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hierarchical structure: CREPE (Composite Random Effects PEnalty) for joint selec-15

tion in mixed models. CREPE induces sparsity in a hierarchical manner, as the fixed16

effect for a covariate is shrunk to zero only if the corresponding random effect is or has17

already been shrunk to zero. In the setting where the number of fixed effects grow at a18

slower rate than the number of clusters, we show that CREPE is selection consistent for19

both fixed and random effects, and attains the oracle property. Simulations show that20

CREPE outperforms some currently available penalized methods for mixed models.21

Keywords: fixed effects, generalized linear mixed models, LASSO, penalized like-22

lihood, random effects, variable selection23

1 Introduction24

Joint selection of fixed and random effects in generalized linear mixed models (GLMMs)25

presents a challenging problem, especially as regards the question of how to perform selec-26

tion in a computationally efficient manner while accounting for any hierarchical structure27

present in the model. Even with a bounded number of covariates, when jointly selecting28

over fixed and random effects the number of candidate models is considerably larger than in29

the standard regression context, making methods based on information criteria or the fence30

(Jiang et al. (2008)) computationally burdensome; see Müller et al. (2013) for a general31

review of model selection in linear mixed models. One approach to overcoming this compu-32

tational problem is penalized likelihood methods. While penalized methods for generalized33

linear models have been extensively studied (dating back to Tibshirani (1996)), their ap-34

plication to mixed models has only recently been considered, almost exclusively in settings35

where the number of covariates is bounded, and the selection of fixed and random effects36

is treated as separate processes. Bondell et al. (2010) and Ibrahim et al. (2011) proposed37

separate penalties for the fixed and random effects that are summed together. Fan and Li38
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(2012), Peng and Lu (2012), and Lin et al. (2013) all proposed two-stage methods where the39

fixed and random effects selection are performed independently.40

When fitting GLMMs to longitudinal data, there is a hierarchical structure in the selection of41

the effects that is often imposed in practice, namely “we usually only consider time-varying42

covariates that have been included in the fixed effects.” (Cheng et al. (2010)). It is natural43

for covariates to be included as either a fixed effect only, or as both fixed and random effects.44

We refer to the latter as a composite effect covariate. As an example, in a longitudinal study45

monitoring the weights of infants over time (see Section 6), a random slope is included to46

account for heterogeneity between infants’ changes in weight only if there is a significant47

overall trend (fixed effect) over time. Another example is in forest management, where48

random slopes are used to account for between plot variability only if a significant change is49

observed in the forest’s overall health in response to climate (Hao et al. (2015)). Of course50

there may be exceptions to this hierarchical structure, a notable one being the case of linear51

mixed models with centered responses, where a random intercept may be included without a52

fixed intercept. For most settings however, it is reasonable that covariates should be included53

as either fixed or composite effects. However, while notions of hierarchical selection have been54

researched in (generalized) linear models with grouped variables and ordered or polynomial55

terms, see for instance the group LASSO (Least Absolute Shrinkage and Selection Operator)56

of Yuan and Lin (2006) and the composite absolute penalty of Zhao et al. (2009), they have57

not been investigated for GLMMs. This is exemplified in the illustrative examples of Bondell58

et al. (2010) and Ibrahim et al. (2011), where the respective penalties lead to at least one59

covariate selected only as a random effect.60

We propose a penalty called CREPE (Composite Random Effects PEnalty) for hierarchical61

selection of fixed and random effects in longitudinal GLMMs. CREPE is the first penalty that62

directly incorporates the notion of covariates being selected as fixed or composite effects. This63
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is done by exploiting the hierarchical structure of the effects, such that a fixed effect coefficient64

is shrunk to zero only if the corresponding random effect coefficients are, or have already65

been shrunk to, zero. CREPE also accommodates covariates that are included a-priori as66

fixed effects only. The concept of using a penalty that accounts for the hierarchical structure67

of the effects has been considered in other contexts, e.g. the fused LASSO (Tibshirani68

et al. (2005)), finite mixture of regression models (Hui et al. (2015a)), and feature selection69

in bioinformatics (Garcia et al. (2014)), but has yet to be explored for joint selection in70

GLMMs. A key part of CREPE’s design involves the use of a group-based penalty for71

selecting the random effects, specifically, the elements in a row of the eigendecomposition72

of the random effects covariance matrix (as defined in Section 2) are encouraged to be zero73

simultaneously.74

In the setting where the number of fixed effects is allowed to grow at a slower rate than75

the number of clusters, we show that CREPE satisfies the oracle property of asymptotically76

identifying the truly non-zero fixed and composite covariates. Regarding computation, we77

use a Monte-Carlo Expectation Maximization (MCEM, Wei and Tanner (1990)) algorithm to78

calculate the CREPE estimates, showing how the E-step can be performed straightforwardly79

for the common cases of Gaussian, Poisson, and Bernoulli responses. Simulation studies show80

