytical approximation also shows that the spreading depth of the weaker plume is 

dependent on the two-thirds power of the ratio of the buoyancy fluxes of the two plumes. 

Experiments verify these results and also show that shear layers are present. The shear 

layers, which are primarily forced by the bottom outflow, influence the spreading of each 

intermediate depth outflow.

I also show that modifications to the plume and environment properties occur 

when the lower depths of the box are divided by a ridge to form a two-basin filling-box. 

In this system, each of the basins collects water separately with exchanges between the 

two basins possible only through an overflow over the ridge. I present numerical 

solutions which indicate that the inter-basin exchange of water is increasingly restricted as 

the ridge height grows, resulting in larger differences in the stratifications of the two 

basins. I also show that, depending on the relative cross-sectional areas of the two 

basins, the stratifications in the basins may become homogenous and overflows across 

the sill may reverse in direction.
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Chapter 1

Introduction

In a body of fluid subject to gravity, variations in density lead to buoyancy forces 

that drive motions responsible for a large range of phenomena known in fluid mechanics. 

The present study is concerned with density driven flows where buoyant fluid is 

produced continuously in small, isolated regions and carried away in plumes which have 

large Reynolds numbers. Turbulent mixing between each plume and the environment 

occurs and the ensuing convection causes significant modifications to the properties of the 

plume and its surroundings.

The main aim of the present study is to explore and understand the fundamental 

dynamics in a small number of situations. These are simplified and idealised models of 

processes which may be relevant to the oceanic thermohaline circulation. The oceans are 

on the whole stably stratified with cold, dense waters at the bottom underlying warmer, 

less dense waters on top. Near the surface, exchanges of heat and fresh water with the 

atmosphere produce differences in density which can drive circulation between the surface 

and bottom waters. The sinking of surface waters to abyssal depths is known to occur at 

several localised regions, while the rising or upwelling to complete this circulation is 

distributed over most areas of the oceans (Robinson and Stommel, 1959). The deep 

ocean waters, therefore, originate from the regions of sinking and inherit the water 

properties there. These properties can be traced as the waters descend and spread to fill 

the interior of the oceans. It has been estimated that the timescale required for this cycle is 

200-1800 years (Stommel and Arons, 1960). Various studies have also been conducted 

to quantify the changing properties of oceanic deep water sources (for example, Price and
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Chapter 1 Introduction

O’Neil-Baringer, 1994) and their subsequent paths in the oceans (for example, Kawase, 

1987).

The localised sources of deep water in the oceans have been likened to small 

sources of buoyancy in a confined region (Killworth, 1977). The convection and 

stratification produced by a single source of buoyancy in the so-called “filling-box” 

mechanism are well established (Baines and Turner, 1969; Killworth and Turner, 1982). 

The plume entrains surrounding water and falls vertically until it reaches its own density 

level or a horizontal boundary where it spreads out into the box. Convection brings 

plume water to all depths of the box and establishes a density gradient in the system. This 

“filling-box” mechanism, incorporating the vertical sinking, spreading of dense water and 

slow distributed upwelling, is the simplest model of the buoyancy-driven thermohaline 

circulation. The present study is concerned with extensions to this “filling-box” process 

to incorporate features of relevance to the oceans.

The approach incorporates both analytical and experimental investigations that 

complement one another. The established “filling-box” theory is an idealised analytical 

model in which the environment waters are assumed to be passively upwelled and 

entrained into the plume. However, the experiments described in chapter 4 show that 

when a plume produces an outflow in a stratified environment, internal gravity waves 

excite baroclinic normal modes to generate strong shearing motions in the convection. 

These shearing motions have little effect on the vertical structure produced by the “filling- 

box” mechanism and have not been detected by previous researchers. However, the 

shearing motions are important because they influence the paths taken by water masses 

circulating through the box. The shearing motions are examined and explained in terms 

of baroclinic normal modes for the non-linear “filling-box” stratification. The results may 

have applications in the oceans or enclosed seas, where the distribution of water 

properties and advection of tracers would be strongly affected if the sinking of deep water 

masses were to generate similar shear layers.

One of the major differences between oceanic deep water formation or sill 

overflows and unconstrained vertical plumes is that sinking waters in the oceans do not

2
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fall vertically, but descend along slopes. The slope changes the shape of the plume and 

reduces mixing with the environment. Models of the downslope plume appear in chapter 

5, and show that the properties of downslope plumes exhibit similar dependencies to 

those of the vertically-descending plumes. These similarities also extend to the “filling- 

box” process; however, experiments reveal that the slope may lead to a modified 

circulation pattern in certain situations.

An extension to the “filling-box” model to include a number of buoyancy sources 

of differing strengths is presented in chapter 6. The spreading depth of each plume is 

related to the stratification in the box that is produced collectively by all the plumes. 

Again, experiments validate and complement the theory and also reveal modifications to 

the spreading depths caused by the overshooting of plumes and the background shearing 

motions. The results are of interest to the thermohaline circulation, where the depths to 

which different outflows sink may potentially be predicted in terms of the relative 

buoyancy fluxes of the various sources driving the circulation.

In chapter 7, I consider the variations in the stratification and plume spreading 

depths that occur in a filling-box that has been divided into two basins by a vertical 

barrier. This system represents a simplification of the complex topographies, such as 

mid-ocean ridges and sills between marginal seas and ocean basins, that influence the 

oceanic circulation.

It should be noted that there are many other processes that affect the oceanic 

thermohaline circulation but are not considered in this study. It is not anticipated that any 

model of ocean circulation will result from the present study, but it is hoped that the 

extensions to the “filling-box” theory provide some insight into and possibly explain 

some of the features observed in the oceans. Chapters 2 and 3 review the previous work 

on turbulent plumes, filling-boxes, internal gravity waves and oceanic thermohaline 

circulation. Chapter 8 sums up the results presented in chapters 4, 5, 6 and 7.
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Chapter 2

Background on Turbulent Plumes 

and Internal Gravity Waves

2.1 Preliminaries

Buoyancy forces arise when gravity acts in a body of water (or fluid) that contains 

variations in density in a horizontal plane. Where water of density different to its 

surroundings is continuously produced in some area, that area is referred to as a source of 

buoyancy. Gravity accelerates the buoyant water to produce a plume and if velocity and 

length scales are large enough to give a high Reynolds number, the plume is turbulent. 

Mixing between it and the surrounding water increases the volume flux and decreases the 

buoyancy of the plume. The plume ascends or sinks until it reaches water of its own 

density, or until it encounters a boundary. It spreads out and the turbulence dies as it 

becomes part of the non-turbulent environment. The convention used in this thesis is that 

the buoyancy source produces dense water so that the plume descends, but most of the 

details are also valid for ascending plumes of light water. In an environment that is 

horizontally bounded, but much wider than the plume itself, the plume is found to fill the 

environment in an orderly manner (Baines and Turner, 1969). In this situation, the 

injection of water into the confined environment pushes the overlying water higher and 

establishes a circulation that fills the environment with plume water. This circulation is 

known as the “filling-box” convection and establishes a stable stratification in the box 

(figure 2.1). A review of plume theory appears in §2.2.

In stratified bodies of water, buoyancy forces also act to generate waves. When 

an initially stable stratification is disturbed and a parcel of water is brought to a new depth
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source

entrainment

first front

turbulent

spreading

Figure 2.1. The motions in the plume and environment.

where the souroundings are of a different density, buoyancy forces act to accelerate it in 

the direction of its equilibrium position. For instance, if the parcel is brought higher to 

less dense surroundings, then the parcel is accelerated down towards its neutral density 

depth. The resulting motion can overshoot the equilibrium position and oscillate about it 

to give rise to internal gravity waves. As will be seen in §2.3, energy can propagate 

through the stratified body and lead to some surprising motions.

In this thesis both the y and z axes are used to represent the vertical coordinate. 

The y axis increases with height whereas the z axis increases with depth. The former is 

used for internal gravity wave theory while the latter is used for plume theory, in keeping 

with the respective directions of axes used in the literature.

Before continuing I present some definitions commonly used throughout this 

thesis. If g is the acceleration due to gravity, then the buoyancy force per unit mass of an 

element of water with density p in surroundings of density pe is g{p - pe)/pe. If Q is the 

volume flux of dense water produced at a buoyancy source, then the (specific) buoyancy 

flux F of the source is defined as
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F = g P~Pe
Pe

Q.

The strength of a density gradient in a stably stratified environment is measured by the

buoyancy frequency N. For an axis y which increases with height,

N  = g dp,
Pe dy

V ' 2

Finally, the Reynolds number Re gives the relative importance of the inertial forces over

the viscous terms in the equation of motion. If U is a typical velocity and L a typical 

length scale of a fluid with kinematic viscosity v, then

v

Motions with high Re are turbulent whereas those with low Re are laminar (smooth). 

Other less commonly used quantities will be defined when they are introduced.

2.2 Turbulent Plumes and Filling-Boxes

2.2.1 Theory

The model of turbulent convection from a localised source was first introduced by 

Morton et al. (1956). The main assumptions employed in the model are that:

(i) the rate of turbulent mixing (or entrainment) at the edge of the plume is proportional 

to some characteristic velocity at that depth (Taylor’s entrainment hypothesis; Turner,

1986 and 1997),

(ii) the horizontal profiles of mean vertical velocity and density are of similiar form at all 

depths, and

(iii) the largest local variations of density are small in comparison with the overall 

density (the Boussinesq approximation).

The plume is assumed to be axisymmetric. At each depth z, its properties in the 

horizontal plane are averaged to give a top-hat profile. Let p p, R and W be the density, 

radius and vertical velocity of the plume respectively, p e the density of the surrounding 

water and pr a reference density, taken to be that of the environment water at the source 

level. During its descent, the plume entrains surrounding water, thereby increasing in
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radius and decreasing in density. The equations representing the conservation of volume, 

momentum and mass deficiency are

d-{nR 2w ) = 2nERW,

j ^ n R 1W2p r) = KR2g{pil- p e) (2.1)

and

j 7{nR2w{pp -  p r)} = 2kERW{Pi - p r).

Here, E is the experimentally determined entrainment coefficient (Turner, 1986) and 

g the gravitational acceleration. For a source that has a buoyancy flux of 

F = 7tR2Wg(pl> -  pe)/pr (evaluated at z = 0) which results in a plume that descends 

through a homogenous environment, Morton et al. (1956) calculated the solution to (2.1) 

as

R = l Ez’
c 2 / 3  7 7 1 / 3

W  =  _________ - __________________________  7-1/3
24/331/3£ 2/V /3 (2-2)

and
n  -  n  s 4 /3  J72/3P p  Pe _  •> P________  - 5/3

*  _ — o 2 / 3o 5/3  7 7 4 / 3 ^ 2 / 3  2Pr 1 3 t  K

They also obtained a numerical solution for a plume travelling through a uniformly 

stratified environment and conducted experiments that verified the theory. Their results 

were applied to the rise of smoke plumes in the atmosphere.

In the case of a plume descending in a confined environment the model was 

further developed by Baines and Turner (1969). If the box contains homogenous water 

initially, the plume reaches the bottom and spreads out in an outflow layer, the top of 

which forms the “first front”, a discontinuity in density distinguishing the overlying 

homogenous water from water that has passed through the plume. The plume penetrates 

the first front and entrains water from below, resulting in a progressively denser outflow. 

A vertical advection is generated in the environment which lifts the first front and 

establishes a stable stratification in the box, giving rise to the so-called “filling-box”

7
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convection. Equations representing conservation of volume and density in the 

environment are

AV = - nR W (2.3a)

and

d
dt g P e  P r  

P r

\
= -v±

dz
r rPe-Pr'  
V 5 P r

(2.3b)

Here, V is the vertical velocity in the environment and A is the (constant) horizontal cross- 

sectional area of the box.

For the “filling-box” analysis it is henceforth assumed that buoyancy-driven 

convection is the dominant transport mechanism in the plume, whereas, far away from the 

plume, the only motions are those of passive advection. The assumption of a passive 

environment overlooks strong, active horizontal motions that are described later (chapter 

4). However, these motions do not appear to significantly affect the plume or the density 

gradient it produces. Manins (1979) has also noted that in boxes of small aspect ratio 

(width/depth < 1.2) an inertial overturning motion is set up by the plume which mixes the 

environment water from top to bottom. I consider only much wider boxes. I also assume 

that the smallest horizontal dimension of the tank is larger than the diameter of the plume 

at the bottom so that the plume does not interact with the side walls of the tank.

The non-dimensionalisation scheme employed to reduce equations (2.1) and (2.3) 

to their simplest form for analysis is

z = H( ,

t = A 2 E-An T?-*n - 2/3  jj-in#7 - 1/3

R = 2EHr,

W = 2 -2nE"2njc~'n H~'n F 'n w, (2.4)

g Pp~ P’ = 2~*n E~tn 7C~2nH~5nFlnf  ,
P r

g p‘ ~ p ' = 2“4'3 E~>nJt~2l3H~5nF2n f ,
P r

V = 24,3£ 4,V  n H snF 'n A-'v,

8
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where H is the height of the buoyancy source above the bottom. With these scalings, 

(2.1) becomes

(2.5a)

(2.5b)

and

^ ( rV,) = ™£. (2-5c)
while (2.3) becomes

and

v = - r w (2.6a)

4L = -V4L
dr

An alternative form of (2.5c) is obtained by combining with (2.5a) to give

— {r'-wlf -dt;<• yjp Je,> dt;

(2.6b)

(2.5c')

It should be noted that Baines and Turner (1969) did not use a top-hat profile in their 

description of the plume, but rather a Gaussian profile defined by

/  I \  /  \  - r ' 21 b 2 j  P p  P e  (  i \  P p  P e  - r'2l b 2w(z,r ) = w(z)e and g —[-------[z,r) = g — ------- e
P r  P r

where r' is the radial distance from the centre of the plume and b is a length scale. The 

Gaussian profile is a more realistic profile since the plume’s velocity and buoyancy 

difference from the environment are maximal in the centre and diminish smoothly to blend 

into the environment. For reasons that will become clear in chapter 6, I have chosen the 

simpler top-hat profile. In using the Gaussian profile, the dimensional plume equations 

(2.1) are slightly different from those stated here (there is a factor of 1/2 in the left hand 

side of (2.1b) and (2.1c)) and result in a slightly different solution in the homogenous 

environment (2.2). However, once the equations for the Gaussian profile are non- 

dimensionalised (using slightly different scalings to (2.4)), the same dimensionless 

equations (2.5) and (2.6) are obtained.

9
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The dimensionless solution to (2.5) is given by

(2.7)

and

Plots of r, w and /  are given in figure 2.2. In the “filling-box” convection, the 

environment above the first-front is homogenous. If is the position of the first front, 

then its velocity is given by d ^  l d i -  v = - r 2w. On substituting (2.7) and noting that 

= 1 when r  = 0,

The progress of the first front is plotted in figure 2.3.

Baines and Turner (1969) obtained a power series solution to (2.5) and (2.6) in 

the large-time steady state where the plume’s radius, vertical velocity and density 

difference to the environment do not vary at a given depth, but the plume and environment 

buoyancies steadily increase with time at all depths. In this description,

( 2 .8)

r(f,T ) = r '( 0 .

w(f,T) = w'(f),

/ ,(£ .* )  = / , ' (  O  + T,

f.(Z,r) = ft' ( 0  + r,

V (C ,T ) =  V’ (C ) .

and on dropping dashes, the equations to be solved are

(2.9a)

(2.9c)

10
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r, w

b)

Figure 2.2. Plots of the plume properties for a plume in a homogenous 
environment ( — — — — ) and in the large-time steady state of the “filling-
box” environment (----------------- ). The environment buoyancy for the latter
is also plotted, (a) Plots of the plume radius r and velocity w in both 
environments, (b) The plume buoyancy f p in the homogenous environment. In 
the “filling-box” environment, the steady-state plume buoyancy is plotted as 
an excess compared to the bottom, f *  =  f p(£) Similarly, the steady-state
environment buoyancy in the “filling-box” environment is plotted as

/ / = / . ( £ > - / . ( I ) -
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T

Figure 2.3. The position of the first front Q plotted against time T for the 
“filling-box” convection.

and

r 2w ^ r  = - l .  (2.9d)
dQ

Equations (2.9c) and (2.9d) immediately give

(2.10)

so that the buoyancy flux falls linearly with depth, as it must if the environment is 

increasing in buoyancy at a constant rate. At the point source, r*w = 0 and rw = 0, while 

nearby (small £), the solutions to r*w and rw are similar to that for an uniform 

environment (2.7). Power series solutions to r*w and rw, calculated from the two 

equations obtained by substituting (2.10) into (2.9a) and (2.9b), are given by

r2w = 0.460£5/3 -  0.0588£s/3 -  0.0100£11/3 + ...  (2.11a)

and

rw = 0.766£2/3 -  0 .157£s/3 -  0.0366£8/3 + ....  (2.11b)

Both equations converge over the range of integration 0 < f  < 1 and together give r and 

w. A further integration using (2.9d) gives

12
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l  = - f 2/3(3 .2 7 -0 .8 3 7 C -0 .0 6 2 3 f2) + c. (2.12)

Equation (2.12) describes the functional dependence of the environment buoyancy f e on 

depth and since f e depends on how much buoyancy has been added to the system, the 

equation involves a term c that is linearly dependent on T. The dependence on r  can be 

eliminated by considering / / ( f )  = / /£ ,  t) -  f c{ 1,£), that is, a buoyancy compared to the 

bottom that gives / / (  1) = 0. Similarly, the plume buoyancy can also be made 

independent of rb y  considering f*(Q) = / p(f,T) -  f p( 1,t). The plots of r, w, f *  a n d / /  

obtained from (2.10), (2.11) and (2.12) are given in figure 2.2.

Baines and Turner (1969) also described experiments that confirm the theoretical 

solutions. They also found that as the first front passes through 90% of the tank, the 

stratification approaches that predicted by (2.12) and therefore the steady state is reached 

fairly quickly. The concluded that the properties of the plume and filling-box are 

dependent on the buoyancy flux of the source and not the density of the water coming 

from the source, so that if there are two or more sources, the one with the largest 

buoyancy flux will give rise to the bottom waters.

Several studies have extended the knowledge on plumes. The evolution of the 

stratification was numerically solved by Germeles (1975) while an approximate analytical 

solution was derived by Worster and Huppert (1982). Killworth and Turner (1982) 

studied the effect of time-varying buoyancy fluxes on the stratification (see below). 

Cardoso and Woods (1993) have looked at plumes in pre-stratified filling-boxes. 

Peterson (unpublished, personal communication) performed a study on two plumes of 

different strengths, but not using the “filling-box” method of this thesis. His study will 

be compared to my work on multiple plumes in chapter 6. The convection driven by 

plumes has also had various practical applications including the cumulus convection in the 

lower atmosphere (Squires and Turner, 1962), the filling of containers of liquefied natural 

gas (Germeles, 1975), turbulent flows down sloping boundaries in the oceans (Killworth 

and Turner, 1982), stratification in magma chambers (Turner, 1980) and ventilation in 

buildings (Cooper and Linden, 1996; Linden and Cooper, 1996).
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2.2.2 The Entrainment Assumption

Central to the analysis of turbulent plumes is the assumption that the rate of 

entrainment at the edge of the plume is proportional to the vertical velocity at that depth. 

Although the entrainment constant E is removed in the non-dimensionalisation process 

through the scalings (2.4), its numerical value is important in making dimensional 

predictions. The constant itself cannot be obtained theroretically and must be taken from 

laboratory results (Turner, 1973). For plumes, the best method for measuring E  is to 

measure the first front’s progress and compare it to the dimensional form of (2.8). An 

extensive review of the entrainment assumption is found in Turner (1986).

For vertically-descending axisymmetric plumes, the exact value of E  depends on 

the plume profile used. The relationship between E  for top-hat profiles and Eg for the 

more commonly used Gaussian profile is given by E  = 2mE  (Turner, 1973). For the 

equivalent top-hat profile, Morton et al. (1956) found £  = 0.131 while Baines and Turner 

(1969) found £  = 0.141. Previously, Rouse et al. (1952) had obtained £  = 0.117 using 

measurements in air, which is the value Turner (1986) recommended in his review, while 

Cardoso and Woods (1993) used £  = 0.127. The differences in £  may have resulted 

from variations in the experimental conditions, but are of little consequence to the theory. 

In the experiments of chapters 4 and 6, I found best agreement between theory and 

experimental observations when £  = 0.129 ± 0.004.

2.2.3 Time-Varying Buoyancy Sources

Killworth and Turner’s (1982) study of plumes from sources displaying time- 

varying buoyancy fluxes is summarised here because it is related to both the production of 

deep water sources (chapter 3) and my work on multiple plumes (chapter 6). Their work 

was motivated by naturally occurring sources of buoyancy where diurnal and seasonal 

variations existed in timescales much smaller that that required for the stratified 

environment to be established. The equations used in their model were effectively 

identical to (2.1) and (2.3). Since the source buoyancy flux varied with time, it was 

possible that the plume did not reach the bottom during the source’s weaker phase
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Chapter 2 Background on Turbulent Plumes and Internal Gravity Waves

because the stratification established during the maximal phase was too strong. The 

plume was assumed to spread out at an intermediate depth where it was neutrally buoyant. 

The system of equations for the time-varying case was solved numerically using a finite- 

difference method.

In their study, Killworth and Turner (1982) discussed the cases where the 

buoyancy flux was given by sinusoidal, sawtooth and stochastic functions of time. In 

each case, they found that the resulting plume and environmental quantities at large times 

were very similar to the steady-state solution given by Baines and Turner (1969) for a 

steady source. The maximum value of F in the cycle was the most important parameter in 

determining the system’s properties. A plot of the averaged plume quantities in the 

sinusoidally varying source case is given in figure 2.4.

0 1 2

1 0 0  v'p

Figure 2.4. The averaged plume radius r, velocity w and buoyancy excess over 
the environment fp -  f e in a plume from a source with sinusiodally varying
buoyancy flux (----------------- ). Also plotted are the equivalent quantities for a
steady source ( ---------------- ). Note that the two plots for r coincide. (Taken
from Killworth and Turner, 1982.)
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Chapter 2 Background on Turbulent Plumes and Internal Gravity Waves

2.3 Internal Gravity Waves

When stably stratified bodies of fluid are disturbed, gravitational forces act on the 

fluid to generate internal gravity waves. The waves travel through the body and energy 

can propagate through the stratification. Internal gravity waves are sometimes responsible 

for phenomena such as the formation of clouds in the atmosphere, and fluctuations of 

temperature in oceans and lakes. Such waves exist on both the interface of homogenous 

layers of fluid and in continuously stratified bodies. In this section, I review some of the 

properties of internal gravity waves in the latter. More complete reviews are given by 

Acheson (1990), Baines (1995), Lighthill (1978) and Turner (1973).

