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A bstract

The central theme of this thesis is the testing of closed-loop performance opti­
mality under a linear quadratic (LQ) criterion. Since performance optimality is 
an attribute of the closed-loop system necessarily comprising the real plant and 
the optimal controller, the mechanisms for testing this attribute must look at the 
loop as an undivided entity. That is, these mechanisms ought not to resort to a 
parametric model of the plant, a characteristic of the so called model-free methods.

Previous results on performance monitoring and assessment under a simpler 
criterion are strong motivations for the development of the research in this thesis. 
Unfortunately the complexity of model-free mechanisms rapidly increases as the 
performance criterion becomes more generic. In order to test for LQ performance 
optimality, the reference signal is used for exciting the closed-loop system, thus 
making the measurable signals more informative. The actual assessment of opti­
mality is based on frequency flatness of a power-spectral density constructed from 
the signals measured during excitation.

Further manipulation of the excited closed-loop signals results in a power- 
spectral density containing the characteristic polynomial of the optimally controlled 
system. This polynomial can then be estimated via phase reconstruction of the 
spectral density. The relevance of this result lies in the estimation of the closed- 
loop poles that would be obtained under optimal performance, from signals col­
lected under any stabilising controller. Linear quadratic performance monitoring 
and direct adaptive pole-placement are examples of applications benefiting from 
these estimates of the optimal close-loop poles.

The analysis of the cost function as a functional on the space of controller pa­
rameters brings new insight into assessment of optimality. This perspective reveals 
geometric properties associated with the condition of local optimality, inclusive of 
systems under reduced complexity controllers. The main features of interest are 
the first and second derivatives of the cost function with respect to the controller 
parameters. In the specific case of a linear quadratic cost function these derivatives 
are obtained in both frequency and time domains.

Apart from testing local optimality, the derivatives of the cost function are used 
for performing gradient-based controller tuning. During experiments with this sort 
of tuning the author has observed examples of sudden instability of the closed-loop 
system. This motivated the development of a mechanism for guaranteeing stability 
of the closed-loop system, which is applicable to any iterative control scheme.

The developments in this thesis are initial steps towards a model-free mechanism 
for assessment of optimal performance under a linear quadratic criterion. It seems 
that the estimate of the optimal characteristic polynomial is the most likely seed 
of such an achievement.
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Chapter 1 

Introduction

1.1 T hesis M otivation  and Significance

Consider the control engineering problem of anticipating the potential benefits of 
redesigning or tuning a controller. In an industrial context, the expenditure of 
large sums on the redesign of a control system will be most powerfully argued if 
there is a quantified estimate of the likely benefit. Equally, if a loop is suspected of 
under-performance, assessment of its distance from optimality can help decide, in 
this order, among: controller tuning, if the optimal performance with the current 
controller structure is acceptable; controller redesign, if the optimal performance 
with a different controller structure would be significantly better; and, in the last 
case, redesign of the sensor/plant/actuator system to improve the best achievable 
performance. Thus an important issue in the applicability of advanced (or other) 
control is to provide some assessment of its prospective benefits and so to reduce 
some of the risks associated with this expenditure decision.

In the absence of an open-loop process model, a comparison between currently 
achieved performance and optimality (according to some criterion) is problem­
atic. Using closed-loop signals one might proceed by identification of an open-loop 
model, followed by controller design and comparison between expected and actual 
behaviours. This introduces issues of modelling accuracy in addition to control de­
sign. If there is to be any prospect of developing generic control loop performance 
monitors applicable to, say, nonlinear systems, then predicating the method on the 
availability of a model could introduce harsh requirements of model identification 
prior to performance analysis.

Furthermore, performance optimality is an attribute of the closed-loop system 
necessarily comprising the real plant and the optimal controller. In contrast to 
parametric modelling of the process, non-parametric characterisations of the closed- 
loop system, usually easy to obtain, are allowable in the so called ‘model-free’ 
methods.

The most significant result available on model-free assessment of optimal per­
formance is limited to a certain class of plants and to a criterion that only penalises 
the variance of the process output. This means that the control effort necessary to 
achieve optimal performance might become too large to be acceptable in practice. 
Nevertheless, knowledge of the minimum achievable output variance is important

1



2 Int ro duc tio n

as a lower limit against which the current performance can be compared.
The regulation problem where the minimum variance criterion applies is shown 

in Figure 1.1. The process output, yt, is intended to remain close to a constant 
(here zero) reference value in spite of the influence of the additive disturbances, 
vt. Moreover, the class of disturbances under analysis is restricted to stochastic 
processes generated by filtered white noise. Therefore, deterministic disturbances 
and the tracking problem are not addressed here.

Process

C ontroller

\o

Figure 1.1: Regulation problem

The primary motivation behind the results obtained throughout this thesis is 
the development of a model-free mechanism for assessment of optimal performance 
under a linear quadratic criterion. Such a criterion establishes a compromise be­
tween the variance of the process output, yt, and the variance of the control action, 
ut, in a regulation problem and ought not to be artificially limited to too small a 
class of plants.

Unfortunately the complexity of model-free mechanisms rapidly increases as 
the performance criterion becomes more generic. Actually, the very existence of 
such a mechanism is not guaranteed for all criteria. In order to complete the 
set of information required for performance assessment, it is possible to make the 
measurable signals more informative by exciting the loop. If this is not enough 
then the missing information must be estimated or supplied by the user. But every 
piece of information that has to be introduced a priori corresponds to a part of 
the system that is not analysed by the performance assessment mechanism. These 
comments raise the issue of determining the capacity of a method to analyse the 
real system, which could range from a powerful model-free mechanism up to a blind 
acceptance of a model-based controller design.

The need for some knowledge about the plant and the use of external excitation 
are obstacles for the widespread use of these mechanisms in industrial plants. A 
more realistic scenario is their application to some individual loops that deserve 
the costly effort to achieve optimality. In fact, if it is unclear how to assess the 
financial benefit of achieving optimality in a particular loop then it is very likely 
that the problem is best solved with a robust controller. Also if the loop is relatively 
important, but not economically crucial in the production line, then the optimal 
design might be followed by a detuning of the controller in order to gain robustness 
at the expense of performance.

The contributions introduced by this thesis are initial steps towards a model- 
free mechanism for assessment of optimal linear quadratic performance. Despite the
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ultimate goal being the analysis of general systems, the scope of investigation in this 
thesis is restricted to scalar, discrete-time, linear, time-invariant systems in order 
to assess the problem complexity and feasibility. Among those contributions are 
the mechanisms for testing and monitoring linear quadratic optimality. Moreover, 
the development of these mechanisms has generated by-products with immediate 
application in direct adaptive control, controller tuning and assessment of local 
optimality for reduced order controllers, as is usually the case of industrial plants 
under PID control.

Further appraisal of this thesis’ significance can only be made in the future, 
based on how many ideas it will trigger in other researchers’ minds; and the author 
would be profoundly disappointed if that sums to zero.

1.2 Synopsis o f th e  T hesis
C hapter 2: Perform ance M onitoring and A ssessm en t in C ontrol
The terms ‘performance monitoring’ and ‘performance assessment’ are part of the 
technical jargon but might assume different meanings for different authors. This 
chapter provides definitions for these terms followed by a brief review of the most 
significant model-free mechanisms for performance monitoring and assessment cur­
rently available in the literature. The ‘model-free’ status is given to these mecha­
nisms for their use of non-parametric characterisations of the closed-loop system: 
statistical charts, autocorrelation functions and impulse responses.

C hapter 3: A ssessm ent o f Linear Q uadratic O ptim ality
Spectral analysis of the process input and output signals, observed during per­
turbed closed-loop operation, provides the elements for testing performance opti­
mality under a linear quadratic criterion. This mechanism is model free when all 
states of the process are measurable or reconstructed with a Kalman filter. Similar 
results are obtained for output feedback control but, in this case, part of the noise 
dynamics must be known.

C hapter 4: Linear Q uadratic Perform ance M onitoring
The mechanism for monitoring linear quadratic performance resorts to an estimate 
of the optimal closed-loop characteristic polynomial. This polynomial is obtained 
via signal reconstruction of special power-spectral densities containing the optimal 
closed-loop poles. Estimates of the optimal closed-loop characteristic polynomial 
can also be used for other purposes, like direct adaptive pole-placement.

C hapter 5: A ssessm en t o f Local O ptim ality
The analysis of a linear quadratic cost function as a functional on the space of con­
troller parameters brings new insight into assessment of optimality. This perspec­
tive reveals geometric properties associated with the condition of local optimality, 
inclusive of systems under reduced complexity controllers. The main features of 
interest are the first and second derivatives of the cost function with respect to the 
controller parameters, which are derived in both frequency and time domains.

C hapter 6: C ontroller Tuning
An additional use for the estimates of first and second derivatives of the cost
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function is in gradient-based controller tuning. This chapter presents one possible 
way of computing appropriate directions for controller tuning. The scheme includes 
a mechanism for guaranteeing stability of the closed-loop system and a criterion 
for stopping the iterative tuning.

C hapter 7: D irection s for Future R esearch
The thesis concludes with a summary of achievements followed by directions for 
near and long-range future research.

A p p en d ix  - Tracking A d ap tive  Identification: A pproach via M odel Fal­
sification
The material in this appendix was presented at the IFAC World Congress in July, 
1996. Despite not sharing the same primary motivation as the other contributions 
in the thesis, this paper was important as the author’s introductory study of linear 
quadratic control. The main contribution of this paper is the improvement of a 
certainty equivalence estimator, adapted from results on the problem of learning 
from experts, by translating it into the parameter bounding context and by adding 
adaptivity.

1.3 Sum m ary o f Original C ontributions
A number of original contributions have been made during the course of research 
and development for this doctoral dissertation. A brief description of these contri­
butions follows.

C hapter 3: A ssessm en t o f Linear Q uadratic O p tim ality

Development of a model-free test of linear quadratic optimality for systems under 
state feedback. This test requires that all states of the plant should be di­
rectly measurable or reconstructed with a Kalman filter. The mechanism for 
assessment of optimality is initially developed for systems with no noises or 
disturbances, and then it is extended to systems under influence of stochas­
tic noises. This test basically states the equivalence between optimality and 
whiteness of a certain power-spectral density comprised of signals collected 
during loop excitation. Actually, this is the dual of a well known Kalman 
filtering result.

Development of a test of linear quadratic optimality for systems under output 
feedback. Under this situation part of the noise dynamics must be known. 
The test states that optimality implies whiteness of a certain power-spectral 
density, but the converse depends on specific plant characteristics.

C hapter 4: Linear Q uadratic P erform ance M onitorin g

Estimation of the optimal closed-loop characteristic polynomial. This contribu­
tion begins by composing a couple of power-spectral densities containing the 
optimal closed-loop poles. Given that power-spectral densities contain only
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the magnitude information, the phase contents of these noisy signals are re­
constructed via an error-reduction algorithm with parametric model fitting. 
Each estimated transfer function has the optimal closed-loop characteristic 
polynomial as denominator.

Formulation of a mechanism for monitoring linear quadratic performance. This 
performance monitor is based on a whitening filter for the process output 
signal. The construction of such a filter uses the denominator of the feedback 
control law and an estimate of the optimal closed-loop characteristic polyno­
mial. If the closed-loop performance is optimal then the filtered signal is a 
spectrally flat process.

Analysis of minimum variance control of nonminimum-phase plants. In view of 
the previous developments, minimum variance control is revisited for the 
problematic case of nonminimum-phase plants. The conclusion is that just 
a minor simplification can be obtained in comparison to the general linear 
quadratic setup.

C hapter 5: A ssessm ent o f Local O p tim ality

Estimation of first and second derivatives of a linear quadratic cost function with 
respect to the controller parameters. Three ways of obtaining these deriva­
tives are developed: with frequency-domain non-parametric models of the 
closed-loop system, with time-domain non-parametric models of the closed- 
loop system and from signals filtered through the loop. For this latter devel­
opment only the estimation of the second derivative is an original contribution 
of this thesis; the estimation of first derivative from signals filtered through 
the loop was originally presented by Hjalmarsson et al. (1994a).

Formulation of a mechanism for assessment of local optimality. An operating 
point has locally optimal performance if the gradient vector is null and the 
Hessian matrix is positive definite. This simple fact generates a fairly robust 
method for detecting local optimality based on comparison of the current lin­
ear quadratic cost with the minimum of the convex approximation generated 
by the estimates of first and second derivatives of the cost function.

C hapter 6: C ontroller T uning

Computation of appropriate tuning directions. The availability of unbiased esti­
mates of first and second derivatives of the cost function greatly improves the 
quality of tie approximation of the closed-loop behaviour around its operat­
ing point. This improvement is explored by a meticulous selection of tuning 
direction amording to local conditions.

Establishment cf guaranteed closed-loop stability. The insertion of a generalised 
stability margin limits drastic changes in the controller parameters and guar­
antees stab lity of the closed-loop system. The stability margin is computed 
from cross-spectral densities of the closed-loop system under external excita­
tion.
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Computation of timing directions from a non-parametric model of the process. 
Originally the closed-loop system has to be excited for each new computa­
tion of tuning direction. Using a non-parametric model of the process, it is 
possible to compute new tuning directions, without re-exciting the loop, after 
a minimum has been reached along the previous line search.

A p p en d ix  - Tracking A d ap tive  Identification: A pproach via M odel Fal­
sification

Improvement of a confidence-function parameter estimator. The certainty- 
equivalence estimator presented in (Kumar 1995) computes a density function 
that assigns a confidence level to each possible parameter vector. The original 
contribution presented in this appendix improves that estimator by translat­
ing it into the parameter bounding context, via dead-zone action, and by 
adding adaptivity.



C h ap te r  2

P erfo rm ance M onito ring  and  
A ssessm ent in C ontro l

2.1 Introduction
It is surprisingly difficult to find definitions of the terms ‘performance monitoring’ 
and ‘performance assessment’, in the control systems literature. Apparently these 
terms assume different meanings depending on the sub-area where they are applied. 
The definitions adopted in this thesis are given in the sequel.

Performance m onitoring is the act of comparing the current perfor­
mance measurement with a set of pre-specified criteria, using normal op­
erating data.

In spite of the diversity of mechanisms suggested for the task of monitoring the 
performance of a closed-loop system, the use of normal operating data is always 
a common denominator among them. This clearly means that whenever one has 
to resort to special interferences on the loop, e.g. to inject a pseudo-random signal 
or to open the loop, in order to acquire the desired result, then the mechanism 
employed should not be classified as a performance monitor. Another common 
factor is the action of comparing current performance measurement with a set of 
pre-specified criteria, resulting in a binary conclusion about the achieved system 
performance, e.g. ‘is the current closed-loop performance optimal according to a 
given criterion?’.

Performance assessment, on the other hand, has two different meanings in the 
literature: assessment of current performance and assessment of achievable perfor­
mance.

Assessm ent of (performance) optim ality is the act of testing whether 
the current performance is optimal or not, according to a given criterion.

This is similar to performance monitoring, except that some sort of interference is 
performed on the loop. A recent example of this kind of performance assessment 
is found in (Kendra and (Jinar 1997).

7



8 P erformance Monitoring and Assessment in Control

A ssessm ent of optim al perform ance is the act of establishing the best 
achievable closed-loop performance for a process under a given criterion.

This meaning is more common in the literature and refers to establishing limits 
of performance of the closed-loop system. Mechanisms for assessment of optimal 
performance range from model-based approaches, e.g. (Boyd and Barratt 1991), to 
completely model-free ones, e.g. (Lynch and Dumont 1996).

The effectiveness of the mechanisms for performance monitoring and assessment 
is tightly related to the amount, and quality, of a priori information required 
to apply them. This idea is described by Äström (1991) in terms of levels of 
knowledge about the plant. Such a detailed definition goes beyond the purpose 
of this thesis, but the message conveyed is important for qualitative evaluation of 
those mechanisms. Model-based approaches are extremely flexible to handle, but 
the requirement that a (good) model of the plant be available becomes its greatest 
weakness. At the other extreme are the so called model-free methods, which are 
usually specific to a single performance criterion but do not need to rely on much 
a priori information about the plant.

The aim of this thesis is to develop mechanisms for performance monitoring 
and assessment under linear quadratic criteria. Such mechanisms can be trivially 
conceived based on a model of the plant, therefore the challenge is to elaborate 
methods that use the minimum amount of information about the plant, i.e. as 
close as possible to model-free methods. The term ‘model free’ characterises the 
absence of a parametric model of the process under control. Statistical models and 
frequency-domain plots are examples of non-parametric characterisations of the 
closed-loop system and therefore are allowable in model-free methods.

This chapter presents a review of some existing mechanisms available for per­
formance monitoring in control that are oriented towards model-free approaches. 
The presentation is kept brief and simple, leaving the formalisms to later chapters 
where new results are developed. An important method for assessment of absolute 
performance under a minimum variance criterion is also described in this chapter.

