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ABSTRACT

The thesis develops control system design methods and theory with an emphasis on 

achieving robust off-line and on-line controller designs. The topics studied cover 

four problem areas.

In the first problem area the objective is to improve controller loop robustness of an 

initial design. The first contribution we make here is the convenient parametrization 

of the class of model matching controllers, this being the first step to apply standard 

H^-optimization techniques to improve robustness. The second contribution in this 

topic is to extend the techniques of loop transfer recovery in linear quadratic 

Gaussian (LQG) designs to cope with nonminimum phase plants.

In the second problem area, the objective is to develop central tendency adaptive 

control methods so as to improve the transient performance of those standard 

adaptive schemes by taking the uncertainty of the plant parameter estimates into 

account in constructing the adaptive controller. Our contributions here are to the 

development of central tendency adaptive pole assignment and central tendency 

adaptive LQG control.

The third problem we tackle is avoidance of ill-conditioning which arises with the 

estimation and control of overparametrized systems. Here algorithms are proposed 

to cope with overparametrization in the signal model and achieve convergence to the 

unique model estimate which corresponds to the non-overparametrized model. 

Based on these estimation algorithms, a central tendency adaptive pole assignment 

control scheme is shown to be able to handle signal generating systems models



ABSTRACT

which are possibly overparametrized. Furthermore, an identification scheme is 

proposed based on Kalman filter ideas to deal with possibly overparametrized 

systems with model order and plant parameter changes.

For the last problem area, motivated by the third problem area applications, we give 

some analysis results on standard estimation algorithms. One is to show that for 

identification of multidimensional linear regression models, the strictly positive real 

(SPR) conditions imposed on the plant noise can be side-stepped by introducing 

artificial noise into the regression vector to make the combined noise whiter. 

Convergence results are achieved without the SPR condition satisfied, and it is also 

shown that the whiter the noise environment, the more robust are the algorithms. 

Another result is to show how to side-step the strictly positive real condition in 

general ARMAX model identifications. This is achieved by a unique 

overparametrization so that the strictly positive real conditions can be relaxed at 

arbitrary degree. The last one is about tracking unknown randomly changed plant 

parameters, for linear stochastic system identification a using standard Kalman filter 

algorithm. Here we develop asymptotic properties of the algorithm and establish the 

tracking error bounds for the unknown randomly varying parameters.



PREFACE

The material included in this thesis is the results of original research co-operatively 

working with Prof. Moore (my supervisor) and /or Dr. Guo. The contributions on 

the joint research work with which I feel most closely identified with are the papers 

with myself as first author. More specifics of my contributions are now 

summarized.

As a first year graduate student, my contributions to the topics "Central tendency 

adaptive pole assignment" and "Loop recovery and robust state estimate feedback 

design" were to developing some of the technical results and to the simulation 

studies to demonstrate the effectiveness of the results. For the project "On 

improving control loop robustness of model matching controllers", some of my 

own insights and technical contributions were critical to the successful formulation 

and derivation of the results. The work on "Adaptive LQG controllers with central 

tendency properties" is primarily my own work, building on the ideas of the central 

tendency adaptive pole assignment study.

For the project "On adaptive estimation and pole assignment of overparametrized 

systems" the key theorems and proofs were developed in the first instance by 

myself with feedback from Prof. Gevers. Later these were enhanced to the 

stochastic case by working jointly with my supervisor. For the papers "Recursive 

identification of overparametrized systems" and "Adaptive estimation in the 

presence of order and parameter changes", I was able to work more independently.

In the paper "Robust recursive identification of multidimensional linear regression



models”, my contributions were to initially quantify the level of injected white noise 

to side-stepping the positive real condition on noise color, and to provide the 

insights crucial to a number of lemmas in the paper. In the paper 'Tracking 

randomly varying parameters”, I contributed to the development of some of the 

theorem proofs. In the paper "Computation of H°°-norms of polynomials", a special 

case study in details turns out to be very helpful for the algorithm development. For 

the paper "Identification /  prediction algorithms for ARMAX models with relaxed 

positive real conditions", I involved the development of almost all the theorem 

proofs and simulation studies.
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C h a p t e r  l

INTRODUCTION

When one wants to control a plant, a starting point is the a priori knowledge about 

the plant and any assumptions concerning the plant The resulting control scheme is 

very much dependent on such assumptions and a priori knowledge of the plant, as 

well as the control objectives. Certainly, with different assumptions, the control 

strategy varies, and the problems and difficulties in designing the controllers differ 

accordingly.

If one assumes that the plant is known exactly and is precisely described by a linear 

dynamical stochastic signal model which prescribes the variation with respect to 

time, the system order and the plant parameters, then a stabilizing fixed (non- 

adaptive) controller can be designed using text book methods. However, the true 

plant dynamics, as is inevitable in practice, may not perfectly match the assumed 

signal model. It is known that such a mismatch between the signal model and actual 

plant, may cause serious problems, namely cause instability of the closed loop 

system consisting of the actual plant and the controller designed for the nominal 

plant. This motivates for us the concept of a robust controller design. A robust 

controller is one which can cope with some mismatching between the signal model 

and the plant, achieving suitable stability margins when applied to the nominal 

plant. The robustness can be with respect to unmodelled dynamics, or to plant 

parameter estimation errors, or to both. Improving control loop robustness 

properties of a nominal design has attracted much attention, and there are many 

approaches proposed to do this. Loop transfer recovery, and H°°-optimization are 

two such methods which appear to work in practice.
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CH 1 INTRODUCTION

In many situations, the plant dynamics are only assumed to be known as one 

member of a specified class of models (say a linear system with known order but 

unknown parameters). Or they may drift very slowly inside of this class of models. 

To cope with such situations, the concept of adaptive control is relevant Adaptive 

control normally consists of two steps, at least in what is known as indirect 

adaptive control. First, the plant parameters are estimated, then the controller is 

designed based on the information gained from the estimation of the plant. Thus the 

"learning" of the plant and the "controlling" of the plant take place in parallel, and as 

time goes on, it is the intention that as the plant parameters are identified, then the 

controller converges to the one which would have been used if the plant parameters 

were known. In the course of such adaption, the way to balance the effects of 

"learning" and "controlling" makes the complexity of the adaptive control schemes 

differ considerably. There are two extremes. One is called certainty equivalence 

principle, and the other is called dual control. In the certainty equivalence principle, 

the adaptive controller is designed using the estimates of the plant as if they were 

the true plant. This approach is easy to implement and simple to use as an on-line 

scheme. However, its disadvantage is that it can only be optimal asymptotically and 

the transient performance may be unnecessarily poor, even intolerable. On the other 

hand, the dual control objective is to give a "best" control in the presence of plant 

uncertainties. However schemes proposed under this heading are very formidable 

to design and are almost impossible to be implemented on-line. Thus to design an 

adaptive scheme which has a reasonable transient performance and also is easy to 

implement becomes a challenging task with the promise of a high payoff.

It is common, in many adaptive schemes, to assume that the plant to be controlled 

has a linear input-output signal model with known order but unknown parameters.
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CH 1 INTRODUCTION

However, the choice of the signal model order, in some situation, is not an easy 

job. If the order is selected too low (it is called underparametrization), then the 

unmodelled dynamics can be destabilizing the whole system, this suggests that 

there is a tendency in practice to overparametrize the signal model to be on the 

"safe" side, that is to choose the order higher than it is. However, when an adaptive 

estimation algorithm (say least squares or Kalman filter) is employed to identify an 

overparametrized system, there is inevitably a lack of excitation in the regression 

vectors and normally there is no guaranteed convergence in this situation. In 

general, near pole zero cancellations in the estimated plant are expected, and they 

can be located anywhere being sensitively dependent on the initial conditions and 

noise sampling path. Furthermore, based on those estimates of the plant, some 

adaptive control schemes (typically pole assignment control) could ineluctably lead 

to excessive control signals (or so called ill-conditioned). Therefore the 

overparametrization on the signal model emerges as a significant problem.

In this thesis, we present our solutions to such robust and adaptive control 

problems as mentioned above. The solutions are only solutions under certain 

assumptions, and so are not claimed to be complete in any way. However, we 

believe they are an advance on current methods in the literature. The thesis consists 

of four parts based on the research papers published or submitted for publication in 

journals and international conferences, and is organized as follows.

In Part I, we develop and generalize some techniques for improving the controller 

loop robustness properties of an initial design. It is known that when a controller is 

designed for a nominal plant to satisfy some performance requirement, and achieves 

attractive closed loop transfer function properties, it does not always turn out to be a

3



CH 1 INTRODUCTION

robust controller in the sense of tolerating plant changes form the nominal plant, or 

in other words the uncertainty of the plant parameters. Some approaches have been 

proposed to improve controller loop robustness while keeping the closed loop 

transfer function unchanged. One of the approaches is called "loop transfer 

recovery” (LTR) which mainly focuses on the linear quadratic Guassian (LQG) 

control design, but can be applied to any state estimate feedback based design. The 

idea of LTR is to represent the plant uncertainty by adding fictitious noise to the 

plant input while designing the LQG controller. For minimum phase plants, as the 

magnitude of the fictitious noise increases the control loop transfer functions 

approach to those for the state feedback design, which have attractive robustness 

properties. Then we say "loop recovery" occurs. Here as Chapter 2, we present our 

generalization on LTR, namely to handle non-minimum phase plant, which is based 

on the published paper [pi]. In Chapter 2, the loop recovery technique has been 

generalized for nonminimum phase plants in the following sense. The open loop 

properties of certain partial state feedback designs are recovered in a state estimation 

feedback controller design involving the addition of fictitious plant noise. The 

partial state is the state of a minimum phase factor in a minimum phase, all-pass 

factored form model. Of course, robust designs are expected only when these are 

achieved for the case of partial state feedback of only the minimum phase factor 

states. This may not always be possible. For the case on minimum phase plants, 

known designs and theory are recovered as a special case. The theory and designs 

of this chapter generalize to include frequency shaping of both the control objectives 

and the loop recovery.

Another approach of improving control loop robustness properties of an initial 

design, which is not limited to an LQG initial design, is to directly search for the
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CH 1 INTRODUCTION

most robust controllers among those which satisfy the performance requirement 

(say achieve a specific closed loop transfer function) or so called "model matching 

controller". Here in Chapter 3, we present the results on parametrization of the class 

of all model matching controllers, and a procedure to search for the most robust 

one, by performing an H°° optimization. These are based on the published paper 

[p2]. In this chapter, the class of all stabilizing controllers, for a two-degree-of- 

freedom control system which achieve a prescribed achievable transfer function, is 

first characterized. The characterization is in terms of an arbitrary proper stable 

transfer function. With this characterization, robust model matching is formulated 

as a standard H°°-optimization problem. This means that standard controller designs 

for a nominal plant, such as LQG ones, can be enhanced to give improved 

robustness properties using H°°-design techniques.

It is observed that in practice, to calculate the value of the H°° norm is usually done 

by a rather trivial method, i.e. plotting the absolute value of the function concerned 

on the unit circle. This involves some ad hoc selection of plotting intervals and 

interpolation to achieve an appropriate accuracy. Here in Chapter 4, we propose a 

recursive algorithm for the computation of H°° norm of polynomials or finite 

impulse response (FIR) transfer functions based on the published paper [p3]. The 

algorithm is shown to converge monotonically and the convergence rate is also 

established. Some examples are presented to illustrate the algorithm.

We report, in Part II, applications of so called central tendency control concept to 

adaptive pole assignment control and LQG control. As mentioned above, in 

designing indirect adaptive controls, there is a range of schemes to choose between 

the two extremes of applying the certainty equivalence principle and dual control.
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When an adaptive scheme based on the certainty equivalence principle is employed, 

it can only be optimal asymptotically and there will be in general, circumstances 

where the transient performance is unnecessarily poor. And dual control normally is 

too formidable to be a practice proposition for on line schemes. In order to avoid 

excessive control signals due to inaccurate estimates of the plant during transient, 

and to achieve an on-line implementable scheme, the central tendency control was 

proposed. In the central tendency control, adaptive controllers are designed using 

measures of central tendency of the a posteriori probability function of the controller 

parameters. That is, given knowledge of plant uncertainty at each time instant, from 

estimation algorithms, and a controller design rule, the controller parameters is 

sought which maximized the likelihood of achieving the control objectives. Here we 

report the results on central tendency adaptive pole assignment control and LQG 

control respectively as Chapter 5, and Chapter 6 based on the papers [p4], [p5] 

presented in international conferences.

In Chapter 5, the concept of central tendency adaptive control is applied to adaptive 

pole assignment. At any iteration, given plant parameter estimates and their 

uncertainty, a controller is designed which is "most" likely to achieve the pole 

assignment objectives. Simulations show a factor of 100 improvement, in transient 

response in one example, over certainty equivalent adaptive pole assignment 

schemes at least for one example.

In Chapter 6, it is first observed that one particular standard certainty equivalence 

based version of an adaptive LQG controller in the literature tends to have a better 

transient performance than others of comparable complexity. Why is this so? Can 

we improve its transient performance even further? Can other adaptive LQG control

6
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schemes be modified to have improved transient performance? The main result of 

this chapter makes clear that improved transient performance tends to occur when 

the design rule is linearized so that the controller parameters are the most likely 

ones, according to the control design rule, given the plant uncertainty. In addition, 

since there is an option of different linearized design rules at each iteration, a 

particular one can be chosen to maximize a central tendency measure, thereby 

achieving central tendency adaptive LQG control. For central tendency adaptive 

LQG schemes, there is avoidance of excessive control action due to ill-conditioning 

associated with near unstable pole zero cancellation in plant estimates.

Part m  is devoted to tackling the problems of overparametrization in adaptive 

schemes. For adaptive estimation / control scheme design, as mentioned early, it is 

common to assume a linear input -output signal model of specified order with 

unknown parameters. Since the underparametrization may cause destabilizing, there 

is a tendency in practice to overparametrize the signal model to be on the "safe" 

side. Thus overparametrization emerges as a significant problem in some 

applications. A specific situation is when the presence of some deterministic 

disturbances such as bias is assumed, when in fact any such disturbances are 

negligible. With overparametrization, there is a danger of ill-conditioning in 

adaptive estimation and in some adaptive control. When an adaptive estimation 

algorithm (say least squares, or Kalman filter) is employed to identify an 

overparametrized system, there is inevitably a lack of excitation in the regression 

vectors and normally there is no guaranteed convergence. Also insufficient 

excitation can lead to estimation with near pole-zero cancellations in the complex z- 

plane. Such pole-zero cancellation can occur anywhere sensitively dependent on the 

initial conditions and noise sampling path, and lead to excessive control signal in

7
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adaptive control schemes, such as pole assignment scheme. We propose an 

approach based on standard identification algorithms (namely least squares and 

extended least squares) to cope with adaptive estimation of overparametrized 

systems. The key idea in this approach is to introduce excitation signal into the 

regression vectors so as to enforce artificially the regression vector to have suitably 

excitation, even when the systems are overparametrized.

Here, as Chapter 7, our published paper [p6] is included. In this chapter, a first 

step is taken to avoid ill-conditioning in adaptive estimation and pole assignment 

schemes for the case when there is a signal model overparametrization. The 

methods proposed in this chapter are relatively simple compared with on-line order 

determination, being based on introducing suitable excitation in the "regression" 

vector of the parameter estimation algorithms to ensure parameter convergence. For 

the case when the model are non-unique in that pole zero cancellations can occur, 

the algorithms seek to estimate the unique model where the cancellations occur at 

the origin. Applying estimates of this (unique) model turns out to avoid ill- 

conditioning in central tendency adaptive pole assignment For the case of one pole 

zero cancellation the convergence theory of the algorithm is complete.

Following on from our initial work, we present generalized results as Chapter 8 

based on the published paper [p7]. In this chapter, a recursive identification 

algorithm based on extended least squares is proposed to deal with the contingency 

of overparametrization. The algorithm proposed here is relatively simple compared 

to those involving on-line order determination, being based on adaptively 

introducing suitable excitation into the algorithm to avoid ill-conditioning. In the 

case of extended least squares based adaptive estimation, then the regressors are

8
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appropriately stochastically perturbed. The algorithm is shown to converge to a 

unique defined signal model with any pole zero cancellations at the origin. Ill- 

conditioning is avoided.

In Chapter 9, based on the paper [p8], we report further research on tracking 

parameters changes in the presence of order changes. An approach to adaptive 

estimation and control is given when there are jump parameter changes which 

include order changes. Order changes can be viewed as the introduction of 

overparametrization, which in conventional algorithm causes ill-conditioning. Here, 

modified algorithms which involve the introduction of noise into the calculations are 

proposed and studied by theory and simulations.

Part IV consists of Chapters 10, 11 and 12, reporting some analysis results on 

adaptive estimation algorithms. One of them deals with linear regression model 

[p9]. It is known that stochastic adaptive estimation and control algorithms 

involving recursive prediction estimates have guaranteed convergence rates when

the noise is not ’’too" colored, as when a positive real condition on the noise model
*

is satisfied. Moreover, the whiter the noise environment the more robust are the 

algorithms. Chapter 10, which is based on the published paper [p9], shows that for 

linear regression signal models the suitable introduction of white noise into the 

estimation algorithm can make it more robust without compromising on 

convergence rates. Indeed, there is guaranteed attractive convergence rates 

independent of the process noise color. No positive real condition is imposed on the 

noise model.

However, the techniques used in Chapter 10 do not appliable to a general ARMAX 

signal model. Then in Chapter 11, which is based on the paper [plO], transformed

9
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extended least squares algorithms are proposed for ARMAX model identification 

with the objective of avoiding the positive real condition associated with standard 

equation error and output error algorithms. This is achieved by an 

overparametrization at the cost of additional richness requirements on excitation 

signals, but without introducing ill-conditioning or infinite dimensional calculations 

as in earlier methods. Results for the case of D-step-ahead prediction ELS 

algorithms for ARMAX models also explored in this chapter and some simulation 

studies are included to assess the relative performance characteristics of the 

proposed algorithms.

The other analysis result is [pi 1] on the standard algorithm namely Kalman filter. It 

is known that in linear stochastic system identification, when the unknown 

parameters are randomly time varying and can be represented by a Markov model, a 

natural estimation algorithm to use is the Kalman filter. In seeking an understanding 

of the properties of this algorithm, existing Kalman filter theory yields useful 

results only for the case where the noises are Guassian with covariances precisely 

known. In other cases, the stochastic and unbounded nature of the regression 

vector (which is regarded as the output gain matrix in state space terminology) 

precludes application of standard theory. In Chapter 12, based on the paper [pi 1], 

we develop asymptotic properties of the algorithm, in particular, we establish the

tracking error bounds for the unknown randomly varying parameters.
¥

A summary is drawn in Chapter 13 as the conclusions for the thesis and also some 

further research directions is pointed out there.

1 0



CH 1 INTRODUCTION

P u b l i c a t i o n s

[pi] J.B. Moore and L. Xia, ’’Loop Recovery and Robust State Estimate 

Feedback Designs", IEEE Transaction on Automatic Control 

Vol.AC-32, pp. 512-517, 1987. Also see Proc. of ACC, pp. 1807- 

1812, Seattle 1985.

[p2] J.B. Moore, L. Xia and K. Glover, "On Improving Control-Loop 

Robustness of Model-Matching Controllers", Systems and Control 

Letters Vol. 7, pp. 83-87, 1986.

[p3] L. Guo, L. Xia and Y. Liu, "Recursive Algorithm for the Computation of 

H°°-Norm of-‘Polynomials", IEEE Transaction on Automatic 

Control Vol.AC-33, Oct. (to appear) 1988.

[p4] J.B. Moore, T. Ryall and L. Xia, "Central Tendency Adaptive Pole 

Assignment", IEEE Transaction on Automatic Control Vol.AC-34, 

Jan. (to appear) 1989. Also see "Central Tendency Pole Assignment", 

Proc. of 25th CDC, pp. 100-105, Athens, Greece. 1986.

[p5] L. Xia and J.B. Moore, "Adaptive LQG Controllers with Central 

Tendency Properties", to appear in Proc. of IF AC Symposium on 

Identification and System Parameter Estimation, Beijing, 1988.

[p6] L. Xia, J.B. Moore and M. Gevers, "On Adaptive Estimation and Pole 

Assignment of Overparametrized Systems", Int. J. of Adaptive 

Control and Signal Processing, Vol. 1 pp. 143-160. 1987. Also see 

Proc. of 26th CDC, pp.378-383, 1987

11



CH 1 INTRODUCTION

[p7] L. Xia and J.B. Moore, "Recursive Identification of Overparametrized 

Systems", IEEE Transaction on Automatic Control Vol. AC-33, 

Dec (to appear), 1988.

[p8] L. Xia, V. Krishnaumrthy and J.B. Moore, "Adaptive Estimation in the 

Presence of Order and Parameter Changes", submitted to Int. J. of 

Adaptive Control and Signal Processing.

[p9] L. Guo, L. Xia and J.B. Moore, "Robust Recursive Identification of 

Multidimensional Linear Regression Models", Int. J. Control, (to 

appear), 1988. Also see Proc. of IFAC Workshop on Robust 

Adaptive Control. 1988.

[10] J.B. Moore, M. Niedzwiecki and L. Xia, "Identification / Prediction 

Algorithms for ARMAX Models with Relaxed Positive Real Conditions", 

submitted to Int. J. of Adaptive Control and Signal Processing.

[pi 1] L. Guo, L. Xia and J.B. Moore, "Tracking Randomly Varying 

Parameters", to appear in Proc of 27th CDC, also submitted to 

Mathematics of Control, Signals and System, 1988.

1 2



PART I

On Improving Controller Robustness



C h a p ter  2

LOOP RECOVERY AND ROBUST STATE ESTIMATE 

FEEDBACK DESIGNS

1. Introduction

It is well known that plant input robustness properties of a state feedback (SF) 

design, such as measured by phase margins for example, can evaporate with a state 

estimate feedback (SEF) design [l]-[5]. An important class of SF design is linear 

quadratic (LQ) design, with the associated SEF design being then linear quadratic 

Gaussian (LQG) design.

A technique to improve robustness of SEF based designs, such as LQG designs, is 

to represent the plant uncertainty in the frequency band of interest by the addition to 

the plant input of fictitious noise in this band, [5,][6]. Such a technique for 

minimum phase plants leads to "loop recovery", because as the magnitude of the 

fictitious noise increases, the open loop transfer functions, and thus loop 

robustness properties, approach those for the SF design. The recovery of the SF 

robustness properties in the frequency band of the noise is at the expense of a 

reduced performance in the frequency band of the noise. The theory for the case of 

fictitious white noise is developed in [5], while the case of added colored noise is 

studied in [6].

In this chapter, the notion of loop recovery is extended to certain classes of SEF 

designs for nonminimum phase plants. The results are developed using an all-pass 

/  minimum phase (i.e. inner/outer) factored form for the plants. The SEF controller 

designs can be based on applying known LQG and H°° techniques [7],[8]. An
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CH 2 LOOP RECOVERY

initial state feedback design must constrain the feedback to feedback of only the 

minimum phase factor states, giving an outer state feedback (OSF) design (possibly 

dynamic). The addition of fictitious noise at the input to the minimum phase factor 

ensures that when state estimators are employed, there is loop recovery. Of course, 

certain nonminimum phase plants can never be "robustly" controlled, nor 

"robustly" controlled using state feedback of only the minimum phase factor states. 

In the latter case, when loop recovery is applied, it is not expected that the resulting 

design will be "robust".

In the case of two degree of freedom design, the technique of [8] building on those 

of [3] can be applied. A particularly convenient formulation arises using the results 

of [9].

In Section 2, a class of controllers is defined for which loop recovery properties are 

guaranteed. A design approach and an example design are included in Section 3 to 

add insight. Section 4 summarizes new results for frequency shaped state 

estimators by dualizing control results in [10]. Such results are useful for frequency 

shaped loop recovery. Conclusions are drawn in Section 5.

2. Loop Recovery

In this section, we consider in turn factored signal models, state estimation and 

controller constraints for loop recovery.

Factored Form Plant Model:

Let us consider a linear finite dimensional, time invariant plant with a transfer

2



CH 2 LOOP RECOVERY

function matrix W(s). Consider also a standard inner/outer factorization of W(s) 

as, see [11]

Here W^s) is asymptotically stable, and "inner", or equivalently "all-pass", in that 

Wi(-s)xWi(s) = I. Also, W°(s) is "outer" or "minimum phase" in that W°(s) has full 

rank for s in the right-half plane Re[s] > 0. Here also, W^s) has its poles in Re[s] < 

0, and the zeros of W°(s) are in Re[s] < 0. Should W(s) be minimum phase, then 

trivially W^S) = I, W°(s) = W(s). Unstable modes of W(s) appear in W°(s). As 

guaranteed in the state space factorization approach of [11], there may exist 

cancellation of the poles Wi(s) and the left half plane zeros of W°(s), and none 

between the zeros of Wi(s) and the poles of W°(s). Actually, imaginary axis zeros 

of W(s) are not permitted for the algorithms of [11], but are permitted in much of 

the subsequent theory.

W(s) = W°(s)Wi(s) (2 . 1)

*  W(s) = c ’VsI - aV b P

(a) Deterministic Model

(b) Factored (nonminimal) Model

Fig. 2.1. Plant Representations
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Referring to Figure 2 .La, let us consider a minimal state space realization 

{AP,BP,CP} for the plant with transfer function W(s) = Cp(sI-Ap)_1Bp and state 

xpt. Referring to Figure 2 .l.b, let us consider a non-minimal representation of the 

plant factored into its all-pass and minimum phase factors. The all-pass system, 

{A*,B*,C*,D*} assumed minimal, has states x \  and a transfer function W ^s) = 

[C10 1(s)Bi+Di] where 3>i(s) denotes (sI-A1) '1. Also D1̂ 1 = I. The minimum phase 

system {A°,B0,C°}, assumed minimal, has states x°t and a transfer function W°(s) 

= C°O0(s)B°, <D°(s) = (sI-A0)-1.

Stochastic Model:

Consider the factored form model of Figure 2. Lb, but with process noise v tp = 

N[0, Qp] and m easurem ent noise wt = N[0,Rp]. These are assumed to be 

independent, zero mean and white, having covariance matrices Qp > 0, Rp > 0 

respectively. For simplicity, the process noise is assumed to be added at the plant 

input and Qp is taken as Qp = qpI. In addition there is included in the model a 

fictitious process noise vft, assumed to be inserted at the input to the minimum 

phase factor. Its purpose is to achieve loop recovery properties in its frequency 

band, It can be viewed as representing the effects o f plant uncertainty in this 

frequency band. In the first instance, let us consider the case of white fictitious 

noise vft = N[0,ql]. Denoting the state of the factored form plant model as xt, then 

its state space equations are

vt = [ y p j .  Axt + But + Tvt, yt = Cxt + wt

A=[A0°B;? ] .  b = [7 ‘], r  = [B0o ], c  = [CO 0] (2.2)

4
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Should W(s) be minimum phase, then xt = xpt = x°t, otherwise, xt is a non- 

minimal state vector.

State Estimator

Applying Kalman filter theory [1],[2] to the stochastic (non-minimal) plant model 

(2.2) yields the time invariant estimator

Axt + But + K(yt - Cxt), x0 = 0, K = PC^R-1,

PA"1 + AP - POR-'CP + Q = 0, P > 0 (2.3)

It is easy to verify that for QP = qPl the partitioned solution P has block P12 = P2lx 

= 0. Also Ki = 0 (details to be seen in Lemma 1). Then for zero initial conditions, 

(2.3) gives

x(s) = (si - A + KC)'l[Bu(s) + Ky(s)], or x*(s) = Oi(s)Biu (s ) ,

£°(s) = <50(s) {K0[y(s)-C°x°(s)] + B°W'(s)u(s)), (2.4)

The estimation (2.3) is well defined when [A,C] is detectable, and in addition is
i

asymptotically stable when [A,(JJ is stabilizable. Since the all-pass factor here is 

asymptotically stable, these conditions simplify as [A °,C °] detectable,
_i_

[A°,B°(qI+qpDiDix)2] stabilizable. These are trivially satisfied for all finite q > 0, 

since {A0, B°, C°) is a minimal representation of W°(s).

5
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Frequency Shaped Estimation:

For practical control law design using loop recovery techniques applied to minimum 

phase plants [6], the fictitious noise is usually frequency shaped so that robustness 

is achieved in the frequency band where otherwise the design is not robust. Thus 

fictitious noise is usually injected only at frequencies in the vicinity of the cross 

over (loop unity gain) point. The controller and performance is then unchanged 

outside such frequency bands. For practical designs, in the more general setting of 

nonminimum phase plants as here, the same thinking applies.

Frequency Shaped Fictitious Noise: Assume that the frequency shaped

fictitious noise vft has a power spectrum qQf(s) = qQfx(-s) which is 

nonsingular a.e. The minimum phase stable spectral factor of Qf(s) is denoted 

by[Qf(s)F. (2.5)

Frequency shaped estimation theory, see Section 4, now applies. Leaving aside any 

frequency shaped estimation of since this is not required in subsequent loop 

recovery theory, the state estimation (2.4) generalizes as,

x°(s) = <D°(s) {K°[y(s)-C°x°(s)] + B°W'(s)u(s)}, (2.6)

where K°(s) is given from the spectral factorization

C°O0(s)Q0(s)O°(-s)TC0T+R = F°(s)RF°(-s)x

C°a>o(s)K°(s) = [F°(s) - 1], (2.7)

Here Q°(s) is the spectrum of the noise signals affecting the states x°t and consists 

of the sum of two terms, qB°Qf(s)B0X due to vft, and another term, Qv(s) due to vpt

6
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prefiltered by B°Wi(s). We assume that there are no pole-zero cancellations in 

C°d>0(s)Q0(s)O°(-s)TC0X. Here also, F°(s) is the unique minimum phase spectral 

factor with the same poles as <E>°(s) and the stable poles of Q°(s). The theory of 

Section 4 tells us that with A0, C° observable, a stable proper K°(s) can be 

constructed satisfying (2.7) so that the optimal estimation (2.6) can be 

implemented. Indeed this property can also be verified using state space models for 

the shaping filter and augmenting those to the plant model and applying standard 

Riccati theory and spectral factorization concepts.

OSF Controller

Consider the stabilizing outer state feedback control law, ignoring initial conditions, 

and associated open loop transfer function as

uOSF(s) = l OSF(s)xo(s), W 8£F(S) = LOSF(s)<i>o(s)BoW'(s) (2.8)

For the main result of this section, there is no concern about how LOSp(s) is 

designed. However, to use the result as a design tool we present subsequently one 

approach to the design of L0SF(s) based on LQ/H°° methods.

SEF Controller:

From (2.8), we see that the outer state feedback control u0SF consists of dynamic 

feedback of the outer states x°t . The corresponding state estimate feedback 

controller using the estimator (2.3) to achieve estimates x°t, replaces x°t with x°t . 

Thus in obvious operator notation,

uOSF = L OSFxot> uSEF = LOSF$ot (2.9)

7
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Of course, ignoring initial conditions, uOSF(s) = uSEF(s^  However, the open loop 

transfer functions W §£F(s), W ^£F(s) differ. The transfer function w £ £ F(s) is 

depicted in Figure 2.2 and is (with K> = 0, LISF = 0)

W§£F(s)={TLOSF(s)p +o o (s)Ko c o]-l<D0(s)B0}-10 0(s)B0W(s) (2.10)

u ŝ)___ ya.(s)
---Hca<sy|-»»(s)--*|K0(s)[-»(s

A  w , \
XCL(S>

C c

L®F(s

*OL(S)

uo6^

b £
Lisf(s) =0

0 '(s)

K‘(s)

h©HB1

Fig. 2.2. Open-loop Transfer Function W ^ F(s)

Loop Recovery

Loop recovery at the plant input is said to occur when for almost all s, the open 

loop state estimate feedback transfer function approaches the open loop state 

feedback transfer function as adjustments are made to the design of the state 

estimator. Here the adjustment is that q —» °o and we seek the loop recovery 

property

^  W8P(S) = wgF(s) a.e. (2.11)

8
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Lemma 1: Consider the factored plant (2.2) state estimator (2.3) and

feedback control laws as in (2.9). Then for the case when QP = qPl

P12 = P21t = 0, K> = 0, Ko = PnC^R-1, (2.12a)

P11 A ^ h-A°P11-P11O ^R '1 C°Pii+(qp+q)B°B01 = 0, P n  > 0 (2.12b)

Proof: The solution P > 0 of (2.3) is known to be unique under minimality of

[A°,B°,C°] as in early discussions. We first show that taking P12 = P21X = 0 leads 

to a solution P > 0 to conclude that indeed P12 = P2ix = 0. Taking Pi2=P21x = 0 in 

(2.3) gives

P22Aix + AiP22 + qPEPBi* = 0, P22 ^ 0

which has a unique solution with [A^B*] stabilizable as here. From [12] Theorem 

5.1, with a mild extension to include the non-square case we have

ÖP22 + qPDiß* = 0

Now (2.3) yields (2.12b) which has a solution with [A°,B°,C°] minimal as here. 

Consequently, P = Diag[Pn P22] ^ 0 is a solution to (2.3). Thus P12 = P21x = 0. 

Then (2.12) holds. AAA

Remark The important aspect of this lemma is that the estimator gain is 

constructed in terms of only the outer factor parameters A°,B°,C° and the 

covariances R, qPl, ql. For the frequency shaped fictitious noise as in (2.5), the 

same results hold as established using the results of Section 4. Again Ki = 0 and 

K°(s) is constructed in terms of A°,B°,C°,R, qQf(s).

9
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Theorem 1 Consider the plant in factored form (2.1), (2.2) with 

[A°,B°,C0] minimal, and the optimal state estimation (2.6) under (2.5),(2.7). 

Consider also the SEF controller, as above, based on the OSF feedback 

control law (2.8). Then

Lim^ c°o°(s)[I + K°(s)C°00(s)]'1B0[Qf(s)p = 0, a.e. (2.13a) 

q‘^ ° ( s )  = B°[Qf(s)FR-i, a.e. (2.13b)

and the loop recovery property (2.11) holds.

Proof Rigorous proof techniques as in [2] are straightforward but tedious. Here 

a believable "proof* is given leaving out the technicalities. The spectral factorization 

(2.7) associated with the estimation of x°(s), can be written as

C°O<>(s)[B0Qf(s)B^ + q*1 Qv(s)]<J>°(- s^C01 + q-lR

= [I+C0O0(s)K0(s)] (q'1R) [I+C°O0(- s)K°(-s)]T (2.14)

In turn, as q —> «>, since B°Qf(s)Bot and q_1Qv(s) are non-negative definite a.e., 

then with [A°3°,C°] minimal, (2.13a) and (2.13b) follow. Moreover, under (2.5)

Lto.. [I + K°(s)C°C>0(s)]"1 B° = 0, a.e. (2.15)

With obvious notation, the open loop version of the expression for state and state 

estimates are (for zero initial conditions, refer to Fig.2.2)

x°OL - x°OL = - O°[K0C°(x00L - x°ol) - B°Wi(uoL - uol)]

= <D°[I + KoCo0°(s)]-1BoWi(uoL - UOL) (2.16)

1 0
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Applying (2.15), we have

q ^ o o  x° o l (s) =  x° o l (s) a.e. (2.17)

Then the loop recovery property (2.11) follows. AAA

Remarks 1. If the plant is minimum phase, then outer state feedback control 

becomes full state feedback control, and standard "loop recovery" results are 

recovered as a special case. For the case when there are plant zeros on the 

imaginary axis, in the limit as q —» «>, the state estimator loses its asymptotic 

stability property.