The fluid is assumed to be inviscid, incompressible and non-diffusive. The 

equations of motion are

pX t̂+ (“ ' v ) “ } = ~ V p + ps
V k = 0 (2.13)

(Euler’s equations) and

^  + (u-V)p = 0.

Let the undisturbed (stable) density profile of the fluid be p = p 0(y) and pressure field 

p  = p0(y). In the two-dimensional system, small perturbations of the system lead to

u = (u(x,y,t),w(x,y,t)),

p = p0(y) + p' (*,y,t)

and

P = p0(y) + P'

where u, w, p' and p' are small. By applying the Boussinesq approximation and 

ignoring the quadratic terms in u, w, p and p ' , (2.13) becomes

P „ ^  + ^  = °. (2.14a)
at ox

dw dp . n~ t  + P 8 = °.dy
(2.14b)
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and

du dw
* +ö T °

dp' dp{) _ —  + w -^-  = 0. 
dt dy

(2.14c)

(2.14d)

The solution to (2.14) consists of modes which are best illustrated in an example 

given by Prandtl (1952). For p0 oce~ylH° where H0 is a length scale, N  = (g ///0)1/2 is 

constant. The solution for u and w are then

u = Acoe)llHQ cos he
1 \

-------cos m y ----- sin my
v2 H0k k

and (2.15)

w = Acoeyl2H° sinhccosmye10*,

where A is the amplitude, k and m the horizontal and vertical wavenumbers and

( V / 2

co = N
V

i 2 , 2 , 1k + m +
4 Hi J

is the frequency. The solution (2.15) represents a cellular standing wave (figure 2.5) 

with horizontal and vertical wavelengths Xh -  2 k/k and Xv -  2 n/m. The pattern can be 

fitted in a closed rectangular region whose planes coincide with the planes of zero 

horizontal and vertical motion. There can be an arbitrary number of cells in the horizontal 

and vertical which gives an infinite number of possible modes. Internal standing waves 

with a variety of modal structures have been produced in the laboratory by Thorpe

Figure 2.5. Displacements and streamlines in a cellular standing internal 
gravity wave mode. (From Prandtl, 1952 and taken from Turner, 1973.)
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Chapter 2 Background on Turbulent Plumes and Internal Gravity Waves

(1968). It will be seen in chapter 4 that a plume outflow at the bottom of a stratified tank 

excites internal gravity waves that also lead to modal structures.

When the internal gravity waves are propagated from a small localised 

disturbance, the oscillatory motions are concentrated in bands bounded by “rays” 

originating at the edges of the source. On elimination of u, p' and p ' , (2.14) reduces to

d 2 ( *-d w d~w 2 , . d w 
dt21 dx1 dy2 J Z * 2 _

(2.16)

Assuming that w has a wave solution of the form w = w(y)e'(Lx C0I), (2.16) becomes
f2_~ f  at2 \d w  ( N ‘ , 

dy2 + (co2 ,
k 2w = 0. (2.17)

Wave-like solutions to (2.17) occur only if (0 < N  and thus N  is the upper limit of 

frequency for which wave motions can exist in a stratified fluid. (If co > N  the 

disturbances decay.) If N  is constant and w <* e"ny (periodic in y), then the dispersion 

relation is

f  ,.2 V/2
co = N

Kk 2 + m '

= N cosO, (2.18)

where 6 is the angle (101 < nil)  between the horizontal and the wavenumber vector 

k  = (k , m). The lines of constant phase are kx + my = constant and with co defined by 

(2.18), the phase velocity c is given by

N k 2 N k m
(

c =
(k2 + m2)372' (k2 + m2)3/2

( n  2 N ..
— cos 0, — sin 0 cos 0 (2.19)
\k\ \k\

Therefore, the lines of constant phase move in a direction perpendicular to themselves. 

The group velocity cg = (dco/dk, dco/dm), however, is parallel to the lines:

A m " N k m

(, k2 + m2 )  (  2 )

^/^-sin2 0 ,--^ s in 0 c o s0 ( 2 .20)
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Thus the phase and group velocities are perpendicular to one another (figure 2.6). For a 

source generating a disturbance of frequency co (< N), the crests and other lines of 

constant phase stretch radially out from the source at an angle 6 = cos_1(m/A0 to the 

vertical (figure 2.7, where the lines of constant phase are indicated by the light and dark 

bands). The energy created by the disturbance is propagated at cg. As the phase and 

group velocities have horizontal components in the same direction and vertical 

components in opposite directions, the energy propagation in internal waves has an 

upward component when the motion of crests has a downward component and vice 

versa. In figure 2.7, for example, the motion of lines of constant phase perpendicular to 

themselves is downwards in the upper half of the photograph where the energy is 

propagating upwards. Only one or two wavelengths are seen because when the crests 

have travelled a short distance, they leave the region defined by the rays where all the 

energy is confined.

For slowly varying N,  (2.18), (2.19) and (2.20) can be applied locally. The 

wavefronts bend and change direction according to the stratification. As co —» N  (6 —> 0), 

the wavefronts bend to approach the vertical and as co —» 0 (0 —> k/2), they become 

horizontal. Rays can also reflect off solid boundaries, but they always retain their angle 

to the vertical.

source of 
disturbance propagation 

of energy

particle
motions

motion of crests and troughs

Figure 2.6. For internal waves propagating through a continuously stratified 
fluid, the wavevector k and phase velocity c are perpendicular to the group 
velocity cg.
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Chapter 2 Background on Turbulent Plumes and Internal Gravity Waves

Figure 2.7. The waves generated in an uniformly stratified fluid by the 
oscillation of a horizontal cylinder at frequency 0.1N. The oscillatory motions 
are concentrated in bands bounded by “rays” originating at the edges of the 
source. (Photograph by Mowbray and Rarity, 1967 and taken from Lighthill, 
1978.)
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Chapter 3

Ocean Stratification and Circulation

3.1 The Deep Ocean

The structure of the oceans consists of a warm, less dense layer at the surface 

which progressively changes to a cold, dense interior. As well as temperature gradients, 

salinity differences also contribute to the average vertical density gradient, but to a lesser 

extent. Because the ocean exhanges heat and fresh water with the atmosphere at the 

surface, the surface properties vary according to geographic location and season. 

Considerable surface currents, generated by frictional stresses with the faster moving 

atmosphere, carry water masses large distances. In contrast, the bulk of the ocean 

interior, being insulated from the atmosphere, displays only small spatial variations in its 

properties and moves at a much slower rate. Between the surface and the interior is the 

thermocline where water properties, especially temperature, change rapidly with depth.

The density structure of the world’s oceans is given in figure 3.1 where the zonal 

mean cross-section of density with depth is shown. The density is given as <7e which 

represents the density anomaly of sea-water (compared with fresh water) that is brought 

adiabatically to the surface. The density increases rapidly from the surface through the 

thermocline but shows only a small increase in the interior below 200 m.

The oceans maintain their stratification through the thermohaline circulation which 

continually overturns surface and interior waters. The sinking of surface waters to 

absyall depths is known to occur at several localised regions while the rising is distributed 

over most areas (Robinson and Stommel, 1959). Water properties indicate that there are 

only two major sources of deep water over 2000 m - North Atlantic Deep Water (NADW) 

and Antarctic Bottom Water (AABW). Figure 3.2 shows the temperature and salinity
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Figure 3.1. The annualised zonal mean cross-section of density (<7e) for the top 
ocean layer 0 -  1000 m and for the layer below 1000 m (after Levitus, 1982). 
Vertical profiles of the hemispheric and global mean density are shown on the 
right. (Taken from Peixoto and Oort, 1992, page 192.)

profiles in the Atlantic Ocean along 25°W. The bulk of water in the Atlantic between 

2000 m and 4000 m has temperature 2 -  4°C and salinity 34.9 -  35.0 practical salinity 

units (1 psu equates to one gram of salt per kilogram of sea-water). As it extends 

southward from the North Atlantic, it is recognised as NADW. In the southern 

hemisphere, the water below 4000 m is colder and fresher (< 2°C and with salinity 

< 34.8 psu) and as it originates from the Antarctic it is denoted AABW. A qualitative 

model of the deep circulation was developed by Stommel (1958) and shown in figure 3.3. 

It shows the two sources of deep water feeding intense western boundary currents in the 

Atlantic which spread into the interior through large cyclonic gyres in each hemisphere. 

The southern gyre also feeds into the Indian Ocean, which in turn feeds into the Pacific 

Ocean. Upwelling brings water to the shallower depths and inflow into the sources 

completes the circulation.

Various studies have verified aspects of Stommefs model. A single deep water 

source in the polar region has been shown in a numerical model to establish a relatively
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Figure 3.2. The properties o f the Atlantic Ocean along 25°W from the sub­
polar Antartic to Iceland: (a) temperature and (b) salinity. Note that a m id­
ocean ridge intersects this cross-section near the equator so that in the southern 
hemisphere, the cross-section is west o f the ridge while in the northern 
hemisphere, the cross-section is east o f the ridge. (Source: Data from software 
package “ Ocean Atlas”  by J. Osborne, NOAA/APEL. The data was taken 
during July-August, 1988 (Oceanus) and February-April, 1989 (Melville).)
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Figure 3.3. Stommel’s simplified model (1958) of the deep circulation of the 
world’s oceans. The sources of deep water are S, in the North Atlantic and S 2 
in the Weddell Sea.

intense boundary current that feeds a cyclonic gyre (Kawase, 1987). It was also shown 

that the deep western boundary current originating from the source crosses the equator to 

feed both basins only if the damping associated with upwelling is weak. This is 

qualitatively consistent with the circulation in the North Atlantic induced by the source in 

the Norwegian-Greenland Seas. The predominant features of the boundary current and 

cyclonic gyre were still present when simple bottom topography (in the form of a plateau 

and a depression) was imposed on the ocean basin (Kawase and Straub, 1991).

3.2 Deep Water Formation and Outflows

Most of the deep and bottom waters of the oceans (depths > 2000 m) and 

intermediate waters (depths 500 -  2000 m) originate from outflows of marginal seas or 

continental shelf regions where intense and sustained exchange of heat or fresh water 

between the surface and the atmosphere causes the density of waters to increase (Warren, 

1981). Marginal seas are characterised by being semi-enclosed with a restricted exchange 

with the open ocean so that they tend to trap dense water. In the present climate, there are 

four major outflows from marginal seas (Price and O’Neil-Baringer, 1994). Outflows
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from the Arctic Ocean passing through the Denmark Strait and from the Norwegian- 

Greenland Sea through the Faroe Bank Channel contribute to NADW. The Filchner Ice 

Shelf Overflow feeds into the Weddell Sea and, after being joined by other Antarctic 

outflows, contributes to AABW. The Mediterranean Sea also produces dense water, 

which, after mixing with surrounding lighter water, settles in the North Atlantic at depths 

of only 800 -  1300 m. Other deep and intermediate waters are believed to be formed by 

convection in open oceans and in adjoining unenclosed seas -  for instance, throughout 

the mid-latitudes of the southern hemisphere and in the Labrador Sea.

Various types of exchanges with the atmosphere cause dense water to be formed. 

In polar regions such as the Labrador, Norwegian-Greenland and Weddell Seas, ice 

formation during winter leaves behind cold and highly saline water. In the Mediterranean 

Sea, net evaporation increases the salinity and hence density of water. In many 

situations, newly formed dense water sinks to the bottom along slopes and continental 

shelves. Strong convection from the surface can also bring dense water directly to the 

bottom in the form of “chimneys” (Killworth, 1979 and 1983). For example, intense 

surface cooling has been known to cause vertical mixing in regions 1 0 —50 km wide and 

up to 2000 m deep in the north-west Mediterranean and in the Weddell Seas.

In the case of dense water outflows, the exhange between the marginal sea and the 

open ocean is determined by factors such as hydraulic control, topographic features (for 

example, the width and depth of the constriction) and even basin scale circulation. In 

each case, the waters must descend continental shelves and slopes before reaching their 

final depth (Whitehead, 1989). As the outflows descend to the open ocean, entrainment 

of surrounding waters alters the properties of the outflow so that the product waters that 

reach and spread in the open ocean may have very different properties to that of the 

original source water. A model for the modification of outflow properties has been 

developed by Price and O’Neil-Baringer (1994). The densities of the source and product 

waters for the four mentioned outflows are given in table 3.1 (cre and cr4 are the densities 

of the water brought adiabatically to the surface and to depth 4000 m respectively). The 

Mediterranean Outflow is the densest at the source while that of the Filchner Ice Shelf
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Source Water Density Product Water Density
(a e kg m'3) (°e kg rn 3) (cr4 kg m'3)

Filchner Ice Shelf Outflow 27.93 27.89 46.20
Denmark Strait Outflow 28.04 27.92 46.07
Faroe Bank Channel Outflow 28.07 27.90 45.88
Mediterranean Sea Outflow 28.95 27.70 44.91

Table 3.1. The four major outflows of dense water into the world’s oceans. 
The source water density cre is the density at the edge of the marginal sea where 
the water was formed while the product water densities <70 and cr4 are taken from 
where the outflows are spreading in the ocean. (Source: Price and O’Neil- 
Baringer, 1994).

Outflow is the least dense. However the product waters of the Mediterranean Outflow is 

the least dense and hence it spreads at depths of only 800 -  1300 m to form a warm and 

highly saline intrusion into the North Atlantic (see figure 3.2). The outflows from the 

Denmark Strait and the Faroe Bank Channels are slightly denser than the Filchner Ice 

Shelf Outflow when all are brought adiabatically to the surface, but at the depths where 

these outflows eventually settle in the Atlantic Ocean, Filchner Ice Shelf Water is the 

densest. Thus NADW is found above AABW in most of the world’s oceans.

3.3 Other Influences on Thermohaline Circulation

Besides the buoyancy-driven effects of deep water formation, the circulation of 

the oceans is also influenced by factors such as rotation, topography and double-diffusive 

convection. Rotation plays an important role through the Coriolis force, which acts to 

deflect all large-scale motions in the oceans. The Coriolis force results in large ocean 

gyres, fronts (regions of anomalously large horizontal gradients in temperature, salinity or 

density) and its variation with latitude leads to narrow boundary currents. The intense 

western boundary currents and cyclonic gyres in Stommel’s model (figure 3.3) are 

features of the earth’s rotation.

Coriolis forces also affect outflows from regions of deep convection, controlling 

at least patterns of horizontal flow and possibly having some influence on the overall
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density stratification in the ocean interior. Laboratory experiments have shown that the 

manner in which turbulent plumes spread in a tank is changed when the tank is subjected 

to rotation (Pierce and Rhines, 1996). Water from deep convection often escapes from 

the sinking region through the frictional effects of gyres and eddies and also through 

boundary currents (Send et al., 1996). For instance, the Mediterranean Outflow turns 

northwards after leaving the Strait of Gibraltar, where the Coriolis force is balanced 

against the continental slope (Price et al., 1993).

Apart from side boundaries such as continental slopes, topographic barriers 

impede the flow of water between ocean basins. For instance, the Atlantic mid-ocean 

ridge separates the Atlantic Ocean into eastern and western basins below approximately 

4000 m. Properties associated with AABW, which feeds into the bottom of the western 

basin, are not found in the eastern basin because AABW is prevented from spreading 

directly into the eastern basin by the ridge (see figure 3.2 where the colder and fresher 

AABW of temperature < 2°C and salinity <34 .8  psu is found only in the western basin 

south of the equator on 25°W). In contrast, properties associated with NADW are found 

in both basins because NADW spreads at depths dose to the ridge and can therefore spill 

into both basins.

The major properties of sea water which contribute to density differences are salt 

(sodium chloride) and heat. Diffusion of these two components occurs at different rates, 

leading to instabilities when waters of different temperature and salinity are placed next to 

one another. In order for vertical instabilities to develop in the oceans, the vertical salt 

gradient necessary is only 1/100 that of temperature (when both are compared in density 

units) and this is satisfied over many regions (Schmitt, 1994). Such instabilities lead to 

“salt-fingering”, the rising and falling of water in thin columns, and “thermohaline 

layering”, where well mixed layers of water are separated by sharp interfaces. Salt 

fingers and layering have been observed, for example, at the bottom of the Mediterranean 

Outflow (Magnell, 1976) and layering has been recorded in the Arctic Ocean (Neal et al., 

1969).
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3.4 Motivation for the Current Research

The research to be presented in the following chapters is aimed at achieving a 

better understanding of the processes involved in the large-scale ocean circulation. As 

oceanic deep water sources are buoyancy driven and their outflows mix with surrounding 

water, they are in many ways similar to buoyancy sources and plumes in filling-boxes. 

Indeed, the oceanic density profile (figure 3.1) shows strong gradients near the surface 

that weaken to smaller gradients in the interior, and there is at least a qualitative 

resemblence between the oceanic density profile and the stratification produced by a 

turbulent plume in a filling-box (Killworth and Turner, 1982; see also plot o f / / ,  figure 

2.2b). As outlined in chapter 1, this thesis presents, in the following chapters, extensions 

to the previous work on plumes in filling-boxes. While the extensions do not produce a 

new model of ocean convection (indeed, some important aspects such as rotation and 

double-diffusion in plume-driven convection are not considered at all), it is hoped that the 

more thorough understanding of plumes in filling-boxes will further advance knowledge 

of the ways in which buoyancy-driven convection affects the oceans.
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Chapter 4

Plume-Driven Shear Layers

4.1. Introduction

Most studies of turbulent buoyant plumes have focused on the plume flow itself, 

with relatively little attention paid to associated motions in the plume surroundings. The 

“filling-box” process described in chapter 2 has generally been studied in boxes having 

lengths and widths comparable to the water depth and the theoretical analysis has assumed 

motions outside the plume to be small. In this chapter, I report experiments which show 

that in long tanks, a series of strong counterflowing shear layers is established in the 

stratification produced by the “filling-box” mechanism. I present evidence that the layers 

are produced by internal gravity wave normal modes excited by the plume outflow. They 

are similar in structure to columnar modes generated by intrusions into density gradients 

(Manins, 1976) or by the slow horizontal motion of obstacles in density gradients 

(Bretherton, 1967).

In the “filling-box” model described by equations (2.1) and (2.3), the outflow 

layer at the bottom has been found to occupy one-quarter the water depth from the source 

(Manins, 1979). The motions outside the plume and bottom outflow layer are assumed to 

be dominated by vertical advection and by horizontal entrainment into the plume. The 

large-time dependence on depth of the vertical advection velocity V can be calculated from 

theoretical predictions of the dimensionless plume volume flux r^w (2.11a), which is 

converted to V using (2.6a) and (2.4). The model assumes that the entrainment volume 

per unit depth into the plume is 2kREW at all depths. For an axisymmetric plume far 

from all side-walls this provides the horizontal velocity that is attributed to entrainment 

and directed radially into the plume. In the experiments reported below the plume is also
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placed near one end of a long channel in order to constrain the flow in the environment far 

from the plume to be two-dimensional. (Experiments indicate that the flow in the 

environment is approximately two-dimensional at a distance of about two plume radii 

from the axis of the plume.) The entrained water is assumed to be sourced evenly from 

across the horizontal cross-section of the tank so that the horizontal volume transport 

increases linearly from zero at the end of the tank opposite the plume to 2kREW at the 

plume edge. Thus if B is the width, L the length of the tank and x the distance from the 

plume end, then the horizontal velocity U attributed to entrainment is

U = - 2 kERW{ L ~ X\  (4.1)
BL

(The negative sign indicates that entrainment velocities are directed towards the plume.) 

The scaling between U and its dimensionless equivalent u -  -rw  can be calculated from 

(2.4) as

U = 24l3K2l3E4l3F xnH 2nB~]L ~ \ L - x ) u .  (4.2)

The dimensionless inflow velocity u is plotted in figure 4.1. Although the entrainment 

driven velocities increase with depth, they should still be weaker than the velocities in the 

outflow layer moving away from the plume. This is because the outflow layer only 

occupies about one-quarter the total depth, yet its volume flux must balance the total 

entrainment volume flux of the upper three-quarters of the tank.

Thus in the “filling-box” model, the horizontal velocities in the environment are 

expected to form a fast outflow layer at the bottom directed away from the plume and a 

slower moving layer above in the opposite direction. In §4.2 and §4.3, I describe 

experiments that show the circulation pattem consists of many more layers. In §4.4, 

these layers are compared with theoretical solutions for normal modes of internal gravity 

waves. Brief comparisons with other systems that show related flow structures and 

conclusions are given in §4.5.
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u

Figure 4.1. The far-field horizontal velocity u induced by entrainment into a 
plume (4.2) under the assumption of a dynamically passive environment in the 
“filling-box” model. Negative values of u indicate velocity towards the plume.

4.2. Experim ents

In the experiments a dense salt solution was released at a steady rate through a 

small nozzle just below the free surface of a tank of water. The nozzle, about 6 mm in 

diameter, was wide enough to ensure that the velocity and momentum of the released 

water was small so that the source approximated a pure buoyancy source. The nozzle 

was positioned near one end of the tank and equidistant from three side walls. A 

peristaltic pump maintained a constant flux of salt water through the nozzle. A typical 

flow rate used in the experiments was 0.385 cm3 s '1 with salt solution densities ranging 

from 1090 to 1180 kg m“3. Two tanks were used. The first was 1.1m long, 0.3 m wide 

and 0.24 m deep while the second was 2.0 m long, 0.2 m wide and 0.4 m deep. The 

nozzles were positioned at various depths to give effective depths of 0.16 m and 0.235 m 

in both tanks and additionally, 0.3 m and 0.38 m in the larger tank.

Horizontal velocities far from the plume were measured by dropping crystals of 

potassium permanganate into the tank. As they descended to the bottom, the crystals 

dissolved to produce a vertical dye line. Horizontal velocities were calculated by
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measuring the distortion of this dye line in a short period of time. The short time interval 

was crucial to ensure the dye did not reach the end walls and also to minimise errors due 

to the simultaneous upwelling of the water. The movement of the dye line was recorded 

on video. A grid of lines with 1 cm spacing on the front of the tank allowed 

measurements of dye displacement correct to 0.5 cm from the video recording.

