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Highlights

e The branching process model formulated for livestock populations, which includes
continuous stochastic low-level virus introduction, variable virus transmission rates
and distinct housing structures, has general relevance.

e Including variability in virus transmission rates to model heterogeneity in influenza
virus characteristics is important

e For similar flock sizes, free-range access is the most influential driver, 6fivirus intro-
duction across poultry sectors, while the effect of production cycle length is-low

e Flock sizes below 10,000 birds, typical in free-range systems, tempersthe increase in
risk due to free-range access in a highly nonlinear way.

e Outbreaks are less likely in caged systems than in barn(systems; and risk decreases
rapidly with fewer than 10 birds in a cage.

e The probability the meat sector is virus-free may. belower than for the layer sector,
while the probability of no major outbreak is igher than for the layer sector.

e Barn meat sheds have the lowest probability of virus introduction; however, large
flock and sector sizes mean the sector can behighly influential on risk at the industry
scale.
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Abstract

Outbreaks of highly pathogenic avian influenzas(HPAI) in commercial poultry
flocks are rare but highly disruptive to the industry. There is evidence that low
pathogenic avian influenza (LPAI) can ttansfer, from wild birds to domestic flocks,
where it may mutate to HPAI, and _.the industry is concerned that an increasing
demand for free-range produce may affect the risk of LPAI and HPAI outbreaks.
In this paper we focus on LPAL.ntroduetion and establishment, and formulate a
branching process model to compare risk between sectors and their contribution
to overall industry-level risk: Our aim is to determine how heterogeneity in avian
influenza viruses and theAdistinctypopulation structures of each sector — caged, barn
and free-range, meat and layer—- interact with a continuous risk of virus introduction
to affect outbreak probabilities. We show that free-range access is the most influential
driver of LPAI outbreaks, with production cycle length having relatively little effect.
We demonstrate that, variation in virus transmission rates is particularly important
when modelling/avian influenza introduction to domestic poultry. Virus-free status is
of interest for biosecurity and we distinguish how it differs from the usual probability
of extinction, and discuss how production cycle length affects this difference. We also
use/the nonlinear relationship between shed size and risk to identify conditions for
which shed size is most influential.



1 Introduction

The poultry industry faces a continuous risk that avian influenza will be introduced from
wild bird populations which carry various subtypes of the virus. The outbreaks of avian
influenza in poultry in the United States in 2014-15 were described by the US Department
of Agriculture as being the “worst animal disease outbreak in US history”, affecting over 48
million birds [10]. Highly pathogenic avian influenza (HPAI) kills domestic birdstrapidly
and is a concern for human health. While HPAI can be transferred directly.fromywild
birds to flocks [12, 13], it is more common for low pathogenic avian influenza(LPAI) to be
transferred to domestic flocks, where it may mutate quickly to HPAI [23,25], orcirculate
undetected for some time before mutating to HPAI [8, 14, 18, 27]. The inereaseyin demand
for free-range eggs and chicken meat has changed typical farming practiees;and a current
concern for the poultry industry is that this could lead to an indrease inavian influenza
outbreaks due to increased contact of poultry with the environment.

Stochastic branching processes are ideal for modelling the probability of disease outbreaks
in livestock populations. They are particularly robust when assessing mitigation and re-
sponse strategies aimed at reducing the risk of outbreaks, and=when comparing the relative
risk of disease outbreaks under different scenarios. Such*models can allow for distinct local
conditions (such as stock density, housing conditions, ‘and re-stocking practices), thereby
incorporating heterogeneity in population structure and associated differences in disease
transmission mechanisms. Probability generating\functions can be used to calculate the
probability of disease outbreaks in different. settings, predict the impact of changes in in-
dustry structure on outbreak risk, and assess the potential for control measures to reduce
this risk.