CREPE outperforms some other penalties available for jointly selecting fixed and random81

effects in GLMMs. We illustrate the application of CREPE to a longitudinal infant study82

for identifying important baseline and time-varying predictors of infant weights. We provide83

R code for calculating the CREPE estimates in the Supplementary Material; an R package84

is planned in future research.85
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2 Model Selection using CREPE86

We focus on the independent cluster model with random intercepts and slopes. Let yij87

denote the jth response collected for the ith cluster, where i = 1, . . . , n and j = 1, . . . ,m.88

For simplicity, all clusters are assumed to have the same number of measurements, m, where89

m is bounded and does not grow with n. Conditional on the random effects, the yij are90

assumed to be independent responses from the exponential family f(yij|β, bi, φ) with mean91

µij and dispersion parameter φ. Given a link function g(·), the mean is modeled as g(µij) =92

ηij = xTijβ+zTijbi for a vector xij of predictors corresponding to fixed effects β, and a vector93

zij of predictors corresponding to random effects bi, both containing an intercept term if94

appropriate. The random effects are assumed to have a multivariate Gaussian distribution,95

bi ∼ N (0,Σ) where Σ = ΓΓT and Γ is an unstructured matrix of the same dimension as96

Σ, based on the eigendecomposition Σ = QΛ1/2Λ1/2QT = ΓΓT such that Γ = QΛ1/2, with97

Q an orthogonal matrix of normalized eigenvectors and Λ a diagonal matrix of eigenvalues.98

Lemma 1. Let γk be the kth row of Γ. Then for each k, ‖γk‖ = 0 implies that [Σ]kl =99

[Σ]lk = 0 for all l, where [Σ]kl refers to element (k, l) of Σ, and ‖ · ‖ denotes the L2-norm.100

This result suggests that, rather than penalizing the (diagonal) elements of Σ directly, we101

can employ a group-based penalty on the rows γk, and indeed this is what we pursue. One102

advantage group-based penalization on the eigendecomposition has is that all the elements103

of Γ can take any number on the real line. This contrasts to the diagonal elements of both Σ104

and its Cholesky decomposition, which are bounded below by zero (see Bondell et al. (2010),105

Lin et al. (2013), and Pan and Huang (2014) for examples of methods that penalize the106

diagonal elements of Σ or its Cholesky decomposition). By using the eigendecomposition,107

we can avoid potential boundary issues when performing Taylor expansions (used in the108

theoretical study of the CREPE estimators in Section 3) and during the actual estimation109
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process.110

For the independent cluster GLMM, the observed log-likelihood for a GLMM is,111

`(Ψ) =
n∑
i=1

`i(Ψ) =
n∑
i=1

log

(∫ m∏
j=1

f(yij|β, φ, bi)f(bi|Γ)dbi

)
,

where `i(Ψ) is the log-likelihood contribution from the ith cluster, and Ψ = {β, φ, vec(Γ)}.112

We introduce some notation describing the nature of the covariates in the GLMM. Let α113

denote the full set of p covariates in the dataset. We divide this set into mutually exclusive114

subsets αf , which denotes the set of pf covariates entered into the model as fixed effects115

only (e.g., baseline covariates such as gender), and αc, which denotes the set of pc covariates116

entered into the model as composite effects (e.g., time varying covariates such as time of117

visit). We allow pf to grow at a smaller rate than n (see Condition C6 in Section 3),118

while assuming pc < m is fixed. Subsequently, we can write Ψ = (β, φ,γ1, . . . ,γpc) where119

β = (βαf
,βαc).120

The CREPE estimator is defined as the maximizer of the penalized log-likelihood function121

`pen(Ψ) = `(Ψ)− nλ
p∑

k=1

w̃k
(
β2
k + 1{k∈αc}ṽk‖γk‖

)1/2
, (1)

where λ > 0 is the tuning parameter and 1{·} denotes the indicator function. The adaptive122

weights w̃k and ṽk may depend on a common power parameter ν > 0 (Zou (2006)) and are123

required to satisfy some regularity conditions.124

For k ∈ αf , CREPE reduces to the adaptive LASSO penalty (Zou (2006)). On the other125

hand, for k ∈ αc, CREPE encourages sparsity in a hierarchical manner so that either both126

the fixed and random effects for the covariate are shrunk to zero, or only the random effect127

is shrunk to zero. There are two types of sparsity featured in CREPE: group sparsity,128

occurring on the rows of the eigendecomposition, ‖γk‖ = 0, and the “larger” sparsity given129
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by (β2
k + 1{k∈αc}ṽk‖γk‖)1/2. Critically, the group sparsity is nested inside the larger sparsity130

event. Thus ‖γk‖ = 0 must occur either before or simultaneously with βk = 0. Then, in131

maximizing (1), CREPE allows a covariate k ∈ αc to be included as either a fixed effect only,132

or as a composite effect.133

Such a group penalty approach to random effects selection has been considered before by134

Ibrahim et al. (2011), and is arguably a better approach than that used by Bondell et al.135