Conductivity profiles and time records at a fixed point were measured by a four- 

head conductivity probe (MSCI 5201 manufactured by Precision Measurement 

Engineering, USA). Simultaneous thermistor measurements (GB38P12 manufactured by 

Fenwal Electronics, USA) provided a temperature correction for the conversion of 

conductivity to density using the equations of Ruddick & Shirtcliffe (1979). Fractional 

density changes of less than 10~7 could be detected.

In addition to experiments starting with a homogenous tank that revealed the 

velocity structure at large times, twelve experiments were conducted to study the 

evolution of the flow starting from a plume-stratified tank at rest. In these experiments, 

the plume was run for up to four hours. Within the first hour the first front approached 

the level of the source and the density profile approached the asymptotic shape. (Because 

vertical advection velocities decay with height, the first front did not actually reach the 

level of the source until a much later time.) Conductivity profiles as well as 

measurements at a fixed point were taken both before and after the asymptotic state had 

been reached. The plume was later turned off and the motions in the stratified tank 

allowed to come to rest. The plume was then restarted and the subsequent redevelopment 

of the horizontal velocity profile monitored. The parameters of each experiment are given 

in table 4.1 along with three timescales: A -1 (where N  is the depth-averaged buoyancy 

frequency at large times), tw = L/ N  H, the timescale for long waves to travel the length of 

the tank, and ta = 3 3 J A /H 2I3F U3, the time for vertical advection of water in the “filling- 

box” environment. The advection time is derived from the non-dimensionalisation for t 

given in (2.4) and is the time predicted by the theory for the first front to reach f  = 0.1.
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Chapter 4 Plume-Driven Shear Layers

4.3. Results

4.3.1 The Layers

The most striking observation was that the stratified environment produced by a 

turbulent plume supported a strong and persistent series of layers. These layers appeared 

as dominant features in the profiles of horizontal velocity, as seen in figure 4.2a, but 

corresponded to extremely small perturbations in the density gradient. Hence I call these 

shear layers in order to distinguish them from density layering. Figure 4.3 shows 

characteristic horizontal velocity profiles in the middle of the tank in three experiments. 

At the bottom of the tank the outflow layer thickness was approximately one-quarter of 

the tank depth. Immediately above the outflow layer there was a layer of similar thickness 

moving towards the plume. In the upper half of the tank there were several layers. Both 

the vertical scales and the magnitudes of the horizontal velocities in the shear layers 

generally decreased with height. At the centre of the third and fifth layers from the 

bottom, as defined by local velocity extrema, the water was almost stationary. Between 

these two layers there was a region of moderate flow towards the plume. At the third

Figure 4.2. (a) A photograph of a typical experiment (in a 1.1 m tank). 
Potassium permanganate crystals dropped into the tank left an initially vertical 
line of dissolved dye in the water. As this dye line moved passively in the water, 
it revealed the shear layers generated by the plume outflow. The tracer was also 
used to measure the horizontal displacement for determining the velocity 
profile, (b) A streak photograph of a typical experiment.
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velocity extremum (£ = 0.3 to 0.4), the velocity oscillated slowly from positive to 

negative, so that the flow was at times away from the plume. A streak photograph (figure 

4.2b) not only shows the shear layers but also indicates that the horizontal velocities 

heading towards the plume decrease with increasing horizontal distance from the plume.

Another view of this previously unexpected velocity structure is obtained by 

subtracting the predicted horizontal inflow velocity due to entrainment from the measured 

velocity (figure 4.3b). Layers can be defined as the water lying between zeroes of the 

horizontal velocity difference u -  ue.

At the end of the tank away from the plume, I also observed a concentrated 

upwards flow from the bottom outflow layer that fed the return flow towards the plume in 

the second layer. This existed because the uniform vertical advection distributed over the 

area of the box at the top of the outflow layer was insufficient to accommodate the total 

volume flux supplied to the layer by the turbulent plume. The same process continued to 

operate to some extent above the second shear layer with a tendency for the horizontal 

volume flux in each layer to partly reflect from the end walls and return in the next layer.

It should be emphasised that water elements did not necessarily traverse the tank 

from end to end during their residence time in each layer. The distributed vertical 

advection of water “short-circuited” the paths. For example there was little horizontal 

flow (relative to the tank) in the third layer, yet if a thin layer of water was dyed, this dyed 

water was seen to migrate upwards through this layer. Thus those water particles which 

were not entrained into the plume migrated upwards through the series of shear layers, 

experiencing an oscillatory horizontal velocity.

4.3.2 Long Period Oscillations

At large times after the stratification had developed the system did not reach a 

steady state but instead continued to support slow oscillations. As the first front 

approached £ = 0 . 1 ,  the number of shear layers oscillated between four and five. Later 

when the first front had reached £ = 0.05, the number of layers oscillated between five 

and six. In a rare instance, seven layers were observed. However, the maximum number
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Figure 4.3. Sample horizontal velocity profiles measured in the middle of the
tank in three experiments listed in table 4.1: -----------------  experiment 4.10;
-----  -----  experiment 4.4; — — — — experiment 4.2. (a) The

measured velocities u and predicted two-dimensional entrainment velocity ue
( ---------------- ) relative to the tank and (b) the difference u -  ue. Negative
velocities are towards the plume.
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of ayers typically observed was six. The horizontal velocity profiles obtained during a 

fluctuation from five to four layers and back are shown in figure 4.4.

Velocity fluctuations (corresponding to the changing number of layers), were most 

visble in the region 0.15 < f  < 0.45. At these depths the positions of the extrema in 

horzontal velocity shifted, resulting in large velocity fluctuations at a given depth. 

Inched, in some cases, the velocity at a given depth fluctuated between two values that 

were close to local velocity maxima of opposite signs.

As expected in buoyancy-driven flows, fluctuations in horizontal velocity were 

accompanied by oscillations in the density field. In the absence of internal waves and 

shear layers, the “filling-box” solution predicts that the density increases linearly with 

tirm at a fixed point. However, conductivity measurements at a fixed point showed that 

the density oscillated about this linear trend. An example is shown in figure 4.5, where I 

plo the density at f  = 0.25 as a function of time (figure 4.5a) and the deviations from the 

best fit linear trend (figure 4.5b) for experiment 4.10. The period of oscillation t0 (listed 

in table 4.1) was measured from the density records for the asymptotic state for each 

experiment. The periods were all of the order of (0.3 -  0.9)ta and (50 -  200)^.

4.3.3 Shear Layer Establishment in Existing Stratification

After the tank had been stratified the plume was turned off and the motions 

allowed to decay. The plume was later restarted and horizontal velocity profiles were 

takin at regular intervals. In twelve experiments, the pattern of development of the layers 

wa> the same. A sequence of profiles from one run is shown in figure 4.6. At small 

times (figure 4.6a), the stratified water above the outflow layer began to move away from 

the plume and a broad region in the upper half of the box moved towards the plume. 

Ignoring the effects of stresses imposed by the rigid (no-slip) bottom and the partly rigid 

(free-slipping) surface at the top, this motion resembled the second baroclinic mode 

(found in §4.4 for the “filling-box” density profile). The position of the inflow velocity 

maximum shifted down with time and a third shear layer soon formed at the top (figure 

4.6b). It will be seen below that the motion at this stage appeared to be dominated by the
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a) b)

-2 - 1.5 -1 - 0.5  0 0.5  1 1.5 2-2 - 1.5 -1 - 0.5  0 0.5  1 1.5 2

Figure 4.4. Horizontal velocities at eight minute intervals during experiment 
4.10 (table 4.1) showing the transition between a five-layered system and a 
four-layered system and back, (a) 62 min, (b) 70 min, (c) 78 min, (d) 86 min, 
(e) 94 min and (f) 102 min after start.
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P ~P' a  '

Figure 4.5. The density pe -  pr determined from the conductivity probe fixed 
at 0.175 m from the bottom ( f  = 0.25) in experiment 4.10. The first front 
passed the probe at t ~ 900 s. (a) The density variation is approximately linear 
with time long after the first front has passed the probe, (b) Deviations Ape 
from the linear trend in (a) show low frequency periodic oscillations.
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third baroclinic mode. Additional vertical structure continued to develop in the velocity 

profile, consistent with the appearance of higher baroclinic modes being excited by the 

bottom outflow, until the velocity profile reached that in figure 4.6f. The time required 

for the development of the baroclinic structure was much shorter than the period of the 

persistent low-frequency oscillations. Hence the structure in figure 4.6f was a quasi­

steady state. The dominant vertical length scale of the velocity profile appeared to be set 

by the depth of the plume outflow.

I estimated timescales for the establishment of the shear layers by measuring the 

time te taken for the third velocity extremum (from the bottom) to migrate down to the 

level f  = 0.28 and for the fourth extremum to reach f  = 0.12 (the state in figure 4.6e). A 

plot of te against tw, each normalised by N ~ \  (figure 4.7a) shows that the time for the 

development of the shear layers was proportional to the travel time of internal waves. 

(Note that both the travel times of internal waves along the length and up through the 

height of the box are proportional to L/ NH .)  The data are well described by a straight 

line passing through the origin, te = (12.6 ± 0.8) U  N  H. Most of the variance in this 

result, however, can be attributed to the effects of the third independent timescale, ta. A 

plot of te against ta, each normalised by tw, (figure 4.7b) shows that t j tw = (15.8 ± 0.5) -  

(0.0172 ± 0.003) t j t w. Thus the normalised establishment time was weakly dependent on 

the advection time, becoming longer for more rapid “filling-box” ventilation. 

Establishment timescales that are 12 to 15 times the LI N  H  scale are consistent with the 

dominance of higher baroclinic modes which have smaller phase speeds. For instance, if 

the total water depth is replaced by HI4, the dominant vertical scale of forcing, then te 

indicates that these higher modes traverse the length of the tank only a few times before 

the quasi-steady flow is established.

In order to place the rate of vertical advection in perspective, it should be noted 

that the establishment of the quasi-steady shear layers required a time of the order of one- 

tenth the advection timescale, which is also the time required for the tank to be refreshed 

with new plume water. This is illustrated in figure 4.8, which shows the distribution of 

water from the plume at a time approximately te after the restart. The dyed water of the
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a) b)

■1.5 -1 - 0.5 0
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1 1.5
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e) f)
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Figure 4.6. The evolution of the baroclinic modes and development of shear 
layers in a stratified tank initially at rest. These horizontal velocity profiles were 
taken (a) 2 min, (b) 4 min, (c) 6 min, (d) 8 min, (e) 10 min and (f) 12 min after 
restarting the plume in experiment 4.8. The establishment of the velocity 
structures in all the experiments showed the same behaviour, differing only in 
the time taken to reach the quasi-steady state in (f).
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a)

t N
w

b)

te

ta

Figure 4.7. Time te taken for the velocity structure to evolve to that shown in 
figure 4.6e. (a) te is plotted against tw, the timescale for long internal waves to 
travel the length of the tank, both non-dimensionalised by N~\ (b) te is plotted 
against ta, the timescale for vertical advection in the “filling-box” model, both 
non-dimensionalised by tw. Note that in (a) the abcissa reduces to tw N = UH.
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restarted plume had only advected to f  = 0.65 (and the vertical velocity decays rapidly 

with height, 2.11a), whereas the velocity structure was already approaching the final 

quasi-steady state.

4.3.4 The Circulation

The circulation pattern could be broadly divided into three regions. The plume 

outflow occupied the bottom quarter of the tank (0.75 < f  < 1) and was a region 

dominated by convection. The outflow was a gravity current which was not greatly 

influenced by wave motions in the overlying stratified water. Under the conditions of the 

experiments, it was also a turbulent layer.

In the experiments, the dimensionless thickness of the outflow layer did not vary 

significantly despite large variations in the dimensions of the tanks. If the outflow was 

homogenous, then given the same tank depth and source buoyancy flux, one might expect 

that the thickness of the outflow layer from a plume would decrease with tank width. 

However this was not the case (see figure 4.3, where the outflow in experiment 4.2 in a 

0.2 m wide tank was actually slightly thinner than that recorded for experiment 4.10 in a 

0.3 m wide tank). A possible explanation is that the plume produced water with a range 

of densities so that the lightest plume water had the same density as the environment water 

at approximately f  = 0.75. Thus the least dense plume water started to spread near 

f  = 0.75 and the denser plume water below to give a relatively constant dimensionless 

outflow thickness for all the experiments.

Figure 4.8. The shear layer structure had already developed throughout the 
tank by the time the dyed outflow from a restarted plume in a previously 
established density gradient had been advected to £ = 0.65.
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The central region of the water column (0.15 < f  < 0.75) was dominated by 

baroclinic modes generated by internal gravity waves and comprised at least three velocity 

extrema. The motions in this region were laminar and less rapid than in the underlying 

plume outflow from which they derived their energy. The plume outflow set the 

dominant vertical scale corresponding to four to six shear layers in the whole tank. This 

central region experienced the greatest effects of entrainment into the plume. The 

entrainment velocity opposed the flow in the third shear layer from the bottom and 

reduced its velocity to almost zero relative to the tank. The region also exhibited the 

greatest low frequency time-variability in horizontal motion, with periodic reversals in 

direction and accompanying fluctuations in the density gradient at some depths.

The region very close to the surface (0 < f  < 0.15) was characterised by a small 

horizontal velocity towards the plume. The amplitude of horizontal motion associated 

with the baroclinic modes was smaller at these depths than was the motion ue caused by 

entrainment into the plume, even though ue —> 0 at the surface. This was the region 

where both the buoyancy frequency and vertical wavenumber in the velocity field (see 

§4.4) was largest. The velocity structure was also the most variable with time. In the 

experiments it was sometimes unidirectional and at other times two or three distinct 

velocity extrema were evident, corresponding to counterflowing shear layers 

superimposed on the entrainment flow toward the plume.

4.4. Normal Modes

4.4.1 Inviscid Baroclinic Normal Modes

For the “filling-box” density profile defined by (2.12), the first eight baroclinic 

modes were calculated numerically, neglecting the effects of viscosity and the relatively 

small velocities associated with entrainment and vertical advection. In this and the 

following section, x is the distance along the tank, y the height from the bottom, and u 

and w the usual velocities. With p ' and p ' small perturbations of the density and 

pressure field respectively, the equations of motion are exactly the same as in (2.14). 

Following Gill (1982), w and p ' can be separated into
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xv = h(y)xv(x,t) and p ' = p(y)fj(x,t).

Here, h and p  are the vertical displacement and pressure respectively while w has units 

of inverse time and fj is dimensionless. With these variables and using the hydrostatic 

approximation, (2.14) is separated and reduced to

d h Af2 r  _ n — T + —r h - 0 ,
d y  Cn

(4.3a)

2 dh
CnPo~r = P’ dy

dxv 2 d 2p 
dx2

(4.3b)

(4.3c)

and

(4.3d)

where cn is a separation constant. There is an infinite sequence of descending eigenvalues 

cn, each of which corresponds to an eigenfunction (normal mode) with the relevant 

boundary conditions being rigid, but free-slipping top and bottom. The solutions to h 

and p  are calculated numerically from (4.3a) and (4.3b). Meanwhile, (4.3c) and (4.3d) 

indicate that fj satisfies the wave equation. A solution to r) and w has the form

and

rj = Asin(fcx + ö)0

(4.4)

xv = Acosin(kx + cot),

where the frequency co is related to the horizontal wavenumber k by co2 = c 2k2. Note that 

k (and hence co) depends on the length of the tank and the horizontal mode of the waves. 

The horizontal velocity is also separable in the form

P(y) r.U  =

gpo(y)
u{x,t)

and can be calculated from the solution to (4.3). For an infinitely long tank where the 

frequency is zero, xv, f], and ü do not vary with time so that for fixed x, the horizontal 

velocity is proportional to p (y ) /gp0(y). Figure 4.9 gives the functional dependence of u 

on the dimensionless depth f  for the first eight modes in this situation. It shows that for
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the nth mode there are n + 1 shear layers (or velocity extrema) whose thicknesses 

decrease toward the top of the tank. However, the very small vertical scales of motion 

near the top of the stratification are expected to be removed by effects of viscosity and I 

focus on the region 0.05 < f  < 1, where for 4 < n < 8, the nth mode has n -  1 velocity 

extrema.

In the experiments the modes that were excited most strongly at asymptotically 

large times were those that had vertical length scales at the bottom of the tank similar to 

the plume outflow depth. The measured horizontal velocity profiles (figure 4.3) in the 

region 0.1 < f  < 1 are qualitatively similar to the velocity structures of the sixth, seventh 

and eighth inviscid modes except that the amplitudes of the horizontal velocities increase 

with height in the latter. In particular, the third and fourth horizontal velocity extrema 

of the n = 7 mode lie at f  = 0.35 and f  = 0.19, consistent with the experimental 

observations. This mode also corresponds to six shear layers, as was commonly 

observed. In contrast, the structures of the lower modes (n = 1 to 4) were seen only at 

short times after the plume was started in the pre-established stratification (§4.3.3). The 

observations were therefore consistent with the early appearance, particularly in the upper 

half of the water column, of the most rapidly propagating lower modes and with the later 

appearance of the slower propagating modes that were the most strongly excited. On the 

other hand, the measured horizontal velocities decay with height, whereas the calculated 

baroclinic modes have amplitudes that increase with height as a result of the nonlinear 

density gradient. The difference can be attributed to effects of viscous dissipation which 

act most strongly on the smaller vertical scales characteristic of the higher baroclinic 

modes and in the upper, more highly stratified levels of the box. I look more closely at 

viscous effects in the next section. Side-wall dissipation in the long channels will further 

contribute to this decay.

For each normal mode, (4.3c) indicates that the eigenvalue cn is the wave speed 

for the associated x- and /-dependent oscillations of u and w. It is assumed that the mode 

of oscillation in the horizontal is the fundamental mode having wavenumber k = tz/L. The
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3

- 2.00-4.00

u (arbitrary units)

-4.00 - 2.00

u (arbitrary units)

Figure 4.9. Inviscid baroclinic normal modes calculated for the plume 
stratification (2.12). (a) The first four modes and (b) the next four modes. The 
horizontal velocities have been normalised to give the same value at the bottom.
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period Tn of oscillation in each normal mode can then be calculated. Table 4.2 gives the 

values of cn and Tn for each of the first eight normal modes for the conditions of 

experiment 4.10. It shows that the modes excited most strongly (the experiments indicate 

that these are n = 6, 7, 8) have periods of approximately five to seven minutes. Beating 

periods between the sixth and seventh modes and between the seventh and eighth modes 

are approximately 70 and 95 minutes respectively. The beating period is approximately 

twice the oscillation period of layers t0 observed in the experimental velocity fields. This 

suggests that the low-frequency oscillations seen in the circulation involved a nonlinear 

interaction of two consecutive normal modes.

The above analysis for normal modes in a box of finite length predicts that the 

horizontal velocities (after subtracting that due to entrainment into the plume) should 

oscillate in direction (4.4). This was not observed because the bottom outflow from the 

plume must remain approximately constant in time. Only after the plume was stopped 

were the motions seen to sometimes reverse. Thus the horizontal velocity structure of 

figure 4.9, calculated for an infinitely long tank, is expected to be qualitatively valid for 

finite tanks provided the plume outflow is maintained.

Mode Eigenvalue Period of horizontal 
oscillations

n cn (m s-1) Tn ( s)
1 0.0331 66.4

2 0.0203 109
3 0.0140 157
4 0.0106 208
5 0.00843 261
6 0.00701 314

7 0.00600 367
8 0.00525 419

Table 4.2. The eigenvalues and periods of horizontal oscillations for the first 
eight normal modes of experiment 4.10.
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4.4.2 Effects o f  Viscosity on Horizontal Velocities

In this section I examine how viscosity modifies the baroclinic modes. Again, I 

disregard the entrainment of water into the plume and the vertical advection of the 

environment. I assume that a disturbance at the bottom of the tank supplies the energy 

required to develop and sustain the horizontal velocities of the baroclinic normal modes. 

The energy is transported vertically by waves propagated from the bottom while the 

momentum of the horizontal flow is slowly dissipated through viscous effects. In the 

analysis of this section I calculate how fast energy is dissipated and predict how the 

velocities should decay with height.

From the inviscid solution, it is clear that the vertical scale of the shear layers 

decreases with height because of increasing buoyancy frequency N(y). Let h(y) represent 

a vertical scale equivalent to half the vertical wavelength of the wave in the dominant 

mode. Thus h(y) is approximately the thickness of the shear layer at y, but as h(y) is a 

continuous function which decreases monotonically with y, it will, in general, not 

represent the exact thickness of the shear layer at a given height.

I now estimate the vertical speed of energy propagation c (see §2.3) in the ray 

extending upwards and toward positive jc from a disturbance at the bottom. With internal 

waves, the frequency co remains unchanged along a ray so that, if 6(y) represents the 

angle between the horizontal and the wave vector k(y) = (k(y), m(y)), then

Here, the vertical wavenumber m{y) = -7i/h(y) (the negative sign is for the upward 

propagating ray). I assume that only the fundamental mode is important in the horizontal 

(to satisfy the boundary conditions at the side walls) so that the horizontal wavenumber 

k(y) = k/L. Because horizontal scales are much larger than vertical scales 

(k(y) «  Im(y)l), this suggests that co ~ N(y)k(y)/\m(y)\ is approximately constant. 

Therefore, at any height y,

( k \ y )  + m 2(y))
k(y) j j 2 = constant.

