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Abstract

This thesis investigates novel passive and active devices, with emphasis on their
practicality arising from the enhanced control of device dimensions available in pla-
nar integrated optics technology, as well as from tapering techniques applicable to
fused-biconic couplers and tapered erbium-doped fibre amplifiers (EDFAs). It be-
gins with a brief outline of the main numerical techniques used. Theoretical models
are then proposed to explain the origin of back-reflexions from fused-biconic couplers
and some models are also experimentally tested. To date, optical fibre connectors
and splices have been the main source of reflexions but their design and fabrication
have now reached such sophistication that the fused-biconic coupler has become
the main source. Although small, reflexions can destabilise network source lasers,
thus the theories proposed in this thesis may well be applicable to the improvement
of network noise performance through low-reflexion couplers. The study of fused-
biconic couplers also includes an investigation of tapering control with the aim of

shortening existing devices.

The advantages of the dimension control afforded by tapering to erbium doped
fibre amplifiers are explored by formulating an analytical description of these devices
and deriving integral equations for taper designs optimising saturation power, EDFA
length and output signal-to-noise ratio for a given gain. These equations are solved
numerically and the resulting EDFA taper designs are appraised and compared with

conventional devices.

An extensive study of planar linear coupler design then forms a major part of the
thesis. The main problem addressed is that, whereas many useful optical devices
make use of nonplanar arrangements of optical fibres, wholly planar emulations of
these devices must be devised if they are to be incorporated into integrated optics
systems. The main result is the derivation of a fully general, systematic design
procedure for a planar design to realise an N x N linear coupler with any given
transfer matrix. The procedure is used to derive full designs of planar mimics for
the symmetric 3 x 3 and 5 x 5 fibre couplers. The proof of the universality of the
design procedure is also illustrated in the 2 X 2 coupler case, where the design steps

can be visualised as rigid rotations of the Poincaré Sphere.

This work is very general, with a wide range of potential applications. The spe-
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cific 3 x 3 and 5 x 5 coupler examples have application in optical signal processing,
integrated optic interferometric sensors and coherent communications. The devices
produced by the general procedure are concatenations of basic building-block cou-
plers interspaced by controlling optical delay-lines and it may be possible to control
their transfer matrices dynamically if the delays are electro-optically adjusted, thus
achieving such devices as (i) an adjustable N x N cross-point switch able to dis-
tribute any group of incoming signals to any group of outputs or (ii) adjustable
couplers for adaptive signal processing.

The planar device designs also illustrate the importance, to resilience against
temperature and source-frequency drifts, of differential behaviour, i.e. where the
transfer functions depend only on the difference between two optical pathlengths
rather than the absolute length of each path. The thesis presents a full characteri-
sation of the most general possible linear optical system with this dependence and
shows it to be a generalised Mach-Zehnder or Michelson interferometer. The use of
optical feedback, such as in a resonating ring, is therefore shown to be inappropriate
if differential behaviour is a system requirement.

The thesis concludes with a study of the adiabatic forked splitter, a device which
enables a multimoded waveguide’s eigenfields to be channelled into separate single-
moded guides with minimal interference between them. Hence, the splitter contrasts
to the other planar devices studied in this thesis as the latter depend on interfer-
ence between modes for their behaviour. The splitter concept is generalised up to
four modal channels, with systematic design procedures studied in detail and the
important design issues underlined. Numerical simulations show the device’s ba-
sic working to be very tolerant to fabrication errors in device dimensions thereby
facilitating practical implementation.

An immediate application is to Mode-Multiplexed Communication Systems,
where different signals, even at the same wavelength, are allocated to the differ-
ent modes of a few-moded fibre trunk. Hop-lengths of several kilometres may be
possible and the scheme may well be appropriate for local area networks (LANs)
and other short-haul links where extreme bandwidth is required. Another potential
aﬁplication is in Scanning Confocal Microscopy, where the use of different modes of

a few-moded receiving fibre can be used to enhance the resolution of the image.
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Chapter 1

Introduction

1.1 Rationale

With optical fibre computer networking becoming commonplace and optical fibre
telecommunications foreseen as a leading workhorse for the already beclichéed “In-
formation Superhighway” of the future, the importance of optical waveguide device
technology to modern society is now incontestable. Yet, it is also undeniable that
the lowly optical fibre is the only optical waveguide device to have influenced main-
stream technology significantly, and the optical components within a fibre network
remain on the whole primitive and profoundly simple. The development of devices
more sophisticated than the fibre, connector, two-waveguide coupler or driving laser
has only barely begun. The reason for the dearth of more sophisticated optical
building blocks is straightforward: fabrication technology has hitherto been almost
bereft of any means of accurately controlling internal device dimensions since Fused
Biconic Technology has been the dominant waveguide device fabrication method.

However, Planar Integrated Optics Technology now offers low-loss waveguides
with tight, accurate device dimension control and its basic fabrication techniques
are now well understood and commercially workable. Already one thesis[Ladouceur,
1992] written within the Australian National University’s Optical Sciences Centre
has been devoted to this understanding. However, the exploration of new devices
made possible by heightened dimension control has only just begun in earnest and
so a modest contribution to its headway is a major goal of the present thesis.

A further goal is to explore the possible, although scant, enhancement of opti-

1



2 CHAPTER 1. INTRODUCTION

cal devices by the older technique of tapering. The basic, but poorly understood
and hitherto almost unheeded, problem of back-reflexion arising from all optical

waveguide devices is also explained and quantified.

1.2 General Aims

We emphasise from the outset that the aim of this thesis is to moot and appraise
design techniques applicable to general classes of devices. We shall not aim to study
new fundamental physics, nor to explore the exact analytical solution of specific
problems. For each class of problem studied in this thesis, we seek to either (i) give
the reader a sound intuition for the system at hand, so that, as a designer, he or she
may appreciate the general qualitative influence of the available design parameters
on the system’s behaviour without becoming too befuddled by analytical detail; or
(it) reduce the design of a general class of devices to a systematic procedure, thus
leaving the designer free to consider other, more important problems such as the use
of the device in question as a component in a larger optical system.

Therefore, for example, in Chapter-4 we seek to underline the design trade-off
between the size and wavelength performance of commercial fused biconic couplers;
in Chapter-5, we seek to give an intuitive visualisation of an erbium doped fibre
amplifier’s behaviour through consideration of its state-space trajectory. Likewise,
the formidable mathematical detail of the theory of matrix Lie groups in Chapters-6,
7 and 8 is directed to one end; namely, the reduction of the design of a planar linear
coupler to implement any unitary transfer matrix to a wholly mechanical procedure
and to prove that this procedure will work in all cases. Thereafter, the complicated
theory need be considered no further.

An important aspect of a design procedure is that it should be robust, i.e. that
it can accommodate reasonable manufacturing errors and nonrepeatability. For ex-
ample, the planar coupler design procedure of §8.3 removes the design effort from
the tightly coupled regions of the system, where readily applicable theory will be in-
valid. Instead, the design effort is shifted onto the choice of readily analysed, readily
tuned uncoupled optical delay lines, which can be tuned after device manufacture

to compensate for inaccuracies and/or nonrepeatability in the coupler’s fabrication.
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The success of this procedure does not depend on the accurate manufacture of the

coupler’s parts, only on their satisfaction of a broad, readily fulfilled criterion that

is unaffected by reasonable device variations.

1.3 Thesis Outline

The thesis begins with an extremely brief outline in Chapter-2 of the main numerical
techniques used in the work to be described.

In Chapter-3, we address an important problem in practical couplers - that of
reflected power, which can adversely affect the source laser’s operation. With optical
network size increasing, reflexion countermeasures formerly applicable to smaller
networks are no longer appropriate and therefore the source of these reflexions will
be studied with the view to formulating means of quelling them. Theoretical models
for reflexions will be proposed and, in some cases, experimentally tested.

We close our study of fused-biconic couplers in Chapter-4 by exploring the in-
ternal device dimension control needed for device shortening without undue excess
loss increase and underline an interesting design trade-off: that device shortening
is bought at the price of an increased sensitivity to wavelength. Excess loss in the
optimally short device will be shown to increase rapidly to intolerable levels as the
wavelength deviates even slightly from its intended value whereas many commercial
couplers are quite usable over a much broader bandwidth.

Before progressing to the study of planar integrated devices, we appraise the ben-
efits of tapering to the Erbium Doped Fibre Amplifier (EDFA) for the optimisation
of signal-to-noise ratio, gain, saturation power and length in Chapter-5.

In Chapter-6, we begin our study of planar linear coupler design and examine
the specific example of a planar version for the Symmetric 3 x 3 Fibre Coupler, a
device useful in interferometric sensors and as a demodulator in coherent communi-
cation schemes. The fibre device is inherently nonplanar, so we overcome the planar
constraint by designing two separate wholly planar mimics, which are numerically
analysed to asses their likely performance.

In Chapter-7, we further examine the implications of the planar constraint, given

that many useful fibre devices are inherently nonplanar. The main mathematical
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technique used is the Theory of Matrix Lie Groups and I have striven to make its
presentation most applicable to coupled waveguide design. It is then shown that
any planar linear coupler can realise the transfer matrix of any nonlinear coupler
so that dimension control can, in principle, be used to completely overcome the
planar constraint. There are some practical limitations to this result, however, as
illustrated by examples. We then make headway towards a practical general planar
coupler design procedure based on the concatenation of generalised Mach-Zehnder
interferometers by presenting a visualisation of the design of a general 2 x 2 coupler
in terms of Poincaré sphere rotations. The procedure is then generalised to N x N

couplers and its universal applicability proven.

In Chapter-8, we use the Mach-Zehnder design procedure to derive a wholly
planar implementation of the symmetric 5 x 5 fibre coupler and yet another planar
realisation of the symmetric 3x3 coupler. The 5x5 coupler design is appraised by the
Beam Propagation Method and its sensitivity to manufacturing errors is examined.
The second half of Chapter-8 examines more intuitively appealing planar designs,
which derive their behaviour directly from geometric symmetry, for the symmetric

3 x 3 and 5 x 5 fibre couplers.

These symmetric designs are less likely to be practical than the Mach-Zehnder
devices because their behaviour depends on absolute optical delays, whereas that
of the Mach-Zehnder devices depends only on the difference between optical delays.
This differential behaviour affords an optical system superior resilience to environ-
mental temperature variations and to source laser frequency jitter, as shown by
direct example in Chapters-8 and 9. Chapter-9 then derives a description of the
most general possible linear differential interferometer and shows that if planar de-
vices are to behave differentially, their dependence must be a very restricted function

of optical length differences.

All the planar devices documented in Chapters-6, 7 and 8 derive their behaviour
from interferometric effects, i.e. the beating between optical modes. Chapter-10 is
instead devoted to the design of a very different device, the adiabatic forked split-
ter, which seeks to separate a waveguide’s eigenfields physically so that they cannot
interfere, thus bestowing an extreme wavelength independence on the device. We

generalise this concept to several modal channels, study systematic design proce-
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dures in detail, underline the important design issues as well as indicating some
possible future applications of the device in telecommunications, sensing and scan-
ning confocal microscopy.

With the exception of our investigation of coupler back reflexions, the investi-
gation has been wholly theoretical. I believe that the designs have been developed
as far as would be wise to do so in the absence of experimental measurements from
working optical prototypes, i.e. to the stage where construction of a prototype for
concept proof ought to be possible. Further design development before experimental
appraisal would be folly, since it would be wasted were the prototype to fail such
appraisal. I have sought in this thesis to foresee practical prototyping problems as
far as possible. Planar dimension control techniques are now developed enough to
test at least the simpler designs of this thesis experimentally, and I expect that this
undertaking will be part of the next stage of the planar waveguide development

effort at the Australian National University’s Plasma Research Laboratory.

1.4 Future of Optical Waveguide Devices

We briefly examine possible future developments in optical technology. Much has
been made of the possibility of all-optical computers using nonlinear optical switches
to replace electronic ones in an exact, gate-for-gate planar integrated optics anal-
ogy of the electronic digital computer. This is unlikely to come to be, since the
present state-of-the-art digital optical devices require forbiddingly high switching
energy and power consumption[Saleh and Teich, 1991, §21.5]. Such limitations are
merely technological, but optical devices are also several orders of magnitude larger
than their electronic counterparts, and this is a fundamental limit. For example,
the radius of curvature of bent waveguides connecting devices must be at least hun-
dreds of wavelengths to achieve reasonably low loss[Ladouceur, 1992] and this fact
constrains an all-optical computer, built as a gate-for-gate analogy of an electronic
digital computer, to be an unacceptable size. This fact is illustrated by the design
of the planar couplers discussed in remainder of this thesis.

It is more likely that optical technology will undertake tasks making use of the

wave nature of light, such as the phased array electro-optic switches discussed in
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[Heaton et al., 1992] and the interferometric systems to be studied in Chapters-6,
7 and 8. There are more plausible digital optical computing alternatives than the
gate-for-gate analogy and these are being actively researched. They use holographic
interconnexions (i.e. make direct use of the light’s wave nature and its diffraction
properties) between massively parallel nonlinear switching arrays, thus offsetting
some of the size and power consumption drawbacks of all-optical switches. Such
systems are likely to be used for near-real-time digital image processing and artificial
intelligence applications such as optical neural networks [Saleh and Teich, 1991,
§21.5].

It is possible that optics will never compete with electronics for telecommu-
nications network switching. Some researchers have even concluded[Smith, 1993;
Cochrane and Heatly, 1992] that, “The intensive and economic processing of signals
at the finer granularity of today’s services is and probably always will be the domain
of electronics”. Instead, the prodigious bandwidth of optical systems may be used
to return to more circuit-switched rather than packet-switched networks, thus sim-
plifying the networking management. There may well be a need to exploit such a
bandwidth-for-switching-complexity swap in the near future, since, with the conver-
gence of telecommunications and computing, the growth of the system complexity
seriously threatens telecommunication network reliability owing to the fundamental
inability to produce error-free software.

The future of optical technology therefore seems to me impossible to foretell;
what does seem certain, though, is that however it may unfold, its future will be
an exciting one, which, hopefully, the work of this thesis will make some lowly

contribution to.



Chapter 2

Review of Numerical Techniques

High speed and ease of reconfiguration are the foremost requirements of numerical
techniques for design problems, where a system may have to be analysed many
times with different design parameter choices. We shall most certainly shun time-
consuming methods wherever possible, even if this means some loss of accuracy.
Our two numerical draughthorses will be the Beam Propagation Method (BPM)
and the Fourier Decomposition Method (FDM). The former is used in this thesis to
calculate the propagation of an electromagnetic field through a waveguide system,
the latter, an accurate and reasonably fast way of calculating the eigenfields of
a waveguide. The FDM can also be used as an extremely accurate method for
analysing propagation, but is far too wasteful of time for design. We shall now give
an outline of the methods to find out what they can and, perhaps more importantly,

cannot do.

2.1 Beam Propagation Method (BPM)

The BPM is only applicable to weakly guiding media. It is extremely important
to note that it makes a paraxial approximation and, as such, cannot be used to
analyse waveguides directed at a steep angle to the longitudinal (z) direction or
whose fields contain significant plane wave components, as found by the discrete
Fourier transform below, directed at steep angles relative to the waveguide. The
author has found that maximum workable values for such angles are typically about

0.02 radian for reasonable simulation accuracy.

7
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The BPM rests wholly on the proof[Feit and Fleck, 1978][Marcuse, 1991, §§8.2 -
8.4] that, for a small axial stepsize §z, such a medium can be thought of as slivers of

homogeneous media with refractive index n. and thickness 6z interspaced by lenses

(Fig-2.1).

|
oz oz
6z/cos(0)
0
Homogeneous Homogeneous U
Medium Medium
1 | |
Lens Corrector Lens Corrector Lens Corrector

Figure 2.1: Equivalent physical model for the BPM

The light output at position (z,y) on a lens corrector depends only on the light
input at (z,y, z), hence, the lens’s action is local and there are no diffraction effects

within the lens. If ¢(z,y) is the field input to the lens, the output is:

b(z, ) exp (z k62 (1 - M)) (2.1)

Nel

where k£ is the wavenumber 27ny /X and n(z,y) the refractive index as a func-
tion of cross-sectional position (z,y). The lenses model the effect that, owing to
the medium’s inhomogeneity, the wavefront’s phase leads or lags that of an axially
travelling plane wave in the homogeneous medium according to whether to local
refractive index is greater or less than n.

The homogeneous medium propagation accounts for diffraction and many meth-
ods can be used to model it. This thesis uses a Fourier transform method, which
begins with the observation that a mode in the homogeneous medium is a plane
wave of wavenumber k travelling in any direction. A Fourier transform is used to
write the input wavefront ¥ (z,y, z) as a superposition of such waves, that is, fields

with an z,y, z dependence of:
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poexp (i (koo + kyy + (/b2 — k2 — k22)) (2.2)

Each plane wave is propagated a distance 6z according to (2.2) and the su-
perposition is then inverse Fourier transformed to reassemble the diffracted field
¥(z,y,2z + 6z). Diffraction can now be readily and intuitively thought of as arising
from the different delays of the constituent plane waves owing to their slightly dif-
ferent propagation directions and therefore different required propagation times to
advance the step §z. Any wave with k2 + k2 > k? undergoes an attenuation with z
owing to a negative real part in the z-exponent. Such waves are evanescent and do
not transport power; rather, they represent motionless stores of energy that gather
around sudden changes in the waveguide’s cross section. Evanescent wave energy is
in many ways like the reactive energy oscillating within an inductor or capacitor.

In a computer analysis, the medium and field must necessarily be discretised
and the continuous Fourier transform must be approximated by the discrete Fourier
transform. Since the latter is a spatially-periodic function, we are actually modelling
an infinite two dimensional array of parallel waveguides and the rectangular region
analysed is a period cell. If the periodic array is to model the single waveguide
accurately, the field ¢(z,y,2) must be vanishingly small at the analysis region’s
boundaries, so that the cells do not interact. To fulfill this requirement, most Fourier
transform BPMs use a loss region near the edge of the simulation region to quell
any power radiated from the waveguide before it reaches the neighbouring cells.

The periodic array problems are not intrinsic to the BPM, but rather to the
discrete Fourier transform implementation thereof. There are other, finite difference
implementations; however, the Fast Fourier transform (FFT) implementation can
be used for increased speed and is probably the fastest method given the computer
hardware used for the studies of this thesis!.

The BPM must be used with extreme care when the waveguides in question have
dimensions only slightly larger than the light wavelength or where the medium’s

transverse spatial variation is rapid relative to the wavelength. It is easy to see

!Thinking Machines Corporation CM2 and 32-node CM5 supercomputers. These massively
parallel machines can be configured to execute the FFT algorithm[Oppenheim and Schafer, 1975]

extremely efficiently.
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that a reckless or insouciant application of the BPM to such cases can lead to
results differing markedly from those found by direct solution of the scalar wave
equation. Since the latter’s fundamental eigenfield is of comparable width to the
waveguide, the Fourier transform of the wavefront has significant components with
k. values greater than 27ny/), i.e. there is significant evanescent power in the
BPM simulation. The BPM attenuates these components, leaving only waves with
low k; values, i.e. corresponding to a field with significant transverse variation over
a length scale equal to the wavelength or greater and which differs markedly from
the scalar wave equation’s predictions. The failure of the BPM to accommodate
waveguides making a steep angle with the z-direction arises from the same reason,
i.e. the presence of planar wave components with high k, values. Since high-A
waveguides can also lead to waves significantly skewed, nonparaxial waves[Snyder
and Love, 1983, Ch-32], the BPM is untrustworthy in such cases also. By checking
the evanescent energy present, the BPM can monitor its own validity[Thylen, 1983]

Iﬁ closing, it must be noted that, as for any numerical procedure, the “loss”
predicted by the BPM for bent waveguides increases dramatically with increasing
axial stepsize, because the medium model is a series of translationally invariant lay-
ers with abrupt transitions between them. Each time the field encounters such a
transition, it finds itself suddenly offset from the waveguide by an amount propor-
tional to the stepsize, thus exciting radiation modes. The physical radiation loss
from a bend can be thought of in the same way for an infinitesimal stepsize, but
the numerical procedure overestimates this loss progressively more seriously with
increasing stepsize, as can be understood by considering the extreme case where the
stepsize is so long as to model the whole bend by an abrupt transition between the

input and output waveguides.

2.2 Fourier Decomposition Method (FDM)

The Fourier Decomposition Method[Henry and Shani, 1991][Marcuse, 1991, §8.5] is
probably the most efficient method for calculating scalar wave equation eigenfields.
It can also be used for extremely accurate propagation analysis, but is too slow in

this application for design. Rectangular modelling domains of dimensions L, X L,
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are used and all electromagnetic fields are expressed as a linear superposition of the

orthonormal basis set members:

{1/’,“; = \/—[i—Lysin (p;;x) sin (%}’-)} (2.3)

u=0,r=0

where p and v are integers. The 1, are periodic in z and y so that, like the BPM’s
FFT implementation, the technique assumes a doubly periodic infinite waveguide
array, whose unit cells can only model the behaviour of an isolated waveguide ac-
curately if the field is known to be vanishingly small at the unit cell boundaries.
Given the condition that the field should vanish at these boundaries, the orthonor-
mal functions in (2.3) are a complete set.

Next, the scalar wave equation for an eigenfield 3 with propagation constant 3

is considered:

(V2 + Kn’(z,)) ¥ = £ (24)

and the action of the operator (V? + k?n%(z,y)) on the left hand side is expressed
as a matrix H with respect to the basis (2.3). Of course, for practical numerical
problems, (2.3) is reduced to a finite number of terms (g = 1..Nz, v = 1..N,). A
field is then represented by a two dimensional array? [@,,] of superposition weights;
for convenience this can be reversibly mapped onto a one-dimensional vector [¢,)] of
weights by the index mapping ¥ = w modN, +1, p = w divN;+1. Then, the matrix
expressing the action of the operator in (2.4) is found by calculating the vector of
weights describing the image of ¥, = %,, under the action of the operator; this

vector, i.e. the w™ matrix column, is given by the inner products:

b4

= 0 (P )8 = [

=0

Yo (V2 + k*n?(z, y)) Podzdy (2.5)
This process is essentially very simple and precisely analogous to finding the matrix
for, say, a rotation with respect to an orthonormal basis of unit vectors. Here, the

matrix element at position (j, k) is the dot product between the j** unit vector and

the image of the rotated k™ unit vector. Thus, (2.4) becomes H[§] = B*[¢] and

%it i.e. the field is written Eﬁ'r;l SN Suntun-
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the finding of its eigenfields is reduced to the finding of the eigenvectors of H. Two

conditions facilitate this procedure:

e The matrix H is symmetric (or Hermitian, for lossy waveguide materials),
thus Householder reduction to tridiagonal form is applicable[Press et al., 1990,

§11.2] and the resulting tridiagonal matrix is then readily diagonalised;

e If the waveguide’s cross-section comprises rectangular or elliptical[Hewlett,
1994] homogeneous regions, there are simple analytic expressions for the com-
ponents of H. Hence, irregularly shaped waveguide regions are approximated

by a collection of rectangles[Ladouceur, 1992, §§3.3,5.2].

For accurate propagation analysis, the above procedure must calculate all waveg-
uide’s eigenfields at every axial step, express the field as a superposition of these
eigenfields and then analyse its propagation through the current axial step by ap-
plying the correct phase delays to the eigenfields. This procedure is far too slow for
design however. To calculate the eigenfields with N, = N, = 32 takes about two
hours on a DECStation 5000/260 with 64 Mbyte RAM and this calculation time
varies as the cube of N; and N,,.

[Hewlett and Ladouceur, 1994] has recently greatly broadened the FDM’s appli-
cability to include infinite simulation domains and thus conceived elegant, fast and

systematic procedures for deriving exact cutoff wavelengths for arbitrary waveguides.

2.3 Conclusions

In this short Chapter we have stated the requirements of our numerical techniques,
namely qualitative correctness of their results with an emphasis on speed rather
than extreme accuracy, so that the techniques may be convenient for optical sys-
tem design. The two main numerical techniques, namely the Beam Propagation
and Fourier Decomposition Methods, were summarised and their limitations were
appraised. Other minor techniques to be used throughouf this thesis will be intro-

duced in the relevant Chapters.



Chapter 3

Back-Reflexion from Fused

Biconic Couplers

Before progressing to the study of planar integrated devices, we study an important
problem in practical fused biconic couplers - that of reflected power, which can
adversely affect the source laser’s operation. In the past, this problem went mainly
unheeded since reflexions from connectors were typically much greater than those
from couplers (-50dB to -70dB), whereas now connectors are so highly developed that
couplers are becoming the main source of reflexions from networks. Moreover, fibre
networks have been small and stand-alone, so that it was workable to use Faraday-
effect optical isolators to shield the source lasers from reflexions. However, this
isolator is expensive, difficult to align and very much a laboré,tory instrument. Its
initial cost, difficulty of installation and subsequent maintenance make it unwieldy
for use in larger networks with many source lasers.

