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Caelum, non animum, mutant 

Qui trans mare currunt. 

Horace, Epistle I 

'Who rushes overseas will find 

The climate changed but not his mind' 

i.e. It can get fair dinkum hot here, 

but I got the book finished- no worries. 
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Abstract 

Antibody microprobes are fine glass microelectrodes coated with specific 
antibodies to particular neuropeptides. They can detect nano- to micromolar 
concentrations of neuropeptide release in the CNS by means of an in situ solid 
phase radioimmunoassay. The precise sites of release of SP, CGRP, SS, GAL, 
MEAP, and dynorphin A were determined in the spinal cord of the cat following 
noxious thermal, mechanical and chemical stimuli to the skin, and electrical 
stimulation of hind limb nerves. 

The tips of glass microelectrodes were coated with an amino-silane 
polymer and then sequentially incubated in glutaraldehyde, Protein A and an 
antibody directed against the neuropeptide in question. Using extracellular 
recording as an indication of microprobe placement and neuronal excitability, 
microprobes were inserted into the lower lumbar cord of barbiturate
anaesthetized cats vvith or \vithout cord transection, peripheral stimulation or 
administration of drugs. Upon removal from the cord, microprobes were 
incubated in the appropriate radiolabel and then exposed to X-ray film. The 
resultant images were scanned by video camera and the optical density analyzed 
by computer. Localized deficits in binding were interpreted as sites of release of 
the neuropeptide in vivo. 

_t\. basal release of SP, SS, CGRP and GAL from the substantia gelatinosa 
was present in the absence of cutaneous stimuli. Noxious mechanical stimulation 
increased SP and CGRP release whereas noxious thermal stimulation increased 
release of SP, CGRP and SS. In contrast, GAL and MEAP showed no release 
with any of the stimuli tested. A basal release of dynorphin A was detecte_d in 
lamina I and VI only with an intact spinal cord . 

. 
Since supraspinal sites are known to inhibit the activity of spinal neurones 

through descending fibres, the blockade of descending tracts may inhibit SP 
release. No change in noxiously-evoked SP release was seen with cold block or 
cord transection at the thoracolumbar junction, suggesting that descending 
inhibitory systems do not reduce the release of SP from the central terminals of 
nociceptors. 

.. 
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Activity in large diameter afferents may give rise to segmental inhibition 
of the transmission of impulses in small diameter fibres. Electrical stimulation of 
the ipsilateral tibial or sural nerve at intensities sufficient to excite only Aa{J or 
additionally Ao primary afferent fibres did not reduce the release of SP evoked 
by concomitant noxious stimuli. The results suggest that segmental inhibition 
produced in the dorsal horn by electrical stimulation of peripheral nerves is not 
mediated by presynaptic inhibition of SP release from nociceptive primary 
afferent fibres. 

Opioids have been proposed to exert their analgesic effect through a 
reduction of transmitter release from primary afferent terminals. However, large 
doses of morphine were not effective in reducing the release of SP or CGRP, 
suggesting that opioid drugs mediate analgesia at a postsynaptic site of action. 

Baclofen reduces the release of excitatory transmitter from large diameter 
fibres, and has analgesic properties which may result from a similar action on 
small diameter fibres. While the polysynaptic excitation of dorsal horn 
interneurones by impulses in nociceptive afferent fibres was reduced by baclof en, 
no concomitant reduction in release of SP was seen in the substantia gelatinosa. 

Collectively, these results suggest that the spinal transmission of 
nociceptive information may involve the simultaneous release and action of 
several neuropeptides within the dorsal horn of the spinal cord. 

Vll1 



- 1. GENERAL INTRODUCTION: 

Criteria for Neurotransmitter Identification in the CNS 

To firmly establish that a given substance mediates transmission from 

primary afferent fibres to second-order spinal neurones requires a detailed 

examination of several aspects of the phenomenon. Several authors have laid 

down criteria to be fu1fi11ed before a transmitter role may be ascribed to a 

candidate (Paton, 1958; Curtis, 1961; Eccles, 1964; Werman, 1966; Orrego, 

1979; Salt & Hill, 1983). All authors agree on four basic criteria. 

Firstly, the substance must be present in those neurones from which it is 

supposed to be released. For primary afferent transmitters, this criterion is 

inferred from statements that the substance is present in greater concentrations 

in the dorsal than ventral horn of the spinal cord, and the dorsal horn levels 

should fall after dorsal root section. 

Secondly, the substance should be released into the subsynaptic space upon 

stimulation of the appropriate fibre type which contains the substance. 

Thirdly, if the substance is present in sufficient concentrations at the post

synaptic target, the effects should be the same as the normal excitatory response 

to afferent stimulation. 

Fourthly, the normal and induced responses should have the same 

pharmacological profile ( order of potency) to antagonists. and agonists to 

confirm that both effects are mediated through the same receptor or receptive 

system. 

SUBSTANCEP 

Background Information 

Long before the advent of immunohistochemical procedures, SP had 

been identified by von Euler and Gaddum, 1931, in extracts of horse brain and 

intestine by its spasmogenic effect on the isolated rat jejunum and its transient 

hypotensive effect in atropine-pretreated rabbits (see Von Euler, 1981). 
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Systematic studies of the concentration of SP in the central nervous system led 

to the discovery of 5 - 10 times higher concentrations in dorsal than in ventral 

roots of the spinal cord (Pernow, 1953), leading Lembeck to propose SP as a 

primary afferent transmitter (Lembeck, 1953). The purification and elucidation 

of the amino acid sequence of SP (Chang & Leeman, 1970) led to synthesis of 

the undecapeptide (Tregear et al.1971), enabling antibodies to be raised against 

the albumin-conjugated peptide for radioimmunoassay and 

immunohistochemical procedures (Hokfelt et al.1975). 

Localization within the Spinal Cord 

The immunohistochemical technique has been used by many 

investigators to demonstrate that SP is found in the superficial laminae of the 

dorsal horn of several species (Hokfelt et al 1975; Takahashi & Otsuka, 1975; 

Ljungdahl et al.1978; Barber et al.1979; Jessell et al.1979; Gibson et al.1981; 

Pearson et al.1982; Di Giulio et al.1985; Ogawa et al.1985; Kawatani et al.1985). 

The primary afferent origin of SP in the spinal cord is indicated by a decrease of 

irSP in the substantia gelatinosa following section of the dorsal roots, and irSP 

depletion by capsaicin which is neurotoxic to small sensory C fibres (Hokfelt et 

al.1975). Substance P has been shown to be synthesized in DRG cells (Harmar 

et al. 1981) where it is transported in a colchicine-sensitive manner along the 

dorsal roots to be stored in central terminals. However, the majority (some 

70%) is transported to the periphery where it is believed to play a role in the 

axon reflex and neurogenic inflammation (Pernow, 1983). 

Substance Pis found in about 25% of all DRG neurones and is confined 

to the small or type B cells of the ganglia (Ju et al 1987). In the rat lumbosacral 

spinal cord, irSP is found in laminae I - III, Lissauer's tract and lamina X 

around the central canal with occasional terminals in the ventral horn (Hokfelt 

et al 1975). A similar pattern is seen in sacral afferents in cat spinal cord 

(Kawatani et al.1985) .where irSP is found in laminae I - ill, V, VII and X with 
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some periodicity in the concentration of staining in the rostrocaudal axis visible 

in parasagittal sections. Dorsoventral bundles coursing from lamina I to V 

along the lateral edge of the dorsal horn appear to course in a medial and 

dorsal direction before branching in the dorsal grey commissure in lamina X. A 

subcellular examination of SP immunoreactivity demonstrates its presence in 

large dense-core vesicles of glomerular structures thought to represent primary 

afferent terminals (Barber et al 1979; Ribeiro-Da-Silva et aL 1989). In many 

cases this is colocalized with other neuropeptides and in some cases, biogenic 

amines, excitant amino acids and other putative transmitters of low molecular 

weight, can be found in small clear vesicles in the same synaptic terminals 

(Hokfelt et al 1980). 

The overall distribution of irSP corresponds to the termination sites of 

fine diameter fibres conveying nociceptive sensory information (Rethelyi et 

al.1982; Sugiura et al.1986), supporting the notion that SP is contained in, and 

released from these fibres. 

Intraspinal Release of Substance P 

It has been emphasized in several articles dealing with transmitter 

criteria that the release of the candidate foil owing impulses in afferent fibres is 

one of the most decisive in transmitter identification (Paton, 1958; Curtis, 

1961). With the availability of SP radioimmunoassay, release of irSP could be 

detected in perfusates of spinal cord slices following electrical stimulation of the 

attached dorsal rootlet (Otsuka & Konishi, 1976, 1983). Others have evoked 

irSP release with elevated potassium concentrations in the fluid perfusing the 

trigeminal nucleus caudalis (Jessell & Iversen, 1977) or the spinal cord 

(Sa\vynok et al.1982; Pang & Vasko, 1986). Capsaicin has also been used as a 

depolarizing stimulus for SP release from slices of spinal cord (Oku et al.1987). 

However, the change in extracellular environment inevitable in moving the 

preparation from in vivo to in vitro conditions is exacerbated by an elevation of 
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potassium ions (from 4mM to more than SOmM in some cases) to produce a 

non-selective and unphysiological depolarizing stimulus to all cells in the 

culture. In fact, the potassium-stimulated release of the contents of glial cells 

has been shown to be calcium-dependent, so this feature may not be proof of 

vesicular exocytosis (Vargas et aL 1977). 

Further studies of SP release have been carried out in vivo using the 

techniques of push-pull cannulae (Kuraishi et al.1985; Hirota et al.1985), 

microdialysis (Brodin et a/.1987) and spinal catheters (Oku et a/.1987a; 

Linderoth & Brodin, 1988; Go & Yaksh, 1987). The release of SP has been 

detected in the intrathecal space of cat lumbar spinal cord ( Go & Yaksh, 1987), 

where bilateral sciatic nerve stimulation at intensities exciting small diameter, 

slowly conducting fibres increased the release over controls by 278%. This 

technique, however, has the disadvantage of measurement at a site relatively 

remote from the area of release, the neuropeptide having to diffuse through the 

complicated extra-neuronal space of the neuropil, escaping enzymic 

degradation before appearing in the sub arachnoid perfusate. 

The Criterion of Physiological Identity 

Receptors 

The third criterion is the demonstration that the candidate interacts with 

the same receptors on the post-synaptic membrane to produce changes in 

membrane permeability to certain ions, and/ or to cause the formation of 

intracellular second messengers. 

While there are another set of criteria to be considered before a binding 

site is elevated to receptor status (Laduron, 1984b ), several subtypes of 

tachykinin receptor appear to exist in various parts of the peripheral and central 

nervous system. In the peripheral system, the work of Iversen and others 

showed two distinct orders of potency for the various tachykinin agonists in in 

vitro smooth muscle preparations. In this classification, the 'P' subclass of 
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receptor bind SP and pbysalaemin preferentially and is found in smooth muscle 

of the guinea-pig ileum, guinea-pig bladder and rat bladder. The 'E' subclass 

bind the non-mammalian tachykinins, eledoisin and kassinin and are found in 

the rat vas deferens, rat duodenum, hamster bladder, and mouse bladder 

(Iversen et al. 1982; Jessel & Womack, 1985). Another classification by Regoli 

and co-workers for the mammalian neurokinins characterizes three receptor 

subtypes showing selectivity in three smooth muscle preparations: NK-P ( dog 

carotid artery), NK-A(rabbit pulmonary artery) and NK-B (rat portal vein), 

each with a unique rank order of potency with the most potent ligand giving the 

name to the receptor type (Regoli et al.1987). 

There appears to be less evidence for distinct subtypes of neurokinin 

receptors in the central nervous system. Physalaemin and eledoisin are several 

times more potent than SP in depolarizing rat spinal cord motoneurones in vitro 

suggesting yet another subtype of receptor (Konishi & Otsuka, 1974). However, 

the various potencies of agonists in these preparations may reflect different 

pharmacokinetic properties, such as access to receptors and differential 

degradation in various tissues. The approach taken to elucidate types and 

distribution of CNS receptors has been one of autoradiographic localization of 

binding of the radioiodinated SP agonists to sections of brain tissue (Quirion & 

Dam, 1986), where it appears there are two separate types of receptors, NKA 

and SP. In the spinal cord (Charlton & Helke, 1985b; Charlton & Helke, 1986; 

Helke et al.1986), SP receptors appear to be located on the postsynaptic 

membrane since destruction of sensory afferents with botanical toxins (ricin and 

capsaicin) increases the density of binding sites akin to a denervation

supersensitivity phenomenon. With the advent of new antagonists (vide infra ), 

it may be more informative to characterise the receptors by displacement of a 

radiolabeled antagonist by the various agonists. Despite details concerning 

what type of tachykinin receptor is present, there appears to be good evidence 

for SP receptors in the superficial layers of the dorsal horn. 
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Postsynaptic Membrane Actions 

Many different in vivo and in vitro preparations have been used to 

demonstrate the excitatory action of SP on neurones of the spinal cord. The 

microelectrophoretic administration of SP onto dorsal horn neurones produces 

a slow onset (30 - 60 s) and long lasting ( several minutes) increase in firing rate 

of a subpopulation of cells (Henry, 1983; Murase & Randie, 1984). This 

delayed onset may be due to a slow rate of ejection from micropipettes· by 

electric current or slow diffusion to its site of actio~ and the long-lasting action 

may be due to an absence of a re-uptake mechanism, a conversion to active 

metabolites, and/ or slow degradation (Piercey et al.1985). In other studies, it 

was shown that SP-sensitive dorsal horn neurones were specifically excited by 

noxious, but not non-noxious chemical stimuli (Piercy et al 1980). 

In rat spinal cord slices, the presence of micromolar concentrations of SP 

in the perfusion medium produced a slow depolarization and increase in 

excitability of dorsal horn interneurones which was similar to the responses 

induced by dorsal root stimulation at C fibre threshold (Urban & Randie, 1984; 

Akagi et al.1987). 

The shortcoming in these experiments is the inability to demonstrate 

that the neurone under study is monosynaptically excited by the primary 

afferent C fibre which releases SP. The asynchronous input of many small 

diameter C fibres of varying conduction velocity precludes an identification of 

monosynaptic input. In the absence of this information, it cannot be ruled out 

that an interneurone containing SP or some other excitatory transmitter is 

presynaptic to the recording site. 

Ionic Channels Activated by SP 

There is some controversy as to the particular ionic conductances that 

are responsible for the slow depolarizing response of SP on spinal neurones. 
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The SP-induced inhibition of the M-current (muscarinic-sensitive potassium 

current) in cultured mouse spinal cord neurones (Nowak & Macdonald, 1982) 

and the inward rectifying potassium current in dissociated neurones (Stanfield 

et al 1985) was not sufficient to account for the slow depolarizing response 

observed in studies of immature rat spinal cord slices in vitro (Murase et 

al 1986). Instead, many neurones were found to have slow calcium-sensitive 

currents which were enhanced in the presence of SP (Murase et al 1986). A 

more recent voltage-clamp study of neurones in the rat spinal cord slice again 

ruled out any changes in the inward rectifying potassium current, reporting only 

a small reduction in the M-current and confirming the SP-induced enhancement 

of a slow persistent calcium current, which may have been secondary to non

specific increases in membrane permeability to sodium and potassium (Randie 

& Murase, 1988b ). 

Antagonists of substance P 

The development of antagonists of SP will allow a better 

characterization of receptor types and will help determine whether SP is a 

transmitter of primary afferent neurones, but the real achievement may be the 

production of superior analgesics for the treatment of pain of nociceptive 

afferent origin. 

The first antagonists were made by the substitution of the dextrorotatory 

enantiomers of amino acids into the sequence of the undecapeptide, which 

hinders enzymic degradation. The essential structural features of the SP 

analogues which confer antagonist properties are; at least two D-trp residues at 

the seventh and ninth positions, a C-terminal methionine-amide group replaced 

with either leucine-amide or phenylalanine-amide to increase the 

hydrophobicity of the peptide, and the substitution of L-arginine to improve the 

aqueous solubility (Michelet et al.1988). 
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The first antagonist synthesized by Rosell & Folker's group, D-pro2
, D

phe7, D-trp9 - SP was shown to antagonize a caudally-directed biting and 

scratching ('nociceptive') behaviour after intrathecal administration 

(2µg/rat)but produced paralysis at marginally higher doses ( 4µg/rat in (Akerman 

et al 1982), also see (Piercey et al 1985). The slow excitatory response elicited 

by micromolar concentrations of SP in rat spinal cord slices was reduced by the 

presence of the SP antagonist, spantide (D-arg\ D-pro2
, D-trp7·9, leu11-SP) and 

recovery was observed on wash-out (Urban & Randie, 1984; Randie et al 1988a) 

While some workers have reported that this compound has local anaesthetic 

(Post et al 1985; Post et al 1987) or even neurotoxic effects (Post & Paulsson, 

1985) when placed into the subarachnoid space, these effects depend on the 

dose given, and these tests may not provide the sensitivity to detect a 

therapeutic 'window'. 

The tachykinin antagonist D-pro2
, D-trp7·9 

- SP was selective in its 

reduction of the depolarizing responses of eledoisin and kassinin, but not of SP 

or physalaemin, on the ventral root potential of the isolated spinal cord of the 

newborn rat (Briggs et al 1982). The ventral root depolarizations induced by 

capsaicin were also reduced by the antagonist, suggesting that the capsaicin 

response is mediated through tachykinin 'E' receptors on the postsynaptic 

membrane. Kassinin and eledoisin not found in mammals, so it seems 

incongruent that this analogue does not block the effect of the naturally 

occuring tachykinin. 

The intratbecal administration of the SP analogue, D-trp7·9•
10 was tested 

on the reaction time in a tail flick response to a noxious thermal stimulus 

(Couture et al.1985). The decrease in reaction time induced by physalaemin 

was reversed by the analogue, but the basal reaction time was not affected. The 

lack of antagonism of the endogenous nociceptive signal in the face of blockade 

of an exogenously administered non-mammalian agonist suggests some physical 

inactivation of the two peptides when administered together. This type of 
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experiment seems to be confounded by the fact that the analogues induce 

flaccid paralysis after intrathecal administration, casting doubt on the validity of 

this 'analgesic' test. For example, the motor dysfunction induced by one SP 

antagonist may be due to ischemic trauma f ollolmng the constriction of blood 

vessels in the ventral horn (Barber et al 1987). It seems that these .studies of SP 

analogues have not satisfactorily demonstrated a pharmacological antagonism 

of the effects of SP released in the spinal cord. 

The development of non-peptide antagonists has the advantage of a 

possible systemic route of administration, a desirable step fonvard in the 

development of analgesics of therapeutic value. Piperazinone derivatives of the 

C-terminal hexapeptide of SP have shown a behavioural antagonism of the SP

induced biting and scratching responses following intrathecal administration, 

but they are not active following systemic administration (Piercey et al.1986). 

Just as collection of SP from intrathecal catheters is unable to locate the 

site of release of SP, the administration of SP antagonists via spinal catheters 

will yield no information on the site of action of these compounds. Pial nerves, 

blood vessels and glia are exposed to the same ( or probably higher) 

concentration as the postsynaptic membrane of neurones receiving a C fibre 

input and may produce effects which complicate the interpretation. More 

specific antagonists are needed which should be adpiinistered in the substantia 

gelatinosa by microelectrophoresis, if possible, so that the question of SP in 

nociceptive transmission may be more confidently addressed. 

Summary Remarks 

It appears that SP fulfils the criteria of localization and release, but the 

exact site of release has not yet been convincingly demonstrated. The 

physiological identity criterion has been fulfilled in a general way , but more 

evidence for receptor subtypes is needed in the CNS as has been shown for 

peripheral tissues. There is still controversy over the precise ionic mechanisms 
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involved in SP-induced depolarizations. Finally, more specific and selective 

antagonists are needed which may be administered in the vicinity of the first 

nociceptive synapse, to address the criterion of pharmacological identity. 

CALCITONIN GENE.RELATED PEPTIDE 

Background Information 

Calcitonin gene-related peptide ( CGRP) was discovered using 

techniques of molecular biology. Calcitonin is secreted from the C-cells of the 

thyroid gland and decreases the level of calcium in the blood by promoting 

bone formation and by other means which physiologically antagonize the effects 

of parathyroid hormone. The mRNA for the calcitonin gene was found to 

encode extra peptide fragments which are produced in other tissues. Whereas 

the thyroid, as expected, produces mainly mRNA for calcitonin, the central 

nervous system expresses mRNA for another peptide sequence which is 

translated into a 16 kilodalton precursor to yield a- or ,B-calcitonin gene-related 

peptide, which differ by only one amino acid. This novel approach to peptide 

discovery is in contrast to SP and SS, where biological activity in bioassay 

systems led to the isolation of the active component. 

Spinal localization of irCGRP 

In several species including the cat, large numbers of CGRP-containing 

DRG neurones have been identified using polyclonal antibodies raised with rat 

CGRP conjugated with adjuvants ( Gibson et al.1984; Molander et al.1987). 

Within these neurones, CGRP-like immunoreactivity appears at the axon 

terminals of unmyelinated and finely myelinated primary afferent fibres 

(Carlton et al.1987; McNeill et al.1988) and is located within large dense cored 

vesicles. Both in DRG neurones and axon terminals in the CNS, there appears 

to be an extensive colocalization of irCGRP with irSP (Lee et al 1985ab; 

Skofitsch & Jacobowitz, 1985d; Molander et al 1987). This colocalization 
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appears to occur even to the extent that individual vesicles contain both irSP 

and irCGRP in peripheral nerve endings ( Gulbenkian et al 1986; Alvarez et 

al 1988) and DRG neurones (Merighi et al 1988), and by the inference of 

Dale's principle (Eccles, 1986), in the central terminals of primary afferents in 

the spinal cord. In the guinea-pig, a double immunogold technique was used to 

demonstrate irCGRP and irSP in the same vesicles in peripheral nerve fibres, 

the DRG and its brainstem homologue, the trigeminal ganglion (Gulbenkian et 

al 1986). 

CGRP appears to be the most ubiquitous peptide found in sensory 

ganglia at this time. In the rat, 50% of all lumbar and cervical DRG neurones, 

and 70% of the small and medium diameter neurones contain irCGRP (Lee et 

al 1985b ). In the cat, the ratio of irSP to irCGRP DRG neurones was found to 

be 1 : 2.2 - 2.7 (Gibson et al 1984; Cameron et al 1988) whereas a 1 : 1 ratio 

was found in the guinea-pig (Gibbins et al 1987). This discrepancy may be 

methodological, since the guinea-pig ganglia were excised whole and cultured in 

a colchicine-containing medium before fixation, giving a longer pe·riod of time 

for SP levels to increase. In the rat vagus nerve, irCGRP was found in about 

5 % of myelinated fibres and about 50% of unmyelinated fibres, located in large, 

dense-cored vesicles but not small, clear vesicles (Kakudo et al 1988). 

The near-complete reduction in irCGRP following removal of the 

synthetic source in the DRG by sectioning the dorsal roots, suggests that 

descending fibres and neurones intrinsic to the dorsal horn contribute little to 

the irCGRP in the dorsal horn (Chung et al 1988). This has led some authors to 

regard CGRP as a 'sensory marker'. For example, the short ascending portion 

of small diameter primary afferent fibres has been located in the dorsolateral 

funiculus as opposed to the tract of Lissauer (:tv1cN eill et al.1988), based on the 

presence of irCGRP in the former structure. However, irCGRP is also found in 

motoneurones in the ventral horn (Skofitsch & Jacobowitz, 1985a), where it 

may play some efferent role at Ach receptors of the neuromuscular junction 
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(see Kruger et al, 1988). Others have proposed a specific role for CGRP in 

nociception based on an increased incidence of irCGRP synaptic contacts with 

dynorphin A profiles in the dorsal horn of arthritic rats (Ta..icahashi & Traub, 

1988), but further evidence of nociceptive-specific release of CGRP must be 

demonstrated. 

CGRP Release 

Compared to the abundance of studies demonstrating 

immunohistochemical localization of CGRP in fixed tissues, relatively little has 

been published on the release of this putative neurotransmitter from neurones 

known to contain this neuropeptide. 

In rat spinal cord slices, 60 mM potassium or lOµM capsaicin has evoked 

the release of irCGRP, irSP and irNKA into the artificial CSF ( Gamse et 

al 1981). The basal and potassium-evoked release of CGRP and SP were 

comparable in magnitude but the capsaicin-evoked release of CGRP was 

greater than that of SP, perhaps reflecting a somewhat more selective action of 

capsaicin. Cultured rat trigeminal ganglion cells were shown to exude irCGRP 

upon depolarization with 59mM potassium in a calcium-dependent fashion 

(Mason et al 1984 ). Ho\vever, the 60 min period of exposure to high potassium 

led to a depletion of 30% of the cellular stores of CGRP, which was 

reproducible only after a further 18 - 24 h in culture. Chemical stimuli such as 

capsaicin and bradykinin have also evoked release of irCGRP from peripheral 

sensory terminals in preparations of guinea-pig heart ( Geppetti et al.1988) and 

urinary bladder (Maggi et al.1988). 

