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ERRATA

p. IV (ABSTRACT): second paragraph, sentence before last: In leaf 5, cell size, number 
offiles and number o f cells per file were all reduced at high Rs.

p. 10, line 1: units for rw should read : g g'1 d"1.

p. 59, third paragraph, line 7: after ’’the number of cell files” INSERT: “and the number
o f files per cell ”
were significantly reduced.

p. 78. Table I, first column: units for E should be: mm d'1.

p. 82, second paragraph, line 3: after “cellochron age”, INSERT: instead of as a function 
of spatial location (compare left and middle panels in Fig. 2).

p. 105, verso: Legend of Fig 8 should read: b) average cell width in abaxial layer and c) 
number of cells in that layer,...
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Abstract

Typically, increasing soil resistance to root penetration (Rs) results in lower rates of 
leaf appearance, the formation of fewer tillers, slower leaf expansion and reduced sizes of 
mature leaves in seedlings of Triticum eastivum L. cv. Egret. The cellular basis of these 
observations at the whole plant scale was investigated in this work.

The reduced sizes of mature leaf blades were associated with smaller length and width 
of epidermal cells, a decrease in the number of cell files constituting the blade and a shift 
in the relative proportions of epidermal cell types. Marked differences in the magnitude 
of the effect of Rs on these cellular characteristics were observed between leaves. In leaf 
1 the number of cell files constituting the leaf was unaffected by Rs; the reduced leaf 
width was mainly due to the cells being narrower. In leaf 3 the number of cell files per 
blade was reduced by high Rs\ the reduction of cell width was much smaller and often not 
significant. In leaf 5, both cell size and number of files were reduced at high Rs. In all 
leaves the effect of Rs on the number of cells within a file was relatively small, indicating 
that the reduction in leaf length was largely due to the cells being shorter.

Slower leaf elongation rates were associated with a reduction of relative rates of cell 
expansion and partitioning throughout the growth zone in leaf 1. In leaves 3 and 5 
slower elongation rates were associated with a reduction of the number of dividing cells 
in. each file of the intercalary meristem and with a smaller length of cells entering the 
elongation only zone. The smaller length of cells exiting the division zone was associated 
with increased rates of cell partitioning, while the relative rates of cell elongation were 
unaffected.

The rate of leaf primordia initiation at the apical meristem was reduced by high Rs and 
the primordia grew slower after their initiation. When compared at the same plastochron 
age, most developmental parameters in the apex were not significantly affected by Rs. An 
exception to this was the circumference of leaf primordia nodes which, at a given 
plastochron age, was smaller at high than low Rs.

Differences between leaves in the cellular basis of the reduced leaf expansion at high 
Rs are discussed in relation to the timing of the stress with respect to the leaf 
developmental stage. Spatial and temporal patterns of cell division and cell expansion 
throughout the development of the leaf are discussed in relation to the realisation of 
characteristics of the mature blade.



A and A ’
List of sy m b o ls:

C02 assimilation rate and net assimilation rate over 24 h period (mol C m' 
' s ' 1)

a
c

Leaf area (m2)
cellochron i.e. time interval during which a new cell is added to a cell file

E
F

in the elongation only zone (h) 
leaf elongation rate (m s 1)
number of cells passing a given point of the elongation only zone per unit 
of time (“flux”, cells h'1)

HI 
hu K

Haun index
height of a leaf primordium measured from its base to its tip and of the 
apex relative to the base of leaf 5 (Jim)

L and W Leaf length and width, respectively (mm)
l(x) and /* (x) local length of sister cells and elements, respectively (mm)
It
It and /*f 

Esd) Lad, Lei,

length of the emerged part of the blade (mm)
length of mature sister cells and elements, respectively (pm)
length of the zone of symmetrical division, asymmetrical division, and
elongation only , respectively (mm)

n(x)
Nsd> Nad, Nei

number of cells along a file between location xsd and a further location x 
number of sister cells along a file in the zone of symmetrical division, 
asymmetrical division, and elongation only, respectively

PI plastochron index
Psd(x) and pdd(x) local relative rates of symmetrical and asymmetrical partitioning, 

respectively (cells cell'1 h"1)
§P,i > P.x proportion of fresh transverse walls within an interval i, of the division 

zone, and between the base of the leaf and a location x, respectively
^  tn proportion of sister cells associated with a trichome in the zone of

p and pi 
r\ and rw

asymmetrical division
total cell density and density per cell type (cells m'2) 
relative rate of leaf area expansion (m2 m'2 d'1) and dry-weight 
accumulation, respectively (g g'1 d 1)

f max maximum local relative cell elongation rate in the elongation onlv zone 
(pm pm'1 h'1)

rSd(x), rel(x) local relative cell elongation rates in the zone of symmetrical division and 
in the elongation only zone, respectively (pm pm'1 h'1)

<3

<3\

K

t(x)

ratio of total plant mass to leaf area (g m'2) 
ratio of leaf blades mass to area (g m'2)
average cell cycling time in the zone of symmetrical division (h) 
time taken for a cell to be displaced from xsd to a particular further 
location x

X

Xad» Xei

location along the growth zone
location from the base of the leaf (x0) of the distal end of the zone of 
symmetrical division, asymmetrical division, and elongation only (mm) 
respectively

R s soil resistance to root penetration (MPa)



p(x)
v(x)

cell density at location x  (cells m '1)
local velocity of displacement along a cell file (m h '1)
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Introduction.

The effects of unfavourable root environments on plant growth.

It is widely recognised that soil conditions during crop growth are of critical 

importance for achieving maximal yields. It is for this reason that often costly 

investments in soil treatments such as mechanical cultivation, fertilisation, irrigation and 

sometimes sterilisation are an integrated part of modem agricultural practice.

In natural ecosystems, the composition of plant species growing under otherwise 

similar climatic conditions, varies greatly depending on soil characteristics. This is due to 

differences between species in their capacity to adapt to unfavourable root environments.

What are the characteristics of the root environment that determine its suitability 

for growth?

Soils are usually not homogenous throughout the root environment; large spatial 

variation in soil physical and biochemical properties are more the rule than the exception. 

A great number of characteristics of physical, chemical and biological nature determine 

the suitability of soils for supporting plant growth.

Physical characteristics.

Soil water potential.

Transpirational water losses of crops can be as high as 8 mm/day for irrigated 

sorghum and com crops (Unger, Eck and Musick 1981). Whether the resultant reduction 

of water content of a soil becomes limiting to plant growth is determined by soil water 

potential (force required to extract water from the soil), which is determined by soil 

texture (sand, silt, clay and organic matter content), bulk density and water content. The 

water potential at which plants start to wilt depends on evaporative demand (Denmead 

and Shaw 1962), but transpiration rates are already affected well above the wilting point, 

indicating that mild water stress already occurs at higher water potentials (Unger, Eck 

and Musick 1981).
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Soil mechanical resistance to root penetration (R<).

The resistance encountered by roots when growing into a particular soil is higher if 

the soil is densely packed or has a low soil water content (Barley, Farrell and Greacen 

1965; Taylor and Ratliff 1969). Over a wide range of combinations of soil density and 

soil water content, the rate of both root growth (Barley, Farrell and Greacen 1965; 

Taylor and Ratliff 1969; Goss 1977); shoot growth (Masle and Passioura 1987; 

Passioura and Gardner 1990) and yield of crops (see references in Bowen (1981)) are 

negatively affected by soils with a high resistance to root penetration (Rs). A measure for 

assessing the resistance encountered by roots can be obtained using a soil penetrometer, 

a device that measures the force required to drive a cone of known dimensions into the 

soil. The values obtained by this method are proportional to, but overestimations of the 

actual the resistance encountered by the roots (Bengough and Mullins 1990). The 

reduction of both root and shoot growth is over a wide range of combinations of soil 

densities and water potentials directly proportional to Rs, and occurs before limitations of 

water, nutrient or carbohydrates can be detected (Masle and Passioura 1987; Passioura 

1988), indicating that soil strength itself is probably directly sensed by the roots.

Soil temperature.

In temperate and colder climates, temperature plays a major role in determining the 

geographical distribution of plant species (Langridge and McWilliam 1995). Soil 

temperature affects most root functions (growth, water and nutrient uptake) and thereby 

plant growth (Voorhees 1981).

Soil aeration.

Respiration of roots and soil (micro) organisms requires a constant diffusion of O2 

into and C 0 2 out of the soil. If the soil were sealed off at the surface, oxygen would be 

depleted within a few days (Canned and Jackson 1981). Both root and shoot growth are 

sensitive to 0 2 concentrations around the roots (Grable and Siemer 1968; Canned and 

Jackson 1981; Neuman and Smith 1991). Diffiisibdity of a soil is determined by the 

fraction of air fdled porosity and the thickness of the water film surrounding the roots 

(Grable and Siemer 1968)
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Chemical characteristics.

Mineral availability.

A complex system of interrelated equilibria between fixed and ionically bound pools 

of ions and their concentration in the soil solution determines availability for uptake by 

the root system (Sumner and Boswell 1981).

Salinity.

Excessive concentrations of soluble salts accumulate in the root environment under 

conditions when evapotranspiration exceeds irrigation and precipitation. This can result 

in reduced crop productivity from osmotic stress (total soluble salt concentration 

(Slatyer 1967)), from toxicity or nutrient imbalances when specific solutes are excessive, 

and from deterioration of the soil structure in case of excess sodium (Hoffman 1981).

PIL

The pH is probably the most commonly measured soil chemical characteristic in 

agricultural practice. Acid soils are believed to be restricting plant growth, due to direct 

toxic effects of the pH to the roots and through its effects on the levels of certain 

minerals in the soil solution, causing either toxic levels (A1 or Mn), or growth limiting 

levels of other minerals (Ca, Mg and Mo) to occur (Gerdemann 1974; Moore 1974).

Biological characteristics

Micro-organisms in the rhizosphere (bacteria, actinomycetes, fungi, nematodes and 

viruses) could roughly be subdivided into pathogens, symbionts and organisms that have 

no direct interaction with plants.

Pathogens.

A wide range of pathogenic micro-organisms has been described, some of which 

cause only minor stress symptoms, while others result in severe growth reductions or 

plant death. Many pathogenic micro-organisms are specific to a limited host range, but 

others affect a much greater variety of plant species.

Symbionts.
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Some symbiontic micro-organisms are beneficial for the plant species they form a 

symbiosis with, usually by improving nutrient availability for the plant. Two examples in 

this class are mycorrhizae, which generally increase the nutrient uptake capacity of the 

roots (Gerdemann 1974) and Rhizobium bacteria that form nodules on most leguminosae 

roots, enabling them to reduce atmospheric N2 into organic nitrogen compounds (Werner 

1992).

Interactions/commonalities in the way various factors in soil environment affect 

plant growth.

The above illustrates the wide range of factors affecting the suitability of a soil for 

plant growth. However, many of those characteristics affect plant growth indirectly, 

through interactions with other factors. We already mentioned this aspect for pH, 

mycorrhizae and rhizobium bacteria, which affect plant growth mainly through effects on 

nutrient availability, and for salinity, which affects plant growth primarily by reducing the 

water potential of the soil solution.

Soil characteristics that result in reduced root volume, such as high Rs, lack of 

aeration and root pathogens, reduce the amount of potentially available water and 

nutrients. Under conditions where water and nutrients become limiting, plants with 

reduced root systems are likely to be affected sooner and more severely than plants with 

a more prolific root system.

Despite the great number of soil characteristics that affect plant growth, there is only 

a limited number of physiological reasons why they do so. These are related to effects on 

the primary functions of the root system in relation to whole plant growth and 

development:

1. Restricted uptake of nutrients can result in one or more nutrients becoming limiting 

for growth. Which aspect of plant growth is affected, depends greatly on the 

physiological function in the plant of the particular ion(s) whose uptake is limiting. 

Excellent books have been written on symptoms resulting from specific mineral 

deficiencies and estimates of critical levels of many ions in plant tissue have been 

established (see Bould, Hewitt and Needham (1983)). Nutrient availability 

undoubtedly is an aspect of the root environment that is of major importance in
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relation to plant growth and development. However, the physiological basis of the 

effects on plant growth and development are very specific for each individual ion and 

the study of these is an area of research that falls outside the scope of this thesis.

2. Restricted water uptake. Water constitutes more than 80% of most plant tissues 

(Slatyer 1967), and is therefore a direct requirement for plant growth. However, 

most of the water taken up by the roots is transpired from the leaves, thus creating a 

constant water flow from the roots to the shoots by which minerals and metabolic 

components are transported. Restricted water availability primarily results in stomatal 

closure, which inhibits photosynthesis and transpiration. More severe water stress 

can reduce the water supply to growing regions of the plant thereby restricting the 

driving force for growth. Finally low water potentials in general may affect the 

activity of enzymatic processes critical for functioning of the metabolism of individual 

cells and the plant as a whole.

3. Soil resistance to root penetration. Soil resistance to root penetration reduces 

stomatal conductance and plant growth rates. It has been shown that in the short 

term this effect is not mediated by plant water relations, mineral uptake or 

carbohydrate status of the plant (Blackman and Davies 1985; Gollan, Passioura and 

Munns 1986; Masle and Passioura 1987; Saab and Sharp 1989; Masle 1990; 

Passioura and Gardner 1990; Gollan, Shurr and Schulze 1992).

Agronomical and ecological importance.

The increasing mass of agricultural tractors and equipment and their frequent usage 

under situations that are too wet, means that soil compaction, destruction of soil 

structure and increases in mechanical impedance are becoming an ever increasing 

problem in agricultural practice (Bowen 1981). Data from (Carter et. al. 1965; Carter 

and Tavemetti 1968) cited by (Bowen 1981) show that increasing soil strength in the 

range of 0 to 2.5 MPa penetrometer resistance reduced cotton yield from 3600 to 1200 

kg/ha.

Wheat grain yield in dryland cropping in Australia is greatly determined by the amount 

of soil water available for the crop throughout the growing season (Hamblin and Kyneur 

1993). Many years of low rainfall, therefore, have brought many Australian farmers to 

the brink of bankruptcy.
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In the western United States, crop production is limited by salinity on about a quarter 

of the 20 million ha of irrigated land, and about half of that irrigated acreage was actually 

considered to be threatened by salinity (Wadleigh (1968), cited by Hoffman (1981)). 

Moreover, worldwide survey of 24 countries showed that over 50 million of a total of 

756 million ha cultivated land and 91 million ha of irrigated land is affected by salinity 

(Salhevet and Kamburov (1976), cited by Hoffman (1981)).

Over 1.5% of the US energy budget is spent on tillage practices, aimed at loosening 

soil for root penetration, bury the residue from previous crops, provide a suitable 

environment for seed germination, improve water infiltration, provide aeration and 

control weeds (Sumner and Boswell 1981).

Acid soils are an enormous problem under circumstances where annual rainfall 

exceeds evapotranspiration and tens of millions of tons of lime are used yearly in 

agriculture to correct for low soil pH (Adams 1981). Acid rain is the deposition of 

atmospheric pollutants of acidic nature, most importantly S 0 2, NOx and HC1, resulting 

from western industrialisation. It has been implicated as a possible cause of massive 

damage to forests in Germany and several other European countries, possibly though 

acidification of the soil (Mason 1992).

These figures are not complete or even comprehensive, but are numbers that illustrate 

the significance of soil characteristics from an agronomical and ecological perspective.

Topic of the thesis.

In this thesis I am going to investigate the effects of soil resistance to root penetration 

(Rs) on leaf development and leaf area expansion in wheat.

Rs was chosen as the experimental treatment, because of its wide relevance to natural 

conditions. In relation to root growth it has been shown that soil strength should be 

regarded as a property that has a general influence, rather than as a limiting condition in 

unusual soils (Barley, Farrell and Greacen 1965), and it is likely that a similar statement 

could be made for shoot growth. It is thought that Rs is one of the soil characteristics
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sensed by the roots, of plants growing on drying soils, causing reduced growth rates 

and stomatal conduction (Passioura 1988; Passioura and Gardner 1990).

I already indicated that Rs is determined for any particular soil by soil density and soil 

water content. Research into the effects of Rs is experimentally difficult because the soil 

density and water content change together and it is therefore hard to directly link effects 

on plant growth of changes in either bulk density and water content per se directly to Rs 

when it is not specifically measured. A difficulty with soil stress as an experimental 

treatment in general is to obtain steady-state conditions. Especially in field situations it is 

very hard to obtain reproducible results, because it is virtually impossible to maintain a 

constant level of stress due to varying soil and environmental conditions.

Earlier work has defined a set of conditions in which these limitations could be largely 

overcome. Masle and Passioura (1987) and Masle (1990) defined a set of combinations 

of soil bulk density and water content for which the effects on plant growth are directly 

associated with Rs, i.e. not due to limited oxygen diffusibility or soil water potential 

(Masle and Passioura 1987; Masle 1990; Passioura and Gardner 1990). Moreover, 

amounts of nutrients which need to be added to the soil in order for them to be non

limiting for growth under these conditions have been established (Masle, unpublished 

data).

With the same set of soil conditions, the effects of Rs on whole plant and leaf growth 

response (Masle and Passioura 1987; Masle and Farquhar 1988; Masle 1990; Masle, 

Farquhar and Gifford 1990; Masle 1992), photosynthetic characteristics and 

carbohydrate metabolism (Masle and Farquhar 1988; Masle 1990; Masle, Farquhar and 

Gifford 1990; Masle 1992) and water relations (Masle and Passioura 1987; Masle 1990; 

Passioura and Gardner 1990) have already been well documented through earlier work.

This background work was mostly done with wheat, which as a grass is especially 

suitable for leaf developmental studies. The reasons for this are that, in contrast to 

dicotyledonous leaves, growth is essentially unidirectional and leaves elongate at an 

approximately constant rate during the period during which up to 90% of the blade is 

formed (Ong and Baker 1985). During this phase the processes cell division, expansion 

and maturation occur in separate zones at the base of the leaf (Figure 1). The spatial
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organisation of the growth zone of grass leaves is very similar to the situation found in 

root tips. As a result of this, experimental methods that were originally developed to 

investigate cell division and elongation rates in root tips (Erickson and Sax 1956a; 

Erickson and Sax 1956b; Green 1976) are very suitable for the analysis of growth 

kinematics in grass leaves (Boffey, Sellden and Leech 1980; Volenec and Nelson 1981; 

Schnyder, Nelson and Coutts 1987). Many physiological aspects of leaf expansion in 

general and in response to various environmental stresses have been investigated using 

this approach.

Environmental conditions.

All experiments reported in this thesis were done under the same conditions, with one 

of the cultivars (Egret) on which most information had been obtained.

The conditions during the experiment were set as: 18/15 °C day/night temperature, 

600 jiE .m ls '1 photosynthetically active irradiance, 11 h photo- and thermoperiod and a 

relative humidity of 80% day and night. These conditions are realistic for wheat and 

allow reasonably low rates of water loss i.e. minimal diurnal variation in Rs. The 11 h 

duration of the photo-period encertains a fairly long period of vegetative development. 

The somewhat high value for the relative humidity prevents excessive evaporation from 

the soil and transpiration from the leaves, thus enabling maintenance of a more constant 

level of soil water

Underlying mechanisms.

Decrease root and shoot growth.

Roots growing in a soil with a high mechanical resistance to root penetration (Rs) 

generally elongate slower (Barley 1962; Barley, Farrell and Greacen 1965; Taylor and 

Ratliff 1969; Russel and Goss 1974; Atwell 1988; Masle 1992), but have an increased 

diameter (Goss 1977; Russel and Goss 1974; Wilson and Robards 1977; Atwell 1988; 

Masle 1992). Branching is often reported to be affected, but conflicting results have been 

obtained as to whether high Rs increases or decreases the number of lateral roots (Goss 

1977; Wilson and Robards 1977; Atwell 1988; Masle 1990; Gordon et. al. 1992; Masle
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1992) . The increased diameter is for the greatest part due to an increase in the amount of 

cortical tissue, while the stele is relatively unaffected. The increased amount of cortical 

tissue is mainly associated with increasing cell diameter and sometimes also with an 

increase of the number of cortical cell files (Goss 1977; Wilson and Robards 1977; 

Atwell 1988). Reduced root length is associated with a reduction in cell length (Wilson 

and Robards 1977; Atwell 1988). Root elongation rates of plants grown hydroponically 

and in vermiculite are also reduced by low water potentials of the applied nutrient 

solution (Sharp, Silk and Hsiao 1988; Spollen and Sharp 1991; Zhong and Läuchli

1993) .

The overall rate of leaf area expansion of the plant is a result of a small number of 

developmental processes:

1) The rate of leaf initiation and emergence per axis (stem/branch).

2) Rate and duration of expansion of individual leaves, which together determine the 

mature size of newly formed leaves.

3) Formation of new growth axes (tillers/branches) from axillary meristems.

Leaf appearance rate of wheat plants growing in soils with low soil water potential or 

high Rs are reduced (Masle and Passioura 1987; Masle 1990; Masle 1992). Leaves 

elongate more slowly (Masle and Passioura 1987; Saab and Sharp 1989) and although 

the duration of leaf elongation is increased by high Rs, this does not compensate 

completely for the reduced elongation rate and mature leaves are smaller in both length 

and width (Masle and Passioura 1987; Masle 1990; Masle 1992). In this thesis, I will 

study this reduction in leaf elongation rate and final size of mature leaves in more detail.

Growth analysis.

The basis of differences in plant growth rates can be analysed by decomposing the 

overall plant growth rate into a number of characteristics relating to photosynthetic rates 

and parameters quantifying dry matter distribution using the identity:

A
rw = — , (Equation 1; (Masle, Farquhar and Gifford 1990))

G
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with rw the relative growth rate on a mass basis (g.m'2.d'*) A’ the net assimilation rate 

(g .n V .d 1) and G (g.m'2) the ratio of plant mass to leaf area. If A ’ is determined in terms 

of a units of carbon, it relates to assimilation rate measured in gas exchange systems A 

(mol CO2 m V 1) according to:

A  = /A( 1 -(j)) , (Equation 2; (Masle, Farquhar and Gifford 1990))

with (/, a fraction of light period per 24h) and <}) the proportion of carbon fixed in the 

shoot that is subsequently lost by the shoot at night and by the roots during day and 

night.

a  can be further decomposed into y, the root: shoot ratio a measure for dry weight 

partitioning between roots and shoots, and Gi, the ratio of leaf dry weight per unit leaf 

area (g.m'2).

G = (y + 1)g ,, (Equation 3; (Masle, Farquhar and Gifford 1990))

Relative growth rate.

The reduction of seedling growth in response to high Rs is especially notable during 

the first few days after germination (Masle and Passioura 1987; Masle 1990; Masle 

1992). Thereafter, differences in relative growth rates, in terms of mass (rw) and leaf area 

(r/) gradually become more similar between plants grown at low and high Rs, sometimes 

to the extent that the difference is no longer significant (Masle 1990; Masle 1992). This 

is especially true for r/, which appears to be less sensitive to high Rs than rw after about 

two weeks after sowing (Masle 1990; Masle 1992).

Dry weight partitioning

Root growth is at first more affected by Rs than shoot growth, i.e. plants growing at 

high Rs initially have a lower root to shoot ratio than plants growing at low Rs. However, 

shortly after germination, shoot growth becomes more reduced by high Rs than root 

growth (Masle 1990; Masle, Farquhar and Gifford 1990; Masle 1992). Root to shoot 

ratio remains constant over the first 16 days after sowing at high Rs, whereas at low Rs
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this ratio gradually decreases and at about two weeks after sowing it becomes lower than 

at high Rs (Masle, Farquhar and Gifford 1990). The amount of carbon in the leaf per unit 

leaf area is higher in plants growing at high Rs (Masle and Farquhar 1988; Masle, 

Farquhar and Gifford 1990).

Assimilation rate.

Net assimilation rate was increased by 20% over the period between 13 and 20 days 

after sowing when plants were grown at high Rs (Masle 1992). However, this latter 

response was not representative for wheat in general, because in most other genotypes 

assimilation rates were not significantly affected or decreased by high Rs (Masle 1992).

The increased A ’ for the cultivar Egret is associated with increased photosynthetic rates 

per unit leaf area during the light period (Masle and Farquhar 1988; Masle, Farquhar and 

Gifford 1990). This occurs despite lower intercellular C 0 2 concentrations (Masle and 

Farquhar 1988; Masie 1990) that are caused by higher stomatal resistance at high Rs 

(Masle and Passioura 1987; Masle 1990; Masle, Farquhar and Gifford 1990; Masle 

1992). This suggests a greater biochemical photosynthetic capacity per unit leaf area at 

high Rs. In support of this hypothesis a 25% increase in ribulose biphosphate carboxylase 

(Rubisco) activity per unit leaf area was found in the leaves of plants growing at high Rs 

(Masle and Farquhar 1988). Part of the increased photosynthetically bound carbon 

however is lost, due to a 10 - 12% increase of fraction of fixed carbon that is lost by 

respiration (Masle, Farquhar and Gifford 1990).

Transpiration and water use efficiency.

As a result of the increased stomatal resistance in leaves of plants growing at high Rs, 

transpiration rates per unit leaf area are greatly reduced (Masle 1992). Because 

assimilation rates per unit leaf area during the light period (when most transpiration 

occurs) are somewhat increased, the amount of water transpired per unit of carbon 

accumulated, water use efficiency (WUE), is greatly increased by high Rs (Masle and 

Farquhar 1988; Masle 1992).
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Cellular level.

Biophysical view.

The physical description of cell expansion put forward by Lockhart (Lockhart 1965a; 

Lockhart 1965b) plays a central role in our understanding of cell and organ expansion. 

According to this model the cell wall is a viscous material, which stretches elastically, but 

resists irreversible deformation unless the tension within it exceeds a certain threshold. 

Above this threshold, the material stretches irreversibly at a rate that is dependent on the 

amount of tension exerted on the tissue. In its most general form the Lockhart equation 

(Equation 1 (Passioura and Fry 1992) describes the relationship between volumetric 

expansion rate (d\n(V)/dt), water relations of a single cell or an expanding tissue (the 

water potential outside the cell or in the xylem, VF0, and the osmotic pressure inside the

cell or expanding tissue, n), cell wall mechanical properties (extensibility (m) and 

threshold pressure for irreversible expansion, Y) and hydraulic conductance of cell wall(s) 

and membrane(s) (K).

d  ln(V) 
dt

mK 
m + K

(vP0 + 7 t- Y ) (Equation 1).