The basic reflexion mechanism is the coupling between the coupler’s forward-
and backward-propagating bound modes that arises from any longitudinal varia-
tion of the cross sectional refractive index profile. Amongst the effects causing such
variation are those considered in this Chapter, namely, tapering, surface roughness
on the cladding-air interface, fibre bends and twists and, finally, stress arising from
bending and packaging. Our basic investigative tool will be the coupled local mode
equations[Snyder and Love, 1983, §§31-13, 31-14, 31-15] solved to find the coupling
between the forward- and backward-propagating fundamental modes arising in re-

sponse to these effects. Note that even Fresnel reflexions from abrupt waveguide

13
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changes can be analysed with this approach, if they are thought of as reflexions
arising from continuous, but extremely rapid, axial waveguide evolution. The order
of magnitude of the reflected power arising from each effect will be estimated and
compared. Experimental results are also presented that would seem to eliminate
at least some of these effects as the likely source of reflexions and the theoretical
analysis shows the stress optic effect to be overwhelmingly the strongest, and most

likely, reflexion source.

3.1 Coupled Local Mode Equations

In a 2 x 2 coupler, there are two bound modes and we must take account of coupling
from a forward-propagating bound mode to both (i) the same and (%) the other
backward-propagating mode. We meet both these tasks by approximating a (well-
drawn) coupler by a circular multimode fibre; the even and odd bound modes then
correspond to the HE;; and HE,; modes of the circular waveguide and the cou-
pling co-efficients’ C_g 49, C-1,40 and C_q 41 between the modes of the appropriate
propagation direction are calculated.

Reflexions are always extremely small; the worst-case situation is a Fresnel re-
flexion from the normal incidence of a fibre’s field onto a fibre-air interface and even
in this case, the Fresnel equation[Born and Wolf, 1980, §1.5.2] show that only about
4% of the incident power is reflected. We shall see that, in most cases, reflexions are
far smaller than this and we shall hereafter assume that almost all of the system’s
power stays in the incident single bound mode.

With the fundamental HF;; mode incident and given these assumptions, the

coupled local mode equations become[Snyder and Love, 1983, §28-2]:

Liol®) _io(2)brofz) ~ 0
db:li(Z)‘ +B;(2)b-j(2) = —C_j10(2)byo(2) (3.1)
db;(z)

P 1Bi(2)b;(2) = Cj10(2)byo(2); j#0

lHere the index 0 in C4j +& denotes the HE;; mode and 1 the HE;; mode. + indicates the

forward (incident) direction and — the backward (reflected).
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where b;(z) is the complex amplitude of the j** forward-propagating mode of the
axial distance z along the waveguide, b_; is that of the j* backward propagating
mode, the Cy; ;0(2) are the local modal coupling co-efficients[Snyder and Love, 1983,
§31-14] and B;(z) the local modal propagation constants.

Let the taper begin at 2 = 0 and be of length L, i.e., for z > L the fibre is
translationally invariant and so b_j(L) = 0. For these boundary values, (3.1) is

readily solved to yield:

bra(z) = exp (i [ fofu)du)
5 . (3.2)
0-5(0) = [ Coso(z)exp (i [ (i(u) + fow))du) d=
assuming byo(0) = 1. If the odd HE,; supermode of a coupler is the incident field,
+0 is replaced by +1 in (3.1) and (3.2). For a single mode fibre with unit power
input, [b_o(0)|? gives the total back-reflected power observable at the source laser,
since power reflected into higher-order backward-propagating modes is quickly lost
through absorption into the jacket surrounding the cladding. For a coupler, the
reflected power reaching the source is |b_o(0) + b_1(0)|* and depends on the relative

phase between the bound modes.

In a lossless medium, the'coupling co-efficients must obey the basic symmetries:

Ciki = —Clijqns Cokmj = —CL 4, Cojur = Ol (3.3)

which are equivalent to the Energy Conservation Law?.

2The coupled mode equations can be written in matrix form:

d (b [ Cra+iB| Cy- b+
dz \ b- Cop | C—iB ) \ b-

where B is the diagonal matrix of propagation constants, Cy 4, C- 4, C4 - and C_ _ are the

matrices of coupling co-efficients. The power borne by the forward-travelling waves is b¥tb*
and that by the backward-travelling wave b~Tb~, hence, the net time-rate of energy transfer
in the 42z direction across a cross-section is P = btfbt — b~tb~. For a conservative system
dP/dz = 0, whence, through the above matrix equation, the symmetries (3.3) follow, analogously
to the discussion in Chapter-6. The symmetries can also be derived directly from the expressions
of [Snyder and Love, 1983, §§31-14, 31-15 ] and from the expressions to be derived in the following

sections without appeal to energy conservation.
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Note that the coupling co-efficients from pure tapers, as derived in [Snyder and
Love, 1983, §31-14] are all real, whereas those arising from bends and twists are in

general complex, as shown in §3.2.4.

3.2 Coupling Co-efficient Dependence on Pertur-

bations

3.2.1 Tapering of the Core

If the reasoning of [Snyder and Love, 1983, §§31-14, 31-15] is applied to the coupling
between backward- and forward-propagating modes, the expressions for the coupling
co-efficients can be shown to be correct if the relationships in [Snyder and Love, 1983,
Eq-(11-7)] between the components of the two contrapropagating fields are applied.

The result is:

Lo, e 0@ . _Oh
C_j,+k(z) = _Z A Z. (h_,(z) X eakiz) + €; X E{c‘) dA (34)

where the surface integral is to be applied over the infinite cross-section Ao, for the

value of z in question. (3.4) can be simplified to:

Y on? .
-17 +0ﬁk [ a"z &;(z) x &,dA (3.5)
7 oo

where n., is the core refractive index. It is useful to define:

Yo= \/: 2o = \ﬁ (3.6)
Ho €o

where Yy and Z; are the freespace wave admittance and impedance respectively.

Cojar(z) =

In the weakly-guided case where & and h are almost transverse, |&|* =

(2/7c0) Z0%h? and (3.5) becomes:

1 on?
4n? Ja., 0z

C_jti(2) & pirdA (3.7)

using f3; =~ fr = kne, = kng.

Assuming a step-index profile for convenience, 9n%/9z = 0 everywhere on the

fibre cross-section but for the core-cladding boundary, where it is infinite. In this
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case, (3.7) can be evaluated as in [Snyder and Love, 1983, §28-4] to give:

Co40 & TAP*(p(2))(2)p(2) (3.8)
where:

. U)W
P (p(2)) = 7 p? (Jf(U)Kg(W) + Jg(U)K%(W))

is the normalised intensity evaluated at core-cladding boundary, p(z) the core radius

(3.9)

and Q(z) =~ dp/dz the core taper angle. U, V and W are the usual waveguide and
modal parameters[Snyder and Love, 1983]. For® Q = 1073, A = 0.5%, V = 2.0,
p = 5um, C_g 40 is of the order of 0.3m™'. If plotted over the length of a typical
coupler taper, C_q o varies between 0 and 0.3m™" and the spatial frequency of its

variation is, for all practical purposes, bandlimited below 10®m™!, or more typically

10%2m™.

3.2.2 Tapering of the Cladding-Air Interface

When a fibre is prepared for tapering or fusion into a coupler, its jacket is stripped
away before the heating/drawing process to avoid glass contamination. This process
leaves an extremely strongly guiding air-cladding interface.

(3.8) can be used directly to calculate the contribution to C_g ¢ arising from the
cladding-air interface. However, two alternative approaches give simplified expres-
sions for the coupling co-efficients. Reflexion from the interface is only important
when the fibre has been tapered enough that the core-cladding interface loses its
guiding strength (V < 1) and the fundamental mode therefore spreads out enough
to interact with the air interface, which then provides all of the fibre’s guiding power.
The fibre now behaves as a multimoded step-index fibre with a pure silica core and
a cladding of air.

The cladding V-parameter (hereafter denoted V) of such a fibre is extremely
large (= 70 for a cladding radius of 15um when A = 1.5um), so a simplification
to (3.8) can be derived by taking the limit as V' — oo. In this case, for the LPo;

3i.e. Approximate core taper angle in a 125um diameter fibre tapered down to 25um over a

longitudinal distance of 5mm.
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mode, W — V and U — Uj, the j* zero of Jo(U). For a pure taper with the fibre
everywhere circularly symmetric, L P, modes can only couple into other L P, modes.

Hence:

QU,U, %
~ '2;;31:—%’;; Coo & 0'0337 (3.10)

For* Q = 1072, p = 15pum and A = 1.5um, C_p 40 = 0.22m™1.

Cojk

An alternative derivation of (3.10) is as follows. The air-cladding interface is so
strongly guiding (V = 70) that the lower order modes do not penetrate significantly
into the air and thus the electric field component tangential to the interface can
be considered to vanish, i.e. the interface behaves as though it were a perfectly
conducting metal. Now, the calculation of the coupling co-efficients in [Snyder and
Love, 1983, §31-14] depends crucially on the orthogonality relationships between
the local modal fields, which in turn rest wholly on the Reciprocity Law. In a
metal-clad system, the Lorentz vectors[Snyder and Love, 1983, §831-1, 31-2] F¢, =
e; x hi +e}; xh;and F;; = e; x hy — e, x h; are tangential to the metal boundary,
since e; and ey are normal to it. Hence, the line integrals Equation 31-4 of [Snyder

and Love, 1983] vanish:

]{a , Fiuiid = y{, | F5uhdl =0 (3.11)
where 0A, is the metal boundary in the waveguide’s cross-section and thus both the

conjugated and unconjugated Reciprocity Laws become:

0 . ) . )
52-]30 F,.Adl = ﬁoV-Fj,de; aﬁo]}‘.,k.ndl - }gov.pj’de (3.12)

where A, is the open interior of the metal boundary in the waveguide’s cross-section,
i.e. the integrals ezclude the boundary. Thus, the orthogonality relationships and
therefore the coupling co-efficient expressions in §3.2.4 and [Snyder and Love, 1983,
§31-14] all hold when the relevant surface integrals all carried out over the open
interior of the metal boundary.

The exact vector expressions for the fields of a homogeneous circular dielectric

waveguide of radius p bounded by a perfect conductor are applied. The local modal

“The approximate cladding angle for the taper of §3.2.1.
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fields are either TE or TM and there is no coupling (i) between TE and TM fields
nor (i) between fields of different azimuthal index. The boundary conditions and
expressions for TM fields are simpler and so will be used in the following. The

electric field’s z-component at radius r from the fibre’s centre is of the form:

r

€23 = 60.]0 (UJ;) (313)

where U; is the j* zero of Jy(z). The other field components are found by [Sny-
der and Love, 1983, Eq-(30-9)]; upon substitution into (3.4), with A, replaced by
the open interior A, of the metal boundary, the coupling co-efficients between the

forward- and backward-propagating, circularly symmetric TM eigenfields are® found

to be:

(B [ [ 00 ()
e Br J1(U;)J1(Uk)

(3.14)

Cois = L= :
20°B 2 (lc:zn:‘;,p2 - Uf)

For k*nZp? >> UJ-2, as is the case for the lowest order modes, 3; ~ knq so that

(3.14) gives exactly the same results as (3.10).

3.2.3 Reflexion from Surface Roughness

The effect of surface roughness on the cladding-air interface can be readily calculated

from (3.10) by considering the roughness, as a function of angular position ¢, to be

SFor knep = Uj, i.e. f; =0, the C_; i become infinite and this has an interesting physical
interpretation. A true metal clad waveguide can cut off all its modes, including the fundamental.
Imagine that a metal clad waveguide supporting several bound modes is input into a taper bringing
it down to a radius pg where kn.py < Uy and thereafter the waveguide radius is constant at py, i.e.
in the output waveguide, all the modes are evanescent and no real power can be transported. If the
metal walls are perfectly conducting, there is no mechanism for loss and therefore all power incident
from the input waveguide must be reflected back into the input waveguide. As the taper radius
approaches the point where the j'* mode is cutoff, the co-efficients C_; x become infinite in such a
way that if the coupled mode equations are integrated, all the power in the j*» mode is reflected into
backward-propagating non-evanescent modes, this reflexion process becoming complete precisely

at the point in the taper where knqp = Uj.
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represented as a Fourier series:

p(8) = po+ 3 (pare™ + pse™) (3.15)
k=1

For small roughness, C_g¢ is a linear function of perturbations to p, and the pij
terms in (3.16) couple the H Fy; mode to the HE_(i41),; modes. Thus, the average
p, t.e. po, contributes to C_qo and py; contributes to C_19 and C_py. All the
other terms couple the fibre’s power to unbound modes and so do not contribute
to reflexions. We calculate only the po reflexion term, since an order-of-magnitude

calculation for the py; terms will be comparable.

If po varies sinusoidally with z with spatial frequency f and amplitude a, then

(3.10) gives a peak coupling co-efficient of:

0.2fa\?

PE

C_oo =~ (3.16)
These values are usually small: for f = 10°m™!, @ = 10nm and p = 30pm, the peak
C_0,01s 0.17m™!. However, we shall see that the back reflexion is strongly dependent
on the spectrum and extremely large reflexions are possible if there is significant
spectral content at around twice the fundamental mode’s propagation number, i.e.
corresponding to a Bragg resonance between the forward- and backward-propagating

fundamental modes.

The surface roughness’s spectral characteristics are difficult to model theoreti-
cally and best done experimentally. However, (3.16) and (3.10) yield a good indicator
of the presence of either surface roughness- or taper-induced reflexions that allows
a strong experimental test: since the reflected power is proportional to |C_go|?, the
back reflexion is proportional to the inverse sizth power of the waveguide radius.
Hence, back reflexions will arise almost wholly from the narrowest parts of the taper
waist and will be extremely sensitive to the degree of tapering if the back reflexions
arise from the taper. We shall show experimentally in §3.5 that the back reflexions
do not seem to be correlated to the degree of tapering, hence, almost certainly, the

taper is not the main source of back reflexions from fused biconic couplers.
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3.2.4 Coupled Mode Equations for Bends and Twists

The waveguides within fused biconic couplers suffer microbending and stress through
three main mechanisms: (i) To hold the two fibres in close contact throughout the
fusing process, they are often entwined and clamped at either end (Figs-3.4, 3.5
§3.5). The number of twists is conserved and the fusion-induced stress relief renders
the coupling region unable to support any twist, which is therefore gathered up as
two tight knots at either end of the waist (Fig-3.1), with a typical helical pitch of
0.5mm to lmm. (%) The coupler must be packaged in a steel or plastic sheath and
is anchored at both ends within this housing by epoxy glue, which may bend and
stress the waveguides as it cures. (771) The core and cladding regions have different
co-efficients of thermal expansion, thus high residual stress is set up as the fibres

solidify after fusion.

The purpose of §§3.2.4 and 3.2.5 is to estimate the reflexion power arising from

microbends and stress.

s

Figure 3.1: Migration of twists towards coupler ends and forced rota-

”;e

tion of the electromagnetic field

The derivation of the coupled mode equations for bends and twists is an in-
volved procedure and will be outlined in Appendix-3.7. However, in principle it
is straightforward, being essentially a reproduction of the methods of [Snyder and
Love, 1983, §31-14] in the orthogonal pipe co-ordinate system[Landau and Lifschitz,
1970; Kath and Kriegsmann, 1988]. As well as the tapering term in (3.4), the fol-

lowing terms, which arise from waveguide twisting and bending, contribute to the

coupling co-efficients:
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40 = iBK /A ré- (8o x Byy — &1 x hey) dA-

(3.17)
K- [ ax (eeshjs + hist;r) dA
where K is the bend’s curvature vector, as defined in Appendix-3.7, with magnitude
equal to 1/R, where R is the radius of curvature. A twist in the waveguide is
accounted for by the term in (3.4) provided that the fields are referred to axes
attached to the vectors @i and ¥ defining the pipe co-ordinates.
Within the weak-guidance approximation, the first term in (3.17) vanishes, since
h = )2 x &. This expression can also be used to simplify the second term:
Nl

Cojk = T K- ]Aw (yoézké_Lj + ZoilszLj) dA (3.18)

Now, C_g,40 can readily be shown to vanish for a fibre, by substituting the ex-
pressions for the HF,; field into (3.18). We assume, as in §3.1, a circular coupler
cross-section, so that the H E), fibre mode corresponds to the coupler’s even mode,
the HFE,; mode to the odd mode.

By using [Snyder and Love, 1983, Table-14-1] and considering the coupler to be
drawn down enough that the core-cladding interface yields negligible guidance (c.f.
§3.2.2) it can be shown that there is a reflexion from the even mode ¢o the odd mode

and the coupling co-efficient is:

1V2A U1,1 JZ(Ul,l)
V. U2, —U§;\ Jo(Ury)

where Uj is the k™ largest root of J;(U) = 0, i.e. Upy =~ 2.405, Ups =~ 3.832.

Corvo= K% (3.19)

Here % is the HE;; (even) mode’s transverse electric field direction and A = 0.28
is the relative index difference of the cladding-air interface as does the waveguide

parameter® V & 70, i.e. the bending component of the reflexion is defined by:

0.32«2

C_140 & ~ 4.6 x 1073k (3.20)

In the weak guidance approximation, there is no reflexion from the forward-

propagating odd mode into the backward-propagating even mode. For typical bends

6Representative of the values in the waist region of commercial couplers.
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within the coupler with a submillimetre length scale, # &~ 10*m~!. This yields
|C-1.40] = 46m~}, or two orders of magnitude greater than the values arising from
pure tapering.

We now calculate the twisting terms for the coupler. Owing to the strong form
birefringence of the cladding-air interface, the local modal fields of the composite
coupler cross-section must rotate with the twist. If the spatial angular speed of
rotation is £, then, in (3.4), 8&x/8z = Q2 x &, Ohy/0z = Q2 x h;, and the twisting

terms, for the weak guidance approximation, are zero.

3.2.5 Coupling from the Stress Optic Effect

The analysis of §3.2.4 assumed that any fibre bending did not affect the refrac-
tive index profile of the fibres, whereas the tension and compression of the fibre’s
cross-section owing to bending gives rise to a well-known, stress-induced refractive
index profile change. The strain (¢) and stress (o) profiles arising from bending

are[Timoshenko, 1957; Timoshenko and Goodier, 1970; Timoshenko, 1973]:

e=~Ky; o=EFEkry= % (3.21)

where E is the fibre’s Young’s modulus. The distance y is measured in the direction
of the radius of curvature (i.e. in the direction of K) outwards from the centre of
curvature (for tensile stess deemed positive and compressive negative) and y = 0
defines the neutral axis orthogonal to the radius of curvature (or K) and through the
fibre’s centre. The stress induces a refractive index change of én = Co, where[Nagano
et al., 1978] C ~ 4 x 10~*mm?kgwt ™ ~ 4 x 10~*mm?kN~" and, for fused silica, F
is between 50 and 80kNmm™2, so that én ~ 0.26y/R.

The stress-induced refractive index profile clearly has odd symmetry about the
neutral axis, hence C_gp = 0. However, as in §3.2.4, there will be coupling between
the HE;; and HE,; modes, i.e. between the even and odd bound modes of the
coupler. As in §3.2.4, we assume that the coupler’s waist cross section in roughly

circular, whence the substitution of (3.21) into (3.7) and [Snyder and Love, 1983,
Table-14-1] yield:
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1
0.27p dR/;, uJo(Uo1u)J1 (Us 1u)du
\/inclR2$ le(UO,l)JO(Ul,l)Jz(ULl)

If we assume a sinusoidal fibre bend of period L and amplitude a, then the peak

P dR
R? dz

Coo1=C_1p0~ ~ 0.0

(3.22)

coupling co-efficient is:

873pa  150pa
C—-O,l = C—l,O = 0.06 I ~ IE (323)

For L = 0.5mm, ¢ = 100gm and p = 30um, the peak coupling co-efficient is

3600m ™!, or two orders of magnitude above the coupling arising from pure bending.

3.3 Coupled Mode Equations Solution

If the coupling co-efficients C_g 49, C—o1 or C_10 vary at a predominant spatial

frequency of f and with a peak value of Cp,oz, then (3.2) yields a back-reflected

16(kng — 7 f)? ’

power of:
2 a2 _ 2
(L) n CmeeSih Clbna —xH)L) - (P(L)) ~ T Crnas (3.24)

kng — 7 f)?

where the waveguide length is L and the propagation constants of all bound modes
are taken to be approximately kn,. The powers as calculated by (3.24) for the
various mechanisms above are calculated for kng = 6 x 10°m™! in Table-3.1.

The surface roughness examples illustrate the dramatic increase in reflected
power as the spatial frequency of the roughness approaches that corresponding to
the Bragg condition, i.e. f = 2ny4/X. All the examples illustrate how vanishingly
small most reflexions are: the reflexion can be thought of as comprising elements
of light scattered from random positions on the waveguide (Fig-3.2); usually the
relative phase between these components is random and they suffer destructive in-
terference. However, if the components arise from points interspaced by half the
light’s wavelength, A\/(2n.), in the waveguide, then the scattered components are
in-phase and reinforce one another. Such a situation is the Bragg condition and, by

the above examples, all reflexions are vanishingly small unless:

o The coupling co-efficient is large, as is the case for the stress-optic effect; or
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Effect Cmax | Spatial Frequency, f | Pres

m™! m™! dB

tapering 0.3 0 -158
bending 40 10* -116
surface roughness | 0.02 10° -181
surface roughness | 0.2 10° -155
surface roughness | 0.38 1.9 x 108 -110
surface roughness | 0.3820 1.90986 x 10° -27
stress optic effect | 4000 10* -75
stress optic effect | 10000 10* -68

Table 3.1: Back Reflected Powers for Various Mechanisms

o Reflexions arise from an abrupt change in refractive index at an interface

(Fresnel reflexions) or from an area less than a few wavelengths long; or

e The Bragg condition is fulfilled, as it will be for reflexions from surface rough-

ness when the roughness spatial spectrum contains significant energy around

f - chz/)\.

The stochastic nature of roughness or microbends can be accounted for as follows.

The power reflected from a fibre section of length L is:

L L
P= /_1 C_,+(u)e2’k"°‘“du /_1 C:'_'_(v)e“z‘k"“”dv =
2 2
(3.25)
:oF o,
/ ; / ' ermiknale= O (w)C  (v)dudv
)

By taking the expectation £() of (3.25) and if C_ ;(z) is governed by a stationary
random process, then £(C_ 4 (u)C* | (v)) = R(u—v), where R is the autocorrelation
function for the process governing C_ ;. If the correlation length, L., is much less

than L, i.e. R(z) << R(0) for |z| > L, and L, << L, then (3.25) yields:

PxL / - ek R (wYdw = LF (2’;“) (3.26)
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exp(ifAz)
= gMP2IBAD) ;6 A

Figure 3.2: Distributed back reflexions: top illustrating reflexion from
scatterer array; middle beam-forming from equivalent
phased antenna array; bottom radiation pattern from mu-

tually incoherent radiators

where F(f) denotes the spatial Fourier transform of R(z) evaluated at spatial fre-

quency f. If the autocorrelation function has the form™:

R(z) = CZ,, exp —%l (3.27)

c

then the reflected power is:

_ 2LLCY,,
1+ (2kngL.)?

For L, = 100um, L = 500pum and Cpar = 10°m~!, P ~ —52dB. This value of L.

(3.28)

“Corresponding to F(f) having the Lorentzian shape 2L,C2,, /(1 + 472 f2L?).
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would seem plausible and the resulting P is commensurate with the magnitude of

the reflexions observed from commercial fused-biconic couplers. Hence:

The calculations of this Chapter show that the most likely cause of the reflexions
observed from fused biconic couplers is reflexions from stress optic effect induced

refractive indezx profile changes arising from fibre microbending.

3.4 Source Coherence Considerations

Given that destructive interference generally quells most back reflexions from cou-
plers, it would seem natural to ask whether a partially coherent source gives rise
to larger reflexions. If the source has a long coherence length (Fig-3.2), the scat-
terers act as a phased antenna array which forms a beam directed in the forward-
propagation direction. If, however, the scatterers are mutually incoherent, the array
will have no beam-forming properties and the scattered field will be more isotropic.

The effect of finite source coherence length can be calculated in one of two,
equivalent ways. The first simply notes that any of the expressions calculated above
for back-reflexions depends on source frequency and pertains to perfectly coherent
sources; if the back-reflected power (as in (3.26)) at light frequency v is B(v), the

total backward-reflected power is:

Pos = / G(v)B(v)dv (3.29)
where G(v) is the source’s power spectral density. Clearly, the effect is to aver-
age the reflexion B(v) over the source’s bandwidth, thus it can be seen that, even
with a reasonably wide source bandwidth, the back reflected power will not change
dramatically from its perfectly coherent value.