(2010) amongst others, which penalizes the diagonal elements of the Cholesky decomposition136

of Σ.137

Fixed intercepts in GLMMs are generally not penalized, although the random intercept (if138

included) may be. In such a case, (1) can be altered to `pen(Ψ) = `(Ψ) − nλ(ṽ1‖γ1‖)1/2 −139

nλ
p∑

k=2

w̃k(β
2
k +1{k∈αc}ṽk‖γk‖)1/2, where it is assumed the first elements in xij and zij repre-140

sent the fixed and random intercepts respectively.141

3 Asymptotic Properties142

We study the large sample properties of the CREPE estimator when pf grows at a slower143

rate than n, while pc is fixed. Allowing the number of random effects to grow is a more144

difficult problem, as it requires both the number of clusters and the cluster size to grow in145

order to achieve attractive asymptotic properties (see for instance Fan and Li (2012)), and146

(Demidenko (2004)) for an overview of asymptotic theory in mixed models.147

Let Ψ0 = (β0, φ0,γ01, . . . ,γ0pc), denote the true parameter values, where β0 = (β0αf
,β0αc)148

and, let p0f be the number of non-zero elements in β0αf
. Without loss of generality, we write149

Ψ0 = (Ψ01,Ψ02 = 0) so Ψ01 consists of all the non-zero elements of β0, all the vectors γ0k150

whose L2-norm is positive, and φ0. Likewise, we write the CREPE estimate as Ψ̂ = (Ψ̂1, Ψ̂2).151

Let H(Ψ) = −(1/n)∂2`(Ψ)/∂Ψ∂ΨT denote the observed Fisher information matrix for the152
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GLMM, and let κmin{H(Ψ)} and κmax{H(Ψ)} denote its minimum and maximum eigenval-153

ues respectively. The following regularity conditions are required here.154

(C1) For every n, there exists a positive constant c1 such that 0 < c1 < κmin{H(Ψ0)} <155

κmax{H(Ψ0)} < 1/c1 <∞.156

(C2) For any given ε > 0, there exists a δ > 0 with ‖Ψ −Ψ0‖ < δ such that (1 − ε)c1 <157

κmin{H(Ψ)} < κmax{H(Ψ)} < (1 + ε)/c1 for n large enough.158

(C3) There exists an open subset Ω in the interior of the parameter space of Ψ, containing159

Ψ0, such that the third derivatives of the log-likelihood `(Ψ) exist for every Ψ ∈ Ω. For160

all Ψ ∈ Ω, there exist integrable functions Urst such that |∂3`(Ψ)/∂Ψr∂Ψs∂Ψt| < Urst,161

with E(U2
rst) <∞, where the expectation is with respect to the true model.162

(C4) (minl∈Ψ01{β2
0l}+ minl∈Ψ01{‖γ0l‖}) ≥ c2, where c2 > 0 is a positive constant.163

(C5) The adaptive weights satisfy w̃k = Op(1) and ṽk = Op(1) for k ∈ Ψ01, and w̃k =164

Op{(n/pf )ν/2} and ṽk = Op{(n/pf )ν/2} for k ∈ Ψ02.165

(C6) (a) λ
√
np0f → 0 (b) λ(n/pf )

(ν+3)/4 →∞, where ν > 0.166

Condition (C1) ensures the observed Fisher information matrix is well-defined at the true167

parameter values for every n, while condition (C2) extends this to a small neighborhood168

of Ψ0. The two conditions are similar to conditions A4 and A5 in Chen and Chen (2012)169

for generalized linear models (GLMs). Condition (C3) is a mild condition to ensure the170

log-likelihood function for GLMMs is sufficiently smooth. Since Ψ involves elements of the171

eigendecomposition Γ that can take any value on the real line, Ω is guaranteed to not lie172

on the boundary space. Condition (C4) places a lower bound on the magnitude of the truly173

non-zero coefficients. This may be weakened to permit the truly non-zero effects to tend174
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to zero at a slow rate, although we do not pursue this extension here. Together, conditions175

(C2) and (C4) define a rate at which incorrect models are allowed to approach the true176

model with increasing n. Condition (C5) is a generalization of condition (C1) in Ibrahim177

et al. (2011), requiring that the adaptive weights exhibit different asymptotic behavior for178

truly zero and non-zero coefficients. Finally, conditions (C6a) and (C6b) constrain the rate179

of growth of the tuning parameter λ, and is similar to conditions in Hui et al. (2015b) for180

adaptive LASSO GLMs. Together, they restrict the number of fixed effects to grow subject181

to (pf/n)(ν+3)/4√np0f → 0. This is an advance on Ibrahim et al. (2011) and Lin et al. (2013),182

amongst others, who proved oracle properties assuming fixed p.183

We first establish a result regarding the consistency properties of the CREPE estimator.184