2.2 S ta tis tica l P rocess C ontrol
Probably the most basic form of performance monitoring is provided by Statisti­
cal Process (quality) Control (SPC). The requirements of system performance are 
specified by statistical properties, which are then constantly monitored with appro­
priate charts. Initially designed and applied for performing quality control in the 
parts industry (batch processing), SPC charts have also been used to monitor the 
performance of controlled systems in the process industry (continuous processing) 
(Box and Kramer 1992, Vander Wiel et al. 1992).

Statistical process control monitors system performance via time-domain plots 
of process output deviation from set point, such as Shewhart charts, cumula­
tive sums (CUSUM) charts and exponentially weighted moving average (EWMA) 
charts. An example of Shewhart chart is shown in Figure 2.1, where the central 
horizontal line is the set point; the dashed lines, at two standard deviations, are 
warning levels; and at three standard deviations are the specification levels.
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- 2 g
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Figure 2.1: Shewhart chart

Shewhart charts are designed to signal excessive deviations of the process output 
from a given set point. However, when the focus of concern is that the mean value 
of the output be kept at the set point level, CUSUM charts are the tools to be used 
instead. As its name implies, a CUSUM chart plots the cumulative sum of output 
deviation from set point, thus detecting shifts in the process mean. Additionally, 
EWMA charts provide means for monitoring certain moving average behaviour of 
the process output.

These types of charts are individually directed towards monitoring particular 
aspects of the process output that are given by epistemic statistical model; they 
are not directly designed to the task of monitoring best achievable performance 
like minimum output variance, for instance. In spite of that, the following set of 
decision rules, known as the Western Electric zone rules, suggests a way to detect 
nonrandom patterns in Shewhart charts (Montgomery 1991). The process is out 
of control if either

• One point plots outside the 3a control limits;

• Two out of three consecutive points plot beyond the 2a warning limits;

• Four out of five consecutive points plot at a distance of la  or beyond from 
the centre line;

• Eight consecutive points plot on one side of the centre line.

These heuristic rules can be interpreted as a fast mechanism for testing whiteness of 
a stochastic process, and signal whiteness is frequently associated with optimality 
of the systems presented in the next sections.

2.3 K alm an F iltering
The theory of control design based on state-space models is very well established, 
but it is unrealistic to assume that all states of the system can be measured. The 
usual approach to this issue is to design an estimator to reconstruct unmeasurable 
states using past and present values of the inputs and outputs of the process. Under 
a stochastic framework where the output measurements are affected by Gaussian
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disturbances, it is possible to determine the optimal estimator, frequently called 
the Kalman filter, which minimises the variance of the estimation error (Äström 
and Wittenmark 1990).

Kalman filters exhibit the property that the difference between measured and 
estimated outputs, known as the innovation sequence, is a Gaussian white-noise 
sequence (Kailath 1968). This property is not only a sufficient condition but also 
a necessary one for the optimality of a Kalman filter, therefore simple whiteness 
tests suffice to monitor the optimal performance of estimators (Mehra 1970).

It turns out that the Kalman filtering problem is dual to the linear quadratic 
control problem, the object of study in this thesis. Actually, the equivalence of 
filtering optimality with whiteness of the innovation sequence is used in the next 
chapter for proving a result on assessment of linear quadratic control optimality.

2.4 M inim um  V ariance C ontrol
For the regulation problem depicted in Figure 2.2, minimum variance control 
(MVC) is one of the possible design techniques available. Its theoretical signif­
icance is mainly due to computational simplicity and intuitive reasoning. The 
MVC design of the controller, C, minimises the variance of the measured process 
output, yt, which is an effect of the Gaussian white noise at et.

Figure 2.2: Regulation setup

As a starting point for industrial regulators, MVC is a very common control 
objective since it focuses all effort on rejecting output variation. Minimum variance 
control represents an archetypical ideal control which, if necessary, is detuned to 
balance output variation with unacceptable control magnitude.

One way to describe the reasoning behind MVC design is based on the minimi­
sation of the influence at the measured output, yt, of an impulse at the noise source, 
et. The behaviour of relevant signals is shown in Figure 2.3. All initial conditions 
of the system are at zero when the impulse occurs at time t = 0. The disturbance 
signal, vt, becomes the impulse response of the stable and stably invertible filter
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H , and this signal appears immediately at the measured output, yt. The controller 
can also effect immediate action at the plant input, ut, but the plant dynamics, G, 
are assumed to have an internal delay of d sampling times, therefore the signal zt 
can only start counteracting the disturbances at time t — d samples. Given that 
the impulse response of H and the dynamics of G are both known, the minimum 
variance control law computes the signal ut such that zt = —vt\t_d for all t > d 
samples.

-e-----e---- ©—y Z —Q-----e------e-----e-----©------s*-t/ /

/ / I 1  ?
d-1 d

-©-------e -------© ©----- e — -//£ - &-

/ /7/

I  A A A

-©------- ©------- ©------- ©---------=►

Figure 2.3: MVC impulse response

In a stochastic setup et is a sequence of independent and identically distributed 
random values, and vt becomes a convolution of impulse responses. Nonetheless the 
control law that minimises the variance of yt is the one described above. A complete 
development of MVC design can be found in (Äström and Wittenmark 1990), (Box 
and Jenkins 1976) and other textbooks on stochastic control.

Whenever et is a sequence of independent random variables and the dynamics 
of G and H are linear, the minimum variance control law is also linear. If the 
process has unstable zeroes, the control effort required to achieve minimum variance 
becomes unbounded and the design needs reformulating. Under this circumstance, 
the MVC with bounded control signal is still a linear control law but the output 
signal does not exhibit the behaviour shown in Figure 2.3.

2.4.1 M on itorin g  of M V C  P erform ance

Returning to Figure 2.3, it can be observed that the influence at yt of an impulse 
at et is completely extinguished after d samples, that is, yt • yt+r =  0, for any 
t G R and any r  > d. An equivalent conclusion is reached when et is a sequence of 
independent, stationary, zero mean random variables:

r(r) = E[yt • yt+T] = 0, Vt > d, ( 2 . 1)
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if and only if the controller is the optimal one in terms of minimum variance 
(Äström 1970). The operator ‘E’ denotes expectation over the noise distribution.

An equivalent way of describing (2.1) is that under MVC the process output is a 
moving average of order d — 1. This property leads to a straightforward monitoring 
mechanism for MVC optimality, as long as the delay of the process is known and 
all zeroes of G are stable. When the process has unit delay the monitoring becomes 
a whiteness test, which is an appropriate situation for using a Shewhart chart.

2.4.2 A ssessm ent of O ptim al M V C P erfo rm ance
Another look over the impulse responses of the system reveals that whichever con­
trol action is applied, zt does not change until t = d samples and, as a consequence, 
the first ld' elements of the response of yt to an impulse at et are invariant to the 
control action. With any controller under operation it is possible to assess the 
impulse response of yt under minimum variance control, provided the delay of G is 
known.

In a practical situation et is a noise source to which the user does not have 
access. Nonetheless, it is possible, although not straightforward, to use the time 
series yt to fit an auto-regressive moving average (ARMA) model to the closed-loop 
transfer function

T  = H
1 + G C ’

( 2.2)

where C is any stabilising controller. The first ‘d’ elements of the impulse response 
of T  determine what would be the response of yt to an impulse at et if C were the 
minimum variance controller. Moreover, the minimum achievable output variance 
for that process is the sum of the squares of the initial ‘d’ elements of the impulse 
response of T  (Harris 1989).

The significance of the result stated above is that one can assess the mini­
mum possible variance of the output, from normal operating data and without any 
knowledge about the plant apart from the delay. The only requirement for the 
controller is to stabilise the loop.

Performance assessment of operating control loops is important in determin­
ing the potential benefits of controller redesign or tuning, and several practical 
implementations of this result have been suggested, with successful application to 
industrial processes (Lynch and Dumont 1996, Desborough and Harris 1992, Stan- 
felj et al. 1991, Eriksson and Isaksson 1994). Two recent papers extend the original 
scheme into multivariable systems: (Harris et al. 1996) and (Huang et al. 1997).

The problem of assessing the minimum variance performance of plants with un­
stable zeroes is still open. The article (Tyler and Morari 1995) mistakenly claimed 
to have solved this problem and that of assessing the performance of unstable plants 
(see Section 4.3). The latter problem is not actually a real one since the presence 
of unstable poles in the process does not affect the design of the minimum variance 
controller, and the methodologies for monitoring and assessing performance remain 
exactly the same as described above. The real problem is the presence of unstable 
zeroes in the process, which can be intrinsic to the physics of the plant or due to
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fast sampling of continuous-time systems (Äström et al. 1984). This point will be 
further developed in Section 4.3, where it is shown that knowledge of the delay 
and the position of the unstable zeroes of the plant is not enough to assess the 
performance of the loop.

2.5 Conclusion
Simple mechanisms for performance monitoring of closed-loop systems are currently 
available in the literature. This chapter reviews some of the mechanisms that are 
close to being model free, culminating with the assessment of absolute performance 
of plants with no unstable zeroes under the minimum variance criterion.

The main criticism of using the minimum variance criterion is that the control 
action is not penalised and its variance might become too large. In practical terms 
a criterion that penalises the control action, like the linear quadratic criterion, 
is often more appropriate. The drawback is that the complexity of the criterion 
implies extra complexity in the performance monitoring and assessment methods, 
as seen in the next chapters.



14 P e r f o r m a n c e  M onitoring  and A ssessment  in C ontrol



C h a p te r  3

A ssessm ent of L inear Q u ad ra tic  
O p tim ality

3.1 Introduction
A natural extension of the minimum variance criterion is to add a term that pe­
nalises the variance of the control action. Such a criterion is called linear quadratic 
(LQ) control and is expressed as

where A is a non-negative scalar that weights the penalty on the variance of the 
control action. The choice of A should be based on financial assessment of the 
relative merits of each variance; unfortunately this is rarely feasible in real situa­
tions. The practical approach is to start with some (small) A in the design of the 
control law that minimises J lq, followed by an analysis of achieved variances and 
robustness. In case they are out of specification another value of A should be tried, 
maybe combined with fine tunings of the controller parameters.

The optimal LQ controller can be designed quite easily, provided a model of the 
plant is available. The issue then becomes the quality assessment of that model for 
describing the dynamics of the real plant at the operating point. Given that the 
model becomes just an instrument for designing the control law, the fundamental 
question to be answered by an LQ test of optimality follows:

Is the actual system closed-loop performance optimal according to J lq ?

The term Test (or assessment) of LQ optimality’ is different from ‘LQ performance 
estimation'. The latter concept means a straightforward computation of (3.1) 
from a finite amount of data, and this does not provide any information about 
performance optimality.

As seen before, it is simple to test for optimality of estimators: the Kalman 
filters are uniquely characterised by the whiteness of the innovations sequence 
(Mehra 1970). Despite the duality between Kalman filters and LQ control, a signal 
analogous to the innovations sequence is not directly available for measurement in

N t - 1

Y (yt +  ^ ) (3.1)

15
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the LQ counterpart. Nor is whiteness appropriate since linear quadratic control 
requires no stochastic framework.

The test for minimum variance performance optimality is another step towards 
the desired result on linear quadratic control. As seen in the last chapter, it is 
relatively easy to monitor minimum variance optimality since the only information 
needed about the plant is its delay (Aström 1970). This result is valid only for 
plants with no unstable zeroes; in the general case a lot more has to be known 
about those plants.

In order to monitor linear quadratic optimality without any constraint on the 
process characteristics, except for its linearity and time invariance, the amount of 
information required about the plant—at our current stage of research—is so large 
that an identification procedure would be necessary. The solution adopted in this 
thesis is to make the measurable signals more informative by inserting an exogenous 
excitation into the closed-loop system, therefore moving from performance moni­
toring into assessment of optimality. This procedure leads to a truly model-free test 
for LQ optimality when state feedback is used to control the process (Section 3.2). 
For the output-feedback case (Section 3.3), part of the noise dynamics must be 
known; apart from that, no sort of parametric modelling is performed.

3.2 S ta te  Feedback
The first results on assessment of optimality under an LQ criterion are specific 
to plants that have all internal states measurable. The process is required to be 
controllable and observable, but its model is not known. Under these circumstances 
a model-free mechanism for assessment of optimality is developed, initially for 
deterministic systems and later extended to cope with stochastic disturbances.

3.2 .1  N o ise-free  S ystem

The process to be controlled is given in state-space form, with no noises or distur­
bances acting on the system:

x t+i = + Tiq (3.2a)
Vt =  Axt, (3.2b)

where x t is the 77,-dimensional state vector, and <F, T and A are unknown matrices 
of dimension n x n , n x 1 and 1 x n, respectively. Due to this deterministic setup 
the LQ criterion of (3.1) is modified to

TV, — 1

j ‘det =  lim E  ( y  + A “ |)> (3 -3)N t-^ O O  * — '  
t—0

meaning that the control action should take the states of (3.2) from their initial 
values towards the origin in such a way that (3.3) is minimised.

The control law that minimises j'(l(lrt is obtained indirectly via an Algebraic 
Riccati Equation (ARE):

s = $Ts$ -  $Tsr (rrsr + a) '1 rr5$ + ata,
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resulting in an n-dimensional state-feedback vector K lf*:

u, =  -  (rTs r  + a)“1 rTs<j>i(
=  K lxqx t.

The notation ‘K x ’ is used to emphasise the dependence on A of the optimal control 
law.

The mechanism for assessment of optimality consists of adding a non-degenerate 
—that is, <j>r{u) /  0,Vcc —stationary random process to the control action and 
observing the power-spectral density of the plant input and output signals. The 
control action then becomes

ut = K x t + rt (3.4)

where {by} has zero mean and power-spectral density cf)r(uj). The n-dimensional 
vector K  is a candidate for K l£. The power-spectral densities of ut and yt are given 
by

<j>u(u) = |l  + A'(e*“7 -  <f> -  T A 'V 'r fd v M ,

<t>y(u) = |A(e“ /  -  <J>)-’r | 2d»uM  = |A(e*“/  -  $ -  rA 'V 'r f

Theorem 3.1. Given the process model described by (3.2), and the control action 
in (3.4) such that the closed-loop system is stable, then

ß y ( u )  x f i u j u ) _n

M u )  M u )  ~
(3.5)

for all u  G [0, 27r) and some ß G R+, if and only if the control law defined by K  is 
the optimal K lfi . The exact value of the constant ß is r TST + A.

Proof. To prove sufficiency, K  is taken as the optimal then the Return Differ­
ence Equality,

A + r T(z~lI  -  4>)"tAt A(z l  -  <f>)-1r
= [i -  k (z~1i  -  $)-lr]T(rTsr + a)[i -  K (z i  -  >̂)_1r], (3.6)

holds (Äström and Wittenmark 1990, Section 11.2). Therefore

[1 -  k (z~ 'i  -  $)-1r] t [a + \A.(zi — d>)_lr |2] [1 -  K (z i  — 4>)_1r] 1
= r Tsr + a,

[a + \A(zi -  <i>)_1r |2] |i + K (z i  -  $ -  rA)-‘r |2 = rTsr + a,

and taking 2 = etuJ, one obtains

} ßu{u)  M u )  
(f)r (u) ßrij v̂)

rTs r  + a.
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Since the value of T7 ST + A is constant for all the result is obtained.
To prove necessity, the initial statement, (3.5), is expanded into

VT(z~lI  -  <f> -  YK) - tQc(zI -  $  -  TK)~lT

+ [l +  A'(z- 1/ - 3 > - r A ' ) “ T ] 7 A[l + A'(2 / - « > - r A " ) “T] (3.7)

where Qc (= A7 A for J 1̂  given by (3.3)) is the state-weighting matrix in a state- 
space quadratic cost criterion.

The original LQ-control problem on (3.2) is dual to the problem of state esti­
mation for the system defined by

x t+i = $7 x t + A.Tüt + vt (3.8a)
Vt = r Tx t +  et, (3.8b)

where

E [vtvj] = Ri 
E[eteJ] = R2 

E [et+ivT+j] = 0, Vi, j.

The state estimates satisfy

&t+i\t = $ Tüt\t-\ + ATüt + M(yt -  TTl t|f_i).

The vector M  is sought to minimise the criterion E[(xt — x t\t-\)T(xt — x t\t-i)], and 
the output prediction error is

§t =  y t -  rTft|(_i
= r T{zl-  <I>r  + A/rT) - ‘u( + [1 -  r T(zI

Invoking this duality, (3.7) becomes

Tt (zI  -  <b7' +  M YT) ^ R l ( z - 1I - +

+ [l -  v T(zi -  § T + MrT)_1M] r 2 [i -  r -<s>T +
= 7 , 7 € M+ , (3.9)

therefore

EhJtyJ} = 7- (3-10)

Given that the system is linear and the sequences {vt} and {e#} are mutually 
uncorrelated zero-mean Gaussian white noises, then (3.10) implies that {yt} (the 
innovations sequence) is zero mean and white; yet, according to Theorem 6.1 in 
(Anderson and Moore 1979, Section 5.6), the state estimator is optimal—usually 
known as the Kalman predictor. Re-invoking the duality, the original controller is 
proved to be optimal. □
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Unfortunately, while the innovations sequence in the Kalman predictor can be 
measured, the equivalent sequence for optimal LQ control cannot. Therefore corre­
lation methods used in adaptive filtering (Mehra 1970) are not directly applicable 
to LQ control.