2. For the case when Qp is more general than q1!  so that IO(s) * 0, then in (2.4) 

(2.6) (2.10), (2.13) - (2.16), K°(s) is replaced by K0(s)+B0CiOi(s)Ki(s). Also 

xi(s) = <t>'(s)(B'u(s) + K‘(s)[y(s) - C°x°(s)]).

3. A major observation of this chapter is that the above results can be extended 

using our analysis approach to achieve near loop recovery in frequency bands 

where qQf(s) is "large" and LISF(s)Oi(s)Bi is "small" in some relative sense. It is 

readily shown that the transfer function [W§P\s) - W§^(s)] is then "small" in such 

a band. The requirement that LISF(s)Oi(s)Bi be "small" can be achieved for 

arbitrary control laws if LISF(s )0 1(s)B1 is "small" in the band of interest. 

Equivalently, this requirement is that the plant be "near minimum phase in the 

frequency band" of interest with Wi(jco) * Di in this band where DixDi = I. Notice 

that if right half plane zeros of W(s) are in the far right half plane, then in the scalar 

case W*(s) » -1, or if the zeros of W(s) are outside the frequency band but close to 

the jco axis then W^s) « +1.

11
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3. A Design Approach - Illustrative Example 

An OSF controller design approach:

Consider the factored plant as (2.2) and associate with this plant a quadratic cost 

function,

V = (xtTQcxt + utTRcut)dt (3.1)

with Q° = Q01 > 0, Rc = R01 > 0. The optimal control has the form

ut = Lxt = V x \  + L°x°t, [L° V] = L (3.2)

for some gain L found using standard techniques [1],[2]. For the more general case 

of frequency shaped LQ designs as in [10] in which Qc, Rc generalize as 

Qc(s)=Qcx(-s), Rc(s) = RCT(-s), then (3.2) generalizes as

u(s) = L(s)x(s) = LKs)xi(s) + L°x°(s), [L°(s) L\s)] = L(s) (3.3)

Details are not developed here.

• A-
If we replace x \  by some estimate x \  obtained by any standard state estimator with 

stable dynamic, as in (2.3) or one with input ut, and x°t, then the inner/outer state 

feedback control law (3.3) becomes an outer state feedback law. If in such an 

estim ator Ki = 0, as in Lemma 1, ignoring initial conditions, 

x1(s)=xi(s)=<J>1(s)Biu(s), and substitution into (3.3) yields an outer state feedback 

proper controller, with

uOSF(s) = lOSF(s)xo(s)> l0SF(s) 4 [I - Li(s)Oi(s)Bi] '1L°(s) (3.4)

12
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The controller, denoted L0SF(s), being a state estimate feedback scheme in 

disguise, is stabilizing according to LQG theory, but may have poor loop 

robustness. When K1 *  0 the expression for L0SF(s) is more complicated, but the 

controller is still stabilizing. The robustness can perhaps be improved by optimizing 

an H°° robustness measure over the class of all controllers yielding the same closed 

loop transfer function. In our design approach, this class is the class of all optimal 

controllers in an LQ sense. Details on the optimization are not included here, see 

[7],[8]. Of course a "robust" design may not be achievable for certain non­

minimum phase plants and quadratic indices. We do not address this fundamental 

problem here.

A simple scalar example is studied to illustrate loop recovery properties and the 

robust design approach following from the theory of this chapter for general (non­

minimum phase ) plants. As an example, we work with an unstable non-minimum 

phase stochastic plant as in Section 2 given by transfer function

W(s) = (s - 6.1)(s3 + s2 + 23.25s + 50.5)'1 

Consider now the factored system W(s) = W°(s)W'(s) where

W°(s)=(s+6.1)(s3+s2+23.25s+50.5)"1, W*(s)=(s-6.1)(s+6.1) 

with a realization in the notion of Section 2.

Example

A.-PL o
1 -23.25 -5 
1 0

1 0

A* = -6.1, B» = l, Ö  = -12.2, D*=l .

13



CH 2 LOOP RECOVERY

The process and measurement noise covariances under such a realization are Qv= 1, 

R = 1 and controller weightings for LQ design are Q° = OC, Rc = 1.

For this (non-minimal) representation the LQ control law can be re-expressed in the 

form (3.2) with L° = [0.68 -9.8 -22.2] and Li = [-2.7]. Also the outer state 

feedback controller as in (3.4) and open loop transfer function are

LOSF(s) = (S + 6.1)(s + 8 .8 ) - ^ °

w8£F(s) -0 .7s3 + 13.9s2 - 37.7s - 135.4 
s4 + 9.8s3 + 32.1s2 + 255.7s + 455.7

The former is stable and the latter has two unstable poles. Figure 3.1 shows the 

Nyquist plot.

0 . 5 -

- 0 . 5 -

- 1 . 0
- 2 . 0 - 1 . 5 - 0 . 5- 1. 0

Fig. 3.1. Nyquist Plot for OSF
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0 . 5  -

- 0 . 5 -

- 1 . 0
- 0 . 5- 1 . 0- 1 . 5- 2 . 0

Fig. 3.2. Nyquist Plot for SEF

0 . 5 -

- 0 . 5 -

- 1 . 0
- 0 . 5- 2 . 0 - 1 . 5 - 1. 0

Fig. 3.3. Nyquist Plot for LTR
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Now the state estimator is designed with Ki = 0, K° = [-3.6 0.9 0.2]x. Figure 3.2 

shows the associated Nyquist plot with relatively poor robustness properties. 

Choose vf = N(0, 10000) to recover the outer state feedback loop robustness, now 

K1 = 0, K° = [68.1 11.7 0.8]x and Figure 3.3 shows the loop recovery.

4. Frequency Shaped Estimation

When plant input noise is colored, rather than white as in the standard estimator 

theory, then it is straightforward to augment the plant model with the noise model 

and apply standard filter theory to the augmented plant However, as the theory of 

[6] illustrates, the formulations and proof techniques are awkward. Here a direct 

approach in the frequency domain is taken so as to achieve the simplicity of 

derivation and formulation of the results of Section 2, which are essential for the 

frequency shaped loop recovery theory of Section 2.

Noise model Plant

Fig. 4.1. Signal Model

Signal Model:

Let us consider a Wiener type signal model as in Figure 4.1 with vt,wt independent

16
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white noise sources with zero means and covariances I, R = Rx > 0 respectively.
2

The plant input vct is colored noise with a spectrum Q(s) where Q(s? is a stable 

minimum phase spectral factor of Q(s). The plant state model has a (strictly proper) 

transfer function W(s)=C(sI-A)_1 for some (A,C) observable. The plant is possibly 

unstable. Its output is zt. For subsequent results, Q(s) must be such that 

W(s)Q(s)W(-s)x has no hidden jco axis modes.

Spectral Factorization:

Consider a spectral factorization of the spectrum of zt as follows:

W(s)Q(s)W(-s)x+R = F(s)FT(-s), F(s) = [I+W0 l(s)]R^ (4.1)

2
where F(s), Wql(s) have the same poles as W(s)Q(s)2 and the spectral factor F(s) 

is minimum phase. In [10], this factorization is carried out for a dual control 

situation. First W is expressed as a matrix fraction decomposition 

W = with M, N e  RH°° (rational proper asymptotically stable). Then

N(s)Q(s)N(-s)x - M(s)RM(-s)x = S(s)S(-s)x is factorized to achieve S(s) (strictly) 

minimum phase and asymptotically stable under the assumption above. Next 

W0L(s) and F(s) are given from

W0 l(s) = M(s)-'S(s)R -L  I, F(s) = CT(s)-!S(s)
I

As shown in [10]. Wol(s) is unique strictly proper (strictly) minimum phase, and 

has the following properties.

Lemma 2: With Wol(s) given from the spectral factorization (4.1), under the 

restrictions on W(s), Q(s), R above, with C'R a right inverse of C there exists 

a K(s) = (sI-A)C*rWol(s) e RH°° stabilizing W(s) such that

17
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W(s)K(s) = Wql(s) , (4.2)

Moreover, there exists some rational P(s) such that [with X* 4 X(-s)T]

(I + WK)_1WPC g RH°°

(s-1P)[(sI-A) + KCM(sI-A) + KC](s-1?)* = KPK* + Q 

WK = W(s"1P)CTR‘1

W[(s'1P)(sI-A)*+(sI-A)(s'1P)*+(s'1P)CrR '1C(s'1P)*-Q]W*=0 (4.3)

Optimal Estimation:

Consider the filter arrangement of Figure 4.2, which is asymptotically stable since 

under Lemma 2, K(s) stabilizes W(s) in feedback. Then it is immediate from the 

spectral factorization (4.1) that vt is white zero mean and has a covariance R. It 

follows from the inverse problem of optimal filtering [13] that yk is indeed the 

optimal filtered estimate of yt in a least squares sense. Moreover, with [A,C] 

completely observable, a mild generalization of the argument in [13] gives that Xk is 

the optimal state estimate.

Fig. 4.2. Optimal Filter
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5. Conclusions

The technique of loop recovery for improved robustness in state estimate feedback 

designs generalizes to cope with nonminimum phase plants. A generalization 

restricts the class of state feedback controllers to those which feedback only the 

state (or estimates) associated with the "minimum phase" states in an all­

pass/minimum-phase factored signal model form. Of course, for some 

nonminimum phase plants, such controllers are not expected to achieve robust 

designs comparable to those for minimum phase plants. However, whatever loop 

robustness is achieved in such a partial state feedback design is recovered in a state 

estimate feedback design using the loop recovery techniques of this chapter. One 

specific method for a stabilizing partial state feedback design has been presented 

and a design example has been included to illustrate the approach. Also the results 

for frequency shaped state estimators have been developed.
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Chapter 3

On Improving Control-Loop robustness of 

model matching Controllers

1 Intro ductio n

In seeking robust controllers, H°°-methods search over the (infinite) class of all 

stabilizing transfer function controllers for one that minimizes some L°°-sensitivity 

measure. A key observation is that such problems can be reduced to solving a 

Nehari H°°-optimization of an L°°-norm, [l]-[5]. Appropriate generalizations of the 

fundamental results using more general indices [6] including frequency shaped 

indices [4], potentially lead to practical designs.

Here, a class of stabilizing two-degree-of-freedom controllers which achieve a 

specified (achievable) closed loop transfer function is conveniently characterized. 

Also, the search over this class of controllers for one which has optimum open loop 

robustness properties in an L°°-sense is shown to reduce to solving a standard 

H°°-optimization problem.

The a priori specification of a desired transfer function could arise, for example, 

from an optimal linear quadratic Gaussian (LQG) design, or some other standard 

method applied to the nominal plant Referring to Figure 1, a preliminary design for 

a plant P(s) could give proper controllers K°(s) = [Ki°(s) K2°(s)] which achieve 

desired closed loop transfer function properties for the nominal plant but which 

have poor open loop robustness properties, as measured by the L°°-norm 

III + P(s)K2°(s) I loo, or some frequency shaped version of this. The results of this

1
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chapter then allow the definitions of a comprehensive class of controllers K(Q,s) in 

terms of an arbitrary Q(s) e RH°° (proper stable transfer function), so that the 

closed loop transfer function is invariant of Q(s). This allows the selection of a 

specific Q(s), denoted Q0pt(s), to minimize the index

III + P(s)K2(Q,s) lloo

or a related measure. The controller K(Qopt,s) achieves the desired closed loop 

transfer function for the nominal plant P(s) and improves open loop robustness.

K (s)
'[^(S) K2(s)]

P fcLr I5r

Figure 1. Control System with two-degree-freedom Controller 

2. The Class of Stabilizing Controllers

Consider the class of two-degree-of-freedom controllers of Figure 1 where P(s) is 

the plant and K(s) = [Ki(s) K2(s)] e Rp (rational proper transfer function) is the 

controller. The controller is said to be stabilizing when all transfer functions 

between variables are stable. When Ki(s) = I, then the controller has one degree of 

freedom and is stabilizing if and only if

K2(I + PK2)_1 € RH°°, (I + PK2)_1 e RH~,

2
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(I + PK2)-!P g RH°° , I - K2(I + PK2)-!p G RH°° (2.1)

The class of such controllers is given in terms of an arbitrary stable Q(s) as in [7]:

K2(Q) = (U - MQ)(V + NQ)-1, Q € RH°°

P = NM -!=M -1N, VM + ÜN = I, ftU + MV = I,

M, N, TM, N, U, V, Ü, V g RH°° (2.2)

Lemma 2.1 The class of two-degree-of-freedom controllers

K(s) = [Ki(s) K2(s)] for the plant P(s), as in Figure 1, is stabilizing if and 

only if

K2(s) is stabilizing as one-degree-of-freedom controller for P(s) 

[namely (2.1) hold] (2.3a)

Ti 4 (I + K2P)-!Ki g RH~,

T2 4 P(I + K2P)-!Ki g RH°° (2.3b)

Proof: All of the possible transfer functions between variables are given by those

in (2.1) and (2.3) or are trivially related to those using the standard identity

(I + XY)-lX = X(I + YX)-1. AAA

Remarks 1. Observe that if the controller is realized as two separate controllers, as 

is often the case in a classical servo design, then in addition, (2.3) would include 

the condition Ki(s) g RH°°, details are omitted.

2. The class of all stabilizing two-degree-of-freedom controllers,

3
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K(s) = [K i(s) K2 (s)] for the plant P(s), can be characterized in terms o f two 

arbitrary transfer functions, Q i(s), Q(s) e RH°° as follows, see also [8]. 

Characterize the matrix K2 (s) in terms of arbitrary Q(s) e RH°° as in (2.2), and 

Ki(s) in terms of arbitrary Qi(s) e RH°° as

Ki = (M + K2N)Qi , Qi e RH°° (2.4)

A proof is as follows. From (2.4), and since M, N e RH°°,

Ti 4 (I + K2P)-1Ki = MQi € RH°°

T2 4 Pa + K2P)-1Ki = NQi e RH°°

and (2.3b) holds. From (2.2) then (2.3a) holds. Applying Lemma 2.1 then 

K = [Ki K2 ] defined from (2.2) and (2.4) is stabilizing. Also, given arbitrary 

stabilizing K = [Ki K2 ] for P, then K2 is given from (2.2) in terms of arbitrary 

Q e  RH°°. Now define

Ql = M-1(I + KP)_1Ki

with M from (2.2). This has the property that [M N]Qi € RH°° with K2 stabilizing 

and N also from (2.2). Since M, N are coprime, then Qi e RH°°. Now (2.4) holds 

trivially.

3. A Class of Model Matching Controllers

To motivate the following results, let us consider that a two-degree-of-freedom 

stabilizing controller K* = [Ki* K2 *] is designed to meet performance

4
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requirements for the nominal plant P with 

Ti* 4 (I + K2*P)-1K i* e RH°°

T2* 4 P(I + K2*P)_1K i* e RH°° (3.1)

Let us seek result which allow improvement of loop robustness of such a design 

while keeping the transfer functions Ti*(s), T2*(s) invariant of any adjustments 

made to Ki, K2.

The design technique to achieve Ti*(s), T2*(s) is not important for our theory. 

However we could have in mind an optimal LQG design using a performance index 

with engineering significance. Often such designs results in poor robustness to 

plant uncertainty, in which case the following results could be useful.

Lemma 3.1 Consider the class of two-degree-of-freedom controllers

K(s) = [Ki(s) K2(s)] e Rp

for the plant P(s) as in Figure 1. Necessary and sufficient conditions for 

K = [Ki K2] to match the model transfer functions (3.1) and be stabilizing 

are that

Ki = (I + K2P)(I + K2*P)-lKi* = Ti* + K2T2* (3.2a)

K2 as one-degree-of-freedom controller for P(s) is stabilizing. (3.2b)

Moreover, the entire class of such stabilizing controllers can be characterized 

in terms of arbitrary stabilizing K2 as a one-degree-of-freedom controller for 

P, as in Figure 2. In turn, this controller class can be characterized in terms of

5
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arbitrary Q e RH°° as in (2.2). Furthermore, closed loop transfer functions 

are affine in Q.

Plant

Plant

Plant
model

Fig. 2. Model Matching Controllers.

Proof A necessary condition for model matching is that

Ti = (I + K2P)_1K i = a  + K2*P)-1K i* b T i* (3.3a)

which is equivalent to (3.2a). Now (3.3a) implies that

T2 = P(I + K2P)-!Ki = Pa + K2*P)"*Ki* ■ T2* (3.3b)

and so (3.2a) is also sufficient for model matching. Clearly, (3.2b) is necessary for 

stability. Also, the property (3.2), together with (3.1) ensure that the model 

matching controller is stabilizing.

6



CH 3 MODEL MATCHING CONTROLLERS

The structure of Figure 2 is verified since its transfer function is

P(I + K2P)-1T i* + PK2(I + p k 2)-it 2*

= P(I + K2P)-1(Ti* + K2T2*)

= P(I + K2P)-1Ki = T2*

which is invariant of K2 given that K2 is stabilizing. Now substituting Ki from 

(3.2a) into (2.3b), and applying (2.1), (2.2) the remaining results are obtained.

AAA

Remarks 1. For the controllers of Figure 2, robustness properties are crucially 

dependent on K2. Observe that for the nominal plant and zero initial conditions, the 

input to the block K2 is zero since its transform is

T2*(s)u(s) - y(s)

Where y(s) = T2*(s)u(s). In this case then the control is essentially feed-forward 

control and independent of K2. Otherwise, the greater the gain K2 at a particular 

frequency, the more significant is the feedback control via K2 at that frequency.

2. In any realization of K = [Ki K2], it is important to avoid duplication of an 

unstable mode. For example, if Ki(s), K2(s) were realized as separate controllers 

as in classical designs, then any unstable poles in K2 that are also in Ki would give 

closed loop instability. In the schemes of Figure 2, any instability is confined 

within a stable closed loop.

3. The schemes of Figure2 are in terms of an arbitrary stabilizing K2 for the plant 

P, which in turn can be parametrized in terms of arbitrary Q e  RH°° as in (2.1).

7
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Now model matching is invariant of arbitrary Q € RH°° but control loop robustness 

properties are Q dependent. Consider the case when an original design is carried out 

based on an observer, such as an LQG design. Then Figure 2 can be redrawn as in 

Figure 3 for the case Q = 0. For the more general case of arbitrary Q e RH°°, [9] 

shows that the controller is still stabilizing and represents the entire class of 

stabilizing proper controllers. Here we see, in addition, that model matching is 

invariant of Q e RH°°, and the entire class of model matching controllers can be 

parametrized in terms of arbitrary Q e RH°° as in Figure 3. [An area for future 

research could be in (on line) adaptive Q selection to minimize residuals in the 

presence of varying disturbances to the plant.]

residual
( y - y )

Control
gain

Observer
state

estimates

Fig. 3. Equivalent Observer-based Design.

4. Improving Robustness via h °°-Optimization

Consider the controllers as in Figures 2, 3, where the designer is free to select 

Q(s) e  RH°°, and thus K2(Q) to optimize some robustness /performance measure. 

Consider the measure

8
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J(Q) = IlWitf + PK 2(Q )Y lW 2 \U  Q € RH°°

where W i, W2 are square with Wi(jco) full rank for all co and W i, W2 , 

W 2 ' 1 e  RH°°. This is a standard H°°-optimization problem for which a 

straightforward solution procedure exists [9]. More sophisticated cost functions can 

include performance measures but require search procedures [9].

Remarks 1. Should the controller K(s) = [Ki(s) K2 (s)] be realized as two 

separate controllers Ki(s), K2 (s), then Ki(s) must be asymptotically stable for a 

realization to be practical. Such an additional stability condition would render the 

optimization task a constrained one, in general, and not amenable to standard 

solution procedures. Details are omitted.

2. The more general task of searching for Q i(s), Q(s) e RH°° to achieve 

performance and robustness in terms of general indices is given in [8].

5. Conclusion Remarks

In this chapter, it is shown that model matching robust designs can be achieved by 

optimization over the class of all stabilizing two-degree-of-freedom controllers 

(realized without duplication of instability modes). The optimization task is shown 

to reduce to a standard one-degree-of-ffeedom optimization over the class of all 

stabilizing one-degree-of-freedom controllers. Such results are potentially the basis 

for robust controller designs to meet transfer function performance /robustness 

objectives, or to improve robustness of standard designs, such as LQG designs 

which focus primarily on performance for the nominal plant.

9
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C h a p ter  4

COMPUTATION OF H°°-NORM OF POLYNOMIALS

1. Introduction

In recent years, H°°-norm and its optimization are used more and more frequently in

many areas of control theory and its applications. For example, H°°-norm optimal

controller synthesis approach [1][2], model/controller reduction and even some

problems in system identification are closely related to H°°-norms. The

model/controller reduction is often best posed as a frequency weighted H°°-optimal

approximation problem [3]. For a given transfer function G(z), many approaches

give a reduced order transfer function Gr(z), normally, which is not optimal in

H°° sense. Certainly, it is desirable to know the value of the H°°-approximation

error IIG(z)-Gr(z)lloo . In system identification, if a monic polynomial C(z) is the

moving average noise process transfer function in an ARMAX model, it is well

known that for the convergence of the extended least square algorithm, a key 
condition is that C(z)*l - is strictly positive real (e.g.[4],[5]). It is easy to see

that this condition is equivalent to the requirement IIC (z)-llloo  <1. However, in 

practice, to calculate the value of the H°°-norm is not a pleasant task. It is usually 

done by a rather trivial method, i.e., plotting the absolute value of the function 

concerned on the unit circle.

In this chapter, we propose a theoretical recursive algorithm for the computation of

H°°-norm of polynomials or FIR transfer functions (Section 2). We give in Section

3 the derivation of the algorithm and show that the guaranteed convergence rate of 
the algorithm is 0 ( ). Simulation results of some examples are provided in

1



CH 4 COMPUTATION OF H°°-NORM OF POLYNOMIALS

Section 4. Section 5 concludes the chapter with some remarks.

Before pursuing further, we need some concepts and definitions as following.

Let f(z) be a com plex-valued function on the unit circle bounded almost 

everywhere, the set of all such functions is denoted by L°° , with norm

II f(z) llo. =  e s ? * u P  lf(eie)l (1)

The Hardy space H°° consists of all complex-valued functions which are analytic 

and of bounded modules on Izl <1, with norm

li f(z) lloo = sup I f(z) I (2)
Izkl

It is known that each f  in H°° yields a unique L°° boundary function with the two 

norms equal. The set of such boundary functions is the subspace of L°°-functions 

with Fourier coefficients zero for negative indices, and we can regarded H°° as a 

closed-subspace of space L°°.

We also need the concept of space LP, (p>0). It consists of all measurable complex 

functions f(z) defined on the unit circle Izl =1 such that lf(e10)IP is integrable with 

respect to Lebesgue measure, with norm

II f(z) lip = ‘ — Jif(e'e)IP de

1
>V

2. Algorithm Description and Main Results 

Let C(z) be a polynomial with real coefficients and with degree n

2
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C(z) — Cq + C\z + — + Crzr, Q)Cr ^ 0, (4)

Define a function f(z) as

f(z) = C(z)C(z_1) 4 Y0 + S^jCzi + z-j),
j=l

(5)

where

7j — X CkCk+j, (Ck — 0, for k > r) 
k=l

(6)

To describe our algorithm, we need the following auxiliary variables:

{ Xi(n), 1 < i < 2r, n > 1} and (T(n), n > 1}

which are recursively defined by (for 1 < k < r)

i  (nj-k)TjXk.j(n-l) - i  (nj+k)TjXk+j(n-l)
Xk+r(n-l) = -C l------------------------- C l-----------------------

(nr+k)Yr
(7)

Xk(n)
n £ j7 j[X k.j(n - l) -X k+j(n-l)] 
_ £ ]______________________

k [70 + 2£7jXj(n-l)] 
j=l

(8)

T(n) = ~ T ( n - l )  + ^logfYo + 2^TjX j(n-l)l, (9)

where by definition

Xo(n) = 1 and X.i(n) = Xi(n), 1 < i < 2r, n > 1

and where the initial conditions are

3



CH 4 COMPUTATION OF H°°-NORM OF POLYNOMIALS

X j(l) = i , l < j < n  T ( l)= jlo g (Y 0) 
?0

(1 0 )

The n-th approximation for the norm I I C ( z ) l l o o  is defined by

J(n) = exp{T(n)}, n > l (ID

The asymptotic properties of the above algorithm are summarized in the following 

theorem.

Theorem 1: For any polynomial C(z) defined as in (4), the quantity J(n)

given by (7 ) -( ll)  increases monotonically and converges to IIC(z)lloo as 

n —> oo, with convergence rate

IIC(z)IU - J(n) < ( IIC(z)IU 0 ( i ) (12)

3. Con v erg enc e  An aly sis

For the proof of Theorem 1, we first establish the following lemmas.

Lemma 1: For T(n) given by (9),

T(n) = log( IIC(z)ll2n),

holds for any n > 1.

Proof: Define

2k

Mk(n) = * (13)

4
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for n >1, -2r < k < 2r, where f(e10) is given by (5). It is easy to see that for any n>l

M-k(n) = Mfc(n) , k=0,l,...,2r . (14)

and

Mo(n) = —  f f”(ei8)d6 = (II f"(z) ll„)n = ( IIC(z)ll2n)2n 
2*0

(15)

So for the proof of the lemma we need only to show that 

T (n)= ^logM o(n) (16)

We proceed as follows. By (5), (13) and (14),

2k

Mo(n) = —  J fn' 1(ei0)f(ei9)d0

—  f  f»-l(e*®)[Y0 + lY k(ekie + e 'kie)] d0 
2k J  k=l

YoMo(n-l) + 2 lT kMk(n-l) 
k=l

M0(n-1)[Y0 + 2 | Y- ® g ^ ] (17)

consequently, we have

1 , % *  /  \  n-1 flogMo(n-l)! . 1 ,
I K  lo*M°<n> = — L 2(n-l) J + 2n H

v , . i Y kMk( n - l ) lly° + 2&-mtrr]
Comparing this with (9), we see that for (16) it suffices to show that

5
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Xj(n) Mj(n)
Mo(n)> l ^ j ^ r (18)

Now, by integral by parts from (13) and the fact that f(z) = f(z_1) we have

2k

Mk(n) = —  J fn(e-i0)eki0 d0

——  f fn̂ e-i0) 
27tki0J

^(e-i^eki0!2̂  - f e1̂ 0 d[fn(e-i0)] 
2ni 1 u  -

—  Jfn-1(e-i0)f(e-i0)e(k-1)i0d9
27tk

(19)

where

f(e-‘0) df(z)
dz z=e_i0 = ijT j[ed -j)i0 -e (1+i)i0], 

j= i
(20)

For (19), (20) we immediately have (1 < k < r):

M k(n) — p i j T , [ M k.j(n-l) - Mk+j(n-l)], (21)

Multiplying 1/Mo(n) on both sides of this equality and using (17), we know that the 

recursion (8) is true with Xk(n) replaced by Mk(n)/Mo(n).

To conclude (18), we still need to show that the recursion (7) also holds with 

X k(n) replaced by M k(n)/M o(n). To this end, consider the following 

decomposition for f  (e*10):

6
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f  (e-10) = gi(e_i0) - r-f(e_10)ei0, (22)

where

g l(e 'ie) = rYoei0 + £  Yj[(r+j)e(H)i0 + (r-j)e(1+i)i0].
j=l

(23)

Substituting (22) into (19) we get

2k

Mk(n) = I f ^ 'l ^ ' i 0)^ !^ " * 0) - r f (e _̂ 0)ei0]e(k"l)i0 d0 
27tk qJ

= -j^-Mk(n) + —— I  fn-1(e^0)g i(e 'i0)e(lc*1)̂ 0 d0
2;tk q

By this identity we obtain for 1 < k < r ,

2k

Mk(n) = J f11'1 (e**0)g j (e-i6)e(k" l)i0 d0
2tc o

= {rYoMk( n - l ) + f  Yj[(r+j)Mk.j(n-l)+(r-j)M k+j( n - l) ] | (24)

which in conjunction with (21) gives the recursive formula for M k+r(n-l):

From  here it is easy to see that (7) is true with X k (n -l) rep laced  by 

M k(n-l)/M o(n-l). This proves the assertion (18) and hence the conclusion of the

M k+ r(n -l)= ----- -------
(nr+k)Yr

7
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lemma. AAA

Lemma 2: Let a complex function f(z) e L°°, if lf(ei9)l2] e L°° , then
d.0

0 < II f(e>0) IL - II f(ei0) lln < ( II f(e‘0) IL ) - ^ - 2  + 0 ( j)

Proof: By (1) and (3) it is evident that for any n > 1,

II f(ei0) lln <; II f(ei0) IL 

Now denote

g(6) = I f(ei0) |2 6 6 [0, 2ti].

Since g(0) is a continuous function of 0, there exists a 0O e [0,2tc] such that

g(6°) = Ä  s<e> =11 f<eie) "~2

without loss of generality assume 0O e  (0 ,2 7 i) . 

By the Taylor's expansion we know that

g(0) = g(B0) + g’(5)(0-0o)

where ^ is some point between 0 and 0O. 

From here we have for sufficiently large n,

II f(ei0) ll„ — Jif(ei0)lnd0
l_

>n
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j- J[g(e)]"/2de

f  f[g(e0)]n/2 [ l - H ^ e - e o ) ] ^  i n
2k J  g(0o)

[g(e0)]1/2 i f -  f[i+ 4 rr< e-9 o )]n/2de
g(9o)

r  . 1e0-c

> II f(z) lloo< r  f [ i+ £ & < e - e o ) i
2k J  g(0o)

9  n*""

r  ~ 1
6o+n

2  II f(z) IL<
llg'(9)IL 1

g(90) "
■]"/2d9

80 - ~  v. ° n

II f(z) lie M j

nrc
1-

iig ,(e)iioo

g(Bo)

= II f(z) IL • e x p ( i l o g - i - )  • [ l  + 0 (  J  )J

= II f(z) IL [ l  - 12 i£ 2 L + 0 ( '2 ^ IL) ] [ l  + 0 (  l-  )]  

= l l f ( z ) I L - ( l l f ( z ) I L > ^ P + 0 ( i )

9



CH 4 COMPUTATION OF H~-NORM OF POLYNOMIALS

This completes the proof of the lemma. AAA

Proof of Theorem 1: By (11) and Lemma 1 we know that

J(n) = IIC(z)ll2n (25)

By the Hölder inequality it is easy to see that the LP-norm II.lip is monotonically 

increasing in p and hence J(n) is monotonically increasing in n. The other results 

follow from (25) and Lemma 2. AAA

4. Example Studies

To illustrate the algorithm works, two examples are studied. They are:

(i) C(z) = 1 - z - z2

(ii) C(z) = 1 + 2z + 3z2

It is easy to show in example (ii) that IIC(z)lloo = 6. However, it is not 

straightforward to see in example (i) that IIC(z)lloo = V5 . After 1500 iterations, the 

H°°-norm is approximated with relative error under 0.00154 in both cases, which 

are depicted in Figures 1 and 2, respectively.

5. Conclusions and Remarks

a) The proposed algorithm has itself theoretical interests as well as its application 

importance. Various algorithms for minimization (maximization) of functions exist

1 0
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[6]-[8], but to the authors' knowledge, theoretical algorithms for computing the 

H°°-norm, has not yet been studied elsewhere.

b) It is interesting to note that the principal part of the relative error of the 

algorithm is independent of the polynomial C(z), (i.e.,logn/2n). Furthermore, the 

error is monotonically decreasing to zero. So, for a given relative error, we can 

roughly decide the iteration step n to achieve the desired accuracy.

c) In this chapter, we have only considered the scalar polynomial case. Of 

course, for a given stable scalar rational function, one can first approximate it by a 

r-th order polynomial (with exponential decaying error 0(V), 0<X<1) and then use 

the above method to approximate the H°°-norm of the rational function. It is 

desirable to generate this results to general matrix transfer function case.

References

[1] G. Zames and B.A. Francis, "Feedback, minimax sensitivity, and optimal 

robustness", IEEE Trans. AC-28, 1983, pp.585-601.

[2] B.A. Francis, "Notes on H -optimal linear feedback system", Lecture 

notes, Department of Electrical Engineering, Linko ping University, 

Sweden, 1983.

[3] B.D.O. Anderson and Yi Liu, "Controller reduction: Concepts and 

approaches", Proc. American Control Conference, 1987, 

Minnesota, U.S.A.,ppl-9.

11



N
O

R
M

S 
(n

)

CH 4 COMPUTATION OF H°°-NORM OF POLYNOMIALS

[4] L. Ljung, "On positive real transfer function and the convergence of some 

recursive schemes", IEEE , Vol.AC-22, 1977, pp.539-551.

[5] H.F. Chen and L. Guo, "Convergence rate of least squares identification 

and adaptive control for stochastic systems", Int. J. Control, vol.44, 

no.5, 1986, pp.1459-1476.

[6] R.P. Brent, "Algorithms for Minimization without Derivatives". 

Prentice-Hall, Englewood Cliffs, New Jersey, 1973.

[7] G .P.Szego,"Minimization Algorithms: Mathematical Theories 

and Computer Results", Academic Press, New York, 1972.

[8] M .R .O sborne,"Finite Algorithms in Optimization and Data 

Analysis", John Wiley & Sons, New York, 1985.

500 1000 
STEPS (n)

Fig. 1. Example 1

1 2



CH 4 COMPUTATION OF H00-NORM OF POLYNOMIALS
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Fig. 2. Example 2
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Ch a p t e r  5

CENTRAL TENDENCY ADAPTIVE POLE ASSIGNMENT

1. Introduction

In designing adaptive controllers, it is common to exploit the Certainty Equivalence 

Principle. That is, to use on-line parameter estimates in lieu of actual plant 

parameters in a controller design. When the parameter estimates are close to the 

actual plant parameters (assuming the plant is in the model set), then this approach 

makes some sense. However for adaptive schemes based on the certainty 

equivalence principle, where the plant model is unknown, there will be in general, 

circumstances where the transient performance is unnecessarily poor, perhaps 

intolerably so.

The notion of Dual Control, which gives a "best" control in the presence of plant 

uncertainties, is attractive until one gets down to implementing this concept Indeed, 

most dual controllers, if they can be described, can not be implemented on line [1].

Consider a plant signal model where the plant is expressed in terms of the unit delay 

operator q-1 as

Ayk = Buk + Cwk (1.1)

where

A(q-l) = 1 + aiq*1 + ... + anq 'n, B(q-l) = biq-1 + ... + bmq*m,

C(q_l) = 1 + ciq-1 + ... + c/q’f.

1
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Uk is the plant input, yk its output, and wk a zero mean "white" noise disturbance. 

The plant parameters are

9X = [ai ... an b i ... bm c i ... c / ] (1.2)

and least squares based estimates of 9 are denoted §kLS- With pole assignment as 

our objective, then a controller with parameters <J) = 0(0 ) is calculated from a 

Bezout equation. In certainty equivalence adaptive control, the adaptive controller 

has parameters $k = 3>(§k)-

In this chapter, we explore more sophisticated calculations for adaptive controller 

parameters $k based on both parameter estimates §kLS and their uncertainty, as 

measured by an a posteriori error covariance estimate ^kLS- A cautious controller 

and central tendency controller are studied to achieve adaptive pole assignment 

objectives. The cautious controller adapts the same philosophical approach as the 

Astrom cautious control for minimum variance control [1]. The central tendency 

controller adapts the approach outlined in [2] for minimum variance control.