We formulate a flexible branching precess model to assess the relative risk of LPAI out-
breaks posed by each sector,ef ay¢commercial poultry industry. Our purpose is to determine
how differences in housing, ‘er poptlation structures, interact with stochastic introduction
and the heterogeneousmature of avian influenza viruses to influence LPAT outbreak prob-
abilities, at both the seetor and industry scales. In prior work, we developed a multi-scale
branching process'. model to capture the spread of equine influenza in horse populations
[15]. However,0ur model assumed that disease had been initiated by one infected animal
and did not include disease introduction. We also did not consider animal management
practices sithinifarms. Here we extend that model to include the diversity of LPAI viruses
and a stochastic low-level risk of introduction, and explore how they interact with poul-
try management practices to drive the probability of disease outbreaks. The framework
constructed builds on theoretical results for Galton-Watson processes with immigration
[1, 2, 19], and although designed for the poultry application it has general relevance to a
variety of biosecurity questions related to livestock.

In Section 2 we develop a stochastic branching process model for the poultry industry which
includes continuous introduction and transmission of LPAI. We incorporate diversity in
influenza virus characteristics and distinct poultry housing conditions that affect influenza
transmission (Sections 3 and 4) and establish an appropriate parameterisation for our
application (Section 5). We compare outbreak risks between and across farming sectors at
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Figure 1: Conceptual diagram of avian influenza introduction”and tramsmission in gen-
erations. Each node represents an infected bird and arrows represent transmission.
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both the shed and industry levels (Section 6). In Section.7 weSummarise our findings and
discuss extensions to the model and some alternative applications.

2 Model framework

We adopt a Galton-Walton process*with immigration to describe poultry populations in
which birds live in close proximity te.one /another, with introduction of disease from outside
the population. The model concept, is“illustrated in Figure 1 and Table 1 lists variables
and probabilities. Let X be‘a random variable for the number of newly infected birds in a
generation caused by a single,infected bird, where a generation is the average time between
successive infection evénts. Let ®,(s) be the probability generating function associated
with X. Starting with aisingle infected bird in generation ¢ = 0, the probability generating
functions for suceessive generations ®®(s) are:

(1)

where ®)(s) is the probability generating function for the number of newly infected birds
in generation ¢, conditional on a single infected bird at time ¢ = 0, and is given by the ¢*!
iterate of @, (s).

We now add disease introduction into the above process. Let ®,(s) be the probability
generating function for disease introduction, where B is a random variable for the number



symbol | description

t generation of the process
X random variable for disease transmission
B random variable for disease introduction

A% random variable for the number of infected birds in generation ¢
arising from a process (processes) initiated in generation ¢
N® | random variable for total infected birds in generation ¢
q- probability that a process initiated in or before generation
7 dies out

Table 1: Symbols and descriptions for variables, parameters and probabilities:

of newly infected birds in the population from external sources in & singlegeneration. We
assume a stationary introduction process: that is, the risk of disease introduction is the
same in each generation.

To simplify analysis of this system, we group infected birds in*transmission chains so that
we can consider the process as a sum of identically distfibuted, independent processes. For
example, in Figure 1, there are five chains: one initiated-in generation 1, two initiated in
generation 2, and one initiated in each of generations'3 and 4. Define N® to be the total
number of newly infected birds in generation ¢, expressed as a sum of random variables:

t
NO =" 7002 D70 + .+ 2, 2)

i=1

where each Zl-(t) is a random variable for/the number of newly infected birds in generation
t from the branching processe$ imitiatéd in generation ¢ through introduction. Random
variables ZZ»(t) are independent of one another because introduction events are independent
and each chain is indepeundent of all others.

The probability genefating function for N®  notated ®®(s), is then:
t
e(s) = [ 2(s),
i=1

where CIDg)(s) are the probability generating functions for Zi(t). Each process Z; may be
initiated by*ene or more infected birds. From Equation (1), the probability generating
function for the number of newly infected birds in generation ¢ from a chain initiated in
by a single infected bird in generation 7 is (I)gz—z) (s). It follows that:

o(s) =S P (B=0) (&1(s))" =, (8(s)) .

Combining introductions across generations 1 < i < ¢, we have:

t

e0(s) = [ [ @, (2/7(5)) - (3)

=1



This probability generating function defines the distribution for the number of newly in-
fected birds in generation ¢, with stochastic disease introduction in any generation.