Since no evidence of in vivo release of irCGRP has been forthcoming, 

the studies presented in this thesis were undertaken to demonstrate 

reproducible release of small amounts of CGRP upon depolarization of nerve 

terminals by action potentials in primary afferent fibres. 
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The Criterion of Physiological Identity 

Receptors 

Specific, saturable binding sites have been described in homogenates of 

spinal cord and brain of the rat (Goltzman & :Mitchell, 1985), but this is of little 

use in ultrastructural localization of putative receptors. In rat and human CNS, 

autoradiography of spinal cord and brain sections has shown a dense binding of 

radioiodinated CGRP in the substantia gelatinosa of the human trigeminal 

nucleus caudalis (Inagaki et al 1986). However, the cervical region of the spinal 

cord showed no distinct binding in the substantia gelatinosa but fairly even 

binding over the gray matter and dorsolateral funiculcus, questioning \vhether 

an appropriate exposure time was employed for these sections. In addition, the 

presence of exposed silver grains on the autoradiographic image corresponding 

to the DLF is rather puzzling, considering the localisation of irCGRP within 

fibres of passage in this area (McNeill et al.1988). Perhaps, some other 

macromolecule (ion channel, transport protein) within small diameter fibres 

containing CGRP is giving a false impression of 'receptor' localization 

(Laduron, 1984b ), because this study does not show the expected distribution of 

CGRP binding sites in the spinal cord. 

In contrast, Skofitsch & Jacobowitz (1985) have shown a selective 

distribution of 125I-tyr0-CGRP binding sites in the dorsal horn and regions 

surrounding the central canal. Within the dorsal horn, the superficial layer 

appeared to have slightly greater binding of the tracer, a finding which is 

consistent with the localization of irCGRP. 

Membrane actions 

The in vitro effects of CGRP on the membranes of dorsal horn 

intemeurones has been studied in the immature rat spinal cord slice which has 

been cut to preserve the dorsal root ganglia of that segment (Ryu et al.1988). A 

micromolar solution of CGRP produced a slow, reversible depolarization in 

one-third of all cells examined, whereas a few cells showed an initial 
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hyperpolarization followed by a prolonged depolarization. Since the CGRP -

induced depolarization was unaffected by tetrodotoxin (sodium channel 

blocker) and tetraethylammonium (potassium channel blocker), it was 

suggested that enhanced calcium entry may underlie the slow EPSP. In a 

parasympathetic ganglia of the cat urinary bladder, an interaction of CGRP 

with calcium has also been suggested by the enhancement of calcium-dependent 

potentials in the presence of calcitonin and CGRP (N omni et al.1986). 

Furthermore, synaptosomes prepared from rat dorsal horn show a nif edipine

reversible enhancement of 45Ca2
+ entry in the presence of nano- to micromolar 

concentrations of CGRP (Oku et al.1988). It may not be fortuitous that two 

peptide products of the same calcitonin gene are both involved in mobilizing 

stores of calcium. 

A similar membrane effect of CGRP occurs in vivo. In cat lumbar dorsal 

horn neurones, the microelectrophoretic application of CGRP produced an 

excitation of slow onset (30 s to 3 min) and long duration (10 min)(Mil~tic & 

Tan, 1988). Although 10 out of 18 cells examined for their response properties 

showed excitation, none of the 4 nociceptive-specific type of cell was excited by 

application of CGRP, and there was no evidence for monosynaptic excitation. 

The observation of vesicular colocalization begs the question of whether these 

cells would respond to simultaneous microelectrophoretic administration of SP 

and CGRP, as is likely the case under natural conditions. Interactions of these 

two peptides have been described both in vitro and in vivo. CGRP retards the 

degradation of SP (Le Greves et al.1985) and can potentiate the release of SP 

from the dorsal horn ( Oku et al.1987). An interesting microelectrophoretic 

study would be to examine the effect of CG RP on the nociceptive neurone 

while it is being excited by endogenously released SP. 

In contrast to the unimpressive membrane action reported in the spinal 

cord, a fast excitatory response has been reported follo\ving pressure ejection of 

CGRP in the vicinity of guinea-pig coeliac ganglion cells. This fast response 
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was not sensitive to TIX but was attenuated by d-tubocurarine and abolished 

by a sodium-free external medium, suggesting to these authors that CGRP acts 

on a TIX-insensitive sodium channel (Dun & Mo, 1989). The slow 

depolarizing response seen in the above-mentioned in vivo study was also 

observed in this preparation but was not affected in low calcium - high 

magnesium ion solution. 

In myenteric neurones another mechanism has been proposed to give 

rise to the slow depolarizing responses of the plasma membrane. The 

application of CGRP inactivated a potassium conductance which itself was 

calcium-activated. While it has been shown that irCGRP fibres in the coeliac 

ganglion may be peripheral branches of primary afferent fibres with their cell 

body in the DRG ( Gibbins et al 1985), it is not known if a fast excitatory 

response is a central action of CGRP released in the spinal dorsal horn. 

Studies by Wiesenfeld-Hallin et al. (1984) have revealed a functional 

interaction of CGRP with two other neuropeptides, SP and SS, which are 

colocalized to a greater and lesser degree, respectively, in the sensory system 

(Skofitsch & Jacobowitz, 1985d). The intrathecal administration of SP alone 

produced a 'nociceptive' behaviour of caudally directed biting and scatcbing 

which lasted several minutes. Concomitant administration of SP (10 µ,g) and 

CGRP (20µg) P.roduced a response of greater frequency and duration (30 min), 

whereas CGRP (20 µg) by itself had little effect. The physiological identity is 

apparent from a similar pattern with nerve stimulation. The increase in 

excitability of the flexor reflex by a sural C fibre conditioning stimulus was 

enhanced by intrathecal CGRP and further increased by CGRP and SP. 

As discussed below, the nociceptive behaviour and flexor reflex 

produced by somatostatin is also potentiated by intrathecal (0.2 - 2.0 µg) CGRP 

(Wiesenfeld-Hallin, 1986a). It appears, then, that the physiological mimicry of 

nociceptive behaviour and withdrawal reflexes by CGRP is only present in the 
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context of an organized response involving other transmitter candiates, such as 

SP and SS. 

Antagonist of CGRP 

At present there are no CGRP analogues that are effective as 

antagonists. The intrathecal infusion of antibodies to CGRP bas been reported 

to increase the nociceptive threshold for mechanical stimulation of the _hind 

paw in both normal and arthritic rats, suggesting that CGRP facilitates 

nociceptive function (Kuraishi et al.1988). 

SOMATOSTATIN 

Localisation within the spinal cord 

Immunoreactive somatostatin has been found in cat DRG cells (Leah et 

al.1985b; Kawatani et al.1986) and in the superficial laminae of the cat dorsal 

horn (Krukoff et al.1986; Tessler et al.1986) and other species (Ho & 

Berelowitz, 1984; Price, 1985). In the spinal cord SS-immunoreactivity is 

confined to neural elements, fibres and celJ bodies in lamina I, II and III. Less 

than 10% of rat DRG neurones were found to contain somatostatin compared 

with the 15-20% observed for SP (Molander et al. 1987). Other estimates of 

peptide _immunoreactivities in rat DRG neurones have been higher with about 

20% for SS and about 30% for SP (Ju et al.1987). In initial studies in rats, these 

DRG immunoreactivities appeared to have mutually exclusive neuronal 

distributions, suggesting a functional differentiation between SP- and SS

containing neurones (Hokfelt et al.1976). Subsequent studies, however, have 

shown occasional (7.8%) coexistence of irSP and irSS in rat DRG neurones 

(Molander et al.1987). In the cat, 5 - 7% of DRG neurones contain irSS and a 

high proportion (72.7%) of these also contain irSP, but a low proportion 

(13.6%) also contain irCGRP (Cameron et al.1988). 

The relative contribution of intrinsic spinal neurones to the overall 
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content of irSS in the dorsal horn is some\vhat greater than SP since a 40% in 

irSS follows dorsal rhizotomy (Tessler et al 1986) and 80% decrease is seen 

with SP (seep. 3). In contrast, capsaicin treatment of the sciatic nerve of the rat 

produced a 48% depletion in somatostatin and only a 27% depletion of SP, 

suggesting that a sub-population of SP-containing cells are resistant to capsaicin 

(Wall et al 1981). 

There appears to be a descending component of irSS in the spinal cord 

which closely matches the pathway of the dorsal reticulospinal tract, originating 

in cell bodies of the nucleus gigantocellularis and nucleus raphe magnD:s 

extending down the central medullary tegmental path to terminate in the dorsal 

horn (Bowker & Abbott, 1988). This suggests that irSS release may be of 

efferent as opposed to afferent origin in the spinal cord (Shimada et al 1985; 

Schrader, 1985; Millhom et a~ 1987). It is tempting to speculate that 

somatostatin is involved in inhibition from supraspinal sites, since the perikarya 

of irSS fibres and the location of tracts are consistent with anatomical sites 

implicated in descending inhibition. 

Release of irSS from spinal cord 

Experiments utilizing a push-pull cannula have detected release of irSS 

from the rabbit lumbar dorsal horn with noxious cutaneous .thermal stimulation 

of the hind limb (Kuraishi et al.1985). Interestingly, it was found that noxious 

mechanical stimulation did not evoke release of irSS, suggesting that some 

functional characteristics may be indicated by the neuropeptide content of the 

neurones. 

In vitro preparations of rat spinal cord have shown that potassium ( 60 

m.M) (Sheppard et al.1979) or capsaicin (Gamse et al.1981) results in the 

appearance of irSS in the perfusion fluid, but the relative contribution of 

intrinsic interneurones, and the terminal fragments of neurones of descending 

and primary afferent origin to the levels of irSS is impossible to determine. 
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Apparently, no studies have utilized i.t. catheters for collection of irSS from 

spinal perfusates. 

Physiological Identity Criteria 

Somatostatin binding sites 

In the rat, analogues of ssl-14 and ssl-28 were used as autoradiographic 

tracers to localize binding sites in the substantia gelatinosa of the spinal cord 

and trigeminal nucleus caudalis (Uhl et al 1985). The substantia gelatinosa of 

postmortem human spinal cord has also been shown to be dense with 

somatostatin binding sites (Reubi et al.1986; Charnay et al.1981, 1988). There 

appear to be no reports of the cat spinal cord showing somatostatin binding 

sites. 

Ionic Channels 

Randie & Miletic (1978) have shown predominantly inhibitory effects of 

microelectrophoretic SS administered to the spinal cord isolated from 

immature rats. An increase in action potential amplitude was associated with a 

depression of firing frequency of neurones, suggestive of a hyperpolarization. A 

few nociceptive units were found to be weakly excited in lamina VII of the 

dorsal horn. Further work by Murase et al (1982) showed that in the majority 

of cells studied (15 /18), micromolar concentrations of somatostatin produced a 

dose-dependent and reversible hyperpolarization associated with a small 

decrease in membrane input resistance. This membrane effect of SS is similar 

to that seen in neurones of the gastrointestinal tract (Mihara et al 1987). 

The membranes of submucous plexus neurones were studied to 

determine if release of somatostatin from efferent sympathetic nerves could 

result in transmitter-like actions (Mihara et al.1987). More than 90% of 

neurones were hyperpolarized by somatostatin with an increase in inward 

rectification of potassium ions. The effects of somatostatin were sensitive to 
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guanine nucleotides, suggesting an involvement of a G-protein in the coupling 

between a presumed receptor site and the ion channel. A similar inhibitory 

membrane action may exist for somatostatin released in the spinal cord from 

afferent fibres with cell bodies in the DRG~ but this contradicts the widely held 

belief that all primary afferent transmitters are excitatory. 

A role for somatostatin in nociceptive transmission is supported by the 

physiological identity of nociceptive behaviour following intrathecal 

administration to decerebrate, spinalized rats (Wiesenfeld-Hallin, 1985). A 

caudally-directed scratching and biting behaviour, seen after small doses of 

somatostatin, is suggestive of pain perception. This result is somewhat 

surprising considering the analgesic action of SS in humans after intrathecal 

administration ( Chrubasik et al 1984, 1985), and the inhibitory effects on dorsal 

horn neurones just described. A high dose of intrathecal SS may lead to · 

ischaemic tissue damage from constriction of blood vessels (Mollenbolt et al 

1988), and activation of sensory afferents in the vasculature or meninges may 

give rise to a nociceptive input not accounted for in these studies. Further 

physiological similarities are evident from electrophysiological recording of the 

nociceptive flexor reflex, where both intrathecal somatostatin and C fibre 

conditioning stimuli increase the excitability of the hamstring flexor reflex. The 

increase in excitability of the nociceptive reflex was specific to a noxious heat 

stimulus but did not occur with a noxious mechanical stimulus (Wiesenfeld

Hallin, 1986a,b ). 

Somatostatin Antagonists 

A blockade of the effects of somatostatin in the spinal cord with 

analogues of somatostatin has not been attempted to date. In the work of 

Mihara et al. (1987) the inward movement of potassium ions during rectification 

of the me1nbrane potential was not blocked by the somatostatin analogue, 

cyclo-aminoheptanoyl-Phe,D-trp,lys,(benzyl) - SS, which has been reported 
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effective in inhibiting growth hormone release from cultured bippocampal cells · 

and stimulating growth in rats (Spencer & Hallet, 1985). 

GALANIN 

Background Information 

After translation from mRNA many peptides are chemically modified at 

amino acid residues, which changes their biological activity. In mammals, the 

N-amidation of the C terminal of many peptides occurs only in neuroactive or 

hormonally-active peptides. The isolation of peptides containing an N

amidated C terminal structure has produced some new biologically active 

peptides, such as neuropeptide Y, peptide YY, and neuropeptide K This 

approach also led to the discovery of galanin in the pig intestine (Tatemoto et 

al.1983); the peptide deriving its name from glycine and alanine present at the 

N- and C-terminals of the peptide, respectively (Rokaeus, 1987). 

Spinal Localization 

The production of antibodies against synthetic galanin enabled 

immunostaining in the CNS, revealing a differential pattern of staining in 

various somatosensory regions (Skofitsch & Jacobowitz, 1985c,e, 1986). IrGAL 

has been measured by radioimmunoassay and immunohistochemistry in the 

spinal cord of pig and rat (Ch'ng et al.1985; Skofitsch & Jacobo\vitz, 1985c,e; 

!vielander et al.1986; Ju et al.1987; Bauer et al.1988). In the rat, cell bodies 

containing irGAL have been observed in the superficial layers of the dorsal 

horn throughout the spinal cord, and additionally, in the vicinity of the central 

canal at the lumbosacral level (Skofitsch & Jacobowitz, 1985c; Melander et 

al 1986). The ventral horn of the rat spinal cord has been shown to contain a 

few immunoreactive motoneurones. A population of small DRG neurones 

were found to be galanin-ir, which disappeared after capsaicin treatment 



indicating the presence in primary sensory C fibres (Skofitsch & Jacobowitz, 

1985e). 

Release of Galanin 

No studies have appeared on galanin release in vivo. 

Physiological Identity Criterion 

Specific binding sites for radioiodinated galanin have shown agreement 

with the localization of irGAL in the sensory trigeminal region and dorsal 

laminae of the spinal cord (Skofitsch et al.1986). A class of single, high affinity 

galanin receptor sites in rat brain membranes was isolated using the 

radioiodinated peptide as an affinity label and the high MW protein was found 

to be saturable, reversible and specific to the peptide (Servin et al. 1987). No 

reports on the effects of galanin on ionic channels or second messenger systems 

have been found at this time. 

Intrathecal galanin administration appears to inhibit nociceptive reflexes 

(Post et al.1988; Cridland & Henry, 1988), but in view of the effects of galanin 

on motoneurones discussed below, a paralytic effect may be responsible for the 

increases in response latency in tail-flick and hot plate tests observed in the 

mouse (Post et al.1988). In direct opposition to these 'analgesic' effects, 

intrathecal galanin has been shown to be hyperalgesic in behavioural tests of 

mechanical nociception (Cridland & Henry, 1988). Galanin lowered the 

threshold to a tail pinch stimulus such that a previously innocuous level of 

stimulation induced vocalization in these animals. 

In the hemisected spinal cord of the newborn rat, galanin depressed a 

monosynaptic ventral root reflex elicited by dorsal root stimulation and 

reversed the increase in the reflex produced by bicuculline, strychnine or 

naloxone (Yanagisawa et al.1986). In the same report, the administration of 

capsaicin to the isolated spinal cord and tail preparation produced a nociceptive 
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reflex recorded in the ventral root, which was reversibly inhibited by galanin in 

concentrations of 0.3 - 0.6 µM. While these authors interpret these results in 

favour of galanin as an inhibtory transmitter of group Ia primary afferent fibres, 

the immunohistochemical presence in this region of the ventral horn is not 

consistently observed (Ch'ng et al 1985; Skofitsch & Jacobowitz, 1985c; 

Melander et al 1986), and it is generally believed that large DRG cells do not 

have peptide-containing vesicles, leaving the criterion of presence insufficiently 

demonstrated. 

OPIOID PEPTIDES 

There is little evidence to date that opioid peptides are candidates for 

primary afferent transmitters, and their predominantly inhibitory effect in the 

spinal cord would seem to preclude this. For this reason, the physiological and 

pharmacological criteria used for the previous peptides has not been strictly 

fallowed. Instead, a general background of information has been given for the 

two opioid peptides investigated in this work. 

MET-ENKEPHALIN-ARG-PHE 

Background, presence and localization 

The discovery of the mRNA sequence of the proenkephalin precursor 

revealed that extended versions of met5- and leu5- enkephalin also exist in the 

genetic code for enkephalin peptides. Of the 6 copies of met-enkephalin found 

in the sequence of pro-enkephalin, two of these have C-terminal extensions, 

met-enkephalin-arg6-gly7-leu8 and met-enkephalin-arg 6-phe 7 (irMEAP) and 

there are also larger fragments (Comb et al.1982; Gubler et al.1982; Noda et 

al.1982). The presence of irMEAP was determined in rat spinal cord by 

radioimmunoassay of acidic extracts of individual spinal cord segments (Majane 

et al.1983). The lumbar and sacral segments were found to contain more 

irMEAP than cervical and thoracic segments and the dorsal gray matter 
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contained about twice as much as the ventral gray matter. In the rat, irMEAP 

nerve fibres were detected at the sixth cervical to sixth thoracic level in the 

dorsal horn, ventral horn, and the intermediolateral column. However, no 

ir MEAP was detected in the spinal ganglia at this level. 

Release of irMEAP 

Tang et al 1983 have detected the release of ir MEAP from the 

superfusates of the rat spinal cord, but only in the presence of several peptidase 

inhibitors suggesting that it is degraded very quickly, and the release increased 

after intrathecal administration of SP. Release of irMEAP has been 

demonstrated from the cat superior cervical ganglion in vitro where it may 

modulate the release of other transmitters (Araujo & Collier, 1987). For 

example, the release of acetylcholine from the ganglion into the perfusate was 

depressed by MEAP in a naloxone-reversible manner, suggesting that opioid 

receptors may be involved in presynaptic inhibition of acetylcholine release 

from the ganglia. MEAP seems to have an opiate-like effect in the spinal cord 

since intrathecal administration produces analgesia (Inturrissi et al 1980). 

Anitbodies are available with a much higher sensitivity of detection of 

this heptapeptide form of enkephalin than the pentapeptides (Terenius, pers. 

comm.), enabling a sensitive and specific antibody microprobe assay of the 

release in the cat spinal cord. 

DYNORPHINA 

Spinal Localization 

The presence of dynorphin-related peptides in laminae I-II and V-VI 

of the spinal cord of the rat (Botticelli et al.1981; Cox et al.1985; Sasek & Elde, 

1986; Weihe et al.1988, Miller & Seybold, 1987, 1989) and cat (Basbaum et 

al.1986; Miller & Seybold, 1987, 1989) has been demonstrated by 

immunohistochemical techniques. Al though most ir-dynorphin occurs in spinal 
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intemeurones, a proportion of this derives from primary afferent fibres. In the 

guinea pig, ir-dynorphin A (1-13) is present in DRG cells of lumbosacral 

origin (Gibbins et al 1987). Both dynorphin A and dynorphin B 

immunoreactivities have been found in dissociated cell cultures of murine DRG 

and spinal neurones (Sweetnam et al 1986). Following unilateral 

deafferentation (LS to S3) in the cat, dynorphin B immunoreactivity was 

decreased in sacral but not lumbar segments, suggesting that most ir-dynorphin 

B at lumbar levels is associated with intemeurones (Basbaum et al 1986). In 

agreement with the dynorphin immunoreactivity, mRNA encoding 

prodynorphin-related peptides can be localized to lamina I-II and V-VI of 

the spinal cord (Hollt et al 1987; Ruda et al.1988) of rats with experimentally

induced peripheral inflammation. 

Release from spinal cord 

Several studies have attempted to measure dynorphin release in the 

mammalian.spinal cord. Perfusion of artificial CSF in the spinal arachnoid 

space, coupled with radioreceptor assay (Nyberg et al 1983; Yaksh et al.1983) or 

radioimmunoassay (Xie et al 1986; Pei et al.1986), has shown release of a 

peptide with chromatographic properties similar to dynorphin A following 

electrical stimulation of peripheral nerves in the rat, rabbit and cat. The work of 

Han's group suggests that dynorphin A is released in high frequency 

electroacupuncture analgesia. In the rabbit, such analgesia can be blocked by 

the intrathecal injection of anti-dynorphin antibodies (Han & Xie, 1984) and in 

the rat, high frequency electroacupuncture increased the ir-dynorphin A content 

of lumbar spinal superfusates (Pei et al.1986). 

Dynorphin A has also been associated with the production of ischaemia and 

trauma following spinal cord injury (Faden et al.1985a; Faden, 1986). An 

increase in spinal dynorphin A levels has follovved traumatic injury to the 

thoracic cord (TlO) sufficient to cause paraplegia (Cox et al.1985; Faden et 
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al 1985b ). Increased kappa opioid binding was associated with the spinal injury 

(Krumins & Faden, 1986) and a selective kappa opioid receptor antagonist 

enhanced the recovery process (Hall et al 1987). 

2. STATEMENT OF OBJECTIVES 

Several studies to date have measured the spinal release of various 

peptides. It has become increasingly clear that many of the in vitro studies 

provide evidence that is contradictory to work obtain in whole animal 

experiments, and in the final analysis the emphasis must be placed on in vivo 

experimentation. The antibody microprobe technique developed in this 

laboratory provides many advantages over other techniques employed for in 

vivo studies of neuropeptide release. This justifies a re-examination of several 

experiments with SP release to validate the current technique and to provide a 

framework for further investigations of novel sensory peptides. 

The objective of this study is to survey a number of neuropeptides 

occurring in the mammalian spinal cord to identify candidates that may be 

involved in sensory physiology. Particular emphasis is placed upon the 

demonstration of stimulus-dependent and nociceptive-specific release of the 

neuropeptide in question. One further goal of this investigation is to undertake 

a more detailed examination of the physiology and pharmacology of the 

stronger candidates of primary afferent transmission. 
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3. METHODS 

Animal Preparation 

Experiments were performed on cats (2.0 - 4.0 kg) anaesthetized with 

pentobarbitone sodium (20 - 35 mg/kg intraperitoneal) and the left cephalic 

vein, a carotid artery and the trachea were cannulated. The spinal cord was 

exposed by larnjnectomy following a midline skin incision and removal of the 

erector spinae musculature. The larnjnae and left transverse process of the 

lumbar vertebrae were removed with bone cutters in a caudal to rostral 

direction. Thin layers of gauze soaked in warm Ringer's solution were used to 

keep the dura moist and small strips of foam impregnated with anticoagulant 

( Gelfo am R) were used to prevent bleeding from cut surfaces of the bone. 

The animal was suspended in a spinal frame ('Canberra') by 2 clamps on 

the twelfth thoracic vertebra and ileum with sufficient rostrocaudal tension to 

allow stable electrophysiological recording. Mediolateral stability was ensured 

by placement of side clamps apposed to the lateral aspect of the vertebral body 

about midway between the suspending clamps about one segment rostral to the 

recording site. A silver chloride coated silver wire was wrapped in gauze and 

soaked in Ringer's solution and sutured between the muscle and fascia beside a 

lateral clamp to serve as the reference electrode. In some experiments, the 

tibial and/ or the sural nerve were dissected free and set up under warm mineral 

oil for stimulation en passage with bipolar platinum electrodes. Body 

temperature, heart rate, blood pressure and end-tidal pC0
2 

were continuously 

monitored. The body temperature was maintained between 36 - 38°C with a 

heating pad controlled by a thermistor placed between a scapula and rib cage. 

If blood pressure fell below 100 mm of Hg in the absence of drugs, a 'plasma 

expander' such as dextran was administered. Cats were artificially ventilated 

following muscular paralysis with gallamine triethiodide (FlaxedilR, 4.0 mg/kg 

initially) and the tidal volume was adjusted to give an end-tidal pC02 of 4.0 ± 

0.2 %. In initial experiments the dura mater was slit rostro-caudally to expose 
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the pia mater , but later experiments were performed with the dura intact 

except for small perforations in the meninges for microprobe insertion. The 

intact dural preparation seemed to prevent tissue swelling throughout the 

course of the experiment perhaps by a retention of the oncotic tissue pressure. 

In both instances a pool of warm, sterile Ringer's solution was maintained 

above the cord. 