Theorem 1. If (C1)-(C6) are satisfied and ν ≥ 1, then there exists a local maximizer Ψ̂ of185

the penalized log-likelihood function in (1) that satisfies186

(a) Estimation consistency: ‖Ψ̂−Ψ0‖ = Op(
√
pf/n).187

(b) Selection consistency: P (Ψ̂2 = 0)→ 1.188

With probability tending to one then, CREPE asymptotically correctly determines whether189

each covariate is a fixed or a composite effect.190

Let I(Ψ0) = E(−∂2`(Ψ)/∂Ψ∂ΨT )|Ψ0 be the expected Fisher information matrix evaluated191

at the true parameter point.192

Theorem 2. For a fixed integer q, let Bn be a q × dim(Ψ01) matrix such that BnB
T
n → G193

for some non-negative, symmetric q × q matrix G. If (C1)-(C6) are satisfied and ν ≥ 1,194

then the local maximizer Ψ̂ in Theorem 1 satisfies195

√
nBnI−1/2(Ψ01)(Ψ̂1 −Ψ01)

d−→ N (0,G),
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where I(Ψ01) is the block of the expected Fisher information matrix involving only the truly196

non-zero parameters Ψ01.197

Theorems 1 and 2 establish that the CREPE estimator attains the oracle property in198

GLMMs. The proofs of the theorems are provided in the Supplementary Material, following199

a similar outline to that of Fan and Peng (2004).200

4 Estimation201

We use the Monte-Carlo EM (MCEM, Wei and Tanner (1990)) algorithm combined with the202

local quadratic approximation (Fan and Li (2001)) for calculating the CREPE estimators.203

We focus on the common cases of Gaussian, Poisson, and Bernoulli mixed models, showing204

that updates of the parameters in these cases can be obtained straightforwardly. Let205

`pen,c(Ψ, b) =
n∑
i=1

(
m∑
j=1

log{f(yij|β, φ, bi)} −
1

2
log{det(ΓΓT )} − 1

2
bTi (ΓΓT )−1bi

)

− nλ
p∑

k=1

ρ(βk,γk)

=
n∑
i=1

`c,i(Ψ, bi)− nλ
p∑

k=1

ρ(βk,γk)

where ρ(βk,γk) = w̃k(β
2
k +1{k∈αc}ṽk‖γk‖)1/2. Suppose at iteration t, we have estimates Ψ̂(t).206

The MCEM algorithm iterates between the following steps: the E-step, which calculates the207

expectation of `pen,c(Ψ, b) with respect to the conditional posterior distribution f(bi|y, Ψ̂(t)),208

better known as the Q-function, and the M-step, which maximizes the Q-function to obtain209

updated estimates Ψ̂(t+1). For non-Gaussian responses where the posterior distribution does210
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not possess a closed form, we perform the E-step using Monte-Carlo integration,211

Ebi|Ψ̂(t) {`c,i(Ψ, bi)} =

∫
`c,i(Ψ, bi)×

m∏
j=1

f(yij|β̂(t), φ̂(t), bi)f(bi|Γ̂(t))

exp{`i(Ψ̂(t))}
dbi

≈ exp{`i(Ψ̂(t))}−1 1

D

D∑
d=1

`c,i(Ψ, bdi )
m∏
j=1

f(yij|β̂(t), φ̂(t), bdi ), (2)

where bdi is simulated from f(bi|Γ̂(t)), the quantity exp{`i(Ψ̂(t))} is approximated as212

D−1
D∑
d=1

m∏
j=1

f(yij|β̂(t), φ̂(t), bdi ), and D is the number of Monte-Carlo samples. In the simula-213

tions in Section 5, we used D = 2, 000.214

To avoid non-differentiability at the origin, we approximate the CREPE penalty by a local215

quadratic approximation (LQA). At iteration t, set element k of Ψ̂(t+1) to zero if the corre-216

sponding element in Ψ̂(t) is equal to or very close to zero, e.g., absolute value within 10−3.217

Otherwise, approximate the CREPE penalty as218

ρ(βk,γk) = ρ(β̂
(t)
k , γ̂

(t)
k ) +M

(t)
k (β2

k − (β̂
(t)
k )2) + 1{k∈αc}M

(t)
k

ṽk

2‖γ̂(t)
k ‖

(γTk γk − (γ̂
(t)
k )T γ̂

(t)
k ),

where M
(t)
k = (w̃k/2)

(
(β̂

(t)
k )2 + 1{k∈αc}ṽk‖γ̂

(t)
k ‖
)−1/2

. Combining these results, the M-step219

consists of maximizing the penalized Q-function,220

Qpen(Ψ|Ψ̂(t)) = Ebi|Ψ̂(t) {`c,i(Ψ, bi)} − nλ
p∑

k=1

(
M

(t)
k β2

k + 1{k∈αc}M
(t)
k

ṽk

2‖γ̂(t)
k ‖
γTk γk

)
.