The second method for calculating the back reflexion makes direct use of the

ideas in Fig-3.2 by summing up all the back reflected components, whence the total

back reflexion is:

pP= /_ ; /_ __L_ bro(2u)bso(20)C 4 (u)C— 4 (v)dudv (3.30)
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Figure 3.3: (a) Reflected power for Lorentzian and Gaussian source
lineshapes and (b) dB reflexion increase relative to reflex-
ion for perfectly coherent source as function of coherence

length for Lorentzian lineshape

The expectation over the ensemble of all possible source light signals and therefore
possible values of b.o(u) followed by a separate expectation over the ensemble of all

possible C_ 4, shows that, for a fibre of length L:

Puj=1 /_ Z T (2"0‘”> R(w)du (3.31)

Cc

where I'(7) is the source laser’s time autocorrelation function and R(u) is as in
(3.27). The powers as calculated by (3.31) and (3.29) can be shown to be the same
using (3.26) together with the signal-theoretic Wiener-Khinchin theorem?.

3This theorem[Oppenheim and Schafer, 1975] asserts that G(v) and I'(r) are Fourier transform

pairs for light sources whose first and second order statistics are the same whether calculated by
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If we assume a unit power source with Lorentzian lineshape, a coherence length

l. and correlation time 7, (7.¢/ng = I.) and if R is as in (3.27), then:

F(%) — eikndz exp (__lz_l) : F(T) — 6ikcr exp (__ C|T| ) :

C lc ncllc
2l.nqc _
Glv) = ¢ + 2n?(2nv — kc)¥’ (3.32)
2 2
B(v) ~ 2LL.C;,, 202 L L(l. + 2L,)

~ ) Pre =
1+ (ymccwzm)z T 7 (.4 2L.)? + 4k2n2 L2102

The last expression in (3.32) reduces to that in (3.28) for I, — oo, as expected and is
plotted as a function of source coherence length, L., in Fig-3.3(a) for L. = 100pm,
L = 500um, Cpez = 10*m™! at A = 1.5um and ¢ = 2.998 x 108 is the freespace light
speed. As in §3.3, the reflexion for a perfectly coherent source is -52dB, whereas the
maximum reflexion, for subwavelength coherence lengths, is about 0.004 or -24dB.
Thus, the use of an incoherent source may increase the back reflexions by between
20dB and 30dB. Fig-3.3(b) plots the decibel increase in reflected power brought
about by the finite source coherence length.

The above results are extremely sensitive to the statistics governing the cou-
pling co-efficient variation. If, instead of the functions used in (3.32) wé put
' = exp (ikngz — 22/(21.)?) and B = v2nC2, L.Lexp (—8(L.ngmv/c)?), then the
Gaussian plot in Fig-3.3(a) results, i.e. the source’s linewidth must approach its
wavelength before any appreciable increase in back reflexion is observed. The cou-
pling co-efficient variation statistics determine how quickly the low-pass filter func-
tion B(v) rolls off with increasing v and, in the Lorentzian case, it rolls off slowly

enough that [0 B(v)G(v)dv is influenced by a broadening of the source spectrum.

3.5 Experimental Investigation

Two experiments were undertaken to support the analyses of the foregoing sections.
They all involved in-house fabrication of couplers of different characteristics to de-

termine the effects of these characteristics on the back reflexions:

time- or ensemble-averaging.
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e The back reflexions from couplers of different degrees of tapering were mea-
sured to test whether high degrees of tapering can be correlated with strong
back reflexions. (3.10) and (3.16) predict a strong increase in reflexion power

with greater tapering degrees;

o The back reflexions were measured for light sources of different coherence

lengths, to investigate whether a low-coherence source behaves in accordance

with the findings of §3.4.

3.5.1 Basic Experimental Apparatus

The basic experimental apparatus is shown schematically in Figs-3.4 and 3.5.

The fibres to be fused are stripped, entwined and clamped firmly to the sliding
blocks C. The ring-shaped burner B supplies a high temperature, oxy-propane flame,
which fills the whole region within the split in the ring. Under the command of
controlling software, motor M3 drives the burner forward with worm-drive W2 until
the entwined fibres F are completely immersed in the flame. After a predetermined
time to soften the fibres, counterdriving motors M1 and M2 drag the blocks C away
from one another with worm-drives W1, thus drawing the coupler. M1 and M2 are
servo controlled so that (i) the total distance moved by each is precisely the same,
so that the coupler being fused is held in the centre of the flame throughout the
process; and (i) the acceleration up-to-speed and final drawing speed are precisely
controllable and repeatable between different couplers.

DC motors are used to deliver smooth torque, since stepper motors might inad-
vertently ripple the coupling region, thus producing undesirable spurious coupling
to the radiation field through the ripple grating. In the present drawing rig, the
pitch of worm drives W1 is Imm and most stepper motors require 100 to 400 steps
per revolution. This translates to an advance of blocks C of a few microns per step,
i.e. the spatial period of any spurious grating is precisely in the spatial frequency
range required for strong coupling to radiation modes, even for very weak gratings.
Of course, the motors could be geared down to put any spatial grating frequency
well outside this range, however, most stepper motors can achieve a maximum speed

of a few hundred revolutions per minute and, if geared down, would not provide the
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w2 D2

Figure 3.4: Basic Coupler Drawing Hardware

speed range required for both coupler drawing and quick clamp repositioning.

Light is input into the primary fibre with the source L, which was a 2mW, 1.54ym
distributed feedback (DFB) laser, whose coherence length is infinite for the purposes
of the current experiment®. The laser was used to ensure a high power input into
the fibre, thus facilitating measurement of the weak reflexion signal. An experiment
was also undertaken with a 2mW broadband (40nm linewidth) superbright LED of
1.54pm centre wavelength as a low-coherence source. Silica (n = 1.447), monomode
fibre was used throughout.

The light output from the two fibres is monitored with detectors D1 and D2 and
any light reflected into the secondary fibre from the coupler is monitored by D3. To
quell Fresnel reflexions, the ends of the output fibres at D1 and D2 are crushed and
steeped in index matching fluid (York Technology, n = 1.458). D1, D2 and D3 are
InGaAs PIN photodiodes, sensitive to the communication band wavelengths. Under
the command of the controlling software, the drawing stops when the coupling ratio,
as measured by D1 and D2, reaches the desired value. Then, M3 withdraws B and
the finished coupler is released from the drawing rig.

In all cases, Stanford Research SR510 lock-in amplifiers are used to achieve high

sensitivity. Both optical input and electrical output attenuators are used with detec-

9Fig-3.3 shows reflected power to be almost the same for coherence lengths of several millimetres

and for I, — oo.
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Figure 3.5: Experimental System Block Diagram

tors D1 and D2, so that high light levels can be used without saturating either the
detector diode preamplifiers or the lock-in amplifiers. Each diode and corresponding
amplifier was calibrated before each drawing by measuring its response to a constant

source, thus recording the channel sensitivity.

A signal generator modulates the source intensity, in both the DFB laser and
LED cases, with a 50% duty-cycle square-wave, thus providing a carrier frequency
for the lock-in amplifiers to track. The chopping frequency is 407Hz, i.e. slightly
offset from a high-order, even harmonic of the 50Hz (Australian) power mains so
as to incur minimal mains contamination. The lock-in amplifiers and the motor-
driving board for M1, M2 and M3 are all interfaced to the controlling software
through an IEEE-488 GPIB bus. It was found that the experimental dynamic range

(i.e. maximum measurable power divided by minimum power observable over the



3.5. EXPERIMENTAL INVESTIGATION 33

noise floor) is about 70dB with the above experimental setup.

Even though the signal from D3 is monitored throughout the drawing process
(Fig-3.6), it is probably not fully meaningful until the coupler is released from its
clamps, because the reflexion often changes dramatically upon this release, i.e. much
of the reflexion arises from the clamps themselves. Already, this observation is strong
evidence of the high importance of stress in the production of back reflexions. The
clamps bear down on the fibres with about 5N force and it is quite conceivable that
a coupler’s packaging could stress it to a comparable degree.

After release of the clamps, different parts of the coupler were steeped in index-
matching fluid to try to ascertain the origin of reflexions in the coupling region.
There was no consistent pattern observed from this test, even though the findings
of §3.2.2 predict that reflexions will predominantly arise from the narrowest part of

the coupler waist region.

3.5.2 Results and Discussion

Several couplers were made as described above with varying degrees of tapering, to
test the dependence of back reflexions on the waist width. Before each experiment,
the primary fibre was connected to D1, D2 and D3 in turn and the measured levels
recorded so that readings from these detectors throughout the experiment could be
calibrated relative to the system input power. The DFB laser was used throughout
this experiment, the signals from D1, D2 and D3 were monitored throughout the
drawing and typical measurements (those for coupler 8 in Table-3.2) for signal levels
against distance advanced by the blocks C are shown in Fig-3.6. Next, the clamps
were removed and the back reflected power measured.

Then, the whole coupler, i.e. about 20mm on either side of the waist was steeped
in index matching fluid, thus allowing almost all the input power to leak away before
reaching the coupling region. In this state, it is assumed that any signal at D3 arises
from crosstalk in the measurement electronics. Since all the detected signals are
phase-locked, this measurement can be simply subtracted from all others to fully
account for crosstalk. Lastly, the coupler’s waist was examined under a microscope
to ascertain the waist width and degree of tapering. The results for several couplers

are summarised in Table-3.2.
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Figure 3.6: Typical signals from a coupler drawing experiment; hori-
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Experiment Waist D3 Output for D3 Signal (uV) after: Final dB
Number Width (um) | Unit Input (V) | drawing | clamp release | index matching | Reflexion

1 50.0 15.6 43.0 430 6.0 -56.3

2 48.0 13.3 26.6 26.8 13.1 -59.9

3 33.0 6.6 66.0 7.1 -0.46 -60.5

4 30.0 5.5 22.8 -105.7 -162.4 -49.8

5 24.0 5.5 35.1 31.0 -152.2 -44.7

6 - 20.0 5.5 39.0 -80.0 -148.0 -49.0

7 6.0 5.5 2.9 3.6 0.1 -61.9

8 2.0 7.4 55.0 96.7 -20.0 -48.0

Table 3.2: Reflexions from couplers of various tapering degrees
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There is not the strong correlation between the degree of tapering and the re-
flexion level predicted by the findings of §3.2.2 (Fig-3.7), especially given the small
reflexion from the well-tapered coupler number 7. The Spearman Co-efficient of
Rank Correlation between the waist-width / reflexion data pairs is 0.24; i.e. sta-
tistically insignificant{Walpole and Meyers, 1978]. Even if the most outlying result
is removed (coupler 7), the Spearman co-efficient is only 0.64; again, insignificant.
These experimental results therefore provide reasonable evidence that the major re-
flexions from couplers do not arise from any of the effects discussed in §§-3.2.1, 3.2.2
or 3.2.3. It should be noted that if the coupler was so highly tapered as to break,
the back reflexion increased dramatically (to as much as about -20dB) owing to the

high Fresnel reflexion from the broken end.
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Figure 3.7: Reflexion as a function of waist width, being an indication

of degree of tapering

3.5.3 Coherence Experiments

A second experiment was now undertaken to try to observe the dependence of the
back reflexions on the source coherence length. The back-reflexion from three com-
mercial fused biconic 50 : 50 couplers was measured both with the DFB laser and
the LED sources. Given the curves in Fig-3.3, the DFB laser should be equivalent
to a source of infinite coherence length.

With the DFB laser source, three sample couplers return -62dB, -58dB and
-52dB back-reflected power relative to the source power. With the quartz-iodide
lamp through the monochromator, these figures become -66dB, -60dB and -51dB,
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respectively. If the linewidth AX of G(v) in (3.32) is taken to be the difference be-
tween the two wavelengths where G(v) is half its peak value, then AX &~ A?/(wl.ny).
Thus, for the LED source, I, &~ 1.54%/(1.5 X m x 0.04) =~ 13pm. For a Lorentzian
lineshape, Fig-3.3(a) shows that this is short enough to give an appreciable increase
in back-reflexion over the perfectly coherent case, thus the lack of difference between
the DFB and LED results means either (i) that the reflexions do not arise from dis-
tributed regions, i.e. L. is short and the reflexions are Fresnel-like or (i) B(v) is

non-Lorentzian, possibly Gaussian.

3.6 Conclusions

This Chapter has presented a range of theories, to explain the source of the back
reflexions observed from fused-biconic couplers. To evaluate these theories’ predic-
tions for a specific example, the coupler’s cross-section was taken to be circular and
the even and odd modes are then the HFE,;; and HFE,; modes of a multimode fibre.
The motivations for this choice are (i) that it is analytically tractible and (%¢) that
the coupling in a fused biconic coupler takes place in its most highly drawn-down
regions, where the cross-section is very nearly circular. Since coupling coefficients
are weighted overlap integrals between modes and since the modal shapes are not
highly sensitive functions of the cross-section, it seems reasonable to expect that the
results of the analyses in this Chapter would not change greatly if the real coupler’s
shape were somewhat distorted from that assumed.

It was found in general that most perturbations/imperfections/tapers present in
fibre couplers are far too small to be the origin of those observed because, aside from
the Fresnel case, reflexions arise from a distributed set of points rather than a single
point and, unless the waveguide varies with z at the correct Bragg wavelength,/
the components of the distributed reflexion suffer destructive interference. Thus;
the observed reflexions must arise either from (i) abrupt changes and transverse
interfaces within the guide; or (i7) perturbations varying at a spatial frequency
corresponding to the correct Bragg wavelength; or (iii) extremely large coupling
co-efficients, of the order of 10*m™!.

Owing to the smooth drawing process, abrupt changes within the coupler are
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unlikely. By steeping different parts of the coupler in index-matching fluid, it was
observed that the back reflexions were probably not localised to regions of less than
a millimetre in length. Hence, this experimental result would seem to support the

assertion that there are no abrupt waveguide changes.

Surface roughness on the cladding-air interface may have significant spatial spec-
tral content at the correct Bragg spatial frequencies; however, if surface roughness
is the main reflexion source, the results of §3.2.3 predict an extremely strong de-
pendence of the reflected power on the degree of tapering, whereas no statistically
significant correlation between these two parameters was experimentally observed.
Hence, surface roughness is almost certainly not responsible for the main reflexions

observed. The same comments apply to any reflexion arising from the cladding-air

tapered interface.

Of all the candidate effects examined, only the stress-optic effect produces large
enough coupling co-efficients to give distributed reflexions of the order of those
observed from practical fused biconic couplers, i.e. the analysis suggests it to be the
most likely explanation of the back-reflexions from practical fused-biconic couplers.
The readily observable influence that the supporting clamps in Fig-3.4 have on the
back reflexions lends substantial weight to this theory. Reflexion-producing stress
in practical couplers may arise from the knots at either end of the coupling region

or from the anchor points securing the coupler inside its housing.

Finally, the experimental use of sources of different coherence lengths did not
lead to the marked increase in reflected power with decreasing source coherence
length foreseen in §3.4. However, this theory is strongly dependent on the statis-
tics governing the longitudinal coupling co-efficient variation, hence the lack of an
observed power increase for low-coherence sources means that either (i) the back
reflexions are Fresnel-like and arise from abrupt interfaces within the coupler or (1)
the autocorrelation function describing the longitudinal coupling co-efficient varia-
tion is non-Lorentzian. Given that above results suggest the reflexion sources are
not confined to concentrated regions within the coupler, the latter alternative would

seem more likely.
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3.7 Appendix: Pipe Co-ordinate Coupled Mode

Equations

3.7.1 Orthogonal Pipe Co-ordinates

Pipe co-ordinates are familiar in the Theory of Elasticity[Landau and Lifschitz, 1970]
and the scalar wave equation has already been cast into them[Kath and Kriegsmann,
1988][Ladouceur, 1992, Ch-8] with the aim of calculating loss from bends. Likewise,
we cast the Ampere and Faraday Laws into pipe co-ordinates and then the discussion
in [Snyder and Love, 1983, §31-14] yields the coupling co-efficients arising from bends
and twists.

Beginning with the Frenet-Serret co-ordinates, let r be the position vector of a
point in the waveguide cross-section and let the arclength s be the distance along
the waveguide. The mutually orthogonal tangent, normal and binormal vectors t,

fi, b, respectively, are defined by:

5

t _ ds . & __ R AU ~
t_d_r,n—d_t,b—-txn (3.33)
ds s
and fulfill the Frenet-Serret formulas:
di .~ . db odt
I = b — &t; 75 = T o= sl (3.34)

where the scalars 7 and &, with dimensions of reciprocal length, are called the torsion
and curvature, respectively.

The Frenet-Serret co-ordinates, defined by expressing the position vector of a
point within a cross-section as nhi + bB, is not an orthogonal system. As s increases,
a point with constant co-ordinates (n,b) traces out a thread whose tangent, by
(3.34), is ntb — nkt — brh, i.e. is not parallel to t and therefore the thread does
not in general intersect any cross-section s = s¢ at right angles. To find unit vectors
G = a(s)fi+b(s)b and ¥ (orthogonal to @) whose heads move parallel to the tangent
t as s increases, we require the fi and b components of dii/ds to vanish and simplify

the resulting expressions with (3.33):

da(s)
ds

db(s)
ds

— 7b(s) = 0; + ra(s) =0 (3.35)
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If (a(s), b(s) is a solution of (3.35), so is (—b(s), a(s)), whence the required orthonor-

mal vectors:

V=

a=

a(s)h + b(s)l)?;; —b(s)hi + a(s)b (3.36)

Vals)? + b(s Va(s)? + b(s)?
which, together with the tangent f, define an orthogonal curvillinear co-ordinate
system. Any solution of (3.35) will define an orthogonal system and also shows that
the co-ordinate axes defined By G and V rotate with a spatial a_ngular frequency of
7 radians per unit length with respect to b and fi. A particular solution of (3.35) is
(a(s),b(s)) = (cos(rs),sin(7s)), whence:
% = —k cos(7s)E; % = ksin(7s)t; % = & (cos(7s)d — sin(7s)V); (3.37)
The co-ordinate systems defined by the Frenet-Serret and pipe co-ordinates are not
single-valued, for any two planes s = s; and s = s; in general intersect, thus the
points on the intersection have at least two possible co-ordinate representations.

The line of intersection between the planes s = sy and s = s¢+ s as és — 0 can
be readily calculated to be given by K.r, = 1, where r, = u,t + v,V is the position
vector of any point on the intersection line and the curvature vector K = «ii is
orthogonal to the intersection line, i.e. points directly to the point on the intersection
line nearest to the waveguide’s axis at (0,0, s0). The minimum distance from the
waveguide’s axis to the intersection line is R = 1/x, the radius of curvature, and
the waveguide’s cross-section rotates about an instant axis, contained in the cross-
section, though « radians per unit arclength.

Note that, for most practical waveguides, the fields at a distance R from the

waveguides are utterly negligible, so we can safely do usual vector analysis in the pipe

co-ordinate system without fear of multiple-valuedness invalidating our procedures.

3.7.2 Maxwell’s Equations in Pipe Co-ordinates

At a point r = uli + vV on a particular cross-section, the scale factors or metric
weights for the orthogonal pipe co-ordinate system[Spiegel, 1974, Ch-7] are h, =
|0r/du|, by, = |0r/Bv| and h, = |r/ds|. By (3.37), dr = iidu + vdv + (1 — K.r)t,
so that:
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hy =hy=1; hy=9p=1—K.or=1—kucos(rs) + kvsin(rs) (3.38)

For E = E, i + E, v + E,t:

hoi R,V Rt
P 2 2

Bu 3y 3s
hoE, h,E, h,E,

(3.39) can be used to write down the Ampére and Faraday Laws in pipe co-ordinates.

VXE-=

i (3.39)

Simplification of the result to eliminate all axial field components yields:

%EXDS(E_L)-}-vJ_ X (

Vi X Hl) =LK X (V. x Hy) = —iwpH,

e wen
_ (3.40)
l'E)(.D‘.,(H_]_)—v_LX(V-L,XE_L)-I-,1 KX(?J_XE_L)ZZ.LUGEJ_
n W wpn
where:
0E,. OE, R _(OE, OE.,\ .
DS(EJ_)— 8Su+—a;v, VJ_XE_L—(au - av)t (341)

i.e. D, and Vi would be the s-derivative and transverse component of the curl
were the co-ordinate system rectangular, i.e. kK = 0. In the above, the relationship

V17 = —K has been used.

The axial field components are given by:

JE, 0E, . ~ 0H, O0H, .
= —wpH,; 5o " o = wwek; (3.42)

A B

3.7.3 The Coupled Mode Equations in Pipe Co-ordinates

We reproduce the reasoning in [Snyder and Love, 1983, §31-14] for pipe co-ordinates
using the local modal fields {&;,h;}. Since these fields are modes of a translationally-
invariant waveguide with the same cross-section as the bent one at the plane s = s

in question, they obey (3.40) when h; = 7 = 1 and K = 0. Therefore:

s _ V. x h; . e
1Bt x &1 +V X (#) = —iwphj;
. (3.43)
Z,BJE X flj_,_ —VL X (M) = z'weéjJ_
wp
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The transverse electromagnetic field can be written:

By =37 (baj(s) +b-i(s)) &5 Hi =3 (bes(s) — b-j(s) hyy (3.44)

i i
(3.44) is substituted into (3.40), simplified with (3.43) and then the reasoning of
[Snyder and Love, 1983, §13-14] is applied almost without modification. After (3.42)

is used to eliminate the V; x & and V| X h terms, this leaves:

4C_ 4k = —/AOOT:. (ﬁjl X Q—g% + &1 X ?—ahz—L) dA+
iBiK. /A i (8er x Bjs — &0 x Bin) dA—K. [ x (éahiju + hiedjn) dA

(3.45)

and the remaining coupling co-efficients Cj 1+, Cyj—k and C_; _ follow from (3.3)

and (3.45) by using [Snyder and Love, 1983, Eq-(11-7)], i.e. with f_; = —B;,

Ao

é_;j, =&, and h_j; = —hj,.

The first term in (3.45) is real for lossless waveguides and is the same as the
coupling co-efficient in (3.4). It is thus nonzero for tapers or fibres with surface
roughness. It is also nonzero as the result of any effect where the electromagnetic
field spins relative to the vectors t and ¥, e.g. when a birefringent fibre is twisted
or in a spun birefringent fibre.

The second and third terms arise from waveguide bending, vanish if and only if
K = 0 and are purely imaginary for a lossless waveguide. It is useful to examine
C;.;, whose second term in (3.45) dwarfs the third in the weak guidance case, when
all fields are almost transverse. C;; adds to the propagation constant §; and if t;
is the normalised scalar wavefunction, then (3.45) gives the effective propagation

constant for a bend of curvature « as:

Biess = Bi +iCyjus = P; (1 + /A r COS(G)WCM) (3.46)
The methods of [Snyder and Love, 1983, §36-14] analyse a bend by replacing it with

an effective index at the point with polar co-ordinates (r,) in the fibre’s cross-

section given by:

nlss = n2(1 + 2&r cos(6)) (3.47)
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and such an index profile can be shown, with perturbation theory, to produce an
effective propagation constant as given by (3.46). Thus, the coupling co-efficients

agree with the results of the effective index profile method.



Chapter 4

Loss-Reduction in Fused-Biconic

Couplers

4.1 Introduction

In this Chapter we briefly examine possibilities for the redesign of fused-biconic
couplers with the aims of (i) the further reduction of their already low-loss char-
acteristics and (it) device shortening and compaction. Data from a commercial
coupler will be used and, to uphold confidentiality, the study’s quantitative results
cannot be disclosed. Instead, the study’s methods are summarised and a qualitative
description of its findings is given.

The fused biconic process is currently by far the most widely used production
technique for commercially-produced optical couplers, notwithstanding the growing
research effort and commercial development in planar technology. The limited means
of controlling the internal dimensions of a fused biconic coupler, whose production
was outlined in §3.5, are (i) the furnace temperature profile, (i) the drawing speed
and (7i1) the tension in the fibres. A method[Birks and Li, 1992] has recently been
proposed for finely controlling the taper shape and involves heating the fibres with a
small flame swept back and forth along the coupling region. The relative proportion
of time spent by the flame at each position along the fibre is adjustable and controls
the heat power input and therefore the effective temperature and glass viscosity as
a function of longitudinal position. By solving the viscous flow equations, one can

calculate the reqﬁired sweeping to produce the desired internal coupler dimensions.

43
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Embellishments of the fused biconic process include (%) the pretapering of one of
the coupler’s fibres to introduce an asymmetry to the cross-section, thus improving
the wavelength-independence of the coupler’s behaviour[Mortimore, 1985] and (i)
the threading of the coupled fibres through vicor tubing, which then maintains
specific cross-sectional geometries[Mortimore, 1989] throughout the drawing process.