Cold Block Experiments 

In the majority of experiments the spinal cord was transected at the 

thoracolumbar junction following infusion of 2% lignocaine solution 

(XylocaineR) to prevent acute stimulatory effects, while the experiments -with 

the cold-block apparatus produced a reversible block of spinal conduction. The 

concave surface of the metal chamber was placed in close apposition to the 

dura mater and the edges sealed with silicone grease. A mixture of ethylene 

glycol - water was circulated through the chamber at either 38°C for normal 

bulbospinal conduction or - 2°C for blockade of conduction in dorsal ·columns. 

This apparatus produced a stable temperature of 2 - 4°C at the dorsal cord 

surface under the metal chamber sufficient to block responses of lumbar dorsal 

horn neurones to cervical cord electrical stimulation (Duggan et al.1977a). 

Sufficient interruption of bulbospinal conduction was confirmed by a decrease 

in blood pressure upon circulation of cooling fluid through the apparatus. 

Morphine Dependence Experiments 

In some experiments, cats were treated twice daily for three days with 

morphine according to a method previously shown to produce tolerance and 

dependence (Johnson & Duggan, 1981). The dose schedule was 2, 5, 5, 10, 10, 

20 mg/kg i.p. morphine HCl with a final dose of 20 mg/kg given before 

induction of anaesthesia with pentobarbitone (20 mg/kg, i.p.). 
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Silanation of Glass Micropipettes 

In initial experiments, hollow precision-bore glass blanks (PyrexR, 

borosilicate ) of 3mm outer diameter were used in the silanation procedure. 

After overnight treatment in 50% nitric acid, rinsing in distilled water and 

drying in an oven, the blanks were drawn out under heat and tension in a 

microelectrode puller to give shanks that were flexible enough to \vithstand 

subsequent treatments. The large end was sealed in the flame of a Bunsen 

burner and the tip was sealed by heating with a small electric coil under a 

microscope. In later experiments, solid glass blanks (PyrexR, borosilicate) were 

preferred for their finer taper and more flexible nature with the added 

advantage of eliminating 2 sealing steps. The preferred geometry was 30 µ.m at 

1.5 mm from the tip and 50 µ.m at 3.0 mm from the tip. 

The new glass surface of the shanks was acid-leached by immersing 

micropipettes in 50% nitric acid for 15 min, which promotes the formation of 

silanol groups on the glass surface (see Fig. 1). Residual acid was removed by 

three washes in distilled water and the micropipettes were dried in an oven at 

140°c. 

Various methods have been attempted to increase the proportion of 

glass micropipettes receiving an even granular coating of siloxane polymer. 

One method involves a hydration step to direct the polymerization of silane to 

the surface of the silanol groups, which may involve water molecules in the 

reactive intermediate (Kopacie1vvicz & Regnier, 1986). 

To achieve a surface water film the micropipettes were cooled to - 20°C 

and transferred to a 10% solution of 3-aminopropyltriethoxysilane in toluene 

through a humid environment. They remained for 24 h in the silane solution 

until removed to a wash of toluene, and heated in an oven at 140°C for 24 h. 

This heating cures the polymer to a stable, water insoluble form and ma~mizes 

the number of amine groups free from steric hindrance ( Chiang et al.1982). At 

this stage individual probes were inspected under a microscope for imperfection 
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Fig. 1. The silanation of glass micropipettes. 

A. Low magnification light microscopic images before (left) and after (right) 
silane treatment of glass micropipettes. 

B. High magnification scanning electromicrograph of the outer surface of silane-
treated micropipette. · 

Lower part of this figure shows the chemical structures involved in the silanation 
reaction. 
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and graded according to thickness and quality of polymer (Fig. 1). The 

silanation procedure was repeated up to 5 times until the desired number of 

good quality probes were obtained. 

Preparation of Antibody Microprobes 

The technique discussed in this section is summarized in Fig. 2. A cross

linking molecule was reacted with the free amine groups of the siloxane 

polymer by immersing micropipettes in a 2.5%(v /v) aqueous solution of 

glutaraldehyde (Merck) for 30 min followed by three washes of distilled v,ater. 

Protein A was bound onto the surface of the polymer to adsorb 

selectively the IgG fraction of the antisera ( Goding, 1978). A concentration of 

2 mg/ml Protein A (Sigma) was taken up into 5 µl microcapillary tubes and 

individual microprobes were inserted into the solution with the aid of a 

dissecting microscope, then incubated for 24 - 48 h at 6°C in a glass dessicator 

with 100 % humidity. Micropipettes were then immersed in a 2.5%(w/v) 

solution of sodium borohydride to reduce Schiff bases farmed during 

glutaraldehyde coupling of the Protein A to the polymer (Royer et al.1975). 

Following three rinses in PBS the micropipettes were inserted into 5 µl 

capillaries containing an appropriate dilution of antiserum (see Table I) with 

the aid of a dissecting microscope, and put in a humid environment at 6°C for 

24 - 48 h. 

In Vitro Assays 

In theory, the optimal dilution of antiserum to use for a sensitive 

radioimmunoassay with a low detection limit is the first in a series of 

normalised antibody dilution standard curves which no longer shifts to the left 

in proportion to the dilution of antiserum (Hunter, 1983). In practice, this 

means enough antibody sites available to give a good signal-to-noise ratio, but 

not so many that a high concentration of the neuropeptide under investigation 
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Table I. Origin of antibodies used on micro pro bes 

Antibody Source 

anti-SP Amersham 
(C-terminal) R. Helme 

anti-SP (monoclonal) Sera-Lab 

anti-CGRP Milab,Malm6 

anti-SS Amersham 

anti-galanin Peninsula 

anti-MEAP L. Terenius 

anti-dynorphin A L. Terenius 

Cat. No. 

N1571 

MAS 035b 

A13 

N1611 

RAS-7153N 

Table II. Radio tracers used in antibody micro pro be experiments. 

Tracer 

125-I-SP 

125I-tyr11-ss 

125I-CGRP(rat) 

125I-tyr0-CGRP 

125I-dyn ~ -17 

1251-MEAP 

125I-Galanin 

Specific 
Activity 

(Ci/mmol) 

2000 

2000 

2000 

900 

1700 

? . 

1375 

Iodination 
Method 

Bolton and Hunter 
reagent 

Chloramine T 

Chloramine T 

Chloramine T 

Chloramine T 

Chloramine T 

Chloramine T 

Source & 
Cat. No. 

Amersham 
(IM.157) 

Amersham 
(IM.161) 

Auspep 
(2115) 

Peninsula 
(Y6008) 

Wm.D. 
Hutchison 

L. Terenius 

Peninsula 
(Y7153) 



1. 

is required to displace the radiolabelled form of the neuropeptide. To find the 

optimal antiserum concentration, in vitro assays were carried out by preparing 

microprobes with increasing dilutions of antiserum with and without known 

concentrations of synthetic neuropeptide to obtain standard curves. 

Radioiodinated peptides were obtained commercially (see Table 11) except for 

dynorphin A which was prepared by the chlorarnine T procedure (Hunter, 

1974) and purified on a Sep-Pak C-18 cartridge (Waters). 

Experimental Use of Antibody Microprobes 

On the day of experimentation , individual probes were again 

microscopically inspected to ensure adequacy of coating, numbered for 

identification and immersed in cold PBS azide. 

To determine the appropriate somatotopic areas of the cord for 

microprobe placement, a platinum ball electrode was used to record the 

maximum cord dorsum potentials in response to low threshold stimulation of an 

ipsilateral tibial or sural nerve, or to light mechanical stimulation of the hind 

paw. Prior to microprobe insertion, a 4 M NaCl-filled microelectrode was used 

to record excitatory responses of neurones in laminae IV /V of the same spinal 

segment to light mechanical cutaneous stimuli and low intensity nerve 

stimulation. 

Micromanipulators (N arishige, Japan and Transvertex stepping drive, 

Sweden) were used to insert microprobes into the lower lumbar spinal cord to 

particular depths beneath the dorsal cord surface. Microprobes were inserted 

about midway between the lateral and median dorsal sulci with slight variations 

in mediolaterality depending on the pattern of the venous plexus. At the end of 

some experiments, a micropipette filled with pontamine sky blue (a 2% solution 

in 1.2 M sodium acetate) was inserted to the depth of insertion of the antibody 

microprobes and current was passed to eject dye as an anion from the elctrode 

tip, to confirm the depth of insertion by subsequent histology. 
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Thermal, mechanical or chemical cutaneous stimulation of the ipsilateral 

hind paw was given for specific periods ranging from 5 min to 60 min, and 

usually 10 - 20 min. The hind paw was immersed in a waterbath at 35 - 42°C for 

non-noxious, or 50 - 52°C for noxious thermal stimulation. Small bulldog clips 

were used to pinch a fold of skin of the ipsilateral digital pads, and this was 

repeated (i.e. 2 min 'on', 1 min 'off) throughout the time period of microprobe 

insertion. Methylene chloride in a polymer base ( commercial paint stripper) 

was applied to the skin for chemical stimulation of nociceptors. The tibial or 

sural nerves were stimulated in some experiments usually with trains of 3 pulses 

of 0.5 ms width at 333 Hz, repeated at 10 Hz for 10 - 20 min, and occasionally at 

100 Hz continuous, at an intensity sufficient to excite Aet/3 (1.5 x T), Ao (11 - 16 x 

T) or additionally, C afferent fibres (200 - 300 x T). In a few cases, hollow 

antibody microprobes were used to record excitatory responses in lamina V /VI 

to cutaneous stimuli applied to the ipsilateral hind paw. 

Upon removal from the cord, antibody microprobes were washed in PBS azide 

containing 0.2% Tween for 15 min and inserted into 5µ1 capillary tubes 

containing about 2,000 cpm/ µl of the radiolabelled peptide (Table II) for 24-48 

hat 6°C. 

A final washing step in PBS-Tween for 20 min was carried out to remove 

non-specific radiolabel binding. The terminal 15 - 20 mm of each antibody_ 

microprobe was removed from the glass shaft and was fixed to graph paper with 

white typing correction fluid (Liquid PaperR), lining up in sequence in vivo and 

in vitro probes. The paper was placed in an autoradiographic cassette (DuPont) 

next to X-ray film (Kodak NMC - monoemulsion) with a radiation intensifying 

screen. The exposure time was estimated from the total binding on in vitro 

probes and was in the order of 2 - 5 days, and further exposures were taken to 

obtain the desired silver grain density on the autoradiographic in1ages. The 

optical density of silver grains over time of radioactive exposure was found to 

be linear over the range of exposure times used to obtain autoradiographic 
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images. The appearance of zones of inhibition of radiotracer binding were 

interpreted as sites of release of the neuropeptide in question. 

Analysis of Autoradiographic Images 

A highly sensitive and precise method of image analysis was used to 

quantify the autoradiographic images to allow averaging of individual image 

scans within groups and comparison of average image scans between control 

and experimental groups (see Fig. 3). This technology has been described 

(Hendry et al 1988) and employs a video camera linked to an IBM-AT 

computer using a modified version of the Autoradiographic Video Image 

Digitizing System (A YID, see (Hendry et al 1988) ). 

The film with autoradiographic images was placed on a remote

controlled stage (model number MCC12/20JS-RS232, Lang Electronik, 

Huttenberg) lit from beneath by a diffuse incandescent light source controlled 

by a stabilized DC power supply (model 275, BWD Instruments, Melb.). A 

inverted, fixed video camera (Videcon, Dage D565) fitted with a micro lens 

(Nikon Bellows PB-6) was focussed from above on an unexposed portion of film 

and the light was adjusted to 250 on an arbitrary grey scale of O ( dark) to 255 

(light). With this apparatus, this corresponded to a power supply to the light 

source of 35 V and 650 mA. A background reading \vas digitized in duplicate 

and stored in computer memory for subsequent subtraction from image scans. 

The same magnification was used for each probe inserted to the same depth in 

the cord. For example, autoradiographic images of probes inserted 3.00 mm in 

the spinal cord all had 3.8 mm scanned and digitized. Upper and lower limits 

enclosing 40 pixels were centred around the image and greyscale values were 

totaled for each of 240 divisions of 16 µm width along the length of the image 

(see Fig. 3). In experiments with CGRP, narrow greyscale additions across only 

4 pixels down the centre of the image were used in an attempt to increase the 
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Fig. 3. Sequential stages of computer analysis of autoradiographic images. 

A. Video screen image of microprobe autoradiograph. 

B. Black and white photograph of the digitized colour image showing upper and 
lower limits for image integration. The image is not as sharply defined as in A. 
because the analysis system has detected minor changes in optical density and 
assigned grey scale values to them, appearing as false colours on the screen. 

C. The image density scan of a single antibody microprobe detecting irSP 
release. 

D. (Following Page) A colour enlargement of a digitized image of a microprobe 
scan like that shown in B. 
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signal to noise ratio but little difference was seen in peak height over the 

background when compared to wide greyscale additions of 40 pixels. 

Each peptide investigated was stored in a separate data base file, with 

individual scans identified with a code for general information of date, 

experiment number, exposure time and more specific information such as time 

in cord, type of physiological stimuli and drug doses. Groups were collected by 

computer searches of code numbers and a mean greyscale value was plotted as 

a solid line with the SEM as broken lines. 

An initial comparison between the two groups was provided by the 

subtraction of the mean scan line for the control group from the experimental 

group. Any deviation from the zero line indicated a difference in the zone of 

release which could be tested for significance by a fu"Jear plot of the t-statistic 

for each point. Further analysis was perf armed by determining the area under 

the scan (AUS) corresponding to the zone of release for individual scans within 

a group (see Fig. 4), and comparing the mean AUS between groups. Other 

programmes were used to edit sections of individual scans that were due to 

imperfections of the silane coating or of tracer binding. 

In1m uno histochemistry 

In some experiments, a verification of the presence of the peptide was 

sought using immunohistochemistry with the same antibodies that \Vere 

immobilized on the microprobes. At the end of antibody microprobe 

experiments, three deeply anaesthetized cats were given an intravenous 

injection of 5 ml of 3% (v /v) heparin in saline, a saturated KCl solution, and 

perfused intracardially with 500 ml of cold PBS followed by 500 ml of 4% 

paraformaldehyde. The lumbar spinal cord was removed and immersed in 4% 

paraformaldehyde for several days. Before cutting sections the spinal cord was 

immersed overnight in 10% sucrose in PBS azide as a cryoprotectant. 

Colchicine was not used in these experiments to enhance cell body staining 

33 



I 

0 

Cl) -as 
0 

U) 

~ 1500 
Cl) ._ 
C, 

AREA UNDER PEAK OF RELEASE 

-------
3000-L~~~~~----~~~~~-,-~~~~~~.-~

o 1 2 3 

Distance along Microprobe (mm) 

Fig. 4. Method for calculating the area under the scan (AUS). 
An imaginary line is drawn along the base of the scan and two points are 
selected on the line which best describe the base of the area to be calculated. A 
computer programme shades in the area and calculates the value in arbitrary 
grayscale x mm square units. 



since this treatment may have decreased peptide jmmunoreactivity at the sites 

of release in nerve terminals. Transverse 20-50µm sections were cut on a 

freezing microtome and were incubated in PBS Tween (0.2%) containing 10% 

non-immune horse serum. Sections were incubated overnight at 4°C in the 

rabbit antiserum (1 : 1,250 for anti-CGRP and 1 : 600 for anti-dynorphin A; see 

Table I for source) and immunoreactivity was detected after subsequent 

incubations in biotinylated anti-rabbit IgG (1:100, Amersham) and streptavidin 

Texas-Red (1:100, Amersham). Following 3 rinses in PBS Tween (0.1 % ), 

sections were mounted in buffered glycerol containing 0.1 % phenylenediamine 

( to retard fading of the fluorophore) and viewed under a fluorescence 

microscope fitted with excitation-bandpass filters 530-585, dichroic mirror 600 

and barrier filter 615nm. 
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4. STIMULI EVOKING RELEASE OF NEUROPEPTIDES 

IN THE SPINAL CORD 

Release of Substance P 

Results 

A total of 463 microprobes form the basis of this analysis. Of these, 447 

were inserted into the spinal cords of 34 cats to vertical depths of 2.0 to 3.0 mm 

from the dorsal surface for 10, 15, 20 or 30 min. 

Basal release 

When performing experiments on animals subjected to extensive lumbar 

surgery and nerve dissections of the hind limb, it was important to examine 

antibody microprobes inserted into the lumbar spinal cord without any 

deliberate peripheral stimulus to assess the level of 'basal' release. 

Fig. SA shows the mean image density scan of 16 microprobes not 

exposed to SP in vitro prior to incubation in 125I-SP. Total binding of the 

labelled peptide produces a near uniform slope due to the taper of individual 

probes. Fig. 5B illustrates the mean image density scan for 31 microprobes 

inserted 3mm into the spinal cord for periods of 10 to 30 min under conditions 

of no peripheral stimulation. The difference between these in vivo probes and 

the zero SP in vitro probes is shown in Fig. 5C. The subtraction produced an 

upward deflection representing a zone of release of irSP on the microprobes. A 

similar result was observed with 37 microprobes inserted 2.0 mm and other 

depths into the spinal cord (not illustrated). 

Two peaks are visible: one just below the surface of the spinal cord and 

one centered on a point 1.2 mm from the cord surface corresponding to the 

region of the substantia gelatinosa. These differences were not significant 

(P > 0.05) when considering data from all experiments (Fig. SC). 

These differences were further analysed in terms of length of time in the 

spinal cord. This can be summarized as follows: 
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Fig. 5. Spontaneous release of irSP in the anaesthetized cat. 
A. ~'2_s/tro controls. The mean image density scan of 16 microprobes incubated 
in I-SP without prior exposure to unlabelled SP is plotted with respect to 
length. The terminal 3 mm has been analysed in 16 µm intervals with the tip 
positioned at O and both the mean and standard errors of the mean at each 
point are illustrated. Optical density is expressed as an arbitrary grey scale (see 
Methods). 

B. The mean image density scan of 31 microprobes inserted 3 mm into the 
spinal cord without added peripheral stimulation. 
Ordinate: optical density as in A. 
Abscissa: depth in the spinal cord (mm), tips being at 3. 
Analysis of the terminal 200 µm has been deleted. 

C. The differences between mean scans A and B and the calculated t values for 
the differences of the means. The broken line is the t value indicating 
significance at P:;:: 0.05. The difference has been performed such that release on 
the in vivo probes is represented as an upward deflection. 
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( a) With microprobes inserted 2.0 mm and other depths into the spinal cord 

neither the 10 or 15 min group nor the 20 or 30 min group showed 

differences from in vitro zero SP microprobes. 

(b) With microprobes inserted 3.0 mm into the spinal cord, those in the 10 

or 15 min group showed no differences from in vitro zero SP 

microprobes. Those 20 or 30 min in the spinal cord showed zones of 

release similar in position to those for the whole 3mm group but these 

differences from in vitro zero SP microprobes were significant (P < 0.05). 

Evoked release 

Mechanical stimulation 

These results derive from 97 antibody microprobes. Peripheral 

stimulation was non-noxious with 44 and noxious mechanical stimulation was 

employed with 53 microprobes. 

Non-noxious pressure applied to the ipsilateral hind paw did not produce 

microprobe images differing significantly from those obtained in the absence of 

peripheral stimulation. Fig. 6A shows the mean image density scan of 29 

microprobes inserted 3.0 mm into the spinal cord for 10 to 30 min. There are 

no significant differences from comparable control microprobes. Similarly, no 

significant differences from controls were detected with the 15 microprobes 

inserted 2.0 mm into the spinal cord (not illustrated). Further analysis of 

microprobes in terms of time in the spinal cord (10-15 min and 20-30 min) also 

showed that non-noxious peripheral stimulation did not produce microprobe 

images different from comparable controls. 

Application of a pinch stimulus to the digital pads of a hind paw 

produced sustained firing of neurones in the vicinity of microprobe tips which 

returned to baseline levels on removal of the stimulus (Fig. 7 A). Fig. 7B shows 

photographic enlargements of X-ray film microprobe images appropriately 

positioned on a section of the lumbar spinal cord. The differences between 
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Fig. 6. Release of irSP by noxious mechanical peripheral stimuli. Ordinates and 
abscissae as for Fig. 5. 

A. The mean image density scan of 29 microprobes inserted 3 mm into the 
spinal cord during non-noxious mechanical peripheral stimulation for 1 O to 30 
min. 

B. The mean image density scan of 22 microprobes inserted 3 mm into the 
spinal cord for 1 O to 30 min during noxious mechanical peripheral stimulation. 

C. The differences betvveen the mean scans plotted in A and B and the t value 
calculated for these differences. The lower line is the t value indicating 
significance at the 0.05 level. 
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Fig. 7 A. Ratemeter record of multiunit firing to noxious mechanical stimulation 
recorded with a microprobe inserted 2 mm into the spinal cord. Note the 
increases in firing associated with application and removal of the alligator clips 
as indicated by arrows. Sustained firing was recorded during the period of 
noxious stimulation. 

B. Release of irSP by noxious but not by non-noxious peripheral stimuli. 
Microprobes a and b were inserted to a depth of 3 mm, microprobes c and d to 
2mm. 
a. 30 min, noxious mechanical stimulation. 
b. 20 min, no peripheral stimulus. 
c. 20 min, noxious mechanical stimulation. 
d. 30 min, no peripheral stimulation. 
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microprobes inserted under conditions of noxious and non-noxious mechanical 

stimulation are readily visible. 

Fig. 6B shows two clear zones of release of irSP, one just beneath the 

spinal cord surface and one larger peak centered 1.2 mm from the cord surface. 

Fig. 6C is the difference between the mean scans for noxious and that for non

noxious mechanical stimulation, and thus represents the effect of the noxious 

component of the mechanical stimulation. Analysis of 31 microprobes inserted 

2.0 mm and 2.5 mm into the spinal cord also showed significant release of irSP 

at the same regions. 

Microprobe images were also analysed in terms of time in the spinal 

cord. Significant zones of release at the cord surface and in the region of the 

substantia gelatinosa were found at times in the cord of 10 or 15 min (Fig. SA). 

Because there were relatively few microprobes representing non-noxious 

mechanical stimulation for 10 or 15 min, the mean scan for appropriate no

stimulus microprobe~ has been subtracted from that of noxious mechanical 

stimulation microprobes. Of interest is a third area of irSP release peaking at a 

site 2.2 mm from the cord surface, in the region of lamina VI. This can also be 

seen in Fig. 6B but in both cases the zone did not achieve significance. 

Heat stimulation 

Comparisons have been made of probes inserted into the dorsal horn 

under conditions of no stimulation, with the ipsilateral hind paw in water at 

36°C to 44°C and with water temperatures of 46, 48, 50 and 52°C. 

A total of 159 antibody microprobes have been analyzed. The effect of 

increasing the water temperature on the release of irSP to 47 microprobes 

inserted 3mm into the dorsal horn for 10 to 30 min is sbovvn L.~ Fig. 9. With 

water in the range 36 to 44°C (non-noxious) the mean image scan was· not 

significantly different from that of control microprobes (limb in air at 23°C). 

This was also observed with microprobes inserted 2.0 mm into the dorsal horn 
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Fig. 8. Release of irSP by 10 or 15 min noxious mechanical peripheral stimuli. 

A. The mean image density scan of 6 microprobes inserted 3 mm into the spinal 
cord during 10 or 15 min of noxious mechanical stimulation. 

B. Differences between the mean image density scan of 6 microprobes inserted 
3 mm into the spinal cord for 10 or 15 min during noxious mechanical stimulation 
and the mean scan for microprobes inserted to the same depth and for similar 
times but in the absence of stimulation (n = 11). The t values for the differences 
between means is also plotted. The lower line is the t value indicating 
significance (P =0.05). 
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Fig. 9. Increasing thermal stimuli and irSP release in the dorsal horn. 
Illustrated are the mean image density scans for microprobes inserted 3 mm into 
the spinal cord for 10 to 30 min during immersion of a hind paw in water at 36-
44 °c (n = 9), 46-4s0 c (n = 9), so0 c (n = 9) and s2°c (n = 20). 
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(not illustrated). The mean scan of microprobes with stimulus temperatures of 

46 to 48°C (noxious) shows a small peak of irSP release at a site 1.2 mm from 

the cord surface but this is not significantly different from controls. Analysis of 

microprobes inserted 2.0 mm and other depths into the spinal cord gave similar 

results. 

Significant differences in release of irSP were produced by immersing 

the hind limb in water at 50 or 52°C. At 50°C significant release of irSP 

appeared 1.2 mm at the surface of the spinal cord, which increased further with 

the hind paw in water at 52°C. At both temperatures there was also significant 

release at the cord surface. For both 50 and 52°C, irSP release in the region of 

the substantia gelatinosa was significant for a stimulus duration of 10 or 15 min, 

and release was greater with stimulus durations of 20 or 30 min. 

Noxious chemical stimulation 

Cutaneous application of methylene chloride produced irSP release onto 

microprobes (n=51) in the region of the substantia gelatinosa of the dorsal 

horn, and the spinal cord surface. Fig. 10 illustrates the difference between the 

mean scan of 29 microprobes inserted 2.0 mm in the spinal cord for 10 to 30 

min during peripheral application of methylene chloride and that of the 

appropriate controls from the same experiments. Significant release was 

obtained only in the region of the substantia gelatinosa. A similar result was 

obtained for 22 microprobes inserted 3 mm into the spinal cord (not 

illustrated). 