N(y)h(y) ~ N0h0,

where N0 = N(0) and h0 = h(0). It also follows that

(4.5)
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m(y) ~ —
nN(y)

N0K
and from (2.20),

cSrw \k(y)\
KK

m \ y ) JlLN{y)
(4.6)

Therefore, (4.5) and (4.6) indicate that if h0 and N(y) are known, then estimates for h(y) 

and c (y) can be deduced immediately. For the other ray extending upward towards 

negative x where k(y) = - k/L, cg (y) is also calculated as (4.6).
6 y

The horizontal velocity profiles of the inviscid baroclinic normal modes exhibit 

oscillatory behaviour. The experiments also indicated that the amplitudes of the velocities 

decayed with height. Therefore I assume that the horizontal velocity is of the form of an 

attenuated sinusoidal function

7T ^
u(y) = A(y) sin

h(y) y (4.7)

where A(y) and h(y) vary slowly in y relative to u(y). Equation (4.5) gives h{y)\ to find 

A(y), Batchelor (1967, p i52) implies that the rate of work done by viscous forces is

P0u

PoU

du{ du, du 
y dXj dxt

(du
(4.8)

where v  is the kinematic viscosity. I consider the evolution of energy K per unit mass as

it propagates vertically with the group velocity cK . Equation (4.8) then gives

DK d K d y  (du ' '
-----= —— -  = -  W  = -O qV —
Dt dy dt

and thus

8 y dy
■Po«

f j k ^

\ d y j
(4.9)

Consider one shear layer of vertical lengthscale h{y). As A(y), h(y) and cp (y) vary much 

more slowly in y compared with u(y), I introduce a long lengthscale y r over which 

K(y' ) ,  h(y') ,  A{y ' )  and cgY(y' )  change significantly and a short lengthscale y over 

which only u(y) varies significantly. To obtain an expression for the variation of A( y'), I
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integrate (4.9) over a shear layer of depth h(y' )  and obtain

\ 2

h(y') { dy

With K  = 1/2 pQu2, this gives the energy change due to viscosity in a shear layer as

1 P̂oA2(/)sinf^ŷ =-poV J dy.
h(y’) \ K y ) h  ( / ) vM/) AÄ(/)

which may be rearranged to give

A \ y ’)h(y’)} = —

Using (4.5) and (4.6) and dropping dashes, this becomes

d f  A\ 2 VK L

N X
A \ y ) N \ y ) ,

dy

to which the solution for the amplitude function A(y) is

2 v k 3L  r 3

(4.10)

A (y ) ~ C  /V(y)exp< --
N X

J N \ y ) d y (4.11)

where C is a constant of integration. The definition of y gives f  = (H -  y)/H so that the 

power series expansion (to three terms) for N(y) obtained from (2.4) and (2.12) is

N(y)  =
22I3E 2I3k U3H 4'3

2.18
H - y X 5'3

+ 0.279
H - y - 2/3

+ 0.0831
H - y

V H
+

- 1/3

2 2/3£ 2/V /3tf4/3
( H - y  
{ H

where

H - y
= 1.48

H - y - 5/6

+ 0.0945
H - y

V H

1/6

+ 0.0251 H - y ) 
V H J

\  7/6

+

and hence

\ N \ y ) d y  =
AE1n H i

2.15 ( H - y - 3/2

+ 1.24( H - y -Ml

-  0.408
H - y

+ + c.

The solution (4.11) for the amplitude A(y) can be expressed in dimensionless form 

a(y) = A(y)/A(0) as
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a(y)
\ 1 / 2 r

N(y)}  „ J V K 2L  rz

N0 J N X  Jo

/ \ \  1/2 r

»1VJ exp<
vn^L  22

n{ 1) 9
H 3

jy e w

(

\ K  j

1 ( H - y v3/2
2 .98 -2 .15  y

n \  1) V V H )

-1.24
H - y - 1/2

+ 0.408
v / /  >

+ r,

or equivalently, using the dimensionless depth

W O  f d t t "1 T 0 2 n  772/-V1/3H-4/3
a ( 0  = 0 .7 9 l( l .4 8 f5' 6 + 0.0945C1'6 +0.025 I f 7' 6 +•••) exp] — 5------------ ^ ---------

[ H' F

K
(0 .4 5 5 -0.328£"3' 2 - 0 . 1 8 9 C + 0.0623f1,2 + • ••) (4.12)

For the plume experiments, the thickness of the plume outflow layer is 

approximately one quarter of the depth of the tank. However h0 must be greater than the 

observed thickness of the plume outflow layer because h(y) is a monotonic decreasing 

function for increasing height. Figure 4.10 gives plots of a(£) for the parameters of 

experiment 4.10 with hJH  = 0.25 and 0.35. It will be seen below that the estimate 

hJH  = 0.35 produces a horizontal velocity profile with a bottom layer that has thickness 

close to HI4.

In order to show the significance of the increasing buoyancy frequency with 

height I also give an approximate solution A,(y) to (4.10) that assumes N{y) = N 0. This 

solution, expressed as a,(y) = A,(y)/A,(0), is

. , _ j  r  rs 2 /3  j—>2/3__2/3 r j 4 / 3  r / 4VK L 2  t  K H H y
ö,(y) = exp< -0.625

K n (4.13)

and has the same dependence on the parameters of the experiment and hJH  as a{y). 

Figure 4.10 gives plots of (4.13) as a function of the dimensionless depth f  for the 

parameters of experiment 4.10 using hJH  = 0.25 and 0.35.

As expected, both the energy attenuation function a(£) and its approximation a,(£) 

show that horizontal velocities decay with height. The rapid decay rate for smaller vertical 

scales is due to greater loss of energy in shear layers of smaller thickness, where the
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a(Q, a,®

Figure 4.10. The normalised velocity attenuation function a(Q from (4.12) 
and the approximation ax(Q from (4.13) for the parameters of experiment 4.10 
and using two estimates of hJH. For a(Q: hJH = 0.25 ( — — — — ),
hJH = 0.35 (----------------- ) and for ax(Q hJH = 0.25 ( -----  -----  ),
hJH = 0.35 ( ---------------- ).

velocity gradients are larger. The increase in buoyancy frequency with height also 

contributes to more rapid attenuation through a corresponding decrease in vertical scale; 

figure 4.10 shows that a(£) decays more rapidly than a,(£).

Plots of u(Q/A^=, = tf(£)sin(/rPf(l -  £)//i) are given in figure 4.11 for h JH  = 0.25 

and 0.35 to show the shape of the horizontal velocity profile expected for experiment 

4.10. The horizontal velocity profile corresponding to h J H  = 0.35 more closely 

resembles that observed in figure 4.3. Note that the predicted thickness of the plume 

outflow layer is a quarter of the total depth. The profile also contains velocities that have 

decayed significantly within the depth of the tank and has approximately six shear layers, 

consistent with the experiments.

Both (4.12) and (4.13) are, however, extremely sensitive to hJH  since very small 

changes in h J H  can result in noticeably different attenuation rates. Although smaller 

values of hJH  result in a faster decay of a(£), the rate of attenuation is also dependent on
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u * (Q

Figure 4.11. The normalised horizontal velocity u*(£) = «(y)M(O) for the 
parameters of experiment 4.10 as given by (4.7) and using the attenuation 
function (4.12). Two values of hJH are used: — — — — for hJH = 0.25 
and ----------------- for hJH = 0.35.

the dimensionless parameter

where N+ = F ]l32~2l3E~2l37t~u3H~413, the scaling factor for N. Larger values of s give 

increased attenuation rates with height, so that longer tank lengths, smaller tank depths 

and weaker buoyancy fluxes (resulting in weaker stratification) should result in greater 

decay of velocity. In the experiments, s lies in the range of 0.0209 to 0.0617 with the 

exception of experiments 4.1 and 4.5 where it is larger (up to 0.112). Except for 

experiments with very small depths (H = 0.16 m), where the horizontal velocities were 

noted to decay quickly in comparison with the other experiments, no clear trend in 

attenuation rates was seen. Given the sensitivity of a(£) to hJH, perhaps any such trends 

in the attenuation rate were hidden by possible small variations in h JH  between 

experiments.
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The effects of plume entrainment and vertical advection in the environment can 

now be qualitatively discussed. At shallow depths, where the horizontal velocities 

attributed to waves are in magnitude smaller than or comparable to the entrainment 

velocity, the water may be seen as a single region moving slowly towards the plume and 

therefore fewer layers are detected. In addition, vertical advection in the environment is 

likely to transport layers upwards, reducing the apparent attenuation rate of the horizontal 

motions. These features may be factors in the discrepancy between the calculated 

horizontal velocities of figure 4.11 and the observed velocity of experiment 4.10 in figure 

4.3a.

4.5 Discussion and Conclusion

4.5.1 Comparisons With Other Shear Flows 

The horizontal shear layers found in the plume experiments show similarities to 

the circulation observed in several other systems. Imberger, et al. (1976) studied 

experimentally and numerically the two-dimensional flow resulting from the withdrawal 

and intrusion of fluid from mid-depth in an uniformly stratified tank. They studied a 

variety of cases based on a parameter R = Q(NL2/v )2B/NL2, which is the product of the 

Froude number and one-third power of the Grashof number (Q is the volume flux per unit 

width). For the case where R > 1 (supercritical flow dominated by buoyancy and inertia 

with relatively unimportant viscous effects) they showed that convection was the 

dominant force behind the flow and that internal waves propagated vertically until the 

induced flow was equal and opposite to their phase velocity. Manins (1976) studied 

intrusions into a linearly stratified fluid for 100 < Re < 500 (where Re is the Reynolds 

number). These intrusions were governed by an inertia-buoyancy balance and the 

horizontal velocities above and below the intrusion showed an alternating layer structure 

in which each of the layers had the same thickness. For comparison, in the present 

experiments I evaluate R ~ 10 (based on the volume flux at the base of the plume and the 

depth-averaged buoyancy frequency) and Re ~ 400 (based on the velocity and depth of 

the plume outflow layer). Hence it confirms that near the bottom, the “filling-box” flows
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are dominated by inertia and buoyancy and are in the same regime as the previous studies 

of intrusions. However, the value of Re is sufficiently small that viscosity is important in 

the upper levels where N  is much greater.

Stratified flows with very small Froude numbers give qualitatively similar 

behaviour. For example, Martin and Long (1968) studied the equations describing the 

flow induced by a thin, flat plate moving slowly and horizontally through a uniformly 

stratified fluid, resulting in the generation of columnar modes or “upstream wakes” . 

Viscosity played an important part in this flow and the disturbance produced an alternating 

layer structure with amplitudes decreasing away from the plate, similar to the flow in the 

experiments. In a related problem, Bretherton (1967) studied the flow generated by a 

cylinder moving slowly in the horizontal through a stratified fluid. At a large distance 

ahead of the obstacle a broad velocity profile appeared first due to the arrival of rapidly 

propagating long wavelength internal gravity waves. Some time later, the arrival of 

slower waves of short vertical wavelength produced a “plug flow” confined to the vertical 

extent of the obstacle with velocity reversals above and below. The equivalent Froude 

number for the experiments here is \6QI N H2 ~ 0.6 (based on the outflow height HI4). 

Thus the conclusion in §4.4.2, that viscosity is a strong controlling influence in the upper 

levels of the water column as a consequence of the increased buoyancy frequency, is 

consistent with previous studies of viscous upstream columnar wakes.

4.5.2 Conclusion

The stratified environment produced by a turbulent plume supports a series of 

shear layers superimposed on the steady vertical advection and entrainment-driven 

horizontal flow into the plume. These layers are the result of a continuous excitation of 

baroclinic normal modes having vertical length scales set by the depth of the turbulent 

outflow from the dense plume. The baroclinic modes are established on the timescale for 

the propagation of internal waves through the box and develop rapidly compared to the 

ventilation of the box by vertical advection and the rate of change of the “filling-box” 

stratification in its transient stages. Under the laboratory conditions the gravity current
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outflow from the base of the plume is characterised by a moderate-to-low Froude number. 

Given the large increase in buoyancy frequency towards the top of the “filling-box” 

density gradient, the conditions imply that viscosity becomes a controlling influence on 

the upward momentum flux and causes the amplitude of horizontal velocities in the shear 

layers to decrease with increasing height from the base. At large times, when the 

stratification has achieved its constant shape, the baroclinic modes also undergo a very 

low frequency oscillation between the five-layer and six-layer states (dominated by modes 

n = 6 and 7, respectively). It is speculated that this oscillation may be linked to the 

superposition and beating of two or more baroclinic modes, but its precise nature has not 

been determined.

The presence of the shear layers is an interesting aspect of the “filling-box” 

convection. Although they have little effect on the stratification in that the density 

surfaces are tilted only slightly in connection with the horizontal motion, the circulation 

pattem will have large implications for the transport of individual water particles and 

tracers in the system. For example, tracers released from a source at a fixed depth in the 

water column, or a mid-depth outflow from a second plume produced by a smaller 

buoyancy flux, will spread laterally under the control of interior flows driven by the 

strong plume. The mid-depth outflow from a second plume is considered in chapter 6.
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Downslope Plumes

5.1. Introduction

In many practical situations plumes are unable to descend vertically because they 

encounter sloping floors. The dense outflows from marginal seas often flow down 

continental slopes beneath less dense water (Price and Baringer, 1994). Katabatic winds 

in the atmosphere occur when air cooled by contact with a cold ground flows downhill. 

Much of the theoretical work that models these flows involves two-dimensional (line) 

plumes placed on a slope (for example, Ellison and Turner, 1959; Smith, 1975; Baines, 

1997). Britter and Linden (1980) have also examined the head of a plume travelling 

down a slope and found that it moved at a slower speed compared with the following 

flow. This chapter is only concerned with the flow behind the head. Mixing between the 

plume and the environment occurs only at the upper interface, where entrainment of 

environment water increases the depth (thickness) of the plume. However if the 

buoyancy source generating the plume is localised and the plume is not constrained by 

any side-walls, then the plume can also spread across the slope as it flows downhill. 

Both the depth and width increase and its structure is three-dimensional. This plume 

description is similar to those in streamtube models of downslope flows where the current 

takes the shape of a long pipe that has changing dimensions along the current (see Smith, 

1975 or Emms, 1997). The three-dimensional downslope plume can be regarded as a 

generalisation of both the two-dimensional downslope plume and the vertically- 

descending axisymmetric plume.

The downslope flows in nature may be combinations of the two-dimensional and 

three-dimensional cases, depending on the topography of the system. Downslope
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plumes, whether two- or three-dimensional, differ from vertically-descending plumes in 

that their interactions with environment water are mainly restricted to only one side of the 

plume. The mixing processes in downslope flows are still under active research. In 

many geophysical applications, downslope flows are also affected by the earth’s rotation 

which acts to turn the flow and can result in boundary currents across the slope. The 

effects of rotation have been incorporated in the streamtube models of Smith (1975) and 

Emms (1997). However, the present study ignores rotation and the plume descends 

along the slope at all times. This non-rotating downslope plume is an extension to the 

vertically-descending plume described in chapter 2.

The two-dimensional downslope plume without rotation is reviewed and extended 

to a “filling-box” model in §5.2, followed by a new model of the three-dimensional 

downslope plume in §5.3. Experiments to test the predictions of the three-dimensional 

plume model are described in §5.4, with the results for a limited number of experiments 

on 30° and 45° slopes given in §5.5. Discussions on the model and the work required to 

expand the study into a comprehensive study of non-rotating downslope flows are given 

in §5.6.

5.2 Two-Dimensional Downslope Plumes

The two-dimensional downslope plume is assumed to be generated by a line 

source of buoyancy on a frictionless plane that is bounded on both sides by vertical walls. 

Let the plane be inclined at an angle 6 to the horizontal. The plume has a constant width 

and is uniform across the slope. Let D be the depth (or thickness) of the plume in the 

plane perpendicular to the slope, W the downslope velocity, pp the plume density, pe the 

environment density and pr a reference density, with s the distance down the slope and t 

the time. Ellison and Turner (1959) deduced that because the sloping floor causes the 

mixing zone of the plume to be also inclined (and not vertical as in the ordinary plume), 

there will be a change in the value of the entrainment coefficient. They defined a 

Richardson number
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Rio = 8
\

P r

Dcos#
(5.1)

which is a measure of the stabilising effect of the density gradient relative to the shear 

over the cross-section of the plume. They asserted that, provided the Reynolds number is 

sufficiently large and the density differences between the plume and its surroundings are 

small, the entrainment coefficient £  is a function only of Ri0. The Richardson number is 

equal to the inverse square of the internal Froude number.

The equations for a two-dimensional downslope plume representing the 

conservation of volume, momentum and density excess are

■(DW) = EW,

(,DW2)= D g [l-

ds

d

P r

sin#

(5.2a)

(5.2b)

and

d_
ds

\ D W g (  P p ' P e \ =  - D W — g p ' - p ' )
\ l Pr J ds \  Pr J

(5.2c)

Ellison and Turner (1959) also included terms in (5.2b) for the frictional drag of the slope 

and the pressure force on the plume layer due to its changing depth. The slope is 

assumed to be frictionless in this study while the pressure force was shown to be 

relatively unimportant. They also included coefficients representing arbitrary velocity and 

density profiles in the plume; in the present study, a top-hat profile has been used.

For a plume descending into a homogenous environment, the right hand side of 

(5.2c) vanishes. It follows from (5.1) and (5.2) that

—  = 2 £ - f i i otan0 (5.3a)
ds

and

_P_dRio. = Etan 0. (5.3b)
3 Ri0 ds 0

For a given 0, there is a particular value of Ri0 called the normal value, Rin, for which the 

right hand side of (5.3b) vanishes to give a constant Richardson number and entrainment 

coefficient E -  Rin tan#. Ellison and Turner (1959) asserted that if Ri0 < 1 and different
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from Rin at the start, then the flow adjusts rapidly to the “normal” state where Ri0 = R in. 

Thus if the flow starts too slowly, then gravity accelerates it and if it starts too fast, then 

increased mixing occurs and it slows down. Thus for these downslope plumes, Ri0 

attains Rin in a short distance and E is constant for the rest of the slope. In this 

homogenous environment, the solution to (5.2) can be found as

D = Es,

W = Em F 'n sin"3 8

and (5.4)

f
g Pe ~Pe \

= E~2l3F2n shT,/J 6 s- 1/3 -1

V Pr )

where F -  DWg (pp -  pL)lpr is the buoyancy flux of the source at s = 0. An interesting 

feature of this solution is that the downslope velocity is constant.

Experiments were performed by Ellison and Turner (1959) to measure E(Ri0) 

using two methods. The first established E from measurements of the changing volume 

flux of a jet of initially fresh water flowing on the surface of a body of salt solution while 

the second measured E similarly from observations of a salt solution flowing down the 

sloping floor of a channel beneath fresh water. Both showed that E falls off rapidly as 

Ri0 increases. The second series of experiments also established the relationship between 

0 and E (figure 5.1).

In a finite box, the outflow of a downslope plume displaces the environment 

upward and establishes a stratification. The equation representing the vertical advection 

of the environment and change in environment buoyancy is

d ( , P e - P r ) _  D W sin 6  d ( R P ' - P r )
d t

g
V Pr ) L A \  Pr  J

where z (= ssinG) is the vertical distance from the source and L is the length of the box. 

It is assumed that L is large so that, despite the slope, the box length is approximately 

independent of z.

The mixing processes are not well understood for downslope plumes in stratified 

environments. The Richardson number is also expected to vary downslope because of
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Figure 5.1. The entrainment coefficient for a two-dimensional inclined plume 
as a function of slope 6 (taken from Ellison and Turner, 1959).

the changing density of the environment and hence will result in changes to the 

entrainment coefficient. A simplification used by Killworth (1977) and Baines (1997) in 

a stratified environment assumed that E is constant for a given slope. Baines (1997) 

found that this assumption was broadly consistent with his experimental observations. If 

it is assumed that E is constant in the “filling-box” case, then the scalings

z = ssinO = H£,

D = EHsin-]0 d,

W = E~V3FU3 sin’73 6 w, (5.6)

can be used to reduce (5.2) and (5.5) to their dimensionless form
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=(/,-/.)*

(5.7a)

(5.7b)

(5.7c)

and

= d w % (5.7d)
dT di,

Equation (5.7) is identical to that found by Baines and Turner (1969) for vertically- 

descending line plumes. They presented power series solutions to (5.7) in the asymptotic 

case where d , w and /p -  f e are constant at a given f, but /  and f e increase linearly with 

time for all f. The solution to three terms is given by

d = £ + 0 .125f2 + 0.0688f3 + . . (5.8a) 

w = 1 -  0.25£ -  0.0563f2 + ...,  (5.8b)

f p - f e = r '  -  0.875 -  0.0906f + ...  (5.8c)

and

/ > / , ( ^ 0 - / e( ^ 1) = -0.142 + loge?  + 0 .125f + 0.0172f2+ ... .  (5.8d)

The quantities d, w,fp* (=fp(£) - f p( 1)) and f*  are plotted in figure 5.2.

5.3. Three-Dimensional Downslope Plumes

When a downslope plume is generated by a localised source of buoyancy and is 

not constrained by side-walls, both the width and depth (thickness) change with distance 

from the source. It is assumed that the plume has a rectangular cross-section with width 

2R, height H and the other variables as defined for the two-dimensional downslope plume 

(figure 5.3). The streamtube models of Smith (1975) and Killworth (1977) linked the 

width and depth of the plume together as the cross-sectional area of the plume; however, 

in this model the width and depth are allowed to vary separately. The equations 

representing conservation of volume, momentum and buoyancy deficit are
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r, d, w

b)

Figure 5.2. The plume properties in the large-time steady state for the two-
dimensional ( -----  -----  ) plume given by (5.8) and for the three-
dimensional (----------------- ) plume given by (5.15). (a) The dimensionless
plume width r (three-dimensional case only), depth d and vertical velocity w. 
(b) The dimensionless plume and environment buoyancies relative to the 
bottom f *  an d // respectively.
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Figure 5.3. The variables used in the theory of a three-dimensional downslope 
plume: plume half width R, depth (perpendicular to the slope) D, downslope 
velocity W, plume and environment densities pp and pe.

(2RDW) = 2REW

— (2 ROW2) = 2 RDg iEi—Efl sin 0 
d s v ' pr

(5.9a)

(5.9b)

and

\lRDWg { Pp-Pe\ l = -2  RDW—
„ „ \  
P,-Pr

1 V  Pr j ds l  Pr )
(5.9c)

When the plume is travelling straight down the slope, the increase in width of the plume 

can be likened to a volume of dense water slumping across the slope in a manner similar 

to a gravity current (Turner, personal communication). With gcosO the component of 

gravity responsible for the slumping across the slope, the equation describing the increase 

in plume width is given by

dR
dt

(Turner, 1973), or equivalently,

2gcos0 —— —
\  1/2

W—  = 
ds

2gcos0 —— —
\ , / 2

(5.10)

The Richardson number is likely to vary along the slope, but if it assumed that a normal 

value of Ri0 is again approached within a short distance of the source, then the 

entrainment coefficient is effectively constant for a given slope. The solution to (5.9) and
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(5.10) in the homogenous environment is then given by

(5.11a)

(5.11b)

(5.11c)

and

p, 6 £ cos,,30
(5.1 Id)

Here F = 2RDWg(pp -  pe)/pr is the buoyancy flux of the source and is evaluated at 5 = 0. 

