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A b s tr a c t

The focus of this thesis is the suppression of echoes within speech transmission 

telecommunication networks via the LMS adaptive FIR echo canceller. Poor pe- 
formance of this technique has been reported, particularly when the required FIR tap 
length is large and the input signal is highly autocorrelated speech. The first aim of 
this thesis is to quantify the weaknesses of the LMS adaptive FIR filter, particularly 
the weaknesses relevant to echo cancellation. The second aim is to develop techniques 
which reduce the effects of these weaknesses and, consequently, enhance performance.

We begin with a brief review of alternatives to the LMS/FIR based echo canceller, 

wrhich emphasizes that such alternatives are, in many ways, inferior. We then carry 
out a rigorous dynamical analysis of the LMS adaptive FIR filter connected in parallel 
with an unknown channel. We consider the case in which the adaptation stepsize [i is 
‘small’. The analyses focus on quantifying the adverse effects on transient performance 
of the autocorrelation level of the input signal and the filter parameter dimension (FIR 
tap length). The analytical results indicate conclusively that transient performance 
deteriorates with increasing filter dimension and input autocorrelation. A review 
of asymptotic analyses indicates that asymptotic performance also deteriorates with 
increasing filter dimension.

Dynamical analyses are then conducted on a system more representative of an echo 

cancellation network - a closed loop with an adaptive filter/unknown channel pair 

at each end and driven by signals entering from within the unknown channels. The 
analytical results indicate that the (transient and asymptotic) performance generally 

deteriorates with increasing filter dimension, while it is improved by either whitening 

the driving signals or whitening the input signal to each adaptive filter/unknown 
channel.

Motivated by the analytical results, we examine two types of signal conditioning meth­
ods. One involves using digital scramblers to whiten the subscriber signals (driving
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signals) of the telecommunication network. The other assumes an autoregessive (AR) 
model of the input signals (typically used for speech) and whitens the input signals 

by filtering with AR estimates. To avoid distortion of received signals, indirect AR 

filtering methods are explored.

Finally, in a bid to tackle the adverse effect of dimension, we develop a low com­
putational on-line technique which enables the detection of the nonzero or ‘active’ 
taps of an FIR modelled unknown channel. Based on this technique, a modified LMS 
adaptive FIR algorithm is proposed, which essentially estimates only the ‘active’ taps 
of the unknown channel. Such an ‘active’ tap detection-LMS estimation algorithm is 
particularly useful for echo cancellation since the (time-domain) impulse response of 
an echo path typically shows zero or ‘inactive’ regions.
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Chapter 1

Introduction

An echo, in any context, is a delayed and perhaps distorted version of a previously 
transmitted signal. In telecommunication systems, the occurrence of echoes tends to 
reduce quality of transmission. In data transmission, echoes of sufficient magnitude 
result in an increase in error rates and may lead to retransmission being required. 
In speech transmission, the perceived quality reduction depends on the echo delay as 

well as the magnitude (and spectral distortion) [1]. In particular, if the echo delay is 

sufficiently short ( ss 10ms) then the echo is not noticeable and for this reason echo 
problems in speech transmission, in the past, were only encountered in international 
calls [1], particularly with satellite systems. The introduction and growing use of 
digital processing in speech transmission, however, has lead to the occurrence of 
delays in national networks comparable w'ith those of international networks [2]. The 
occurrence of echoes with the potential to disrupt telephone conversations, and the 

need for echo suppression techniques has consequently grown considerably.

The need for the development of echo suppression techniques has received extra im­

petus with the advent of hands free telephony and teleconferencing. In particular, 

teleconferencing, which involves audio conferencing via the telephone network, has 

experienced increasing interest because of the considerable savings (time, money) it 

can provide in comparison to air travel to conference venues. These acoustic telecom­

munication systems are susceptible not only to electric echoes generated within the 
telephone circuit, but also to acoustic echoes, which arise due to acoustic coupling 
between microphone (transmitter) and loudspeaker (receiver) of the hands free tele­
phone or teleconferencing system. The characteristics of acoustic echoes are somewhat 

different from those of circuit echoes, and, in some ways, are more difficult to suppress.

One approach to controlling echoes within telecommunication systems is to place an
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attenuation device in each direction of transmission. Due to the nature of echo gen­

eration, this causes the echoes to be attenuated twice as much as the transmitted 
signals. This approach, however, causes unsatisfactorily low signal levels at the re­

ceiver for circuits longer than about 3000km [1]. A more sophisticated approach is 
to insert an attenuation device into the receiving or transmitting circuit according 
to which is least active. In speech transmission systems, this approach is known as 
voiced controlled switching. It was very popular for controlling circuit echoes [1], [2], 
[13], [6] and is currently the most commonly used technique for acoustic echo control 

[20], [6]. A major drawback of this technique is that during full duplex transmission 

- that is simultaneous transmission by the subscribers at both ends of the network - 

one of the transmitted signals is necessarily attenuated.

A popular alternative is that of echo cancellation which is illustrated in - Figure 1.1. 
This technique involves connecting a digital filter, the echo canceller, next to and in 
parallel with the echo source or echo path. The echo canceller samples the signal u(k) 
feeding the echo path and, if correctly designed, outputs a signal z(k) which replicates 
the echo z(k). This echo replica is then subtracted from the echo containing signal 
v(k). To enable suppression of echoes generated by time varying echo paths, the echo 

canceller is typically adaptive. The use of adaptation also allows, to some extent, the 
echo canceller to be given arbitrary initial conditions, and thus reduces the costs due 
to initial echo path measuring.

transmit

Subscriber

receive

s(k) + v(k) +  _ y(k)

n +
z(k)

Echo
Path

z(k)

Echo
Canceller

u(k)

Figure 1.1: Echo suppression via echo cancellation.

The popularity of echo cancellation as a means of suppressing echoes in telecommu­
nication networks mainly is due to its parallel configuration which leads to:

• negligible delay of the transmitted subscriber signals s(k);

• full duplex transmission capability.
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Of course, once the transients have died out, adaptive echo cancellation also leads to 
negligible distortion/attenuation of the transmitted subscriber signals.

The basic requirements of an adaptive echo canceller are:

• rapid suppression of echoes or, in other words, good transient and asymptotic 
performance;

• low computational complexity.

Usually, there is a trade-off between these two objectives. The meeting of these two 

objectives depends on a suitable choice of the following design factors:

• filter structure;

• adaptation algorithm.

Commercially made echo cancellers typically involve [3], [5], [6], [7] Finite Impulse 
Response (FIR.) filters and the Least Mean Square (LMS) adaptive algorithm (or 

the closely related Normalized LMS (NLMS) algorithm). The major advantages of 
this echo canceller type are those of relatively low computational complexity, good 
stability properties, relatively good robustness against implementation errors [8] and 
that its behaviour is relatively easy to understand. Importantly, in a great many 
cases this popular echo canceller type provides adequate echo suppression with low 
computational complexity.

In a bid to achieve better echo cancellation under a greater range of circumstances, 
alternative echo cancellers to the conventional LMS adaptive FIR filter type have 
been and are being considered. These involve:

• modifications of the LMS adaptive FIR filter

• different filter structures and/or adaptation algorithms.

A review of the various types of echo cancellers is presented in Chapter 2.

Throughout the thesis we focus on suppressing echoes within speech transmission. 
In many ways, the analyses and echo cancelling techniques presented in this thesis 
can be also applied to the control of echoes in data transmission. However, there are 
shortcomings.
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• The new techniques assume that the echo path is Linear.

• Echo cancellation in data transmission typically is required to suppress a small 
but important nonlinear component (-40dB relative to that of the Linear component) 
of the echo path. This nonlinear component, which is introduced by the circuit com­
ponents of the digital transceiver [9], can be usually ignored in speech transmission. 
In data transmission, however, it must be considered because of the need for greater 
echo suppression [26].

The outline of the remainder of this introductory chapter is as follows. In Section 1.1 

we give an introduction to the causes of echo, a description of the echo path char­
acteristics and of the requirements of the echo canceller. We consider circuit echoes 
and acoustic echoes separately. In Section 1.2 we provide motivation for continued 
research into adaptive echo cancellation and for the approach taken in this thesis. An 
outline of the thesis is presented in Section 1.3 followed in Section 1.4 by a summary 
of our original contributions.

1.1 Echo Path  Characteristics and Echo Canceller R e­
quirem ents

1.1.1 C ircu it  E ch o es

To understand how circuit echoes are generated and how they may be controlled 
consider the simplified telephone network of Figure 1.2. In this network the two 
subscribers are linked to a common central 4-wire loop facility via local subscriber 2- 

wire lines. The local 2-wire lines allow communication in either direction. In contrast, 

each of the 2-wire lines of the central 4-wire loop facility allow transmission in one 
direction only. Such unidirectional transmission enables the use of amplifiers and 
also of multiplexing i.e the sharing of one transmission channel by a number of calls. 

Generally, these advantages of unidirectional transmission are only necessary for long 
circuits and, consequently, for circuits shorter than about 60kms, the central 4-wire 
loop facility is not included [1].

The 4-wire loop facility is connected to the local subscriber 2-wire Lines through a 
device known as a 2 to 4-wire hybrid. Ideally such devices permit all of the signal, 
transmitted by the subscriber at the far end, to pass into the connected local 2-wire 
line, as well as prevent any passage of the signal through to the opposite channel 

of the 4-wire loop. This is achievable by including in the hybrid, which is basically
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Local ________ , ________ Central ________ , ________ Local
2-Wire Line 4-Wire Loop Facility 2-Wire Line

Subscriber 2Subscriber 1
HYBRIDHYBRID

Transmitted
Received

Desired Path

Figure 1.2: Central 4-wire loop telephone network

a circuit bridge, a balancing impedance which is set to match the input impedance 

of the connected 2-wire line. However, for multiplexing purposes, a hybrid may be 

connected to any one of a large number of different local 2-wire lines. Due to variations 
in the length, type and gauge of wire and number of phone extensions of the 2- 

wire lines connected [1] it is not economically possible to ensure perfect, or even 
near perfect, impedance matching [1], [2], [10]. As a result, the far end transmitted 
signal typically ‘leaks’ through the hybrid into the opposite 4-wire loop channel. This 
results in an echo being received by the far end (i.e. the original) subscriber - Figure 
1.3a. Poorly terminated circuits may also lead to the receiving of echoes by the near 
end subscriber as indicated in Figure 1.3b and/or the observation of multiple echoes 
separated by time intervals equal to the round trip delay. It is important to add that 

because impedance matching of the distributed local 2-wire circuit is attempted with 

a lumped network, the echo is not just an attenuated, but a filtered version of the far 
end transmitted signal [1].

Depending on the delay of the echo, good quality communication may require the echo 
power level to be 50dB below the original voice level [1]. The attenuation provided 
by the hybrid on the echo signal leakage, however, can be as little as 10dB [6], [11]. 
Clearly, techniques which suppress the echo power by at least 40dB are required. The 
circuit echo path is typically well modelled by a linear filter [6]. Most circuit echo 
paths over the duration of a telephone call are time invariant [12], [13] and, more 

generally, are only slowly time varying [6], [11]. Furthermore, the impulse response 

of the echo path (through the hybrid near subscriber 1) from point D to point A in
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Local
2-Wire Line

Central
4-Wire Loop Facility

Local
2-Wire Line

Subscriber 2Subscriber 1
HYBRIDHYBRID

TalkerListener

Subscriber 2Subscriber 1

TalkerListener

HYBRIDHYBRID

(b)

Figure 1.3: Echoes within the 4-wire loop telephone network:
(a) speaker echo, (b) listener echo

Figure 1.2 is typically only 15-16ms long [14], [5], [1] with the first 10ms typically 
being zero or ‘flat’ [1],

Combining the above characteristics of the circuit echo path with the fact that an 
8kHz sampling rate is typically used for telephone speech processing, then adequate 
suppression (40dB)  of circuit echoes via the technique of echo cancellation (Figure 
1.1) should be achieved by using a digital filter having an impulse response length 

of 128 taps. To ensure adequate echo suppression for most telephone calls, however, 

a tap length of 256 taps is suggested [14]. So as to allow the echo canceller to 
have arbitrary initial conditions, the echo canceller is made adaptive. Since the echo 
path is time invariant or, at worst, slowly time varying then the algorithm used to 
adapt the adaptive echo canceller does not need to have particularly good tracking 

characteristics.

1.1.2 A coustic  Echoes

The typical setup for hands free telephony or teleconferencing, shown in Figure 1.4, 

involves two acoustic enclosures ( e.g. the inside of a motor vehicle, or a conferencing 

room) connected via a telephone network. We will ignore the details of the telephone 
network and assume that any echoes being generated within it are adequately sup-
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pressed. Each acoustic enclosure includes a loudspeaker for the receiving of signals 
transmitted from and a microphone for transmitting to the far end acoustic enclosure. 

The receiving of a signal at the loudspeaker results in, after some delay, an acoustic 

echo at the microphone via a direct path and paths involving reflections (on walls, 
furniture and persons). This acoustic coupling between loudspeaker and microphone 

is called the acoustic echo path.

mi :rophone

loi idspeaker

Acoustic enclosure

L f

L_

\
loudspeaker

)

microphone

Acoustic enclosure

Figure 1.4: The typical setup for hands free telephony or teleconferencing

Due to the relatively low speed of acoustic signals in air, acoustic echo paths tend 
to have relatively long impulse responses compared to electric echo paths. The at­
tenuation offered by acoustic echo paths is also relatively small. To be more specific: 
in hands free telephony, the impulse response is typically several tens of milliseconds 
while the attenuation may be 0dB or worse (that is amplifying rather than attenu­
ation) [15], [16]; in teleconferencing the impulse response length tends to be several 

hundred ms [15] [13], [17], [18], [19] and the attenuation 6-lOd.ö [15], [19]. Further­
more, CCITT recommendations for hands free telephony, indicate that the acoustic 

echo should be suppressed to at least 45dB below the level of the original speech [15], 

[2]. In the case of teleconferencing, where high audio quality is sought, similar if not 
greater suppression is required.

To achieve such suppression the acoustic echo canceller needs to model essentially 
all of the impulse response of the acoustic echo path. At an 8kHz sampling rate, 
acoustic echo cancellers are therefore required to have the equivalent of an FIR tap 

length of several hundred to several thousand taps. This requirement is made worse 

in teleconferencing, which for quality reasons, uses a 16kHz sampling rate so as to to 

cope with wide band speech (7kHz bandwidth) [13], [18]. In addition, acoustic echo 

path impulse responses tend to be time varying because of movements of people and 

objects within the enclosure [13], [17], [5].
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A summary of the echo canceller requirements for suppression of circuit and acoustic 
echoes is given in Table 1.1.

Table 1.1: Echo Canceller requirements
Characteristic Circuit Acoustic
Sampling Rate 8 k H z 8 k H z , prefer 16 k H z
Impulse Response 200-300 200-4000 at (8k H z )
Tap Length 400-8000 at (16k H z )
Tracking Requirement Negligible Important

1.2 M otivation for Research and Thesis Approach

Adaptive echo cancellation based on the LMS (or NLMS) adaptive FIR filter is now 

the preferred method for suppressing circuit echoes in 4-wire loop telephony. Typi­
cally this approach yields relatively fast, essentially complete echo suppression with 
relatively low computational complexity. However, occasional poor performance such 
as signal bursting and/or slow, incomplete echo suppression has been observed [21], 
[22], [23], [24], [25]. To avoid such undesirable behaviour, there is a need to quantify 
the causes of such behaviour so as to enable the development of performance enhanc­
ing techniques for the LMS/NLMS adaptive FIR echo canceller or, alternatively, to 
motivate the use of more sophisticated echo cancelling techniques.

In contrast, the use of the LMS/NLMS adaptive FIR echo canceller for echo sup­

pression in acoustic telecommunication systems has not, in general, found a lot of 

success. This is due to the need for ‘long’ FIR filters in order to model acoustic 
echo paths adequately so as to achieve adequate asymptotic echo suppression. This 
requirement leads to high computational complexity and has been reported to lead 
to poor transient performance [20], [26], [27].

As a result of these problems, alternative echo cancelling techniques have been and 
are being examined. Most of these techniques, however, tend either to:

• improve transient performance at the expense of greatly increased computa­

tional complexity;

• reduce computational complexity but worsen transient performance;

• introduce signal distortion or delay in return for improved transient performance 
and/or reduced computational complexity.
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To date, the acoustic echo cancellation techniques developed do not provide an im­

plement able ‘satisfactory’ solution [20], [4].

Possible directions for research into improving echo suppression within acoustic telecom­

munication systems include:

1. exploring alternatives to echo cancellation;

2. continuing to explore alternatives to LMS/NLMS adaptive FIR echo cancella­
tion;

3. developing performance enhancing techniques for LMS/NLMS adaptive FIR 
echo cancellation.

The first direction was the focus of research prior to the development of echo cancella­

tion. The more successful alternatives (see [20] for a greater range of such alternatives) 
and which are still in use today include: (a) voiced controlled switching and (b) studio 
environments with highly directional loudspeakers and microphones and sound ab­
sorbing materials [20]. There are obvious inadequacies with both of these alternatives. 
As mentioned previously, alternative (a), during periods of double talk, (i.e. speech is 
being transmitted by both acoustic enclosures) causes significant attenuation of one 
of the speech signals. On the other hand, alternative (b) is not very practical for most 
situations and, generally, requires minimal movement of the talker(s) in each acoustic 
enclosure.

The second possible direction of research is still the main focus of research today. 

The third approach, however, is that which we follow throughout this thesis. This 
decision is motivated by the following reasons.

• The LMS/NLMS adaptive FIR filter is the most popular adaptive estimation 
technique [8], [28] and, is likely to remain so in the foreseeable future.

• The dynamics of the LMS/NLMS adaptive FIR filter are relatively ‘simple’ and, 

generally, considerably simpler than those of the alternative echo canceller types. 

This may allow the ‘weaknesses’ of the LMS/NLMS adaptive FIR filter to be 

quantified through dynamical analysis and, in turn, enable possible performance 
enhancing modifications to be developed and analysed.

In this thesis we focus on the LMS rather than the NLMS adaptive FIR filter. We 

do this firstly because the LMS algorithm is (slightly) easier to analyse and secondly
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because, the adaptation stepsize, fi, used in practice is typically ‘small’ and under this 

condition, the LMS and NLMS algorithms show similar dynamical behaviour [29], [8]. 

Motivated by the above discussion, the aims of the work leading to this thesis have 
been as follows.

1. Through dynamical analysis attempt to quantify the weaknesses of the LMS 
adaptive FIR filter for the case in which the adaptation stepsize, //, is ‘small’. 
This needs to be carried out not only for the open loop case of Figure 1.5, in 
which we consider an isolated adaptive filter/unknown channel pair but also for 

the closed loop case of Figure 1.6 which is more representative of echo cancel­

lation networks.

2. Based on these weaknesses and the characteristics of echo cancellation networks, 
develop performance enhancing techniques for the LMS adaptive FIR echo can­
celler

disturbance s(k) + v(k) + output y(k)

adaptive
filter

unknown
channel

input u(k)

Figure 1.5: Open loop adaptive system - adaptive filter in parallel with unknown 
channel

1.3 T hesis O utline

Chapter 2
In this chapter we present a review of the different adaptive filtering techniques which 
have been proposed for echo cancellation. The main aim of this review is to highlight 
the advantages and disadvantages of each technique. In addition to the LMS adaptive 

FIR filter, we consider the Normalized LMS adaptive FIR filter, the RLS adaptive 
technique, lattice filters, HR filters, frequency domain filtering and sub-band filtering. 
The chapter is concluded with a brief review of non-standard approaches to adaptive

10



adaptive
filters

unknown
channel

unknown
channel

Figure 1.6: Closed loop adaptive system - an adaptive filter/unknown channel pair 
at each end of a closed loop

echo cancellation. The majority of these involve modifications to the LMS/FIR echo 
canceller.

C hapter 3

In this chapter we carry out quantitative analyses on the LMS adaptive FIR filter in 

the open loop configuration of Figure 1.5. We assume the tap length of the adaptive 

filter matches that of the unknown channel. Due to the existence of a number of useful 
results on asymptotic performance, we restrict our analysis to transient performance. 
We begin by developing a cost function  which provides a q u an tita tiv e  m easure of 

the convergence rate of the LMS adaptive FIR filter. Analysis of this cost function 
is then carried out for the case in which the LMS adaptation stepsize, ^ is fixed, 
irrespective of filter tap length or signal characteristics. Particular attention is given 
to input signals, such as speech, which are well modelled as autoregressive processes. 
We conclude the analysis by considering the case in which /i is adjusted to maintain 

asymptotic performance. In short, the analyses quantify the adverse effects of (i) 
high autocorrelation levels of the signals input to the adaptive filter and (ii) large 

dimensions or FIR tap lengths of the adaptive filter.

C hapter 4

In this chapter we carry out dynamical analyses for the closed loop configuration 
of Figure 1.6. We begin by carrying out a semi-formal analysis on closed loop sys­
tems having echo paths/cancellers of arbitrary dimension. This provides a semi- 
quantitative understanding of the effects of the signal characteristics and filter dimen­
sion on performance. After invoking a number of simplifying assumptions, we then 
conduct quantitative analyses. The results indicate that an increase in the correlation 

levels within and between the driving signals (5 1 , 5 2  of Figure 1.6) leads to a deteri-
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oration in the transient and/or asymptotic performance of the double adaptive filter 

closed loop system. An increase in dimension of the adaptive filters accentuates this 
effect. Furthermore, when the channels, which link the unknown channel/adaptive 
filter pairs, impose a sufficiently long delay, the closed loop system dynamics simplify 
to the dynamics of a pair of uncoupled open loop systems.

Chapter 5
The adverse effects of subscriber signal autocorrelation levels and adaptive filter di­

mension are of particular importance to echo cancellation because speech is typically 

highly autocorrelated and the impulse responses of echo paths are relatively long. In 
Chapter 5 we present two schemes which essentially whiten the echo canceller input 
signals. One of the schemes involves low computational nonlinear filtering/defiltering 
and may be only applied to circuit echo cancellation. The other involves higher 
computational linear filtering, but may be applied to both circuit and acoustic echo 
cancellation.

Chapter 6
In Chapter 6 we tackle the problem of reducing the adverse effects (performance, 

computational cost) of large echo canceller dimensions. Through analyses we quan­
tify that, subject to white input signals (or input signals whitened through the ap­
plication of the signal conditioning schemes presented in Chapter 5), performance 
improvements can be achieved by adapting only those taps in the echo canceller 
which correspond to active/nonzero regions of the echo path impulse response. We 
then develop a low computational cost scheme which enables the detection of such 
active regions. A clever combination of this scheme with the LMS algorithm leads 
to an on-line scheme for adapting only those taps which correspond to active regions 

of the echo path impulse response. The expected performance improvements this 
detection-LMS estimation algorithm can achieve are substantiated by simulations.

Chapter 7
A conclusion to the thesis is given in Chapter 7 together with a discussion of extensions 
and future work.

1.4 Sum m ary o f Original C ontributions

Open loop adaptive filter system - LMS adaptive FIR filter connected next to and in 
parallel with time invariant FIR modelled unknown channel of equal tap length:

12



• Novel cost function developed which, for sufficiently small LMS adaptation stepsize 
H, provides a quantitative measure of the expected convergence rate of the LMS 
adaptive FIR filter to the unknown channel.

• For autoregressive (AR) input signals, an explicit relationship is obtained between 
the cost function, the AR coefficients, filter dimension and

• Quantification of the influence of FIR tap length (filter parameter dimension), input 

signal characteristics and /i on the expected convergence cost function.

Closed loop double adaptive filter system - an LMS adaptive FIR filter and unknown 
channel pair at each end of the loop; driving signals entering each unknown channel:

• Semi-formal to rigorous analysis conducted for small n case. Considerable extension 
of the current quantitative understanding of the effects of driving signal correlation 
levels and filter parameter dimension on asymptotic and transient performance.

Signal conditioning to enhance performance of LMS adaptive FIR echo cancellers in 

speech transmission telecommunication networks:

• Proposed a scheme which uses digital scramblers at each end of the network to 
enhance echo canceller performance in digital 4-wire loop networks.

• Proposed modifications to existing schemes for whitening speech/AR modelled input 
signals of echo cancellers.

Dimension reduced LMS/FIR echo cancellation - based on the observation of in­

active/zero tap regions within impulse response of typical echo paths; white input 
signals assumed:

• Using a least squares approach, a measure of the activity/inactivity of each tap of 

an FIR modelled unknown channel is developed.

• Based on this activity measure, a low computational cost algorithm is developed 

for determining the lag position of the ‘active’ or nonzero taps of an unknown chan­
nel/echo path.

• Proposed a modified LMS algorithm which uses the ‘active’ tap detection algo­

rithm to reduce the adaptive filter parameter dimension and, hence provide improved 
asymptotic and/or transient performance.

13



Chapter 2

A d a p tiv e  F ilterin g  and Echo  
C an cella tion  - A  R ev iew

2.1 Introduction

Adaptive echo cancellation is based on the use of adaptive filtering via the parallel 
configuration of Figure 2.1 to estimate the unknown echo path. In choosing an adap­
tive filtering scheme, one needs to consider the filter structure and adaptive algorithm. 
The choice of the filter structure depends largely on the assumed structure of the echo 
path. A suitable filter structure is a necessity for good asymptotic performance. To 
a lesser extent, the asymptotic performance also depends on the adaptive algorithm. 
On the other hand, the transient performance is controlled largely by the adaptive 
algorithm and to a lesser extent by the filter structure. As in most applications, 

the choice of an adaptive filtering scheme for adaptive echo cancellation involves a 

trade-off between performance and computational complexity. The ability to select 

the scheme which provides the best compromise requires an understanding of the 
weaknesses/strengths of each adaptive filtering scheme and of the relevance of these 
to echo cancellation.

The objective of this chapter is to provide such an understanding. We begin by 
reviewing a collection of different types of adaptive filtering schemes which may be 
used for estimating an unknown channel via the parallel configuration of Figure 2.1. 

In particular, we emphasize the weaknesses and strengths of each scheme. We use 

as a yardstick, the LMS adaptive FIR filtering scheme, which is that currently used 
in commercially produced adaptive echo cancellers. After stating the requirements 
and characteristics of echo cancellation, we then highlight the advantages and disad-
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transmit
s(k)+.

+
z(k)

Subscriber
Echo
Path

receive

v(k )+ . y(k)

z(k)

Echo
Canceller

u(k)

Figure 2.1: Echo suppression via echo cancellation.

vantages of each scheme for this adaptive estimation application. We complete the 

chapter with a brief review of non-standard approaches to adaptive echo cancellation. 

The majority of these involve modifications to the LMS/FIR echo canceller. Remarks 
on double talk are provided in the appendix at the end of this chapter.

We begin by considering the LMS adaptive FIR filter and follow this with schemes 
which involve alternatives to the LMS adaptive algorithm and/or the FIR filter struc­
ture.