In single-cell experimental models, it has been shown that the hydraulic conductance 

is not a limiting factor for cell expansion (Zhu and Boyer 1992). This has led many 

researchers to adopt the simplified version of the Lockhart equation which excludes the 

role of hydraulic conductance (equation 2).

° ln(V) = m ( P -  Y)(Equation 2).

Turgor.

The formulation of the Lockhart equation (especially when formulated as in equation 

2) suggests expansion rates to be determined by turgor (assuming m and Y are relatively 

invariable). However, in experiments in which the turgor pressure of expanding cells or
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tissues is manipulated, this only leads to transient changes in the rate of expansion 

(Passioura and Fry 1992; Zhu and Boyer 1992). Moreover, turgor pressure is virtually 

constant along the growth zone of expanding maize roots, while local rates of expansion 

varied up to five-fold in the same locations (Spollen and Sharp 1991; Tomos and 

Pritchard 1994). The current consensus is that although turgor is required as a driving 

force, it does not in itself determine the rate of expansion growth except for short term 

(minutes) transient changes.

Conductivity (K).

In higher plants, the path for water movement into expanding cells/tissue is longer 

than for isolated cells and the hydraulic resistance in these organisms may be substantial. 

Indeed, the existence of significant water potential gradients between the xylem and 

enlarging cells of elongating organs implies significant frictional resistance to water 

movement from the xylem into the enlarging tissues (Boyer 1993; Nonami and Boyer 

1993). Low water potentials in the root medium can result in local inversion of these 

gradients in elongating soybean stems, effectively starving expanding cells for water. This 

results in total growth inhibition for about two days, after which the gradient was re

established and growth continued at a lower rate than the non-stressed control (Nonami 

and Boyer 1989).

Cell wall rheology (m and Y).

Current understanding of cell wall extensibility is based on knowledge of the 

biochemical composition of the primary cell wall (see eg. Brett and Waldron (1990), 

Carpita and Gibeaut (1993)). In short, the cell wall consists of great numbers cellulose 

microfibrils embedded in the so called cell wall matrix. The cellulose microfibrils are 

extremely long, ca 10 nm wide bundles of 30 to 100 cellulose molecules, with a very high 

tensile strength, whereby they determine to a great extent the strength of the cell wall as 

a whole. In elongating cylindrical cells/organs the direction of elongation is thought to be 

determined by the alignment of the cellulose microfibrils, which functions as a “hoop 

reinforcement” thus preventing increase in diameter to a much greater extent than 

expansion in length (Green 1980). The matrix of the cell wall, in which the cellulose 

microfibrils are embedded, consists of a variety of polysaccharides, proteins and phenolic 

compounds. Recent models (Passioura and Fry 1992; Cosgrove 1993) suggest a critical
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role for the matrix polymers that cross link the network of cellulose microfibrils in cell 

wall expansion, thereby preventing cell wall expansion. It is thought that certain enzymes 

(notably XET and expansins) in expanding cell walls cut or loosen these crosslinking 

polymers, allowing the microfibrils to move apart and thereby the wall to expand (Smith 

and Fry 1991; McQueen-Mason, Durachko and Cosgrove 1992; Potter and Fry 1994; 

Taylor et. al. 1994). Other enzymes (such as peroxidases) have been implicated with 

cross-linking of the microfibrils, thereby stiffening the cell wall and reducing cell 

expansion (MacAdam, Nelson and Sharp 1992; MacAdam, Sharp and Nelson 1992). The 

effect of ABA on leaf expansion (see below) may be mediated by its effects on the 

activity of one or more of these enzymes.

Metabolic view.

Because the reduction of shoot growth rates to high Rs were shown to be unrelated to 

soil water potential, soil aeration and nutrient supply, it was hypothesised that growth of 

the shoot is primarily reduced in response to a hormonal message induced in the roots at 

high Rs. Unfortunately no research has been done directly addressing the relationship 

between Rs and ABA metabolism.

However, it has been shown that the concentration of ABA in the xylem increases in 

response to both high soil density (Tardieu et. a l  1992) and low soil water contents 

(Zhang and Davies 1990b; Tardieu, Zhang and Davies 1992; Bano et. al. 1993). This 

suggests that ABA could be involved in the hormonal message in response to high /?s. 

This increased xylem ABA concentration is believed to cause the reduction of stomatal 

conductance (Zhang and Davies 1990b; Shurr, Gollan and Schulze 1992; Tardieu, Zhang 

and Davies 1992; Tardieu et. al. 1992) and leaf elongation rates in response to a number 

of root stresses in many species (Quarrie and Jones 1977; Van Volkenburg and Davies 

1983; Saab et. al. 1990; Zhang and Davies 1990a; Saab, Sharp and Pritchard 1992; Blum 

and Sinnema 1995). In maize it was shown that ABA accumulation plays a direct role in 

both the maintenance of primary root elongation and the inhibition of shoot elongation at 

low water potentials (Saab et. al. 1990). It has been shown that ABA reduces the 

extensibility of expanding cell walls, m (Cleland 1986), which could be the mechanism 

underlying its effect on leaf expansion.
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There is some evidence from work with saline stressed wheat and barley, that the 

ABA concentration in the xylem sap cannot always account fully for the observed 

reduction of leaf expansion rate in response to root stress (Munns 1992). There are 

indications that other hormones such as cytokinins (Bano et. al. 1993; Itai and Vaadia 

1965; Itai and Vaadia 1971) and ethylene (Apelbaum and Yang 1981; Dunlap and Molina 

1993) could also be involved in root signals that mediate growth response and stomatal 

conductance of the leaves in response to adverse conditions in the rhizosphere. 

Moreover, the concentration of various minerals in the xylem sap, as well as its pH affect 

the response to ABA (Amzallag, Lerner and Poljakoff-Mayber 1992; Shurr, Gollan and 

Schulze 1992; Bernstein, Läuchli and Silk 1993), it has been hypothesised that this is due 

to effects on compartmentation of ABA in the leaf (Davies and Zhang 1991).

Growth rates of leaves at high Rs become limited by carbohydrate levels in the 

growing regions once the seed reserves are depleted. However, at similar carbohydrate 

levels, leaf growth rates are lower at high than at low Rs (Masle, Farquhar and Gifford 

1990), implying that the sensitivity of the growing tissues of the leaf to carbohydrate 

status is reduced by Rs. It is thought that this reduced sensitivity of the leaves to 

carbohydrate levels in the growing regions is mediated by a chemical signal from the 

roots, possibly ABA, and that it increases the availability of carbohydrates for root 

growth (Masle, Farquhar and Gifford 1990).

Commonalities with other soil stresses.

Many commonalities exist in the response of plant growth to salinity, low soil water 

potentials and high soil mechanical resistance to root penetration: Reduced leaf 

elongation rates occur in response to salinity (Termaat, Passioura and Munns 1985; 

Bernstein, Läuchli and Silk 1993; Zakharin 1993), drying soil (Passioura 1988; Randall 

and Sinclair 1988; Passioura and Gardner 1990) and low water potential in hydroponic 

solutions (Van Loo 1992); Leaf emergence rates are reduced by drying soil (Randall and 

Sinclair 1988) and low water potentials in hydroponic solutions (Van Loo 1992); 

Stomatal conductance is reduced in drying soil (Sharp and Davies 1979; Zhang and 

Davies 1990b; Tardieu et. al. 1992; Bano et.al 1993;); Root / shoot ratio is increased by 

salinity (Zakharin 1993), low water potentials in vermiculite (Sharp, Silk and Hsiao 

1988; Saab, Sharp, Pritchard and Voetberg 1990) and drying soil (Sharp and Davies
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1979; Passioura 1988) because root growth is less affected than shoot growth; Finally as 

with high Rs, ABA levels in the xylem sap have been shown to increase in plants growing 

in drying (Gollan, Passioura and Munns 1986; Passioura 1988; Zhang and Davies 1990a; 

Zhang and Davies 1990b; Tardieu et. al. 1992; Tardieu, Zhang and Davies 1992; Bano 

et. al. 1993) or saline soils (Munns 1992).

Functionally, the existence of a common response mechanism to high Rs, and low 

water potential seems an attractive possibility, because many commonalities exist 

between the two factors. It was already pointed out that Rs is determined by soil water 

potential (for any given soil density) (Bengough and Mulhns 1990; Passioura and 

Gardner 1990) and that the reduction of root growth due to high Rs limits the amount of 

available water in the rhizosphere. The response to high Rs may in fact be interpreted as 

an anticipation to possible water limiting conditions resulting from this restricted root 

system (Masle and Farquhar 1988). The commonalities between these responses to 

different soil characteristics makes that many of the results obtained by investigating any 

one of these stresses are likely to be of significance to our understanding of the others. 

Moreover, they may indeed be of more general consequence to plant growth response to 

adverse physical soil conditions than is often realised.

Research strategy.

The aim of this thesis is to analyse some of the cellular aspects of the overall leaf 

growth in response to Rs. As the previous section illustrates, many of the processes that 

are involved in leaf area expansion operate at the cellular level. Therefore a sensible 

approach to resolve the mechanisms by which leaf expansion is affected by Rs is to 

investigate the cellular basis of the growth reduction observed at the whole plant scale. 

For this we will analyse the cellular basis of differences in mature leaf dimensions, the 

kinematics of cell division and expansion in elongating leaves and the relationships 

between apical characteristics and early events of leaf formation.

For practical reasons we will focus on the epidermal cell. In contrast to the mesophyll, 

the epidermis is continuous (i.e. no intercellular airspaces), and being the outermost cell 

layer, the epidermis is easily accessible. Physiologically, the epidermis is also very 

interesting, because it forms the barrier between the plants internal and external
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environment. Through regulation of stomatal conductance the epidermis plays a crucial 

role in the regulation of photosynthesis and transpiration . The epidermis has been 

implicated as the tissue that determines expansion rates in both leaves and stems (Green 

1980; Kutschera, Bergfeld and Schöpfer 1987; Kutschera 1989; Sauter, Seagull and 

Kende 1993; Hara 1995). Green (1980) emphasises the importance of the outer 

epidermal wall from a biophysical perspective in relation to changes in shape, such as 

those that occur during the process of leaf initiation at the apex (Green 1980). Moreover, 

the initial periclinal cell divisions that are involved in the formation of new leaf primordia 

at the apex, are largely restricted to the surface layer of cells in monocotyledonous plants 

(Esau 1977).

Literature on leaf development and expansion in grasses.

The developmental process of grass leaves in general and wheat leaves in particular, 

comprises of two distinct phases, the early development at the apex and the phase of 

rapid linear expansion, respectively. These have traditionally been investigated as more or 

less separate events. So far the relationship between developmental processes during 

those two phases have hardly been explored. The reason for this is that most researchers 

traditionally focussed their attention on either the process of leaf initiation at the apex or 

leaf expansion after emergence of the tip of the leaf from the whorl of enclosing sheaths.

Leaf initiation at the apex.

Cereal leaves are initiated down the side of the apex, adhering to a distichous 

phyllotaxis (alternating between opposite sides of the shoot; (Wilhams 1974)). The onset 

of leaf initiation is marked by a shift in the direction of growth in the region where the 

new primordium will emerge. The cytoskeleton plays a central role in this process, 

through its effects on the polarity of both cell division and expansion.

The organisation of the cytoskeleton determines the orientation of mitotic division and 

subsequent cell plate formation (for a recent review, see Baskin and Cande (1990)). The 

earliest morphologically recognisable event of leaf initiation is an increase in the 

proportion of periclinal divisions. In Triticum aestivum these first periclinal divisions 

occur in the outermost cell layer of the apex (Foard 1971).
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It has been widely accepted that the direction of cell expansion is governed by the 

alignment of cellulose microfibrils in the primary cell wall of expanding cells (Carpita and 

Gibeaut 1993). A great body of research has shown that the pattem of cellulose 

deposition in the primary cell wall is correlated with the organisation of microtubule 

arrays in the cytoplasm (Hardham, Green and Lang 1980; Gunning and Hardham 1982). 

It has been suggested that the microtubule arrays determine the orientation of the 

cellulose deposition in the cell wall, by guiding the movements of the cellulose synthetase 

molecules in the plasma membrane (Gunning and Hardham 1982). A reorientation of 

both microtubules and cellulose microfibrils prior to the emergence of leaf primordia has 

been shown during leaf formation in Graptopetalum paraguayense (Hardham, Green and 

Lang 1980). The shift in the direction of cell expansion is not a direct consequence of the 

change in the orientation of cell division, but both processes are partly independent. 

Evidence for this comes from the observation that a protrusion forms on the side of 

gamma radiated Triticum aestivum apices in which cell division is completely inhibited 

(Foard 1971). The mechanism responsible for the reorientation of the cytoskeleton in the 

location of the future leaf primordium is currently not resolved. One plausible 

explanation is that the cytoskeleton responds in reaction to local stretching of the apical 

tissue caused by the growth of previously formed primordia (Jesuthasan and Green 

1989).

The initial protrusion enlarges through continued cell division and expansion, and also 

through lateral expansion of the periclinal cell division activity (Steevens and Sussex 

1989). As a result of this, the primordium completely encircles the apex and becomes 

hood shaped (Wilhams 1974). Clonal analysis in Nicotiana and Zea mays has shown that 

in those species a total of 100 to 200 cells from different histological layers of the apex 

contribute to the formation of the leaf primordium (Poethig 1984a; Poethig 1984b).

In wheat, the rate of initiation of leaf primordia by the apex is linearly dependent on 

the temperature in the range between 10 and 20 °C (Miglietta 1989). Beyond this range, 

the responsiveness to higher temperatures decreases and maximum rates occur around 25 

°C (Friend, Helson and Fisher 1962). Besides temperature, leaf initiation rates are 

dependent on light intensity, photoperiods, nutrient supply and ambient C 0 2
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concentration (Friend, Helson and Fisher 1962; Austin and Jones 1975; Milthorpe and 

Moorby 1979; Masle, unpubl.)

Early growth of leaf primordia.

After a limited period, during which cell division occurs throughout the newly 

initiated leaf primordium, cell division ceases in the tip of the primordium and the cells in 

this region start elongating, causing a sudden increase in leaf expansion rates 2 - 3  days 

before emergence (Williams 1960).

Initiation of the vascular system occurs very early during the development of the leaf. 

In Triticum aestivum provascular strands are initiated in a characteristic order. The 

median provascular strand is initiated first, approximately 1 plastochron after inception of 

the primordium, when it is only 4 cells high. A succession of laterals is initiated during 

the next four plastochrons. The median and first order lateral strands are initiated in the 

disk of insertion of the primordium and develop both acropetally into the primordium 

and basipetally to connect with the rest of the vascular system. Lower order laterals are 

initiated later and up in the primordium, and further development is solely in basipetal 

direction (Sharman and Hitch 1967). It has been demonstrated in stems of various 

species that canalised flows of auxin through the undifferentiated mass of ground tissue 

mediates the initiation and further development of procambial strands that connects new 

leaves with other parts of the plant (Sachs 1984a; Sachs 1984b). It is likely that the 

presence of a functional vascular system is a prerequisite to the increased influx of water, 

minerals and carbohydrates needed for the increased rates expansion occurring during 

the phase of rapid leaf expansion.

Growth during the phase of rapid leaf expansion .

Structure and functioning of the growth zone.

After emergence of the tip of the leaf from the whorl of leaves surrounding the apex, 

leaf elongation rates are approximately linear for some days until a final decline sets in 

(Kemp 1980; Paolillo and Sorrells 1992). In wheat and barley 90% of the leaf is formed 

during the phase of linear growth (Ong and Baker 1985). During this phase, cell division 

is restricted to a short zone (< 0.5 cm) at the base of the leaf. Cells produced by this

19



Leaf
base Leaf elongation

>

Growth zone

Figure 1. Spatial organisation of the basal region of a grass leaf during the phase of rapid 
leaf expansion. Definition of each zone is based on the occurrence or absence of the 
processes of partitioning, expansion and maturation in it.



meristem move through a zone of constant length in which all cells are elongating, until 

they reach the end of the growth zone where they have attained their final length (Figure 

1; Boffey, Sellden and Leech (1980)). Due to the fact that cell division and expansion are 

longitudinally oriented, the shape of the leaf becomes elongate, with cells arranged in 

files along its longitudinal axis. This organisation is typical for all grasses. The length of 

the growth zone varies from 13 mm in a slow growing genotype of Festuca arundinacea 

(Volenec and Nelson 1981) to 90 mm in Zea mays (Meiri, Silk and Läuchli 1991). For 

wheat the length of the growth zone varies between 15 and 70 mm, depending on leaf 

position (Kemp 1980). Due to the constant increase in cell length as cells are moving 

through the elongation zone, the velocity at which cells are displaced away from the base 

increases throughout this zone. When final cell length is reached at the distal end of the 

elongation zone, velocity becomes equal to leaf elongation rate (Erickson 1976). In all 

cases, the growth zone is shorter than the length of the encircling whorl of sheaths of 

older leaves. Although cells no longer grow in locations distal to the growth zone, they 

often undergo further physiological development (eg. chloroplast development (Leech 

1985; Dean and Leech 1982) and secondary wall deposition (MacAdam, Volenec and 

Nelson 1989)) before maturity. For this reason, a “maturation zone” is indicated in 

Figure 1.

Perturbations of the leaf developmental program.

In a number of grasses, the rate of leaf primordia initiation at the apex is affected by 

temperature (Friend, Helson and Fisher 1962; Manupeerapan et. al. 1992), light intensity 

(Friend, Helson and Fisher 1962), photoperiod (Friend, Helson and Fisher 1962; Nicholls 

and May 1963) and soil water potential (Nicholls and May 1963; Husain and Aspinall 

1970). There is often a direct relationship between the rate of primordium initiation and 

leaf emergence ((Gallagher 1979; Ong and Baker 1985; Hay and Kemp 1990; Miglietta 

1991; Masle, unpublished data), which has prompted Hay and Kemp (1990) to suggest 

that primordium initiation is the process that controls leaf development. During the early 

developmental stages in grasses there is a gradual increase in the size of the apex (Rosier 

1928; Abbe and Phinney 1951; Abbe, Phinney and Baer 1951; Mitchell and Soper 1958; 

Nicholls and May 1963; Greyson, Walden and Smith 1982; Manupeerapan, Davidson, 

Pearson and Christian 1992) which is related mainly to an increased cell number (Rosier
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1928; Abbe, Randolph and Einset 1941; Abbe, Phinney and Baer 1951; Mitchell and 

Soper 1958). Often there is a correlation between the size of the apical meristem (or in 

some cases the size of the sub-apical meristem) and the size of leaves initiated by it. Both 

ontogenetic differences in mature leaf size (Abbe, Randolph and Einset 1941) and 

differences in leaf size in response to environmental factors such as light intensity 

(Mitchell and Soper 1958; Friend, Helson and Fisher 1962), temperature (Friend, Helson 

and Fisher 1962) and nutrient supply (Allsopp 1954) have been correlated to the size of 

some part of the apex. It has been suggested for the environmental factors light intensity 

and temperature, that this response is mediated through the supply of carbohydrates or 

hormones (Mitchell and Soper 1958; Friend, Helson and Fisher 1962) to the 

meristematic tissues in the apex. Interestingly, the formation of different types of leaves 

in heterophyllic plants has also been related to changes in the size of the (sub)apical 

meristem (Wardlaw 1952; Allsopp 1954; Franck 1976; Bruck and Kaplan 1980).

Leaf elongation rate (E) during the phase of linear elongation is a function of the 

length of the growth zone (/gz) and local relative rates of cell expansion (r(x)) according

Igz

to E = I  r(x)dx . Differences in E due to differences in 1& have been found in response to
0

leaf position (partly offset by lower expansion rates) (Kemp 1980), N supply (Kemp 

1980) light intensity (Schnyder and Nelson 1989) and between genotypes (Schiinmann, 

Ougham and Turk 1994). High concentrations of NaCl in solution culture and low soil 

water potentials both shortened the growth zone and reduced maximum relative cell 

expansion rates (Bernstein, Läuchli and Silk 1993; Bernstein, Silk and Läuchli 1993; 

Spollen and Nelson 1994). Most studies into local expansion rates in the growth zone 

have been based on a sub-division of the growth zone in abstract elements. The length of 

these elements usually is in the order of a few millimetres. Only a small number of 

investigations have been published that addressed differences in £  on a cellular level. It 

was shown that genotypic variation in leaf expansion rate in tall fescue is associated with 

a higher rate of cell production in the division zone and greater mature cell length (as a 

result of a longer elongation zone which was partly offset by lower elongation rates) in 

the fast growing genotype (Volenec and Nelson 1981; Volenec and Nelson 1983). Higher 

elongation rates due to increased levels of N fertilisation in the same species were also 

associated with higher cell production rates, while mature cell length was unaffected
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(Volenec and Nelson 1983). Unfortunately, the process of cell division was not 

investigated in any detail, so it is not clear whether these higher rates of cell production 

in the division zone were the result of shorter cell cycling times or of a greater 

population of dividing cells. Moreover, as Green (1976) pointed out, cell division in itself 

(the instantaneous act of forming a new cell wall) does not generate growth, but in the 

division zone of expanding organs cell division and expansion often co-occur. A full 

understanding of growth in the division zone in response to genetic or environmental 

factors therefore requires analysis of these two processes separately.

Outline.

This thesis is organised in 6 chapters, according to the approach outlined before, 

describing whole plant response, anatomical basis of differences in size of mature leaves, 

kinematics of cell division and expansion during the phase of rapid leaf expansion and 

early development of leaf primordia in the apical meristem, in that order. This allows the 

reader a gradually deepening insight into the cellular processes that underlie observations 

made in earlier sections.

The first results chapter (Chapter 2) covers the analysis of the effects of Rs on whole 

plant growth. This chapter places the effects of Rs on the development of individual 

leaves in perspective to the overall reduction of plant growth both in terms of mass and 

leaf area. Moreover, the effect of Rs on final leaf dimensions through its effects on rate 

and duration of leaf expansion will be established in this chapter. In the remaining results 

chapters the underlying cellular basis for these observations will be explored.

In chapter 3, the cellular basis of the effect of Rs on mature leaf dimensions is 

explored, by determining total number, types and sizes of epidermal cells constituting 

mature leaves. From this, the relative roles of cell division and expansion in determining 

mature leaf dimensions can be deduced.

Differences in leaf elongation rate are investigated with respect to the processes of 

cell division and elongation (Chapter 4). This knowledge about the process of leaf 

elongation can be integrated over the duration of its occurrence to show functional

22



relationships between the processes of cell division and expansion during the phase of 

rapid leaf expansion and the final dimensions of the leaf as quantified in chapter 3.

In the last results chapter (Chapter 5) the relationship between early development of a 

leaf primordium and apical characteristics is explored. In this chapter the extent to which 

these very early stages of leaf development are determining further development will be 

addressed.

The final discussion chapter is devoted to a general discussion of the results. An 

attempt is made to describe the leaf developmental program from initiation to maturity 

and show how its progress is affected by Rs and ontogeny. Furthermore, the importance 

of the results as a basis for further cell biological and plant physiological research will be 

discussed.

Chapter 3, 4 and 5 are presented as a sequence of 3 manuscripts as they have been 

submitted. Therefore, each chapter contains introduction, detailed methods and 

discussion of results. As a consequence, there may be a little repetition in the content of 

these sections between successive chapters, for which I apologise.

Innovative aspects.

Several aspects of this work can be qualified as innovative and therefore deserve to be 

given some extra attention at this stage.

The central theme of this work is the relationship between growth and development 

on scales that have traditionally been associated with completely different research 

disciplines. Cell division and expansion being traditionally a cell biology topic, whereas 

most research into whole plant growth responses to environmental conditions has always 

been mainly of interest to plant and crop physiologists.

As a consequence of our focus on the cellular level, existing methods based on the 

kinematic approach (Goodwin and Stepka 1945; Erickson and Sax 1956a; Erickson and 

Sax 1956b; Green 1976; Silk and Erickson 1979; Gandar 1980), which facilitate 

determination of local cell expansion rates in the growth zone of grass leaves during the 

phase of linear expansion have been modified. These modifications accommodate more
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cell level oriented results. Most important aspects of this modification are the calculation 

of local cell division rates and accurate determination of the size of the population of 

cells in individual parts of the growth zone.

A final unique aspect of this thesis is its integrating nature, addressing in the same 

experimental system the effect of stress on the whole development of a leaf, from 

initiation to maturity and from the cellular to the whole plant scale.
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Chapter 2: Whole plant growth response to high Rs.

Abstract.

The results presented in this chapter show that the whole plant growth responses of 

wheat seedlings to variations in soil resistance (Rs) obtained in this work have been 

consistent between experiments and are in agreement with the literature.

Typically, a strong reduction of growth in mass and area occurs very early in the 

development of the plant. After 12 days, relative growth rates (rw; g.g '.d '1 and r\\ m2.m 

2.d_1) became similar between Rs treatments up to Rs = 4.2 MPa. Under more severe root 

impedance (Rs = 6.6 MPa) the treatment on which of the work presented in the next 

chapters was done, rw and n remained reduced for longer.

The overall reduction of leaf growth was due to lower leaf appearance rates, slower 

leaf expansion and reduced final leaf sizes. The cellular basis of these effects will be 

investigated in the rest of this thesis.

Introduction.

In this chapter we present typical features of the growth response to high Rs at the 

whole plant and leaf scale under the standard conditions outlined in the introduction. 

Plants described in this chapter were sampled from the same experiments as those used 

for investigations at the cellular level (Chapters 3, 4 and 5). There were 3 main 

experiments (See table I): Experiment 1, for analysis of the cellular basis of the difference 

in mature leaf blades (Chapter 3); Experiment 2: kinematic analysis of leaf expansion 

(Chapter 4) and Experiment 3 in which the growth and dimensions of the apex were 

analysed (Chapter 5). The purpose of this chapter is two-fold: firstly to give a general 

description of our experimental system and present the nature and magnitude of the 

overall growth response to Rs which will be analysed in more detail in the core of this 

thesis; secondly, to enable quantitative links to be made between parameters at the whole 

leaf and cellular scale.
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Materials and Methods

Experimental conditions.