Both the width and depth of the plume are proportional to the distance down the slope and 

so the behaviour is similar to the vertically-descending axisymmetric plume, where the 

radius is proportional to the depth. However in the downslope plume, the height and 

width have different constants of proportionality. Figure 5.4 gives plots of R, D, W and 

g(pp -  pe)/pr from (5.11) for the parameters of an experiment on a 30° slope (experiment 

5.1 where F = 6.64 x 1CT6 m4 s-3 and E = 0.0748; see §5.4 and §5.5). For this case, R 

is much larger than D.

The entrainment coefficient may be linked to Ri0 by substituting the solution 

(5.11) into (5.9a) and (5.9b) to give

However, this does not automatically imply that the entrainment constant for a three- 

dimensional downslope plume is 1.25 times that of the two-dimensional case where 

E = Ri0 tanö. The normal values of Ri0 to which the plume approaches rapidly are 

different in the two cases.

In a filling-box, the equation representing vertical advection in the environment is

where A is the cross-sectional area of the tank and is assumed to be large so that it is 

effectively constant with z. If it is again assumed that E  is constant for a given slope in

d (  P ' - pA  2RDWs\n p - p r)

<H Pr ) A * ( ' Pr )
(5.12)
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a)

R, D and R' (m)

b)

P ~ P

P - PW (m) and g

Figure 5.4. The dimensional downslope plume properties in a homogenous
environment for the parameters of experiment 5.1 (----------------- ) compared
with the vertically-descending axisymmetric plume ( -----  -----  ). (a) The
plume half width R and depth D in the downslope case and plume radius R' in 
the vertically-descending case. Also plotted are the data (half width and depth) 
from experiments 5.1 ( •  and o), 5.2 (■ and □), 5.3 (♦ and o) and 5.4 ( a  

and a ), (b) The plume velocities W and buoyancies g(pp -  pe)/pr in both cases.
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the stratified environment, then (5.9), (5.10) and (5.12) may be non-dimensionalised 

using the scalings

z = s s i n Ö  =  / / £ ,

Asin2/3 6

to give

and

t =
2EFU3H2n cos1''16

t ,

„ 2U1 EU2HcosU2 6
R = -----------—--------- r,

sin3/2 6

D = ™ - d ,
sin 6

8

W =

Pp-Pr = 
Pr

Pe-Pr _

F'n sin5,60
2U1 E'l2H ,n cos'16 6 

F 211 sin573 6

w,

2EH5ncos'n e 

F2n sin5,30

Pr 2 £ / / 5,’ cosi,30

fp ’

f.

d_
d (

^  = rdw %
dT di,

(5.13)

~^~{rdw) = rw, (5.14a)

(rdW2) = rd(fp - f t ), (5.14b)

i f P- f ' ) } = ~ rdw%
(5.14c)

(5.14d)

(5 .14e)

A solution may be found to (5.14), similar to (5.8), for the quasi-steady state that 

is asymptotically approached at large times. As with the asymptotic solutions for the two­

dimensional downslope and the axisymmetric plumes, the three-dimensional downslope 

plume in this state has steady W, D and f  -  f e at a given £ while /  and f e increase at a 

fixed rate. The power series solution to three terms is given by
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r = 0.894f -  0.0474f2 -  0.0277f 3 + .. . , (5.15a)

d = 0 .6f + 0.067 I f 2 + 0.0456f3 + ..., (5.15b)

w = 1 . 1 2 f '3 -0 .2 7 4 f2' 3 -0 .0 6 7 2 f5' 3 + ..., (5.15c)

/ , - / ,  = ! -67f-5' 3 -  1,36f-2' 3 -  0 .193f1,3 + ... (5.15d)

and

/ ;  = f e( t ,Q  -  / ( r ,l)  = 1.56 -  2 .5 f“2' 3 + 0.93I f 1/3 + 0.00878f4,3 + ... .  (5 .15e) 

Plots for r, d, w,fp (= /p( f ) - f p( 1)) a n d / /  are given in figure 5.2.

5.4. Experiments

Experiments for observing the flow in two-dimensional downslope plumes behind 

the head have been carried out by Ellison and Turner (1959) and by Baines (1997). The 

aims of the experiments in the present study are to test the theoretical results of §5.3 for 

three-dimensional downslope plumes and to investigate the circulation patterns generated. 

All the experiments were conducted using tanks that were initially filled with fresh water. 

A smooth piece of perspex rising from the base to a side-wall served as a slope for the 

plume to descend. The buoyancy sources consisted of salt solutions (of density 

1180 kg m-3 and 1090 kg nT3) supplied by a peristaltic pump through a nozzle of 

diameter 2.5 mm. The nozzle, smaller than the one used in the experiments of chapter 4, 

was fixed on the slope and extended just below the water surface. The source volume 

fluxes were generally larger than in the earlier experiments in order to give large Reynolds 

numbers and low Richardson numbers near the nozzle.

Only ten experiments were conducted in the time available, all on 30° and 45° 

slopes. The parameters of the experiments are given in table 5.1. In the first six 

experiments, the plume width and depth were measured as each plume descended the 

slope into a homogenous environment. The perspex tank was 1.1 m long, 0.3 m wide 

and 0.24 m deep with the slope extending across the whole width at one end of the tank. 

The source solution was dyed to make the plume visible. A 10 mm x 10 mm grid on the 

slope and a 2 mm x 10 mm grid on the side of the tank enabled measurements of the
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Experiment Slope Buoyancy Flux Source Re Source Ri0 Duration

(10~6 m4 s"3) (min)

5.1 30° 6.64 1910 0.00652 n/a

5.2 30° 1.70 978 0.0125 n/a

5.3 30° 3.32 1910 0.00326 n/a

5.4 30° 3.32 978 0.025 n/a

5.5 45° 6.27 1810 0.00597 n/a

5.6 45° 2.81 810 0.0298 n/a

5.7 30° 3.58 1030 0.0223 20

5.8 45° 3.19 922 0.0229 25

5.9 45° 2.03 585 0.0569 25

5.10 30° 4.73 1360 0.0128 30

Table 5.1. The parameters of the experiments. The effective tank dimensions 
in all experiments were 1.1 m x 0.3 m x 0.2 m except experiment 5.10 (0.7 m x 
0.7 m x 0.2 m and experiment 5.7 (1.1 m x 0.3 m x 0.15 m). Experiments 
5.1 -  5.6 were stopped when the plume outflow layer had reached the far end 
of the tank (a few minutes).

plume dimensions by means of photographs taken from the top and side. Examples of 

these photographs are shown in figure 5.5.

The next three experiments (5.7 -  5.9) revealed the horizontal velocity patterns in 

the environment. These experiments were also conducted in the 1.1 m x 0.3 m x 0.24 m 

tank using inclines of 30° and 45° that extended across the width of the tank. The depths 

of water were small to prevent the plume from reaching the side-walls until it had reached 

the bottom of the tank. Dense plume water filled the bottom of one end of the tank and 

spread to the other end in an outflow layer that was approximately two dimensional. In 

each case, the plume was allowed to stratify the environment for 20 -  25 minutes and to 

establish a circulation pattem in the environment. The horizontal velocities were again
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Figure 5.5. Photographs of a plume descending a 30° slope, (a) The view 
from the top (with 10 mm x 10 mm grid) and (b) from the side (with 
10 mm x 2 mm grid).

measured from displacements of dye lines created by dropping potassium permanganate 

crystals into the tank.

A single experiment (5.10) was conducted to measure the “filling-box” 

stratification generated by the downslope plume. In this experiment, the effective 

dimensions of the tank were 0.7 m long, 0.7 m wide and 0.2 m deep. The 30° slope was 

formed by a plate 0.5 m long, 0.3 m wide and 0.01 m thick and so it did not extend 

across the full width of the tank. However, it was sufficiently wide so that the plume did 

not spill over its edges. It was placed in the middle of the tank (see figure 5.6) with the
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region below open to the environment so that the horizontal cross-section of the 

environment was constant with depth. As the plume stratified the tank, conductivity 

profiles were obtained at three minute intervals using the traversing four-head probe and 

thermistor as described in chapter 4. Density profiles were collected up to 30 minutes 

from the start of the experiment.

5.5. Results

In all the experiments, the plume was turbulent immediately on leaving the nozzle. 

As with the vertically-descending axisymmetric plume, mixing between the downslope 

plume and the environment caused the plume to increase in volume and decrease in 

density. The increase in volume was accomplished mainly through a large increase in 

width and less so through an increase in depth. Successions of irregular eddies were seen 

at all depths, indicating that the Reynolds number was high throughout the plume.

The widths and depths of the plumes in experiments 5.1 -  5.4 are shown in figure 

5.4a. Despite the variations in the source densities and volume fluxes, the widths and 

depths of the four plumes were very similar. This is consistent with the solutions (5.11) 

which show no dependency on the buoyancy flux F in the predictions for R and D. The 

width increased more or less linearly as expected by (5.11a), but the depth showed no

Figure 5.6. Top and side views of the tank in experiment 5.11 (not to scale) to 
measure the density profiles as the downslope plume stratified the environment. 
S indicates the location of the buoyancy source.
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such linear trend as predicted by (5.11b). This is attributed to the method used in 

measuring the plume dimensions. For both the width and depth of the plume, the 

photographs gave the maximum dimension rather than the average dimension. In a 

downslope turbulent plume where the width was much larger than the depth and where 

many irregular eddies were present, the maximum depth as seen from the side at a given 

downslope distance s was larger than the average plume depth. In contrast the 

measurements of the plume width were more accurate because variations in plume width 

at a given s over the much smaller depth of the plume were generally small.

The measurements of the plume widths were used to calculate the entrainment 

coefficients for the three-dimensional downslope plume using (5.11a). For experiments 

5.1 -  5.4 on the 30° slope, the entrainment coefficients were all similar and the average 

calculated as E = 0.0748 ± 0.0030. This value was used in obtaining the plume 

properties of figure 5.4 and compares with E ~ 0.033 (see figure 5.1) found for the two- 

dimensional plume by Ellison and Turner (1959). Thus for this slope the entrainment 

coefficient for the three-dimensional downslope plume was smaller than that for the 

vertically-descending plume, but larger than for its two-dimensional equivalent. 

Experiments 5.5 and 5.6 showed that E = 0.0944 ± 0.0060 for the 45° slope.

Experiments 5.7 -  5.9 examined the filling patterns of the tank. At the start, the 

three-dimensional downslope plume filled and stratified the box in a manner similar to the 

vertically-descending plume. As the source started, the plume water flowed to the bottom 

of the slope and an outflow layer formed in which dense plume water spread towards the 

opposite end of the tank. The top of this layer formed the first front, and as this moved 

up through the environment, a stratification was established throughout the tank.

While the stratification was developing, the circulation patterns in the tank were 

also similar to those for vertically-descending plumes. Above the bottom outflow layer, 

there were counterflowing layers with decreasing maximum velocities. However at large 

times, two circulation patterns appeared. In the first pattern, which was observed in 

experiment 5.8 and shown in figure 5.7, the plume outflow continued to spread at the 

bottom with several counterflowing shear layers lying above. In this experiment, the

73



Chapter 5 Downslope Plumes

velocity amplitudes of the layers decreased with distance from the bottom so that the 

horizontal velocity profile qualitatively resembled that of the vertically-descending case.

A different large-time circulation pattern was exhibited by experiments 5.7 and 5.9 

after about 10 minutes from the start of the experiment. In this pattern, also shown in 

figure 5.7 for experiment 5.7, a thin boundary layer of very dense plume water formed 

along the incline and flowed to the bottom of the tank. This indicated that despite the 

turbulence and eddies seen in the plume, there were still large density differences within 

the depths of the plume. The very dense plume water fed a slow moving outflow which 

accounted for only a small fraction of the total plume volume flux. The majority of the 

plume (lying above the boundary layer) entered the environment as a broad mid-depth 

intrusion. This appears to be the “detrainment” noted by Baines (1997) in his 

experiments. Between the dense bottom layer and the broad mid-depth detraining layer 

was another layer which moved towards the plume. Above the detraining layer, there 

were several counterflowing layers of varying velocity scales.

u

Figure 5.7. The dimensionless horizontal velocity u in the middle of the tank
for experiment 5.7 at t = 20 min ( -----  -----  ) and for experiment 5.8 at
t = 25 min (----------------- ). The scale for the horizontal velocity is given by
U = EF'n H2licos'li 9 sin~2,i 6 B~lu, where the entrainment coefficients are taken as 
E = 0.0748 for experiment 5.7 and E = 0.0944 for experiment 5.8 (see §5.5).
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The density profiles collected every three minutes during experiment 5.10 are 

plotted in figure 5.8a. At large times (> 18 minutes), the shape of the density (buoyancy) 

profiles over most of the tank (z < 0.13 m) resembled that of the “filling-box” profile 

created by a vertically-descending axisymmetric plume. However, in the region 

z > 0.13 m, there was a layer of very dense water at the bottom. The strong density 

gradients associated with this bottom layer are also seen in figure 5.8b where the 

observed 30 minute environmental buoyancy frequency is plotted along with the 

theoretically predicted profile for the same time. Over the duration of the experiment, the 

added volume of the input source solution had increased the total water depth by 1 cm (or 

5% of the total). When the uplifting caused by the addition of input source solution is 

taken into account, the observed and predicted environment buoyancy profiles agree in the 

region above the dense bottom layer.

5.6 Discussion and Conclusion

5.6.1 The Current Results

The theoretical analysis in this chapter shows that, if a constant entrainment 

coefficient is assumed, then downslope plumes can be quantified in a similar way to 

vertically-descending plumes. The equations describing the properties of the two- 

dimensional downslope plume and the convection it generates in a “filling-box” 

environment reduce to those for a two-dimensional vertically-descending plume. In the 

three-dimensional case, a new streamtube model of the three-dimensional downslope 

plume has been formulated by likening the horizontal spreading of the downslope plume 

across the incline to the slumping of gravity currents on a horizontal plane. Previous 

streamtube models have been used to explain bottom slope currents in the oceans and 

incorporate the effects of rotation which turn the flow across the slope. The streamtube 

model in this chapter has ignored rotation to give a pure downslope flow, but has also 

extended the model to include the long-term changes to the “filling-box” environment.

Compared to the two-dimensional downslope plume, the three-dimensional 

downslope plume is more closely related to the vertically-descending axisymmetric plume
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(a)

(b)

N  ( s 1)

Figure 5.8. (a) The evolution of environment density profiles during
experiment 5.10. The labels refer to time in minutes from the start of the 
experiment. At 30 min the familiar shape of the plume stratification can be 
recognised in the region z < 0.13 m ( corresponding to £ < 0.65). (b) The
observed (----------------- ) and predicted ( -----  -----  ) buoyancy frequency N
at 30 min in experiment 5.10.
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of chapters 2 and 4. The increasing depth and width of the three-dimensional downslope 

plume parallel the increasing radius of the vertical axisymmetric plume. The description 

of the downslope plume with a rectangular cross-section is expected to be valid for gentle 

and moderate slopes where the horizontal spreading of the plume is largely responsible 

for the increasing width. In these cases, the plume width is much larger than the plume 

depth and the entrainment terms in (5.9) only depend on the plume width. However, on 

steep slopes, where the plume behaves more like a vertical plume, the changes in both the 

width and depth of the plume are influenced more by an increase in the plume volume flux 

due to entrainment than by the slumping across the slope. In this situation, the 

rectangular shape of the plume is not expected to be valid and a semi-ellipsoidal shape 

may be more appropriate. Modifications to equations (5.9) and (5.10) will result from 

both the change in plume shape and, for steep slopes where the depth is comparable to the 

width, entrainment terms that depend on both the plume width and depth.

The entrainment coefficients for the three-dimensional downslope plume have 

been calculated for 30° and 45° slopes. In light of the large scatter in the entrainment 

coefficients measured for the two-dimensional downslope plume (figure 5.1; Ellison and 

Turner, 1959) and the small number of experiments in the present study, there is plenty of 

scope for the measurements of E to be further refined. Further experiments on other 

slope angles will also be required to determine the variation of E with 0 and Ri0.

Experiments 5.7 -  5.9 show that at least two circulation patterns may be generated 

by downslope plumes. A downslope plume generating a single broad outflow at the 

bottom of the tank formed shear layers similar to those produced by a vertically- 

descending plume. This pattem was observed in an experiment on a 45° slope with a 

relatively high source Reynolds number (Re = 922). In contrast, a downslope plume 

generating a small and very dense bottom outflow as well as a broad mid-depth intrusion 

(a “detraining” downslope current) formed more complex layers of counterflowing 

regions. This pattern was observed in an experiment also on a 45° slope, but with a lower 

source Reynolds number (Re = 585) and also on a 30° slope with a high source Reynolds 

number (Re = 1030). From these three experiments, it appears that both a highly
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turbulent plume and steep slope are required for the plume to produce a single bottom 

outflow at all times and to generate a circulation pattem similar to that found in chapter 4.

The predictions of the density profiles using the assumption that the entrainment 

coefficient is constant are broadly consistent with the experimental data in the case of 

experiment 5.10 on a 30° slope (figure 5.8). The experimental density profiles for that 

case also showed that the plume gave rise to a very dense bottom outflow. Despite the 

high source Reynolds number (Re = 1360), it is speculated that thorough mixing of water 

in the plume did not occur as the plume flowed down the slope, resulting in a variation of 

density within the thickness of the plume. When such a plume flows into a homogenous 

environment, it continues to sink to the bottom because every part of the plume is still 

denser than the surroundings. However, when such a plume descends into a stratified 

environment, as it did in experiments 5.7, 5.9 and 5.10, it encounters progressively 

denser surroundings and as the less dense water in the plume reaches its neutral buoyancy 

level, detrainment occurs. The densest water, however, continues to descend to its own 

neutral buoyancy level or to the bottom. Thus at large times, when a pool of very dense 

water is collected at the bottom of a filling-box, the very dense bottom outflow separates 

from the broad detraining outflow at mid-depths.

5.6.2 Other Research

In flows on very gentle slopes or with low Reynolds number, the mid-depth 

spreading or detrainment of downslope plume water has been observed previously. 

Baines (1997) conducted a number of experiments on two-dimensional plumes 

descending a 6° slope into an uniformly stratified environment, including some with high 

Reynolds and low Richardson numbers (Re > 1000 and Ri0 < 0.1) at the source. He 

identified three regions of flow type in each experiment: an initial adjustment region where 

the flow only entrained environmental water and adjusted to an approximately uniform 

depth; this led to the second region where there was both entrainment and detrainment 

from the plume; and a third region where the remaining plume water entered the 

environment at its neutral buoyancy level. The detrainment and spreading in the second
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region in his experiments were similar to the mid-depth intrusions in some of the 

experiments described in this chapter. Mid depth intrusions were also seen in the dipolar 

experiment of Pierce and Rhines (1996). In their experiment there were two sources of 

opposite buoyancy fluxes with the denser plume descending along a 45° slope. The 

source leading to the sinking plume had low Reynolds and high Richardson numbers 

(Re ~ 10 and Ri0 ~ 1). They observed that the sinking plume first entered the 

environment at the bottom but, as the experiment progressed, the plume outflow detached 

from the bottom and rose to form a mid-depth intrusion. There was also a strong density 

gradient at the bottom with gentler gradients found at mid-depths.

The experiments in this chapter provide some directions for further work. Direct 

measurements on the plume density structure will be able to confirm or dispel the 

speculation that incomplete mixing occurs in plumes on gentle slopes or with low 

Reynolds number. The results of such measurements will also lead to increased 

understanding into the mixing processes in downslope flows and provide clues on why 

detrainment occurs in some cases but is absent in others. A detailed study of the 

conditions which lead to detrainment may also allow more precise predictions of the 

horizontal velocity profile generated by downslope flows in filling-boxes.

Despite opening a range of problems that require more research, the analysis and 

experiments of this chapter show that in at least some cases, the “filling-box” convection 

by which a vertically-descending plume fills the environment can be extended to 

downslope plumes. In these cases, the shear layers and their associated horizontal 

velocities are similar to those seen in chapter 4 and the downslope plume may be 

approximated by a vertically-descending plume. It is also speculated that with thorough 

mixing induced in the plume many other occurrences of downslope plumes may also be 

approximated by a vertically-descending one.
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Multiple Plume Systems

6.1. Introduction

In this chapter, the “filling-box” model is extended to include multiple sources of 

buoyancy. In many applications, for example that of oceanic deep water production, 

there are a number of independent buoyancy sources. Each of the sources drives a 

(vertically-descending) plume that contributes to the stratification and circulation in the 

environment, but each plume is also modified by the environment. Although a study of 

the multiple plume case appeared in an unpublished paper by Peterson (personal 

communication), diffusion was induced in that study in order to balance the combined 

buoyancy fluxes of the plumes and the vertical advection in the environment and allow a 

true steady state to be reached. However, the large differences in the timescales for 

diffusion and advection in laboratory experiments rendered the model difficult to validate. 

In the present study, diffusion is not included and a very different solution is obtained. In 

§6.2, numerical and analytical solutions to the case of two buoyancy sources are 

presented. In §6.3 experiments designed to test the model and reveal circulation patterns 

are described. The results are presented in §6.4 and discussed in §6.5.

6.2. “Filling-Box” Model for Multiple Plumes

Each buoyancy source is assumed to produce a dense and turbulent plume that 

descends into a finite basin as described in chapter 2. If the basin initially contains 

homogenous water, each plume reaches the bottom and spreads out in an outflow layer. 

The least dense plume outflow overlies all the other outflows. The top of this outflow 

forms the “first front”, a discontinuity in density distinguishing the overlying

80



Chapter 6 Multiple Plume Systems

homogenous water from water that has passed through one or more plumes. As each 

plume penetrates the first front and entrains water from below, each outflow becomes 

progressively denser. A vertical advection is generated in the environment which lifts the 

first front and establishes a stable stratification in the basin.