2.2 LMS adaptive FIR filter

The LMS adaptive FIR filter, as the name implies, involves using a finite impulse 

response (FIR) filter to model the parallel unknown channel, 0 , and the least mean 

square (LMS) adaptive algorithm to enable the filter to converge to and track the 
channel. The discrete-time/digital FIR filter is a tap delay line:

Q(q~l ) = 0o + Oiq~l + ...9n- iqn~x (2.1)

where q~l is the sample delay operator. This filter structure is particularly popular 
because of its simplicity and its inherent stability. Of course the usefulness of this 
structure for parallel adaptive estimation depends on the unknown channel being 

adequately modelled by an FIR structure:

0(?-') = e0 +  exq- 1 +  (2.2)

The LMS algorithm is based on the idea of adjusting the coefficients of the FIR 

filter/estimator 0/t(<?-1) (where the subscript k indicates time variation due to adap­

tation) so as to minimize the expectation of the squared error e = E[y(k)2], where

y(k) = 0 (q~l )u(k) -  Qk(q~l )u(k) + s(k) (2.3)
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is the output of the adaptive hlter/unknown channel system of Figure 2.1 with input 

u(k) and additive disturbance s(k). This criterion is a quadratic function of the 

adaptive FIR tap coefficients 9{{k). The minimum point of the paraboloid formed by 

plotting e against 0t , i — 0,1 , ...rc — 1 corresponds to the optimum solution 9opt. To 
adapt the tap coefficient vector 9(k) towards this optimum, one approach is to use 
the method of steepest descent:

0(* + l) = 0 ( * ) + |( - V * ) (2.4)

where n is a step gain and

V* =
de2

d0{k)
is the gradient of the mean-squared error surface. Instead of using the mean squared 

error, which leads to a high computational load and the need for a large amount of 

memory [30], [13], the LMS algorithm uses the instantaneous squared error y(k)2 to 
provide an estimate of the gradient:

dy(k + l )2
d9(k)

(2.5)

In particular, the LMS algorithm for the n-tap adaptive FIR filter system of Figure 
2.1 is:

9(k + 1) = 9(k) + ny(k)U (k) (2.6)

where U(k) = (u(k) u(k — 1) ... u(k — n -f 1))T. If we let

0 = (0o 0i -  (2.7)

be the vector containing the first n tap coefficients of the FIR modelled unknown 

channel, then an equivalent form of (2.6) is:

9 ~ » ( k +  1) = ( /  -  pU(k)U(k)T)(0 -  §(k + 1)) -  pU(k)e(k) (2.8)

where e(k) includes the additive disturbance s(k) and any additive disturbances due 
to undermodelling of the unknown channel.

The LMS adaptive FIR filter suffers from a number of problems, which are discussed 
next.

2.2.1 Inpu t Signal A u tocorrela tion  Effects

Equation (2.8) indicates that the transient performance of the LMS adaptive FIR 
filter measured by, for example, the rate of convergence of the expectation

E[\\9 — 0(fc)||2], where ||. ||2 = Euclidean norm
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to some asymptotic value, is governed largely by the eigenvalues of ( / —pE[U(k)U{k)T]). 

Thus, the transient performance is determined largely by the eigenvalues of the n X n 

input signal autocorrelation matrix,

E[U(k)U(k)T] = Rn.

These eigenvalues are essentially the power of the different orthogonal components of 
the input signal in n-dimensional space [6].

Therefore, the convergence rate generally has n different modes [7], [6], [30], [70], [28]. 
The slowest mode of convergence is determined by the minimum eigenvalue of the 

input signal autocorrelation matrix, Rn. For a given input signal power, a greater 
spread of eigenvalues of Rn, therefore, will have one or more slower modes of conver­

gence. Generally, because the slower modes of convergence will eventually dominate, 
a greater spread of eigenvalues of the input signal autocorrelation matrix causes slower 
convergence [7], [28], [6]. This relationship suggests that convergence rate improves 
as the input signal spectrum becomes flatter [7] and has lead many authors ( e.g. [13], 
[26], [12], [42], [19], [35]) to suggest that convergence rate deteriorates with higher 
input signal autocorrelation levels. Intuitively, the slower convergence rate with in­
creased input autocorrelation results from a greater interaction among the adaptive 
coefficients, #,(&).

This link between input signal autocorrelation characteristics and convergence rate 
of the LMS adaptive FIR filter is addressed in considerably more detail in Chapter 3.

2.2 .2  Effect o f Input Signal Power

The convergence rate and stability of the LMS adaptive FIR filter are directly de­
pendent on the value of /i times the power of the input signal [7], [8], [6], [26]. This 
dependence, which is suggested by (2.8), can be particularly problematic if the power 
of the input signal varies greatly. In particular, if the input power becomes insignif­

icant, then adaptation of the LMS adaptive FIR filter will essentially stop. On the 

other hand, if the input power becomes sufficiently large then the LMS/FIR filter can 
become unstable.

2 .2 .3  Effect o f FIR  Tap Length

To enable good asymptotic performance of the LMS adaptive FIR filter, the tap 
length of the FIR filter should be chosen to cover the impulse response of the un-
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known channel. That is, no undermodelling, or, with reference to (2.1) and (2.2), 

n > m. This requirement leads to many filter parameters and, consequently, high 

computational complexity of the LMS/FIR filter when the unknown channel has a 

long impulse response. The large number of adaptive filter parameters may also lead 
to poor convergence rates, particularly in the presence of highly autocorrelated input 

signals [20], [26], [27]. This adverse effect of increasing filter dimension on conver­
gence rate is quantified in Chapter 3. Intuitively, it is due to an increasing number of 
interactions between the different modes of convergence.

2.3 NLM S A daptive A lgorithm

As noted in the previous section, the value of jzcr ,̂ where <j \ is the variance or power 
of the input signal, directly affects the convergence rate and stability of the LMS 
adaptive FIR filter. One effective approach to overcoming this dependence is to 
normalize the update stepsize with an estimate of the input signal variance, o^(k). 
This is known as the Normalized LMS algorithm:

0 ( k + l )  = 0(k) + ■y(k)U(k) (2.9)nau(k )2

where n is the tap length of the adaptive FIR filter and the estimate au{k)2 can be 
obtained from one of various formulas e.g.:

' Z U ^ UU)Tu( M n ( k - k 0
äu(k ) 2 = l a + U(k)TU(k)/n

päu(k -  l ) 2 + (1 -  p)u(k)2

where n is the length of the vector U(k), a  is a small positive constant and 0 < p < 1. 
A comparison between the LMS and NLMS algorithms has been carried out by a 
number of authors e.g. [29], [31], [8]. In [29] it is shown that, under the popular 
assumption that the input signal vectors U(k) are Gaussian, the LMS and NLMS 
algorithms behave quite similarly for small stepsizes n, where the stepsizes for the 

different algorithms are related by

AlLMS 
UN LMS =   7Y~

On the other hand, [31], [8] show that, under similar assumptions, by choosing ^ so as 
to optimize the convergence rates of the algorithms, the NLMS algorithm converges 
more quickly than the LMS algorithm.
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Remark:

1. In practice the stepsize \x is chosen to be ‘small’. Consequently, in practice, the 
LMS and NLMS algorithms, with the stepsizes related by (2.10), behave simi­
larly for a given filter dimension n. Note that for a given LMS stepsize, u l m s , 
the NLMS algorithm, as compared to the LMS algorithm, shows an additional 
dependence on dimension. However, as is shown in Chapter 3, Section 3.7, in 
order to maintain the same asymptotic performance of systems of different di­

mensions, fiLMS needs to be reduced linearly as dimension increases. In this 

case, the LMS and NLMS algorithms show a similar dependence on dimension.

2. The analyses conducted in [29], [31], [8] assume that the input signal vectors 
U(k) are i.i.d. The errors due to the use of this assumption, which is not valid 
in the case of an LMS adaptive FIR filter system (since Uk and Uk-\ have 
n — 1 elements in common), are reported in [71] to be relatively small when fi 
is ‘small’. This, however, leads one to question the validity of the optimal /r 
convergence results, which in general do not involve small /i.

2.4 RLS Algorithm

A popular alternative to the LMS/NLMS algorithms which does not show the same 
dependence of input signal autocorrelation characteristics is the weighted Recursive 
Least Squares (RLS) algorithm. This algorithm is based on choosing 0(k) so as to 
minimize the weighted Least Squares cost function:

k

j=l

where y(k) is the residual signal output by the estimation filter/unknown channel 

system at time k and Wkj is a weighting function. A common choice is the exponential 

weighting function:

wk,j = (1 — A)*’- -7, where 0 < A < 1 (2.12)

which causes the influence of the past samples to fade out exponentially.

The exponentially weighted least squares solution 0(k) for an FIR estimator is ob­
tained via the exponentially weighted RLS algorithm (see Appendix C for a derivation 
of this algorithm):

9(k + 1) = 8(k) + R(k)~l V (k)y(k) (2.13)
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(2.14)R(k) = (1 -  \ ) R ( k -  1) + U{k)U{k)T

where U(k ) = (u(k) u{k — 1) ... u(k — n + l))r  is the input signal vector to the rc-tap 
FIR estimator.

The basic difference between the LMS (and NLMS) and the exponentially weighted 
RLS algorithms is that the scalar stepsize, fi, in the LMS algorithm is replaced by 

A times the inverse of R(k),  where R(k) is the short term input signal autocorrela­

tion matrix. The ‘normalization’ with R(k)~l essentially normalizes the adaptation 

in each eigenvector direction by the signal power in that direction. This leads to 
the convergence rate of the RLS algorithm being independent of both the input sig­

nal power and autocorrelation characteristics. It is claimed that the exponentially 
weighted RLS algorithm, for non-white input signals, results in faster convergence 
and better tracking than the LMS/NLMS algorithms [41],[42]. This superior perfor­
mance, however, depends largely on an appropriate choice of the forgetting factor A. 
For example, if A = 0 then the RLS algorithm has little tracking capability and poor 
transient performance [96].

A major disadvantage of the RLS algorithm is the high computational complexity 
required to compute the inverse matrix R(k)~l . Using the matrix inversion lemma 
leads to a recursive formula for computing R(k)~l (see Appendix C), but this still 
requires 0(2n2) multiplications per sample interval, where n is the number of filter 
coefficients. In comparison, the LMS algorithm requires only 2n multiplications per 
sample interval.

Reduced computational versions of the RLS algorithm such as the FRLS (or FKF) 
algorithm, have been developed, which make use of the property that the input signal 
vector U(k) is a one step shifted version of U(k — 1) with a new sample on the 

‘top’. These fast algorithms, however, still require O(10n) multiplications per sample 
interval [43], [12], [6].

Besides relatively high computational complexity, the FRLS algorithm also suffers 

from instability problems [20]. One source of instability is the propagation of numer­

ical errors due to finite wordlength representation. Considerable advances, however, 

have been recently made towards reducing this problem [44], [45], [42]. In particular, 
one modified version, the FTF algorithm, is reported to achieve these improvements 
by feedback of the numerical errors.

Another source of instability of the FRLS and, in general, the RLS algorithms arises
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when the input signal is non-persistently exciting. This may cause the short term 
input autocorrelation matrix R(k) to be singular, frequently. Such singularity may 
lead to instability of the update equation:

9 -  0{k + 1) = [I -  R{k) - lU(k)U{k)T]{9 -  0(k)) -  R{k)~lU{k)e{k) (2.15)

particularly, as a result of ‘bursting’ of the noise term

R { k ) ~ ' U ( k : ) e ( k ) .

This behaviour can be avoided by using sufficiently long time windows for updating 
the autocorrelation matrix or by reducing A sufficiently closely to zero. However, this 
necessarily reduces the tracking capability and convergence rate.

2.5 L attice Filters

Another approach to reducing the dependence of the LMS adaptive FIR filter on the 
input signal autocorrelation characteristics is to use a lattice filter [7], [46], [47], as 

shown in Figure 2.2. The lattice filter structure consists of a set of n — 1 prefilter 
stages with internal or ‘reflection’ coefficients kj, 1 < j  < n — 1. The lattice filter 
is constructed so that, by appropriate choice of these reflection coefficients, the sig­
nals eb(i\j) output by the lattice stages are uncorrelated with each other. The signal 
output by the lattice based estimator is obtained from a weighted sum of these uncor­
related signals. Effectively, the lattice filter whitens the input signal so that improved 
convergence is obtained.

As reported in [7], the weights bj and reflection coefficients kj can be adapted using the 
LMS algorithm. The complexity is about 5n. Good performance is reported in [48], 

[49] for small filter dimensions n ~  10 and with stationary input signals. However, 
for nonstationary input signals, such as speech, [6],[26] and large n, the performance 
deteriorates. Under such circumstances [6] suggests that an LS based lattice filter 
should be used, but this results in an increase in complexity to 0(15n) — 0(35n).

2.6 H R  Filters

Some unknown channels are more suitably modelled by a combination of poles and 

zeros as opposed to just zeros. For the estimation of such unknown channels, an IIR
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Figure 2.2: L attice filter:(a) full structure, (b ) mth prefilter stage.

(infinite impulse response) filter structure:

©(■r1) A(q~*)

where B(q~l ) and A(q~l ) are each FIR filters, seems an appropriate choice for the 

adaptive filter. In particular, this approach has the potential for greatly reducing the 

number of adaptive parameters which, in turn, can lead to reduced computational 
complexity and possibly improved transient performance.

Two configurations of the adaptive HR filter are shown in Figure 2.3. The series- 
parallel structure shown in Figure 2.3a has the following advantages:

• lower computational complexity than an FIR filter (assuming the unknown 
channel has an HR structure);

• the LMS algorithm may be used for adaptation [26];

• for sufficiently small fi and/or sufficiently large HR order, stability is guaranteed 

[51], [50];
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and the following disadvantages:

• the performance is limited by disturbances s(k) within the unknown channel

[26];

• overspecification of the HR model order is necessary in order to achieve im­
provements in asymptotic performance over the adaptive FIR filter [51], [50];

• the convergence rate tends to be slower than the FIR filter, particularly for large 

HR model orders [51], [50] - it is suggested in [50] that convergence problems 
occur for model orders larger than two.

v(k) yOO

B(q -1

-1

u(k)

Figure 2.3: HR adaptive filtering: (a) series-parallel, (b) parallel configuration.

Unlike the series-parallel HR filter, the convergence characteristics of the parallel 

HR configuration of Figure 2.3b are not affected by disturbances. However, the 

LMS algorithm is not suitable for this filter structure. In general, the adaptation 
of the parallel HR filter involves considerably greater computational costs than the 

LMS/FIR filter [54]. In addition, this HR configuration suffers from the following 
problems [26]:
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• may converge to a local minimum;

• convergence rate is very slow;

• stability testing is required.

It is evident that in many applications, the weaknesses of either of these adaptive HR 
filtering schemes would outweigh their strengths.

2.7 Frequency D om ain Filtering

The frequency domain approach involves adapting the filter (usually FIR based) and 
generating its output in the frequency domain, typically using consecutive, nonover­
lapping blocks of data. The number of frequency bins used is chosen to match the 
(assumed) time domain tap length of the unknown channel. The data block lengths 

are determined by the number of frequency bins.

Frequency domain filtering can be carried out by either of the two configurations 
shown in Figure 2.4. The advantages of this approach are as follows.

• Considerably reduced com putational complexity [56] for sufficiently large filter 

lengths, n > 30 — 50. This is due to the fact tha t:

- the convolution of a pair of time domain sample blocks (which is required 

in order to generate the echo replica) is equivalent in the frequency domain to 

simple multiplication of the corresponding frequency domain coefficients;

- highly efficient fast fourier transform (FFT) methods are available to ensure 

that transform of signals to and from the frequency domain does not introduce 
too much extra computational complexity.
In particular, for a filter size of n — 1024, the computational advantage of 

frequency domain filtering is [56]

time domain complexity 
freq. domain complexity

= 15 to 50

depending on the FFT method used. The advantage increases/decreases as the 

filter size increases/decreases.

• The potential for improved convergence rates as measured per adaptation or 

block of data. This is due to the fact that the signals from one frequency 

bin to the next are approximately uncorrelated, if the collection window is
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Figure 2.4: Frequency domain adaptive filtering with error signal computed in 
(a) time domain, (b) frequency domain.

sufficiently large [57], [6]. In effect, the signal power in each frequency bin is 
a measure of the signal power of each of the orthogonal components of the 
input, or, equivalently, is a measure of each of the eigenvalues of the input 
signal autocorrelation matrix [58], [59]. The adverse effect on LMS convergence 
rate of a wide eigenvalue spread (of the input signal autocorrelation matrix) 

can, therefore, be minimized by using a stepsize in each frequency bin wrhich is 

inversely proportional to the signal power level in that bin.

Disadvantages of the LMS/FIR block frequency domain filter include the introduction 
of delay [56] and possibly a reduction in the stable range of ^ [97]. For nonstationary 
signals, the tracking capability is also generally inferior [56] to the LMS/FIR time 

domain filter.

Another serious disadvantage of block frequency domain adaptive filtering is that
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adaptation only takes place once per block of data. In general, this results in con­

siderably slower convergence in real time than the LMS adaptive FIR filter [56], [98]. 

An approach to improve the real time convergence rate is to use a sliding window to 

compute the fourier transform of the block with each new input sample. This enables 
the adaptive filter to be updated every sample interval and results in the convergence 
rate approaching that of the time domain RLS adaptive FIR. However, it also leads 
to a considerable increase in the computational complexity.

2.8 Sub-Band F iltering

Sub-band echo cancelling involves decomposing the input signal and unknown chan­
nel output, sampled at say FkHz, into M  frequency sub-bands, and providing each 
sub-band with its own LMS adaptive FIR filter (other adaptive filters could also be 
used) - as shown in Figure 2.5. In addition, the sub-band signals are downsampled 
by a factor L < M  so that the sampling rate in each sub-band is F/ L  kHz. Gener­

ally, polyphase filters [5], [60], [61] or quadrature mirror filters [62], [15] are used to 
efficiently implement the analysis and synthesis filter banks.

downsample upsample

Denotes M 
parallel signals downsample

Synthesis
Bank

Analysis
Bank

Analysis
Bank

u(k)

Figure 2.5: Subband adaptive filtering.

The advantages of sub-band filtering are as follows.

• Potentially, a considerable reduction in computational complexity. This is due 

to, primarily, the reduction in the sampling rate in each sub-band, which en­
ables a reduction in the number of taps in each adaptive filter and a reduction in 
the required adaptation rate by a factor of L. Thus, neglecting the additional
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requirements of the analysis and synthesis filter banks, the saving in compu­

tational complexity is by a factor of L2/ M  [20]. A further reduction in the 

computational complexity can be achieved by adjusting the tap length of the 
filters in each sub-band to match the tap length of the unknown channel in the 
corresponding sub-band [5]. The extra computational complexity introduced by 
the analysis and synthesis depends on the specific approach taken. Polyphase 
filters cause only a small increase in computation [5]. More specifically, one 
approach [17], which employs two polyphase networks of order 321 and two 

FFTs for analysis and synthesis and a decimation factor of 32, has an overall 

complexity which is about 1/8 of the equivalent 4000 tap LMS/FIR filter.

• Potentially, an increase in convergence rate [20], [17], [5]. This is due to
- adjusting the stepsize n in each sub-band according to the input signal 

power in that sub-band [15] (which achieves a similar decorrelating effect of the 
input as that obtained with frequency domain filtering);

- the reduction in the number of taps in each sub-band LMS/FIR filter by 
the factor L (as quantified in Chapter 3, the convergence rate of the LMS/FIR 
filter improves as the number of taps reduce).
Superior transient performance of the sub-band filter over the LMS adaptive 
FIR filter has been reported by [20], [17], [5].

With regard to the latter advantage, it should be remembered that the sampling rate 
within the sub-band filter is reduced by a factor of L and, consequently, in real time, 

the convergence rate, in general, may not be superior to that of the conventional 
LMS/FIR.

There are a number of disadvantages with sub-band echo cancellation.

• A delay in the signal y(k) output by the adaptive filter/unknown channel system 

caused by the analysis and synthesis filterbanks [20], [15], [5], [17]. This delay 

increases with the number of sub-bands [5]. This problem can be overcome by 

placing the synthesis filter banks immediately after the adaptive filter [63], [64] 
so as to avoid the analysis and synthesis of the unknown channel output signal. 
In addition to avoiding output delay, this modification provides reduced com­
putational complexity. However, it does not provide the convergence benefits 
of the standard approach and, because of the delay in the echo replica, tends to 
worsen tracking ability [20].
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• Poor asymptotic performance due to aliasing or cross-talk between sub-bands. 

This occurs with polyphase filter banks as well as QMF filter banks. The inclu­

sion of the latter may be surprising since QMFs are designed so that abasing 
is compensated for during synthesis, However, full compensation, requires that 
the sub-band signals all experience the same processing, which is not the case 
in general. To remove this aliasing, adaptive filters can be used between neigh­
bouring sub-bands [65]. Alternatively, oversampling (he. M > L) can be used 
[60], [15]. Both alternatives result in an increase in computational complexity 

and limit the computational benefits of increasing the number of sub-bands.

2.9 A daptive F iltering for Echo Cancellation

In this section we begin by making a comparison of the suitability of each of the 
adaptive filtering schemes discussed above for adaptive echo cancellation in speech 
transmission telecommunication systems. We then move onto presenting a number of 
non-standard adaptive schemes which have been proposed for this application.

In speech transmission echo cancelling systems, the unknown channel is the echo 
path, the disturbance signal is the near end subscriber signal and the input signal is 
comprised largely of the far end subscriber signal. The subscriber signals are basically 
speech, although they may also contain noise.

The characteristics of this adaptive filtering application which are of particular im­
portance are:

• the input signal
(i) is highly autocorrelated,
(ii) on the short term shows a lack of persistent excitation, and

(iii) is approximately stationary only over a 20ms interval;

• the impulse response of the unknown channel is moderately to very long and, 

particularly in acoustic echo cancellation, may be time varying.

A primary requirement of an adaptive filtering scheme for this application is low 
computational complexity.

The NLMS/LMS adaptive FIR filter is attractive because of its inherent stability 
and relatively low computational costs. In acoustic echo cancellation, however, the 
computational requirement becomes somewhat demanding. The major drawback of
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this adaptive filtering technique is the sensitivity of its transient performance to input 
signal autocorrelation characteristics. In particular, various authors [13], [26], [12] 
report poor transient performance with speech input signals particularly when the 
FIR filter is ‘long’.

The transient performance of the RLS adaptive FIR filter, in contrast, is independent 
of the input signal autocorrelation characteristics. However, the stability problems 

and/or high computational cost of this adaptive filtering scheme with speech inputs 

and ‘long’ unknown channels detracts considerably from its appeal as an echo canceller 

in speech transmission systems.

Lattice based filter structures under the conditions of echo cancellation - speech inputs 
and long unknown channels - need to be RLS adapted for performance reasons. The 
computational cost of such an adaptive filtering scheme is prohibitively large.

Due to its lower computational requirements, the LMS adaptive series-parallel HR 

filter may be a potential alternative to the LMS adaptive FIR filter for acoustic echo 

cancellation. Its applicability, however, depends on minimal double talk and on the 

echo path being adequately modelled by a low order HR filter. These are serious 
limitations. In particular, one study [52] reported finding 80 maxima and minima in 
the transfer function of acoustic echo paths in the frequency range of 0 — 4kHz. This 
implies [20] that an HR filter having an order of greater than 80 is required to model 
acoustic echo paths. This, in turn, suggests that the series-parallel HR filter is not 
suitable for acoustic echo cancellation

The parallel HR filter does not appear to be a possible option for echo cancellation. 
This is supported by studies in [54] which demonstrate that such a filter provides very 

little, if any, performance improvement but causes considerable increase in adapta­

tion complexity. In contrast, good performance is reported in [53] using the parallel 

HR structure. The approach assumes an AR model for the disturbance signal and 

employs a recursive prediction error method (based on Least Squares) for adaptation. 

This claim is supposedly substantiated through simulations. The relevance of the 
simulations to echo cancellations is highly questionable since only low order HR and 
AR filters are considered.

LMS/FIR frequency domain filtering, depending on whether it is conducted in con­
secutive data blocks or with sliding windows, offers computational cost advantages 

or convergence rate advantages, respectively, over time domain LMS/FIR filtering. 
However, each advantage usually comes at the expense of the other. The poorer
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tracking ability (in comparison to time domain filtering) of frequency domain filtering 
with nonstationary inputs as well as the introduction of delay (which is particularly 
unattractive in speech transmission) detracts further from its appeal.

The main attraction of sub-band filtering is its lower computational costs in compari­
son to the LMS adaptive FIR filter, particularly as the number of sub-bands increases. 
However, along with this advantage comes the delay introduced by the analysis and 

synthesis filter banks, which also increases with the number of sub-bands. Modi­

fications to avoid this serious limitation result in other problems such as reduced 

convergence rates and tracking capability.

The above discussion suggests that the presented alternatives to the NLMS/LMS 
adaptive FIR are not necessarily better suited for speech transmission echo cancella­
tion and, in various ways, are poor substitutes. Of course, in some situations one or 
more of the alternatives may out-perform the LMS/FIR filter. However, more work 
is needed to enable such improvements and the conditions under which they occur to 
be quantified.

Possibly as a consequence of the problems these standard adaptive filtering techniques 
suffer, non-standard approaches to adaptive echo cancellation have been and are being 
explored. Some of these are discussed below. Note that the majority of these are 
modified versions of the NLMS/LMS adaptive FIR filter.

• In [55] a two stage echo canceller is proposed, in which the first stage is an 
LMS/FIR filter of 20-40 taps. This stage is used to model the front of the echo 
path. The second stage is an adaptively weighted linear combination of orthog­

onal HR filters which is used to model the echo path tail. The orthogonality 
is ensured by basing the ^-transform of the j th HR filter on the ^-transform of 
the j  th order Laguerre function:

L i ( z ) =  T  =  e ~ P  ( 2 A 6 )

where p > 0 is a constant to be determined. Good performance and substantial 
complexity reduction is reported for a variety of echo paths. A major drawback 
with this approach is that the benefits depend on the Laguerre parameter p 
being optimized for each echo path, FIR tap length and number of Laguerre 
HR filters used. Furthermore, this optimization is carried out off line.

• It is proposed in [32] to insert uncorrelated noise bursts into the input signal 

of the LMS adaptive FIR echo canceller during initialization of the connection.
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The noise burst insertion leads to a whitening effect of the input signal and 
consequently, may provide a boost to the initial convergence rate of the echo 
canceller. An alternative approach, proposed in [33], is to insert the noise into 

the input signal u(k) and residual output signal y(k) only in the adaptation al­
gorithm. This approach has the advantage that the noise insertion can continue 

past the initialization stage. Intuitively, however, for a given period of noise 

insertion, this latter approach, as compared to the former approach, produces 
a smaller whitening effect for the same level of noise inserted.

• In another bid to reduce the dependence of the LMS/FIR echo canceller on the 
autocorrelation characteristics of the input signal, it is proposed in [34],[35], 
[19] to update the echo canceller using only that component of U(k) which is 
orthogonal to or uncorrelated with U(k — 1). This is carried out using affine 
projection algorithms, the second order version [35] of which is:

c(k) = U{k)TU{ k - l ) / ( U( k

Z(k) = U { k ) - c ( k ) U ( k - l )

9(k + 1) = Ö(k) + ßZ(k)y(k)( l /U(k)TZ(k))

• Voiced speech is typically well modelled as an autoregressive process:

«(JO = ̂ (g-l t2-17)
where:

A(q~1) = 1 + aiq~l + a2q~2 + ... + apq~p, 
w(k) is a discrete white zero mean signal.

Clearly, the filter A(q~1) is a whitening filter for u(k). By using linear prediction 
methods on the input signal, an estimate of the filter A(q~l ) is obtained and 
used to whiten the input signal [36], [37]. This approach is discussed in more 
detail in Chapter 5. Note that due to the nonstationary characteristics of speech, 

the estimate of the autoregressive filter needs to be updated regularly - every 
20ms [20].

• Under a number of assumptions including that of the input signal being white, 

analyses carried out in [18] suggest that convergence rate improvements of the 
LMS/FIR echo canceller are achieved by assigning to each echo canceller tap 
0i(k) its own update stepsize, /zt- = fiOf, where 0t- is the corresponding echo path 

tap coefficient. Combining this with measurements of the impulse responses 

of acoustic echo paths suggests that the sequence of individual stepsizes, {^q}.
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should decay exponentially with tap index or sample lag i [18]. The difficulty 
lies in determining a suitable exponential decay rate. Procedures of various 
computational complexity are suggested.

• A similar approach is suggested in [38] to improve the tracking of time variations 
of the echo path - different stepsizes are chosen for each FIR echo canceller tap 
depending on whether the corresponding tap is slow varying or fast varying.