The design of tapers for the practical manufacture of couplers has hitherto been
an almost wholly experimental procedure, choosing different furnace and drawing
speed configurations by trial and error. However, as optical fibre networks become
commonplace and performance requirements on the components become steadily
more demanding, the need to optimise component designs will become overwhelm-
ing. Given that internal coupler dimensions can now be coarsely controlled[Birks
and Li, 1992], it would now seem worthwhile to appraise and improve contempo-
rary coﬁpler designs with the physically-based adiabaticity delineation criteria and

computer design tools, such as the beam propagation method (BPM).

4.2 Simulations of Tapered Couplers

4.2.1 Geometric Coupler Model

Dimension data were taken from a practical wavelength-flattened asymmetric cou-
pler sliced at representative transverse cross-sections. The defining parameters mea-
sured were the two fibre diameters, a and b, and the separation, d, between the fibre
centres, as defined in Fig-4.1. Note that b < a, since one of the fibres is pretapered
to achieve a better (weaker) splitting ratio dependence on wavelength.

It will be shown that coupling between the fibres takes place only over a very
short length near the waist, so that the coupling ratio will be highly sensitive to
coupler measurement uncertainty in this region. However, owing to the waist re-
gion’s small size, one can only measure very few cross-sections in practice. Given
this coarseness of measurement, and other uncertainties, it is important to use a
reasonable geometric model to filter noise from the data. Even so, the theoretical
coupling ratio predictions are not expected to be very accurate.

With one fibre pretapered, the two lengths of fibre have the characteristic shapes
shown in Fig-4.2(a). A plot of the ratio b/a against axial distance z would have the



4.2. SIMULATIONS OF TAPERED COUPLERS 45

I

Figure 4.1: Measured cross-sectional dimensions

smooth general shape typified in Fig-4.2(b). Fourier series were fitted to the data
to express a, b and d as low-pass filtered functions of z. The number of terms was
chosen so that the series fitted the measured data reasonably well whilst the ratio

of low-pass b to low-pass a resembled Fig-4.2().

b/a

bla=1

(a) (b)

Figure 4.2: (a) Typical fibre shapes after pretapering yet before fusion;
(b) Typical ratio of coupler fibre radii as a function of axial

distance
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4.2.2 Accuracy and Limitations of the BPM

The hardware used for the numerical analysis was a Thinking Machines Corporation
mode] CM-2 Connection Machine parallel supercomputer, with 16384 32-bit proces-
sors. The standard Fourier-transform implementation of the BPM[Feit and Fleck,
1978] was used in our studies because the processor connexion topology is ideal for
calculating the many fast Fourier transforms (FFTs) needed. However, despite the
increased speed, there is the restriction that the numerical cross-sectional grid must
be regularly spaced, as well as all the problems peculiar to the FFT described in
§2.1.

The Fourier, inverse Fourier and, for lossless media, lens correction operators
constituting one axial step of the BPM are all unitary, i.e. they conserve the optical
power of the input wavefront. Note that radiation does not appear as a loss because
we are analysing an infinite periodic array, as discussed in §2.1, hence radiated power
passes into neighbouring cells and is not accounted for by the method; only when
lossy radiation-absorbing regions are introduced can the loss be observed. Numerical
roundoff error grows linearly with axial distance because the power of roundoff errors
at one step is roughly conserved and added to the power of subsequent roundoft
errors.

Practical couplers are usually extremely long compared to the idealised devices
often modelled by the BPM. Typically, fifty thousand axial steps are needed in a
realistic simulation. Another problem peculiar to their modelling is that the cross-
section is detailed over large as well as small length scales. The fibre cores are small
compared to the fibres themselves and both the core-cladding and cladding-air inter-
faces strongly influence the coupler’s behaviour. As we must represent the coupler’s
cross-section by a regular numerical grid for the FFT BPM, typically 512 x 512
points are needed for enough detail to be included. The finite-difference BPM im-
plementation is not constrained to a regular grid and so could be used to concentrate
the detail around the coupler’s inte?faces where needed, but is much slower than the
Fourier implementation on the hardware used.

A simple numerical experiment found the roundoff error growth rate for our
computer hardware to be such that there would be roughly a +5% power uncer-

tainty in the output powers computed by a fifty-thousand step BPM simulation
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in single-precision arithmetic. This experiment entailed the BPM-analysis of a
translationally-invariant, circular step refractive index profile waveguide and sub-
sequent comparison of the results with those from an analytical analysis.

Note that, by the time the studies to be documented in Chapters-6, 7, 8 and 10
were undertaken, the Connection Machine Supercomputer used for the numerical
simulations in this chapter had been upgraded to run double precision calculations,

so the simulations of these later chapters will not be hindered by the 5% uncertainty

referred to above.

Figure 4.3: Intensity at the beginning of the coupling region, where the

cladding-air interface provides all guidance.

4.2.3 BPM Simulations

For the simulations described throughout this Chapter, all axial lengths are nor-
malised so that the coupler is one unit long, all fibre diameters and radii normalised
so that the initial radius of the undrawn fibre is one unit and all taper angles are nor-
malised so that a radius/diameter change of one normalised unit over one normalised

unit axial length corresponds to unit taper angle.
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Figure 4.4: Intensity halfway through the coupler

Figure 4.5: Intensity just after field leaves coupling region (z = 0.62)
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The coupler simulation was undertaken at the manufacturer’s intended working
wavelength and gave the following qualitative results: (i) The core region loses its
guidance as the fibres are tapered down so much that the core waveguide parameter
V <1 and guiding is then almost wholly provided by the cladding-air interface. (%)
Almost all the power transfer from the driven to coupled fibre takes place where
V < 1. (i) The computed coupling ratio and excess loss were quite consistent
with the manufacturer’s specifications given the quoted uncertainty on this figure,
and also given fhe high uncertainty inherent in the BPM simulation of practical
couplers, as discussed in §4.2.1. Thus, the BPM simulation would seem to model
the practical coupler at least accurately enough to give a good qualitative indication
of its behaviour.

The plots of Figs-4.3, 4.4 and 4.5 show the scalar field intensities, as found by

the BPM, at several representative cross-sections of the practical coupler.

4.3 Delineation Criteria

In this Section the tapering control needed for lower coupler excess loss and short,
coupler lengths is discussed. The concept of the delineation curve, which distin-
guishes low- from high-loss tapers, is introduced and the practical coupler’s perfor-
mance is appraised using this curve.

Owing to the coupler’s changing cross-section, energy is necessarily transferred
between local supermodes. Energy loss from the coupler’s bound supermodes to
higher-order cladding modes, whose power is then normally dissipated in the jacket
of the coupler’s fibre leads, is included in such a transfer, which has been thoroughly
studied[Love et al., 1991] for a single, one-moded fibre taper. In the following, we
apply the results of this study to a fused taper coupler, even though the coupler’s
cross-section and that of a taper differ.

The study derives delineation curves by two methods, the first of which consid-
ers the beat length between a single-mode taper’s bound mode, with propagation

constant 3, and the cladding mode® with the same symmetry and whose propaga-
1

i.e. when the finite cladding of a single-mode fibre is accounted for, many higher order cladding

modes are also bound. However, being in contact with the fibre’s lossy jacket, they are quickly

attenuated as they propagate.
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tion constant, (32, is nearest to §;, so that most of the excess loss arises from power
transfer between these two modes. It is intuitive that the loss will be small if 2, the
beatlength, or power transfer period, between these two modes, is far greater than
a length z; over which the taper’s cross-section changes significantly. A measure of
z; is taken to be the length of taper that would shrink the given cross-section down
to a point if the tapering angle were held constant at its value at the cross-section
in question. Thus z; = p/}, where p is the local core radius and Q the local core
taper angle. An approximate delineating curve between low and high-loss tapers is
taken to be given by z; = z; or:
9 p(Br — B2)

e (4.1)

which defines the local core taper angle wholly as a function of the core radius and
wavelength when p is the core radius. By replacing p by the outer cladding radius,
(4.1) determines the corresponding cladding taper angle.

A more accurate delineation curve can be derived more rigorously as follows.
As above, the bound mode is most likely to couple to the cladding mode with the
same azimuthal symmetry and whose propagation constant is nearest to that of
the bound mode. In a tapered circular fibre, the fundamental eigenfield is the HE;,;
mode. Although the TEg mode has the nearest propagation constant, its azimuthal
symmetry is such that there can be no coupling from the HE; to this mode. Hence,
the fundamental bound mode will suffer loss mostly to the HE;; mode. From coupled
local mode theory, an expression is found for the HE;, mode amplitude, whence the

delineation criterion[Love et al., 1991]:

Cap=1 (4.2)

where C « Q is the coupling co-efficient between the HE;; and HE;; modes. In a
taper fulfilling this criterion, power oscillates sinusoidally between the fundamental
and cladding modes (c.f. §§10.2.3, 10.2.4 and 10.3.1) so that the maximum loss to
the latter is 1/72, or roughly one tenth of the bound power. In practice, for step
index fibres, this criterion gives delineation curves very similar to those given by

(4.1). Thus, the more comprehensive, yet computationally costly analysis?, needed

2To calculate the delineation curve exactly for the coupler by a method analogous to the rigorous
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to calculate the delineation curves by this more rigorous method can be avoided and
(4.1) will hereafter be used together with the following slight modification:
o _ 28— B)

s (4.3)

Since power loss is proportional to the square of €, the delineation curve defined by
(4.3) can be used to describe a taper that loses about 1% of its bound power over
each coupling period.

All the curves calculated from (4.3) show that when the core waveguide-
parameter V .z 0.84, corresponding to the transition from core to cladding guidance,
the maximum tolerable taper angle is smallest so that even reasonably small taper
angles can give rise to large excess losses. The maximum allowable taper angle is
particularly shallow when 0.6 < V.. < 1.2.

Fig-4.6 shows the local taper angle, Q@ = dp/dz, plotted as a function of p =
a(z)/2 for the coupler. This curve is a closed loop since the taper assumes each
value of p twice, once in the downtaper and once in the uptaper. Overlaid on the
curve is the curve (4.3) calculated at the coupler’s intended working wavelength,
together with its image reflected in the p axis. If the ) against p curve breaches the
shaded region in as it does in Fig-4.6, then significant excess loss can be expected.

In the practical coupler, the taper angle is shallow when the constituent fibre
radii are high, exactly where the steepest taper angles can be tolerated. The ap-
praisal summarised in Fig-4.6 therefore suggests that the practical coupler can be

considerably shortened with the appropriate taper shape.

4.4 Optimally Short Taper Design

For a small taper angle, & dp(z)/dz and (4.3) is a differential equation defining a
taper p(z). Clearly, the one satisfying (4.3) has the most steeply tapering p(z) that
does not cross the shaded regions in Fig-4.6 and it is the shortest possible taper that

method in [Love ef al., 1991], one would have to find the coupler’s local modal field at each axial
step with the Fourier Decomposition Method[Henry and Shani, 1991}, a computationally forbidding
task even with the Connection Machine, whereas the curves described by (4.1) and (4.3) can be

calculated with a personal computer. The rigorous use of delineation curves is demonstrated in
§810.2.3, 10.2.4 and 10.3.1.
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Normalised Core
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Coupler
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\
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0.8

Figure 4.6: Appraisal by 1% loss delinenation curve (4.3): couplers
whose defining trajectories remain outside the high loss re-
gion induce less than 1% excess loss for each 27 phase lag

imposed by the coupler on the even mode relative to the

odd mode.

transforms the fibre radius from the given initial to final values whilst keeping loss

to within roughly 1%. A single fibre taper satisfying (4.3) is shown in Fig-4.7.

Normalised Fibre
Radius |

Figure 4.7: Normalised optimally-short taper shape

It must be emphasised that the shortened coupler is only optimally short at the
wavelength it is designed for and BPM simulations of both the practical and length-

optimised couplers based on the taper of Fig-4.7 shows the latter’s excess loss to
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increase to unacceptable levels when the source wavelength deviates even slightly
from the intended value. The optimised taper’s shortened length is bought at the
price of a marked worsening of the device’s loss performance and a more sensitive
dependence on wavelength. Whereas the actual coupler’s wavelength response is
very flat and the excess loss remains reasonable within the whole band studied, the
coupler optimised for wavelengths at the lower end of this band is so lossy at the

upper end as to be unusable.

The optimised coupler’s excess loss, computed to be 10% at its intended working
wavelength, is greater than predicted by the considerations in 4.3 and the prediction
error can arise from the following. (i) The coupler’s eigenfields differ from those of
a single-fibre taper, thus leading to inaccuracies in the calculation of the coupling
co-efficient C in (4.2). (41) The coupler’s cross-section is not circularly symmetric,
therefore small coupling can arise between the H F;; and T Eg; modes. This coupling,
although not accounted for in the derivation of (4.2), may be comparable to the
coupling to the HE;; mode. Lastly (ii) The intuitive criterion (4.3) describes the
delineation curves only approximately.

The optimally-short coupler’s performance was now compared with that of one
shortened by a simple length scaling. The latter was a version of the actual coupler
scaled to be the same length as the optimised device and its excess loss performance
was far inferior to that of the optimised one. Indeed, its excess loss was so great as

to render the scaled device unusable.

4.5 Conclusions

In this Chapter we have demonstrated a successful modelling of and underlined the
modelling problems peculiar to practical couplers. An optimally short coupler was
designed whose taper angle at all positions is the maximum allowable for a given
maximum power transfer between the H Ey; and H F;, modes. BPM analyses of the
optimised coupler and of a coupler shortened by simple scaling shows the latter’s
performance to be far inferior to the former’s, thus showing the delineation criterion
to be a useful design guide. However, a study of wavelength performance shows the

optimised designs to suffer markedly worsened wavelength response and thus there
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is a design trade-off between the goals of shortened device length and wide device
bandwidth.

Although the exact manufacture of the optimally short taper would not be easy,
significant shortening of couplers could be achieved by increasing tapering angles
where the constituent fibre radii are large and by ensuring shallow taper angles in

the critical region where 0.6 < Ve < 1.2.



Chapter 5

Optimal Erbium Amplifier Tapers

5.1 Background

Although very early work on rare-earth doped fibre amplifiers[Snitzer, 1961; Stone,
1974] had been forgotten for many years, the development history of the erbium-
doped fibre amplifier (EDFA) is truly remarkable in that there were only three years
between between its first research announcement in 1987[Mears et al., 1987] and the
appearance of commercial EDFA systems in 1990{Payne, 1992). In the two years im-
mediately beforehand[Poole et al., 1985; Mears et al., 1985], the Modified Chemical
Vapour Deposition Method (MCVD) had been enhanced to allow the incorpora-
tion of rare-earth dopants, such as Nd** and Er**, into single-moded optical fibres.
Compounds based on these dopants had hitherto been unusable owing to their high
melting-points.

In the few years since the EDFA’s conception, the research effort on it has con-
centrated on a basic understanding of its physics and its design[Bjarklev et al., 1989;
Giles and Desurvire, 1991b; Pedersen et al., 1991] and led to some outstandingly
high quality, wide bandwidth devices achieving extremely high gains at close to the
quantum noise limit[Laming et al., 1992]. These are, of course, highly compatible
with contemporary fibre systems. The research topics that, at this time (Febru-
ary 1994), seem important to the future development of rare-earth doped amplifiers

include:

e The development of rare-earth doped fibres operating in the 1300nm optical

communications band;
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e The overcoming of the concentration quenching; and

e The investigation of various co-dopants (Al,03, Yt**) for many novel uses, no-
tably the “sensitisation” of an amplifying ton to light of an otherwise unusable

wavelength[Townsend et al., 1991; Townsend et al., 1987]).

The EDFA operates at 1530nm, whereas most contemporary optical fibre
communication systems operate in the 1300nm band, hence the great inter-
est in praseodymium (Pr®*) doped amplifiers (PDFAs) operating in this latter
band[Ankiewicz and Riihl, 1994]. Concentration quenching is a phenomenon pe-
culiar to erbium whereby the dopant’s quantum efficiency is severely lessened for
Er®t concentrations greater than about 300ppm[Payne, 1992); hence a minimum
contemporary EDFA length must be about a metre, for worthwhile gains to be
achieved with low Er®* concentrations. Clearly, this problem must be overcome if
rare-earth doped fibres are to be useful in planar integrated optics technology.

In this Chapter, we shall be studying the usefulness of EDFA tapering for the
achievement of lower noise figures, higher gains and higher saturation powers. When
we began our research into EDFA tapering (July 1992), many effects, e.g. erbium
concentration, fibre numerical aperture, fibre length and background loss, had been
thoroughly studied for their relevance to EDFA design and the effect of tapering
seemed to be a scantily-investigated research realm. Some preliminary work[Bjarklev
et al., 1992] had suggested that tapering might lead to worthwhile improvements in
EDFA noise performance and inspired us to undertake the research discussed here.

Unfortunately, it will be shown that, except in nontypical examples of little
practical use, EDFA tapering has little effect on what happens within a fibre am-
plifier concerning noise, signal and pump powers. However, it will be seen that
tapering has a considerable effect on where in a rare-earth doped fibre these noise,
signal and pump levels are reached, and may thus be useful in future planar sys-
tems for the matching of amplifying system components that would otherwise be
length-incompatible. In making our study, we shall further the approach in [Peroni
and Tamburrini, 1989], where the position co-ordinate z is eliminated from system
dynamic equations, and thus develop a state-space model for the EDFA.

Before discussing our study, we briefly examine the basic theory of optical am-
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plification.

5.2 Basic Optical Amplifier Theory

5.2.1 Stimulated Emission and Gain Media

The underlying mechanism of an optical gain medium is that of stimulated emis-
sion[Ghatak and Thyagarajan, 1989], first predicted by Albert Einstein in 1917. In
such a gain medium, the constituent atoms have several energy states and normally

almost all atoms are in their lowest, or ground state. There are also two lasing states

such that:

e Downward transitions between them are radiative; and

e The upper state is sufficiently long lived that a population inversion, where

more atoms are in the upper rather than lower state, can be established.

Any energy input into the system, from electric arc discharge, chemical reaction,
incoming light or many other sources, may give rise to the inversion. If an incoming
light photon has energy equal to the difference between the lasing state energies,
the photon may interact with an upper lasing state atom, which then falls to the
lower state by emitting a photon of the same frequency, phase and direction as the
incoming photon. It may also raise a lower lasing state atom to the upper state,
thus undergoing stimulated absorption and yielding its energy to the medium. As
the probabilities of each interaction are proportional to the respective energy state
populations, an incoming lightbeam undergoes a net amplification when and only
when there is a population inversion.

The incoming light’s frequency does not have to be ezactly equal to that corre-
sponding to the lasing-level difference to cause stimulated emission or absorption.
Many processes in the medium blur the energy levels; for example, lattice vibrations
may Doppler-shift the lasing levels so that upper lasing state atoms can interact with
photons whose energies differ slightly from the lasing-level difference. Clearly, the
greater the imbalance between the incoming photon energy and the lasing-level dif-

ference, the less likely it will be that mechanisms such as the above will shift energy
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levels enough for stimulated emission. Therefore, fewer stimulated photons will be
emitted/ absorbed as the incoming light’s frequency deviates more from that corre-
sponding to the atomic energy level difference, thus giving rise to the emission and

absorption spectra[Giles and Desurvire, 1991a].
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Figure 5.1: Optical Amplifier Energy Diagrams: (a) Main EDFA en-
ergy levels; (b) Schematic energy levels for four-level am-

plification system.

There are four important energy levels in the erbium gain medium (Fig-5.1):
the ground state, which is the lower lasing state, the upper lasing state and two
short-lived higher energy states[Bjarklev et al., 1989, §2]. A pump beam, typically
at 980nm or 1480nm, can raise ground state atoms to the third state or upper lasing
state atoms to the fourth energy state. The third and fourth states are extremely
short-lived and atoms in them decay swiftly by non-radiative processes to the upper
lasing state, whose lifetime, 72;, of about eleven milliseconds, is long enough to
establish a population inversion. Note that since the lower lasing and ground states
are the same, more than half of all the system’s lasing atoms must be raised to the
upper lasing state to yield a population inversion. Amplifiers with co-inciding lower
lasing and ground states are called three-level lasers (even though there are really
many levels) because there are ground and upper lasing states and a short-lived
energy band (in the erbium amplifier comprising levels three and four), which a

pump can excite ground state atoms to.
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The erbium amplifier contrasts where a so-called four-level amplifier, whose lower
lasing state is not the ground state but an excited one[Ghatak and Thyagarajan,
1989] and the gain material is such that the lower lasing level is much shorter
lived than the upper level. Atoms raised to the fourth state quickly decay to, and
tend to accumulate in, the upper lasing state, which is long lived. When they
at last decay to the lower lasing level, they quickly fall to the ground level, thus
establishing a population inversion with most atoms still in the ground state. The
pump power needed for population inversion in a four-level amplifier is typically
many thousandfold less than a corresponding three-level system, so, in this sense,
the erbium amplifier is quite pump-inefficient. So far, no research has produced a

suitable four-level replacement for the EDFA.

5.2.2 State Transition Defining Parameters

We now consider a sliver of gain medium, sliced along planes orthogonal to the
incoming light propagation direction. Each sliver is so thin that there are no erbium
ions hidden directly behind other ions from the incoming light; ¢.e. all the ions are
equally likely to interact with the light. We consider a unit surface area: in unit
time, the number of photons crossing this unit area is I/(hf) where I is the light’s
intensity, f its frequency and A is Plank’s constant. If the erbium ion concentration
is n and the sliver’s thickness 6z, the number of ions per unit area is ndz. Let each
erbium ion present an effective cross-sectional area o to the incoming light. Then,

the number of interactions per unit time per unit area of the sliver is:

olnéz

o7 (5.1)

Since the ion-light interaction probability is strongly frequency-dependent, so is o.

If the interaction is a stimulated emission, the above quantity is the time-rate of
photon addition to the incoming light. It is also the time-rate of ion loss from the
upper to the lower lasing level. For stimulated absorption of the signal, the obvi-
ous absorption and transition rate analogies apply; for stimulated pump absorption,
(5.1) is the time rate of increase of pump band ion concentration. However, ions
in this band are assumed to fall instantaneously to the upper lasing level by nonra-

diative processes, namely the addition of vibrational energy to the gain medium’s
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lattice. Thus for both pump and signal absorption, (5.1) is the time rate of increase
of upper lasing level ion concentration. Note that an ion’s effective area differs
for each separate transition, owing to differing physical parameters describing each
transition, and the effective cross sectional-area for the transition from state a to
state b 1s written og.

An ion can also decay from a higher to a lower state spontaneously, with a con-
stant probability per unit time, independently of the particular stimulated processes
taking place around it. The only important spontaneous change in erbium is from
the upper lasing to the ground state and the time rate per unit volume of this change
is na721, where ny is the concentration of upper lasing state ions and 72; the mean
time for an upper lasing state ion to decay after it has been observed in the upper
lasing state. If an ion is observed in the upper lasing state, the probability that it

will still be there after time ¢ is:

p(t) = L exp (——t—> (5.2)

721 T21
5.3 System Dynamics

5.3.1 Basic Equations

The above considerations now lead simply, as shown in the abundant literature on
EDFA dynamic analysis[Giles and Desurvire, 1991b; Giles and Desurvire, 1991a;
Pedersen et al., 1991; Peroni and Tamburrini, 1989; Bjarklev et al., 1989, to the ba-
sic system dynamic equations. We describe all positions within the fibre using cylin-
drical polar co-ordinates (r, ¢, z); thus, the signal and pump intensities within the
fibre are respectively Pszzf(r, $,z) and szﬁg(r, #,z), with s and z;,, the normalised
fundamental (LFy) fibre eigenfields at the appropriate wavelength. Throughout
this Chapter, the subscript s stands for the signal and the subscript p the pump.
Consider a unit area of a slice of thickness §z. In unit time, the pump raises from
the ground state (state 1) to the pump band (state 3) 013Pp1ﬁ3n15z /(hfp) ions, which
then decay straight away to state 2. Likewise, the signal raises 0'12P51,Z3m6z/ (hfs)
straight from the ground state to state 2, for signal and pump frequencies f; and f,

respectively. The signal also causes aglPstz)an&z/ (hfs) stimulated emissions back
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from state 2 to 1. Meanwhile, n,72; ions in state 2 decay spontaneously, giving rise
to photons with the same frequency as, yet uncorrelated with, the signal. These
propagate in both directions through the fibre and, if they contribute to the guided
fundamental signal mode, are amplified as though a signal, thus giving rise to the for-
ward and backward amplified spontaneous emission (ASE) powers Pfsp and Prsg,
respectively. By convention, the forward (positive) direction is the signal propaga-
tion direction. Therefore, in all the above rate terms, P, must be replaced with

P, + Pfsp + Pisg.