All experiments were conducted in controlled growth cabinets set to the standard 

environmental conditions described in the introduction chapter. The combinations o f soil 

bulk density and water potential used to create a range of Rs in various experiments are 

summarised in Table 1. In all experiments the soil was fertilised before packing into pots 

with 2200 mg/kg dry soil finely ground super phosphate and 357 mg/kg dry soil 

NH4NO3. The only exception to this was that 2 of the five replicates analysed in 

experiment 1, (run 1) received a total amount of N, equivalent to 357mg/kg NH4NO3 

(123 mg N) in the form of mixtures of KNO3 + NH4NO3 and C a(N 03)2 + NH4NO3, 

respectively. Growth analysis showed no significant effect of these nutrient treatments 

(data not shown) and all plants were bulked for further analysis, regardless o f nutrients 

applied. The soil was packed into cylindrical PVC pots 200 mm high and 87 mm in 

diameter, using a piston of equal diameter to the internal pot diameter. This piston was 

fitted to an arbor press and moved by a torsion wrench set to apply a given pressure. Soil 

resistance was estimated by penetrometer resistance (Rs) measured with a 60° cone 

penetrometer of 2.0 mm diameter There were slight differences in the /?s achieved for a 

given setting of the wrench between experiments (see Table I), possibly due to variations 

in the distribution of soil aggregate sizes and of organic debris.

Leaf expansion.

The number of leaves on main stem was counted and the length of the emerged part 

of the 2 youngest blades were measured with a ruler daily just after the onset of the light 

period. In addition, in experiment 2 total leaf length was also measured from the soil 

surface to the leaf tip at the beginning and the end of the light period. From these data 

the main stem foliar stage was determined according to Haun (1973). The Haun scale 

method is based on the observation of appearance of new leaves on the main stem which 

is defined in wheat by the emergence of the blade above the ligule of the previous leaf. 

The interval between the emergence of 2 successive leaves represents a developmental 

unit. Each developmental unit is subdivided into decimal fractions corresponding to the 

ratio of the length of the emerged part of the blade of the youngest emerged leaf (/„) to
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the length of the previous blade (/n-i), and the foliar stage is defined as: n + ——. In
K -\

practice the tip of a new leaf appears from the whorl of the older leaves around the time 

/
when the ratio —— approaches unity. Under constant environmental conditions the

K-\

relationship between foliar stage thus defined and time is linear (Haun 1973). Leaf 

appearance rate was calculated as the slope of the relationship between main stem foliar 

stage and time after sowing. In experiment 2 the elongation of leaf 2 was recorded using 

an LVDT (linear velocity displacement transducer). This device enables automatic 

measurements of leaf expansion rates at time intervals of only a few seconds.

Growth analysis.

In experiment 1, 6 plants per treatment were harvested on day 12 and 19 after sowing. 

Leaves were cut above the crown and blades and sheaths were separated. Blade and 

sheath fresh weights were determined and the area of individual main stem leaves as well 

as the total leaf area (a) were measured using an electronic leaf area meter (LiCor, LI- 

3000). Length (L) and width (W) of all individual leaves were also measured using a 

ruler. A ratio of 0.57, independent of Rs and time, was found between measured leaf area

(a) and the leaf area calculated from the product of leaf dimensions. (0.57a = ^ JLiWi ).
o

This factor was used to estimate leaf area from measurements of lengths and widths of all 

leaves at three other dates (day 10, 14 and 17, respectively). The pots were covered with 

plastic and stored in a cold room (-2 °C) until root washing. The leaves, sheaths, roots 

and the seed were then oven dried for 48 h at 60 °C for dry weight measurements. 

Growth parameters were calculated and statistical analysis was performed using the 

ANOVA routine of the statistical package Genstat 5 (Version 2.1; Lawes Agricultural 

Trust (Rothamsted Experimental Station)).

Tillering.

In experiment 3, two harvests were done in which 5 plants were harvested during the 

phase of linear elongation of leaf 5 (i.e. 2 - 3  days after emergence of the tip of that leaf 

from the whorl of older leaves (day 24 and 29 at low and high Rs, respectively). Five
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Figure 1. The effect of Rs on the growth of young wheat seedlings at 15 days 
after sowing.



Table I. Overview of soil conditions and type of observations made in the different 

experiments described in this thesis.

Soil conditions

Density

(g.cm3)

Water content 

(g H20  g'1 dry soil) Experiment 1 

(Chapter 3) 

run 1 run 2

Rs (MPa) 

Experiment 2 

(Chapter 4)

Experiment 3 

(Chapter 5)

1.12 0.24 0.9 0.9 0.5 0.6

1.25 0.24 2.8 - - -

1.37 0.24 4.2 - - -

1.42 0.22 6.6 7.7 7.5 7.0

Observations in each experiment

whole plant and leaf growth + + + +

anatomy mature leaf leaf 1&3 leaf 5 - leaf 5

kinematics of leaf expansion - - leaf 1,3 & 5 leaf 5

apical dimensions - - - +

other plants were harvested when leaf 5 was fully expanded, i.e. just after the emergence 

of leaf 7 (day 28-31 and day 34 - 37 at low and high Rs, respectively). The total number 

of visible tillers was determined on all plants and the area of tiller blades was measured 

separately from that of main stem blades.

Results.

Whole plant response.

Whole plant leaf growth was negatively correlated with Rs. Figure 1 shows a 

photograph of representative plants of each Rs treatment at day 15, i.e. midway between 

the two harvests. Both leaf area and total dry weight were reduced with increasing Rs at 

both harvests (p < 0.001; Figure 2 and 3). The decrease of both leaf area and total dry 

weight in response to an increase of Rs from 0.9 to 2.8 MPa is much smaller than for 

further increases.
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25

Time after sowing (d)

Figure 2. Averages and standard errors (n = 6) of leaf area as a function of time after 

sowing. Symbols denote Rs = 0.9 (open circles), 2.8 (solid triangles), 4.2 (open triangles) 

and 6.6 MPa (solid circles), respectively. Insert: same data plotted on an exponential 

scale.
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Figure 4. Relative growth rates in terms of dry weight (rw; a) and leaf area (n; b) 

between day 12 and 19 as a function of Rs. Error bars denote standard errors (n = 6).



Table II. Number and leaf area of tillers and main stem leaf area at low and high Rs, 

respectively, of plants at similar developmental stages. Significance of the differences 

were determined with ANOVA analysis of variance. Asterixes denote significance level 

of the differences: * 0.10 < p < 0.05, ** 0.05 < p < 0.01.

Num ber o f  main 

stem  leaves

/?s (M Pa)

0 .7  7 .0

D ifference

(%)

Num ber o f  tillers 5 4 .0  (0 .6 ) 3 .4  (0 .2 ) -15 *

7 9 .8  (0 .7 ) 7.8 (0 .9 ) -20  **

L eaf area o f  tillers 5 20.5  (4 .4 ) 12.2  (2 .2 ) -40  *

7 84.3 (6 .3 ) 4 8 .6  (7 .0 ) -42  **

L eaf area m ain stem 5 38.1 (3 .8 ) 30.1 (1 .9 ) -21 **

leaves 7 60 .4  (3 .3 ) 45 .4  (3 .7 ) -25 **

Fraction o f  leaf 5 0 .33  (0 .04 ) 0 .2 8  (0 .03 ) -5 *

area in tillers 7 0 .5 8 (0 .0 1 ) 0.51 (0 .02 ) .7  **

Growth analysis.

Relative rates of dry weight accumulation (rw, g.g '.d ') and leaf area expansion (n, 

nr.m ^.d '1) between day 12 and 19 were not significantly affected by an increase of Rs 

from 0.9 to 4.2 MPa (Figure 4). However, a further increase from 4.2 to 6.6 MPa caused 

significant decreases of both parameters rw (p = 0.012) and r\ (p = 0.071).

As was outlined in the introduction differences in plant growth rate can be

A
decomposed according to the identity rw = — .

a

The net assimilation rate (A’) was unaffected by an increase in Rs from 0.9 to 2.8 MPa 

(Figure 5a). At Rs = 4.2 MPa, A’ was somewhat increased compared to the lower Rs
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Rt (MPa)

Figure 5. Averages and standard errors (n = 6) of: a) A’; b) a; c) ar, d) % dry weight 

blade; e) LWR and f) RWR. Solid and open symbols denote day 12 and 19, respectively. 

A’ was calculated over the whole of the period between day 12 and 19 using the method 

described by Evans (1972).



Table III. Comparison of average seed mass, Rs and length of mature blade or whole 

leaf (sheath + blade) between different experiments. Difference between Rs treatments (in 

percent of the value of low Rs) is indicated in brackets. Seeds used for the experiment 

described in chapter 5 were from a different batch of seeds than the other experiments. 

The seeds used in all experiments were close to the median size for the particular batch 

of seed.

Experi

run 1

ment 1

run 2

Experiment 2 

(Kinematics)

Experiment 3

seed mass (mg) 2 4 - 2 8 2 4 - 2 8 3 2 - 3 4 4 2 - 4 4

blade leaf 1

length leaf 3

(mm) leaf 5

116 92 (-21)

189 158 (-17)

119 86 (-28)

187 155 (-17)

220 161 (-27)

-

98 98 (0)

231 198 (-14)

254 235 (-8)

whole leaf leaf 1

length leaf 3

(mm) leaf 5

- -

140 106 (-24)

222 175 (-21)

133 132 (-1)

254 219 (-14)

275 260 (-6)

treatments. This increase was not reflected in rw because it was cancelled by a 

comparable increase in the total plant dry weight per unit leaf area, a  (Figure 5b). 

However, at Rs = 6.6 MPa A’ and g was increased, resulting in lower rw.

The parameter a  can be decomposed into g  = (y + 1)g l , were y is the ratio of root to

shoot dry weight and Gi the leaf mass per unit leaf area (g.rri2). Parameter G decreased 

from day 12 to 19 (p < 0.001; Figure 5), which was mainly due to a decrease in Gi (p < 

0.001; Figure 5c). The distribution of dry matter between roots and shoots was little 

different at these 2 dates (Figure 5e and f). Higher o  with increasing Rs (p < 0.001; 

Figure 5b) was mainly due to higher Gi (p < 0.001; Figure 5c), and at the highest Rs level 

there was also a decrease in the fraction of total dry matter allocated to leaves on day 12 

(Figure 5e).

Leaf development.

The lower rate of leaf area expansion with increasing Rs was at least partly due to a 

decrease in the rate of leaf appearance (p < 0.001; Figure 6). Furthermore, high Rs also
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Leaf appearance rate (leaves.d'1)

—o — 0.245 (0.002) 
—A— 0.246 (0.002) 
—A— 0.225 (0.005) 
—• — 0.179 (0.005)

Time after sowing (d)

Figure 6. Averages and standard errors (n = 6) of foliar stage according to Haun (1973) 

as a function of time after sowing. The average leaf emergence rate (= slope of the 

curves; leaves/day) and standard errors are indicated. Same symbols as in Fig. 2.



Table IV. Maximum leaf elongation rates (mm/h) during the light and dark period in leaf 

1 and 3 derived from measurements of leaf length with a ruler (leaf 1 and 3). Leaf 2 data 

were derived from LVDT data of leaf 2 shown in Figure £. The last column indicates 

reduction (%) of leaf elongation rates due to an increase in Rs from 0.5 to 7.5 MPa.

Rs (MPa) 

0.5 7.5 Difference (%)

Leaf 1 light 1.56 0.74 -52

dark 0.94 0.56 -40

Leaf 3 light 2.07 1.22 -41

dark 1.28 0.92 -28

Leaf 2 light 1.55 0.80 -4 8 .

dark 0.95 0.55 -42

reduced the number of tillers of plants harvested during the linear expansion of leaf 5 and 

shortly after emergence of leaf 7 by 15 and 20%, respectively (p = 0.066; Table II). The 

reduction in leaf area at high Rs compared to low Rs, was greater for the tillers than for 

main stem leaves, resulting in a decrease of the fraction of the total leaf area contributed 

by the tillers (Table II). The fact that total leaf area of the tillers was reduced more than 

the number of tillers suggests that the reduction in tiller leaf area was associated with a 

decrease in both the number of tillers and the average area per tiller.

The length and width of mature leaves were consistently reduced by high Rs (data 

shown in Chapter 3 and table III). The magnitude of the reduction of mature leaf length, 

was very similar between the first two experiments, but was smaller in experiment 3. A 

probable cause for this was loosening of the soil early in the experiment, when harvesting 

plants for analysis of early development of leaf 5, from the same pots in which plants 

harvested later for analysis of leaf 5 at maturity. Differences in the amount of seed 

reserves (Table III) may have been a further cause for the differences between successive 

experiments.
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Leaf 1

Leaf 3

To " 12

Leaf 5

Time after emergence (d)

Figure 7. Averages and standard errors (n = 35 (leaf 1 & 3) and 5 (leaf 5), respectively) 

of length (left hand panels) and elongation rates (£; right hand panels) of leaf 1,3 and 5 

(top to bottom) as a function of time after sowing. Data for leaf 1 and 3 were obtained 

form experiment 2 and leaf 5 data from experiment 1, run 2, respectively. Symbols: 

circles: average leaf elongation rate during the light period; squares: averages elongation 

rates during the dark period. Leaf 5 data are average over 24 h. Open symbols denote 

0 s / 0 Q MPa and solid svmbols 7.5 / 7.7 MPa. respectively.



Leaf elongation was slower at high Rs, but proceeded for longer, the net effect being 

still a shorter final leaf length (Figure 7). Leaf elongation rates during both light and dark 

period reached a maximum two to three days after emergence before gradually 

decreasing (Figure 7). Due to the longer duration of leaf elongation and lower rates at 

high Rs, the curves of leaf elongation rates vs time were flatter (Figure 7), i.e. maximum 

elongation rate was maintained for a longer period of time. The difference in duration of 

leaf expansion at low and high Rs became gradually smaller in successive leaves, 

especially between leaf 1 and 3. Leaf elongation rates were more affected by high Rs

Discussion.

Our results show a clear effect of Rs on overall plant growth and leaf growth in 

particular. Plants growing at high Rs have a smaller mass and leaf area at any time after 

sowing. The reduced leaf area can be attributed to slower leaf appearance rate, slower 

leaf expansion rate and smaller final leaf size and the formation of fewer tillers. These 

results are consistent with earlier observations (Masle and Passioura 1987; Masle 1990; 

Masle, Farquhar and Gifford 1990; Masle 1992).

In the range 0.9 and 4.2 MPa much of the effect of /?s occurred at early stages of 

development. After two weeks growth the relative growth rates (rw and r\) were indeed 

all similar. The significant differences in total plant mass and leaf area on day 12 and 19, 

imply that r had been affected earlier and that the absolute growth rates, i.e. the increase 

in mass or leaf area per unit of time, were inversely related to Rs. Masle (1992) reported 

the same pattem for the growth response to an increase of Rs from 1.5 to 5.5 MPa, in a 

range of wheat and barley genotypes. At the highest Rs level in our experiment (6.6 

MPa), the treatment that was used for the microscopic studies presented in the next 3 

chapters, rw and n between day 12 and 19 were still slower than on looser soil.

A '
The variation in r was analysed using the identity rw = —  (Masle, Farquhar and

Gifford 1990). Up to Rs = 2.8 MPa, both A’ and G were similar. At Rs = 4.2, A ’ was in 

fact increased. (Masle and Farquhar 1988; Masle, Farquhar and Gifford 1990) reported a

• 3. X  a«*1
during the light period than during the dark period able IV).

G

1 x us
j L o  I • A —
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Figure 8. Leaf elongation rates of individual leaves determined with LVDT 

measurements in the third day after emergence of the blade tip from the sheath of leaf 1 

at /?s = 0.5 (open symbols) and Rs = 7.5 MPa (solid symbols), respectively. Different 

symbols indicate individual plants. The dark bar on the axis indicates the dark period.



similar response for the same genotype in the same range of Rs and showed that the 

increase in A ’ was due to an increased photosynthetic capacity. This increase was not 

reflected in r, because a  was increased by a similar proportion. The decrease in rw at Rs = 

6.6 MPa was due to a decrease in A’ and a relatively greater increase in a. This level of 

soil impedance is higher than those compared in earlier experiments. It is possible that 

such severe impedance causes damage to the photosynthetic machinery or severe 

stomatal closure. Unfortunately, no data on photosynthetic capacity or stomatal 

conductance were obtained in the present work.

Leaf elongation rates during the light period were higher than those in the dark. The 3 

°C difference between the day and night temperatures (18 and 15 °C, respectively) was(to 

small to account for these differences (See table IV). It is obvious that the rates of leaf 

expansion during the dark period depend upon the amount of assimilates stored during 

the light period and that there is therefore no unique relationship between day and night 

elongation rates. More interesting is the fact leaf elongation rates were more affected by 

Rs in the light than in the dark. At high Rs carbohydrate contents in the growing region of 

wheat plants are higher (Masle 1990; Masle, Farquhar and Gifford 1990). It has been 

proposed that a chemical signal (possibly ABA) originating in impeded roots, and 

transported in the xylem, causes slower leaf growth at high Rs. It may be that in the dark, 

when transpiration rates would be much smaller, a smaller amount of this inhibitory 

compound is transported to the leaves.

The overall growth response to high Rs presented in this chapter was seen in all our 

experiments and was similar to the response described in earlier studies for the same 

genotype under similar conditions (Masle and Passioura 1987; Masle, Farquhar and 

Gifford 1990). There is considerable genetic variation in the magnitude of the growth 

reduction with increasing Rs and possibly in the underlying mechanisms (Masle 1992). 

However, a reduction in the rate of leaf appearance and elongation and in final leaf size 

have been found in a number of genotypes and also species (Masle, Farquhar and Gifford 

1990; Masle 1992).

The whole plant growth response to Rs, as presented in this chapter, gives rise to a 

number of questions about the underlying cellular processes that are being addressed in 

the remainder of this thesis:

47



1. Why are mature leaves smaller? Smaller leaf size can be brought about by either 

smaller cells or a smaller number of them. The effects of Rs on the numbers of cells 

per leaf and their sizes will be analysed in Chapter 3.

2. What is the cellular basis of the reduced leaf elongation rates? Using the kinematic 

approach (Erickson and Sax 1956a; Erickson and Sax 1956b; Gandar 1980; Volenec 

and Nelson 1981) the effects of Rs on the dynamics of cell division and expansion 

during the phase of linear leaf expansion will be examined (Chapter 4).

3. What are the effects of Rs on apical development and on the expansion of young leaf 

primordia, and what are the consequences on further development and leaf 

dimensions at maturity? Microscopic analysis of apical dimensions during the first 

two plastochrons of leaf 5 development will be presented in Chapter 5.
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Chapter 3

Composition, number and size of epidermal cells in mature

blades.

Abstract.

Wheat seedlings (Triticum aestivum L.) were grown on soils with contrasted 

resistances to root penetration (Rs). High Rs reduced the rates of leaf appearance and 

expansion. Although the duration of expansion was increased, mature leaves were 

smaller. Underlying changes in leaf anatomy were investigated on cleared mature leaves, 

focusing on the epidermes. Three leaves were analysed: leaves 1 and 3 which started 

their development in the embryo, and leaf 5 which was initiated on the seedlings, after 

imposition of contrasted soil conditions. In all leaves, high caused a reduction in 

mature cell sizes, lengths and widths, and a shift in the relative proportions of 

functionally different cell types, with a decrease in the relative proportions of stomata 

and associated cell types (interstomatal and sister cells) and an increase in the 

proportions of unspecialised elongated epidermal cells and of trichomes. In leaves 3 and 

5 the number of cellular files across the blade was also reduced, while in leaf 1 it was 

similar at the two Rs. These differences between leaves are attributed to differences in 

their developmental stage when root stress was first perceived. Remarkably, Rs had no 

effect (leaf 1) or relatively small effects (leaves 3&5) on the number of cells per file, 

suggesting that this parameter is either largely insensitive to environmental perturbations, 

or is programmed at the outset before stress was perceived at the apex. The next two 

chapters will address the effects of Rs on the genesis of these mature leaves attributes.
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Introduction.

Soils with high resistance to root penetration (Rs) reduce plant growth. Many studies 

have concentrated on root responses (eg. Barley,1962; Taylor and Ratliff, 1969; Goss, 

1977). However, leaf growth is also severely affected (Masle and Passioura, 1987; 

Masle, 1990). In fact, in the long term (scale of a few weeks) carbon accumulation in 

wheat seedlings with impeded roots may be more reduced in leaves than in roots (Masle 

et al., 1990; Masle, 1992). Leaf emergence is delayed; blades expand more slowly, over a 

longer period of time and mature blades are both narrower and shorter (Masle and 

Passioura, 1987; Masle, 1990&1992).

The aim of the present study was to examine the cellular bases of these whole leaf 

growth responses. The present paper reports observations of the anatomy of mature 

blades from wheat plants grown on soils with contrasted Rs. Effects of Rs on epidermal 

cell dimensions and numbers, and on the organisation of these cells into files were 

investigated. The next chapter addresses effects on the kinetics of cell partitioning and 

cell expansion in the epidermis of elongating blades. Reasons for focusing on epidermal 

cells were two-fold: firstly leaf expansion is constrained by the extensibility of the 

epidermis (Kutschern et al., 1987; Kutschera,1989). Secondly, in wheat, mesophyll cells 

are lobed in an irregular fashion so that tracing the contour of neighbouring cells is 

difficult and not always reliable.

Grass leaves are convenient experimental systems for anatomical studies. Most of the 

leaf length is generated in a basal growth zone, physically well defined and organised 

into cellular files parallel to the leaf axis. New cells are formed by transverse divisions at 

the base of the leaf and displaced to more distal positions by the formation and expansion 

of cells at more basal locations. A few millimetres from the base of the leaf, cells loose 

their ability to divide and only expand, reaching their mature size while still enclosed in 

the sheath of the preceding leaf (Boffey et al., 1980; Volenec and Nelson, 1981). Cell 

differentiation follows a basipetal gradient and continues well after the cell has reached 

its final dimensions (Boffey et al., 1980).
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Materials and Methods.

Growth conditions.

Wheat plants (Triticum aestivum L. cv. Egret) were grown in cylindrical PVC pots 

(200 mm high; 87 mm in diameter). Four seeds (24 - 28 mg) were sown in each pot at 

constant depth (15 mm). The soil used for this experiment was a silty loam made of 5% 

coarse sand, 40% fine sand, 31% silt, 19% clay and 4.5% organic matter and was part of 

the batch of soil used by Masle and Passioura (1987) in earlier experiments on growth 

responses to Rs. This soil was fertilised before use by addition of 2.2 g finely ground 

super phosphate per kg dry soil and 123 mg nitrogen provided as a mixture of KNO3 and 

NH4NO3, or of C a(N 03)2 and NH4NO3 or as NH4NO3 alone. After thorough mixing, soil 

water content was brought to 0.24 or 0.22 g H20 per g dry soil and homogeneously 

packed to a bulked density of 1.12 and 1.42 g cm'3, respectively, resulting in contrasted 

soil resistances to penetration of 0.9 and 6.6 MPa penetrometer resistances, 

respectively, in a first run (experiment a, see below), and 0.9 and 7.7 MPa, in a second 

run (experiment b).

The pots were placed in a growth chamber providing a photo- and thermo-period of 

l lh  with day/night temperatures of 18/15 °C, 600 pmol quanta m'2 s"1 irradiance, and a 

relative humidity of 80%. After germination the soil was covered with a layer of white 

plastic beads in order to limit soil water evaporation and therefore variations in Rs. Each 

pot was weighed daily, and lost water was added 1 to 3 times a day in order to maintain 

soil water content within 1% of its original value. Ten days after sowing, seedlings were 

thinned to 2 per pot. All three nutrient regimes ensured plentiful nutrient supply (data not 

shown) and gave similar plant growth and morphology. Results below are therefore from 

bulked data.
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Figure 1. Typical anatomy of the abaxial (a) and adaxial (b) epidermis of a wheat leaf. 

Symbols denote the various epidermal cell types which were distinguished in the present 

study: b, bulliform cell; e, elongated, non specialised cell; st, stomata; i, interstomatal 

cell; 5, sister cells; t, trichomes; scl, schlerenchyma cell. Subscript t for elongated and 

sister cells denotes association with a trichome.



Leaf preparation.

In a first run, fully expanded blades of leaf 1 and 3 were harvested on 5 plants at each 

Rs. As their analysis revealed unexpected leaf position effects, a second batch of plants 

were grown under the same conditions (run 2) from which a third leaf, leaf 5, was 

harvested. Leaf 1 and 3 start their development in the wheat embryo (Hayward, 1938) 

while leaf 5 is initiated after germination ie, in this experiment, several days after the 

roots had experienced low or high soil resistance. Upon harvest, blade length (L) and 

area (a) were measured. The whole blade was then cleared for light microscopy, using a 

modification of the technique described by Clarke (1959). Leaves were immersed in 70 

% boiling methanol for about 30 minutes until all chlorophyll was removed, and then in 

lactic acid until analysis. The cleared leaves were mounted on a light microscope (Zeiss 

axioscope) fitted with a Panasonic video camera (model WV-CL 702E). Maximum leaf 

width (W) was measured mid-way along the blade and morphometric analysis of the 

epidermis was performed on video images (total magnification 190x) using the 

morphometric program MTV (Garr Updegraff/Datacrunch, 1991) on a PC equipped 

with a video-card.

Morphometric analysis of blade epidermis.

The epidermis of a wheat leaf contains a variety of cells. Files of different cell types 

are arranged in a regular pattern (Percival, 1921; Stebbins and Shah, 1960; Esau, 1977; 

Silvy, 1982) which is closely associated with the location of veins in the mesophyll (Fig. 

1). Between two adjacent veins, there were usually two stomatal rows, comprising 

stomatal complexes (guard cells and associated subsidiary cells, label st in Fig.l) 

separated by inter-stomatal cells (/). Adjacent to these files were files of wider “sister 

cells” (s) so-called because they derive from the same “mother cells” as the subsidiary 

cells (Tomlinson, 1974; Tomlinson, 1994). The two inner files of sister cells, located 

between two adjacent stomatal rows were separated by several files of unspecialised, 

long and narrow “elongated” cells (e) on the blade abaxial side, enlarged and shorter 

“bulliform” cells (b) on the adaxial side. One or two outer files above larger veins were 

made of sclerenchymatous cells (scl). A number of shorter elongated cells and also of
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sister cells were associated with trichomes, especially at high Rs (cells labelled e, and st, 

respectively in Fig. 1).