A key use of probability generating functions is the derivation of the probability that
a branching process dies out. As our model includes continuous disease introduction, we
define a similar concept: the probability (¢,) that all branching processes initiated by virus
introductions in generations up to generation 7 die out. We compare this definition with an
alternative ¢,, that all branching processes initiated by virus introductions in generations
up to generation 7, have died out by generation 7, that is, the population is virus-free in
generation 7 (Supplementary Material Section A). These two extinction probabilities, ¢,
and ¢,, are subtly different but provide distinct insights, with ¢, < ¢, for 7> 1.

3 Variability in the transmission rate

Influenza viruses in wild birds are known to be diverse, eyen within sub-types and strains,
and thus we expect the virus transmission rate following introduction into poultry to vary
between introduction events [13, 16]. We adapt model(3) fo incorporate this diversity.
We assume within-flock transmission to be a Poisson.process with mean rate A, where A
is sampled from an exponential distribution withwparameter v = 1/E(A) = 1/

X|A ~ Poisson(A), withs A~ Exponential (v) .

It follows that the probability all virus intreductions into a single population in 7 genera-
tions die out is (Supplementary Material Section B):

0 = (Q@Aay)))) = (U e ey 4)

where, for A = ¢, ¢, € (0,1] iSythe smallest root of ¢, = el@=1 " Alternatively, for all virus
introductions into a single population in 7 generations, the probability that the population
is virus-free in the/7™ generation, is:

R T T . e
4= H D, (P4 (¢r-i,n))) = He”<f0 Orie? d-1) (5)
=1 i=1

where, for'A =0, g, ¢ is the probability an introduced virus with transmission rate ¢ dies
out within,7 — ¢ generations, ¢p¢ = 0 and ¢, ¢ = (I)X|A:g(q7—_¢_1,g> for1 <i<T.

4 Population structure

The spread of avian influenza is made more complex by poultry housing conditions, which
may allow birds to move freely (as in free-range or barn sheds), or may restrict movement
(as in caged sheds).



4.1 Barn and Free-Range sheds

In a barn or free-range shed we assume a Poisson offspring distribution (X ~ Poisson(\)) for
within-shed transmission. We define M to be the number of birds in the shed, and assume
there are two mechanisms of transmission that occur concurrently and independently. The
first mechanism reflects local transmission and is the probability of direct infectious contact
with any susceptible bird (p”). The second mechanism reflects global spread within the shed
and is the probability of indirect infectious contact via people, equipment, watér, ox feed
(p?). Chickens are gregarious animals with defined social order, and mixing and feeding are
restricted to groups [22, 26]. We adjust for this local contact population by defining L to
be the local-group size within the shed (0 < L < M), and assuming A\ =wp’L +p?M. This
structure allows for local spread that is independent of shed size (sincen/<M ), together
with global spread that scales with the number of birds in the shed. The reproduction
number is then:

R, = gL+ p!M, (6)

and the probability generating function is:
D, (s) = ePLLAPM)(s—1); (7)

To accommodate small values of L, embeddingya,localyhousehold-type model within the
model structure would improve results and provide greater generality. For our application
it has not been included because its effect on euriresults is likely to be small, with local
group sizes relatively large in commercial flogks {22].

4.2 Caged sheds

To model poultry housed in a caged system, we extend the great-circle model of Ball et al.
[4]. As before, M is thetotalsnumber of birds in a shed, and we set m to be the number
of birds in each cagelwwith 1 ' < m < M. To simplify the model structure, we assume
a one-dimensional/lineartarrangement of cages on the circumference of a circle to avoid
boundary conditions. [3];" We set the probability of direct infectious contact with one bird
to be p¢, and/ for simplicity we assume this applies within the cage and to neighbouring
cages (although eguations with two transmission probabilities are easily deduced). We
assume that the total number of birds infected in a cage initiated by one infected bird is
given by thesfinal size of the Reed-Frost model [5], and the probability that a neighbouring
cage is infected is determined from this final outbreak size, using the clumped Reed-Frost
model [3, 5]. Finally, we assume that any infected bird can infect any other bird in the shed
through indirect spread with probability p¢, and that the transmission process is Poisson.