The total time derivative of the number of upper lasing state ions within a unit

sliver area is dn/dt 6z, whence:

dny _ 1sPyibym +012(P, + Pisp + Pisp)¥im _on(P + Pisp + Pisp)dine_na
p7 RS, BT, hf, -
(5.3)

The ground state rate equation for dn,/dt is wholly analogous. Steady state
conditions are now assumed so that dn;/dt = —dny/dt = 0, whence the ezcited ion

fraction (or proportion of ions in the upper lasing state):

013 Ppi? + 012(P3+P:SE+P;95)1/33
oo _ Al his |
2(Fe, By, Pisp, Pasesm: 4,2) = 913 Py} + (9124021 )(Pot PR e p+PFop)¥3 + L (54)
hfp hfs 12

Note that the upper and lower lasing state ion concentrations are given by ny = zp,

ny = (1 — z)p, where p is the total ion concentration.

The signal’s energy is augmented (resp. diminished) by hf, for each stimulated
emission (resp. absorption). Using the calculation results above for the number of
ion transitions both upwards and downwards between the various states per unit
time in a unit area sliver of length §z, integrating these results over the fibre cross-
section at position z and multiplying the result by the energy change per transition
hfs (or hf, for the pump), the system dynamic equations describing signal, pump
and ASE evolution are found[Bjarklev et al., 1989]:
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dP, -
—d—zﬂ = p9p (Ps,PpaPISEvaSE’z)

dP, -
dz 19 (PS’PP,PZSE’PASEaz)

dP3se

P +Pispds (Ps, Pp,PISE,PZSEJ) +Bh fsa (PS,P,,, PXSE»PXSEaz)

(5.5)

where

gp (Ps, Pp’zp‘ZSE’ PXSE’ z) =
_H‘/(; ‘/0 12‘5(7', ¢, 2) (0'247?,2(})3, Pp, PISE,PXSE,T’ ¢’ z)+
013n1(Ps, Ppy, Pisg, Pisgs7s b, z)) rdrd¢

9s (Ps,Pp,PISE,PXSEvZ) = a(P;, Py, Pisp, Pisg, 2) — 8(Ps; Py, Pisg, Pasg, 7))

-

oo 27
a(Pyy P Pis, Piss,2) = on1 [ [ 920, 6,2)na(Ps, Py, Plsp, Pisp,r, 6, 2)rdrdg

00 27 . :
b(Py, Py, 2) = 012 fo /0 B2(r, ¢, 2)11(Ps, Py, Pisg, Pisg, T &, 2)rdrdd
(5.6)

Here H is the pump’s heading: H = +1 for a co-propagating signal pump (pump
in same direction as the signal) and H = —1 for a counterpropagating pump. B
is the detector’s bandwidth and the Bhf, term’s derivation is not straightforward
from the above discussion (the reader is referred to [Shimoda et al., 1957, §6]). Note
also that usually 012 = 057 and we shall hereafter be assuming this.

A function that will be important in the following is:

f(2) = a(2) + b(2) (5.7)

Note that f is independent of P,, P, and ASE since the total ion concentration,
ny + ng, is also independent of these powers.
EDFA analysis is greatly complicated by the full account of the ASE terms and

we make one of two approximations, as stated in the relevant Section:

o Neglect the ASE terms altogether, or
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e Account for them fully in the solution of the dynamic equations 5.5, whilst

neglecting them for the concurrent calculation of the tapering strategies.

The first approximation will be valid in e.g. large signal, co-propagating pump
systems, such as the example shown in [Bjarklev et al., 1989, Fig-3]. Here, the
amplified spontaneous emission is very small compared to the signal except along
the first fifth of the amplifier’s length, where the backward propagating amplified
spontaneous emission is between 0dB and 20dB higher than the signal. However,
in these very early amplifier stages, the pump dwarfs both the signal and amplified
spontaneous emission and is by far the dominant term in (5.4). The ASE influences
the system dynamics by affecting the excited ion fraction, z, but in [Bjarklev et al.,
1989] this influence is utterly negligible owing to the dominance of both signal and
pump. This approximation will be used in §§5.4 and 5.7.

The second approximation will be used in §5.5 and its validity will be appraised
in each individual case.

The usual outcome from neglect of ASE is that the excited ion fraction, and
therefore amplifier gain, are overestimated (see (5.4)). Eq. (5.8) (below) shows the
system noise figure to be a weighted average (along the amplifier’s length) of the
reciprocal of the signal power, hence ASE neglect leads to noise underestimation.
These outcomes are illustrated by Fig-5.2, which shows the calculated system noise
figure and gain as a function of EDFA length for the 20m-long, counterpropagating
pump, untapered EDFA studied in §5.6 with ASE both included and neglected.

5.3.2 Noise Considerations

The output noise in an erbium amplifier arises wholly from the quantum nature of the
interactions taking place between the signal light and the erbium ions. If the system
really were described by the continuous, deterministic equations of the foregoing
section, then, for a given input, the output would always be exactly the same. Even
the amplified spontaneous emission, which has nothing whatsoever to do with the
signal, would not, in any way, be noise, because it would always be exactly known
at the output and its effect could be exactly accounted for. However, the events

within the gain medium are probabalistic; the per-unit-time number of spontaneous,
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Gain Noise Figure
(dB) (dB)
30 8 ASE included
25
20 ASE included 6
15 ASE neglected 4
10
5 2 ASE neglected
5 10 15 20 5 10 15 20
Total Amplifier Length (m) Total Amplifier Length (m)

(a) (b)

Figure 5.2: Comparison of gain and noise figure calculations with and
without account for ASE for a 20m long EDFA with a coun-
terpropagating, 150mW pump, 0.1mW signal input and all
other physical parameters as described in [Bjarklev et al.,

1989]: (a) predicted gain and (b) noise figure.

stimulated emissions and so on waver around their mean values. This problem is
addressed in (Shimoda et al., 1957], wherein the differential equation describing the
evolution of signal power along the fibre is replaced by an equation for the evolution
of probability distributions of the number of signal photons. Appendix-5.13 presents
a summary of this probabilistic approach, which leads to the following expression

for the noise figure (i.e. ratio of output to input noise-to-signal ratios):

F(L) = P,(0) OL Ij;s((?)dz+1 (5.8)

The signal P, is smallest near the input, so it is clear that it is beneficial to have

high gain in the early amplifier stages. This lessens overall noise, in analogy with
the well-known principle in the theory of amplifiers that the least noisy amplifier

should be placed first in an amplifier cascade.

5.3.3 Elimination of the Axial Co-ordinate

In the following, we shall .a,na,lyse the use of tapering to produce an EDFA whose
core radius, R, is a specific function of the axial distance, z. The right hand sides

of (5.7) and (5.4) and the gains g, and g; depend on R, but not explicitly on 2. In
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85.5 we shall be seeking a drawing control strategy R(z) to maximise the amplifier’s
signal-to-noise ratio. Following the analysis in [Peroni and Tamburrini, 1989], we
can eliminate z from all equations and suppose the drawing control strategy to be
no longer formulated as a function of z but rather of P,. Thus we can specify
R = R(Ps) and (5.5) will yield a unique solution, given an input system state
(P, Py, Pfsg, Pisp). The specifications R(z) and R(P;) are thus equivalent and we

can write:

dP,  Pogp (PsappaPZSmPXSEaR)

4P, " Pog, (P., P, Pisg, Prsp: F)

(5.9)
dPZESE _ ___l:PASE + B h v a(Ps, PpaPASE,PASE,R)
dPs Ps sgs(Ps,Pp’PASE1PASE’R)

Conceptually, we might imagine monitoring the output pump, signal and ASE pow-
ers and using these measurements for closed-loop control of the drawing process. In
practice, the taper shape R(z) would be fully calculated from R(P,) before drawing
and implemented open-loop without monitoring any powers.

z is also readily removed from the noise figure by noting that dP;/dz = P,g,:

f(R)
( ’0) =14 P“ /sx gs Ps,PP’PASE’PASE’R(P ))Pzdp (5.10)

where P;,; and P,, are the input and output signal powers, respectively. We shall be

seeking a strategy R(P;) to minimise the cost function:

P. #(R)
Psi, Pso = / —
C( ) P gs(Pstpa 1:,;4'.5}5'7PASE’R)Ps2

dP, (5.11)

which increases monotonically with the output noise figure. We shall also be study-
ing strategies to maximise the system gain for a given pump power, to maximise the
output saturation power and to minimise the EDFA length for a given gain. This
minimum-length taper will be relevant for length savings in future planar integrated
amplifiers.

The elimination of the axial co-ordinate and subsequent use of the signal power
as the independent variable is of great benefit to the noise minimisation problem.

For, if the axial co-ordinate were present, we would have to minimise the integral:
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L f(u) du
/0 6 (5.12)

subject to the constraint that the output signal power be constant. This constraint
would have to be accommodated by deriving the change in output signal §P;(L) as
a linear functional of the perturbation, § R(z), in the tapering strategy (analogously
to 6P, as a linear functional of éR below (in 5.15, but with the axial co-ordinate
included) and then minimising (5.12) subject to 6 P;(L) = 0 with a Lagrange multi-
plier method. The use of P, as the independent variable means that the constancy
of output signal power is no longer an explicit constraint, but simply the upper

endpoint.

5.4 State-Space Description of the Erbium Am-
plifier

Throughout this Section, all ASE terms will be dropped from all equations, thus
the discussion will be only be strictly valid for large-signal systems, such as in
[Bjarklev et al., 1989]. In Appendix-5.12, a brief description of a full state-space
model including ASE will be outlined.

Under these conditions, if P, is known at any value of Py, (5.9) completely defines
P, for all values of P;. The point (P, P,) is thus a system state[Anderson, 1979].
The (Ps, P,) plane is then a system state space, and the amplifier’s behaviour is
fully defined by trajectories satisfying (5.9). We therefore examine the trajectories
in state-space more fully.

Suppose that the system begins at point A in Fig-5.3 and consider firstly a
copropagating pump-beam. The pump gain g, is always negative as the pump is
always being depleted, so, with g, positive, the state trajectory has negative slope
(equal to P,g,/(9sPs)). This slope never vanishes and indeed becomes infinite as
the signal gain falls to zero, when the trajectory is parallel to the P, axis at point
Z. As the pump is further depleted, the signal gain becomes a signal loss as signal-
stimulated absorptions outweigh signal-stimulated emissions. The trajectory slope

is then positive (ZF") and a typical trajectory is as shown in Fig-5.3.
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Figure 5.3: Typical state space trajectory for an erbium-doped fibre

amplifier

Thus, the trajectory slope can only become positive by passing through a ver-
tical slope. Now, there is no benefit in allowing the system state to proceed from
state F' to state F’ in Fig-5.3 because the final signal power is the same in both
cases yet the cost function C is greater at state F’ than at state F. It can readily
be shown that all erbium-doped fibre devices, whether amplifying or lossy (owing
to an over-depleted pump), worsen the output signal-to-noise ratio as the cost of
travelling in the state space is always positive. Therefore, trajectories proceeding
beyond the point Z (where they become vertical) will not be further considered.

The point Z corresponds to the Riihl optimal length[Rihl, 1991], wheré the local

(incremental) gain vanishes.

We see therefore that all trajectories of useful fibre amplifiers are given by
P, = P,(P;), where P, is a monotonically decreasing function of P;, when the pump
and beam are copropagating. Likewise, it is readily shown that for useful amplifiers

with a counterpropagating pump, P, is a monotonically increasing function of P;.

Trajectories can move along vertical lines in state-space if R is always chosen
to annul the signal gain. This condition, gs(Ps, Py, R) = 0, defines the strategy
R(Ps, P,) implicitly. However, again, such a device is not useful as it worsens the
output signal-to-noise ratio and returns no gain.

We now consider the set of reachable states when the output signal must reach a

specified goal and where a maximum input pump power is given (Fig-5.4). That is,
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Figure 5.4: Typical set of all reachable states for an erbium doped fibre

amplifier

we consider all points that lie on some trajectory taking the system state from some
point along the line P, = P,; with P, < P, me, to some point on the line P, = P,
where P; is the input signal power, P;, the specified output power to be reached
and P, ., the maximum possible input pump power.

We now calculate the reachable set’s boundaries. If the system begins at point
A in Fig-5.4 and moves to a new signal power, we seek the maximum value of the
pump power at the new signal power. Otherwise put, we look for the minimum
pump depletion for any given signal output. Suppose that a drawing strategy R(P;)
is chosen and that the resulting pump power is P,(P;s). We now perturb this strategy
by a function §R(P,) = eR(P,), where R is a valid function as discussed below. The
resulting change in pump power as a function of P, is found as follows: if € — 0
then (5.9) can be linearised about the point (P, P,) on the unperturbed trajectory
and about the unperturbed radius R:

d §P,

ap. = Aé6P, + B6R (5.13)
where
— a PPgP(PS’PP’R) . _i Ppgp(PSaPpaR)
ALY =35, (Psgs(Ps, PR S =\ P poR)) O

A and B are written as functions of P, only since R has already been chosen; hence,
given the input P, (5.9) wholly determines P, as a function of P;.

The linear equation is solved to express § P,(P;) as a linear functional of 6 R(P;):
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8P,(P;) = exp (/1: A(u)du) /:: exp (—- /Pi A(v)dv) B(u)6R(u)du (5.15)

(5.15) is easier to understand if given a geometrical interpretation by writing!:

§P,(P,) = ¢(G, R)

where

Glu) = exp (fpp A(w)dw) exp (— /P A(v)dv) B(u) (5.16)

L1

and

Pso
<X,y >% [ X ()Y (u)du

st

If the trajectory in phase space is one of least pump power loss?, then G(u) = 0 for

all u € [Py, P;] and, since the exponential term cannot vanish®:

B(u) =0 Yu € [Py, P)] (5.17)

The condition that B = 0 defines R implicitly as a function of P; and P,. If we
solve (5.9) with (5.17) and with the initial condition given by point A in the phase-
space, then we can derive the trajectory of least pump power loss (boundary AB in
Fig-5.4).

We now consider the lower boundary, DC, of the reachable set. This corresponds
to the minimum input pump power allowing the signal power to reach the target
value P,,. If a state trajectory barely reaches the line BC in Fig-5.4, then clearly
gs = 0 exactly when the signal power reaches P;,, otherwise the amplifier could

further amplify the signal. The point C therefore corresponds to the Riihl optimal

1We consider[Michel and Herget, 1981, §7.3][Royden, 1968, §7.3] the functions G and R to be
vectors in the Hilbert space, Lj, of square Lebesgue-integrable functions on the interval [P;;, P;)

where <, > is this space’s inner product
2Then 6P,(P,) vanishes for all 6R € Ly; in particular, it must do so if §R is proportional to

G(u).

3(5.17) was derived for arbitrary perturbations €R, not only perturbations such that Py + 6P,
was monotonically decreasing. However, since §P, is a continuous functional of § R we can choose
¢ small enough that P, + 6P, is monotonic for R = G and all the above reasoning will still hold,

even given the monotonicity of P, as a constraint.
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length. The core-radius R is set so that the pump power corresponding to C is the
minimum possible pump power corresponding to g, = 0. That is, as the pump is
drained and g; — 0, we can adjust R to keep g; > 0, thus forestalling the onset of
signal loss for as long as possible. Eventually (point C'), no further adjustment of R
will keep gs positive.

The reachable set’s lower boundary is then clearly a minimum pump power loss
curve (found from (5.17) and (5.9)) passing through the point C. Thus we can
calculate the minimum pump power, corresponding to the point D, needed to raise
the signal power to P;,. Numerical calculation of the curve DC is extremely difficult,
as the slope becomes infinite at C, so a point slightly above C' must be chosen.

The reachable set is then the shaded region ABCD in Fig-5.4. The example
shown was calculated for a maximum input pump power of 0.3W. An amplifier
with all physical parameters set to the values given in [Bjarklev et al., 1989], a step
refractive index profile such that V = 2.2 when the core radius is 5um, a uniform
erbium ion concentration of 1.8 x 102m™3 in the core and with no erbium ions in
the cladding was assumed. The signal freespace wavelength is 1530nm and that of

the pump 980nm.

5.5 Optimal Taper Shapes

In this Section, we shall assume that we solve the system dynamic equations (5.5)
to fully account for ASE. However, the concurrent calculation of the optimal fibre
radius R from the solutions to these equations will neglect the ASE terms, as stated
in the Introduction.

Using the state-space description, as introduced in the foregoing section, we shall

now consider:

Given Py, Py, and that P, < P,e;, what strategy R(P;) minimises the cost
function C at the output?

Owing to a well-known example from electronic amplifier design, it is intuitively

reasonable to hope that there is such an optimum. If we concatenate several amplifier
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out

Ny N,

Figure 5.5: Cascaded Generalised Amplifiers

stages (Fig-5.5) with infinite input impedances and zero output impedances, we shall
achieve the same gain whatever the stage cascading order. However, the output

signal-to-noise ratio:

(V)™ 7577,
W™ G+ )

(5.18)

is order-dependent and well-known to be highest when the higher-gain, lower noise-
figure stages are placed early in the cascade. Likewise, by inspection of the cost
function in (5.11), it is readily seen that the output signal-to-noise can be improved
by amplifying the signal more in the erbium amplifier’s initial rather than later
stages.

The following discussion may be supplemented with the discussion in Appendix-

5.14 of the various kinds of optima.

5.5.1 First Derivation

We now derive a differential equation defining such a strategy. Suppose that we
perturb a drawing strategy by a function § R(P;). The cost function perturbation is
found from (5.11) to be:

_ [P (1 0 f(R) f(R) 9gs
ic= | ( 53R o SR mgapth) P (5.19)

Note that we have neglected the perturbation arising from the change in ASE powers.
For the optimal taper, §C = 0 for all §R € L,. By expressing 6P, in terms of 6 R

with (5.15), the optimality condition can be written in the form < M,éR >= 0.
This leads to (Appendix-5.15):
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ig% (gi) - / P D(w)I(u) du I(P,)B(P,) =0
where

I(P;) = exp (— /P A(v)dv) (5.20)

D(P ) — f(R(Ps)) ags
P2g2(Ps, Po(Py), Pisp(Ps), Pasp(Ps), R(Ps)) OP,
Upon division through by I B and differentiation with respect to P;, the following

differential equation is found:

2 (L
A i(i)+ d (_(_l) P A 5.21)

P?BAR\g,) ' dP, \ PZ’B P2g2 9P,

Here, the pump heading H indicates how the optimal taper equation differs in the co-
and counterpropagating pump cases. To make the differential equation equivalent

to (5.20) the following boundary condition must be fulfilled:

;9% (g-) —0 (5.22)

for P, = P, in the case of copropagating pump system and for P, = P;; for the case
of a counterpropagating pump system. The meaning of a simultaneous solution of
(5.9) and (5.21) without heed of the boundary condition is discussed in §5.5.3.

A brief discussion, accounting fully for ASE, of the exact optimal taper equation

will be given in Appendix-5.12.

5.5.2 Second Derivation

We now consider an alternative drawing strategy specification and rederive the
equations above. We consider any monotonically decreasing trajectory passing
through the reachable set and then find the drawing strategy yielding this tra-
jectory. That is, we begin with a monotonically decreasing P,(P;) and differentiate
it to find g,/g9; = dP,/dP; at all points on the trajectory. Thus, the drawing
strategy R(P;, Py, P,), where P, = dP,/dP;, is implicitly defined with P;, P, and
9p(Ps, Py, R)/gs(Ps, Py, R) known at all points on the trajectory.

The cost function then becomes:
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Py p

Pse
—_ !
C= /P.b F(Ps, P,, P,)dP;

where : (5.23)

n_ f(R(P;, Py, )
]:(Ps,PP’Pp) - Pszgs(Ps,Pp,R(PsaP P,))

Py p

(5.23) is in the form dealt with by the classic formulation of the Calculus of Varia-

tions. The stationary trajectories are then defined by the Euler-Lagrange equation:

d (0F\ OF
dP, (ap,;) ~ap, =" (5.24)

Now, if we set:

def gp(Ps’ By, R)

5, (P,, P, R
gp( P ) gs(Psa-PpyR)

then (5.9) becomes P, = §,(Ps, P, R). Now we return to the Euler-Lagrange equa-

tion wherein P,, P, and P, are the independent variables. Hence:

o_ OB _ 85, , 03, R
oP, 0P, ' OROP,

OF, _ 0% , 09, OR

0=3%p = ap, T 3R P, (5.25)
1= 9% _ 95, OR
- 0P, OROP,
So that:
.
OF _ (1% _f(R)\ 35 __f dq.
o8, ~ \ P22 ~ P2y, ) T " P2g70P,
(5.26)
oF _ (f’(R) _ 3&) 1
B ~\'Prg,  Pig?) B
The Euler-Lagrange Equation then becomes:
_ d f(R)%q}% — f'(R)gs — f(R)%% - ,(R)gsA _ [ 9gs (5.27)
P\ PigB Pi7 B P2g? 9P, '

where A and B are as defined in (5.13). It is now readily shown that (5.27) is the
same as (5.21) where [ is as defined in (5.20).
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5.5.3 Boundary Conditions

The usual Euler-Lagrange equation applies to trajectories whose two endpoints are
fixed. In our case one or two of the end points can float, i.e. one seldom cares what
the final pump power is and so we shall allow any final state along the line BC in
the reachable set (Fig-5.4). From the Calculus of Variations, the floating endpoint

is equivalent to the imposition of the boundary condition:

oOF

— =0 (5.28)
oP;

Ps=Pse

which, by (5.26), is readily shown to lead to the same boundary condition as that
given in (5.22).

The dropping of the boundary condition (5.22) therefore corresponds to the fixing
of the output pump power. Hence, if (5.9) and (5.21) are solved simultaneously with
R(Pg) = Ry without heed of (5.22) and if the resulting output pump power is Py,
then the trajectory found will be optimal over the class of trajectories fulfilling the

constraint that the output pump power should be P,..

Power (dBm) Power (dBm)

20

20

\\

-20

-40

-60

(b)

Figure 5.6: Signal, pump and ASE evolution in untapered EDFA: (a)

counter- and (b) copropagating pump.

5.6 Comparison of Linear and Optimal Tapers

We now refer to [Bjarklev et al., 1992], wherein it is claimed that a linearly-tapered

erbium amplifier can achieve a better noise figure than an untapered one. Here
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we reproduce these results and discuss them more fully. We also investigate the

performance of optimal tapers fulfilling (5.21).

30
. = 30
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Figure 5.7: Gains and noise figures for straight and linearly tapered

EDFAs: (left) counter- and (right) copropagating pump.

Figs-5.6 and 5.7 summarise our reproduction. Although not all the information
needed to reproduce the results can be gleaned from [Bjarklev et al., 1992], very
similar results can be obtained by making reasonable guesses of the unknown phys-
ical parameters; we take the input P, and output P; to be 150mW and 0.1mW
respectively, with all other physical parameters as given in [Bjarklev et al., 1989].
The full dynamic equations (5.5) were solved numerically (see Appendix-5.11) to
find the total gains and noise figures for separate amplifiers of different lengths L,
and these results are plotted in Fig-5.7 for both the untapered and tapered EDFAs
described in [Bjarklev et al., 1992].

It must first be said that the claim that the linear taper has a considerably
improved noise performance could be somewhat misleading. If Fig-2 of [Bjarklev
et al., 1992] had used fibre length normalised with respect to the Riihl optimal length
as the horizontal axis, then the noise figure improvement for the tapered fibre would

be seen to be rather small. At first glance, our Fig-5.7 suggests that the linear taper
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achieves a handsome 3dB noise figure improvement over the untapered fibre in the
counterpropagating pump case and a 0.5dB improvement for the copropagating case.
However, in the counterpropagating pump case, note that the tapered fibre’s gain
is 29.2dB at its output and its noise figure is 6.21dB. As the total fibre length of
the untapered EDFA is increased, its total gain first reaches 29.2dB for L = 14.3m,
when its noise figure is 6.20dB. As the EDFA length increases further, the rate of
increase of gain with L dwindles very quickly and the noise figure quickly worsens
with increasing L owing to serious pump depletion near the untapered amplifier’s
input. An untapered fibre shortened from 20m to 14.3m would achieve the same
gain and as good a noise figure as the linear taper. From this viewpoint, it is seen
that there is very little noise improvement from amplifier tapering. Results almost
as good can be achieved by carefully choosing the amplifier length to reduce pump
depletion; thus, an amplifier longer than the Riihl optimal length should never be
used. In practice, the amplifier should be significantly shorter than the optimal
length because significant pump depletion, and therefore significant noise figure
degradation, occur in the last few metres of an optimal length fibre whilst yielding
very small further gain.