The effects of Rs or leaf position on blade anatomy were therefore analysed in terms 

of total number of files across the blade, number of files of the various types described 

above, cell density (total number of cells per unit area, and number of cells of a given 

type), and cell dimensions. To allow for possible temporal or ontogenetic variations in 

the effects of Rs on leaf histogenesis the above parameters were determined at several 

locations along and across the blade, on 3 replicated leaves. For these leaves, blade 

width, number of veins, number and width of cellular files were determined at 10 

locations evenly distributed along the blade. At one of these locations (distance 0.4L 

from the ligule) cell dimensions were measured in three different interveinal areas 

selected on one side of the mid-vein (second area from the blade mid-rib and margin, and 

area between the central veins). At each of 3 other locations along the blade (0.2, 0.6 and 

0.8) measurements were restricted to the second interveinal area from the mi-rib. The 

length and greatest and smallest widths of 10 cells of each type were measured. For the 

two other replicates, cell dimensions were measured at one location only (second 

interveinal area from mid-rib and distance 0.4L from ligule). Cell densities were also 

determined at that same location, for all 5 replicates. A series of overlapping images of a 

3 mm long segment were printed with a video-graphic printer (Sony, model UP-811). 

Individual cells were included in the counts when their basal transverse wall was within 

the segment. Sclerenchyma cells located above the veins were omitted because their 

contours were often hard to follow. Cells of this type contributed little to the total 

epidermal area and their proportions relative to files of other types were little affected by 

Rs. The width of the observed segment was estimated by averaging the widths measured 

at 5 equidistant points along its length, and used to calculate the total area to which cell 

counts had to be referred. The total number of cells per file was also counted along one 

file of bulliform cells, sister cells and stomatal/interstomatal cells in 5 replicated leaves 

per treatment. The three files were selected close to the mid-rib, among files which could 

be unambiguously traced from the ligule to the tip of the blade. All parameters were

54



Leaf position

Figure 2. Variations in the size of mature blades with soil resistance and leaf position: a) 

blade area; b) blade length. Leaves grown at low and high Rs are described by grey and 

black bars, respectively. Error bares denote the standard error of the mean (n=5).



determined on the two epidermes. When the effects of soil conditions or leaf position 

were similar for each epidermis, data are presented for the abaxial epidermis only.

Statistical analysis.

The effect of Rs on the relative proportions of files of various types and on cell 

densities was analysed by log-linear modelling of contingency tables, using the statistical 

package Genstat 5 (version 2.1; Lawes Agricultural Trust (Rothamsted Experimental 

Station)). All other data were analysed with ANOVA analysis of variance using the same 

statistical software.

Results.

Whole leaf dimensions. High Rs significantly reduced the area of all mature blades (p 

< 0.001; Fig. 2a) by ca 35% in leaf 1 and 3, and 47% in leaf 5. This reduction in area 

reflected a decrease in both leaf length (21, 16 and 27% for leaf 1,3,  and 5, respectively 

(Fig. 2b)) and leaf width (Fig. 3). Maximum blade width measured at a distance of 0.4L 

from the ligule was decreased by 30, 20 and 38% in leaf 1, 3, and 5, respectively (Fig. 3). 

This reduction was representative of that measured at other locations within the basal 

two-thirds of the blade but was greater than reduction at more distal locations (Fig. 3). 

Soil resistance modified leaf shape with blades being almost rectangular at high Rs (eg 

leaf 1, Fig. 3), while having a marked triangular shape at low Rs. The greater response of 

leaf 5 compared to the two other leaves may only be apparent as the high Rs for leaf 5 

was 7.7 MPa penetrometer resistance cf 6.6 for leaf 1 and 3 (see methods). The 

elongation rates of leaf 1 and 3 on the plants from which leaf 5 was sampled also 

responded more to Rs than those from the first run, on which the data in Figs 2&3 were 

obtained (Table I).
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Distance from ligule

Figure 3. Variations in the width of mature blades with soil resistance (open and solid 

symbols for low and high Rs, respectively), leaf position (circles, squares and triangles for 

leaf 1, 3 and 5, respectively), and distance from the ligule expressed as a proportion of 

total blade length.



Table I. Comparison of leaf elongation rates (mm.d1) between plants grown in two 

successive runs for analysis of leaf 1 and 3 (run 1) and leaf 5 (run 2). Numbers are the 

slope of the regression line fitted to leaf length vs time data, during the linear phase of 

leaf elongation.

Leaf 1 Leaf 3 Leaf 5

Rs low high low high low high

run 1 24.1 14.2 31.5 23.7 - -

run 2 24.2 12.9 31.9 21.7 25.8 15.4
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Figure 4. Effects of soil resistance (open and closed symbols for low and high Rs, 

respectively) on epidermal cell widths in leaf 1, 3 and 5. Data are shown for various cell 

types for the abaxial epidermis, except for bulliform cells (present on the adaxial 

epidermis only). Widths of elongated cells, sister cells and interstomatal cells on the 

adaxial side of the blade showed a similar pattem of variation. Data points (□, ■) 

correspond to mean values (±s.e., n=3 or 5 leaves) at four equidistant locations along 

the blade for leaves 1 and 3, one location only for leaf 5, all within the second interveinal 

area from the mid-rib. At position 0.4L widths are also shown for cells located in the 

second interveinal area from the blade margins (o, •). For elongated cells, data refer to 

cells which were not associated with trichomes except at one location where cells 

associated with trichomes are also shown (($, f) to be compared with (a, ■)).



Distance from the ligule

Figure 5. Variations in the number of cellular files constituting the abaxial epidermis of 

mature blades as a function of soil resistance, leaf position and location along the blade. 

Symbols are as in Fig.3.



Number o f cell files; cell width. However, there were striking true leaf effects on the 

cellular bases of the overall changes in blade dimensions with Rs described above. In leaf 

1, blades from plants grown at high Rs were narrower only because cells, of all types, 

were much narrower (Fig. 4). The number of cellular files constituting the blade was 

indeed similar at the two Rs (Fig. 5). In leaf 3 and 5, in contrast, blades grown at high Rs 

were made of fewer cell files (Fig. 5). Cells within these files were also narrower, but 

somewhat less than in leaf 1; the reduction in cell width was spatially uneven across and 

along the blades and not always significant (Fig. 4).

Figure 4 shows that there were significant spatial variations in cell width within a 

blade, especially at low Rs, with cells becoming narrower towards the tip of the blade or 

its margins (circles in Fig. 4) compared to more central locations. There were also 

variations associated with cell type and formation of trichomes. For example, elongated 

cells tended to be wider than sister cells. More noticeably, elongated cells which, within a 

file, were preceded and followed by a trichome were significantly narrower than those 

preceded and followed by another elongated cell (comparison of diamonds and squares 

in Fig. 4). However, when expressed in relative terms, the effects of Rs on cell width 

were of similar magnitude at different locations on the blade and for different cell types.

There was a high correlation between number of cell files and number of veins across 

the blade ie the number of cell files between two veins varied little with either Rs or leaf 

position (overall mean number = 11.7). However, variation in Rs caused qualitative 

differences, in the relative proportions of different types of files: the number of “ground 

tissue” files (Esau, 1977), made of elongated, bulliform and sclerophyllous cells, was 

increased by high Rs while the number of stomatal rows and associated files of sister cells 

remained unaffected. This shift was especially marked for the adaxial epidermis (Fig. 6) 

where files of stomata and sister cells represented 46% of all cell files compared with 50 

% at low Rs (p<0.001)). Furthermore, high Rs caused a significant increase in the number 

of files with trichomes which represented 27% of all files with elongated cells and 56% 

of all files with sister cells, as opposed to 12% and 37%, respectively at low Rs.

56



1 0 n Adaxial 1:1

Figure 6. Effects of soil resistance on the average number of cellular files between 

adjacent veins in the adaxial and abaxial epidermis. Data points correspond to individual 

blades of leaf 1 (o, ■), leaf 3 (o, •) and leaf 5 (A, A). Open symbols represent the number 

of stomatal files and related files of sister cells, solid symbols represent the number of 

all other files.



Table II. Total number of cells counted along single files from ligule to blade tip on 

the abaxial and adaxial epidermis. Numbers in brackets denote standard errors of the 

means (n=5 leaves). Asterixes denote statistically significant differences between Rs (p 

< 1% (***); 1% < p < 5% (**); 5% < p < 10% (*))

Cells

R*

Epiderm is

Interstom atal 

low high low

Sister

high

Bulliform  

low high

Leaf 1 Abax 3 70(13 ) 353 (14) - 338 (13) 3 8 6 (1 2 ) * - -

A dax 5 28(19 ) 5 1 9 (1 4 ) - 475 (15) 4 5 6 (1 0 ) - 3 5 4 (9 ) 3 1 4 (7 ) **

Leaf 3 Abax 705 (6) 583 (34) *** 5 5 7 (1 0 ) 520 (35) - - -

Adax 898 (20) 784 (42) *** 7 6 0 (1 1 ) 667 (25) *** 5 5 9 (1 6 ) 5 0 3 (3 6 ) ***

Leaf 5 Abax - - 968 (13) 9 8 2 (1 3 ) - -

Adax - - - - - 9 7 4 (1 3 ) 8 2 6 (1 6 ) ***
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Figure 7. Effect of soil resistance on epidermal cell lengths in leaves 1, 3 and 5 for the 

same cell types and same leaves as in Fig. 4. Symbols are as in Fig.4



The number of cell files and veins across the blade increased from leaf 1 to 3 to 5 

(Fig. 5). These variations bore no relation to variations in cell width, for which there was 

no consistent ranking between leaves (Fig. 4). They were large enough to cause a 

significant increase in blade width of successive leaves (Fig. 3), even when cell widths 

were decreased (as from leaf 3 to 5, at low Rs (Fig. 4)).

Cell length; number of cells along a file. Mature cell lengths are described in Fig. 7. 

They were spatially even more variable than cell widths, in an apparently more or less 

random fashion rather than according to a positional gradient along or across the blade. 

Elongated cells were 2 to 4 times longer than other cells except when associated with a 

trichome (Fig. 7) and cells of all types were longer on the abaxial than adaxial epidermis 

(data not shown). In leaf 1 high caused a marked reduction in cell length which was of 

similar magnitude for all cell types (20-25%) apart from bulliform cells (0-10% 

depending on location along the blade). At the one location of leaf 5 where cell 

dimensions were measured, cell lengths were also reduced (Fig. 7). In contrast, in leaf 3, 

only elongated cells were on average shorter at high than low Rs.

The total cell numbers per file in the mature blade are shown in Table II. Consistent 

with the differences in length between cell types shown in Fig.7, the number of cells 

counted along adjacent files of different type varied. Remarkably, however, in all three 

types of files shown in Table II, cell number was unaffected (in leaf 1 and 5), or only 

slightly decreased (about 10%, in leaf 3) by high Rs.

Cell densities; cell indices. The overall effect of variations in cell length and width 

and in the relative proportions of files of various types described above was reflected in 

variations in cell densities (number of cells per unit area). Soil resistance was the main 

source of variation of cell densities. Figure 8 shows that total densities were significantly 

greater at high than low /?s. This effect was especially marked in leaf 1 (68% increase on
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Figure 8. Total epidermal cell densities for leaf 1, 3 and 5 at low and high Rs (grey and 

black bars, respectively); a) longitudinal variation within the second interveinal area from 

the mid-rib; b) lateral variation at a distance 0.4L from the ligule. Labels on the x-axis 

refer to the location of counts, described by the distance from the ligule in panel a) (0 = 

ligule; 1 = tip of the leaf) and by the distance from the mid-rib in panel b) (0 = mid-rib; 1 

= 0.5 W).



100 “ !

Cell density at low Rs (cells mm'2)

Figure 9. Effects of Rs on the densities of various epidermal cell types in the adaxial and 

abaxial epidermes (open and solid symbols, respectively); a trichomes ; a elongated cells; 

o interstomatal cells; y sister cells; £ stomata; $ bulliform cells. Data points represent 

average densities (n=5) for each leaf position (1,3 and 5) at location 0.4 L along the 

blade and in the second inter-veinal area from the mid-rib.



average as opposed to 54 and 38% in leaf 3 and 5, respectively) and, in that leaf, was 

greater towards the base of the blade and in central files compared to more distal or 

marginal locations. In leaf 3, cell densities were spatially more uniform. Densities of 

trichomes and of elongated cells were the most increased (100 to 200%) while the 

densities of stomata and interstomatal cells were less affected (25 % at the most) (Fig. 

9). The increase in the density of sister cells was intermediate.

Changes in the relative proportions of various cell types with Rs can be quantified by 

comparing cell indices in which the number of cells of a given type is weighed by the 

abundance of these cells relatively to the entire population (Fig. 10). By definition, these 

indices take values ranging between 0 and 1 and the total of the indices calculated for a 

given sample equals 1. Figure 10a shows that indices for trichomes and elongated cells 

were significantly increased at high Rs while indices for stomata and derived cells were 

reduced. These shifts were not solely caused by the large increase in trichome number. 

When trichomes were excluded from the total number of cells for the calculation of cell 

indices (Fig. 10b), there was still a clear trend to an increase in elongated cell indices and 

a decrease in stomatal indices. Within a leaf, sister cells were the most abundant (ca 

30% of all cells). As expected from the genesis of the stomatal complex (Tomlinson, 

1974), the densities of sister cells, stomata, and interstomatal cells were in a stable ratio 

close to a 2:1:1 ratio. Elongated cells were in similar or slightly lower number than 

stomata and interstomatal cells while, on the adaxial side of the blade, bulliform cells 

were significantly fewer.

Discussion

Whole leaf growth responses to variations in soil mechanical resistance have been well 

documented (Masle and Passioura, 1987; Masle, 1992). The present study confirms that 

high Rs severely restricts leaf expansion and mature leaf size in wheat seedlings and 

provides new information on some of the anatomical modifications underlying these
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metabolic effects of high Rs. Earlier studies with the same experimental system have 

shown that in an initial period, reduced leaf expansion at high Rs could not be explained 

by reduced assimilates, nutrients or water supply, and that signal(s) elicited in the roots 

were acting as primary trigger (Masle and Passioura, 1987; Masle, 1990; Masle et al., 

1990). The nature of these signals and the cascade of metabolic events that they 

generate in leaf meristems are still speculative. Abscisic acid and related compounds or 

ethylene appear as likely candidates (Apelbaum and Yang, 1981; Parker and Ford, 1982; 

Zhang and Davies, 1990; Tardieu et al., 1992; Spollen et al., 1993). However, Masle et 

al. (1990) also provided evidence that in a second period, leaf growth becomes carbon 

limited, but with a lower responsiveness to sugar concentrations than at low Rs. From 

their study, we can infer that, in the present experiment, such a limitation would have 

developed only after leaf 1 was fully expanded but while leaf 3 and 5 were expanding.

The size of bulliform cells was the least reduced by high Rs while that of elongated 

cells was the most (Figs 3&7). For this latter type this size reduction was to a large 

extent related to the increased frequency of trichome formation (Fig. 9). Trichomes are 

small, hair bearing cells produced by a final asymmetrical division of some meristematic 

cells (Stebbins and Shah, 1960). Such asymmetrical divisions were seen at the distal end 

of the leaf meristem in files of both sister cells and elongated cells (chapter 4). 

Trichomes were derived from the smallest daughter cell while the biggest daughter cell 

differentiated into non-specialised elongated or sister cells which were much shorter and 

narrower than those produced by symmetrical division (Figs 4&7). Such pairs of cells 

were scattered along whole files, with no apparent pattern, and no consistency between 

files. Adjacent cells in neighbouring files were not necessary smaller than cells preceding 

or following them in the file. Together these observations indicate that asymmetrical 

partitioning was associated with a shorter cell cycle than symmetrical partitioning or with 

locally prolonged meristematic activity. Both interpretations would lead to smaller cell 

sizes at maturity and it is known that division rates in leaf meristems vary both spatially 

and temporally (eg Poethig and Szymkowiak, 1995 and also chapter 4).
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As a result of reduced cell sizes, blades grown at high Rs were characterised by 

increased cell densities. Following from the above, this was mostly due to an increased 

density of trichomes and of elongated cells; however, the densities of sister cells and 

bulliform cells were also increased. Stomatal densities were the least increased (adaxial 

epidermis), or even not significantly different from those at low Rs (abaxial epidermis, 

leaves 1 and 3). Earlier studies with the same genotype had shown that, on a leaf area 

basis, stomatal conductance was decreased by high Rs (Masle and Passioura, 1987), and 

that photosynthetic capacity was increased to such an extent that the rate of C 0 2 

assimilation was enhanced (Masle and Farquhar, 1988). The present data show that the 

former effect was the direct result of reduced stomatal aperture. They also suggest that 

the increased capacity for photosynthesis may only reflect an increased amount of 

photosynthetic machinery per unit area following from higher mesophyll cell densities, 

rather than changes in the activity of photosynthetic enzymes.

As a whole these effects of high Rs on the anatomy of mature leaves are typical of the 

syndrome associated with water shortage. Reduced cell sizes leading to increased cell 

densities, increased frequency of trichome formation, reduced stomatal index- have also 

been reported in a number of experiments in response to drought ( Zalenski, 1904; Yapp, 

1912; McCree and Davis, 1974; Quarrie and Jones, 1977; Zagdanska and Kozdoj, 1994) 

or to treatments that influence the water status of developing leaves (Jones, 1985; Ristic 

and Cass, 1991). These similarities reinforce the proposition formulated by (Masle and 

Farquhar, 1988)that plants at high Rs may evolve an early warning system in anticipation 

of a more likely shortage of water, which induces a number of morphological and 

physiological adaptations enabling conservation of water. Masle and Passioura (1987) 

suggested that plants growing at high Rs are reminiscent of bonsai plants. The present 

study does not give support to that analogy; in their comparative study of a number of 

bonsai plants Körner et al. (1989) indeed found that mature leaves were made of fewer 

and often larger cells. In our wheat plants, high Rs had totally (leaf 1) or partially (leaf 3 

and 5) opposite effects.
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Introduction

Growth of young wheat plants is sensitive to soil resistance to root penetration (Rs) 

(Masle and Passioura, 1987; Masle, 1990; Masle, 1992). As R$ increases, leaf growth is 

reduced (Masle and Passioura, 1987; Masle et al., 1990); so is root growth, although to 

a lesser extent (Masle, 1992). Leaves appear more slowly, expand more slowly (in terms 

of both area and dry weight), and reach a smaller mature size (Masle, 1992). In the short 

term, these responses could not be attributed to lower water potential, nor to reduced 

carbohydrate or nutrient supply (Masle and Passioura, 1987; Masle, 1990), therefore 

suggesting that a chemical signal originating from the roots is acting as the primary 

trigger of decreased leaf growth. Longer term experiments showed a positive 

relationship between growth rate and carbohydrate concentration in the leaves (Masle et 

al., 1990). Because a given growth rate was associated with higher carbohydrate 

concentrations in leaves grown at high Rs, it was concluded that increased Rs caused the 

sensitivity of the growing leaf to carbohydrate to be reduced .

To gain a better understanding of the underlying mechanisms we decided to 

investigate the cellular bases of the observed differences in whole leaf growth. As a first 

step, we concentrated on leaf anatomy and histogenesis. Changes in the epidermal 

anatomy of mature leaves (cell types, cell dimensions and number) were reported in the 

previous chapter. The decreased size of mature leaf blades was attributed to smaller 

average cell sizes and to differences in the number and types of epidermal cells. The 

respective contributions of changes in cell number vs cell size were also shown to be 

dependent on leaf position.

The present paper describes the effects of soil resistance on the kinetics of cell 

elongation and cell partitioning in expanding leaves. These were analysed using the 

kinematic approach (Erickson and Sax,1956a&b; Green, 1976; Silk and Erickson, 1979; 

Gandar, 1983; Silk, 1984). This approach is based on the continuity equation, commonly
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fact that measurements were made on individual cells within a single file of cells, which 

could be either sister cells (cells in files adjacent to stomatal rows) or trichomes. Also 

local partitioning rates were estimated using the distribution of newly formed cell walls 

instead of the number of cells in mitosis, as commonly used in studies on the kinetics of 

cell division.

Materials and Methods.

Growth conditions

Wheat plants (Triticum aestivum L. cv. Egret) were grown in pots in a controlled 

growth chamber with 18/15 °C day/night temperature, 600 pmol quanta m 2 s '1 

irradiance, 11 h photo- and thermoperiod and a relative humidity of 80%, day and night. 

Calibrated seeds (32 to 34 mg) were sown at constant depth in soils with low or high 

mechanical resistance to penetration. The same soil as described by Masle and Passioura 

(1987) (silty loam with 5% coarse sand, 40% fine sand, 31% silt, 19% clay and 4.5% 

organic matter) was fertilised with 2.2 g finely ground superphosphate and 357 mg 

NH4NO3 per kg dry soil and homogeneously packed into cylindrical PVC pots (200 mm 

high and 87 mm diameter) so as to achieve a penetrometer resistance of 0.5 and 7.5 

MPa. These contrasted soil resistances were obtained by varying both soil bulk density 

and soil water content as in Masle and Passioura (1987) and Masle et al. (1990). These 

parameters were set as 1.10 - 1.15 g cm 3 and 0.24 g H20  g '1 dry soil, respectively, at 

low Rs and 1.42 g cm'3 and 0.22 g H20  g 1 dry soil at high Rs. Pots were watered at 

least daily so as to maintain these two parameters as close as possible around their initial 

values.

Morphometric measurements

Leaf length was measured twice a day (just after the onset and just before the end of 

the light period). Leaf 1, 3, and 5 on the main stem were harvested 2 to 3 days (at low 

and high Rs, respectively) after emergence from the sheath of the previous leaf (or above
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the soil surface for leaf 1). Leaves were harvested at a similar stage of development for 

both treatments, during the period when elongation is approximately linear with respect 

to time. In order to avoid roots becoming pot-bound and also to restrict variations of 

soil water content between waterings, it was necessary to work on young plants i.e. on 

the first leaves. However, since leaf 1 and 3 are in wheat initiated in the embryo, their 

histological features will partly reflect seed characteristics. Leaf 5 was therefore also 

analysed as representative of leaves which have undergone their whole development at 

low or high Rs. Leaves were immediately immersed in boiling methanol until all 

chlorophyll was removed, and then transferred to lactic acid for clearing and storage.

Five leaves were analysed at each position (1,3,  and 5). The cleared leaves were 

mounted on a light microscope (Zeiss axioscope) fitted with a Panasonic video camera 

(model WV-CL 702E). A file of sister cells which could easily be traced through the 

basal 35 mm of the leaf epidermis was then selected. The lengths of all cells along that 

file were measured from video-images using the morphometric program MTV (Garr 

Updegraff/ Datacrunch, 1991). Trichomes were measured separately from the sister cells 

with which they were associated. In the division zone, the location of recently formed 

(thinner) cell walls was also recorded. Within each file, expanding cells could be 

separated into three groups, defining three contiguous segments: a) a first segment at 

the base of the leaf, where cell partitioning takes place, and gives rise to two daughter 

cells of similar size. This segment, typically 3 to 5 mm long was identified by the 

presence of thin cell walls, interpreted as “fresh” cell walls, reflecting recent divisions and 

was characterised by an independence of cell size on location along the file, b) a middle 

segment, much shorter, characterised by daughter cells of unequal dimensions produced 

by a final asymmetrical division of a cell, with the bigger daughter cell being identifiable 

as a sister cell, and the smaller, distal cell, as a trichome. In these two first segments the 

processes of elongation and of partitioning co-occur, c) a distal segment, where cells 

expand but no longer undergo division; these cells have thickened walls and increase in 

length from the proximal to the distal end of the segment, where maximal, final length is 

achieved. These three segments as a whole constitute the growth zone, beyond which 

cells have stopped expanding and only undergo physiological maturation. In the
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remainder of the text, these three segments will be referred to as: zone of symmetrical 

division, zone of asymmetrical division, and zone of elongation only, respectively, and the 

location of their distal end as xsd, xad, and xei, respectively.

Kinematic analysis

Kinematic methods described in the literature (e.g. Scott et al., 1967; Volenec and 

Nelson, 1981; Silk et al., 1989; Schnyder et al., 1990) are based on measurements along 

fdes consisting of a single cell type. To enable calculations on composite files including 

both sister cells and trichomes, it was necessary to introduce the concept of "elements". 

An element was defined by the combination of a sister cell and, if present, its associated 

trichome. The lengths of mature elements so defined were used to calculate cell density 

and fluxes (eqs 2 and 3 below, respectively).

a) elongation zone.

For each leaf, the individual lengths of successive cells (sister cells or trichomes) or 

of elements were averaged over 0.5, 1.0 and 2.0 mm intervals in the basal (jcjd + 2) mm 

of the leaf, the next 8 mm, and the remaining, most distal part of the growth zone, 

respectively (data set 1). A second set of 0.5 mm-spaced data was generated for the 

elongation only zone of each leaf using the fitted parameters of a Richards function to 

the individual cell lengths plotted as a function of location along the blade. The function 

used was as in Morris and Silk (1992) but modified to describe cell (or element) length 

distributions rather than the distribution of velocities, according to

if If
(1 + e ~k(x~x')y n ° r (\ + e ' k(x-x))Vn (eq' ^ ’

where lf  and l*f denote the length of mature cells and mature elements, respectively, x

is the location along the blade, and n, k, and jc’ are fitting parameters. Although also 

affecting the spread of the curve, parameter n is mainly related to the position of the 

inflection point (higher n for higher inflection point). For any given n, parameter k
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determines the total spread of the curve along the x-axis (lower k values being associated 

with greater spread) (Morris and Silk, 1992). Mature cell (or element) length was taken 

as the average cell (element) length over a 10 mm segment distal to the growth zone 

(from location (x0 +25mm) to location (x0 +35 mm), where x0 denotes the base of the 

leaf).

These two data sets were used to calculate time vs location relationships in the 

elongation only zone using the following method:

1. Cell density distribution, p(jt), was defined as the inverse of elemental length l \x )

pW = - 7-  (eq.2).
I (x)

2. The average cell density p(x) between two locations, x-0.5dx and x+0.5dx was 

estimated by averaging the local densities calculated at these two locations.