Exam ple 3.1. A linear plant, described by

"1.2 1 0 "0.2"
0 -0.5 1 Xt  + 0

0.2 0.1 -0.3 0.1
Vt = [1 0.01 0.2]

is controlled according to

ut = [-2.851 -1.805 -0.8001] xu

which minimises J l̂et for A = 0.2. An example of the autonomous response to an 
initial state is given in Figure 3.1, for Xq — [l —1 0.5] .

1.5 

1

0.5 

0

- 0.5 

-1 

- 1.5
0 1  2 3 4 5 6 7 8 9  10

t (samples)

Figure 3.1: Response of the autonomous system

In order to assess optimality of the control law, a white-noise signal of zero 
mean and cf)r(u>) = u 2 = 1 is added to ut, producing the power-spectral densities 
shown in Figure 3.2. The fact that (f)y(uj) + A(f)u(uj) is constant over all frequencies 
indicates that the plant is optimally controlled.

3.2 .2  S y s te m  w ith  N oise

In the presence of stochastic additive plant noises, the state-space description of 
the process becomes

x t+ i  — ^ x t +  T iq  4- Vt

yt = A x t + et,
(3.11a)
(3.11b)
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___ <i> M
___k 0u(to)
___  4>y M  +  k  <f>u(co)

Figure 3.2: Power-spectral densities

where {u<} and {et} are white-noise processes with zero mean and covariance given 
by

E [vtvf] = Ri 
E[vte[] = R 12 

E[etvJ\ =  R2\ =  Rj2 
E[ete[] = R2.

Within this stochastic framework the linear quadratic cost function in (3.1) is well 
defined. The optimal control law is independent of R u R \2 and R2l and is actually 
the same as if the system were noise free.

Any stabilising controller, K, given as an n-dimensional vector, can be tested 
for LQ optimality via an injection of a non-degenerate random process at r*, as 
given by (3.4). The cross-spectral densities between ut and rt and between yt and 
rt are

<t>urU) = [i + K(eia i  - $ -  rA')-‘r] 0r(w),
<t>yr M  = A(e“ 7 -  *)-‘r <f>ur(cj).

In this case, the following result holds, by means of Theorem 3.1 and straight­
forward calculations.

T heorem  3.2. Given the process described by (3.11), and the control action 
in (3.4) such that the closed-loop system is stable, then

Q yr ((V )

(pr ( tv)

for all uj £ [0, 2?r) and some ß € if and only if K  is the optimal state feedback 
K lf . The exact value of the constant ß is T] ST + A.

Remark. The cross-spectral densities 4>yr(tv) and (f)Ur[tv) can be obtained from 
closed-loop data via spectral analysis given that {rt} is independent of {u<} and 
{et} (Ljung 1987).

+ A (fur (tV j

(f)r (v ) = A
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Due to the ‘Separation Principle’ of linear optimal control, this result is still 
valid when non-measurable states are reconstructed with a Kalman filter. The 
implementation of this filter, however, implies certain knowledge of the plant, which 
is a drawback. In the extreme case only the output of the plant is measurable, and 
the reconstruction of all states requires full knowledge of the plant. The Kalman 
filter dynamics are then identical to the part of the noise dynamics needed for 
the output feedback mechanism of performance assessment, as is seen in the next 
section.

3.3 Output Feedback
When none of the states of the plant are measurable, the design of the optimal con­
trol law is affected and the mechanisms presented in the last section are not directly 
applicable. Our analysis follows with an input/output auto-regressive moving- 
average exogenous input (ARMAX) model of the process:

A(q)yt = B(q)ut + C(q)et, (3.12)

where {et} is a zero-mean white-noise process. The polynomials A(q) and C(q) are 
monic, degC =  deg A > degP, and all the zeroes of C(q) are strictly inside the 
unit disc.

The control law that minimises J lq is obtained indirectly via spectral factorisa­
tion:

71P(z)P{z~1) = AA(z)A(z~1) + B(z)B(z~l), rj e R \  (3.13)

where the monic polynomial P(z) is the characteristic polynomial of the closed- 
loop system. P(z) is unique given that it is monic, degP = deg A and all the 
zeroes of P{z) are inside the unit disc or on the unit circle. The optimal control 
law is given by

S lq(q)
UtRli(q) Vu

where S ,q(z) and R,q(z) are solutions to the pole-positioning Diophantine equation

A{z)Rlq{z) + B{z)Slq{z) = P(z)C(z).  (3.14)

Some constraints are imposed on Rlq(z) and S lq(z) in order to guarantee uniqueness 
of the solution: Rlq(z) is monic, deg S lq < deg Rlq = deg A and S lq(0) =  0. Still, if 
A(0) =  0 or the polynomials A(z) and B(z) have common factors, these conditions 
are not enough to guarantee uniqueness of the solution, thus requiring additional 
equations to be used instead of (3.14) (Aström and Wittenmark 1990, Section 12.5). 

If a control law of the kind

u t =  -
S{q)
R(q) Vu
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is optimal, it has to satisfy the constraints described above. This implies tha t 
the order of the process (deg A) has to be known a priori. The mechanism for 
assessment of LQ optim ality uses the control action

5(9) , C(9) (3.15)

where {rt} is a non-degenerate random process of zero mean and power-spectral 
density (j>r (uj). Observe th a t knowledge of C(z), part of the noise dynamics, is also 
needed for the realisation of the test.

The injection of {rt } into the loop results in the cross-spectral densities

^ u r ( ^ )
A(eiw)C(eiu)

A(eiu)R(eiui) +  B(elu)S(elu})
(j)r ( c j )

and

(pyr  ( ^ ) A(elu})R(e1“) +  B(e iu)S(eiu;) r

T h e o re m  3.3. Take the process described by (3.12) and the control action in (3.15) 
such that the closed-loop system is stable. I f  R{z) and S(z) are the polynomials 
R lq(z) and S lq(z) comprising the optimal control law, then

(f)yr {u j  )

(t>r M
4- A

0ur((j)
(3.16)

for all u  G [0, 2n) and some r\ G K+ .
Furthermore, if  the process has A(z) and B (z) coprime and A(0) /  0, then the 

condition (3.16) implies optimality of R(z) and S(z).
The exact value of the constant 77 can be obtained from  (3.13).

Proof. For sufficiency, straightforward calculations lead to the result:

(f)yr ( ^ )

(f)r ( ^ )
+  A ( fur  ( ^ )  

(ftr ( ^ )

\B(etu})\2 + \ \A (e iuJ)\2
\A(eluJ)R lq(eiu) +  B(e iu})S lq(eiu})\2 

T)\P(eilJJ)\2

|C (e i u \  12

|P (e 'a')C(e*“’) |; I C(e iuj\ 12
=  V-

To prove necessity, (3.16) is expanded as

|P ( z )|2 +  A|.-i(2)[2 
|.4(2 )P (2) +  P ( 2)S (2)|2 \C(z)\2 = V,

which leads to

\P (z)C (z) \2 = \A(z)R(z) + D (z )S ( z ) \ \

Since the loop is stable, the closed-loop poles are positioned at their optimal loca­
tions, according to (3.13). Under the constraints tha t A(z)  and B(z)  are coprime 
and A(0) /  0 , the control law under test provides the unique solution to this 
pole-placement problem, namely the optimal control law7. □
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Remark. The cross-spectral densities (j)yr{uj) and (pur(aj) can be obtained from 
closed-loop data via spectral analysis given that {r(} is independent of {et}.
This result can be compared with Theorem 3.2, which leads to the conclusion that 
the Kalman filter brings to the feedback controller the necessary information about 
the noise dynamics. Äström and Wittenmark (1990, Section 12.5) presented the 
pole-positioning aspects of the linear quadratic Gaussian (LQG) design: the poles 
of the optimal observer (Kalman filter) are positioned at the roots of C(z), while 
the state feedback is responsible for positioning the poles of the closed-loop system 
at the roots of P(z). That means, if C(z) is known then the test for optimality 
can be performed on the polynomial control law, otherwise an observer should be 
implemented and adjusted to have a white innovations sequence (necessary and 
sufficient condition for optimality), followed by LQ performance assessment on the 
estimated state feedback.

Notice that the test of LQ optimality is performed on the reference-to-output 
path, which excludes the additive noise dynamics from influencing the results. 
This explains the need for knowledge about the noise dynamics and its use in the 
excitation filter, but this also means that the quality of our information about the 
noise is not under test.

Example 3.2. Consider the open-loop unstable and nonminimum-phase process 
described by (3.12), with

A(z) = ( z -  1.70)(z -  0.50 ±  0.40i)
B(z) = -0 .80 (z -  1.25)(z -  0.85)
C(z) = z(z -  0.80)(z -  0.30),

and the variance of {et} being a2 = 0.2.
Under minimum variance control the variances of {yt} and {ut} are a2 — J mv = 

0.986 and a2 = 17.8, respectively. In order to reduce the control action, the cost 
function of (3.1), with A =  0.1, is adopted. Under LQ control the variances become 
a2y 1.20 and a2u = 8.44.

Since the process contains an unstable zero, the mechanisms for minimum vari­
ance performance monitoring and assessment, presented in Section 2.4, are not 
applicable. With an appropriate external signal, the test of linear quadratic op­
timality can be performed either when the polynomial C(z) is known, or when 
the non-measurable states of the plant are reconstructed by Kalman filters. For 
this example the polynomial C(z) is assumed known so the test can be performed 
according to Theorem 3.3.

The excitation is performed with a white-noise signal whose variance trades-off 
amplitude (signal-to-noise ratio) and duration of excitation in order to improve 
the quality of the results. Under this particular choice of excitation, the spectral 
density in the test of optimality can be rewritten as

\ ( f ) y r { u )\2 +  X\( f )u r ( u j )\2 =  T ) ( J 4 .

In this example a variance o2 = 4.00 results in the following increase in the output 
variance: A a2 = 4.25 for the LQ controller and A a2 =  4.00 for the minimum 
variance controller.
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The system is run for some time (256 steps) in order to present a stationary 
behaviour and after that 4096 pairs (ut,yt) of excited signals are collected for 
spectral analysis. Figure 3.3 shows the spectral densities obtained during the test 
of optimality when the system is operating under LQ-optimal control. Figure 3.4 
shows equivalent spectral densities for the minimum variance controller. Both 
figures show the true expected values of the spectral densities as thin lines.

to (rad)

_____I4>yr(m)l2

..........  X I$ur(®)l2

_____ l<fyr(m)l2 + X l<t.u((o>)l2

Figure 3.3: Test of LQ optimality with the optimal controller

to (rad)

Figure 3.4: Test of LQ optimality with the MV controller

As anticipated, Figure 3.3 shows that |0yr(u;)|2 + X\cf)ur(uj)\2 has constant ampli­
tude over the frequency range. This does not happen in Figure 3.4 (MV controller) 
for the criterion J lq with A = 0.1. Observe that in this case |0yr(u;)|2 is flat, 
corresponding to the optimal performance under an LQ criterion with A = 0.

3.4 C o n c lu s io n

This chapter has introduced mechanisms for assessment of linear quadratic opti­
mality based on spectral analysis of the process input and output signals observed 
during perturbed closed-loop operation. The simplest form of LQ performance
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assessment is feasible when all states of the plant are measurable, resulting in a 
model-free mechanism. If some of the states of the plant are not measurable, they 
have to be optimally reconstructed with an observer, but that requires a state-space 
model of the plant. Another approach is to use the mechanism for performance 
assessment of systems under output feedback. The drawback is that the noise 
dynamics in the ARM AX model, C(z), has to be known; hence, the test is not 
completely model free. The extension of these results into multivariable systems is 
believed to be possible, although messy.

The state-space test of LQ optimality uses the duality between Kalman filtering 
and LQ control. Indeed, as the Kalman filter has the whiteness of the innovations 
sequence, the LQ-control dual to this property is the spectral flatness of a sig­
nal equivalent to the innovations sequence. Unfortunately this signal, in the LQ 
control, is not directly measurable in the time domain. Moreover, the difficulties 
arising in the output-feedback control are due to the combined solution of the state 
estimation and the LQ control. The information required for the realisation of the 
test, C(z), contains the optimal locations for the estimator poles. That is, this 
information would be indirectly provided to the system if the Kalman filter were 
actually implemented.

In a retrospective analysis, it is noticeable that the complexity of the mecha­
nisms for testing performance optimality increases as the criterion becomes more 
generic. The initial whiteness test provided by statistical process control can detect 
optimality only of unit-delay minimum-phase plants under a minimum variance cri­
terion. Correlation analysis extends the test to plants with any delay, as long as this 
delay is known, but the plant is still constrained to have all zeroes stable and the 
criterion is limited to the minimum variance control. The mechanisms presented in 
this chapter extend the test of optimality into the linear quadratic criterion with 
no constraints on the plant characteristics, but at the cost of exciting the loop and, 
in the output-feedback case, knowing the noise dynamics.

The need for some knowledge about the plant (in the output-feedback case) and 
an external excitation are obstacles for the widespread use of this test in industrial 
plants. A more realistic scenario is its application to some individual loops that 
deserve the costly effort to achieve optimality, as well as a design validation step 
for the optimal controller of the model of the plant.

The response to an impulse at the noise source is a key element in minimum 
variance performance monitoring, but it does not seem to present any special prop­
erty related to linear quadratic performance or minimum variance of plants with 
unstable zeroes. These two cases have in common the property that at optimality 
the closed-loop system contains at least one pole away from the origin, therefore the 
impulse response of the system is infinite in its extent. The next chapter focuses 
on this characteristic polynomial of the optimally performing closed-loop system.
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C h ap te r  4

L inear Q uad ra tic  P erfo rm ance 
M onito ring

4.1 Introduction

Assessment of optimality of operating control loops is important in determining 
which are the loops that need redesigning or tuning. Even more important are 
mechanisms for performance monitoring because they do not disturb the system’s 
normal operation. Ideally, normal operating data should provide all necessary 
information about the loop performance optimality. Under the minimum variance 
criterion this ideal situation is not too distant, provided the plant has no unstable 
zeroes. However, under a linear quadratic criterion,

even assessment of optimality is problematic because the noise dynamics of the

must be known.
Using excited closed-loop signals one might proceed by identification of an open- 

loop model, applying say the methods of (Van den Hof and Schrama 1993), followed 
by controller design and comparison between expected and actual behaviours. This 
introduces issues of modelling accuracy in addition to control design. Independent 
of this approach, one can use the excited closed-loop signals to estimate the closed- 
loop poles that would have been obtained under optimal LQ performance. This 
chapter shows how to perform such an estimation and how this result can be used 
towards LQ performance monitoring. Moreover, the particular case of MV perfor­
mance monitoring of nonminimum-phase plants shows that the presence of closed- 
loop poles away from the origin significantly influences the amount of information 
required to monitor or assess performance optimality.

7Vt - l

(4.1)

ARMAX model

A(q)yt = B(q)ut +  C(q)et (4.2)

27
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4.2 LQ O ptim al C haracteristics
Among the terms resulting from system identification, the noise model often has 
the lowest accuracy or reliability because the identification procedures attempt 
to capture all unmodelled effects as part of this noise model. This can include 
drifts, offsets, quantisation error, signal variabilities, under-modelling as well as the 
process disturbance. This problem motivates the development of a more complex 
mechanism for LQ performance assessment and monitoring that does not require 
any knowledge about C(z).

4.2.1 S pec tra l D ensities w ith  O p tim ality  A ttr ib u te s
The feedback control law used for regulating the ARMAX plant, described by (4.2), 
is as follows:

where rt = 0 during normal operation. Extra information about the system is 
obtained with temporary external excitation at rt, which for simplicity is chosen 
here as a white-noise process of zero mean and variance a2. The resultant cross- 
spectral densities are

If the model of the plant were available, the characteristic polynomial of the 
optimal closed-loop system, P{z) would be computed via the spectral factorisation

which can have both numerator and denominator of its right-hand side fraction 
multiplied by

Vt + ru (4.3)

a.2

A(eiu})R(eiuJ) + B(eiu)S{eiu)

and

A(eiuJ)R{elu) +  B(eluJ)S{eiu)

r]P(z)P(z~1) = A A{z)A{z~1) + B{z)B(z~1), (4.4)

with r] € K+. This expression is used for obtaining

V~'\B(zW \B(z)\2
I P(z)\2 |B(;)P + A|.4Wr

\ m \2 A
\A(z)R(z)+B(z)S(z) \?a

leading to

ri 1|B(e'",)|2 l< V H |2
T (e " ) |2 \<j>yr{io) \ 2 + A|0„r (w)|2’

(4.5)
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Similar developments are employed for establishing

??~1|,4(e‘u,)|2 =  l<M̂ )P ,
|P(e“ )|2 I V M P  + A I ^ H I 2' 1 ’

Results (4.5) and (4.6) are special because: i) their right-hand sides are built 
from cross-spectral densities acquired with any stabilising controller in the loop; 
ii) their left-hand sides are equivalent to power-spectral densities of filtered white 
noise, whose filters’ poles are the optimal ones.