In this chapter, the notion of central tendency adaptive control is introduced with the 

same key objective as that of the cautious controller, namely to avoid ill conditioned 

calculations and improve transient performance. The term central tendency is taken 

from statistics, where a measure of central tendency associated with a probability 

density function is one, such as a mean, mode, or median, with a "high" 

probability, avoiding the "low" probability tails.

We recall here that the term central tendency controller defines a controller which 

loosely maximizes the probability of achieving the control objectives given plant 

parameter uncertainty information. The value of a random variable x which

2
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maximizes the probability of x is the mode, denoted mode[x]. However, in general 

for a nonlinear function of x, /(x), mode[/(x)] *  /(mode[x]). It is therefore clear that 

with imprecise knowledge of a plant, a certainty equivalence approach to controller 

design may lead to a poor controller for the actual plant. A central tendency 

controller design which uses the most likely controller parameters based on the 

plant uncertainty should lead to designs which are less likely to be poor. Central 

tendency controllers should be more robust than certainty equivalence controllers.

The term central tendency adaptive control refers to indirect adaptive control 

schemes which attempt to calculate the most likely controller at each k, to achieve 

the control objectives, based on whatever knowledge is available of the plant 

parameter uncertainty. Let us denote the a-algebra generated by all measurements of 

yk and Uk up until time k as Ffc. There are then conditioned a posteriori probability 

densities f[<j>(0) | Fk-i], f[0 | Fk-iL Central tendency adaptive controllers work with 

measures of central tendency on f[<}) | Fk-i] and thereby avoid the tails of f[<j) | Fk-iL 

which are usually associated with ill-conditioned controllers. It also makes sense in 

some applications to work with the conditioned density on the controls directly that 

is on f[uk IFk-iL

In Section 2, both Central Tendency Controllers and Cautious Controllers for 

adaptive pole assignment are proposed. Convergence properties are studied in 

Section 3, for schemes based on least squares identification, and relative merits are 

assessed. Simulation studies are given in Section 4. Conclusions are drawn in 

Section 5.

3
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2. Central Tendency Adaptive Pole assignment

In pole assignment, if the plant has a near pole zero cancellation then in general the 

control energy required is relatively large. Likewise in adaptive pole-assignment 

based on the Certainty Equivalence Principle, when the estimated plant has a near 

pole zero cancellation, the control energy could be excessive. One method to cope 

with this is to freeze the controller (suspend the application of the Certainty 

Equivalence principle) for the period of time when plant estimates have "near" pole 

zero cancellations. In practice, there could be difficulty in setting appropriate 

thresholds for "nearness".

The central tendency adaptive pole-assignment theory of this section leads to 

practical methods to assess whether or not there is a "near" pole zero cancellation 

and a method to select or construct a controller to use when there is such a 

cancellation. Also search procedures are noted for the more computationally 

intensive task of seeking the Mode[ukPAl Fk-i] where ukPA denotes a pole 

assignment control.

Pole-Assignment

For the plant (1.1) consider a pole assignment control scheme

EukPA = -Fyk, AE + BF = H (2.1)

where

E(q-!) = 1 + eiq-1 +...+emq-m , F(q-J) = fiq-1 +...+fnq-n 

H(q-!) = 1+hiq-l +...+ hn+m q"n'm

4
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The zeros of H(q_1) are the assigned poles. The specific form of the controller is 

such that its free parameters are equal in number to the plant parameters. Also, the 

controller has a built in delay for implementation purposes.

The polynomial equation (2.1b) can be rewritten as an algebraic equation in terms 

of the Sylvester matrix Sab as

Sab[<}>]= h ’ <t‘T = [et fT]> hT= [ lhTi

ex = [ei e2 ... em], fx = [fi f2 ... fnL hx = [hi h2 ... hn+m]*

m + 1 —> n —»

Sab =

1
ai 1 
a2 ai

0
0 0 
bi 0 .
b2 bi .

‘  T

n+m+1

_ I

(2.2)

This relationship has the dual form

Sef[ qJ = h, e1 = [?  b̂ ], (2.3)

A solution of (2.2) for <j) involves Sab '1* which is known to exist if and only if the 

plant has no pole zero cancellations, or that [3,page 142]

qnA(q_1), qmB(q_1) are coprime (2.4)

Also, under (2.4) it is known that Sef' 1 exists, or equivalently that qnF(q_1 ), 

qmE (q 'i) are coprime.

5
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Persistence of Excitation

Should the plant disturbances (external or internal) include a white noise term wk, 

then the controller selection (2.1) with qnF(q*1), qmE(q*1 ) coprime, ensures that 

the plant states Xkx = [yk-1 ...yk-n Uk-1 ...Uk-m] are persistently exciting, see [4,5]. 

The controller states Xk are identical to the plant states by design. [In pole 

assignment where the dimension of (j) is less than that of 9, E has dimension (m-1) 

which is the minimum permissible, then in the absence of external excitation, one of 

the closed-loop system states Uk-i is a linear combination of the others, being 

constrained by the controller relationship, and excitation of plant states is not 

achieved.]

A Posteriori Densities

The evaluation of f(ukPA! Fk-i) to achieve Mode[ukPAl Fk-i] appears to be too 

formidable for practical implementation. Consider now the density f(4>| Fk-i). A 

differentiation of (2.2a) with respect to 0T leads after a number of steps (details are 

given in the appendix) to the Jacobian, under (2.4), and assuming det(SAß) * 0

Where Sab is obtained from Sab by deleting the first row and column. Likewise 

for Sef- Now observe

(2.5)

I det JI = det Sef det Sef (2 .6)

det Sab
det Sab

Let us now assume that the a posteriori probability density f(0 I Fk-i) is normal with
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mean 0km and covariance Pk. Then using standard arguments

f[<j>(0) I Fk-l] = Kldet J-1(8)lexp(-j lie-efcmilpk1) (2.7)

Here k  is some normalizing constant so that the integral of f[<j)(0) I Fk-i] over all 0 

is unity. Also, in case det J(0) is not properly defined, we set f=0.

Note that if a controller were chosen with the dimension of $ less than that of 0, 

then evaluation of f(<j) I Fk-i) could require integration out of an auxiliary variable. 

This would render the central tendency adaptive controllers of this section 

impractical for implementation.

Central Tendency Adaptive Pole Assignment:

The control UkPA of (2.1) can be re-expressed in terms of the controller states 

xkCPA as

UkPA = - ^XkCPA, XkCPAx = [ uk-lPA ...Uk-mPA yk-1 yk-nl (2.8)

Thus, a central tendency control can be defined, using obvious notation, as

UkCT = - Mode[ <j) I Fk-i]Txkc c r  (2.9a)

Mode[ <}> I Fk-i] maximizes f[4>(0) I Fk-i] (2.9b)

However, there is practical difficulty in implementing (2.9b) over all 0, since for 

each 0 investigated, the evaluation <{>(0) from (2.2) is required. A compromise is to 

perform the maximization only over the set o f 0 for which (j>(0) is o f necessity 

evaluated, namely § i , Ö2 , ... ^k, or a subset of these e.g. §k, ök-l> Ök-M for some 

M. Let the optimizing <}) be denoted 4>k* and the associated as §k*. Now

7
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UkCT = - <j)k*TXkCCT (2.10)

Properties.

In maximizing f((}> | Fk_i), the definition (2.7) tells us that there is a "maximization" 

of det(SAß) balanced by a "minimization" of Il0-0kmllpk1. Thus "near" pole-zero 

cancellations associated with §k* are avoided without departing "far" from 0km.

A typical scenario for the application of the pseudo mode control law (2.10) for the 

case when qnA (q-l), qmB(qT ) are coprime is as follows. In the absence of a near 

pole-zero cancellation associated with §k and with ök converging to 0, then one 

expects that the controller at each k will be selected according to the Certainty 

Equivalence Principle. Should there be a "near" pole-zero cancellation associated 

with §k, then ök will not maximize f[<j)(0i) I Fk_i] over i=l,2,...,k, but rather an 

estimate 0i for i<k will. One expects that on average ukCT will give an improved 

control signal, but not necessarily at all k. Should there be a "near" pole-zero 

cancellation associated with the plant, then if ä k is closer to 0 than previous 

estimates, even though there is a "near" pole-zero cancellation associated with §k, 

then we would expect that the approximate pseudo mode control will be the 

Certainty Equivalence control. Precise convergence properties are given in the next 

section, and simulations are given in Section 4.

Cautious Adaptive Pole Assignment.

In implementing standard adaptive pole-assignment based on certainty equivalence, 

ill-conditioning occurs when detS j^ic denoted Ak is small, since the control 

involves a factor Ak_1. The Cautious Control methodology suggests that such a 

factor is replaced by Ak[Ak2 + where fyk is an estimate of the variance in

8
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uncertainty of Ak. Thus in obvious notion 

ukCC = Ak[Ak2 +

Here we take

aA k 3Ak

aV k aßk

(2 .11)

(2.12)

Where Pk is the covariance in uncertainty of parameter estimates 0k, and

dA k

ö V
AkSMk'xas&fek

a ^ k
(2.13)

which derives using standard expressions, for matrix M

3lnM
3M

M-*, ^ M  = (detM)-l 
3detM

This scheme is simpler to implement than the central tendency schemes o f the 

previous subsection, but does not appear to perform as well from simulations as in 

Section 4.

A Pseudo-Mode Pole Assignment.

Here the methodology of the pseudo-mode adaptive minimum variance controller of 

[2] is generalized using linearization for the pole assignment case. Following this 

approach leads to the pseudo-mode control, with * denoting pseudo-mode,

Mode*[ukPAl Fk.i]
2 ( a k*Ak - <j)kTxk*) _ ,

Ak+sign(Ak)(Ak2+ 8 ^ )1/2

ctk fy e '^ k X k * , <t>k =  Ak<J)k (2.14)
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by analogy with (2.6), (2.8), (2.11), (2.12) of [2] where using linearization

BAk 30k
a V

(2.15a)

B<t>kx A T 3Ak . A 0<{>kx
— +Akl ä Tâ k â k

H e r e K - ^ a n d - ^ laBk â k

(2.15b)

can be calculated from expression (2.12) (2.13) and

(2.5). This scheme is only mildly more complicated than the Cautious Adaptive 

scheme of the previous subsection.

3. Least Squares Convergence 

Least Squares Algorithm.

Consider the signal model (1.1) with C=1 reorganized as

yk = BxXk + Wk (3.1)

where a priori 0 = N[0o, PoL

E[wk I Fk-i] = 0, E[wk2 I Fk-i] = a 2, wk = N[0, a 2]

0T = [ai ... an bi ... bm], xkx = [-yk-1 ••• -yk-n Uk-1 ... Uk-m] (3.2) 

Consider also the Kalman filter identification, for k > / where P/1̂  exists

ök107 = §k-iKF+ <r2PkKFxkykik-i> ykik-1 = yk - ö k ^ x k

1 0
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p, KF =  Pv.iK F P k-l^X kX k^P k-i1̂  =
a 2 + xkxPk-iKFxk

k

( X cr2XiXix+Po' 1)*1
i=l

(3.3)

Readily established properties are

ykik-i = (1 - xkIcr2PkKFxk)"1 ykik, xkTcr2PkK]Fxk < 1 (3.4)

k k
§km 4  E[§ I Fk.i] = §kKF = ( ^ ( r 2xiXiT+P0‘1) '1( X a -2xiyi+Po-1e0)

1=1 i=l

Pk 4  E[BkV  I Pk-il = P k ^ , Bk = 0 - §kKF (3.5)

The least squares equations are Kalman filter equations with "incorrect" initial 

condition [e.g. setting 0o = 0, Po*1 = 8, a 2 = I in (3.3)]. In this case the notation 

§kLS, Pk1̂  are employed. Estimates of Pk can be obtained from PkLS and estimates 

of a 2 or as here one can simply take Pk1̂  as an estimate of Pk. Other relationships 

which follow directly are

E[(yklk - Wk) I Fk-i] = 0, E[(yklk - Wfc)2 1 Fk-l] = 02XkTPkLSXk 2 a 2 

Pk = E[60* I Fk-i] - E[0 I Fk-i]E[6T I Fk-il (3.6)

Convergence Properties

Lemma 3.1 For the signal model (3.1),(3.2) and Kalman filter scheme (3.3), 

or more generally the least squares variation, then for some 0LS, PLS 

(random variables), almost surely

l̂ |LPkLSxk = = pLS (3.7)

J kLS = 0LS (3.8)

11
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PLS = 0 => 0LS = 0 (3.9)

Proof The proof is seen in [6].

Remark 1. The above asymptotic results do not presume signal model stability. 

Without such, there is of course ill-conditioning as k —» «> .

2. The above lemma is invariant of any adaptive control generation of xr based on

(central tendency) pole assignment context.

Lemma 3.2 Consider the plant (1.1) satisfying the coprimeness condition 

(2.4) and with the alternative formulation (3.1). Consider also the 

approximate mode adaptive pole-assignment scheme of Section 2 based on 

the Kalman filter or least squares parameter estimation scheme (3.3), 

initialized by §o(^0>&o) with qnXo(q_1 )» qm6o(q _1 ) coprime. Then $k* 

exists for all k and for some <j>*,

§ 1LS, ... as spelt out in [6]. We now apply the lemma in the adaptive

a.s. (3.10)

Moreover, for the associated polynomials fek*, and E*, F*, then 

qn£k*(q_1)» qm£k*(q-1) are coprime (3.11a)

qnF*(q*1 ), qmE*(q_1) are coprime (3.11b)

Furthermore, with the noise variance a 2 *  0, then

pLs = o, eLS = e (3.12)

and the adaptive pole assignment scheme is asymptotically optimal.

12
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Proof First observe that (}>o exists by the selection of öo such that qnXo(q_1 ), 

qm&o(q-1 ) are coprime. Also, from the definition (2.7),

f(<j) I Fk-i, <j)=<j)o) > 0 for all finite k (3.13)

f ö oof((})IFk-l,(t)=W = 0 <=> pLS= 0 , eLS=0 ,  §0 * e  (3 .14)

Furthermore, since det(SAß) *  0, from (2.7) observe that

pLS — o, 0LS — o =* I Fk.i , <()=<j)k) > 0 (3.15)

Now let us consider <j)k* of (2.10), and the associated 0k*(Äk*,6k*) in obvious

notation. Then det(S^k* ^ k *) *  0 and <j)k * exists for all k, o therw ise

f(<J) I Fk_i, (}>=<})i) < f((|> I Fk_i, (j)=(j)k*) = 0 contradicting (3.13). In considering the

corresponding limiting properties, first observe that (3.11) holds, otherwise the 
property (3.5) that ^ k converges is contradicted. Now under (3.11),

*  0 and 4>k* exists, otherwise

f(<l> I Fk-1* <M>1 and ^  ^  f(4> > Fk-1, <t>=<!>k*) = 0

leading to a contradiction in applying (3.13), (3.14), (3.15).

The result (3.12) follows from (3.10) and persistence of excitation results for 

reachable time-invariant linear systems with asymptotically time invariant linear 

system feedback in [4]. Details on this are omitted, save that here since G2 > 0, 

then yk is sufficiently rich for xkc (the controller state) to be persistently exciting 

under (3.11b). AAA

13
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4. Simulation Resu lts

Consider now the application of the adaptive pole-assignment methods of Section 2 

to the plant (1.1), taken from [7], with A = 1-1.2q*1, B = q_1-3.1q'2+2.2q’3, C = 1 

and g2=1. There is one unstable pole at z=1.2, and nonminimum phase zeros at 1.1 

and 2. The initial parameter estimates are ai =-l, 6 i = 0, b2 =-2, 63 = 3. We 

adaptively assign the poles of the characteristic polynomial of the closed loop 

system to the origin.

Figures 4.1 and 4.2 give the output yk and control signal uk of each algorithm 

respectively, and the nearness of the poles and zeros of the estimates of the plant 

given by each algorithm.

We can see clearly that during the adaptation, parameter estimates converge to the 

true parameters. Also, there are some points at which a pole and zero are very close 

to each other. Consequently, the control signal given by the certainty equivalence 

pole-assignment method is very large and the cautious control method gives a better 

result than the standard one, but still large. However, the control signal resulting 

form the approximate mode pole-assignment algorithm is reasonably small. The 

above example has been chosen, as in [7], because it illustrates very clearly the 

weakness of the standard pole-assignment scheme. Other examples where there is 

no "near" pole zero cancellation in the estimate of the plant, of course show 

negligible difference between the approximate mode and standard pole-assignment 

schemes (details are omitted). Also, it should be said that in seeking to give 

improved estimation of the conditional mode, on the example above, if anything the 

performance deteriorated over that of the approximate mode algorithm, illustrating 

that the implementations of this paper are not optimal.
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TIME

Fig. 4.1.a Certainty Equivalence Pole Assignment (yk and Uk)

CURVE N O .

TIME

Fig. 4.1.b. Cautious Pole Assignment (yk and Uk)
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C U R V E  N O .

TIME

Fig. 4.1.c. Central Tendency Pole Assignment (yk and Uk)

o

TIME

Fig. 4.2.a. Certainty Equivalence Pole Assignment 

(Nearness of Poles and Zeros)
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TIME

Fig. 4.2.b. Cautious Pole Assignment 

(Nearness of Poles and Zeros)
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TIME

Fig. 4.2.C . Central Tendency Pole Assignment 

(Nearness of Poles and Zeros)

17



CH 5 POLE ASSIGNMENT CONTROL

5. Conclusions

This chapter has developed the concept of adaptive control designs based on central 

tendency measures. The specific case of Central Tendency Adaptive Pole 

Assignment using least squares parameter estimation has been studied in detail.

The convergence theory has shown how persistence of excitation and thus global 

convergence can be achieved by controller design, rather than by the addition of 

external signals.

Simulation studies have demonstrated the improved performance capabilities of the 

schemes of this chapter relative to those earlier proposed.

Areas for further research include the application of the ideas to adaptive schemes 

based on Extended Least Squares and Recursive Prediction Error Methods.
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Chapter 6

adaptive LQG Controllers with 
Central tendency properties

1. Introduction

In designing adaptive controllers, it is common to exploit the certainty equivalence 

principle. That is, to use on-line parameter estimates in lieu of actual plant 

parameters in a controller design. When the parameter estimates are close to the 

actual plant parameters (assuming the plant is in the model set), then this approach 

makes some sense. However for adaptive schemes based on the certainty 

equivalence principle, where the plant model is unknown, there will, in general, be 

circumstances where the transient performance is unnecessarily poor. Perhaps 

intolerably so.

Central tendency adaptive schemes [1,2,3] tend to give improved transient 

performance over their corresponding simpler cousins, certainty equivalence based 

schemes. The simpler schemes use only parameter estimates, whereas the central 

tendency versions, in general, use parameter estimates and estimates of their 

uncertainty. The term central tendency is taken from statistics, where a measure of 

central tendency associated with a probability density function is one, such as a 

mean, mode, or median, with a "high" probability, avoiding the "low" probability 

tails. The term central tendency controller is introduced to define a controller [1,2,3] 

which loosely maximizes the probability of achieving the control objectives given 

plant parameter uncertainty information. Recall that the value of a random variable x 

which maximizes the probability of x is the mode, denoted mode[x]. Moreover, in

1
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general for a nonlinear function of x, /(x), mode[/(x)] * /(mode[x]). It is therefore 

clear that with imprecise knowledge of a plant, a certainty equivalence approach to 

controller design (using a nominal/best plant parameter estimate in the absence of 

knowledge of actual plant parameters), may lead to a poor controller for the actual 

plant. A central tendency controller design which uses the most likely controller 

parameters based on the plant uncertainty should lead to designs which are less 

likely to be poor.

For the case of adaptive minimum variance control [1], central tendency schemes 

are closed related to the simple cautious control schemes of [4]. They are less likely 

to be ill-conditioned leading to excessive control action than the cautious control 

schemes, and yet are only mildly more sophisticated.

For the case of adaptive pole assignment [2], central tendency schemes tend to 

avoid the ill-conditioning of the certainty equivalence schemes when plant estimates 

have near pole zero cancellations. They perform dramatically better in terms of 

transient performance than the corresponding certainty equivalence schemes in 

some situations, and appear to be no worse otherwise. However, there is additional 

complexity to appropriately incorporate the plant parameter uncertainty information 

into the controller. In one scheme a search is made of controller designs at previous 

iterations for the one which maximizes a readily calculated index based on the 

relationship between plant and controller parameters. What then of central tendency 

based adaptive linear quadratic Gaussian (LQG) schemes?

This chapter makes three observations which appear important. The first is that in 

terms of transient performance, one particular certainty equivalence based adaptive 

LQG controller in the literature [5] tends to have improved transient performance

2
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over others of comparable complexity. Why? The second observation is that this 

particular adaptive LQG scheme has a controller design rule which is linear in the 

parameter estimates and is thus itself inherently a primitive central tendency scheme. 

The third observation is that most certainty equivalence based adaptive LQG 

schemes can be upgraded in transient performance by linearization of the design 

rules, and further upgraded to fully fledged central tendency schemes by the 

addition of simple calculations which select from the present and previous controller 

designs the one that optimizes a measure of central tendency.

2. Adaptive LQG Controllers via Riccati Recursions

In this section, we review certain adaptive LQG schemes for scalar stochastic input- 

output plant models, and make observation on their relative performance based on 

simulations.

Signal Model

Consider the auto-regression moving-average exogenous input (ARMAX) model

Ayk = Buk + Cwfc (2.1)

with input Uk, output yk and zero mean white noise disturbance wk. Here A,B,C 

are polynomial operators in terms of the unit delay q_1. Thus

A(q_l) = 1 + aiq-1 + ... + anq’n, BCq'1) = b iq '1 + ... + bmq‘m,

C(q_1) = 1 + ciq-1 + ... + ciq'i

3
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Without loss of generality C(q_1) is assumed minimum phase. 

Consider now a minimal state space representation for (2.1) as

xi&l = + r Muk + KMwk, yk -  HMxJcI + wk

where

p - a i  1 ... O-i r-bi-i p c i-a i-i
d>M = 'a2 • r M = *>2 K M =  c2'a2

-an 0 bn Cir̂ n

HM = [1 0 ... 0]

(2.2a)

(2.2b)

Consider also a non-minimal representation of (2.1). Thus 

*k+l = ^ xk + Tuk + Kwk (2.3a)

where

—-ai .. -an b i  .. bm c i  .. c / — r ° n r h
In-i . . 0  0 .. 0 0 . .  0 0 0
0 .. 0 0 .. 0 0 .. 0 l 0
0 . . 0  Im. i  . . 0  0 . . 0 , r  = 0 y K - 0
0 . . 0  0 .. 0 0 .. 0 0 0

L 0 . . 0  0 . . 0  I/-1 .. 0 J L 0J L 0J

H = [-ai ... -an b i ... bm c i ... c/ ] = 0 (2.3b)

Notice that

xkx = [yk-1 -yk -n  Uk-l...Uk-m W k -l-W k - / ] (2.4)

Performance Index

Let us associate with the above models performance indices as

4
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ifc1 = + r M(ui1)2]. Ik = X W Q x j + Ru;2) (2.5)
i=l 1=1

Extended Least Squares (ELS')

Considering the above signal model, a standard ELS algorithm for estimating the ai, 

bi, ci based on the representation (2.4) and (2.5) is

ök = §k-l + PkXk(yk - XkTÖk-l ) (2.6a)

Pk = Pk-1 " Pk-lxk(l + Xk^Pk-lxiO^x^Pk-l (2.6b)

Xkx = [yk-1 -yk-n Uk-l-Uk-m Wk-i...wk-/ ] (2.6c)

wk = yk - §kxxk (2.6d)

for some §o and Po > 0.

Explicit Adaptive LOG Controllers

Consider two adaptive LQG controllers based on the nominal representations (2.2) 

and (2.3) as follows (see also [5]). For the representation (2.3), we have

Uk = -LkXk, (Herexk = xk) (2.7a)

xk+1 = 3>kXk + Puk + K(yk - Hxk), Ok = 0(9  = §k) (2.7b)

Lk = n kn s kOk, nk = (nskr + R)-i (2.7c)

Sk+1 = OkKSk - SkrQknSk)Ok + Q, So = o (2.7d)

Likewise, the second adaptive LQG scheme can be designed using xĵ 1, O ^ ,

5
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K^1, in lieu of xk, <X>k, T ,  K resulting in controllers

u{̂  = -L^x^, (Herex^^xk) (2.8)

Observe that the equations for Sk, (likewise for S^) are forward time-varying 

Riccati equations. Also observe that (2.2), (2.3) are innovation representations, so 

that the Kalman filter gains are KM, K respectively. Moreover with L, LM denoting 

the optimal LQG controller gains, then the minimality of (2.2) and standard Riccati 

/LQG theory tell us that

= e, => g “ J U (8 k ) Lftfik)] = [L (2.9)

(Recall that with converging to 9 , minimality of ( r M, O m, (Q M)l/2 )  tells us 

that { Tm, Om, (QM)1#} is uniformly detectable and stabilizable, as then is { Tk, 

Ok, Q1̂  } so that Sic1, Sk converge to SM, S the solutions of the algebraic Riccati 

equations associated with the optimal LQG controller and consequently, Ljc1, Lk 

converge to Lie1, L as claimed.)

Related Adaptive LOG Based Schemes

The above schemes apply one recursion of the Riccati equation at each time instant 

using the latest estimates of the parameters §k- Variation allows 10 or so recursions 

of the Riccati equation at each iteration k, perhaps re-initializing at each iteration. 

For the case of an infinite number of recursions (assuming convergence), then the 

result would be equivalent to finding the relevant solution of an algebraic Riccati 

equation at each iteration, or equivalently, solving a spectral factorization and 

Bezout identity as in [6], see also references of [6]. In this latter case, the controls 

calculated from two representations above should be the same with matching initial

6
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conditions.

Preliminary Simulations

The simulation for the above two schemes (2.7),(2.8), have been done with the 

following plant, studied in [2],

yk - l-2yk-i = uk-i -3.1 Uk- 2  + 2.2uk-3 + wk (2.10)

with zero initial states. The initial estimates of the plant are ä i(0 )= -l, 6 i(0 )=  0, 

^2(0)=-2, Ö3(0)=3. The associated performance indices are chosen as

k k
ik = I (y i>  + ui2) , = ^ [ y i 2 + (u ^ )2] , (2.11)

i=1 i=i

The controllers of the above schemes converge to the same (optimal) controller, but 

with different sample path dependent transient performances. For this particular 

plant, all stabilizing controllers are unstable. It appears that on average (but not in 

every sample path), the scheme (2.7) gives a better transient performance than the 

scheme (2.8). The plots of Figure 2.1 illustrate that for some sample paths, the 

scheme (2.7) is dramatically better than the scheme o f (2.8). (Note the scale 

changes on the figures) These plots are typical of half the sample paths studied. We 

add that of the many sample paths studied, perhaps only one in five or six showed 

(2.8) significantly better than (2.7).

From the above simulation we are led to ask. Is there a reason for the significant 

difference in transient performance of the two adaptive LQG schemes? In terms of 

complexity both schemes are comparable, and in terms of philosophy of design 

both schemes are identical, what then is the crucial difference? We here conjecture

7
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500  -

-500  -

Fig. 2.1.a. Results of Scheme (2.8)

2000  -

-2 00 0  -

Fig. 2.1.b. Results of Scheme (2.7)

8



CH 6 LQG CONTROL

that the reason for the "improved" transient performance of the scheme (2.7) is that 

it has a linear relationship between the current controller parameters and the plant 

parameter estimates, and consequently has certain central tendency properties as 

defined in [1,2].

Linearity Property

Consider the adaptive LQG schemes (2.7) (2.8) where the controller parameters Lk, 

Ljc1 are function of §k- Observe that

Lk( §k) is linear in §k> L ^ ( §k) is non-linear in §k (2.12)

Consequently, with §k the "best" estimate of 0 given the measurements up to time 

k, given the controller design rule Lk(.), then the certainty equivalence controller 

parameters Lk( §k) is the corresponding "best" estimate of the controller parameters 

at time k. Given the design rule of L$^(.), it is clear that L]^( &k) is in general not the 

best estimate o f the controller parameters. Thus (2.9) implies, according to the 

definition in [1,2], that

Lk( §k) has central tendency properties,

Lj*( §k) does not have central tendency properties. (2.13)

The fact that Lj^( ök) is not in any sense a central tendency controller design rule 

means that in the presence of ill conditioning in the function L f^ k )»  then this 

control law design rule would lead to both "large" controller gains and "large" 

control signals. It is known that ill conditioning can occur when the plant model 

parametrized by §k has near unstable pole zero cancellations. Certainly then the 

associated algebraic Riccati equation solution is ill conditioned, as is any iterative

9



CH 6 LQG CONTROL

version of this. Observe that if in (2.7c), Sk is replaced by Sk+i, then Lk( §k) 

would not be linear in §k-

3. Central Tendency Adaptive LQG Control

We have seen in the above section that the certainty equivalence adaptive LQG 

scheme (2.7) based on the non-minimal model has certain central tendency 

properties. How difficult then is it to modify the other versions of Section 2, or to 

strengthen the central tendency properties?

Linearized Riccati Based LOG Design Rules

It is fortuitous that the design rule (2.7) gives controller gains linear in §k- In this 

subsection, we mildly modify "all" Riccati based LQG design rules to have this 

property. First consider Ll^( §k) of (2.8). Here we propose a modification as

lJc1 = - OKi)] (3.1)

with the properties

L^( §k) linear in §k, (3.2)

fö o o  §k = 6 => J g n ,  m  8k) = Lm(0) (3.3)

To see (3.2), observe that the first term of (3.1) is linear in 6ĵ k lor each i and 

independent of a ^ ,  while the second term is linear in a ^  and independent of fi^k- 

Variations on (3.1) can also be devised to achieve the properties (3.2) (3.3).

Clearly the adaptive LQG design rules based on multiple iterations of the Riccati

10
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equation can be modified in the same way as suggested in (3.1), merely by 

upgrading S&1, which depend only on §k-l> §k-2> — and not on §k-

Simulations not reported in full detail here show that the linearized adaptive LQG 

law L^(§k) of (3.1), applied to (2.10) has on average improved transient 

performance over the non-modified scheme described in Section 2. In fact, now 

U c^k) of (3.1) and Lk(§k), for 50 or so noise sequences tested are on average 

comparable in performance, demonstrating again the power of a linearized 

controller design rule. Likewise for the adaptive LQG schemes based on algebraic 

Riccati equations.

Optimizing a Central Tendency Index

For design rules at time k with equal number of input variables (here elements of 0) 

and output variables (here elements of L), then the probability density function of L 

given 0, when 0 = N[§k> Pk] is

fk(L I 6) = tcldet Jjc1(8)lexp(-j 119-ökHpk1) (3.4)

where Jk(0) = öLk(0)/00 and K is a normalizing constant.

In [2], a central tendency design rule denotes a rule which avoids low probability 

designs [the tails of (3.4)] and seeks to maximize fk(L 10 ) in some way. A practical 

way to do this suggested in [2] is at time k to select a controller L(öj) which 

optimizes the index, for some integer N,

( 3 - 5 )

This approach works well for adaptive pole assignment design when Jk(0) = J(0) is

11
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time independent In these schemes, when estimate of the plant has a near pole zero 

cancellation then Jk*1 = 0 which indicates severe ill-conditioning. Optimizing (3.5) 

avoids such ill-conditioning. Simulations show transient performance 

improvements from optimizing (3.5) even when there are no near pole zero 

cancellations in the estimate of the plant.

For adaptive LQG designs, the rules Lk(0) Jacobians are time dependent When the 

LQG design rule is nonlinear, then the calculation of Jk(ök-j) for j=0,l,..N is too 

tedious for practical implementation. When the rule is linearized, then Jk(Ok-j) is 

invariant of j, so the index (3.5) is always optimized with 0 = 0k.

Here we propose a mild modification to the optimization task (3.5) as

(3.6)

Certainly this task is relatively straightforward to implement when the linearized 

controller design rules of Section 2 are employed. (Otherwise calculation can be 

simplified by neglecting terms which are tedious to calculate.).

The optimization task (3.6) shares the essential property of the central tendency 

approach, detailed in [2], namely that it avoids ill-conditioned calculations of L(0k)

leading to large controller gains and otherwise yields gains close to L(0k). To see 

this, note that in the optimization task (3.6), the term exp(-^- 110-^k'lpk1) *s

maximized when §k-j = k̂> and the term Idet Jk-j(§k-j)l is small when Lk-j(0k-j) is 

ill-conditioned. Adaptive LQG schemes based on solution of the algebraic Riccati 

equation are ill-conditioned when there are near unstable pole zero cancellations in 

the estimate of the plant. When only a few iterations of the Riccati equation are 

implemented, then ill-conditioning is likewise expected, but having less severity.

12
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The gains from optimizing the central tendency measures here are expected to be 

greater for the schemes based on many iterations of the Riccati equation than for 

ones based on one or a few such iteration.

Simulations, not reported in full detail here, show that there is significant transient 

performance improvement for the example (2.10) in implementing the central 

tendency optimization (3.6). Taking N = 15 in (3.6), one noise sample function 

demonstrating dramatic improvement for a linearized adaptive LQG design rule 

based on the algebraic Riccati equation is presented in Figure 3.1. In these figures a 

comparison is made between the cases N = 0, 5, 15 where the case N = 0 can be 

interpreted as not taking any steps to optimize the measure (3.4).

6000

4000  -

2000  -

-2000

Fig. 3.1.a Results when N = 0
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1000

500  -

-500  -

- 1 0 0 0

Fig. 3.1.b. Results when N = 5

1000

500  -

-5 0 0  -

-1000

Fig. 3.1.c. Results when N = 15
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4. Conclusions

Some very simple modifications to standard adaptive LQG schemes have been 

proposed to achieve optimization of central tendency measures, and thereby 

improved transient performance. The first proposal is to ensure a controller design 

rule at each iteration. The second is to select the best of previous and present 

controller designs to avoid ill-conditioning and thus unnecessarily large controller 

gains at each iteration.

Simulation studies have demonstrated the significance of the proposals on one 

"nasty" example prone to ill-conditioning in the controller design rule. Of course for 

less demanding controller designs which are well-conditioned, significant 

improvement in transient performance is not expected.
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Over parametrized Systems



Chapter 7

ADAPTIVE ESTIMATION AND POLE ASSIGNMENT OF 

OVERPARAMETRIZED SYSTEMS

1. Introduction

In the practice of adaptive estimation and control there is a tendency to 

overparametrize signal models (plants) to be on the "safe” side. However, for 

overparametrized models there is a danger of ill-conditioning of both the adaptive 

estimation and the adaptive control algorithms applied to such plants. Of course, 

there is the twin danger of underparametrization, particularly in the absence of 

appropriate preprocessing of signals. The effects of underparametrization could be 

catastrophic and, since this is widely known, overparametrization emerges as a 

common problem. This paper shows that ( after appropriate preprocessing) certain 

ill-conditioning associated with overparametrization can be avoided, without the 

need to perform on-line order determination with its associated significant increase 

in computational complexity.

For overparametrized signal models there can be a lack of excitation in regression 

vectors employed in parameter estimation and consequent ill-conditioning in the 

algorithms. Also, insufficient excitation can lead to identification of non-uniquely 

parametrized models which include pole-zero cancellations in the complex z-plane. 

When recursive estimates of the parameters of such non-uniquely parametrized 

models are applied for adaptive control, ill-conditioning leading to excessive 

controls can easily rise, particularly in adaptive pole assignment schemes.