This discussion is further exemplified by Fig-5.8, where the amplifier noise figures
are plotted as a function of the total amplifier gain. Fig-5.8(a) shows results for both
the tapered and untapered EDFAs with counterpropagating pump, and the two
plots are nearly the same. Fig-5.8(b) shows the difference AF between the noise
figures for the two different EDFAs; these improvements are very small and indeed
tapering worsens noise figures for systems working near maximum gain. Figs-5.8(c)
and 5.8(d) show corresponding curves for copropagating pump EDFAs.

We now examine some solutions of the optimal taper equation (5.21). The d/dP;

term in (5.5) is expanded:

apP, \ " PB 9P, " P.g, OP, P, 9Pl ' dP,0R)\ P2B
(5.29)

Thus (5.21) can be used to give the local radius as the full equations (5.5) are solved.
A solution to such a system of equations is found for a counterpropagating pump

EDFA with an output P; of -10dBm, an input P; of -40dBm (i.e. 30dB EDFA gain),
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Figure 5.8: Noise figures as functions of gain: (a. top left) Straight
and linearly tapered counterpropagating pump EDFAs; (b.
bottom left) Difference between noise figures for straight and
tapered EDFAs; (c. & d. right) Corresponding curves for
copropagating pump EDFAs.

an input P, of 150mW, all other physical EDFA parameters as in [Bjarklev et al.,
1989] and a final fibre radius of 3.4um. It is very time consuming to find solutions
to (5.21), and even more so to find a solution fulfilling the condition (5.22) exactly.
Here, (5.22) approximately holds, hence the taper shown in Fig-5.9(a) is very nearly
the overall optimal EDFA for the input power, gain and physical EDFA parameters
given. So far, no solutions to (5.21) have been found for the copropagating pump
case.

Fig-5.9(b) plots the evolution of the EDFA noise figure with P for the optimal
taper and for the straight and linearly-tapered EDFAs of [Bjarklev et al., 1992].
The plot for the linear taper pertains to a 20m long EDFA as in [Bjarklev et al.,
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Figure 5.9: Optimal Noise Performance: (a) Optimal taper shape for
minimum noise; (b) Noise figure evolution for optimal, lin-

ear and straight tapers.

1992], while the plot for the straight EDFA pertains to one 14.3m long, so that, as
discussed above, it has the same gain as the linearly-tapered EDFA, yet is shorter
than its optimal length so as not to suffer the severe pump depletion and poor noise
performance of its 20m-long counterpart in [Bjarklev et al., 1992]. The optimal taper
has a slightly higher gain (30dB rather than 29.2dB) than the other two, so that the
comparison in Fig-5.9(8) unfairly handicaps the optimal taper, which, nonetheless,
still achieves about a 1dB noise figure improvement over the other two EDFAs.

It is interesting to note the effect of tapering on the excited ion fraction. Fig-

5.10(a) plots the weighted average excited ion fraction:

Zav(Ps, Ppy PAsg, Pasp, R) = /:o /: 2(Py, Pp, Pisg, Pase, T ¢)¢3(7‘, ¢)r do dr

(5.30)
as a function of the amplifier signal power. It can clearly be seen that the optimal
strategy strives to uphold the highest excited ion fraction for as long as possible as
the pump becomes severely depleted towards the EDFA’s input. To achieve this, a
lower degree of inversion near the output is allowed than is present near the outputs
of the other EDFAs, thus ensuring a higher P, near the input (Fig-5.10(8)). The
overall result is that the weighted average excited ion fraction as a function of either

P, or the axial distance z is much more flattened relative to the corresponding
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Figure 5.10: Effect of tapering on internal EDFA dynamics: (a)
Weighted average excited ion fraction and (b) Pump power
as function of signal power for optimal, linear and straight

tapers.

functions for the other EDFAs.
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Figure 5.11: Excited ion fraction error from neglect of ASE

Also calculated for the optimal taper, is the function (Fig-5.11):

Zav(Pss Po, Pasgs Pasgs B) = Zau(Ps, Py, 0,0, R)
Zaw(Ps, Pp, 0,0, R)

i.e. the fractional difference between the weighted average excited ion fraction cal-
culated with ASE and with ASE neglected. This measures how significant the ASE

is compared to P; and P, in determining the excited ion fraction. At all points
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along the optimal taper, the ASE was found to account for at most one eight (typ-
ically 0.05) of the ion excitation and therefore our approximation of dropping it
from the optimal taper equations would seem to be reasonable, at least as a first
approximation.

In closing this discussion, it must be emphasised that for examples where a
noise figure improvement can be brought about by tapering (e.g. the examples of
this Section together with those in [Grunnet-Jepsen et al., 1992]), one begins with
unusually noisy EDFAs achieving far worse than the 3dB noise figure theoretical
lower limit. For the examples studied above, the poor noise performance arises
directly from excessive pump depletion and careful avoidance of this, e.g. by fibre
shortening, is a much simpler solution than tapering and is almost as effective. It is
possible[Laming and Payne, 1990] to achieve close to the 3dB quantum noise limit
with untepered EDFAs yielding almost as much gain as those discussed here and both
near optimal (3.1dB) noise figure and extremely high gain (54dB) can be achieved
by untapered EDFAs with the use of an optical isolator to quell ASE[Laming et al.,
1992]. Thus, tapering is of little use in a system whose physical parameters and
working environment are well-chosen. Furthermore, for the time being, it would also
seem that the EDFA itselfis a relatively minor source of noise since the best reported
noise figure for a complete preamplifier/receiver system is 8.6dB[Payne, 1992]. It
would therefore be more productive to concentrate on eliminating other sources
of EDFA system noise rather than to improve the EDFA itself slightly through
tapering, especially since at least one end of a tapered EDFA is the wrong size to

splice onto standard fibre components, thus giving possible splice loss.

5.7 Tapering for Optimal Signal Power Output

In §5.4, it was shown that an amplifier tapered to fulfill (5.17) will achieve min-
imum pump depletion for a given signal power gain, if the effect of ASE can be
neglected, which will be assumed true in the following. The state-trajectory for
such an amplifier is the upper boundary of the set of reachable states in the (P;, Pp)
state space. Clearly, for an amplifier to achieve maximum signal gain for a given

pump power, it must follow this minimum pump depletion trajectory. We shall now



5.8. TAPERING FOR MINIMUM EDFA LENGTH 81

investigate the attainable gain increase from tapering; an experimental study of the

gain improvement wrought by tapering is to be found in [Grunnet-Jepsen et al.,

1992).
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Figure 5.12: Tapering for maximum EDFA signal gain: (a) Compari-
son of tapered and untapered EDFAs; (b) Maximum gain

taper.

In the following we neglect ASE completely. An amplifier was investigated with
a copropagating pump beam and with all physical constants as in the foregoing
section. The input pump power was 100mW and the input signal power ImW. It
can be seen from Fig-5.12(a) that amplifier tapering can only slightly increase the
signal gain obtainable for the given pump power. For all of the other cases that we
have studied numerically, the gain increase was, as here, about five percent. The

maximum gain taper for the present example is shown in Fig-5.12(b).

5.8 Tapering for Minimum EDFA Length

Although tapering has only a weak effect on what signal power, pump power and
noise are attained within an EDFA, it has a powerful effect on where these powers
and noise are attained. For example, even though the 14.3m-long tapered EDFA
yielding 29.2dB gain of §5.6 has the same noise performance as the 29.2dB, 20m-long
untapered EDFA, the tapering achieves a 29% EDFA length saving. Such length

savings may be useful:
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e To produce small cost savings through reduced doped fibre usage in EDFA

production; or

e In the future, if the problem of concentration quenching is overcome, length
savings in planar integrated optic EDFAs will be extremely useful for system

compactification.

We therefore now seek the taper shape yielding the minimum length EDFA for
a given gain. After our study of noise-optimal tapers, this is an easy problem to
solve because, with the axial co-ordinate eliminated and the state-space model (5.9)

used, the EDFA length is given by:

P.!O PSO
dz 4P, = dP;
Psi dPs Ps:' -Psgs

Clearly, the minimisation of this integral would be exactly the same as the minimi-

L=

(5.31)

sation of system noise figure if f(z) were constant, hence, the shortest taper fulfills
(5.21) (or (5.47) if ASE cannot be neglected for the taper calculation) with f(R)
set to 1. As in Sec-5.5.3, the solution of (5.21) without heed of (5.22) is equiva-
lent to finding the shortest possible taper subject to the constraint that the output
pump power should be constant. Fig-5.13(a) shows the solution of (5.21) fulfilling
boundary condition (5.22) for a 150mW counterpropagating pump EDFA boosting
a 1lmW signal to 10mW and all physical constants as in [Bjarklev et al., 1989]. Its
length is 5.096m.

Also shown in Fig-5.13(b) is a plot of the length required for a constant radius
EDFA to attain the stated gain with a 150mW counterpropagating pump. As can
be seen, although EDFA radius control has a strong effect on EDFA length, an ap-
propriate (3.3um) constant radius EDFA achieves almost as short a length (5.139m)
as the overall-optimal taper in Fig-5.13(a). Moreover, the constant radius EDFA’s
noise figure is 5.126dB, whereas that of the optimal taper is 4.917dB, so that the
noise performance advantage from tapering is only slight.

Fig-5.14 shows that the above comments also hold for a copropagating pump
EDFA, where the 5.964m-long overall-optimal taper’s noise figure (Fig-5.14(a)) is
4.576dB, whereas that of the shortest (6.013m-long) constant radius (3.1pm) EDFA
is 4.586dB.
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Figure 5.13: Tapering for minimum counterpropagating pump EDFA
length (a) Taper for overall minimum length; (b) Unta-

pered EDFA length as a function of core radius.
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Figure 5.14: Tapering for minimum copropagating pump EDFA length:
(a) Taper for overall minimum length; (4) Untapered

EDFA length as a function of core radius.

5.9 Taper Control for Maximum Saturation Power

Finally, we consider a tapering strategy to yield the maximum saturation power
for a given pump-power and EDFA length. The phenomenon of saturation is the
dwindling of small-signal gain (i.e. the output signal power increase divided by the
small input power increase producing it) with increasing input power. The plot
in Fig-5.15 demonstrating saturation was made for a counterpropagating 100mW
pump, 2um core-radius EDFA with all other physical constants as in [Bjarklev
et al., 1989]. From (5.4), the excited ion fraction in a saturated EDFA (P, — o0)



84 CHAPTER 5. OPTIMAL ERBIUM AMPLIFIER TAPERS

Output Signal

Power (mW)
14
12
10

1 2 3 4 5
Input Signal Power (mW)

Figure 5.15: Saturation in EDFA output power

approaches 1/2 and there is barely a population inversion. For o2 = o3;, the signal

gain can be written:

R 27 o
gs = 012p/r=0 /¢=0(2m — D)ypirdedr (5.32)

and, when P, — oo:

Uls'f;zgpyfs _ hfs

2 —1—o —J T2 (5.33)
2012¢§P3

so that

¢=0 hfp T12 fp T12
(5.34)

R for 52 )
P,g; — Ej—;fﬁ/ ? (M - i) rdgdr = f;P (013Pp77p(R) _ hrR )
r=0

where n,(R) is the fraction of the fundamental pump eigenfield power within the
core radius R. The fibre is taken to be uniformly doped with a concentration of p
erbium ions per unit volume in its core and to be undoped in its cladding. Likewise

for the pump we have:

024 + 013

P,g, — —H 2

pp(R) Py (5.35)

Hence, the system dynamic equations become:
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AP, _p. ___ Howf, dP, hfprR?
dz s f (0'13 + 0'24) dz 2T12
ap _ _H_‘Zl3_+_ap_21 (R)P, (5:36)

and, dwarfed by the high signal level, ASE has no effect on the system output
power. The following analysis assumes a copropagating pump and the analysis
for the counterpropagating case is wholly analogous. The saturated case dynamic
equations are linear and readily solved, assuming pump and signal powers of P,(0)

and P,(0) respectively at z = 0:

P(z) = Po(0)exp (— 22222 [* 3 (R(u))du)

(5.37)

P,(2) = P,(0) — EF:"'—J{’&%)(PP(Z) _ P,(0)) — ’%’:“;—” /0 " R¥(w)du

Now, we seek the tapering strategy to maximise the output signal power, P,(L),
where L is the taper length. Suppose that the tapering strategy is perturbed by
8 R(z); then, by noting that § P,(0) = 0, the change in output power 6 Ps(L) resulting
from the strategy change is readily calculated from (5.37) and set to nought to give

the condition for the the optimal taper:

0= o182 spry— [ Ru)SR(w)du =

R = (L) — /0 (u)8 R(u)du =

/OL (——0132?’5(27-12 exp (—-—-—————013 ; a24pjoL n,,(R(u))du) ___dn;gi) — R(u)) SR(u)du
(5.38)

whence

n;(R)O'lalePp(O) (__013-1- 024

2rhf, 3 /OL np(R(u))du) =R (5.39)

Since the quantity fOL np(R(u))du is a property of the whole taper and independent
of the axial position, z, (5.39) is an algebraic equation in R which is independent of
both the system state (Ps, P,) and z. Hence, the sought optimal taper is, in fact, a

fibre of constant radius, which obeys:

7 (R)o13m2 P (0) exp (—91—3—‘5&1%(3)) — 27 Rh, (5.40)
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The above reasoning applied to the counterpropagating pump case yields the same
equation as (5.40) with P,(0) replaced by P,(L), i.e. the system pump-power input.
When the fibre radius is constant, the following simple expression for the output

signal power holds in the co-propagating pump case:

— fsPo(0)o1s _ _ L oin o __hst,er2
P(L) = P0) 4 £ (1 —exp (R (s + ) —2712( |
5.41

Again, replacement of P,(0) by P,(L) yields the analogous equation for the counter-
propagating pump case. (5.40) is now seen to be simply the solution of 0P;(L)/0R =
0.

Output Signal
Power (mW)
20 Pp =20 mW
Pp =40 mW
15
Pp =60 mW
1o B, =80 mW
5 Pp =100 mW
F, =120 mW
2 3 4 5
Core Radius (um)

Figure 5.16: Output saturation power as a function of core radius

Fig-5.16 plots the output signal powers (neglecting the P,(0) term in (5.41) as a
function of fibre radius for a co-propagating pump EDFA with all physical constants
as in [Bjarklev et al., 1989] and a length of 20m for various pump power levels.
Fig-5.17(a) plots the maximum output signal, determined by (5.40), as a function
EDFA length for various pump levels. Fig-5.17(b) shows the corresponding EDFA
radii needed to achieve these maximum outputs. In each case, there is seen to be
an optimal length yielding the maximum saturation output power possible for the

given pump input and erbium ion concentration given by:

2 hf,x R? )
Loy = — 1 2 5.42
v Mo (R)p(T13 + 024) %8 (lealappﬂp(R) (5:42)

The simultaneous solution of (5.42) and (5.40) yields:
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Figure 5.17: Untapered EDFAs for maximum saturation power: (a)
Maximum saturation power for given pump power as a
function of EDFA length; (b) Corresponding core radii

needed for maximum saturation power.

R, (R) = 2n,(R) (5.43)

which is an equation for R independent of P, and L, i.e.- the taper radius yielding
the overall-maximum output saturation power is a universal constant for a given
erbium doping concentration. In the present case, it is 1.135103um. Using this
result, the optimal length is found and the maximum output power possible for a
given P, is plotted in Fig-5.18 as a function of P,. Clearly, in practice, a taper
considerably shorter than the optimal length would be used since, to attain the last
few tenths of a milliwatt attainable for a given P,, the EDFA must be lengthened

by the order of ten metres or more.

5.10 Conclusions

In many ways the studies described in this Chapter have drawn to a somewhat
disappointing conclusion: that the tapering of erbium doped fibre amplifiers has
only a very slight effect on what happens within an EDFA, although there can be
a major effect on where it happens. This marked shift in the position at which the
EDFA attains given signal gains and noise figures may yield useful length savings

in future, integrated optic EDFA devices. However, as stated in the Introduction,
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Figure 5.18: Overall-maximum achievable saturation power: (a)

Overall-maximum saturation power; (b) Corresponding

1.135103pm-core-EDFA length.

such future EDFA development depends on the solution of the basic concentration-
quenching problem. Moreover, the use of appropriate constant fibre radii can achieve
length savings almost as great as those observed for tapered EDFAs, at least for the
examples studied in this vChapter.

Evidence was also presented suggesting that the tapering of an erbium doped
fibre amplifier will yield only slight (< 1dB) benefits to the noise performance. There

are good reasons to suspect that this statement is generally true:

e We have carried out many simulations like those presented here and the con-

clusions were the same in each case.

e A useful small signal amplifier must not be allowed to suffer significant pump
depletion, otherwise the noise performance will be severely degraded. There-
fore, the pump power must always be large. However, in such cases the fraction
of excited ions is close to 1, and then the noise performance is only slightly

influenced by fibre tapering.

Finally, the signal gain attained for a given input pump power can be modestly

increased by tapering; typically 5% (0.2dB) improvements can be achieved.
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Perhaps the most important result of this study was the introduction of state-
space and control system analysis methods to the subject of EDFA design. Although
the EDFA’s description (Equations (5.5) and (5.9)) is simple in concept, there are far
too many terms within the equations for a designer to readily visualise the outcome
of a given choice of design parameters. The state-space approach presented here,
especially with the ASE neglected, is the simplest approach we could find to solve
our problems and it is to be hoped that similar approaches may be used to simplify

future EDFA design problems.

5.11 Appendix: Basic Numerical Techniques

The two numerical problems to be solved in the study of EDFA dynamics are:

e The calculation of the signal and pump eigenfields for an EDFA of a given

core radius and;

o The subsequent integration of the dynamic equations (5.5) and (5.9).

For the first problem, a weak-guidance approximation was made and the scalar
wave equation solved using the eigenvalue equation of Table-14.3 in [Snyder and
Love, 1983]. This transcendental equation was solved by a simple bisection method
[Press et al., 1990, §9.1]. This method, although slow, was chosen for its famous,
stalwart reliability, which is especially important for the solution of eigenvalue equa-
tions of extremely weakly guided fibres or ones with many roots. Subsequent sub-
stitution of the roots into the field expressions of Table-14.3 yielded the eigenfields.
Many, much simpler, analytical approximations for the eigenfields are possible but
are only applicable for a limited V-value range. The standard Gaussian ai:)proxima-
tion[Snyder and Love, 1983, Ch-15] fails as V — 1 whereas the modified Gaussian
approach[Peng and Ankiewicz, 1991] overcomes this drawback yet is inaccurate at
high V-values. The tapers studied in this Chapter assume an extremely wide range
of V-values, making the these methods unsuitable for many of them. In theory the
Generalised Gaussian approach[Ankiewicz and Peng, 1992] overcomes these short-

comings, but was not used.
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The basic technique used for the integration of the system dynamic equations
was the Runge-Kutta Method[Press et al., 1990, §15.1]. When integrating (5.9), the
EDFA length and noise figure were calculated by integrating the equations dF/dP; =
f/(P2g,) and dz/dP, = 1/(P,g,) by the Runge-Kutta method alongside the other
dynamic equations. It was not found necessary to use adaptive stepsize control.

To solve fully for the ASE, a shooting technique was used. This entails putting
the Runge-Kutta dynamic equation integration under the control of the Bisection
method. For example, for a co-propagating pump EDFA, the integration is begun
at the system output. Here, clearly, Pisz = 0, whereas Pfsp is unknown. The
latter is therefore guessed, the equations integrated and the sign of the calculated
P}cp at the fibre input is used by the bisection method to repeat the simulation
with different output PJsp values until the right value is found to make Pigz = 0

at the fibre input, to within the desired accuracy.

5.12 Appendix: Full State Space EDFA Descrip-
tion

When ASE terms cannot be neglected, the full dynamic equations (5.9) must be
solved. These equations constitute a three-dimensional state-space model and, to
wholly specify the system’s state for all values of P, it suffices to know the three-
component state vector (P,, Pfsg, Pisp) at any one particular value of P,. The
reachable set will then be a four-dimensional volume rather than a two-dimensional
region as in Fig-5.4. Of course, the reachable set’s description will be much more
complicated than for the simplified model of §5.4. We stress that the following
derivation is made only to show that, in principle, an optimal tapering strategy
taking full account of ASE can be made; in practice, the equation to be described
together with its boundary conditions would be extremely onerous to solve com-
putationally. The following derivation applies for a copropagating pump case; the
reasoning for the couterpropagating pump case is wholly analogous.

In §5.4, (5.9) was linearised, in the absence of ASE, about a state trajectory to
express the perturbation 6P, as a linear functional of any perturbation 6 R made to

the drawing strategy (5.15). This procedure, when repeated for the full Egs. (5.9)
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including the ASE terms, yields an equation:

déP
dP;s

analogous to (5.13). Here 6P = (6P,,6Pfsg, 6P1sp)T, A and B are now 3 x 3 and

= ASP + BSR (5.44)

3 X 1 matrices respectively and (5.44) is a state-space model for the evolution of
small P, and ASE perturbations in response to small taper changes. This model

leads to a matrix analogy of (5.20), with D replaced by the 1 x 3 vector:

f dgs 0y, 995
= 4
Pg? \0F, 9Piss Pisg (549
and the integrating factor I(P;) replaced by a 3 x 3 state transition matriz B(P;)
obeying:
dd
= — 5.46
dP, DA (5.46)

The matrix analogy of (5.20) is thrice differentiated to yield:

72?5% (I_) -/ P D(w)® (u)du $(P,)B = 0

d (19 (f)) +DB+/ D(u)® ! (u)du ®(P,)AB = 0

9s

DAB — / ()@ (u)du B(P,)A’B

d2 d
dpP,

PSO
(DAB) + DA’B + /P D(u)®(v)du ®(P,)A’B = 0

(5.47)
Now, by the Cayley-Hamilton theorem [Michel and Herget, 1981, 4.5] A fulfills a

characteristic equation of the form:

po(Ps)L+ pi(Po)A + po(P)A? + p3(P)A® = 0 (5.48)

so that the set (5.47) can be linearly combined and simplified with (5.48) to yield:
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R S cN(Lo (f
PotPrgp ~Prgpr Y P3gps | \ P2oE \ o

d d?
d.Ps (DB) - P3dP32

d
(DB) + ps

-H (poDA_lB + p2 7P

(DAB)| =0
(5.49)
whence, by expanding the total derivatives as in (5.29), a third order ODE for the
local taper radius is found. Here, H generalises the above result to both co- and
counterpropagating EDFAs.
As well as (5.22), the following further three boundary conditions must be fulfilled
at the output (resp. input) end for a co- (resp counter-) propagating pump EDFA:

d (1 8 (f 3

ap, (P—za—R (g:)) tPB=0

d? 1 0 (f d _

i7: (7rom (1)) + ar;0m) - DAB =0 (5:50)
& (10 (f d? d 2

5.13 Appendix: Quantum EDFA Noise

The following is a discussion of the results derived in [Shimoda et al., 1957] and
adapted for fibre amplifiers in [Pedersen et al., 1991]. Note, however, that the final
step below in the derivation of (5.8) is the assumption that the arrival of input signal
photons follows a Poisson process, and this is not made clear in [Pedersen et al.,
1991]. The evolution of photon number mean and variance calculations detailed
below are not explicit in either paper.

Let P(m,z) be the probability distribution of the number of signal photons
entering an infinitesimal sliver a distance z along the fibre. For such a sliver, the
probability of the number of photons changing by one overwhelms the probability of
its changing by more than one. Thus we need only to consider the following changes

arising in the sliver:

e The number of photons increases by one.
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e The number of photons is lessened by one.

e The number of photons remains the same.

The probability of a photon addition by stimulated emission is proportional
to the sliver’s thickness and to the number of incoming photons. Clearly, if the
number of photons increases by a fraction én in a length 6z then the lightbeam’s
power also rises by the same fraction. Therefore[Bjarklev et al., 1989, Eq-(16)],
the constant of proportionality is the constant a(z) of (5.5). As well as stimulated
emission, there is spontaneous emission, whose probability is independent of the
incoming photon number and proportional to the amplifier length. From (5.5), the
probability is ¢(z) = Ba(z). The probability of a photon subtraction by absorption
is proportional to the sliver’s thickness and to the number of incoming photons with
b(z) as the constant of proportionality. The probability that the number of photons
does not change is then one minus the foregoing two probabilities, since the three

events addition, subtraction and constancy comprise all possibilities.