We now focus on the three special cases of Gaussian, Poisson, and Bernoulli responses.221

Gaussian responses: For the linear mixed model where f(yij|β, φ, bi) = N (ηij, σ
2), a closed222

form for the posterior distribution of bi can be obtained. Let yi = (yi1, . . . , yim), Xi =223

(xi1 . . .xim)T and Zi = (zi1 . . . zim)T . It is straightforward to show that f(bi|y, Ψ̂) =224

N (âi, Âi), where Âi =
(

(Γ̂Γ̂T )−1 + σ̂−2ZT
i Zi

)−1
and âi = σ̂−2ÂiZ

T
i (yi −Xiβ̂). In turn,225

we can derive a closed form for the penalized Q-function by using this result and the fact226
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that227

Ebi|Ψ̂(t)(b
T
i (ΓΓT )−1bi) = âTi (ΓΓT )−1âi + tr{(ΓΓT )−1Âi}, (3)

an identity that does not require the normality assumption on bi. Closed form updates for228

β and σ2 may then be obtained, while a Quasi-Newton method, for instance, can be used229

to update the rows of Γ.230

Poisson responses: Using the log link, we have231

n∑
i=1

m∑
j=1

log{f(yij|β, bi)} =
n∑
i=1

m∑
j=1

{
yij(x

T
ijβ + zTijbi)− exp(xTijβ) exp(zTijbi)

}
. From this, it232

is straightforward to see that for the penalized Q-function, we only require Monte-Carlo233

estimates of the posterior mean Ebi|Ψ̂(t)(bi), the moment generating function Ebi{exp(zTijbi)},234

along with the posterior covariance matrix for use in (3). Since none of these is a function235

of the parameters that need updating, the M-step can be performed relatively quickly.236

Bernoulli responses: Using the logit link, we have237

n∑
i=1

m∑
j=1

log{f(yij|β, bi)} =
n∑
i=1

m∑
j=1

[
yij(x

T
ijβ + zTijbi)− log{1 + exp(xTijβ + zTijbi)}

]
. Applying238

the MCEM algorithm directly is challenging because the second term is non-linear in β. To239

overcome this, we use the fact that the variance of the Bernoulli distribution is bounded above240

by 1/2. We can therefore minorize the above expression by a partial quadratic expansion241

about β = β̂(t),242

n∑
i=1

m∑
j=1

log{f(yij|β, bi)} ≥
n∑
i=1

m∑
j=1

log{f(yij|β̂(t), bi)}+
n∑
i=1

m∑
j=1

(yij − µ(t)
ij )xTij(β − β̂(t))

− 1

4

n∑
i=1

m∑
j=1

(β − β̂(t))Txijx
T
ij(β − β̂(t)), (4)

where η
(t)
ij = xTijβ̂

(t) + zTi bi and µ
(t)
ij = exp(η̂

(t)
ij )/{1 + exp(η̂

(t)
ij )} (see Hunter and Li (2005)243

for details on the notion of minorizing functions). Since this inequality remains true when244

we apply expectations to both sides, it means that we can use (4) to construct a minorizer245
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of Qpen(Ψ|Ψ̂(t)), and therefore maximize the minorizer instead. This is known as a (Monte-246

Carlo) minorization-maximization algorithm, as detailed in Hunter and Li (2005). Impor-247

tantly, it is clear that this minorizer requires only Monte-Carlo estimates of Ebi|Ψ̂(t)(bi), the248

expected fitted probability Ebi(µ
(t)
ij ), along with the posterior covariance matrix for use in249

(3). As none of these is a function of the parameters that need updating, the maximization250

can be performed straightforwardly.251

5 Simulation Study252

An empirical study was conducted to compare the performance of CREPE with some other253

proposed penalties for variable selection in GLMMs. We focus on the cases of Gaussian,254

Poisson and Bernoulli responses. For brevity, only the results for Gaussian and Bernoulli255

mixed models are presented; the results for Poisson GLMMs are similar and are provided256

in the Supplementary Material. For CREPE, we chose the adaptive weights as follows. Let257

β̃ = (β̃f , β̃c) and Σ̃ denote the maximum likelihood estimators of the fixed effects coefficients258

and random effects covariance matrix, based on fitting a saturated GLMM using the lme4259

package (Bates et al. (2014)). Then we set w̃k = |β̃k|−2 and ṽk = [Σ̃]−2kk , where [Σ̃]kk denotes260

the kth diagonal element of Σ̃. The saturated GLMM fit was also used to obtain starting261

values for the CREPE estimator. It is worth pointing out that the current version of lme4262

(version 1.1-10 at the time of writing) does not permit fitting mixed models when the number263

of random effects exceeds cluster size, pc > m. Instead, we used an older version (version264

1.0-6) that did permit such saturated models to be fitted.265

In all three settings, we used a BIC-type criterion to select the tuning parameter for CREPE,266

BICλ = −2`(Ψ̂) + log(n) dim(Ψ̂), where dim(Ψ̂) denotes the number of non-zero estimated267

parameters in Ψ̂. The model complexity penalty used in the BIC is based on the log of the268
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number of clusters, n. More generally, our use of a BIC-type criterion for tuning parameter269

selection is comparable to what has been advocated in Bondell et al. (2010) and Lin et al.270