• Recent suggestions [39], [40] for LMS/FIR based echo cancellers include proce­
dures which take into account the possibility of inactive areas (regions of nonzero 
taps) in the echo path impulse response. Ignoring these areas may lead to a 
reduction in the number of adaptive FIR taps, which in turn provides compu­
tational savings. It is also reported to lead to convergence rate improvements. 
This approach is discussed in more detail in Chapter 6.

Each of these non-standard approaches, as indicated, has its merits. The general 

approach of developing modifications for the LMS/FIR filter, however, has an extra 
appeal. This is due to the dynamical simplicity of the LMS/FIR filter, which enables 

the effects of the modifications to be determined, at least intuitively. However, before 
attempting to develop modifications, this author believes that the system dynamics 
should be quantitatively analysed. This avoids the risk of chasing modifications in 
an ad-hoc fashion and enables the usefulness of modifications to be quantified and 
compared. In particular, it avoids the need to estimate performance improvements 

solely from simulations.

The work leading to this thesis has been based on this idea:

- quantify the weaknesses of the LMS adaptive FIR filter through dynamical 
analyses;

- based on the analytical results, develop performance improving modifications.

2.10 C onclusion

In this chapter we briefly examined the weaknesses and strengths of the various adap­

tive filtering schemes which have been and are being considered for echo cancellation 
in speech transmission systems. The LMS adaptive FIR filter, because of its rela­

tively low computational costs and inherent stability is popular. However, in this 

application, with speech inputs and large tap lengths, the LMS/FIR filter suffers
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from poor convergence rates and demanding computational requirements, particu­

larly in acoustic echo cancellation. The alternative schemes presented, such as that 

involving RLS adaptation or sub-band filtering, generally provide some advantages 

over the LMS/FIR filter, but these come at the expense of other disadvantages, such 

as greater computational cost, poorer performance, instability and/or transmission 
delay. In general, the alternatives to the LMS/FIR filter are not necessarily better 
suited for speech transmission echo cancellation and, in many ways, are poor substi­
tutes. Another approach is that of developing modifications to the LMS/FIR filter. 
This approach is particularly appealing because the dynamical simplicity of this filter 
enables the effects of the modifications to be determined intuitively. To enable this 

approach to be followed methodically, the influence of the various system parameters 
on LMS/FIR filter performance should be first quantified.
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C hapter 2 Appendix: Remarks on Double Talk

The LMS adaptive FIR echo canceller, Like many of the alternatives suggested, suffers 

from misadjustment or incorrect adaptation of the echo canceller coefficients during 

periods of double talk - that is, simultaneous transmission from each end of the 
network. This is due to the fact that during such periods the near end signal may be 
interpretted as part of the echo, z(k).

The conventional way of avoiding misadjustment, which requires fitting of a double 
talk detector, is to stop adaptation of the echo canceller during double talk [13], 

[6]. Using the frozen echo canceller tap coefficients, the output of an echo replica, 

however, continues as does transmission of the near end signal. Other approaches to 

the double talk problem involve more sophisticated, but computationally expensive, 
stepsize control schemes. For example, [66], [35], [67], [68],

m  = i/[i+«'(*)/(ii»-9(*)i ii)]
u(k)  =  E[s(k)2} / m ( k

where E[.] denotes expectation operation. To implement this approach, however, ad­
ditional methods and computation must be employed to obtain estimates of E[s(k)2] 
and [l0-0(fc)|[2.

The possible misadjustment of the adaptive echo canceller due to double talk will not 
be addressed directly in this thesis. However, as will become apparent through quan­

titative analyses of the LMS/FIR echo canceller, under certain assumptions - such 

as echo path time-invariance, signal stationarity, zero cross correlation between input 

and disturbance signals, as well as a sufficiently small stepsize, ß - the LMS adaptive 
FIR echo canceller does not suffer from long term misadjustment due to double talk. 
It seems intuitive that, for sufficiently small (i (which is a basic assumption in this 
thesis), this result should also hold when the assumption on stationarity is relaxed.
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C h ap ter  3

Quantitative Analysis of the 
LMS Adaptive FIR Filter

3=1 In tro d u ctio n

In this chapter we carry out rigorous analyses of the LMS adaptive FIR filter used to 
estimate a time invariant unknown channel via the parallel configuration of Figure 3.1. 

The main objective of the analyses is to quantify the link between the adaptive filter 
performance and system properties such as input signal autocorrelation level and FIR 
tap length or parameter dimension, n. The effects of these factors, which have been 
suggested by other analyses, are particularly relevant to echo cancellation in wrhich 
the input signal typically is highly autocorrelated speech and the filter dimension 
is moderate to very large. Meeting this objective will enable the development of 
techniques which enhance the performance of the LMS adaptive FIR echo canceller.

We separate the analyses into those of transient and asymptotic performance. Of the 
numerous studies previously conducted, many provide a quantitative link between 
asymptotic performance, signal characteristics and filter dimension. The review of 

these asymptotic results is left until Section 7. Our analyses, focus on transient per­

formance. We begin in Section 2 with a system description which includes assumptions 

and notation as well as the LMS adaptive system equation. In Section 3, using the 
framework introduced in Section 2, we review relevant results on transient perfor­

mance. The results rely heavily on an invalid input signal independence assumption, 
the effect of which is quantifiably negligible when the LMS adaptation stepsize, ß , is 
sufficiently small. We take a different approach. Under the assumption that ß is suffi­
ciently small, Averaging Theory is applied in Section 4 to obtain an ‘averaged’ system
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output y(k)

- z(k)

disturbance s(k) +

unknown
channel

adaptive
filter

Figure 3.1: LMS adaptive FIR filter in parallel with time invariant unknown channel.

equation, the dynamics of which approximate closely and are considerably simpler to 
analyze than those of the original system equation. In Section 5 we propose a cost 

function wrhich provides a suitable measure of the expected convergence rate of the 
averaged system. In Section 6, we analyse the dependence of this cost function on 
filter parameter dimension and input signal autocorrelation under the condition that 
[ i is fixed. Particular attention is given to input signals described by autoregressive 
(AR) processes, since such processes are typically used to model voiced speech. The 
cost function is shown to depend explicitly on the AR parameters. In Section 7, after 
the review of asymptotic results, we extend the results of our transient performance 
analyses to the case in which f i is adjusted to maintain asymptotic performance.

So as to complete the analyses, we have also analysed the effects of filter dimension 

and signal characteristics on the error arising due to the averaging approximation. 
This averaging error analysis is given in the appendix at the end of this chapter.

Note: For easy reference, a listing of the assumptions made in this and other chapters 
is given in Appendix I.
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3.2 S y s te m  D escr ip tio n

Throughout this chapter we consider the LMS adaptive FIR filter in the parallel con­
figuration of Figure 3.1. This is the typical set-up for echo cancellation. In the context 
of echo cancellation, the unknown channel represents the circuit or acoustic echo path. 

The adaptive filter represents the echo canceller being used to estimate the echo path. 
At sampling instant k: the input signal u(k) represents the signal received from the 
far end of the network; the disturbance signal s(k) represents the signal transmitted 

by the near end subscriber; the output y(k) represents the signal transmitted to the 

far end subscriber. The signals u(k) and s(k) may include speech and/or noise. The 
signal u(k) may also include echo generated by the far end subscriber.

We make the following assumption regarding the unknown channel and adaptive filter.

Assum ption 1 (i) The unknown channel is time invariant and is adequately mod­
elled by an n-tap digital FIR filter with tap coefficient vector

»={»0 h »2 . . .  0 n - l ) r - (3.1)

(ii) The LMS adaptive FIR filter also has a tap length of n and at sampling instant 
k has the tap coefficient vector

9(k) = (90(k) $,(*) en_i (3.2)

(in) The tap coefficients of the LMS adaptive FIR filter are initially set to zero

0t(O) = 0, i = 0 ,1,2,..., n —l.

Remark:

1. The assumption that the adaptive filter and unknown channel have equal tap 

lengths is made, basically, for ease of analysis. The results of the analyses can 
be easily extended to the case in which the adaptive filter is ‘longer’ than the 
unknown channel. A ‘shorter’ adaptive filter, however, leads to biased asymp­
totic estimation of the unknown channel. This undermodelling bias is in addi­
tion to any bias introduced by the correlation characteristics of the input and 
disturbance signals. Under some circumstances, such as in the closed loop con­
figuration of telephone networks, the existence of this additional source of bias
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increases the possibility of instability. As long as such instability does not occur, 
then the results of the transient performance analyses obtained in this chapter 
can be extended also to this ‘shorter’ adaptive filter case.

2. Zero initial conditions for the adaptive filter typically are chosen in practice.

By introducing the n-tuple input signal vector:

U(k) = (u(k), u(k — 1), ... , u(k -  n + l))T

we obtain the following expression for the output signal:

2,(1k) = (0- O( k) )TU(k) + S(k)

= Ö(k)TU(k) + (3.3)

where 0(k) = 9 — 9(k) is the residual filter parameter vector. Good estimation (or in 
the case of echo cancellation, good echo cancellation) results when 9(k) % 0. Using the 

LMS algorithm for adaptation leads to the following update equation for the residual 
filter parameter vector:

9(k + 1) = 9(k) — py(k)U (k)

= {I -  fiU{k)U{k)T)9(k)~ nU(k)s(k),  9(0) = 9 (3.4)

where /i is the update stepsize. Equation (3.4) describes the dynamics of LMS adap­
tive FIR filter system.

Remark:

3. For stability and asymptotic performance reasons, fi is chosen typically to be 

very ‘small’ (see Assumption 6 and Remark 7).

The following assumption makes the application of (deterministic) Averaging Theory 

feasible.

A ssum ption 2 The input, u(k), and disturbance, s(k), signals are zero mean, bounded 
and stationary so that the limits:

N-l+ko
Rm = E( U( k ) U( k f )  = Um Y

N —k x >
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N-\-\-k0
Pm = E{U(k)s(k))  = Um 1/JV V  U(k)s(k),  Vfc0

;V-°° *=*„
i \  —  1 4 -  f c o

= Urn 1/JV £3 Vfc0
JV-°°  * 3 0

j V  —  1  +  f c o

erf = lim 1/iV s(fc)2, V&o
s  N —+oo , ,

K  —  K q

exist for all m, where m =length ofU(k)  = (u(k) u(k — 1) ... u(k — m +  1))T.

We also make the following assumption to simplify the analysis.

Assum ption 3 The input and disturbance signals are uncorrelated with each other 
over time:

N - 1

lim 1/N  V ' u(k — l)s(k) = 0, V7
JV- ° °  Jfc=0

that is, Pm = 0.

Remark:

4. Recall that in the application of echo cancellation, u(k) contains the far end 
speech signal, SFE(k), and, possibly, a delayed and attenuated version of the 
near end speech signal, SNE(k),  resulting from incomplete far end acoustic echo 
cancellation. Assumption 3 will be valid if s^E(k)  and SfE{k)  are uncorrelated 

(which is typical of speech) and if the autocorrelation length of s h e (&) is less 
than the delay associated with travelling the full network loop (NE —► FE —► 

NE). This remark is addressed in more detail in Chapter 4.

Assum ption 4 The input signal, u(k), is such that the autocorrelation sequence {r/}:

N - 1

Tj = lim 1/JV 53 u(k)u(k-  j) = ... - 2 ,  -1 , 0, 1, 2, ...
N~°° t=o

is absolutely summable:
oo

Y ,  \tj \ <  0 0

j  =  -o o
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Remark:

5. Assumption 4 guarantees the existence of the power spectrum 4>uu(u>) of the 

input signal.

Assum ption 5 The power spectrum $ uu(w) of the input signal is positive definite:

$uu(w) > 0 ,  0 < u  < 27t

Remark:

6. Assumption 5 imphes that the input signal covariance matrix Rn is positive 

definite for all dimensions, n.

Assum ption 6 The update stepsize is such that:

r  1 A 1 1
M nol T r(R n) < Amax(Rn) [ ' }

where Tr(.) = Trace(.).

Remark:

7. Assumption 6 is not at variance with typical choices of p  in practice. In partic­

ular, the validity of Assumption 6 guarantees stability of the averaged system 
and, generally, guarantees that the dynamics of the second order moments of 

Ok also remain stable. These stability issues are addressed in more detail in the 
next section.

3.3 R eview  of Transient Perform ance Analyses

The dynamics of the LMS adaptive FIR filter in the parallel configuration of Figure 
3.1 have been studied by numerous authors (e.g. [69], [30], [70], [71], [72], [28], [8], 

[73]). A common feature of these studies is that they indicate that the transient 

performance or convergence rate is linked to the eigenvalues, At-, of the n x n input 

signal autocorrelation matrix, Rn, where n is the tap length or parameter dimension
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of the FIR estimator. This indicates a strong dependence of convergence rate on 

the second order moments or, equivalently, on the autocorrelation function of the 

input signal. It also suggests a dependence on the parameter dimension, n, of the 

FIR filter. The existence of this dimension dependence is supported in very general 
cases by Vapnik and Chervonenkis theory [74] which leads us to expect a penalty on 
convergence rate with an increase in filter parameter dimension.

Despite the apparent existence of these input signal and dimension dependencies of 
convergence rate, few studies have attempted to quantify them. Many instead attempt 
to determine bounds on the LMS adaptation constant ß to ensure stability and/or 
the value of ß which optimizes the convergence rate. The results vary depending on 
the assumptions made and approach taken. Earlier analyses considered convergence 

of £[||0(fc)||2] or convergence in the mean (where ||.||2  denotes the Euclidean norm), 
while more recent analyses consider convergence of E[0(k)6(k)T] or convergence in 
second order moments. The latter approach, because it takes into account variations 

around the mean, necessarily leads to tougher restrictions on ß to ensure stability. A 
summary of some of these results is given in Table 3.1.

Table 3.1: Optimal Convergence Value, of and Upper Stable Value of ß.
Approach Input Conditions Optimal, ßm Upper Stable
Type 1 [30],[28] ß < 1 / ^mai(-ßn)
Type 2 [7],[28],[70] Gaussian white l/[{n + 2)a't] ß < 2ß*
Type 2 [28] white,kurtosis= vu 1 /Wt{n ~ 1 + Vu)] ß < 2ß*
Type 2* [8]

Gaussian
™l/E[\\U(k)\\§ 
n<T2u/Un° l ) 2 + 2Tr(Ri)]

ß < 2ß*

Type 1: Convergence in Mean, E[\\0(k)\\2\;
Type 2: Convergence in 2nd order moments, E[9(k)0(k)T]. This approach assumes 
that the input signal vectors U{k) are i.i.d..
* Disturbance assumed to be white.

It must be emphasized that in analysing the convergence in second order moments, 

all studies to date make the assumption that the input signal vectors U(k)  are inde­

pendent and identically distributed. This assumption, which is not valid since U(k) 

and U(k -  1) have n — 1 elements in common, is reported in [71], [75], [76], [77] to 
cause only relatively small errors if the stepsize is sufficiently small. However, this 
leads one to question the validity of the results in Table 3.1 for this second order 

moments approach. In general, stability requires ß to be sufficiently smaller than 
that indicated in Table 3.1.
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Remark:

8. Since for Gaussian input signals

Tr(Rl )  < [JY(Sn)]2

then, according to Table 3.1, convergence in second order moments for such 
signals is guaranteed when

1
ß < 3Tr(Rn)

Taking into account the error due to the use of the i.i.d. assumption in deriving 

the results, a ‘safe’ choice would be that indicated in Assumption 6:

fi <  1 / (Tr (Rn))

The few authors who have attempted to quantify transient performance have consid­
ered one of two transient performance measures. The measure proposed in [70] is a 

convergence cost function similar to that of (3.15) in Section 5. However, it is noted 
that this cost function depends on the unknown channel vector 0. Consequently, 
besides determining an optimal convergence rate value for n, analyses of this cost 
function are not carried out.

In [28], [30] quantitative analysis of the initial rate of convergence (in the mean) is 
attempted by proposing as a measure, the effective initial time constant r  defined as 
the time constant of the ‘learning curve’ e(k) = E[(0(k)TU(k) + s(fc))2]:

[e(0) -  c(oo)]e"1/r = [e(l) -  e(oo)]

As in other analyses, n different modes of convergence are shown, in general, to exist. 
In [30] the analysis is simplified by considering only the case in which the input signal 
is white for wrhich case the time constant is given by

1
T  =  ------Ö

This indicates no dependence of convergence rate on dimension.

To enable quantitative analysis, [28] chooses to examine the case in which the unknown 
channel vector 0 is uniformly distributed among the eigenvectors of the input signal 
autocorrelation matrix Rn so that:

P n « ll l  =  ^ ^ - m W  (3.7)
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The result is that, if p is sufficiently small such that p <C l/Amax(Ä), then:

1
-  2»Tr(Rl \

T MTr(Rn)
= 2p<rl(l + p)

w h e r e  p = vl/^ave
=  v a r ia n c e  o f  e ig e n v a lu e s  o f  R.

Aave —  m e a n  o f  e ig e n v a lu e s  o f  Rn

The result of (3.8) indicates that the convergence rate is input signal dependent and, 

in particular, increases with the spread of the eigenvalues of Rn as measured by p. 
Since 0 < p < n — 1, then the result of (3.8) also suggests that convergence rate is 

dependent on dimension. This dimension dependence vanishes when p = 0, that is, 
when the input signal is white.

The above results indicate that, for fixed p, a greater dimension may penalize the 
convergence rate. Furthermore, this penalty may be input signal dependent. In the 
following sections we carry out analyses to quantify these suggested dimension and 
input signal dependencies of convergence rate.

3 .4  A v era g ed  S y ste m  E q u ation s

In this section we apply the Averaging Method, as presented in [78] and as discussed 

in Appendix B, to (3.4) to obtain an equation which approximates its dynamics and 
is considerably simpler to analyse.

Application of averaging to (3.4) yields:

9av(k + 1) = (I -  pRn)9av(k), eav(0) = 0 (3.9)

= ( I - ^ R n)M 6 (3.10)

Remark:

9. The application of averaging relies on p being sufficiently small such that the 
residual parameter vector 9(k) is slowly time varying in comparison to the input 
u(k) and disturbance s(k) signals. As a result of this separation in time scales, 
we can approximate (3.4) with that in which the variations in 0(k), due to u(k) 
and s(k), are averaged out.
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Assumptions 5 and 6 guarantee that:

9av(k ) —► 0, or, equivalently, 9av(k) —*■ 9, exponentially (3.11)

that is, good asymptotic performance of the averaged adaptive filter system.

The solution, 9av(k), of the averaged equation of (3.9) or (3.10) approximates the 
solution, 9(k), of the original equation within the averaging error:

l l « W  - 0 a , W I I  = O (% ))  (3.12)

where:
k+k0

6 ( h ) = sup sup sup h || (U(i)U(i)T — R)9 — 3(z)?7(i)|| (3.13)
k0 §eD ke[o,L/n) i=ko

with L independent of h and D = {9 : ||0|| < ||0||}.

According to (3.13), the averaging error increases with /i, or alternatively, approaches 

zero as h —* 0. Thus, for sufficiently small //, the averaged system approximates the 
original system sufficiently well. This claim is quantified in the appendix at the end 
of this chapter.

3.5  C o n v erg en ce  C ost F u n ction

In this section we propose a cost function, which provides a measure of the ‘expected’ 
convergence rate of the averaged system. The meaning of ‘expected’ will be elaborated 

upon.

A measure of performance at sampling interval k is given by the squared Euclidean 
norm of the parameter error:

ck = ii$"’(*)|i!/iwi?

To enable analysis of overall performance we need to define a cost function which 
provides a suitable measure of the convergence of Ck to zero (assuming (3.11) is 
true). Consider the function

C o A ^ i ; i l « ” (*)lll/IWlI- (3-14)
k= 0

Co.jv is nondecreasing in N  and, provided (3.11) is true, as N  approaches infinity, 

Cq,n  wffi approach a constant, the value of which is dependent on the convergence
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rate. Therefore, a suitable convergence cost function is:
oo

(3.15)
k=0

Similar cost functions have been proposed by other authors such as [70]. It can be 
interpreted as a (normalized) measure of the total power, over time, of the residual 
filter parameter vector, 9av(k).

By combining (3.10) and (3.15) we obtain:

C = E I K / - M Ä « / « .  (3.16)
k=0

= (3.17)
k=Ot = l 11 N2

where A( and 7t(0), i = 1, 2, ... , n, are the eigenvalues of Rn and the components of 
9 in the directions of the eigenvectors of Rn, respectively. Note that the eigenvectors 
of the symmetric matrix Rn, because of their orthonormal property, do not appear in 
(3.17).

Clearly, for a given input signal autocorrelation matrix Rn the value of C depends on 
the orientation of the unknown channel vector, 9, with respect to the eigenvectors of 
Rn. For example, for a given input signal, if 9 lies along the direction of the eigenvector 
corresponding to a large/small eigenvalue of Rn then C will be large/small, that is, the 
convergence rate will be fast/slow. Our primary aim is to determine how convergence 
rate is affected, in general, by the filter dimension and input signal autocorrelation. 
To this end, we consider the ‘expected’ convergence rate over an ensemble of systems, 
each having the same dimension and input/disturbance signals, but differing in the 
coefficients of their unknown channel vector, 9. Considering (3.16), (3.17) a measure 
of the expected convergence rate is therefore given by:

~  A

<?« =  £ „ [ £ {  
k=0

1 1 ( 7 -  , R ) k m }] =  g  £ { ( 1  _

k—Q t=l

If we assume that 9 has a flat distribution over the ensemble then:

7 m . 1 

es.1 7m »

(3.18)

(3.19)

Combining (3.18) and (3.19) leads to:
1 00 n

c* = - E D i - A )1
k—0 t=l

—  V —  — V
t=i

1
2 — /iA,

(3.20)

(3.21)
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Since, from Assumptions 5 and 6, 1 < 2 — /iAt < 2, i = 1,2, ...,n, then

f —Tr^R-1) + i  < Ce < -—
2 np 4 2nfi

1 T r (R -1) + l- (3.22)

In general, for sufficiently small p , the additional terms 1/4 and 1/2 on the LHS and 
RHS, respectively, of (3.22) are negligible in comparison to:

c '  =  (3-23>

Assuming sufficiently small p, we propose Ce of (3.23) as a transient performance cost 
function, the analysis of which follows.

3.6 Cost Function A nalysis

In this section we analyse the cost function Ce of (3.23) under the condition that p 
is fixed. This determines how the ‘expected’ convergence rate of the averaged LMS 

adaptive filter system is affected by the characteristics of u(k) and the dimension, n, 
of the adaptive filter. In the next section we consider the case in which p is adjusted 
to maintain asymptotic performance.

We begin by analysing the convergence cost function for signals which satisfy As­
sumptions 2-6. This is followed by analyses for a smaller class of input signals - those 
described by autoregressive processes.

Theorem 1 Consider an averaged LMS adaptive FIR filter system, the dynamics of 

which are described by (3.10). Let n be the dimension of the FIR filter and Ce be the 

expected convergence cost functions defined in (3.23). Suppose Assumptions 2-6 of 
Section 3.2 are valid. Then,

Ce is a nondecreasing function of n and, furthermore, is a nonincreasing function of 
n only when the input signal is discrete white or uncorrelated over time.

Proof: See Appendix F.l.

Theorem 1 leads to the following important result.

Result 1 Unless the input signal, u(k), is discrete white, the expected convergence 
rate will deteriorate with increasing dimension, n.
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Theorem 1 also leads to the conclusion that, for a given input signal and dimension 
of our adaptive filter system, the convergence cost function of (3.23) is bounded from 
above by:

Ce < lim Tr[R-^ -)- = Ce(oo) (3.24)
2/in

The following Theorem extends the work by Gray [59] to obtain this bound.

Theorem 2 Consider an averaged LMS adaptive FIR filter system, the dynamics of 
which are described by (3.10). Let n be the dimension of the FIR filter and Ce be 
the expected convergence cost functions defined in (3.23). Suppose Assumptions 2-6 
of Section 3.2 are valid. Then for a given input signal and dimension, Ce is bounded 
from above by:

Cft-%L^K  = Ce(oo) (3.25)

where $~f(cv) is the power spectrum of the input signal.

Proof: See Appendix F.2.

Any input signal dependence of Ce(oo) arises from the integral:

£u = h (3-26)

Note that, as can be seen by comparing (3.24) and (3.25), this integral is actually 
limn^o0[Tr(R~1)/n]. The following Lemma determines, for a given signal power, the 
signal condition which minimizes this integral.

Lemma 1 Consider a function 4>uu(ü;), —i r < u < i r. Suppose the function is 
constrained by:
(a) $ uu(u;) > 0  Vw

(b) ^  J  $ u u ( u ) d w  = a2. (3.27)

Then, the integral:

2~ (3-28)

is minimized by $ uu(u;) = <72, Vu;.

Proof: See Appendix F.3.
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Lemma 1 leads to the important result.

Result 2 For a given input signal power, the asymptotic (in n) expected convergence 

cost function, Ce(oo), is minimized when the input signal has a flat power spectrum, 
or, equivalently, is discrete white.

10. This result is clearly in agreement with Result 1.

The term Lu of (3.26), in fact, can be interpreted as a measure of the autocorrelation 
of u(k). To see this let A(u>) be a filter which transforms u(k) into a discrete white 
signal of variance a2. It follows that:

So Lu is a measure of the filter power required to whiten or decorrelate the signal 
u(k).

Result 3 For sufficiently large dimension, n, ( or, more formally, in the limit as 
n —*■ oc) the expected convergence cost function Ce increases with input signal auto­
correlation.

Summary:

(i) The expected convergence cost function, Ce,
(a) is independent of dimension, n , when the input signal is discrete white;
(b) increases with dimension when the input signal is autocorrelated (i.e. not 

discrete white).

(ii) As dimension increases, Ce increases towards a finite value Ce(oo) = limn_ 0O Ce, 
which

(a) is minimum for discrete white input signals;

(b) increases the more the input signal is autocorrelated.

3.6.1 A n alysis  for A utoregressive  Input Signals

In this section we analyse the influence of dimension and input signal characteristics 
on the cost function Ce for the particular case in which the input signal is described

Remark:
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by an autoregressive (AR) model. Such models are typically used for voiced speech 
and, therefore, are of particular interest to the area of adaptive echo cancellation. We 
will use the following model:

«(*) = 4 ( ^ - 1  (3.29)

where:

A(q~l ) = 1 + aiq~l + a2q~2 + ... + apq~p,
w(k) is a discrete white zero mean signal of variance:

a 2 = [l/2?r f  - - 1 ■ 2M ~ l (3.30)
J - *  \ A { u ) \

The variance of w(k) as given by (3.30) leads to u(k) having unit variance.

Remark:

11. As is implied by (3.30), a2 is dependent on the AR parameters of the input 
signal.

As commented in the previous subsection, a measure of the correlation within such a 
signal is given by:

Lu = [1/27T f  I A(cj)\2du]/ er2 = (1 + a2 T a\ + ... + f l p ) / (3.31)

The following Theorem quantitatively relates the expected convergence cost function, 
Ce, with dimension and AR parameters of the input signal.

T heorem  3 Consider an averaged nth dimension LMS adaptive FIR filter system , 

the dynamics of which are described by (3.10). Suppose the signal, u(k), being input 
to the filter system is described by the pth order AR model of (3.29). Then, for n > p, 
the cost function, Ce, of (3.23) is given by:

c e =  A t 1 +  (! -  ^ )« i + (! -  f i l )  + ... + (1 -  ^)a^]/<72, (3.32)
Z LL IL (L fit

where o2 is as defined in (3.30).

Proof: See Appendix F.4.
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Remark:

12. Using an extension of the Levinson algorithm, an iterative relationship can be 
developed to obtain Ce as an explicit function of a,-, n and ^ also for 1 < n < 
p — 1. However, such a relationship is relatively complicated and provides little 
insight into the dependence of Ce on dimension and input signal autocorrelation.

