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A RANDOM-EFFECTS HURDLE MODEL FOR PREDICTING
BYCATCH OF ENDANGERED MARINE SPECIES1

BY E. CANTONI, J. MILLS FLEMMING AND A. H. WELSH

University of Geneva, Dalhousie University and Australian National University

Understanding and reducing the incidence of accidental bycatch, partic-
ularly for vulnerable species such as sharks, is a major challenge for contem-
porary fisheries management worldwide. Bycatch data, most often collected
by at-sea observers during fishing trips, are clustered by trip and/or vessel
and typically involve a large number of zero counts and very few positive
counts. Though hurdle models are very popular for count data with excess
zeros, models for clustered forms have received far less attention. Here we
present a novel random-effects hurdle model for bycatch data that makes
available accurate estimates of bycatch probabilities as well as other cluster-
specific targets. These are essential for informing conservation and manage-
ment decisions as well as for identifying bycatch hotspots, often considered
the first step in attempting to protect endangered marine species. We vali-
date our methodology through simulation and use it to analyze bycatch data
on critically endangered hammerhead sharks from the U.S. National Marine
Fisheries Service Pelagic Observer Program.

1. Introduction. The oceanic ecosystem is by far the largest on Earth, cov-
ering more than 70% of the planet. Human impacts on this ecosystem, including
overfishing, habitat destruction, pollution and climate change, are causing serious
conservation concern. In particular, industrial fishing has profoundly changed the
biological state of the oceans, and while the direct impacts of overfishing on target
species are increasingly being addressed, accidental bycatch of nontarget species is
a key challenge for contemporary fisheries management. Excess bycatch is partic-
ularly threatening for long-lived marine species like sharks [Lewison et al. (2004),
Hall, Alverson and Metuzals (2000)], and so a core objective of the ecosystem ap-
proach to fisheries management is to reduce and eliminate bycatch [Pikitch et al.
(2004)].

Bycatch data are most often collected by at-sea observer programs and are
composed of the presence (counts or mass) and absence (zeros) of nontarget
species along with information on vessel and gear specification, fishing effort,
and environmental covariates. Specifically, we analyze bycatch data for a criti-
cally endangered marine species, the hammerhead shark obtained by Julia Baum
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[see Baum et al. (2003), Baum (2007) and Myers et al. (2007) for further de-
tails] from the U.S. National Marine Fisheries Service Pelagic Observer Program
(http://www.sefsc.noaa.gov/pop.jsp). In the spring of 2013 these sharks, which are
commercially valuable and whose numbers have been declining dramatically in
recent years, were given added protection by CITES (the Convention on Interna-
tional Trade in Endangered Species of Wild Fauna and Flora). We consider 1825
records of hammerhead shark bycatch from 292 fishing trips where 85% of these
counts are zeros, indicating that no hammerhead sharks were caught as bycatch in
many of the hauls. The few positive counts (obtained if one or more hammerhead
sharks were caught as bycatch in a haul) range from 1 to 46. Counts are clustered
because hauls are clustered within trips, which may also be clustered within ves-
sels, for example. The covariates considered are the following: year (YEAR, from
1 to 14, representing the period 1992–2005), average hook depth (AVGHKDEP,
from 6.40 to 182.88 fathoms), area (4 = South Atlantic Bight and 5 = Mid At-
lantic Bight), and season (SEASON, 464 observations in autumn, 543 in spring,
525 in summer and 293 in winter). The catch effort is measured using the logarithm
of the number of hooks (TOTHOOK, ranging from 25 to 1548).

An excess of zeros is a feature of count data arising in many areas, particularly
health research and ecology more broadly. For independent data, excess zeros re-
duce the usefulness of Poisson and negative binomial models [Welsh, Cunningham
and Chambers (2000)] because they underfit the probability of observing zeros.
The simplest solution is a hurdle model [also two-part, zero-altered, separated or
conditional model, see Mullahy (1986)] or an overlapping model [or zero-inflated
model, Lambert (1992)]. We describe these two alternative models in Section 2.

Further complications arise when we consider clustered counts with excess ze-
ros like bycatch data. Incorporating the clusters into the analysis can be achieved
via a marginal GEE approach as in Dobbie and Welsh (2001) or a conditional
random-effects approach, the latter being a more natural way to account for within-
cluster dependence when the interest is in within-cluster effects. Yau and Lee
(2001) and Hur et al. (2002) extended overlapping models to include random ef-
fects to evaluate injury prevention strategies and model health care outcomes, re-
spectively. Min and Agresti (2005) proposed a hurdle model with random effects
for repeated measures count data with extra zeros, and Liu et al. (2010) applied
this type of model to correlated medical cost data. Alfò and Maruotti (2010) used
correlated random effects to analyze data on health care utilization, and Neelon,
Ghosh and Loebs (2013) recently presented a spatial Poisson hurdle model for
emergency department visits. Finally, Molas and Lesaffre (2010) have suggested
fitting random-effects hurdle models by h-likelihood. As highlighted in some of
these papers, and fully demonstrated by our simulation study (Section 4), bias can
be induced for fixed-effects regression coefficients when the two parts of these
kinds of models are misspecified as independent.