The probability generating function for Y, the final number of newly infected birds in a
cage given one initial infected bird is:

P, (s) = PY=ym-—1)s. (8)



where the probability P(Y = y) is given by the final size of the Reed-Frost model (Sup-
plementary Material Section C). We model transmission between cages based on this final
outbreak size (1 + y). Note that this process does not follow strict time generations, but
is nevertheless a branching process that can be used to estimate the probability of disease
extinction. The probability that an infected cage infects an uninfected adjacent cage is:

(Z ) py — y)) = 1—(1—-p)™ (Z(l —p)"PY = y>>

_ — 1 ()", (1)) ©)

Following [2], we define a k-component to be a chain of k infected cagessThesprobability,
denoted 7y, that the initial infected cage leads to a k-component“(see=Supplementary
Material Section D) is

me = k(1= p)™ @, (1 —p))™)* (1= (1= )@ (T P

and thus the probability generating function for components is:

O.(s) = Z s

= Zk = )", (1= p)™)* (Tl > )", (1= p)™)" 6"
= ((1 P (1= p))™)Es D BL — (1= p))™ @, (1= p0)™) s

k>1

_ (e dwm)’s (10)
(1— (1~ (1) By — pr)m)) 5)°

It follows that the mean coinponent size is:

2 1+ P (adjacent pen infected) (1)
(b—p)m®y ((1 —p9)m) 11— P (adjacent pen infected)’

¢;T(S) ’s:l =

The number of infected birds in a cage is conditional on the k-component to which the
cage belongs, ‘and thus the probability generating function for the total number of infected
birds in a k-component is:
k
E [Sk(l—FY\k)} _ (sq)\,k(s)) 7

where E denotes expectation and the probability generating function for Y, conditional on
component size k, is:

5, (50 =) (1= (1= )" ) T P(Y)
32 (1= By (1= (L= prym+0) = P(Y)

Combining all k-components, the probability generating function for the total number of

infected birds is then: .
Z (S(I)Yk(s)) e = Dn (sq)\,k(s)) ) (12)

k>1

D, (s) =




To include indirect (global) spread, where an infected bird can infect any other bird in
the shed with probability p¢, we define ®,(s) to be the probability generating function
for this process. The probability generating function for the model that includes all three
mechanisms of spread is given by:

By (B (5)®,, (Do(s))) - (13)

It follows that the reproduction number for the spread of avian influenza in caged poultry
is (Supplementary Material Section E):

Ry = piM Y k(1+E(Y)m, (14)

k>1
where E(Y) = @/ (s) evaluated at s = 1.

Finally, we introduce the continuous low-level risk of virus introduetion with probability
generating function ®,(s). The probability generating function for the full model including
virus introduction in any of 7 generations is given by:

(@, (Pr (Pals)Py (Do(N)N) (15)

It follows that the probability that no major outbreaks occur as a result of virus introduc-
tion over 7 generations is:

¢ = (ulg) ™,
where ¢ is the smallest root of ¢ = @ (®.(q) P, (Pu(q))).
For low expected transmission rates and small cage sizes the above model can be estimated
by assuming cage outbreak-size“to be independent of component size. In this case the

probability generating functions for:)(a) the total number of birds infected locally; (b) the
total number infected; andé(c) thefeproduction number, have a more tractable form:

((F =), (1 —p0)™)°sDy(s)

(1= (1% (1= po)md, (1 —po)m)) P, (s))”
(L= )@, (1= pp)m))° M D, (M0
(1= (1= (1= p)md, (1 —po)m)) ertME—DP, (erM(s=1)))?
(16h)

2

RS =p.M (1 +E(Y)) ( : - 1) . (16¢)
(1= pp)m®, (1 —pp)™)

Numerical solutions for our application show that this approximation slightly overestimates

the probability of an outbreak in most cases. Full expressions (13)—(15) have been used

for all results presented.

O, (sP,(s)) = (16a)

O (Po(5)®y (Pc(s)) =

Y

We note that the above model does not allow for infection to re-enter a cage. Inclusion
would increase model complexity while changes to outbreak probabilities in our application
are likely small; nevertheless, allowance for re-infection would improve insight into the
spread dynamics and risk associated with caged systems.