Given the above event probabilities, P(m, z + 6z) can be evaluated in terms of

P(m, z):

P(m,z + 6z) = P(m, z)(1 — (a + b)méz — cbz)+
P(m +1,2)b(m + 1)é2+ (5.51)
P(m —1,z)(a(m — 1)+ ¢)éz

Hence[Shimoda et al., 1957]

dP(m, z)

= —((a+bym+c)P(m,z)+(m+1)bP(m+1,z)+(a(m—1)+c)P(m—1,z)

(5.52)
The output noise to signal ratio is now the output photon number variance divided
by the squared mean photon number at the output, since these quantities are pro-
portional to the noise and signal powers arising at the detector output. They can

be derived from the definitions of output signal power < N >? and variance V:
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< N >=E&(m,z) = > mP(m,z)
m=1
V=¢E(m%z)— <N >? (5.53)

& (m2,z) = il m?P(m, z)

where £(Q), z) is the expectation of quantity @ at the axial position z. On differen-
tiating the system-5.53 and simplifying with 5.52, it is found that:

%z2(a——b)V+(a+b)<N>+c

(5.54)
d< N >
—T—(a—b)<N>+C

The spontaneous emission term is usually neglected because the signal is inside
a narrow band about the signal frequency whereas the spontaneous emission is
broadband, hence most of it can be bandpass filtered out of the signal. The system
noise performance is measured by the noise figure F(z), defined to be the ratio of
the noise-to-signal ratio V/(< N >?2) at position z to its value at the input, z = 0.
Upon dropping the ¢ terms in (5.53), using (5.54) to simplify the expression for
(d/dz)(V/ < N >?) and integrating, F(z) is found to be:

F(z)=1+ 11‘\% [ (atu) + b(u))%du (5.55)

At the amplifier’s input, we assume that the number of signal photons arriving per
unit time is described by a Poisson process|Walpole and Meyers, 1978, §3.5|[Saleh
and Teich, 1991, §11.2C], whose the mean and the variance are equal, i.e. < N(0) >
/V(0) = 1. Moreover, since the signal’s power is proportional to the number of
photons it comprises, < N(0) > / < N(z) >= P;(0)/P;(2). These considerations
and (5.7) applied to (5.55) yield the noise figure expression in (5.8).

(5.8) can be used to derive the quantum noise limit. As f(z) depends only on
the core radius, a lower bound on F(z) can be obtained by using an upper bound
for P;(z); clearly, we shall overestimate P(z) if we assume z = 1 at all points within

the amplifier. In this case, g, = f and:
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PofdP, _, Pu
P, P2f P,

This lower bound approaches 2, i.e. about 3dB, as the EDFA gain becomes large.

F(Pso)=1+Psi

(5.56)

5.14 Appendix: Different Classes of Optima

Here, to further validate the variational approaches used in this Chapter, we discuss
different kinds of optima in the context of the noise-figure-minimisation problem.
A stationary point is an optimum is found by the methods of the Calculus of
Variations and is the most directly derived kind. The change in output signal-to-
noise ratio is derived as a functional of a small perturbation to the drawing strategy
R(P;). Then, equations for the optimal strategy result from the imposition of the
condition that the signal-to-noise change, to first order, should vanish for strategy
perturbations belonging to a suitable class of allowable functions eR(P,, P,). Such
a method yields a local optimum, that is, the resulting strategy R{%(P,, P,) will
give the greatest output signal-to-noise ratio for strategies belonging to some small

neighbourhood:

{R| (R- R, R—RY) < d} (5.57)
for some small distance d. Here the inner product <,> is as defined in §5.4.

The global optimum, that is, the monotonically decreasing trajectory contained
within the reachable set that yields the least output noise may be partly or wholly a
trajectory along the reachable set’s boundary. It is readily shown that if the overall-
optimal strategy is not a stationary point, then it must be a boundary trajectory
(either curve AB or DC in Fig-5.4) or a trajectory that follows a boundary for
some of its history and elsewhere follows a stationary trajectory. Suppose that for
P, < P, < P,, the optimal strategy does not follow the reachable set’s boundary.
Here P,; < P, < P, < P,, and P, and P, are two intermediate powers. Then we can
find a neighbourhood N, of state-space trajectories about the optimal trajectory
interior to the reachable set. Since the mapping of a drawing strategy to the resulting
state-space trajectory is continuous, we can find a neighbourhood N of the optimal

drawing strategy with the form (5.57) whose image is contained in A,,. The cost
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function change arising from a perturbation eR(P,) is a functional of the form*
< M, R >, where the inner product is an integral over the interval [Py, P;]. If the
optimal strategy is not stationary, then H # 0 and we can choose a perturbation
such that R is proportional to —%H, thus the perturbation in the cost function is
strictly negative, contradicting the assumption that the optimal strategy was not
stationary.

Thus, the global optimum may be wholly a boundary, wholly a stationary tra-
jectory or a hybrid thereof.

5.15 Appendix: Details of Perturbation Calcula-
tion

The perturbation arising from the § P, term in (5.19) can be written e < M(P;), LR >

where £ is a linear operator, defined by (5.15), mapping 6 R to § Pp. Here,

f (R(P)) 99,
M(P,) = —
)= = P20 (B, (P, By RV 9P,
For the Hilbert space Ly[Ps, Ps], we can always calculate M € L, where®

< M,6R >=< M,LSR >. The following ad hoc procedure calculates M = LIM

in this case:

Py,
/P M(P,)P,(P,)dP, =

Pso P,
/ M(P)IY(P,) /P " I(w)B(w)5 R(u)du dP, = (5.58)

st

P’O P&O
] /P M(P)IY(P)U(P, — w)I(u)B(w)6R(u)du dP,
where U is the Heaviside step function and I(P;) is as defined in (5.20). By swapping

the roles of the dummy-variables u and P; in the above, we find:

“In a Hilbert space, every linear functional can be written in this form, where each and ev-
ery linear functional has a one-to-one correspondence to a unique Hilbert space element 7; this
well-known Riesz Representation Theorem [Michel and Herget, 1981, §§6.11, 6.14] is a direct con-

sequence of the space’s completfeness.
5 Again, this follows by the Riesz Representation Theorem, since < M, LR > is a linear func-

tional of 6 R. Furthermore, it is straightforwardly shown that M is a linear functional £1M of M,

where £! is known as the adjoint operator to L.
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PSO P&O
< M,L8R >=< L1M,6R >= / / M(w) I} (u)I(P,)B(P,)SR(P,)du dP,
’ (5.59)

The total cost perturbation is now readily expressed in the form:

6C = (N(P.) + L'M(P,),8R(P,)) = 0 (5.60)

whence (5.20) readily follows.
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Chapter 6

Planar Emulation of 3 x 3 Fibre

Couplers

6.1 Introduction

6.1.1 Basic Goal

In this and the next two Chapters, we address the problem that, whereas many
useful optical couplers comprise waveguides configured in nonplanar arrangements,
only planar waveguide arrangements can be readily manufactured as integrated op-

tics devices.

QOur basic goal will be the derivation of a design procedure, based on the concate-
nation of a finite number of elementary building-block couplers, to yield a planar

coupler with identical behaviour to any desired nonplanar waveguide array.

The underlying mathematical basis for the existence of a planar coupler equiv-
alent to any nonplanar waveguide array is to be found in the theory of matrix Lie
groups. Furthermore, quantified examples of devices are given with a view to even-
tual fabrication using the plasma etching/deposition process in Plasma Research
Laboratory at the Australian National University.

The inspiration for this work is twofold: (i) we seek a planar emulation of the

symmetric 3 X 3 fibre coupler, an inherently nonplanar device crucial to an elegant

99
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interferometric fading compensation scheme[Sheem, 1981] and (%) the correspond-
ing problem of unrealisability of nonplanar networks arises in integrated electronics
and has often been overcome by emulations of passive nonplanar networks by planar
active operational amplifier networks. In the planar optical couplers of this and the
following two Chapters, it is the precise control of the internal waveguide dimen-
sions, formerly unavailable in fused biconic technology, that overcomes the planar

constraint.

6.1.2 Planar Integrated Optics Technology

To date, planar integrated optics technology is unique in enabling precise control of
internal waveguide dimensions. This is in stark contrast to fused biconic technology,
wherein there is almost no fine dimension control and correct device working is
achieved by closed-loop control of the manufacturing process from device output
measurements (see Chapters-3, 4). A further exciting possibility with integrated
optics is the manufacture of optical, electronic and optoelectronic circuits on the one
chip. This allows, for example, for an optical system with its semiconductor source
laser on-chip. Another interesting integrated electro-optic possibility is a phased
optical antenna array switch[Heaton et al, 1992]. Here, different control delays
are imposed optoelectronically on a large array of lithium-niobate waveguides, thus
allowing an almost-arbitrary phasing of the output optical field. Such a device can
be used to quickly steer an optical beam and thus switch it at rates of about 1GHz
between different output waveguides frequency with an electrical control signal.
For these reasons, i.e. the tight dimension control and electro-optic possibilities,
there is great current interest (e.g. [Lerminiaux, 1992]) in planar integrated op-
tics technology. At the time of writing, the Ion Exchange Process, is the maturest
and least lossy integrated optics technology, producing waveguides with propaga-
tion losses of a few hundredths of a dB per centimetre. An alternative is the buried
channel waveguide approach, as practised in the Plasma Research Laboratory at the
Australian National University[Giroult-Matlakowski et al., 1992]. Here the waveg-
uide layers of differing refractive index are laid down using plasma-enhanced chem-
ical vapour deposition (PECVD) and the best reported loss is comparable to that
of ion-exchange devices[Adar et al., 1991] but more typically about a tenth of a dB
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per centimetre[Ladouceur, 1992, §7.3]. A more novel variation of the buried channel
technology entails the depositing of layers by PECVD followed by bombardment of
the cladding regions with low-energy electrons[Lewandowski et al., 1991] to realise
the core-cladding refractive index difference. This action leads to the expansion and
therefore decrease in both the cladding’s mass density and refractive index. It is
unknown whether the expansion and therefore the waveguide are permanent and

the technology is, as yet, of rather high loss, being about 1dB per centimetre.

6.1.3 Outline of Techniques

This Chapter discusses two planar realisations of the symmetric 3 x 3 fibre coupler.
The designs are makeshift and specialised to the particular problem at hand, but
they lead to a general discussion of the emulation of nonplanar couplers by planar
ones 1n Chapter-7. It is proven that, in a restricted sense, a planar coupler can mimic
any nonplanar coupled waveguide array. The mathematical tool for this discussion
is the theory of matrix Lie groups, which will be presented in a concise form most
applicable to the design of optical waveguides. Next, a general design procedure
is presented to realise a coupler by a finite concatenation of elementary building
blocks and the procedure is proven capable of deriving a finite planar mimic for any
nonplanar coupler. The design procedure is illustrated in the 2 x 2 coupler case,
where the Poincaré sphere yields vivid geometric insight. Finally, in Chapter-8, the
general design procedure is applied in detail to the design of planar mimics for the
symmetric 5 X 5, 4 X 4 and 3 x 3 fibre couplers and the designs are appraised by
Beam Propagation Method simulations. A further, ad hoc, planar realisation of the

3 x 3 fibre coupler is also presented.

6.1.4 Microwave Coupler Design

Before proceeding, it is useful to refer to corresponding work in the field of microwave
coupler design and compare it to the present research. A transfer matrix notation for
microwave devices is described in [Carroll and Rigg, 1980] and the definitions in §6.2
are simply generalisations of the forward scattering matriz in (5) of [Herscher and

Carroll, 1982], which considers the problem of designing a microwave waveguide so
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that, for excitation by one input waveguide alone, any desired output distribution of
powers can be obtained and is reasonably constant over a specified frequency band.
Thus, in effect, the designer seeks to set one column only of the forward transfer
matrix regardless of the other elements. This same problem was also considered
in a less general way in [Gunton, 1978] and [Rigg and Carroll, 1980]. In [Islam
and Carroll, 1986], the same problem was approached by arranging that the single
input excitation is, in fact, a local modal excitation which is evolved adiabatically
into the desired output power distribution. This, so-called, warped mode coupler is
the microwave analogue of the adiabatic devices considered in [Yajima, 1973; Burns
and Milton, 1980; Shani et al., 1991] and developed in Chapter-10. At the same
time, various six-port microwave devices were investigated for the measurement of
both amplitude and phase in reflectometers and network analysers[Luff et al., 1984;
Engen and Hoer, 1984]; such devices solve the same measurement problems as the
Sheem interferometers in this Chapter.

Our present work differs from the design procedures in [Herscher and Carroll,
1982] in that (i) we seek to implement both the amplitude and phase of all the
transfer matrix elements, not just one column; and (7i) there is no optical analogue
for the comb-line couplers nor the capacitive coupling within them used to implement
the above microwave designs.

It is interesting to note that a bulk-optics analogue of the symmetric 4 x 4 fibre
coupler was investigated[Walker and Carroll, 1984] and was proBably the first optical
demonstration of the microwave six-port techniques for fail-safe phase measurement.
Sheem proposed a scheme based on the symmetric 3 x 3 fibre coupler in 1981, but

the idea could not be tested experimentally as such devices were unavailable then.

6.1.5 Basic Motivating System

The basic system to be cast into a planar form is the modified Mach-Zehnder inter-
ferometer, using a 3 x 3 coupler as the beam-recombiner as illustrated in Fig-6.1. A
modified Sagnac interferometer, presented by Sheem[Sheem, 1981] and also shown
in Fig-6.1, is especially useful in optical fibre gyroscope systems. Practical imple-
mentations of this system have hitherto used the symmetric 3 x 3 fibre coupler, an

inherently nonplanar device comprising three identical fibres coupled together in an
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equilateral triangular arrangement, as shown in Fig-6.2.

driving

> 5

-5

>5

50:50 2x2 Coupler 3x3 Coupler
Beamsplitter Beam-Recombiner
3x3 Coupler Beam-
Recombiner/ Splitter/(

Figure 6.1: top Modified Mach-Zehnder and bottom Sagnac Interferom-

eters

The three output powers, P;, as functions of the relative phase delay, ¢, between

the two interferometer arms are given by:

Py =3 (1 —cos(¢))
Po=3(l-cos(¢+ & (6.1)
Ps=1(1-cos(¢+ %

with unit power input to the system. The behaviour embodied in (6.1) allows the

Wi

Sheem Interferometer to overcome most of the problems faced by interferometric

systems:

e The three output power measurements can be combined to yield an estimator
of ¢ whose sensitivity to small changes in ¢ is independent of ¢, whereas, with
a 2 x 2 coupler as the beam recombiner, the system’s small-signal sensitivity
can fade altogether as the large-signal ¢ drifts owing to thermal and other

environmental effects;

e The correct quadrant of ¢ can be determined; and
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e Fringe-counting can be performed so that the system can measure arbitrar-
ily large phase angle changes whereas neither fringe-counting nor quadrant

inference is possible for the conventional Mach-Zehnder interferometer.

An evocative geometric interpretation of the realisation of these goals by the 3 x 3

coupler is given in {Travis and Carroll, 1989] and outlined in §8.2.

Figure 6.2: Waveguide arrangements for symmetric left 5 x 5 and right

3 x 3 fibre couplers

In the following discussion, we give a full design of a planar emulation of the
Sheem interferometer system. The design procedure is based on coupling and for-
ward transfer matrices and assumes that (i) the waveguide cores are very weakly
coupled and (%i) that, for varying cross-section devices, the propagation is adia-
batic[Shani et al., 1991]. Notwithstanding these limitations, the transfer matrix
method has the advantage of leading to a full engineering specification of the device,
since coupling coefficients and propagation constants are directly and individually
set by the waveguide widths and separations. In §6.4 we present a design proce-
dure free from these restrictions, but whose practical implementation is much more

unwieldy.

6.2 Transfer Matrix Notation

We describe all couplers by their forward transfer matrices, U. If the coupler’s
constituent waveguides are weakly enough coupled, its bound field is accurately
described by linear superpositions of the eigenfields of the cores in isolation. Hence,
ifan N x N coupler’s waveguides are all single-moded when in isolation, the coupler’s
input and output electromagnetic fields are wholly defined by vectors of N complex

numbers, each number representing the phase and magnitude of the field on each
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waveguide. U is then the matrix of the coupler’s linear mapping between the input
and output field-defining vectors. More generally, let {z,bj-"} be a basis for the bound
field at the coupler’s input, that is, the input can be written as a linear superposition
of the '(/);:" (in practice, this need only be true to a reasonable approximation). The
basis need not be the set of isolated core eigenfields as in [Pietzsch, 1989; Carroll
and Rigg, 1980]; it could be the set of local supermodal fields (as in §6.4) or indeed
any other complete set. If {zb;?“‘} is a basis for the output fields, then the linear
coupler’s action is defined by a linear, homogeneous mapping between the input and
output weights defining the input and output fields as superpositions of the {z,l);“}
and {;b;?“’}. The matrix U of this mapping is the coupler’s transfer matrix.

In many cases of praétical interest, the input and output basis fields are orthonor-
mal, i.e. the total field’s propagating power is the sum of the squared magnitudes
of the complex weights in the superposition representing the field. Such is the case
if normalised local modal fields are used or if the isolated waveguide eigenfields are
used and the overlap between them is negligible. In such a case, the system is loss-
less if and only if the transfer matrix is unitary[Pietzsch, 1989][Haus, 1984, §83.2,
3.3]. In the rest of this thesis, unless otherwise stated, all bases are orthonormal,
the couplers will be lossless and therefore their transfer matrices will be unitary.

With the isolated core eigenfields as basis, U, considered as a function of the axial
distance, 2, along the coupler, is the solution of the differential equation[Snyder and

Love, 1983, Ch-29):

dU(z)
dz

where! K (z) is the matrix of coupling coefficients, the off-diagonal elements at (3, k)

=1K(2)U(z) (6.2)

are the coupling coefficients Cjx(z) between cores j and k and the diagonal elements
are the core propagation constant §;(z). We describe the difference between planar
and more general devices in terms of these elements as follows: a planar coupler is one

whose waveguides can be numbered so that guide m is a nearest neighbour to guides

LIf the basis fields are orthonormal, the rate of change of propagating power is d(ztUtUz)/dz =
iz!UY(—K' + K)Uz for the input z. Since U is invertible, an input can be chosen to make Uz
arbitrary, so that power is conserved if and only if K = K! i.e. the coupling matrix is Hermitian.

Energy conservation, unitarity of U and Hermitian symmetry of K are equivalent statements with

orthonormal basis fields.
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m % 1 for all m and whose is K matrix with this numbering is tridiagonal i.e. has
nonzero elements only along the leading diagonal and the two neighbouring stripes,
since Cjr = 0 if guides 7 and k are not nearest neighbours. In almost all practical
coupled waveguide devices the electromagnetic fields are highly concentrated about
the waveguide cores and so coupling between non-nearest neighbours is negligible.
If the waveguide system is translationally invariant, the solution to (6.2) is U =
exp(i1K z) and the set of U-matrices realisable by planar devices is clearly far more
restricted than the set realisable by general devices, since the general K-matrix is
not necessarily tridiagonal. More generally, if K is constrained to vary so that its

eigenvectors are constants, then:

U = exp (z /0 ; K(v)dv) (6.3)

However, if we allow K to vary arbitrarily, then the set of planar-realisable U ma-
trices is much broader and will be shown, in the next Chapter, to be essentially
the same as the set of all generally-realisable U-matrices. Thus, in theory, planar
technology can mimic any coupled waveguide system. The tridiagonal matrix ele-
ments can be complex (as long as the matrix is Hermitian); the physical meanings of

negative and complex coupling coefficients and propagation constants are explained

in §8.4.2.

6.3 3 x 3 Coupler Design by Transfer Matrix

6.3.1 Design Specification

The cross-section of a planar 3 X 3 coupler is shown in Fig-6.3 and the core widths
wj(z) and separations d;(z) can be fairly arbitrary functions of the z, and they
are directly controlled by the planar photomask. In the following designs, the cou-
pling coefficients kj3(z) and k3;(z) between waveguides 1 and 3 vanish to ensure
tridiagonality and hence planar-realisability.

Throughout §6.3, we assume the system eigenfields are well-approximated by
linear superpositions of the isolated core eigenfields, taken as basis fields, and the

coupled guide description (6.2) holds. Furthermore, the overlap between the core
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Figure 6.3: Planar coupler cross-section dimension definitions

fields is assumed small for the purposes of power calculations, i.e. the total power
travelling along the coupled waveguide system is approximately the sum of the
powers borne by each core. Consequently, the coupler’s input and output powers
are the squared lengths of the column vectors describing the input and output fields,
and energy conservation is equivalent to unitarity of U when the core eigenfields are
suitably normalised. Since the overlap (v;,%x) << 1, and if the difference between
propagation constant pairs is comparable to the coupling coefficients (which will be
shown true for the systems considered here), then (Cjx — Ck;)/Cjir << 1, by (A9)
in [Snyder and Ankiewicz, 1988]. Hence, the K matrix is symmetric and so is the
U matrix for systems that are invariant to a swap of the roles of their input and
output ports?.

The Sheem interferometer cannot be realised by three identical coupled waveg-
uides with equal coupling between neighbours (when w; = w; = w3 and d; = d; so
that 81 = B, in (6.8) below), for straightforward analysis shows that the eigenvectors
of K are constant and given by (1,0, —1)T, (1,+v/2,1)T and that:

exp(im) cos(n2) +1 V/2isin(n;) cos(nz) — 1
U= — V2isin(n;)  2cos(ns)  V/2isin(n,) (6.4)
cos(ng) — 1 /2isin(n;) cos(ns) + 1

2The forward transfer matrix U t is then the same as the backward transfer matrix U, (i.e. the
forward transfer matrix when the roles of the input and output are swapped), but the relationship

Uy = UT is general (see Appendix-6.6 or [Pietzsch, 1989]), whence U = U7 .
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where

m= [ Bl)do, m=v2 [ Clo)do (6.5)

It is readily shown that an interferometer with a recombiner described by (6.4) does
not obey (6.1).

If wy = w3 in Fig-6.3, the waveguide’s symmetry, together with the basic U and
K-matrix symmetries, requires Uy = Usa, Uyy = Uy = Upz = Usy and Uyz = Us;.
If, in Fig-6.1, the interferometer’s arms are input to the two outer waveguides, the
magnitudes and relative phases of the output powers as functions of ¢ are those of
Un U, Uiz Uf, and Ups UY, respectively. Therefore, if the system obeys (6.1),
Uni Uy = a Uy U}, = a® Uy3 Uy, where a = exp (:i:z%'-) The most general unitary

U fulfilling all of the above conditions is readily shown to be:

exp(¢0) 1 exp (z (9 + 13’1))
U= 71—3: 1 exp (z (%’ - )) 1 (6.6)
exp (z (9 + %")) 1 exp(10)

where 0 is an arbitrary real angle. This can be repeated using the middle and one

outer waveguide as inputs and the corresponding U-matrix is:

exp(i (& — 0)) 1 exp (7 (& —
U= 715 (1 ) exp (20) ( (1 )) (6.7)

exp (z (4?”—- )) 1 exp(i (2?”—0))
It must be emphasised that, so far, we have said nothing about the coupler’s
being planar, we have merely derived the most general U-matrices for the desired

interferometer behaviour. From (6.3), a direct computation of the matrix logarithm?

3Diagonalise U to find U = P exp(—iA)P~! where:

1 1 1
P=| 0 o*(0) a (o) | A=diag(] -0+ 2mmE(0)+ 2mam (205 + V7 - £(0))
-1 1 1

+ _ 2 = Zarctan "“‘EEL
a(a)_cos(O):t\/m §(6) = arct (JQ-&-CTM))
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by diagonalisation* of U gives an expression for ki3(6) = k3,(#). We then impose a

planar 3 X 3 array by choosing 0 such that ki3 = 0. Thus, if the coupling matrix has

the form:

Pi(z) C(z) 0
K(z)y=1| C(2) Bz) C(z) (6.8)
0 C(Z) ﬁl(Z)

C(z) = 0.759741 (B2(z) — Pa(2)) (6.9)
then we obtain the U matrix of (6.6) (aside from an inconsequential phase-delay)
provided:

fo " (Ba(u) — Bi(u)) du = 1.70495 (6.10)
or:

/0 " (Ber(u) + Bea(w) — 2B (u)) du = 1.70495 (6.11)

where (.1, Be2 and f3, are the propagation constants of the couplers first even, second

even and first odd supermodes, respectively. In the weakly coupled case, they are

whence K = PAP~! and the required expression

k31(6) =
305 + cos(20)) clos(29)) (49 + 4n7 + 2 cos?(0)(8 — n7) + cos(6)\/2 + cos2(8)((2n + 4m + )7 — 2{(0)))

where nj, ns, n3g, n = ny + n3 — 2n; and m = n; — ny are arbitrary integers depending on the
branch of the matrix logarithm taken. k3; = 0 can clearly be solved for any pair (n,m), since k3

1s everywhere a continuous function of  and k3; — oo for § — +oo.
“In diagonalising U, note that there must be one eigenvector of the form (1,0, —1)7 and two of

the form (1, &, 1)7. This follows because the eigenfields can always be chosen to have either even or
odd symmetry about any plane of mirror symmetry of the waveguide’s cross-section. For let R be
a reflexion about this plane of symmetry; then it is readily shown that, if ¢ and 8 are an eigenfield
and propagation constant fulfilling the scalar wave equation (V2 4 k?n% — 32)s = 0 then R+ and
therefore 1. = ¥ + R and 9, = ¥ — R are also eigenfields with the same propagation constant.
Then, trivially, R, = 9. and Ry, = —t, since R?2 = 1 and R is linear i.e. ¥, and 9, have even
and odd symmetry about the cross-sectional plane of symmetry. The set of all even-symmetric
eigenfields spans the vector space of all even-symmetric fields, and likewise for the odd eigenfields
and odd-symmetric fields. The two vector spaces are orthogonal complements and direct-sum to
the space of all bound waveguide fields. Any input field with either even or odd symmetry about

a plane of reflexional symmetry of the waveguide retains its symmetry as it propagates.
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given by the K-matrix’s eigenvalues. If (8;—f;)/C is constant, as in (6.9), the matrix
of eigenvectors of K is constant. Otherwise, (6.2) cannot be solved as the K matrices
at different cross-sections do not commute with one another, thus invalidating a
solution of the simple form in (6.3). If the guides become tightly coupled, so that
Cix # Crj (Appendix-6.6), the K-matrix’s eigenvectors must vary since they are
necessarily orthogonal when K = KT and necessarily not orthogonal when K # K7.