We propose a new random-effects hurdle model framework for estimating the
probability of bycatch and other management targets from bycatch data. It is ap-
plicable to any form of clustered count data with excess zeros and also readily
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extendable to small-area estimation problems where the variables of interest are
small counts. The model has two parts: the first determines the presence or ab-
sence of bycatch in a haul, and the second determines the size of the bycatch. To
allow for dependence between the two parts of the model, we introduce parameters
which, if nonzero, indicate that the two parts are dependent: a simple classical test
can be used here. For our bycatch data, we show that the two parts are dependent.
We develop inferential procedures which, in contrast to all existing approaches,
make available empirical best predictors of the random effects [Jiang and Lahiri
(2001)] and other cluster-specific targets (e.g., the probability of nonzero bycatch
on a particular fishing trip). We are the first to provide a way of assessing the mean
squared error of prediction of these quantities. For this we propose a new fast boot-
strap procedure whose asymptotic distribution is the same as that of the maximum
likelihood estimator. We apply these procedures to our data and show that bycatch
of hammerhead sharks is declining through time.We also show the effect of the
number of hooks, average hook depth and season on shark bycatch.

We show that our random-effects hurdle model is a powerful tool for dealing
with bycatch data on endangered species. It generates reliable estimates and pre-
dictions that are essential for both understanding the processes underlying bycatch
and those needed to help reduce and possibly eliminate its occurrence.

2. The model. Here we describe our random-effects hurdle model for esti-
mating probabilities of bycatch and other management targets from bycatch data.
This model is applicable to any form of clustered count data with excess zeros,
and its full generalization is provided in the Supplementary Material [Cantoni,
Mills Flemming and Welsh (2017), Section 1].

The hurdle model for independent counts of bycatch Yi , i = 1, . . . , n, can be
written as

P(Yi = yi) =
{

1 − p(xi ) yi = 0,

p(xi )f
(
yi, λ(zi )

)
yi = 1,2,3, . . . ,

where p(xi ) is the probability of crossing the hurdle, f (yi, λ(zi)) is a discrete
distribution on the positive integers (the truncated Poisson distribution, for exam-
ple), and xi and zi are two sets of covariates, possibly overlapping. It is usual to
model p(xi ) as logit{p(xi )} = xT

i α and λ(zi ) as log{λ(zi )} = zT
i β . Alternatively,

an overlapping model (often referred to as a zero-inflated Poisson or ZIP model)
is a mixture model where

P(Yi = yi) =
{
π(xi ) + (

1 − π(xi )
)
f̃

(
0, λ(zi)

)
yi = 0,(

1 − π(xi )
)
f̃

(
yi, λ(zi)

)
yi = 1,2, . . . ,

where f̃ (yi, λ(zi)) is a discrete distribution (the Poisson distribution, for example),
logit{π(xi )} = xT

i α̃ and log{λ(zi )} = zT
i β̃ . Min and Agresti (2002) give a good

review of these models. The advantage of the hurdle model for both computation
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and interpretation is that it has two distinct parts that, for independent data, can be
fitted and interpreted separately.

Now suppose that the data are clustered and each of the c clusters contains ni

(i = 1, . . . , c) units (e.g., hauls within trips); that is, on the j th haul of the ith
trip, we observe a univariate count of bycatch yij and we consider two (possibly
overlapping) sets of covariates, which can be written as xij and zij , j = 1, . . . , ni ,
i = 1, . . . , c. For our bycatch data these covariates include information on gear
specification (e.g., average fishing hook depth) and fishing effort (e.g., the number
of fishing hooks utilized) as well as environmental information. We assume that
the dependence structure in the data is described by unobserved independent ran-
dom intercepts ui and vi . Building on the hurdle model for independent data, our
random-effects hurdle model specifies that, given ui and vi , the yij are independent
with probability mass function

(2.1) [yij | ui, vi] =
{

1 − p(xij , ui) yij = 0,

p(xij , ui)f
{
yij , λ(zij , ui, vi), ν

}
yij = 1,2,3, . . . ,

where [w|s] denotes the probability mass function of w given s, p is the
probability of observing a positive count (i.e., “crossing the hurdle”), and
f {yij , λ(zij , ui, vi), ν} is the probability mass function of a discrete distribution
defined on the positive integers with parameter λ which is a function of the covari-
ates, the random effects ui and vi , and possibly additional nuisance parameters ν.

The hurdle model involves two random processes. For bycatch data, one process
determines the presence or absence of bycatch in a haul, and in those hauls for
which nonzero bycatch occurs, a second process determines the number of sharks
in the bycatch. Random intercepts in both random processes account for clustering
in hauls during the same trip.

We model the probability of observing nonzero bycatch in the j th haul of the
ith trip by

(2.2) logit
{
p(xij , ui)

} = xT
ijα + σuui.

We assume that the number of sharks in the nonzero bycatch event can be described
using the truncated Poisson density

(2.3) f
(
yij , λ(zij , ui, vi)

) = exp(−λ(zij , ui, vi))λ(zij , ui, vi)
yij

yij !(1 − exp(−λ(zij , ui, vi)))

(which has no ν parameter), and we model λ as

(2.4) log
(
λ(zij , ui, vi)

) = zT
ijβ + γ σuui + σvvi.

We can extend what follows to incorporate other link functions in (2.2) and (2.4);
the logit and log links are those most commonly used in hurdle models. In (2.2) and
(2.4), α and β are regression parameters, σu and σv are non-negative spread param-
eters, and γ is a scalar parameter which controls the dependence between the ran-
dom process determining the presence (or not) of bycatch p(xij , ui) and that de-
termining its amount f (yij , λ(zij , ui, vi)). When γ = 0, p and λ are independent.
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Finally, we assume that the random intercepts ui and vi follow a N(0,1) distribu-
tion. This assumption corresponds to considering a random intercept ũi1 = σuui

in the first part of the model and a random intercept ũi2 = γ σuui + σvvi in the
second part, with the distributional assumption (ũi1, ũi2)

T ∼ N2(0,�), where

� =
(

σ 2
u γ σ 2

u

γ σ 2
u γ 2σ 2

u + σ 2
v

)
.