(2013), amongst others. We did however also consider the use of an AIC-type criterion,271

where log(n) was replaced by 2 as the model complexity penalty, with results (not shown)272

indicating that it tended to overfit both the fixed and random effects.273

For each combination of n (number of clusters) and m (cluster size) considered, we generated274

200 datasets. We assessed performance in terms of both model selection and model accuracy.275

For the former, we considered the mean number of false positives (truly zero coefficients276

not shrunk to zero, indicative of overfitting) and false negatives (truly non-zero coefficients277

shrunk to zero, indicative of underfitting) for the fixed effects, and the percentage of datasets278

with correctly chosen random effects. We also recorded the percentage of datasets where the279

method produced non-hierarchical shrinkage, where one or more covariates end up being280

selected as a random effect only. As discussed below (1), such non-hierarchical shrinkage is281

not permitted by the design of the CREPE penalty. In the Supplementary Material, we also282

present the percentage of datasets where the method obtained the correct model.283

To assess model accuracy, we computed two measures for each method: the Kullback-Leibler284

distance between the true and fitted models, and the model error defined as the squared285

Euclidean norm between the estimated and true parameters. We subsequently computed a286

median relative Kullback-Leibler distance and the median relative model error, the median287

of the ratios of the Kullback-Leibler distance (or model error) between the CREPE estimator288

and the alternative method. Relative Kullback-Leibler distances and model errors less than289

one were indicative of CREPE having better model accuracy. Similar measures of model290

accuracy were used in Bondell et al. (2010) and Lin et al. (2013), among many others.291

Because the results for both measures were similar, we only present the relative Kullback-292

Leibler distance results in main text, and present the results for relative model errors in the293
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Supplementary Material.294

5.1 Normal Responses295

We adapted the simulation design in Bondell et al. (2010), but allowed the number of fixed296

effects to grow with n. In detail, datasets were simulated from a linear mixed model with297

the number of predictors growing at rate p = d7n1/4e where d·e is the ceiling function.298

Covariates xij were constructed by setting the first element to one for a fixed intercept, and299

generating the remaining elements from a multivariate Gaussian distribution with mean zero300

and covariance matrix Cov(xijr, xijs) = 0.5|r−s|. The covariates for the random effects zij301

were taken as the first eight covariates of xij, so pc = 8 and pf = p − pc grows at the same302

rate as p. For the true model, the first eight elements of β0 were set to (−1, 3, 1.5, 0, 0, 2, 1, 0).303

Then every third term was set to alternating values of ±1. The true 8× 8 covariance matrix304

for the random effects, Σ0, consisted of two non-zero blocks: I) a 2× 2 matrix with diagonal305

entries 9 and 4, and off-diagonal entries of 4.8, occupying rows/columns 1 and 2 of Σ0, II) a306

2× 2 diagonal matrix with entries 2, occupying rows/columns 6 and 7 of Σ0. This resulted307

in four informative composite effect covariates. Responses yij were then generated from a308

Gaussian distribution with variance σ2
0 = 1. We considered combinations of n = 30, 60309

clusters (corresponding to p = 17 and 20 respectively) and cluster sizes of m = 5, 10, 20.310

Three penalized estimators were compared: (1) CREPE with ν = 2 in the adaptive weights311

for CREPE, (2) the M-ALASSO penalty of Bondell et al. (2010), and (3) the ALASSO312

penalty of Lin et al. (2013). To the best of our knowledge, these three procedures are313

currently the only penalties publicly available in R for selecting both fixed and random effects,314

and we found no additional methods. Since all procedures perform joint selection of fixed315

and random effects, we took the model error as ME = ‖β̂ − β0‖2 + ‖vech(Σ̂)− vech(Σ0)‖2.316

Overall, CREPE performed the best in selecting both fixed and random effects, as well as317
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in model accuracy (Table 1 and Supplementary Material Table 1). M-ALASSO tended to318

choose a smaller number of fixed effects compared to CREPE, as reflected in the lower number319

of false positives but higher number of false negatives, while ALASSO performed worst as it320

severely overfitted the fixed effects. For random effects, M-ALASSO performed slightly better321

than CREPE although differences between the two were minor at the larger cluster sizes. For322

all settings, CREPE performed best in terms of selecting the correct model (Supplementary323

Material Table 1). ALASSO tended to underfit the random effects and shrink rows/columns324

6 and 7 of the covariance matrix to zero. This underfitting of the random effects by ALASSO325

may be a result of the BIC used for the selecting the tuning parameter, which involves a large326

model complexity penalty log(mn) (following the recommendation in Lin et al., 2013). The327

median relative Kullback-Leibler distance was less than one in all but one case, indicating328

that CREPE has better model accuracy compared to the two alternative methods.329

Both M-ALASSO and ALASSO presented cases of non-hierarchical shrinkage, particularly330

on element 7 in xij (and equivalently zij) where the fixed effect was shrunk to zero while the331

corresponding random effect remained in the final model. Not surprisingly, the percentage332

of datasets where non-hierarchical shrinkage occurred decreased with increasing cluster size333

m.334

5.2 Bernoulli Responses335

We generated datasets from a Bernoulli GLMM using the same rate of growth of p (and thus336

pf ) as in Section 5.1. Covariates xij and zij were constructed in the same manner as in the337