From those power-spectral densities one can think of estimating their filter 
transfer functions to obtain the stable polynomial P(z). This idea, developed 
in the next section, results in a method for phase retrieval and estimation from 
frequency-domain data. The zeroes of A(z) and B(z) can be estimated from that 
procedure only if the process is known to be stable and minimum-phase, otherwise 
one cannot distinguish between a certain estimated zero and its inverse because 
their contributions to the power-spectral density are identical.

4.2 .2  E stim ation  o f P(z)

The problem to be solved in this section is:

Problem 4.1. Given a noisy measurement, \<f(uo)\2, of the squared magnitude of 
some spectrum

4 > { u )  =  T
L ( z )

[P{z)\

find the best estimate, P(z),  of the monic denominator polynomial P(z),  whose 
zeroes lie strictly inside the unit circle.

Direct methods for identification from frequency-response data need complete 
spectral information (magnitude and phase) as input. If one takes the square root 
of \fi(cj)\2, the phase of the spectrum is lost and some form of signal reconstruction 
has to be used.

Generic signal-reconstruction problems can be solved by an iterative algorithm 
known as the error-reduction algorithm. This algorithm bounces back and forth 
between the object domain, where the object-domain constraints are applied, and 
the Fourier domain, where the respective constraints are applied (Dainty and 
Fienup 1987).

The error-reduction algorithm can be applied to solve the phase-retrieval prob­
lem that arises when only the magnitude of a signal is known, as found in Problem 
4.1. For this instance, the object-domain constraints are given by the order of the 
polynomials L(z) and P(z ), and the frequency-domain constraint is the magnitude 
of the noisy measurement. A block diagram of the algorithm is shown in Figure 4.1. 
It consists of the following basic steps:

1. Form an initial estimate for

2. Construct a long finite impulse response (FIR) filter by inverse discrete 
Fourier transform (IDFT): g(z) =
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3. Fit an n-th order auto-regressive moving-average (ARMA) model to the FIR 
filter, g(z), by model reduction: L(z)/P(z);

4. Compute the discrete Fourier transform (DFT) of the ARMA model: 0m(a;) =
T[L{z)/P(z)l

5. Form a new spectrum estimate, (f>(u) = |0(o;)| eiarg^ m̂ ,  and return to 
Step 2.

0 m  ) L(z)/P(z)

Figure 4.1: Block diagram of the algorithm for phase retrieval

There are two open issues in the algorithm as stated so far: the initial estimate 
creation and the model reduction. According to the author’s experience, a reason­
ably good initial estimate can be obtained through the solution of the following 
least-squares problem:

min W  [U(w)|2F(eia,)P (e-“ ) -  L(e“ )L(e-“ ) 11
L ’P  »  1

The Fourier transform of L(z)/P(z)  generates the initial estimate of the phase.
The model-reduction step is implemented with a Steiglitz-McBride iteration 

(Steiglitz and McBride 1965). This method attempts to minimise the squared 
error between the impulse response g(z) of L(z)/P(z)  and the FIR filter g(z) by 
iteratively pre-filtering g(z) and applying a least-squares method (Ljung 1987, page 
297).

A convergence analysis of the error-reduction algorithm is presented in (Dainty 
and Fienup 1987). It is shown that the algorithm ‘converges’ in the weak sense 
that the squared error cannot increase with an increasing number of iterations. For 
our particular case, the convergence of the whole procedure is dependent on the 
convergence of the model-reduction method, the Steiglitz-McBride iteration, which 
is analysed in (Stoica and Söderström 1981).
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If the plant order is known and the spectrum measurement is exact, the ini­
tial P(z) is also exact and this is not changed by the iterative procedure. When 
the spectrum measurement includes noisy components, approximate values are ob­
tained for P(z).

Example 4.1. Consider the same plant used in Example 3.2, an open-loop unsta­
ble and nonminimum-phase process described by (4.2), with

A(z) = ( z -  1.70)(z -  0.50 ±  0.40i)
B{z) = -0.80(2 -  1.25)(2: -  0.85)
C(z) = z(z - 0 . 8 0 ) ( z -  0.30),

and the variance of {et} being o\ — 0.2.
This time the external excitation is performed according to (4.3), therefore it is 

not required that the polynomial C(z) be known. Two different controllers are used 
during the experiments: the LQ optimal for A = 0.1 and the MV controller. With 
a white-noise excitation of variance o1 — 1, the increases in the output variance 
are A cr2 — 6.18 for the LQ controller and A a* = 4.25 for the minimum variance 
controller.

The cross-spectral densities obtained with each of the controllers are used for 
building estimates of the power-spectral densities 77 |p^fej|2̂  and A77 where
P(z) is the optimal characteristic polynomial associated with this example’s plant 
and J lq with A = 0.1. These power-spectral densities, obtained with 4096 samples 
collected from the loop, are presented in Figures 4.2 and 4.3, which as expected are 
invariant to the control law. The term </>j(u;), used in the legend of these figures, 
is defined as \(f)yr(uj)\2 + X\(pur(uj)\2.

0.8

0.6

0.4 

0.2 

0
0 nil n 3ti/2 2k

co (rad)

Figure 4.2: Spectral densities derived from the LQ controller

The next step is to use these power-spectral densities for estimating the optimal 
characteristic polynomial. This estimation is performed with the error-reduction 
algorithm presented in the current section, and the poles of the resultant polyno­
mials are shown in Table 4.1. The actual optimal poles are 0.7346 ±  0.1336i and 
0.0886; the accuracy of estimation of these poles is remarkably good, given that no 
explicit plant model is used.
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co (rad)

l<t>yr(to)l2 /  ^ (c o )  

XI<t>ur(co)l2 / * , ( » )

Figure 4.3: Spectral densities derived from the MV controller

Table 4.1: Estimated closec 
From \(f)yr{uj)\2/ (j)j{u)

-loop poles
From X\c/)ur(uj)\2/(f)j(iü)

LQ controller 0.7389 ±0.1188i, 0.1564 0.7462 ±0.1410i, 0.0874
MV controller 0.7183 ±  0.1389i, 0.0996 0.7378 ±  0.1390i, 0.0957

4 .2 .3  LQ P erform an ce M on itorin g

Undoubtedly the estimates of the optimal closed-loop poles do not have intrinsic 
relevance, although they can become very useful for other techniques. One example 
is to use these estimates for guiding direct adaptive pole-placement, algorithms (e.g. 
Elliot 1982, Äström and Wittenmark 1989). Another example of the use of the 
optimal closed-loop poles is in monitoring linear quadratic performance.

The mechanism for LQ performance monitoring uses the signal

wt _A P(<1)
R +(q)RJ(q) Vt, (4.7)

where the factorisation of the controller denominator R{q) =  R +(q)R-(q) is such 
that all zeroes of R+{q) are inside the unit disc and all zeroes of R-{q) are outside 
the unit disc or on the unit circle. The reciprocal polynomial R~*{q) is chosen to 
be monic, therefore guaranteeing uniqueness of that factorisation.

Lem ma 4.2. Given the process m,odel described by (4.2) under control of the LQ 
optimal output feedback

u t -  - ß » Vt, (4.8)

then the signal {u^}, defined in (4.7), is a white-noise process.
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Proof. Under optimal control law the system output is given by

C(g)fl‘*(<7)
1,1 A(q

_  R,q(d)
P{q) *“

Substitute this expression into (4.7) to obtain

wt
R'l'iqp

Given that {et} is a white-noise process and 

then the covariance function of wt is

rw(r)
1

2 tt

1
2n

/*27T

/  elTU} (f)w(u) du
Jo

/  elTUJ (pe(u) du
Jo

re(r)
fcr2, r  =  0

\ 0 ,  t / 0 ,

implying that {iet} is a white-noise process. □
Unfortunately the optimal control law is not the only one that whitens {u^}. 

The general expression of the control law that does that is

S(z) = S lq(z) -  Q(z)A(z)
R(z) = Rlq(z) + Q(z)B(z)

where Q(z) is any polynomial. Taking into consideration that the order of the plant 
is known—it is needed for the estimation of P(z) —the order of the controller is 
constrained, reducing Q(z) to the set of scalars. Another consideration about the 
optimal control law is that it has 5(0) = 0, hence if .4(0) ^  0 the unique choice for 
Q(z) is to equal zero (Aström and Wittenmark 1990).

The performance monitoring mechanism works according to the following rules:

IF {w j is NOT a white-noise process 
THEN the controller is NOT optimal.

IF {wt} is a white-noise process AND A(O) is known to be /  0 
THEN the controller is optimal.

If {wt} is a white-noise process and A(0) = 0, or .4(0) is not known to be /  0, then 
nothing can be concluded about the optimality of the controller.



34 L inear  Q uadratic  P e r f or m an ce  M onitoring

Example 4.2. Consider the system in Example 4.1 where estimates of P(z) were 
computed from signals of the loop under excitation. The aim now is to monitor 
the loop performance, under normal operating data, by checking the covariance 
function of the signal wt.

Initially the minimum variance controller is used, with P(z) estimated from

P(z) = (z-  0.7378 + 0.1390i)(z -  0.7378 -  0.1390i)(z -  0.0957).

The signal {u^} is formed according to (4.7), with {yt} being a sequence of 4096 
samples collected from normal operating data. The initial terms of the covariance 
function of {wt} are presented in Figure 4.4. Observe that for several values of 
t the covariance function is not within the 95% confidence limits. Consequently, 
{wt} is not a white-noise process implying that the controller is not LQ optimal.

- 0.05

Figure 4.4: Covariance function of wt under the MV controller

The same procedure is repeated with the LQ controller and

P(z) = ( z -  0.7462 + 0.1410i)(* -  0.7462 -  0.1410i)(* -  0.0874).

The initial terms of the covariance function of { ic j are presented in Figure 4.5. As 
expected, the covariance function shows that {wt} is a white-noise process.

4.3 O n M V  of N o n m in im u m -p h ase  P la n ts

The problem of assessing the minimum variance performance of plants with un­
stable zeroes was tackled by Tyler and Morari (1995), and their conclusion was 
that MV performance assessment of this kind of plant depends on knowing only 
the plant delay and the position of the unstable zeroes of the plant. Unfortunately 
this conclusion is incorrect since almost all the plant model has to be known. The 
current section shows the details of this latter conclusion.

For plants described by the ARMAX model (4.2) with no unstable zeroes, the
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i*c z*z 3 I IF I

- 0.05

Figure 4.5: Covariance function of wt under the LQ controller

MV control law is

U ‘ ~  ~

M ( g )

B{q)F(q)Vt'

where F(q) and M(q) are polynomials obtained from

qd~'C(q) = A(q)F(q) + M(q)

with d = deg A — degP > 0, degF = d — 1 and degM < deg A = n. Under this 
control action the output of the plant becomes

lIt = F ’(q~')et
F(q) (4.9)

That is, {yt} is a moving-average process of order 1. It is important to emphasise 
that all d elements of the MV-system impulse response are actually invariant to 
the control law.

These powerful features, relevant for MV performance monitoring and assess­
ment, are absent when the plant contains at least one unstable zero. Minimum 
variance closed-loop systems with this kind of plant have pole(s) away from the 
origin, therefore their closed-loop impulse responses are infinite in their extent—as 
they also are under LQ optimality.

The MV control law of plants with unstable zeroes is

^ ( r 1)
B+-(q- ' )E-(q-i )Vt

D ( q )

B+(q)E(q)J

where E(q) and D(q) are obtained from

qd- 'C(q)BJ(q)  = A(q)E(q) + B.(q)D(q)
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w ith deg E  = d +  deg — 1 =  deg F  +  deg 1E?_ and deg D <  deg A = n (Ä ström  
and W ittenm ark  1990). The o u tp u t of the p lan t then becomes

_  £ * ( < r ' )

V‘ B - ( q - ' ) e‘
(4.10)

■e,.
qd~lB- ' (q)

The p a rt of the im pulse response of (4.10) th a t is invariant to  the control law 
can be isolated:

C(q)_ , B.(q)D(q)
Vt = ~rr\et H-- — \— e,

A(q) A  (q)
F(q) B - ‘ ( q ) M(q) -B- (q ) D( q)  
qd~l 1 qd- 1A(q

(4.11)

From the analysis of

E (q) = F(q) +  BJ (q ) M( q)  -  B.(q)D(q)
A(q)B. ' (q)

(4.12)

B- ' (q)
it can be concluded th a t

BJ {q)M(q)  -  B.(q)D(q) = L(q)A(q),
where

L(q) = E(q)-  F(q)B. ' (q)  

with d eg L  =  d e g £ L . The substitu tion  of (4.12) into (4.11) results

. E ( q ) ,  , L (q)
Vt ~  1 qd- lB J ( q ) et'

This last expression highlights three features of the  im pulse response of the 
system:

•  The in itia l d term s are invariant to the control law.

(4.13)

•  The term s from d +  1 up to  d 4- deg B_ depend on L(q) and B_(q),  where 
L(q) depends on A(q) and C(q), am ong others.

•  The following term s are determ ined from B^(q)  and previous term s of the 
im pulse response.

If it were not for the term s from d +  1 to  d +  d e g M V  perform ance m on­
itoring and assessm ent of nonm inim um -phase p lants would ju s t require the ex tra  
knowledge of B_(q).  as it was m istakenly claim ed in (Tyler and M orari 1995). 
U nfortunately  the only inform ation about the model th a t is not, needed for MV 
perform ance assessm ent of nonm inim um -phase p lants is B +(q), i.e. the stable ze­
roes of the  p lant.

One can th ink  of im plem enting a perform ance m onitoring mechanism  for 
nonm inim um -phase p lants akin to  th a t presented in Section 4.2.3. This is fea­
sible, bu t the ex tra  knowledge of B-(q)  is not enough for th a t because P(z) = 
B E ( z ) B +(z). Unless all zeroes of the p lant are known, the mechanism  for MV 
perform ance m onitoring of nonm inim um -phase p lan ts has to be preceded by an 
experim ent for estim ation  of P(z).



4.4 C o n c lu sio n 37

4.4 Conclusion
The weakest aspect of the mechanisms introduced in Chapter 3 is the requirement 
that the noise dynamics, in the output feedback case, are known. This weakness 
is not present within the mechanism presented in this chapter, but it comes at the 
cost of increasing the scheme complexity. From excited closed-loop operation one 
builds spectral densities containing the optimal closed-loop poles, which are then 
estimated via algorithms of signal reconstruction.

The complexity of this procedure rivals that of identification and LQ(G) design. 
The significance of the model-free approach is that its results might extend to yield 
qualitatively valuable extensions of SPC methods in far wider circumstances where 
the efficiency of system identification is unknown.

Estimates of the optimal closed-loop poles can be used for several purposes, 
including adaptive pole-placement, algorithms. These algorithms have the limita­
tion that there is no explicit trade-off between control effort and bandwidth of the 
closed-loop system (Trulsson and Ljung 1985). In particular, the mechanisms for 
direct adaptive pole-placement need a sensible target to aim for, but there is no 
estimation of a plant model on which to base the computation of a ‘desired’ loop 
performance, in terms of closed-loop poles. The LQ optimal characteristic polyno­
mial provides a sensible choice of poles, with an explicit trade-off between process 
output and control variances, and guaranteed robustness.

It is expected that the estimates of the optimal closed-loop poles can lead to 
the development of a mechanism of absolute performance assessment under an LQ 
criterion, but in this chapter the focus is on performance monitoring. After the 
initial experiment is performed and the estimates are obtained, there is no need for 
further disturbances to the normal operation of the loop. This is especially impor­
tant for monitoring loop performance during controller tuning. In the long term, 
though, those estimates tend to lose accuracy as changes in the plant dynamics 
occur with time.

The amount of information required for performance monitoring is also analysed 
in the particular case of minimum variance control of nonminimum-phase plants. 
The conclusion is that it is not significantly lower than in the generic LQ problem.