This particular model as defined by (2.1)–(2.4) is equivalent to that proposed by
Min and Agresti (2005), but our general formulation (see Supplementary Material,
Section 1) encompasses a much larger class of models.

2.1. Estimation. Under the hurdle model defined by (2.1)–(2.4), for clus-
ter i, the vector yi = (yi1, . . . , yini

)T has conditional density [yi |ui, vi] =∏ni

j=1[yij |ui, vi], and hence

[yi] =
∫ ∫ ni∏

j=1

[yij |ui, vi]φ(ui)φ(vi) dui dvi,

where φ denotes the density function of a N(0,1) random variable. It follows that
the likelihood for θ = (α, σu,β, σv, γ ), the vector of all the parameters, is

L(θ) =
c∏

i=1

[yi]

=
c∏

i=1

∫ ∫ ni∏
j=1

[yij |ui, vi]φ(ui)φ(vi) dui dvi

=
c∏

i=1

∫ ∫
exp

(
ni∑

j=1

log
{
1 − p(xij , ui)

}

+
ni∑

j=1

ι(yij > 0) log
[
p(xij , ui)/

{
1 − p(xij , ui)

}]

+
ni∑

j=1

ι(yij > 0) logf
(
yij , λ(zij , ui, vi)

))
φ(ui)φ(vi) dui dvi,

where ι() is an indicator function. The advantage of using the likelihood is that we
can apply standard asymptotic theory to obtain the fixed-effects estimates for the
covariates appearing in the two parts of the model; see, for example, Theorem 2.1
in the Supplementary Material, Section 2. In our case, the maximization of the
likelihood is complicated by the integrals. Many approaches exist for computing
the likelihood, including analytical approximation techniques, like the Laplace ap-
proximation [de Bruijn (1981), Huber, Ronchetti and Victoria-Feser (2004)] or
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adaptive Gaussian quadrature used in Rabe-Hesketh, Skrondal and Pickles (2002),
and data cloning [Lele, Dennis and Lutscher (2007)] as well as Monte Carlo ap-
proaches such as simple Monte Carlo or importance sampling. In this paper, we use
Monte Carlo with the same set of random points in each cluster and approximate
the likelihood by

L(θ) � L̃(θ)

= 1

Kc

c∏
i=1

K∑
k=1

exp

(
ni∑

j=1

log
{
1 − p

(
xij , u

∗
k

)}

+
ni∑

j=1

ι(yij > 0) log
[
p

(
xij , u

∗
k

)
/
{
1 − p

(
xij , u

∗
k

)}]

+
ni∑

j=1

ι(yij > 0) logf
(
yij , λ

(
zij , u

∗
k, v

∗
k

)))
,

where K is the number of Monte Carlo replications and u∗
k and v∗

k are independent
realizations of random N(0,1) variables.

We maximize the approximated log-likelihood log(L̃(θ)) numerically using the
function optim in R [R Development Core Team (2011)], and use the inverse of
the corresponding Hessian matrix to estimate the variances of all of the parameter
estimates in θ , namely, the fixed-effect parameters, the variance components and
γ as well as associated confidence intervals; see the help file for optim in R for
additional computational details.

2.2. Prediction. With bycatch data many quantities need to be predicted at
the cluster-specific level or estimated marginally with respect to the clusters. This
requires predictions of the random effects ui and vi , hereafter denoted by u and
v for ease of notation, along with expressions for the mean and variance of the
response under our random-effects hurdle model. The mean and variance of the
truncated Poisson distribution of the positive observations [see (2.3)] are

m
{
λ(zij , u, v)

} = λ(zij , u, v)/
[
1 − exp

{−λ(zij , u, v)
}]

and

var
{
λ(zij , u, v)

} = λ(zij , u, v)/
[
1 − exp

{−λ(zij , u, v)
}]

− λ2(zij , u, v) exp
{−λ(zij , u, v)

}
/
[
1 − exp

{−λ(zij , u, v)
}]2

,

respectively. The expected bycatch and its variance during the j th haul of the ith
trip are given by the conditional mean and variance of the count Yij given u, v;
that is,

E(Yij |u, v) = p(xij , u)m
{
λ(zij , u, v)

}
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and

var(Yij |u, v) = p(xij , u)var
{
λ(zij , u, v)

}
+ p(xij , u)

{
1 − p(xij , u)

}
m

{
λ(zij , u, v)

}2
.

We also need to predict the probability of nonzero bycatch for a particular haul of
a trip

P(Yij > 0|u) = p(xij , u),

and the expected number of sharks in the nonzero bycatch

E(Yij |Yij > 0, u, v) = m
{
λ(zij , u, v)

}
.

Analogous marginal estimates are also of interest. These are obtained by inte-
grating the analogous cluster-specific quantities over u and v. Some examples are
the probability of nonzero bycatch defined by

P(Yij > 0) =
∫

p(xij , u)φ(u)du,

the expected number of sharks in the nonzero bycatch

E(Yij |Yij > 0) =
∫ ∫

m
{
λ(zij , u, v)

}
φ(u)φ(v) dudv,

and finally the expected bycatch often used as a proxy for abundance

E(Yij ) =
∫ ∫

p(xij , u)m
{
λ(zij , u, v)

}
φ(u)φ(v) dudv.

A unified treatment is possible since the cluster-specific prediction targets of
interest are all of the form t (u, v,x, z, θ), and the marginal estimation targets are

(2.5)
∫ ∫

t (u, v,x, z, θ)φ(u)φ(v) dudv.