9



Symbol Value Description and source
Ui 0-0.00001 Avian influenza introduction rate (per generation) [11, 17]
g 3.5 Generation interval for avian influenza (days) [7, 9, 16]
E(A) 0.5-0.9 Expected within-shed transmission rate per generation [16]
M 10000-20000 | Number of birds in a shed [24]
m 1-10 Number of birds in a cage [24]
L 80-100 Number of birds in a ‘mixing group’ within a large shed*{22]
% 0.95\/L Probability of direct contact within a barn
D 0.05M/M Probability of indirect contact within a barn
e ~ 0.95\/m* | Probability of direct contact within a cage
jo 0.05A/M Probability of indirect contact within a caged shed
Jo ~ 0.95\/m* | Probability of direct contact between birds\in adjacent cages

Table 2: Parameter values and plausible intervals for commercial (chicken farms in Aus-
tralia. *This probability is bounded above by one.

5 Model parameters

The commercial chicken industry has five main sectors (barn meat, free-range meat, barn
layer, free-range layer and caged layer sectors), each.with different housing systems. Using
data from the literature and the Australian industry, we compare the effect of these distinct
population structures on the probability of a\lLPAI outbreak. Layer sheds are assumed to
have a production cycle length greater” than=360 days, which means that sheds are not
emptied and completely cleaned during thatyperiod. Meat sheds, in contrast, have a cycle
length of 49 days. Birds are keptifor 7 weeks, after which the shed is fully cleaned and
remains empty for 2 weeks befére new stock arrive. In Australia, approximately 64% of
farms are barn meat, 14% aré freé-range meat, 2% are barn layer, 9% are free-range layer,
and 11% are caged layer J20]. Wesadopt the same model (Section 4.1) for free-range and
barn sheds and assume.thiat wild birds have contact with both barn and free-range flocks,
but that free-range shedstypically have a higher risk of disease introduction [6, 24]. Model
parameters are listed)yin Table 2.

LPAT viruses are prevalent in Australian wild birds, but rates of LPAI introduction and
transmission have not been measured for Australian commercial flocks. We model intro-
duction as B ~ Poisson(n), where introduction is rare with an extreme upper bound for
n based om data from sentinel free-range layer flocks in Australian wetlands [11]. Since
introduetion is rare, a first order approximation provides a reasonable estimate of how in-
troduction affects results. Free-range sheds are assumed to have higher LPAI introduction
probabilities due to an increased probability of direct contact between poultry and wild
birds. The extent of this increase in free-range sheds has been estimated (measured) at
10-fold for the Netherlands [17]; a 3.5-fold increase is inferred from an Australian survey
[24]; and a 2—fold increase reported for New Zealand [21] and Belgium [28]. Here we as-
sume a 3.5-fold increase, although we recognise this may vary seasonally and by location,
and explore variation. We assume a mean reproduction number for LPAI viruses that is
less than one [11, 13, 16, 17, 18, 27|, but model a distribution about this mean (Section

10



3) and provide results for a range of values. We assume that indirect transmission within
sheds accounts for, on average, 5% of total within shed transmission for all shed types, but
that the probability of direct transmission between birds in the same cage is greater than
between two birds in the same local group within a barn or free-range shed (Table 2).

6 Results

Figure 2 demonstrates the importance of incorporating virus heterogeneity intosthe model,
particularly for H5 and H7 LPAI viruses which, more often than not, are unable 6 spread
in domestic poultry, and thus the expected transmission rate of introduced viruses is likely
below one [13, 16, 18]. Modelling 1000 barn-layer sheds over one year; there is a relatively
slow increase in the probability of an outbreak as the mean transmission rate increases
in the model that includes a distribution (Figure 2, black cuve), compared with a sharp
increase in this probability when there is no underlying distribution for the transmission
rate (Figure 2, grey curve). For LPAI introduction to cgmmercial poultry, where viruses
are highly diverse with an expected transmission rate belowy1, this fundamental difference
in the effect of the transmission rate is particularlypertitent.

—— fixed mean rate 1
—— exponentially distributed mean rate

extinction probability (1year)

1 1 1 )
0 0.5 1 1.5 2
expected transmission rate

Figure 2: Theprobability there is no LPAI outbreak across 1000 barn-layer sheds over 1
year for two seenarios:/a fixed within-flock transmission rate (grey curve), or a transmission
rate sampléd from an exponential distribution with the same mean (black curve).