3. The number of cells in the interval dx was then calculated as p(x) dx.

4. The flux of sister cells through any point distal to xsd, F, was obtained using

f ~ Y  (e T  3 ) ’
v

where E  is the leaf elongation rate calculated from the several measurements of leaf 

lengths made prior to leaf harvest, during the phase where elongation is linear with 

respect to time.

5. The cellochron (c), the time for a cell to be displaced by one position in the 

elongation zone, is the inverse of F  (Silk et al., 1989). The time, t(x), taken for a cell to 

be displaced from xsd to a particular further location, x, was calculated as

t (x)  = c .n (x ) (eq. 4),

where n(x) is the total number of sister cells between locations xsd and x  (Silk et al., 

1989).
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Local relative cell elongation rates, r(jt), in the elongation only zone were calculated 

for each cell type (sister cell or trichome) as:

rW = ̂ W )  (eq5)j
at

where time t is related to location, x  and flux, F, as described by equations 2-4 above.

The number of cells per file in the elongation only zone, Nel, was taken as the number 

of cells between xad and the location where the cell length calculated with the fitted 

Richards function reached 95% of lf. The residence time of a cell in the elongation only 

zone, Tei, was calculated as

Tei = c.Nei (eq. 6)

The contribution, Eei, of the elongation only zone to the overall leaf elongation rate

X 'l

(E) is given by the integral j  r(x).dx . It may also be written as
* sd

Eel = F.(l* -  l *ad) (eq. 7). This latter formula was the one used to calculate Eei .

b) Division zone

Zone of symmetrical division. The average partitioning rate ( p sd ) is equal to the ratio

of the rate at which sister cells are produced to the number of cells in the zone of 

symmetrical division, NSij , ie

Psd = TT" (eq- 8, Green (1976)).
AL,
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The inverse of p sd represents the average cell cycling time ( tc ), i.e. the time elapsed 

between two successive cell divisions:

tc = —  (eq. 9, Green (1976)). 
F

Local symmetrical partitioning rates at any location x  along the division zone, psd(x), 

were calculated as the average partitioning rate over intervals of cells around the cell 

at location x  using eq. 8 with rc, instead of Nsd and F  corrected by the proportion (typß of 

all newly formed cross-walls, found in this interval of i cells:

Psd(x > i) = — F  (eq.10).
n i

In the present study, the interval, i, was 21 cells; inspection of the data showed that 

this number allowed a good compromise between resolution and smearing of local 

variations in §p i

In order to calculate local cell elongation rates in the zone of symmetrical division, 

local velocity (vfjcj) was calculated according to Gandar and Rasmussen (1991) as 

follows:

If y(x) is the rate of cell production per unit length per unit time, then the cumulative 

rate of cell production up to x  is

X

Y(x)  = I  y(s).d s , where s indicates all values between x0 and jc. This quantity (y) is a
*0

flux; so

Y( x)  = (Silk et al„ 1989).
l (x)

At x=xsd, Ysd=F , so that
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Y( x)  _  v(jc) j_ 
Y( x sd) ~~ l (x)  F  '

We write
Y(x)

I  newcellwalls. ds
Jo_________________
x sJ

I  newcellwalls. ds
x 0

as 4>p,X.

It then follows that

v(*) = (j)P)X • F  l{x)  (eq. 11) (14).

Parameter §p,x increases from 0 at x0 to 1 at xsd ; l(x) was estimated as the average 

cell length in an interval of 11 cells around location jc.

Local relative cell elongation rates were then calculated over intervals of 20 cells 

around location x  (total length=<ix), as

r(jc) = —  (eq.12; Silk et al., 1989),
dx

where dv is the difference in the velocities calculated at the extremities of the interval. 

In order to reduce the noise in r(x), local velocities v(x) were first smoothed using a 

running average of 20 cells.

The total elongation generated in the zone of symmetrical division, Esd

was more simply calculated as 

Esi = F .lsd (eq.13), 

where lsd is the cell length at the xsd .

X SlI

I  r{x).dx
*0
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Table I. Average leaf elongation rate, £, over the 48 h preceding leaf harvest and 

corresponding fluxes of sister cells, F, calculated from these values and from the 

average mature elemental lengths, l*. For each variable, the two first columns show 

average values for the two Rt; the third column gives the difference (A) between these 

values expressed as the percentage of the low /?s mean). Asterixes denote statistically 

significant differences ( p<l %***;  l % < p < 5 % * * ; 5 < p <  10% * from ANOVA 

analysis of variance with n = 5).

E (m.m.d1) F (cells.d1) (tun)
Leaf R, A R. A R. A

(MPa) (%) (MPa) (%) (MPa) (%>

0.5 7.5 0.5 7.5 0.5 7.5

1 26.2 17.2 _34 *** 98 81 -17** 268 214 -20 ***

3 30.2 24.0 -21 ** 131 112 -14 ** 231 215 -7 *

5 27.2 20.4 -25 ** 120 115 -4 228 178 .22 ***



growth zone. To nevertheless enable calculation of average local rates over the sample of 

leaves harvested for a treatment, local partitioning and elongation rates calculated for 

individual leaves were first averaged over 0.5 mm intervals.

Fitting of the modified Richards function was done with the PC program Microcal 

Origin (version 3.5; Microcal Software Inc.) and the statistical package Genstat 5 

(version 2.1; Lawes Agricultural Trust (Rothamsted Experimental Station)) was used for 

ANOVA analysis of variance of all calculated parameters.

Results.

Whole leaf elongation rate, E, was always significantly slower for plants grown on 

soils with high Rs compared to low Rs (p < 0.001; I). In leaf 1 and 3 the number of cells 

moving out of the elongation zone per unit of time (F) was smaller and these cells were 

shorter (Table I); in leaf 5 cell flux was not affected by Rs, ie the reduction in E  was 

proportional to that in lf . A fraction of 7 to 10% of the overall leaf elongation rate was 

generated in the zone of symmetrical division, 4 to 6% in the zone of asymmetrical 

division, and the remaining 85 to 90% in the elongation only zone. Soil resistance had a 

significant negative effect on both Esd and Eei in all leaves; the only exception was in leaf 

1 for which the overall side-wall expansion occurring in the zone of symmetrical division 

was similar at the two Rs (data not shown).

The overall elongation generated in the growth zone, E, (or part of it, eg Esd) is the 

integral of local relative elongation rates, r(x), over the whole growth zone (or that part):

LgzorL«i

E  = J r(x)dx (see Methods).

Parameters relating to cell division do not figure in this expression in keeping the 

point made by other workers (eg Green, 1976) that cell partitioning does not generate
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Table II. Average length (mm) and standard error (n = 5) of: the growth zone as a 

whole (Lgz), the zone of symmetrical division (LJ,  the zone of asymmetrical division 

(Lad) and the elongation only zone (Lel). Asterisques denote statistically significant 

differences as in Table I.

Leaf R
(MPa)

0.5 7.5

Difference 

(A, %)

K 1 25.3 (1.4) 23.8 (1.7) -6

3 27.0 (1.3) 24.0 (1.0) -9

5 26.3 (1.8) 21.0 (2.4) -20**

k 1 1.6 (0.2) 1.8 (0.1) 9

3 3.4 (0.1) 2.0 (0.1) 4Q ***

5 4.3 (0.4) 2.5 (0.2) -42 ***

k 1 1.2 (0.3) 1.5 (0.1) 25

3 1.6 (0.6) 1.4 (0.3) -10

5 1.5 (0.4) 1.5 (0.3) 6

k 1 22.4 (1.1) 20.5 (1.7) -9

3 21.7 (1.8) 20.8 (1.0) -4

5 20.5 (1.8) 17.0 (2.4) -17



Table III. Average number of cells in a file of sister cells and standard error (n = 5) in: 

the growth zone as a whole (Ngi), the zone of symmetrical division the zone of 

asymmetrical division (7/d) and the elongation only zone (NJ.

Leaf

position
R,

(MPa)

0.5 7.5

Difference 

(A, %)

N 1 349 (17) 355 (18) 2

3 396 (18) 358 (18) -10*

5 457 (11) 414 (16) _9 *

ATsd 1 77 (9) 79 (9) 3

3 144 (8) 95 (9) -34 **

5 198 (16) 133 (10) _32 ***

ATad 1 58 (11) 70 (5) 20

3 48 (15) 57 (8) 18

5 52 (13) 72 (11) 39

1 212 (11) 207 (15) -3

3 204 (26) 206 (13) 1

5 207 (13) 208 (20) 0



growth. Rates of cell partitioning become important only if they influence one of the 

terms of the above equation. Examples of such an influence would be if Lgz were related 

to cell number rather than having a fixed length or if values of r reflect cell size rather 

than position within a growth zone of fixed dimensions. By analysing changes in cell 

partitioning rates and in Lgz, as well as cell elongation rates, we can analyse these 

processes.

Size of the growth zone

The total length of the growth zone (Lgz) was similar in leaves at a particular Rs and 

relatively little affected by Rs (Table II). There was a systematic trend for Lgz to be shorter 

at high Rs but this reduction in size was only significant in leaf 5 (p=0.034). However, 

leaf position and Rs affected the relative sizes of the division zone and elongation only 

zone (Table II). At low Rs the division zone w'as nearly three times longer in leaf 5 than 

in leaf 1 and in both leaf 3 and 5 was 40% shorter at high than low Rs, while being 

unchanged in leaf 1. In contrast, the elongation zone tended to be shorter in higher order 

leaves and, although consistently shorter at high than low Rs, was relatively less sensitive 

to soil conditions with the reduction in Lei being statistically non significant (Table II). 

The length of the zone where asymmetrical division took place varied little.

The size of each individual zone within the growth zone can be described in terms of 

length as above, or in terms of the number of cells along a file in that zone (Table III). 

When this is done, the above conclusions still hold. However, the size of the elongation 

zone (Nei) now emerges as a remarkably conserved characteristic, which was independent 

of leaf position and soil conditions. Secondarily and consistent with the increased 

frequency of trichomes observed in mature blades grown at high Rs (see below and 

Chapter 3) the number of cells in the zone of asymmetrical division was in all leaves 

greater at high Rs.
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Figure 1. Relationship between average cell length and distance from (location 0) 

along a file of sister cells in leaf 1, 3 and 5, at low and high Rs (open and closed circles, 

respectively). Data points denote averages of individual cell lengths over 0.5, 1, or 2 mm 

intervals, depending on location along the growth zone (see Methods). Data for 4 to 5 

leaves were averaged at each position, and the error bars denote standard errors of the 

mean. Solid lines describe fitted values from the Richards function (see Methods). 

Vertical arrows on the x-axis indicate in the inset the location of jcad and in the main 

panel, that of xei at low and high Rs, respectively (small and large arrows, respectively).



Cell length distribution

The above data imply significant variations of the rate of cell expansion, with both leaf 

position and Rs. Given the variation in Lsd, cell length distributions and derived kinetic 

parameters were compared with respect to position from xsd rather than from the base of 

the leaf (Figs 1-6). The distributions of cell lengths along the growth zone of leaf 1,3,  

and 5, are shown in Fig.l. In all three leaves, meristematic cells at the base of the 

division zone were of similar length at low and high Rs. In leaf 3 and 5 cell length 

remained stable throughout the division zone at low Rs, while at high /?s it steadily 

declined, reaching a minimum value around xsd (see insets in Fig. 1). In those leaves, 

sister cells at the base of the elongation zone were 25 to 30% shorter at high than low 

Rs. The difference at the end of the elongation zone was relatively smaller (15 to 25%, 

Table I) despite the elongation zone being slightly shorter. This was because cells were 

displaced through the elongation zone more rapidly at low than high Rs (shorter Tet, see 

Fig 2, right panel). In leaf 1 (inset Fig. la) a different pattern was observed: within 0.5 

mm into the division zone, meristematic cells were in fact significantly longer at high than 

low Rs. However, their size declined sharply at the distal end of the division zone to the 

same length as cells in unstressed leaves. The cell length distributions observed at the 

two Rs progressively diverged in the elongation zone. Within about 12mm of xsd, cells 

became significantly smaller at high Rs and mature cells were about 20% shorter, as for 

leaf 3 and 5.

Cell lengths of trichomes were also measured. The frequency of sister cells 

associated with trichomes in mature blades was much greater at high than at low Rs (p < 

0.001) in leaves 3 and 5 (94 vs 70%, and 79 vs 45%, respectively), while being similar in 

leaf 1 (80%). In all leaves trichomes were much smaller than the associated sister cells (4 

to 8 pm at xad against 15 to 25 (tm for sister cells and 22 to 27 pm compared to 150 to 

250 pm at the mature stage) and were only 5 to 10% shorter at high than at low Rs

(p<0.001).
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Figure 2. Local average relative cell elongation rates of sister cells along the growth 

zone of leaf 1, 3 and 5 plotted as a function of: physical distance from (left panel), 

rank of the cell along the file (middle panel) and time since the cell moved out of the 

division zone (right panel). In the zone of symmetrical division, data points (open and 

solid symbols for low and high Rs, respectively) represent moving averages of raw data 

and associated standard errors. For the remainder of the growth zone, moving averages 

are only shown in the left panel; the lines (thin and thick line at low and high Rs, 

respectively) describe rates derived from fitting cell lengths distributions by the Richards 

function (see Methods). The two horizontal bars on the x-axis describe for low and high 

Rs leaves (open and solid bar, respectively) the length of the growth zone (left panel), the 

corresponding number of cells (middle panel), and time for a cell to move through it 

(right panel). These bars are subdivided into 3 segments corresponding, from left to 

right, to: the zone of symmetrical division (negative abscissae), the zone of asymmetrical 

division ( from 0 to the first vertical mark) and finally the zone of elongation only.



Cell elongation rates

Figure 2 describes the relative rates of cell expansion along the growth zone. In the 

elongation zone, there was a good correlation between the relative cell elongation rates 

(r) calculated from the fitted Richards function and the values obtained with the 

averaging method (both are on the left panel in Fig. 2). The data obtained with this 

function could therefore be confidently used to compare r(x) values between treatments. 

For each leaf the spatial and temporal patterns of cell elongation are shown (leaft and 

right panel, respectively). The middle panel shows the variation in r as a function of cell 

rank (n(x)) along the file; in the elongation zone, this is equivalent to measuring cell age 

in terms of number of cellochrons. The three axes are inter-related as expressed by 

equations 2-4.

Elongation rates o f non-proliferative cells. Local variation in rei(x) along the 

elongation only zone was important (Fig. 2, left panel) and followed a consistent pattern 

for all leaves and treatments, similar to the spatial pattern reported in other studies of leaf 

and root meristems (Erickson and Sax, 1956b; Volenec and Nelson, 1981; Morris and 

Silk, 1992): rates increased sharply from xsd towards a location (xmax), 7 to 10 mm distal 

to xsd, where it reached its maximum ( r ^ ) .  The maximum rate, rmax, was maintained in a 

short region only, of about 2 mm, beyond which a steady decline occurred. At low Rs, 

rmax had similar values for all leaves, of 7-7.5% per hour, but was achieved 2.5 mm 

further into the elongation zone in leaf 5 than in leaves 1 and 3.

High Rs caused a reduction in relative cell elongation rates in all leaves. But the 

magnitude of this effect and its spatial characteristics varied with leaf position. In leaf 1, 

re[ was significantly slower at high Rs throughout the elongation zone (20% decrease in 

rmax (p<0.05)). In leaf 5, this was only the case in the distal half of the elongation zone 

with rates at more proximal locations being in fact greater at high Rs than in the control. 

Leaf 3 showed an intermediate pattern. In these two leaves high Rs did not affect the 

value of maximum elongation rate but caused a displacement of x ^  towards the base of 

the leaf, of 1.2 and 1.8 mm for leaf 3 and 5, respectively (Fig. 2a). An average
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ire 3. Local relative elongation rates of trichomes associated with the sister cells 

ribed in Fig. 2 for leaf 1, 3 and 5. Open and closed symbols represent low and high 

ita, respectively. Rates were calculated with the averaging technique described in 

hods. Vertical arrows on the x-axis indicate the location of xmax and jcei at low and 

Rs (small and big arrow, respectively).



displacement of 0.8 mm also occurred in leaf 1, but this was not statistically significant. 

However, when expressed relatively to the length of the elongation zone, the location 

where maximum elongation rate occurred was in all leaves remarkably insensitive to soil 

conditions, being at half-way along the elongation zone in leaf 5, and 35 to 39% along in 

leaf 1 and 3.

In all leaves the spread of the distribution of cell elongation rates at high Rs was 

increased relative to that at low Rs when rates were plotted as a function of cell rank, ie 

cellochron age (middle panel in Fig. 2). Given the near constancy of the total number of 

cells in the elongation zone, this lateral displacement reflects greater local cell densities 

(shorter cells) at high Rs. In leaf 1 and 3 low Rs rates were even less spread compared to 

high Rs rates when cell age was measured in chronological time (right panel): this further 

relative displacement of the two distributions is a measure of increase in the cellochron 

(c=l/F) at high compared to low Rs. In leaf 5 where the cellochron varied little with Rs, 

the temporal patterns of cell elongation were similar at the two Rs: maximum rates 

occurred about 40 h after the cell had moved out of the zone of symmetrical division and 

approached zero 12 to 18 h later at low and high Rs, respectively (difference not 

statistically significant, see horizontal bars on the x-axis in Fig. 2 (right panel)). This 

means that for this leaf, the offset of the spatial distributions of elongation rates mostly 

reflected the shorter length of the elongation zone in leaves grown at high Rs. In contrast, 

in leaf 1, cells elongated more slowly at high Rs, to the point where more time was 

required to move a cell through the elongation zone (53 and 65 h at low and high Rs, 

respectively (Fig. 2, right panel)), despite this zone being shorter.

The relative elongation rates of the trichomes associated to the sister cells described in 

Fig. 2 are shown in Fig. 3. These rates initially decreased with increasing distance from 

Xsd in the basal part of the elongation only zone. At more distal locations, local rates 

showed a similar pattern of spatial variation as for sister cells, and reached a maximum at 

approximately the same location (ie around ;w ) .  Maximum relative elongation rates 

were roughly 50% lower for trichomes than for the associated sister cells and in leaves 1
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Figure 4. Local average relative elongation rates in the division zone of leaf 1, 3 and 5 

(same data as in Fig. 2, left panel, negative abscissae, but plotted on an expanded scale). 

Symbols as in Fig. 3. Vertical arrows on the x-axis indicate the location of the end of the 

zone of asymmetrical division (xad), at low and high Rs (small and large arrow, 

respectively).



and 3 elongation stopped closer to the leaf base, at about two-thirds along the elongation 

zone (Fig. 3). The effects of Rs however, were, in terms of direction and magnitude, quite 

similar for the two cell types.

Elongation rates of proliferative cells. The rates of expansion of meristematic cells in 

the zone of symmetrical division were significant, comparable to the rates calculated for 

non-proliferative cells (Fig. 2). Because the division zone was physically very short 

compared to the elongation only zone, the spatial variation of rsd with respect to distance 

from xsd (rates for negative abscissae in Fig. 2) are shown in more detail on an expanded 

scale in Fig. 4. In leaf 1, rSd was high at the base of the meristem, similar to the maximum 

rates calculated in the elongation zone, and similar at high and low Rs. At high Rs it 

declined rapidly as xsd was approached while remaining high at low Rs over most of the 

division zone. In contrast, in leaf 3 and 5, rsd was insensitive to Rs and, especially in leaf 

5, more uniform spatially and through time than in leaf 1 (Fig.2, panel b&c).

Cell partitioning rate.

Figure 5 describes the local rates of cell partitioning in the zones of symmetrical and 

asymmetrical division (pSd and pa(i, respectively (eqs 10 and 15)). There is a small overlap 

of the p Sd and pad distributions around xsd because a few fresh walls were occasionally 

observed beyond the location where the first asymmetrical division occurred, and also 

because of some smearing related to the use of moving averages over 21 cells (see 

Methods). In all leaves the overall rate of partitioning (sum of psd and pad) was maximum 

in this short region of about 1mm around xsd. At low Rs, partitioning rates decreased 

markedly from leaf 1 to 5, whereas at high Rs there was no consistent ontogenetic 

effects. This reflects a strong and unexpected interaction between Rs and leaf position in 

the response of cell partitioning rate: in leaf 1, high Rs caused a reduction in both psd and 

pad, except at the very base and very tip of the division zone, whereas in leaf 3 and 5, 

these rates were in fact enhanced. This shift in the effects of Rs with leaf position is 

reflected in the respective durations of the average cycling time in the zone of
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Figure 5. Local relative rates of symmetrical and asymmetrical partitioning in the 

division zone (psd and pad,represented by circles and triangles, respectively). Open and 

solid symbols denote low and high Rs rates, respectively.



Table IV. Average cell cycle duration (tc h (h)) and standard errors (into brackets, 

n = 5).

Leaf position Rs Difference

(MPa) (A%)

0.5 7.5

1 19.1 (2.0) 24.7 (4.1) 30

3 26.7 (2.1) 20.6 (2.5) -23 *

5 39.7 (3.1) 27.9 (2.0) -30**
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Figure 6. a.) Local relative cell elongation rate (thick line); rates of symmetrical and 

asymmetrical partitioning (circles and triangles, respectively) in the division zone and ir 

the basal region of the elongation only zone. Open symbols and dotted lines are for sist 

cells, closed symbols and solid lines for elongated cells, respectively, b.) Corresponding 

cell length for the two cell types. Data are for leaf 5 at high Rs.



symmetrical division, tc (the reciprocal of p sd) (Table IV). In leaf 1, high Rs caused tc 

to increase by 5 h, whereas in leaf 3 and 5, tc was shortened by 6 and 12 h, respectively.

In the steady-state, cell flux F  (shown in Table I as EAf* ) is constant troughout the 

elongation zone, and represents the overall rate of cell production by the division zone 

(eq. 9). It may be seen from eq. 9 that the greater cell flux in leaf 3 and 5 compared to 

leaf 1 (Table I) reflects the fact that the decrease in psd in these leaves (Fig. 5) was 

relatively smaller than the increase in the number of meristematic cells, Nsd (Table III). 

Similarly, the smaller flux at high /?s was in leaf 1 due to lower p sd , while in leaf 3 it was

driven by the decrease in N^, which was relatively greater than the increase in p sd .

Comparison of different cell types

Since adjacent cell files do not slide with respect to each other (Freeling et al., 1988), 

local relative elongation rates at a given location along the growth zone are the same for 

all cell files. However, Fig. 6a shows with leaf 5 at high Rs taken as an example, that both 

the size of the division zone, and the rates of cell partitioning vary between adjacent 

cellular files of different types. Symmetrical partitioning was restricted to a much shorter 

segment in files of elongated cells than in files of sister cells. In addition, the local rates 

of partitioning, psd (x), were much lower and declined rapidly towards more distal 

locations, well below the elongation rates at the same location, whereas in files of sister 

cells partitioning rates remained high and comparable to the local elongation rates. As a 

result the length of elongated cells increased from the base of the meristem to the distal 

end of the division zone while that of neighbouring sister cells decreased (Fig. 6b). 

Interestingly, asymmetrical division occurred at a similar location in the two types of file. 

This location also coincided with the site where guard mother cells were initiated in 

stomatal files (data not shown).
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Discussion.

Methodology

Quantitative analysis of growth kinematics based on the continuity equation relies on 

the fundamental assumption that the leaf growth pattern is constant in time (time- 

invariant fields of velocity and cell production rate (Goodwin and Stepka, 1945; 

Erickson and Sax, 1956b; Silk and Erickson, 1979). There is little doubt that, to a first 

approximation, the leaves analysed in the present study fulfilled that requirement. They 

were sampled about 2-3 d after emergence from the enclosing sheath, ie about half-way 

through the phase where elongation was linear with respect to time. Furthermore, 

Schnyder et al. (1990) showed in Lolium perenne, another grass, that the spatial 

distribution of epidermal cell lengths in the growth zone, the length of that zone, and 

therefore its number of cells, all remained mostly unchanged from at least leaf tip 

emergence to the time of transition between blade and sheath growth, i.e. for at least 2- 

3d before and after our sampling time.

Kinematic calculations based on cell length distributions along an extending axis have 

always been based on the analysis of cell files containing a single type of cells (Volenec 

and Nelson,1983; Gandar and Hall, 1988; Silk et al., 1989). The analysis of composite 

files of sister cells interspersed with a variable number of trichomes depending on leaf 

position and Rs, required consideration of “structural elements” made of a sister cell and 

the associated trichome (when present) to enable us to determine the kinematic 

parameters of the two cell types individually (Figs 2&3).

We found that trichomes elongate at an approximately 50% slower rate than sister 

cells (Figs 2&3). Because, as already noted, cells in adjacent files do not slide relatively 

to one another, the formation of trichomes will slow local elongation rates in adjacent 

files too. If the lower elongation rate in positions lateral to trichomes is not compensated 

for elsewhere, an increase in the frequency of trichomes will affect r  and the mature 

length of cells of other types.
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Cell length distribution

The length of sister cells (and of all other cell types, except for trichomes) varied 

greatly along the growth zone. Within a single leaf, the largest cells at any given position 

along the blade were more than twice as long as the smallest ones. Ignoring the presence 

of trichomes, local variation in length from cell to cell is largely generated in the division 

zone: cell partitioning produces two daughter cells of half the size of the mother cell; 

these expand in an approximately synchronised fashion, before dividing again. This next 

division takes place at approximately the same time for both daughter cells, resulting in 

small clusters of cells of similar length. Variation in cell length from cluster to cluster is 

to some extent related to time elapsed since last division. Over larger spatial scales, as 

already emphasised by Green (1976) variability in cell length (Fig. 1) is also generated by 

spatial variation along the division zone in the ratio of the local rates of cell elongation vs 

cell partitioning. The present study shows that such variation is large in the growth zone 

of wheat leaves (comparison of Figs 2-4). For example, in leaf 1 at high Rs, partitioning 

rates remained stable over the distal region of the zone of symmetrical division (abscissae 

-1 to 0 in Fig.5) while elongation rates declined (Fig. 4); as a result, cell lengths 

decreased over that region (inset of Fig. 1). The variability in length between 

neighbouring cells which is generated in the division zones is maintained in the 

elongation only zone and, consequently, in the mature zone.

Practically, local variation in cell length necessitated smoothing of cell length 

distributions to enable kinematic calculations (methods reviewed by Silk (1984)). Use of 

the Richards function in the elongation only zone, allows good estimation of rmax and xe\. 