Gaussian response case, zij being taken as the first eight covariates of xij such that pc = 8.338

The elements of β0 were the same as in Setting 1, while the true 8× 8 covariance matrix Σ0339

was set to a diagonal matrix with the entries (1, 1, 0, 0, 0, 1, 0, 0). Responses yij were then340

generated from a Bernoulli distribution with logit link. For CREPE, we used ν = 2 for the341
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Table 1: Simulation results for linear mixed models. Performance was assessed the mean
number false positives (FP) and false negatives (FN) for the fixed effects, the percentage
of datasets with correctly chosen random effects components (%RE), percentage of datasets
where there was non-hierarchical shrinkage (%S), and median relative Kullback-Leibler dis-
tance (RKL). Since %S was equal to zero for CREPE, this column is omitted from the
table.

n m CREPE M-ALASSO ALASSO
FP FN %RE FP FN %RE %S RKL FP FN %RE %S RKL

5 0.52 0.19 38 0.23 1.02 47 78 0.92 3.21 0.62 4 94 0.83
30 10 0.05 0.06 86 0.03 0.28 90 29 0.90 2.45 0.53 50 50 0.78

20 0.06 0.02 95 0.01 0.24 96 24 0.50 4.46 0.42 41 35 0.39

5 0.32 0.03 42 0.05 0.28 63 47 0.82 1.09 0.34 38 76 1.01
60 10 0 0.02 93 0 0.10 94 14 0.64 1.44 0.39 72 40 0.95

20 0.01 0 97 0.01 0.07 96 9 0.49 3.37 0.31 56 39 0.63

adaptive LASSO weights. We considered combinations of n = 50, 100 clusters, corresponding342

to p = 19 and 23 respectively, and cluster sizes of m = 10, 20. We had intended to perform343

simulations at m = 5 also, as we did with Gaussian and Poisson responses, but found that we344

were unable to obtain suitable adaptive weights for CREPE based on a saturated GLMM fit.345

This was not surprising given the small cluster size m = 5 and relative lack of information in346

Bernoulli responses. While other methods of obtaining adaptive weights are possible, they347

are outside the scope of this work (see also our discussion in Section 7).348

To our knowledge, no R packages are currently available for performing joint selection in349

mixed models with non-normal responses. For comparison with CREPE then, we considered350

the glmmLasso package (Groll and Tutz (2014)), which performs fixed effects selection only351

in GLMMs using the unweighted LASSO penalty. With this method, we considered two352

possibilities: the random effects component was known and only elements 1, 2, and 6 of zij353

were included; the random effects was unknown and all eight elements of zij were included.354

Our fitting models of such models via glmmLasso is unconventional in allowing fixed effects355
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to be penalized when the corresponding random effects (by definition of the program) cannot356

be penalized. We see this less as an argument against glmmLasso and more one in favour of357

using CREPE as a penalty.358

Because glmmLasso only performs selection of the fixed effects here, the model error is based359

only on the fixed effects, ME = ‖β̂−β0‖2. This avoids confounding the results with whether360

the true and saturated random effects structure was used for glmmLasso. We considered361

several ways of implementing the package, and we present results based on the method362

which worked best, namely constructing a solution path from the smallest to the largest363

value of the tuning parameter.364

CREPE performed better than both versions of glmmLasso at selecting the fixed effects,365

except at n = 50 and m = 10 where it had a slight tendency to underfit the fixed effects366

(Table 2 and Supplementary Material Table 3). This underfitting may explain why the367

relative Kullback-Leibler distance for both versions of glmmLasso was greater than one for368

this setting. In all other settings, CREPE had better model accuracy as reflected in the369

relative Kullback-Leibler distance (and model errors in Supplementary Material Table 2).370

At n = 50, both versions of glmmLasso tended to overfit the fixed effects, a result that may371

be partly attributed to the lack of adaptive weights. Regarding random effects selection,372

even at n = 100 and m = 20, CREPE was only able to correctly pick the true random effects373

structure half the time, with a tendency to overfit and fail to shrink rows/column 3 of the374

estimated D to zero (note this covariate has a corresponding non-zero fixed effect).375

When the true random effects structure was known, glmmLasso presented no cases of non-376

hierarchical shrinkage (%S). By contrast, when a saturated structure was assumed for the377

random effects, strong evidence of non-hierarchical shrinkage was observed for glmmLasso,378

as it shrank one or more of the fixed effects for covariates 4, 5, and 8 to zero while leaving379

the corresponding random effects in the model. This was not surprising as our application380
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of glmmLasso allows fixed effects to be penalized in a situation where the program (by381

definition) cannot penalize the corresponding random effects.382

Table 2: Simulation results for Bernoulli GLMMs. Performance was assessed based on
the mean number false positives (FP) and false negatives (FN) for the fixed effects, the
percentage of datasets with correctly chosen random effects components (%RE, for CREPE
only), the percentage of datasets where there was non-hierarchical shrinkage (%S), and
median relative Kullback-Leibler distance (RKL). Since %S was equal to zero for CREPE,
the column is omitted from the table.