All statements made so far are with respect to the optimal performance under 
any controller structure, which might not always be the desired analysis since the 
vast majority of industrial controllers have a fixed structure and few parameters. 
The next chapter addresses the problem of assessment of local performance opti­
mality, where the focus turns to the computation of gradients of the cost function 
with respect to the parameters of the controller.
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C h ap te r  5

A ssessm ent of Local O p tim ality

5.1 Introduction

Instead of proceeding with the investigation of properties associated with absolute 
optimality of the closed-loop performance, let us now look at the linear quadratic 
cost function as a functional on the space of controller parameters. This new 
perspective reveals geometric properties that are intrinsically associated with the 
condition of local optimality, namely null gradient vector and positive definite 
Hessian matrix. Moreover, these properties are also valid for assessment of local 
optimality under reduced complexity controllers.

Another benefit of using functional analysis is that frequency-weights can be 
introduced into the linear quadratic cost function without increasing the complexity 
of the development. Hence, the cost function becomes

where the linear filters Fy(q) and Fu(q) introduce frequency-dependent weights on 
the variance of {yt} and {u t}, respectively. The vector p contains the parameters 
of the controller, therefore the signals \Vt(p)} and {ut(p)} are obtained with the 
loop closed under the particular controller parametrised by

Derivatives of (5.1) with respect to the controller parameters can be obtained in 
both time and frequency domains using special closed-loop signals and full knowl­
edge of the control law, hence there is no explicit need for modelling the plant. Nev­
ertheless, in order to reach these mathematical results the following linear model 
of the plant is used:

where H(q) is a stable and stably invertible filter and {et} is a zero-mean white- 
noise process of variance

Jlq(p) = ^ 2  { iFy^)  Vk(p)}2 +  A [Fu(q) M p ) ? }  , (5-1)

P — [Pi P2 • • • Pp\ ■

yt = G(q) ut + H(q) et (5.2)

39
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The structure of the controller is assumed to have two degrees of freedom, 
despite only the regulation problem being addressed in this thesis. The control 
action is given by

ut = -Cfhiq, p) yt + Cff(q, p) rt. (5.3)

This generic structure also encompasses usual implementations of the widely used 
PID controllers.

Within this basic framework, the following sections present the mechanisms 
for estimation of the derivatives of J lq(p) with respect to the parameters of the 
controller, initially in the frequency domain and later in the time domain. These 
derivatives are the core elements for assessing the condition of local optimality of 
the closed-loop performance.

5.2 F req u en cy -D o m ain  A nalysis

By means of Parseval’s Theorem the cost function can be expressed in the frequency 
domain, thus allowing the computation of its derivatives with respect to the con­
troller parameters also in the frequency domain. The cost function is transformed 
into

Nu -1

J lq(p) = lim —  ]T [ |fi(e” ‘)| 2M ^ , P )  + A|F„(e’“‘)|20 „ K .p )] , (5.4)
Au,—>oo iv ^

where u = 27rk /Nu] (j)y(u,p) and (f>u(uj,p) are the power spectral densities of 
the signals {yt} and {iq}, respectively, obtained with the loop closed under the 
particular controller {Cfb(q, p),C/f(q, p)}.

The reference signal, rt, is assumed to be kept identically zero during normal 
operation, therefore spectral analysis of the output signal results in

<t>y{u,p)
H(eiw)

1 +  G(e“ ) C/b(e“ , p)

2

e ’

and of the plant input results in

<t>u(u,p) 1 + G(e*“ )Cys(e“ ,p)

(5.5)

(5.6)

provided the closed-loop system is stable.
The frequency-domain characteristics of the system under stationary excitation 

through the reference signal are also needed. The cross-spectral density between 
{yt} and {r*} is given by

Oyr (^71 p)
G(eluJ) Cf f (eiuJ, p)

1 + G(eioJ) Cß(eluJ, p) (f)r  ((-6-’) ?

and the cross-spectral density between {rq} and { r j  is

C//(e^,p)
1 + G(e” )O j(e“ ,p) &T (̂ ) "

(5.7)

0ur ( ^ ?  p) (5.8)
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W ith this set of equations it is possible to proceed with the com putation of the 
derivatives of J lq(p) with respect to the controller parameters. Equally, it would be 
possible to proceed directly to the identification of a plant model, but this concept 
is proscribed here for reasons outlined earlier.

5.2.1 Derivatives of the Cost Function
For the sake of clarity, the cost function is expressed in terms of auxiliary functions.

J lq(p) = lim -t- P) *(“>, ?)]A -̂̂ oo jY, C 'UJ

g(*,p) = |Fy(e“ )|2 + A|Fu(e“ )|2 |C/l(e“ ,p )|2 

|i/(e- ) | 2
h(ui, =

|1 +  G(e>")Cyb(eI“’,p )| 2 e =  M u , p )

The function arguments were presented above so as to emphasise variable depen­
dencies. In the sequel, the notation is shortened by dropping these arguments. 

The derivative of J lq(p) with respect to a param eter of the controller is

dJlq  ■■ 1 V 't :—  =  lim —  >dpi Nu—xx iVw ^ J
dg dh

ß si*
dpi ' dp,

=  2 A |F „ |2 9te C. d£fl
dpi

dh
—  =  —2 (f)y fHe 
dpi

G dCn
1 +  G Cfb dpi

where Cj[ is the complex conjugate of Cß and SHe(-) is the function tha t returns 
the real part of its argument. Also the second derivative of the cost function can 
be computed from the initial signals.

d2J lq
dpi dpk

lim —
iVu,—► oc iV,, E d2g , dg dh dg dh d2h 

dpi dpt +  dpt dpk +  dpk dpi + 9 dpi dpk

d2g
dpi dpk

2 A |F „ |2 « c
dPCfl, \

dpi dpk "r  ' ' y'' dpi dpk )
dCfl, dC;,

+ C

d 2h
=  2 (f)y fRc G 1U  G d C ß  d C ß d2CßA

dpi  dp k . 1 +  G  C ß V 1 +  G  C ß dp i  d p k dpi  d p k  )

G 2 dCf, 1
1 +  G Cß dpi dpk _

By observing the expressions for first and second derivatives of the cost func­
tion, one can verify tha t almost all terms are known or obtainable from normal



42 A ssessment  of  Local  O ptim a lity

operating data. The only term remaining can be obtained via an intrusive exper­
iment performed on the loop by injecting a stationary non-degenerate signal {79}. 
Actually, from (5.7) it is straightforward to compute

£ ( e lu0  =  < M ^ P )  ( r  q \

1 + G(eluJ) Cfb(eluJ, p) Cff (eiuJ, p) (f>r(u) '

These first and second derivatives of J lq(p) compose its gradient (row) vector,

and its Hessian matrix,

H -

J  — d J lq d J lq d J lq
dpi dp2 dpP 5

r  d2J l(i d2J lq d2J lq I
dpi dpi
d2J lq

dpi dp2 
d 2J lq

dp l dpp
d2J lq

dp2 dpi dp2 dp2 dp2 dpp

d 2J lq d2J lq d 2J lq
-dpp dpi dpP dp2 dpp c Pp -

(5.10)

(5.11)

where p is the number of parameters in the controller.

5.2 .2  D etec tio n  o f Local O p tim ality

The quantities V J and H are the basis of the mechanism for assessment of local 
optimality: an operating point given by p has locally optimal performance, ac­
cording to (5.1), if V J =  0 and H is positive definite. The converse statement is 
conditioned on the absence of pathological characteristics in J lq(p), one of which 
occurs when the complexity of the controller is higher than necessary.

A finite set of data is used in practice to estimate the index J lq(p) given by (5.1). 
The same is true about the use of (5.4) and its derivatives; that is, a finite set 
of frequencies composes the estimated spectral functions. Obviously the overall 
quality of the mechanism for assessment of local optimality depends on the quality 
of the estimated spectral functions. In practical terms, the verification of V J 
being small becomes relative to the ‘magnitude’ of H. Fairly robust results are 
obtained through comparison of the current LQ cost with the minimum of the 
convex approximation generated by V J and H, as in

AJ'Vo =
0.5 V J H “1 V.7 

J"(P)
• 100% , (5.12)

provided H is positive definite.

Example 5.1. Consider the process in Examples 4.1 and 4.2:

—0.8<72 + 1.68^ ~ 0.85  ̂ q3 -  1.1 q2 + 0.249
Vt ~ q3 — 2.7q2 + 2.llq — 0.697 + q3 -  2.7q2 + 2.11? -  0.697 P' ’

with <jg =  0.2. In those examples two different controllers were tested for loop 
optimality: the minimum variance controller and the linear quadratic controller
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for A = 0.1. Given that the criterion used for testing these controllers was J lq with 
A = 0.1, the MV controller was detected not to be optimal, but the optimality of 
the LQ controller could not be established without the knowledge that M(0) ^  0.

Here the same signals from Example 4.1 are used for estimating the derivatives 
of the cost function with respect to the parameters of each controller. Moreover, 
these derivatives build the mechanism for detection of local optimality according 
to (5.12).

Under MV control law the estimated Hessian matrix is positive definite and the 
estimated gradient vector is

The quantity AJ lq% predicts that the current estimated cost function, J lq = 2.68, 
can be reduced by approximately 21.9%.

With the LQ-optimal controller a positive definite estimate of the Hessian ma­
trix is also obtained , as well as the following estimated gradient vector:

V J =  [—0.0561 -0.1106 -0.1046 -0.9532 -1.074 -1.257].

In this case the quantity A J lq% predicts that the current estimated cost function, 
J lq = 1.99, can be reduced by approximately 0.42%. This controller is definitely 
optimal, at least locally, according to the accuracy provided by the number of 
samples collected during the experiment.

5.3 T im e-D o m ain  A nalysis

From the initial descriptions of the plant and the controller, respectively (5.2) and 
(5.3), one can derive expressions for the closed-loop signals under normal operating 
conditions, i.e. rt = 0. These expressions are

From this point onwards the function arguments are dropped, with the exception 
of a few cases in which variable dependencies need to be emphasised. Furthermore, 
the computation of the average over time of these ergodic signals is replaced by the 
shorter notation of the ‘average’ operator:

V J =  [-7.819 -6.524 -5.394 44.70 37.22 30.52] .

V‘̂  1 +  G{q) 6‘
(5.13)

and

(5.14)
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5.3.1 Derivatives of the Cost Function
Straightforward calculations lead to the derivatives of J lq(p), in (5.1), with respect 
to a parameter of the controller.

dJ lq
dpi

= 2 A V { [ F y yt]

dyt
dpi

dut
dpi

F dV‘ 
Fyt o

G

+ A [Fu Ut] 

dCfb

Fu
dut
dpi

(5.15a)

1 + G Cf\) 1 + G Cfl, dpi 
G de»

1 + G Gß dpi ^

H H Cp,

et

(5.15b)

+
G

1 + G Cfb 1 -T G Gß 1 T- G Gß 
H 1 dCß

dCß
dpi et

1 + G Cß 1 + G Gß dpi 
1 dCß

yt-

et

1 + G Cß dpi

Moreover, the second derivatives are obtainable from similar calculations.

(5.15c)

d2jlq

dpi dpk
= 2 AV F, dyt

+ A

d2yt
dpi dpk

d2ut 
dpi dpk

r  dut
dpi

V dpi \

Fu

F, dyt
y dpk 

dut

+ [Fy yt] F,

dpk _
+ A [Fu Ut] F

d2yt
y dpi dpk _ 
d2ut

n dpi dpk

G
1 + G Cß 

1

2 G dCß dCß d2Cß \  
l + GCß dpi dpk dpi dpk )  Vt

(5.16a)

(5.16b)

G_______  -  dCß dCß d2Cß A
1 + G Cß { 1 F G Cß dpi dpk dpi dpk ) yt- (5.16c)

Observing the expressions of first and second derivatives of the cost function, 
one can verify that the only terms that are neither known nor obtainable from 
normal operation are

T(q,p) A_ G(q)

and

S{q, P)  -

1 + G(q) Cß(q, p)

1

(5.17)

(5.18)
1 + G(q) Cß(q, p)

Thus, the problem becomes how to obtain the required information about these 
two terms that also appear in the expressions of the closed-loop system under 
excitation:

y( = r r l c ~ F t + c " T r i
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and

HCß , si a
Ut- ~ T T G c ; et + C f f S r t •

A few years ago, Hjalmarsson et al. (1994a) introduced the idea of using the 
real system for filtering appropriate signals and obtaining an unbiased estimate 
of the first derivatives of J lq{p). Given that their main goal was to tune the 
controller parameters, there was no need for obtaining unbiased estimates of the 
second derivatives. This contrasts with the mechanism for assessment of local 
optimality, which requires an extension of that method, called iterative feedback 
tuning (IFT), with tvro additional signal filterings through the real system. This 
is further developed in Section 5.3.3.

Another possible solution is to perform a single experiment on the closed loop 
to fit a high order model into T(q,p) and S(q,p), as suggested by De Bruyne and 
Carrette (1997). Based on this latter idea and the results on frequency-domain 
analysis, it follows that non-parametric models—impulse responses—of the stable 
filters T(q,p) and S(q,p) suffice to achieve the desired results. These impulse 
responses are obtained via correlation analysis of excited signals.

5.3.2 Stable Filterings
There exists the possibility that some filters in the derivative expressions are not 
stable, for instance If that happens, each unstable filter has to be factorised 
as

F(q) =
N(q)

D+(q) D . ( qy

and the frequency weights Fy(q) and Fu(q) must include every single filter

Fa{q)—
A j ? - ( g )

This procedure does not affect the cost function because Fa(q) is an all-pass filter 
(Hjalmarsson et al. 19946). The signal filtering then occurs through the stable 
transfer function

Fa(q)F(q) = N(q)
D+(q) D-*(q)

With the first and second derivatives of J lq(p), the gradient vector and the Hes­
sian matrix are formed according to (5.10) and (5.11), respectively. The mechanism 
for assessment of local optimality remains identical to that presented in Section 
5.2.2. That is, an operating point has locally optimal performance if V J =  0 and 
H is positive definite. A robust way to perform such an analysis is through the 
computation of A Jy introduced in (5.12).

Example 5.2. Consider the system in Example 5.1: an unstable and nonminimum- 
phase process under MV and LQ control being tested for local optimality. In that
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example the computation of the derivatives of the cost function were obtained via 
spectral analysis of closed-loop signals. Here those same signals generate estimates 
of the closed-loop impulse responses, with each controller, via correlation analy­
sis. The computation of the derivatives of the cost function proceeds according to 
(5.15) and (5.16).

The closed-loop impulse responses obtained under MV control are shown in 
Figure 5.1. Under this control law the estimated Hessian matrix is positive definite 
and the estimated gradient vector is

VJ = [-6.890 -6.063 -5.383 38.21 34.29 30.69] .

The quantity A J lq% predicts that the current estimated cost function, J lq = 2.68, 
can be reduced by approximately 18.8%.

Estimated impulse response of T(q,p)

;̂ ^ 0^ C P O O cO cß(X )% O C P cC 0Dc ^

Estimated impulse response of S(q,p)

)oOoqoo0o06o6cC£ ^ ^

Figure 5.1: Impulse response estimates under the MV controller

The closed-loop impulse responses obtained under the LQ-optimal controller 
are shown in Figure 5.2. With these impulse responses a positive definite estimate 
of the Hessian matrix is also obtained , as well as the following estimated gradient 
vector:

VJ = [-0.0316 -0.1058 -0.1477 0.4531 0.5830 0.6762].

In this case the quantity A J lq% predicts that the current estimated cost function, 
J lq = 1.99, can be reduced by approximately 0.04%.
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Estimated impulse response of T(q,p)

oJpCOQoQQQQ0ooQoO°oOcOoC^^

Estimated impulse response of S(q,p)

)0 0 0 0 0 0 0 e ^ Q ° C P 3 0 Q 3 Q 0 0 ö 0 d cX ^ ^

Figure 5.2: Impulse response estimates under the LQ controller

The results in this example are very similar to those obtained from frequency- 
domain analysis. In this case, V J of the LQ-optimal controller is even closer to a 
null vector.

5.3.3 E x tended  Ite ra tiv e  Feedback Tuning
The mechanism presented in (Hjalmarsson et al. 1994a) uses a finite amount of 
plant-output data, collected during normal operation, as the external excitation in 
a separate stage. The resultant signals are

1 + G Cfb
m _ H C *  c 

l + GCft, 1

and

ytm  = 1 + G Ofi
et{2) + Cf f T y t

u « (2) =  -
HC,

1 + G Cfb
et<2) + Cji S  yt

( 1 )

( 1 )
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Given that and {e*(2)} are uncorrelated, the following expressions provide
the reasoning behind the computation of unbiased estimates for the first derivatives 
of J lq{p):

A V T j  vt\ , dyt
ydp, -4V F± F t

. v c fJ d Pl
(5.19a)

and

A V I  \FU ut\F,,^- I  = I  a / 1'] - F  —  ^ 2 % (2) 
UC„ dp, Ut

(5.19b)

In order to obtain unbiased estimates of the second derivatives of J lq(p), another 
two stages of excitation have to be performed on the real system:

H
y F  = 1 + G Cfb

e t^  + CffTyt (1)

t**(3) =  -
H Q

1 + G Cß
^ e tW + C „ S y P \

and

Vt{4) = 1 + G Cß
etW + C „ T y t( 2)

^ (4) =  -
H Q

1 + G Cß
^ e t^  + Cf f S y P \

Given that { e ^ } , {e/2j}, { e ^ }  and {e*^} are mutually uncorrelated, the fol­
lowing expressions outline the computation of the second-derivative estimates:

A V ( ’ dyt ' 
t v—— 'TP dyt' r v — — \  =  A v {

l v dp, dpk_ /  i
J _  dCß (2) 
yc ffdp, Vl

dCfi (3) 
. yCf} dpk Vl

(5.20a)

■4V [F„ t F„ d2yt
y dpi dpk _

=  A V  I  [ F F. ( 4  -  4-
1 * 2 »  „ ( 3 )

y 1 cl  dpi dpk !JL Cff dpi dpk

A V F,
dut

U dpi
F

dut
dpk.