Adaptive pole assignment schemes are perhaps the simplest schemes for adaptively

1
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stabilizing linear plants which are possibly nonminimum phase [1]. Also, they are 

the most natural form of adaptive scheme to use in some applications where it is 

required that the adaptive scheme behave as closely as possible to a nominal optimal 

design. However, a severe limitation for their application in practice has been their 

failure when the signal models are overparametrized. Adaptive pole assignment 

requires the solution of a linear algebraic equation which becomes ill-conditioned 

when estimates of the plant have near pole-zero cancellations. This is inevitable 

when the signal model is overparametrized. Some authors have proposed methods 

to cope with this difficulty using on-line estimation of plant order in some sense 

[2]. Such an approach increases the complexity of the adaptive scheme 

considerably.

The first contribution of this chapter, in Section 2, is to introduce excitation signals 

into the regression vectors for recursive (least squares based) parameter estimation 

in such a manner as to avoid ill-conditioning even when the model is 

overparametrized. For the special case when there is a potential non-uniqueness in 

the signal model owing to a pole-zero cancellation on the real axis, it is shown how 

the excitation can be designed so that the parameter estimates converge to those of a 

unique signal model, if one exists, otherwise to a model with a pole/zero 

cancellation at the origin. The introduced excitation does not excite the plant as in 

the case of added persistence of excitation signals. The estimation result of Section 

2 is useful when applied in conjunction with the second contribution of the paper, 

in Section 3, which shows that when the parameter estimates converge so that the 

identified plant has a pole-zero cancellation at the origin, the associated central 

tendency adaptive pole assignment controller converges without ill-conditioning. 

Section 4 gives a novel property of Sylvester matrices required in the proof of the

2
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theory of Section 3, and Section 5 gives an illustrative simulation study. 

Conclusions are drawn in Section 6.

2. ALGORITHMS AND RESULTS - WHITE NOISE CASE  

Signal Model.

Consider the following single-input single-output (SISO) input-output (stochastic) 

signal model class (plant) in terms of the unit delay operator q_1, input uk, output 

yk and white noise disturbances w’k-

A(q4 )yk = B(q_1 )uk + wk

A (q -!) = 1+aiq-1 +... +anq*n, B(q-1 ) = biq’1 +...+bmq'm (2.1)

This can be rewritten as

yk = 6xxk + wk, 0T = [ai a2 ... an bi b2 ... bm]

= [-yk-1 ... -yk-n Uk-l ... Uk-ml (2.1)'

The conditions on wk are more precisely:

The sequence {wk} is independent of Uk with E[wk I Fk-i] = 0, E[wk2 I Fk-l] 

< a w2 < oo, where Fk denotes the a-algebra generated by w i, W2 ..wk (2.2)

Recursive Least Squares fRLSl Estimation

Consider that 0 is estimated recursively minimizing a least squares criterion:

3
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Jk = i  , ( y i - e * x i ) 2  + (e  - e0) * B o ( e - e 0)

via an RLS scheme as

9k = Pk[Bk-10k-l + Xkyk], Bk = Bk-l + XkXk1

Pk = Pk-1 - Pk-1 XkXkx Pk-l(l + Xk^-lXk)'1 = Bk'1 (2.3)

for some initial conditions 0o, Bo > 0.

Convergence Properties Review

To achieve a simple analysis making connection with Kalman filter theory as in [3], 

let us assume

(wk) is normally distributed, and the a priori probability density associated

This assumption is not needed for a more general theory based on stochastic 

Lyapunov functions 0kTBk$k in [4,5]. where Bk = 0 - 0k> but then the results are 

not quite as tidy.

For the model (2.1) (2.2), and the RLS scheme (2.3) under (2.4), Kalman filter 

theory tells us that, with Bk = 0 - 0k>

with 0 is N[0q, Pol for some Pq = Bo'1 > 0. (2.4)

a 2Pk = E [0kBk^IFk.i], ©fc = E [01 Fk-x] (2.5)

Moreover, from [3] there is almost sure convergence as

a.s. (2 .6)

4
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for random variables PLS , 0LS. With xk sufficiently exciting in that PL$ = 0, then 

[3] tells us that 9LS = 0. Also if 9LS = 0, then Bk8kT —» 0 as k —» <» and 

consequently, under (2.5), Pk —> 0 as k —» «>. Thus we have the following strong 

connection between sufficiency of excitation of Xk and parameter convergence.

Lemma 2.1 For the RLS scheme (2.3) applied to the signal model (2.1) 

(2.2) under (2.4), then

Proof The proof is as above based on results in [3].

On Sufficient Excitation

In this subsection three specific excitation scenarios are studied using known results 

from [4,5,6]. These relate excitation of signal model inputs to outputs or states for 

reachable open loop time-invariant plants, with or without (possibly time-varying) 

feedback. The first two cases are a review of "known" results for the case when 

there is no overparam etrization, while the third case deals with the case of 

overparametrized models.

Case (i): The simplest case to study is the non-overparametrized case when

(2.7)

qnA (q -l), qmB (q -l) are coprime, (2.8)

and Uk is suitably exciting in that 

k

(2.9)

5
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This latter condition is achieved when Uk includes at least (n+m)/2 distinct sinusoids 

decaying no faster than 1/k, as when uk is white noise or filtered white noise with a 

variance decaying no faster that 1/k.

Under (2.8), the model (2.1) is uniquely parametrized, Xk is reachable from Uk 

alone, and excitation of the inputs as in (2.9) implies excitation ot the states Xk 

[4,5]. Thus (2.8),(2.9) ensure that Pk —» 0 as k -»  <», and in turn 0 k —> 9 as 

k —» °o. for this case then, wk need not be sufficiently exciting in any sense.

Case (ii): Another simple case to study is when (2.8) does not necessarily hold,

but wk as well as uk is suitably exciting in that (2.9) is satisfied and

oo

(X E [w k2 IFk.i] )-> = 0  (2.10)
i=l

Under (2.9),(2.10), the model (2.1) is uniquely parametrized, Xk is reachable from 

uk, wk, and is sufficiently exciting to guarantee that Pk —> 0 as k —> ©o, [4,5] and in 

turn that 0k —» 0 as k —» <». For this case then, the convergence as such is 

independent of whether or not the coprimeness condition (2.8) is satisfied.

Case (iii): The possibly overparametrized signal model situation of particular

interest in this chapter, is when (2.8) possibly fails and there is no a priori 

guarantee of sufficient excitation of Wk as in (2.10). In this case the model (2.1) 

may not be uniquely parametrized, having one or more pole-zero cancellations in 

the z-plane. Also, Xk may not be sufficiently exciting to ensure that Pk —» 0 as k —» 

«5. Convergence can take place to a signal model with pole-zero cancellation 

anywhere in the complex z-plant. We seek to avoid such a situation and propose an 

RLS algorithm with additional excitation in the regression vector. It is derived using

6
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an alternative signal model formulation.

Alternative Signal Model Formulation 

Consider (2.1) re-organized as

yk= öxxk + (wk - 0xvk), xk = xk + vk (2.11)

where vk is an excitation term to ensure that Xk is suitably exciting. Notice that vk 

has no influence on yk, Uk- Its selection in the next subsection is in accordence with 

a parameter estimation error measure, so that when parameter estimates are 

converging to their true values, vk converges to zero.

RLS Estimation with Regression Vector Excitation

Consider that 0 is estimated recursively minimising a least squares criterion: ^

Jk - e*xo2 + (6 - ß 0)TBo(e - öo) (2 . 12)

via an RLS scheme as

ök = Pk[Bk-i§k-l + xkykL Bk = Bk-i + xkXkx 

Pk = Pk-1 - Pk-lXkXk^k-lü + XkxPk-lXk)_1 = Bk-1 (2.13)

for some initial conditions §o> Bo > 0.

Regression Vector Excitation Selection

Consider the signal model (2.1) formulated as (2.11). Let us assume that either 

there is no overparametrization in that (2.8) holds, or that there is the possibility of

7
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overparametrization which includes one pole-zero cancellation, leading to a non- 

uniquely param etrized model. In the latter case, we consider a unique 

parametrization with the properties (meaningful only when n> l, m >l)

For such a situation we propose a vk selection as follows,

The sequence {v^} is selected as an independent (Gaussian) zero mean white 

noise excitation term such that its covariance E v2 = Dk*1tr(P k-i) for 

D = diag[0 0 ... 0 dn2 0 ...0 dn+m2] where dn2 > 0, dn+m2 > 0- Denote the

The Gaussian assumption on Vk is to keep analysis simple and is not a necessary 

condition. In practice a more efficient excitation would be where elements had 

values in a bounded domain. Also, results are readily derived for the case when Vk 

is deterministic but containing a sufficient number of frequency components.

The following results are now a consequence of a straightforward application of 

results from [4,5].

Lemma 2.2 Consider the linear signal model (2.1) (2.2) formulated as 

(2.11) with the vk selection of (2.15).

(i) Then under (2.8), Xk is the output of a linear tim e-invariant system 

reachable from uk. Moreover, with Uk selected so that for some a  > 0

an = bm = 0, qn_1A(q*1 ), qm' 1B (q*l) are coprime (2.14)

non-zero elements as o 2n,k> <32n+m,k (2.15)

k

(2.16)

8
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then

(Ink)1+0 Pk = o, 0nk)1+ct Pk = 0, a.s. (2.17)

(ii) Also under (2.14), Xk is the output of a linear time-invariant system 

reachable from uk and the elements vn?k , vn+ITljk of v^. Then under (2.14) the 

excitation conditions on Uk of (2.4) and vk, namely, 

k k

f e o  ( Z o 2n j)-' = k™* ( X a V m a )-' = 0  (2.18)
i=l i=l

translate to excitation of Xk as

= 0, a.s. (2.19)

Proof (i) Under the coprimeness condition (2.8), then from [5] it is immediate 

that Xk is the output of a linear time-invariant system driven by Uk, vk, wk and is 

reachable from Uk alone. Now should Uk be acting alone, then Lemma (3.2) of [4] 

applies to give that, for all k and some K > 0

k+n+m *
X X[Xix > kX UiUix 
i=l

from which (for some a  > 0)

^ k

fö o .(2 a  w 1 Y1 = 0, => xixiT )■> = 0
i=l 1=1

k

)_1 = 0 => fci“ .(Ink)l+a Pk = 0 
i=l

9
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Applying the results of Lemma (3.3) and its Remark 1 of [4], now tells us that 

when bounded variance white noise inputs Vk,Wk (independent of Uk) are also 

applied, the same implications hold, so that (2.16) implies (2.17a) as claimed. The 

result (2.17b) holds likewise.

(ii) Under (2.14), the elements yk-i ... yk-n-1 > Uk-i ... Uk-m-l of xk are reachable 

from Uk alone [5], and the remaining elements (yk-n + vn,k), (uk-m + vn+m,k) of 

Xk are reachable from the non-zero elements of vk, namely vn>k and vn+m,k • Thus 

Xk is reachable from uk, vk under (2.14). Applying again the Lemma (3.3) and its 

Remark 1 of [4] gives directly that (2.4), (2.18) together imply (2.19). AAA

Main Results of Section

Theorem 2.1 Consider the signal model (2.1) (2.2) which is possibly 

overparametrized in that either (2.8) or (2.14) holding. Consider an RLS 

scheme (2.13) based on the alternative model formulation (2.11) with Vk 

selected as in (2.15) and (2.4) holding. Consider also that uk is sufficiently 

exciting in that (2.16) holds. Then there is parameter convergence as

where 0 is the unique parameter associated with (2.1) under (2.8) or (2.14). 

Moreover (2.19) also holds.

Proof Part (i). In the case that (2.14) is satisfied, so that an = bm = 0, then 

0Tvk = 0. Now Lemma 2.1 applies with Xk replacing Xk , so that (2.20) holds if and 

only if (2.19) holds. Assume that (2.19) does not hold, then since Pk ^ Pk-1 for all 

k, tr(Pk) converges to a non-zero element and from (2.15) the variances of Vk decay

a.s. (2 .20)

10
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at a rate k_1 . Thus (2.18) holds and in turn (2.19) holds under Lemma 2.2. This 

contradicts the assumption, so that (2.19) and (2.20) hold.

Part (ii) In the case that (2.8) is satisfied, Lemma 2.2 tells us that (2.16) implies 

(2.17). As a consequence from (2.15) then

k k
f e o  I > 2n,i < X ° 2n+m,i < -

i=l i=l

In turn we claim that 

k
f e o  X (6T'''i)2 < co, a.s. (2.21)

i=l

This follows since, as is readily established under (2.15), 

k k
^L (v ^n,i “ CJ^n,i)» ^ ( v ^n+m ,i “ ^ n + m ,i)>  
1=1 1=1

are martigales bounded in L2 and converge almost surely. Under (2.21) and 

(2.17b) we now claim

k
fö c x Ä  X wi(ÖTvi) = 0» a.s. (2.22)

i=l

To see this observe that

E[Mk I Ffc-i] = Mk-i,
k

Mk = S w i(0Xvi)
i=l

E[Mk2] = E
r k  k

X  X  QxViE[wiWjlFmin(i-l, j-l)]vjx6 
J=1 j=l

r  k
5>Vi)W

Li=l

11
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Thus Mk is a martigale on Fk-i, bounded in L2  under (2.21), and so converges 

almost surely, so that (2.17b) implies (2.22).

Now under (2.17b) Lemma 2.1 can be applied to yield

k k

i^oo^k ^L xiwi = 0 *  f ö o o ^ k  = a-S* (2-23)
i=l i=l

The first rersult follows from (2.7) and the relationships

k k

Ök = Pk llfX iy i ’ ^k = -Pk ( X x iw i - B 0)
i=l i=l

The second result follows from the first since (vix9) has the same essential 

properties as w* in (2.2) (2.4).

The results (2.22) ,(2.23) lead in turn to the following convergence results

k

PkBk = Pk ^ ( x p q 1 + XiVix + viXix + vivix) —> I, a.s. as k —> <» 
i=l

k

ök = Pk Z  Xiyi = (PkBk)_1Pk ^  ( xix ix0 + 8 xViXix0 + XiWi + 0xViwO
i-1 i=l

0, a.s. as k 0 0

so that (2.20) holds as claimed. AAA

Remarks 1. The specific vk selection of the theorem is for the case when there is 

one possible pole-zero cancellation in the model. This is clearly one of the most 

important case, since in selecting a model order there is a tendency when in doubt to 

merely increase a likely order by one for safety.

12
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2. If a bank of estimators is employed conditioned on different model orders, then 

the results above tell us that only odd (or even) orders need to be covered. Such a 

saving is a factor of two.

3. Rather than work with banks of estimators as in Remark 2 above, an ad hoc 

approach is to relex (2.15) and have v^k, V2,k> .. vn>k each independent and 

suitably exciting with the variance of v ^  increasing with i. This would force pole- 

zero cancellations to occur near the origin, but would lead to biased estimates. We 

do not study this technique.

4. The algorithms and results of this section have been analysed for the simplest 

of stochastic signal models, namely, when (yk - 0TXk) is white. For more general 

autoregressive moving average exogonous input (ARMAX) models, extended least 

squares (ELS) based algorithms can be employed. We claim that the technique of 

introducing vk also can be made to extended the capabability of ELS based 

schemes. In particular, for those which are globally convergent under the 

coprimeness condition (2.9), [7] with the modifications they are globally 

convergent also when there is a possible overparametrization, as when (2.14) 

holds. Essentially the same theoretical approach applies, but the technical details are 

more tedious, so are not explored here.

3. Adaptive Pole assignment 

Pole Assignment

Let us seek an adaptive pole assignment scheme associated with the signal model

13
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(2.1) so that there is asymptotic convergence to

H (q -l)yk = KB(q-l)ik (3.1)

where H(q_1 ) = 1+hiq-1 +...+ hn+m q-n-m is specified by the desired closed loop 

poles, K is a constant, and r^ is a reference input. This can be achieved by the 

following controller [2].

H(q-1 )E(q-l )uk = -H(q-1 )F(q*l )yk + Ki* (3.2)

where E(q_1 ) = 1 + eiq-1 +...+emq‘m , F(q_1) = fiq-1 +...+fnq 'n are given from 

the solution of the Bezout equation.

A(q-1 )E(q-!) + B(q-1 )F(q*1) = 1, or S(n,m) (j) = a

where

<(>x =[ei e2... em fi f2...fn] , a x =[-ai -a2 ...-an 0...0]

S(n,m) =

1 0  . . 0  0  . . . 0  - |
ai 1 0 bi
. ai . . . bi

%
0  .

1 bm 
. 0 .

n+m

0 an 0

<----- m --------M----- n -------- >

(3.3)

(3.4)

It is known that solutions of (3.3) exist if and only if rank[S a] = rank[S]. Also 

from [8]

14
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S(n,m) is non-singular <;=> qnA(q_1), qmB(q_1) are coprime (3.5)

In certainty equivalence adaptive pole assignment, the estimates Ok are used in lieu 

of 0 in (3.4) to compute on-line estimates ({Sk  ̂of the controller parameters, so that 

in obvious notation

§kCE(n,m)$kCE = &kCE (3.6)

When qnA(q_l), qmB(q*1) are coprime, §k(n>m) is non-singular and the solution of 

(3.6) exists. Otherwise it may not. Ill-conditioning in §k_1(n,m) can cause 

excessive values for $k- One modification to avoid large $k is to select $k = 4>k-l 

during ill-conditioning, but for unkown plants, it is not a priori clear how to 

quantify ill-conditioning to achieve a useful adaptive controller.

Central Tendency Control

In central tendency adaptive pole assignment [9], ill-conditioning in calculating the 

controller parameters is avoided without requiring prior information concerning the 

plant or controller. Suppose there is a Gaussian a posteriori probability density for 

the model parameters 0 as N[§k> otk2PkJ where &k2 is an estimate of a 2, then there 

is an associated non-Gaussian probability density for the pole assignment controller 

parameters <{>. A central tendency selection $k^T is one which maximizes this 

density, or at least avoids the tails of this density. Practical implementations are 

given in [9]. Associated with $k^T is some parameter estimate §kCT which is not 

in general §k- Thus, in obvious notation

§kCT(n,m)$kCT = akCT (3.7)

The estimate §kCT has the property [9] that it is "close” to ök but "far" from

15
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hypersurfaces for which qnAk(q_1), qm&ic(q'1 ) are not coprime. As a consequence, 

the following property is claimed for central tendency adaptive pole assignment.

The selections Sk07 0 are such that [§kCE(n,m)]T exists for all k, and if 

0 belongs the hypersurface (in ©-space) defined by qnA(q-!), qmB(q-1) not 

coprime, then as k —» ©o, ök^T is contained in a cone centered at 9 which 

excludes the tangent hyperplane at 0. (3.8)

Remarks 1. To give a geometric interpretation of (3.8), consider Figures 3.1 

and 3.2. The heavy arc is the pole zero cancellation singular region for 0 estimates

ill-conditioned
control

Fig. 3.1. Avoidance of Ill-conditioning

Fig. 3.2. Ill-conditioned Control

16
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in ©-space. The light shaded area is a zone of ill-conditioning control surrounding 

the singular arc. The heavy shaded cones are the conic regions of possible central 

tenency control estimates §kCT of (3.8). Figure 3.1 depicts the situation when the 

solution (2.14) is at the conic intersection and the cones avoid the ill-conditioned 

regions. Figure 3.2 depicts a solution not satisfying (2.14) when the central 

tendency estimates §kCT become ill-conditioned when converging.

2. The property (3.8) can be viewed as a vorollary of results rigorously proved in 

[9], although specific reference has not been made to (3.8) in [9]. The property is 

readily believable, but since it is not rigorously proved as such in [9] and is 

beyound the scope of this chapter, we here add the "qualification" to central 

tendency control that (3.8) be satisfied.

Two cases are studied now.

Case ( i )  Known Model Order

Theorem 3.1 Consider the signal model (2.1) for the case when it is not 

overparametrized, so that qnA(q_1), qmB(q_1 ) are coprime. Consider also 

RLS parameter estimates §k from (2.13), and associated certainty equivalence 

[or central tendency] pole assignment with controller parameters ^ k ^  

[or $kCT] and Sylvester matrices §kCE(n,m) [or §kCT(n,m)]. Consider also 

that rk is sufficiently exciting so that Gk2Pk —» 0 as k —» and there is

parameter convergences with ök 9 as k —» <». Then

f ö 00[§kCE(n,m)]'1 = S'Hn.m), or ^5500[Skc r (n,m)]-1 = S-J(n,m) 

fö o o ^ k ^  = <1>, or k^o<$kCT = <j> (3.9)

17
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Proof This is immediate from the coprimeness assumption and the property 

(3.5). Notice that there is no need of assumption (3.8).

Case (if) Overparametrization

Theorem 3.2 Consider the signal model (2.1) with n>l, m>l, and (2.14) 

holding. Consider also RLS parameter estimates §k of (2.13) and associated 

central tendency adaptive pole assignment controller parameters $kCT given 

from (3.7) with (3.8) satisfied. Then under RLS convergence of §kCT to 9

as k —> oo,

f e o  det §kCT(n,m) = 0, ^ J ^ C T  = (3.10)

where <|>* is a unique solution of S(n,m)0* = a  with zero elements as

<t>* = t e r  e2* ... em-i* 0 fi* f2* ... fn-l* 0 ]x (3.11)

Proof The proof is given in the Appendix, based on Sylvester matrix property 

studied in Section 4.

Remarks 1. It might be thought that the results can be more directly proved 

from properties of Diophantine equations. Although certain progress can be made 

along these lines, and indeed the results can be stated in such terms, it does not 

appear straghtforward to complete any proof without resort to Sylvester matrix 

properties as in Section 4.

2. This theorem result is dependent on the non-standard nature of the RLS 

algorithm with its internal perturbations vk. In the presence of overparametrization, 

standard RLS estimation (when Vk = 0) will almost surely not converge to the

18
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unique limits solution (2.14). This means that there is inevitable ill-conditioning. 

This situation applies even when a central tendency adaptive control law is 

implemented, as depicted in Figure 3.2.

3. The above theorem result is also facilitated by the central tendency property 

(3.8) of the adaptive controller. In the presence of overparametrization, even when 

the modified RLS algorithm of this chapter is implemented without (3.8) satisfied, 

there is a non-zero probability of ill-conditioning as suggested from Figure 3.1, at 

least during transients.

4. The theorem is developed in conjunction with the RLS estimation (2.4) which 

copes with possible overparametrization, by the an, bm. Should some RLS based 

scheme cope with higher orders of overparametrization, the results of this theorem 

would still hold. The details of a more general proof are straightforward and are 

omitted here.

5. The result of the theorem also applies to the situation when (3.3) is replaced by

A(q-l)E(q-l) + B(q-l)F(q-l) = H(q-l) (3.12)

with H(q_1) having degree no greater than n+m-2. This is the usual situation when 

A(q_1) is of degree n-1, and B(q_1) is of degree m-1. The proof details are a mild 

variation on that given here when (3.3) applies. The restriction on H(q*1) implies 

that the associated a  in the algebraic form of (3.12) corresponding to (3.3.b) has its 

last two entries zero.

6. The above result covers the cases when the plant has a delay of unity or 

greater. In these cases B(q_1) specializes as having a factor q_N where N > 1.

19



4. A Property of Sylvester  Matrices

First recall (3.4) which associates with 9 = [ai ...an bi ...bm]x a Sylvester matrix 

S(n,m). Let us denote the adjoint of S(n,m) as M(n,m) and determinent as D(n,m). 

Now consider a (linear) trajectory in ©-space parametrized in terms of a scalar 

variable %, as

0 ©  = [ai ...an-i (a5) bi ...bm_i (b^)]x, lal + Ibl = 1 (4.1)

Also denote the Sylvester matrix associated with 0(q) as S^(an,bm), its adjoint 

matrix as M^(an,bm) and its determinent as D^(an,bm). Then we claim the 

following:

Lemma 4.1 Consider S^-1(an,bm) = D^_1(an,bm)M^(an,bm) for the case 

that

D(n-l,m-l) * 0, abm_i - an_ib 0 (4.2)

Then the following limits exist as \  —*0 for all j < n+m-1

r[S*1(n-l,m -l)]i.j for i < m (4.3a) 

^ o o D^_1(an»bm)[M^(an,bm)]ij=^ [S’1(n-l,m-l)]i-i.j m<i<m+n (4.3b)
L0 for i = m or i = m+n (4.3c)

Proof We consider in turn expressions for D^(an,bm) and M^(an,bm) in terms of 

order % and higher order terms denoted 0(^2). Simple manipulations give an 

expression for D^(an,bm) in terms of the elements of the last row of S^(an,bm) and 

their minors, with the minors likewise expanded, as

D^(an,bm) = (-l)n^(abm.i-a„-ib)D(n-l,m-l) + O ß2) (4.4)

CH 7 ESTIMATION AND POLE ASSIGNMENT CONTROL
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Noting that [M^(an,bm)]ij is a (signed) determinent of a submatrix of S^(an,bm), 

then again simple manipulations give an expression in terms of the elements of the 

last row of the submatrix of S^(an,bm) and minors of this submatrix as

[M^(an,bm)]ij= (-1 )n(aij) [Mjj(an,m-1 )]j j  + (b^)[M5(an,bm)]ij + O (^),

for i < m,j < n+m-1 (4.5)

Here M^(an,m-1) denotes the adjoint matrix of the lower dimensioned Sylvester 

m atrix  S ^ ( a n ,m -1) w hich a sso c ia tes  w ith the vecto r 

[In+m-1 O ]0©  = [a i...an-i (a£) bi --.bm-1]T. Using derivations similar to 

those giving (4.5), then

[M^(an,m-l)]ij = bm.i[M(n-l,rn-l)]ij + O ©

= bm-iD(n-l,m-l)[S*1(n-l,m-l)]ij + O ©  for i < m, j < n+m-1 (4.6)

where S_1(n-l,m-l) exists under the assumption (4.2). The dual form of (4.6) is

[M$(n-l,bm)]ij = (-I)"’1 an-iD(n-l,m-l)[S“1(n-lfm-l)]ij  + O ©

for i < m, j < n+m-1 (4.7)

Substitution of (4.6) (4.7) into (4.5) yields

[M^(an,bm)]ij= (-l)n(abm.i-an-ib)^D(n-l,m-l)[S-1(n-l,m-l)]ij+0(§2)

for i < m, j < n+m-1 (4.8)

Dividing (4.8) by D^(an,bm)) from (4.4) and taking limits as £ —> 0 under the 

assumption (4.2) leads to the result (4.3a). The result (4.3b) can be established
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along similar lines.

Similar arguments to the derivation of (4.5) (4.6) lead to

[M5(an,bm)]mj  = (b$)[Ms(n-l,bm)]mj + 0& ) , for j < n+m-1 (4.9)

[Mjj(n-l,bm)]mj = (H )O (0), fo rj<  n+m-1 (4.10)

where 0(0) denotes a quantity that is bounded in term of 0. From (4.9) (4.10),

[M^(an,bm)]mj = 0& ) , for j < n+m-1 (4.11)

Similarly, we have

[M^(an,bm)]n+mj = O g 2) , for j < n+m-1 (4.12)

Then dividing (4.11) and (4.12) by D^(an,bm) from (4.4) and taking limits as 

% -+ 0, under the assumption (4.2), we have (4.3c) as claimed. AAA

Remarks 1. This result can be generalized to the case other a*, bi converge to 

zero using the same technique as above. Details are omitted.

2. The above result can be expressed in terms of an (n+m) x (n+m-2) matrix.

[S+(e4)]ij = D4-l(an,bm)[M^(a„,bm)]ij j < n+m+-l (4.13)

Thus under (4.2)

S+(6,0) 4^im ooS+(e,^) (4.14)

Moreover, simple manipulations yield
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S(n,m)
Im-1 0 - |
0 0 _ rS (n-l,m -l)~ |
0 !„-! " L  0 J
0 0 - *

so that

S(n,m)S+(0,O) = [ In+0m'2] (4.15)

Corollary 4.2 Consider that A(q_1,£), B(q-1,^) are the polynomials 

associated with the 0(^) as in (4.1). Consider also that E(q-1,^), F ^ * 1,^) are 

the solution to

with the degree of E(q-1,!;) being m, and the degree of F(q_14 ) being n. Then 

under the same conditions as in Lemma 4.1, the last coefficients of E(q_1,£), 

F(q-1,^) converge as

P roof The proof is straightforward from the result of Lemma 4.1, and in 

particular from (4.14). However, to prove it by just using the properties of 

polynomial equations appears too formidable without resort to the result on the 

Sylvester matrix described in Lemma 4.1.

Lemma 4.3 Consider the Bezout equation (3.3) under (2.14) with m > 1. 

Then a unique solution <j>* of (3.7) exists as

A(q-l,5)E(q“1,0  + B(q'U)F(q-l£) = * (4.16)

(4.17)

(j)* = S+(0,O)[In+m-2 0]cc (4.18)

with the property that (J)* has n ^  and (n+m)111 elements which are zero.
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Proof Under (2.14), of course S-1(n,m) does not exist, but (4.2) holds for a 

suitable selection of a,b. Also, the last two elements of a  are zero. Now Lemma 

4.1 holds under (4.2) so that (4.14),(4.15) apply. Thus with <j>* uniquely defined 

from (4.18)

S(n,m)<(>* = ß n+m-2 q ] oc = a

and (3.3) is satisfied. Application of (4.14) under (4.16) gives guarentees that the 

n^ and (n+m)111 elements of <(>* are zero. AAA

5 Sim u la tio n s

Consider now the application of the adaptive pole assignment scheme discussed in 

Sections 2 and 3, to the plant taken from [10] with

yk * l-2yk-l = uk-i -3.1uk-2 + 2.2uk-3 + wk, K = 10, H=l,

rk
1 k= 1.. 10; 21..30; 41..50 
-1 k= l 1..20; 31..40; 51..60

and variance of wk decays as k‘2. (5.1)

Three cases studied are:

(i) The plant is overparametrized by one, i.e. plant is modelled as

yk + aiyk-i + a2yk-2 = biuk-i +b2Uk-2 + b3Uk-3 + b4Uk-4+wk (5.2) 

and standard RLS estimation is used.
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(ii) The plant is overparametrized by one too, but the RLS estimation 

discussed in Section 2 is employed.

(iii) The plant is not overparametrized, i.e. plant is modelled as

Yk + aiyk-i = biuk-i +b2Uk-2 + b3Uk-3 +wk (5.3)

Figures 5.1, 5.2, 5.3 show the poor performance in the output, the estimates of the 

plant and the estimates of the controller in the case (i). And Figures 5.4, 5.5, 5.6 

give the comparison of the outputs, the estimates of the plant and the estimates of 

the controller in cases (ii) and (iii).

TI ME

Fig. 5.1. Output (yk) in Case (i)
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Fig. 5.2. Estimates of the Plant in Case (i)
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Fig. 5.3. Estimates of the Controller in Case (i)
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-20  -

TI ME

Fig. 5.4. Comparison of the outputs in Cases (ii) and (iii)

TI ME

Fig. 5.5. Comparison of the Estimated Plants in Cases (ii) and (iii)
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\ — ___

TIME

Fig. 5.6. Estimated Controllers in Cases (ii) and (iii)

From the figures, it is clearly shown that in the overparametrization presence, the 

adaptive pole assignment scheme based on the standard RLS estimation of the plant 

could yield quite poor performance; however, the scheme proposed in this chapter 

works considerably well. In fact, it converges to the optimal pole assignment 

controller as the standard adaptive pole assignment scheme does without 

overparametrization.

6 Conclusions

Non-standard adaptive estimation and control techniques have been proposed to
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avoid ill-conditioning which can arise when standard techniques are applied to 

signal models with overparametrization. The techniques avoid ill-conditioning and 

yield asymptotic optimality in the case when there is possibly one pole-zero 

cancellation in the assumed signal model. It seems reasonable to apply such 

techniques in conjunction with on-line model order estimation techniques since 

from finite data these possibly lead to overestimation of the order. The techniques 

have been studied for the case when exact pole zero cancellation occurs, but is 

known from simulations to avoid ill-conditioning when there are stable near pole 

zero cancellations. The results of this chapter are a starting point from which to 

cope with higher order pole-zero cancellations.

APPENDEX

Consider first the following lemma.

Lemma A. 1 Under (2.13), (2.14), (3.8) (the conditions of Theorem 3.2)

fc2?coS+(8kCT& )  = S+(0,O) (A.l)

Proof With (3.8) satisfied and (2.13)

so that when (2.14) holds

J n ,k CT = fe™ . a ^ k = 0,

J mJcCT = bA = 0,
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Since I ak I + I bk I = 1, recalling (4.1), then

l& » k  = 0 (A.2)

Now, under (3.8), (2.13), (2.14), we have

r Im-l 0 -j
l^?ooS+& CT£k) = S+(8kCTf0) = °0 ^  [§kCT(n. l , m.l)] - l

1-0 0 J

(A.3)

Also under (3.8), (2.13), (2.14)

f e „ S + ( § kCT 0) = S+(6,0) (A .4)

From the continuity and (A.2), (A .l) is established. AAA

Remark Without (3.8) satisfied, it can not be guaranteed that S+(ökCT,£,k) exists 

for all k. Also with S+(ök,£k) large, then $k is large, and ill-conditioning is said to 

occur.

Proof of Theorem 3.2

Consider the central tendency adaptive control with (3.8) satisfied and define 

fo r all k

[§kCT(n,m)]-l = [S+(8kCT4) *] (A.5)

where * denotes terms not of interest. Thus for the signal model with m > 1, or in 

other words the last two entries of ockCT zero,
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$kCT = [S^Cn.m)]-1 akCT=[§kCT(n,m)]-1[In+m-2 0]T[In+m-2 0] a kCT 

= S+(8kCT,§)[In+m-2 0] «kCT (A.6)

Now applying (A.l) when taking limits as k —> <», we get

J k CT = f e o S +(§kCT4k)[In+m-2 0] a kCT= S+(e,0)[In+m.2 0]a

The desired results (3.10), (3.11) follow from application of Lemma 4.3. AAA
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Chapter 8

RECURSIVE IDENTIFICATION OF 

OVERPARAMETRIZED SYSTEMS

1. Introduction

For adaptive estimation / control scheme design, it is common to assume a linear 

input -output signal model of specified order with unknown parameters. If the order 

of the signal model selected for design is too low (underparametrization), then the 

unmodelled dynamics can be destabilizing. This means that there is a tendency in 

practice to overparametrize the signal model to be on the "safe" side. Thus 

overparametrization emerges as a significant problem in some applications. A 

specific situation is when the presence of some deterministic disturbances such as 

bias is assumed, when in fact any such disturbances are negligible.

With overparametrization, there is a danger of ill-conditioning in adaptive estimation 

and in some adaptive control. When an adaptive estimation algorithm (say extended 

least squares ) is employed to identify an overparametrized system, there is 

inevitably a lack of excitation in the regression vectors and normally there is no 

guaranteed convergence. Also insufficient excitation can lead to identification of 

near pole-zero cancellations in the complex z-plane, leading to excessive control 

signal in adaptive control schemes, such as pole assignment scheme [1]. Of course, 

an on-line order determination could be applied to get a suitable signal model [2,3]. 

However, such an approach increases the complexity considerably.

In an early work [4], it is suggested to inject an excitation signal into the regression 

vectors for recursive least squares parameter estimation. A design approach is
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CH 8 RECURSIVE IDENTIFICATION

presented in [4] which copes with a possible overparametrization by one for the 

recursive least squares estimation applied to systems with white noise perturbation 

which may or may not be persistently exciting. In this paper, we extend the 

approach in [4] to construct a regressor excitation signal which permits arbitrary 

degrees of overparametrization, and apply the approach to signal models with 

colored noise excitation. The formulations are presented in Section 2. Convergence 

proofs for recursive extended least squares estimation are given in Section 3. An 

example is reported in Section 4 to illustrate how the algorithm behaves. 