Inhibition of binding at the spinal cord surface 

It is improbable that surface release resulted from passive diffusion of 

irSP down a concentration gradient from the substantia gelatinosa to the dorsal 

surface. This would be expected to produce a broad peak tapering off towards 
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Fig. 10. Release of irSP in the dorsal horn with cutaneous noxious chemical 
stimulation. 
Illustrated is the difference between the mean image density scans for 29 
microprobes inserted 2 mm into the spinal cord for 1 O to 30 min while 
methylene chloride was applied to the skin of the ipsilateral hind paw and the 
mean scans for no stimulus, control microprobes from the same experiments. 
The t values for the differences of the means are also plotted and the lower line 
is the t value for significance (P=0.05). 



the dorsal surface, instead of the two discrete peaks observed in these 

experiments. 

The inhibition of binding of radiotracer at the surface of the cord 

dorsum shows two features. One is a clear noxious stimulus dependency ( see 

Fig. 7Ba,c) and another is an increase in the magnitude of the peak with probes 

that are inserted later in the day ( compare Fig. 8,9 where noxious were inserted 

after non-noxious beat and mechanical stimulation). In later sections with 

dynorpbin A and irMEAP experiments the release at the cord surface \Vas only 

present on the probes inserted later in the day (Cord Transected in Fig. 27, and 

Fig. 31). These peptides are not known to exist in pial nerve fibres. 

Discussion 

The present experiments demonstrate that noxious cutaneous stimuli 

produce a release of irSP in the substantia gelatinosa of the dorsal horn of the 

cat. The fact that many types of noxious stimulus produce such release suggests 

that activity in polymodal nociceptors is a major determinant. As discussed 

above, there is insufficient evidence to determine the identity of apparent 

release at the spinal cord surface. The occasional observation of irSP release in 

deeper laminae suggests that irSP release from specialized nociceptors may also 

occur, and this is an indication of the spatial precision of the present technique. 

Each of the sites of release of irSP requires separate discussion. 

Release in the region of the substantia gelatinosa 

Release in the substantia gelatinosa was not unexpected since this is the 

major site of termination of unmyelinated nociceptive primary afferents (Light 

& Perl, 1977; Sugiura et al.1986). The computer-averaged scans of images 

broaden the area over which apparent release occurs but the peak of this area 

and the results obtained when single probes were positioned with respect to dye 

deposits in the spinal cord indicate that it is correct to centre a zone of release 
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on the substantia gelatinosa. Imrnunohistochemical studies of the distribution of 

SP in the dorsal horn have observed relatively high levels in the region of the 

substantia gelatinosa (Hokfelt et al 1976; Hokfelt et al 1977; Gibson et aL 1981; 

Di Giulio et al 1985), and the binding of radiolabelled SP is also marked in this 

area (Charlton & Helke, 1985a). 

The present experiments cannot identify the structures releasing irSP 

with certainty but other evidence favours release mainly from the central 

terminals of primary afferents. Sectioning the dorsal roots lowers the levels of 

SP in the upper dorsal horn of several species by 50-80% (Takahashi & Otsuka, 

1975; Jessen et al 1979; Ogawa et al 1985; Di Giulio et al 1985). Severe · 

localized depletions in the region of lamina I and the substantia gelatinosa as 

shown by immunohistochemistry (Wall et al 1981; Di Giulio et al 1985) have 

been produced by sectioning the sciatic nerve, suggesting that the actual loss in 

deafferented areas is greater than that revealed by analyses of whole dorsal 

horn. Substance P-containing cell bodies are found in the superficial dorsal 

horn (Ljungdahl et al 1978; Barber et al.1979) but they are not common. In 

patients with congenital insensitivity to pain, there is a deficit of small diameter 

dorsal root ganglion neurones associated with a paucity of SP-containing fibres 

in the region of the substantia gelatinosa (Pearson et al 1982). Collectively 

these observations make it highly likely that the greater part of irSP detected 

after stimuli which produce impulses in unmyelinated primary afferent fibres is 

released from the central terminals of those fibres. 

These results indicate that noxious intensities of thermal, mechanical 

and chemical stimuli all result in a release of irSP in the region of the substantia 

gelatinosa. With heating of the ipsilateral hind paw, release was shown to be 

temperature dependent with no significant release in the range 36 to 48°C but 

clear release with a temperature of 50°C and more at 52°C. Although 

preliminary results (Duggan et al.1987) 1vvere at variance with (Kuraishi et 

al.1985), these extended studies have shown agreement in failing to detect 
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release of irSP with skin temperatures in the range 46 to 48°C. Although there 

are difficulties in comparing results obtained by heating a localized area of the 

hind paw and measuring temperatures with an intradermal thermocouple 

(Kuraishi et al 1985) with those obtained by immersing the whole hind pa\v in a 

controlled temperature water bath, it is probable that they failed to detect irSP 

release fallowing noxious thermal stimuli through the use of insufficiently high 

skin temperatures. 

In accord with the present experiments, (Kuraishi et al 1985) observed a 

release of irSP in the rabbit dorsal horn with noxious mechanical stimulation. 

The present experiments have shown that non-noxious mechanical stimulation 

did not increase irSP release above basal levels and that noxious pinching was 

required to produce release in the region of the substantia gelatinosa. 

The lack of stimulus-specific SP release suggests that polymodal 

nociceptors contain and release SP. In the rat, irSP has been found in 50% of 

neurones with conduction velocities in the C fibre range (McCarthy & Lawson, 

1989) and in the cat, 30% of a large sample of 131 C fibres were found to be 

polymodal (Bessou & Perl, 1969). Furthermore, intrathecal SP increases the 

flexor reflexes of the decerebrate rat to noxious thermal and mechanical stimuli 

(Wiesenfeld-Hallin, 1986b ). 

Release from stimulus-specific nociceptors may also occur. Leah et al. 

(1985a) examined the relation between function and contained peptide by 

determining the peptide content of physiologically characterized dorsal root 

ganglion cells of the cat. Of 15 nociceptors only two contained irSP. Substance 

P was located in 9 of 12 unidentified unmyelinated primary afferents. These 

experiments are technically difficult and the results may not be representative 

of the total population of dorsal root ganglion cells. 
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Release at the spinal cord surface 

The prominence of irSP release at the spinal cord surface was 

unexpected. The perforation of the dura mater and pia-arachnoid to allow 

microprobe entry may result in an inflammatory response. In the same year 

that substance P was first described by von Euler and Gaddum, a description of 

nerve bundles in the pia mater was reported by Clark (1931). He found axons 

running in ventral and dorsal pial membranes and found that the innervation 

was via the ventral roots. More recent work has shown the presence of irSP in 

pial membranes (Dalsgaard et al.1982) which derives from dorsal and ventral 

roots. Work by Moskowitz (1985) has shown irSP in cerebral arteries in many 

species and a release of irSP from bovine pia-arachnoid. In the periphery, SP 

has also been shown to be released into an inflammatory exudate in the skin 

(Helme et al.1986; Jonsson et al.1986). Therefore, there may be a substantial 

contribution of SP from nerves in the pia-arachnoid to surface inhibition of 

binding of 125I-SP. The presence of other peptides in pial nerves is not as well 

established as SP. The release of SP from the edges of a pial opening could 

result in a cascade of events associated with neurogenic inflammation. One of 

these events which is of concern is the activation of macrophages or mast cells 

which are plentiful in the meninges, to release prostaglandins and proteolytic 

enzymes (Hartung et al. 1985). There may be some damage to the integrity of 

antibodies on the microprobe which results in inhibition of radiotracer binding 

unrelated to the release of the neuropeptide in question. Some evidence 

suggests that this is occurring. The incidence of patch inhibition is more time 

dependent than stimulus dependent for most peptides. With SP there does 

appear to be an early phase of stimulus-dependency of surface inhibition of 

binding indicating authentic release of SP (Duggan et al 1988). It is shown in 

later sections that surface inhibition \Vas infrequent with SS and CGRP which 

were inserted for short periods of time (5 - 10 min), and very prominent on 

irGAL and irMEAP which had longer periods in the cord (30 - 60 min). In 
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some experiments not presented in this work, ~ntibody microprobes which were 

incubated in radio tracer before insertion in the cord showed similar zones of 

inhibition of binding, but only at the cord surface. The interpretation of these 

experiments may be confounded somewhat by the possibilty that enzymes were 

degrading the radiotracer rather than the antibody, but it does suggest that 

caution is necessary in interpretation of zones of inhibition of binding at the 

surface of the cord. In contrast to the erratic nature of appearance of surface 

'release', there was still a clear noxious stimulus dependency for release in the 

region of the substantia gelatinosa. 

There was some evidence suggesting a small release of irSP in lamina VI 

by noxious mechanical but not by noxious thermal and chemical stimuli. 

Immunocytochemical methods have shown a projection of SP-containing 

primary afferents to lamina VI (Gibson et al 1981; Jessell, 1982). Our results 

suggest that these are mechano-nociceptors and not polymodal nociceptors, but 

further evidence is needed. 

Although the present experiments have shown that irSP is released 

centrally in response to peripheral stimuli, other evidence suggests that some 

caution is appropriate in ascribing such a neurotransmitter role to the released 

SP. Among such evidence is the coexistence of SP with other peptides in cat 

dorsal root ganglion neurones. This is particularly true for calcitonin gene

related peptide but has also been shown for somatostatin, cholecystokinin, 

vasoactive intestinal polypeptide, and bombesin (Leah et al.1985b; Cameron et 

al.1988). If substances which coexist in a nerve terminal are co-released then it 

is possible that the noxious stimuli studied in the present experiments also 

release a number of peptides in addition to SP. Which one - or which 

combination of any of these peptides - is responsible for the depolarization of 

spinal neurones receiving such afferents? Although the antibody microprobe 

technique does not permit measurement of co-release of peptides cont~ined 

within one type of neurone, it can be used to detect simultaneous release of 
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more than one peptide in a particular region of the central nervous system in 

response to a given peripheral stimulus. In addition, such studies may reveal 

whether neuropeptides are differentially released in response to defined 

peripheral stimuli. 

Release of Novel Sensory Neuropeptides: CGRP and Galanin 

Results 

A total of 540 antibody microprobes were analysed in this study. Of 

these, 290 microprobes were used to detect peptide release in vivo (171 for 

irCGRP, 108 for irGAL and 11 for irSP). The remaining 250 microprobes were 

used for parallel in vitro experiments. 

Release of irCGRP 

Basal Release 

A basal release of irCGRP was observed within the spinal grey matter, 

in the region of the substantia gelatinosa. Fig. llA illustrated the mean image 

density scan of microprobes placed in the cord for 10 min in the absence of 

peripheral stimulation. There is a zone of inhibition of 125I-CGRP binding 

centered 1.1 mm from the dorsal cord surface, representing basal irCGRP 

release under these experimental 'no stimulus' conditior1s. As this level of basal 

release would enable alterations evoked by peripheral stimulation to be readily 

observed, most microprobes detecting irCGRP in these experiments were 

inserted for 10 min periods. 

Evoked Release 

The release of irCGRP in the substantia gelatinosa region was increased by 

noxious cutaneous mechanical stimulation . Fig. llB shows the mean scan of 

microprobes placed in the cord during 10 min of such stimulation, plotted 

together with the mean scan of micro'probes detecting basal release. The plot 
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Fig. 11. Release of irCGRP in the lumbar dorsal horn. 

A The mean image density scan (and S.E.M.) of autoradiographs of 28 
microprobes inserted into the spinal cord for , 0 min in the absence of peripheral 
stimulation. 

B The solid line is the mean scan of 27 microprobes inserted into the cord for , o 
min during noxious mechanical stimulation of the ipsilateral hind paw. The 
broken line is mean scan A replotted. Standard errors have been omitted for 
clarity. 

C The t-values calculated for the differences between the mean scans in B. The 
lower line is the t-value for significance at P = 0.05. 
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of the calculated t-values for the differences between the mean scans (Fig. llC) 

shows that the peak of irCGRP release in the substantia gelatinosa region is 

significantly greater during noxious mechanical stimulation. 

Release of irCGRP was measured during cutaneous thermal stimulation 

at either innocuous ( 41 °C) or noxious 52°C) temperatures. With 41 °C 

stimulation (Fig. 12A) irCGRP release was detected in the substantia gelatinosa 

region, similar to basal levels of release (Fig. llA ). When the thermal stimulus 

was noxious, however, this release of irCGRP was much greater (Fig. 12B). 

Fig. 12C,D illustrated the mean scans of microprobes detecting irCGRP 

release during electrical stimulation of the ipsilateral tibial nerve. With low 

intensity stimulation exciting only the large myelinated fibres, irCGRP release 

was again detected in the substantia gelatinosa (Fig. 12C) comparable to that 

observed under conditions of no peripheral stimulation of innocuous thermal 

stimulation. With microprobes similarly inserted during high intensity tibial 

stimulation exciting large myelinated and small unmyelinated fibres, the release 

of irCGRP detected in the substantia gelatinosa was increased (Fig. UD). 

The effects of the various types of peripheral stimulation on irCGRP 

release in the substantia gelatinosa region are summarized in Fig. 13, which 

illustrates the mean areas of these peaks of irCGRP release present on 

individual image density scans. Thus, the basal release of irCGRP in the 

substantia gelatinosa is not altered by innocuous cutaneous heat nor by 

electrical stimulation of large myelinated primary afferents, but is significantly 

increased by noxious cutaneous mechanical or thermal stimulation or by 

electrical stimulation of unmyelinated afferent fibres. 

The mean scans of microprobes illustrated in Figs. 11 an<l U also show a 

smaller peak at or just below the spinal cord dorsum. This afferent zone· of 

irCGRP release at the cord surface was also greater following noxious forms of 

afferent stimulation. 
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Fig. 12. Release of irCGRP in the dorsal horn with cutaneous thermal 
stimulation and with electrical stimulation of peripheral nerve. 

0 
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A The mean image density scan (and S.E.M.) of 25 microprobes inserted into 
the lumbar cord for 1 O min during immersion of the ipsilateral hind paw in water 
at 41°c. 

B The mean scan (and S.E.M.) of 30 microprobes similarly inserted for 10 min 
during immersion of the hind paw in water at s2°c. 
C The mean scan (and S.E.M.) of 18 microprobes inserted into the cord for 10 
min during electrical stimulation of large myelinated afferents of the ipsilateral 
tibial nerve. 

D The mean scan (and S.E.M.) of 15 microprobes similarly inserted for 10 min 
during tibial nerve stimulation sufficient to excite unmyelinated afferent fibres. 
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Fig. 13. Increased release of irCGRP in the substantia gelatinosa region with 
activation of nociceptive afferent fibres. 
The histograms plot the mean area (and S.E.M.) under the peaks of irCGRP 
release in the substantia gelatinosa on individual image density scans of 
microprobes. The units of area are greyscale values x mm. The mean area on 
scans of microprobes inserted during noxious mechanical stimulation is 
significantly greater than the corresponding mean area representing basa! 
irCGRP release (0.001 < P < 0.01). Similarly, the hist°&rams representing 
irCGRP release during noxious thermal stimulation (52 C) and electrical 
stimulation of both myelinated and unmyelinated tibial afferents (A + C) are 
significantly greater than their respective control histograms (P < 0.001 ). 
Numbers of microprobes in each group are shown in parentheses. Statistical 
comparisons were made by the Students t-test for unpaired data. 
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Simultaneous Release of irCGRP and irSP 

The antibody microprobe technique can be used to detect the 

simultaneous in vivo release of more than one peptide by the concomitant 

insertion of 2 microprobe c·oated with different antibodies. Since the initial 

experiments had demonstrated a release of irSP in the substantia gelatinosa 

following noxious cutaneous stimulation, 11 such pairs of microprobes were 

used in the present experiments to measure simultaneous release of irCGRP 

and irSP. These microprobes pairs were introduced into the spinal cord 

through a single small pial preparation. 

Fig. 14 illustrates the individual image density scans of one of these 

pairs of microprobes, placed in the cord during 10 min of noxious cutaneous 

thermal stimulation. On each scan there is a clear zone of peptide release at 

approximately 0.8 -m.ni from the cord surface. (Although the depth of these 

zones of release are more superficial than that determined on mean scans of 

many microprobes, this pair was inserted close to the lateral sulcus, where the 

substantia gelatinosa is closer to the cord dorsum). 

Release of irG AL 

Basal release 

An analysis of microprobes placed in the -spinal cord in the absence of 

peripheral stimulation revealed a basal release of irGAL in the region of the 

substantia gelatinosa and at the spinal cord surface. The mean image density 

scans of such microprobes are illustrated in Fig. 15. vVith microprobes inserted 

for 10 min, there was a small zone of inhibition of binding just below the cord 

dorsum (Fig. 15A). Microprobe inserted for 30 min displayed not only this zone 

of surface release but additionally a second peak of release centered 1.1-1.2 mm 

from the cord surface (Fig. 15B). Thus, the sites of the peaks or irGAL release 

were comparable to those determined for irCGRP but the relative magnitude 

of the 2 peaks v1as reversed. Some microprobes inserted for 10 min showed a 
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Fig. 14. Simultaneous release of irCGRP and irSP in the substantia gelatinosa. 

A,B Image density scans of single microprobes detecting either irCGRP (A) or 
irSP (B) release. Both microprobes were concurrently placed in close 
apposition in the spinal cord through a single pial opening on the lateral dorsal 
cord surface, during immersion of the ipsilateral hind paw in water at s2°c. 



Fig. 15. Release of ir-galanin in the lumbar spinal cord. 

A The mean image density scan (and S.E.M.) of the autoradiographs of 8 
micro probes inserted into the spinal cord for 10 min in the absence of peripheral 
stimulation. 

B The mean scan (and S.E.M.) of 11 microprobes similarly inserted for 30 min. 

C The differences between the mean image density scan of microprobes (n = 
28) inserted into the spinal cord for 30 min during noxious cutaneous stimulation 
or tibial nerve stimulation adequate to excite unmyelinated (C) afferents, and the 
mean scan of microprobes (n = 31) similarly inserted during non-noxious 
stimulation, tibial nerve stimulation only sufficient to excite large myelinated 
afferents, or in the absence of stimulation. 
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small peak in the substantia gelatinosa but the longer time of insertion was 

required for irGAL release to be consistently observed in this spinal region. 

Evoked Release 

The release of irGAL detected following either innocuous cutaneous 

thermal stimulation ( 41 °C) or electrical stimulation of large myelinated tibial 

afferents was similar to that observed in the absence of peripheral stimulation 

(Fig. 15). Interestingly, the groups of microprobes inserted during each of the 3 

types of noxious stimuli ( thermal, mechanical and electrical stimulation of the 

tibial nerve) had no differences in irGAL release from that seen with either the 

comparable control groups of probes, or those measuring basal release. To 

highlight this lack of evoked irGAL release, the scans of microprobes inserted 

during 30 min of noxious thermal or mechanical cutaneous or high intensity 

tibial nerve stimulation were pooled as one group, and the scans of mi~roprobes 

similarly inserted during innocuous stimulation, low intensity tibial nerve 

stimulation or no stimulation as another. The differences between the mean 

scans of these 2 groups of microprobes, plotted in Fig. 16A, were not 

significant. This is further demonstrated in Fig. 16B , where the mean areas of 

the peaks of irGAL release in the substantia gelatinosa have been compared for 

various microprobe groups. These areas are not significantly different where 

microprobes used during noxious stimulation are compared with those used 

during innocuous stimulation. 

Thus, regardless of the type of innocuous or noxious peripheral 

stimulation used in these experiments, the irGAL release detected did not 

differ significantly from basal release. The only factor appearing to influence 

irGAL release was the length of time in the spinal cord. When the integrated 

area data were grouped on this basis (whether or not peripheral stimuli were 

applied), then the irGAL release detected in the substantia gelatinosa was 

greater at 30 min than at 10 min (Fig. 16B ). 
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Fig. 16. Activation of nociceptive afferents does not increase ir-galanin release 
in the substantia gelatinosa. 

The histograms plot the mean area (and S.E.M.) under the peaks of ir-galanin 
release in the substantia gelatinosa on image density scans of microprobes 
inserted in the spinal cord for 10 - 30 min. The units of area are greyscale values 
x mm. These mean areas are not significantly different on microprobes inserted 
during activation (cutaneous or tibial) of nociceptive afferents compared with 
those inserted during non-noxious ( cutaneous or tibial) stimulation or no 
stimulation. The mean area on scans of microprobes inserted for 30 min 
(regardless of presence or type of peripheral stimulus) is significantly greater 
than the corresponding area on microprobes inserted for 1 O min (also 
regardless of stimulus) (0.01 < P < 0.05). Numbers of microprobes are shown 
in parentheses. Statistical comparisons were made by the Students t-test for 
unpaired data. 
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Discussion 

The experiments described in this section have detected a release of 
'I 

both irCGRP and irGAL in the region of the substantia gelatinosa of the l 

1 

lumbar spinal cord, where immunoreactivity for both peptides ( Gibson et 
I 

I al 1984; Melander et al 1986; Skofitsch & Jacobowitz, 1985a,c,e; Harmann et I ,. 

al 1988), and their binding sites (Skofitsch & Jacobowitz, 1985b, 1986), are 
II 

concentrated. The basal release of irCGRP, but not of irGAL, occurring in this 

spinal region was increased by cutaneous nociceptive afferent input. 
: 

It is highly probable that the irCGRP release detected in these 
I 

experiments was of primary afferent origin. Studies with dorsal rhizotomy, 
l capsaicin treatment and spinal cord transection have revealed that the irCGRP I 

1' in the dorsal horn is derived from sensory ganglion neurones ( Gibson et al 1984; 

: 
Skofitsch & Jacobowitz, 1985d; Chung et al 1988). In fact, cell bodies 

I containing irCGRP have not been found in the dorsal horn (Gibson et al 1984). 

The significant basal release of irCGRP observed in the absence of peripheral 

stimulation implies that in this preparation, CGRP-containing primary ·afferent 

fibres are tonically active. The peripheral source(s) of these afferent fibres 

releasing irCGRP are not certain but irCGRP has been found within a large 
' 

I' 
I 

number of primary sensory neurones of all sizes in several species including the 

cat (Gibson et al 1984; Ju et al.1981), and of cutaneous, muscular, and visceral 
t 

origin (Molander et al.1981; Gibbins et al.1981). In addition to those afferents 

conveying non-nociceptive information from skin, muscle, and viscera, the 

I• 
lumbar cord segments studies would have also received continuous nociceptive 

~ input from areas subjected to the surgery required for the experiments. 

The increased irCGRP release produced by the intentional activation of 

nociceptive afferents is in accord with immunohistochemical reports of irCGRP 
f, 
I; presence in a substantial proportion of small DRG neurones ( Gibson et al.1984; 

/1 

Ju et al.1981). Since a variety of nociceptive stimuli were effective it is likely 

(I that this release occurred from the central terminals of polymodal nociceptors 

I 

I 
I 

1, 

...... 
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" ( and possibly also specialized nociceptors ). There are numerous reports of 

widespread coexistence of irCGRP and irSP within various sensory neurones in 

several species (Gibbins et al 1985; Uddman et al 1985; Lundberg et al ~985; 

Lee et al 1985b; Wanaka et al 1986; Gazelius et al 1987; Ju et al 1987; Gibbins et 

al 1987; Molander et al 1987), even \vitbin the same secretory vesicles of these 

cells ( Gulbenkian et al 1986; Merigbi et al.1988). Importantly, many authors 

have noted that most if not all irSP-containing primary sensory neurones also 

contain irCGRP (Gibbins et al 1985; Lee et al 1985b; Lee et al.1985a; Wanaka 

et al 1986; Ju et al.1987; Gazelius et al 1987; Gibbins et al.1987; Molander et 

al.1987). Thus, not only would noxious peripheral stimuli previously shown to 

evoke irSP release in the substantia gelatinosa be likely to produce irCGRP 

release in the same area, but it is also probable that at least part of the 

simultaneous release of irSP and irCGRP detected in the present experiments 

was in fact co-release from the one subpopulation of neurones containing both 

these peptides. In addition, release of irCGRP from other primary afferents 

containing irCGRP but devoid of irSP could also have occurred. 

The source of the irGAL release observed in the substantia gelatinosa is 

less certain. Primary afferents are one possibility: irGAL is found in some small 

capsaicin-sensitive sensory ganglion neurones and fibres containing irGAL are 

markedly depleted from the superficial spinal laminae by dorsal root section 

and capsaicin treatment (see General Introduction). However, irGAL bas also 

been localised within intrinsic neurones of lamina I-II of the dorsal horn (Cb'ng 

et al 1985; Melander et al.1986) and a basal release from these cells could 

conceivably occur, with the relevant stimulus peripherally or centrally derived. 

Assuming irGAL release from primary afferents, the apparent inability of the 

peripheral stimulation procedures employed to increase this release raises the 

possibility of release from visceral rather than cutaneous or muscle afferents. 