Small shed sizes are a specific characteristic of particular sectors. We investigate their
impactptogether with a variable transmission rate, on the probability of a LPAI outbreak
as the'éxpected transmission rate varies (Figure 3(a)) and as the probability of infectious
contact with wild birds increases (Figure 3(b)). We model 1000 sheds over one year with
stochastic virus introduction. These results illustrate the nonlinear effect of shed size,
which is most pronounced when shed sizes are reduced from 20000 to below 10000, with
smaller enterprises having a greatly reduced outbreak probability. Most shed sizes in the
Australian industry are marginally above 20000 individuals, with the exception of free-
range layer sheds which, typically, house around 10000 birds. This result demonstrates
that, for the Australian industry, the increase in range access for free-range layers may be
offset by smaller shed sizes — particularly when these fall below 10000 birds.

11
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Figure 3: The effect of shed size on the probability there is no LPAL outbreak across
1000 sheds over 1 year in a barn-layer system, with transmission rates sampled from an
exponential distribution and including stochastic introduction (7 =0.5 x 1075):

(a) As expected transmission rate varies, with values of the miéan probability of direct
contact in the barn 2.5 x 10~ (solid lines), 3.75 x 1077 (dottediftes), 5.0 x 10~° (dashed
lines) or 6.25 x 1075 (dash-dotted lines);

(b) As outdoor access, as in free-range layer systems, ingreases the probability of infectious
contact with wild birds by a factor of 2 (dark-grey), by axfactor of 3.5 (mid-grey) and by
a factor of 5 (light grey), with E(A) = 0.7.

Figure 4 directly compares the effect of caged:-layer and barn-layer population structures
on the probability of extinction, assuming a single initial infected bird and a fixed trans-
mission rate. As expected, results indicate that housing poultry in cages with up to 10
individuals in each reduces both the™probability of a major outbreak (Figure 4(a)) and
the reproduction number (Figure4(b)). Although the probability of an outbreak increases
with cage size, the difference is most dramatic for small cage sizes. Nevertheless, a com-
parison between cages with*7 and 9 birds shows, approximately, a 3% difference in the
probability of a major outbreak. The reproduction numbers for the two models are both
threshold parameters, and show that outbreaks can occur for lower values of the transmis-
sion rate in the case. oftbarn sheds. However, we note that the caged-layer reproduction
number is based on transmission between adjacent clusters of infected cages while the barn
reproduction mumber,is based on transmission between infected birds, and thus the two
reproduction numbeérs are not directly comparable, except at this threshold value.

An interesting phenomenon for biosecurity is whether a shed or sector is virus-free, partic-
ularly because’ LPAI outbreaks in commercial poultry may have little discernable effect on
the number of eggs laid or the growth of meat birds, and so are often not easily detected.
Figure § compares the probability of avoiding a major outbreak (Equation (4), solid curve),
and the probability a shed is virus-free (Equation (5), dashed curve), for a barn-layer shed
over one year for three expected transmission rates. The difference is greatest during the
early weeks (5-7 weeks) and over time these differences become negligible. This follows
because, initially (7 = 1), ¢, = ®(q) > ®5(0) = ¢-. Subsequently, as 7 increases, both
probabilities can be expressed as products, with new terms for ¢, quickly approaching
those for ¢, (Supplementary Material Section A, Equation (3)). As a consequence, for
meat sheds with a short production cycle length of 7 weeks, the difference between ¢, and

12
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Figure 4: Comparison of a barn-layer (black) and caged-layer (grey) shed with one
initial infected bird, a fixed transmission rate and no introductionsfor a,range of cage
sizes provided in the legend.

(a) Probability of extinction as the transmission rate (\) increases;

(b) Reproduction number as the transmission rate (\) increasesi”Note that the barn and
cage reproduction numbers are threshold parameters so are directly comparable at one,
but are calculated differently so cannot be compared elsewhere (see text).

¢, is relatively large. It is conceivable that, across an industry with more meat than layer
sheds, there may be a greater probability of virus being present in the meat sector than
the layer sector, while a major LPAI outbreak is‘\more likely in the layer than the meat
sector. We note that the curves in Figure b flatten and differences are less pronounced as
introduction rate (1) decreases, but qualitative results remain unchanged.