n m CREPE glmmLassotrue glmmLassosat
FP FN %RE FP FN %S RKL FP FN %S RKL

50 10 0.68 0.71 17 1.44 0.06 0 1.18 1.55 0.05 96 1.18
20 0.13 0.01 31 2.54 0 0 0.74 3.55 0 87 0.70

100 10 0.15 0.02 11 0.57 0 0 0.85 0.78 0 100 0.82
20 0.04 0 51 0.34 0 0 0.55 0.47 0 100 0.56

6 Application to Yale Infant Study383

To illustrate the application of CREPE, we analyzed the Yale infant growth study of Wasser-384

man and Leventhal (1993), which aimed to identify, among other things, whether cocaine385

exposure during pregnancy affects weight gain in children. The dataset was also used in386

Ibrahim et al. (2011). A total of n = 298 infants were recruited for the study, and their387

weight (in pounds) monitored over the study period. Seven predictors were available for388

analysis: gender of infant (1 for male; 0 for female), ethnicity (1 for African American; 0389

otherwise), previous pregnancies (1 for yes; 0 for no), cocaine use by mother (1 for yes; 0390

for no), age of mother (years), gestational age of infant (weeks), and day of visit during the391

study period (a proxy for time since entering the study). The number of visits for each infant392

ranged from m = 2 to m = 30, with a median of m = 10 visits. The goal of this analysis was393
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to identify important predictors of infant weight, while accounting for heterogeneity between394

infants at baseline and over time.395

It is natural to include the first four, time-independent covariates (gender, ethnicity, previous396

pregnancies, cocaine use) in the model a-priori as fixed effects (pf = 4), and to include the397

three other time-varying covariates (age of mother, gestational age, day of visit) as composite398

effects (pc = 3). An intercept was also included in the model as a composite effect. Prior to399

analysis, the three continuous covariates were standardized to have mean zero and variance400

one. Adaptive weights were constructed by fitting the saturated model and setting ν = 2.401

Using BICλ to select the tuning parameter, the final model based on the CREPE estimator402

had the following structure403

µ̂ij = 6.962− 0.190× genderi + 0.245× cocaine usei + 0.539× gestational ageij

+ 2.642× visitij + b0i + bi × visitij;

D̂ =

 0.548 0.277

0.277 0.214

 ; σ̂2 = 0.517.

Of the four baseline covariates, CREPE identified gender and cocaine dependency as sig-404

nificant predictors of infant weight. In particular, prenatal cocaine exposure (PCE) was405

associated with higher infant weight, a surprising result given studies previously have found406

significant evidence relating PCE and low birth weight (e.g. see the meta-analysis by Gouin407

et al. (2011)). Of the time-varying covariates, CREPE identified gestational age as an impor-408

tant fixed effect only, and day of visit as an important composite effect, with larger values of409

both leading to higher overall infant weights. There was also significant variability between410

infant weights at baseline as reflected in the inclusion of a random intercept, in addition to411

the variability regarding how weights changed as a function of the day of visit.412

Comparing the model chosen by CREPE to the one selected using the SCAD and ICQ method413
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of Ibrahim et al. (2011) (see their Table 2), we find that the latter identified gestational age as414

(also) having an important random effect, and the age of the mother as having a significant415

random but not fixed effect, an example of non-hierarchical shrinkage. However, Ibrahim416

et al. (2011) did not include a random intercept as a candidate covariate, while in our analysis417

there was substantial variation between infants in their weights at baseline. It is of interest to418

point out that had we started with the saturated model and applied backwards elimination419

based on likelihood ratio tests (using anova with lmer in the R package), then this approach420

would have produced the same set of informative fixed and random effects as the model421

selected using CREPE.422

7 Discussion423

One avenue of research is to extend CREPE to ultra high-dimensional GLMMs, where the424

number of fixed and/or random effect potentially grows at a faster rate than the number425

of clusters and cluster size. Such an extension though is of more theoretical interest than426

of practical relevance. This extension is by no means straightforward: the adaptive weights427

require modification since the saturated GLMM can no longer be fitted using maximum428

likelihood estimation (e.g., weights might be constructed based on marginal models, Huang429

et al. (2008)), and the asymptotic theory demands growing n and m, differing assumptions430

on the degree of sparsity, and careful consideration of the differing impacts fixed and random431

effects have on the mixed model.432
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Supplementary Materials433

The proof of Theorem 2, additional simulations results for Gaussian and Bernoulli GLMMs,434

full results for Poisson GLMMs, and R for implementing the CREPE penalty may be found435

in the Supplementary Material.436
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