=  A V

, (5.20b)

f  J _  dCß (2)
. U Cff dpi

Fu- L
. V Cff dpk

(5.20c)

and

<> [Fu ut] F,
d2ut

dpi dpk_

= ,4V j  [ i W 1»] _ 2 _  F l  F t  (4) _  _ L  (3)

ul q s dp, dPk 1 dp,dPk
. (5.20d)
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This involved mechanism for obtaining unbiased estimates of the second deriva­
tives is the one preferred by model-free purists. Still there is the need to stabilise 
the signal filterings via the mechanisms in Section 5.3.2, finally followed by the test 
of local optimality.

Exam ple 5.3. Consider the process

1 9 - 0.1
Ut — 7T7 u t d------- ^9 - 0.7 9 — 0.9

with a2 — 0.5, under the feedback control action

1.592 -  0.39
u t — 2 777 TTTT Vt-q1 — 0.59 +  0.1

The stable closed-loop system is intended to operate with good performance ac­
cording to a linear quadratic criterion with A = 0.8 and Fy =  Fu =  1.

In order to apply the test of local optimality, the vector of controller parameters 
is chosen as

p = [  1.5 -0.3 -0.5 0.1],

and the feedforward controller of (5.3) is simply a unitary gain.
A simulation of the loop under normal operation (rt =  0), for Nt = 4096 time 

samples, results in J lq(p) = 1.87. The loop output signal, {^}, of this simulation 
becomes the reference signal, {79}, in a second and third simulation stages, where 
each stage lasts 4096 time samples. Finally, the loop output signal of the second 
stage is used as the reference signal of a fourth stage. With these signals and full 
knowledge of the control law, one can proceed to the estimation of the gradient 
vector and the Hessian matrix according to (5.15a), (5.19), (5.16a) and (5.20).

The eigenvalues of the estimated Hessian matrix are {20.4, 8.75, 1.59, —0.109), 
hence this matrix is not positive definite and the feedback control law is not op­
timal for the specified criterion. Moreover, the second order approximation of the 
functional J lq(p), at the current operating point, contains a saddle point with an­
ticipated cost J lq = 1.59. This indicates that the minimal cost is very likely to be 
less than 1.59. As a matter of fact, the optimal control law results in J lq = 0.726.

Exam ple 5.4. Consider the same system and criterion from the previous example. 
Now, only the two initial stages of simulation are performed on the loop, therefore 
an unbiased estimate of the gradient vector can be directly computed from these 
signals, according to (5.15a) and (5.19).

In order to proceed with the computation of the Hessian matrix, according 
to (5.16), the signals of the second stage are used for fitting impulse responses 
into T(q. p) and S(q,p),  given by (5.17) and (5.18), respectively. These estimated 
impulse responses, shown in Figure 5.3, each contain y/Wt = 64 lags.

The eigenvalues of the estimated Hessian matrix are {21.7, 9.07, 1.69, —0.0824), 
which are fairly close to the true values {20.3, 9.46, 1.35, —0.0964). Given that the 
estimated Hessian is not positive definite, the feedback control law is not optimal 
for the specified criterion.
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Estimated impulse response of T(q,p)

)tocö%ijG%ooooooooo%ooe0c^

Estimated impulse response of S(q,p)

)^oogo(̂ oG(̂ 0Q9oo9WQo9 ( ^

Figure 5.3: Impulse response estimates

5.4 C o n c lu sio n

Throughout the current chapter the linear quadratic cost function is viewed as a 
functional on the space of controller parameters. This perspective reveals geometric 
properties associated with the condition of local optimality, inclusive of systems 
under reduced complexity controllers. The main features of interest are the first and 
second derivatives of the cost function with respect to the controller parameters, 
which are derived in both frequency and time domains.

The first and second derivatives of the cost function are then used for construct­
ing the gradient vector and the Hessian matrix, respectively. Under locally optimal 
performance the gradient vector is null and the Hessian matrix is positive definite, 
but more robust assessment can be obtained through comparison of the current 
LQ cost with the minimum of the (convex) second order approximation generated 
by the gradient vector and the Hessian matrix.

An attempt to extend the frequency-domain analysis into multivariable systems:

V\t — G ii U\t + Gi2 u2t + H\ e\t 
U2t — G21 uu + G22 U2t + H2 e2t
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under the control law

u \ t — — C \ \  y i t — C 12 V 2 t +  T \ t

U2t  —  —  C2 1  V l t  — C 2 2  V2 1 +  r 2t i

failed to deliver a simple mechanism for estimation of derivatives. Some expressions 
for the first derivative are of the form

which would require a great deal of information about the open-loop noise dynam­
ics. The reason for this problem is the existence of cross-couplings in the observable 
signals. Particular plants with a single source of noise (e.g. e2t =  0) lead to a more 
tractable problem, but in the generic case it is difficult to justify all the complexity 
associated with obtaining these derivatives directly from data, which might be even 
higher than the complexity of identifying the plant from closed-loop signals.

Ideally the mechanisms for performance assessment or monitoring should also 
provide means for improving the system performance. In Chapter 4 the optimal 
closed-loop poles used for monitoring LQ performance were found to be applicable 
in algorithms for direct adaptive pole-placement. Similarly, the first and second 
derivatives of the cost function can be applied in the computation of appropriate di­
rections of controller tuning. The next chapter deals with this topic and additional 
features of a mechanism for controller tuning with guaranteed stability.
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C hapter 6

C ontroller Tuning

6.1 Introduction

Performance improvement of, initially stable, closed-loop systems is one of the 
main tasks entrusted to control engineers. Although adaptive controllers could 
be used to perform this task, they introduce extraneous nonlinearities into the 
system’s behaviour (Mareels and Bitmead 1986). These nonlinear dynamics are 
problematic because the control law varies at each sampling time depending on 
recent signals. A safer way to deal with the task of tuning controllers for time- 
invariant processes is to apply techniques of iterative control, which are like block- 
wise slow adaptive control techniques. The basic idea is to observe the closed-loop 
signals, under a fixed controller, for a longer period of time (after the subsidence 
of initial conditions) and then to decide on a new control law. This guarantees 
block-wise time-invariance of the closed-loop dynamics.

All iterative methods currently available for the accomplishment of the tun­
ing task start with an experiment performed on the loop. An external excitation 
is injected into the closed-loop system and two possible ways might be followed: 
modelling of the plant followed by control design, or direct computation of perfor­
mance derivatives followed by controller adjustment. This is similar to the distinc­
tion between ‘indirect’ and ‘direct’ adaptive control. The underlying reasoning for 
choosing one approach or another includes the degree of confidence the user has in 
the information obtained from the experiment.

The option of modelling the plant is usually followed by the design of a control 
law, as in (Zang et al. 1991, Schrama 1992. Lee et al. 1993), and this reflects a 
high degree of confidence in that model. In most of these approaches the structure 
of the controller is not assumed to be constrained, and the solution might be of 
high order. When the complexity of the control law is restricted, as for example in 
the widely used PID controllers, methods based on derivatives of the performance 
with respect to the controller parameters become more appropriate, thus avoiding 
plant or controller model reduction. An important characteristic of this concept 
is that the plant model is used to describe the system’s behaviour around the 
current operating point, and this model is constantly put under test on the real 
system as the controller parameters are changed. The idea of modelling the plant 
to compute derivatives and tuning directions has been explored in the context of

53
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adaptive control (Trulsson and Ljung 1985), but, to the author’s knowledge, it has 
only been considered briefly in iterative control (Hjalmarsson et al. 19946).

There are, however, serious difficulties associated with performing paramet­
ric plant modelling: structure selection, parameter estimation, model validation, 
etc. Additionally, with plant modelling followed by computation of performance 
derivatives with respect to controller parameters, the complexity of these expres­
sions could be quite high due to the dimension of the plant model, and could be 
very sensitively dependent on plant and controller parametrisations.

As presented in Chapter 5, the derivatives of the cost function are obtainable 
directly from filtered data and non-parametric models of the closed-loop system. 
These mechanisms are advantageous alternatives to the computation of a paramet­
ric model of the plant. The basic idea is to use those derivatives to compute a 
direction for adjusting the controller parameters; once the best controller is found 
in that direction, another experiment has to be performed in order to obtain a new 
direction of descending cost. This reflects a complete non-reliance on explicit plant 
modelling.

The current chapter presents a method for computing tuning directions based 
on unbiased estimates of first and second derivatives of the following frequency- 
weighted linear quadratic cost function:

J lq(p) = 1™. Jf  5 5  {[C,(<?) Vk{p)]2 + a uk{p)}2} . (6.1)

This tuning procedure guarantees closed-loop stability due to the insertion of a 
stability margin that limits drastic changes in the controller parameters.

The computation of the stability margin requires estimates of the closed-loop 
dynamics, hence the emphasis of this chapter is on those mechanisms for estimation 
of derivatives based on non-parametric models of the closed-loop system. These 
non-parametric models can be impulse responses or cross-spectral densities, but 
since they convey the same information, the latter ones are adopted throughout 
this chapter under a generic notation:

and
rW 4 T T c ^ (6.2)

S(p) =
1

1 +  G Cfb(p)
(6.3)

Notice that from T(p) and S(p) it is straightforward to estimate a non- 
parametric model for the open-loop plant dynamics. This non-parametric model 
of the plant allows immediate computation of a new tuning direction after the 
previous search has reached a minimum. This idea is further explored in Section 
6.4.

6.2 T u n in g  D irec tio n s

Unlike adaptive control, where new directions have to be computed in between 
adjacent samples, the computation of tuning directions in iterative control is per-
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formed block-wise and, therefore, is allowed to be very elaborate. Usually these 
computations are not performed frequently and they are not seriously limited by 
time constraints. These circumstances favour the use of Newton’s method, which 
is accurate but complicated due to a matrix inversion.

Newton’s method uses the gradient vector, VJ, and the Hessian matrix, H, to 
approximate the local behaviour of the cost function around the current operating 
point. According to this approximation, the following change in the controller 
parameters would lead to an operating point with all first derivatives of the cost 
function identically zero:

Ap =  - H -1 V Jr . (6.4a)

That operating point, in the approximation, can be a minimum, a saddle or a 
maximum, depending on whether the Hessian matrix is positive definite, indefinite 
or negative definite, respectively. In fact, only for the first of these situations is Ap 
an appropriate direction of tuning.

A good alternative to Newton’s method, when it fails to deliver a direction 
that leads towards minimum cost, is the combination of the method of Steepest 
Descent and a negative curvature descent direction (Fletcher 1987, page 49). In 
its original formulation, the method of Steepest Descent results in the gradient 
vector being the direction of parameter tuning. This method does not provide an 
estimate of the order of magnitude of the change in the controller parameters to 
find a point of minimum cost. Given that the Hessian matrix is available, the 
following improvement to the original method results in a Ap that corresponds to 
the minimum approximated cost function in the direction of the gradient vector:

A p = ~ 7 V Jr , (6.4b)
V J V JT 

7 -  V./ H V JT ’

as long as 7 is positive. This improvement has its basis in the analysis of the 
original method on a purely-quadratic problem.

Under some circumstances, the Steepest Descent direction alone makes the 
tuning scheme extremely slow in terms of performance improvement. In such cases 
it is worth alternating those directions with directions of negative curvature. The 
author has experienced very good results bv using the direction of the eigenvector 
associated with the smallest (most negative) eigenvalue of the Hessian matrix. 
This is shown in Figure 6.1: the crosses on the surface correspond to an initial 
tuning along the Steepest Descent direction, followed by the circles in the direction 
of the eigenvector associated with the negative eigenvalue. The directions of the 
eigenvectors of H are plotted as thick dashed lines on the contour plot.

In the unfortunate situation of 7 being negative (indicating a total lack of local 
convexity), the original method of Steepest Descent is used instead. That is,

A p = -  V./T. (6.4c)

In summary, the direction of controller tuning is obtained by one of (6.4a-c), where 
the choice depends on local conditions.
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Figure 6.1: Saddle surface

Alternatively one could apply the customary approach of using a positive def­
inite matrix in (6.4a), instead of the Hessian matrix. According to the author’s 
experience, the best choice of positive definite matrix is provided by the following 
transformation of H.

H+ = £  17* 1642’,
k = 1

where 7  ̂ is the k-th eigenvalue of H and f*. is its respective eigenvector (Greenstadt 
1967). If all eigenvalues of the Hessian matrix are non-negative then H+ = H. This 
approach is simpler but more prone to problems than the combination of Newton’s 
method and Steepest Descent introduced before (see Examples 6.1 and 6.2).

Whichever method is chosen for the computation of the tuning directions, it is 
not likely that the real system conforms entirely to the quadratic approximation, 
especially when the operating point is far from a local minimum. In practice the 
parameters of the controller are changed along the line

p = p0 + a A p  (6.5)

in the search for a point of minimum cost. The vector pQ contains the initial 
parameters of the controller, and a is varied along M+.

An initial value for q and its subsequent increments can be chosen on-line, 
according to several factors:

• The minimum cost function along (6.5) is expected to be at a ~  1, except 
when the original method of Steepest Descent is used;
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• The anticipated behaviour of the cost function is given by

J lq{p) ~  J tq(p0) + a  V,7 Ap + —  ApT H Ap; (6.6)

• Stability of the closed-loop system has to be maintained (see Section 6.3).

Some basic characteristics of the tuning algorithm provide clues for deciding 
whether the control law is nearly optimal or not. One example is the anticipated 
reduction of the cost function given by (6.6), at a =  1. Actually, this leads to

A J lq% =
0 .5 V JH “1 VJ

J lq(p)
• 100% ,

the expression adopted in the last chapter for assessing local optimality. Such 
knowledge is important for stopping the tuning process, thus avoiding unnecessary 
iterations.

The content of this section is independent of the mechanism employed to obtain 
the estimates of the gradient vector and Hessian matrix. Therefore the following 
examples use the true values of these quantities, in a comparison of the proposed 
method with the alternative transformation of the Hessian matrix into a positive 
definite matrix.

Exam ple 6.1. Consider the process

1 9 - 0 . 1
Vt — -----7TZ ut H-------7T7, et,q — 0. 7 q — 0.9

with cr2 =  0.5, under the feedback control action

1.5g2 -  0.39
ut ~ --- 2----n T I n'7 ^t%qz — 0.59 + 0.1

This stable closed-loop system, also used in Example 5.3, is now tuned with respect 
to a linear quadratic criterion with A =  0.8 and Fy =  Fu =  1. The initial controller 
parameters are given by

p =  [1.5 -0 .3  -0 .5  0.1].

The methodology for computation of tuning directions presented in this section 
is compared with the use of the positive definite matrix H + instead of the Hessian 
matrix. Both methodologies achieve the goal of reducing the cost function to its 
minimum. Figure 6.2 shows the evolution of the cost function along the tuning 
iterations. A close look at the path followed by the controller parameters, in 
Figure 6.3, reveals marked intermediate divergence of some of these parameters in 
the H + methodology. This divergence delays the reaching of the locally convex 
region surrounding the optimal performance, which occurs at iteration 5.

According to the more elaborate methodology presented in this section, the 
three initial tuning directions are taken along the Steepest Descent. Due to a very 
low reduction of the cost function from iteration 2 to iteration 3, the tuning pro­
ceeds along the direction of the eigenvector associated with the negative eigenvalue
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iteration

Figure 6.2: Reduction of the cost function

»-K H

iteration

O Q H

iteration

« -«  H

iteration iteration

Figure 6.3: Evolution of the controller parameters

of H. This leads the system performance into the locally convex region, evidenced 
by a positive definite Hessian matrix at iteration 4. It is worth emphasising that 
the direction taken at iteration 3 is obtained from the estimates computed for iter­
ation 2. therefore it does not require new estimates for the derivatives of the cost 
function.