For large times, the results of Baines and Turner (1969) indicate that only the 

plume from the source with the largest buoyancy flux will reach the bottom. In general, 

plumes from sources with smaller buoyancy fluxes descend only to an intermediate depth 

and their outflows form mid-depth intrusions into the stratification. Figure 6.1 gives a 

schematic diagram of the general two plume situation.

Buoyancy-driven convection is assumed to be the dominant transport mechanism 

in the plumes while passive advection and entrainment-driven inflow towards the plumes 

are assumed to be the only processes in the environment that influence the stratification. 

Motions due to internal gravity waves and baroclinic modes (chapter 4) were found to 

greatly influence the horizontal velocity field, but have little or no consequence on the 

stratification. It is assumed that they have no effect on entrainment into the plume and 

hence no effect on the plume properties. It is also assumed that each of the n plumes is

6.2.1 Theory

Figure 6.1. A schematic diagram of the two plume filling-box. The strong 
plume outflow (left) spreads into the environment at the bottom while the weak 
plume outflow (right) spreads at an intermediate depth.
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well separated from one another and from the side walls so that each is able to descend 

unimpeded. In the case of a single plume Manins (1979) observed that the aspect ratio 

(width/depth) of a basin has to be at least 1.2 to prevent an inertial overturning that mixes 

the environment water from top to bottom. Thus for n plumes and a basin of height H, a 

lower bound to the cross-sectional area of a rectangular basin is 1 A4nH2.

For each plume, the equations representing the conservation of volume, 

momentum and mass deficiency are described by (2.1). The equation representing 

conservation of volume in the environment is altered to take into account the vertical 

advection generated by all the plumes. Thus (2.3a) is replaced by

AV = - J j MfWi,(6 . 1)

where the subscript i refers to plume i. However, (2.3b) representing conservation of 

density in the environment remains unchanged.

The spreading depth zsp for plume i is defined as either its neutral buoyancy level 

or the bottom if that is reached first. These two conditions correspond to

Pip(z,t) = pe(z,t) at z -  z-p(t) (6.2a)

and

zsp(t) = H (6.2b)

respectively (Killworth and Turner, 1982). The definition of the spreading depth as the 

neutral buoyancy level is the simplest form for analysis because the plume can be 

assumed to immediately spread into environment waters of the same density. In reality, 

the neutral buoyancy level is an underestimation of the actual spreading depth because the 

downward momentum of the plume at the neutral buoyancy level carries it deeper to the 

neutral momentum level (where w, = 0). Mixing with the environment between the 

neutral buoyancy level and the neutral momentum level increases the density of the plume 

so that when the outflow spreads, its density is somewhere between the environment 

densities of the neutral buoyancy and neutral momentum levels. Consequently, the 

outflow settles at some depth between the two neutral levels.
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The non-dimensional scalings (2.4) are also valid for the multiple plume case 

except that the buoyancy flux F  is replaced by F = X,F, = pip -  pe)/pr, the sum

of all the buoyancy fluxes. With these scalings and the Boussinesq approximation, the 

equations for each plume are

d_
d (

d
{ rM )  = rr(f,P-  fe)

(6.3a)

(6.3b)

and

while the equations for the environment are

-V n w:
and

dA = _vA
dr dt;

(6.3c)

(6.4a)

(6.4b)

As before, an alternative form of (6.3c) is obtained by combining with (6.3a) to give

^ { rH f i p - f e ) }  = ~rA ^ P - (6.3c0
d ^ '  ' V ‘P - / J  ' ‘ d £

The conditions (6.2) for spreading at the neutral buoyancy level and the bottom are now

/*,(?.t) = / , ( ? ,t ) at C = C’p(r) (6.5a)

and

cr(r)=i. (6.5b)
The scalings (2.4) ensure that the dimensionless sum of the buoyancy fluxes of all 

the sources is one unit. The convention used is that plumes are ordered by the strength of 

the sources so that F ( > Fi+]. In the case of two plumes, the split in buoyancy flux 

between the two sources is indicated by 0  = FJF, the ratio of the flux of the weak source 

to the total buoyancy flux. Thus, for instance, = 0.1 refers to the two plume case 

where F, = 0.9F and F2 = 0. IF.
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6.2.2 Solutions

With n buoyancy sources, the equations to be solved consist of n sets of (6.3) and 

(6.5) for the n plumes and the single set (6.4) for the environment. This system of 

equations is too complicated to be solved analytically except for the cases mentioned in 

chapter 2 for a single plume. Instead, a finite-difference scheme based on that used by 

Killworth and Turner (1982) is used. Given an environmental buoyancy profile f e each of 

the n sets of (6.3) is solved separately using a fourth-order Runge-Kutta method. The 

buoyancy flux of each source is specified at the first gridpoint below the source’s level 

where the integration is started using the analytic solution (2.7) for a plume descending in 

a homogenous environment. The use of (2.7) very close to the source is valid because 

the environment between the source and the first front, which reaches f  = 0 only at t = «>, 

can be considered homogenous. The Runge-Kutta integration is performed to obtain rf, 

Wj and f ip from the second gridpoint until either of the conditions in (6.5) is met. If the 

plume does not reach the bottom, the spreading depth is taken as the first gridpoint below 

the neutral buoyancy level. The spreading into the environment is assumed to be an 

injection of volume into the spreading gridpoint. Once (6.3) has been solved, the system 

is stepped forward in time using (6.4) by advecting f e to give the new buoyancy profile 

for the next timestep. The new profile is then used to calculate the plume properties and 

the cycle repeats.

I have obtained results for the case of two buoyancy sources for a selected set of 

0.  The so.utions for 0 =  0.1,0.25 and 0.5 are given in figure 6.2 at time r =  10, when 

the first frent is located close to f  = 0.1. At this time the solution is approaching the large 

time steady state similar to the asymptotic solution (2.10), (2.11) and (2.12) for a single 

plume. Compared with the weak plume, the vertical velocity and buoyancy of the strong 

plume are larger at a given depth, with the difference between the two plumes increasing 

for smaller 0.  Figure 6.2 also shows that the weak plume has a marginally larger radius 

than the stiong plume, particularly as its descent slows near the neutral buoyancy level; 

however the radii of the strong and weak plumes remain similar for all 0 .  Furthermore, 

the stratification produced by two buoyancy sources is very similar to that produced by a
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single source having the combined buoyancy flux. Figure 6.3 gives a plot of the neutral 

buoyancy level of the weaker plume as a function of 0 . For small 0 , the neutral 

buoyancy level of the weak plume is located near the top. As the weak source becomes 

stronger (larger 0), the neutral buoyancy level becomes lower and reaches the bottom at 

the limiting case of two equal sources (0 = 0.5). As with the single plume case, the 

environment density at a given depth increases linearly at large times. This indicates that 

at large times the sources supply buoyancy uniformly to the whole tank and so the shape 

of the buoyancy or density profile approaches a steady state. The steady state buoyancy 

profile has a similar shape for all 0.

(a)

Figure 6.2 (on this page and the next). The numerically computed solutions 
to (6.3), (6.4) and (6.5) for three ratios of buoyancy fluxes at T = 10:
-----  -----  0 = 0 . 1 , --------------- 0 = 0.25 a n d -------------------0 = 0.5.

The control case of a single plume (----------------- ) is also plotted.
(a) Plume radii r, and r2, and vertical velocities w, and w2. (b) Plume buoyancies 
f lp and f 2p (c) Environment buoyancy f e. In (a) and (b) the symbols * and + 
refer to the neutral buoyancy levels of the weak plume in the 0 = 0.1 and 
0 = 0.25 cases respectively. In the 0 = 0.5 case, each pair of plots for r, and r2, 
w, and w2 as well as f ]p and f 2p coincide.
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(b)

fe

Figure 6.2. See previous page for caption.

86



Chapter 6 Multiple Plume Systems

0

Figure 6.3. The neutral buoyancy level of the weak plume calculated
numerically (----------------- ) and from the approximate analytic solution (6.8)
( -----  -----  ). Both neutral buoyancy levels are taken when the first front
reaches C,f -  0.1 and are plotted as functions of &. Also plotted are the depths 
of the lower extent of the weak plume intrusion ( A ) at the end of each tank A 
experiment.

6.2.3 Approximate Analytic Solution

In the two plume case, the weak plume has a slightly larger radius but much lower 

vertical velocity than the strong plume (figure 6.2) and thus provides a smaller 

contribution to the ventilation of the filling box. An approximate spreading level of the 

weak plume at large times may be found analytically by assuming that the strong plume is 

solely responsible for establishing the stratification and can thus be determined by (2.12). 

This stratification can then be applied to determine the weak plume properties. However, 

when using the dimensionless equations and solutions to describe the strong and weak 

plumes separately, it must be noted that the non-dimensional scalings are different in each 

case. Thus to apply the stratification produced by the strong plume to equations (6.3) and 

(6.4) for the weak plume, it is necessary to rescale the solution obtained for the strong 

plume to that appropriate for the weak plume. The dimensional large-time stratification 

produced by the strong plume is given by (2.12) and (2.4) as
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2 4 ' 3 £ 4 / V ' 3/ / 5' 3
8- 2/3
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- 2/3

= -I I 0 . 2 1 -  0.8371 — I -  0.0623( f )
/ \ 2’1 z—  f + c ( 6 .6)

and is valid below the first front (z ^ zf). The constant c can be determined by setting the 

left hand side to zero at z = zf. Rescaling (6.6) using the parameters of the weak plume 

gives the new dimensionless environmental buoyancy profile as
2/3

575-{£’-2n(3.27 -  0.837f -  0.0623f2) -  c}, f
(6.7)

/ . = 0. (< ir
Equations (6.3a), (6.3b) and (6.3c') can now be solved using (6.7). The right hand side 

of (6.3c') can be approximated by assuming that the dimensionless volume transport, 

r (2w(., is given by the asymptotic solution (2.11a) for the weak plume descending in its 

own stratification rather than the strong plume’s stratification. (The dimensionless 

volume flux of a plume varies with distance from the source, but is not greatly changed 

when the plume travels through stratifications of different strengths.) With this 

assumption, equation (6.3c') becomes

d r ,  /„  „\i , dfe F 2'3

dC - 2/3

for f  > C and, noting that r 2w2(f2 —f e) = 1 at f  = C (see Morton et al., 1956), this gives
r

rl W 2 [ f l p  ~  f e ) = -T37? If “ i f  ) + 1 • 
r 2

The neutral buoyancy level, C,2sp, occurs when f 2 = fe and so

(  V/3

V^i /
+ ?/ (6 .8)

Because ^  —> 0 at very large times C,2sp —> (F2/F ,)2/3. However, in practical situations 

where the first front has not reached the top, it is useful to keep the neutral buoyancy level 

as defined by (6.8). A plot of (6.8) against & when £f = 0.1 is given in figure 6.3.

The result may also be generalised to n sources. If the ith source has buoyancy 

flux F; and the first source is the strongest source, then the large time spreading depth of 

the /th plume is estimated as
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?r = +  i f -

6.3. Experiments

The experiments consisted of releasing two dense salt solutions at a steady rate 

through two small nozzles, each as in the chapter 4 experiments. Differences in buoyancy 

fluxes between the two sources were achieved by using salt solutions of different 

densities ranging from 1010 to 1190 kg ir f3. Two tanks were used. The first (tank A) 

was 0.7 m long, 0.7 m wide and 0.5 m deep while the second (tank B) was 1 . 1 m long, 

0.3 m wide and 0.24 m deep. In both tanks, experiments were conducted with the 

nozzles placed on the centre line running along the length of the tank and 0.15 m from 

each end. An additional set of experiments in tank B was conducted with the strong 

source’s nozzle placed at 0.15 m from one end as in the other experiments and the weak 

source’s nozzle at 0.4 m from the opposite end. The effective water depths were 

approximately 0.3 m in tank A and 0.23 m in tank B. For the durations of the 

experiments in all cases, the total volumes of salt water added were insignificant 

compared to the volumes in the tank.

The plumes were viewed by the shadowgraph method in which a sheet of 

translucent paper was placed in front of the tank with a parallel light source from behind. 

Further enhancements were made by dyeing one or both of the source solutions. 

However, the shadowgraph view was not an accurate method to measure the positions of 

the fronts and intrusions because refraction of the light as it passed through the tank 

caused errors (up to 1 cm) in vertical position on the screen. A more accurate method was 

possible if the paper was used as a translucent diffusing screen on the back of the tank, 

with dye revealing the location of water which had passed through the plume.

As before, measurements of the vertical density profiles through the tank were 

collected using a traversing conductivity probe and a thermistor and then converted to 

density using the equations of Ruddick and Shirtcliffe (1979). The density profiles were 

taken in the tank approximately equidistant from the two sources.
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All the experiments were started in homogenous tanks to study both the evolution 

and large time behaviour of the systems. The first six experiments were carried out 

in tank A where F ~ 8.97 x 1CT7 m4 s-3 and &  ranged from 0.05 to 0.3. In these 

experiments, the salt solution of the weak source was dyed at all times. This procedure 

enabled the measurement of both the first front (uppermost dye in environment) and the 

bottom of the weak plume outflow into the stratification (bottom of deeply-dyed water). 

The depth of the weak plume outflow was taken at a distance of 0.15 m from the plume 

axis where the outflow appeared to level out soon after rising from the neutral momentum 

level. Originally this was to minimise the effects of advection which acted to lift the 

whole environment, but it was later found that this was also important in minimising the 

effects of the horizontal motions in the basin on the apparent spreading level (see §6.5.1). 

In two of the experiments (<J>= 0.1 and 0.25), the sources were also stopped every three 

minutes; the tank was then rested for ten minutes to allow all motions to decay and a 

density profile taken with the water at rest before the sources were restarted. All six 

experiments ran for 30 minutes, the time required for the depth of the weak plume 

outflow to approach the final steady-state depth.

When these six experiments were carried out, the significance of shear layers 

driven by turbulent plumes (chapter 4) was not known. As it became apparent that the 

horizontal motions induced by the strong plume outflow would affect the spreading of the 

weak plume into the environment, the six experiments were each repeated twice in the 

longer and narrower tank B as described earlier, but with F ~ 7.55 x 1CT7 m4 s-3. In each 

of the twelve experiments the sources were allowed to stratify the environment for 90 

minutes to the steady state and to set up the horizontal motions for this stratification. Both 

source solutions were then dyed with different colours and the experiment videotaped to 

reveal the outflow positions and thicknesses, and to examine the circulation and its 

implications for water transport in the basin. Horizontal velocities were once again 

measured from displacements of a dissolved potassium permanganate dye line. Figure 

6.4 is a photograph of a typical experiment in tank B.
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Figure 6.4. A photograph of an experiment in tank B where the two sources 
were placed at opposite ends of the tank and 0  = 0.25. The strong plume (left) 
spread at the bottom while the weak plume (right) spread at an intermediate 
depth. Blue and green dyes were introduced into the strong and weak source 
solutions respectively shortly before this photograph was taken. In this 
experiment, the movement of an initially vertical dye line produced by 
dropping potassium permangante crystals into the tank also revealed shear 
layers.

6.4. Results

When the sources were started simultaneously, both plumes initially descended to 

the bottom of the tank. As the outflows spread along the bottom and collided, the weak 

plume outflow rose over the strong plume outflow. The strong plume continued to 

spread at the bottom of the tank as more plume water entered the environment, but the 

weak plume outflow lifted slowly until it eventually settled at a depth that depended on the 

ratio of the two buoyancy fluxes. If 0  > 0.25, the weak plume remained sufficiently 

dense to reach the bottom, even though its outflow spread at an intermediate depth. If 

0  < 0.25, the weak plume was eventually not dense enough to reach the bottom; it 

overshot its neutral buoyancy level and sank to its neutral momentum level before rising a 

small distance and spreading at its final depth. At the same time the upwelling in the 

environment filled the basin with water from both outflows to give the familiar plume 

stratification. Thus at large times the lower regions of the tank were filled with water 

from the strong plume while the intermediate depths were filled with both water from the 

weak plume and water upwelled from the strong plume. In all cases and for all 0 ,  the 

time required for the first front to pass through 90% of the tank was approximately 50 

minutes. The times taken for the spreading level of the weak plume to approach its final 

asymptotic level were approximately half the filling times. From chapter 2, the 

entrainment constant found was 0.129 ± 0.004.
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The first six experiments using tank A provided data on the evolution of the 

system from the start of the experiment to the steady state. In figure 6.5 the observed and 

the numerically predicted positions of the first front and the bottom of the weak plume 

outflow are given for 0  = 0.3, 0.25, 0.2, 0.15, 0.1 and 0.05. The positions of the weak 

plume outflow at the end of each experiment are also plotted in figure 6.3. In each case, 

the plots for the position of the first front show extremely good agreement between the 

experiments and theory. As expected, the bottom of the weak plume outflow was 

consistently lower than the neutral buoyancy level at large times due to an excess of 

momentum in the weak plume as it passed the neutral buoyancy level, but there was close 

agreement for 0 =  0.3.

Several environmental buoyancy profiles from the 0  = 0.1 experiment are given in 

figure 6.6 along with the corresponding theoretical profiles. For small times the theory 

predicted sharp density jumps at the first front and between the outflows of the two 

plumes. A continuous density profile was measured instead because the plume outflow 

was not uniformly dense as assumed in the top-hat plume profile and because sharp 

density jumps were most likely eroded by mixing between the outflows and the 

surrounding water. At large times neither effect altered the density profile because the 

plume outflows were spreading in stratified environments of densities similar to 

themselves and thus the observed density profile is very similar to the theoretical profile.

The experiments in tank B provided data on horizontal velocities and positions of 

the outflow intrusion layers. Figure 6.7 gives the horizontal velocities at the center of the 

basin for 0 =  0.25 and 0.1 where the sources were placed at opposite ends of the tank. 

Also plotted are the horizontal velocities from the single plume case in the same tank 

(figure 4.3a). (For comparison with the single plume case, the horizontal velocity u is 

non-dimensionalised as though the circulation was forced by the outflow of the strong 

plume only. Thus the horizontal velocity u at the centre of the tank is related to the 

observed velocity U by

U = 2'n a 2n Ein Fyy H2n B~'u,
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(a) (b)

(c) (d)

(e) (f)
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Figure 6.5. The positions of the first front ( • )  and the lower extent of the 
weak plume intrusion ( a ) into the environment from tank A experiments, 
(a) O = 0.3, (b) O = 0.25, (c) 0 = 0.2, (d) 0 = 0.15, (e) 0 = 0.1 and
(f) 0 = 0.05. Also shown are the theoretical predictions (----------------- for first
front positions and -----  -----  for neutral buoyancy levels).
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fe

Figure 6.6. The environment buoyancy profiles fe (-----------------  for
experiment and -----  -----  for theory) for & = 0.1 at times f, = 3 min
(t = 0.6), t2 = 15 min (t = 2.9) and t3 = 30 min (r = 5.7).

where B is the width of the tank; see (4.2).) The horizontal velocities for the two plume 

cases show a number of shear layers qualitatively similar to that of the single plume case. 

However, the bottom layer is thicker in the single plume experiment.

From the shape of the horizontal velocity profile, it can be deduced that the 

outflow of the strong plume was the main force behind the formation of the shear layers. 

The weak plume outflow moved in the direction of the shear layer it intruded in, as 

though it was moving passively in the background circulation. Figure 6.8a is a 

photograph showing the dyed outflow of the weak plume (<J> = 0.1) spreading at 

approximately f  = 0.4, a depth where the direction of horizontal motion in the 

background shear layers was away from the strong plume and towards the weak plume. 

The outflow was unable to spread against the backgound motion and as it was also 

constrained by the end-wall, it languished near the weak plume. Only after the outflow 

water had been advected up into a shear layer which flowed in the opposite direction did 

the intrusion begin to spread across the tank. When the weak source was instead placed 

near the center of the tank (figure 6.8b), the outflow from the weak plume was not
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U

Figure 6.7. Dimensionless horizontal velocities at the centre of the basin in 
tank B experiments where the sources were at opposite ends of the tank:
----------------- for 0 =  0.25 and ------  -----  for 0 =  0.1. The dimensionless
horizontal velocities for the case of a single plume in this tank (experiment 
4.10, figure 4.3a) are also given by — — — — .

(a)

(b)

Figure 6.8. Photographs of two experiments which show that the weak plume 
outflow (right) is strongly influenced by the shear layers driven primarily by 
the strong plume outflow (left). Both (a) and (b) show 0 = 0.1 experiments, the 
two differing only in the position of the weak source. As with figure 6.4, blue 
and green dyes were introduced in the strong and weak source solutions 
respectively shortly before these photographs were taken.
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constrained by an end-wall and spread away from both plumes, following the prevailing 

direction of the shear layers at that depth. Again, the outflow water did not flow towards 

the strong plume until it had upwelled to a level where the shear layer flowed in that 

direction.

The thickness of the strong plume outflow at the bottom of the basin was a quarter 

to a fifth of the basin depth for all the experiments. Measuring the outflow thickness of 

the weak plume was difficult because the shear layers altered its velocity and shape. I 

have estimated the outflow thicknesses by measuring the upper and lower extents of the 

dyed water 0.15 m from the middle of the plume (table 6.1). For each experiment any 

spreading of the weak plume outflow at a given depth was nearly always in the same 

direction. Specifically, intrusions at depths 0.40 < f  < 0.47 and 0.77 < f  < 0.87 were 

always directed away from the strong plume while intrusions in depths 0.32 < f  < 0.40 

and 0.51 < C, < 0.74 were always directed towards the strong plume. The thickness of 

the weak plume outflow also varied depending on 0 . For small 0 , the weak plume 

intrusions were at shallower depths leading to outflows of smaller volume fluxes and 

thinner intrusion layers.

6.5. Discussion and Conclusion

6.5.1 The Two-Plume Model

Both the theoretical predictions and experiments in the two plume “filling-box” 

model indicate that the environmental density profiles and circulation patterns were 

dominated by the strong plume. The region below the spreading depth of the weak plume 

could only be refreshed by the strong plume. Waters and tracers from the weak plume 

could only reach this lower region if they first spread into the environment at a shallower 

depth and were subsequently entrained into the strong plume. As a result, the influence 

of the weak plume on this lower region was rather limited.