The marginal estimation targets can be estimated by substituting the estimated
parameters θ̂ into expression (2.5) and evaluating the integral by Monte Carlo
integration. To assess their precision, we need to compute at least an approximation
to their standard errors. We treat the integral as being approximated to a high order,

and obtain approximate standard errors as (δ̂
T
V̂ δ̂)1/2, where V̂ is the estimated

variance of θ̂ , and δ̂ is obtained by evaluating

δ =
∫ ∫

∂θ

{
t (u, v,x, z, θ)

}
φ(u)φ(v) dudv

at θ̂ , where ∂θ means the derivative with respect to θ . The integrals in δ̂ can be
evaluated using the same methods as for estimating the targets.

Two main approaches exist for predicting functions of random effects; see,
for example, Section 3.6.2 of Jiang (2007). The first approach uses the predic-
tor t (û, v̂,x, z, θ̂), where û and v̂ are predictors of u and v. For example, û and
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v̂ may be the values that maximize [u, v|y1, . . . ,yc], referred to as the conditional
modes. This approach is used by Clayton (1996), Lee and Nelder (1996), Jiang,
Jia and Chen (2001), and, to some extent, Booth and Hobert (1998), who also pro-
posed using a conditional prediction mean squared error to measure variability. It
is a straightforward approach for prediction in clusters from which we have ob-
servations (and hence estimates of their random effects), but it is not clear how
to proceed for clusters for which yi is not observed. A more satisfactory approach
uses the minimum mean squared error predictor or “best predictor” of Jiang (2003)
which, by Bayes’ theorem, is

Tt(x, z, θ;yi ) =
∫ ∫

t (u, v,x, z, θ)[u, v|yi]dudv

=
∫∫

t (u, v,x, z, θ)[yi |u, v]φ(u)φ(v) dudv∫∫ [yi |u, v]φ(u)φ(v) dudv
.

The expression for Tt(x, z, θ;yi ) shows that the best predictor for t (u, v,x, z, θ)

is a ratio of integrals. These integrals can be estimated using the same methods as
for the likelihood. By Monte Carlo approximation we obtain the empirical best
predictor (EBP)

T̂t (x, z, θ̂;yi ) =
∑K

k=1 t (u∗
k, v

∗
k ,x, z, θ̂)[yi |u∗

k, v
∗
k ]∑K

k=1[yi |u∗
k, v

∗
k ] ,

where u∗
k and v∗

k are sampled from independent N(0,1) distributions. We used the
same u∗

k and v∗
k in the numerator and in the denominator to reduce computation;

this also reduces the Monte Carlo variability of the predictor.
The mean squared error of prediction for the empirical best predictor

T̂t (x, z, θ̂;yi ) is

(2.6) msepij (T̂t , t) = Eu,v,yi

{
T̂t (xij , zij , θ̂;yi ) − t (u, v,xij , zij , θ)

}2
.

This quantity is not straightforward to estimate, arguably the main reason these
predictors have not been much used in practice. We tried to follow Jiang (2007),
page 156, and linearize T̂t (xij , zij , θ̂;yi )− T̂t (xij , zij , θ;yi ) around θ and then use
the additional approximations suggested by him to simplify the expressions, but
this approach did not produce sensible results, likely because of the series of ap-
proximations involved [in particular, the “trick” producing Jiang’s formula (3.57)].
As an alternative here one could use the jackknife [Jiang, Lahiri and Wan (2002)].
A second option to estimate the mean squared error of prediction (2.6) is the para-
metric bootstrap approach which is conceptually straightforward and can be used
in the following way:

• Compute the estimate θ̂ from the data.
• For b = 1, . . . ,B

– use the parametric bootstrap to generate θ̂
∗
b from (2.1)–(2.4)
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– generate each of u∗
b1, u

∗
b0, v

∗
b1, v

∗
b0 independently from N(0,1) and y∗

bi from
[yi |u∗

b1, v
∗
b1].

• Compute the bootstrap estimate of msepij (T̂t , t) as

(2.7)
1

B

B∑
b=1

{
T̂t

(
xij , zij , θ̂

∗
b;y∗

bi

) − t
(
u∗

b0, v
∗
b0,xij , zij , θ̂

)}2
.

By randomly generating u, v and yi , we are taking into account all of the sources of
variability (they are all random variables) in the mean squared error of prediction.

The full parametric bootstrap option above is simple, but the repeated estima-
tion of θ makes it very time consuming to implement. We therefore developed a
fast bootstrap scheme based on turning the estimating equation which defines our
estimator θ̂ into a fixed-point equation and then using an adjusted one-step boot-
strap estimator [Salibián-Barrera, Van Aelst and Willems (2008)]. This approach
is described in detail in the Supplementary Material, Section 3, along with a the-
orem that states that the asymptotic distribution of the fast bootstrap estimator is
the same as that of the maximum likelihood estimator. This holds when the model
is correct and regular (so we can interchange the order of integration and differen-
tiation).

3. Analysis of the bycatch data. We fitted our random-effects hurdle model
(2.1)–(2.4) (hereafter referred to as our dependent hurdle model) to the hammer-
head shark bycatch data. For the Monte Carlo approximation to the log-likelihood,
we used K = 5000 random points to evaluate the integrand. (Generally, K = 1000
provides a sufficiently good approximation, but we chose to be conservative here.)
We maximized the log-likelihood from 30 distinct starting points for the parame-
ters generated using the package fields [see Furrer, Nychka and Sain (2012)]
and retained the solution with the largest log-likelihood. We then used our fast
bootstrap procedure with B = 1000 to obtain estimates of the variability of the
parameter estimates and the predicted functions of random effects.

We also fitted the two parts of the hurdle model separately, hereafter referred to
as the independent hurdle model, using the R package glmmADMB [Skaug et al.
(2012), Fournier et al. (2012)].