Hence, the reason for the failure of the present design in tightly coupled systems.

6.3.2 Photomask Design

A photomask was designed with w,(z) = ws(z) = 2w(z) (i.e. w(z) denotes the
outer core halfwidth) and d;(z) = d2(z) = d(z) (Fig-6.3) chosen to satisfy (6.9). For
simplicity, the middle waveguide’s width w, is kept constant. The waveguide depth
must be the same for all three waveguides for fabrication in contemporary planar
technology. Beginning with w, the eigenfields for the middle and outer waveguides
can be calculated using the Fourier Decomposition Method (FDM)[Henry and Shani,
1991]. The FDM is very accurate and, moreover, the coupling coefficient between
any two eigenfields can be calculated analytically in terms of separation, d, as the
Fourier cosine transform (using d as the transform variable) of an array comprising
simple functions of the spatial Fourier components (output from the FDM) defining
the eigenfields. Thus, a Fourier transform yields C(d) (Fig-6.4) in one computational
step and d can be chosen to satisfy (6.9). This procedure is repeated many times
for different w values and the w(d) curve defined by (6.9) is calculated (Fig-6.5).

Next, a slowly-varying trajectory (defined by d(z)) is chosen for the outer waveg-
uide so as not to lose device adiabaticity and w(z) is derived from the w(d) curve.
Lastly, the appropriate length of constant cross-section coupling region is inserted
into the device to satisfy (6.9).

An example using the above method uses a freespace wavelength A = 1500nm
and a cladding refractive index of 1.5. The middle core is a 8um X 8um square cross-
section and the core refractive index n., is such that V,,;4 = ﬁwz\/m JA =2,
where w, is as in Fig-6.3. Consider, for example, a cross-section where the outer
core’s halfwidth is wy = wsz = 2w = Tum. The FDM gives 3, (outer core propa-

gation constant) = 6.292791 x 10°m™~! and B, (middle core propagation constant)
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Figure 6.4: Coupling coefficient as a function of centre-to-centre sepa-
ration, d = d; = dz, when wy; = 8ym and wy = w; = w/2’=

3.5pum in Figure-6.3.

= 6.291941 x 10®m ™. Therefore, by (6.9), d must be chosen so that C = 645.78m™*
and, from Fig-6.4, the separation required is d = 11.34um. Repetition of this pro-

cedure for various w generates the w(d) curve in Fig-6.5.

To check how closely spaced the cores can be without invalidating this procedure,
the overlap between the cores is plotted in Fig-6.6 as a function of separation. The
core widths are chosen in accordance with the w(d) curve (Fig-6.5) and then the
overlap between the two cores is calculated from the spatial Fourier components

without the need to reconstruct the fields themselves.

As a further check on the procedure’s soundness, the exact propagation con-
stants for several cross-sections on the w(d) curve were calculated. In Fig-6.7, these
are compared with the eigenvalues of the K-matrix. One reason for the discrep-
ancies revealed is that, for weak coupling, Cjx = Cy;j, which does not hold when
overlap between the fields is significant. From these two plots, the smallest outer
core halfwidth for which the present design method is sound is about 3.5um (corre-
sponding to a core-to-core separation of 11.34um). Accordingly, a photomask was

designed to taper the cores so that d decreased linearly from 16.12um (when the
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Figure 6.5: Outer waveguide halfwidth, w, as a function of d required

to fulfill (6.9)
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Figure 6.6: Core-to-core overlap as a function of core-to-core separation

di=dy=d

outer core halfwidth is, by (6.9), 3.9um) down to 11.34pum (outer core halfwidth is
3.5um) along an axial distance of 500um. The outer core halfwidth is given by w(d)
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and, for this downtaper:

500um '
/0 (B2 = B1)dz = 0.206495 radian (6.12)
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1: Fundamental even eigenfield, exact FDM calculation
2: Fundamental even eigenfield, K-matrix theory

3: Odd eigenfield, exact FDM calculation

4: Odd eigenfield, K-matrix theory

5: Second even eigenfield, K-matrix theory

6: Second even eigenfield, exact FDM calculation

Figure 6.7: Propagation constants from K-matrix and FDM calcula-

tions

The whole coupler is the present downtaper, followed by a translationally-
invariant coupler with the same cross-section as the downtaper’s output and of
length, L, yet to be found, followed by an uptaper identical to the downtaper. Reci-
procity (Appendix-6.6) requires the uptaper’s transfer matrix with respect to the

local supermodes to be the transpose of that of the downtaper.

6.3.3 Beam Propagation Analysis

Three separate BPM simulations of the coupler downtaper were undertaken, one for

each local supermode (as calculated exactly by the FDM) input into the d = 16.12um
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Figure 6.8: Fundamental eigenfield of the central coupling region. Note

the even symmetry about the waveguide cross-section’s

plane of reflexional symmetry

side of the taper. The overlaps between the taper’s outputs and the local supermodes
(again calculated by the FDM—see the field amplitude plots in Figs-6.8, 6.9, 6.10)°

were calculated and the results are summarised in the transfer matrix with respect

to the local supermodes:

Utaper =
—0.325758 + 0.938193: 0.00100569 — 0.005399752 0.0261106 + 0.0867151z
—0.000409456 — 0.005228: 0.0898486 — 0.975139: 0.000234841 — 0.00729506:

—0.0435583 + 0.0752248i —0.00417461 + 0.00588145i  —0.129076 — 0.981447i
(6.13)

Here the fundamental even eigenfield is mode 1, the odd eigenfield mode 2 and

the second even eigenfield mode 3. The leading diagonal magnitudes are close to

>Note that the eigenfields have either even or odd symmetry about the waveguide cross-section’s

plane of reflexional symmetry, see the previous footnote.
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Figure 6.9: Second eigenfield i.e. first odd eigenfield of the central cou-

pling region

1 and the off-diagonal elements (whose squared magnitudes are the supermode-to-
supermode extinction ratios, see Chapter-10) are about -20dB, showing that the
taper israpproximately adiabatic.

Since the downtaper and uptaper contribute 2x0.206495 = 0.41299 radian (6.12)
to the integral in (6.10), this equation gives L = 1.525mm, when the core propa-
gation constants are used, and L = 2.336mm for the FDM-calculated supermode
propagation constants. Clearly, with even the fairly small overlap in this case, there
is considerable discrepancy between FDM and K-matrix theory. However, simula-
tions show that the coupler would approximate (6.1) with reasonable accuracy for
every L in the range 1525um < L < 2400um (see below), indicating that the device
is quite tolerant to manufacturing errors. The optimal value is L & 2250um, so that
the FDM clearly gives the more accurate value of coupling length.

The propagation through the translationally invariant section is most conve-

niently analysed by the FDM. The forward transfer matrix with respect to the local

supermodes is:
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Figure 6.10: Third eigenfield i.e. second odd eigenfield of the central

coupling region

A = diag [ exp(—iBaL), exp(—iB,L), exp(—ifeL) | (6.14)

where .1, Bez and 3, are the propagation constants of the first even, second even

and the first odd supermodes, respectively. The product UL

taper

AUyqper 1s the system
transfer matrix with the local supermodal fields as the basis at the input and output;
this can be converted to the transfer matrix with the isolated core eigenfields as
basis by using the matrix P of core-to-supermode overlaps: P;; = <q§j,z/;k>, where
the qASJ- are the normalised isolated core eigenfields and 7,[)]- are the normalised local
supermodes at the input and output. Thus, the BPM and FDM predict that the

coupler’s forward transfer matrix, with respect to the isolated core eigenfields, is:
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U= P UL, AUtper P =

—0.570616 — 0.066266;  0.515826 — 0.322285;  —0.560606 — 0.0819363i
0.116365 — 0.5756215  —0.52996 — 0.0793975;  —0.528222 + 0.128423
(6.15)

when L = 2250pm. If the relative phase between the interferometer’s arms in

( —0.524502 + 0.143701: —0.541978 — 0.0613173:  0.117034 — 0.574846: )

Fig-6.1 is ¢, then the output powers are the squared component magnitudes of
U (exp(3¢/2),0,exp(—i¢/2))T /+/2 with the arms input into the two outer waveg-
uides. With the arms inpﬁt into the middle and one outer guide, the output powers

are the squared component magnitudes of U (exp(i¢/2), exp(—i¢/),0)” /+/2. These
results are plotted in Fig-6.11.
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Phase Delay, ¢ Phase Delay, ¢
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Figure 6.11: Interferometer output intensities as a function of relative
phase between the interferometer branches. Results for
input into the (a) two outer; (b) one outer and one inner

waveguides.

For this device, the coupling coefficients are very small for cores separated by
more than about 16um, so the error arising from the connexion of the coupler
to tapers linking it elsewhere can be assumed negligible. One could extend the
design by using the FDM method to calculate d and w for the tapers for much

larger separations. However, the Fourier Decomposition Method has one important
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drawback — Fourier sine and cosine terms do not represent the fields far from the
core well, where they decay exponentially with distance from the core, unless the
Fourier series include many terms. Hence, the calculation of coupling coefficients
by the FDM in the case where the fields are very weakly coupled may give rise to

significant error.

6.4 Supermode Based Design

We can remove the approximations inherent in the coupled guide design procedure
by using a supermode analysis. This allows more tightly coupled structures, whose
required eigenfield delays occur over shorter coupling lengths, and thus leads to more
compact and therefore more temperature-insensitive devices. The procedure is also
more physically meaningful, using the coupled structure’s normal modes rather than
eigenfields of the waveguides in isolation. However, the new design procedure is far
more unwieldy than the transfer matrix approach, from an engineering point of view,
for neither the coupling coeflicients between the supermodes nor their propagation
constants can be changed individually. Instead, any cross-sectional change strongly
..influences all these quantities simultaneously and it is difficult to set up the coupling

coeflicient /propagation constant combination needed for a given device.

6.4.1 Coupler Description

In the following design, slab waveguides are considered for simplicity. The pho-
tomask is shown schematically in Fig-6.12 and comprises a symmetric downtaper,
uptaper and a central supermode coupling region, which is a simple, three-moded
slab waveguide. The control bars introduce further degrees of freedom to the central
coupling region design, as discussed at the end of §6.4.3. They are not used for the
design in this Chapter, but they may be useful for similar systems as long as they
do not lead to excessive loss.

The basis fields for this system’s analysis are the local supermodes. At the de-
vice’s input and output, the isolated core eigenfields, at 55um separation, are so
weakly coupled that they can be considered, for all practical purposes, to be orthog-

onal system supermodes. Any reasonably lossless downtaper/uptaper can be chosen;
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A Cladding D

50pm

Coupling Region, V =4.6

Figure 6.12: Photomask schematic for a strongly-coupled 3 x 3 Coupler

the tapers do not have to be adiabatic (i.e. each local supermode having constant
power) and, indeed, the design is facilitated if they are not. A BPM simulation gives
the transfer matrices of the up- and downtapers. Using these matrices together with

the design goal (6.6) or (6.7), the coupling between supermodes is calculated.

The coupler’s working freespace wavelength is taken to be 1500nm with a
cladding refractive index of 1.5. The slab waveguide in section BC is a single slab of
width 15um and the core refractive index for the whole device is such that V = 4.6
in BC. Thus the central coupling region has three bound modes: the fundamental
even mode, the first odd mode and the second even mode, in order of decreasing

propagation constant. The whole device has even symmetry about the centreline

drawn in Fig-6.12.
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6.4.2 Coupling Region

If Uiaper is the transfer matrix of the taper AB, its structure can be inferred from
symmetry. Any input to the middle waveguide has even symmetry about the cen-
treline and cannot excite the odd supermode. Excitation of both even supermodes
from input to one outer waveguide is exactly the same as for the other outer waveg-
uide. The odd-supermode excitation arising from input to one outer waveguide is
the same as that arising from input to the other outer waveguide but with opposite
sign. Moreover, Usyper is unitary and the most general Usype, fulfilling all of these
conditions is:
p V1 —2p%e p

1 ik _ 1 gibs

Utaper = ohi 0 v (6.16)

1-22p2e¢¢2 —\/2peiltrea) Lo/ T=2pPei*:
where the ¢; are arbitrary real angles and p < 1/4/2 is real. For the coupler shown in
Fig-6.12, a one-dimensional BPM analysis shows that the downtaper AB is defined
by the above matrix with p = 0.485392, ¢; = —2.265559, ¢, = 0.0778898 and
¢3 = —1.474127. The forward transfer matrix of the uptaper C'D is, by reciprocity,
vt Thus U = UL U.Uiper or U, = U},

taper* taper taper

U Ufaper, where U, is the transfer

matrix of the central coupling region BC and U is the design goal of (6.6) or (6.7).

Un 0 Uh
Uc S 0 U§2 O

c [
13 0 U33

Hence:

where

—igy

c _ . m -
i S T 404 ) 7m0+ )
c _ . _ z
U;, = exp (z (0 6))
2 s
Uiz = \/%(1 — 4p? + 2py/1 — 2p? cos (¢1 +0+ 5))

and

(6.17)

»_UT
Uss = —(Un1) ([7;%;; UL+ U1 =1 1USI° + (UG =1 [Unl®=1 (6.18)
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describe the unitarity of U¢.

To achieve our design goal we require coupling between the supermodes as de-
scribed by (6.17). We can use the free parameter 6 in (6.6) or (6.7) to simplify
the device design. By setting § = 2.870811, we have Uj; = 0 and the coupling
region does not couple the supermodes, but imposes phase-delays Uf;, Us, and U3,
on the individual supermodes. If the now-diagonal U® is multiplied by €™, where w
is any real number, the device’s working will not be changed. Thus, only the ratios
Us, JUs, = exp(3.866404:) and Us,/US, = exp(0.65722:) are important. Neverthe-
less, it is still not clear how to satisfy these phase conditions. If we use a constant
cross-section slab for the coupling region, there is only one degree of freedom, the

waveguide’s length L, to vary, and we must satisfy the simultaneous conditions:

(—(Ber — Bo)L) mod 27 = —6.852 x 1072 L mod 27 = 3.866403

(6.19)
(=(Bo — Be2)L) mod 27 = —1.0717 x 10~2 L mod 27 = 0.65722

which is not possible. However, we can satisfy (6.19) to within an arbitrary accuracy
with a long-enough coupling region.

Consider a plot of 8, = (B8, — Be2)L against 8; = (Be1 — Bo)L. We are only
interested in these angles’ values modulo 27, hence we can break the #; —8; plane up
into unit cells of sidelength 27 — one unit cell is shown in Fig-6.13, i.e. the ordered
pairs (61,0;) for 0 < 0; < 27 can be mapped one-to-one and onto the Cartesian
product of two circles, namely, a torus. The torus is equivalent to the unit cell in
Fig-6.13 if the sides TU and WV are identified (imagined pasted together) such that
points T' and W become one point as do U and V. One now has a cylinder, which
can be bent to bring the two ends together as a torus, i.e. the sides VU and WT
are identified.

If we follow the trajectory of the point (61,602) on the torus and the unit cell as
L increases, it begins at A and threads the central hole to arrive at B (note the
two B-points in Fig-6.13(a) are identified to become one point B in Fig-6.13(b)),
likewise to points C, D, E, F, G and H. If B,; — B, is not an integer multiple of
B, — B.1, the the trajectory does not close but instead progresses to I through H’

and now winds another full #;-cycle around the torus. It is readily shown that the
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Figure 6.13: (a) Unit cell of (0;,6;) plot and () (61,0,)-trajectory on

a torus

trajectory will only link with itself if and only if its gradient is a rational number,

i.e. Bez — B, and B, — Bey are rationally related. Otherwise[Brockner and Dieck,

1985, Theorem 4.13] the trajectory is then dense on the torus’s surface, i.e., passes

arbitrarily near to every pair of phase angles, even though there are infinitely many

(e.g. any rationally-related pair) that it does not pass through. Thus, with a

long enough coupling region, any pair (6, 62) can be satisfied to arbitrary accuracy.
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There is a practical limitation, however; some pairs may require an excessively long
coupling region, violating the requirement of device compactness needed for good

temperature and mechanical stability.

6.4.3 Results

In our case, we find that for L = 4021um, 6, = 3.8664 and 6, = 0.8929, so 6, is

matched to within 0.23 radian or 13 degrees and the device’s transfer matrix is:

U= Utzc;per exp (Z diag [ 3.866, 0, —0.8929 ]) Utaper =

0.338965 + 0.401666i  0.664866 -+ 0.0740843i  0.338965 -+ 0.401666i
0.510055 — 0.237861z  0.338965 + 0.401666: —0.471313 — 0.429997:
(6.20)

where Upgper is the matrix in (6.16) with parameters determined by the BPM simu-

( —0.471313 — 0.429997:  0.338965 + 0.401666:  0.510055 — 0.237861: )

lation of the taper. A BPM analysis of the whole device (rather than of the taper
only, with the whole device’s behaviour then inferred from reciprocity, as above)
fully confirms this result. The device’s performance, when incorporated into the
interferometer of Fig-6.1, is summarised in Fig-6.14 and would be adequate for this
application.

If we examine a graphical representation of the full BPM analysis, Fig-6.15 shows
the intensities within the device when a unit power eigenfield is input to the middle
guide, the field propagating from right to left in this figure. Note that the beating in
the central coupling region is very regular since, with the input to the middle core,
there is only beating between the two even supermodes. This contrasts with Fig-
6.16, which shows the field evolution after unit power is input to the outer waveguide
at the top right-hand corner of the figure, with the field propagating right to left. In
this case, all three supermodes are present in the coupling region, and the beating
there is complicated.

Finally, the control bars illustrated in Fig-6.12 may refine the design. If placed
far enough away from the device’s centreline, so as to influence only the second even
supermode (the other supermodes being too concentrated about the central core to

feel their effect), a second degree of freedom can be introduced into (6.19) to allow
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Figure 6.14: Interferometer output intensities as a function of relative
phase between the interferometer branches. Results for
input into the (@) two outer waveguides and (b) one outer

and one inner waveguide.

the phase condition, in theory, to be satisfied exactly. However, if the bars are far
enough from the core to influence the second even supermode only, their effect is
too small to improve phase matching significantly. If the bars are closer to the core,
their design becomes extremely difficult as they influence all the supermodes. In the
present case, the device is adequate without the bars but the principle may well be

useful in other cases.

6.5 Conclusions

We have presented two design procedures producing a 3 x 3 planar coupler to mimic
the nonplanar symmetric 3 x 3 fibre coupler, and have shown, by numerical sim-
ulation, that they achieve their design goals adequately. The first procedure has
the advantage that it specifies isolated core propagation constants and coupling
coeflicients, which are directly and individually controllable by core widths and sep-
arations. Thus, the procedure is simple to implement. However, the procedure is
only valid for weakly coupled guides. The second design procedure is valid however

tightly coupled the constituent waveguides may be; indeed, in our example, the three
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Figure 6.15: Propagation within strongly coupled device after excita-

tion through middle input waveguide

coupled waveguides merge into one. Furthermore, the procedure is grounded on the
physically more meaningful concept of coupled waveguide supermodes. However, the
procedure is unwieldy and its success depends more on trial-and-error because any
change made to the coupler’s cross-section influences all the supermodes together.
There is no simple way to design a waveguide’s cross-section so that specified phase

delays and couplings can be imposed on individual supermodes and supermode pairs.

We shall address the shortcomings of these ad hoc methods in the next two

Chapters.
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Figure 6.16: Propagation within strongly coupled device after excita-

tion through outer input waveguide

6.6 Appendix: Matrix Reciprocity and Conserva-

tion Laws

6.6.1 General Case

When waveguides are coupled so that overlaps between them cannot be neglected
for power calculation purposes, the Reciprocity Law shows that the K matrix can-
not have translationally invariant eigenvectors. Hence, the first design procedure
presented in this Chapter will fail.

We consider the general waveguide section (not necessarily translationally invari-
ant) in Fig-6.17. Let the transverse electric fields at cross-section A be expressible by
a superposition of complete basis fields {J)JA}, those at section B by fields from basis
{@[;JB} Let (E}, H}) be the field output from section B after the input of (E;, H;)
into section Aj; likewise let (E%, Hj) be the output from section A as a result of

the input of (E,, H) into section B. The Poynting vectors S; show the propagation
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Figure 6.17: Notation for the matrix form of the Reciprocity Law

directions. The electric fields are expressible as:
Ei =Y Ej¢tx
3

E'1=Z Z Ukalj’Lfi
j k
(6.21)
E, = Z Ey PP %
2

By =Y Y Uk By %
k

j
where the F,; and E,; are the complex weights in the linear superpositions repre-
senting the fields and Ufk and U}, are the elements of the forward and backward
transfer matrices, respectively. Since the system is linear, the weights in the input
(unprimed) field superpositions are mapped to those in the output (primed) field
superpositions by linear maps whose matrices are U/ and U®. If we assume that
the incidence of the input fields does not give rise to reflexions, then substitution
of (6.21) into the unconjugated reciprocity law[Snyder and Love, 1983, §31-2] (the
fields with subscript 1 are written for the unbarred field, those with subscript 2 fox"
the barred field) followed by integration of [Snyder and Love, 1983, Eq-(31-8)] over
the surface shown in Fig-6.17 yields:

UV, = VU! (6.22)

where (Va);x = <¢f, 1Z’;f> and (Vg)jr = <z/3f,zz;f> define the matrices of overlap



128 CHAPTER 6. PLANAR EMULATION OF 3 x 3 FIBRE COUPLERS

integrals between the basis fields.

6.6.2 Special Cases

The matrix reciprocity law (6.22) gives the following special cases:

e For a waveguide of length 6z whose basis fields are the isolated core eigenfields,
Uf ~ Ub ~ exp(1K 6z) and, by taking the limit as §z — 0, (6.22) is found to
be exactly equivalent to KTV =V K;

e If the overlaps between the cores are negligible then K7 = K

e If the waveguide is made of non-absorbing dielectric, then K must be real (as
are the isolated core eigenfields) and U* = U~!. This can be used to show that
U'VU = V, which becomes UTU = I (U is unitary) when overlaps between

the isolated cores can be neglected;

o If the basis fields are the local supermodal fields, which are always orthogonal,
then U® = (Uf)T and U® and U/ are unitary (by energy conservation, if the

fields are normalised) however tightly coupled the system may be; and

e If we consider a general 2 X 2 coupler with isolated core eigenfields as basis,
then we find (81 — B2) (¥1,%2) = (K21 — Ki2), that is, (A9) in [Snyder and
Ankiewicz, 1988] is a special case of KTV = VK.

We note in passing that U/ and U® are the off-diagonal partitions of the complete
scattering matrix[Pietzsch, 1989] S and the usual matrix statement of the reciprocity
law is S = ST. We see that the mat‘rix reciprocity and energy conservation laws
take their simplest form when the basis fields used are the local supermodes. Then
(6.2) is replaced with a system of coupled local mode equations[Snyder and Love,
1983, §31-14] and K is replaced with the Hermitian matrix of local modal coupling
coeflicients, whose eigenvectors are orthogonal however tightly coupled the cores
may be.

Note also that KTV = VK implies that, since K = KT in weakly coupled
systems and K # K7 in tightly coupled ones, the eigenvectors are necessarily or-

thogonal in the former case and necessarily not orthogonal in the latter. Hence,
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the procedure of §6.3, assuming translationally-invariant eigenvectors, must fail in
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