13. Typically, the order of the AR model for voiced speech is relatively small (p = 
10 — 20). So, in the application of adaptive echo cancellation, in which the filter 

dimension, n, is considerably larger (n = 100 — 2000), the condition in (3.32) 

that n > p is not particularly limiting.

14. The cost function Ce, as given in (3.32), depends on the AR coefficients not 
only through the bracketted ‘[ ]’ term but also through a2. By applying the 
iterative procedure indicated in [79], an explicit expression relating a2 to the 
AR coefficients can be obtained. For example, for p — 2:

«1
°  -  (1 -  a2) 1 -

(1 +  Ö2)2.

The expression for a2, however, becomes increasingly more complicated as the 
AR model order increases beyond p = 2. Consequently, as p increases it becomes 
more difficult, if not impossible, to gain insight into the general effect of the AR 
coefficients on a2. It is worth noting, however, that for AR modelled voiced 

speech, a2 is, typically, considerably smaller than unity.

The result of (3.32) indicates that:

lim Ce = ^-[1 + a2 + a2 + ... + a2]/a2 (3.33)
n —*• oo Zfj, y

So for sufficiently large dimension, Ce is determined by, and increases with the auto­
correlation measure Lu = [1 + a2 -f a2 + ... + a2]/a2 of the input signal. Clearly, (3.33) 
is in agreement with the result of Theorem 2.

The variation of Ce with dimension, n , is easily verified from (3.32) to be:

Ce(n + 1) — Ce(n) = A nCe =
1 aj + 2a\ + ... + pa

fin(n + 1)
(3.34)

As expected, AnCe is positive, that is, Ce increases with dimension, n. A loose link 
between the effect of n on Ce, as measured by AnCe, and the autocorrelation level of 
the input signal, as measured by Lu, is indicated by (3.34):

 ̂ A  1  ^  PLu
fin(n + 1) < AnCe + fj,n(n + l)cr2 fj,n(n -f  1) (3.35)
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This suggests that the adverse effect of n on Ce may increase with autocorrelation 
level, Lu, and AR model order, p, of the input signal. A direct link can be achieved 
by considering input signals described by the first order AR (ARl(a)) model:

u(k) =  i--------- zrrw(k)1 — aq 1 (3.36)

where:

a e ( - 1, 1);
w (k) is a discrete white zero mean signal of variance a2 — 1 — a2.

Note that the variance of u(k) is unity. The parameter a provides a measure of 
autocorrelation of u(k) not only through the relationship of (3.31):

Lu = (1 + a2) /( l  -  a2),

but also through the expression for the autocorrelation function of u(k):

i  N - l

ri = lim — Y  u(k)u(k — l) = a^L 
iV—>oo N 'k=0

That is, a larger value of \a\, or a2, leads to a broader autocorrelation function/greater 
autocorrelation length.

Applying (3.32) we obtain:

Ce i , i  +  ( i — i
2  ̂ l — a2 n > 1 (3.37)

According to (3.37), the cost function Ce for an ARl(a) input signal increases with 
dimension, n, and with the input signal autocorrelation factor a2. In fact, it can be 
easily verified that the variation of Ce with n and a2 is given by:

AnCe ~ Mn(n +  l ) [ l - a ^

j  r* — d C e{a) _  1  r 1  —  1  / n  ,
a e da2 p (1 — a2)2

(3.38)

(3.39)

Both daCe and AnCe are positive. Furthermore, AnCe increases with a2 and daCe 
increases with n. This leads to the following result.

Result 4 For A R l(a) input signals, the expected convergence cost function, Ce, in­
creases with dimension, n, and with a2, or input signal autocorrelation. The adverse 
effect of dimension on Ce is accentuated by higher input signal autocorrelation and 
vice versa.
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Figure 3.2: Plot of Tr(R~1)/n  vs n for ARl(a) input signals.

This result is supported by the plots in Figure 3.2 of

T r(R~l ) = 1 + (1 — 2 /n)a2 
n 1 — a2

over n for various values of a.

Figure 3.2 indicates that for ARl(a) input signals the adverse effect of dimension on 
Ce diminishes rapidly with n. The expression for A nCe given in (3.34) indicates that 

the effect of n will also diminish for higher order AR input signals (more typical of 

voiced speech). A comparison between the expressions of AnCe for ARl(a) inputs, 
(3.38), and higher order inputs, (3.34), however, indicates that the diminishing effect 
for higher order AR inputs may not be as great as for ARl(a) inputs. This is also 
suggested by Figure 3.3 which includes plots of:

= [1 + (1 -  \ ) a \  + (1 -  + ... + (1 -  ^ ) a 2] /a 2 (3.40)

for the AR vectors:

AR1 = [1, 0.9]; AR2 = [1, 0.9, 0.92, ..., 0.96]; ARZ = [1, 0.9, ..., 0.920]. (3.41)

Through the application of the Yule-Walker method [80], the AR parameters for three 

different unit variance voiced speech segments were obtained. These are included in 

Table 3.2 together with the corresponding values for Lu, the autocorrelation measure
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AR2

Dimension, n

Figure 3.3: Plot of Tr(Rn l )/n  vs n for AR inputs generated by the AR vectors of 
(3.41).

of (3.31). Figure 3.4 includes plots of Tr(R~l )/n  as given in (3.40) for these AR 
parameter sets. The plots indicate that as the dimension increases the expected 
convergence rate for the voiced speech inputs becomes considerably poorer than for 
discrete white inputs of the same variance - Tr(R~1)/n  = 1, Vn. This is due directly 
to the greater value of the autocorrelation measure

L u =  ^ ™ T r ( R n 1 ) / n

for the voiced speech.

Figure 3.4 also indicates that the effect of n diminishes as n increases and, in particu­

lar, suggests that the effect of increasing n will become insignificant for n > no ~ 100. 
However, it should be remembered that Figure 3.4 shows plots of T r(R “ 1)/n  ä 2fiCe 
and, therefore, only a small change in Tr(R~l )/n  may still lead to a significant change 

in Ce, particularly for sufficiently small fi.
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Dimension, n

Figure 3.4: Plot of Tr(Rn l ) /n  vs n for AR inputs of Table 3.2.

Table 3.2: Voiced Speech AR parameter vectors - used for Figure 3.4.
AR filter AR coefficients (1, a\, ci2 , ..., ap) Ly,

A1 1.0, -1.6559, 1.6588, -1.0009, 0.7491, -0.4902, 0.4537, 
-0.1718, 0.2451,-0.1751,0.0673

122.9

A2 1.0, -1.7480, 1.2405, -0.5314, 0.6742, -0.3161, -0.2506, 
0.0494, 0.5712, -0.3844, 0.0743

306.4

A3 1.0, -1.7466, 1.3329, -0.5290, 0.4849, -0.4553, 0.0704, 
0.4252, -0.0569, -0.3278, 0.2077

195.1

Sum m ary o f A R  Signal A nalysis:

(i) For first order AR (A R l(a)) input signals:

(a) The convergence cost function Ce increases with the filter dimension and the 

input signal autocorrelation;

(b) The adverse effect of dimension on Ce is accentuated by higher input signal 

autocorrelation and vice versa.

(ii) For higher order AR input signals:

(a) The convergence cost function Ce increases with dimension, n;

(b) As n —► oo, Ce increases towards Ce(oo), the value of which increases with 

input signal autocorrelation;

(c) The rate at which Ce increases with n is dependent on the AR coefficients 

and, in particular, will tend to increase with input signal autocorrelation level and
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AR model order.

(iii) In general for AR input signals, the adverse effect of dimension, n, on Ce dimin­
ishes with increasing n.

(iv) For AR modelled voiced speech inputs, the values of Ce indicate considerably 
poorer expected convergence rates than for discrete white inputs. This is due directly 
to the higher autocorrelation levels of voiced speech. The adverse effect of n on Ce 
diminishes with increasing n , although the adverse effect may remain significant for 
relatively large n.

3.7 A sym p totic  Perform ance Analysis

A number of studies have essentially quantified asymptotic performance of the LMS 
adaptive FIR filter in the configuration of Figure 3.1. In this section, rather than 
attempt to carry out our own asymptotic analysis, we review the results of some of 
these previously conducted analyses.

Note that we are considering the asymptotic performance of the original LMS adap­
tive FIR filter system, as opposed to the averaged system. Although the averaged 
parameter vector 9av(k) —*• 0, estimation noise causes the original parameter vector 
9(k) to converge to a nonzero vector.

A measure of asymptotic performance is given by

^[II^M IIz] = ,lim E[\\6(k)\\l] (3.42)
AC— *• O O

where 11.112 is the Euch dean norm. This measure is obtained by studying the evolution 
of E[9(k)$(k)T], the second order moments of 9(k). In order to do this quantitatively, 
however, it is necessary to invoke the following input signal independence assumption.

A ssum ption 7 The input signal vectors U(k) are independent and identically dis­
tributed.

As commented previously, this assumption is not satisfied in the case of an LMS adap­
tive FIR filter system since Uk and Uk- 1 have n — 1 elements in common. However, 

the errors due to the use of this assumption are relatively small if p is sufficiently 
small [71], [75], [76], [77].
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A summary of the quantitative results obtained to date for the performance measure 
of (3.42) is as follows. Note that we do not call upon the validity of Assumption 6 
immediately.

Sum m ary o f A sym p totic  A nalysis R esults

Consider the LMS adaptive FIR filter system introduced in Section 3.2. Let o\ and 
o2s be the variance of the input signal and disturbance signal, respectively.
(a) Suppose Assumptions 1-5, 7 are valid and that p is sufficiently small so that the 

system is convergent.

(b) I f , in addition, to Supposition (a)
(i) the input signal is Gaussian;
(ii) the system satisfies the stationarity condition;

(in) the LMS update stepsize is sufficiently small such that Assumption 6 is valid:

E[9{k + 1 )9{k + 1)T] = E[9(k)9{k)T] Vk (3.43)

p <  1 !(nal) (3.44)

then as derived in [30]

£[IW°°)ll2] = F n a .S
2 (3.45)

(c) If, in addition to Supposition (a)
(i) the input signal is Gaussian 

then as derived in [70], [28]

(3.46)

(d) If, in addition to Supposition (a)
(i) the disturbance is i.i.d 

then as shown in [8]

(3.47)

or (ii) the disturbance is i.i.d and the input signal is Gaussian 
then [8]

- l

(3.48)
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Under Assumption 6, the RHS of (3.46) and (3.48) can be considerably simplified. In 

particular, for (3.46), application of the approximations:
n i n

------ —  = 2 l  + ^ '  +  0 ( ^ ) l ^ n ( l  +  ^ )  (3.49)
* = i  1  “  i= i

- =  + 0 ( f i 2 X f ) ]  ~ f i n a l  (3-5°)

leads to:

£ [ ( l l » o o l l 2 ) 2 ] * .

Note the slight difference between (3.52) and (3.45).

final 1 + Hal
2 -  final

final

(3.51)

(3.52)

Using the fact that:
2 \ 20 < T r(R ') < (nal)

with the result of (3.48) indicates that for Gaussian input signals

finas
- l

2 — finau < ^[(l^oolb) ] < pnas 2 - 3 finau
- l

(3.53)

This result simplifies to (3.52) when the condition of (3.44) is imposed or Assumption 
6 is valid. Finally, (3.47) suggests that when Assumption 6 is valid, the result of 
(3.52) should hold for most input signals which are not Gaussian.

It is important to note that the asymptotic results reported above do not depend on 
the autocorrelation levels of the input or disturbance signals, but only on the vari­
ance of each. There is, however, a strong link between asymptotic performance and 
filter dimension. In particular, asymptotic performance deteriorates with increasing 
dimension, n. For sufficiently small ft such that Assumption 6 is valid, the deterio­
ration is linear in n. When Assumption 6 is not valid, the asymptotic performance 
deteriorates at a considerably faster rate with increasing n.

The above discussion leads to the following result.

Result 5 Subject to the validity of Assumptions 1-7, in order to maintain asymptotic 

performance of the LMS adaptive FIR filter as dimension, n, increases, the update 
stepsize fi must be reduced linearly with n:

flQ
fi = — where uq is a constant. na2s
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Remark:

15. A simplified interpretation of the NLMS algorithm is that it is the LMS algo­

rithm with n normalized via

fJ'LMS 
NLMS =  ------5”

This suggests that the NLMS algorithm shows a similar dimension dependence 

to the LMS algorithm in which p, = plm s  is adjusted to maintain asymptotic 

performance.

Adjusting p according to Result 5 leads to the convergence cost function Ce taking 

the form:

'T r (Ä - ') '
C T 5 =  Ce(t* = =

9azn
2^o
a]n_
2ß0

Lu for large n (3.54)

where Lu is the measure of input signal autocorrelation as given in (3.26), (3.31). 

Thus, for sufficiently large n , C“ss increases linearly with n. For the case in which the 
input signal is an autoregressive process, then, as indicated by (3.32), C^ss increases 
linearly w ith  n , for all (p o sitiv e) n:

,2
&nCaess =

2^o
Lu, for all n (3.55)

It is clear from (3.54), (3.55) that the adverse effect of increasing n depends strongly 
on the autocorrelation level of the input signal. This is demonstrated in Figure 3.5 

which shows plots of
J r  ( R n )  = T t(r - 1) 

n
for unit variance signals generated by the three autoregressive filters of Table 3.2. The 
plot for a white signal of unit variance can not be discerned from the horizontal axis, 

since for such a signal T r(R ~ l) = n. In particular, when n is adjusted to maintain 
asymptotic performance, the cost function for these AR input signals increases with 
n at a rate of 100-300 times as fast as that for a white input signal of equal variance.

The above discussion is summarized by the following.

Result 6 (i) When /r is adjusted to maintain asymptotic performance, the conver­
gence cost function increases (the expected convergence rate decreases) essentially at
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Dimension, n

Figure 3.5: Plot of Tr(Rn i ) vs n for AR inputs of Table 3.2. 

a linear rate with increasing n.
(ii) The rate of increase is proportional to the autocorrelation level of the input signal, 
(in) The rate of increase is of the order of 100 times greater for voiced speech input 
signals than for white input signals of the same signal variance.

3.8  C o n c lu sio n

This chapter analysed the influence of filter parameter dimension and input signal 
autocorrelation on the convergence rate of an LMS adaptive FIR filter to a time 
invariant FIR modelled unknown channel. Averaging Theory was used to simplify the 

analyses. The convergence rate of the averaged system was shown to be dependent 
on the initial conditions of the adaptive filter system. Supposing that all initial 

conditions have equal probability, we proposed that a suitable measure of the expected 

convergence rate over an ensemble of initial conditions is provided by the cost function

T race(Rn l ) 
n

where p is the LMS update constant, n is the filter parameter dimension and Rn is 
the n x n input signal autocorrelation matrix.

Analyses for the case in which p is fixed indicated that
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(a) when the input signal is discrete white, the convergence cost function Ce is 
independent of n;

(b) when the input signal is non-white, the cost function Ct increases (the expected 

convergence rate decreases) monotonically with dimension n towards a finite value, 
which is determined by and increases with the input signal autocorrelation.

When the input signal is described by an autoregressive (AR) model (typically used for 
voiced speech) the cost function, Ce, depends explicitly on the AR parameters, as well 
as on dimension and î . Restricting the analyses to /i being fixed, it was shown that 
for a first order AR modelled input signal, the expected convergence rate deteriorates 
with input signal autocorrelation as well as with dimension. Furthermore, an increase 
in autocorrelation accentuates the adverse effect of dimension and vice versa. For 
higher order AR modelled input signals, an increase in input signal autocorrelation 
may also accentuate the adverse effect of dimension. Plots of Ce for AR modelled 
voiced speech inputs indicate considerably poorer expected convergence rates than for 

discrete white inputs. This is due to the high autocorrelation levels of voiced speech.

In general, for fixed /i, the adverse effect of n diminishes as n increases, although this 
will be less pronounced for higher order AR inputs. This observation is important 
because it suggests that for sufficiently large n, an increase in n may not cause a 
deterioration in the expected convergence rate. For AR modelled voiced speech inputs, 
however, the adverse effect may remain significant for relatively large n.

The cost function was also analysed for the case in which ^ is adjusted to maintain 

asymptotic performance. These analyses indicated that under such circumstances 

the expected convergence cost function increases linearly with n, at a rate which is 
proportional to the autocorrelation level of the input signal. In particular, for highly 
autocorrelated input signals such as voiced speech, when asymptotic performance is 
maintained, an increase in n will cause a significant deterioration in the expected 
convergence rate, even for large n.
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C h a p ter  3 A p p en d ix : A verag in g  Error A n a ly sis

In Section 6 we carried out transient performance analyses on an averaging approx­
imation of the original system. The closeness of the approximation to the original 
system, or the averaging error, improves with a reduction of ft. The averaging error, 
however, may also depend on signal characteristics and/or filter dimension. In order 
to generate a confidence level in the relevance of the transient performance analyses 

of this chapter, we carry out in this appendix quantitative analyses of the averaging 

error.

We begin with a brief heuristic analysis. This is followed with a formal analysis 
in which we quantify the results suggested heuristically. To enable quantification 
- of the effects of dimension and signal characteristics on the averaging error - we 
introduce (i) an ensemble, having given properties, and (ii) an expectation operation 
of the averaging error over the ensemble. The use of such a combination leads to an 

explicit relationship between the expected averaging error and n-dimensional matrices 
involving signal moments. Examination of this relationship follows.

H euristic  A nalysis

The averaging error vector 9av(k + 1 ) — 9(k + 1) is an n-dimensional vector. Therefore, 
depending on the norm used, the averaging error \\9av(k + 1) — 0(fc + l) || will tend to 
grow with n. For example,

lim*—«, ||9av(k + 1) -  9(k + l) ||i  grows like n; 

limjfc—oo ||9av(k + 1) -  9(k + 1)||2 grows like n1/2; 
where ||.||i and | |. ||2 denote the 1-norm and the Euclidean norm, respectively. The 
rate of growth will depend on the signal characteristics.

To determine the signal dependence of the averaging error we begin by combining the 
original and averaged system equations of (3.4) and (3.10) to obtain:

| |ö - ( f c + l)  - 0 ( k +  1)|| = ||A*+1# + B t+1|| (3.56)

< ||AM.10|| +  p t+1|| (3.57)

where:

Ak+ i = (I  -  ßR(k))(I  -  ß R ( k - l ) ) . . . ( I - ß R ( 0 ) ) - (I  -  ßR)k+' (3.58) 

Bm  = [(I -  ßR(k))(I  -  R̂(k- ! ) ) . . . ( /  - P ( 1 ) ) P ( 0 )  (3.59)
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+ ( /  -  aiR(k))(I -  y.R(k -  1))...(/ -  pR(2))fjiP(l)

+ ........

4- (I  -  nR(k))pP(k -  1)

+ i*P{k)]

R(k) = U(k)U(k)T and P(k) = tf(fc)s(fc).

We restrict the heuristic analysis of signal characteristics to the simplified case in 
which there is no disturbance, that is, B^ = 0, Vfc. Expanding the RHS of (3.58) 

leads to:

k—1

Ak = {(-#.*)[!/* E W 0 - Ä ) ] }  (3.60)
t=0

+ { (Mkf l l / k2£  E ( R U ) R ( i ) - R 2)}}
t=0 j=t‘+l

+ ......+ i ( - n k ) k[l /kk (R(k -  1 )R(k -  2)...i?(0) -  Ä*)]}

Assuming fi is sufficiently small, then over a 1 / fi time scale interval:

k G [0, L/fi), L independent of n

the averaging error term ||Afc0|[ will be dominated by:

k— 1
(fik)\\l/k T X R ( i )  — R ) [I, on a time scale l/fi

i= 0

that is, by the second order moments of = u(k)u(k — l). Similarly, it can be 
shown that over a l / f i  time scale, ||5jt|| is dominated by the second order moments 
of pk,l = s{k)u(k -  /).

The averaging error term beyond a 1/^ time scale:

AjQ, j  e [mL/fi, (m -f 1 )L/fi), m > 1 

can be written in terms of the 1 / fi time scale error terms as follows:

Ak+mL/ßO = Ak(mL/ fi)ÖmL/ ß (3.61)
m —1

+ £  ( /  -  i*R)k(I-  ^R )im- i)L,“AL/ 1, k 6 [0, i / M)
t= 0

where

Ak{iL/fi) = { I - n R ( k - l  + i L / n ) ) { I - n R ( k - 2  + i L / i i ) ) - ( I - v R { i L / n ) ) - ( I - n R ) k-
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Thus, beyond a 1 /  p time scale, the averaging error term ||Aj0|| is determined by l / p  

time scale error terms \\Ai^(iL/p)9(iL/fi)\\ and by the rate of decay of \\(I — /j,R)k\\. 
Equivalently, \\Aj6\\j>l/ i_1 is determined by the second order moments of r*,/ and by 
the autocorrelation characteristics of u(k).

Similarly, it can be shown that beyond a l / / i  time scale, 115 j11 is determined by the 
second order moments of and of p^i and by the autocorrelation function of u(k).

In summary, these heuristic considerations suggest that, for sufficiently small p, the 
averaging error:

decreases with a reduction in 
increases with dimension n;
depends on the second order moments of = u(k)u(k — l) and pk,l = s(k)u(k — l) 

as well as on the autocorrelation characteristics of the input u(k).

Form al A nalysis

In this section we quantify the effects of dimension and signal moments on the av­
eraging error, or, more specifically, on the bound given in (3.57). To do this we 
consider the expectation of the bound over an ensemble of systems. The ensemble 
and  ex p ec ta tio n  o peration  are described below.

Ensemble

(i) Each system is n-dimensional.

(ii) The input signal in all systems is a stochastic process defined on the same ergodic 
probability space (12u, £ u, Pu).
(iii) The disturbance signal in all systems is a stochastic process defined on the same 
ergodic probability space (Qs, Es, Ps).
(iv) The Euclidean length of the unknown channel vector ||0||2 is the same in each 
system.

(v) The unknown channel vector, 0, is uniformly distributed around the n-dimensional 
hypersphere of radius ||0 ||2.

Expectation Operation

EiEeimk  +  1) -  eav(k + 1)||]] <  E[Ee[\\Ake\\2}] + £[||B * ||2] (3.62)

where:

Eq[.] is the expectation with respect to 9;
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E[.} is the expectation with respect to the input and disturbance signals. 

Remark:

16. Without a-priori knowledge of the unknown channel vector 9, we should assume 
that 9 has equal probability of lying in any direction, hence the inclusion of 
property (v).

17. The bound on \\9(k T 1) — 9av(k + 1)||, as given in (3.57), is dependent on the 
orientation of 9 with respect to the eigenvectors of Ak- This dependence is 

not of interest to us. Instead, we are interested in how dimension and signal 

characteristics, in general, affect the averaging error. The approach we take to 

enable analysis of this general effect is to take the expectation of the averaging 
error with respect to 9.

The following Theorem provides a bound on each of the error terms

£[£,[||A *0||2]], £ [||£* ||2]

The result involves the Hilbert-Schmidt norm ||.||//s  defined as follows.

Let A £ /J Z n x n  and let a,y be the i j th element of A. Then

' Y n 1 Y'n , a? V /2
\\A\\h s = ^  ^

'Tr(Ar A)' 1/2

n

T heorem  4 Consider the original LM S adaptive FIR system and the averaged LMS 

adapted FIR system described by (3.4) and (3.10), respectively and Assumptions 1-6. 

Let 11.112 , 11.1 | t' 2 and ||.||//s  be the Euclidean norm, the induced Euclidean norm and 

the Hilbert Schmidt norm, respectively. Let Ak and By. be as defined in (3.58) and 

(3.59), respectively and Ak(ko), Bk(ko) be defined as:

A k(k0) = ( I - ß R ( k -  l + k0) ) ( I - ti R ( k - 2  + k o ) ) . . . ( I - ß R ( k o ) ) -

Bk(ko) = [(I -  ß R (k  -  1 + k0))(I -  )iR (k -  2 + k0))...(I  -  n R (l + k0

+ (I — pR(k  — 1 + &o))(/ — pR(k  — 2 + ko))...[I — p R (2 T ko))pP[l  + kg) 

+ .......

■T {I — pR(k  — I T  ko))fiP(k — 2 T ^o)

T p P ( k - l ) ]

Suppose

sup ||i4jfc||i2 +  (1 -  P>^min(R))L/li <  1 (3.63)
ke[0,L/ß)
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Then over the ensemble described by ensemble properties (i)-(v):

E[Ee[\\Ak0\\2}} < sup M £ [ l lE ß ( ')-fi|ltfs ]l|0 |l2  
k€[0,L/ß) i=0

(3.64)

(1 + 2ßp)L/ß-__ —__
+  1 -  (1 -  p \ m i n { R ) ) L / ß J

E[\\Bk\\2] < sup p E ^ P i D W i ]
ke[o,L/n) i- 0

(3.65)

where:

Therefore

where

* {< ■+»+ a w , L "  ■ - -p ": p.t“i ■- I..,«))».}
ß = sup | |Ä( f c) | | i 2  = supTrace(R(k))  

k k

G = E 1/2[\\P(fc)lia supt6[ox/„) £ l/2 [ll Z L o  m  -  fill?;] 
ßsuP*<=[o,L/») £[|| Efc0 (̂01 Is]

sup £[£„[||«(*) -  ^ ( f c ) | |2] = 0 (h (ß ) )  + 0 (63(11)) 
k

(3.66)

bx{p) =  sup /x£[H52 R i l) ~ ä 11hs]1|ö| |2,
ke[0,L/ß)  i- 0

b3(p) = sup ^ j£ ; [ | |^ P ( / ) | |2]
ke[0,L/ß)  I- 0

(3.67)

(3.68)

and E[Ee[\\0(k) — Oav(k )112] is the averaging error measure defined in (3.62).

Proof: See Appendix F.5.

Remark:

18. For sufficiently small p, the supposition of (3.63) will be valid.

19. When p  satisfies the stronger constraint (than that imposed by Assumption 6):

p  <  ß  (3.69)

we have

(1 +  2ß p ) L l ß  ~ e2L0, (1 -  p X m i n ( R n ) ) L / ß ~ e~LXm,n(Rn)
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The bracketted { } term of (3.64) is then

1(1 + 2/3 u)L/“-__ —__
\ (1 + 2 W  1 -  (1 -

which increases with ß/[Xmin(Rn)}, or, essentially, the eigenvalue spread of Rn. 

A similar result holds for the bracketted { } term of (3.65).

32 L0
f>L\m,n(Rn) — ]_

The result of (3.66) indicates that, for sufficiently small the averaging error depends 

on the second order moments of 

k k
J2u(j)u(j -  0 , ; = °, i ,  • • • ,«- i, ke[Q,L/n).
j —o i=o

This is in agreement with the heuristic analysis results of the previous subsection. 

Rather than analyze <$i( )̂ and 63(1̂ ) we will analyze the closely related terms

defined by:

h (n )  >

h in )

sup / i£ 1//2 
ke[0,L//j.)

sup f iE l/2 
ke[0,L/n)

ii ^(o -  r \\h s
L /=o

k
Y.nml

(3.70)

(3.71)

The decision to do this is primarily for ease of analysis, but is validated by the 
following argument. The bound ^ ( aO > <$i(/z) wiU become tighter as the variation 
over the ensemble of

E
w ^ m - f t - W u s  

) l E * = o  Ä ( Z ) -  Ä l l f l s ]
reduces. It is expected that, because of the smoothing effect of the summation within 
the numerator of this term, the variation will reduce as k increases. Now, as we shall 

see, <f>2(^) is essentially determined by

HE1/2
. /=o

with k = Ljfi.

Consequently, if \x is sufficiently small, then the bound <$2(a0  > <$i(/i) should become 
sufficiently tight. Similar comments apply to ^(/z), 64(11).