In the rat, both irCGRP and irSP have been found in the subpopulation of 

small DRG neurones containing irGAL (Ju et al.1987), and also in visceral 
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primary sensory neurones (Molander et al 1987). The presence of irGAL in 

such afferents from viscera, however, has not yet been described. Although 

irGAL in the spinal cord may derive from supraspinal structures, it is not a 

possible source of galanin release observed since the cord was transected in 

these experiments. 

A further consideration is that an unknown proportion of the basal 

release of peptides detected with the antibody microprobe technique may result 

from the rupture of neuronal elements containing peptides during microprobe 

insertion in the cord. While the antibody microprobe is smaller than other 

devices used to measure release of compounds in vivo, the increased sensitivity 

of the technique may still detect release of peptide by trauma to neurones. 

An additional interesting finding of the present work is the apparent 

release of both irCGRP and irGAL at the spinal cord surface. A release of irSP 

and of ir-somatostatin at this location bas also been observed in other chapters 

of the present work. Although the source of apparent release at the cord 

dorsum is not certain, it is possible that a local inflammatory response to the 

foreign proteins present on microprobes, or to minor trauma at sites of 

microprobe insertion, could evoke peptide release from pial afferent nerve 

endings. The occurrence of irCGRP in sensory nerves innervating the pia 

mater is well documented (Hanko et al.1985; Uddman et al.1985; Tsai et 

al.1988), and the present results suggest that these nerves may also contain 

GAL. Several authors have speculated that vasoactive peptides in pial nerves 

could regulate blood flow to the central nervous system (reviewed in Edvinsson, 

1985). The increased surface release observed with irCGRP ( and previously 

with irSP) during noxious peripheral stimulation may be related to the finding 

that sensory neurones with nociceptive cutaneous receptive fields can also be 

activated by stimulation of the dura mater (Strassman et al.1986). Thus, it is 

possible that a noxious cutaneous stimulus evokes peptide release at two 

discrete spinal sites. 
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The physiological functions of CGRP and GAL in the spinal cord are 

' still conjectural. Administration of CGRP has produced excitation of neurones 

in the immature rat spinal cord in vitro (Ryu et al.1988) and in the cat lumbar 
' 

dorsal horn in vivo (Miletic & Tan, 1988), whereas GAL, on the other hand, has 
I 

produced inhibitory effects on spinal reflexes in vitro (Y anagisawa et al 1986), I 

'; 

1, and in tests of analgesia (Post et al 1988). However, although irCGRP is 
1, 

1 

released during nociception, its widespread distribution in many sensory 

ganglion neurones of various sizes makes it an unlikely candidate for the 
I 

transmission of a particular sensory modality, as discussed by others (Ju et 
I 

al 1987). Nevertheless, it is an attractive concept that the transmission of 
I 

various types of noxious sensory information is accompanied by particular 

I profiles of intraspinal release of several compounds. Evidence to date indicates 
I that several forms of noxious cutaneous stimulation evokes release in the : 

' substantia gelatinosa of irSP (vide supra) and irCGRP, while ir somatostatin 

release additionally occurs with thermal noxious stimulation (vide infra). 

Moreover, it is possible that such release profiles may include glutamate which 

coexists with irSP in the central terminals of primary afferents (De Biasi & 
1, 

Rustioni, 1988). Thus it is becoming increasingly clear that the primary afferent 

II transmission of nociceptive information may be a quite complex event, 

involving the simultaneous release and action of several compounds, amino 
I 

acids and neuropeptides, ori second order neurones. 

' 

I 

Release of Somatostatin in the Dorsal Horn 

Results 

I A total of 348 microprobes were analysed in this study. Of these, 103 

microprobes were used in vivo, and 245 were used in in vitro tests. 

I 

I 
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Basal Release 

To examine basal release of irSS, 46 microprobes were inserted into the 

spinal cord for periods of 5, 10, 15 or 30 min. On these microprobes there was a 

zone of release of irSS binding located 1.1-1.2 mm from the cord surface which, 

in the lower lumbar segments, corresponds to the region of lamina II, the 

substantia gelatinosa. 

Fig. 17A illustrates the mean image density scan of 20 microprobes not 

exposed to SS prior to incubation in 125I-SS. This mean scan thus represents the 

total binding of the labelled peptide (in vitro zero microprobes). Fig. 17B shows 

the mean image density scan for 16 microprobes inserted into the spinal cord 

for 5 min with no peripheral stimulation. Subtraction of the in vitro zero mean 

scan from that of the in vivo group gives the difference record in Fig. 17C. The 

difference was particularly significant in the region of the substantia gelatinosa 

(Fig. l7D ). 

Evoked Release 

Tibial Nerve Stimulation 

Previous experiments had demonstrated release of irSP in the region of 

the substantia gelatinosa in response to electrical stimulation of the tibial nerve 

at high (but not low) intensities. The present experiments therefore sought to 

examine the effect of such stimulation on irSS release. A total of 57 antibody 

microprobes was used for this analysis, inserted into the cord for 10 or 15 min. 

Initially, a comparison was made between microprobes inserted during 

electrical stimulation of the ipsilateral tibial nerve at low intensities, exciting 

only the large myelinated fibres (1.5 x T for the most excitable fibres), and 

microprobes used to detect basal release (no nerve stimulation) in the same 

animals. In both the 10 and 15 min groups of probes, the low intensity tibial 

stimulation produced a small but statistically insignificant reduction in irSS 
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Fig. 17. Prominent basal release of irSS in the dorsal horn. . 

Ai The mean image density scan (and SEM) of 20 microprobes incubated in 
1 51-ss, plotted with respect to length. 

B: The mean image density scan of , 6 microprobes inserted 3 mm into the 
spinal cord for 5 min in the absence of nerve stimulation. 

C: The differences between mean scans A and B. 

D: The calculated t values for the differences of the means in C. The lower line is 
the t value indicating significance at P = 0.05. 
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release in the substantia gelatinosa region. The data from the basal and the low 

intensity tibial stimulation groups of probes have therefore been pooled. 

Fig. 18A shows the mean image density scan for microprobes inserted 

for 10 min with no stimulation and during low intensity tibial stimulation. 

Fig. 18B illustrates the mean scan for microprobes similarly inserted but with 

high intensity tibial stimulation, exciting both the large myelinated and the 

small unmyelinated ( C) fibres (300xT). The difference between the mean scans 

for high and for low intensity stimulation (Fig. 18C) thus represents the effect of 

the unmyelinated component of the tibial stimulation, which is an increased 

release of irSS in the region of the substantia gelatinosa. This difference is also 

· apparent by comparison of the areas under the substantia gelatinosa peaks of 

irSS release on individual image density scans. The mean areas ( and SEM) of 

these peaks for each group of microprobes in Fig. 18 are plotted as histograms 

in Fig. 19. (There was also release of irSS just below the spinal cord surface to 

a comparable extent in both groups of microprobes ). A similar result was 

obtained with microprobes inserted for 15 min. 

Thennal stimulation 

This analysis of results deals with 124 microprobes placed in the spinal 

cord during immersion of the ipsilateral hind paw in a water bath at known 

temperatures. The prominence of the basal release of irSS in the region of the 

substantia gelatinosa suggested that such release resulted from a tonically active 

process. Cutaneous thermoreceptors are active at normal body temperature 

with maximal activity at about 43 °C but cease firing at temperatures below 

28°C. To examine whether these receptors 1vvere involved, release of irSS was 

measured with stimulus temperatures ranging from 15 to 52 °C. 

The release of irSS in the substantia gelatinosa was similar with all 

innocuous thermal stimuli tested (15 °,23 °,35 °,41 °C) and was not significantly 

different from the basal irSS release previously observed in this spinal 
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Fig. 18. Release of irSS with tibial nerve stimulation. 

A. The mean image density scan of 19 microprobes inserted 3 mm into the 
spinal cord for 10 min during electrical stimulation of large myelinated afferents 
of the ipsilateral tibial nerve, or in the absence of stimulation. 

B: The mean image density scan of 12 microprobes inserted as in A, during tibial 
stimulation adequate to excite unmyelinated afferents. 

C: The differences between the mean scans A and 8. 

D: The t values for the differences of the means. The lower line is the t value for 
significance at P = 0.05. 
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Fig. 19. Increased release of irSS in the substantia gelatinosa region with 
activation of unmyelinated tibial afferents. 
The histograms plot the mean area (and SEM), in arbitrary square units, of the 
peaks of irSS release in the substantia gelatinosa on image density scans of 
microprobes. A, during no stimulation and low intensity tibial stimulation exciting 
large myelinated afferents; A + C, during high intensity stimulation exciting both 
A and C fibre afferents. The mean area is significantly greater when C fibres 
were activated (0.001 < P < 0.01, Students t-test). 
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region. Fig. 20A shows the mean image density scan of microprobes inserted in 

the spinal cord for 5 min during peripheral thermal stimulation at 41 °C. There 

is a peak on the scan at 1.1-1.2 mm from the cord surface, representing irSS 

release in the region of the substantia gelatinosa. Although varying stimulus 

temperatures within the range significantly affecting the firing of 

thermoreceptors did not alter release of irSS, such release was increased when 

skin temperatures exciting thermal nociceptors were used. Fig. 20B shows the 

mean scan for microprobes inserted during 52 °C stimulation. The difference 

between the groups illustrated in Figs. 20 A and B, shown in Fig. 20C , 

highlights the effect of the noxious stimulation. The significance of the 

differences between these groups is plotted in Fig. 20D . This effect of noxious 

thermal stimulation is depicted in Fig. 22, which illustrates the mean areas ( and 

SEM) of the peaks of irSS release in the substantia gelatinosa region present on 

individual mean image density scans. 

The mean scans also show a lesser release of irSS near the dorsum of the 
1 

spinal cord, as reported previously. 

Mechanical Stimulation 

For this study 66 microprobes were analysed. Of these, 32 were inserted 

in the spinal cord during innocuous mechanical stimulation, and 34 during 

noxious mechanical stimulation. 

The mean image density scan for microprobes inserted for 5 min during 

innocuous mechanical stimulation featured a peak of irSS release in the region 

of the substantia gelatinosa similar to that observed with innocuous thermal 

stimulation (Fig. 21A). This irSS release was not increased by noxious 

mechanical stimulation (Fig. 21B). Fig. 21C illustrates the difference between 

the mean scans for noxious and innocuous mechanical stimulation, and the t

statistic record (Fig. 21D) shows no differep.ce in irSS release bet\veen these 2 

groups. This is further demonstrated in Fig. 22 which plots the mean areas (and 
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Fig. 20. Release of irSS in the dorsal horn with cutaneous thermal stimulation. 

A: The mean image density scan (and SEM) of 14 microprobes inserted into the 
lower lumbar spinal cord for 5 min during immersion of the ipsilateral hind paw in 
water at 41° C. 

B: The mean image density scan (and SEM) of 15 microprobes inserted into the 
spinal cord for 5 min during immersion of the hind paw in water at 52° C. 

C: The differences between the mean scans plotted in A and B. 

D: The t values calculated for the differences of the means. 
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Fig. 21. Lack of release of irSS in the dorsal horn with cutaneous mechanical 
stimulation. 

A: The mean image density scan (and SEM) of 13 microprobes inserted into the 
lower lumbar spinal cord fer 5 min during innocuous mechanical stimulation of 
the ipsilateral hind paw. 

B: The mean image density scan (and SEM) of 14 microprobes inserted into the 
spinal cord for 5 min during noxious mechanical stimulation of the hind paw. 

C: The differences between the mean scans plotted in A and B. 

D: The t values calculated for the differences of the means. 
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Fig. 22. Increased release of irSS in the substantia gelatinosa region 'vVith 
noxious thermal stimulation, but not with noxious mechanical stimulation nor 
innocuous forms of stimulation. The histograms plot the mean area (and SEM), 
in arbitrary square un·its, of the peaks of irSS release in the substantia gelatinosa 
on image density scans. The mean area on scans of microprobes inserted 
during noxious skin heating (52° C) is significantly greater than the 
corresponding mean area during innocuous skin heating (41° C) (0.01 <P<0.05, 
Students t-test). 
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SEM) of the peaks of irSS release in the substantia gelatinosa, for both types of 

mechanical stimulation. 

Thus, of the cutaneous stimuli tested, only noxious thermal stimulation 

increased the release of irSS in the substantia gelatinosa region. 

Equivalent In Vitro Concentrations 

Image density scans were obtained for a total of 245 antibody 

microprobes used in in vitro tests. Of these, 60 were not exposed to SS prior to 

incubation in 125!-SS, and 185 were exposed to various concentrations of SS at 

37 °C for either 5, 15 or 30 min, prior to incubation in 125!-SS. 

Fig. 23A illustrates the mean image density scan for the 60 in vitro zero 

microprobes together with the mean scans of the 5 min. in vitro microprobes, at 

each concentration. In the presence of increasing concentrations of SS there 

was greater inhibition of the subsequent binding of radiolabelled peptide, 

resulting in fainter microprobe X-ray film images and image density scans of 

smaller greyscale values. Fig. 23B shows the mean scans of the 30 min in vitro 

microprobes. With this longer time of exposure to SS there was greater 

suppression of 125I-SS binding, so that at each SS concentration the mean scan 

for 30 min microprobes bad smaller greyscale values than the corresponding 

scan for 5 min microprobes. A mean image density scan of unexposed areas of 

the X-ray films from these experiments (film background) bas also been 

plotted. 

The mean image density scans of in vitro microprobes were used to 

estimate the equivalent in vitro concentration of irSS in the region of the 

substantia gelatinosa. This was done by obtaining the ratio of the greyscale of 

an in vivo group of microprobes to that of the in vitro zero group. In Fig. 24, 

the greyscale of each 5 min in vitro microprobe was divided by the mean 

greyscale of the in vitro zero group of microprobes, at corresponding 16 µm steps 

along the length of the probes. The mean scans for each concentration ·were 
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Fig. 23. Mean image density scans of in vitro microprobes. The mean scans of 
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Fig. 24. Estimation of the equivalent in vitro concentration of irSS in the dorsal 
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calculation of the mean scan for each SS concentration. The scans have been 
plotted as single line averages. The scans of microprobes detecting basal irSS 
release during 5 min of insertion in the spinal cord (Fig. 238) have similarly been 
expressed as a ratio of the in vitro zero group. FB, film background. 
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were then calculated and the overall average ratio plotted as a single line. The 

image density scans of the microprobes inserted in the cord for 5 min. in the 

absence of peripheral stimulation were similarly converted to ratios to the in 

vitro zero group. It can be seen that under these in.vivo conditions of basal irSS 

release, the concentration of irSS detected in the region of the substantia 

gelatinosa is equivalent to an in vitro concentration of 10-1M SS. 

Fig. 25 illustrates the resultant average lines determined for each SS 

concentration. The image density scans of 2 in vivo groups of microprobes, 

inserted in the spinal cord for 5 min during 41 °C or 52 °C cutaneous thermal 

stimulation, have also been expressed as ratios to the in vitro zero group of 

probes, and the mean scans for each in vivo group plotted in Fig. 25. With 41 °C 

stimulation to the hind paw, the peak concentration of irSS measured in the 

region of the substantia gelatinosa is equivalent to an in vitro concentration of 

10-1M, which is the same as that detected previously in this spinal region under 

conditions of no peripheral stimulation (basal release). With 52 °C stimulation, 

the highest equivalent in vitro concentration of SS detected in the substantia 

gelatinosa region was 10 -6M. 

Simultaneous Release of irSS and irSP 

Since the present experiments showed intraspinal release of irSS with 

noxious heating of the skin, -a stimulus which also evokes irSP release (vide 

supra), this form of stimulation was used to detect possible simultaneous release 

of both peptides in the dorsal horn. This was done by the concomitant insertion 

of 2 antibody microprobes, one prepared to detect irSS and the other, irSP. 

These microprobe pairs were inserted into the same area of spinal cord through 

the one small opening in the pia mater during a noxious cutaneous heat 

stimulus. Thirty-seven such pairs of microprobes were used to measure 

simultaneous release. 
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Fig. 25. Estimation of the equivalent in vitro concentration of irSS in the dorsal 
horn during cutaneous thermal stimulation. The grey scales of image density 
scans of microprobes exposed to standard concentrations of SS in vitro prior to 
incubation in 1251-SS have been expressed as a ratio of the mean grey scale of 
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for each concentration were then calculated and plotted as single line averages. 
The image density scans of microprobes inserted in the spinal cord for 5 min 
during 41 ° C (lower scan, n = 14) or 52° C (upper scan, n = 15) stimulation of the 
ipsilateral hind paw have similarly been expressed as ratios to the in vitro zero 
group. Standard errors have been omitted for clarity. FB, film background. 
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Fig. 26 illustrates the individual image density scans of 2 such 

microprobes, inserted together into the lower lumbar cord during noxious 

heating of the hind paw (52 °C) for 5 min. Both feature a peak of release in the 

region of the substantia gelatinosa. 

Discussion 

The prominence of irSS release under conditions of no peripheral 

stimulation was unexpected, being much greater than that previously observed 

for irSP under the same experimental conditions in previous chapters. There 

are several possible sources of this basal irSS release in the substantia 

gelatinosa region. Since a proportion of small DRG neurones contain irSS, 

there could be a continuous release of SS from the central terminals of primary 

afferent fibres of somatic or visceral origin. Some of this sensory input, via the 

posterior primary rami, would be nociceptive, being derived from areas 

subjected to extensive surgery. Another possible source of basal irSS release 

could be intrinsic spinal neurones located in the superficial dorsal horn. In the 

cat, experiments with dorsal rhizotomy have found that about 60% of irSS in 

the dorsal horn is of intraspinal origin (Tessler et al.1986), with the irSS-positive 

neurones located in the substantia gelatinosa region (Krukoff et al.1986). 

The basal release of irSS in the region of the substantia gelatinosa wa;; 

not significantly altered by electrical stimulation of large myelinated afferents 

of the tibial nerve but was increased when C fibres were additionally activated. 

The SS antiserum used in the present experiments was C-terminal directed and 

therefore did not distinguish between SS-14 and its N-terminal-extended forms, 

SS-25 and SS-28. In the cat both SS-14 and SS-28 have been found in peripheral 

nerve, dorsal root ganglia and the upper dorsal horn (Tessler et al 1986). The 

predominant form of SS in the cat dorsal horn, however, is SS-14 (Tessler et 

al 1986). 
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Fig. 26. Simultaneous release of irSS and irSP in the substantia gefatinosa. 

A,B: Image density scans of single microprobes detecting either irSS (A) or irSP 
(B) release in the lumbar dorsal horn. Both microprobes were inserted 
concomitantly and in close proximity to each other in the ~inaf cord for 5 min 
during immersion of the ipsilateral hind paw in water at 52 C. 
(With microprobe A, irSS release was also detected near the dorsum of the 
spinal cord). 
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In the first section of this chapter, an additional release of irSP was 

found at the spinal cord surface, resulting from an inflammatory exudate 

containing SP derived from pial nerves. In this section, a significant proportion 

of the microprobes showed zones of inhibition of 125!-SS binding at the cord 

surface, presumably resulting from irSS release at this site also. Feline pial 

nerves have been found to contain a number of vasoactive peptides, including 

SP (Liu-Chen et aL 1983), vasoactive intestinal polypeptide (Larsson et aL 1976) 

and calcitonin gene-related peptide (Hanko et al.1985). There appear to be no 

reports of similar localization of irSS. It is noteworthy, however, that human pia 

mater contains a high density of SS binding sites (Reubi et aL 1986). The 

physiological function of these peptides at the surface of the brain and spinal 

cord is not known, but their association with pial vessels (Bevan et al 1986; 

Edvinsson et al.1981; McCulloch et al 1986) suggests a regulatory role in 

cerebral and spinal blood flow. 

In the present experiments this technique revealed that under conditions 

of no peripheral stimulation the basal level of irSS in the substantia gelatinosa 

region is approximately 10-1M. Such statements, however, require cautious 

interpretation. Clearly the concentration of a neuropeptide in the extracellular 

space surrounding a micropro be in situ depends upon several factors such as 

proximity to synapses releasing the peptide (where the concentration will be 

relatively high) and the possible rupture of neural elements containing the 

peptide by microprobe insertion. It is probable that this procedure will be more 

meaningful in studies of comparative release of a neuropeptide with different 

experimental conditions. 

These experiments have shown that irSS is released in the region of the 

substantia gelatinosa of the dorsal horn in response to noxious cutaneous 

thermal, but not mechanical, stimulation. This is an important difference to the 

release, in the same spinal region, of irSP and irCGRP which is evoked by both 

types of noxious cutaneous stimuli (vide infra; Tsai et al.1988). For SS the 
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specificity in relation to the type of noxious stimulus producing release suggests 

that the source of the irSS is not polymodal nociceptors but rather, specialized 

heat nociceptors. Electrophysiological studies have described the presence of 

such receptors in the skin of the cat hind paw, with the afferent fibres occurring 

in the plantar and saphenous nerves (Iggo, 1959; Beck et al 1974 ). In one study, 

similar numbers of polymodal nociceptors and 'C-heat-nociceptors' were found 

in cat plantar nerve (Beck et al 1974). The present results suggest that these 

thermal nociceptors contain and release irSS, which is consistent with previous 

work showing irSS release in the substantia gelatinosa following electrical 

stimulation of unmyelinated primary afferents of the tibial nerve. 

Unfortunately, attempts to relate the peptide content of nociceptors with 

their physiological response characteristics have been few and the results are 

not readily interpreted. Leah et al (1985a) described a small number of cat 

DRG neurones containing irSS but found little correlation with the type of 

cutaneous stimuli exciting these cells. Such findings are complicated not only by 

the co-existence of other peptides (bombesin, cholecystokinin) in these 

neurones but also by species differences. In the cat most of the irSS-containing 

cells also contain irSP but many other DRG cells stain positively for irSP but 

not irSS (Leah et al.1985b ). These observations, together with the present and 

previous release results, suggest that in the cat, polymodal nociceptors contain 

and release irSP but not irSS, while the subset of DRG neurones containing 

both these peptides might be the specialized heat nociceptors (Beck et al.1974). 

The present work is consistent with an earlier report of intraspinal irSS release 

detected with the push-pull cannula technique (Kuraishi et al.1985). Such 

release was evoked by noxious cutaneous thermal, but not mechanical 

stimulation at an unstated site within the ·dorsal horn. vVith the antibody 

microprobe technique, the intraspinal sites of irSS release have been localized 

to the substantia gelatinosa, a region where SS binding sites are concentrated 

(Reubi & Maurer, 1985; Reubi et al.1986). The present study is also in general 
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accord with the results of behavioural experiments showing that intrathecal SS 

adrnjnjstration produced reactions suggestive of pain perception (Wiesenf eld

HalHn, 1985, 1986a,b) but see (Mollenbolt et al 1988), and potentiated a flexion 

reflex to noxious thermal but not mechanical information (Wiesenfeld-Hallin, 

1986b ). Collectively these findings suggest that SS is an excitatory transmitter of 

noxious thermal information. This released SS could be of primary afferent 

origin since, in the cat, DRG neurones contribute about 40% of the dorsal horn 

content of irSS (Tessler et al 1986). Alternatively, irSS could equally be released 

form intrinsic spinal neurones of the substantia gelatinosa which terminate 

locally. To explain the present results, such cells would require a selective 

excitation by noxious thermal afferent input. 

Although irSS is released during thermal nociception, this peptide has 

been reported to have inhibitory effects in the spinal cord. Administration of 

SS has inhibited dorsal horn neurones of the rat spinal cord in vitro (Miletic & 

Randie, 1982; Murase et al.1982) and the cat spinal cord in vivo (Randie & 

Miletic, 1978), and intrathecal administration has produced analgesia 

(Chrubasik et al 1984; Chrubasik et al 1985). In addition to anti-nociceptive 

effects, however, intrathecal SS produces hind limb paralysis and neuronal 

damage (Long, 1988; Mollenholt et al 1988). Therefore, it is possible that at 

least some of the reported inhibitory and analgesic effects of SS in the spinal 

cord result from and ischaemic neurotoxic action of this neuropeptide. 

Although the main advantages of the antibody microprobe are spatial 

precision and lack of trauma, estimations of the equivalent in vitro 

concentration of peptide present in regions of release are a useful adjunct to the 

technique. Thus under conditions of no peripheral stimulation or innocuous 

cutaneous stimulation, the concentration of irSS detected in the substantia 

gelatinosa region was equivalent to an in vitro concentration of 10-1M. With 

noxious heating of the skin, the equivalent concentration of irSS detected in this 

region was 10-fold greater, 10-6M. This concentration of SS has produced 
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membrane potential changes in dorsal horn neurones of the rat spinal cord in 

vitro (Murase et al 1982). Such estimates of concentration thus provide an 

additional basis for assessing the significance of a particular zone of release in 

response to various peripheral stimuli. 

In snmrnary, the present experiments have identified 2 regions of irSS 

release within the lumbar spinal cord of the cat, the substantia gelatinosa and 

the overlying pia mater. The increase in irSS release in the substantia gelatinosa 

produced by impulses evoked electrically in unmyelinated primary afferents and 

with thermal but not mechanical cutaneous stimulation suggests that SS plays a 

specialized role in spinal nociceptive processing. 

Opioid Peptide Release 

Results 

Dynorphin A release and effect of cord transection 

A basal release of ir-dynorphin A was observed in the region of lamina I. 