Conclusions are drawn in Section 5.

2. ALGORITHM

Signal Model The signal model considered is a time-invariant linear system 

described by an ARMAX model as

A(q_1 )yk = B(q*! )uk + CCq'1 )wk (2.1.a)

n m /
A(q_1) = 1+X aiq"', B (q - ') = £  b.q'1, C(q'1) = l + £  ciq4 (2.1.b) 

i=l i=l i=l

Here uk and yk are the system input and output and Wk is the disturbance noise 

assumed being white noise zero mean. Or more precisely, the conditions on Wk are 

as follows.

The sequence {wk} is a martingale difference sequence with respect to Fk-i, 

with E[wk!Fk-i] =0* E [ wi l E k - l ] =  < °°> where Fk denotes the

G-algebra generated by wi wk, ui ••• uk. (2.2.a)
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We further assume that the noise C(q_1 )wk is not "too colored" in that

C'^q'1 ) - ^ is strictly positive real (2.2.b)

Also, let us assume that the plant inputs are persistently exciting in that

k

0 < ß l <  r X f üiü] ^ ocl ü\ = [ui -  Ui-n-ml (2.3)
i=l

for some a, ß, ko and all k > ko .

The signal model (2.1) can be rewritten as

yk = ÖT<i>k +wk (2.4.a)

0T = [a i ••• an bi ••• bm c i ••• c /] (2.4.b)

4>k = [-yk-l — -yk-n Uk-1 — Uk-m ™k-l — ^k-/] (2.4.C)

Perturbed Recursive Extended Least Squares Consider the recursion

0k = Pk [Bk-10k-l + Ykyk ] , Bk = Bk-l + YkVi: > Pk = B 1̂, (2.5)

where

$1= [-yk-l — -yk-n Uk-1 ••• Uk-m Wk-1 — 'Me-/]  ,

Wk = yk - 0 k¥k , Yk= 0k + Vk-l , ^k = yk- 0k$k

$k = [-yk-l — -yk-n Uk-1 -  Uk-m Wk-1 — *k-/] (2.6)

initializing by

yi = 0, Ui = 0, wj = 0, wi = 0, for i < 0, and some 0q , Bq > 0.
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For a system as in (2.1) with the possibility of overparametrization by up to 

L < min(n,m,/), the choice of vk we propose is as follows

vk 4 DkUk, H[i)k IFk-i] = 0, H['Uk‘ükIFk-l ]=

S£ P [\)Juk] <  V  <  oo,

DkDk 4Diag[ai(n>.ai(l)ai(m)..ai(l)ai(/).. a£(l) ]

a k (D = t r [ V ] ,  Ök = ßk-i+$k$k

ctk (j) = trf^k1© ]  > for 1 < j< L, and (Jk 0) = 0 for j > L (2.7)

Here the a-algebra Fk is extended to include that generated by {vi ,V2 — vk). Also 

fik(j) is a matrix obtained from ök by deleting rows and columns (n+l-j) to n, 

(n+m +l-j) to (n+m) and (n+m +/+l-j) to (n+m+/)- The fi^Cj) can be easily 

calculated from by inversion of a block matrix formula given in Appendix A.

This algorithm minimizes the index 

k

Jt = Z (y i  - e > i ) 2 + (9 -  0O )T B0 (0 -  0 o ) (2.8)
i=l

3. Convergence

This section is devoted to proving a convergence result on the perturbed extended 

least squares algorithm proposed in the previous section. The proposed algorithm
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does not fit directly into the framework where known convergence analysis applies, 

yet our analysis specializes to known techniques. Let us consider the simplest 

situation of a stable signal model under persistently exciting input signals.

Theorem 3.1: Consider the signal model with assumed order (n,m,/) as in

(2.1)-(2.4), possibly overparametrized by some L < min(n,m,/), and 

assumed stable. Consider the perturbed recursive extended least squares 

algorithm (2.6)-(2.8). Consider also that the input uk is uniformly persistently 

exciting as in (2.3). Then there is parameter convergence as k goes to infinity,

ök —> 0 a.s. at the rate of 0([ln(k)*Vk]2) (3.1)

where 0 is the unique parameters associated with (2.1) with all possible pole / 

zero cancellations at the origin, and arbitrary constant [ i  >  1. ***

As a step to prove the Theorem 3.1, let us first introduce the following lemma, 

which specializes to known results when Dk , vk = 0 in the absence of 

overparametrization.

Lemma 3.2 Consider that the conditions of Theorem 3.1 apply and that 0 

is defined as in the theorem. Then

oo

( 1 ) X  [ 0 Tv k- i v k - l T0 ]  ^ Kv <
k=l

(3.2)

k

(2) f c ä . X l v T P w / t K B i - 1 ) ]  < ~
i=l

(3.3)

(3) n ►Q £ II (3.4)
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Zk 4  yk - ¥ k 0k - Wk, hk 4  \|/k0k - öxVk-l, Bk 4  0 - 0k (3.5)

(4) E[bkwk IFk-i] = -YkPkWJw . bk 4 (3-6)

(5) There are some constants pi>0, p2>0, and K < °o such that

k
Sk 4  X[2biZi - b|2 - P lbj2 - p2zi2] + K ä  0, (3.7)

i=l

Proof:

(1). Suppose the system (2.1) is overparametrized by 0 < s ^ L. Then with (2.3) 

and (2.2), it is well known that [5] ^ ^ ( j)  0 for j > s, at the rate of 0 (l/k ) .

Therefore Gk(j) —>0 at the rate of 0(l/k) for j > s, or

k=l

Of course, for j < s, ök(j) does not approach zero as k —> <», but terms involving 

Ok(j) for j < s in 0TDk are zero, since the system is overparametrized by s. 

Combining this result with (3.8) and V < <» in (2.7) leads to (3.2).

(2) Now (tr^BiJI)-1 < Pj so that

X o f c )  < <*> (3.8)

Vi Pj Vi /  tr [B n ] < v !  PiPi-iVi (3.9)

Then from (2.5)

so that
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YiPiPi-lVi = tr[Pi.i] - tr[Pi] (3.10)

Now (3.3) follows from (3.9) by summing up on both sides of (3.10).

(3) Now with the definition for Zk of (3.5)

C(q-’ )zk = CCq'1 ) [ y k - V £ e k - w k ]

= [CCq-1 ) - i] [yk - Vj9k ]  + yk - Vlßk - C(q_1 )wk

But from (2.4) (2.6), manipulations yield

? k0 = [C (q_1 ) - l] [yk - ylQv  ]  + yk - C(q_1 )wk

Thus

C(q_1 )zk = <j>k0 - y£8k = v£0k - 0xvk-i

where the second equality follows from (2.6) and definition of 0k in (3.5). 

Applying the definition for hk in (3.5) the result (3) is established.

(4) From the definition of bk in (3.6),

bkWk = y£0kWk (3.11)

Also from (2.5),

BkQk = Bk-lök-1 + W k  = Bk0k-1 + Vk(yk - Vk^k-l)

0k = 0k-1 + PkVk(0k0 + wk ’ Vk0k-l)

0k = 0k-l - PkVk(^k0 + wk - Vkök-l) (3.12)
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Substituting (3.12) into (3.11) and taking conditional expectations on both sides 

gives the result (4). In this manipulation, recall that all quantities in the expression 

save wk and vk are Fk-i measurable.

(5) Proof is given in Appendix B. AAA

Proof of Theorem 3.1: From (2.5), (3.5)

(Bk-i + YkYk )0k = Bk-lök-l + W k

6k = 0k-1 + Pk-lYk(yk - \|/Tk0k )

9k = §k-l - Pk-lVk(zk + Wk) (3.13)

Now defining Vk = 0 k®k0k and applying (3.13), we have

Vk = 0 KBk-i + VkVk)0k

= Vk-l - 2\l/l0k-l(zk+Wk) + Vkpk-lVk(zk+Wk)2 + 0 kVkVk0k 

= Vk-l - 2Vk9k(zk+Wk) - Vkpk-lVk(zk+Wk)2 + 0 kVkVkök 

and with definition for bk as in (3.6)

Vk = Vk-i + b { -  2bkZk - 2bkWk - V0Pk-iVk(wk+Zk )2 (3.14)

Performing conditional expectation on both sides and applying (3.6) then

E[Vk IFk-i] = Vk-i + E [ b |-  2bkZk IFk-i ] + 2\|/£Pk W *w  "

- E [y^P k-i Vk(wk + Zk )2 IFk-i ]  (3.15)

Now recall (3.7) for Sk and define Xk as follows.
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a Vfc Sv X   ̂ b\ X  S z\
Xk= tt(Bjj+ tt(Bri)+ p i i2wtt(Bn) +p242 u f f ( B n ) +

i=l i=l

+ X ^ s ^ ( z i + w i ) 2 + X v i [ T O - 5 < y  (3-i6)

Then it is easy to verify that

VÜPkVkO;
E[Xk IFk.! ] < X k.1 + ^ 0 (3.17)

Applying the martingale convergence theorem [ 2,p501], under (3.2) (3.3), we 

conclude that Xk converges almost surely as k —»<». This implies that, 

k k
1 z2

< o o  a.s. Ann 7  - _ ± _ . < o o  a.s. (3 .18)1™“  ^ j t r ( B i . i )

Also from the definitions of fk , hk and the Schwarz inequality, 

k

^ ^ tr (B i .i) < oo a.s. (3.19)

We now demonstrate that under the excitation and stability conditions of the 

theorem, for some 8 and k,

jfc^ .sup (^maxBkAminBk) ^ ^ ^ 0SUp(trBkAmin®k) ^ 8 < ©° a.s. (3.20)

^ s u p  (XmaxBk/ k) < K, a.s. (3.21)

Now consider that the system is overparametrized by 0 < s < L, then the associated

9
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lack of excitation of certain modes reflects itself in the property that Gk(j) = ^ ( j )  

converge to some nonzero random variable for j < s. Then from the result of [5] \j/k 

is reachable from wk, Uk and vk-i, and since Wk, Uk, vk-i is persistently exciting 

under (2.2), (2.3) and (2.7), \|/k is persistently exciting. Now under the stability 

assumption, the technique of [2,p345] applies here to show that (3.20) holds.

With (3.20) holding, it is easy to show that

-1Pk<5l[tr(Bk)]

k k

V]PiVi ^ V iV i
<3-22>

i=l

k

V VlVi V
^ t r ( B i)Ri “  2Li

tr(Bj) - tr(Bj.i) 
tr(Bi)Ri

m  OrBiy  j tr(Bi)Ri

trBk

J
trBo

x^nx)*1
[ln(trBo)]1 [ln(trBk)]1 ^ < oo (3.23)

Now, define Qk as follows,

1 0
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Then it is easy to verify that

E[Qk IFk.i]  < Qk-i + 2 -¥lPk^ k° ^

Applying the martingale convergence theorem [2,p501], under (3.2) (3.23), we 

conclude that Qk converges almost surely as k —> <». This implies, recalling the 

definition of Vk

Thus 0 k§k —> 0, 0k —» 0, from (3.21), at the rate of 0([ln(k)^/k]2) and the result 

(3.1) is established. Notice that here 0 is such that (3.2) holds, and has the property

Remark The extension of known techniques in the proof of the above theorem 

cope with the extra signals vk in the signal model and thereby to cope with 

overparametrization. Clearly, the novel techniques also apply in related situation 

involving adaptive control (details are omitted here).

4. Simulations

To illustrate that the algorithm works, an artificial example is studied. The true plant 

has the input / output relations

The simulations show parameter estimates of ai and a2 as in Figures 4.1, 4.2. In 

those figures, the curve 1 indicates the case when the signal model is assumed to be

< °o, a.s . (3.25)

that its elements at, bj, Ck are zero for i > n-s, j > m-s, k > /-s. AAA

yk - yk-l + 0.5yk-2 = -2.5uk-i - 1.5uk-2 + Wk - 0.5wk-i

11
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CURVES- 1 . 1

- 1 . 2

- 1 .3

- 1 . 4

- 1 .5
25  50  75  100  125  150  175  200  225  250  275  300  325  350  375  400

TIME

Fig. 4.1. Estimates of ai

25 50  75  100  125  150  175  200  225  250  275  300  325  350  375  400
TIME

Fig. 4.2. Estimates of a2
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correctly ordered (here n=2, m=2, 1=2), and normal extended least squares 

algorithm is used. The curves 2, 3, 4 depict the situations when the system is 

overparametrized by 1, 2, 3 (namely n=3,4,5; m=3,4,5; /=3,4,5) and our perturbed 

extended least squares algorithm proposed in Section 2 is employed with L=l,2,3 

respectively. To make the comparison, we also give the estimates (as the curve 5) 

of the normal extended least squares algorithm working in the overparametrization 

environment.

From the figures, it is clear that the results of the perturbed least squares algorithm 

is essentially the same as that from normal extended least squares working on the 

correctly ordered signal model. On the other hand, normal extended least squares 

estimation applied with an overparametrized signal model gives biased estimates. 

These simulations are consistent with the result given in Section 3, and point to the 

usefulness of the techniques of the paper.

5. Conclusion

A perturbed least squares algorithm is proposed here to cope with the problem of 

identifying possibly overparametrized systems. It has been shown that such 

algorithms have guaranteed convergence rates the same as when the signal models 

are not overparametrized. Simulations show no deterioration of transient 

performance of the proposed algorithm in the presence of overparametrization.
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APPENDIX A

For the inversion of a block matrix, we have the following result Namely, consider 

a block matrix M and M '1 partitioned as follows,

M = (A.l)

then

A’1 = E - FH'1 G (A.2)

To see this, from (A.l) we have AE + BG = I, AF + BH = 0 which implies that 

B = -AFH'1 and AE - AFH'1 G = I , then (A.2) follows.

To apply this result in our calculation for from ^ ^ ( j- l) , set fik(j) = A and

= M '1 , then ^ ^ ( j )  can be easily obtained from the partitioning of 

fii!(j-l) and (A.2).

A p p e n d ix  B (Pr o o f  o f  3 .7 )

From the strict positive real condition (2.2b), and definitions (3.4) (3.5), we know 

[2] that there are some constants Jii > Ji2 >0 and Ki < <», such that for all {hi},

X [hi(2zi - hi) - mhi* - W(2zi - hi)2] + Ki > 0, V k (B.l)
i=l

which can be re-organized by selections

M-3 =
1+2H2

>o,m 4H2
1+2^2

> o, k2 Ki

1+2H2
< °°,

14
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as

£  [hi(2zi - hi) - |i3hi2 - ji4Zi2] + K2 > 0, V k (B.2)
i=l

Now from definitions in (3.5) (3.6),

hi = bj - 9xvi.i (B.3)

Then for any given £i > 0, manipulations on (B.3) yield

.1 hj2=(l-ei).£ bi2+ £[eib i2-2bi6Tvi.i+(0'tvi.i)2] 
i=l i=l i=l

k  ̂ k ( 0 xVi i ) 2  I k
= (l-E i).I b i^+ I[e ib i2-2bie^vi.1+2— ! i - ] . ( - - 1 ) 1  (0*vM )2 

i=l i=l £j i=l

Applying the inequality from (3.2), allows

I  hi2 S: (l-e2) £  bi2 - (— -1)KV
1=1 i=l £i

(B.4)

Also, by the Schwarz inequality and the inequality (3.2), for any given £2 > 0,

- 2 £  e^Vi-iZi < E2 £  Zj2 + — £  (0Tvi.i)2 
i=l i=l £2 i=l

k K"^e2Izi2 + ^
i=l £2

(B.5)

Moreover from (B.3), (B.5)

2£hiZi = 2 X ( b i - e xVi.i)zi 
i=l i=l

< 2 £  biZi + £2 £ z i 2 + ^  (B.6)
i=l i=l £2

Substituting (B.4) (B.6) into (B.2) we have
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0 <  X [hi(2zi - hi) - ^3hi2 - H4Zi2] + K2 
i=l

< I  [2biZi + e2Zi2 - (l+ 43)(l-ei)b i2 - iHZi2] + K2 + —  +(— -1)KV 
i=l 82 8 i

Now by choosing 81 > 0, 82 > 0, sufficiently small, we can define

Pi = H3 - £l - £lP3 > 0, p2 = P4 - £2 > 0, and K = K2 + -  1)KV
£2 £1

and (3.7) is established. AAA
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C hapter 9

ADAPTIVE ESTIMATION IN THE PRESENCE OF

O rder  and  p a r a m e t e r  Ch a n g e s

1. Introduction:

Current adaptive estimation and control algorithms are designed to cope with plants 

of fixed order. However, many practical applications involve jump order changes 

for a plant. A typical example is the adaptive control of a robot arm when it grasps a 

flexible rod. There is a sudden 'jump' change in system order when the arm grasps 

the rod due to the additional flexure modes of the rod. Another significant 

application is the adaptive control of a structure in space under construction, or 

involved in a docking procedure. From our studies of the literature, the problem of 

dealing with jump order changes seems not to have been addressed seriously.

In this chapter, with the view to coping with time varying plants with jump order 

changes, we develop novel algorithms, building on earlier works [1,2]. These 

earlier studies propose least squares based adaptive estimation and control 

algorithms for unknown fixed plants, with only an upper bound on the plant order. 

The key contribution of [1,2] is the introduction of noise signals into standard 

estimation algorithms according to ill-conditioning measures. This ensures that 

identification of any pole-zero cancellation takes place at the origin and any 

overparametrization does not lead to ill-conditioning.

In this chapter, the approach of [1,2] is modified for the case when the plant may 

have time varying parameters by working with Kalman filter based estimation

1
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schemes, or recursive least squares with forgetting factor schemes. Again noise is 

introduced to the calculations according to ill-conditioning measures. However, the 

new measures are nontrivial generalizations of earlier ones, and a good deal simpler 

to implement. They are also able to detect and cope with jump order changes. For 

simplicity, the paper focuses on the special case of piecewise constant parameter 

values which permit jump order changes, but where parameter/order changes are 

relatively infrequent. Also attention is focussed on the adaptive estimation case, this 

being the basis for adaptive control.

The algorithm is detailed in Section 2, and some simulation results are given in 

Section 3. In Section 4, we draw a few lines as the conclusion.

2.Perturbed Kalman Filter Detection/Identification Scheme

Signal Model: In the first instance we consider a scalar, time-varying, linear system 

with changing order described by the DARMA model as

Ak(q_1) yk = Bk(q_1) uk (2.1)

where

n m
Ak(q-1) = 1 + la ®  q -i, Bk(q®) = lb ®  q® ,

i=l i=l

uk and yk are the system input and output; n and m are the upper bounds on the 

degree of the polynomials Ak(q~l) and Bk(q'*) respectively. We say that the 

system is overparametrized when the polynomials qn Ak(q~l) and qm Bk(q"^) 

have common zeroes. The degree of overparametrization is the number of common

2
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zeroes. Thus if there are no common zeroes, i.e. qnAk(q-l) and qmBk(q"*) are 

coprime, the degree of overparametrization is zero. A stochastic version of the 

signal model in (2.1) for estimation purposes can be rewritten as

Ok+1 = 6k + wk, yk = 9kT <t>k + vk (2.2)

0kT = [4 !) -  4 n) 4 !) -  4 m)]> 4>k = t-yk-1 ... -yk-n uk-1 ... uk-ml

Here <j>k is termed a regression vector. The measurement noise term vk is involved 

more for the purposes of algorithm design than to reflect any assumed persistently 

exciting measurement disturbance. The term wk is the noise sequence which 

describes the changes in the parameter vector 0k- For simplicity, we assume that 0k 

is piecewise constant with infrequent changes, i.e. wk = 0 for most k. An order 

change is merely a change in parameters such that there is a change in the degree of 

overparametrization in plant (2.1).

Excitation:

Assume that uk is persistently exciting so that

k+N
0 < ct2l < t t  X ui üiT < a i l , üiT = [ u i ... ui-n-ml (2.3)

N i=k

for some a i ,  a2, ko, N and all k > ko .

It is well known [3], that for intervals when Ak(q-^) and Bk(q‘ )̂ are constant and 

coprime, there is no pole-zero cancellation in the system model and the input 

excitation assumption (2.3) translated to an excitation condition on the regression 

vector <j>k as

3
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k+N

0 <  P 2 K  *rZ<M >iT < ß l!  (2'4)
i=k

It is important that this excitation condition holds even in the absence of any actual 

persistently exciting measurement noise v^. Of course, if vk is persistently exciting, 

then <j)k is also persistently exciting and problems associated with 

overparametrization do not arise. To exclude this 'trivial’ case, we assume that vk 

may not be persistently exciting. If the degree of overparametrization is L < 

min(n,m), it can be proved that <j>k is persistently exciting only in the (n+m-L) 

dimensional subspace of the whole space SKn+m.

Standard Kalman Filter Identification:

We consider first a standard Kalman filter form for estimating the system 

parameters.

ök+1 = ök + — Pk <t>k —-- , ek = Yk - <t>kx §k (2.5a)
R + <J)kx Pk ^k

Pk+l = Pk - — - k -- -k-  + Q , PO > 0 (2.5b)
R + <j>kT Pk $k

R > 0, Q > 0 are design parameters. (2.5c)

It has been proved [4] that if vk, wk have bounded variance, and <f>k is suitably 

exciting, the standard Kalman filter algorithm (2.5) gives an estimate ̂ k of 0k with 

bounded tracking errors. Moreover [5], if wk and vk are zero mean and Gaussian 

with variances Q and R, respectively, then (2.5) will yield the conditional minimum 

variance (conditional mean) estimate, with conditional error covariance Pk- 

However, if <j>k is not suitably exciting, the estimate of 0k using algorithm (2.5)

4
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does not necessarily have a bounded tracking error [4]. In fact, as will be shown 

later, Pk in (2.5) becomes unbounded when the plant is overparametrized, and 

consequently ök becomes unbounded. To avoid any possible ill-conditioning 

associated with the lack of suitable excitation in the regressor, the approach in [1,2] 

o f using a perturbed estimation algorithm will be used in the Kalman filter 

estimation. [Notice that the Kalman filter algorithm specializes to the least squares 

estimation scheme of [1,2] when Q = 0, R = 1.]

Perturbed Kalman Filter:

We propose the following perturbed Kalman filter identification algorithm:

ök+l = ^k + — —  Ck--------  , efc = yk - Yk* @k (2.6a)
R + v k T P k  Y k

Pk+l =Pk-  P k ¥ k ¥ 1 ^  Pk + Q . P0 > 0 (2.6b)
R + Y kx Pk Yk

Yk = <l>k + ^ k  (2.6c)

where Dk is injected noise being white and zero mean to cope with the lack of 

persistent excitation in <j>k. With Kalman filter time-varying parameter identification, 

designing a suitable noise covariance is not a straightforward extension of that 

previously proposed in [1,2] when parameters are assumed constant. However, in 

common with the approach of [1,2], the selection is made based on the appropriate 

Riccati equation solution, here Pk. A crucial property of Pk is now studied.

Kalman Filter Error Covariance Property:

5
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Theorem 2.1: Consider the signal model as in (2.2) with constant parameters 

(namely 0k = 0) and Kalman filter algorithm (2.5) with Q = ql. Consider 

also that the input uk is persistently exciting, i.e. (2.3) is satisfied.

(1) If there is no overparametrization, then for some bounds mi, Mi

0 < mi < tr[Pk] < Ml < oo (2.7)

(2) If there is overparametrization by L < min(n,m), i.e. the degree of 

overparametrization is L, then

Proof : For part (1), from [4] and (2.4) we see that Pk is upper and lower

bounded. Thus (2.7) is established. For part (2), since the system is 

overparametrized by L, <j>k in (2.2) is only exciting in the (n+m-L) dimensional 

subspace of the 9\n+m space of 0k- Therefore, there exists a unitary matrix T such 

that

After the transformation in (2.9b), the last L rows of T <{>k are zero and <}>k* is 

persistently exciting. Now recall Kalman filter algorithm (2.5), specialized here as,

0 < m i + qLk < tr[Pk] < Ml + qLk (2 .8)’

T T* = I, T <J>k = [ 4>kn  0 ... 0 P  = Ok*, V k (2.9)

Pk+1= Pk -
Pk <l>k <t>kT Pk T (2. 10)

R + 0 1 c P k  <j>k

Premultiplying (2.10) by T and post multiplying by T 5 we have

T Pk+1 TT = T Pk TT -
R + (J)kT Pk
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Let Pk* = T PkT 1 . Then using (2.9), we can rewrite (2.11) as

P k + f Pk -
Pk*P k*  Qk** Pk*  ̂ j

R + O k** P k * O k* q

Then partitioning Pk* and Ok* as

r  Pk ( l )  P k (2 ) - i

LPk(2)^ Pk(3)J

(2.12) can be written as

P k + l ( l )  = P k (l)  -
P k d )  0k* <j>kn  P k d )  

R + <l>k*T P k d )  <t>k*
+ q l l

Pk+1(2) = Pk(2) -
P k d )  <t>k* <t>k*T Pk(2) 

R + <l>k*x P k d )  <t>k*

Pk-hl(3) = Pk(3) - Pk(2) <t>k* <Dkn  Pk(2) 

R + <t>kn  P k d )  4>k*
+ q!2

(2 . 12)

(2.13)

(2.14)

(2.15)

(2.16)

From  (2.14) and also since <j)k* is persistendy exciting, it can be concluded that 

P k (l)  is bounded from above and below. Also it can easily be proved [4] that since 

<j)k* is persistently exciting, (2.15) im plies that Pk(2) converges exponentially to 

zero. Thus when k is large in (2.16), the following approximation holds:

P k ( 3 ) = k q l 2  (2.17)

Now since tr[Pk] = tr[Pk*], we have

tr[Pk]= tr[Pk(l)] +tr[Pk(3)] (2.18)

From  the properties o f P k d ), Pk(3), the desired result (2.8) follows. AAA

7
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Corollary 2.1: Consider that the conditions for Theorem 2.1 hold.

Consider that moving average on trace of Pk over period / as Pm(k). Then 

there is a constant N/ such that for all k > N /,

(1) if the system is not overparametrized, then the following inequality is 

true;

tr[Pk] - Pm(k-N/) < N/ q  (2.19)

(2) if the system is overparametrized by L0 > 0, the following inequality is 

true

N, qL0 < tr[PkJ - Pm(k-N/) < N/ q(Lo+l) (2.20)

Proof: The proof follows from application of (2.7) and (2.8) AAA

In jected Noise Construction

Now based on Theorem 2.1 and the Corollary 2.1, we propose the following 

procedure for constructing the injected noise Dk-

Step 1: Generate a zero mean unit covariance white noise sequence ftk •

Step 2: Based on the standard Kalman filter algorithm (2.5), update Pk

and perform moving average on tr[Pk] over a period of / .

Step 3: Checking for some large constant N/ whether (2.19) holds, or if

not, for what value of Lq, (2.20) holds. This latter constitutes a detection of 

the degree of the overparametrization Lq.

Step 4: If (2.19) holds, then let Dk = 0; if (2.20) holds for Lq then set

Dk = Dk fyc, Dk = Diag[0 .. 0 1..1 0 .. 0 1..1] (2.21)

where the pattern for the diagonal D is (n-L0) zeros followed by Lq ones and

8
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then (m-L0) zeros and L0 ones again. [If we set L0 = 0, for the case of no 

overparametrization as detected by (2.19) holding, then (2.21) is a 

comprehensive formula for \>k design].

Properties of Perturbed Kalman Filter:

When the system is not overparametrized, then the perturbed Kalman filter 

specializes as the standard Kalman filter.

If the system is overparametrized, then the model parametrization is not unique, 

Dk * 0, and \j/k (2.6c) is persistently exciting by virtue of the presence of Uk. 

Because of the excitation of \|/k, Pk is bounded above and below. Moreover, if the 

detection of the degree of overparametrization is correct, the addition of t>k does not 

introduce any bias on the estimation. Furthermore, the injected noise Dk forces on 

estimation of the unique plant parameters which give rise to a pole-zero cancellation 

at the origin. The reason for this is as follows. From (2.6) and denoting 

0k = 9 - ök , we have (with vk=0)

<5>kxe = VkTe, s k+i = s k . ! ! « ^ ,  (222)
R+VkTPkVk

Where 0 is the unique plant parameter vector which forces a pole-zero cancellation 

at the origin for the interval in question. Then the argument as in [4] can be used to 

conclude that 0k converges to zero, or in other words, the algorithm tries to 

estimate the "true" plant parameters.

Avoiding False Alarms:

It is noticed that only when N/ is suitably large, (2.19) or (2.20) hold. However, in

9
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order to adapt to a rapidly changing environment, N/ must be small. In this case, 

there might exist intervals where tr[Pk] increases with a gradient more than 

predicted, given knowledge of the degree of overparametrization. This constitutes a 

false alarm since in this interval degree of system overparametrization is incorrectly 

detected. To avoid false alarms, we propose to consider the previous j detections in 

the calculations as follows. Consider a modified noise selection as

I)k = ( n D i) t ik (2.23)
i=k-j

The choice of the constant j is a trade-off between the sensitivity of system order 

change and false alarm. Another ad hoc approach is to make j changed based on the 

information from the estimation errors ek (2.6). Details are omitted here.

3. Sim u l a t io n s

To give insights into the algorithm behavior, a number of simulation studies have 

been made. Here we report a typical one as follows. The signal model is assumed 

as a third order system with n = 3, m = 3 [recall (2.1)-(2.2)]. The plant parameter 

sets are

0 k  = <

[ -0.8 0.8 -0 .2  1.5 0.5 0.4] 
[ -0 .6  0.15 0 1.25 -0 .8  0]
[ -0 .8  0.8 -0.2 1.5 0.5 0.4]
[ -0 .6  0 0 1.25 0 0]

0 < k < 200 
200 < k < 400 
400 < k < 600 

600  < k < 800

A white noise sequence is used as the input signal. The design parameters are 

chosen as R=l, Q=0.1I, the interval for moving average is / = 18, and the interval 

for slope checking is N/ = 18. Figures 3.1 show the estimates of the plant

1 0



CH 9 ESTIMATION WITH ORDER AND PARAMETER CHANGES

0 . 5 -

0 . 5 -

Fig. 3.1.a. Estimates of A Parameters (PKF)

Fig. 3.1.b. Estimates of B Parameters (PKF)
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parameters, and Figure 3.2 depicts the behavior of the trace of Pk . To make an 

easy comparison, Figures 3.3 give the estimates of the plant parameters using the 

standard Kalman filter algorithm.

From Figures 3.1 and 3.3, it is clear to see that for the time periods of 1 to 200 and 

400 to 600, there is no overparametrization and the estimates of the plant parameters 

from both perturbed Kalman filter (PKF) algorithm and standard Kalman filter 

(SKF) algorithm are almost the same. For the periods of 200 to 400, and 600 to 

800, there is overparametrization. The estimates from the PKF algorithm converge 

to the plant parameters which correspond to the pole-zero cancellation at the origin, 

or in other words, they converge to 0k- However, the estimates from the SKF 

algorithm do not converge to the plant parameters 0k ; pole-zero cancellations may 

occur anywhere depending on the initial conditions (when ko=200, or ko=600 ).

Fig. 3.2. Behavior of Tr(Pk)

12
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0 . 5 -

~ ' 1 ;

______

- 0 . 5 -

Fig. 3.3.a. Estimates of A Parameters (SKF)

Fig. 3.3.b. Estimates of B Parameters (SKF)
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From Figure 3.2, it is clear to see that when the signal model is not 

overparametrized as in periods 1 to 200 and 400 to 600, and also when the signal 

model is overparametrized as in periods 200 to 400 ( L0=l) and 600 to 800 ( 

L0=2), the trace of Pk has the gradient properties expected, being proportional to 

L0. These and other simulations not reported here, confirm that the PKF algorithm 

performs virtually as well as if jump order changes do not occur. The PKF 

algorithm certainly performs as well as a SKF with order changes where 

appropriate, and cope better when there are false alarms.

4. Conclusions

An algorithm of adaptive estimation to cope with jump parameter changes and order 

jump changes is proposed. The key modification to standard algorithm is to 

introduce injected noise into the algorithm to handle the ill-conditioning due to lack 

of persistence of excitation caused by overparametrization. Theoretical analysis and 

simulations confirm that the algorithm has attractive properties, in that the algorithm 

performs as if the jump parameter changes did not include order changes.
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Chapter 10

ROBUST RECURSIVE IDENTIFICATION OF

M u l t id im e n sio n a l  l in e a r  r e g r e ss io n  m o d e l s

1. Introduction

Precise convergence rates are known for a number of stochastic adaptive schemes 

under a certain noise model positive real condition [ 1][2], first exposed as a 

convergence condition in [3][4]. Also robustness results are known[5]. The 

whiter the process noise, the more likely the positive real condition is satisfied, and 

the more robust are the algorithms.

In an earlier paper [6], a method is proposed to side-step the positive real condition 

for scalar variable noise models in stochastic adaptive estimation and control. The 

method has as a starting point the addition of white noise into the processing. Such 

additions ensure a whiter noise environment, which in turn ensure convergence and 

lend a certain robustness. The added noise can be seen as dominating unmodelled 

dynamics or unmodelled coloured noise. The method is made more powerful by 

additional processing involving on-line spectral factorization and parallel processing 

involving prewhitening filters. Simulations support the ideas of [6], although the 

theory in [6] is incomplete.

In this chapter, a number of the ideas of [6] are re-packaged in the context of a 

precise convergence analysis with the view to quantifying the extent of robustness 

enhancement and convergence rates. The techniques build on Kalman filtering 

theory, spectral factorization theory, and expand on those used for extended least 

squares convergence in [1,2]. Also, the work of [6] are nontrivially generalized to

1
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cope with multivariable signal models. Convergence rates are guaranteed without 

imposition of a positive real condition on the coloured noise model.

2. Algorithm Description and Main Results 

Stochastic Model

Consider the following m-dimensional Linear Regression Model:

y(t) = 0ox(t) + e(t), t > 0 (2.1)

where y(t), x(t) and (t) are the m-, p- and m-dimensional observation vector, 

regression vector and modelling error respectively, and where 90 is the mxp 

unknown parameter matrix.

Assume that the system noise e(t) is a moving average (MA) process:

e(t) = w(t) + Ciw(t-l) + ••• + Crw(t-r), t > 0 (2.2)

with unknown matrix coefficients Q, 1 < i < r, where the driven noise (w(t)} is 

assumed to be a Gaussian white noise sequence with

Ew(t) = 0, Ew(t)w(t)x = Rw > 0, t > 0. (2.3)

Let us denote all the unknown parameters by

9 = [60 Ci -  Cr]x (2.4)

2
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Introduced Noise

To dominate unmodelled dynamics and/or noise which is highly coloured, consider 

the introduction of a Gaussian white noise sequence (v(t)} which is independent of 

{w(t)} with properties:

Ev(t) = 0, Ev(t)v(t)T = a v2Im> ctv2 > 0, (2.5)

The "pre-whitening" idea proposed in [6] is to formulate the predictor in 

identification algorithm by using the following "pre-whitened" process

z(t) = y(t) + v(t), t > 0  (2.6)

together with the output sequence {y(t)).