The next example highlights a problem of closed-loop instability as the con­
troller is tuned. Both methodologies for computation of tuning directions might 
lead to such a problem, but throughout a significant number of experiments the 
H+ approach proved to be remarkably more likely to provide problematic tuning 
directions than the methodology that combines Newton’s method and Steepest De­
scent. In fact, the author has never found an example where the problem occurs
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with the combined methodology.

Exam ple 6.2. Consider the process

= O .l f a - 0.2) fa -  0.6)fa -  0.3)
Vt fa - 0.7)fa -  0.5) U‘f a - 0 . 7 ) f a - 0 . 5 ) 6i’

with cjg — 1, under the feedback control action

0.51 q2 -  0.32q
u t ~ ---- 2---- Ci V n iC y t 'qz — 1.1 q + 0.15

This stable closed-loop system is tuned according to a linear quadratic criterion 
with A = 0.1 and Fy =  Fu =  1.

With the true values of VJ, H and J lq{p), and the tuning direction computed 
with the H + methodology, the line search occurs as depicted in Figure 6.4. The 
cost function is given by the solid line, while the second order approximation of 
this function is the dotted line. Observe that if a is taken at intervals of 0.02 units, 
the closed-loop system suddenly becomes unstable at a = 0.18.

1.15  -

Figure 6.4: Tuning towards instability

The details of the controller parameters along the tuning direction are given 
in Table 6.1. Despite the complexity of the control law being the same as the 
absolute optimal one, a pole-zero pair tends to cancel near the unit disc, causing 
the instability. The absolute optimal performance has J lq = 1.1094, but under the 
control law

0.4140(7 
q -  0.1685 y

J lq(p) = 1.1097, leaving almost no improvements to be obtained by the comple­
mentary pole-zero pair.

Such a problem is accentuated as the complexity of the controller increases 
above the necessary one. The extra pole(s) and zero(es) might tend to cancel each 
other near the unit disc, causing the closed-loop system to be dangerously close to 
instability. This effect had been observed previously by Deistler et al. (1978), but 
in a different context: estimation of ARMA models.
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Table 6.1: Controller parameters

a P
Controller

poles zero
0.00 [0.5100 -  0.3200 -  1.100 0.1500] 0.1595,0.9405 0.6275

0.16 [0.4140 -  0.4049 -  1.160 0.1671] 0.1685,0.9917 0.9781
0.18 [0.4020 -  0.4156 — 1.168 0.1692] 0.1695,0.9982 1.0337

6.3 S ta b ility  M arg in s

The previous example shows tha t maintenance of closed-loop stability is a strong 
constraint tha t should be imposed on the task of tuning. Although it is always pos­
sible to step back to the previous controller parameters, occurrences of instability 
on the way to the optim al control law tend to reduce confidence in the method be­
ing used. It is intuitive to think tha t the cost function increases as the closed-loop 
system approaches regions of instability, but tha t is not always the case, at least 
not to the degree of tuning discretisation one would expect in practical situations.

Given the non-reliance on a plant model, the only information available about 
the degree of system stability is provided by estimates of the closed-loop dynamics. 
Faced with the inaccuracies associated with these estimates, the author has opted 
for a rather conservative strategy to guarantee stability of the closed-loop system. 
The following stability assertions were originally presented in (Vinnicombe 1993), 
but with the plant and the feedback controller interchanged.

For a stable closed-loop system, the generalised stability margin is defined as

h(’.Cp. -

l Cjb
1+G Cß 1+GCfl,

G GCfb
l+GCfb 1 -\-GCfi,

(G.7)

and as 0 for unstable closed-loop systems. Moreover, the Vinnicombe distance 
between two feedback controllers, Co (= Cjb(po)) and C\ (=  Cß(p\)), is defined as

MCo.C,) ^ ||(l + C1C1*)-1/2(C1 - C o ) ( l+ C 0C0*)-1/2||oo, (6.8)

provided the winding number condition, given by (6.9), is satisfied, and Sv =  1 
otherwise.

5„(C0,Ci) < 1 <̂>
||1 + C f  Co|| Vic, and 

wno(l +  C\ C0) +  T)(C0) -  rj{Ci) = 0
(6.9)

where wno(-) denotes the winding number, or number of counterclockwise encir­
clements of the origin of the Nyquist plot, and r](-) denotes the number of poles 
outside the unit circle.

Yinnicombe (1993) has shown the following:

Given a plant G and a feedback controller Co such that the closed-loop 
system is stable, then the loop remains stable under any feedback con­
troller, Ci, satisfying 6v(C0,C i) < bG,c0■
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As mentioned before, this result is rather conservative because it gives a sufficient, 
but not necessary, condition for the stability of the closed-loop system.

The insertion of Vinnicombe’s result into the gradient tuning scheme depends 
on the availability of a model of the closed-loop system. Although this could be 
a parametric model, it is simpler to use non-parametric characterisations of the 
closed-loop dynamics, like the cross-spectral densities T(eluJ,p) and S(eluJ,p). The 
generalised stability margin is computed as

bG,Cfl(p0) =

For each new set of controller parameters, given by (6.5), the winding number 
condition is tested, followed by the inequality

&v(Cfl{po)iCfb(p)) < bG,Cfb(P0)-

If any of these tests fails, the controller Cß(p) is not guaranteed to stabilise the 
closed-loop system. Then the user has the options of finding, and applying, the 
largest a in (6.5) that satisfies the tests; or performing a new experiment with the 
current controller, for which a new direction of search and a new stability margin 
are obtained.

Example 6.3. Consider the same setup of Example 6.2, but now let us augment 
the tuning scheme with the generalised stability margin. The initial control law 
results in bG,cß = 0.680. Figure 6.5 shows the Vinnicombe distance from the current 
feedback control law to the initial one, as a increases.

0.8

0.6 
oo '

0.4

0.2

0
(

Figure 6.5: Distance between feedback controllers

S(po) S(p0)Cfb(p0) 
T(po) T(p0) Cß(po)

The line search should stop at a «  0.158 because further controllers are not 
guaranteed to stabilise the closed-loop system, according to Vinnicombe’s criterion. 
At that point the tuning proceeds with the computation of a new direction and its 
corresponding stability margin.

6.4 In d ire c t T un ing

The reason for applying external excitations into the loop is to obtain the closed- 
loop non-parametric terms T(p) and S(p) needed in the computation of both the
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derivatives of the cost function and the generalised stability margin. After an initial 
experiment, with the controller {Cjb(po), C//(po)}? it is possible to recompute T{pj) 
and S(pj), for any Cfb(pj), based on T(p0) and S(po):

Ti n  \ = UPO)
W  S(p0) + T(p0

O/fl \ __ ___________ ■S'(Po)___________

S(po) + T{p0) Cft(pj)

(6 . 11)

(6 . 12)

This procedure resorts to an implicit non-parametric modelling of the plant, there­
fore accuracy tends to reduce as the mismatch between Cß(pj) and Cß(po) increases.

The main point of this procedure is to compute new directions of controller 
tuning, without re-exciting the loop, after a minimum has been reached along the 
initial line search. This modified scheme becomes ‘indirect’ by resorting to a model 
of the plant. Despite the seeming philosophical shift, the plant model is only used 
for computing tuning directions while the sequence of line searches, performed on 
the real system, constantly tests the quality of that model.

On the other hand, the generalised stability margin, bG,cß(p0)i must only be com­
puted with the signals obtained from excitation experiments, and never estimated 
from (6.11) and (6.12). The distance between feedback controllers, £„(Co,Ci), has 
to be taken from the current controller to the one used during excitation, irrespec­
tive of intermediate line searches.

A new loop excitation is only required when the current plant model fails to 
deliver a direction of decreasing cost or when the stability condition is violated.

Example 6.4. Consider the plant

OT _ q — 0.2 
Vt ~  q(q — 0.76)2 + q -  0.98 6t’

with o\  = 0.2, under control of a PID controller. The controller has the three usual 
parameters to be adjusted: I\p, Tt and T'd for the proportional gain, integral time 
and derivative time, respectively. Its structure is given by

- q - b i  _  Ci q2 + c2 q +  c3 
P q -  1 Tt q2 -  (1 + Qi) q + tq

with

C‘i — 1 +  Gd Q \

T,
a i =

tf
Gd ts + Td

b i = l - ^  
Tt

Ti
C‘2 — —  — 1 — 0,1 — 2  Gd C L i C 3 —  C L \ ( 1 T  G U

Ti

where ts, the sampling time, is chosen to be 1 time unit, therefore Tx and Td are 
directly given in time units. The variable Gd, known as the derivative filtering 
parameter, can easily be included in the parameter set, but for this example it will 
be fixed at Gd — 20. Also the derivative action is fixed at Td = 0 in this example, 
for graphical reasons that will become evident later.
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The tuning criterion is

—  1 Nt
Jlq = wE [ipv yrf + x(F- «o2].

1 k=l

with Fy = 1; Fu = ^  due to the integrator in the control law; A = 0.1 and 
Nt = 8192 samples collected during normal operation, for each parameter set. 
The number of samples taken in the computation of J lq represents a compromise 
between tuning speed and accuracy, and it can be made variable, with increasing 
number of samples as the controller approaches optimal performance.

The initial controller parameters are: {Kp : 0.4; 7} : 45}. A loop excitation with 
a white-noise signal of zero mean and of = 6 results in a signal to noise ratio of less 
than 2 in the variances of both {yt} and {ut}. Still, reasonable estimates for T(p) 
and S(p) could be obtained, as shown in Figure 6.6. The true values of magnitude 
and phase for each estimate are given as thin lines.

------- arg[T(p)]
..........  arg[S(p)]

Figure 6.6: Cross-spectral densities of the closed-loop system

Measurements of the cost function along the tuning directions are presented in 
Figure 6.7 as solid lines, as well as the anticipated cost function (6.6) as dotted 
lines. The measured cost function is highly affected by the noise realisation, hence 
the establishment of each point of minimum is improved by fitting a low order 
polynomial to the line-search curve; this example uses a fourth order polynomial 
for this purpose.
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(a) (b)

(c)

Figure 6.7: Cost function along the tuning directions

The initial Hessian matrix contains one negative eigenvalue, therefore the tuning 
begins in the direction of steepest descent (Figure 6.7.a). The new parameter set 
becomes {Kp : 1.14; 7} : 45}. The second tuning direction comes from the closed- 
loop estimates and the current controller. Again, the Hessian matrix contains one 
negative eigenvalue. Figure 6.7.b shows that almost no improvements are obtained 
along the direction of steepest descent {{Kp : 1.02; 7} : 45}), therefore the new 
direction is given by the eigenvector associated with the negative eigenvalue of the 
Hessian matrix. The tuning stops at {Kp : 1.01; 7} : 18.6} because the stability 
margin is reached (Figure 6.7.c).

The contour plot of J lq(p), Figure 6.8, provides a different perspective of these 
tuning directions. The line searches are shown as thick solid lines, with their 
chosen minima marked with crosses. At the initial point, marked with a circle, 
the external excitation provides the loop stability margin bc,c^(P0) = 0.6619. This 
margin constrains the controller parameters to remain inside the region delimited 
by the thick dashed line.

After reaching the stability boundary, a new loop excitation has to be per­
formed. generating a new stability margin. The Hessian matrix is now positive 
definite and the line search generates Figure 6.9.a. Any possible improvement on 
J lq is entirely hidden under the inaccuracies associated with its estimate J lq. An­
other search is performed from the same initial controller, but with Nt = 65536. 
The result is shown in Figure 6.9.b and a faithful choice of a = 1 results in 
{Kp : 1.01; Ti : 16.3}, the point marked with a pentagram in Figure 6.8.
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j |q(P)

O' ' 1 ' 1 1 ---- 1------ 1-------1-------1
5 10 15 20 25 30 35 40 45 50

P2 = TI

Figure 6.8: Overview of the tuning directions

Figure 6.9: Final tuning

6.5 C onclu sion

Beyond detection of local optimality, estimates of first and second derivatives of 
the cost function provide the information for computing appropriate directions of 
controller tuning. Once the best controller is found in this direction, new estimates 
are obtained for computing tuning directions. This iterative procedure continues 
until the performance is locally optimal.

Like other gradient-based schemes, this approach might present sensitivity prob­
lems when the controller is over-parametrised. The insertion of Vinnicombe’s result 
into the tuning scheme guarantees closed-loop stability for a certain limit of con­
troller variation. Although the computation of this limit requires estimates of 
the closed-loop dynamics, noil-parametric estimates of these quantities are readily 
available from the procedure for estimation of the derivatives of the cost function.

The non-parametric estimates of the closed-loop system immediately provide a 
noil-parametric model for the open-loop plant dynamics. One can use this model 
to compute new tuning directions without the need to re-excite the loop. This new 
concept is ‘indirect’ since it resorts to a model of the plant.

In comparison with the iterative feedback tuning (IFT) scheme, presented
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in (Hjalmarsson et al. 1994a), the scheme presented in this chapter is more com­
plex due to the unbiased estimates of the second derivatives and to the generalised 
stability margin. Each of these sources of complexity brings a special feature to 
the tuning scheme that is not available in the IFT: detection of local optimality 
and guarantee of stability.
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D irections for F u tu re  R esearch

7.1 Thesis Achievements
This thesis describes the development of mechanisms for assessing and monitoring 
optimality of the loop performance under a linear quadratic criterion. Since per­
formance optimality relates to the control of the real plant, those mechanisms are 
designed to look at the closed-loop system as a whole, without modelling the plant.

The initial results obtained here refer to absolute performance optimality, i.e. 
the optimal performance under the appropriate controller structure. This charac­
teristic establishes those results as initial steps towards a model-free mechanism 
for assessment of absolute performance under a linear quadratic criterion. It is 
the author’s belief that the estimate of the optimal characteristic polynomial has 
strong potential application in the development of such a mechanism.

A second set of results in this thesis refers to local performance optimality. 
These results on performance assessment and controller tuning are based on deriva­
tives of the cost function with respect to the controller parameters, therefore they 
can easily accommodate controllers of reduced complexity as well as different per­
formance criteria. Examples of sudden instability of the closed-loop system, during 
controller tuning, motivated the development of the mechanism for guaranteeing 
loop stability. Also, in order to reduce the amount of external excitations, a non- 
parametric model of the plant is used for computing new tuning directions after a 
point of minimum has been reached in the line search, even though the quality of 
that model is expected to reduce as the controller develops further.

The mechanisms introduced in this thesis contribute to the solution of the prac­
tical problem of evaluating the economic benefits of controller tuning or redesign. 
And. in an industrial context, there are large sums of money to be saved by im­
proving the performance of some important control loops.

7.2 Future Research
The following topics are logical extensions of the work presented in this thesis. Fu­
ture research into these topics could lead to improved mechanisms for performance 
assessment and monitoring, and for controller tuning. Some of these topics are 
already under investigation, with a high likelihood of success.

67
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• Undoubtedly, the search for a model-free mechanism for assessment of optimal 
performance is still in place as there are some non-parametric methods yet 
to be tried on the closed-loop system. At the least, it should be possible to 
reach a definitive statement about the solvability of this problem.

• Given the difficulties associated with the linear quadratic criterion, it would 
be worthwhile pursuing simpler methods for performance monitoring and 
assessment under a different criterion containing some sort of penalty on the 
control action. Perhaps a frequency-weighted minimum variance criterion 
is enough to constrain large variations in the control action, but it is very 
likely that an appropriate choice for the frequency weighting depends on the 
characteristics of the open-loop plant.

• The mechanisms for monitoring and assessment of linear quadratic optimal­
ity are limited to the linear case, especially because spectral analysis is con­
strained to linear systems. Associated methods for testing optimality of ap­
propriate classes of nonlinear systems could be pursued.

• This thesis only addresses the regulation problem of (weakly) stationary 
stochastic disturbances, mainly because in this case the measurable signals 
are ergodic processes. That is, a time average over any finite set of data pro­
vides unbiased estimates of the cost function. The conversion of the results 
in this thesis into a purely deterministic setup might be straightforward, but 
a combination of deterministic and stochastic signals deserves careful con­
sideration, especially because the expected value of the cost function usually 
depends on the number of samples collected from the loop.

• Both assessment of local optimality and computation of directions for con­
troller tuning are generic to any criterion whose first and second derivatives 
are computable and also obtainable from closed-loop estimations; some crite­
ria commonly used in industrial environments might satisfy these restrictions.

• The techniques of gradient adjustment of loop performance might be extensi­
ble to the improvement of observer (or estimator) performance. This can be 
an alternative to the adaptive estimation mechanisms of (Mehra 1970) and 
(Anderson and Moore 1979).

• The noisy collection of cost functions along the line searches deserves a statis­
tical treatment. The use of confidence levels can lead to well-defined stopping 
criteria for these line searches. This topic is of practical interest because the 
linear quadratic cost function tends to be very flat in an extensive region 
around the optimal operating point.
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Abstract. Identification schemes that are capable of taking account of model un­
certainties and also tracking the time-varying dynamics of the process offer great 
power to adaptive control systems. This paper introduces a new approach to pa­
rameter identification that has these characteristics. The parameter estimator uses 
a normalised confidence distribution function to compute bounds on the process 
parameters. This distribution function adds some characteristics of certainty equiv­
alence schemes to the “traditional” parameter bounding estimator, and straight­
forwardly solves the problems of adaptive tracking and detection of outliers.