The following theorem, which extends results of [69], [81], quantifies: ^ ( aO and hif*)-
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Theorem 5 Let ^ (aO and b4(p) be as defined in (3.70) and (3.71). Let rkj  — 
u(k)u(k -  l), Ti = E[rkfi, pkj = s(k)u(k -  /), pt = E[pkfi = 0. Suppose:

(i) fi(uj), the power spectrum of rkj, exists and is twice differentiable at u  — 0;
(ii) gi(oj), the power spectrum of pkj, exists and is twice differentiable at u  = 0. 

Then

h{p)

( Mi ) 1/2 I E ( ! -  ^ ) [2 tt/,(0) + 0 (M /i)1/2]
( /=—n + 1

1/2

(  n — 1 1/2

( A ^ ) 1/2 S  ^ [ ‘̂ ( O )  +  ö ( A i / I ) 1 / 2 ]  >

(3.72)

(3.73)
v /=o

where:
oo oo

2tt/ /(0) =  £ [(r M -  rl)(rk+\m\,l -  »*,)], 2irgi{0) = Y  E [(Pk,l){Pk+\m\,l)]
m = —oo m =  — oo

(3.74)
Furthermore, if 

(in) the limits
N - l + k o

v^cc. l / N  H  (r*.< “  n )(rfc+|m|,/ -  ri) = E [(rk,l -  r|)(rfc+)m|t| -  r,)]
k=ko

N - l + k o

Y  (Pk,l)(Pk+\m\,l) = E[(pk,i)(pk+\m\,i)]
k=ko

exist uniformly in ko, then:

MO) > o, 0,(0) > o, v/

and, consequently, <$2(a0  and ^ (p )  increase with dimension, n.

(3.75)

Proof: See Appendix F.6. 

Remark:

20. The twice differentiability condition on f(u)\u=o requires the existence of:

= - l /2?r  Y  i E [(r k,l — r l ) ( r k+\m\,l -  r i ) ] } m 2,
m =  —oo

A sufficient condition for this is:
ooY \E l(rk,i -  n)(fjfc+|m|,,) — ri)]\m2 < oo, (3.76)

m = —oo

As commented in [69], this imposes a covariance decay requirement on rtj. 
Similar comments can be made concerning g(u) and pkj.
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As indicated in (3.74), 27r//(0) and 27r<7/(0) are determined by summations of the 

covariance sequences of and pk,i, respectively. Thus, 27t/ /(0) and 2irgi(0) will 

tend to decrease as the covariance sequence/second order moments of and pkj, 

respectively, decay more quickly to zero.

This comment together with the results of Theorem 5 suggest the following:

R esult 7 1. The expected averaging error as defined in (3.62) will increase as the 

second order moments of Tkyi =  u(k)u(k — l) and pkj = s(k)u(k — l) decay more slowly 

to zero.

2. The expected averaging error will increase with dimension. This effect of dimension 

will tend to be accentuated by a slower rate of decay of the second order moments of

rk,l and p k,i.

3. The expected averaging error will increase like p 1/ 2.

The following Theorem considers the particular case of u(k) and s(k) each having a 

Gaussian probability distribution.

T heorem  6 Let ^ { p )  and b4(p) be as defined in (3.70) and (3.71). Let the sequences 

u(k) and s(k) associated with 62{p) and b4{p) have autocorrelation functions given by 
Bq = E\u(k)u(k — q)] and Dq — E[s(k)s(k — q)], respectively.
Suppose:

(i) u(k) and s(k) each have a Gaussian probability distribution;

(ii) the autocorrelation functions of u(k) and s(k) are each bounded above and below 

by an exponentially decaying function:

\B,\ < BaM,\Dq\ < DaM 

where B = Bq\q=0, D = D q\q=0 0 < au,a $ < 1.

Then

hit*) < (pnBL) l/2{

+ O W L )1' 2}1'

g -(i - Ĵ) ( m » i w +(=tr+ i n  nV >

2

S4(p) < ( p nBDL )1/21
1 + auas

+ 0 ( M/ i ) 1/2
1/2

(3.77)

(3.78)
. 1 ttu Qg

with equality when u(k) and s(k) are each described by first order AR (ARl(a))  pro­

cesses:

Bq =  Rajfl, Dq = DaJ,9', - 1  < au,as < 1.
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L is a constant independent of p.

Proof: See Appendix F.7.

Plots of the bracketed term '[ ]' on the RHS of (3.77) over n for various values of au 

are shown in Figure 3.6. These indicate, together with (3.78) the following:

Result 8 When the input and disturbance signals are Gaussian the effect of dimen­
sion on the averaging error factors ^ {p ) and b4 (p) is accentuated by a slower decay 
rate of the autocorrelation functions of these signals. In particular, when both auto­
correlation functions decay exponentially, 6 2 (p) and 6 4 (p) grow like n1/2, the rate of 
growth increasing considerably with greater autocorrelation of each signal.

au-0.9

au=0 8

Dimension, n

Figure 3.6: Plot of bracketed '[ ]' of ( 3.77) over n for various au - autocorrelation 
decay rate.

Su m m ary

In this appendix we analyzed the error ||0(fc) — dav(k)H2 due to the averaging ap­
proximation made in Section 4. To enable quantification of the effects of dimension 
and signal characteristics on the averaging error, we considered the expectation of the 

averaging error over a defined ensemble of systems. It was shown that, for sufficiently 

small p , the expectation value was bounded by a function which depended largely on
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the second order moments of Ylj=o u( j )u{j ~ SU)UU ~ 0  over a 1/fi time
scale. An explicit relationship was derived between the bound and these second order 
moments. It then followed that the bound increases:

(i) when the second order moments of = u(k)u(k — l) and pk,l — s(k)u(k — l) 
decay more slowly to zero;

(ii) with dimension, n;
(iii) like fi1/2.

For the particular case of u(k) and s(k) each having a Gaussian probabihty distribu­
tion, it was shown that the adverse effect of dimension on the averaging error bound 
is accentuated by the autocorrelation functions of u(k) and s(k) decaying more slowly 

to zero. More specifically, when the signal autocorrelation functions decay exponen­

tially to zero, the bound increases like n1/2, the rate of increase growing considerably 

as the autocorrelation functions decay more slowly.

The results above suggest that, in order to maintain a sufficiently small averaging 
error when moving from a relatively low dimension LMS/FIR system to a relatively 
high dimension LMS/FIR system, the size of /i should be reduced - particularly when 
the input and disturbance signals are such that the second order moments of and 
Pk,i decay slowly to zero. In the particular case of Gaussian signals, the size of p 
should be reduced according to

1

where C(constant) is dependent on and dramatically increases with the autocorrela­

tion of the signals.

These results indicate that in order that the transient performance analyses of Sec­
tion 6 remain relevant to the original system, the size of p should be reduced as the 
dimension n increases. It may be felt that this requirement detracts from the useful­
ness of the transient performance results. However, as indicated in the asymptotic 
performance analyses, a similar reduction in p is necessary to maintain asymptotic 
performance as dimension increases. It should be added, though, that the rate at 

which n needs to be reduced, so as to maintain the same averaging error, increases 

with more slowly decaying fourth order signal statistics. The maintenance of asymp­

totic performance, in contrast, is dependent only on the power of the disturbance 
signal.
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C h ap ter  4

Analysis of the LM S/FIR  Filter 
in Closed Loop Echo 
Cancellation

4.1 Introduction

In the previous chapter we analyzed the dynamics of the LMS adaptive FIR filter in an 
open loop configuration. In effect, we considered only one end of an echo cancelling 
network and ignored the existence of the other end. In particular, we ignored the 
possibility that, due to the echo path at the other end of the network, the input 
signal u(k) may contain a filtered (and delayed) version of the output signal y(k). 
As might be expected, the existence of this feedback may lead to instability. It may 

also lead to the transient performance and asymptotic performance of the adaptive 

filter being more adversely affected by increasing signal correlation levels and/or filter 
dimension.

In this chapter, we carry out analyses which take into account this feedback. More 
specifically, we analyze the dynamics of the closed loop configuration of Figure 1.6 in 

which an unknown channel and a neighbouring LMS adaptive FIR filter are located 

at each end of the loop. Such a configuration is representative of the echo cancellation 

network of Figure 4.1, where the unknown channels are the echo paths located within 

the 2 to 4-wire hybrid or acoustic enclosure and the driving signals, s\(k), S2 {k), are 

the subscriber signals (speech and/or noise). The closed loop system we consider also 

allows for additive noise, ni(k), ri2 {k) in the linking channels of the loop.

To reduce verbosity and simplify notation we will assume that the closed loop is an
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A B

+ y,(k;

9 2 Subscriber 2Subscriber 1 0

Figure 4.1: Double echo canceller network.

echo cancelling network which is being driven by subscriber signals. Of particular 
interest is the effect of the subscriber signal correlation levels and the dimension of 

the adaptive echo cancellers on the performance of the double echo canceller (DEC) 
system. By performance we mean the ability of the echo cancellers to suppress echoes 
generated by both echo paths.

The dynamics of the DEC system are nonlinear in nature and, in general, consid­
erably more difficult to analyze quantitatively than the dynamics of the open loop 
system of Chapter 3. In order to carry out dynamical analyses we either invoke a 
number of simplifying assumptions or attempt only semi-formal analyses. Neverthe­

less, the results provide a very useful understanding of the effects of subscriber signal 

correlation levels and, to a lesser extent, echo canceller dimension on the performance 
of the DEC system.

The outline for the chapter is as follows. We begin in Section 2 by heuristically 

analysing the dynamics of the DEC system to highlight the effects of the feedback 
structure on performance. This is followed by a brief review of the results of studies 

conducted on closed loop systems similar to the DEC system being considered. After 
developing the system equations in Section 3, we carry out a semi-formal analysis 
in Section 4 on the DEC system to gain a semi-quantitative understanding of the 
effects of subscriber signal correlation levels and echo path/canceller dimension on
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performance. To enable quantitative analyses to be carried out, we then consider a 

simplified DEC system in which the time invariant echo paths and adaptive echo can­

cellers are single tap FIR filters. The analyses carried out lead to the determination 

of bounds on the subscriber signal correlation levels within which good performance 

is obtained. In Section 6, with the aim of obtaining an explicit equality relationship 

between DEC performance and subscriber signal correlation levels, we conduct rig­

orous dynamical analyses on the single tap DEC system in which the transmission 

channels impose a single sample delay and the subscriber signals are assumed to be 

first order autoregressive processes.

Note: Appendix I lists the assumptions made in this chapter and other chapters.

4.2 H euristics and Literature R eview

In this section we heuristically analyse the DEC system to gain some insight into the 

effects of the feedback structure on performance. We follow this with a brief review 

of analyses conducted on the DEC system or similar closed loop adaptive systems.

Consider Figure 4.1 and, in particular, the end of the DEC system near subscriber 1. 
(We will ignore the channel noise signals, nj and ri2 .) In its attempt to minimize the 
residual echo in y\, echo canceller EC1 interprets any part of the transmitting channel 
signal, v\, which is cross correlated with the receiving channel signal, y2 , as being part 

of the echo. However, v\ contains not only the echo, Z\, but also the subscriber signal 

s \. Thus if Si and t/2 are cross correlated, the echo canceller will adapt incorrectly. 

Signal y2 largely contains s 2 - Consequently, if Si and S2 are cross correlated, we would 

expect biased adaptation. Also, y2 contains an attenuated version of yi, as a result of 

leakage via the far end echo path (EP2), and therefore contains an attenuated version 

of 5 i. Thus biased adaptation of EC1 may also occur if s\ shows a sufficiently broad 

autocorrelation function. A broad autocorrelation function of 32 and significant cross 

correlation levels between s\ and S2 niay, similarly, cause biased adaptation of EC2. In 

summary, the feedback configuration of the DEC system has the potential for causing 

poor asymptotic behaviour not only when the subscriber signals are cross correlated, 

but also when the such signals show sufficiently broad autocorrelation functions.

The transient performance of either echo canceller in a DEC system, as quantified in 

Chapter 3, is dependent largely on the autocorrelation level of the input signal. With 

the feedback characteristic of the DEC system, the input signal is composed not only
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of the far end signal just transmitted, but also possibly of one or more delayed and 
filtered versions of the far end signal and/or near end signal. This suggests that poorer 
transient performance may occur with an increase in the autocorrelation level of one 

or both subscriber signals and an increase in cross correlation of these signals. As 
indicated by the analyses of Chapter 3, an increase in dimension of the echo cancellers 

should accentuate this signal dependence.

Various authors have carried out analyses to quantify these effects, particularly that 

pertaining to asymptotic performance. Earlier analyses [24], [21] considered closed 
loop adaptive echo cancelling systems in which only one of the closed loop ends 
was adaptive, the other end being modelled as a fixed attenuation. These analyses 
showed that unstable/bursting/poor asymptotic behaviour may be caused simply by 
large differences between the power of the subscriber signals. Later analyses [21], 
[22], [82] considered closed loop systems in which both ends were adaptive - that is, 
the DEC system we consider. The analyses indicated that stable/good asymptotic 
behaviour was achievable in this system under a greater range of circumstances. In 

particular, when the transmission channels impose a delay of at least one sampling 

interval it is shown that, for sufficiently small good asymptotic performance is 
obtained if subscriber signals are zero mean white noise [82] or sufficiently rich and 
uncorrelated with each other [22], It is also indicated in [22] that the convergence 
rate is exponentially fast at a rate bounded below by

(1 -  mm{/iXmin( R ^ ) } ) k, i — {1,2}

where R̂ n is the n x n autocorrelation matrix of the ith subscriber signal.

In the analyses we carry out in the following sections, we strengthen and extend these 

results. We examine the case in which the subscriber signals are cross correlated as 

well as uncorrelated with each other. We quantify asymptotic and transient perfor­

mance in terms of cross correlation and autocorrelation levels of the subscriber signals 
and, to a less extent, dimension of the echo paths/cancellers.

4.3 System  Equations

In this section we develop the equations which describe the dynamics of the DEC 
system of Figure 4.1. We assume that both echo path/echo canceller pairs satisfy 

Assumption 1 of Chapter 3. That is, the echo paths are time invariant FIR filters 

with a tap length of n and the echo cancellers are LMS adaptive FIR filters also with
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a tap length of n. Furthermore, the echo cancellers have zero initial conditions. We 
assume all signals are sampled. At sampling instant k subscriber 1 (2) sends signal 

si(k) (s2 (k)) while receiving a delayed version of the signal y2 {k) (yi(k)); additive 

noise n\(k) (ri2 {k)) occurs within the transmitting channel of subscriber 1 (2). The 
echo paths E P  1, E P 2 and echo cancellers EC  1, EC2 are parametrized by the n-tap 
coefficient vectors

We make the following additional assumptions regarding the DEC network. 

Assum ption 8 Each echo path is attenuating, that is:

where || j|i is the 1-norm.

A ssum ption 9 Both transmission channels of the DEC system loop ( i.e. channel 
A —► B and channel C —* D of Figure 4 A) impose a transmission delay of d > 1 
sample intervals.

1. Any difference Ad  between the sample delays imposed by the transmission chan­
nels can be allowed for by assuming that the first Ad coefficients of the appro­
priate echo path vector are zero.

2. Under the highly unlikely condition of zero transmission delay, d = 0, the DEC 

systems forms an algebraic loop, which, in turn, increases the tendency of the 

system to show unstable/chaotic behaviour. See, for example, [22] for a more 

detailed discussion.

The signals received by subscribers 1,2 are, respectively:

E P  1 :  0! = ( 0 , , o 0 i ,i 0 i , 2 - 0 1, „ - i )T

EP2: 02 =  (02,0 02,1 0 2 ,2 -0 2 ,n—i f  

EC1:  e,(k) = (0,,o(*O 0U (fc) 0,,2(i)...0 i,n -i(i))r

EC2:  e2(k) = (02,o(fc) 02,l(fc) 02,2 (* ) . . .0 2,n—i(fc ))T .

I|0i111 < l> l|02||i < 1 (4.1)

Remark

yi(k) = s ^ k )  + ni(k) + O^k)7 <p2,k (4.2)
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(4.3)y2(k) =  s2(k) + n2(k) + 62(k)T ipltk

where Ö\(k) = 0\ — Oi(k), 02(k) = 02 -  02(k)

<t>i(k) = (yi(k -  d) yi(k -  d -  1) ... yx{k -  d -  n + l))r

<p2(k) = (y2(k -  d) y2{k -  d -  1) ... y2(k -  d -  n + 1))T

Applying the LMS algorithm to the echo cancellers leads to the following update 
equations for the residual echo parameters, 9{(k):

dx(k + 1) = 0i(k) -  p(yi(k) -  ni(k))<fr2(k) (4.4)

02(k + 1) = 92(k) -  n(y2(k) -  n2(k))<f>i(k) (4.5)

where we have assumed the same LMS adaptation constant is used in both echo 
cancellers. As remarked in Chapter 3, /i should be chosen such that

ß<<mm{^WY^(k)} ( 4 - 6 )

where ö\(k),ö\{k)  is an estimate of the variance of yi(k),y2(k), respectively. 

Equations (4.2)-(4.5), together with the initial conditions:

01(O),02(O),01(O) = 0!,02(O) = 02 (4.7)

describe the dynamics of the DEC system driven by external signals:

s i(k), s2(k) ,n i (k) ,n2(k)

The dynamics are clearly nonlinear in nature.

4.3.1 Signal A ssu m p tion s

Assum ption 10 The subscriber and channel noise signals are bounded and station­
ary so that the limits:

. N  — 1 + ko
AVsisj(i) = lim 1/A s i ( k ) s j ( k  — l), Vfc0,V7 t , j  = {l,2} (4.8)

v ’ N  —>oo
k=ko

N - l+ k o
A vninj(l) = Jim  1/A Y  ni(k)nj(k -  / ) ,  Vfc0,V/ i , j= { l ,2 }  (4.9)

J ^ ° °  k=ko
N - l+ k o

Avsinj ( i )  = Jim  1/A Y S i ( k ) r i j ( k  -  / ) ,  Vfc0,V/ i , j =  {1,2} (4.10)
N  —+oo . — ,k=k$

exist.
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We also make the following assumption to simplify the analysis.

A ssum ption  11

(ct) Avninj(i) 

( 6) Avn{sj ^

f i i jQi  l =  0

0 otherwise
0 V/, i , j  = {1,2}

Remark:

3. Considering the typical characteristics of noise, Assumption 11(b) is most plau­
sible. The validity of Assumption 11(a) requires the channel noise to be ‘white’.

4.4  A n a ly s is  for F IR  E cho P a th s /E c h o  C an cellers o f  
A rb itra ry  D im en sio n

In this section we present a semi-formal analysis of the dynamics of a DEC network in 
which the echo paths and echo cancellers are n-tap FIR filters, as opposed to the single 
tap FIR filters to be considered in the subsequent sections. The aim is to develop an 
understanding of the requirements of the subscriber signals for such high order DEC 
systems to perform well. The system equations which describe the dynamics of these 

higher order DEC systems are those of (4.2)-(4.5). To simplify the analysis, we will 

assume that channel noise is absent. Initially, we specialize to subscriber 1.

Combining (4.2)-(4.5) leads to:

0i(fc + l) = 0i(fc) - /4<si(fc)<fo(A:) + (Öi{k)T<fi2(k))<p2(k)}

= [i -  ti<p2{k)4>2{k)T]ex(k)

—fisi(k)[4 >i(k — d)T02(fc — d) 4>\{k — 1 — d)T02(fc — 1 — d)

. . .  4 >\{k — n + 1 — d)T6 2 {k — n -f 1 — d)]T

-fisi(k)[s 2 (k — d) S2 (k -  1 — d) ... 32(A: — n + 1 — d)]T (4.11)

If ^ is sufficiently small then 02 ( and £?i) will vary slowly with time and we may 
approximate <?2(fc — j ) by ^2(A:), where d < j  < n — 1 — d. As 0(k) = (0\(k) ^2(fc))r  
is slowly varying, and y(k) = (y\(k) y2 {k))T is essentially signal driven, we may 

approximate the 0 update equation by averaging the signal dynamics. ( This is
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essentially what is done in the application of Averaging theory in Sections 5,6.) The 

resulting update equation is:

/  6 > i ( f c + l ) \  _  /  I  -  f iAv {$2{k)) - f iA v ( s i ( k ) ^ i ( k  -  d)) \ f  Oj{k) \
\ 9 2( k + l )  )  \  - i iAv(s2{k)'H2{k -  d)) I  -  nAv($ i (k ) )  )  ^ 62{k) )

(  - f iA v { s i ( k )T 2(k)) \  
V -ß A v (s 2(k )T 1(k)) )

(4.12)

where:

$i {k)  is the n X n correlation matrix <&(&)<£,(&), 

i ( k ) is the n X n m atrix (<f>i(k) 4>i(k — 1) ... <pi(k — n + 1));

T i (k)  is the n x 1 vector (s{(k — d) Si(k -  1 — d) ... S{(k — n -f  1 — d))T 

wi:h i =  1,2;

Av(x(k))  =  1/M IZfclö1 M  >  1*
( Note that the averaged factors involving y\ or y2 are still 0\ and 02 dependent.)

Consider (4.12) rewritten as:

9(k + ! )  =  ( / -  A(0(k)))Ö(k) + 6, §(k) = (# !(*) e?(k))T

where the form of A(0(k))  and b can be easily ascertained from (4.12). Assuming that 

A is invertible, the asymptotic value of 0(k) is given by:

lim e(k) =  9«, *  (A(#05) ) - 16
k—* oo

The presence of cross correlation between the subscriber signals results in the bias 

term, b, being nonzero and, thus, causes the residual echo parameter vector to con­

verge to a nonzero asymptotic value. As a consequence, echoes within the DEC 

system w ill never be completely cancelled.

Broader autocorrelation functions of the subscriber signals result in an increase in the 

off diagonal terms of the m atrix A , that is:

Av yi{k—d)yi(k—l —d)), 1 < / < n — 1; Av(si(k)yi (k—j —2d)), 0 < j  <  2(d -f n — 1) 

Th:s tends to lead to:

(a) an increase in the gain of the m atrix A -1 and, thus, in the presence of cross 

correlation, results in 0^  lying further from the origin;

(b) slower convergence of the echo parameter vector, 0(k), to its asymptotic value.

In order to quantify more strongly these conclusions we apply the analysis techniques 

outlined in Appendix A. This leads to the following result.
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Result 9 Under the assumption of no undermodelling (Assumption 1), the residual 

echo parameter vector 8(k) will uniformly contract to within an 11 ball B : \\0\\i < B 
at an exponential rate:

( I I W I I i  ~ B ) <  ( l - p v ) k9(0)

If

0 < v <

and 0 < v < 

where

min min {AviyAk -  j  -  d)yt(k — j  -  d))
*'=1,2 j€ [0 ,n —1]

"n—1

Y  IAv(yi(k - m  -  d)yi(k -  j  -  d))| + \Av(sl(k)yi(k -  j  -
.m —0

i/m

(4.13)

m -  2d))\ }

(4.14)

a  Ej=o1{!^v(5i(^)'s2 (fc ~ j  ~ rf))| + IAv(s2(k)sl (k -  j  -  d))|}
B =  — -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

v (4.15)

Remark:

4. Since the averaged factors involving y\ and yi are dependent on 9\ and 62, the 
conditions of (4.13) and (4.14) implicitly restrict the results to some domain D 
in residual echo parameter vector space:

D : 0(k)J{k)  G D,  Vfc.

This domain may be, in fact, of zero size.

The signals y\ and z/2 largely contain the subscriber signals S\ and s2 , respectively. 

Combining this relationship with the result above leads to the following remarks.

Remark:

5. Subscriber signals showing broader autocorrelation functions tend to lead to 
the upperbound on v, as given in (4.13), becoming lower and even becoming 
negative. This suggests that more highly autocorrelated subscriber signals will 
show, for a given value of p, slower convergence or may even show nonconvergent 
behaviour.
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6. Assuming condition (4.13) is satisfied so that v > 0, then (4.15) suggests that 

when the subscriber signals are uncorrelated with each other, the residual pa­
rameter vector 0(k) will converge to the origin thus resulting in unbiased or 
‘optimal’ asymptotic echo suppression within the DEC system. On the other 
hand, cross correlated subscriber signals tend to lead to incomplete or biased 
asymptotic echo suppression. The degree of bias increases not only with cross 
correlation but also with increasing autocorrelation which acts to decrease the 
denominator v in (4.15).

7. For a given level of autocorrelation and cross correlation of the subscriber sig­
nals, an increase in the dimension n of the echo paths/echo cancellers leads to 

the bound on v decreasing and B increasing. That is, poorer transient and 
asymptotic performance. This adverse effect of dimension is accentuated by 
greater correlation within and between the subscriber signals.

8. The autocorrelation and cross correlation functions of zero mean signals decay 
towards zero as the lag index increases. Combining this with the comments 

above and Result 9 suggests that the adverse signal correlation effects on per­
formance decrease as the transmission channel delay d increases. In particular, 
Result 9 suggests that the asymptotic bias vanishes when the cross correlation 
function of the subscriber signals decays to zero before lag l = d + n. Fur­
thermore, when the subscriber signals’ autocorrelation functions are sufficiently 
narrow and the delay d sufficiently large, then the term

n —1
\Av(si(k)yi(k -  d -  j  -  m))|

m = 0

of (4.13) also vanishes. In this case, the conditions of (4.13) and (4.14) resemble 
the equivalent /i norm conditions of a pair of decoupled open loop systems of 

Chapter 3.

4.5 A nalysis o f Single Tap Echo P aths/C ancellers

With the aim of obtaining a more quantitative understanding of the effects of sub­
scriber signal correlation than that provided in the previous section, in this section 
we carry out formal analyses of a simplified DEC network in which the echo paths 
and echo cancellers are single tap FIR filters:

0i = (0, 0...0)T; i = {1,2}
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e,(k) = (9,(k)0 . . .Of ;  « = {1,2}

We begin by considering the situation in which there is no cross correlation between 
the subscriber signals. This is typical of speech. To complete the analyses, we then 
consider the case of non zero cross correlation between the subscriber signals. In both 

cases we focus on the case in which the transmission channels impose single sample 

delay, d = 1. The results are then extended to include longer sample delays.

To enable application of standard analysis techniques (described in Appendix A), we 

use the Averaging Method, discussed in Appendix B, to develop a set of relatively 
simple equations whose solution approximates that of the system equations. Prior to 
developing these equations, we identify a domain in residual echo parameter, 9, space 
to which the averaging approximation must be restricted. Our ultimate aim is to 
identify conditions under which the residual echo parameters, 9\(k), 02(fc), converge 
as closely and as quickly as possible to 9 = 0 and hence yield good echo cancellation.

4.5 .1  S y stem  E quations

The system equations of (4.2)-(4.5) for the single tap DEC system with transmission 
channel delay d = 1 take the simplified form:

9\(k + 1) = 9x(k) -  fi{yi(k) -  ni(fc))y2(fc -  1) (4.16)

H k  + 1) = 92{k) -  ^(y2{k) -  n2(k))y1(k -  1) (4.17)

yi{k + l) =  Si(k T  1) + 7ii(fc + 1) + 9\(k T  l ) y 2( ^ ) (4.18)

V2(k + 1) = <s2(fc + 1) -T Ti2{k + 1 ) - } -  6*2(fc + l)yi(k) (4.19)

while the initial conditions of (4.7) become:

yi(O),y2(O),0i,02 (4.20)

4.5 .2  D om ain  of A nalysis

To determine the domain D in residual echo parameter space over which the Averaging 
Method may be applied, consider (4.16),(4.17) with ( 4.20) rewritten as the matrix 
equation:

9{k + 1) = 9(k) -  nf(9(k),y(k)); 9{k -  0) = (9, y(k = 0) = y(0) (4.21)
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where

m
f { 6 (k),y(k))

(  0 i(k)
V h ( k )

y{k) =
(  yi(k) \  .V V2( k)  )  ’

(  y(k)) \  _  (  (yi(k) -  ni(k))y2(k -  1)
V f 2 0 (k), y(k)) )  \  (y2(k) ~ n2(k)) yi(k -  1)

(4.22)

(4.23)

and (4.18),(4.19) with (4.20) rewritten as the matrix equation:

y(k + 1) = g(k + 1) + G(0(k + l))y(k); y(k = 0) = y(0), 9[k = 0) = 9 (4.24)

where 7 - N

>(t> -  (  ^  )

The averaging method deals with equations of the form:

9(k+ 1) = 9 ( k ) -  nf (9(k) ,k)

We massage our problem into this form by approximating y(k) in (4.24)) by a signal 
vector, y(k,9(k)) where, y(k) is defined by:

y(k + l , z )  =  g(k + 1) + G{z)y{k,z)\ y(k = 0) = 2/(0) (4.26)

where 2 = {z\ z2)T is constant. y(k , z) is well defined provided G(z) is a stable matrix, 
that is: \z\z2\ < 1. Comparing (4.26) and (4.24) it can be seen that £(fc,0(Je)) is a
good approximation for y(k). Indeed, as shown in Appendix G.l:

\y(k, 0(k)) — y(k)\ = on a time scale \/[i (4.27)

provided:
(a) [i is sufficiently small, and

(b) G(9(k)) is a stable matrix for every 0(k), on a time scale 1 / ß.