Fig. 27 (lower scan) illustrates the mean scan of antibody microprobes detecting 

ir-dynorphin A in the absence of peripheral stimulation. A small peak is 

evident 1.0 mm from the cord dorsum which corresponds to the centre of 

lamina I in the cat lumbar dorsal horn. The average depth of the zone of 

inhibition of tracer binding was determined by obtaining a mean scan of all 

microprobes aligned from their tips. Because of the variation in the depth of 

particular laminae from the cord dorsum, the small zone of release in lamina I 

was highlighted by placing all zones at 1.0 mm from the cord surface. The 

upper scan in Fig. 27 shows the effect of spinal transection. The lamina I peak 

was no longer present on the mean scan line, but a larger peak of inhibition of 

tracer binding was observed near the surface of the cord dorsum. Measures of 

the AUS in lamina I for individual scans before cord transection gave a mean 

value of 123.4 ± 43.3 (SEM, n = 16) GS x mm, which was significantly reduced 
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Fi~. 27. Supraspinal control of ir-dynorphin A release in lamina I of the lumbar 
spinal cord. 

Lower line: Average image density scan for 16 microprobes inserted 4.0mm into 
the intact cord for 30 min. 

Upper line: Averag~ image density scan for 12 microprobes treated as above 
but with the cord transected at the thoracolumbar level. Both results were 
obtained in the absence of somatic or nerve stimulation. Standard error lines 
have been omitted for clarity. See Results section for mean± S.E.M. for the AUS 
at the level of lamina I for these two groups .. 



Fig. 28. Localization and release of ir-dynorphin A (1-17) in lamina VI detected 
with an antibody microprobe. 

A: Left hand side. lmmunohistochemical localization of ir-dynorphin A terminals 
confirms the site of release in lamina VI. Vertical height of the photo inset 
corresponds to a scale of 300µm. 

Right hand side: A photographic enlargement of the autoradiographic image of a 
microprobe placed on a diagram of the spinal cord. Radiolabeled dynorphin A 
bound to the microprobe exposed the film which shows as white on the 
photographic print. This microprobe was inserted 4.0 mm into the lower lumbar 
cord of an intact cat for 30 min in the absence of any somatic stimulation. 

B: The image density scan of the microprobe shown in A. The zone of inhibition 
of binding of radiolabeled dynorphin A corresponds to the region of lamina VI. 
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(P < 0.05) to an AUS of 22.2 ± 7.23 (SEM, n = 12) GS x mm after cord 

transectiou. 

There was some evidence for release of ir-dynorphin A in lamina VI. The 

right hand portion of Fig. 28A illustrates a photographic enlargement of the 

autoradiographic image of a single antibody microprobe which was inserted 4.0 

mm into an intact spinal cord for 20 min with no peripheral stimulation. There 

is a zone of release which, on the corresponding optical density scan of this 

microprobe, is shown as a peak centered deep in the dorsal horn, about 2.2 mm 

from the dorsal cord surface (Fig. 28B ). This corresponds to Rexed's lamina 

VI where, as shown in the inset of Fig. 28A , dynorphin A immunoreactive 

terminals were subsequently found. This zone of release was very pronounced 

in one experiment (Fig. 29A), but was not consistently observed in later 

experiments. However, as with ir-dynorphin A release in lamina I (Fig. 27), the 

zone of release in lamina VI was absent after the cord was transected (Fig. 

29B). Thus, the AUS for the peak in lamina VI with an intact spinal cord was 

240 ± 47.9 which was significantly reduced (P < 0.01) to an AUS of 55.8 ± 17.5 in 

the spinal cat. 

Evoked release of dynorphin A 

In view of the published reports of dynorphin A release fallowing 

electroacupuncture stimulation (Han & Xie, 1984; Fei et al.1986) and work 

suggesting that the analgesic effects of electroacupuncture are mediated in part 

by impulses in AS afferent fibres (Woolf et al.1980; Lee et al.1985; Sjolund, 

1985), antibody microprobes were used to measure ir-dynorphin A release 

during stimulation of ipsilateral peripheral nerves. The spinal cord was not 

transected in these experiments. Fig. 30 shows that there was no effect of 

stimulation of the sural nerve at intensities sufficient to excite AS afferent fibres. 

Both scans have small peaks in the area of lamina I and much larger peaks near 

the surface of the cord. The broad peak seen on the mean scan at the cord 
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Fig. 29. Supraspinal control of ir-dynorphin A release in lamina VI and lack of C 
afferent fibre stimulation to evoke ir-dynorphin A release in the dorsal horn. 

A: The mean image scan (±S.E.M.) of 6 microprobes inserted 4.0mm into the 
intact spinal cord for 30 or 40 min in the absence of nerve stimulation. 

B: The mean image scan (±S.E.M.) of 7 microprobes inserted 4.0mm into the 
spinal cord for 30 or 40 min during and after cord transection. The test of 
significance for the difference A - B and is not sho~n. 

C: The mean image scan (±S.E.M.) of 12 microprobes inserted 4.0mm into the 
spinal cord for 30 or 40 min during 100 Hz continuous stimulation (0.5 ms pulse 
width) of the tibial nerve at intensities sufficient to excite C fibres after cord 
transection. 
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the dorsal horn. 
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surface is due to the averaging of quite narrow peaks seen on individual scans. 

There was no significant difference between the peaks appearing in lamina I or 

at the surface of the cord in these two scans. 

Results obtained in a similar manner using tibial nerve stimulation at Ao 

afferent fibre intensity for 20-30 min also showed no significant differences 

between the control and stimulation groups (scans not shown). Increasing the 

intensity of stimulation to excite, additionally, C fibres of the tibial nerve was 

also ineffectual in producing a release of ir-dynorphin A (Fig. 29C). 

Studies with met-enkephalin-arg-phe 

The results in Fig. 31 show that high intensity nerve stimulation and 

noxious cutaneous stimuli, which are very effective in producing release of 

several sensory neuropeptides, were not effective in producing an intralaminar 

zone of release of irMEAP. The majority of these probes were inserted in the 

spinal cord for 30 or 60 min, and this may have been the reason for the large 

surface inhibition seen on these scans, especially in the latter half of the 

experiment (Fig. 31B). The in vitro assay results revealed a 50 - 81 % inhibition 

of tracer binding with 10-1-10-sM of unlabelled tracer over these time periods, 

validating that the antibody microprobes were capable of detecting the 

presence of this peptide at these concentrations. 

Immunohistochemical results 

In the three spinal cords examined, no cell bodies immunoreactive for 

dynorphin A were found and this is probably due to the lack of colchicine 

pretreatment which was deemed incompatible with release experiments. 

Dynorph~n A immunoreactive terminals were occasionally encountered in these 

studies in transverse sections of the spinal cord. This immunoreactivity was 

localized in boutons in lamina VI (Fig. 28A), and a few terminals \Vere seen in 

more superficial laminae. Sections stained for irMEAP showed quite different 
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Fig. 31. Met-enkephalin-arg-phe microprobes show prominent surface inhibition 
but no intralaminar release with noxious afferent input. 

A: The mean image scan (±S.E.M.) of 17 microprobes inserted 4.0mm into the 
spinal cord for 30 or 60 min in the absence of stimulation. 

B: The mean image scan (±S.E.M.) of 20 microprobes inserted 4.0mm into the 
spinal cord. Pooled results of various stimuli: 1 O Hz tibial nerve stimulation at C 
fibre intensity (N = 12); noxious mechanical (N = 4); s2°c hot water (N = 4) for 
30 or 60 min. 



patterns of immunofluorescence. Sparse cell bodies were stained rather faintly 

throughout the dorsal horn with a lack of laminar localization, but were absent 

from the dorsal columns. In agreement with the results shown in in Fig. 31, 

more intense staining was seen near the cord surface (not illustrated). These 

patterns were characteristic for the primary antisera since omitting this step 
. . 

produced none of these effects. In addition, met-enkephalin staining was 

unique to the pattern seen with irMEAP and agreed with published reports 

(Hokfelt et al 1977) of its localisation in deeper laminae (II - III) of the spinal 

cord. 

Discussion 

The laminar location of ir-dynorphin A release observed in this study is 

in agreement with immunohistochemical studies of the location of dynorphin

related peptides in the cat dorsal horn. Release was observed at an average 

depth of 1.0 mm from the cord dorsum which corresponds to the centre of 

lamina I in the cat spinal cord; a major region of termination of nociceptive 

primary afferent fibres. Immunostaining of dynorphin A (1-8) was observed in 

cell bodies of lamina I and IV-VII of the feline lumbar dorsal horn fallowing 

colchicine treatment (Miller & Seybold, 1987) and ir-dynorphin B has been 

localized in cell bodies in laminae I and V of the lumbar and sacral dorsal horns 

(Basbaum et al.1986). The low incidence of lamina V-VI release may not be 

surprising considering the relatively low levels of ir-dynorphin detected 

immunohistochemically in this spinal region of animals not treated with 

colchicine in the present and previous (Basbaum et al.1986) experiments. The 

induction of arthritis or other forms of chronic stress increases dynorphin 

mRNA levels (Hollt et al.1987; Ruda et al.1988) and more consistent release 

from lamina V-VI may be obtained under these conditions. A recent 

immunohistochemical study has identified ir-calcitonin-gene-related peptide in 

varicosities presumed to derive from primary afferent fibres which contact 
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dendrites and cell bodies of ir-dynorphin A (1-8) neurones in laminae I, II and 

V-VI (Takahashi & Traub, 1988). The incidence of these synaptic contacts was 

markedly increased in the arthritic rat (Takahashi & Traub, 1988). This 

supports the notion that dynorphin-containrng interneurones or projection 

neurones are involved in processing nociceptive information (Miller & Seybold, 

1987). 

In the present study, the observation that dynorphin A release in lamina 

I was abolished when the spinal cord was transected implies that supraspinal 

sites may be involved in the control of dynorphin release at the spinal level. 

Although bulbospinal projections of peptidergic neurones containing SP and 

enkephalin have been described in the rat, no spinally projecting ir-dynorphin B 

neurones were found (Menetrey & Basbaum, 1987). It is likely that release 

observed at lumbar levels is derived from dynorphin-containing interneurones 

under the influence of other descending pathways. Indeed, there is some 

evidence that descending noradrenergic or serotonergic fibres may control 

dynorphin release from spinal interneurones. Thus the addition of 10-4M 

clonidine, an alph~ adrenoceptor agonist, to the artificial CSF perfusing the 

subarachnoid space of the rat stimulates the release of dynorphin A into spinal 

perfusates (Xie et al.1986). A serotonergic component may be involved since 

the prolonged response latency induced by a selective kappa receptor agonist in 

hot plate and tail flick assays in the rat was blocked by p-chlorophenylalanine 

pretreatment (Von Voigtlander et al.1984). Further support for involvement of 

dynorphin A in descending inhibition comes from microelectrophoretic 

experiments. When administered in the vicinity of feline multireceptive 

spinocervical tract neurons, dynorphin A(l-13) selectively reduced nociceptive 

responses in 27 of 31 cells tested (Fleetwood-Walker et al.1988). Such selective 

effects are characteristic of descending inhibition present on these spinal 

neurones in this anaesthetized cat preparation (Duggan & Morton, 1988). 
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Spinal cord levels of dynorphin have been found to be elevated 1-4 

days after spinal trauma (Cox et aL 1985; Faden et aL 1985b) but unaltered 

12-32 days following cord transection (Goldstein & Ghazarossian, 1980). 

These results are not necessarily discordant with the present observations 

following acute cord transection since an early phase of cessation of release 

may be followed initially by a period of increased synthesis, and a subsequent 

return to normal levels. The determination of dynorphin levels is a static 

measure at one point in time, and it is not possible to judge the relative 

contribution of synthesis, release and degradation to the observed content. 

An important finding of the present work was absence of enhanced ir

dynorphin A release in the lumbar cord fallowing electrical stimulation of 

peripheral nerves at intensities sufficient to excite Ao primary afferent fibres. 

This is in contrast to the wo.rk:of Han's group (Han & Xie, 1984), where 

transcutaneous nerve stimulation at similar intensities produced an analgesic 

effect blocked by intrathecal administration of anti-dynorphin antibody in 

rabbits, and released ir-dynorphin A into the spinal perfusates of rats (Fei et 

al.1986). Although it is uncertain to what extent dynorphin A produces the 

analgesic effects of transcutaneous nerve stimulation, the present results 

indicate that there may be species differences with regard to the intraspinal 

release of this peptide under conditions of analgesia induced by peripheral 

nerve stimulation. 

The origin of release at the cord surface is at present unkno\vn, but it 

appears to depend on the time of insertion rather than on a particular stimulus 

(see discussion on pp. 42-43). In Fig. 27, this zone of release appears with the 

group of probes inserted after cord transection and these probes were, of 

necessity, all inserted about 6 h later than the control group. It is likely that 

both image scans in Fig. 30 show surface release because control and 

stimulation microprobes were alternated over the time course of the 

experiment, and only the late probes in each group contributed to the peak. 
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However, the large surface inhibition obtained with irMEAP release may, in 

part, be due to authentic release of peptide since immunohistochemical 

fluorescence was observed in spinal cord sections corresponding to the region of 

release on the microprobes. This time-related appearance of surface release 

has been observed in previous microprobe experiments with SP. The lack of 

release observed in deeper lamina with irMEAP may simply be due to the low 

concentration and lack of laminar organization of these neurones. It seems that 

one requirement of the antibody microprobe technique is that the neuropeptide 

be localised to a discrete region. If this is the case, then one clear advantage of 

the technique is the ability to detect release in discrete laminae deep within the 

spinal cord that may not be measured by the technique of spinal superfusion. 

In summary, this is the first in vivo study to localise ir-dynorphin A 

release at the laminar level within the spinal cord, and the results suggest that 

dynorphin A release in laminae I and VI is under a supraspinal influence. In 

contrast, there is no evidence that in the cat, ir-dynorphin A is released by 

electrical stimulation of peripheral nerves using parameters which may produce 

the phenomenon of electroacupuncture (Han & Terenius, 1982). 
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5. PHYSIOLOGICAL CONTROL OF SUBSTANCE P RELEASE 

I 

Absence of Tonic Descending Inhibition 
I 

Introduction 
I 

Presynaptic inhibition of transmission of impulses in nociceptive primary 
Ill 

afferents has been proposed as important in several mechanisms of analgesia. 

These include the gate hypothesis of Melzack & Wall (1965), the actions of 
I 

opiates and opioid peptides in the substantia gelatinosa (J essell & Iversen, ' 
1, 

I 1977) and the effects in the dorsal horn of descending fibres derived from 

I brain.stem nuclei (Fields & Basbaum, 1978) (see Fig. 50 for diagram). There are I 

• some neurophysiological studies supporting these hypotheses (Hentall & Fields, 

1979; Carstens et al.1979; Fitzgerald & Woolf, 1981; Calvillo et al.1982). 
ii 

I Several anatomical reports however, argue against presynaptic inhibition as an 
; 

I important control of spinal transmission of impulses in peripheral nociceptors 

(Duncan & Morales, 1978; Ruda & Gobel, 1980; Hunt et al.1980; Glazer & 

Basbaum, 1981; Zhu et al.1981). 

The function of presynaptic inhibition is to reduce the probability of synaptic 
'; 

' transmission by decreasing the amount of transmitter released by an incoming 

i: 
impulse (Schmidt, 1971). Measures of transmitter release can thus be direct 

I measures of the extent of such inhibition. Although the transmitter or 

n 
transmitters released by any class of primary afferent fibre are still not known 

J with certainty, evidence has been presented that SP is released in the dorsal 
' 

horn in a stimulus-dependent manner following excitation of peripheral 

nociceptors. The finding that SP release is stimulus-dependent, suggests that 

I this release should be reduced by presynaptic inhibition if such a process were q 

,l operating on the central terminals of the relevant nociceptors. 

An important inhibition which needs to be examined for a possible 
I 

Ill presynaptic control on nociceptors is the tonic inhibition of nociceptive 

transmission present both in decerebrate and anaesthetized cats (Wall, 1967; 

I 

• 
... I ....... 



J 

I. 

0 

I 

i 
j' 

' 

I 

11 

II 

Brown, 1971; Handwerker et al 1975; Duggan et al 1977b ). In anaesthetized cats· 

this inhibition is derived mainly from neurones of the ventrolateral medulla 

(Hall et al 1982; Foong & Duggan, 1986) and importantly, bilateral inactivation 

of this area reduces not only tonic inhibition, but also the inhibition of spinal 

nociceptive transmission produced by electrical stimulation in the 

periaqueductal grey matter of the cat (Morton et al 1984 ). Recordings from 

conscious cats suggest that tonic inhibition is also present in these animals 

(Collins, 1984). Although probably a heterogeneous process, one function of 

this tonic inhibition may be to reduce .flexor withdrawal reflexes both to 

nociceptive and certain non nociceptive (Lundberg, 1982) primary afferents as a 

necessary prerequisite of voluntary motor performance. The present 

experiments have used the antibody microprobe technique to examine whether 

noxious stimulus-evoked release of irSP in the substantia gelatinosa of the 

spinal cord is subject to tonic supraspinal control. 

Results 

In this section, irSP release with normal spinal conduction has been 

compared with irSP release with conduction blocked by cooling the first lumbar 

segment, and irSP release was measured before and after transversely 

sectioning the spinal cord at the thoraco-lumbar junction. The total number of 

microprobes was 116. 

Fig. 32A illustrates the mean image density scan of the 64 microprobe 

autoradiographs obtained with normal spinal conduction and Fig. 32B shows 

the mean scan for the 36 microprobes used with spinal conduction blocked. 

Subtracting A from B gave the difference record of Fig. 32C . This sho·ws that 

the mean image scans of microprobes with or without block of spinal 

conduction to be virtually identical and none of the observed differences are 

significant (P > .05). The collected data have been further analysed by 

considering each of the three types of noxious stimuli ( thermal, mechanical and 
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Fig. 32. Lack of tonic supraspinal control of irSP release in the substantia 
gelatinosa of the spinal cord. 
The illustrated means are derived from microprobes inserted 2 to 3 mm and for 
noxious thermal or mechanical stimuli or electrical stimulation of unmyelinated 
primary afferents for periods of 15 to 30 minutes. 

A. The mean image scan of 64 microprobes with normal 
spinal conduction. 

B. The mean image scan of 36 microprobes with spinal 
conduction blocked at the first lumbar segment. 

C. The differences between scans A and B. 
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electrical stimulation of peripheral nerve) separately, and again there was no 

difference between release of irSP with normal spinal conduction and spinal 

conduction blocked. 

In 2 experiments, noxious heat-evoked irSP release was examined before 

and after complete transection of the spinal cord at the thoraco-lumbar 

junction. Fig. 33 compares the mean image density scans of the microprobe 

autoradiographs obtained from these experiments. As with cold block there was 

no significant difference between irSP release in the region of the substantia 

gelatinosa before (21 microprobes) and after (16 microprobes) transection of 

the cord (P > .05). 

Discussion 

There is considerable evidence that the noxious stimulus-evoked release 

of irSP measured in the substantia gelatinosa by microprobes is derived from 

the terminals of primary afferents ( discussed previously), it follows that these 

experiments do not support a tonic supraspinal presynaptic control of 

transmitter release from nociceptors. Sectioning the spinal cord did increase 

irSP release evoked by noxious mechanical stimuli measured with the push-pull 

cannula technique (Kuraishi et al.1985). The variance in these data however 

casts some doubt on the significance of this conclusion. Thus evoked release of 

SP was 136 fmol/min ± 37 SEM before and 265 fmol/min ± 139 SEM after cord 

transection. 

The anatomical substrate for presynaptic inhibition is considered to be 

Gray's type II axoaxonic synapses (Gray, 1962) but these are rarely observed on 

primary afferent terminals in the substantia gelatinosa. Although axoaxonic 

synapses containing gamma-aminobutyric acid have been described in the 

substantia gelatinosa of the rat (Barber et al. l978a) they are relatively few in 

number. A study of the central terminals of slowly adapting fibres in the cat 

found 72% of the post-synaptic contacts were with dendritic shafts and spines 
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Fig. 33. Failure of spinal cord transection to alter irSP release in the substantia 
gelatinosa of the spinal cord. 
The mean scans are derived from microprobes inserted 3 mm into the spinal 
cord during noxious thermal stimulation (52°C) of the ipsilateral hind paw for 20 
minutes. 

A. The mean image scan of 21 microprobes with normal spinal conduction. 

B. The mean image scan of 16 microprobes with the spinal cord transected at 
the thoraco-lumbar junction. 

C. The differences between scans A and B. 
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with the remainder described as "synapselike". It was not possible to determine 

whether these structures represented axoaxonal contacts or were vesicle

containing dendrites (Semba et al 1983) . Another study of the cat substantia 

gelatinosa (Duncan & Morales, 1978) found only seven of a total of 738 

synapses which they tentatively described as axoaxonic, and the presynatic 

profile often contained only one to three vesicles. None of the synapses in the 

cat substantia gelatinosa which were marked by uptake of 3H serotonin were 

found to be axoaxonic (Ruda & Gobel, 1980). In accordance with observations 

in the cat, studies examining the pre-and post-synaptic contents of terminals 

labelled with SP antisera in the primate (DiFiglia et al.1982; deLanerolle & 

LaMotte, 1983) have also found a paucity of axoaxonic synapses. In general, 

the terminals of Ao and C-aff erent fibres form glomerular structures which are 

post-synaptic not with other axon terminals but with dendritic spines (Maxwell 

& Rethelyi, 1987). It is not known if these vesicle-containing dendritic profiles 

mediate presynaptic inhibition. 

Lundberg (1982) proposed that tonic supraspinal inhibition of spinal 

transmission of impulses in the grouping of high threshold muscle and 

cutaneous afferents, termed the flex or reflex afferents, is exerted 

postsynaptically on spinal interneurones near the first central synapses of these 

fibres. The present findings that tonic supraspinal inhibition does not reduce 

irSP release from the central terminals of nociceptors, is in accord with this 

hypothesis. 

Absence of Segmental Control 

Introduction 

The gate-control theory of Melzack and Wall (Melzack & Wall, 1965) 

proposed that impulses in large diameter primary afferent fibres were capable 

of presynaptic inhibition of the release of transmitter from small diameter 

fibres. In a subsequent modification of the theory (Wall, 1978) it was stated that 
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existing evidence supported a presynaptic mechanism but that post-synaptic 

events were also likely to be involved. Several authors have concluded that both 

pre- and post-synaptic inhibition of dorsal horn neurones can be produced by 

electrical stimulation of peripheral nerves (see Besson & Chaouch, 1987) , but 

the relative contribution of each mechanism is a matter of controversy (see Fig. 

50). 

The previous section of this thesis has shown that irSP release is not 

under presynaptic control of descending fibres from supraspinal structures. In 

the present section, one aspect of the gate-control theory has been examined, 

i.e. whether activity in large diameter afferent fibres can cause a segmental 

presynaptic inhibition of irSP release in the dorsal horn of the cat spinal cord. 

Results 

In this report, a total of 121 antibody microprobes were used for 

calculating mean scans for various groups. In the first series of experiments, the 

tibial or sural nerve was stimulated at intensities sufficient to excite ·only Aa/3 

afferent fibres during noxious cutaneous stimulation of the ipsilateral hind paw. 

In a second series of experiments, the intensity of nerve stimulation was 

increased so as to excite both Aa/3 and Ao afferent fibres during concomitant 

noxious cutaneous stimulation. To examine the possibility that the nerve 

stimulation procedures per se may have produced irSP release, microprobes 

were also used to measure irSP release during nerve stimulation alone. 

Stimulation of Aa8 Afferent Fibres 

As previously presented, noxious mechanical or thermal stimulation of 

the hindpaw for 15-20 min releases irSP within the region of the substantia 

gelatinosa. This evoked release was the control situation to compare the effects 

of peripheral nerve stimulation for any changes in release. Stimulation of tibial 

Aa/3 nerve fibres has previously been shown not to increase the release of irSP 

in the substantia gelatinosa above basal levels (Duggan & Hendry, 1986) . In 
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the present study this finding was confirmed for both the tibial and sural nerves, 

and is consistent with the immunohistochemical localization of irSP in small 

diameter but not large diameter primary afferent fibres (Hokfelt et al 1975b ). 

The first series of experiments showed that stimulation of Aet/3 fibres had 

no effect on the irSP release evoked by noxious stimuli. Fig. 34A shows the 

mean image density scan obtained with 29 probes used during noxious heating 

of the hindpaw for 15 min. Fig. 34B shows the mean scan of 29 probes inserted 

under similar conditions but during continuous tibial nerve stimulation (100 

Hz) at Aet/3 strength. Both profiles have a zone in which irSP was released 

reaching a peak at 1.1 mm from the surface of the cord. A minor peak is also 

visible near the surface of the cord, which may be derived from pial nerve 

endings (Dalsgaard et al.1982; Risling et al.1984 ). Fig. 34A and Fig. 34B are 

virtually identical, showing no significant differences. Similarly, the release of 

irSP produced in the substantia gelatinosa region by noxious mechanical 

stimulation was not significantly altered by concomitant stimulation of sural Aet/3 

afferent fibres (not illustrated). 