Prediction Error Algorithm

Consider the prediction error algorithm processing (2.6):

§(t+l) = §(t) + PWymtzCt+l)* - y(t)^ (t)] (2.7)

p i a M M t m ,
1 + v (t)TP(t-l)\|/(t)

P(0) > 0 (2 .8)

y(t) = [x(t)* z(t)t -y(t-1 )^ (0  -  z(t-r+1 )T-\|/(t-r)§(t-r+1 )]T (2.9)

Estimates of the covariance of prediction errors are given by the following residual 

statistics:

t-1

f t « «  = - r  X[2(i+1) - W « ][z ( i+ 1 )  - HCOF (2-10)
1 i=0

3
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the terms of which have convenient recursive forms. Notice that when the 

introduced noise v(t) in (2.6) is set to zero, so that z(t) = y(t), then (2.9) reduces to 

the more 'standard' regression vector.

Theorems

Let us denote Xmin(X) [^max(X)] as the minimum [maximum] eigenvalue of a 

matrix X and IIXII = \  ^max(XX*) its norm, where X* is the transpose complex 

conjugate of X. Let us also denote £(t) = e(t) + v(t) and set

Gt° = o{C(i), i < t}, t > 0

Assume that the regression vector sequence {x(t), Ft_i } is any adapted random 

sequence where

Ft = a{G t° u G t 1} t > 0

with {Gt1} being any family of non-decreasing G-algebras such that G t1 is 

independent of Gt+i° for any t > 0.

Theorem 2.1: For the system and algorithm described by (2.1)-(2.10), if

in the pre-whitening of (2.5)-(2.6), Gv2 is chosen to satisfy

Gv2 > r  IIRWII ll[Ci -  Crll2 - Xmin(Rw) (2.11)

then the following convergence rates hold:

(i) Il8(t+1) - 911 = 0 ( - \ / l0g>'ma' ( ')' ), a.s. t ~  (2.12)
y ^min(t)

(ii) ll^p(t) - R -  II = 0 ( ^ / l0g?7 ax(t) )+0 ( l0gX7 (t)•) a.s. t—»«> (2.13)t t
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Here,

0 = [0O D i - D r F  (2.14)

and {Di, 1 < i < r, R - } satisfies

D(z)%D(z-l)t = C(z)RwC(z-1)'' + a v2I (2.15)

with

C(z) 4 1 + Ciz + -  + Crzr (2.16)

D(z) 4 1 + Dtz + + Drzr (2.17)

Here also, Xmax(t) [Imin(t)] denotes the maximum [minimum] eigenvalues of 

t
X  ¥(i)V(i)x + el» (e > 0) 133:2
i=0

Theorem 2.2: Consider that the conditions of Theorem 2.1 apply and

l°g^max°(t) -  o(^min°(0)» a-S. t —» <» (2.18)

Then

ii 6(t+i) - e ii = o (a  / log>-mâ  ),
y ^min°(0

a.s. t —» (2.19)

and

ll^ (t)  - R* II = 0 ( ^ ‘°g1°gW )  + 0 ( l0gAmtax°( t) ), a.s. t->~ (2.20)

Here, Xmax°(t) [^mino(0] denotes the maximum [minimum] eigenvalue of

5
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Xv°(i)¥°(i)T + £l.
i=0

with

\|/°(t) 4 [xx(t) w(t)x ••• w(t-r+l)]x (2.21)

and [w(t), Ft} is a Gaussian martingale difference sequence with 

Ew(t)w(t)x-----> R - , as t —» «

and satisfies, under (2.16)

C(z)w(t) + v(t) = D(z)w(t) + 0(e_at) for some a  > 0. ccn

Remarks 1. The classical linear regression model considered in mathematical 

statistics is a specialization of (2.1) with the so-called "design vector" x(t) 

deterministic and with the noise e(t) white. Obviously the stochastic model (2.1)- 

(2.2) considered in this paper is a more general one, namely, we allow that the 

regression vector x(t) to be a class of random vectors and the modelling error e(t) to 

be correlated. However, the restriction that x(t) e Ft-i essential to the convergence 

analysis excludes the specialization of (2.1),(2.2) to general ARMAX models - a 

crucial point not observed in [6].

2. For the case when the added noise v(t) in (2.6) is zero, then the condition 

(2.11) is usually replaced by a positive real condition on the noise model (even for 

the case where one is only interested in identifying 0O). In particular it is required 

that

[C(z)'1 - j l ]  is strictly positive real (2.23)

6
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(This condition is equivalent to [C(z)-I] is strictly bounded real. To see the 

equivalence, recall that X(z) is bounded real if and only if Z(z) = [I-X(z)][I+X(z)]-1 

is positive real.) It is the addition of sufficient noise into the algorithm which 

obviates the need for such a condition in the above Theorem. In identifying (2.1) 

with C(z) unknown (2.23) can not be checked a priori. In contrast the condition 

(2.11) can be satisfied a priori with only a limited knowledge of the "unknown" 

process, namely some upper bound on IIRWII and ll[Ci ••• Cr] II. In the scalar 

variable case an upper bound on the term ll[Ci -  Cr] II is numerically readily 

obtained since without loss of generality, C(z) can be minimum phase. In this case, 

it is readily shown, see Appendix, that

ll[Ci -  Cr] II < V(2r)!(r!)-2- 1 (2.24)

3. Estimates fc(t) and &w(t) converging at the rates above to C(z) and Rw can be

determined from estimates fo(t), fe^(t) by an on-line spectral factorization

corresponding to the off-line version (2.15) as in [7]. Of course, it is immediate 

that C(z) and Rw can be uniquely determined from D(z) and R^ via (2.15) to

within an all-pass factor. Without loss of generality we can take C(z) minimum 

phase. In this case C(z) is uniquely determined from D(z), R^ .

4. The convergence rates of the estimates §(t) are virtually the same as that given 

in earlier theory for multivariable ARMAX models with v(t) zero and (2.23) 

holding[l]. Of course, the covariance of the different error terms is inevitably 

higher because of the added noise, but this need not be the case with the additional 

processing proposed in [6] and studied in [8].

5. The requirement that w(t),v(t) be Gaussian is a technical one required by the

7
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particular martingale convergence theorem employed in subsequent analysis. It 

appears that by defining martingales in terms of orthogonal projections rather than 

in terms of conditional expectations could relax this requirement. Details are not 

explored here. Certainly simulations suggest that the Gaussian assumption is overly 

strong.

3. Preliminary Theory

Let {z(t),Ft} and {\|/(t),Ft} be two sequences of adapted random vectors [not

necessarily defined by (2.6) and (2.9)]. Consider the following general prediction 

error algorithm based on a predictor z(t,0) 4 z(t,0,{z(O), -  z(t-l)}) e Ft.i

8(t+ i) = 8(0 + p(t)y(t)[z(t+ i)x -

p(t-n \i/(ti\i/(tF P ft-n
P(t) = p(t-l) -

1 + \l/(t)Tp(t-l)\{/(t)
P(0) > 0

(3.1a)

(3.1b)

Set

a(t) 4 [ l + V(t)tp(t-l)V(t)]-l (3.2)

$(t) 4 a(t-1 )[z(t)-z(t,9(t-1))] - {z(t) - E[z(t) I Ft-i]) (3.3)

t
St(6,a) 4  X  ß ( i+ l)xB(i+l)%(i) -^ I l0 ( i+ l)% (i) l l2], a>0 (3.4)

i=l ^

where H(t) 4  0 - §(t) and 0 is an arbitrary matrix of appropriate dimensions.

8
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Lemma 3.1: Suppose that the adapted sequence {z(t),Ft} satisfies:

sup e [ llz(t)-E[z(t) I Ft.i] llß I Ft-i ] < ~  a.s. (3.5)

for some ß > 2. Then for any 0 and any a  > 0, the estimate §(t) given by 

(3.1) satisfies the following relation:

II §(t+l) - 0 II2 <
3-min(0 3.mi„(t)

where Xmax(t) = ^maxLPCO'1] and St(0,a) is defined in (3.4), and where 

5(s) 4 0 for x > 0 and 5(s) 4 1 for x = 0.

Proof: See Appendix.

Remark: The proof techniques follow closely those of [1], but the result is in fact

more general than that of [1]. Here (3.1) is a more general prediction error scheme 

than that of [1], which is an extended least squares scheme with 

z(t+i,8(t)) = fc(t)Mt)-

Lemma 3.2: Consider that the conditions of Lemma 3.1 apply. Consider

also that at some point , E[z(t+1) I FJ can be expressed by

E[z(t+1) I FJ = z(t+l,§(t)) + 0(t)T\|/(t)+[H(z)-I]0(t+1 )T\|/(t)+8(t) (3.7)

where 0(t) 4 0 - 0(t), and 5(t) is an Fr measurable random vector. Then, if
l^CCnthe transfer matrix H(z) — j —I, ( 0Cq > 0) is positive real, then the following 

expansion holds:

9
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2 III5(i)l|2
ö) ii ö(t+i) - e ii2 < o( — — — — (3.8)

Amin(t)

(ii) £ll0(i+l)^(t)ll2 < 0(log1+«5(ß-2) W « )
i= l

((Xo-OC)X,min(0 

4
(OCq-CX)̂  i=l

III5(i)ll2 (3.9)

for any a  e (0, a 0)

Proof: By (Al) and (A4) in the Appendix and (3.7) we see that £(t+l) defined by

(3.3) can be rewritten as

§(t+l) = a(t)(e(t+l) + E[z(t+1) I FJ - £(t+l,§(t))} - e(t+l)

= a(t){e(t+l) + 0(t)Tv|/(t)+[H(z)-I]0(t+1 )T\|/(t)+5(t)) - e(t+l)

= a(t){e(t+l) + [0(t+l)t  + P(t-l)v(t)U (t+ l)T + e(t+l)T]]\|/(t) +

+ [H(z)-I]0(t+l)Xl)+6(t)} - e(t+l)

= a(t)((l + v(t)*P(t-l)v(t))e(t+l) + ^(t+l)v(t)TP(t-l)V(t) +

+ H(z)0(t+l)*\Kt)+5(t)) - e(t+l)

From here we immediately get

a(t)^(t+l) = [1 - \|/(tm -l)\|/(t)a(t)ß(t+ l)

= a(t)[H(z)0(t+l)tY(O+5(t)] 

and consequently

^(t+1) = H(z)0(t+l)^(t)+8(t) (3.10)

1 0
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Since H(z) - 1+ocq I, is positive real, there exist constants K0 so that for

V a  e (0, a 0), from (3.4) and (3.10):

St(9 .a)=E ([H (z)S(i+ l)xY|/(i)+8(i)]TB(i+l)Ty(i) - —^-^ll0(i+l)Ty(i)ll2 )
i=l 2

i((H (z) - - ^ l ) 0 ( i + l ) x\|/(i)}x • 0(i+l)xv(i) + Ko 
i=l 1

+ S ^ i ^ ö + D ^ i )  + ^ -  i  II 0(i+ l)xv(i) II2 - Ko 
i=l ^ i=l

s isco^ci+i^vö) £ ii e(i+i)TV(i) ip . Ko
i=l ^ i=l

(3.11)

By the elementary inequality

II an> 11 < — II a II2 + 1  lib II2 (Ve > 0)Oo £

we see that for any a  e  (0 ,0Co)

11 5(i)xB(i+l)T\j/(i) I 
1=1

— 2  Il8(i)ll2 £  || H(i+l)ty(i) ||2
CLq -OL i=l 4 i=l

(3.12)

Finally, by (3.11), (3.12) and Lemma 3.1, it follows that for any a  € (0,(Xo),

-2 £5(i)^(i+l)^j/(i) (Oto-a) i  II 'BG+l^vG) II2 
Il§(t+1)-0II2 < —1=1 1-1

^min(0 ^m in(0

[ ^ lo g ^ ^ ß '^ m a x G )   ̂

^min(0

11
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X  i i 8 ( i ) i i 2  x  ii ' B G + i y ' v O )  II2
< 2 i=l_______  (O o-g) 1=1_________________

a 0- g  ^m in(t) ^ ^<min(0

( QGog1+aS(ß~2^max(t)

^min(0

and then the conclusions of the lemma follow immediately.

Remark: In Lemmas 3.1, 3.2, no models are pre-postulated for (z(t), Ft} and

so the process {z(t)} can be generated from an ARMAX model, since the restriction 

x(t) e Ft-i of Theorems 2.1, 2.2 is not imposed here. When {z(t),Ft} with 

Ft = g {zi, i < t} is generated from an ARMAX model and §(t) is given by the 

standard extended least squares algorithm, the process {8(t)} appearing in Lemma 

3.2 is zero. However, when there are unmodelled dynamics and time variations of 

the coefficients, then {5(t)} is no longer zero [5]. Lemma 3.2 provides a unified 

approach to the convergence/robustness analysis of general prediction error 

algorithms such as psuedo-linear regression with or without filtering[9]. It is worth 

noting that the robustness properties of the algorithm are closely related to the 

passivity margin of the transfer function concerned (see (3.8)). Other applications 

of Lemma 3.2 will be noted elsewhere.

Lemma 3.3: Let C(z) be defined as in (2.16), and (w(t)} and (v(t)} be 

defined as in (2.3) and (2.5), then there exists a Gaussian martingale 

difference sequence (w(t), Gt0} with

Ew(t)w(t)x-----» R^ , (exponentially fast) as t —»

and a matrix polynomial D(z):

12



CH 10 IDENTIFICATION OF LINEAR REGRESSION MODELS

D(z) = I + Diz + ••• + Drzr (3.13)

such that

C(z)w(t) + v(t) = D(z)w(t) + Tj(t) (3.14)

where r|(t) is Gt-i° -measurable and exponentially tending to zero as t —> «>. 

Moreover, for any (Xq e [0, 1), if

Ov2 > r( ^ ) 2 IIRWII • II [Cl -  Cr] II2 - Xmin(Rw) (3.15)
1-Oto

then

D(z)-1 - ± £ » 1 is positive real (3.16)

Proof: Define £(t) as in Section 2:

C(t) = C(z)w(t) + v(t)

and set,

—
1 o HH 3 o __
1

ir  Jm “ I
Im

■c -
Cl 1

L 0  0 J
\< r -  m(r+l) -»1

L c J
H = [Im 0 -  0] (3.18)

then £(t) can be expressed by

x*(t+l) = Ax*(t) + Cw(t+1), £(t) = Hx*(t) + v(t)

According to the Kalman filtering theory £(t) can be generated by the following 

innovation model [10]

13
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x*(t+l) = Ax*(t) + K(t)w(t), £(t) = Hx*(t) + w(t) (3.19)

where x(t) is the estimator for x(t) and K(t) is the filter gain given by

K(t) = AP(t)Hx[HP(t)Hx+ a v2I]_1 (3.20)

P(t+1) = AP(t)Ax- AP(t)Hx[HP(t)Hx+ av^^HPCOA^ CRwC1 (3.21)

and where the innovation process (w(t), Gt0} is a Gaussian martingale difference 

sequence with

Ew(t)w(t)x = HP(t)Hx+ a v2Im (3.22)

By (3.17) and (3.19) we see that

C(z)w(t) + v(t) = H(I-Az)'1 K(t) w(t-1) + w(t) (2.23)

Note that (3.19) is asymptotically stable, and hence [9,10]

P(t) —» P, K(t) —> K, (exponentially fast) (3.24)

where P and K are defined by

P = APAX - APHx(HPHr+ a v2I)_1HPAx + CRWCX (3.25)

K = APHX(HPHX+ a v2I)'! (3.26)

Since Ew(t)w(t)x —> HP(t)Hx+ a v2Im, by the Borel-Cantelli Lemma it is easy to see 

that as t —>

7](t) 4 H a - Az)-![K(t) - K]w(t-1) -> 0, a.s. (exponentially) (3.27) 

So by (3.25) and (3.27) we have

14
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C(z)w(t) + v(t) = [H(I-Az)_1Kz+I]w(t) + rj(t)

We write K as

K = [Ki* -  Kr+iT]x

from (3.18) and (3.26) it can be seen that Kr+i = 0.

S et

D(z) = I + Kiz + -  + Krzr 

Then by (3.18) it can be verified that 

D(z) = [H(I-Az)_1Kz + 1]

Therefore, by (3.28), we see that (3.14) is proved. We now proceed 

(3.16).

By (3.14) it is easy to see that

I Q R w C i *  +  R w +  crv2I =  £ D iR ^ D ,T +  R *
i= l i= l

By (3.25) and (3.26) it is not difficult to see that

P = [A-KH]P[A-KH]X + Kov2Kx + CRwC^

From this and (3.22), we immediately get

R - = HPHT+ o v2Im > HCRWCTHX+ a v2Im = Rw+ a v2Im

Consequently, by (3.30) and (3.31) we have

(3.28)

(3.29)

to prove

(3.30)

(3.31)

15
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£  QRwCi* = TD.R^D^ + % - R w  o v2I 
i=l i=l

— — [^min(Rw) + ^v2]
i=l i=l

From here it follows that

II [D i -  Dr] l|2 = Xmax([Di -D r ]

^max(R\v)
^min(R-w) + ^ v 2

'^ m ax([C i •" Q ]

•̂max(Rw)
^min(Rw) + CJV2

II [Cl -  Cr] II2

and therefore, by (3.32) and (3.15) we see that 

II [D i ~ D r]l|2  < ; i ( - ^ 2 . ) 2
r 1+CCo

(3.32)

(3.33)

It is easy to see that

II D ie i0 + D2e2ie + -  + D ^ 0 II2

— ^max([Dl — Dr] [e'‘®Im -  e-“e im]

r Dix~I reieim-i
^ ^-max([Di — D r] I I ) • Xmax( | [e‘*®lm *" e ^Im ])

LDt̂ J Le^Im-l

= II [D! -  D r] l|2 • Xmax([e‘i0Im -  e-W lm] )
L e 'r0ImJ

1 6
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= II [D! -  Dr] II2 • W r- Im )

= II [Dl -  Dr] II2 • r

From here and (3.33) we immediately have

II D(ei0) - 1II < i-2 s . (3.34)
l+Oo

By (3.34) it follows that for any 0 e [0,2tc]

II oto[D(e-i0)-I] + OolDCe'®)-!] + (l+Oo)[D(ei0)-I][D(e-i0)-I] II

S 2«oll D(eie) - 1 II + (l+Oo) II D(ei0) - 1 II2

^2oto
1-«q + (1-Oq)2

1+Oto 1+Oto
= 1 -CXo

Consequently, for any 0 e [0,2tt],

D(e'i0)T + D(ei0) - (l+ao)D(ei0)D(e-i0yc

= (l-Oo)I - [ao[D (e-i0)-I] + Oo[D(ei0)-I] + (l+Oo)[D(ei0)-I][D(e-‘0)-I]} 

>0

Finally, we get

D (ei0)-i + D(e-i0)-'c - (l+Oo)I

= D(ei0) '1[D(e'i0)t  + D(ei0) - (l+ao)D(ei0)D(e-i0)r |D(e-i0)-'t 

SO V 6 e [0,2jt]

1 I O f .

This proves the positive realness of D(z)*1 — --^T, and proof of Lemma 2.3 is 

complete.

17
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Remarks 1.Actually, the lower bound of o v2 can be improved using the

following result[10]. With initial condition P(0) = 0 in (3.21), P(t) increases 

monotonically (exponentially fast) to P. Thus the inequality

HPHX > HP(1)HX = HCRwCW = Rw,

which is the essence of (3.31), can be strengthened as

HPHX > HP(2)HX = CiRwCix - CiRw(Rw+av2I)-1 + Rw

= a v2CWRw (Rw+<jv2I)‘WRw Cix + Rw

and likewise as HPHX > HP(t)Hx for higher t. Since convergence of P(t) is 

exponentially fast to P, with a time constant linked to that of the Kalman filter, there 

are diminishing returns from taking t larger than (say) the dominant time constant of 

the Kalman filter. We do not explore this aspect of the results further here.

2. Of course, with appropriate initial conditions in the signal model and Kalman 

filter, Ti(t) can be taken as zero. The term is left in our analysis to indicate a certain 

robustness in the noise modelling. The term T|(t) in (3.14) needs only to be square 

summable for the proofs of Theorems 2.1 and 2.2 to apply.

3. Actually, Gt° defined in Section 2.4 can be expressed by

Gt° = a{w(i), i < t )

because (w(i)} is the innovation sequence. Further since (w(t), Gt0} is a Gaussian 

martingale difference sequence, it then follows that (w(t)} is an independent 

sequence. Also, since w(t+l) e Gt+i° and Gt+i° is independent of Gt1, it is clear 

that

18
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E[w(t+1) I FJ = E[w(t+1) I a{Gt° u  Gt1}]

= E[w(t+1) I Gt° ]

= 0, V t > 0

this means that {w(t),Ft} is also a martingale difference sequence. All of these 

facts will be used in the sequel without explanations.

4. Proof of Theorems 

Proof of Theorem 2.1. Part (0

Here, we prove the first conclusion of Theorem 2.1, and give the proof for the 

second one in the Appendix. To prove (2.12), we need to verify the conditions of 

Lemma 3.2.

Note that in the present case

z(t) = y(t) + v(t), z(t+l,8(t)) = ö(t)\|/(t) (4.1)

so, by Lemma 3.3 we can rewrite (2.1) in the following form: 

z(t+l) = y(t+l) + v(t+l)

= 0ox(t+l) + C(z)w(t+1) + v(t+l)

= 0ox(t+l) + D(z)w(t+1) + T|(t+1) (4.2)

19
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and so by (4.2) it follows that

sup E[ llz(t) - E[z(t) I Ft-i] II3 1 Ft.i]

= sup E[ llw(t)H3 I Ft-i] = sup E[ llw(t)ll3 I Gt.i°]

= sup E[ llw(t)ll3] < ~  (4.3)

since (w(t)) is Gaussian random sequence with uniformly bounded covariance (see 

(3.22)). By (4.2) we have the following expansion for E[z(t+1) I FJ at point 0:

E[z(t+1) I FJ = 0ox(t+l) + [D(z)-I]w(t+1) + T|(t+1)

= 9^\j/(t) + [D(z)-I][w(t+1) - z(t+l) + §(t+l)xy(t)] + T)(t+1)

= 8 ^ ( 0  + [D(z)-I]D(z)'l{D(z)[w(t+1) - z(t+l) +§(t+l)t \|/(t)])+'n(t+l)

=9^(t)+[I-D(z)-l](z(t+l)-6ox(t+l)-Tl(t+l)-D(z)[z(t+l)4(t+l)Xt)])+ 

+ Tl(t+1)

= 8T\|/(t) + [I-D(z)'1](-0t y(t) + z(t+l) - T|(t+1) - z(t+l) +

+ §(t+l)T\|/(t)) +T|(t+1)

= 8(t)*y(t) + e(t)'tv(t) + [D(z)'1 - IltBO+l^va)] + D(z)-1q(t+l) (4.4)

where 0(t) = 8 - §(t). Now, since

CTv2 > r IIRwII • II [Ci -  Cr] II2 - Xmm(Rw)

there exists O q  >  0 such that 

1
Ov2 > r ( ----- ^ )2 IIRwII • II [Ci -  Cr] II2 - Xmin(Rw)

1-CCo

2 0
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and hence by Lemma 3.3 we know that

is positive realD(z)-1 - - L ^ I (4.5)

so by (4.3), (4.4), (4.5) we know that Lemma 3.2 is applicable, and we then have 

for 0 < a  < cxo

, . I  IID(z)-1(z)Ti(i+l) l|2
u§(t+i)-ei |2 < 0 ( ogXmax(t) )+  --------------------------

^min(0 ^m in(0

_ logÄ-max(t) .
•̂min(t)

Since rj(t) —» 0 exponentially fast This proves the first conclusion of Theorem 2.1.

Proof of Theorem 2.2:

£(t) = z(t) - §(t)T\|f(t-l) - w(t) 

V k t) = [0 5(t)* -  ^(t-r+l)'c]T

(4.6)

(4.7)

By a similar argument as used in the proof of (4.4) we know that

D(z)^(t) = 0(t)Ty(t-l) + ri(t) (4.8)

Since D(z) is strictly positive real it must be stable, by (4.4), (4.7), (4.8) and 

Lemma 3.2, we have

£  II t|/5(i+l) l|2 = 0 ( £  llH(i+l)v(i)l|2) + 0(1) 
i=l i=l

0( logXmax(0 ) (4.9)

2 1
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Note that

v(t) = v°(t) + \}A(t) (4.10)

and hence by use of (4.9) and (4.10) similar to the proof of Theorem 2 in 

[1,p i465-6] we know that

^max(t) = O(^max°(0 )> ^min°(0 = 0(X min(t) ) a.S.

This result together with Theorem 2.1 yield the desired results immediately, and 

Theorem 2.2 is now established.

5. Conclusions

This chapter has shown that modifying standard ELS algorithms for Linear 

Regression model identification can obviate the need for a positive real condition on 

the colored noise model. Estimates of the regression part parameter matrix 0O in 

(2.1) and those of the modified noise model Di are achieved without any 

compromise on convergence rates. The recovery of the original noise model 

parameters Q  by an on-line spectral factorization has been studied in [7]. Also, a 

method to remove an estimator error variance increase by additional processing is 

currently under study. The methods and theory of the chapter fall short of giving 

precise results for avoiding the positive real condition for general ARMAX models.

2 2



CH 10 IDENTIFICATION OF LINEAR REGRESSION MODELS

APPENDIX

Proof of Bound (2.24)

With

C(z) = l + £  Qz> I n (l+cciz) 
i=l i=l

in the scalar case, the minimum phase condition is that I ail <1 for all i. Denoting 

the binomial coefficients 0 )  as

Ö - W -  o s i s '

comparing the coefficients of zi in the above identity and noting I ail < 1, we know 

that

I Ci I < ( [ ) ,  1 ^ i < r

Consequently, it follows that

But, by comparing the coefficients of zr in the follwoing identity 

(l+z)r(l+z)r = (l+z)2r 

it is easy to know
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and hence,

1 + I  Q 2 < (2r)!(r!)-2
i=l

which is tantamount to (2.24).

Remarks: 1. The bound (2.24) is sharp for all r.

2. A similar bound is not available for the multidimensional case, unless extra 

conditions in addition to the minimum phase assumption on C(z) are imposed.

Proof of Lemma 3.1

Set

e(t) 4  z(t) - E[z(t) I Ft_i] (A l)

we see that {e(t), Ft} is a martingale difference sequence, and satisfies

SUP e [  lle(t)llß I F t.i  ] < ~  a.s. ß > 2 (A2)

By (3.1b) and (3.2) it is easy to see that

P(t)\i/(t) = [P(t-l) - a(t)P(t-1 )\{/(t)\i/(t)TP(t-l)]\|/(t)

= a(t)P(t-l)v(t) (A3)

and then by (3.3) and (A l) we know

P(t)\|/(t)[z(t+l)* - £(t+l,§(t))*] = P (t-l)y (t)ß (t+ l)*  + e(t+l)*]

So we can rewrite (3.1a) as
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0(t+l) = 0(t) - P(t-l)Y(t)ß(t+l)* + e(t+l)T] (A4)

with 0(t) = 0 - 0(t), for any 0. From (3.1b) it is known that

P(t) = [ iv(i)V (i)T + P(O)'1]-1, t > 0 (A5)
i=l

We now estimate the last term on the right-hand side of Theorem 1 in [1]. By (A4) 

and (A5) a similar treatment used as in the proof of (19) in [1, p.1462] leads to

tr 0(t+l)TP(t)_10(t+l)

< tr 0(t)*p(t-i)-i0(t) + ii0(t+i)v(t)ii2 - i^t+iy'eftyiyd)

- 2e(t-tT)t0(t+l)T\|/(t), V 0

= tr ©(O^Pa-l)-1©!!) - 2[^(t+ l)i0(t)^(t)3- Il0(i+l)iv(i)ll2] -

- a  H0(t+l)''y(t)ll2 - 2e(t+l)T0(t+l)T\y(t), V0, V a  > 0 (A6)

Summing both sides of (A6) and using (3.4) we get

tr0(t+l)'tP(t)-10(t+ l)

S tr 0(l)iP(O)-10(l) - 2St(0,ot) - a  i  II 0(i+l)*\j/(i) II2 -
i=l

- 2 i  e(i+l)*0(i+l)*w(i), V0, V a>0 (A7)
i=l

We now estimate the last term on the right-hand side of (A7). Since (e(t), Ft} is a 

martingale difference sequence and satisfies (A2), by Lemma 2 in [11] we know 

that for any Ft-measurable matrix M(t),

£  M(i)e(i+1) = ( / [  £liM(i)ll2] h + H  a.s. V t) > 0 (A8)
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Set

r|(t) = E[z(t+1) I Ft] - z(t+l,ö(t)) (A9)

Obviously, rj(t) is Fr measurable, and by (Al), (A9) it follows from (3.1) that

0(t+l) = B(t) - P(t)v(t)[ri(t)x + e(t+l)x] , V0 (A10)

Then by using (A8) and (A 10) similar to the proof of (22) in [1, pp.1463] we have

I  e(i+l)x0(i+l)x\j/(i) 
i=l

Of [ IllB (i+ l)x 
V i=0

+0 f  iv (im i)v (i)lle (i+ l)l|2  Y  V rj>0. (A ll)

But, by (A3) and both (29) and (30) in [1, pp.1465] we know that

£  \|/(i)TP(i)V(i)l!e(i+l)ll2 = 0(logi+“S<ß-2)W(t)) (A12)
i=0

Finally, putting (A ll) and (A12) into (A7) and taking r\ < j ,  we see that for any 

a  > 0 and any 0:

trg ft+ im o -iü ft+ l)  < 0(1) - St(0,a) + 0(log1+«8(ß-2)).max(t))

and the desired result follows from here immediately and therefore the proof of 

Lemma 3.1 is completed.

Proof of Theorem 2.HiD

We now prove the second result (2.15) of Theorem 2.1.

Multiplying P(t)’1 on both sides of (2.9) and using (A5) we have

2 6
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P(t)-i§(t+l) = [P(t)-i - v(t)V(t)T]ö(t) + V(t)z(t+l)x 

= P (t-l)- '§ (t)+ \|/(t)z(t+ l)'t

Consequently, from this and (4.2) and (4.10) we know

P(t)-l§(t+l) = P(0)-'§(1) + £  \|f(i)z(i+l)t
i=l

= P(0)->§(1) + £  \|/(i)[(\|/(i)x-\^ (i)x)e + w (i+l)x + T|(i+l)'r] 
i=l

= P(0)-1§(1) + £  V(i)v(i)T9 - £  \|/(i)M (i)xe - Ti(i+l)x] + 
i=I i=l

+ Z ¥ (i)w (i+ l)x 
1=1

and hence

S(t+1) =[£v(i)Y (O t  + PCO)-1]-1 {P(O)-10(1) - 
i=l

- £ \|/( i)w (i+ l)x + £ v ( i ) [ ^ ( i ) x0 --n (i+ l)x] } 
i=l i=l

Again by (4.2) and (4.10) from (2.12) we know

t = X [0T¥°(i) + W(i+1) +11(1+1) - §(t)xv(i)]-[exv°(i)
i=0

+ w(i+l) + n(i+l) - ö(t)xV(i)]T 

= I  [0(t)xv(i) - e y k i)  + w(i+i)+ rK i+D H eaw i) -
i=0

- e V ( i )  + w (i+l) + Tl(i+l)P

(A 13)
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=0(t)x I  y(i)y(i)T 0(t) + I  [- e V ( i )  + w (i+l) + ll(i+l)]V (i)T0(t) +
i=0 i=0

+ B(t)x I  \|/(i)[- 0x\^(i) + w (i+l) + T|(i+l)]x + 
i=0

+ I  [ex\|^ (i)-w (i+ l)-r |( i+ l)]-[e x\^ (i) -w (i+ l)-T i(i+ l)]x 
i=0

4Si(t) + S2(t) + S2(t)x + S3(t) (A14)

But, by the Schwarz inequality and (4.9) we get

i i  [tiV(i)v(j)T + p c o )-1]-'/2 iVa)yki)x I I2
j=0 i=0

< S  I I [zV(j)V(i)x + P(0)-l]-l/2v(i) I I2 I  ll^(i)ll2
i=0 j=0 i=0

= tr { I  v(i)x[lV(j)V(j)x + PCO)-1]'1̂ )  ) .1 l^fflll2
i=0 j=0 i=0

0(1) • i  ll\^(i)ll2
i=0

O (log^.max(l"l))

and hence

II [ s V ( i ) ¥ Ö ) x  + P(O)-1]-1/2 l¥ ( i)¥ §(i)t II = O o / l o g W t ) ) (A15)
j=0 i=0

We need the following estimates for weighted sum of martingale difference 

sequences [12]. Let {Xt,Ft} be an adapted vector sequence and {et,Ft} be 

martingale difference sequence with

sup e [ II et l|2+S I Ft-1 ] < co (8 > 0)

2 8
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Then, for e > 0,

H(£xiXi*+eI)i/2 ixi e i + i ^ c / t l o g W c i x i X i ^  + e l)]1^ ^  (A l6)
i=0 i=0 ^  i=0 )

Applying (A 15) and (A 16) to S i(t) and S2(t) defined in (A 14) and noting (A 13) it is 

not difficult to show that

S i (t) — O(logXmax(0)i a-s- (A 17)

S2 (t) = 0(logX,max(t)), a.s. (A18)

By (4.9) and the inequality (A8) we see that the last term in (A14) can be estimated 

by

S3(t)= X w(i+l)w(i+iyt+ 0 (lo g W (t)) , (A 19)
i=0

By Lemma 3.3, (w(t), Ft) is a Gaussian martingale difference sequence and 

Ew(t)w(t)T —> R - (exponentially fast), and hence by the laws of the iterated

logarithm[13], it is not difficult to convince oneself that

f  % M i+l)w(i+l)* - R*] = 0 ( ^ l0g‘t° g I ). a.s. (A20)

Finally, putting (A17)-(A20) into (A 14), the result, equation (2.13), follows.
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Chapter 11

IDENTIFICATION / PREDICTION ALGORITHMS FOR 

ARMAX MODELS WITH RELAXED POSITIVE REAL

CONDITIONS

1. Introduction and Background

A classic problem in on-line identification, signal processing and adaptive control is 

recursive estimation associated with auto-regressive, moving-average exogenous 

input (ARMAX) models. For simplicity here we restrict affection to scalar variable 

models

ACq-1) yk = B(q-!) Uk + C(q-!) wk (LI)

where q*1 is the unit delay operator, D > 1,

A(q-!) = X aiq-i, B(q-J) = £  biq-i, C(q-i) = 2  qq-i, ao = co = 1 
i=0 i=D i=0

and wk is zero mean, bounded-variance "white" noise. Note that D is a pure delay 

(dead-time) of the system and that, for the sake of notational convenience, it was 

incorporated in the corresponding polynomial. Consequently, there are n and / 

unknown coefficients in polynomials A and C, respectively, but only m-D+1 

coefficients in the B polynomial. For convergence analysis studies based on 

martingale theory, it is usual to assume

E[wklFk-i] = 0, E[wk2IFk-i]  ̂aw2, E[llwkllß IFk-i] <°°, for some ß > 2

(1.2)

1



CH 11 IDENTIFICATION OF ARM AX MODELS

where Fk is the a-algebra generated by wo, w i , ... wk, uo ,... uk. A special case 

when (1.1) holds is when there is a stable deterministic system A(q_1)zk = B(q_1)uk 

with measurements yk of Zk contaminated with added noise wk. Thus yk = zk + wk. 