Table 1 presents estimates of the fixed-effect regression parameters and the pa-
rameters describing the random structure for both the dependent and independent
hurdle models. For our dependent hurdle model, two sets of standard errors and
confidence intervals are provided: those based on the numerical Hessian matrix
and those obtained from the fast bootstrap, these are in agreement. The depen-
dence parameter γ of our dependent hurdle model is estimated at 1.116 and is
significantly different from 0, indicating that the two parts of the model are in-
deed correlated. This information is important, as it implies that it is (i) incorrect
to use the independent model for these data and (ii) inappropriate to consider only
the nonzero bycatch events, both of which are often done in practice without first
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TABLE 1
Estimated coefficients and standard errors with significant effects shown in bold. (SE-H, standard errors from the numerical Hessian; SE-b, standard
errors from the bootstrap; CI-H, 95% confidence interval based on normal approximation with SE-H, CI-b, 95% confidence interval based on normal

approximation with SE-b)

Dependent hurdle model Independent hurdle model

Variable Coeff. SE-H SE-b CI-H CI-b Coeff. SE CI

Presence-absence
Intercept −2.123 1.453 1.636 (−4.970;0.724) (−5.330;1.084) −1.951 1.508 (−4.908;1.006)

YEAR −0.059 0.028 0.027 (−0.115;−0.004) (−0.113;−0.006) −0.044 0.030 (−0.103;0.015)

AVGHKDEP −0.011 0.011 0.016 (−0.031;0.010) (−0.042;0.021) 0.007 0.010 (−0.011;0.026)

AREA5 −0.241 0.242 0.317 (−0.716;0.234) (−0.862;0.381) −0.053 0.254 (−0.552;0.446)

SEASONspring 1.609 0.341 0.351 (0.940;2.277) (0.920;2.297) 1.630 0.358 (0.928;2.333)

SEASONsummer 0.074 0.362 0.372 (−0.635;0.784) (−0.655;0.803) 0.096 0.366 (−0.622;0.814)

SEASONwinter 1.068 0.369 0.342 (0.345;1.792) (0.397;1.739) 0.950 0.393 (0.180;1.720)

log(TOTHOOK) −0.008 0.212 0.206 (−0.424;0.407) (−0.412;0.396) −0.170 0.222 (−0.606;0.267)

σu 1.413 0.145 0.134 (1.129;1.698) (1.150;1.676) 1.387 n.a. –

Abundance
Intercept −4.871 0.661 0.678 (−6.167;−3.576) (−6.200;−3.542) −3.322 1.148 (−5.571;−1.072)

YEAR −0.132 0.032 0.029 (−0.195;−0.069) (−0.187;−0.076) −0.105 0.042 (−0.188;−0.023)

AVGHKDEP −0.067 0.008 0.013 (−0.084;−0.051) (−0.092;−0.043) −0.052 0.013 (−0.077;−0.027)

AREA5 −0.151 0.230 0.257 (−0.602;0.300) (−0.654;0.352) −0.182 0.249 (−0.669;0.306)

SEASONspring 0.850 0.362 0.236 (0.139;1.560) (0.387;1.312) −0.121 0.519 (−1.138;0.896)

SEASONsummer −0.435 0.488 0.401 (−1.392;0.522) (−1.221;0.350) −0.843 0.590 (−1.998;0.312)

SEASONwinter 1.278 0.342 0.226 (0.608;1.948) (0.835;1.721) 0.288 0.574 (−0.836;1.413)

log(TOTHOOK) 1.020 0.096 0.122 (0.831;1.208) (0.780;1.259) 0.944 0.171 (0.608;1.280)

σv 1.248 0.144 0.179 (0.966;1.530) (0.897;1.599) 1.544 n.a. –
γ 1.116 0.159 0.157 (0.804;1.429) (0.808;1.425) – – –
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testing for dependence. As we will see below, doing (i) or (ii) can translate into
incorrect conservation and management decisions.

For both models, the coefficient of each covariate summarizes the effect of that
covariate after adjusting for the contributions of the other covariates, and, further,
some that are significant (based on the confidence interval containing zero or not)
in the abundance part are not significant in the presence-absence part. The latter is
quite common in ecological problems; more factors tend to affect the abundance
process than the presence-absence process. Table 1 also shows that fitting the inde-
pendent hurdle model (rather than the dependent one) would lead us to mistakenly
conclude that there is no effect of YEAR in the presence-absence part of the model
and no effect of SEASON in the abundance part of the model. Further, we would
also underestimate the size of nonzero bycatch events.

In the dependent hurdle model, we find that YEAR is significant in both parts
and has a negative sign. This means that hammerhead sharks are being (or at least
reported as being) caught as bycatch less often through time, and, additionally,
when they are caught as bycatch, there are fewer of them; that is, with each ad-
ditional year the adjusted odds of observing a nonzero bycatch event decrease
by 1 − exp(−0.059) = 5.7% (but not at all according to the independent hurdle
model), whereas λ is reduced by 1 − exp(−0.132) = 12.4% (but only by 10% ac-
cording to the independent hurdle model), so the expected number of sharks in
the nonzero bycatch m(λ) = λ/{1 − exp(−λ)} is reduced. Initially one might in-
terpret positively this reduction in the number of nonzero bycatch events through
time. However, the second part of the model indicates that the number of sharks
in the bycatch is reducing even more quickly. Both are cause for alarm, as they
suggest a decrease in abundance of this critically endangered species (assuming
fishing practices have remained stable). SEASON too plays a role in both parts,
with spring and winter significantly different from the autumn reference. The catch
effort [log(TOTHOOK)] does not impact the presence-absence part, but is signif-
icant in the abundance part. Its estimated coefficient is very close to 1. This value
is consistent with using log(TOTHOOK) as an offset, as is often done in statis-
tical analyses of catch data. The hook depth (AVGHKDEP) impacts the number
of sharks in the bycatch (given it is nonzero) significantly. Such information is
useful to managers for determining time-area closures of fisheries for the preven-
tion/reduction of bycatch.