Stimulation of Ao Afferent Fibres 

Several studies have shown inhibitory effects of A-afferent stimulation 

on a C fibre-evoked response of neurones ( Chung et al.1984) or of a flexor 

reflex (Woolf & Wall, 1986a) when the stimulus intensity was sufficient to 

excite Ao fibres. Therefore, the amount of noxiously-evoked release of irSP in 

the presence or absence of Ao stimulation of the tibial or sural nerve has been 

determined. Before this study was undertaken, the effects of nerve fibre 

stimulation at this intensity were determined in the absence of any noxious 

cutaneous stimuli. Fig. 35 shows the mean scans for probes inserted in the 

spinal cord during tibial (A) or sural (B) Ao nerve fibre stimulation alone. Both 

procedures released irSP in the region of the substantia gelatinosa. Since sural 

and tibial Aa/3 fibre stimulation produced no significant irSP release above 
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Fig. 34. Release of irSP in the substantia gelatinosa by noxious heat is not 
inhibited by stimulation of ipsilateral Aa/3 afferent fibres of the same spinal 
segment. 

A The mean scan of 29 probes inserted 3.0 mm into the spinal cord during 15 
min of noxious heating of the hindpaw (water at so0 c). 

B The mean scan of 29 probes treated as in A but with 100 Hz continuous 
electrical stimulation of the tibial nerve at an intensity sufficient to excite Aa/3 
afferent fibres. 
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baseline levels, it is likely that the irSP release seen in Fig. 35 is due primarily 

to impulses in Ao fibres. 

Fig. 36A shows the mean image density scan for 14 microprobes inserted 

into the lumbar spinal cord for 10 - 15 min during noxious mechanical 

stimulation of the ipsilateral digital pads. Again the zone corresponding to the 

substantia gelatinosa indicates in vivo irSP release. It is of interest that the main 

substantia gelatinosa peak has a shoulder at 1.5 - 1.6 mm from the spinal cord 

surface. Release of irSP from deeper laminae by noxious mechanical · 

stimulation has been noted previously (seep. 37). The surface of the cord again 

has some apparent irSP release. Fig. 36B shows the mean image density scan 

of 12 microprobes inserted into the cord during noxious mechanical stimulation 

with concomitant Ao stimulation of the ipsilateral tibial nerve. Fig. 36C 

illustrates the mean density scan for 12 microprobes also inserted during 

noxious mechanical stimulation, but this time with Ao stimulation of the sural 

nerve for the duration of their time in the spinal cord. 

These Figs. 36 A,B,C are virtually superimposable, there being no 

significant mean differences between them. Note that Fig. 36C also has a 

prominent shoulder peak centered about 1.6mm from the spinal cord surface 

and that ongoing activity in the sural Ao afferent fibres did not suppress this 

peak. 

In summary, none of the peripheral nerve stimulation procedures used in 

this study decreased the release of irSP from the region of the substantia 

gelatinosa or deeper laminae by impulses in nociceptive afferents. 

Discussion 

Impulses in primary afferent fibres to the spinal cord may excite dorsal 

born neurones or inhibit them indirectly. The excitation produced by a C fibre 

input can be inhibited by impulses in A fibres of the tibial nerve ( Cervera et 

al.1976) and of the sural nerve (Gregor & Zimmerman, 1972) of the cat 
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Fig. 35. Stimulation at intensities sufficient to excite A6 afferent fibres results in 
release of irSP in the substantia gelatinosa of the spinal cord. 

A Mean scan of 12 microprobes inserted during electrical stimulation of Ao 
afferent fibres of the tibial nerve. 

B Mean scan of 12 microprobes inserted during electrical stimulation of Ao 
afferent fibres of the sural nerve. 



Fig. 36. Lack of segmental control of irSP release evoked by noxious 
mechanical stimulation in the substantia gelatinosa of the spinal cord. 

A Mean scan of 12 microprobes inserted during noxious mechanical stimulation 
of the ipsilateral digital pads. 

B Mean scan of 12 microprobes treated as in A but with electrical stimulation of 
Ao afferent fibres of the ipsilateral tibial nerve. 

C Mean scan of 12 microprobes with treated as in A but with electrical 
stimulation of Ao afferent fibres of the ipsilateral sural nerve. 
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hindlimb. There is controversy as to whether this inhibition is mediated by a 

presynaptic mechanism reducing transmitter release from unmyelinated 

primary afferent fibres, a postsynaptic inhibitory mechanism independent of 

excitatory transmitter release or some combination of the two. 

In a decerebrate rat preparation, an increase in excitability of C fibres 

followed a conditioning A fibre volley, presumably due to a depolarization of C

terminals by impulses in A fibres (Fitzgerald & Woolf, 1981). A subsequent 

study, however, showed that the inhibitory effects of impulses in A fibres on C

evoked neuronal activity occurs mainly in lamina V and rarely in laminae I and 

II (Woolf & Wall, 1982) . In the cat, primary afferent depolarization of C fibres 

has been studied following low intensity electrical stimulation of the tibial nerve 

(Calvillo, 1978) or superficial peroneal nerve (Calvillo et al 1982). The 

amplitude of the antidromic C fibre population spike in the sural nerve set up 

by an iritraspinal stimulating electrode was slightly larger 30-40 msec after an 

A fibre volley in the peripheral nerve, indicating a depolarization of a 

population of C-terminals. An-examination of individual C fibres during low 

threshold stimulation found that the excitability of 20% was increased and that 

of 26% was decreased (Hentall & Fields, 1979). While it may be that the mixed 

effects on terminal excitability may have decreased the overall magnitude of the 

response in the study by Calvillo et al.(1982), it seems that some C fibres s_how 

primary afferent depolarization and some do not. It would be of interest to 

know whether the C fibres that do not show primary afferent depolarization 

are also those that contain irSP, and those that do show primary afferent 

depolarization contain some other putative neurotransmitter. This may explain 

the apparent discrepancy between the failure of low intensity stimulation to 

inhibit irSP release in the present study and previous reports of primary afferent 

depolarization of C fibres. 

A proportion of the irSP release observed in the present experiments 

may have been derived from Ao afferent terminals, and it is possible that such 
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release may be subject to presynaptic inhibition. Sastry (1978) has reported 

excitability increases in Ao terminals by electrical stimulation of low threshold 

cutaneous afferents. Regardless of the origin of the irSP release observed here, 

however, it was not reduced by primary afferent stimulation. 

Since axoaxonic synapses are rare or absent on primary afferent 

terminals (seep. 70-71), a more likely explanation of the present results is that 

inhibition of nociceptive responses by activity in large diameter fibres is a post

synaptic event. Early work showed disynaptic IPSP's in spinocervical tract 

neurones fallowing stimulation of high threshold cutaneous afferent fibres 

suggesting postsynaptic inhibition of spinal transmission cells (Hongo et 

al 1968). Other work is suggestive of a postsynaptic inhibitory process acting 

directly on the second order neurone. In laminae V-VII of the cat lumbar 

spinal cord, the excitation of some intemeurones by microelectrophoretic · 

glutamate could be partially suppressed by peripheral nerve stimulation 

(Morris, 1987) or by natural stimulation of the segmental inhibitory field 

(Besson et al.1974) . 

Anatomical studies of second order neurones in the substantia gelatinosa 

receiving nociceptive input have revealed neurones with projections to deeper 

laminae (Light & Kavookjian, 1988). Inhibitory synapses were illustrated at the 

initial segment of the myelinated axon projecting out of the substantia 

gelatinosa and it was suggested this could subserve post-synaptic inhibition of 

this nociceptive neurone. It remains to be determined how prevalent these 

structures are in the upper dorsal horn. The current anatomical evidence seems 

to support our findings of an absence of a reduction in irSP release by 

stimulation of A-afferent fibres of the tibial or sural nerves. 

The observation of irSP release from deeper laminae might be explained 

by a functional specificity in the termination sites of the cutaneous nociceptors. 

The nociceptors responding to heat may terminate in laminae I and II 

exclusively whereas the nociceptors responding to mechanical stimulation may 
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have their terminals in laminae V-VI as well as in laminae I and II. Although a 

population of cutaneous mechano-nociceptors have been described which 

respond only to noxious mechanical stimulation and not noxious thermal or 

chemical stimulation (Burgess & Perl, 1967) , the large majority of small 

diameter afferent fibres are polymodal nociceptors responding to all three 

forms of stimulation. Regardless of the origins of this deeper zone of release, it 

seems clear that the release of irSP is still present, if not larger, with the 

electrical stimulation of the higher threshold A-afferent fibres of the sural 

nerve. 

It is possible that in addition to SP, glutamate is also released in the 

spinal cord by noxious cutaneous stimulation. In fact, glutamate and SP coexist 

in small dorsal root ganglion neurons (Battaglia & Rustioni, 1988) and have 

been localized in separate vesicles within terminals of small diameter fibres (De 

Biasi & Rustioni, 1988). A selective presynaptic control of release of individual 

vesicle types has not been demonstrated, and it is probable that inhibition of SP 

release in the substantia gelatinosa reflects presynaptic control of nociceptive 

transmission. The major finding of the present study is that electrical 

stimulation of tibial or sural A-afferent fibres does not produce an inhibition of 

irSP released from the terminals of C fibres activated by noxious stimuli. This 

evidence does not support the notion that the analgesic effects of low threshold 

nerve stimulation are due to a presynaptic inhibition of SP release. 
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6. PHARMACOLOGICAL CONTROL OF SENSORY NEUROPEPTIDE 

l RELEASE 
I 
i 

' Acute Morphine and SP, CGRP release 

Introduction 
E 

Morphine administered systemically or by microelectrophoresis into the 
I 
I 

substantia gelatinosa inhibits the responses of dorsal horn neurones to noxious 

stimuli (Duggan et al.1977a). The implication of SP as a nociceptive transmitter 
I of primary afferent fibres (see General Introduction) gives rise to the 

hypothesis that the analgesic action of morphine at the level of the spinal cord 
I may be mediated by a decrease in the release of SP in the substantia gelatinosa. 

I There is evidence from in vitro and in vivo studies that morphine and 

' other opioids may act to reduce the noxiously-evoked release of SP in the spinal 

cord. Several opioids were found to inhibit the potassium-induced release of -
I 

I irSP into perfusates of rat trigeminal nucleus slices (J essell & Iversen, 1977), 

and macerated rat spinal cord (Pang & Vasko, 1986). Further work in vivo 

showed that morphine (0.1 - 10 µM in the perfusate) decreases the release of 

I irSP in a naloxone-reversible manner, into spinal superfusates of the cat spinal 

cord (Yaksh et al.1980; Go & Yaksh, 1987). In the rabbit with a push-pull 
I-• 

cannula inserted into the dorsal horn, the release of irSP evoked by noxious 
I , 

mechanical stimulation was inhibited by a high dose (10 mg/kg) of morphine, 

I an effect which showed partial reversal with naloxone. However, a lower dose 
I 

of morphine which was still analgesic (1 mg/kg) did not decrease irSP release 

m (Hirota et al.1985). Morphine and met-enkephalin (10 µM) circulating in the 
' 

~ 
push-pull perfusion system, inhibited the noxiously-evoked release of irSP, but 

11 dynorphin A was ineffective (Hirota et al.1985). A similar result was found with 
;J 

irSP sampled by push-pull perfusion of the trigeminal nucleus caudalis 
' 

" (Y onehara et al.1988), where morphine given systemically (10 mg/kg) or locally I 

! 
I, 

' 

II 
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(10 µMin the perfusate) inhibited the irSP release evoked by tooth pulp 

stimulation. 

These studies are supported by electrophysiological findings using the 

indirect method of measuring terminal excitability through a decrease in 

antidromic threshold (Wall, 1958). Presynaptic depolarization by 

microelectrophoretically administered morphine was found in more than half of 

the finely myelinated Ao fibres studied ( Carstens et al 1979), and systemic 

opioids enhanced the depolarization of C fibres by impulses in large diameter 

cutaneous afferents (Sastry, 1979). 

The density of opiate binding sites in the substantia gelatinosa has been 

reported to decrease following the degeneration of small diameter fibres in the 

dorsal roots, a finding which suggests the presence of opiate receptors on 

primary afferent fibres (Fields et al.1980). Furthermore, endogenous opioids 

such as enkephalin and dynorphin are found in the substantia gelatinosa 

(Hokfelt et al.1977; Hunt et al.1980; Miller & Seybold, 1987, 1988), giving a 

physiological basis to the observed pharmacology. 

The present experiments were designed to test whether or not morphine 

reduces the intraspinal release of two neuropeptides, SP or CGRP, in the 

region of the substantia gelatinosa as detected by antibody microprobes. 

Results 

Release of irSP after acute morphine 

The release of irSP in the substantia gelatinosa shown in Fig. 37 was 

evoked with either noxious thermal, mechanical cutaneous or electrical nerve 

stimuli. Following the epipial superfusion of the spinal cord with a 2, 2.5, or 5 X 

10 -3M morphine in Ringer's solution, there was no significant difference in the 

noxiously-evoked irSP release ( difference scan and t-test not shown). In 

addition, the systemic administration of morphine over a large dose range (1 -
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Fig. 37. Morphine superfusion does not reduce the release of irSP in the cat 
substantia gelatinosa. Noxious heating or mechanical stimulation of the digital 
pads or electrical stimulation of the tibial nerve at C fibre threshold was applied 
for 15, 20 or 30 min ipsilateral to the placement of microprobes. Microprobes in 
this series were inserted to a depth of 2.0 mm. 
A. Pre-morphine controls (N = 30). 
B. Post-morphine superfusion (N = 44) with 2, 2.5 or 5 x 10-3M morphine HCI. 
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20 mg/kg i.v.) did not reduce irSP release (Fig. 38 A,B), and no change was seen 

in Fig. 38 C following subsequent naloxone administration (0.5 - 2.0 mg/kg i.v.). 

The histograms in Figs. 39, 40 confirm the results of the scans in Figs. 38 

A,B, in showing no significant effect of morphine on the release of irSP evoked 

by noxious stimuli. The analysis of the mean AUS for individual microprobe 

scans in each group of Fig. 39 shows a slight but non-significant decrease in the 

release of irSP fallowing morphine superfusion, but no reversal of this trend 

was seen with naloxone. This slight depressant effect is not likely to be 

mediated through opiate receptors but may be a local anaesthetic action ( Gilly 

et al 1985) of the high concentration of morphine present on the surface of the 

cord. Further analysis revealed no differences in the mean AUS for irSP 

release in the substantia gelatinosa with intravenously administered morphine 

or naloxone (Fig. 40). 

The surface release of irSP was reduced by morphine superfusion, again 

possibly a local anaesthetic action (Fig. 37) 

Release of irCG RP after acute morphine 

A similar result was observed with antibody microprobes prepared to 

detect irCGRP· release with non-noxious and noxious stimuli. Fig. 41 A shows 

that a discrete zone of irCGRP release is centered about 1.1 mm from the cord 

surface following non-noxious stimuli. In this case, the stimuli were ipsilateral 

tibial A fibre stimulation or innocuous cutaneous heating (35 °C) to the 

ipsilateral hind limb for 10 min. This zone of release was not reduced by 

analgesic doses (1.1 - 5 mg/kg i.v.) of morphine (Fig. 41 B). With 3 

microprobes, a high dose of morphine was tested (10 - 20 mg.kg i.v.) and no 

reduction was seen on these scans (not illustrated). Even though the amount of 

irCGRP release appears to be slightly larger in Fig. 41 B, the substraction of the 

two mean scans in Fig. 41 C produced no significant differences ( not shown) in 

the region of the substantia gelatinosa. 
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Fig. 38. No effect of systemic morphine on the release of irSP in the substantia 
gelatinosa. 

All stimuli and times as in Fig. 37. 

A. Pre-morphine controls (N = 33). 

B. Post-morphine HCI i.v., 1 - 20 mg/kg (N = 38) 

C. Post-naloxone i.v., 0.5 - 2 mg/kg (N = 24) 
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Fig. 39. Histogram of area under the scan of individual irSP microprobes 
including those shown in Fig. 37. Total numbers are Control (N = 51), 
Morphine SF (N = 66), Naloxone IV (N = 22). 
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Fig. 40. Histogram of area under the scan of individual irSP microprobes 
including those shown in Fig. 38. Total numbers are Control (N = 59), 
Morphine IV (N = 56), Naloxone IV (N = 28). 



Fig. 41. Acute morphine does not inhibit basal irCGRP release. 

A. Pre-Morphine: Mean scan of 27 microprobes inserted during non-noxious 
stimulation of the ipsilateral hind limb with 35°c water (N = 17) or tibial nerve at 
1.5 x T (N = 10) for 1 O min. 

B. Post-Morphine: Mean scan of 28 microprobes inserted during stimuli 
identical to A, but following 1.1 - 5 mg/kg (N = 13) or 10 - 20 mg/kg (N = 3) 
morphine HCI. 

C. The difference between the scans shown in A and 8. 
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With noxiously-evoked release of irCGRP (Fig. 42), no reduction in the 

amount of release was seen with morphine administered over a dose range of 

5.0 - 20 mg/kg i.v. (There \Vas a change in the shape of the peak of release 

from round to pointed (Fig. 42 A,B) but the significance of this observation is 

not known). In several experiments, morphine was effective in reducing the 

response of neurones to a nociceptive stimulus. The polysynaptic response of a 

dorsal horn neurone to high intensity stimulation of the tibial nerve was 

reduced by 35 % following a 5 mg/kg i.v. dose of morphine, as shown in part B 

of Fig. 43. Part A of this figure shows individual microprobe images with 

identical zones of irCGRP release before and after the systemic administration 

of morphine. 

Discussion 

The results presented in this chapter are not in accord with studies 

showing that morphine decreases the release of irSP in the dorsal horn. This 

work is the first to investigate the effect of opiates on irCGRP release in vivo. 

As mentioned in the introduction, the advantage of the antibody microprobe 

technique is that it allows in situ, spacially precise measures of neuropeptide 

release in the region of the termination of the small diameter fibres, in contrast 

to collection of spinal perfusates through catheters which measure 

neuropeptides that appear at the cord surface. The fact that these results 

showed a morphine-associated decrease in surface release of irSP suggests that 

CSF levels may not accurately reflect the pertinent release. The push-pull 

cannula method may be sampling this surf ace release as well since the high rate 

of flow and the large size of the cannula in relation to the width of the dorsal 

horn might cause intake of CSF around the edges of the cannula instead of 

localized perfusion of the substantia gelatinosa. In contrast, the results 

presented here are averages of many individual events at several sampling sites 

in the lumbar cord of many experimental animals. 
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Fig. 42. Acute morphine does not inhibit noxiously-evoked irCGRP release. 

A. Pre-Morphine: Mean scan of 30 microprobes inserted during noxious 
stimulation of the ipsilateral hind limb with s2°c water (N = 18) or tibial nerve at 
200-300 x T (N = 12) for 1 O min. 

B. Post-Morphine: Mean scan of 33 microprobes inserted during stimuli 
identical to A, but following 5.1 - 9.9 mg/kg (N = 15) or 1 O - 20 mg/kg (N = 18) 
morphine HCI. 

C. The difference between the scans shown in A and B. 
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Fig. 43. The analgesic action of morphine does not result from a presynaptic 
inhibition of release of sensory neuropeptides. 

A. Left: Photographic enlargements of autoradiographic microprobe images 
arranged on a line drawing of a transverse section of the lumbar spinal cord. 
Stimuli for both probes was 52°c water for 1 O min. 

A. Pre-morphine. 

HCI. 
B. Post-morphine, 7 and 81 ~in after i.v. doses of 5 mg/kg morphine 

Right: lmmunofluorescence histochemistry (Texas Red- Streptavidin) of 
irCGRP in the dorsal horn of the spinal cord detected with the same antibody 
present on the antibody microprobes. Photo magnification x 45. 

B. Gated C-fibre response of a dorsal horn interneurone (depth 1.94 mm) to 
stimulation of the tibial nerve at 20 V, 2 x 0.5 ms pulses 3 ms apart repeated at 
0.28 Hz. Pre-morphine gated C fibre response was 88.7 ± 5.7 (S.D.) action 
potentials per stimulus and post-morphine (5 mg/kg i.v.) was 57.3 ± 4.2 (S.D.). 
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The electrophysiological studies of inhibition by opioids of small 

diameter primary afferents have not yielded consistent results. Threshold 

increases have been observed (i.e. hyperpolarized terminals), and few C fibres 

(2/ 6) have shown naloxone-reversible effects ( Carstens et al 1979). In another 

study, meperidine (0.2 mg/kg i.v.) increased the threshold for antidromic 

activation of all C fibres investigated (Sastry, 1980). As outlined by Duggan & 

North, 1983, there are a number of different interpretation of these findings: 1) 

an increase in excitability may be due to the suppression by morphine of a 

hyperpolarizing effect of inhibitory interneurones presynaptic to the terminal 

without any effect on the terminal per se; 2) an increase in terminal excitability 

may be due to a direct depolarization of the terminal by morphine associated 

with a increase in conductance, which would tend to shunt the incoming action 

potentials and the effect of inhibitory feedback on it, etc. However, all of these 

mechanisms could produce an inhibition of transmitter release and the more 

serious consideration is that changes in terminal threshold may simply result 

from movement of the tip of the electrode used for antidromic stimulation away 

from the terminal with the changes in blood pressure brought on by systemic 

opioid administration (Duggan & North, 1983). Much of this controversy is 

avoided in the current investigation, which compares the effects of morphine on 

the amount of SP and CGRP released over fixed time periods. 

There are also questions about studies demonstrating a decrease in 

opiate binding sites following degeneration of primary afferent fibres. Firstly, is 

trans-synaptic degeneration responsible for the disappearance of post-synaptic 

opiate binding sites? Secondly, in binding studies of synaptosomal 

homogenates, what is the relative contribution of presynaptic, postsynaptic and 

internalized receptors (inside-out synaptosomes) to the overall binding 

observed? Thirdly, are opioid peptides transported like oxytocin and 

vasopressin, and if so are the reports of sensory nerve transport of opiate 

receptors (Laduron, 1984a) detecting a neurophysin-like transport protein? 
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The fact that a proportion of opiate binding sites do remain supports the 

presence of opiate receptors on post-synaptic neurones that survive the 

degeneration of C fibres. 

As discussed previously, there remains the possibility that morphine 

inhibits the release of another putative transmitter from nociceptive afferents, 

which is responsible for the analgesic effect in the spinal cord. Some C fibre

mediated flexor reflexes have been shown to be insensitive to high doses of 

morphine ( 5 mg/kg), suggesting that morphine sensitive and morphine 

insensitive transmitter systems may be a feature of C afferent fibres (Woolf & 

Wall, 1986b ). 

A different approach to this question of opiate effects on primary 

afferent terminals has demonstrated quite elegantly, that the actions of 

morphine are post-synaptic (Harris & Ryall, 1988). Since inhibitory responses 

of dorsal horn neurones must derive from primary afferent fibres as do. the 

excitatory responses, a decrease in the release of transmitter by a presynaptic 

action of morphine should reduce inhibitory responses as well as excitatory 

responses. These workers showed a selective reduction by microelectrophoretic 

or systemic (0.5 - 6 mg/kg) morphine of only the excitatory and not the 

inhibitory responses evoked by a nociceptive stimulus, indicating that morphine 

acts after the first central synapse. 

A small number of neurones which project from the substantia 

gelatinosa to deeper laminae (III - IV) neurones have been described (Light & 

Kavookjian, 1988), which lends anatomical support to these findings. These 

authors also suggested that the selective effects of morphine in the substantia 

gelatinosa and not the deeper laminae (Duggan et al 1977a) may arise from a 

selective distribution of post-synaptic opiate receptors on the somata of these 

neurones. 

Studies of enkephalin distribution in the superficial dorsal horn (Hunt et 

al.1980; Glazer & Basbaum, 1983) have not supported the hypothesis of a 
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presynaptic control, by enk:ephaHns, of transmitter release from the central 

terminals of nociceptors (Jessell & Iversen, 1977). It has been mentioned 

previously (pp. 70-71) that axoaxonic synpases are rare, if not absent, in the 

substantia gelatinosa, which does not support a presynaptic inhibition by opiates 

of the release of transmitter. It is possible that peptides could spread diffusely 

from sites of release (Iversen, 1986) and thus not require axoaxonic synapses to 

exert a presynaptic control of the terminals of nociceptors. In the vertebrate 

nervous system, however, such a proposal is still conjectural. In all, the present 

results support the contention that the analgesic effects of morphine 

administration systemically or directly to the spinal cord surface do not occur by 

a reduction in the release of SP or CGRP. 