Then (1.1) holds with

A(q_1) = C(q-1), zk 4 yk - Wk, A(q4 )zk = B(q-*)uk, (1.3)

For extended least squares (ELS) based recursive identification schemes applied to 

models (1.1), a crucial sufficient condition for almost sure noise estimation 

convergence results is that

C_1(z_1) - j  is Strictly Positive Real (SPR), or equivalently,

C(z) - 1 is Strictly Bounded Real (SBR). (1.4)

This condition first pointed out in [1,2], see also [3,4], also appears to be a 

necessary one, at least for some noise sample paths [4], and is the focus of attention 

in this chapter. The condition (1.4) requires that C'^z*1) is asymptotically stable, 

and in the case (1.3), that A’Hz-1) is asymptotically stable. Actually it is known that 

without loss of generality we can take C"1(z_1) stable, unless (1.3) constrains C(z_1) 

= A(z_1).

We consider the Equation Error ELS scheme for the general model (1.1), (1.2) and 

Output Error ELS scheme for the special case when a (1.1) is constrained as in 

(1.3). The regression vector for the Equation Error ELS algorithm associated with 

(1.1) is

$k = [yk-1 ... yk-n Uk-D ... Uk-m Wk-i ... Wk-/]' (Eq. Err.) (1.5a) 

denoted also <j)kEE. For the Output Error ELS algorithm under (!.!)-(1.3), the

2



CH 11 IDENTIFICATION OF ARM AX MODELS

regression vector is

0k = [(yk-l-wk-l) (yk-n-wk-n) Uk-D ... Uk-m]' (Out. Err.) (1.5b)

also denoted 0kOE-. It is known [3] that there is almost sure parameter convergence, 

if in addition to (1.4) the following persistence of excitation (PE) condition holds 

for 0kEE or 0kOE, respectively,

]im log ^max Pk' 1

^ ° °  ^min Pk"1
= 0, a.s. ( 1.6)

where Pk '1 = ( Z  <t>i<J>i’ + Po '1) for some Po > 0. In order to translate this condition 
i=l

on regressions <j>k to conditions on external excitation signals Uk, Wk, it is necessary 

and sufficient [5] that <j>k be reachable from uk, wk, or equivalently that for the cases 

(1.5a) and (1.5b), respectively

A(z), !B(z), C(z) are coprime (1.7a)

A (z), (B(z) are coprime, (1.7b)

where A(z) 4 z nA(z_1), (B(z) 4 z mB(z*l), C(z) 4  ^ ( z * 1).

The ad hoc basis behind extended least squares is that state (regression) estimates 

$k are used in lieu of states (regression) <j)k to obtain recursive least squares 

estimates §k of parameters 0, and ök is used in lieu of 0 to obtain minimum 

variance estimates $k of 0k• Thus the formidable task of simultaneously obtaining a 

(nonlinear) optimal estimate of both 0, and 0k is abandoned in favour of a tractable 

algorithm. It is not surprising then, that the suboptimal extended least squares 

scheme fails if the state estimation is too poor, as when the noise is highly colored. 

The SPR (SBR) condition limits the noise color. It should not be surprising that

3
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attempts to relax the SPR (SBR) condition will result in high order calculations, 

even approaching infinite dimensional calculations as for the optimal (nonlinear) 

estimation of 0, (jfc. Several proposals have been made to relax this condition.

In [6], the overparametrized signal model

FN(q-l)A(q-l)yk = FN(q-')B(q-')uk + FN^XXq-^W k (1.8)

is studied where the common factor F ^ q -1) = X fkq'k, is not uniquely defined. It
k=0

tu rns ou t that fo r certain  convergence properties to be estab lished , there m ust ex ist 

Fn (z_1) such that

C'1(z’1)Fn"1(z*1) - j  is SPR, or equivalently,

C(z_1)Fn(z*1) - 1 is SBR. (1.9)

It is shown in [6], that for each stable C_1(z_l), there exists some F|sj(q_1) with N 

suitable large, such that (1.9) holds. The common factor FisKq"1) in (1.8) means 

that the regression vector

0k = [yk-1- yk-n-N+1 Uk-D- Uk-m-N+1 Wk-l ... Wk-/-N+l]' (Ov. Par.)

( 1. 10)

also denoted <j>k0P> is not reachable form uk, wk, and thus can not be persistently 

exciting, in general. Moreover, the estimates $k can not be persistently exciting so 

that the calculations are fundamentally ill-conditioned and impractical for 

application. The convergence theory does give stable estimation error convergence 

under (1.4), in the same sense as for the nonoverparametrized case under (1.9), 

although there is never consistent parameter estimation for N > 1.

4
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In [7], by taking N = °° and Foo(q_1) = C'^q-1), then the overparametrized model

(1.8) is now uniquely parametrized as

FooCq-̂ ACq-̂ yk = FooCq-̂ BCq-̂ Uk + wk

which is amenable to least squares estimation, albeit infinite dimensional. Now

(1.9) with F0o(q*1) as above is trivially satisfied. Convergence analysis is studied in 

[7]. In translating excitation requirements on the infinite regressions <j>k to the inputs 

Uk> wk, for parameter convergence,it turns out that the input excitations must be 

suitably rich as when containing an infinite set of frequencies. A variation with N a 

function of k requiring N —*» as k <*> is studied in [8]. Neither of these schemes 

are practical to implement, but their study is important to give results for the case of 

a sequence of models Q (q_1) with one or more zeros z[ approaching the unit circle 

as i -4  oo.

A technique that avoids the SPR condition by dominating the plant colored noise by 

white noise, although applying to related schemes [9], does not appear to apply to 

the ARMAX case as claimed in [10].

In this chapter, for equation error identification a uniquely parametrized over- 

parametrization approach is used which forces the unique selection F ^ q " 1) = 

Fc(q_1) where

1 = C(q-l)Fc(q-l) + q-NGc(q 'l) (1.11)

Here Fc(q_1) = X fiq_i with fo = 1 is the unique (N -l)th degree truncation of C"1(q_ 
i=0

J) and Gc(q_1) is the unique remainder term. The signal model (1.1) can now be 

transformed to the unique overparametrized model

5
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Fc(q“*)A(q-l)yk = Fc(q-l)B(q-l)uk - Gc(q-!)wk-N + wk (1.12)

Notice that Gc(q_1) is of degree / - lw ith / coefficients go, g i , .. g/-i, so that the 

degree of overparametrization is less than, by N, that for the signal models (1.8). In 

other words, here F ^ q " 1) is constrained so that the coefficients of wk-i, wk-2 ... 

Wk-N+1 in (1.8) are zero. There is no need then to estimate these known zero 

coefficients. The associated Transformed Equation Error ELS scheme has a 

regression vector

<!>k = [yk-l-yk-n-N+1 Uk-D-Uk-m-N+l Wk-N ..Wk-/-N+l]' (Tr.Eq.Err.)

(1.13)

also denoted 0kTEE.

A crucial advantage of working with the signal model form (1.12), is that as shown 

in the next section there is reachability from uk, Wk of the regression vectoT (J>kTEE 

of (1.13) associated with (1.12) under A(z), B(z), C(z) coprime as for <J>kEE, see 

(1.7a). As a consequence, with suitable excitation on Uk, wk, then the ill- 

conditioning inherent in the ELS algorithm based on the overparametrized model 

(1.8) is avoided. Indeed, with appropriate input excitation, there can be consistent 

estimation of the unique overparametrized model (1.12) parameters, although not 

directly the parameters of (1.1). However, the parameters of (1.1) can be recovered 

in an on-line parallel least squares estimation exercise using $k from  the 

Transformed Equation Error ELS algorithm associated with (1.12).

The SPR (SBR) condition (1.9) in the case Fn (z_1) = Fc(z_l) can be re-organized in 

terms of the remainder term Gc(z_l) as

6
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Gc(z-l)isSBR (1.14)

Not surprisingly, and as shown in a later section, for C'Hz-1) asymptotically stable 

and N sufficiently large, then (1.14) is satisfied. With the zeros of C(q_1) 

approaching the unit circle, then N approaches infinity. Thus apart from this 

borderline situation, there is inherently an implementation advantage of the finite 

dimensional methods proposed here relative to the infinite dimensional methods of 

[7,8].

For output error identification, under (1.3), the relevant Transformed Output Error 

model studied in this chapter is

yk = GcCq'^Cyk-N - Wk-N) + FcCq-^BCq-^Uk + wk (1.15)

with regressions

4>k =  [(yk-N-Wk-N) -  (yk-n-N+l-Wk-n-N+l) Uk-D ••• Uk-m-N+ll'

(Tr. Out. Err.) (1.16)

also denoted <{>kT0E. There are corresponding advantages of working with this 

model as with (1.12) for equation error algorithms. The strictly positive real 

condition (1.9), or equivalently the strictly bounded real condition (1.14) applies. 

Also a necessary and sufficient condition for reachability of <j)kTOE (and $kTOE ) is 

that A(z) [ = C(z) ], B(z) are coprime as for <j>k0E in (1.7b).

The transformed signal models (1.12), (1.15) proposed for ELS estimation, are 

intermediate in some sense to the transformed signal model used for recursive D- 

step-ahead prediction of [11] when D = N, and indeed D-step-ahead prediction 

schemes also require the convergence condition (1.14) when D = N. This chapter

7
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proposes D -step-ahead prediction algorithm  under (1.14) for the m ore general 

situation w hen N > D, and addresses the issue o f possible ill-conditioning with 

such schemes. An approach is also suggested to avoid such ill-conditioning using 

the key ideas of this chapter.

The m odified estim ation algorithm s and associated theorems are presented in the 

next section, and the case o f D-step-ahead prediction is studied in Section 3. Some 

extensions to m ultivariable ARM A X  m odels are given in Section 4. Exam ple 

studies are presented in Section 5, and conclusions drawn in Section 6.

2. Transformed ELS Algorithms and Th eo rem s

Signal Models: Consider the ARM AX m odels (1.1), (1.2) [or (1.1) - (1.3)],

Te-organized as those uniquely param etrized, but overparam etrized, m odels (1.12) 

[or (1.15)], under (1.10). The m easurem ents are linear in the param eters 0 and the 

relevant regressions <j)k o f (1.13) [or (1.16)] as

w here 0 is the vector o f  param eters associated w ith the coefficients, suitably 

arranged, o f

yk = <J>k'0 + Wk (2. 1)

Fc(q-1)A(q-l), Fc(q-l)B(q-l), Gc(q*l) (Tr. Eq. Err) (2.2a)

Gc(q-1), Fc(q-l)B(q-l) (Tr. Out. Err) (2.2b)

A posteriori ELS Algorithm : The a posteriori noise estimates wk are given in

terms o f the most recent parameter and state estimates §k, $k respectively as

8
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Wk = yk - $k'ök (2.3)

The state estimates $k are obtained by replacing Wk-i in <{>k by Wk-i , and the 

parameter estimates §k are given by a least squares scheme with $k replacing (j)k as

ök = ^k-1 +

^k = ^k-l - '

^k$k(yk - $k’ök-l) 

^k-l$k$k'^k-l
1 + V ^ k - l$ k

+ ^ 0'1)"1 » ^ o > 0

(2.4)

(2.5)

SPR Condition: Using the passivity - martingale convergence theory as in [1]

and [12], a convergence condition is that a certain subsystem W is required to be 

strictly passive. The system W has input (0k'<|>k) and output (^Efk^k + 0*?k) where

0k = 9 - ^k> 4>k = 4>k - $k- To exploit this result here we introduce the following 

lemma.

Lemma 2.1 (i) Consider the Transformed Equation Error ELS, or the

Transformed Output Error ELS algorithm, and associated subsystem W with input 
0k'<£k and output (^0k$k + 0'^k)* Then the system W is a time invariant linear

system with a transfer function dependant only on the noise model parameters C(q‘ 
l)as[C(q-l)Fc(q - l) ] - l- j  .

(ii) Strict passivity of W is equivalent to (1.9), or equivalently (1.14).

Proof (i) For the Transformed Equation Error ELS, from the definitions of 0k 

and $k> and (1.11), (1.12), (2.3)

0,'$k=[C(q-1)Fc(q -l)-l]  (wk-Wk)

Wk - Wk = yk - §k’$ k " wk = ^k'<k + 0’?k

Thus

9
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e'-$k = [C(q-l)Fc(q-l)]-l[l -C(q-‘)Fc(q-l)] 5 k'$ fc

and the transfer function of W is

[C(q-l)Fc(q-l)]-l[l - C(q-l)Fc(q-l)] = [C(q-l)Fc(q-l)]-l - j

For the Transformed Output Error ELS, a similar argument applies. Note also that 

W is linear and time invariant, so that part (ii) follows immediately. AAA

The following lemma tells us that for N sufficiently large the SPR (SBR) condition 

is satisfied.

Lemma 2.2 Consider any polynomial

C(z_1) = X CiZ’i = fl (1 - ZiZ"1), with co = 1 
i=0 i=l

(2.6)

such that I zi I <, R < 1 for all i. Consider also for any N, a polynomial pair {Fc(z_1), 

GcCz'1)} with degrees N-l and /-I respectively, defined uniquely by the long 

division (1.11). Then there exists No(R) such that for all N > No(R)

I 1 gi I < 1 (2.7)

and the SBR condition (1.14) is satisfied.

N -l oo
Proof: From (1.7), Fc(z-1) = X fiz_i is the truncation of C '^z"1) 4  X fiz_i.

i=0 i=0

(Here co = fo = 1). Also,

r N I  giz-‘ = C(z-l) £  fiz-i 
i=0 i=N

or equivalently,

10
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gi = I  fN+j Ci-j , i = 1,2, ... M , go = fN (2.8)
j=0

Since (1.14) is implied by (2.7), we shall look for upper bounds on I f| I and I q  I to 

achieve (2.7). Recalling (2.6), and denoting

_ I _ _ _ oo _
C(z-') 4  (1 - Rz-iy = £  ciz-', c0 = 1, C-^z-1) 4 £  fiz-* (2.9)

i=0 i=0

then, in loose but obvious notation, for all i,

I Ci I = I Z II(tenns zj) I < Z n(terms Izjl) < Z II(terms R) = I Ci I

Likewise I fi I < I fi I for all i. Now

fj = R1(l^ ! >0, £  l c ; l < ( l +  R ) '< 2 ' (2.10)
11 j=o

and denoting

gi 4  X *N+j1 Ci-j I , fmax 4 max {fN+j} for 0 < j < 1-1
j=0

then

M _  M i _  _  _  M i _
X gi — X X fN+j I Ci-j I < fmax X X I c i-j I < fmax 2 (2.11)
i=0 i=0j=0 i=0j=0

where the last inequality follows from (2.10). Also from (2.10)

fmax ^ Rn(N+2/ - 1)! /  (N+/-1)! < RN(N + 2/-iy  (2.12)

Thus, for any N such that 

N
2R/ (N+2/ -1) < 1 (2.13)

11
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(1.14) is satisfied. Note that No(R) can be defined as the smallest value of N such 

that (2.13) holds. AAA

Persistence of Excitation: We are interested in having suitably excited

regression vectors <j)k and their estimates $k for two reasons. First, if  $k is not 

suitably excited, then the estimation algorithm, and in particular the calculation of 

Pk will suffer from numerical ill-conditioning. Second, persistence of excitation of 

0k as in [3] is needed to assure the strong consistency of the identification scheme. 

Here we study excitation of the regression vectors (j)kTEE> 4>kT0E of (1.13) (1.16) 

associated with signal models (1.12) and (1.15).

Lemma 2.3 A necessary and sufficient condition for the regression vector

(j>kTEE of (1.13) associated with signal model (1.12) to be reachable ffom inputs uk, 

Wk is that the coprimeness condition (1.7a) holds. For <}>kTOE of (1.16) (1.15), a 

necessary and sufficient condition for reachability from Uk is that (1.7b) hold.

Proof (i) Here we apply techniques developed in [5]. First let us rewrite the 

Z-transform of (1.1) as

y(z) = A _l(z)(B(z)zn_mu(z) + A _1(z)C(z)zn*^w(z)

= Ti(z)u(z) + T 2( z) w ( z)  = T(z)v(z)

where v(z) = [u(z) w(z)]\ T(z) = [Ti(z) T2(z)], and A (z) 4  znA(z_1),

(E(z) 4  zmB(z_1), C(z) 4  z*C(z_1). Observe that
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where ei = [1 0], e2 = [0 1]. Consider the regression vector <j>kTEE and note that 

(j)TEE(z) = t TEE(z) v(z)

t TEE(z) =[[z-lT(z)]'••[rn-N+1T(z)]' [z'De 1']”[z‘m'N+1ei]' [ z - ^ M z - ' - N + ^ r ] ’ 

We know [5] that (j>TEE(-) is reachable from v(-) iff T ^ ^ z )  has full row rank over 

R, for all z. Furthermore manipulations show that for any a  = [ax' CC2' 0C3T, 

a i  = t a i , i  -  a i >n+N -i]\ a 2 = [ « 2,1 -  ai,m +N -D ]\ <*3 = [013,1 •• <x i ,m ] \  the 

condition a'TTEE(z) = 0 is equivalent to, with p = min{ n,m,/).

rzP -nT i(z) zP_nT2(z)
a'(z)H(z) 4  [a i(z) a 2(z) a 3(z)] zP-m 0

L 0 zV ‘ l
0 (2.14)

where a i(z ) = a i , iz n+N-2 + -  + a i ,n+N-l> «2(2) = ct2,izm+N-2 + -  + a 2,m+N- 

D, cc3(z) =  a 3 , i z /' 1 +  -  +  CC3j  .

Let N(H) denote the left nullspace of H(z), i.e. the set of all polynomial vectors 

a(z) obeying (2.14). Define also

P(ki, k2, k3) = {polynomials [a i(z) a 2(z) a 3(z)]' with degai(z) < ki) 

Then it is immediate from (2.14) that TTEE(z) will be full row rank iff

P(n+N-1, m+N-D, /) n  N(H) = 0 (2.15)

We will show that a necessary and sufficient condition for (2.15) to hold is that 

(1.7a) holds.

Necessity: Straightforward calculation shows that

[ - A (z) ®(z) C(z) ]H(z) = 0, i.e. [ - A (z) £ (z) C(z) ] € N(H)

13
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We have also,

[ - A(z) Ä(z) C(z)]e P(n+l,m -D +l,/+l)

Thus A, ß , C coprime is a necessary condition for (2.15) to hold.

Sufficiency: Since for A, ß , C coprime the vector [ -A(z) ß(z) C(z) ]' forms

a basis for N(H), any other element of N(H) can be obtained as

[A i(z) (Bi(z) Ci(z) ] = ß(z)[ - A(z) ß(z) C(z) ]

where deg ß(z) > 1. However, since deg Ci(z) > deg C(z) = / + 1, coprimeness 

of A , ß , C implies (2.15).

(ii) Now consider the regression vector <J>kTOE. Here following the approach of (i) 

above.

[y(z) -  w(z)] = A “l(z)ß(z)zn_mu(z) = T(z)u(z), <{>T0E(z) = T t o e ( z) u ( z) 

where T t o e ( z)  = [z*NT(z) — z 'n'N+1T(z) z-D — z■m■N+1] , , Thus

a T TOE(z) = 0 «  a'(z)H(z) 4 [ai(z) a 2(z)] [ zP^ Z)] = 0

where a i(z ) = a i j z 11-1 + -  + ai,n , a 2 (z) = oc2 ,izm+N-D-1 + -  + a2,m+N-D- 

Thus T t o e ( z )  will be full row rank iff P(n, m+N-D) n  N(H) = 0, which in turn 

holds iff (1.7b) holds since [ - A(z) (B(z)]'H(z) = 0, using arguments as in (i).

AAA

Convergence of the Transformed ELS Algorithms Standard techniques (see 

e.g. [3] and [13]) apply to achieve convergence properties of the Transformed ELS

14
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algorithms. We summarize as the following lemma.

Lemma 2.4 Consider the Transformed Equation Error ELS [or Transformed 

Output Error ELS] algorithm (2.3) - (2.5) associated with the signal model (1.12) 

[or with the signal model (1.15)]. If the N is chosen sufficiently large such the 

SBR condition (1.14) is satisfied, then, as k —» «>,

II e - 8k «2 = 0 (log ) a.s. (2.16a)

I  II Wi - Wi l|2 = 0(log XmaA'1) a.s. (2.16b)

Moreover, under (1.6), with P jf1 

[or <}>T0E], then as k —>

X 4>i<j>i’ + Po*1 defined in terms of <j)TEE 
k=l

II e - §k l|2 = 0 (log 1 ) 0 a.s.
Xmi„pk-1

x  II Wi - Wi II2 = OGog XmaxPk-1) a.s. 
i=l

(2.16c)

(2.16d)

Furthermore, under (1.7a) [or (1.7b)] (j>k is reachable from inputs u^, w^ [or u^] 

and for suitably rich bounded variance inputs uk, wk [or Uk] then as k —» <», 

lim inf XminPk'1/^ > 0 and for stable signal models with bounded inputs.

II e - §k l|2 = 0[k-llogk] a.s. (2.16e)

Proof The results (2.16a)-(2.16d) are implicitly established in the proof of 

the theorems of [3]. Of course, the focus of [3] is a signal model with different 

interpretations for 0, <J>k than here (namely the signal specialization of the model 

used here when N=l), and thus a different transfer function required to be SPR, 

but in fact the proofs are invariant of such interpretation as long as the subsystem

15
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with input (0k'$k) and output (0’<j>k + j8k '$k) be strictly passive. The second part 

follows immediately via persistence of excitation results in [5].

Least Squares Parameter Recovery So far, we have succeeded in showing that 

consistent estimates of parameters of the transformed signal models (1.12) or 

(1.15) can be obtained under the relaxed SBR condition (1.14) and PE condition 

(1.6). This may be helpful in some situations, e.g. the self-tuning minimum 

variance regulator for (1.1) can be based on the overparametrized model (1.12). In 

the next step we will show that identification of the original signal model 

parameters A, B and C can be also accomplished under the same condition if the 

following LS algorithm, operating in parallel to the ELS algorithm, is utilized.

8k = 8k-1  + PkWyk - <j>k'8k-l) (2.17a)

P k - P k - l - — “ ( . i w i ’ + Po-1)-1 , fy )> 0  (2.17b)
1 + <t>k'Pk-l4>k 1=1

where the regression vector 0k is given in terms of yk, Uk, and the noise estimate 

wk from the relevant Transformed ELS scheme, as

$k ä [ yk-1 yk-n Uk-D ... Uk-m Wk-i ... Wk-/ ]' (Eq. Err.) (2.18a) 

0k = [(yk-l-W k-l) ... (yk-n-Wk-n) Uk-D ••• Uk-m]’ > (Out. Err.) (2.18b)

Also 0 are the parameters suitably arranged from the coefficients of the polynomials

A(z'i), B(z-i), C(z_1) (Eq. Err.)

A(z‘i), B(z_1) (Out. Err.)

Note that the noise terms Wk in the regression vector (2.18) are regarded as 

measurable. For this reason the algorithm (2.17), despite its similarity to

16
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(2.4),(2.5), has an almost standard least squares form. The only nonstandard 

feature of the proposed scheme is the fact that the regression vector (2.18) differs 

from the "true" one as in (1.5). We will show that as long as the ELS algorithm 

converges the discrepancy between <{>k and <}>k as in (1.5) is asymptotically 

negligible, i.e. it does not affect either consistency or the asymptotic rate of 

convergence of the LS scheme.

Lemma 2.5 Consider the least squares algorithm (2.17) with the signal model 

(1.1) [or (1.3)] under the relaxed SPR condition (1.14), where Wk is generated 

from the ELS algorithm (2.3)-(2.5). Then as k —>

l i e - e k II2 = ) a.s. (2.19)
^minPk"*

Moreover, under (1.6) with Pk in terms of <{>TEE [or <J)TOE], then as k —» <»,

II e -  ek II2 £ 0 (l0g XmaxPl| ' 1 ) a.s. (2.20)
ä-minPlc-1

Furthermore, for suitably rich bounded variance inputs Uk, wk [or uk] then as 

k—>©o, lim inf ̂ minPk"1/^ > 0 and for stable signal models with bounded inputs.

II0 - 0k II2 < Otk^logk] a.s. (2.21)

Proof Let us rewrite the signal model (1.1) [or (1.3)] as

yk = <t>k'0 + Wk = <j>k'9 + $k’Ö + Wk, ?k 4 <|>k - <j>k (2.22)

Then from (2.17), (2.22)

(6 - 0k) = Picti 0,»i'9 - yi) + Po-He - e0)]

17
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PktZ Po_1(0 - Oo)] + PkZ <M>i'Q
i=l i=l

(2.23)

The first right hand side term above is the least squares parameter estimation error 

associated with the model yk = <J)k'Q + wk, so that by known results [14, 3] (in fact 

an appropriate specialization of Lemma 2.4), then

P k [ i  <t>iWi -  Po-1(0 - 00)] II2 = 0 ('°g Xn̂ t v '. )
i=1 ^minPk'1

(2.24)

The second right hand side term of (2.23) is bounded as follows,

UPk I  Mi'0 II2 =  I I P l ^ l  p j$ i5 i'0  l|2 < XmaxCPk) I II  pJw i’e II2
i=l 1=1 1=1

(2.25)

Now from the Schwarz inequality,

£  Pk2<j>i$i,0 l|2 < £  I I P ^  ||2 . £  || ^'0112
i=l i=l i=l

(2.26)

where

| l l P k2()Hll2 = s  <t>i'Pk<t>i =tr(Pk S M i ' ]  < dim(<|>) 
i=l i=l i=l

i l l$ i 'e i |2 =  OaogXmaA-1)
i=l

[via (2.16b)]

(2.27)

(2.28)

Thus (2.25)-(2.28) imply that

A

iiPkI<M>i’0ii2 = 0( ^ -— ) 
i=1 XminPk'1

(2.29)

Now

18
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k k k
W  ^ - 1 = 0 ( I y I2 +  X Ui2 + £  wk2) = 0 ( \ max Pk-1) (2.30)

1=1 1=1 i=l

so that substitution (2.24), (2.29) and (2.30) into (2.23) gives the desired result 

(2.19). Moreover, under (1.6) with Pk in terms of [or <{>TOE], we have [3]

log X-maA-1 = 0  log W P k - 1 Q (2 .31)

X m iA ' 1 A-minPk- 1

Furthermore, recalling the definition for $k and <j>k, we know that <|)k-N+l is a 

subvector of $k- Thus Pk-N+1 is obtained by deleting appropriate rows and columns 

of ßk and thus (since Xmin(X) = min a 'X a /a 'a ,  over a )

^min ^k’* — -̂min Pk-N+1"* + 0(1) ^  ^min Pk’* +0(1) (2.32)

where 0 (1) accounts for bounded terms due to initial conditions. Thus, we have 

from (2.31) (2.32),

log ^maxPk'*

^minPk"1

< Q(l o g W h d  = Q(log -̂maxPk-1 as k o. 
X m A 1 XnünPk'l

and the result (2.20) follows. To establish the result (2.21) the same argument as 

in the proof of Lemma 2.4 applies. AAA

3. D-Step-Ahead Prediction

Signal Model: Let us consider again the signal model (1.1), re-organized via

(1.11) as (1.12). Consider also the long division of C (q'i) by A(q_1) as

C(q-l) = A(q-l)Fa(q-l) + q-DGa(q-l) (3.1)
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where Fa(q*1) is of degree (D-l) and Ga(q_1) is of degree (r-1) with r = max{/- 

D+l,n}. Also define

dk = Fa(q“1)wk (3.2)

Now post multiplication of (1.12) by F^q”1), and re-organization leads to the D- 

step-ahead Equation Error ELS model,

yk=Gc(q-1)(yk-N-dk-N)+Fa(q‘1)Fc(q'1)B(q-1)uk+Ga(q'1)Fc(q-l)yk-D+dk

(3.3)

Note that although the error term dk in (3.3) is not white any more (as in the case of 

one-step-ahead prediction) it is the moving average process of order D-l. 

Consequently, for N > D, dk is orthogonal to all other terms appearing on the right 

hand side of (3.3). Due to this fundamental property the model (3.3) can be used 

for adaptive D-step-ahead prediction. The corresponding D-step-ahead Output Error 

ELS model is

yk = Gc(q-1)(yk-N - wk-N) + Fc(q’1)B(q*1)uk + wk (3.4)

The associated regressors are,

<j>k=[(yk-N-dk-N)-(yk-N-/+l-dk-N-/+l)uk-D-Uk-m-N-D+2 yk-D-yk-r-N-D+2]’

(D-step Eq. Err.) (3.5a)

<}>k =  [(yk-N - Wk-N) -  (yk-n-N+1 - Wk-n-N+l) uk-D •• Uk-m-N+l]'

(N-step Out. Err.) (3.5b)

also denoted <(>kDEE, <|>kD̂ E» respectively.

The signal models can then be expressed in the form (2.1) where 0 is the vector of
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parameters associated with the coefficients, suitably arranged, of

Gctq-1), Fa(q-l)Fc(q-l)B(q-l), (D-step Eq. Err.) (3.6a)

GcCq'1), Fc(q-l)B(q-l). (D-step Out. Err.) (3.6b)

Of course when D=l, the signal models of previous sections are recovered. Also 

with N=D, the N-step-ahead prediction signal model of [11] is recovered.

SPR Condition Applying the ELS algorithm to the above D-step ahead

models, the subsystem with input (Bk'$k) and output (^0k$k + 9'^k) is readily

calculated, as in the proof of Lemma 2.1, via the key intermediate results Bk$k + 
e %  = a k - dk, 6 %  = Gc(q-l)q-N(3k - dk), to be W = [C(z-l)Fc(z-l)]-l - i .  The

key convergence condition for the D-step-ahead ELS algorithm is that this system 

W be SPR, or equivalent (1.14) hold, as for the 1-step-ahead ELS algorithms of the 

previous sections. Lemma 2.2 applies to this case also.

Persistence of Excitation We consider first the D-step Equation Error ELS 

scheme.

Lemma 3.1 (i) The regression vector <J>kDEE given by (3.5a) is reachable from

Uk, Wk iff the following conditions are satisfied (for N > D)

A(z), (B(z), C(z) are coprime

^a(z), C(z) are coprime

(ii) The regression vector (j>kD0E given by (3.5b) is reachable from Uk iff

A(z), (B(z) are coprime (3.9)

Proof (i) From the signal model (1.1), and the relations (3.1), (3.2), after a

(3.8a)

(3.8b)
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few manipulations, we have

y(z) = zn' m u(z) + zn'1 -j— L w(z) 4  Ti(z)u(z) + T2(z)w(z)
A (z) A(z)

y(z) - d(z) = zn~m u(z) + z"I>,'n*r+1 w(z)
A(z) A(z)

4  Ti(z)u(z) + T3(z)w(z), d(z) = z-D+19ra(z)w(z) (3.10)

where A (z) = zn-mA(z-1), !B(z) = zmB(z_l), C(z) = z^C(z'l), 3^a(z) = z_D+1Fa(z 'l) , 

5a(z) = zr_1Ga(z_1). Then for <j>k in (3.5a)

r  z-nT i (z)

<t>(z) =

z-/+iz-n t i (z)
z-D

2-II1-N+22-D

z-°Ti(z)

z’n T 3(z)

z-/+1z-N 72(z)
0

0
z - d T 2 ( z )

z-r-N+2z- D 7 i(Z) z‘r'^+^z’DT2(z)

(3.11)

and a necessary and sufficient condition for <j>(z) to be reachable from u(z), w(z) is 

P(/, m+N-1, r+N-1) n  N(H) = 0 (3.12)

where the definitions for P(-) and N(H) are the same as in the proof of Lemma 2.3, 

and the transfer function matrix H(z) is given, with p = min{/, m+N-1, r+N -1} by 

-  zP'̂ tnTi(z) zP**z'n T3(z) “

H(z) =
zP-m-N+l o

zP-r-N+lz-Dr^z) zP’r'N+1 z'dT2(z) (3.13)

Now we see that, from (3.1), (3.9),

[C(z) - y a(z)B(z) -5a(z )]H (z) (3.14)
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zP-'-n T i (z)C(z) - zP-m-N+1-D¥ a(z)Ä (z) - zP'r_N+1*DT i(z )5 a (z ) 
zP-/-NT3(z)C(z) - zP-r’N+1-DT2(z)5a(z)

0

and [C(z) - ^ a(z)(B(z) — 5a(z)] g P(/+l, m-1, r). Therefore, following the

same argument as in the proof of Lemma 2.3, (3.12) holds iff

C(z), - ^ a(z)(B(z), -5 a (z) are coprime (3.15)

Moreover, (3.15) is equivalent to

A(z), (B(z), C(z) are coprime

Ŝ a(z), C(z) are coprime

and the result is established.

(ii) To prove the result (3.9) the similar outline can be followed. Here we do not 

give the details but only the main equations as follows.

z"NT(z)

<t>(z)=
z-n-N+lT (z)

z-m-N+l

u(z), T(z)=zn~m— [corresponding to (3.11)] 
Ä(z)

P(n, N+m-D) n  N(H) = 0 [corresponding to (3.12)]

H(z) = £ P = m n̂ N+m-D] [corresponding to (3.13)]

[ A(z) -S(z)] H(z) = 0 [corresponding to (3.14)]

Then the (3.9) follows. AAA

Remarks 1. The reachability condition (3.8a) is of course identical to (1.7a), the
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reachability condition for the other Equation Error ELS methods of Sections 1, 2. 

The condition (3.8b) is additional, and fails on hypersurfaces in the coefficient 

space of A(q-i) C(q_1) coefficients. There is then a potential for ill-conditioning in 

addition to that for the 1-step-ahead Equation Error ELS scheme of Sections 1, 2. 

The following simple example shows that coprimeness of ^ a(z) and C(z), is not in 

general, guaranteed by coprimeness of A(z) and C(z).

Exam ple: Consider the case where C(z_1) = 1 + cz_1 and A(z_1) = 1 + az-2.

Observe that

1 + cz"1 = (1 + cz_1)(l + az*2) - z_2a(l + c r 1)

Hence Fa(z_1) = C(z_1) for D = 2 and all values of a and c. Observe also that the 

coefficient of z_1 in A(z_1) given above is zero, hence the coprimeness condition 

fails on a hypersurface in the coefficient space.

2 The Transformed Equation Error ELS scheme of the previous sections allows 

identification of Gc(q_1), via a converging estimate ÖcCQ'1)* This knowledge can be

used in the D-step Equation Error ELS algorithm to simplify the algorithm-----just

replace Gcte"1) by its estimate 6 c(z"1). The regression vector associated with such a 

model is now

<l>k = [Uk-D Uk-m-N-D+2 yk-D -  yk-r-N-D+2 ]'

which is readily shown to be reachable from Ufc, wfc. In this way the ill-conditioning 

associated with failure of (3.8b) can be obviated.
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4. Extension to Multivariable ARMAX Model

Consider a multivariable version of the ARMAX model. In particular, consider the 

scalar model (1.1) with the scalar output y, input u and noise w variables replaced 

by the corresponding ki~, k2~, and lq- vectors, respectively and the polynomials A, 

B, C defined as follows

A(q-l) = i  Aiq-i, B(q-‘) = f  Biq-i, C(q-l) = £  Qq-i, A0 = Q) = I 
i=0 i=D i=0

Here Ai , Bi, and Q  are ki x lq, lq x k2  and ki x ki matrices of coefficients, 

respectively. There is a natural extension of the results obtained so far to this 

multivariate case.