For the independent hurdle model, predictions of vi are only possible for those
clusters which have at least one positive outcome. Desirably, with our dependent
hurdle model we can predict vi for all the clusters, even those trips that didn’t
report any bycatch. This is a nice feature given the reduction in bycatch events
that we are seeing through time. Figure 1 displays the predicted values for the
random components ui and vi for all of the i = 1, . . . ,292 trips (clusters). The
predictions for vi are in general smaller in magnitude than the predictions for ui

and sometimes very close to zero. These very small v̂i correspond to negative ûi

(as can be seen from the leftmost panel of Figure 1). The clusters for which this
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FIG. 1. Predictions (leftmost panel) of the random components ui and vi for the i = 1, . . . ,292
trips. Prediction intervals for the ordered predictions of ui (middle panel) and vi (rightmost panel)
for i = 1, . . . ,292.

happens are clusters whose responses are all equal to zero (172 and all have v̂i

close to zero). The ûi for these clusters are negative, which reduces the estimated
probability of crossing the hurdle.

The predicted values (black dots) are shown in the two rightmost panels of Fig-
ure 1 with their corresponding prediction intervals (constructed by subtracting and
adding 1.96 times the square-root of the msep estimates). The results are presented
with the ûi and v̂i ordered separately. By examining the predicted ui and vi in the
lower and upper tails, we can look for structure related to covariates. We found the
pattern to be mainly seasonal; that is, small values of ûi (which reduce the proba-
bility of crossing the hurdle) tended to be associated with spring and winter rather
than summer and fall.

Figure 2 shows the predicted probability of nonzero bycatch P(Yij > 0|ui, vi)

and the conditional expectations E(Yij |Yij > 0, ui, vi) with their corresponding
prediction intervals (±1.96

√
msep) for the first five fishing trips. In the left panel

of Figure 2, trip 01A019 suggests two groups of predictions. The covariates of
the observations for this trip only differ for average hook depth (AVGHKDEP)
and catch effort [log(TOTHOOK)], with the coefficient of the latter being virtually
zero in the presence-absence part of the model. For this trip AVGHKDEP has two
values, one resulting in both higher predicted probabilities of bycatch and larger
expected counts. This is useful information for bycatch mitigation. In the right
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FIG. 2. Prediction intervals for the predictions of P(Yij > 0|ui, vi) (left) and
E(Yij |Yij > 0, ui , vi) (right) for trips i = 1, . . . ,5.

panel of Figure 2, the length of the prediction intervals can be quite variable. For
trip 01A019, the two much larger prediction intervals correspond to a combination
of AVGHKDEP and log(TOTHOOK), which is significant in the abundance part of
the model, and therefore has an impact on the estimation of E(Yij |Yij > 0, ui, vi).
Similarly, the longer prediction interval for trip 01A029 corresponds to its dissim-
ilar value of AVGHKDEP. The smaller variations in length are associated with the
values of log(TOTHOOK).

To better understand the coverage of the prediction intervals in Figure 2, we
revisit the random effects’ distributional assumptions. In Table 1 we see that the
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FIG. 3. Estimates (left panel) and standard errors (right panel) for the intercept and variables
[YEAR, AVGHKDEP, AREA5, SEASON and log(TOTHOOK)] corresponding to two different speci-
fications of the random-effects distribution. α and β correspond to the presence-absence and abun-
dance part of the model, respectively.

estimates for σu and σv are quite large, with σv overestimated in the independent
hurdle model. McCulloch and Neuhaus (2011) have suggested that, for the goal of
predicting the random effects, one can expect only modest impacts on the mean
squared error of prediction due to misspecification. For confirmation we did a sen-
sitivity analysis (as summarized in Figure 3) where we assume mixtures of normal
distributions for the predicted random effects (as suggested by their empirical dis-
tributions), and found that the estimated coefficients and corresponding errors are
generally robust to these misspecifications.

4. Simulation study. We carried out a simulation study to assess whether
parameters are estimated accurately using our methodology as well as to under-
stand the properties of our cluster-specific predictions. We simulated data from
our hurdle model (2.1)–(2.4). Each simulated data set comprised c = 100 clus-
ters, half with 5 measurements and half with 10 measurements per cluster, for a
total of 750 observations. We included in xij an intercept, a N(0,1) covariate and
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a Bernoulli(1/2) covariate (all independent of each other). The covariates zij in-
cluded an intercept, the same N(0,1) variable as in xij , a Bernoulli(1/2) variable
and another N(0,1) variable so that xij and zij were partially overlapping. For
each of 400 simulations, we used K = 1000 for the Monte Carlo approximation to
the likelihood, 10 starting points for its numerical optimization and took B = 1000
in the fast bootstrap.

For the parameters, we considered four settings:

• Setting I: α = (0.5,0.5,1)T , β = (−0.5,0.5,1,0.5), γ = 1, σu = 0.75 and σv =
0.5, which gives 30% zeros on average.

• Setting II: Same as Setting I but with γ = 0.
• Setting III: α = (−2,0.5,1)T , β = (−0.5,0.5,1,0.5), γ = 1, σu = 0.75 and

σv = 0.5, which gives 75% zeros on average.
• Setting IV: Same as Setting III, but with γ = 0.

Setting III produces smaller, simplified versions of the bycatch data; the other set-
tings are included to allow comparison with simpler situations.