The dominance of the strong plume complements the findings for a time-varying 

single buoyancy source (Killworth and Turner, 1982). They found that at large times the 

plume from the time-varying source reached the bottom only when the source flux was
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weak plume at end of tank weak plume in middle of tank

0 spreading towards spreading towards spreading away from
strong plume strong plume strong plume

0.30 0.64 - 0.77 0.66 - 0.74 0.74 - 0.87

0.25 0.62 - 0. 74 0.60 - 0.72 0.74 - 0.87

0.20 0.51 - 0.68 0.51 - 0.68 none

0.15 0.53 - 0.64 0.53 - 0.70 none

0.10 0.32 - 0.40 0.36 - 0.38 0.40 - 0.47

0.05 0.32 - 0.38 0.34 - 0.36 0.40 - 0.47

Table 6.1. The spreading depths of the weak plume outflow at large times at 
0.15 m from the weak plume in tank B experiments. Where the weak plume 
was placed at the end of the tank opposite the strong plume the spreading 
depths are given for the outflow moving towards the strong plume. Where the 
weak plume was placed in the middle of the tank the spreading depths are given 
separately for the outflow moving towards and away from the strong plume.

maximal. During the remainder of the cycle, when the buoyancy flux was smaller, the 

plume was no longer dense enough to reach the bottom and produced an intermediate- 

depth outflow that was smaller in volume flux and left the bottom waters untouched. 

Thus the bottom waters were replenished only during the maximal phase of the buoyancy 

source. The time-varying single source during the maximal phase provides an analogy 

for the strong plume in the two plume case while at other times, it behaves like a weak 

plume.

In the experiments, where the buoyancy sources supplied a small volume flux of 

dense water into the tank, the volume of water in the system increased at all times. If an 

experiment was allowed to continue to very large times, the first front would rise above 

the depth of the nozzles. If this occurred, density differences between the source 

solutions and the environment would be reduced and the sources would effectively have 

smaller buoyancy fluxes. However, in the theoretical model the sources originate from 

points where the volume fluxes are zero and so the first front never reaches the depth of
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the sources; hence each source has a constant buoyancy flux at all times. Therefore the 

experiments at very large times are expected to be different to the theory. Fortunately, in 

each of the experiments, the steady state stratification in the environment was established 

well before the first front had reached the depth of the nozzles and the theoretical model is 

expected to be valid.

For the two plume case the predicted neutral buoyancy level of the weak plume 

gave a reasonable indication, although usually an underestimation, of the spreading depth 

for the weak plume outflow. However, the experiments also indicated that the 

background motions in the basin had a major influence on the spreading depth of the 

weak plume outflow. In tank B experiments for 0  = 0.3, 0.25, 0.10 and 0.05 the bottom 

of the weak plume outflow was at a shallower depth if the weak plume was placed at one 

end of the tank instead of the middle of the tank. This was because the end wall 

prevented the outflow from spreading in a shear layer moving towards the weak plume. 

It spread only after it had been advected to the level of the next shear layer. In the long 

channel, the increased vertical advection near the end wall where the flow reflected to 

return in the layer above (chapter 4) might also have contributed to the shallower 

spreading depth.

Besides confining the weak outflow to spread in a particular direction at a given 

depth, the shear layers also influenced the spreading speed of an intrusion. The maximal 

horizontal velocity occurred at the centre of a shear layer. This also influenced the 

measurement of the spreading depth because often only the faster spreading parts of an 

intrusion were seen far away from the plume at their original spreading depths before 

being carried upward by vertical advection. For example, in the 0  = 0.3 experiment of 

tank A, the plume outflow was mainly spreading at the bottom half of the second shear 

layer where there was strong shearing. The top of the plume outflow was seen to spread 

rapidly, but the bottom was observed at a shallower depth and was brought unusually 

close to the predicted neutral buoyancy level. The more rapid spreading of intrusions at 

the centre of shear layers might also have been responsible for the oscillations in the 

spreading depth observed for 0 =  0.05 (figure 6.5f).
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It is speculated that temporal variations in the background velocity profiles of the 

shear layers were responsible for the spreading depths in some tank A experiments to 

ascend to a peak before descending to their large-time depths (figures 6a and 6c, 

corresponding to <P = 0.3 and 0.2). It was shown in chapter 4 that shear layers were 

formed in a pre-stratified tank on a time-scale that depended on the travel time of internal 

waves through the tank. It was also found that the dominant vertical scale of the 

horizontal velocity structure decreased during the evolution of the shear layers. There 

were initially two shear layers and additional layers appeared until five or six layers were 

established. The evolution of shear layers in a stratification that is also developing is 

expected to be similar in structure to the pre-stratified system. However they are also 

expected to develop more slowly than in the pre-stratified system because the depth of the 

stratification during the early stages of the evolution is smaller. Therefore the shear layers 

in the present experiments were not fully established until most of the tank had been 

stratified. The increase in the outflow spreading depths in the <£> = 0.3 and 0.2 

experiments after r  * 3 is consistent with the presence of shear layers that had not been 

fully established. The early shear layers were thicker and thus the maximal horizontal 

velocity in the second layer, where the outflow spread quickest, was found at shallower 

depths.

The results of Kill worth and Turner (1982) indicated that stopping the sources and 

restarting them at a later time would have little effect on the environment density. This 

was exploited in two of the experiments in tank A ( 0  = 0.25 and & = 0.1) where the 

sources were stopped every third minute to allow density profiles to be taken after all 

motions had ceased. In these two cases, the shear layers had insufficient time to develop 

while the sources were active and thus had no effect on the spreading of the weak plume 

outflow. As a result, the spreading depths for these two experiments (figures 6b and 6e) 

followed more closely the trend of the predicted neutral buoyancy level.
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6.5.2 Multiple Plumes

The results and observations may be easily extended to cases where there are more 

than two plumes. In these cases, the plume from the strongest buoyancy source will 

establish the stratification and shear layers while each of the weaker plumes will descend 

to an intermediate depth and spread into the environment. The depths of the plume 

outflows can be predicted by the approximate analytical solution in §6.2.3 or by 

extending the numerical scheme described in §6.2.2 to include additional plumes. Lateral 

transport of the intrusions will again be largely controlled by the shear layer structure 

generated by the strongest plume. The distribution of tracers from the sources will 

depend also on where the plumes are located relative to one another. For example, one 

plume outflow may spread into the path of an outflow from another plume and mixing 

between the two outflov/s causes tracers to be found together.

6.5.3 Comparisons With Peterson’s Multiple Plume Model

Peterson’s study (unpublished, personal communication) of multiple plumes 

differed substantially from the approach described in this paper. He included a buoyancy 

flux attributed to vertical diffusion that at each depth balanced the combined downward 

flux of the sinking plumes and the upward flux of environmental advection and obtained a 

solution for a true steady state where the plume and environment properties do not change 

with time. The solution incorporated the character of a surface boundary layer through 

which the environment properties varied from the surface conditions to an asymptotically 

homogenous interior. This boundary layer had a thickness that depended on the 

buoyancy flux of the sources, the diffusivity constant and the length of the box but, 

importantly, not on the total depth of the box.

Two important consequences of the independence of the boundary layer from the 

box depth are that the stratification (and hence spreading depth of the weak plume) was a 

function of a depth that scaled with the boundary layer thickness rather than the total 

depth. The only similarities between Peterson’s solution and the one presented in this 

paper are that both feature buoyancy frequencies that weakened with distance from the
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surface and, for the two plume case, a lower weak plume spreading depth for increasing 

O. In Peterson’s model the inclusion of diffusion removed the infinite density gradient 

found near the surface of the non-diffusive filling-box model. However, the assumption 

that the net buoyancy flux at a given depth is zero allows only the steady state to be 

calculated.

6.5.4 Conclusion

The “filling-box” equations of Baines and Turner (1969) have been extended to 

describe the case of two or more turbulent, well-separated plumes. For two plumes, the 

numerical solution confirms that the density profile of the environment is similar to that 

produced by a single plume. The predicted spreading depth for the weak plume, taken as 

its neutral buoyancy level, is a function of the ratio of buoyancy fluxes between the two 

sources.

Experiments showed the predictions for spreading depths of the weak plume need 

some adjustment. Firstly, the neutral buoyancy level is an underestimation of the actual 

spreading depth because excess momentum carries the plume to greater depths, resulting 

in some additional entrainment. Secondly, horizontal motions associated with shear 

layers influence the spreading of the weak plume’s intrusion. These shear layers are 

primarily generated by the outflow from the strongest plume and are supported by the 

stratification generated by all the plumes. Weak outflows are forced to spread with the 

shear layer in which they are intruding, with the greatest lateral dispersion occuring at the 

depth of the maximal horizontal velocity in that layer. Thus small differences in the 

effective spreading depth of the plume accompany changes in the horizontal velocity 

profile. For the case of multiple plumes, a more complex model that takes into account of 

disturbances from a number of plume outflows is required to predict the shear layer 

velocity structure and dispersion of the weak plume outflows.
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Two-Basin Systems

7.1 Introduction

Naturally occurring basins are rarely the simple rectangular box as assumed in 

many studies, but instead have complex topographies that affect the convection within 

them. In this chapter I look at plumes in filling-boxes where there is a simple topographic 

feature in the form of a ridge that rises from the bottom to some depth in the interior. The 

ridge divides the box into two separate basins so that any exchange of water between the 

two basins is possible only over the sill, that is, the depth between the water surface and 

the top of the ridge. The presence of two basins alters the way in which plumes ventilate 

the box and therefore has implications for the stratification and water properties.

There are many multi-basin systems in the natural world. In the oceans, mid- 

ocean ridges separate the deep ocean to form many ocean basins of varying sizes. These 

basins act to collect water and restrict spreading to other parts of the oceans. For 

instance, the water properties of the deep Atlantic (figure 3.2) indicate that Antarctic 

Bottom Water is mainly found west of the mid-Atlantic ridge. On a smaller scale, 

marginal seas often collect dense water behind a ridge and, as the dense water overflows 

across the sill, they form outflows into the open ocean. Examples include the four 

outflows mentioned in table 3.1.

In this chapter, I show that the properties of the plumes and the environment are 

modified in the “filling-box” process by the presence of a ridge. In particular, I show 

how these properties depend on the height and position of the ridge. The method is 

formulated in §7.2. I look at single plume systems in §7.3 and two plume systems in 

§7.4. Discussions and conclusions are given in §7.5.
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7.2 M ethodology

The findings of this chapter are mainly theoretical and complemented by several 

experiments. The numerical scheme of chapter 6, which describes two plumes in a 

single-basin filling-box, is modified to take into account the constraints placed on the 

convection by the ridge. Let H be the total water depth as before and zs the depth of the 

sill from the water surface (figure 7.1). The first and second basins (lying below the sill- 

depth) are assumed to have horizontal cross-sectional areas A, (> 0) and A2 (> 0) 

independent of depth. The region above the ridge lies over both basins and is referred to 

as the common region. The buoyancy sources giving rise to the plumes descending into 

the first and second basin have fluxes F, and F 2 respectively, where F, > F 2. 

Furthermore, it is assumed that as each plume descends, it does not strike the side-walls 

or the ridge.

The system is assumed to be homogenous initially. Where there is a single plume 

(F2 = 0), non-trivial cases occur only if the first basin is finite (A, < «>). If A, = <», then 

no stratification is formed in the first basin and no dense plume water reaches the sill to 

overflow into the second basin. It is therefore assumed that A, < ©o, where a “filling- 

box” convection is immediately established in the first basin. An overflow into the 

second basin is eventually formed (figure 7.1). The plume, environment and overflow 

properties all evolve with time.

com m o n  ^  reg ion

i H

seco n d
basin

r

Figure 7.1. The single plume in a two-basin system showing the overflow 
across the sill.
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Where there are two plumes, solutions which are non-trivial and effectively 

different to the single plume case occur only if both basins are finite. In this situation, 

each basin is initially stratified separately and as one or both basins fill, an overflow is 

generated from the basin that has the denser water at the sill-depth. The basin from which 

the overflow occurs contributes a buoyancy flux to the other basin through an injection of 

dense water. The time-dependent properties of the overflow depend upon the sill-depth, 

the strengths of the two sources and the cross-sectional areas of the two basins.

In this study, the overflow from one basin is assumed to descend into the other 

basin without entraining surrounding water. The overflow is likely to be only slightly 

denser than its surroundings and when compared to a plume, which is often much denser 

than its surroundings, buoyancy forces acting on the overflowing water are much smaller. 

The overflowing current attains comparatively small velocities and leads to relatively 

smaller Reynolds numbers. Therefore both the mixing with environment water and 

entrainment into the overflow are likely to be unimportant. In applications where the 

overflowing current descends slopes, entrainment will be even less important.

The presence of the ridge directly affects the environmental density and the 

advection of water. The variables describing the plume properties are as in chapter 6, but 

in the environment there are, for each basin, separate buoyancies f u and f 2e as well as 

advection velocities v, and v2. The non-dimensional scalings (2.4) are carried over, but 

with F = F, + F2 (as in chapter 6) and the cross-sectional area A replaced by A ,. Thus 

dimensionless times in the two-basin system are scaled as for a single-basin filling-box 

with the same size as the first basin. The split in buoyancy fluxes between the two 

sources is indicated by 0  = F2/F (as in chapter 6) and the relative area of the two basins is 

indicated by a  -  AJAV The sill-depth is also non-dimensionalised to £  = zJH.

The numerical scheme in chapter 6 is adapted to two-basin systems as follows: 

the plume equations (6.3) and (6.5) are unchanged and integrated separately as before, 

but using the appropriate environment buoyancy f Xe or f 2e. After taking into account the 

overflow and the different horizontal cross-sections of the basins and regions, the 

advection equations (6.4a) are replaced by
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V1 = - ( '■ > ,+(72) 

v2 = -0'(r22w2 + (7,)

for f  in basin 1,

for f  > f v in basin 2
(7.1)

and

v = ---- + ^ ^ 2 ) for C < ?s m  the common region.

The cr represent the volume flux of the overflow from the ith basin if that basin has the 

denser environment water at the sill-depth. The overflow is assumed to inject its volume 

into the neutral buoyancy level in the other basin (or the bottom if it is denser than all the 

water of that basin) to create additional upwelling between the sill-depth and the injection 

level. Since the overflow volume flux is the same as the volume flux entering the 

overflowing basin through the plume in that basin, cr is defined as

The second environment equation (6.4b), stating that changes in buoyancy are the result 

of advection only, remains valid within each basin or region. The environment equations 

are integrated first for the overflowing basin from the bottom to the sill-depth to give the 

buoyancy in that basin. Integration in the other basin and in the common region gives the 

environment buoyancy in the other parts of the system. Because water is removed from 

the overflowing basin at the sill-depth and injected at some depth in the other basin, there 

is a discontinuity of buoyancy between the overflowing basin and the common region.

The overflow buoyancy flux F0 is defined as the product of the overflow volume 

flux and the buoyancy difference at the sill between the two basins. To distinguish 

between the two overflow directions, F0 is assumed to be positive if the overflow is from 

the first basin to the second basin so that

and
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and negative if the overflow is from the second basin to the first basin, giving

7.3 Single-Plume Systems

When a single plume descends into an unstratified two-basin system, its properties 

and that of the basin it is sinking into are initially the same as if the plume is descending in 

the usual single-basin filling-box. The first front’s position in the first basin is therefore 

given by (2.8) until it reaches the sill-depth where the front remains while the dense water 

drains away in the overflow. Thus for a sill-depth of £v, the dimensionless time T() taken 

for the first overflow to occur is

Figure 7.2 gives a plot of to as a function of For T >  T0, the first basin supplies to the 

second basin a (dimensionless) volume flux q0 equivalent to the volume flux entering the 

first basin through the (only) plume, r2(Q w (Q . Therefore, while the common region 

remains unstratified, (2.7) gives

If a  -  0 (that is, A 2 = <»), the stratification in the second basin is not affected by 

the overflow and so the first basin resembles a “leaking” filling-box where the water in 

the overflow is released into the second basin but never returns to affect the plume nor the 

first basin. Through entrainment of dense water in the first basin, both the plume outflow 

and first basin become progressively denser, as does the overflow. However, the volume 

flux of the overflow q0 remains constant because the common region continues to be 

unstratified. Furthermore, the buoyancy flux leaving the basin in the overflow is limited 

by the buoyancy flux entering the first basin through the plume, which is the same as the 

buoyancy flux of the source (one dimensionless unit). If at large times, the buoyancy 

flux leaving in the overflow is also one dimensionless unit and f 0°° is the dimensionless 

buoyancy of the overflow, then

(7.2)

22/ 354/3 -
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c

T , T , T o e e

Figure 7.2. The time for the overflow to first occur t0 ( — 

single plume two-basin system as a function of sill-depth
-) in a

The time is the
analytical prediction (7.2) which assumes that the system is initially unstratified. 
For the case where the second basin is infinitely large, the time taken for the 
system to approach the two-layered steady state is also plotted as t,
( ---------------- ), which is numerically obtained, and r /  ( ------  -----  ), which
is the analytical approximation (7.3).

Since water in the overflow originates from a plume outflow that is originally at the 

bottom of the first basin, the large-time environment buoyancy f u°° also approaches the 

uniform value f~ . The numerical results confirm that the first basin becomes 

homogenous with buoyancy f0°°.

The buoyancy profiles obtained numerically for = 0.5 (figure 7.3) show the 

evolution of the stratification in the first basin. Because the system asymptotically 

approaches the steady state, an evolution time Te can be assumed to be the time taken for 

the overflow buoyancy flux to reach say 99% of the source flux. Figure 7.2 includes a 

plot of Te against As the sill-depth decreases, the evolution time increases rapidly.

The time taken for the asymptotic two-layered system to develop from the initially 

unstratified system can also be estimated analytically by assuming that the first basin is
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T = 10

Figure 7.3. The profiles of the environment buoyancy f e (----------------- ) and
plume buoyancy fp ( -----  -----  ) during their evolution to the two-layered
state where £  = 0.5.

homogenous throughout the evolution of its stratification. L e t/ le(r) be the buoyancy in 

the first basin. If the increase in buoyancy in the first basin as a result of the plume is 

assumed to be evenly distributed through the first basin then it can be calculated as 

1/(1 -  Q .  The decrease in buoyancy as a result of the overflow is similarly calculated as

fuWqA1 -  O- H ence

dfi* _ f 1—/ie W gf
dT \  J

for which

T = £d!ln(l - U r ) q 0)
Vo

The time taken to reach the true steady state where f u{T)q0 = 1 is infinite, but if it is again 

assumed that the steady state is approached whenf le(f)q0 = 0.99, then an estimate for the 

evolution time t ' is given by
^2/ 3<r4 / 3

<  = I n d O O ) - ^ — f ; 5,3(l -  Q(7.3) 

(figure 7.2). Agreement with Te is reasonably good, especially for small £v.
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A totally different solution appears when A2 < In this case, the second basin is 

stratified by the sill overflow. A density front forms in the second basin between the 

dense overflow water and the overlying homogenous water. It advects up to pass the sill 

and travel through the common region. A continuous buoyancy profile carries through 

from the second basin into the common region, but the density front between the first 

basin and the common region remains near the sill-depth to separate the overflowing 

water and the relatively lighter water above coming from the second basin. As the plume 

entrains stratified water from the common region the buoyancy of the whole system 

increases with time and the system resembles the usual filling-box.

Figure 7.4 shows the evolution of the environment buoyancy profile in the case of 

= 0.5 and a  = 1. The first overflow occurs just before r  = 2. The front in the second 

basin passes the top of the ridge just after r =  5. Its rate of movement slows abruptly on 

passing the sill-depth because the cross-sectional area over which the front advects 

increases suddenly on reaching the larger common region. At large times the familiar 

“filling-box” stratification is found in the common region. Below the ridge denser water 

is found in the first basin and less dense water in the second basin.

In the single-basin filling-box the supply of buoyancy by the plume increases the 

buoyancy evenly through the box at large times. Numerical results indicate that this also 

occurs in the two-basin filling-box. Thus the large-time buoyancy flux across the sill, 

which is the sole supply of buoyancy to the second basin, depends on the volume of the 

second basin relative to the whole box. The large-time buoyancy flux F0 of the overflow 

is given by

F  =
a + 1o - a (7.4)

For a=  1, figure 7.5 gives plots of F0 as functions of t / to for = 0.25, 0.5 and 0.75. 

In each case, the overflow buoyancy flux first becomes larger as the water in the first 

basin becomes denser. But as the overflow fills the second basin and denser plume- 

derived water reaches the sill-depth in the second basin, the density difference between 

the waters in the overflow and in the second basin at the sill-depth decreases and the
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(a)
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fe

Figure 7.4. The buoyancy profiles in the environment for the single-plume 
two-basin system where = 0.5 and a  = 1. In both graphs, the profiles for the
first basin are given by -----  -----  while the profiles for the second basin
below £ = 0.5 and for the common region above £ = 0.5 are given by
----------------- . In (b), the profile for the single-plume in the usual single-basin
filling-box (of area A l + A2) is also given for comparison ( .....................).
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overflow buoyancy flux drops abruptly. Smaller adjustments to F0 also occur as denser 

water arrives in the common region and is entrained by the plume In each case, Fo 

asymptotically approaches the predicted large-time flux (7.4).

7.4 Two-Plume Systems

When two plumes descend into two basins, the properties of the system not only 

depend on the sill-depth and the relative cross-sectional areas of the two basins, but also 

on the relative buoyancy fluxes of the two sources. As the number of possibilities is 

large, I only give a limited set of results to illustrate the trends that occur as each of the 

parameters is varied. Because the first basin contains the plume from the stronger source 

the overflow is usually from the first basin into the second. However, as I show later, an 

exception to this occurs when the size of the second basin is very small.

When both basins are of equal sizes (a=  1), the overflow is always from the first 

basin into the second. At the start each basin is filled by the plume descending into it in 

the usual “filling-box” manner. The first basin fills up before the second basin because 

the strong plume has a higher volume flux at the sill-depth. When the overflow forms,

£ =0 .25
• ' e

t, = 0.5
- ' o\ y - t, =0.75-
•'e

O

Figure 7.5. The buoyancy flux Fn in the overflow for the single-plume two- 
basin system for £s. = 0.25, 0.5 and 0.75 where a = 1.
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the depth to which it sinks depends on the stratification in the second basin. This is 

illustrated by the neutral buoyancy levels of the overflow and the weak plume for ^  = 0.5 

(figure 7.6) for &  =  0.1, 0.25, 0.35 and 0.45. In the case of 0 = 0.45, the plumes are 

similar in strength and hence the buoyancy profiles are fairly similar in both basins. 