However, Morris and Silk (1992) found that the distribution pattern of relative elemental 

elongation rates in the growth zones of some plants cannot be adequately described by 

the Richards function. In addition to this, the present study shows that individual cell 

types can behave differently. Results derived from the use of the Richards function 

should therefore always be compared to those obtained with an independent smoothing 

method. Averaging individual cell lengths over short, contiguous intervals provides a

86



simple smoothing procedure, not involving any a priori assumptions about the data. In 

the present study, the relationship between position and cell length (as well as the derived 

elongation rates) thus obtained agreed closely with the curve obtained by fitting 

individual data points by the Richards function (see Fig. 2, left panel).

Growth kinetics

It was showed in Chapter 3 that at high Rs leaves elongate more slowly and reach a 

smaller final size although the duration of elongation is increased, especially in the first 

leaves. The present analysis sheds some light on the cellular bases of these observations, 

and shows that they vary with leaf position. In leaf 1 and 3, leaf elongation is slower 

because cell flux into the mature part of the blade (F), and length of these fresh mature 

cells (//and //)  are both reduced. In leaf 5, slower E  is mostly due to shorter cells; F  is 

little reduced. Analysis of mature leaves (Chapter 3) also showed that the total number 

of sister cells along a file in the mature blade was unaffected by Rs\ this was also 

observed on the mature leaves harvested upon termination of the present experiment 

(data not shown). This implies that reduction in mature blade length is directly 

proportional to that in mature sister cells length and secondly that the overall duration of 

leaf elongation will increase proportionally to the reduction in cell flux. From the F  

values shown in Table I and Nf  values obtained from the ratio of final blade length to 

average cell length, we calculate that the linear phase of elongation was 1.5 , 1.3, and 0.3 

day longer at high Rs for leaf 1,3, and 5, respectively.

Understanding the effects of Rs on whole leaf characteristics therefore comes down to 

addressing two questions: Why are mature cells shorter? Why is cell production rate 

reduced? Our results show that the answer to these questions varies with leaf position. In 

leaf 5, once cells became non proliferative they expanded at the same relative rate (re/), 

for the same duration (Tei) at the two Rs. Reduction in their final size at high Rs was 

therefore brought about by reduction in cell length upon entry into the elongation zone 

(Fig. 1). Since there was no difference between Rs treatments in cell lengths at the very 

base of the meristem (l0) nor in the rate of cell elongation through the division zone 

(Figl and 4, respectively), the smaller cell size at xsd and xad in high Rs leaves can be
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attributed solely to a reduction in cell length at partitioning. With l0 and rsd being 

unchanged, the increase in partitioning rates (Fig. 5) is a direct measure of that 

reduction. Applying eq. 8, we calculate that psd was for leaf 5, 42% greater at high 

than low Rs. This value is similar to the difference between shortest cells in the respective 

division zones (data not shown).

The other effect of high Rs in leaf 5 was to decrease the size of the population of 

proliferative cells (Nsd, Table III), ie the number of divisions per leaf founder cell. This 

decrease in Nsd was, in relative terms, similar to the increase in p sd , so that the overall 

cell production rate, F, remained unchanged. From inspection of the Nsd and psd values 

in the other leaves, we consider this match between variation of the parameters in leaf 5 

as a coincidence rather than the reflection of a direct relationship between cell cycle 

duration and number of proliferative cells.

The interpretation of the slower elongation of leaf 1 is quite different. In that leaf, the 

length of cells moving into the elongation zone was similar at the two Rs (Fig.l). The 

reduced size of mature cells therefore reflected the much slower elongation rates once 

the cell had become non-proliferative (Fig. 2). High Rs prolonged the duration of cell 

expansion (Fig. 2, right panel), but this effect was too small to offset that of the slower 

elongation rates. High Rs also reduced the rate of elongation of meristematic cells except 

at the very base of the meristem (Figs 2& 4). Although this had no direct consequence 

on final cell lengths, the absence of reduction in rsd while psd was decreased explains why 

meristematic cell length increased and became higher than at low Rs in the basal part of 

the meristem. In the distal part of the division zone, cell length decreased faster at high 

than at low Rs, because rsd was there relatively more reduced than psd (Figs 4&5). This 

pattern of cell length distribution was also seen in roots under water stress (Silk, 1992). 

The reduction in cell partitioning rates is the opposite of the effect of Rs in leaf 5. Since 

the size of the population of meristematic cells was unaffected by Rs, reduction in psd was 

the cause of lower cell flux (Table I).
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In summary, in leaf 5, high Rs reduced leaf elongation rate by reducing the number of 

divisions per founder cell and by reducing the length at which proliferative cells were 

partitioned, which was associated with enhanced rates of cell partitioning. In contrast, in 

leaf 1, leaf elongation rate was reduced because of slower relative cell expansion and cell 

partitioning rates. In leaf 3, Nsd was reduced and psd was enhanced while the rates of cell 

expansion were not (rsd), or only little (ret) affected, as in leaf 5. It is worth reemphasising 

at this point that cell partitioning per se does not generate growth. However the profile 

of cell lengths in the division zone is determined by the relative variations of the 

partitioning and expansion rates (Clowes, 1961; Green, 1976), which may thereby 

influence the profile of cell lengths in the mature blade (eg leaf 3 and 5).

The differences we observed in the response of successive leaves to Rs could reflect 

differences in the stage of development these leaves had reached when first affected by 

stress. Three leaf primordia are initiated in the embryo of wheat seeds. Differences in Rs 

were experienced by roots from germination, and their effects on leaf elongation were 

first detected when leaf 1 was about 20mm long. By that time the leaf meristem was 

formed. At the same time, leaf 3 had just been initiated and it would be several days 

before the initiation of leaf 5, so that the formation of the meristem (number of formative 

divisions, see Chapter 3) and number of proliferative divisions per founder cell (Nsd, 

Table III)) in those leaves could be affected . An alternative, or additionnal explanation is 

that these differences between leaves reflect time-dependent changes in the 

responsiveness of the apical and leaf meristems to stress-induced root signals or in the 

nature of their metabolic effects. The trigger of slower leaf expansion at high Rs has been 

attributed to some kind of hormonal compound(s) (Masle and Passioura, 1987; Masle, 

1990), with ABA or related compounds being the most likely candidates as under 

drought (Masle and Farquhar, 1988). However, there is also evidence that in the longer 

term (days) leaf development becomes carbon limited at high Rs and that its sensitivity to 

sugar concentrations is altered (Masle et al., 1990).
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There has been a lot of discussion as to whether stress affects leaf growth via cell 

expansion or cell division. This study demonstrates that high Rs may affect the two sets 

of processes. Being based on the measurements of individual cell lengths along the 

growth zone rather than on the displacement of marks like most other kinematic studies, 

with identification of proliferative vs non proliferative cells, the present analysis provides 

new information, at the cellular level, especially for the meristem. Stress effects on the 

number of proliferative cells could be separated from those on cell cycle duration. A 

decrease in the number of divisions per founder cell under stress is consistent with effects 

of water stress in root meristems (Silk, 1992) but a shortening of the cell cycling time 

was a surprise. Data on the effects of growth conditions on cell division in intact higher 

plants are scarce. Furthermore most studies compare mitotic indexes or cell production 

rates (eg MacAdam et al., 1989; Silk, 1992) which confound variations in number of 

dividing cells and cell cycle duration. However Powell et al. (1986a, b) found that toxic 

Zn levels significantly lengthened the cell cycle in one cultivar of Festuca rubra, while 

having no effect in another one. They also reported contrasting responses of cell sizes in 

the meristem. These observations led Francis (1992) to suggest that environmental 

stress can effect specific aspects of the cell cycle, which are linked to cellular mechanisms 

for tolerating stress. These mechanisms vary with genotype; our observations indicate 

that they are also developmentally regulated and vary between leaves.

Measurements of individual cell lengths enabled us to show that, although a minimum 

longitudinal expansion has to occur before partitioning takes place, there is no single 

threshold size at which cells divide, even for a given genotype. Cell size in the division 

zone varied between leaves, Rs treatments and with position in the division zone (Fig. 1). 

This suggests to us that rather than being related to cell size per se as has sometimes 

been suggested from observations on lower organisms (eg John et al., 1993), the 

occurrence of partitioning may be dependent on a minimum amount of metabolic 

machinery. Haber’s experiments with irradiated seedlings clearly showed that elongation 

can continue in the absence of mitosis (Foard and Haber, 1961; Haber 1962; Haber and 

Foard, 1963).
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We were also able to calculate local cell partitioning and cell expansion rates in the 

division zone. Thin walls provided us with lasting, and ordered, markers of recent cell 

divisions, enabling us to work with larger cell samples. From the total number of thin 

walls per file of sister cells in the division zone and the cell flux out of this file at xsd we 

indeed estimate that the time needed to thicken a new wall ranged from 4 to 6h for leaf 

1&3 and leaf 5, respectively (equivalent to 15 to 25% of the average cell cycle duration). 

Since this time was in all leaves similar at the two Rs, we are confident in the reliability of 

the Rs effects on the psd and rsd distributions shown in Figs 4&5 and conclude that cell 

partitioning and cell expansion rates of meristematic cells are not directly related. For 

example, high Rs enhanced psd in leaf 5 while having no detectable effect on rsd . 

Furthermore, comparison of Figs. 2 and 4 shows that there was no constant relationship 

between expansion rates in the division and elongation zones, suggesting that the 

regulation of wall expansion in dividing cells differs from that in non-proliferative cells. 

Baskin et al. (1994) recently identified a mutant of Arabidopsis with impaired expansion 

only in root cells which had ceased dividing. There are important spatial gradients in the 

elongation rates of both groups of cells as well as in the rates of partitioning. Future 

work should aim at relating these gradients to gradients in cell metabolic status, 

especially with respect to carbohydrates and putative stress-induced root signals.

The present study shows that interpretations of growth responses inferred from 

characteristics of mature leaves/cells alone are dangerous. We saw that differences in 

mature cell length does not necessarily reflect differences in rates of wall expansion or 

duration of cell expansion in the elongation only zone (eg leaf 5). Similarly, the number 

of sister cells per file in the mature blade was in all leaves independent of Rs, despite 

large, and furthermore variable, differences in meristem size and rates of partitioning. 

The number of cells in files of other type was also not (stomata) or little (eg bulliform 

cells) affected by Rs (Chapter 3). In the light of the variability and complexity of the 

effects of Rs on the growth kinetics at the cellular level, the relative invariance of the final 

number of cell along mature files is fascinating. This observation bears on the still 

unresolved issue of the relationships between the control of overall organ shape and size 

and of cellular characteristics (see Haber 1962, and more recently Green, 1994).
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Chapter 5

Determination of mature leaf dimensions by growth at the apex.

Abstract

High soil resistance to root penetration (Rs) slows down leaf growth and reduces 

mature leaf size. The aim of the present study was investigate to what extent some these 

effects are generated at the primordial stage in relation to apical characteristics. The 

relationships between apex growth, timing of leaf 5 initiation and expansion rate of the 

young leaf primordium are analysed for plants grown at contrasted Rs.

High Rs reduced the rates of apex and leaf development but did not appear to have 

immediate effects on the pattem of development of the newly initiated phytomers. 

During an initial short period, the leaf and node development were related to 

plastochronic age, according to similar relationships at the two /?s. Effects on 

developmental patterns were first detected on radial phytomer expansion during 

plastochron 2. The ontogenetic pattern of longitudinal leaf development was affected 

later, at the post-primordial stage. Differences in the number of formative divisions and 

in the number of proliferative cells along the intercalary meristem that were reported in 

earlier chapters are generated at the primordial and post-primordial stage. They do not 

appear to be related to the size of the apical dome at leaf initiation nor to the size and 

number of meristematic cells initially recruited to the leaf primordium. Further studies 

towards the understanding of the effects of Rs on the kinematics of leaf growth and 

mature leaf anatomy should concentrate on the development of the young leaf from 

plastochrone 1 to 5.

97



Introduction.

Leaf growth is restricted when roots encounter a high resistance (Rs) to penetration 

through the soil. This has been shown for several species and has been well documented 

for wheat (Masle and Passioura, 1987&1990; Masle et al., 1990; Masle, 1992). During 

the early stages of seedling growth, high Rs decreases the rate of leaf area expansion by 

slowing down the rate of leaf appearance and elongation and by reducing the dimensions 

of mature leaves (Masle and Passioura, 1987). A mechanistic understanding of these 

whole leaf responses requires to identify which of the many developmental processes 

involved in leaf formation are affected by Rs and to analyse how their integration in time 

and space is modified. The effects of Rs on the anatomy of mature blades and on the 

kinetics of cell partitioning and cell elongation in expanding leaves were reported in 

previous chapters. It was shown that the size and structure of the leaf meristem and its 

functioning during the phase of linear elongation following leaf emergence (rate of cell 

partitioning, rate of surface expansion of meristematic and non-meristematic cells, 

relationships between these rates) were all sensitive to R&. However, the degree to which 

these parameters were affected or even the direction of the response varied between 

successive leaves. Although time-dependent adaptation to stress could not be excluded, 

comparison of leaf 1 which starts its development in the embryo and of leaf 5 which is 

initiated after germination showed that these leaf effects partly reflected differences in the 

developmental stages of successive leaves when root impedance first occurred. In leaf 5, 

high Rs reduced the number of proliferative cells in the leaf intercalary meristem which 

was made of fewer files, with fewer cells. These cells partitioned at a faster rate and at a 

smaller size. Remarkably, Rs did not affect the rate of cell expansion, nor the duration of 

expansion once the cell had become non proliferative. These results suggested that for 

leaves which fully developed after the onset of root impedance, variation in expansion 

rate and mature leaf size were mostly caused by effects of Rs on early events of leaf 

ontogeny. The aim of the present study was to test this hypothesis further by analysing 

the effects of Rs on apex growth, timing of leaf initiation and expansion rate of the 

young leaf primordium. Early research into apical development showed that the size of 

the apex gradually increases with plant age (see references in Clowes, 1961). Some 

authors (eg Abbe et al., 1941; Wardlaw, 1952) have suggested a causal relationship 

between this ontogenetic increase in apex size and the increase in width of successive
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leaves. This is an attractive hypothesis, especially for grass leaves, which early in their 

development form a hood that completely encircles the axis (Fig. 1 and Williams, 1974). 

Does it apply to environmentally induced variation in leaf width? Results such as those 

of Mitchell and Soper (1958) in Lolium and Paspalum show that, not surprisingly, 

environmental variations can cause marked variations in leaf width in the absence of 

effects on the size of the apical meristem per se. Interestingly, however, in that study 

variation in leaf width with light intensity seemed to correlate with variation in the 

circumference of the sub-apical region (defined as in Fig. 2). In view of these 

observations, one aim of the present study was to specifically address the following 

question: Are the reduced number of formative divisions (cellular files in the leaf 

intercalary meristem) and leaf width at high Rs due to limitations of apex enlargement 

during the early stages of leaf formation?

Materials and methods.

Growth conditions

Wheat plants (Triticum aestivum L. cv. Egret) were grown in pots in a controlled 

growth chamber set at 18/15 °C day/night temperature, 600 p.mol quanta m'2 s'1 

irradiance, 11 h photo- and thermo-period and a relative humidity of 80%, day and night. 

Calibrated seeds (42 to 44 mg) were sown 15 mm deep in soils with contrasted 

mechanical resistance to root penetration. The soil used in this study (a silty loam with 

5% coarse sand, 40% fine sand, 31% silt, 19% clay and 4.5% organic matter) was the 

same as in earlier experiments (Chapters 3&4). After thorough mixing of 2.2 g finely 

ground superphosphate and 357 mg NH4NO3 per kg dry soil, the soil was 

homogeneously packed into cylindrical PVC pots (200 mm high and 87 mm diameter), 

so as to achieve a penetrometer resistance of 0.58 ± 0.03 MPa and 6.98 ± 0.09 MPa. 

These contrasted soil resistances were obtained through two different combinations of 

soil bulk density and soil water content (1.12 g cm'3 and 0.24 g H20 g'1 dry soil at low
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Figure 1. Scanning electron microscopy image of a replica (see Materials and 
Methods) of an apex at PI = 6.75. a) Top view, b) Side view.



Rs and 1.42 g cm'3 and 0.22 g H2O g'1 dry soil at high Rs). Pots were watered at least 

daily, so as to maintain soil water content as constant as possible around its initial value.

Plant harvest

Five randomly selected plants were harvested daily from d7 through d l4  at low Rs, 

and d8 through d l6  at high Rs. This allowed to cover a similar range of developmental 

stages at the two Rs, from the initiation of leaf 5 to that of leaf 7. These plants were 

dissected for microscopic examination of the apical and subapical meristem (defined as in 

Fig. 2) and of the young leaf primordia, leaf 5 especially (see below). The technique 

used was a slightly modified version of that described by Green and Linstead (1990), 

which enables scanning electron microscopy and light microscopy on the same sample. 

Five other plants were harvested at each Rs at the emergence of leaf 7, from which 

mature leaf 5 was sampled.

Dissection and sample preparation for scanning electron microscopy (SEM)

In order to prevent excess evaporation from the specimen the dissection microscope 

was placed in a tray layed with wet filter paper and enclosed in a small plastic tent. The 

oldest leaves were removed until the apical meristem and leaf 4 (on d7-10) or 5 (later 

harvests), were exposed. The apex with this leaf and usually two younger leaf primordia 

still attached (see Fig. 1) was then quickly placed upside down in a gelatine capsule (size 

0, Alltech, Australia) filled with dental impression material (ESPE Permagum, low 

viscosity). After ca 3 minutes, the material had hardened enough so that the specimen 

could be removed leaving a mould with a clear impression. Replicas of these impressions 

were obtained by filling the moulds with resin (Araldite “M”, Ciba-Geigy, Australia) 

which was let to polymerise overnight at 60 °C. The replicas were sputter-coated with 20 

nm gold using an SEM coating unit (type: E5000, Polaron Equipment Ltd.), and 

mounted in a vertical position on the stage of a scanning electron microscope (Jeol, JSM 

6400). Several photographs were taken for each sample (Fig 1); the sample was rotated 

so as to select views which would expose the insertion site of leaf 4 and 5 or 5 and 6 and 

allow reproducible measurements of the length of these two leaves and of the height of
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Figure 2. Schematic representation of an apex with identification of the apical 
meristem (a), leaves 3 to 7 (numbered in bold), and the corresponding nodes 
and internodes (n3 to n7 and i4 to i7, respectively) defined as in Lyndon (1990). 
ha denotes the height of the apex measured from the base of leaf 5 and h5 and h6 
are the heights of leaf 5 and 6, respectively. The positions of the six cross 
sections which were analysed by light microscopy (see Materials and Methods 
and Fig. 3) are indicated by horizontal arrows labelled A to F.



the apical dome (lengths labelled hs, h ,̂ and hcl in Fig. 2). At the latest harvests where 

leaf 5 was completely encircling the apex with its margins overlapping on each other, 

only h5 could be accurately measured.

Preparation of transverse sections for light microscopy examination

Immediately after being removed from the impression material the plant samples were 

fixed overnight in 0.25% glutaraldehyde and 0.38% formaldehyde in 0.05 M phosphate 

buffer (pH =6.7), and after a quick wash with 0.05 M phosphate buffer, in 1% osmium 

tretroxide for 2.5h. All samples were then stored in 70% ethanol. At the end of the 

experiment two sets of fixed apices, which represented the most extreme stages of 

development common to the two Rs treatments, were selected for sectioning. For the 

first set, leaf 5 had just been initiated; the average plastochron index (PI, see later) was 

5.17 ± 0.15 and 5.30± 0.07 at low and high Rs, respectively. On the set of older apices, 

leaf 7 was the youngest initiated primordium, with a plastochron index of 6.69 ± 0.11 

and 6.68 ± 0.14 at low and high Rs, respectively.

These two sets of apices were dehydrated in ethanol in three lh steps (90, 95 and 

100% ethanol and infiltrated overnight with 50% LR-white resin (London Resin 

Company Ltd.) in ethanol, followed by 4h in pure LR-white resin. They were then 

transferred in gelatine capsules filled with pure resin, care being taken to position the 

apex with its axis parallel to the capsule wall. The resin was let to polymerise at 60 °C for 

24h.

For the set of most advanced embedded apices, several series of 5 transverse sections, 

alternatively 1 and 2 fim thick, were taken through the apical and subapical meristem 

(Fig. 2). The sequence of these sections was recorded. All 1 |im sections were mounted 

on slides and stained with 1 % toluidine blue in 1 % sodium borate buffer and examined 

under the light microscope. Six sections (labelled A to F in Fig. 2) were selected for 

morphometric analysis, from six similar positions along the axis of the sample: at the 

base of the apical dome, just above the youngest initiated leaf primordium (leaf 7, section 

A); through the site of initiation of that primordium (B); through the disc of insertion of
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Figure 3. Example of light microscopy images of transverse sections taken at 6 
positions along the apex as indicated in Fig. 2.



the two oldest leaves (leaf 6 and 5, sections D and F), which will be referred to as 

“nodes” (Lyndon, 1990) and through the meristematic regions separating these discs 

(“intemodes”, sections C and E). For the set of young apices, only one section (section 

A, just above the site of initiation of leaf 5) was selected for analysis. Light microscopy 

images from the sections (Fig. 3) were obtained with a video camera mounted on a light 

microscope. On these sections, the following determinations were made: circumference 

of the central axis (sections A-C-E) or of the node (sections B-D-F) and number of cells 

on the outer most layer; width of leaf 5, measured as the distance between margins on 

the abaxial side of the primordium, and number of epidermal cells along that distance. 

Average cell width was then calculated from leaf width divided by that number of 

epidermal cells.

Description o f developmental stages (developmental scale)

The number of visible leaves on the main stem (n) and the emerged lengths of the two 

youngest blades (/„.y and /„) were recorded on all plants at each harvest. These 

measurements were used to determine the foliar stage of each plant according to Haun

/  /
(1973) as: .(n -1 )  + —— (later referred to as “Haun index”, HI), where —— <1. The

K-\ K-i

Haun index provides a continuous scale for the description of foliar stages, which 

furthermore is linear with temperature ie in our conditions, linear with time. The constant 

time interval taken for the Haun index to increase by 1 unity defines the phyllochron.

The total number of initiated leaves was also counted. In order to analyse the effects 

of Rs on meristem and leaf characteristics independently of possible age differences, all 

measurements were referred to the apex, or to the leaf, plastochrone age. Plastochronic 

age was measured by the value of the plastochron index (PI) as defined by Erickson and 

Michelini (1957):

PI u |  ln(Z.)-ln(f,) 
ln (/„)-ln (/„+1)

(Eq. 1),
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Table I. Effects of soil resistance on the characteristics of mature leaf 5 blades. Data in 

the first two columns are means and standard errors (into brackets, n = 5). The third 

column gives the difference between /?s treatments as a percentage of the value at low Rs 

and the statistical probability level of the difference determined from ANOVA analysis of 

variance (n.s. denotes not significant).

Rs (MPa)

0.6 7.0

Difference (%)

Length (mm) 254.2 (4.8) 235.0 (6.1) -7.6 (0.038)

Width (mm) 8.6 (0.2) 7.3 (0.3) -15 (0.006)

Area (mm2) 15.8 (0.9) 12.5 (0.8) -21 (0.026)

# files across 338 (5) 288 (9) -15(0.001)

Cell width (pm) 25.4 (0.4) 25.3 (0.5) n.s.



where n is the number of leaves longer than a reference length (/r), ln and ln+] are the 

lengths of leaves n and n+1, respectively with, by definition /„ > lr and ln+I < lr. The 

reference length was chosen as 50 pm which was the smallest leaf primordium length 

that could be measured with precision on the SEM images. The assumptions embedded 

in the derivation of that index are that leaves are initiated at regular interval and expand 

exponentially, according to the same curve (Erickson and Michelini, 1957). This implies 

constancy of the denominator in Eq. 1, sometimes referred to as plastochron ratio (PR, 

see for example Silk (1980)).

Results

An unexpectedly low percentage of seed germination (about 60% at both Rs) 

prevented us from thinning at seedling emergence for greater uniformity between plants 

within each Rs treatment. This caused a greater variability in the data than in the 

companion studies conducted under similar conditions (Chapter 3&4).

Leaf dimensions at maturity. As expected from earlier experiments (Chapter 3) high . 

Rs reduced mature leaf size. Effects on the dimensions of leaf 5 are shown in Table I. The 

blade was shorter and narrower. Reduction in width was due to a decrease in the number 

of cell files constituting the blade while cell width was unaffected (Table I).

Leaf elongation rate at the primordial stage and plastochron index. Figure 4 shows 

the elongation curve of leaf primordium 5 during the 2 to 3 plastochrons following 

initiation. Elongation was approximately exponential at the two Rs but proceeded at a 

much reduced rate at high than low Rs (p=0.006). Figure 4 gives indication of a slight 

curvature of the relationship between ln (l5) vs time towards the end of the observation 

period. However, this deviation from exponentiality was not significant and was similar 

for the two treatments. The plastochron ratios calculated from measurements on leaf 4 

and 5, or 5 and 6 over the period shown in Fig. 4, were stable in time, and similar at the 

two Rs and for the two pairs of leaf primordia, with an average value of 1.13 (s.e.=0.04).
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Figure 4. Length of leaf 5 (L) as a function of time (r) at low and high Rs (open and solid 

line). The slopes of the two lines were statistically different (p -  0.006).



8

Time after sowing (f, d)

Figure 5. Plastochron index (PI) as a function of time after sowing (r, d) at low and high Rs 
(symbols as in Fig. 4). PI was calculated with a reference length of 50 |im (see Materials and 
Methods). Equations of the regression lines (excluding the data point marked with an 
arrow): PI = 3.10 + 0.29 t for low Rs (dashed line) and PI =3.37 + 0.21 t at high Rs (solid 
line). The slopes of the two lines were statistically different (p = 0.010).
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Figure 6. Relationship between Haun index (HI) and plastochron index (PI) for the main 
stem at low and high Rs (open and solid symbols, respectively). Equation of the regression 
calculated on all data points: HI = 2.75 +0.7 PI.



In these conditions, the plastochron index calculated using Eq. 1 gives a way of 

accurately measuring developmental age of both leaf primordia and apex.