Keywords. Identification; parameter estimation; bounded noise; time-varying 
systems; adaptive control; experiment design.

1. INTRODUCTION

There is a clear distinction between parameter bounding and certainty equivalence 
estimators, the two classes of estimator schemes most frequently used in system 
identification. Parameter bounding estimation is performed by the computation of 
the set of process model parameters that satisfy prescribed constraints on model- 
output errors. These estimators intrinsically take account of model uncertainties 
since the estimation produces a set of feasible process parameter vectors. Certainty 
equivalence estimation may be realised in many different ways, but their common 
characteristic is to produce a single parameter vector which is used by the control 
design as if it was the actual process description. These estimators do not take 
account of model uncertainties but are easily modified to track time-varying process
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dynamics, especially those estimators based on recursive algorithms with some sort 
of forgetting factor [8].

Reference [6] presents a new certainty equivalence estimator and controller 
“adapted” from recent results on the problem of “learning from experts.” The 
heart of that estimator is an “unnormalised” density function (q(t,6)) that maps 
from a 2n dimensional parameter (6) into a (0,1] range. This function is updated 
at each step and its value for some 6 corresponds to the confidence that 0°, the 
actual process parameter vector, is 0. Thus q(t, 9) measures the non-falsification 
of the parameter 6 by the data until time t.

This paper improves Kumar’s estimator, described above, by translating it into 
the parameter bounding context and adding adaptivity. The first step in this trans­
lation is the addition of a dead-zone action in the computation of the confidence 
distribution function. With the new distribution function we can easily pick up the 
set of models that satisfies the constraints on model-output errors: the set of 0s 
with maximum confidence value. The advantage of this scheme over “traditional” 
parameter bounding ones is that no value of 0 is completely discarded, and hence 
this estimator is able to track time-varying process dynamics. The characteristics 
of the adaptive tracking are tightly related to the excitation and process time vari­
ation characteristics. It might happen that after a stepwise change in the process 
parameters, the estimation result jumps from the previous region to the new actual 
one instead of sliding continuously over 0 , the space of feasible models.

The system description is given in Section 2, where the controller has an in­
direct Self-Tuning Regulator structure, i.e. the process parameters are estimated 
and afterwards used in the control action design. Section 3 presents the necessary 
modifications to the identification scheme in order to permit fast adaptive tracking 
of time-varying dynamics. The subsequent section discusses the problem of excita­
tion design in a parameter bounding context. In Section 5 some properties of the 
system convergence are analysed and in the last section we present the conclusions. 
Simulation results of a first order system are shown throughout this paper in order 
to illustrate some system behaviour.

2. CONTROL DESCRIPTION

2.1 The Process

The process to be controlled is given by

y(t) = 4)T(t -  1)6° + w(t), M *)| < ?/ (1)

where

<f>(t -  1) := (y{t -  1 ),... , y { t -  n),u(t  -  1 ),... , u { t -  n))r ,

and

0° := (a i , . . .  ,a n,6 i,... ,bn)r .
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As usual u(t) and y{t) are, respectively, the input and the output to the pro­
cess, while w(t) encompasses the whole collection of bounded errors related to the 
modelling of the system.

It is assumed, for our purposes here, that 0° is in the interior of 0 , a closed 
2n dimensional region such that each process represented by 6 G 0  is open-loop 
stable.

2.2 Identification

The identification is based on that proposed by [6] in which, instead of selecting a 
single point parameter estimate in 0 , all parameters are feasible and we adjust a 
confidence “density” function q(t, 6) at each point 0 6 0 . The confidence function 
at a particular 6 reflects the confidence of the parameter value with the available 
data up to that time.

We commence with all parameter values being feasible and unfalsified by data 
by taking

g(0, 9) =  1, V0 G 0.

With new data the q values are relaxed towards zero according to the prediction 
error performance using a multiplier F(t,6):

q(t,0) = F(t,6)q(t -  1,(9), (2)

with

F(t , 0) = 1 -  ii
max {0, Iy(t) — (f)T(t, — 1)0\ — e} 

n(t — 1)

where

n(t — 1) = max {1, p} + 2 max < 1, sup ||0||
l  ©

and

(3)

0 < /X < 1, £ > 0.

For 0 values yielding prediction error less then £, F is equal to one. Poorer 
prediction error performance yields F  less than one and a diminution of confidence, 
q. for the corresponding value of 6.

The value of £ defines the dead zone level and should be properly chosen in 
order to avoid bursting phenomena or poor signal-to-noise ratio performance.

Proposition 1. Define

e ( t ): =  {6 : q(t,6) = l

then, whenever 7] < s, 9° is guaranteed to be in the region Q{t).



72 A p p en d ix

This region may be equivalently posed in a parameter bounding fashion:

t

© w = n  ~  ~  ^ e \ ~ £ }  ■

3=1

The result of the identification procedure, 0 (t), is subsequently used in the com­
putation of a robust control action.

The main distinction between our approach and that of [6] is the use of a region 
of unfalsified models, as in [5], rather than single parameter selection as the centre 
of mass of posterior mean. This region leads us to robust control design as opposed 
to the certainty equivalence design of Kumar.

2.3 Control Action

There are many possible approaches to the robust control design for 0(£) as in 
[7,10]. In this work we implement a simple strategy for the design of the control 
action: we compute an optimal control for a certainty equivalent parameter ob­
tained from the region 0(£), and then relax this control action, if necessary, in 
order to keep the entire region stable (recall the open-loop stability assumption.)

The certainty equivalent estimation of 0° at time t , defined as 6(t), will be given 
by the centre of mass of the region 0(t):

0(t) := fe( t ) ^ 0  
fe( t )  ^

( 4 )

For 0(t) we compute the control law that minimises the following performance 
criterion

J = /i™, \  HI { r̂ ~ + X\-Ur ~ uU)l2}»
^ ° °  1 j = i

where A > 0, yr is a constant reference value, and ur is the control action value that 
in steady-state keeps y(t) = yr when w(t) =  0. This is a stationary infinite horizon 
LQ tracking problem whose solution is obtained via Algebraic Riccati Equation 
(ARE) as shown in [2]. In order to apply this ARE, the process characterised by 
0(t) is described in a state space form

X(t  +  1) = AX( t )  + Bu(t)

y(t) =  c  x(t ) .

With this procedure we obtain a control action in the form

u(t) = f y r + GX{ t ),  (5)

where /  effects a null steady state error when w(t) = 0, and G is the gain vector 
obtained via ARE. The stability of the closed loop system is determined by the
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eigenvalues of the matrix (A + B G). If at least one (A , B) in Q(t) does not satisfy 
the condition of stability for the given G, we calculate another gain vector

G — a G,

where a is the supremum value in [0,1) such that the matrix (A + B G) has all 
eigenvalues inside the unit disc, for all (A, B) in O(t).

If we relax the condition of open-loop stability for all 0 G 0 , the strategy 
adopted for the robust control law might not be valid any more and another ap­
proach should be used. In the worst case there might be no control law that 
stabilises the whole set 0(£), and another criteria might be chosen in the control 
action design.

3. ADAPTATION PROPERTIES

The use of parameter bounding identification in tracking adaptive control systems 
is still embryonic despite some attempts such as [11]. The main reason for this 
unused combination is that parameter bounding cannot naturally cope with time- 
varying processes. Some considerations must be made for the possibility of process 
variation since 0(£) might become an empty set. One way to avoid this is to reset 
the system identification, but this is a drastic proceeding since a sudden pulse 
disturbance might cause an outlier. In [11] the ideas of ages and generations are 
introduced, but again a sudden pulse disturbance might cause drastic effects.

The solution adopted in this work is to re-normalise the density function. An­
other improvement adopted here is to fix a minimum value to the density function 
in order to speed up adaptive tracking. With these modifications Equation (2) 
changes to

q(t,6) = F{t,Q)q(t -  1,6>),

g(U) =  m a x { t o , - ^ A g L „ . | .

The procedure described above ensures Q(t) contains at least one element. 
Observe that no value of 9 is completely discarded, even after being falsified by 
data for several times, hence any value of 9 might be “defalsified'1 by data. In 
order to accelerate the adaptation, we assign a minimum value for the function q. 
Instead of having to rise from almost zero to one, the values of q(t. 9) will rise much 
faster from qmin to one. The value of qmin is determined by a compromise between 
adaptation speed and robustness to outliers.

Figure 1 shows one possible behaviour of the identification scheme for a first- 
order system. The system is constantly under external excitation in the form of 
stepwise changes in the reference (yr). After a while all values of 9 such that 
q(t. 9) > qmin are concentrated close to 9° (Fig. l.i). After a stepwise change in 
the process parameters there will not necessarily occur an immediate drift towards 
the new parameters, as in the least-squares methods, but the confidence levels of
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Figure 1: Jumpwise Adaptation

9 values close to the new 6° will rise relative to the old ones (Fig. l.ii) and after 
some time the region S(t)  might jump to a new position in 0  (Fig. l.iii). Some 
time later all values of 9 such that q(t, 9) > q are again concentrated near 9° 
(Fig. l.iv). The adaptation speed depends on the excitation and on the old and 
new 9°.

4. EXCITATION DESIGN

The control action proposed so far thoroughly emphasises system performance 
and ignores excitation issues. Instead of dealing with both problems together, for 
instance adopting some minimax criteria, this scheme separates them and restricts 
the action of excitation signal to special situations.

The optimal design of an excitation signal might become very difficult if the 
control law is allowed to change at every step because the control action could 
cancel this excitation or the control and output signals could grow unboundedly 
[3]. The solution adopted in [3] and references therein is block processing, i.e. the 
control law is frozen during the period of excitation (p steps).

The main goal of the excitation is to reduce the set 0(t  + p) such that the 
following criterion is minimised

Jm ax  = max {,7(0)} ,
0£Q{t+p)

where J{9) is a performance measure defined according to the system specifica­
tions. In order to simplify the excitation design, the goal may be relaxed to the 
minimisation of the diameter or the volume of 0 (t + p ), as in [10,12]. With no 
a priori knowledge of 0(£), {</>(£),... , <f)(t H- p)} must span the space of 0  for the
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observations to yield a bounded set S(t  + p) [9]. Reference [1] gives a sufficient 
condition for this spanning problem, in terms of inputs alone.

In the context of this work the excitation design problem is posed as follows: 
given the set of unfalsified process parameters 0(f) and a fixed control lawr

u{t) = F(q) yr + G(q) y(t) + r(f),

where r(t) is a bounded excitation signal, which sequence r(f), r ( t+  1), . . .  ,r(f + 
p — 1) minimises the volume of 0 (t + p)?

Despite the complexity of the answer, which depends on several factors, the 
amplitude of ||</>|| is the major element for minimisation of the volume of 0  [9]. 
Observe that the best excitation for some Os in 0(f), in terms of magnitude of ||0||, 
may be extremely poor for some other 0s also in 0(f).

The generic order excitation design problem will not be addressed in this paper. 
A simplified version over a first order process is given in the following example.

Example 2. Consider a first order process and a controller as described in Section 
2. For our analysis we take yr to be zero and w(t) zero. In such conditions

y(t) = a0 y(t -  1) + b° u(t  -  1),

u(t) = gy(t) + r(t), |r(f)| < A,

and the closed loop response is described by

y(t + 1) = (a° + b° g)y(t) + b° r(t).

As the closed system is stable, y(t) is bounded with its maximum amplitude given 
by

Vm
l&°l(l + la° +  b° g\) 

1 — (a° + b° g)2

The set 0(t) may be described as the intersection of the regions given by

a*y( j )  + b*u(j)\ < e, j  =  0 ,1 ,... , t  -  1, (6)

where a* = a — a0, and b* = b — b°. The effect of each new data can be viewed as 
a “cut” over the region 0. Given two distinct states of the system: (yi ,U\)  and 
(2/2^ 2 ), the area of their regions' intersection is

4s2 4 E2 „
\ul y2 - u 2yi\ \rYy2 -  r2y\[  ^

This equation establishes that the area of the intersection is inversely proportional 
to the amplitude of \r\y2 — r2 2/11. This means that there are two different possi­
bilities of choices for minimisation of S :

• n  = r 2 = A, y 1 = - y 2 =  ym\
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•  r i = - r 2 =  *4 , 2/i =  1/2 =  2/m-

Given the characteristics of Equation (6), both solutions are identical. Another 
property is that since no other state can diminish the area 5, the minimisation of 
the maximum diameter of 0 (t) is also obtained.

The main conclusion is that in the presence of a dead zone, the amplitude of 
the signals plays an important role in the minimisation of uncertainties.

Starting from any y(t), the best sequence of excitation within ap-step boundary 
is given by

r(t) = Asgn[(a°+ b° g)y{t)],
r(t +  1) =  ^sgn[2/(*)],
r(t +  2) =  **(*),
r(t +  3) = r(t + 1),

r(t + p — 2) =  -4sgn[(a° + b° g)p~ly{t)}
r ( t + p  — 1) =  -A sg n [(a0+ b° g)py(t)}.

In the first p — 1 steps the excitation will raise the absolute value of the process 
output, and in the last step it will do the opposite. Observe that in this design 
the only necessary information about the actual process is the sign of a0 + b° g. If 
we have additional information about the noise characteristics this scheme can be 
altered to avoid dependence of a single “cut” in one direction, but the compromise 
with the signal amplitude is evident.

Figure 2 shows the result of an experiment with excitation signal designed for a 
ten step period. Parts i, ii and iii of this figure are contour plots of the confidence 
distribution functions where the region Q(t) is delimited by thick lines. Observe 
that the identification scheme cannot learn much about the process after the first 
ten steps due to the small amplitude of the initial conditions (Fig. 2.i). Parts ii 
and iii of Figure 2 show the distribution function before and after the last “cut”, 
respectively.

There are two situations where the excitation signal is specially important: in 
the beginning of operation arid after the process dynamics have varied. The former 
situation is characterised by a big volume of ©(t) while the other situation might 
be detected by a significant diminution in the volume of Q(t). These symptoms 
can be useful in the trigger design of the excitation periods.

5. ANALYSIS

The estimator described in Sections 2 and 3 acts as any other parameter bounding 
estimator whenever there is no variation on the process dynamics. Some conver­
gence analyses of this sort of estimator can be found in References [4], [9] and 
others, but the developments in parameter bounding have a strong intuitive ap­
peal. In this section we analyse the transient behaviour of our estimator after a 
stepwise process variation.
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Figure 2: Excitation Effects

Suppose the process description changes significantly at time to from 9\ to 9%. At 
that time the estimator has properly identified the process such that q(to, 9%) = qmin 
and the set

Öi {$i : q(t0,6i) > q m in , 6 \  G 0}

surrounds 0°. Our aim is to find out when the set ©(to 4- At) will contain the new 
process description (0£) and how to speed up this convergence.

Proposition 3. Given that F(t, 9%) = 1, Vt > to, the necessary condition for 9% to 
be in 0 ( to + At) is straightforwardly given by

to - \ -A t  

i=to  + 1

1 -  / i
max {0, I<f)T(i — 1 )[#£ — Oi] + w(i) \ — e} 

n(i -  1) ^  Qmini

V6»!G0i . (8)

Remark 4- As long as w(t) < e the identification never diverges, even though small 
values of </>T(t — 1 )[0£ — 9\] might not contribute to convergence. The sufficient 
condition for some data 0(t — 1) to contribute to identification convergence is

\<t>T(t -  1)[$2 -  #,]| > 2e,

for some 6\ G [9 : q(t — 1,9) > qmin,9 G 0i}. Despite the importance of the 
amplitude of <f>(t — 1), its direction relative to the vector [0J — 0i] is crucial. Hence 
optimal excitation design would require knowledge of 9\.
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From (8) we can conclude that convergence speed might be increased by:

• increasing /i;

• increasing the product — #1], that depends partially on ||^(t)||;

• decreasing e (exclude from e the modelling of small drifts on process dynam­
ics);

• reducing 0  such that sup@ ||0|| decreases (reduce the a priori uncertainty);

• increasing qmin.

The appropriateness of each item described above depends on specific characteris­
tics of the (set of) process(es) to be controlled.

6. CONCLUSIONS

A new approach to parameter bounding identification has been presented. This 
approach is capable of tracking time-varying processes since none of the process 
parameters are entirely discarded, even after being falsified by data.

An application of this identification scheme in an adaptive controller has been 
suggested. The robust control law chosen to this controller separates performance 
assessment from excitation. Actually the excitation issue is only addressed during 
special periods triggered by some indications that are characteristic of parameter 
bounding estimators.
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