Let us first review some standard results on identification of multivariate ARMAX 

models in standard (i.e. non-transformed) form. Define the ki x (kin + k2m + kiO 

coefficient matrix 0 and the (ki2n + kik2 m + k \ 2 l )  x 1 regression vector f a  as 

follows

0 = [Ai ••• An Bd ••• Bm Ci — C/],

<l>k = [yk-1* -  yk-n Uk-D' -  Uk-m' Wk-i' ... Wk

and consider the matrix version of the ELS algorithm

ök = ök-l + ßk$k(yk - $k’ök-l) (4.1)

ßk = ( E $i$i' + fy)'1)*1 * ^0>0 (4.2)
i=l

Reachability of f a  is guaranteed by the coprimeness conditions
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A(z), S(z), C(z) are left coprime (4.3)

where left coprimeness is defined as being full row rank for all z, or equivalently 

where there is no unimodular left coprime factor (a more standard coprimeness 

definition) and [An Bm Q] is full row rank, as in [5], [16]. Let us stress the fact 

that there exist uniquely parametrized multivariate ARMAX models which do not 

admit representations satisfying (4.3) [16]. complete, although usually less 

parsimonious, representations (canonical forms) can be obtained by imposing 

certain structural constraints upon the transfer matrices A(z), &(z) and C(z) (such 

as the requirement that A(z) or E(z) should be diagonal) - see [17] for a more 

thorough discussion of the identifiability problem for multivariate systems. The 

convergence of the ELS algorithm (4.1), (4.2) under (4.3) and An full row rank 

condition is studied in [3].

As in the univariate vase, a strict positive real condition, here [C'Hz*1) - ^r] is

SPR, is crucial to guarantee almost sure convergence of the algorithm. This 

condition can be relaxed in exactly the same way by means of overparametrization 

(all basis conditions and results can be redefined in terms of matrix polynomials). 

In particular, the reachability conditions for transformed models have exactly the 

same form as in the scalar case (provided that the word "coprime" is replaced by the 

"left coprime" which includes the full row rank conditions at z=0). The use of 

special canonical forms opens another avenue for analysis of multivariate models. 

For example, by forcing C(z) to be diagonal one can rewrite the vector ARMAX 

equation as ki separate scalar equations, i.e. the equations for y^ti), involves only 

the noise variables Wk.n® for various n but not the noise variables w(i), j ^  i. This 

allows us to carry out identification of coefficients in each equation separately (by
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ignoring correlations between different noise inputs). This may be a great advantage 

from the practical point of view even though it decreases statistical efficiency of the 

estimates.

5. Example Stu d ie s

First, simulations on a system from [4] are performed. The system certainly fails to 

satisfy the associated SPR condition, namely (1.4), with the ARMAX 

representation

yk + 0.9yk-i + 0.95yk-2 = Uk-l + wk + 1.5wk-i + 0.75wk-2 (5.1)

However, when reformulated as in (1.11) (1.12) for N=6, the associated SPR 

condition (1.9) is satisfied. Figure 5.1.a shows the estimates of the system 

parameters via the two stage scheme proposed in this chapter for the case N=6. It is 

clear that the parameter estimates converge to the correct values, in contrast to the 

case when N=l, shown in Figure 5.1.b. With N=4, it turns out that the SPR 

condition is not satisfied, but as indicated in the Figure 5.1.c, there is a 

performance improvement over the case when N=l, at least in terms of "bias”.

Another example is studied, in which the system with ARMAX model as

yk - 0.9yk-i + 0.2yk-2 = 1.5uk-i + - 0.6wk-i + 0.1wk-2 (5.2)

satisfies the SPR condition. The transformed algorithm is used to identify the 

system with N=4, and the estimates of the system parameters are given in Figure 

5.2.a For comparison, a standard ELS algorithm is also run, with the estimates
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shown in Figure 5.2.b. From Figure 5.2, we see that when the two stage algorithm 

of this chapter for N=4 is used, even in the case that the SPR condition (1.4) is 

satisfied, the transient performance does not deteriorate relative to that for the 

standard ELS scheme.

To study the effect on relaxation of the SPR condition when N is increasing, we 

plot, as in Figures 5.3, the region for 2nd order C polynomials in which the SPR 

condition is satisfied. These show the benefits of working with N > 1 as far as the 

SPR condition is concerned.
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Fig 5.1.a. Comparison on estimates of system (5.1) 

(a) transformed algorithm (N=6)
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Fig 5.1.b. Comparison on estimates of system (5.1) 

(b) standard algorithm (N=l)
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Fig 5.1.c. Comparison on estimates of system (5.1) 

(c) transformed algorithm (N=4)
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Fig 5.2.a. Comparison on estimates of system (5.2) 

(a) transformed algorithm (N=4)

Fig 5.2.b. Comparison on estimates of system (5.2) 

(b) standard algorithm (N=l)
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Fig 5.3.a. The SPR regions for 2nd order polynomials 

with transformed algorithms (N=l)

Fig 5.3.b. The SPR regions for 2nd order polynomials 

with transformed algorithms (N=2)
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Fig 5.3.C. The SPR regions for 2nd order polynomials 

with transformed algorithms (N=4)

Fig 5.3.d. The SPR regions for 2nd order polynomials 

with transformed algorithms (N=8)
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6. Conclusions

A new method of ELS-based identification and D-step-ahead prediction for 

ARMAX models is suggested. The proposed algorithms are suitable for both the 

equation error and output error identification and they converge under relaxed ( to 

an arbitrary degree) positive real conditions associated with standard ELS 

algorithms. Side-stepping of positive real conditions is achieved by means of 

transforming the model into an equivalent (uniquely ) overparametrized form and 

additional (optional) LS processing. Maintaining suitable excitation of the 

regression vectors, necessary for consistent parameter estimation, is achieved under 

reasonable conditions. Thus numerical ill-conditioning is avoided in the generic 

case. Computer simulation studies illustrate the comparative attractive performance 

properties of the algorithm and illustrate the effect of N on the satisfaction of the 

SPR condition.
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Chapter 12

tracking Randomly Varying parameters

1. Introduction

Let us first define the signal model class and estimation algorithm. 

Signal Model: Consider the following linear regression model

yk = <p£0k + vk, k > o, (1.1a)

0k+l = F0k + Wk+1, E II0OII2 < 00 (1.1b)

with 0k viewed as time varying unknown parameters with a Markov model 

representation. The noise sources {wk} and {vk} are mutually independent and 

also independent themselves, with zero mean and covariances

E[wk+iwkx+1] = Qw £ 0, E[vk+ivkx+1] = Rv > 0 (1.2)

(Generalization of our theory to the case of time varying covariances is 

straightforward). The measurement yk is assumed scalar, and the regression vector 

cpk is stochastic and belongs to Fk-i—  the a- algebra generated by {yo, yi, —

yk-l).

Much of the work done in stochastic system identification has been concerned with 

identifying the parameters 0k in (1.1) for the case when 0k = 0o is constant, that is, 

when F = I and the covariances of wk is zero. Typically, cpk is viewed as the 

regression vector of an ARMAX model and least squares identification of 0o is 

applied. When 0k is time varying, one natural approach to use is to model 0k as in
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(1.1b) where all eigenvalues of F lie in or on the unit circle, i.e., I X[ (F) I < 1, for 

all i. In such cases, the natural performance criterion is tracking error bounds.

Estimation Algorithm fKalman Filter):

Consider the following estimation algorithm associated with (1.1) as

äk+1 = F^k + t o  - 92$k)
R+<p£Pk<Pk

(1.3a)

FPkqWlPkF1
Pk+1 = FPkF1 - *------+Q,

R+9kFk9k
(1.3b)

where P0 > 0, Q >0 and R > 0 as well as 00 are deterministic and can be arbitrarily 

chosen [ here Q and R may be regarded as a priori estimates for Qw and Rv 

respectively. We stress that even if Qw is singular, here Q must be chosen as 

nonsingular to achieve a short memory algorithm. That is the adaptation gain in 

(1.3a) does not diminish to zero.].

It is known that if the noise source { w£, vk } is a Gaussian white noise sequence, 

then ök generated by (1.3) is the best estimate for 0k, and Pk is the estimation 

error covariance, i.e.

§k= e  [ e k I ? k. i  ] ,  P]c = E [ 0 ke £ i ^ k - i ]  ,

provided that Q = Qw, R = Rv, 0O = E[0O] and P0 = E[0O0 J], where 0k is the 

estimation error:

0k = 0 k - § k  (1-4)

This remarkable result was first observed by Mayne [1] and expanded on by

2
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various authors e.g. Astrom and Wittenmark [2], Kitagawa and Gersch [3].

In the nongaussian case, however, the properties of (1.3) applied to (1.1) have not 

been well studied The reasons for this may be explained as follows: a). In the time 

varying case, there is no almost sure parameter convergence. Also, the successful 

stochastic Lyapunov function technique, as well as the martingale limit approach 

used in least squares (LS) convergence analysis (e.g.,Ljung [4], Moore [5], Lai 

and Wei [6], and Chen and Guo [7]), fail in the present case. This is so even 

though (1.3) is the standard LS algorithm when F = I , Q = 0 and R = 1. Similar 

observations are also made by Meyn and Caines [8]; b). The algorithm (1.3) is a 

Kalman filter when Q = Qw and R = Rv . It is optimal in a linear minimum 

variance sense when <pk is deterministic (e.g. Anderson and Moore [9]), and not 

stochastic as here. Thus, the stochastic nature of the regressors precludes 

applicability of the useful properties of the Kalman filter, even when Qw and Rv 

are precisely known; c).The existing theory for time varying linear systems usually 

requires that the system output gain matrix (i.e., cpk > in the present case) is 

bounded in k (e.g. Anderson and Moore [10]). This requirement turns out to be 

unrealistic in applying the theory to general adaptive control and identification 

problems. This is especially so in the stochastic case, because 9k may contain the 

past system inputs and outputs, and the system noise may be unbounded. Hence, 

the unbounded nature of the regressors {cpk} also precludes the direct application 

of the standard theory.

In this chapter, we establish tracking error bounds for the case of randomly varying 

parameters. The main concern is with the following three cases:

(i). Parameters generated from a stable linear model, i.e., (1.1b) with

3
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l^i(F)l < 1 , for any i;

(ii) .Drifting parameters, i.e., (1.1b) with F =1; and

(iii) . Disturbed parameters ,i.e., 0k = 00 + w k.

2. Tracking Error Bound

In the sequel, we denote Xmax(A) and Xmm(A) the maximum and minimum 

eigenvalues of a matrix A respectively, and liAII = { ^maxCAA1) } ̂  its norm, so 

that IIAII == Xmax(A) when A is symmetric and nonnegative definite.

Let us first denote

Kk = FPkCpk(R + cp̂ Pk9k)-1 (2.1)

and rewrite (1.3) as

§k-i = F§k+ Kk ( yk - (pk^k )> (2.2a)

Pk+i = (F - Kk(pp Pk (F - Kk(ppx + KkRKJ + Q, (2.2b)

The lower bounds to the tracking error is relatively straightforward by combining 

(1.1b) and (2.2a), indeed, we have

Theorem 2.1. Consider the signal model (1.1) and algorithm (1.3), if
sup Ellwkll2+e < 00 for some e > 0 , then 
k

inf Ell 0kll2 > t r (Qw) ,  (2.3)
k

4
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and

1 n ~
lim inf £  Il9il2 2> tr (Qw) , a.s , (2.4)
n—->oo n •_!

where Qw and 0k are defined by (1.2) and (1.4) respectively.

Proof: By (1.1) and (2.2a), the error equation is

§te-l = ( F - Kkcpp§k- KkVk + wk+i (2.5)

Set

fk = ( F - Kk<p£)§k - KkVk

then {f^wk+i} is a martingale difference sequence with respect to the a-algebra

generated by { v m , wj , i £ k+1} , so the first assertion (2.3) follows from (2.5) 

and the orthogonality of f t  and wk+i immediately.

Now, by an estimation for the weighted sum of martingale difference sequences 

(e.g. Chen and Guo [11], pp. 848), we know that 

n n
I  Hwi+i = 0 ( { I  IlfilP }(1/2)+ti ) a.s. 

i=l 1 i=l

for any q > 0 . Consequently, by taking q < ^  , we have 

1 n
lim i n f -  £  (llfill* + 2fTwi+i)n—>oo n i=1 i

i n n
= lim i n f -  £llfil|2{l + 0([ I  IlfjlP] n - 0/2))} > 0 .

n — >oo n i=1 i=1

From this inequality and (2.5) it follows that

5
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l i m  i n f -  I I I  0* II2
n -->oo  n i = 1

i n-1
lim inf— I  {llfjll2 + 2f?Wi+i + llwi+ill2}

n— >oo n i=Q i

i n-1
> lim inf — I  llwi+ill2 > tr(Qw), a.s., n—>oo n i=Q

which is the second assertion (2.4). Hence the proof is complete. AAA

The upper bounds for the tracking error depend on the stability of the equation

£k+l = ( F - Kk<pp 5k, k > 0, (2.6)

as can be seen from (2.5), which we will show depend on the bounds of {Pk}. 

A lower bound to Pk is easy to get, since from (2.2b):

Pk ^ Q > 0, for any k > 1. (2.7)

However, upper bounds for {Pk} are far from obvious for general F and {cpkl . 

Let us first see the role played by the upper bound of {Pk} in the stability of the 

equation (2.6).

Lemma 2.1. Assume that there exists a random constant b such that

sup II Pk II ^ b < o®, a.s., (2.8)
k > 0

then for Kk defined by (2.1),

H
II n(F-KfccpT) II 2 ß a)"1 • a.s„ for any j > i > 0 ,  (2.9)

k=i

where a  and ß are defined by 

IIFIKa+tyb1#
a  [a3 + IIFII2(a+b)2b]1/2 ’

(2 . 10)

6
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ß = [b/a]l/2, a = U Q ) . (2. 11)

The proof is given in Appendix A. The precise expressions of a  and ß in (2.10) 

and (2.11) lead directly to the following important observation.

Remark 2.1. If b, the upper bound of Pfc , is a deterministic constant, then the 

exponential bounds claimed in (2.9) are also deterministic.

This fact is very crucial in establishing the upper bound for the tracking errors in 

terms of mathematical expectations in the sequel.

Let us now proceed to establish the upper bound for the tracking errors by 

considering different parameter models separately.

A. Parameters Generated from a Stable Model.

In this case, IA.i(F)l < 1 for all i, then by (1.3b),

Pk+1 ^ FPkF1 + Q

< F^Pfc.^F1 )2 + FQF* + Q £ 

k
for any k > 0 , (2 . 12)

and hence

oo

FiQ(Fx)i II + sup II FkP0(FT)kll, 
k>0

(2.13)
i=0

can serve as a finite deterministic upper bound for (Pk) since Pq is deterministic.
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This enables us to establish the following results.

Theorem 2.2. Consider the signal model (1.1) with lXi(F)l < 1 , for any i, 

and the estimation algorithm (1.3). Then

i n ß
lim sup -  I  II 0illP < (-£-)P [Ln(w) + IIFIKb/R)1/2 Ln(v)]P, (2.14) 
n—>~ n i=i 1-a H

and

l im  s u p  E II 0nIIP < (-&-)P [Mp(w) + IIFIIflVR)1#  Mp(v)]P, (2.15) 
n—>oo 1-a

here 9n = 6n - b, a  and ß are given by (2.13), (2.10) and (2.11) 

respectively , and p > 1 is any real number such that

Lp(v) = limsup
1 n

{ -  I I I  V i IIP }Vp < oo, a.s. (2.16)
n— >oo n i=l

Lp(w) = limsup 1 n
{ ~  IN  willP )!/P < oo, a.s. (2.17)

n— >oo n i=l

Mp(v) = sup { E II v| IIP } 1/P < oo, (2.18a)

Mp(w) = sup { E II wi IIP ) !/P < oo , (2.18b)

and E II 0O IIP < «>.

Proof. By (2.5) we have

k k kSk+1 = n (F-Kj(pjx) e0 + z [ n (F-Kj(pjT) ] (-KiVi + wi+1) 
j = 0  i= 0  j = i + l

Applying Lemma 2.1 we see that

8
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II e i c + i l l  <  ß  o c k + l l l  S 0 II +  ß  S  a k -> (II K j v ;  II +  l l w i + 1 ll ) ,  ( 2. 19)
i=0

then applying the Minkowski inequality gives

n _  n n k
( . 1  N 9 i + 1 IIP)l/ P s ß l i e d l (  S a P ^ + O j i / p + ß f  £  ( X a k - ' I I K i V i l l ) P ) i / p
i=0 k=0 k=0 i=0

n k
+ P { I  ( I a k- i |lw i+1 ll)P}i/P, 

k=0 i=0
(2.20)

now, by the Holder inequality it follows that ( 1/p + 1/q = 1 ) :  

k  k
( Z ock~* II KjVj II )p = { z  aOt-O/q [a^-ö/P II K,v; ll] )p 
i=0 i=0

k k k
S ( z  a k-‘ P°L ( z  a k-i II KiVi IIP) < (— )p/q z  a k‘* H K,vj IIP 

i=0 i=0 1 -a  i=0

and then

n k i n n
Z  ( Z  a k'* ll K,vi ll )P s  (— )p/q £  £  a k-* ll KjVj up 

k=0 i=0 1 -a  i=0 k=i

i n  n
£  (— )(p/q)+i z  ll KjVj IIP = (1 - a)-P Z  ll K w  HP 

1 -a  i=0 i=0
(2.21)

Let us now consider the upper bound for Kj. Since b is an upper bound for llPkll, 

then by (2.1),

II Kkl|2 <; ||FI|2----(PkP̂ (Pk— — < ||FI|2 b <PkPklPk
(R + <p].Pk<pk)2 (R  + <PTkPk<Pk)2

< IIFII2 b /R  , for any k > 0, (2.22)

9
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which together with (2.16) and (2.21) yields

lim sup ~ I  ( I  a k-> II Kjv; II )P < [ NFII(b—)1/2 ]P [Ln(v)]P .(2.23) 
n—>~ n k=0 i=0 1 - a  F

Similarly,

i n k  i
limsup x  I ( Z ak‘‘ llwi+ill )P S (— -— )P [Ln(w)]P (2.24)
n—>~ " k=0 i=0 1 - a

Finally, the first result (2.14) follows from (2.20), (2.23) and (2.24).

Let us now consider (2.15). The inequality corresponding to (2.20) can also be 

derived by the Minkowski inequality and takes the form:

k
( EIIGfc+illP )l/P < ß a k+l(E II 0oIIP )l/P + ß {E( I  a k-i II Kivi II )P} l/P

i=0
k

+ ß { E ( I a k-i II wi+i II )P}Vp. 
i=0

From this, a similar argument as used in the proof of (2.14) leads to (2.15) 

because in this case the constants b, a  and ß are all deterministic. This completes 

the proof. AAA

Remark 2.2. From the proof of Theorem 2.2 we see that the independence 

assumptions made on the noise sequences {wk} and {vk} are not really used, 

indeed, Theorem 2.2 holds for any random sequences {wk} and {vk} satisfying 

(2.16)-(2.18). In particular, w k, which appeared in the parameter model (1.1b) 

may have non-zero mean.

Remark 2.3. We have recently applied the property (2.15) with p = 4 + 8 for 

some 5 > 0, to adaptive control problems (Guo and Meyn [12]), and it appears

10
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that the non-trivial stochastic adaptive control problem considered by Meyn and 

Caines [8] can be generalized to the case where the noises are nongaussian with 

unknown covariances.

Remark 2.4. Observe that there is no excitation requirement to achieve the 

bounds of the theorem. Of course, from (1.3b) and the matrix inversion lemma,

Pk+i = f  [(Pk)*1 +<PkR-1<P£ ]- iF t + Q

and it is clear that the greater the excitation of cpk» die smaller is Pk+i in norm and 

the lower are the tracking error bounds ( a,ß are smaller).

B. Drifting Parameters.

In this case, F = I, and similar arguments as used in (2.12) for the boundedness 

proof of {Pk} fail. Moreover, it turns out that it is impossible to establish the upper 

bounds for Pk without further assumptions on the regressors (cpk). To see this, 

let us take <pk = 0, for all k > 0, then by (1.3b),

Pk+l = Pk+ Q = Po + (k+l)Q ...k._,>00-> ~  (2.25)

Nevertheless, we have the following results.

Lemma 2.2. Consider that there exists a strictly increasing sequence of
random integers (tn) with to = 0, d =  sup ( tn - tn-i ) < 00 , a.s., and

k

random constants 8 > 0, M < ©o such that for any k > 1,

.̂minOO ^ 5 , a.s. (2.26)

and

11
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^max(k) / X,min(k) ^ M, a.s, (2.27)

where Xmax(k) and ^minOO denote the maximum and minimum eigenvalues 

of the matrix 

tk

X  W ]  (2.28)
i=tk-l+l

respectively. Then {P^} defined by (1.3b) with F = I, has the following 

upper bound:

sup llPkll < IIPqII + R/5 + [ 1 + (1+M)d] IIQII < <*, a.s. (2.29) 
k

The proof of this lemma is given in Appendix B. The conditions (2.26)-(2.27) can 

be regarded as certain kinds of excitations, thus, the divergence phenomena as in 

(2.25) may be explained as lack of excitation of {<pk} .

It is interesting to compare the conditions (2.26)-(2.27) with the standard 

persistence of excitation condition used in the analysis of short memory adaptive 

control algorithms in the literature (e.g. Anderson et al,[13]). That is, there exist 

constants 0 < 5i ^ 82 < 00 , and N < 00 such that 

k+N

5il < ĵjT cpicpT < 82I, for any k > 0. (2.30)
i=k

This implies that (cpk) is a bounded sequence. Clearly, Condition (2.26)-(2.27) is 

weaker than (2.30), and it means that A.max(k) and X.min(k) may grow at the 

same rate, and does not necessarily mean that {cp̂ } is bounded. As an example, 

let us take <pk as a scalar slope function : <pk = c k , c *  0, then, clearly

12
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(2.30) fails, while (2.26)-(2.27) still holds because ^max(k) and ^min(k) 

coincide in this case. A related but different excitation condition to (2.26)-(2.27) 

has been introduced and studied in (Chen and Guo,[14]) for the analysis of short 

memory gradient algorithms when the regressors {cpk} are possibly unbounded.

Remark 2.5. Lemma 2.2 can be generalized to the case where F * I, and a 

similar bound as in (2.29) is also achieved. Similar results as in the following 

Theorem 2.3 are also available. However, in this case, the matrix given by (2.28), 

which are used in defining Xmin(k) and A.max(k), will involve the matrix F in 

general.

Theorem 2.3. Consider the signal model (1.1) with F = I, and the 

estimation algorithm (1.3), consider also that the conditions in Lemma 2.2 

apply. Then

limsup i  I  IIG.IIP < (-L)P [Ln(w) + (b/R)W Lp(v)]P (2.31)
n—>~ n i=l 1-a

Here 0k = 0k - ök. ot and ß are defined by (2.10) and (2.11) with F = I 

and with the upper bound b for {Pk} given in (2.29). Also, Lp(w) , Lp(v) 

and p > 1 are defined in (2.16)-(2.17).

Proof. The proof is actually the same as that for (2.14). Note that the result 

(2.15) is also achieved in the present case provided that the quantity on the R.H.S. 

of (2.29) is deterministic. AAA

As an example, let us now consider the i.i.d. noise case, and without loss of 

generality assume that 0k is one dimensional. More precisely, let {wk) be i.i.d. 

random variables with mean zero and variance o2 > 0 . Putting F = I i n ( l . l b )we

13
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get

9n 9n-l + wn — 9o + Sn , Wi (2.32)

Consequently, by Strassen's invariance principle (Strassen, [15]),

n
limsup (X* S 2 ) / (n2 loglog n) = 8o2/ n2 * a.s., 
n— >oo jL j  1 

i= l

On the other hand, by a result of Donsker and Varadhan [ 16, pp.751],

n
liminf ( X  S2 ) (loglog n) / n2 = a 2/ 4 * a.s.

n— >oo L *  1 
i= l

Hence with probability 1, the averaged value of parameters

i=l
n — >  «>

fluctuate in the interval

[ ( ^  +  o ( l ) ) G2 n /  l o g lo g  n  , (87T2 +  o ( 1 ))  o 2 n lo g lo g  n ]

as n—> Thus from this and the result (2.31) we see that the estimation

algorithm (1.3) can indeed perform the non-trivial task of tracking rapidly varying 

parameters in the long run average sense.

Let us consider another situation.

C. Disturbed Parameters.

14
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By disturbed parameters we mean that the parameters can be modeled by

0k = 00 + wk (2.33)

with unknown 0o and noise {wk }. This case, is not a specialization of (1.1b), but 

can still be studied by use of the theory developed.

Theorem 2,4. Consider the signal model (1.1a) with parameters described 

by (2.33), and the algorithm (1.3) with F = I. Consider also that conditions 

of lemma 2.2 apply. Then

limsup i  £  II 6 illP 5 (-2-)P [(b/a)Lo(w) + (b/R)W Lp(v)]p (2.34) 
X» n i=i 1-a

where 0k = 9o - °k 1 a = Xmin(Q)> and the constants a ,  ß, b, 

Lp(w) and Lp(v) are all the same as those in Theorem 2.3.

Proof. With 0k = 0o - $k and F = I, the error equation (2.5) is now 

changed to

0k+l= ( I - Kk(pp§k-KkVk +Kk(p£wk+i 

Note that by (A 1) in Appendix A , KktpJ is bounded by 

HKkcpJII < b /a

Hence, a similar argument as used in the proof of (2.14) leads to the desired result 

(2.34). The details are not repeated here. AAA
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3 Conclusions

When the Kalman filter is applied to estimation of randomly varying parameters, 

our results show that it has quite reasonable tracking properties —  even in the 

nongaussian case when it is not an optimal filter.

If the parameters are generated from a stable model, we have seen that there is no 

restriction on the regressors to achieve tracking error bounds. The bounds obtained 

have application for adaptive controller analysis.

If the parameters are drifting, as when the parameter model is unstable, the theory 

of the chapter shows that the regressors must be suitably exciting to achieve 

tracking error bounds. For the case of parameters disturbed by noise, there is again 

an excitation requirement to achieve tracking error bounds.

Appendix A 

Proof of Lemma 2.1:

We first establish the upper bound for Kk<p£ as follows ( note that <pk may be 

unbounded),

II Kk<p£ II < II FII HPkll II <pkH2 /  (R  + <p£Pk<Pk)

< I I  F I I  b I I  9 k H2 /  [ W O )  I I  9k I I2 ]. (by (2.7)),

< II F II ^  (Al)
a

Let us then denote for simplicity Fk = F - Kk<p£. An upper bound for Fk is

16
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II Fk II < II F II ( 1 + 7-) (A2)3.

Now consider the following inequalities. By (A2), (2.2b) and the matrix inversion 

Lemma,

Pk1 - ? !  Pk+\  Fk

= P-k' - F* [ FkPkFk + KkRK£ + Q ]-> Fk

> P-k>- FJ [ FkPkFJ + Q ] - l F k

= [ Pk + PkF^Q-'FkPk]-'

> [ Pk + (Pk)1/2IKPk)1/2FIQ'1Fk(Pk)1/2«(Pk)1/2 ]->

> [ Pfc + IIF l|2 (l+ |)2 |P k

= [ 1+ IIF1I2( 1 + —)2~  ] ** P jJ

Consequently, by the definition (2.10) for a  :

Fk Pk+1 Fk “  a2 P k * for any k -  °*

Thus, noting (2.7) and (2.8), and repeatedly using this inequality, we get

j-1 j-1 j-1
ii n  Fk H2 < b ii( n  Fk )x p-:1 ( n  Fk ) ii

k=i k=i J k=i

<: b a 20-i) ||p-l|| < ( —) a 2(H), for any j > i > 0 .  AAA

17
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APPENDIX B 

Proof of Lemma 2.2.

Clearly, if the result holds for any deterministic sequences {(pk} and {tk} and 

deterministic constants 8 and M, then the stochastic case can be proved by applying 

the result for each sample path. So, without lose of generality, we can assume that 

all the quantities appearing in the lemma are deterministic in the following proof.

Let us first establish the upper bound for the subsequence { P^ +i } .

To this end, we introduce an auxiliary stochastic system

unity covariance. Assume further that var(xo) = Pq and Xq is independent of

Denote xk the estimation for Xk based on {zq, ...,zk) which is given by the 

Kalman filter, then it is well known that (e.g. Anderson and Moore [9]) Pk defined 

by (1.3b) (or (2.2b) with F = I) can be represented by

Xk+l = Xk + Q1/2 T|j, (A3)

>•

Pk+1 = £k + Q , for any k > 0. (A5)

where

£k = E(xk - Xk )(xk - xk)1

18
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Let us consider another linear estimate x* for xn at time n = tv as followsn ii

tk k
x * = w ’1(k) X<Pizi>w (k) = ' y .  9191 •

i-tk-1+1 i=tjc_iH-l

Note that by (A3) and (A4),

tk
Xt. - X * = W-I(k) {W(k)x - X<PiZi }

*  *  k i=tk-l+l
tk tk

= W-l(k) { £  <pi<p| £  Q 1'2^ .1! - X  ^  (R)1/2rl? > 
i=tk-l+l j=i+l i=tk-l+l

= Il(k) + I2(k) (A6)

We now proceed to estimate the covariances of Ii(k) and I2(k) as follows.

Denote

i tk
Si = Y Stk.j = 0 ,  Ti Ä y Q l/2 n  1 , Ttk+1 4 o . 

j=tk-i+l j=i

By summation by parts we have

tk tk

X  « I  X  Q1/2r>jh
i=tk-i+l j= i+l

tk
£  (Si - Si-i)T i+i 

i=tk-i+l

tk’ l
= I  Si(Ti+i - Ti+2) + StkTtk+i - Stk_jTtk x+2 

i=tk-i+l

tk-1

= X  SiQ1/2rli •
i= t k - l+ l

19
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Then by orthogonality of {rjj } and monotonicity of {Si} :

hc"l
HE Ii(k) II(k)ll iS IIW-l(k) X SiQ SiW -l(k) II

i=tk-i+l

tic* 1

< II W*l(k) Y(Sj)l/2Si(Si)1/2 W-'(k) IIIIQII 
i=tk-l+l

tk“l
<IIW -l(k) X  SjW-l(k) II Xmax(St. )  IIQII 

l=tk-l + l

tk~ 1
2 IIW-l(k) £  Stk W-l(k)ll W O O  IIQII 

i=tk-l+l

< (tk - tk.i)HW-l(k)ll W ( k )  IIQII

< dIIQII W O O /W O O  < dMIIQII, (A7)

while for l2(k) we have

HE I2(k) 1*0011 = II W->(k) ^  cpiRcp] W-l(k)ll
i=tk-i+l

= R IIW-l(k)ll < R 8-1

Thus by the orthogonality of Ii(k) and I2(k) from (A6) - (A8) we get 

11 E (xtk ‘ (xtk '  xtk)T|1 -  R5' '  + dMUQII.

(A8)

From this and the optimality of the Kalman filter

\  = E(xtk * *tk> (xtk - $tk>T -  E (xtk *£> (xtk - xt; )T

2 0
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the following upper bound for Ptk+i follows by noting (A 5 ):

II Pt +i II < R/5 + (1  + dM) IIQII , for all k > 1.

To complete the proof, we have to establish the upper bound for {Pn}.

Since {t^} is a sequence of strictly increasing integers, tk —> 0 0  , as k —> 0 0 , 

then for any integer n > ti + 1, there exists a integer k > 1 such that

tk+ l < n £  tk+i .

From this and the following inequality (by(1.3b) with F = I ) :

Pk+i < Pk + Q , for any k > 0 (A9)

we obtain

HPnll ^ HPtfcflH + ( n - t k )  IIQII

< R/5 + (l+dM)IIQII + ( tk+i - tk) IIQII

< R/5 + [1 + d(M+l)] IIQII, n > t i + 1 , (A10)

while for the case where n < t i , by (A9),

IIPJI < HPo + tiQII = IIPo+ (ti-to)QII

< IIPqII + d IIQII (Al l )

Finally, the desired result follows by combining (A 10) and (Al l ) . AAA
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Chapter 13

Conclusions of the thesis

This thesis addresses some robust and adaptive control problems. The research 

work has resulted in new off-line controller design methods, new on-line adaptive 

controller algorithms, and related theory giving various characterizations, 

convergence properties and performance bounds. Where theory is inadequate to 

fully describe behavior, we have used simulation studies to demonstrate the 

advantages of the new techniques. Areas for further refinements are apparent from 

the work.

New Design Methods

To enhance robustness properties of initial designs, we have generalized the idea of 

loop transfer recovery to cope with non-minimum phase plants by working on an 

inner /  outer factored representation of the plants. Also a method to seek a robust 

controller with transfer function constrain is given based on a convenient 

parametrization of the class of all model matching stabilizing controller and two- 

degree-freedom stabilizing controller.

New Algorithms

In order to improve the transient performance in adaptive schemes we have 

developed the design approaches for central tendency adaptive pole assignment and 

central tendency adaptive LQG. It appears from our studies that these are successful 

schemes sometimes giving dramatic performance improvement over standard 

techniques, sure they are design to avoid ill-conditioning in the controller update 

calculation. In seeking to avoid ill-conditioning due to overparametrization of signal

1



CH 13 CONCLUSIONS

models we have proposed a perturbed versions of standard least squares algorithm, 

a perturbed extended least squares algorithm, and a perturbed Kalman filter 

detection / identification algorithm. There is also proposed a recursive algorithm to 

calculate H°°-norms of polynomials.

New Theory

Convergence results on the adaptive controller algorithms proposed are developed 

for stochastic environments. These are non-trivial applications of standard 

martingale convergence methods applied in such a way that the theory guides the 

design of the algorithm modifications, so as to avoid the ill-conditioning associated 

with standard methods. Besides, it has been proved that for linear regression signal 

models, the suitable introduction of whiter noise into the estimation algorithm can 

make it more robust without compromising on convergence rates. The whiter the 

noise environment the more robust are the algorithm, and the noise color conditions 

imposed on plant noise model can be side-stepped. Moreover, side-stepping the 

colored noise restrictions for general ARMAX model identification has been 

fulfilled by means of introducing overparametrization and working with a 

transformed signal model. Asymptotic properties of the Kalman filter have also 

been developed when it is employed for tracking unknown randomly time varying 

parameters in linear stochastic system identification, and the tracking error bounds 

are given with reasonable excitation assumptions.

Confirmation via Simulations

Simulations have been employed to illustrate the effectiveness of the proposed 

techniques not completely described by theory. Thus in the loop recovery methods,
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the relationship between fictitious noise added and the loop recovery achieved is 

illustrated. For H°°-norm calculations, the number of iterations required to achieve 

reasonable accuracy is illustrated. In assessing the effectiveness of the method for 

avoiding ill-conditioning in adaptive estimation and control, it is natural to check 

transient performance characteristics by simulations as in the thesis.

Further Research

Although we have reported here some solutions to robust and adaptive control 

problems, there is scope for further researches in this area. Here we point out some 

directions for further research as following.

* It would be interesting to combine the loop transfer recovery approach for 

robustness enhancement and the H°°-optimization together to achieve improved 

trade-offs between performance and robustness.

* For calculation of H°°-norm, our theory is currently limited to polynomials. A 

generalization worths of study is to cope with rational transfer functions and also 

multidimensional versions. A more challenging task is the optimization on 

H°°-norm of polynomials or rational transfer functions subject to some constraints.

* There is a need to develop central tendency adaptive control schemes based on 

other estimation and / or control methods.

* Developing adaptive schemes to control linear stochastic systems with randomly 

time-varying parameters rather than just to perform on-line identification is an 

important challenging task for the future.
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