Condition (b) requires 9 to be restricted to the interior of the domain,

D : \0i(k)92(k)\ < 0  < 1, on a time scale l / n

Assuming is sufficiently small, this is guaranteed by the validity of Assumption 8.

Replacing y(k) in (4.21) by y(Ö(k)) then yields:

9{k -f 1) = 0(k) — nf(9(k) ,  y(k, 9(k))) + 0 (^ 2), on a time scale 1 / fi (4.28)

For the first order approximation on /j,, the second term is irrelevant and can be 

ignored. Equation (4.28) is in the form suitable for the application of averaging.
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4 .5 .3  A veraged R esidual Echo P aram eter U p d ate  Equations

We will now develop the averaged parameter update equations.

Combining (4.26) and (4.28), and specializing to B\ results in:

0i(fc + l) = <9i(fc)-/i/i(0(fc),fc), 0l {k = 0) = 01 (4.29)

k) = Öi (k)y2(k -  1, Ö(k))y2(k -  1,0(k)) + Si(k)y2(k -  1 ,0(k)) (4.30)

Applying the Averaging Method yields:

$lv(k + 1) = Ö$v(k)-  ß/r(i 0l"(k = 0) = (4.31)

/ r ( « ov) = »T Avm m ( r ”) + (4.32)

where
M —1

^ y 2y2(/)(z) = Hm 1/Af Y  V2(k,z)y2(k -  l ,z),  (4.33)
v '  M  —+oo f— 4

k=0
Af—1

^ siS2 (l)(2) = ,ym 1 / M ^ 2  s i ( k ) y i ( k - l , z )  (4.34)
M - o o

with 2  constant in the summations.

A similar set of equations can be obtained for + 1). According to Averaging
Theory (see Appendix B), the solution, Öav(k) = (0^v(k) v(k))T, to the averaged
equations approximates Ö(k) = (Öi(k)Ö2(k))T to within an error given by:

\Ö(k) — Öav(k)\ = 0(<5(//)), on a time scale l / n  (4.35)

S(fi) = sup sup fi\ Y  /(#> m ) ~ f avW I (4.36)
§ € D k e [  0, 1/ m) m = 0

with /  = ( /i  f 2)T, f av = (f*v f 2v)T as given in (4.30), (4.32), respectively, and the 
Ö2,Ö2V equivalents. Furthermore [78], if the averaged system has an asymptotically 
stable equilibrium within the domain D then the approximations hold on an infinite 
time scale.

Remark:

9. 6([i) is related to the stationarity of the signals and will be smaller when the 
signals show greater stationarity over the convergence window of the LMS al­

gorithm.
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4.5 .4  Zero C ross C orrelation  A nalysis

In this section we make the additional assumption: 

A ssum ption  12 Ausls2(/), Avs2sl(/) = 0, V/ 

Remark:

10. Assumption 12 is typically valid for the case in which s\(k) and S2{k) are dif­

ferent speech signals.

By employing (4.26), and specializing initially to 9l5 it can be shown that:

A V y 2 y 2 ( 0 ) { z U  z l )  =  i"“ / " ~ 2y 2 2 2 * l ^ v s l y 2 ( l ) ( 2 l > 2 2 )

+2z2z1Avs2y2{2)(z1,Z2)

-f z| ( A us1s1(q) +  Aun ln l (0))

+A us2s2(0) 4- Aun2n2(0)]
OO

Ä V s i y 2 ( i ) ( z l ,  Z2 )  =  y ^ ( - Z l Z 2 ) n [-?2 A u s l s l (/_|.1+ 2n )]

n = 0
00

Au52y2(/)(2 i, z2) = J 2 ( z 1z2)n[Avs2s2(i+2n)]
n = 0

(4.37)

(4.38)

(4.39)

Combining (4.37)-(4.39) with (4.31),(4.32), and doing the same for the equivalent 
equations involved in the update of 92v(k), we find that the adaptation of the averaged 
residual echo parameters is given by the following matrix equation:

o n k  + i)
92v{k + 1)

1 -  (ö22(tffc) + 722( 9 k ) )  ~ ( ß l l ( 9 k )  + V l l ( ^ k ) )  

-(fe(tffc) + V22(ök)) 1 -  (<*n(tfjfe) 4- 7n(^it))
9\v{k)
92v(k)
(4.40)

where

®ii($k)

ßiWk)

Vn(tik)

^ ( k ) e r ( k ) ;

ß
1 -  ( ^ ) 2

[A u SjSt(o) 4“ ^  ' A ^ k )  2^A;Austsq2-j-2n)]
n = 0

(4.41)

I _  (dk)2 (^^)2)Austst(2+2n)] (4.42)

I — ky  ^ Vnini{°) (4-43)

2 ^k 4^nini(0) (4.44)
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with i = {1,2}.

Standard analysis of (4.40)-(4.44) leads to the following theorem.

Theorem 7 (1) Consider the single tap, single delay DEC system described by (4-18)- 
4-20) and Assumptions 1,8-11. (See Appendix I for a listing of Assumptions). Let 
II.Hj denote the 1-norm. Suppose:

(a) Assumption 12 is valid;

then, 3 p* > 0 such that Vp E [0,/z*] the averaged update equations (4 -40)-(4 -44) 
are valid.

(2) Consider the “averaged” system described by (4 -40)-(4 -44)- Let Q; be as defined 
in Assumption 11. Suppose, in addition to Supposition (a):

(b) ||(0i,02)||i < 2(G)1/2, fo r some Q e [0,1);
(c) p < p*;
(d)

I^ st 5 i(l)l < -ßtT- i = {1,2}, where 0 < r; < 1, Rt = Avsisp0) (4.45)

If, in addition,

» < +Q.]
1 ri?i(l — r 2(l + 20)) 

v < m m T T ^ P — r -----~  + Qi\
=1,2 1 +  0 1 — 0 r 2

for some 0 < v < l /p

(4.46)

(4.47)

then,
(i) the “averaged” system will remain stable and the “averaged” parameter vector 
(9\v{k) 02V(k))T, will converge to the origin at a rate bounded above by

(ii) the original system will remain stable, and its parameter vector, (Ofik), 02(k))T , 
will remain in the domain defined by

D0 :\9i(k)S2(k ) \<Q,  Vk

and converge to within a neighbourhood, 0(S(p)),  of the origin, where 6(p) is the 
averaging error as defined in (4-36).
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Proof: See Appendix G.2.

Theorem 7 refers to a DEC system in which there is a single sample delay along both 

transmission channels of the DEC system. The following corollary allows for an equal 

but arbitrary sample delay along each transmission channel, i.e. A —► B and C —* D 

of Figure 4.1.

Corollary 1 Consider the DEC system of Theorem 7, but with the relaxed assump­
tion that the transmission channels of the DEC system cause a delay of d sample 
intervals. Assume suppositions (a)-(d) of Theorem 7 are valid.

If

p  <  

v <

m in(l -  e2)/[^  ■+;g t f- ) +  Q.} 
1 =  1 ,2

min
1

1 —  0 rfd 
Ä ,( l - r ? d(l + 20))

i=i,2 1 +  0 1 1 — Qrj"' +  Q,]

for some 0 < u < l /p

(4.48)

(4.49)

then (i)the averaged system and (ii)the original system will exhibit the behaviour de­
scribed in Theorem 7, (i) and (ii), respectively.

Proof: Trivial extension of the proof of Theorem 7. 

Remarks

11. Supposition (d) of Theorem 7 requires only that the autocorrelation functions 
of the subscriber signals s \(k ) and 52(k) are bounded above and below by ex­
ponentially decaying functions. Clearly, broader autocorrelation functions lead 
to larger values of r\ and r2 .

12. For smaller values of rt- and 0 , the upperbounds on p and u in (4.46) and (4.47) 

are larger. This suggests that a DEC system is more likely to remain stable 
and the residual echo parameter vector, (6*i(&), 02(k))T, converge more rapidly 

towards the origin when:

(a) the autocorrelation functions of both Si(k) and s2(k) are narrower;

(b) the tap coefficient vectors of the FIR echo paths he closer to the origin. 
Similar comments hold for (4.48) and (4.49).

13. The presence of noise causes the upper bound on p to decrease. This indi­

cates that as noise is introduced, smaller p may be required if the condition of
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either (4.46) or (4.48) is to be satisfied. The presence of noise, on the other 
hand, causes the upper bound on u to increase which improves the likelihood 
of stability and the transient performance.

14. 6(ß)i because of its dependence on signal stationarity, is affected by the presence 
of noise. In general, 6(fi) (and, therefore, the size of the neighbourhood around 
the origin to which the original echo parameter vector, Q(k), converges) increases 
with the introduction of noise.

15. The condition in (4.47) or (4.49) is not satisfied if:

Qi  , r?(l + 20) -  1 Q, r,2|J+1)( 1 + 20) -  1
R, 1 -  0r? ’ Rt ! _  0r2(<*+i>

or, in the noiseless case, if:

r? > 1/(1 + 20) or rt2(d+1) > 1/(1 + 20)

respectively. Although (4.47), (4.49) may be conservative, this suggests that 
not all combinations of 0  and 7% satisfying

0 < 0 < 1; 0 < rt < 1

will yield exponentially stable behaviour of the “averaged-’ system. In particu­

lar, performance problems of the averaged system, and probably of the original 
system, are likely to occur when 0  is close to (but less than) unity (i.e. when the 
echo paths impose little attenuation) and the subscriber signals show relatively 
broad autocorrelation functions.

16. In general, because the subscriber signal autocorrelation levels |Avst-st(/)| tend 
to decrease as |/| increases, the presence of longer transmission delays along the 
channels of the DEC system will assist in reducing the adverse effects of sub­
scriber signal autocorrelation on echo canceller performance. This is indicated 

by the fact that, for given values of r t, conditions (4.48) and (4.49) are more 
easily satisfied than (4.46) and (4.47). Furthermore, (4.48) and (4.49) are more 

easily satisfied as the delay d increases. In particular, if the autocorrelation 

functions of both subscriber signals decay to zero before lag l = 2d, then (4.48), 

(4.49) take the form:

[i < min(l — 02)/[i?t- + Q{]
» = 1,2

v < minlÄ, + Qi\/(1 + 0)
1 =  1,2

In essence, we see a vanishing of the adverse effects of subscriber signal auto­
correlation, which arose due to the feedback nature of the DEC system.
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4.5.5 N onzero Cross C orrelation ( N oise  A bsent)

In this section, we no longer assume that there is zero cross correlation between the 
subscriber signals. However to simplify the mathematics we make the additional 
assumption that channel noise is absent:

Assum ption 13 ni(k), n2(k) = 0, Vfc

By employing (4.26) and specializing to 0\, it can be shown that:

AVy2y2{Q)(z\i z2 )

A v s \ y2 ( l ) ( z h  z 2 )

Avs2y2(l)(zl z2 )

1 _ ( ~ „2 ^2 [ ^ Z2 Z l A v y 2s l ( l )  + 2 z l z 2 A V y 2s2(2)

+ 22 ^ Vslsl(0) + ^.vs2s2(0)

+ 2z2Avsis2(1)]
oo

E (^1^2)n[-2An5lsl(/ + 1 + 2n) +  Avsls2(i-(-2n)] 
n=0
oo

' Y L ( Z^Z'z)n [ A v s2s2( l+2n)  +  z 2 A v s 2s i ( i + i + 2n)\
n=0

(4.50)

(4.51)

(4.52)

The matrix equation, equivalent to (4.40), when cross correlation between the sub­

scriber signals is present, becomes:

/  6$v(k + l) \  (  1 -  (a 22(tffc) + P21W )  - (ßnWk)  + Zi2(#k)) \ ( Ö a1v( k ) \
{ ö™(k + 1) )  \  -(/?22( ^ )  + 6 i ( ^ ) )  i - K i W  + Mtf*))  )  V ~ea2v(k) )

+
l

1 -  d2
—̂ Ans2si(i) 
~^A vs1s2(i )

(4.53)

where = 0\v ( k ) ^  (k), oca(dk), and ßü(tik) are as given in (4.41), (4.42), and 

P i j ( d k )  and Z i j ( # k )  are:

oo
P i j ( ^ k )  =  -i / a \ 2^ j V^ ^ Vsi s j ( l )  +  X !  ^ k ^ k T A v sisj ( 3+2n)] (4.54)

1 n=0
oo

0  = + S t 1 + W b W ^ . j O + i n ) ]  (4.55)

with i , j  = {1,2}; i ^ j .

Standard analysis of (4.53)-(4.55),(4.41) and (4.42) leads to the following theorem.

Theorem 8 (1) Consider the single tap, single delay DEC system described by (4-16)- 
(4-20) and Assumptions 1, 8-10. (See Appendix I for an easy reference to these as­
sumptions.) Let ||.||i be the 1-norm. Suppose:

88



(a) Assumption 13 is valid,

then, 3 p* > 0 such that Vp E [0,//*] the averaged update equations (4-53)-

(4-55),(4-41)>(4-4%) are valid.

(2) Consider the “averaged” system described by these averaged equations. Suppose, 

in addition to Supposition (a):
(b) \\(01,e 2)\\1 < 2 ( e )1/ 2, for some 0  E [0,1);

(c) p < p*;

(d) |Aust-5t(/)| < Rir\ i =  {1,2}, where 0 < r; < 1, Rx =  Avsisi{0) ;

(e) |Au5l52(/)|,\Avs2sm)\ < Ggl where 0 < g < 1, G =  Ausl52(0) = Avs2sl(0).

If, in addition

p <

■ 1 fr(l~9)(l- ’•?(! +26))
.=i“ l - ( 0 ) 2 [ 1 —

2(0)1/2G?(2 + 0  + ff2)1

(4.56)

V <

1 - e g 2
(4.57)

B A 1 ^3 1 5 2 (1 )1  +  1 ^ 5 2 3 1 (1 )1  <  2 ( 0 ) l / 2

(1 -0 2 )1 /
(4.58)

for some 0 < u < 1 / p

then,
(i) the “averaged” system will remain stable and the averaged parameter vector, 0av(k ), 

will converge to within the l\ ball B : ||(0“v,^2v)lli < B at a rate bounded above by

ii(<r(*),«r(*))iii - b <{\-

(ii) the original system will remain stable, and its parameter vector, (Ofik), 92(k))T 

will remain in the domain defined by

D0 : |0i(*)02(*)| < O, Vfc

and converge to within the 11 ball:

\ \ (0u02)\ \ i<B + O(6(p))

where S(p) is the averaging error as defined in (4-36).

Proof: See Appendix G.3.
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C orollary  2 Consider the DEC system of Theorem 8. but with the relaxed assump­
tion that the channels of the DEC system cause a delay of d sampling intervals in 

each transmission direction. Assume suppositions (a)-(e) of Theorem 8 are valid.

If, in addition

p < min ( l - 0 2) l / [ Ä*(1 + 0 r *d) + 4(0)1/2Gff']  m m u  u  M/l x _  0 r ?<* 1 1 _ ®g2d J (4.59)

v < 1 f i . - ( l - 0 ) ( l - ^ ( 1  + 20))
*=1°  1 — (0 )2 1 -0 » ? *

2(Q)V1Ggd(2 + 0  + g2i)
1 -  Qg2d J (4.60)

B ± l^ val«2(d)l + l^ v»2«l(d)l ^
( i - e >  -  [ ’ (4.61)

for some 0 < v < 1/p

then, (i)the averaged system and (ii)the original system will exhibit the behaviour 

described in Theorem 8, (i) and (ii), respectively.

Proof: Trivial extension of Theorem 8 proof.

Remarks:

17. The upperbounds on p and v in (4.56) and (4.57) increase as r{,g,G  and Q 
decrease. Assuming condition (4.58) is satisfied, this suggests that the DEC 

system is more likely to remain stable and the averaged residual echo parame­

ter vector, (0^v(k)02V(k )), converge more rapidly to within the l\ ball B when:
(a) the autocorrelation functions of the subscriber signals are narrower;

(b) the cross correlation levels between the subscriber signals are lower;

(c) the echo path tap coefficient vector (^1,^ 2 ) hes closer to the origin (that 
is, the echo paths cause greater attenuation).
Similar comments hold for (4.59)-(4.61). The dependence of transient perfor­
mance on cross correlation levels, in addition to the autocorrelation levels, of 

the subscriber signals is due to the feedback structure of the DEC system. The 
dependence of transient performance on the echo path attenuation is intuitive 

since it governs how much the feedback structure of the DEC system accentuates 
the adverse signal effects.

18. Condition (4.58) is included to ensure that, assuming (4.56) and (4.57) are 
satisfied, the average parameter vector will remain inside the l\ ball:

11(9?“ « D ili < 2 (0 )1/2
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This simplifies the analysis as well as ensures that the averaged parameter vector 
remains within the averaging domain. Similar comments hold for (4.59)-(4.61).

19. A smaller value of B , which suggests better asymptotic performance, results 

from:
(a) lower levels of subscriber signal cross correlation which helps not only 

by reducing the numerator but also by increasing the denominator in the left 

hand term of (4.58) (or (4.61));
(b) narrower autocorrelation functions of the subscriber signals, which act to 

increase the size of the denominator in the left hand term of (4.58) (or (4.61)).

20. In the absence of cross correlation, that is,

Avsls2(/) = 0, V l and (7 = 0

the conditions and results of Theorem 8 simplify to those of Theorem 7 (in the 
case of zero channel noise). Thus Theorem 7 (without noise) is a special case 

of Theorem 8.

21. When the subscriber signals are ‘white’ then, assuming the subscriber signals 
are not delayed versions of each other, then

Avsis2(i) = AvS2si(0 = 1 ^ 0

and, consequently, ‘optimal’ asymptotic performance should be obtained.

22. A comparison between Theorem 7 and Theorem 8 shows that the presence of 

cross correlation reduces both the likelihood of stability and the transient perfor­

mance by reducing the upperbounds on both fj, and u. To more clearly illustrate 

the adverse effects of cross correlation on stability and transient performance, 

let us assume:

I ^ , i ,2(J)|,|Ai;,2, i (j)| < Pjnin Ä,-rj, V/ p e [0 , l ] .

A greater value of p implies a greater level of cross correlation between the 
subscriber signals. The condition of (4.57) then becomes:

v < min (1 _ 0 2 ^  0 r2 ) [( l -^ 2 ( l + 2 0 ) ) ( l - Q ) - 2 e 1/ 2 py-t(2+0+rt2)] (4.62)

Stability is guaranteed when u, and therefore the bracketted term, [ ], of the 

RHS of (4.62), is larger than zero. Figure 4.2 shows r vs 0  plots of [ ] = 0 

for various values of p. For each value of p, all (r, 0 ) points lying below the
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plotted line satisfy [ ] > 0. As indicated in Figure 4.2, an increase in p, resulting 
from an increase in cross correlation levels, leads to a reduction in size of the 
region in (r, 0 ) space which satisfies [ ] > 0. Consequently, an increase in cross 

correlation levels leads to a decrease in the likelihood of stability and good 

transient behaviour.

Figure 4.2: Upper edges of uniform contraction regions for varying amounts of cross 
correlation (given by p) - eqn (4.62)

23. In general, because subscriber signal cross correlation levels |Avsls2(/)| and au­

tocorrelation levels IAust-s,-(/)| tend to decrease as |/| increases, the presence of 

longer transmission delays will assist in reducing the adverse effects of subscriber 
signal cross correlation and autocorrelation on echo canceller performance. This 

is indicated by the fact that, for a given value of r,- and g, conditions (4.59), 
(4.60) and (4.61) are more easily satisfied as the delay, d, increases and are more 
easily satisfied than (4.56),(4.57) and (4.58). In particular, if the cross corre­

lation function Avsls2(i) and the autocorrelation functions Avslsl(q, Avs2s2(i) of 
the subscriber signals decay to zero before lag l = d and l = 2d, respectively, 
then the (4.59)-(4.61) take the form:

p < min(l — 0 2)/Ri  

v < min Ri/( l  + 0 )

5  = 0 < 2 (0 )1/2
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Thus, unbiased asymptotic echo suppression is obtained and the dynamics of 

the closed loop DEC system resemble the dynamics of a pair of decoupled open 

loop systems.

4.5.6 Sim ulations

We conclude the examination of single tap DEC systems by presenting a number of 
‘simple’ simulations which illustrate the effects of broad autocorrelation functions and 
the presence of cross correlation on the performance of the system. The simulation 
conditions are:

Adaptive system Single tap, single delay DEC system 
Adaptation stepsize [i — 0.002
Initial conditions 0j(O) = 01 = 0.8, 02(O) = 02 = -0.7, yi(0) = 0, y2(0) = 0
Subscriber signals ARl(a) of (3.36) with a given in Table 4.1

In simulation (a), the subscriber signals are non-cross correlated AR1(0) or discrete 
white signals. In simulation (b), both subscriber signals show broader autocorrelation 
functions than in (a), but again have zero cross correlation. In simulation (c), the 
subscriber signals show not only relatively broad autocorrelation functions but also a 
relatively broad cross correlation function.

The simulation results are given in Figure 4.3 which shows plots of the variation in 
residual echo level, z \(k ) — z\{k) = 0\{k)y2(k — 1), over time at one end of the DEC 

loop. The residual echo level over time at the other end of the loop was observed, in 

all cases, to be similar to that shown. As indicated by a comparison between Figure 

4.3a and 4.3b, broader subscriber signal autocorrelation functions may lead to slower 
convergence rates, while Figure 4.3c suggests that the presence of subscriber signal 
cross correlation may lead to incomplete echo cancellation.

Table 4.1: Single tap DEC Simulations - Description of subscriber signals.
Sim. Subscriber Signals* Autocorre lation fn.s+ Cross Correlation fn.
no. si s2 Asl(j) As2(j) C(j)
(a) AR1(0) AR1(0) ~  6o,j ~ S0j ~ 0
(b) AR1(0.8) AR1(0.5) ~ 0.8J ~  0.5J ~ 0
(0 AR1(0.7) si ~  0.7J ~  0.7J ~ 0.7J

* ARl(a) = autoregressive sequence as in eqn. (3.36) 

+ <$o,o = 1, <$o,j = 0 when 3 ^  0.
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4.5.7 S u m m ary

The examination of the single tap DEC system conducted in this section indicates 

the following.
(i) Broader autocorrelation functions and greater cross correlation levels of the 

subscriber signals reduce the convergence rate of the DEC system. Sufficiently broad 
autocorrelations functions and/or high cross correlation levels can lead to nonconver- 
gent behaviour, irrespective of the update stepsize /i.

(ii) An increase in cross correlation levels of the subscriber signals causes a de­

terioration in asymptotic performance. This is accentuated by high autocorrelation 
levels of the subscriber signals.

(iii) The adverse signal effects on transient and asymptotic performance are ac­
centuated when the echo paths impose little attenuation.

(iv) In general, when the subscriber signals are ‘white’ then good asymptotic per­
formance is obtained.

(v) For a given update stepsize /̂ , which is sufficiently small, an increase in DEC 
channel noise may lead to better transient, but poorer asymptotic performance.

(vi) An increase in the delay imposed by the DEC channels tends to reduce the 
adverse effects of broad autocorrelation functions and high cross correlation levels of 
the subscriber signals. Furthermore, when the subscriber signals’ correlation func­
tions are sufficiently narrow and the delay is sufficiently large, the dynamics of the 
DEC system simplify to a pair of decoupled open loop systems of Chapter 3.

4.6 Single Tap Single D elay DEC System  w ith  A R  Sub­
scriber Signals

The analyses conducted in the previous sections of this chapter have provided, at best, 
bounds on the effects of subscriber signal correlation levels on the performance of the 
DEC system. In this section we aim to obtain an explicit equality expression relating 
performance to correlation levels. In order to achieve this, we reconsider the single tap, 

single delay DEC system examined in Section 4.5 under the additional assumption 

that the subscriber signals are first order autoregressive processes as described by 
(3.36) of Chapter 3.

The analyses are organized as follows. We begin by introducing a number of quanti­
tative assumptions on the subscriber signals in addition to the autoregressive assump-
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tion. Initially, the subscriber signals are assumed to be of equal power. Averaging 

Theory is again applied to obtain an approximate simpler system, analysis of which 

follows. Finally we briefly explore the case in which the subscriber signals are of 
unequal power.

4 .6 .1  A ssu m p tio n s

In addition to Assumptions 1, 8, 9 and 13 we impose the following assumptions on 
the subscriber signals.

A ssum ption  14 The subscriber signals are described by the first order autoregressive 
processes:

where: |a| < 1 and wfik) and W2(k) are wide sense stationary discrete white signals.

Furthermore, the signals W\(k)  and W2(k) are such that the following assumptions 
hold for i , j  =  {1,2}, i ^ j :

A ssu m p tion  15 Bounded signals:

si(k + 1) = asfik) + (l — a2y / 2wi(k) ^i(O) = 0 
»2 (^ + 1 ) = as2(k) + (1 -  a2y / 2w2(k) s2(0) = 0

(4.63)

|u?t(fc)| < W, Vfc

A ssu m p tion  16 Zero mean property:

A ssum ption  17 Well defined autocorrelation properties:

I M +m  — 1
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Assum ption 18 Well defined cross correlation properties:

. M +m — 1
—  Y  wfik)wfik -  /) -  pV260)/| <

k=m
—=  Vm. /, M where |p| < 1 
V M

where the constant C is positive and independent of the integers m, / and M  in the 
above inequalities.

Remarks:

24. The numerator (1 — a2)1/ 2 in (4.63) is included so that the signals sfik), sfik),  
wfik ), wfik)  have the same power (l2 norm).

25. The signals wfik) are deterministic in the sense that Assumptions 16-18 do not 
refer to a probability distribution or to convergence in a probabilistic sense.

The wide sense stationarity of wfik)  and wfik) implies that sfik)  and s2(k) are also 
wide sense stationary signals. Because of the stability of the AR filter involved the 
subscriber signals sfik) enjoy properties similar to the signals wfik). More specifically,
for some positive constant S only depending on a, W  and V :

\sfik)\ < (4.64)

i M + m —1

' M £
c

< Vm, M
y/M

(4.65)

i M +m  —1
i—  Y  s f i k ) s f i k - l ) ~  alV 2\

k=m

9
<

7
(4.66)

i M +m  —1
|— Y  si(k)sj(k — l) — palV 2\

k=m

9
< (4.67)

The above inequalities embody all the assumptions on the subscriber signals we need 

to derive our results.