Figure 5 shows a plot of the plastochron index vs time at low and high Rs. Because 

the reference length used to calculate PI (of 50 p,m) corresponds to a very early stage of 

primordium development, this plot gives a good representation of the influence of Rs on 

the rate of leaf initiation. The average plastochron duration between d6 and 16 as 

estimated from the slope of the linear fittings of the data in Fig. 5 was significantly 

increased at high compared to low Rs (4.7 d and 3.4 d, respectively (p=0.01)). Given 

these effects of Rs on development rate, effects on patterns of development will be 

analysed using plastochronic rather than chronological time.

Leaf emergence. Figure 6 shows that there was a good correlation between Haun 

index and plastochron index, which furthermore was independent of Rs. In other words 

the date of emergence of a leaf from the whorl of older enclosing sheaths was directly 

related to its date of initiation ie developmental age, and this relationship was unaffected 

by Rs. The slope of the relationship (0.7±0.04) in Fig. 6 indicates that the rate of 

primordium initiation was about 30% greater than the rate of leaf emergence. As a result 

of this, non-emerged leaf primordia gradually accumulate during vegetative development 

and the time between initiation and rapid linear growth increases for successive leaves

Elongation o f the apex. Figure 7 shows that apex height was also directly related to 

plastochron age. On that scale, elongation of the apex was approximately exponential 

and was unaffected by Rs. The slope of the fitted line in Fig. 7, of 0.7, is lower than that 

relating the logarithm of leaf length to PI which, by definition of PI, is equal to PR (see 

Eq. 1) ie 1.13. This is why the tip of the young leaf covered the top of the apex in less 

than two plastochrons (see Fig. 1).

Lateral expansion of leaf primordium and growth in girth o f the apical and sub- 

apical meristems. The width of leaf 5 was measured just after initiation of leaf 7 on 5 on 

successive transverse sections taken across the disc of insertion of leaf 5 (section F in
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Figs 1 and 2) and across the younger nodes and intemodes above it (sections A-E). The 

data are shown in Fig. 8a, plotted vs nodal or intemodal position along the axis ie, in 

effect, vs plastochron age. The width of the young leaf increased progressively towards 

more basal locations, especially at low Rs There was no consistent Rs effect in the distal 

part of the leaf, while the two most basal sections showed reduced lateral expansion of 

the primordium at high Rs. Due to large plant to plant variation in that parameter, this 

reduction was statistically non significant (p=0.028). However, given the significant 

reduction in diameter of the sub-apical meristem axis with Rs measured on the same 

sections (p=0.019 at node 5, Fig. 8a), it is most likely revealing a real effect of Rs on the 

primordium lateral growth rate, starting during the second plastochron after initiation. 

The circumference of the apical meristem at the level of the newly initiated primordium 

was unaffected by variation in Rs (Fig. 8a and Table II for plants sampled early at 

PI= 5.2). This observation too is consistent with the fact that the distal part of leaf 5, 

which was formed the closest to initiation, had similar width at the two Rs.

Both the reduced growth in girth of the subapical meristem and reduced lateral leaf 

expansion in the same region at high Rs were due to reduction in cell number (Fig. 8c). 

Cell widths across the leaf epidermis and in the outer layer of the subapical meristem in 

sections E and F were indeed similar at the two Rs (Fig. 8b). There was also little 

variation in cell width along the young leaf ie with developmental age. The increasing 

leaf width towards node 5 was mostly due to an increase in the number of cell files. In 

contrast, cells were much wider on the perimeter of the apical meristem and meristematic 

axis at the site of insertion of leaf primordium 7 than at lower positions in the sub-apical 

meristem. But because the number of cells was comparatively more reduced (Fig. 8c), 

variation in meristematic axis circumference was correlated to variation in cell number 

rather than in cell width, like in the young leaf.

Discussion.

In this study, we examined the effects of high soil resistance on leaf early development 

and on its relationship to apex growth. The analysis was focussed on leaf 5 which, in the 

conditions of this experiment and of companion studies (Chapters 3&4) where
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Figure 8. Longitudinal variation in the characteristics of leaf 5 and of the apical and sub- 
apical meristem axis at low and high Rs (open and soild symbols, respectively): (a) Axis 
circumference (o , • .) and leaf width (Q , ■); (b) number of cells in outer layer; (c) average 
width of these cells, on 6 successive transverse sections (see example in Fig. 3) positioned as 
indicated in Fig. 2 at the base of the apical dome and in the 2 or 3 youngest intemodes and 
nodes below it (sections C and E, and B, D, F, respectively).



differences in Rs were imposed from germination, fully developed under contrasted soil 

conditions.

The activity of the apical meristem (label a in Fig. 2) is discrete. At regular interval 

(defining the plastochron) a new group of cells are recruited on the side of the apical 

dome which, through a change of growth polarity and a number of periclinal and 

anticlinal divisions, will give rise to a new vegetative phytomer made of a leaf, a node 

corresponding to the site of insertion of the leaf and eventually an intemode below it 

(Sharman, 1942; Poethig and Szymkowiak, 1995). These phytomers pile up and define 

morphological units characterised by a given position in the sub-apical meristem. Under 

constant environmental conditions, the interval between the initiations of successive units 

is constant (eg Friend et al., 1962; Miglietta, 1989; Hay and Kemp, 1990 and Fig. 6) ie 

there is a strict correspondence between position number and plastochronic age. This 

implies that the characteristics of successive nodes and intemodes at a given time provide 

a record of apical development as a function of age. During the two plastochrons 

following its initiation leaf 5 elongated approximately exponentially with respect to time 

(Fig. 4), at a similar rate to that of leaf 4 and 6, at the two Rs. In these conditions the 

length of the youngest leaf can be used as a measure of developmental time within a 

plastochron (Eq. 1). As a whole these features enabled us to convert chronological time 

or position along the leaf or apex axis into developmental time (see methods) and 

thereby to separate the effects of Rs on rates vs pattern of development.

The main results of this study are:

- High Rs reduced the rate of apex and leaf development. At a given time, the apex 

was smaller, in length and girth, and had initiated fewer leaves. Leaf primordia were, at 

any given position, less developed. Fewer leaves had emerged.

- Most of these differences disappeared when apex and leaf characteristics were 

compared on a developmental scale. The size of the apical dome and the longitudinal 

growth of a new vegetative phytomer during the two first plastochrons following
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Table II. Characteristics of a transverse section of the apical meristem just above the site 

of initiation of the youngest leaf primordium (5 and 7 at PI = 5.2 and 6.7, respectively): 

circumference, number of cells in the outer layer, average width of these cells. Data are 

averages and standard error (n = 5 to 6) of two extreme plastochron stages (P/, see 

methods). Ps had no significant effect on any of these characteristics. The right column 

describes variations with PI (difference expressed as a percentage of the value at PI = 

5.2) and the statistical probability level of the difference as in Table I.

Rs (MPa):

PI = 

0.6

5.2

7.0

PI =

0.6

6.7

7.0

Difference

(%)

Circumference (pm) 332 (14) 341 (21) 374 (23) 373 (7) + 11% (0.045)

Number of cells 24 (2) 27 (2) 28 (2) 28(1) + 10% (n.s.)

Cell width (pm) 14.0(1.0) 12.8 (0.2) 14.1 (0.6) 13.4 (0.7) + 1% (n.s.)



initiation, were directly related to plastochronic age, according to a similar relationship at 

low and high Rs (Figs 7 and 8). The elongation rate of the young leaf remained little 

affected by Rs until about the time it emerged from older sheaths (Fig. 6).

- However, within one plastochron (node axis) to two plastochrons (attached leaf 

primordium) following initiation, some effect of Rs on the ontogenetic pattern of 

phytomer development became apparent. Increase in axis diameter and primordium 

lateral expansion were slower at high Rs (Fig. 8).

From these observations we conclude that:

The reduced leaf width observed at high Rs at later stages, on expanding and mature 

blades (see previous chapters) is not due to the apical meristem being smaller at the time 

of initiation nor to reductions in the number or size of cells initially recruited at the 

margins of the primordium initiation site. Soil resistance had no detectable effect on 

either of these parameters. However, limitations on the number of cells contributing to 

the primordium lateral expansion did take place soon after initiation. Our data indicate 

that these limitations were related to slower radial expansion of the subapical meristem 

and reduced cell production rate in the external cell layer from which a large part of the 

leaf tissue is initially derived (Roesler, 1928; Sharman, 1945). Meristematic cell width 

remained unaffected; this is consistent with the similarity in meristematic cell length 

observed later at the base of the intercalary meristem (Chapter 4).

There is little precise quantitative data on the temporal pattern of formative divisions 

which give rise to the number of cellular files and cells layers in the leaf lamina. 

However, detailed anatomical studies on several cereals and grasses (Sharman, 

1942&1945 (rice and various graminae); Kaufman, 1959 (rice) and Skinnner and 

Nelson, 1994 (Festuca)), all indicate that most epidermal files and cell layers are formed 

within 4 to 5 plastochrons after primordium initiation. Extrapolating the relationship 

between PI and HI (Fig. 6) and in agreement with Malvoisin (1984), we estimate that 

this approximately coincided with the time of leaf emergence. Assuming that the
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increase in apical meristem diameter with plastochron age is exponential (Williams, 

1966) data in Table II yield an average radial relative growth rate between P I-5.2 and 

6.7 of 0.07 per plastochron. If following Abbe et al. (1941) it is further assumed that the 

radial expansion rates of the apical dome and of the nodes in the subapical region are 

proportional, and using the circumferences measured for node 6 and 7 at P/=6.7, the 

estimated values for the circumference of node 5 at P I-9.0 (ie at emergence of leaf 5) 

are 2.97 mm and 2.39 mm at low and high RSy respectively. Taking an average cell width 

in the node external layer of 11 pm at the two Rs (Fig. 8), the corresponding cell 

numbers are 270 and 217, respectively. Since by the time of emergence the leaf margins 

have been overlapping for some time (Sharman, 1945; Williams, 1960; Silvy, 1982) these 

numbers are already an underestimate of the number files which were actually 

contributing to the lamina at that stage, and a fortiori later (see Table I and earlier 

chapters). However, their relative difference (-21% taking leaves grown on loose soil as 

a reference) is of the same order as, or very close to, the difference observed in this 

experiment (14%) or earlier experiments (22%, see Chapters 3&4) between final file 

numbers. Some of the parameters involved in the above calculations were extrapolated 

from the two plastochrons following initiation to the following 2-3 plastochrons 

preceding blade emergence. This may be inaccurate and needs to be examined by further 

more exhaustive studies of leaf development from the primordial stage to emergence. 

However these calculations show that when compounded over time, the apparently small 

differences in cell production rates which were detected in the subapical meristem during 

plastochron 2, may quantitatively account for substantial decrease in the final number of 

cellular files in mature blades.

The leaf lengths measurements taken from several hours to 1 d after emergence in this 

experiment and many others (Chapters 3&4; Masle and Passioura, 1987; Masle, 1990) 

consistently showed that high Rs significantly reduces the elongation rate of emerged 

leaves. These effects persisted even when leaf length was plotted against time from 

emergence which from this study, is equivalent to plastochronic age. Given that the lag 

between leaf initiation and emergence was similar at the two Rs these effects seem to be 

mostly generated around the time of leaf emergence ie within plastochron 4-6 after
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initiation. Data in Chapter 4 showed that high Rs significantly reduced the number of 

proliferative cells per file in the basal meristem of fast expanding emerged blades. It is 

indeed well established that during plastochrons 1 and 2 the bulk of the primordium is 

meristematic (Sharman, 1942&1945; Freeling, 1992). Cell enlargement correlated with 

loss of the ability to divide starts during plastochron 3, progressing basipetally from the 

tip of the blade. The length, and presumably also the number of cells per file, of the short 

basal meristem characteristic of fast expanding emerged blades are therefore determined 

between then and emergence from the whorl of older sheaths after which stage they 

appear to remain stable (Bernstein et al., 1993; Skimmer and Nelson, 1994). We 

therefore conclude that the longitudinal pattern of leaf development becomes sensitive to 

variation in Rs before blade emergence, at the post primordial stage during plastochrons 

3 to 5.

General conclusion

High Rs slows down the rate of apex and leaf development but does not appear to 

have immediate effects on the pattem of development of the newly initiated phytomers. 

Such effects were first detected on radial phytomer expansion during plastochron 2. The 

ontogenetic pattem of longitudinal leaf development appear to be affected later, at the 

post-primordial stage. Differences in the number of formative divisions and in the number 

of proliferative cells along the intercalary meristem that were reported earlier are 

generated at the primordial and post-primordial stage. They do not appear to be related 

to the size of the apical dome at leaf initiation nor to the size and number of meristematic 

cells initially recruited to the leaf primordium. Further studies towards the understanding 

of the effects of Rs on the kinematics of leaf growth and mature leaf anatomy should 

now concentrate on the development of the young leaf from plastochrone 1 to 5.
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General discussion.

Main conclusions.

The results described in this thesis, lead to a number of conclusions about the nature 

of the effect of soil resistance to root penetration (Rs) on leaf growth and development 

and of the cellular basis of leaf development in general. These two aspects will be 

discussed separately in the following discussion.

The effects of Rs.

Whole plant scale.

Whole plant and leaf growth response to variations in Rs in wheat have been described 

in the literature (Masle and Passioura 1987; Masle and Farquhar 1988; Masle 1990; 

Masle et al., 1990; Masle 1992). The present results confirm earlier observations that 

high Rs causes a substantial reduction in growth of young wheat plants. Relative rates of 

leaf area expansion (n) and dry weight accumulation (rw) were mainly affected during the 

first days after emergence, except at /?s = 6.6 MPa where r\ and rw were still reduced 

after 12 days of growth (Chapter 2; Figure 4). Because of the early differences in r, 

absolute growth rates remained generally inversely related to Rs. Leaf growth rate was 

reduced due to lower rates of leaf appearance, reduced tillering, lower leaf expansion 

rates and reduced final leaf sizes.

Cellular basis of reduced size of the mature leaf

Both length and width of mature blades were reduced by high Rs. These reductions 

were associated with shorter and narrower mature epidermal cells; a decrease in the 

number of cellular files across the blade and a shift in relative proportions of epidermal 

cell types. There was a marked difference in the degree to which these effects were 

expressed between different leaf positions, suggesting differences in the underlying 

developmental processes. In leaf 1, smaller leaf sizes were mainly due to cell size being 

reduced, while the number of cell files and number of cells per file were hardly affected. 

In leaf 3 cell sizes were less affected than in leaf 1 but the overall effect of Rs on leaf
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dimensions was of similar magnitude as the number of files was significantly reduced. In 

leaf 5 both size and number of cells were decreased.

Kinematics of leaf expansion.

Leaf expansion in grass leaves is generated by the production and subsequent 

expansion of new cells in the growth zone located at the base of each cell file (see 

Introduction, Figure 1). Individual cells within each file are gradually displaced into more 

distal locations, due to the production of new cells in more basal positions. While being 

displaced, cells expand and divide at rates that greatly depend on their position along the 

file. Cells in the most basal part of the blade both divide and expand, whereas cell 

expansion in the absence of division occurs in the elongation only zone, resulting in an 

increase in the length of cells as they are moving through this region. At the end of the 

elongation zone cells stop expanding and become part of the longer mature section of the 

blade.

The mechanisms underlying variations in leaf expansion rates with differences in Rs are 

also markedly different between leaf positions: In leaf 1, leaf elongation rate was reduced 

because of slower relative cell expansion rates in the whole of the growth zone and 

slower cell partitioning rates in the division zone. In contrast, in leaf 3 and 5 leaf 

elongation rates were reduced by a reduction of the number of proliferative cells and by a 

smaller length of cells entering the elongation only zone. The smaller length of cells at 

the end of the division zone was due to increased rates of cell partitioning, while relative 

elongation rates in the division zone were unaffected by Rs.

The steady-state assumption in the kinematic analysis of leaf elongation.

Steady-state growth is a fundamental assumption on which the kinematic analysis of 

local cell partitioning and expansion rates in the growth zone during the phase of rapid 

leaf growth is based (Chapter 4). In steady-state conditions, the rate of leaf elongation, 

the distribution of cell lengths along the growth zone and of recent cell divisions are 

constant. The assumption of steady-state is often taken for granted (Volenec and Nelson 

1981; MacAdam et al., 1989; Meiri et al., 1991; Bernstein et al., 1993; Walker and Hsiao 

1993), although diurnal variations (Schnyder and Nelson 1988) as well as variations in
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daily expansion rates with developmental stage have been reported (Schnyder et. al. 

1990).

In this study, steady-state was not strictly the case: there were significant differences 

between day and night rates of leaf elongation (See Chapter 2, Figures 7 and 8). 

However, because migration of cells from the base of the growth zone to the mature 

region takes a number of days (2 to 3 days are required for cells to move from the end to 

the division zone to the end of the elongation only zone, See Chapter 4; Figure 2). An 

implicit assumption that is made when analysing the data according to average elongation 

rates over 24 hour, as in this study (Chapter 4) is that the daily fluctuations of cell 

expansion and partitioning rates throughout the growth zone are of similar magnitude. 

No data is currently available to ascertain the validity of this assumption. Leaf elongation 

rates are approximately linear with respect to time for the greater part of the expansion 

of the blade (See Chapter 2, Figure 7). To improve the comparability between Rs 

treatments, care was taken to harvest leaves at a similar developmental stage.

In Lolium perenne, a grass species, the cell length distributions along the growth zone 

were very similar at 4 different stages of leaf development, despite variation in leaf 

elongation rates with developmental stage of the leaf, similar to that shown in Chapter 2 

(Figure 7; Schnyder et. al., 1990). It was therefore assumed that the same would apply 

to wheat leaves, i.e. steady state for the cell length distribution through time. However, 

no direct evidence for this is available from our own data or from the literature.

Although convenient for kinematic calculations, the steady-state assumption precludes 

the application of the kinematic approach (as described in Chapter 4) for the analysis of 

varying leaf elongation rates. Analyses of the cellular basis of diurnal variations in leaf 

expansion rates and rapid changes due to changing environmental conditions therefore 

require adaptations of the method. If variations in leaf expansion rates are not 

accompanied by changes in the cell length distribution along the growth zone, the 

approach outlined by Gandar and Rasmussen (1991) can be utilised. This method allows 

for variations of the velocity field with time. It may be impossible to verify that cell 

length distribution is stable when these changes in leaf elongation rate in fact do occur. 

There are two reasons for this: 1. The variability in cell length at any location along the 

growth zone could easily obscure relatively small changes in the distribution of the
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average cell length. 2. Changes in cell length that originate in the division zone, take at 

least three days in our experimental conditions to move through the division zone into 

the mature blade (See Figure 2, Chapter 4). This duration effectively determines the 

temporal resolution for this method and make it unusable for the analysis of constantly 

changing leaf elongation rates.

Primordia development at the apex.

High Rs slows down the rate of apical development: leaf primordia are initiated at a 

lower rate and grow slower with respect to time after their initiation. Many 

developmental characteristics of the apex at a given time are strictly correlated with its 

developmental stage measured in terms of plastochron age: the circumference of the 

apical meristem, its height relative to the base a given leaf primordium and the height of 

the primordia were all correlated to plastochron age according to a relationship 

independent of Rs. Growth in girth of nodes in the sub-apical meristem as a function of 

plastochron age, however, is reduced by Rs. This was due to similar reductions of 

meristematic cell expansion and partitioning, because cell size at any given position in the 

apex at a given developmental stage was not significantly affected by Rs.

Relating the results between experiments.

In order to facilitate comparison of successive experiments and test reproducibility of 

the response to Rs, all experiments were conducted in controlled climate growth 

chambers providing the same environmental conditions. However, it was impossible to 

perfectly reproduce soil conditions from one experiment to the other. Even with the 

combination of soil bulk density and water content constant, there were small variations 

of Rs between experiments (see Table III, Chapter 2). This is unavoidable when working 

with large batches of soil, in which the soil sub-structure was deliberately kept as 

undisturbed as possible, i.e. close to those in situ. Differences between the two runs 

conducted to sample mature blades or between these two runs and experiment 2 in which 

the kinematics of cell expansion was analysed were small and had negligible influence on 

plant response to Rs (Chapter 2; Table 1). However, in experiment 3, where the apical 

development was analysed, an apparently similar range of Rs led to smaller differences in 

dimensions of mature leaves and cells (Chapter 2; Table I). It is suspected that the

116



sequential harvesting (from d7 to d 16) of plants from pots where more than one plant 

was growing may have loosened the soil and decreased the effect of Rs so that the plants 

harvested between day 24 and 31 had similar mature leaves. The fact that the results on 

apical development obtained on the first harvested plants are comparable with the other 

experiments is consistent with this interpretation. However, to avoid any ambiguity in 

future experiments of this nature, it would be wise to leave the soil undisturbed before 

harvesting plants from a particular pot.

Relationship between effects of R< on cell division and expansion and anatomical 
characteristics of the mature blade.

Despite small variations in the magnitude of the growth response to Rs between 

experiments, the similarity in the nature of the response allows us to identify at what 

stage during the developmental process differences in anatomical characteristics observed 

in the mature blade are determined:

1. The reduction of mature cell length (Chapter 3, Figure 7) is a consequence of 

differences in the kinematics of cell division and expansion during the phase of rapid 

leaf expansion. As discussed when explaining differences in leaf expansion rates, 

smaller mature cell length in leaf 1 growing at high Rs were mainly due to differences 

in elongation rates in the elongation only zone. In leaf 3 and 5 they were a 

consequence of increased rates of cell partitioning in the zone of cell division, 

whereas cell expansion was not significantly affected.

2. The number of cells per file along the blade is greatly dependent on the cell 

production rates during the phase of linear leaf expansion, and on the duration of this 

phase. Ong and Baker (1985) have shown that the linear phase of leaf expansion 

accounts for the formation of 90% of the leaf. It is remarkable that the total number 

of cells in a file was not or only little affected by Rs (10 % at the most) while the 

kinetics of cell production rates by the leaf intercalary meristem and/or their rate of 

elongation showed a large and variable response to Rs.

3. Given that the number of cell files constituting the blade is approximately constant 

along most of its length (Chapter 3; Figure 5; and Silvy, 1982), formative divisions 

must have stopped before, or shortly after the onset of rapid leaf expansion. Our 

results showed that the reduction of the number of files constituting leaf 5 at high Rs 

were not related to effects of Rs on the size of the apical meristem at initiation, but
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from a reduction in the size of the sub-apical meristem during the 2 plastochrons 

following initiation. Since apical development in the embryo in wheat is arrested after 

initiation of leaf 3 (Williams, 1960), leaf 1 had accomplished this early part of its 

development in the embryo. The fact that the number of formative divisions was 

unaffected by Rs in that leaf, for which reduction in the rate of elongation were first 

seen 1 day after emergence (i.e. 5 days after germination), indicates that in, at the 

most, 4 first plastochrons after leaf initiation formative divisions are completed.

4. Variations in Rs also caused a shift in proportions of different epidermal cell files 

(Chapter 3). Two lines of evidence suggest that the increase in the fraction of files 

with ground tissue is also determined at the start or shortly before the onset of rapid 

leaf expansion. Firstly, no differentiation between adjacent epidermal cell files could 

be observed during the first two plastochrons of development of leaf 5 (Chapter 5, 

Figure 2). Secondly, the fact that similar changes in the relative proportions of 

different types of cell files are observed in leaf 1, 3 and 5 (Chapter 3) suggests that 

the identity of individual files (i.e. cell type formed within each file) is determined just 

prior to leaf emergence, c) Differences in length between cells of different types in 

adjacent cell files are associated with differences between files in the relationship 

between r and p and in the size of the zone where divisions occur (Chapter 4; Figure 

6). The fact that the length of elongated cells is more reduced by high R$ than any of 

the other cell types, indicates a differential response of cell division to high Rs (rates 

or extent of division zone) between files producing different types of cells, d) The 

increased trichome density at high Rs can be explained by higher rates of 

asymmetrical divisions (Chapter 4, Figure 5) and possibly also in increased residence 

times in the asymmetrical divisions zone (Chapter 4, Figure 2).

Variation between successive leaves.

The difference of the response of successive leaves to variation in Rs, is interesting and 

deserves attention. Under the experimental conditions used in the experiments described 

in this thesis, the level of stress applied to the growing seedlings varied little during 

seedling life. We were therefore able to conclude that the differential response to Rs of 

successive leaves was due to the timing and duration of stress imposition with respect to 

the progression of the leaf through its developmental program. Unfortunately, differences
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in timing of stress imposition with respect to developmental stage of the leaves was 

confounded with ontogenetic variations between the same leaves.

In order to investigate in more detail the interaction between leaf ontogeny and time 

of stress perception, one could establish plants on soils made of layers of different Rs. 

Masle (1990) showed that leaf elongation rates of plants growing in a layer of high Rs 

soil on top of a low Rs layer increased compared to plants in pots with high Rs soil 

throughout. Moreover, this response could be observed shortly after the first root tips 

entered the loose soil. Interestingly, the first detectable difference in leaf elongation was 

seen for in the leaf that had just started to elongate when the root tips first entered the 

loose soil. Leaves that were already expanding, kept growing at the same rates, again 

suggesting differences in sensitivity to Rs related to the leaf developmental stage. It 

would be interesting to use a similar system to investigate the effects of releasing the 

stress at different stages of development of leaves that have started their development 

under root impedance. In response to such a treatment one would expect differences in 

the characteristics that are determined during development in the sub-apical meristem 

(number of files constituting the blade) to persist, while differences in later determined 

characteristics (cell size) would not be seen. The fact that in experiment 3, where the soil 

was loosened after leaf 5 had partly developed to the hood stage, resulted in a reduced 

number of files but not cell width (Chapter 5; Table I) supports this assumption. Also 

initiation of the stress just before emergence of leaf 5 should result in a response similar 

to that observed in the current investigation in leaf 1 (i.e. similar number of files at low 

and high Rs and a great reduction in cell size at high Rs).