4.1. Results for parameter estimation. In interpreting the results of fitting
models for data with excess zeros, it is important to keep in mind that, although in
general it is more difficult to fit models with random effects to binary data (i.e., the
presence-absence part) than to count data (i.e., the abundance part), fewer observa-
tions contribute to estimation of the parameters in the abundance part of the model
than the presence-absence part, and so, in general, it tends to be more difficult to
estimate and make inferences about the abundance parameters.

Figure 4 presents boxplots of the sampling distributions of the centered param-
eter estimates for Settings III and IV (analogous results for Settings I and II are
given in the Supplementary Material, Figure 1). For the dependent hurdle model,
all the regression parameters are estimated unbiasedly in all four settings. The de-
pendence parameter γ is also estimated approximately unbiasedly, but has quite
large variability. The spread parameters σu and σv are slightly underestimated on
average when γ �= 0 (Settings I and III), but this is expected given the negative
bias associated with maximum likelihood estimation of variance components. The
larger bias and variance in the estimates of σv relative to σu are due to the smaller
contributing sample sizes.

For the independent hurdle model, some of the regression parameter estimates
are biased when γ �= 0 (Setting I) and particularly in Setting III when the pro-
portion of zeros is larger. This finding agrees with observations by Su, Tom and
Farewell (2009), who considered two-part models for semicontinuous data, as well
as those of Fulton et al. (2015), who modeled multivariate binary responses. As
noted, an incorrect assumption of independence between the random parts of the
model produces biases in the parameter estimates, in particular, the intercept for
the abundance part, because correlated random effects are informative about clus-
ter size (since parameters in the binary part influence the number of observations
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FIG. 4. Setting III and IV: boxplots of (θ̂l − θl) for l = 1, . . . ,10.

in the abundance part of the model). Further, when γ = 0 (Settings II and IV), the
independent hurdle model is correct, but our dependent hurdle model performs as
well as the independent hurdle model.

Table 2 shows the complement of coverage of 95% confidence intervals for
Settings III and IV (analogous results for Settings I and II are given in the Sup-
plementary Material, Table 1). For the dependent model, such intervals are con-
structed using (i) a normal approximation with standard error estimates obtained
from either the numerical Hessian or the bootstrap, or (ii) the bootstrap percentile
method. For the independent hurdle model, a normal approximation is used with
the (numerical) standard errors from the glmmADMB output. For the dependent
hurdle model, the three methods give similar results. For the regression parame-
ters α and β , the confidence intervals have good coverage and are fairly symmetric.
Results are less satisfactory for the parameters related to the random-effects struc-
ture where missing to the right is more probable (due to the underestimation of the
variances) and the coverage is below the 95% nominal level. These parameters are
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TABLE 2
The couple (l, r) represents the percentage of confidence intervals that miss the true value, on the left (l) and on the right side (r), for a nominal 95%

confidence interval. Since 400 simulations were run, each percentage must be a multiple of 0.25%. If the true value of l and r is 2.5%, then the
simulation standard error of their estimates is 0.78 percentage points. Similarly, if the true coverage is 95%, the simulation standard error of an estimate

of coverage or noncoverage is 1.09 percentage points. (SE-H, standard errors from the numerical Hessian; SE-b, standard errors from the bootstrap;
boot., bootstrap percentile method)

Setting III Setting IV

Dependent hurdle model Dependent hurdle model

SE-H SE-b boot. Indep. hurdle SE-H SE-b boot. Indep. hurdle

α1 (3.75,1.75) (3.75,1.50) (2.00,1.25) (3.00,2.75) (4.00,1.50) (4.25,2.00) (1.75,1.50) (4.50,1.50)

α2 (1.75,2.50) (2.50,2.75) (0.50,3.00) (2.75,3.25) (2.75,3.50) (2.25,4.25) (1.25,4.25) (2.50,3.75)

α3 (2.50,3.00) (3.00,3.25) (0.50,3.50) (3.25,4.25) (2.25,3.50) (3.00,3.00) (0.75,4.00) (2.00,3.25)

σu (2.00,3.75) (3.00,5.75) (1.25,5.75) n.a. (1.25,3.25) (1.50,3.25) (0.50,3.25) n.a.
β1 (3.25,3.00) (3.75,3.50) (2.00,3.25) (2.50,2.75) (2.00,3.00) (2.25,4.00) (1.25,3.25) (2.75,3.00)

β2 (2.75,2.50) (4.00,5.00) (1.75,5.50) (2.75,3.00) (2.25,3.00) (3.50,3.75) (1.50,3.25) (2.00,3.25)

β3 (2.75,1.50) (4.25,4.50) (1.25,4.50) (3.50,3.00) (2.75,2.50) (4.25,3.25) (1.00,3.50) (2.50,2.50)

β4 (3.00,1.25) (5.00,3.75) (1.25,4.25) (2.25,3.00) (3.25,4.00) (3.50,4.50) (1.25,4.00) (3.00,4.00)

σv (13.50,15.25) (17.25,30.00) (12.50,30.75) n.a. (0.50,5.00) (1.25,10.00) (0.50,9.25) n.a.
γ (1.25,14.50) (5.50,16.50) (2.00,17.00) – (2.00,3.50) (3.50,6.25) (0.75,6.00) –
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more difficult to estimate; in particular, σv and γ are more variable because they
are estimated only from the nonzero observations which are a small proportion
of the total number of observations. In Setting IV, where γ = 0, the actual cover-
age is better. For the independent hurdle model, only the standard errors for the
regression parameters are available from glmmADMB. The same comments apply
for Settings I and II.