1
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s o4l E(A)=0.5

e E(A)=0.5

] —E(A)=0.7 =

® 4ol - - -E(A)=0.7 -
E(A)=0.9
E(A)=0.9

0 ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100

generation

Figure 57" Comparison between the probability of extinction (g, — solid curves) and the
probability a shed is virus-free (¢, — dashed curves), for a range of expected transmission
values E(A) = 0.5, 0.7 or 0.9, and introduction rate n = 0.0001.

In Figure 6 we consolidate our results and consider the probability of an outbreak by sector
and across an entire industry. Stochastic introduction is incorporated, as is a distribution
for the reproduction number and the specific population structures and shed sizes of each
sector. Results are provided over a year so that the effect of production-cycle length,
shed size and free-range access can be appropriately assessed. In Figure 6(a), we compare
1000 sheds of the same size (20000 birds) and of each type to isolate the effect of housing
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characteristics. As expected, free-range access is, by far, the most influential driver of
LPAT introduction and circulation, and barn meat farms show a lower risk than barn layer
farms, reflecting the effect of a reduced production cycle length on LPAI risk. Figure
6(b) includes shed size (10000 for free-range layers, 20000 for the others [24]) and the
relative size of different sectors (Section 5). Here, the barn meat sector has a greater risk
of LPAI introduction than other sectors, despite lower risk per individual shed than either
barn-layer or free-range layer. Our investigations show that these results are qualitatively
unchanged as the probability of infectious contact with wild birds in free-range systems
increases to 5-fold that for barn systems, which is the upper 90% confidence limit reported
in the Australian survey [24].
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Figure 6: Comparison of LPAI extinction probabilities by sector and their relative con-
tribution to industry-scale risk, assuming‘stochastic introduction with n = 0.5 x 1075,
(a) Probability that there is no LPATwutbreak in 1000 sheds of each type over one year.
(b) Probability that there is ne®LPAIoutbreak in 1000 sheds chosen according to the
proportion of each type and size in the/Australian industry (grey curve) together with the
individual components of thisiprobability by shed type. Sector proportions and parameter
values are given in Section 5.

7 Conclusions

We present a stechastic model, motivated by current biosecurity concerns and appropri-
ate for assessing the relative risks of low pathogenic avian influenza outbreaks in poultry
sectors,_and the industry. This model includes several novel features: distinct housing
structures together with variation in virus transmission rates and a continuous low-level
risk of virus introduction. Our findings show that free-range access is the most influential
driver of LPAI introduction and circulation, that production cycle lengths (meat versus
layer) have relatively little effect on risk, and that large numbers of barn meat sheds in the
Australian industry make this sector the most likely to experience LPAI introduction. We
also show how virus heterogeneity affects LPAI outbreak probabilities, and its importance
to this application in particular. We establish conditions for which shed size can temper the
effect of an increased proportion of free-range farms on risk, even though the probability of
LPAI introduction increases with outdoor access. Further, we provide a means of assessing
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when a shed or farm is virus-free and establish how this differs from the probability of
avoiding an outbreak.

In future work we will extend the models presented here to include virus mutation with
the aim of understanding risks of highly pathogenic avian influenza (HPAI) outbreaks in
poultry. We expect several factors — including production cycle length — to influence
these risks, so that risks associated with LPATI outbreaks identified here are not necessarily
those associated with HPAI outbreaks.

Biosecurity guidelines are often required in situations where data are few, and robust’ dis-
tributions for influential parameters are unavailable, as is the case for low pathogenic avian
influenza. By formulating explicit and tractable statistical distributionssacross appropri-
ate parameter intervals, our modelling approach provides an overviewyofsthe interaction
between key drivers and facilitates a broad interpretation. This is particularly appropriate
when establishing general biosecurity principles for commercial,industries.

The model framework formulated is also highly relevant to-other industries. For example,
disease introduction in the pork industry, where there is also amincreasing demand for free-
range produce, can occur via feral pigs and goats. Pet“boarding kennels house animals in
adjacent pens with a continuous low-level risk of disease-introduction through the arrival
of new pets each day. By developing models that capture disease introduction, we can
identify broad characteristics of populations — suchwas rates of introduction, population
turn-over, and internal population structures=— that drive disease risks.
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