(4.66) and (4.67) indicate that the signal parameter, a, is a measure of the broadness 
of the autocorrelation and crosscorrelation functions of the subscriber signals, while 
the signal parameter, p , is a measure of the degree of cross correlation between the 

subscriber signals.
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4.6.2 Analysis

Following the same procedure of Section 4.5.2, we define our domain of analysis as

D : \9i(k)92(k)\ < 0  < 1

On this domain D and for sufficiently small p, the dynamics of the DEC system, at 
least on a time scale 1 ///, are described by the averaged system equations:

0 f ( * + l )  = 6TW -  M »5iS2(i >(«(*)) 9?v(0) = tfi
«f(*  + l) = ä ? ( k ) - ßAvm  1(1,(«(*)) 1 ■

where 9akv = (Ö“v(k), 0™(k)) and

A f - l + m

Avyiyj(l)(z ) = S  yi(k,z)yj(k -  l ,z),  V/ i, J G {1,2} (4.69)
v M —►oo . —'A:=m

and yi(k,z) is as defined by:

yi(fc-+l,2) = 5i(fe + 1) + ^ ( M )  2/i (0) = 2/i(0) 
2/2(fc + l,* ) = 52(A: + 1) + z2£i (M )  j/2(0) = 2/2(0)

(4.70)

Remark:

26. The Emit of (4.69) exists (on the domain \ziz2\ < 0  < 1), is independent of m 
and, moreover, the limiting value is approached uniformly in m, by virtue of 
Assumptions 16-18.

The validity of Assumptions 16-18 leads to the averaging error being given by:

\0(k) — 0(k)\ = 0(6(n)) = 0(y/Ji), on a time scale 1//U (4-71)

Notice that we also have the approximation (because y(k, z ) is analytic in 2  in D ):

\y(k, 0(k)) — y(k)\ = 0 ( V//I) on a time scale \ /fi  (4.72)

Furthermore [78], if the averaged system has an asymptotically stable equilibrium 
within the domain D then the approximations can be extended to hold on an infinite 
time scale:
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\0(k)-9(k) \  = 0(y/fi) Vfc > 0
\ y (k ,0(k)) -y(k) \  = 0(y/ß)  VA: > 0 (4.73)

Through the application of the averaging approximation results above and analysis 
of the averaged system equations (4.68) we obtain the following result.

Theorem 9 Consider the single tap, single delay DEC system described by (4-16)- 

(4-20) and Assumptions 1, 8,9,13-18. (See Appendix I for an easy reference to these 

assumptions.) Let 0  £ (max(a2, 9\ , 92), 1). Then there exists a positive constant 
p * (0 , a,p) such that for all positive p < p*:

\ 9 ( k ) - 9 av(k)\ = O(Jp)  VA; > 0
\y(k, Öav(k)) — y(k)\ = O(^p)  VA: > 0

Here 0av(k) is defined in (4-98) and y(k , z ) is defined in (4-70) whilst 9(k) and y{k) 
are the variables of the DEC system.

Furthermore, if, in addition,

(1 — 0)(1 — a 20)

V 2(l  + a2) (4.75)

then the averaged parameters 9*v(k), 9fu(k) converge exponentially fast (with rate X) 
to:

r,v(k), n a v , ü A -(1  + a2) + y/(l  + a2)2 -  4a2p2 xk
u \ 2 , s  — -----------------------------------------------------a 5 A‘lap (4.76)

The convergence rate X (uniform estimate over the domain of attraction) can be es­
timated as:

A < 1 — p V 2min( [(1 + a2) + >/(l -f a2)2 — 4a2p2]/2 -  \ap\y/Q 
(l + 0 )( l  + a20) (l + 0 )( l + a20 ) )

Proof: See Appendix G.4.

Equations (4.74) and (4.76) indicate that the parameter estimate, 9(k), converges 
exponentially fast (with rate A) to an 0(y/p)  neighbourhood of (0j -f 012)S, + #i2,s)*
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Remark:

27. When the subscriber signals are ‘white’, i.e. a = 0, and regardless of the cross 
correlation, even when the external subscriber signals are identical (perfectly 
correlated), the averaged DEC system shows optimal asymptotic behaviour in 
that the averaged parameter vector converges to the origin. Consequently, the 

original parameter error (0 \(k),d2(k)) converges to a y/ß small neighbourhood 

of the origin exponentially fast (0S = (#12,55 #12 ,5) = (0,0)). The transients are 
governed by a convergence rate overbounded by A < 1 — p V 2  ̂ q .

28. In the case in which the external subscriber signals are uncorrelated i.e. p = 0 
the DEC system shows similar optimal asymptotic behaviour to that of ‘white’ 
subscriber signals with the parameter error converging to a yjß small neigh­
bourhood of the origin exponentially fast. The transients are governed bv a

1 -  a2
convergence rate overbounded by A < 1 -  p V 2  ̂ - j- -  - .  Notice that

the convergence rate (or at least its bound) is adversely affected by the presence 

of the auto-correlation coefficient a.

29. In the case in which the subscriber signals are correlated and not ‘white’ i.e. 
ap ^  0 the DEC system no longer can achieve full asymptotic echo suppression. 
The parameter error is biased. The bias grows with both the autocorrelation 
and crosscorrelation of the subscriber signals. This is the subject of Figure 4.4. 
At the same time the transients become longer.

30. Many simulations have been carried out on the single tap, single delay DEC 
system with correlated first order autoregressive subscriber signals. The results 
agree with Theorem 9 and the above discussion. Figures 4.5 and 4.6 provide 

an illustration by showing the time evolution of the residual echo parameters 

(#1,^5 #2,fc) and residual echoes (#i,fcy2,A:-i5  #2 ,Ad/i ,J t- i)5  respectively, for the case 
in which the subscriber signals (4.63) have autocorrelation factor a = 0.8 and 

crosscorrelation factor p = 0.665. p = 0.002 and V = 1 for this simulation. As 

indicated in Figure 4.5, both residual echo parameters converge approximately 
to 0i2,s — —0.368, while Figure 4.6 indicates incomplete asymptotic echo sup­
pression.
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4 .6 .3  Su bscriber Signals of U nequal Power

The previous section considered subscriber signals which were of equal power and de­
scribed by the first order autoregressive (AR1) processes of (4.63). In this subsection 
we briefly explore the case in which subscriber signals are AR1 processes of unequal 

power. In particular, we consider when Assumptions 17 and 18 are replaced by:

Assum ption 19

i M + m  —1 / ~ i

|—  ^  Wi(k)wi(k — l) -  V{26o,i\ < __Vra, M ,/, where V{ > 0
Ic —  m  V 1

Assum ption 20

. M+m — 1
|— Y  Wi(k)wj(k -  l) -  pViV2S0ii\ < -j== Vm, l , M where \p\ < 1

where i , j  = {1,2}, i f  j .

Consequently, the subscriber signal inequalities of (4.66), (4.67) are replaced by:

1 M + m  — 1 n

I—  J 2  M V M k - O - a ' V i 2I < -r= V rn ,M ,l  (4.77)
k=™ *

, M + m  — 1i  £k=m

The following Theorem quantifies the effect, on echo canceller performance, of sub­

scriber signals having unequal power.

$i(k)sj(k — l) — palViV2 1 < —=iz Vm, /, M  (4-78)
v M

Theorem 10 Consider the single tap, single delay DEC system described by (4 .18)- 
(4-20), Assumptions 1 8,9,13-16,19,20 and

0i(fc + l) = ^ ( k )  - — y ^ k  + l)y2(k) 0i(O) = 0X
V2

02(k  -t- 1) =  02( k )  — ^ y 2 ( k l ) y i ( k )  02(0)  =  62

Let 0  (E (a2, 1). Suppose:

y \ e , \  + ^ \ 9 2\ < 2 + Q < 2

(4.79)

(4.80)

100



Then there exists a positive constant p * (0 ,a ,p )  such that for all positive p < p *:

\ 0 ( k ) - e av(k)\ = 0 { y ß )  V f c >  0
\y(k,eav(k)) -  y(k)\ = 0 { J p )  VA: >  0

Here y (k ,z ) is defined in (f.10) and Oav(k) is defined by:

e?(k  + i)  = «!»(*) -  8?(0) = 81
v2

8?(k  + l)  = -  ^ A v m m (8^(k))  8?{0) = 82

whilst 0(k) and y(k) are the variables of the DEC system.

Furthermore, if, in addition,

(1 — 0)(1 — a20 )
p < l + a:

(4.81)

(4.82)

(4.83)

then the averaged parameters 01v(k), O^fik) converge exponentially fast (with rate \ )  
to:

»1%
i  A V2-(1  + a2) + v/(l + a^)2 -  4 a V  n

' = VT----------------- 2ap (4 84)
s %  -  #- s ^ ± t ^ ) ± 4 w E w  a s ^ 0  ( 4 -8 4 )

V2 2 ap

The convergence rate A (uniform estimate over the domain of attraction) can be es­
timated as:

A < 1 -  m min(If1- *  ^ + ^  ZA< f W  Z f  )
(1 + 0)(1 + a20) ’ (1 +  0)(1 + a20 )

Proof: The proof follows along the same lines as the proof of Theorem 9.

Remark:

31. The condition of (4.80) imposes a constraint on the ratio of the power of the 

subscriber signals. This condition guarantees that (6^(0), ^ u(0)) = (^1 ^ 2) lies 
in an invariant subset of the domain of attraction of the equilibrium (0l s , #2,s) of 

(4.84). However, because (4.80) is only a sufficient condition, its violation does 

not necessarily mean (0^v(k), 6 ^ W ) will fail to converge to (0i,s,02.«)* On the
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other hand, violation of (4.80) will increase the chances of unstable behaviour, 

such as bursting, in the original system. Consider, for example, the case:

V2 /V 1 >  1 and a,p /  0, such that 0l s = M >  1 

The width of the stability domain

D = { (e n * ) ,e :!"(*)): |e 'r(*)»2v(*)l < 0  < 1}

in the region of the equilibrium (0i,s,#2.s) = (M, 1/M) is 0 ( l / M) .  Recall 
that the averaged system only approximates the original system within an er­
ror 0(y/JI) Thus, if M  is sufficiently large, stability problems become a real 

possibility.

32. As indicated by (4.79), the DEC system considered in Theorem 10 is different 
to that of Theorem 9, not only because the subscriber signals have unequal 
power, but also because the adaptation constant of each echo canceller has been 

normalized with respect to the power of the far end subscriber signal. This 
normalization was included to enable quantitative estimation of the domain of 
attraction of the equilibrium of (4.84).

It is important to note, however, that this normalization does not affect the 
location of the equilibrium of the averaged system or, equivalently, the location 
of the asymptotic 0(y/JI) ball to which the original system parameter vector 
9(k) converges. This is because the equation:

AVyly2(l)(ÖaV (k)) = AVy2yl(l)(0aV (k))  =  0

the solution of which identifies the equilibria of the averaged system (4.82), is 
independent of any normalization of //. In particular, assume fi is sufficiently 
small and 0av(O) = (^1,^ 2) lies sufficiently close to 9S = (0i,s,02,s) so that #av(0) 
is within the domain of attraction of 9S. Then the averaged parameter vector 
9av(k) of the DEC system with Assumptions 1,8,9,13-16,19,20 and in which fi 
is not normalized, will also converge to the equilibrium 9S of Theorem 10.

The result of Theorem 10 indicates that when the subscriber signals are of unequal 

power, the adverse effect of correlation within and between the subscriber signals on 

asymptotic echo canceller performance will be accentuated at one end of the DEC 

system and diminished at the other end. In particular, in order to achieve sufficiently 

good asymptotic performance of both echo cancellers within the DEC system, the
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autocorrelation and cross correlation of the subscriber signals should be reduced to 
smaller levels as the ratio of the power of the subscriber signals increases(decreases) 
above(below) unity.

Sum m ary

The rigorous analysis conducted in this section on the single tap, single delay DEC 
system with first order AR subscriber signals indicates the following.

(i) Good asymptotic performance is achieved when the subscriber signals show 
zero cross correlation and/or are ‘white’.

(ii) The convergence rate is maximum when the subscriber signals are ‘white’.
(iii) When the subscriber signals are not ‘white’, the transient and asymptotic per­

formance deteriorates with increasing autocorrelation and/or cross correlation levels.

(iv) The adverse signal effects on asymptotic performance are accentuated when 
the subscriber signals are of unequal power.

(v) As the power ratio of the subscriber signals increases (decrease) above (below) 
unity, the size of /j, needs to be reduced to ensure stability.

4 .7  C o n c lu sio n

In this chapter we analysed the dynamics of a closed loop system representative of 
the double echo canceller (DEC) system in which an echo path and a neighbouring 
LMS adaptive FIR echo canceller are located at each end of the loop. The system 

is driven by subscriber signals entering either end of the loop. A number of analyses 

were conducted ranging from semi-formal to rigorous depending on the assumptions 
made. In particular, because of the nonlinear dynamics of the DEC system, a number 

of simplifying assumptions were needed to enable quantitative/rigorous analysis to be 
carried out. The analyses indicated the following.

(i) When the subscriber signals are cross correlated, the adaptive filtering is biased. 
This bias grows and, subsequently, the asymptotic performance deteriorates with 

greater cross correlation levels and broader autocorrelation functions of the subscriber 

signals. Zero bias and (apart from estimation noise, which is of 0{/j,)) complete asymp­

totic echo suppression occurs when the subscriber signals show zero cross correlation.

(ii) The possibility of nonconvergent/unstable behaviour increases with increasing 

cross correlation and/or autocorrelation levels of the subscriber signals.

(iii) The transient performance deteriorates with greater cross correlation levels and
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broader autocorrelation functions of the subscriber signals. The convergence rate is 
maximum when the subscriber signals are non cross correlated and are ‘white’, that 

is, each is uncorrelated over time.

(iv) Importantly, when both subscriber signals are ‘white’ the cross correlation func­
tion of the subscriber signals will be, in general, zero for all sample lags. [The excep­
tion is the unlikely case of the subscriber signals being replicas or time shifted versions 
of each other, in which case the cross correlation function is nonzero for the lag cor­
responding to the time shift.] Consequently, ‘white’ subscriber signals generally lead 
to optimal asymptotic and transient performance.

(v) The adverse effects of broad autocorrelation function and high cross correlation 

levels of the subscriber signals are accentuated by an increase in dimension of either 
echo canceller.

(vi) The adverse subscriber signal effects reduce as the delay, imposed by the loop 
channels, increases. In particular, if the delay of the loop channels is sufficiently 
long and the subscriber signals show sufficiently narrow autocorrelation and cross 
correlation functions, then the dynamics of the closed loop DEC system simplify to 
the dynamics of a pair of decoupled open loop LMS adaptive FIR systems. In this 
case, unbiased asymptotic echo suppression is achieved. Furthermore, the transient 
performance can be enhanced/optimised by whitening the input signal to each echo 
canceller.
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(a)

Osw

Figure 4.3: Plot of residual echoes over time with #i(0) = 0.8, 02(O) = —0.7, =

0.002 and subscriber signals (a) of Table 4.1(a), (b) of Table 4.1(b), (c) of Table 
4.1(c).
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a=0.2

a=-0.4

Figure 4.4: Plot of 0i2is as given in (4.76) for correlated subscriber signals (4.63) with 
cross correlation factor p and autocorrelation factor a.

time, k

Figure 4.5: Plot of 02,A: over time with 0iiO = 0.8, 02,o = -0 .7 , p = 0.002 and 
signal parameters a = 0.8, p = 0.665.
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time, k

Figure 4.6: Plot of residual echoes over time with 0^0 = 0.8, #2,0 = —0.7, p = 0.002 
and signal parameters a = 0.8, p = 0.665.
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C hapter 5

Signal C on d ition in g  for Echo  
C ancellers

5.1 In tr o d u c tio n

The analyses carried out in Chapters 3 and 4 highlighted the dependence of the per­

formance of the LMS adaptive FIR echo canceller on the correlation characteristics 

of the input signal to the echo canceller or of the subscriber signals of the telecom­
munication network. In particular, the analytical results imply that for a given echo 
canceller dimension, the transient and asymptotic performance of the double echo 
canceller (DEC) system can be improved by whitening the subscriber signals. The 
results also suggest that, assuming the delay imposed by the transmission channels of 
the DEC system is sufficiently long, transient performance improves by whitening the 
input signal of each echo canceller. For sufficiently long transmission channel delays, 

unbiased asymptotic echo suppression is obtained, particularly for speech transmis­
sion echo cancellation systems, in which the subscriber signals are typically not cross 

correlated.

In this chapter we present two performance enhancing schemes based on these sig­

nal conditioning ideas. The first scheme, examined in Section 2, focusses on sub­
scriber signal whitening. It is only applicable to 4-wire loop circuit echo cancellation, 
since access to the subscriber signals is required. The scheme involves filtering the 
subscriber signals with digital scramblers. The pseudo-random property of digital 

scramblers leads to the filtered subscriber signals being essentially ‘white’. Although, 
generally, this is sufficient for good asymptotic performance, a simple extension of 

the scheme also is presented which ensures zero cross correlation between the scram-
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bled subscriber signals even in the event that the subscriber signals are replicas or 
time shifted versions of each other. Simulations demonstrate the ability of this signal 
conditioning scheme to provide enhanced echo cancellation.

The second scheme, which is presented in Section 3, is based on the input signal 

whitening approach. This scheme may be used for enhancing either acoustic echo 
cancellation or 4-wire loop circuit echo cancellation. Its success relies on the as­

sumption that the input signal to each echo canceller within the DEC system is well 
modelled as an autoregressive (AR) process. Such AR modelling is typically employed 
for speech. The scheme involves applying standard linear prediction techniques to ob­
tain an estimate of the autoregressive filter and using this filter to whiten the input. 
In acoustic echo cancellation, the input signal is that which is received by the audi­
ence in the acoustic enclosure. Consequently, indirect whitening methods, using the 
autoregressive filter estimate, are required. Several indirect whitening methods have 
been proposed previously. We review and suggest extensions to these methods.

A couple of points concerning the two signal conditioning schemes need to be high­

lighted.

(i) The nature of the scrambler whitening scheme restricts its applicability. Firstly, 
the transmission efficiency of digital signals, such as the scrambled subscriber signals, 
over analogue channels is typically less than that over digital channels. For example, 
the bit rate achievable for digital/PCM encoded voice frequency channels is about 
20kb/s [84], far less than the desired rate of 64kb/s - 8 bit words, 8kHz sampling rate 
- which is achievable with digital channels. Secondly, signal compression techniques 

which are used for reducing the bit rate over digital systems rely on the signals having 

redundant ‘information’, or being autocorrelated. These comments indicate that the 
scrambling scheme should be restricted to digital networks (including digital local 2- 
wire subscriber lines) which do not require signal compression. Fibre optic networks 
are suitable.

(ii) The AR whitening scheme involves two estimators, the echo canceller and the 
linear predictor, rather than just the one estimator, the echo canceller, of the standard 

approach. In general, such a scheme may not provide transient performance improve­
ments since it involves a greater overall filter parameter dimension, n + p where p 
and n are the dimension of the AR filter and echo canceller, respectively. Recall, 
however, that the adverse effect of dimension on transient performance grows with 
input signal autocorrelation. This was shown for the LMS estimator, but it may also 

apply to the linear predictor. With this in mind, performance improvements should
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arise with the the AR scheme because the highly autocorrelated speech based signal is 
feeding only the linear predictor, the parameter dimension of which is typically p =10 
to 20. This is much less than the parameter dimension of the typical echo canceller, 

n = 100 —► 4000, which, in the standard approach, is that being fed by the speech 
based signal.

5.2 Signal C onditioning w ith  D igital Scramblers

We begin by introducing the scrambler and two common ways in which such devices 
can be used to whiten signals as well as decorrelate two identical signals. A discussion 
then follows on the use of these scrambling techniques for improving echo canceller 
performance in 4-wire loop telephony.

5.2.1 Scram blers

A scrambler, as shown in Figure 5.1, is basically a binary feedback shift register. 

Clearly, this requires the summation operator ® to be modulo-2 and the tap delay 
coefficients, hi, h2, ..., hm, to be binary. The tap coefficients are chosen such that the 
binary polynomial

h(z) = 1 A h\Z + h2z 2 + ... -+■ hmzm

is primitive, that is, has no binary factors other than itself and unity. (Tables of 
primitive binary polynomials are given by various authors, e.g. [83], [84].) This leads 

to the binary sequence {x/t} output by the scrambler showing zero autocorrelation or 

randomlike properties over a sampling length Px = 2m -  1. This length Px of zero 
autocorrelation is, in fact, the maximum possible for any m-tap binary feedback shift 

register. Furthermore, the sequences output by two scramblers having different tap 
coefficient vectors will be orthogonal, that is, show zero cross correlation.

These pseudorandom and orthogonality properties of scrambler sequences are illus­
trated in Figure 5.2. Figure 5.2a shows the autocorrelation function of a sequence 
output by a 7-tap scrambler, (the sequence is binary antipodal, { — 1,1}) while Figure 

5.2b shows the cross correlation function of antipodal sequences output by a 5-tap 
and a 7-tap scrambler.
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x k

Figure 5.1: Scrambler (isolated) - modulo 2 feedback shift register, with suitably 
chosen binary tap coefficients, hi

5.2 .2  Signal Scram bling

A scrambler is commonly employed to interact with a given binary signal, such as 
a binary subscriber signal, to produce a scrambled (randomlike) signal. Scrambling 

is an attractive process for whitening signals because it is deterministic and, conse­
quently, through the use of a suitable descrambling device, the original signal can 
be completely recovered. The scrambling-descrambling process can be carried out by 
either of two methods:

1. Frame Synchronized Scrambling/Descrambling
2. Self Synchronized Scrambling/Descrambling

Frame Synchronized Scrambling/Descram bling

Frame synchronized scrambling of an input sequence {6^}, shown in Figure 5.3a, 
involves modulo-2-summing the output sample, x of the scrambler with the input 
sample, b̂  to produce 0  b The output or scrambled sequence, {c^}, is
pseudorandom with a period, Pc, equal to the lowest common multiple (LCM) of Px, 
the period of the scrambler sequence and, P&, the period of the input sequence [84],

The descrambling process as shown in Figure 5.3b, used to recover the original se­

quence {bk}, involves modulo-2 summing the scrambled sequence {c/J with the out­

put of a scrambler of the same form as the first scrambler. The correct operation 
of the frame synchronized scrambler depends on the alignment in time of the states 

of the scrambler and descrambler. This is achieved by a mechanism known as frame 

synchronization. See [84] for a discussion on this topic.
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Figure 5.2: (a) Autocorrelation function of an antipodal sequence output by a 7-tap 
scrambler (isolated), (b) Cross correlation function of antipodal sequences output by 
a 5-tap and a 7-tap scrambler (isolated)

Self Synchronized Scram bling/D escram bling

Self synchronized scrambling of an input sequence {bk}, shown in Figure 5.4a, differs 
from frame synchronized scrambling essentially by having the scrambled sequence, 
{c/c}, fed back into the scrambler. This results in the state of the scrambler depending 

not only on its initial state (as in frame synchronized scrambling), but also on all of 
the past input samples, bo, &i, ...., bk. The scrambled samples, Ck, are given by:

Ck — bk © h\Ck~\ © ••• © hmCk—m (b.l)

The period, Pc, of the self synchronized scrambled sequence, like that of frame syn­

chronized scrambled sequences, is given by Pc = LCM(PX, Pb) , where Px = 2m — 1 

and Pb is the period of the input sequence. However, there is one exception to this 

rule. One of the 2m possible states of the ra-tap scrambler, the determination of 

which is dependent on the input sequence, will lead to the output sequences having 

a period, Px = Pb, the period of the input sequence, which is a serious limitation if 
Pb is small. To illustrate this characteristic of self synchronized scramblers, consider 
the following example, given in [84]. Suppose we have a self synchronized scram­
bler with a tap coefficient vector h = [1,1]. That is, the output sample is given by 

Cfc = bk © ck- i  © Ck-2 - Now, assume that at some initial time i the input sequence is
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(b)

Figure 5.3: (a) Frame synchronized scrambler with input sequence {b^}, (b) Frame 
synchronized descrambler

alternating zeroes and ones, period two: (6t, 6t+i, &;+2, &i+3, ...) = (0, 1, 0, 1, ...). 

If the state of the scrambler at time i happens to be (ct_i, ct_2) = (0,1) then the 
output sequence is also alternating zeroes and ones, period two. However, if at time 
i the scrambler is in any of the other three (= 22 — 1) possible states then the output 
sequence will have period 2x3=6.

Clearly, the probability, 2~m, of a self synchronized scrambler being in the undesirable 

state for a given input sequence becomes negligible for sufficiently large m.

Descrambling, as shown in Figure 5.4b, to regain the original sequence, {&*;}, involves 

inputting the scrambled sequence, {c*;}, into a ‘reversely’ (or inversely) structured de­
vice to that of the scrambler. As the name suggests, self synchronized scrambling has 
the advantage, over frame synchronized scrambling, of not requiring synchronization 

between scrambler and descrambler [84]. Of course, there is still the need for clock 
synchronization between the scrambling and descrambling devices.
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Figure 5.4: (a) Self synchronized scrambler with input sequence {bk}, (b) Self syn­
chronized descrambler

Self synchronized scrambling has an important disadvantage. It is unprotected against 

error propagation [84]. The sensitivity to error propagation increases with the number 
of nonzero taps within the scrambler. In particular, error multiplication is by a factor 

equal to the number of nonzero taps plus one [84]. For this reason, self synchronized 
scramblers used in practice involve a minimum number of nonzero taps. For many 
scrambler tap lengths, this minimum number is three.

Scram bled Signal C haracteristics

Consider a sequence which is a constant sequence of zeroes or ones. This sequence 

is fully autocorrelated - the correlation length is equal to the sequence length. The 
autocorrelation function of the output of an m-tap length self/frame synchronized 
scrambler fed by such a sequence is just that of the isolated scrambler, a series of 

impulses at lags / = (2m — 1)*, i = 0 ,1 ,2 ,... - see, for example, Figure 5.2. Intuitively, 

as the correlation length of the input decreases, the autocorrelation function impulses
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at the large lag values should disappear. Furthermore, when the autocorrelation 

length of the input drops below Px = 2m — 1, all but the zero lag impulse should 

disappear. In particular, it is expected that, if the autocorrelation length of the input 

sequence is significantly less than Px then the self/frame synchronized scrambled 
sequence should be essentially discrete white. This intuition is supported by a large 
number of simulations.

As suggested by the orthogonalizing properties of isolated scramblers and as indicated 
by many simulations, the scrambled sequences output by two scramblers (either frame 
synchronized or self synchronized) having different ‘primitive’ tap coefficient vectors 
are approximately orthogonal or show essentially zero cross correlation, irrespective of 

the input signal characteristics. In the case of self synchronized scramblers (because 
the state of a self synchronized scrambler is influenced by all of the past input samples 

as well as by its initial state), approximately orthogonal sequences can be obtained 
from the same scrambler by simply changing the initial state vector.

Figures 5.5 and 5.6 illustrate the whitening and orthogonalizing capabilities of self 
synchronized scramblers. Figure 5.5a shows the autocorrelation function of a signal 
u(k) described by the first order autoregressive (ART) model of (3.36) with a=0.9. 
Prior to scrambling, this signal was 1-bit quantized:

u(k) < 0 —► u(k) = 0, u(k) > 0 —•• u(k) = 1.

Importantly, the autocorrelation function of the antipodal version of this quantized 

signal is the same as that shown in Figure 5.5a. The autocorrelation function of the 

antipodal signal after being self synchronized scrambled, with a 7-tap scrambler, is 
shown in Figure 5.5b. Scrambling has transformed a signal having a relatively broad 
autocorrelation function into a signal having an autocorrelation function resembling 
that of a zero mean discrete white signal. Frame synchronized scramblers show similar 
whitening capabilities.