One clear advantage of our model is the ability to perform tests on γ . In fact,
our simulation results support the use of a simple significance test (t-test). For a
5% nominal level, the actual level of such a test can be deduced from the confi-
dence interval results; that is, for Setting II and IV (based on the standard errors
from the numerical Hessian, for example), the actual levels are as follows: 6.5%
for Setting II and 5.5% for Setting IV. In cases where γ is found to be nonzero,
we should always favor our dependent hurdle model, as failing to do so by using
instead the independent hurdle model could lead to incorrect conclusions regard-
ing the fixed-effects. We did explore both likelihood ratio testing and information
criterion-based procedures as alternatives here, but difficulties in establishing their
distributions (in particular, the appropriate degrees of freedom) necessarily pre-
cluded their use.

4.2. Results for prediction. For a prediction target t (ui, vi,xij , zij , θ), we de-
compose the mean squared error of prediction as

msepi = E
{
T̂t (xij , zij , θ̂;yi ) − t (ui, vi,xij , zij , θ)

}2

= E
[
T̂t (xij , zij , θ̂;yi ) − E

{
T̂t (xij , zij , θ̂;yi )

}]2

+ [
E

{
T̂t (xij , zij , θ̂;yi )

} − E
{
t (ui, vi,xij , zij , θ)

}]2

+ E
[
E

{
t (ui, vi,xij , zij , θ)

} − t (ui, vi,xij , zij , θ)
]2

= se
{
T̂t (xij , zij , θ̂;yi )

}2 + bias2 + sd
{
t (ui, vi,xij , zij , θ)

}2
,

and we estimate se, bias and sd empirically via 5%-trimmed means of the 400
predictions obtained by simulation. Results for predictions in four distinct clusters
(two with ni = 5 and two with ni = 10) are given in the Supplementary Material,
Tables 2–9. The bias is generally quite small, but more often negative. This is due
to the underestimation of the spread parameters and the built-in shrinkage effect
in optimal prediction. There is reasonable agreement between

√
msep (estimated

using 5%-trimmed means) and
√

msep∗
t (5%-trimmed mean of

√
msep∗), but with

some exceptions.
Finally, in Table 3 we present the actual coverage of the normal prediction inter-

vals (constructed by normal approximation using the bootstrap estimates of msep)
for ui and vi for these clusters. There is good coverage for ui , but not so good
for vi , when γ �= 0 (Settings I and III) because vi is estimated from a smaller
sample.
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TABLE 3
Actual coverages of nominal 95% prediction intervals for ui and vi

CI(ûi,ui) CI(v̂i , vi)

Setting I II III IV I II III IV

Cluster 1 (ni = 5) 0.955 0.970 0.978 0.978 0.895 0.948 0.900 0.922
Cluster 2 (ni = 5) 0.928 0.945 0.968 0.962 0.910 0.955 0.932 0.950
Cluster 51 (ni = 10) 0.952 0.962 0.952 0.958 0.908 0.975 0.922 0.948
Cluster 52 (ni = 10) 0.958 0.948 0.950 0.958 0.918 0.950 0.912 0.910

5. Discussion. In this paper we propose a random-effects hurdle model for
bycatch data and address all aspects of estimation, prediction and inference. In so
doing we make available much anticipated tools for marine conservation research,
specifically to predict cluster-specific targets like the probablity of bycatch of en-
dangered hammerhead sharks for particular fishing trips. Although we develop our
estimation, prediction and inference procedures for a random-effects hurdle model,
they are easily adapted to a broad variety of situations. In fact, they can be used to
obtain predictions and their mean squared errors for the entire class of generalized
linear mixed models and models with multiple mixed linear predictors, where no
alternative methods are currently available. As well, our general model formula-
tion (Supplementary Material, Section 1) contains numerous special cases for the
random structure, including, for example, a two-level nested structure.

The random effects, used to describe the dependence structure of bycatch data,
are parametrized so as to be independent, which is convenient for non-Gaussian
random effects and, additionally, allows dependence between the two parts of the
model to be both optional and simply tested. For our bycatch data, the dependence
parameter is found to be significantly different from zero, leading us to conclude
that the random process determining the presence/absence of bycatch is not inde-
pendent of that determining the size of the nonzero bycatch events. As a result, it
would be inappropriate to model the nonzero bycatch events separately, as is often
done in practice. Further, our data analysis and simulation results demonstrate that
ignoring this dependence can lead to bias in the fixed-effects regression param-
eters as well as an inability to predict random effects in some cases. In fact we
would underestimate both the extent to which the probablity of hammerhead shark
bycatch events is decreasing with time and the size of these events.

We derive empirical best predictors and obtain estimates of the mean squared
error of these predictions using a fast bootstrap approach. Valuable insight can be
gained from these predictions and their variability. For example, we can predict the
probability of nonzero bycatch for particular trips as well as the expected number
of hammerhead sharks in these events. A comprehensive simulation study demon-
strates the effectiveness and reliability of our proposals for both the fixed-effects
and the predictions. In particular, we see that the asymptotic theory applies well
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for the fixed-effects regression parameters, but that the parameters of the random
structure are more difficult to estimate. For the random-target predictions, we ob-
serve across simulations almost no bias and mean squared error estimates that are
very often in agreement with those computed by bootstrap. Prediction intervals
constructed using normal approximations are found to be reliable.

A natural next step is to incorporate spatially structured random effects into our
framework so that we can more fully describe the spatial dependence in bycatch
data and more accurately identify bycatch hotspots.
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SUPPLEMENTARY MATERIAL

Supplementary Material for the paper “A random-effects hurdle model
for predicting bycatch of endangered marine species” (DOI: 10.1214/17-
AOAS1074SUPP; .pdf). The supplementary file contains four sections. In the first
section we give a general formulation of the random effects hurdle model. The sec-
ond section presents a result about maximum likelihood estimation of the model.
The third section introduces a fast bootstrap estimator and establishes its asymp-
totic distribution. Finally, the fourth section gives additional simulation results, as
discussed in this paper.
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