Initially, the water in the overflow, which comes from the top of the first basin, is only as 

dense as the water in the second basin at f  = 0.55. At later times, when the stratifications 

in the two basins have developed further, the overflow neutral buoyancy level is deeper 

(at a depth just below f  = 0.65). For 0 =  0.35, the overflow initially spreads at f  ~ 0.72 

but quickly descends all the way to the bottom. As soon as the overflow reaches the 

bottom, the weak plume is no longer sufficiently dense to sink to the bottom and its 

outflow forms an intrusion into the interior of the second basin. For 0 = 0.25 and 0.1, 

the overflow is sufficiently dense to sink to the bottom as soon as it is formed and 

changes the weak plume bottom outflow in the second basin into a mid-depth intrusion. 

In these cases, the neutral buoyancy level of the weak plume rapidly rises as dense 

overflow water gathers at the bottom of the second basin, but the level asymptotically 

approaches a final steady depth. At large times the weak plume in the 0 = 0.25 case is 

still dense enough to sink into the second basin, but in the 0 = 0.1 case, it is too light and 

instead forms an intrusion into the common region.

In figure 7.7, the stratifications in both basins for £  = 0.5 and 0 = 0.1 at 

T= 1.74, 3.48, 8.70 and 13.92 are shown. Although neither density front in the two 

basins has reached the sill at r =  1.74, the differences in the advection speeds of the two 

fronts and the buoyancies in the two basins are very distinct. At r  = 3.48, the effects of 

the dense overflow can be seen at the bottom of the second basin. By r  = 8.70, 

overflowing water from the first basin has advected through the depths of the second 

basin to move into the common region above the sill, pushing ahead of it the less dense 

water collected in the second basin at earlier times. This volume of less dense water is 

responsible for the relatively linear buoyancy profile in the common region. As additional 

dense water reaches depths above the sill and entrainment into both plumes withdraws 

water from the common region, the buoyancy profile changes to approach the familiar
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0 = 0.1

0 = 0.45

0  =  0.25
0  =  0.35

T

Figure 7.6. For = 0.5, a = 1 and 0= 0.45, 0.35, 0.25 and 0.1, the neutral
buoyancy levels of the overflow ( ---------------- ) and weak plume
(----------------- ) in the second basin. The plots for the neutral buoyancy level
of the overflow for 0 = 0.25 and 0.1 and for the weak plume for 0 = 0.45 lie 
exclusively on £ = 1. Also plotted is the bottom of the weak plume’s outflow 
( ▲) for a 0 = 0.1 experiment described in §7.4.

plume-shape stratification of single-basin filling-boxes (t = 13.92). The rapid sharpening 

of the buoyancy gradients just below the advancing density front, which accompanies the 

change to a plume-shape stratification, is responsible for the small change in the spreading 

depth of the weak plume between r  = 10 and 14 (figure 7.6). During this period 

buoyancies at different depths increase unevenly so that the neutral buoyancy depth of the 

weak plume is lowered slightly. Although the descent is small and is not likely to be 

noticed in applications, it is nevertheless an interesting feature of many two-plume two- 

basin systems. In comparison, when two plumes descend into a single basin, the weak 

plume outflow is not collected separately in a basin, but interacts with the strong plume. 

In that case the environment attains the familiar plume stratification quickly and no 

increase of the weak plume’s neutral buoyancy depth is seen at any time.

I conducted a single experiment to verify the numerical predictions for 

environment buoyancies and weak plume spreading depths in two-basin systems. The
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a)

t = 3.48

f
6

b)

T = 13.92

T = 8.70

e

Figure 7.7. The predicted (----------------- ) and experimentally observed
( ---------------- ) environment buoyancies, f Xe and / 2f, in the case where £  = 0.5,
a  = 1 and 0  = 0.1 at (a) r  = 1.74 and 3.48 and (b) t = 8.70 and 13.92. Below 
the bifurcation in each plot, the right and left branches refer to buoyancy in the 
first and second basins respectively. Above the bifurcation, the plot refers to the 
common region (£ < 0.5) or to both basins (£ > 0.5).
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experiment used a 1.1 m x 0.3 m x 0.24 m tank initially filled with fresh water. The two 

basins were separated by a ridge that rose 0.12 m from the bottom, vertical on the side of 

the first basin but at a 45° angle on the side of the second basin. It separated the tank into 

two basins of roughly equal size, although the top of the second basin was approximately 

20% larger than the bottom. The slope reduced any entrainment into the overflow. The 

sources in the first and second basins injected salt water of density 1180 kg m~3 and 

1020 kg irf3 respectively, both at a volume flux of 0.395 x 10“6 nx s '1. The parameters 

of this experiment were therefore = 0.5, & = 0.1 and a  -  1. During the 30 min 

duration of this experiment, the depth at which the bottom of the weak plume’s outflow 

spread into the second basin was measured every two minutes; the data are plotted in 

figure 7.6. Every four minutes, buoyancy profiles were obtained in both basins and a 

selection of these corresponding to r =  1.74, 3.48, 8.70 and 13.92 are plotted in figure 

7.7. Agreement between the predicted and experimentally observed results is good.

Figure 7.6 identifies four main flow regimes that exist for two-plume two-basin 

systems. The four regimes are displayed in figure 7.8. Regime I exists in all cases at the 

start when the overflow across the sill has not yet developed and each plume descends to 

the bottom to fill and stratify its own basin independently. When the overflow occurs, 

either regime II or III develops. In regime II, the overflow spreads at an intermediate depth 

while the plume in the basin receiving the overflow continues to spread at the bottom. In 

regime III, the overflow spreads at the bottom while the plume in the basin receiving the 

overflow lifts off to spread at an intermediate depth. Regime IV is an extension to regime 

III where the plume has lifted so far that it spreads above the ridge. Thus for C>s -  0.5 and 

a  -  1 (figure 7.6), the 0  = 0.45 case displays regime I initially and regime II after the 

overflow occurs. The 0  = 0.35 case also displays regime I initially and regime II 

immediately after the overflow forms, but evolves to regime III. The 0  = 0.25 and 0.1 

cases jump directly from regime I to regime III, with the 0  = 0.1 case also progressing to 

regime IV.

For O' = 1 the flow regimes exhibited for different and 0  are given in a phase 

diagram shown in figure 7.9. The flow regimes are deduced from numerical simulations
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Figure 7.8. The four flow regimes of two-plume two-basin systems, showing 
the type of spreading of the plume outflows and sill overflow. In the diagrams 
for regimes II, III and IV the left basin is the overflowing basin. Density fronts 
are indicated by broken lines. Note that the diagrams are not drawn to scale.

from the start to the time when the first front has advected to f  = 0.05. During this time, 

the system has effectively evolved to the steady state for cases where > 0.4 and the 

regime at the end of the simulation is representative of that at even larger times. 

However, for < 0.4, the steady state has not yet been reached when the simulation is 

stopped and the boundaries for transition between different steady state regimes are only 

approximate for 0.2 < C)s < 0.4. For <fv < 0.2, the time required for the system to reach 

the steady state is much longer than the time required for the first front to reach f  = 0.05 

and it was impractical to calculate the boundaries for the flow regimes.

When the first front is at f  = 0.05, the depth to which the weak plume descends is 

given in figure 7.10 for a  = 1 and Cts > 0.4. Starting from the single-basin situation 

(fs = 1), the spreading depth of the weak plume is unchanged if the ridge height is as high 

as the spreading depth of that particular weak plume in the single-basin case. This is 

because the stratification above the ridge is virtually the same as in the single-basin 

system. However, if the ridge is higher, then the spreading depth is lowered; in these 

situations the weak plume penetrates the second basin where, compared to the same 

depths in the single-basin system, the water is less dense.

116



Chapter 7 Two-Basin Systems

0

Legend:
Area

A
B
C
D

Regimes from start to steady state 
(refer figure 7.8)

I -> III-* IV 
I -* III 
I -> II —> III 
I -* II

Figure 7.9. The flow regime phase diagram for a  = 1. The vertical axis is the 
sill-depth £ while the horizontal axis is the ratio of the buoyancy flux of the 
weak source to the total flux, <2>. The two dotted boundaries for 0.2 < £  < 0.4 
indicate the transition in the large time flow regimes are only approximate (see 
text).

The (dimensionless) steady state buoyancy flux FJF  across the sill for 0  = 0.4, 

0.25 and 0.1 is plotted in figure 7.11 for different Where the weak plume spreads 

above the ridge, the increase in buoyancy in the second basin is solely supplied by the 

overflow from the first basin and F0 is given by (7.4). Where the weak plume spreads 

below the ridge, part of the buoyancy in the second basin is supplied by the weak plume 

and F0 is therefore less than that predicted by (7.4).

I now consider the effects of varying the sizes of the two basins. The first 

overflow is from the second basin into the first basin if the filling-time of the second basin 

is less than that for the first basin. Noting that the dimensionless time r  is scaled to the
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i / )  (D  N

0

Figure 7.10. For a = 1, the loci of constant spreading depth of the weak plume 
at the steady state. The vertical axis is the sill-depth £ while the horizontal 

axis is the dimensionless buoyancy flux of the weak source 0.

0  = 0.25

F / Fo

Figure 7.11. For a = 1 and O = 0.1, 0.25 and 0.4, the variation of the 
dimensionless overflow buoyancy flux FJF with £, at a time when the first front 
is at £ = 0.05. For 0.2 < C,s < 0.4 (dotted lines), the overflow buoyancy flux had 
not yet fully evolved to its steady state flux.
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area of the first basin A,, the dimensionless times rl0 and r2o required for the first and 

second basins to be filled are respectively

Thus the first overflow is from the second basin to the first basin if t1o > r2o, or 

equivalently, if

If the overflow is from the first basin to the second basin, the overflow remains in 

that direction at all times. However, if the first overflow is from the second basin to the 

first basin, the overflow may switch to the opposite direction. I illustrate this with the 

= 0.5 case where the a-@ phase diagram for the overflow direction is given in figure 

7.12. In region A the overflow is always from the first basin to the second. An overflow 

from the second basin into the first occurs for any 0 if the second basin is filled faster 

than the first basin (regions B and C). A steady state overflow from the second basin 

only exists for sufficiently large 0 and a (region C). A neccessary but not sufficient 

condition for a steady state overflow from the second basin is a steady state bottom 

spreading of the weak plume. Because the stratification in the common region is very 

similar to that of the single-basin system, it is virtually independent of a. Hence, an 

approximate limiting value of 0 for steady state outflows from the second basin can be 

found from figure 7.9. Combinations of 0 and £  which lie in region A of figure 7.9 

have weak plume spreading depths above the ridge at large times ( fw < Q  and these 

cannot lead to steady state overflows from the second basin for any a. For C,s = 0.5, the 

condition is therefore 0 > 0.16, a limit that is approached as a —»

Three experiments were conducted in the case of a - 2.89 with 0 -  0.1, 0.25 and 

0.45. As expected, the second basin filled up first in all three cases and resulted in 

overflows into the first basin. These overflows were weak and settled near the sill-depth

and

a = A,/A2 > (F ,/F2)1/3. (7.5)
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a

Figure 7.12. The a - &  phase diagram for the direction of overflow across the 
sill in the case of = 0.5 when the first front is at £ = 0,05. In region A the 
overflow is always from the first basin into the second basin while in region C 
the overflow is always from the second basin into the first. In region B the 
initial overflow is from the second basin into the first, but switches to the other 
direction later.

in the first basin (for example, figure 7.13a). For &= 0.1 and 0.25, the overflows from 

the second basin were brief and changed direction quickly to form overflows from the 

first basin into the second (figure 7.13b); this new overflow direction was maintained as 

the system evolved to the steady state. In the 0 = 0 . 1  case, the subsequent overflow 

from the first basin lifted the weak plume from the bottom, causing it to spread as a mid­

depth intrusion. For the 0  = 0.45 case, the weak overflow from the second basin into the 

first persisted into the steady state. The overflow directions in these experiments are 

consistent with predictions given in the phase diagram of figure 7.12.

Plots for the large-time environmental buoyancy profiles for = 0.5, 0  = 0.25 

and a = 0.5, 1, 3 and 20 are given in figure 7.14. When a basin is smaller, the 

ventilation of the environment by the plume and overflow is faster and hence density 

gradients become weaker; this applies to both basins. The densest water is always found 

at the bottom of the first basin, even if the second basin is supplying the overflow
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a)

Figure 7.13. Two photographs from an experiment where £t = 0.5, 0  = 0.25 
and a = 2.89. The source solution giving rise to the weak plume in the second 
basin (left of ridge) was dyed red. (a). A close up of the sill region early in the 
experiment which shows that the overflow of weak plume water is from the 
second basin (left) to the first basin (right), (b) The overflow reversed in 
direction so that at large times a small volume of undyed (clear) strong plume 
water was seen descending the sloping wall of the ridge.

(O' = 20). The weakening of the density gradient in the second basin when a  is larger 

also lowers the spreading depth of the weak plume (figure 7.15).

Changes to the a-0 phase diagram for other than 0.5 are briefly discussed. 

Region A remains unchanged for all f v because the condition (7.5) for the first overflow 

to originate from the second basin is independent of f v. In the limiting case of = 1 

where the “ridge” has zero height, the strong plume provides the bottom outflow at large 

times so that the “overflow” across the “ridge” is from the “first basin” into the “second”. 

In this situation region C disappears and region B comprises the area defined by (7.5) and 

O < 0.5. As the ridge height increases and £v becomes smaller, region C expands from 

the line 0  = 0.5 for a  > 1. At a given a  (> 1) the boundary between regions B and C 

shifts to smaller 0. When £v —> 0, region B disappears altogether, leaving only regions 

A and C. The limiting value for 0on the boundary as a —» °o changes from 0 = 0.5 at 

= 1 to 0 - 0 at = 0. Thus in the phase diagram, steady state overflows from the 

second basin grow in prevalence as ridge heights increase. The expansion of region C 

over region B occurs because when the two basins grow in depth, the inter-basin 

convection is increasingly restricted by the taller ridge. Ventilation times of the two 

basins then become more important in determining the direction of the steady-state 

overflow.
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Figure 7.14. The environment buoyancy profiles for £  = 0.5 and & = 0.25 
when the first front is at f  = 0.05. (a) a = 0.5 and 1. (b) a = 3 and 20.
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Figure 7.15. The neutral buoyancy level of the weak plume £„ for £  = 0.5,
0  = 0.25 and a = 0.5, 1, 1.5, 3, 9 and 20.

7.5 Discussion and Conclusion

The model presented in this chapter shows that modifications to the properties of 

the plume and environment result when the lower depths of the filling-box are divided by 

a ridge into two basins. The ridge causes plume outflows to be collected separately in the 

two basins, often producing waters with very different densities in each. In addition, as 

ridge heights increase, more restriction on the inter-basin exchange is imposed through 

deeper basins so that not only are density differences between the two basins larger, but 

also the time required to evolve to the steady state.

For a single plume descending into a two-basin system, the properties depend on 

whether the size of the second basin (without the plume) is infinite or not. The 

homogenous first basin that forms when the second basin is infinite is similar to studies 

of “ventilated filling-box” models of Linden et al. (1990) and of convection produced by 

buoyancy sources in enclosures (Cooper and Linden, 1996; Linden and Cooper, 1996). 

In the “ventilated filling-box” model, openings at the top and bottom allow water to enter 

and exit the box. In that study, the exchange of water is limited by the size of the 

openings and a single plume was found to create a two layered environment within that
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box. In the single plume two-basin system where the second basin is infinite, the first 

basin, together with part of the common region directly above it, may be considered a 

“leaking” or “quasi-ventilated” filling-box. Water leaves this “quasi-ventilated” filling- 

box through the overflow and enters it by way of entrainment into the plume above the 

ridge. Both exchanges are limited in volume (ultimately by the plume volume flux 

entering the first basin) and hence it is not surprising that a two layered system, in the 

form of homogenous regions above and below the ridge, is also generated.

On the other hand, if the second basin is finite, then there is no complete 

ventilation of the first basin because the overflowing water fills up the second basin, 

advects into the common region and returns to the first basin through entrainment into the 

plume. This convection cycle through the system is comparable to that of the single-basin 

filling-box. Above the ridge, the large Time stratification is virtually identical to the 

single-basin system. Below the ridge, the newest plume outflow water, which is also the 

densest water in the environment, is now found in the first basin while slightly less dense 

water is found in the second basin. A similar system is also formed when there are two 

plumes, one descending into each basin. The spreading depth of the weak plume is 

modified from the single-basin case and also depends on the relative cross-sectional areas 

of the two basins and the ridge height.

With experiments in §7.4 providing general agreement with the theoretical results 

for the density structure of the environment, spreading depths of the weak plume and 

direction of overflows across the sill, it is anticipated that experimental verification will 

extend to all the theoretical results. However, there will be some important differences in 

any application of the theory. As in chapter 6, the mid-depth intrusions of plumes and 

overflows are often lower than the neutral buoyancy level. They are also influenced by 

background horizontal motions such as those generated by shear layers. Furthermore, the 

water in the overflowing basin may rise to some distance above the sill before spilling into 

the other basin (the overflow has finite depth). The dynamics of the overflow, such as its 

thickness, are also determined by hydraulic control and should be incorporated into the 

numerical scheme for use in specific applications.
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Conclusions

This thesis has presented theory and experiments designed to investigate the 

fundamental processes in turbulent plume convection and the resulting stratification and 

circulation in enclosed boxes. The interest for this work stems from its potential 

relevance to convection and stratification in the oceans. The major conclusions are:

(i) Counterflowing shear layers result when the outflow from a turbulent plume 

spreads in a stratified environment. These shear layers are established by the continuous 

excitation of baroclinic normal modes and have vertical scales set by the depth of the 

outflow layer. In the non-linear stratification produced by the “filling-box” process, 

viscous dissipation of momentum causes the amplitudes of the horizontal velocities in the 

shear layers to decrease with distance from the bottom.

(ii) An analysis is presented for turbulent plumes on slopes. The properties of 

downslope plumes, when averaged over their cross-section, depend similarly on the 

distance from the source as do those of vertically-descending plumes far from side 

boundaries. However, the rate of entrainment of surrounding water is reduced and 

depends on the angle of the slope.

(iii) Where the downslope plume forms a highly turbulent flow down a steep slope, the 

convective circulation and stratification generated are similar to those produced by a 

vertically-descending plume. Under such conditions, “filling-box” models for downslope 

plumes may be assumed to be forced by equivalent vertically-descending plumes.

(iv) When two well-separated plumes fill a single basin, the spreading depth of the weak 

plume at large times is roughly dependent on the two-thirds power of the ratio of 

buoyancy fluxes between the two sources. However, the overall stratification in the basin
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is similar to that produced by a single plume from a source with the combined flux.

(v) Where a number of plumes descend into a single basin, shear layers are mainly 

forced by the outflow of the strongest plume. The spreading paths of intermediate-depth 

outflows from weaker plumes are strongly modified by their passive advection in the 

horizontal velocities of the shear layers.

(vi) When a filling-box is divided by a ridge into two basins, convection is restricted by 

the topography. Density differences between the two basins build up and result in 

overflows across the ridge. The modifications to the stratification and plume spreading 

depths increase with the height of the ridge and also depend on the relative horizontal 

areas of the two basins.

More research is required in establishing the differences in the “filling-box” 

circulation between downslope plumes and vertically-descending plumes. The 

experiments suggest that plumes on very gentle slopes lead to “detrainment” and the 

formation of very dense bottom layers. It is suggested that this is caused by insufficient 

mixing over the vertical cross-section of the plume. Further knowledge on the mixing 

processes and density distribution within downslope flows will assist investigations of 

the circulation patterns driven by such currents. In any application of the model, the 

precise mixing processes and density distribution in the flow may also influence the 

circulation patterns. For example, complex bottom topographies and rotation of the earth 

alter the course and velocity of currents in the oceans and will therefore influence the 

properties of the flow.

The “filling-box” models presented in this thesis may also be relevant to the 

circulation of the oceans and semi-enclosed seas. The shear layers of chapter 4 were 

observed in rectangular basins and were generated primarily by the outflow of the 

strongest plume. The lateral dispersion of outflows from weaker plumes was shown to 

be affected by these shear layers and only slightly modify the overall horizontal velocity 

structure. Should similar counterflowing shear layers be generated in the oceans by 

bottom and deep water convection, a direct extrapolation of the present results would 

imply that horizontal velocities at all depths are mainly forced by the largest outflows of
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dense water in the deep ocean. However, further work would be necessary to determine 

the circulation patterns in basins with complex ocean-like topographies. For example, 

observations of circulation patterns in the two-basin filling-box of chapter 7 would reveal 

some of the effects of sills and mid-ocean ridges. However, in the oceans there are other 

processes that have not been included here, such as the effects of the earth’s rotation, and 

these are also expected to be significant.

Another possible extension to the “filling-box” theory is a generalised multiple 

plume model where each plume descends slopes of different angles. This model would 

assist investigations of the convection where different rates of mixing and entrainment 

occur in different plumes. In these situations it is anticipated that modifications to the 

plume properties will result in slightly altered spreading depths and circulation patterns. 

For the oceans, rotation will once again play a role in directing flows along slopes at an 

angle from the downslope direction and will therefore alter the amount of entrainment 

from each depth interval and change the neutral buoyancy level.

The theory of multi-basin filling-boxes may also be applicable to marginal seas, 

where dense water is collected in basins and drained into oceans through sill overflows. 

Knowledge of the convection and inter-basin exchange in these systems will extend 

understanding of the processes involved in the production of dense water in a number of 

regions including the Mediterranean Sea and Arctic Ocean. However, the collection and 

interpretation of suitable field data sets is a large task and beyond the aims of this thesis. 

Seasonal buoyancy sources may also be imposed on the forcing of such systems, further 

modifying the stratification and resulting in time dependent exchanges between basins.

In summary, this study has identified that active shear layers are an integral part of 

the “filling-box” circulation produced by both vertically-descending and downslope 

plumes. It has also been shown that the plume properties and the environment 

stratification can be calculated for a number of plumes descending in multi-basin 

geometries. The results presented in this thesis provide useful insights into some of the 

important processes that may contribute to the deep ocean stratification and to buoyancy- 

driven flows between basins.
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