Morphine Dependence and Withdrawal 

Introduction 

Although the previous chapter has shown no effect of acute morphine on 

the release of sensory neuropeptides, the chronic administration of morphine 

may involve separate pharmacological mechanisms. For example, while the 

level of irSP in the rat dorsal horn was not affected by acute morphine 

administration, there were significantly elevated levels fallowing chronic 

morphine, and the striatum and medulla showed larger increases in irSP 

(Bergstrom et al 1984 ). The chronic administration of morphine has also been 

shown to enhance irSP immunostaining in rat dorsal horn (Vacca et al.1980), 

and this was interpreted as an accumulation over time of SP in the terminals of 

SP-containing C fibres. In a neonatal spinal cord slice preparation exposed to 

morphine superfusion for 1 b, naloxone enhanced the ventral root 

depolarization induced by capsaicin (presumably due to an increased efflux of 

irSP), but produced no increased responsiveness to SP superfusion (Bell & 

Jaffe, 1986). Since a putative SP antagonist also partially blocked the ventral 

root depolarization produced by capsaicin, it was concluded that the morphine 
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withdrawal response in the spinal cord is mediated at a presynaptic site (Bell & 

Jaffe, 1986). Behavioural experiments in morphine-dependent mice have 

associated a naloxone-induced jumping behaviour with enhanced SP release 

(Ueda et al 1987). The behaviour is blocked by a SP antagonist and naloxone 

was found to enhance radioactive calcium entry into spinal synaptosomes 

prepared from morphine-dependent mice, suggesting increased transmitter 

release would result (Ueda et al 1987). 

In morphine-dependent cats, the microelectrophoretic administration of 

naloxone into the substantia gelatinosa produces a greatly enhanced response of 

dorsal horn interneurones to impulses in nociceptive afferent fibres (Johnson & 

Duggan, 1981; Johnson & Duggan, 1984). It has been proposed that the 

increase in excitability of spinal neurones during morphine withdrawal is due to 

an increased efflux of SP from primary afferent fibres and/ or a post-synaptic 

receptor supersensitivity to normal rates of transmitter release (Bergstrom et 

al.1984 ). 

The objectives of these studies,then, were to examine the non-noxious 

and noxious evoked release of irSP and irCGRP during morphine dependence 

and during the opiate withdrawal reaction precipitated by naloxone. 

Results 

Release of irSP during morphine withdrawal 

It is evident from Fig. 44 that neither non-noxious (A) nor noxious ( C) 

stimulation of the ipsilateral afferent fibres by cutaneous or electrical modes 

evoked a significantly greater irSP release following morphine withdrawal 

brought on by naloxone (Fig. 44 B,D ). 

While this is the major comparison sought after, minor observations are that the 

basal release of SP by non-noxious stimulation appears to be larger than 

previously observed, and that the surface release of irSP is not as prominent in 

these series of experiments. 
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Fig. 44. Naloxone-precipitated morphine withdrawal is not associated with an 
increased efflux of irSP in the cat substantia gelatinosa. 

A,B. Non-noxious heating (35°C water) or no stimulation for 10 or 20 min 
ipsilateral to the placement of microprobes. 

A. Pre-naloxone controls (N = 45). 
B. Post-naloxone (N = 46). 

C,D. Noxious heating (5o0 c water) or electrical stimulation of the tibial nerve at 
C fibre threshold (200 - 300 x T) was applied for 1 O or 20 min ipsilateral to the 
placement of microprobes. 

C. Pre-naloxone controls (N = 49). 
D. Post-naloxone (N = 46). 
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Release of irCGRP during morphine withdrawal 

Fig. 45 shows the mean scans for groups of CGRPir microprobes 

inserted for 10 min during non-noxious (35 °C water or tibial nerve stimulation 

at 1.5 x T) or noxious (52 °C water or tibial nerve stimulation at 200-300 x T) 

procedures. A stimulus-dependent release of irCGRP is evident in both 

morphine treated and morphine withdrawn situations (Fig. 45 A vs. C and Fig. 

45 B vs. D ). However, no statistically significant difference was seen in either 

'basal' (A vs. B) or evoked (C vs. D) release of irCGRP in the substantia 

gelatinosa of cats in naloxone-precipitated withdrawal. The visual inspection of 

these figures does give the impression of a broader base to the zone of release. 

However, the zones of release on the scans in B,D are identical when 

superimposed without the baseline. 

Fig. 46 A shows that the nociceptive response of a dorsal horn 

intemeurone in the spinal cord of the morphine-dependent cat was insensitive 

to an analgesic dose (1 mg/kg i.v.) of morphine but hypersensitive to the same 

nociceptive stimulus during the withdrawal reaction. It is probably not correct 

to assume that the animal was also tolerant, since this implies that the same 

endpoint of gated C fibre depression would have been obtained with higher 

morphine doses, and this was not tested here. However, the presence of 

withdrawal hyperexcitability in the spinal cord in these experiments do verify 

that the animals treated with this dose regime were dependent on morphine. 

Fig. 46 B is an example of the results obtained with antibody microprobes 

prepared to detect immunoreactivity of two sensory neuropeptides, SP (A,B) 

and CGRP (C,D), both showing similar zones of release in the substantia 

gelatinosa, before and after a naloxone-precipitated withdrawal in the 

morphine dependent cat. 
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Fig. 45. Naloxone-precipitated morphine withdrawal is not associated with an 
increased efflux of irCGRP in the cat substantia gelatinosa. 

A,B. Non-noxious heating (35°c water) or electrical stimulation of the tibial 
nerve at A fibre threshold (1.5 x T) was applied for 10 min ipsilateral to the 
placement of microprobes. 

A. Pre-naloxone controls (N = 29). 
B. Post-naloxone (N = 32). 

C,D. Noxious heating (s2°c water) or electrical stimulation of the tibial nerve at 
C fibre threshold (200 - 300 x T) was applied for 10 min ipsilateral to the 
placement of microprobes. 

C. Pre-naloxone controls (N = 33). 
D. Post-naloxone (N = 36). 



Fig. 46. Naloxone-precipitated morphine withdrawal is not associated with an 
increased efflux of sensory neuropeptides in the cat substantia gelatinosa. 
The analgesic action of morphine does not result from a presynaptic inhibition of 
release of sensory neuropeptides. 

A. Gated C-fibre response of a dorsal horn interneurone (depth 1.62 mm) 
excited by electrical stimulation of the tibial nerve at 50 V, 0.5 ms pulse width, 
repeated at 0.3 Hz in a cat chronically treated with morphine for 3 d. 

Morphine i. v. 1 mg/kg 
Naloxone i.v. 0.5 mg/kg 

B. Photogr·aphic enlargements of autoradiographic microprobe images 
showing zones of neuropeptide release arranged on a line drawing of a 
transverse section of the lumbar spinal cord. 

A,B: lrSP, Probe stimuli were 5o0 c water for 15 min. 
A. Pre-naloxone. 
B. Post-naloxone. 

C,D: lrCGRP, Probe stimuli were 52°c water for 10 min. 
C. Pre-naloxone. 
D. Post-naloxone. 
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Discussion 

Many of the arguments that were put forth in the previous chapter on 

effects of acute morphine are also applicable to the discussion of the present 

findings with chronic morphine treatment. The possibility that an exaggerated 

efflux of neuropeptide immediately fallowing withdrawal was an ephemeral 

event which passed before sampling with antibody microprobes was started is 

not likely. The naloxone-induced hyperexcitable response of spinal neurones to 

cutaneous noxious heat during morphine withdrawal is similar at 10 min and at 

4 h follo\ving an acute morphine dose and declines only after 6 h (Johnson & 

Duggan, 1984 ). In the present study, blood pressure increases were commonly 

observed after the administration of first and second doses of naloxone, which 

remained elevated for the remainder of the experiment. It is not likely that the 

technique was not sensitive enough to detect differences in peptide release 

since noxiously-evoked release was clearly discernible from release fallowing 

non-noxious stimuli. 

There is evidence that the actions of opiates are mediated at 

penultimate neurones in the polysynaptic pathway (Harris & Ryall, 1988) and 

the present results have shown that the stimulus-dependent release of sensory 

neuropeptides remains unaltered with acute morphine and morphine 

withdrawal. This implicates the alternative explanation for these findings, i.e., 

that the post-synaptic neurones may develop supersensitivity to excitatory 

sensory neurotransmitters during chronic morphine treatment, thereby 

achieving homeostasis. It is this pharmacological 'disuse' supersensitivity which 

is subsequently unmasked by the induction of withdrawal by naloxone. 

Increases in post-synaptic SP binding sites in rat dorsal horn has been reported 

following the pharmacological deafferentation of small diameter fibres with 

capsaicin or ricin (Helke et al.1986). Furthermore, in the cat dorsal horn, 

lumbosacral dorsal rhizotomy produces increases in SP binding (Massari et 

al.1985). In the rat having a unilateral dorsal root section 2 - 3 weeks 
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previously, the electrophoretic application of the SP homologue, eledoisin 

related peptide, produced greater excitation from dorsal horn neurones on the 

deafferented side than on the intact side (Wright & Roberts, 1978), suggesting a 

denervation supersensitivity of tachykinin receptors. Whether or not the 

chronic treatment with morphine induces an exaggerated responsiveness to 

electrophoretic SP remains to be determined. 

Effects of Baclofen on Release of Substance P 

Introduction 

Baclofen, (p-chlorophenyl GABA) (Pierau et al 1975) is used clinically as 

an antispastic agent (Knutsson et al 1974) but has also been reported to be 

analgesic following intrathecal administration in humans. In experimental 

animals i.v., i.p., or i.t. (-)-baclofen has been shown to reduce nociceptive 

sensation in several tests of analgesia (Wilson & Yaksh, 1978; Panerai et 

al 1985; Vaught et al 1985; Sawynok & Dickson, 1985). 

A presynaptic action of baclofen at primary afferent terminals which 

inhibits release of excitatory transmitter in the absence of terminal 

depolarization, appears to underlie the reduction of primary afferent excitatory 

transmission in the spinal cord (Pierau & Zimmermann, 1973; Curtis et al 1981; 

· Dickenson et al.1985). In the cat, the systemic administration of ( ± )-baclofen 

reduces mono- and polysynaptic EPSP's in motoneurones but produces neither 

hyperpolarisation nor changes in resting membrane conductance (Pierau & 

Zimmermann, 1973). However, all synapses would be exposed to baclofen 

following systemic administration and the relative sensitivity of polysynaptic vs. 

monosynaptic pathways is not possible to assess. The microelectrophoretic 

administration of (-)-baclofen in the cat spinal cord has demonstrated that 

monosynaptic excitation of spinal neurones by impulses in primary afferent 

fibres is more sensitive than descending excitatory or polysynaptic pathways 

(Curtis et al.1981). Most of these studies have examined large diameter fibres 
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but baclofen is also effective in reducing the excitation of dorsal horn neurones 

by impulses in high ( 120T) threshold primary afferent fibres of the tibial nerve 

(Curtis et al 1981). In rats, both intrathecal and intravenous baclofen (1 - 3 

mg/kg) reduced C fibre -evoked responses in dorsal horn neurones in a 

stereospecific and bicuculline-insensitive manner. In decerebrate cats, (±)

baclofen (1 mg/kg) blocked the asynchronous late response in spinal 

intemeurones activated by high intensity transcutaneous electrical stimulation 

of C fibres (Piercey & Hollister, 1979). Surprisingly, the A fibre component was 

little affected, leading the authors to conclude that baclofen exerted its· effects 

mainly on spinal interneurones when administered systemically. 

While others have suggested that supraspinal sites may be involved in 

the ant~ociceptive action of low doses of baclofen (Sawynok, 1983; .Sawynok & 

Dickson, 1985), quite potent effects are seen in spinal preparations in vivo and 

in spinal slices in vitro suggesting a direct spinal action. In the isolated spinal 

cord of immature rats, a contralateral slow ventral root potential produced by a 

10 V stimulus to the dorsal root was reduced by 0.01 to 0.1 µM (±)-baclofen 

applied to the bath (Akagi & Yanagisawa, 1987). The monosynaptic reflex was 

inhibited at a dose of baclofen 10 - fold greater (1.0 µM) than that required to 

reduce the slow reflex. Muscimol and diazepam also inhibited the reflex and all 

three drugs were not antagonized by bicuculline. Furthermore, the slow ventral 

root potential was mimicked by SP which showed a similar pharmacological 

profile of sensitivity to muscimol, diazepam and bicuculline (Akagi & 

Y anagisawa, 1987), suggesting that SP is the transmitter released by C fibres to 

produce these post-synaptic effects. 

This hypothesis would be supported by observing a reduction in the 

release of SP coupled with a decrease in the C fibre response. Few reports have 

examined the effects of baclofen on neuropeptide release from the CNS in vivo, 

therefore the purpose of this study was to examine the possible presynaptic 

action of systemic baclofen on the release of irSP in the substantia gelatinosa. 
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Results 

The total number of probes for these experiments was 123, of which 67 

comprised the group for comparison of A + C fibre stimulation of the tibial 

nerve for 15 min before and after baclofen administration, and 56 comprised 

the group of noxious cutaneous stimulation inclusive of 50 °C heat and noxious 

mechanical stimulation ror 20 min both pre- and post-baclofen. 

As shown in previous chapters, stimulation of the tibial nerve at an 

intensity sufficient to excite C fibres produced a release of irSP in the substantia 

gelatinosa of the spinal cord (Fig. 47 A). It is apparent from Fig. 47 B that there 

was no effect of systemic administration of 4 mg/kg ( ± )-baclofen on the height 

or shape of the zone of release of SP. The zone at the cord surface was present 

on the mean scan of the post-baclofen group, likely due to the fact that these 

probes were inserted in the second half of the experiment. A similar result was 

found with irSP release evoked by noxious mechanical and thermal stimuli to 

the ipsilateral hindpaw (Fig. 47 C,D ). No significant reduction in SP release 

was seen at the level of the substantia gelatinosa, even with the highest dose of 

10 mg/kg of (±)-baclofen administered i.v. 

To confirm that the doses employed were effective in reducing 

polysynaptic excitation of dorsal horn interneurones by high threshold tibial 

afferent fibres, single unit recording was carried out on single neurones by 

means of a 4 M NaCl-filled microelectrode (10 - 20 Mohms), with techni·ques 

described in the Methods section. Systemic ( ± )-baclofen decreased the gated C 

fibre response to high intensity stimulation of the tibial nerve, an effect which 

was rapid in onset ( < 1 min) and continued to a stable minimum value by 7 min 

(Fig. 48). Recovery was not demonstrated here due to the slow time course of 

return of responsiveness ( Curtis et al.1981 ). The histograms of Fig. 49 show the 

latency record of excitatory responses to high intensity tibial nerve stimulation, 

both pre- and post-baclofen at the times indicated in Fig. 48. The short and 
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Fig. 47. Lack of effect of (±)-baclofen on the release of substance P in the 
substantia gelatinosa. 

A,B Release of irSP evoked by electrical stimulation of the tibial nerve at an 
intensity sufficient to excite C fibres before (A) and after (B) the intravenous 
administration of 4 mg/kg (±)-baclofen. The mean scan in A and B was 
calculated from 34 and 33 individual microprobes, respectively. 

C,D Noxious mechanical stimulation and noxious heating of the hind limb were 
used to evoke irSP release. The mean scan lines are of 29 and 27 microprobes 
inserted before (C), and after (D) the administration of 10 mg/kg (±)-baclofen, 
respectively. 
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Fig. 48. The gated C fibre response of a dorsal horn neurone to tibial nerve 
stimulation is inhibited by intravenous administration of 4 mg/kg (±)-baclofen. 
H1, H2 are the times when the histograms in Fig. 49 were recorded. 
Ordinate: Number of action potentials occuring inside a 400 ms interval set to 
include the asynchronous (polysynaptic) response of a dorsal horn 
interneurone. 
Abscissa: Time, min. 
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Fig. 49. Histograms of the latency of excitation of a dorsal horn interneurone by 
impulses in A and C afferents of the tibial nerve. The stimulus intensity was 200 -
300 times the threshold for the most excitable fibres, with a 0.5 ms pulse width. 

A: Control histogram recorded pre-baclofen, at time indicated by H1 in Fig. 48. 

B: Same cell recorded 6 min after 4 mg/kg (±)-baclofen, i.v., at time indicated by 
H2 in Fig. 48. 

Ordinate: Number of action potentials in consecutive 0.5 ms bins (16 sweeeps) 
at 0.1 Hz. Abscissa: Time, ms. 
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long latency responses were decreased with apparently equal proportions. In 

the histogram taken at the· time of maximal effect of baclof en where there were 

J. some short latency fibres still active but few asynchronous late responses (not 

' shown). 

I Thus, in summary there was a lack of reduction of irSP release in the 
I 

substantia gelatinosa with systemic doses of (±)-baclofen which were effective in 

reducing A and C fibre evoked mono- and polysynaptic excitation of spinal 

I interneurones. 

Discussion 
ii 

The lack of any reduction in irSP release in the substantia gelatinosa 
I 

following baclofen administration is an important finding questioning either the 

role of SP as a neurotransmitter of primary afferent C fibres or the ability of 
ll 
i 

baclof en to reduce the release of SP from these fibres. This result is in 

:1 
agreement with an in vitro study of the isolated rat spinal cord slice, where 250 

l µM (-)-baclofen or 500 µM (±)-baclofen failed to reduce SP release evoked by 
II 

( calcium-dependent) potassium stimulation (Sawynok et al.1982). 

Scenario 1 - Baclofen inhibits release of a nociceptive transmitter unrelated to 

!I' substance P 

It is possible that the sub-population of SP-containing neurones are not 

sensitive to the effects of baclofen. As reported in the section on SP 

localisation, SP is present in some, but not all ( about 20%) small diameter 

DRG neurones. It is not likely that the technique used in this study was not 

sensitive enough to detect a reduction in SP release since the majority ( about 

70%) of SP in the substantia gelatinosa derives from primary afferent fibres. 
I 

r Even if these neurones are sensitive to baclofen, the reduction in nociceptive i 

I responsiveness may be due to another putative transmitters colocalized in the 
' ( 

same neurone. For example, ir-glutamate has been found in small clear vesicles I 

I 
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Fig. 50. Diagram of the neuronal pathways in the dorsal horn. Open trangles 
represent excitatory synapses and solid triangles represent inhibitory synapses. 
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in the same nerve terminals and a selective inhibition of the release of 

glutamate (but not SP) may be produced by baclofen. Although such a 

mechanism has not been demonstrated, it has been suggested that a selective 

distribution of phosphoproteins on the outside of synaptic vesicles may regulate 

the release of particular vesicular populations (Steiner et al 1986; Walaas et 

al 1986). This interpretation attributes an important role for glutamate in 

nociceptive transmission. While some workers have reported a blockade of 

nociceptive responses in the rat spinal cord with the non-selective amino acid 

antagonist, gamma-glutamylglycine (Schouenborg & Sjolund, 19.86), other work 

has demonstrated that only one-third of dorsal horn neurones are excited by 

glutamate and more than one-half of the fast EPSP's generated by primary 

afferent fibres involve substances other than glutamate (Schneider & Perl, 

1988). It seems, then, that the role of glutamate in nociceptive responses of 

spinal neurones to high intensity nerve stimulation is even less well established 

than that of SP. 

Scenario 2 - Baclofen does not block the release of transmitter substances from 

C fibres. 

The relative sensitivity of first order synapses of C fibres to 

microelectrophoretic baclofen cannot be determined due to the difficulty in 

identifying these monosynaptic excitations in the asynchronous input following a 

high intensity nerve stimulation. In the absence of this information, indirect 

evidence for presynaptic mechanisms of C fibres must be considered. 

The apparent lack of axoaxonic synaptic arrangements involving C fibres 

has been discussed previously and does not support the notion of presynaptic 

inhibition of C fibres. A recent ultrastructural study has confirmed these 

findings for irSP profiles in the rat substantia gelatinosa (Ribeiro-Da-Silva et 

al 1989). Terminals of irSP primary afferent fibres in lanrina I are simple, and 

in ventral lamina II are more complex, having a glomerular structure with many 
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peripheral profiles. In agreement with studies discussed previously, vesicle

containing profiles are rarely presynaptic to irSP profiles. In contrast, the non

SPir profiles in the substantia gelatinosa are more complex and are surrounded 

by profiles which may be GABAergic axoaxonic synapses. This is agreement 

with earlier non-quantitative studies of irGAD profiles surrounding HRP 

labeled afferent fibres of undefined type (Barber et al 1978b ). 

Furthermore, neither segmental inhibition from activity in low threshold 

afferents nor blockade of descending inhibition was found to inhibit 

presynaptically SP release under the conditions of the present experiments. In 

a similar experimental preparation, baclofen does not inhibit the release of 

transmitter from excitatory intemeurones nor from descending fibres in the 

dorsolateral funiculus (Curtis et al.1981). Physiological, pharmacological and 

anatomical evidence is consistent with the suggestion that the release of the C 

fibre transmitter is not affected by baclofen. 

In contrast, there is evidence that baclofen mediates post-synaptic 

inhibition of deep neurones of the immature rat spinal cord (Allerton et 

al.1989). At a concentration effective in reducing polysynaptic EPSP's, baclofen 

produced hyperpolarizing responses associated with an increased postsynaptic 

membrane conductance of potassium, but the decrease in membrane potential 

was quite small. After a systemic dose of baclofen, a small postsynaptic effect 

on large numbers of synapses throughout the spinal cord may outweigh the 

effect on one type of first order synapse. 

Indirect pharmacological evidence also appears contrary to a presynaptic 

action of baclofen on SP-containing C fibres. The selective action of capsaicin 

on C fibres but not A fibres of the vagus nerve may be due to specific calcium 

channels located on these fibres (Marsh et al.1987). Since the inhibitory action 

of baclofen on rat DRG neurones in primary culture is also thought to be 

mediated through calcium channels (Dolphin & Scott, 1987; Green & Cottrell, 

1988), it may be that the action of baclofen is selective for only A afferent 
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fibres. This study gave no evidence for the types of cells examined and only the 

large cells in culture may have been selected simply due to ease of electrode 

penetration. 

In summary, then, there is no evidence to support the notion that 

baclofen is capable of presynatically inhibiting release of transmitter from C 

fibres, and the observation of a lack of effect on SP release of systmeic baclofen 

cannot be used to rule out a role of SP in transmission of nociceptive 

information in the spinal cord. 

7. CONCLUDING REMARKS 

The criteria for the establishment of a neurotransmitter candidate in the 

peripheral nervous sytem have been successfully applied to the central nervous 

system in the past, and this success has also largely depended upon 

technological advances and an interdisciplinary approach to the question at 

hand. The antibody microprobe technique is capable of assessing the dynamic 

status of a particular peptidergic pathway in the central nervous system, and for 

this reason will continue to be a useful tool for neuropeptide research. 

The fact that many neuropeptides are released in the substantia 

gelatinosa with the same stimulus, and that the same stimulus is capable of 

releasing many neuropeptides is an interesting facet of the neuropeptide 

concept. How does this relate to the conceptual development of theories of 

sensory physiology? The specificity theory of von Frey proposed almost a 

century ago, that the quality of each sensation arises from a few specialized 

nerve fibres responding to a specific sensory stimulus. In the 1950's Sinclair 

proposed the pattern theory which stated that it was the pattern of activity in 

many nerve fibres which results in the vast array of sensory submodalities. The 

modified pattern theory of Melzack & Wall (1962) was a consolidation of these 

theories with special consideration given to electrophysiological evidence of 

stimulus specificity of certain fibre types. The results of this thesis have shown a 
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specificity of somatostatin-containing neurones to thermal and not mechanical 

stimuli, but SP and CGRP are released with both forms of stimulation. Perhaps 

this is a hint that the specificity of neurones responding to specific stimuli may 

actually lie in the pattern of their chemical content. If this is borne out then 

perhaps von Frey was quite correct but only inaccurate in proposing that 

wherein lies the specificity is morphology and not the chemical code. 

One should be aware that afferent input to the spinal cord activates 

many different systems and not all are immediately involved in sensory 

discrimination. Therefore, it would be incorrect to conclude that a particular 

neuropeptide is involved in the capacity of nociceptive transmission merely 

because its release is associated with nociceptive stimuli - the problem of cause 

and effect. Many peptides may fall in the category of 'necessary, but not 

sufficient' for a nociceptive response. Although this argument has been put 

forth for SP in nociceptive afferents (Wall & Fitzgerald, 1982), it may be even 

more applicable to CGRP which seems to exhibit very modest membrane 

effects on dorsal horn neurones. Kruger (1987, 1988) has discussed many 

interesting possibilities for the raison d'etre of CGRP in fine sensory neurons 

including functions relating to efferent and afferent properties and events 

related to recovery and repair. It is an interesting possibility that individual 

peptides may have multifunctional roles in the spinal cord. 

The data showing a lack of segmental and descending control of irSP 

release provide a consistent argument that the sensory signal conveyed by this 

neuropeptide is not 'edited out' by physiological control mechanisms on the 

first-order cells. This may reflect the potential importance of this information 

to the second-order cells, and phylogenetically conserved neural mechanisms 

which signal situations threatening existence of the organism. 

The failure of morphine and baclofen to inhibit the release of some of 

these neuropeptides is also consistent with the above-mentioned data and 

emphasizes the robust nature of peptidergic communication. It also 
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underscores the importance of knowing the site of action of pharmacological 

agents, for if these drugs do act in part by a presynaptic mode then another 

canonical transmitter may be mediating the observed analgesic effects. These 

data may then provide evidence for a selective control of release of the contents 

of peptidergic and non-peptidergic vesicles within single neurons. If this 

mechanism is not operative, these data implicate post-synaptic sites of action of 

these drugs. 

Far from the synapse being a simple relay, there is the potential for a 

wealth of information to be encoded in the chemical composition of peptidergic 

primary afferent neurones. Or, if I may borrow a saying of Prof. Duggan's, ''If 

we had all the answers, we wouldn't be here'~ 
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