Adaptive function of response to high R*

The anatomical and morphological characteristics in response to high Rs which were 

described in Chapters 2 and 3, closely match the description of xeromorphism (Maximov 

1929; Oppenheimer 1960). The observation that high Rs results in more anatomical 

features characteristic of drought resistance, strengthens the argument put forward by 

Masle and Farquhar (1988) that the response to high Rs may be part of an early warning 

system to prepaire for imminent water stress.
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From an agronomical perspective one could wonder about the desirability of the 

growth responses to high Rs that are described in this thesis and by other authors. It has 

been shown that the growth response to drying soil and high Rs occurs before root 

functions such as water and nutrient uptake limits growth (Masle and Passioura 1987; 

Passioura 1988; Passioura and Gardner 1990). Even in irrigated crops, dry soil 

conditions, resulting in increased Rs (see Introduction) are encountered locally, especially 

in the top layer of soil. Similarly, a layer of soil with a high Rs can be encountered by only 

part of the root system. Both of these conditions result in reduced leaf growth and 

transpiration rates (Blackman and Davies 1985; Saab and Sharp 1989; Neales et. al. 

1989; Zhang and Davies 1989). This conservative response could be judged as 

undesirable when the bulk of the roots still have access to plentiful water. In dryland 

conditions, however, the situation is more complicated. It has been argued that fast early 

seedling growth is desirable to enable rapid coverage of the soil, thus preventing 

evaporative losses from bare soil surface (Lopez-Castaneda and Richards 1994). 

However, by inducing higher stomatal resistances, adverse soil conditions result in 

improved efficiency of carbon assimilation in relation to transpirational water losses 

(drought (Farquhar and Richards 1984; Guinta et al., 1995); root impedance (Masle and 

Farquhar, 1988)). It may be possible to develop wheat genotypes for growth under 

dryland conditions which would not show the undesirable aspects of the growth response 

to high Rs (slower early growth), but retain beneficial aspects (higher water use 

efficiency). The partial independence between the response of stomatal conductance and 

leaf growth rates to high Rs seen among genotypes of wheat and barley (Masle 1992) 

indicates that there are opportunities for such an approach.

General aspects of leaf development.

Cell size and number in mature leaves and assessment of cell division and expansion 

rates.

Many investigations of the relationship between variations in mature leaf size and 

changes in number or size of cells constituting the leaf under various environmental 

conditions have been published. Often the authors try to infer from these measurements 

the effect of the particular environmental factor investigated on cell division and 

expansion rates (e.g. Mitchell and Soper, 1958; Friend and Pomeroy, 1970; McCree and
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Davis, 1974; Randall and Sinclair, 1988; Körner et al., 1989). Our results clearly show 

that the conclusions reached by such an approach must be assessed with care, because 

there are a number of different ways in which the same result can be obtained: In all 

leaves investigated we find the number of cells along a file was little affected by high Rs 

(Chapter 3, Table II) i.e. that differences in leaf length of the leaf were mainly associated 

with differences in cell length. From these observations one could infer that the 

mechanism by which leaf length is decreased is the same in all leaves; that cell division is 

not affected, whereas cell expansion is. Taking into account the duration of leaf 

expansion (much increased in leaf 1, very similar in leaf 5; Chapter 4), it becomes 

obvious that the mechanisms by which final length was reduced is varied between leaves. 

One could conclude that cell division rate is not affected in leaf 5, whereas it is lower at 

high Rs in leaf 1. Our results show that in fact cell division rates in leaf 5 are increased by 

high Rs, but that due to a decrease in the population of proliferating cells the overall rate 

of cell production was similar. These observations therefore illustrate the need for 

caution in interpreting differences in mature organs and show the power of the method 

used for the kinematic analysis.

Proliferative and formative divisions are partly independently controlled.

In the growth zone of root tips, two types of divisions have been distinguished: 

Formative divisions result in an increased number of cell files, whereas proliferative 

divisions increase the number of cells within each file (Gunning et al., 1978). In the 

growth zone of Azolla roots, these two types of divisions occur simultaneously and in a 

strictly organised pattern.

In leaf meristems the number of files across the blade increases during development in 

the sub-apical meristem. The constant increase in the length of the leaf primordium 

during this phase (Silvy, 1982), suggests that the number of cells along a file increases at 

the same time. Both formative and proliferative divisions occur therefore during at least 

the first 2 plastochrons after leaf initiation. However, as mentioned earlier, there is no 

further increase of the number of files across the blade after emergence of its tip from the 

whorl of surrounding leaves. This implies that after emergence only formative divisions 

occur in the meristem. Therefore, in contrast to the situation in the root meristem, 

formative and proliferative divisions are separated temporally.
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An important question in relation to the cellular basis of leaf development is how the 

number of formative and proliferative divisions (i.e. the number of files across the blade 

and the number of cells per file) are determined. Given that proliferative divisions cease 

just prior to leaf emergence from the whorl of surrounding leaves, the number of 

formative divisions is determined by the rate of those divisions and the duration between 

initiation of the primordium on the apex and the onset of rapid leaf expansion.

The results in chapter 3 show that the number of proliferative divisions varies between 

cell type and leaf position, but is rather insensitive to Rs. The number of cells along the 

blade for each cell type is determined by the rate of cell production by the population of 

dividing cells as a whole and the duration of cell division activity in the blade (i.e. distal 

to the ligule, which gradually moves through the division zone; see Schnyder et. al., 

1990). The rate of cell production in each file depends on the number of dividing cells in 

that file and the rates at which those cells divide. Currently not much is known about the 

functional relationships between cell expansion, the volume at which cells divide and 

partitioning rates. Not much more is known about how the number of dividing cells 

within a file is determined. In Lolium perenne, cell length distribution along the growth 

zone was very similar between different stages of development of the leaf (Schnyder et. 

al., 1990), suggesting constancy of both the length and number of proliferative cells. For 

root meristems, two alternative points of view have been put forward: 1. the number of 

divisions per founder cell is determined at its inception at the base of the growth zone 

(Silk, 1992), and 2. the presence of a spatial gradient of one or more morphogens 

controls spatial distribution of proliferation (Barlow, 1976). The fact that asymmetrical 

divisions occurred at the same location in files of most cell types (Chapter 4; Figure 6 

and Schnyder et. al., 1990), supports the spatial control mechanism. However, the 

variation in length of the division zone between adjacent epidermal files (Chapter 4; 

Figure 6) and between epidermal and mesophyll cells (MacAdam et al., 1989), is not 

easy to explain on the basis of a spatial control mechanism. How the number of divisions 

per founder cell can be determined at inception and how this number can be so different 

between cells in neighbouring files is also not easily understood from a mechanistic point 

of view. Hopefully research into the molecular mechanism underlying the regulation of 

the cell cycle will provide us with new insights into these problems.
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Preserved parameters.

One interesting outcome of the present work is the identification of a number of 

parameters that are unaffected by Rs in all leaves. Although minor differences between 

the number of cells per file in any given leaf in response to variations in Rs were found, 

these differences were surprisingly small. Similar results were obtained in response to 

light intensity and ambient C 0 2 concentrations by Masle (unpublished data). Other 

researchers however found that in other grasses the number of cells along the blade was 

greatly affected by light intensity (Mitchell and Soper, 1958; Friend, 1966; Friend and 

Pomeroy, 1970) and photoperiod (Ryle, 1966).

The constancy of the number of cells constituting the elongation only zone, not only 

between Rs treatments, but even between leaves (Chapter 4; Table III) is even more 

striking. Only few kinematic investigations into the cellular basis of leaf expansion rate 

have determined the number of cells in the elongation only zone or even in the growth 

zone as a whole. Volenec and Nelson (1983) found that the number of cells in the whole 

of the growth zone of tall fescue increased from 300 to 487 with increasing nitrogen 

fertilisation which resulted in 30 and 89 % increase in leaf elongation rate, respectively. 

Unfortunately no distinction between cells in the zones of cell division and expansion was 

made. Because growth in the elongation only region accounts for 85 to 90% of the 

overall leaf elongation rate, the mechanism that determines the size of this zone is of 

great importance in the determination of the growth of individual leaves and potentially 

of crop growth in general. Large differences in the number of cells in the growth zone as 

a whole were shown to account for a great part of the differences in genotypically 

determined differences in leaf elongation rates of tall fescue (Volenec and Nelson, 1981; 

Volenec and Nelson, 1983).

Relationship between cell volume and partitioning.

The results of Chapter 4 (Figure 1) show that there is no set threshold length at which 

cells divide. This suggests that cell division is somewhat independent of cell size. This is 

at odds with the assumption that attainment of a given critical cell size determines when 

a cell divides (Körner et al., 1989). It seems unlikely that variations in cell width and 

thickness would compensate for the differences we observed in the length at which cells
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divide at different locations in the division zone, in different leaves or between Rs 

treatments. However, determination of cell volume at which cells partition will have to 

be made before a direct relationship between timing of cell partitioning and cell size per 

se can be ruled out.

Spatial gradients of cell partitioning and expansion rates.

As a consequence of working at the cellular level, we were able to obtain data with a 

very high spatial resolution which was particularly useful in the kinematic analysis. These 

data show that, similar to cell expansion rates, cell partitioning rates vary spatially within 

the division zone (Chapter 4; Figure 5). This implies that average cell cycle values 

conceal useful information, and that for understanding of the process of cell division and 

its role in relation to whole leaf growth, determinations of local partitioning rates are 

necessary.

Putative ceil compounds involved in cell cycle regulation.

In Chapter 4 it was shown that the processes of cell expansion and partitioning in the 

division zone are not tightly linked, as is sometimes assumed. The question arising from 

this is how progress through the cell cycle is regulated and what is the nature of the 

relationships between cell expansion and partitioning.

The cell cycle is controlled at specific points, notably at the transition between G 1 and 

S, and G2 and M phase. At these control points, the activity of certain key enzymes is 

required to trigger progression through the cycle. Cyclin dependent kinases (CDK’s) 

determine the competence of a cell to divide, i.e. to progress past the control points. The 

activity of CDK’s depends on activation by cyclins. Each cyclin specifically affects only 

one of the two control points. The concentration of these cyclins oscillates during the cell 

cycle, and cyclin concentrations are therefore thought to be determining cell cycling 

rates. Moreover, in animals and yeasts, G1 cyclins have been shown to be involved in 

signalling pathways that control cell division. In plants however, many functions of 

putative cell cycle regulators have not yet been examined, although many enzymes 

homologous to those identified in yeasts and animals have been found (for a recent 

review of cell cycle regulation in plants, see Doemer, 1994).
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Aspects of interest with respect to cell expansion are: the minimal and maximal size at 

which cells can divide and what determines these sizes; the nature of the interactions 

between cell volume expansion and the accumulation of cyclins and CDK’s; and how this 

relates to the observed cell division rates and volume at which cells divide. Kinematic 

analysis of cell partitioning rates as a function of location in the division zone, as done in 

chapter 4, is a necessary basis for further investigations into regulation of the cell cycle in 

growing plant organs.

Asymmetrical divisions.

Although the formation (Stebbins and Jain, 1960; Stebbins and Shah, 1960; 

Tomlinson, 1974) and functioning (Zeiger et al., 1987) of stomata have been the subject 

of a great body of research, surprisingly little is known about stomatal initiation. Why are 

stomata confined to a limited number of well defined files in grass leaves, and why do 

they seldom occur in two adjacent files? It is striking that both trichomes and stomata 

originate from an (initial) asymmetrical cell division, and that these divisions occur in all 

files at a similar location in the growth zone (Chapter 4, Figure 6; see also Stebbins and 

Shah, 1960) even when symmetrical divisions in these files stop at different distances 

from the base of the leaf (Chapter 4; Figure 6). It is also interesting that bulliform cells 

are apparently incapable of trichome formation. Grass leaves, in which the spatial 

positions of cells along files are a measure for their developmental stage, form an ideal 

system for investigating the physiological basis of these differentiation processes.

Modelling leaf expansion.

Modelling is often used as a method to enhance our understanding of biological 

processes. Only one model of cell division and expansion in relation to leaf growth has 

been published to date (Arkebauer and Norman 1995a; Arkebauer and Norman 1995b; 

Arkebauer et al., 1995). In addition to this, a number of models describing steady-state 

root growth based on the dynamics of cell division and cell expansion have been 

published (Löpez-Säezet al., 1975; Baake and Buff, 1986; Bertaud et al., 1986). In 

contrast to the model proposed by Arkebauer and Norman, which incorporates 

temperature and water relations, none of the latter models includes the effects of 

environmental factors on cell division and expansion rates.
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There are major differences between these models in the methods by which cell 

expansion and division in the division zone are simulated, which is illustrative of our 

current lack of understanding of the relationship between these two processes.

Cell division

Baake and Buff (1986) avoid modelling cell division and expansion in the division 

zone by introducing an injection function, which adds new cells to a cell file at the base 

of the elongation only zone. Lopez Säez et al. (1975) assume constancy of the number of 

cells in the division zone and the duration of the cell cycle and assume proliferating cells 

to be of constant length, regardless of their progression through the cell cycle. Arkebauer 

and Norman (1995a) propose a simple model in which the size of proliferating cells 

increases from 600 to 1200 pm. Cell division occurs by definition upon reaching the 

upper limit. The duration of the cell cycle (growth from 600 to 1200 pm3) of dividing 

cells (and thereby indirectly also cell expansion rates) is determined by an empirical 

dependence of cell cycle duration on temperature. The number of proliferative cells in 

their model varies throughout leaf development, as function of daughter ratio (the 

proportion of cells that will remain proliferative (capable of dividing again) after each 

division) vs time. When this daughter ratio becomes 0, leaf expansion ceases after all 

cells have completed their expansion. Bertaud et. al. (1986) also modelled cell expansion 

during progression through the cell cycle. Their model allows for random variation in the 

length at which cells divide. According to this model cell division occurs at a random 

length between 2*Z^TUn(;c) and Lmm{x) , with Lmm(x) and Lmax(x) the minimal and maximal 

lengths observed in experiments with roots at location x. The length and number of cells 

in the division zone in this model are not input parameters; they are derived from cell 

division rules and empirically determined distributions of spatial velocity and cell length.

The data presented in this thesis shows that:

1. There is no single threshold size at which cells divide. Cell division occurs at different 

lengths, depending on the position of a cell along the growth zone. The relationship 

between position and length at which cells divide is sensitive to Rs and varies with 

leaf position (Chapter 4; Figure 1).

2. Cell partitioning rates vary with position along a file in the division zone between 

different leaves and in response to environmental conditions. Cell cycle duration was
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found to increase in successive leaves and to be variously affected by Rs (Chapter 4; 

Table IV).

3. Meristematic cells do expand. In fact, expansion in the division zone accounts for 10 

- 15% of the overall leaf elongation rate. Moreover, cell elongation rates vary 

spatially and are somewhat independent of cell division rates (Chapter 4; Figures 2 

and 5).

One question that remains unsolved is how the length of the division zone is determined. 

Two possibilities were addressed before: 1) Spatial control, i.e. length of the division 

zone itself is determined and 2) The number of cell cycles per initial cell is set at the 

inception of this cell at the base of the division zone, which indirectly determines the 

number of cells in the division zone at any stage.

Cell expansion

Another aspect of leaf development about which there appears to be no consensus is 

the relationship between mature cell length, the length of (and number of cells in) the 

elongation only zone and cell elongation rates.

Opposing assumptions were made in the different models mentioned above:

1. The length of the elongation zone is fixed; and it is determined by the position at 

which local velocity (v(x), that is used as input for the model) becomes constant 

(Bertaud and Gandar, 1986; Bertaud et. al, 1986).

2. The length of the elongation zone is a result of the number of elongating cells and of 

their growth kinetics (Löpez-Säez et al., 1975).

3. The length of the elongation zone is the result of the duration of expansion of 

individual cells, which is determined by an empirical function r(t), the number of cells 

entering the elongation zone per unit of time and their initial length (Baake and Buff, 

1986).

4. The length of the elongation zone is indirectly determined by the constantly varying 

number of cells entering it and their expansion rate, which is a function of cell volume 

and decreases asymptotically to zero when the cell volume reaches a certain 

maximum length (Arkebauer and Norman, 1995a; Arkebauer and Norman, 1995b).
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A central assumption in the kinematic analysis (Chapter 4) was a constant length of 

the growth and elongation zones throughout most of the linear phase of leaf expansion, 

an assumption that is supported by Schnyder et. al. (1990). Our data show a very 

constant number of cells in elongation zones of different lengths and that distributions of 

relative rates of cell expansion are very similar between low and high Rs when expressed 

on a basis of number of cells from xsd (Chapter 4; Figure 2). This suggests that rather 

than a function of distance along the elongation zone or time since inception of an initial 

cell, local cell expansion rates could well be a function of cell rank within the file. Mature 

cell length is shown to vary extensively between different cell types, leaf positions and Rs 

treatments. It seems therefore more likely that cell size is determined by expansion rates 

rather than expansion rates being a function of cell size.

Summarising, modelling of expansion growth in intercalary meristems of roots and 

grass leaves is currently based on a number of assumptions, that are not supported by the 

experimental data presented in this thesis, or in the literature, or for which at present no 

supporting experimental data exist. These assumptions point to gaps in our current 

understanding of the regulation of leaf development that need further investigation, such 

as: the interrelationships between cell expansion and cell partitioning in the division zone; 

the determination of the number of proliferative cells; the nature of the relationship 

between mature cell size, relative cell expansion rates and size of the elongation only 

zone (both in terms of number of cells and overall length); the mechanism by which the 

duration of leaf elongation is determined and the cellular bases of differences in 

development caused by various environmental factors. Investigations like the one 

presented in this thesis extends our understanding of the leaf developmental process and 

should form the basis of further modelling efforts.

Variability

The results presented in this thesis show a considerable degree of variability in cell 

size data between different plants and spatially within the leaf. This variability remains 

often hidden in data presented the literature. However, it needs to be taken into account 

when sampling, and makes extrapolation from a sample taken at a single location to the 

whole leaf scale, which is often done in the literature (e.g. Mitchell and Soper, 1958; 

Guttridge and Thompson, 1963; Friend and Pomeroy, 1970), a highly questionable
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approach. We largely overcame this problem by sampling at several locations (Chapter 3) 

and by working cell by cell (Chapter 4). To improve the analysis further, one could start 

with a more homogenous set of plants. Selection of a homogenous sub-sample needs to 

be such that the selected plants closely resemble the average for each treatment. Given 

the labor intensive analysis of the specimen and data processing in all of the work 

presented in this thesis, this approach is preferable to increasing the number of specimen 

per treatment.

Extrapolability of the results.

Cultivar Egret in comparison to other genotypes.

Masle (1992) compared the overall growth response to increased soil resistance 

across a range of genotypes of wheat and barley, including modem and land race lines. 

The growth response of cultivar Egret, which was used in the experiments described in 

this thesis, was representative of wheat and barley in general. However, of the modem 

wheat varieties tested, Egret appeared to be the least responsive variety to Rs. We would 

therefore expect similar results had we used another cultivar, in terms of directions and 

nature of the effects of Rs on leaf expansion. However, genotypic differences in the 

magnitude of the responses seen in Egret at the level of elemental growth processes are 

to be expected.

Dicotyledonous leaves.

In contrast to grass leaves, cell division and expansion in dicotyledonous leaves is not 

restricted to the base of the leaf during the phase of rapid leaf expansion. Although rates 

of cell division and cell expansion are highest near the base of the blade, both processes 

occur throughout the blade during a large portion of leaf expansion (Erickson, 1965; 

Maksymowych, 1973; Esau, 1977). Despite these differences in organisation of growth 

processes, responses to root stress (high Rs or drought) in dicotyledonous leaves appear 

to share many similarities with those observed in monocotyledonous species. Masle 

(1990) found a reduction of leaf area expansion and transpiration rates in tomato in 

response to high Rs similar to that observed in wheat and barley. Similarly, leaf elongation 

rate was reduced by low soil water potentials in sunflower (Sadras et. al, 1993), 

Phaseolus. (Neuman and Smith, 1991), tobacco (Clough and Milthorpe, 1975) and
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soybean (Randall and Sinclair, 1988). Similar to the results presented in this thesis, the 

response of soybean leaves was dependent on the developmental stage of the leaf when 

stress was first experienced: the final number of cells per leaf was affected most by a 

single eight day drought, occurring during the early stages of development (Randall and 

Sinclair, 1988). Morphological adaptations to drought in leaves similar, to those 

described in chapter 3, are generally referred to as xeromorphism and occur in a wide 

range of species, both dicotyledonous and monocotyledonous (Maximov, 1929; 

Oppenheimer 1960; Jones 1985). It may therefore be suggested that a number of results 

described in this thesis, may apply to responses to other root stresses related to Rs and to 

other species.

Experimental setup in comparison to natural conditions.

The use of controlled environment growth cabinets and of pots with homogenised soil 

prepared so as to achieve a standardised set of physical characteristics, enhanced the 

reproducibility of experiments and facilitated comparison between successive 

experiments. However, the ultimate aim of experimentation is to investigate the nature of 

processes that occur under natural conditions. The question therefore arises of how 

representative our data are in relation to more natural conditions.

In natural environments, plants are experiencing a much more complex and variable 

set of environmental conditions. Interactions between variations in several factors are 

likely to occur and affect the response of plant growth to any one particular 

environmental factor (see Introduction). Moreover, in the field, soils are not 

homogeneous. The presence of macro-pores, for example, greatly affects the magnitude 

of the plant growth response to otherwise hard soils (Passioura, 1991; Cornish, 1993). 

However, growth and yield reductions in response to high Rs under field conditions have 

been well documented (see references in Bowen (1981)). Therefore there is no doubt 

that qualitatively the responses studied in this thesis are relevant to agricultural 

conditions, and natural ecosystems.
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Three dimensional growth aspects.

Length, width, thickness of leaf as a whole.

The investigations presented in this thesis have been restricted to two-dimensional 

growth of the epidermal cell layers only. However, the leaf is a three dimensional 

structure and comprises a number of different tissues. For a more complete 

understanding of the response of both leaf growth and functioning, further investigations 

into the relationships between growth in length, width and thickness of cells in various 

tissues and the origin of differences in the number of cell layers are needed.

The observed increase of leaf density (Chapter 2; Figure 5) with increasing Rs could 

reflect a reduction in average cell size, an increased number of mesophyll cell layers, a 

denser packing of cells (especially the mesophyll, i.e. smaller intercellular airspaces) and 

an increase in the concentration of solutes in the vacuoles and cytoplasm of cells. The 

results of this thesis only provide information on the first parameter: showing that cell 

density is increased. Data of Mac Adam Volenec and Nelson (1989) show that the ratio of 

number epidermal cells to mesophyll cells in the adjacent layer is not fixed, suggesting 

that no direct inference on mesophyll cell density can be made.from our observations on 

the epidermal cell layer. However, we observed similar variations in the number of 

mesophyll cell files constituting the blade as for epidermal cell files (data not shown). 

Currently we do not know of the effect of Rs on the number of mesophyll cell layers. 

Zagdanska and Kozdoy (1994) show that in wheat leaves the number of mesophyll cell 

layers is reduced by drought stress. Masle et al. (1990) showed that the concentration of 

soluble carbon in the cells is also a factor contributing to increased leaf density.

It would be very useful to obtain data on the effect of Rs on the development of the 

mesophyll. The mesophyll constitutes a great portion of the leaf volume (representing 

approximately 42% of the crossectional area in tall fescue (MacAdam et al., 1989) for 

example), and therefore mesophyll cells form a major sink for photosynthates in the leaf 

growth zone. The structure of the mesophyll is of course also of importance for C 0 2 

fixation (Björkman, 1981).

One aspect of mesophyll development of particular interest in the context of this work 

relates to its relationship to the development of the epidermal cell layer. MacAdam et al.
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(1989) showed that high N nutrition increased cell division activity in the mesophyll of 

tall fescue leaves more than in the epidermal cell layer. As a result, a greater number of 

mesophyll cells was found adjacent to each epidermal cell in the mature part of the blade. 

The authors also showed that mesophyll cell divisions continue over a longer period than 

epidermal divisions (the length of the division zones in their study were 2 and 1 0 - 1 4  

mm for epidermal and mesophyll cells, respectively) and that cessation of mesophyll 

division was associated with epidermal cells reaching a certain threshold size.

The vascular tissue is a prominent feature in cross-sections of the grass leaf. In mature 

blades, sclerenchyma cells appear in longitudinal plates extending from the larger 

vascular bundles (Esau, 1977). The relatively dense structure of the vascular tissue itself, 

and the sclerenchyma in particular, resulting from extensive secondary cell wall 

thickening, suggest that these tissues could possibly resist a great amount of tensile 

strength. My own observations and those published by MacAdam et al. (1989) showed 

the absence of sclerenchyma in the basal regions of the growth zone, whereas it is 

present in the mature region of the blade. Plants cells don’t slide relative to one another; 

one tissue resisting extension affects the extension of the other tissues and thereby the 

leaf dimensions. Therefore it could be hypothesised that the secondary wall thickening 

involved in sclerenchyma formation may be involved in the termination of cell expansion 

at the distal end of the elongation only zone. To my knowledge, thorough comparative 

analysis between the processes of expansion growth and the development of this 

sclerenchymatic tissue has not been published.

Where from here?

Further research into Rs effects on leaf growth.

Most research into the effects of Rs, as well as other stresses, is usually focussed on 

either metabolic or growth processes. The work presented in this thesis may function as 

a basis for linking the two. A number of interrelationships between the metabolism of the 

plant and anatomical characteristics need further investigation: The relationship between 

carbohydrate levels and cell expansion and partitioning rates, i.e. how is the sensitivity of 

growth to carbohydrate supply of the growing tissues mediated (Masle et al., 1990); the
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nature and development of anatomical differences in mesophyll structure and the 

consequences for photosynthetic characteristics of the leaf; the nature of the putative 

hormonal signal from the roots (Termaat et al., 1985; Masle and Passioura, 1987; Masle 

et al., 1990; Passioura and Gardner, 1990) and the mechanisms by which it affects leaf 

growth and carbohydrate partitioning between roots and shoots.

Further research into grass leaf development.

The work in this thesis shows that the development of grass leaves is a complex 

process, and many aspects of it remain to be investigated: Thorough analysis of the 

establishment and functioning of the growth zone during development in the sub-apical 

meristem would greatly increase our insight into the basis of structural differences of the 

growth zone as observed in this thesis in response to RH and leaf position and in other 

studies in response to other environmental factors. This work identifies a number of 

processes in the developing leaf that are sensitive to environmental clues. Similar 

analyses of the response to other environmental factors will be necessary to demonstrate 

the generality of our observations and to enable investigations into the regulatory 

mechanisms involved.
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