Figure 5.6a shows the cross correlation function of two equal AR1 signals (with 

a = 0.7). The cross correlation function of the signals, after one of the AR1 sig­

nals was self synchronized scrambled by a 5-tap scrambler and the other by a 7-tap 

scrambler, is shown in Figure 5.6b. [Note: the signals were 1-bit quantized prior 

to scrambling.] Scrambling has reduced the cross correlation levels approximately 
to zero. Similar orthogonalizing characteristics are exhibited by pairs of frame syn­
chronized scramblers having different ‘primitive’ tap coefficient vectors and by pairs of 

self synchronized scramblers which differ only by their initial state vectors. Of course,
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Figure 5.5: (a) Autocorrelation function of a first order autoregressive signal of (3.36) 
with a=0.9, (b) Autocorrelation function of signal in (a) after being self synchronized 
scrambled with a 7-tap scrambler

input signals for each tap coefficient vector/initial state vector configuration can be 
concocted to show that there are exceptions, but the probability of the occurrence of 
such signals is likely to be small.

5.2 .3  Scram bler Schem e for Echo C ancellation

The scrambler schemes examined in the previous subsection provide a means of ob­
taining a ‘white’ or decorrelated sequence of bits. Since each sample of a digital signal 
is a linear combination of a block of bits and the blocks corresponding to each sample 
do not overlap, then a white sequence of bits implies a white digital signal. This then 
suggests that a scheme based on the use of scramblers to scramble the bits of the dig­
ital subscriber signals in a DEC 4-wire loop system should provide enhanced/optimal 

echo canceller performance. Such a scheme is shown in Figure 5.7a. It involves plac­

ing frame synchronized or self synchronized scramblers having the same configuration 

(tap coefficient/initial state vectors) with the subscriber digital transmitters and cor­

responding descramblers with the digital receivers. Use of such a scheme, in general, 
should lead to the digital signals entering the 4-wire loop showing approximately delta 
shaped or ‘white’ autocorrelation functions. In general, the signals will also show zero 
cross correlation.
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Figure 5.6: (a) Cross correlation function of two equal first order autoregressive signals 
of (3.36) with a=0.7, (b) Cross correlation function of the signals in (a) after one was 
self synchronized scrambled by a 5-tap scrambler and the other by a 7-tap scrambler

An exception to the occurrence of ‘white’ scrambled subscriber signals is that in 
which the autocorrelation length of the subscriber signal approaches or extends past 
Px = 2m — 1, where m  is the tap length of the scrambler. However, the likelihood of 
this occurrence is negligible when scramblers, having sufficiently long tap coefficient 
vectors e.g. m = 23, are selected. In the case of self synchronized scrambling, the 
tap coefficient vectors should each have a minimal number of nonzero taps so as to 
minimize the error multiplication factor (discussed in section 5.2.2.).

An extension of the basic scheme involves providing each subscriber with an orthogo­
nal or differently configured scrambler. Such a scheme ensures zero cross correlation 

between the scrambled subscriber signals even in the event that the subscriber sig­

nals are identical or time shifted versions of each other. A possible problem might 

be foreseen in providing each subscriber with a differently configured scrambler. This 
may be a serious limitation with frame synchronized scramblers. However, it should 

not be a significant problem with self synchronized scramblers for which a different 
configuration can be obtained by not only changing the tap coefficient vector, but 
also by simply changing the initial state.

An alternative approach to that of providing each subscriber with a differently con­
figured scrambler is that in which each subscriber is provided with the same pair of
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Subscriber 1 Subscriber 2

Subscriber 1 Subscriber 2

*— Scr 1

H —
DScr 2—l— DScr 2

R X -
DScr 1—1DScr 1

Scr=Scrambler, DScr=Descrambler, H=Hybrid, EC=Echo Canceller

Figure 5.7: Scrambler line coding schemes proposed for improving echo cancellation in 
DEC 4-wire loop networks, (a) Basic scheme - each subscriber uses the same scrambler 
configuration, (b) Paired scheme - all subscribers have the same pair of differently 
configured scramblers

differently configured scramblers/descramblers - as illustrated in Figure 5.7b. This 
approach relies on the assumption that each subscriber link-up involves no more than 
two subscribers (although it could easily be extended to allow for more subscribers in 
a link-up.) Zero cross correlation of the scrambled subscriber signals can be obtained 
by ensuring that both subscribers do not select the same configuration. The selection 
of different configurations would be easily carried out during the establishment of the 
subscriber link-up.

5.2.4 S im ulations

We conclude this section by comparing the results of simulations of LMS/FIR echo 

canceller performance in DEC systems with and without the scrambler scheme em­
ployed. The simulation conditions were the same as those described in Chapter 4 

Section 4.5 and Table 4.1. In all of the simulations the subscriber signals were con­

verted into 1-bit quantized antipodal sequences. In each of the simulations involving 
scrambling, the following self synchronized scramblers were used:
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Scrambler 1 Tap coefficient vector: [01001] Initial state vector: [00001]
[0000001]Scrambler 2 [0010001]

The simulation results are given in Figure 5.8, which shows plots of the variation in 
residual echo level over time at one end of the DEC loop. The residual echo level 

over time at the other end of the DEC loop was observed, in all cases, to be similar 

to that shown. In simulation (a) the subscriber signals are uncorrelated AR(0) or 

discrete white signals. As expected, good performance is achieved with or without 
the scrambling scheme employed. In both simulations (b) and (c), each subscriber 
signal has a relatively broad autocorrelation function. In simulation (c) the subscriber 
signals also show a relatively broad cross correlation function. In both of these latter 
simulations, the use of the scrambler scheme has led to a greatly improved (transient 
and asymptotic) performance.

5.3 Signal C onditioning via Autoregressive F iltering

In this section we examine the second signal conditioning method, the objective of 

which is to enhance transient performance by whitening the input signal to each echo 
canceller. A basic assumption of the method investigated is that the input signal, like 
speech, is well modelled as an autoregressive (AR) process:

where w(k) is a zero mean discrete white signal and A(q !) is an FIR filter of tap 
length p =10 to 50. Under this assumption, approximate whitening of the input

permitted since the whitened input signal is that which is received by the audience 

in the acoustic enclosure. In this section we examine and suggest extensions to a 

number of proposed approaches which address this problem.

In this section we do not consider AR filter estimation. There are standard tech­
niques/algorithms for such estimation. One popular technique is presented in Ap­
pendix D.

(5.2)

signal should be achieved simply by filtering the input signal with an estimate A(q 1) 

of the filter A(q~l ). In acoustic echo cancellation, however, such a scheme is not
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Figure 5.8: Plot of residual echo over time (i) without and (ii) with the scrambling 
scheme of Figure 5.7b employed for 6*i(0) = 0.8, 6*2 (0 ) = —0.7, /i = 0.002 and sub­
scriber signals (a) of Table 4.1(a), (b) of Table 4.1(b), (c) of Table 4.1(c)

5.3.1 A R  B ased  W h iten in g  Schem es

Consider the standard LMS adaptive open loop system of Figure 5.9. Again, we 
assume that the echo path and echo canceller are n-tap FIR filters parametrized by 
the filter vectors 0 and 0(k), respectively. We assume that the input u(k) to the echo 
path/canceller is well modelled by a pth order autoregressive (AR) process, which is 
possibly non-stationary:

u(k) = w(k) — [ai(k)u(k -  1) + a,2(k)u(k -  2) -f ... + ap(k)u(k -  p)] 

or w(k) = A(k)TUa(k ) 

where A(k) = ( 1  a\(k) 0 2 (k) ... ap(k))T
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Ua(k) = (u(k) u(k -  1) u(k — 2) ... u(k — p))T

and w(k) is a zero mean ‘white’ signal of variance <7̂ (fc). Let

Ä(k) = (1 äi(k) a2(k) ... ap(k))T 

be an estimate of the AR filter vector A(k). Furthermore, we dehne: 

w(k) = Ä(k)TUa(k)

W(k) = (w(k) w(k -  1) w(k — 2) ... w(k — n + l))T 

Sa(k) = (s(k) s(k -  1) s(k -  2) ... s(k -  p))T

When Ä(k) = A(k) then

E[W(k)W(k)T\ =

where I  is the n x n identity matrix.

Using the above notation and assumptions, we now examine a number of AR filtering 
schemes which have been proposed, particularly for acoustic echo cancellation.

v(k) +

Figure 5.9: The standard LMS adaptive open loop system

Scheme A

The first scheme, which we call Scheme A, and which was proposed in [37] is illus­

trated in Figure 5.10. This scheme involves filtering/whitening of the input to the 
echo canceller via the estimate A(<?-1 ). Refiltering of this filtered signal with 1 /  A(q~1) 
just prior to the echo path ensures that the original input signal is received by the 

near end subscriber/acoustic enclosure. Filtering with A(q~l ) is again employed after
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the echo path in an attempt to decorrelate the input signal within the echo. LMS 
adaptation of the echo canceller uses this filtered echo+disturbance signal as well as 

the filtered input signal A(q~l )u(k). The adaptation is summarized by the following 

set of equations.

9{k + 1) = 9(k) + f iW(k)x(k)  (5.3)

*(*) = A{k)TSa(k)

+A{k)T[9TU{k) 9T U(k -  1) ... 9TU(k -  p)]T

- 9 ( k ) T[A(k)TUa(k) A(k -  l )TUa(k -  1) ... A ( k - n  + 1 )TUa(k -  n + l)]r  

= A(k)TSa(k) (5.4)

+9T [A(k)TUa{k) Ä(k)TUa(k -  1) ... Ä(k)TUa(k - n +  l)]r  

-9{k )TW(k)

where U(k) = (u(k) u(k — 1) u(k — 2) ...u(k — n 4- 1))T-

v(k) +

A(q_1 )

ACq' 1 )

Figure 5.10: The LMS adaptive open loop system with AR whitening Scheme A

When the autoregressive estimate is time invariant A(k) — A (which requires the 
input to be stationary), then x(k)  of (5.4) can be rewritten as

x(k) = A(k)TSa(k) + (6 - 0(k))T[ÄT{Ua(k) Va(k -  1) ... -  + l)]r (5.5)

=  A(k)TSa(k) + ($ -  0(k))TW(k)  (5.6)

and the update equation for the echo canceller becomes

9(k + 1) = (6 -  0(k + 1)) =  [/ -  ßW( k)W(k )T}9(k) + n A ( k f  Sa(k)W(k)  (5.7)

Assuming A  is a good estimate of the time invariant AR filter vector A then

E[W(k)W(k)T\ a  l a l
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Consequently, the echo canceller converges at a rate similar to that when the input 

signal to the echo canceller/path is white.

Speech, however, is nonstationary and, therefore, the autoregressive estimate is time 

varying. In this case x(k ) does not, in general, take the form of (5.5),(5.6). In par­
ticular, if the nonstationarity of the input extends only over M < n sample intervals 
then

only holds for 0 < i < M . One approach proposed by [37] and [87], involves retaining 
the same AR estimate for n sample intervals, where n is the tap length of the echo 
canceller. We will call this approach in combination with (5.3) Scheme A l. Under 

Scheme A l, (5.5) holds. However, clearly this scheme does not address the actual 

problem, since (5.6) and (5.7) only follow if the stationarity of the input signal extends 

past n sample intervals.

The stationarity of speech is typically about 160 sampling intervals at an 8kHz sam­
pling rate, while at the same rate, the dimension n of acoustic echo paths ranges from 
200 to 4000. Thus, in many acoustic echo cancellation cases, Scheme Al (like scheme 
A) may lead to poor AR estimation and provide far from white input convergence 
rates.

Scheme B

A more recent approach proposed [36], [88], [89] is illustrated in Figure 5.11. In 

this scheme only the signals used in the LMS adaptation algorithm are filtered. The 
update equation for this approach, which we label Scheme B, is

Ä(k)T Ua(k — i) = w(k — i)

0(* + i) = e(k) + ßW(k)Ä(k)TYa(k)

Ya(k) = Sa(k) + [eTU(k) eT U ( k -  1) ... - p ) f

(5.8)

(5.9)

-  [0T(k)U(k) eT(k -  1 )U(k - 1) ... -  p)U{k -  p)]T

A modified version of Scheme B is proposed in [88]. It involves replacing

z(k — i) = S(k — i)U(k — i), i = 1,2, ...,p

in (5.9) by
z(k , k — i) = 9{k)U(k — i), i = 1,2, ...,p.
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s(k) + v(k) +

u(k)

Figure 5.11: The LMS adaptive open loop system with AR whitening Scheme B

That is, the most recent estimate 0(k) is used to obtain ‘improved’ estimates of the 
last p echo samples. This modification, in general, requires an extra pn multiplications 
per sampling interval. The update equation for this modified version, which we call

Schem e B1 is:

9 ( k + l )  = (i(k) + ßW(k)Ä(k)TYa(k) (5.10)

Ya(k) = [Ua(k)  Ua(k -  1) ... Ua(k -  n + l)](e -  9(k)) + Sa(k) (5.11)

which implies

(0 _  0(k + 1)) =  0(k + 1 ) = ( /  -  ßW{k)Ä(k)T[Ua(k) Ua(k -  1) ... Ua(k -  n + 1 )])6(k)

- ßW ( k ) Ä( k )TSa(k) (5.12)

This scheme, like Schemes A, A1 and B, experiences problems with non-stationary 
input signals - the update equation of (5.12) resembles the LMS equation for a white 
input, only when the input signal is stationary over a period of at least n sample 
intervals. The configuration of Scheme B, B1 however, enables the nonstationary 
input problem to be reduced. In particular, consider the update equation in Scheme 
B1 for the ith tap coefficient of the echo canceller:

Oi(k + 1) = 0i(k) + nw(k  -  i)Ä(k)TYa(k) (5.13)

The same whitening filter Ak(q~l ) is used in the updating of all tap coefficients. 

Equation (5.12) implies that this is the root of the problem. An alternative, wrhich 

is hinted at, but otherwise ignored in [88], involves using different, more appropriate 

whitening filters for each tap:

§i(k -f 1) = &i(k) -f fiw(k — i)Ä(k — i)TYa(k) (5.14)
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which implies

$i(k + 1) = Öi(k) — pw(k -  i)Ä(k -  i)TSa(k) (5.15)

-Aiw(k -  i)Ä(k -  i)T[Ua(k) Ua(k -  1) ... Ua(k -  n + 1)](0 -  9(k))

We call this approach Scheme B2. Assuming the input signal is stationary over a 
period of M  sample intervals, this scheme leads to the adaptation of the ith tap being 

decoupled from its M  nearest taps: ^ _ m / 2 5  • ••> @i+M/2- The coupling with the taps 
outside of the M  tap neighbourhood will grow with the nonstationarity of the input 
signal, but, in many cases, will be ‘small’.

The increase in complexity per sample interval of the scheme described over Scheme 
B1 is np. However, by using the same whitening filter vector A(k — i) in the update 
equations for each of the taps in the M  tap neighbourhood of tap i, the increase in 
complexity is only np/M.

A third version of Scheme B, which we label Scheme B3 and appears to be novel, 
uses different AR estimates, as in Scheme B2, but does not use the modification 
of Scheme Bl. The success of this scheme relies on the update stepsize p being 

sufficiently small so that d(k) changes slowly with time in comparison to the signals. 
Under such conditions, the dynamics of Scheme B3 approximate those of Scheme B2, 
at least on the short/fast time scale of the signals.

Remark:

1. The error in 9(k) arising from the slowly time varying approximation used in 

Scheme B3 is similar to that due to the averaging approximation used in Chap­
ters 3 and 4 and, consequently, is typically O(p^),  where 0 < ß < 1.

5.3 .2  D iscu ssion

The brief analyses of the previous subsection indicate that of the schemes presented, 

Scheme B2, in general, should provide the best convergence rate improvements over 

the standard LMS adaptive FIR echo canceller. Furthermore, in many cases, the tran­
sient performance of this scheme should closely resemble that achieved with ‘white’ 
input signals. The improvements obtained with the remaining schemes should ap­
proach that of Scheme B2 when:
(i) p is sufficiently small - Scheme B3;
(ii) the stationarity of the input signal extends past n sample intervals - Schemes A,
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A l and Bl;

(iii) j.L is sufficiently small and the input stationarity  extends past n sample intervals 

- Scheme B.

In [36] and [88] the results of various simulations involving Schemes A l, B, B1 and 

the direct AR filtering scheme of Figure 5.12 are reported. The simulations involve 

an ‘unknow n’’ channel, the impulse response of which is based on measurements of an 

acoustic echo path . The impulse response length was 512 samples with a sampling rate 

of 8kHz. The input was speech. A new AR estim ate was obtained every M  =  160 

samples. The results reported  were an average over either 7 speakers [36] or 16 

speakers [88]. The value(s) of the stepsize fj, used was not given. It is indicated 

th a t each of the three indirect AR filtering schemes provide transient performance 

improvements over the standard  LMS adaptive FIR echo canceller. Furthermore, the 

transient performance of the these schemes was ‘close’ to tha t obtained by the direct 

AR filtering/w hitening scheme. In fact, the transient performance of either Scheme 

A1 or Scheme B1 was indistinguishable from the direct scheme.

v(k) +

A(q_1 )

Figure 5.12: The LMS adaptive open loop system with direct AR filtering scheme

The ability of the indirect AR filtering schemes to provide transient performance im­

provem ents similar to  th a t obtained with direct AR whitening is further supported 

by simulations carried out for the thesis. The simulation conditions, however, were 

less realistic than  those reported  in [36] and [88]. In particular, the signals used 

were not speech but synthesized AR signals derived from measured speech signals. 

Furtherm ore, the impulse response of each of the unknown channels used was arbi­

trarily  chosen. The tap  lengths ranged from 50 to 300. The simulations indicated 

th a t all indirect schemes, presented in the previous subsection, performed as well as 

the direct AR filtering scheme. These results were obtained for stationary as well 

as non-stationary  input AR signals. It should be added, however, th a t each of the 

non-stationary  signals used was derived from a periodic sequence of AR processes.

126



Remark:

2. It was noted in [36] and [88] that the performance of the echo canceller in 
Schemes B and B1 was improved by introducing an appropriate delay v into 
the upper AR filter - that used to filter the feedback signal y(k). This delay, 
effectively, compensates for any delay within the echo path and echo canceller. 
Use of such delays in the upper AR filter(s) of Schemes A,A1,B2 and B3 should 

also improve their performance.

A comparison of the complexity of the AR whitening schemes presented is given in 

Table 5.1. In all but Scheme A1 it is assumed that the AR estimate is obtained only 
once every M < n samples, where the choice of M  depends on the stationarity of 
the input signal. In Scheme A1 the AR estimate is obtained once every n sample 
intervals. The table includes the number of multiplications required to obtain an 
AR estimate once every M  samples via the Levinson-Durbin algorithm , which as 
indicated in Appendix D, is approximately 2p + (4p + p2)/M.

Table 5.1: Comparison of Complexity
Scheme Multiplications per sample Memory
Standard 2 n n
A 2n 4- 6p 4- (4p + p2 ) / M 3n 4- 3p
A1 2n 4- 6p + (4p + p2 )/n 3 n + 3p
B 2n + 4p -F (4p 4- p2)/M 3rc 4- 2p
Bl (2 + p)n + 4p + (4 p + p2) /M 3 n 4- 2 p
B2 (2 + p + p/M)n  4- 4p + (4p + p2) /M 3 n 4- 2 p
B3 (2 4- p/M)n  + 4p 4- (4p -f p2) /M 3 n 4- 2 p

Typically, the order of the AR filter for speech is p = 10 to 50. Studies carried out 
in [36], [88] indicate that good transient performance is achievable with AR filters of 
lower order p < 10. Combining this with the fact that for acoustic echo cancellation 

n = 400 : 4000 suggests that the complexity of the AR whitening schemes is deter­

mined largely by the size of n. Consequently, Schemes A, A1 and B typically introduce 

very little extra computational cost over the standard approach. For speech input 

signals in which the stationarity length M  «  160 is considerably larger than the AR 

model order p «  10, Scheme B3 also introduces little extra computation. On the 
other hand, the cost of Schemes B1 and B2 is about (2 + p)/2 times, that of the 
standard approach.

It is suggested in [88] that the performance benefits gained in Schemes B and B1 
by increasing the AR order, drops quickly after p = 1. In fact, for Scheme Bl, an
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order of p = 2 is suggested to be optimal for the lower (input signal, u(k)) AR filter, 
while p = 1 is suggested for the upper (residual echo signal, y(k)) AR filter. This 
reduction in AR filter orders is taken further in [89], where it is suggested that the top 
AR filter is not needed in Scheme B. It should be added that the algorithm used in 
[89], although similar to Scheme B, employed modifications such as variable stepsize. 
Taking these comments into account, the computational cost of Schemes B1 and B2, 

in practice, may be only 2 to 3 times that of Schemes A, A1 and B.

As usual, the most appropriate choice of the indirect AR schemes presented depends 

on the importance of low computational cost relative to performance. This choice 
is influenced by the system properties. When the input signal is stationary, the low 

cost Schemes A, A1 and B should be chosen. As the signals become more non- 
stationary then, as long as /i is sufficiently small, Scheme B3 should be chosen - it 
provides the best compromise between cost and performance. It should be added that 
a disadvantage of Schemes A and A1 is that of poorer tracking capabilities of the echo 
path. This is due to the delay introduced by the inverse AR filter and the AR filter 

located just before and after the echo path, respectively.

5 .4  C o n c lu sio n

In this chapter we presented two signal conditioning schemes, the objective of each 
being to improve the performance of LMS adaptive FIR echo cancellers in speech 
transmission telecommunication networks. The first scheme focussed on whitening 
the subscriber signals of the telecommunication network and, consequently, is not ap­
plicable to acoustic echo cancellation. It involved placing a low computational digital 

scrambling/descrambling device with the transmitter/receiver of each subscriber. The 

scrambled subscriber signals typically show ‘white’ autocorrelation functions and zero 

cross correlation. Under some circumstances, cross correlation may occur. A simple 
extension of the scheme, which basically has each subscriber using a different scram­

bling device, removes this adverse possibility. The scheme is expected to enhance 

the performance of the LMS/FIR echo cancelling system to that achieved with white 
uncorrelated subscriber signals. This is supported by simulations.

The second scheme focussed on whitening the input of each echo canceller within the 
network. As indicated by the analyses of Chapter 4, the success of this approach 

relies on the transmission delay, imposed by the central 4-wire loop channels, being 
sufficiently large. The scheme, which may be used for both 4-wire loop circuit echo
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cancellation and acoustic echo cancellation, assumes that the input signal, like speech, 
is well modelled as an autoregressive (AR) process. In acoustic echo cancellation, use 

of an estimate of the AR filter to whiten the input directly is not permitted - the 

input is that received by the acoustic enclosure. Alternative schemes, using additional 
filtering or based on AR filtering only of the signals used in the LMS algorithm, were 
examined. The computational complexity of such schemes is generally comparable to 
that of the standard LMS/FIR filter. The schemes should improve the performance 
of the LMS/FIR filter and, in many cases, the performance should match or closely 

approach that achieved with white input signals.
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C h ap ter  6

D im ension R educed L M S/F IR  
E stim ation

6.1 Introduction

The analyses of Chapters 3 and 4 indicated that an increase in the parameter di­
mension of the LMS adaptive FIR echo canceller adversely affects the transient and 
asymptotic performance of the echo canceller (Chapter 3) and of the double echo 
canceller telecommunication network (Chapter 4). This adverse dependence is accen­
tuated by high signal correlation levels and can be reduced significantly by applying 
the signal conditioning schemes proposed in Chapter 5. However, even when the net­
work’s subscriber signals and/or the echo cancellers’ input signals are white and non 

cross correlated, an increase in dimension n leads to a deterioration (linearly in n) in 

asymptotic performance - when the update stepsize fi is fixed. On the other hand, if 

^ is reduced so as to maintain asymptotic performance, then an increase in dimension 
leads to a linear reduction in transient performance.

These comments imply that significant improvements in asymptotic and/or tran­
sient performance might be achieved by basing the echo canceller on more efficiently 

parametrized models (of echo paths) than the standard FIR model. This approach 
has been followed before and lead to the investigation of HR parametrized models, 
particularly for acoustic echo cancellation. However, as indicated in Chapter 2, de­

spite the reduction in parameter dimension, HR based echo cancellers are generally 
inferior to the FIR echo canceller. A less ambitious, more flexible parametrized model 
is that in which a number of the FIR taps are fixed to zero or, effectively, are made 

‘inactive’. Such a parametrization may be suitable for echo cancellation since, as
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discussed in more detail in Section 6.2, the impulse response of an echo path typically 

shows inactive or zero regions. An appealing feature about this ‘active’ parametriza- 

tion is that, unlike the HR parametrization, it is FIR based and, consequently, the 

analytical results of Chapters 3 and 4 apply, at least qualitatively.

The ‘active’ parametrization has been used by various authors such as [40], [39] in the 
development of algorithms for channel estimation applications such as echo cancella­
tion. The approach taken in [40] to estimate the active taps involves: (i) detecting 
the position of the most active (largest) tap by comparing cross correlation estimates:

position of most active tap = argt max
Hk=i+ i v W u ( k - i ) )

e L + i “ 2(*  -  o  J
( 6. 1)

where v(k) is the observed output of the echo path; (ii) LMS adaptively estimating 
the coefficient of this tap; (iii) by effectively removing this estimated tap, detecting 
the position of the second most active tap; (iv) repeating the procedure until all m 

active taps are estimated. As reported, such an approach leads to improved LMS 

convergence properties when m is sufficiently small.

The alternate approach taken in [39] aims at jointly (position) detecting and (co­
efficient) estimating the m most active taps by comparing Normalized Least Mean 
Square (NLMS) estimates of each tap coefficient. At any one time only fn > m taps 
out of a total of n taps are estimated. After a given number of iterations, the m 
most active taps are chosen while the remaining fh — m (least active current) taps are 
replaced by other taps not previously considered. The procedure is repeated until all 

n taps have been considered. Reported simulation results indicate convergence rate 

improvements over simultaneous NLMS estimation of all n taps.

A possible modification to the approach of [39], so as to achieve further convergence 
rate improvements, would be to use estimation algorithms, such as the Least Squares 
(LS) algorithm, which converge faster, at least initially, than the LMS algorithm. 
This, however, would lead to greater computational requirements. An alternative 

approach is to use a suitable low computational approximation of the LS algorithm 

to detect the position of the active taps prior to LMS estimation of their coefficients. 

This is the basis of our approach. In particular, we show through ‘concrete’ analysis, 

that for white input signals a more suitable measure of tap activity than that of (6.1)

x  = K L + i »(*)»(* -  Q]a 
Ö L + i  «2(k -  i)

A number of issues concerning this approach need to be addressed. In particular,
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having detected the position of the active regions, and copied these into the echo can­

celler prior to estimation, under what conditions can we expect improved estimation 

performance. Problems are likely to occur if the input signal is autocorrelated, since 

this would lead to coupling of the taps (both active and inactive) within the echo 
canceller. Biased estimation may result. Such coupling may also affect the accuracy 
of the detection procedure. Another issue is that of the additional computational 
complexity introduced by the ‘active’ tap detector. As we shall see, the coupling and 
computational difficulties are avoided or minimized by ensuring that the input signal 
to the echo path/canceller is ‘white’.

The chapter is organized as follows. VVe begin in Section 2 by examining typical 

circuit and acoustic echo path impulse response structures. This suggests that, for 
an echo path having an n-tap long impulse response, a suitable parametrization for 
the echo canceller is that in which n — m  of the taps are set to zero. The number m 
of nonzero or ‘active’ taps maybe chosen a-priori or, preferably, determined on-line. 
In Section 3, we formalize our system with a number of assumptions. In Section 4 we 
conduct a brief analysis to indicate that when the input signal is ‘white’, this active’ 
tap parametrization provides unbiased estimation as well as improved performance. 
In Section 5, we develop low complexity procedures, based on the Least Squares (LS) 
method, for detecting the number and positions of the active taps of the echo path. 
Using the results of Section 5, we propose in Section 6 a low complexity algorithm 
for on-line detection (of position) and LMS estimation (of coefficients) of the active 

taps of the echo path. Simulations demonstrate the performance advantages of this 

algorithm over the standard LMS algorithm.

6.2  E cho P a th  S tru c tu res

As mentioned in Chapter 1, circuit echo paths within 4-wire loop telephony networks 
typically have impulse responses that consist of an initial inactive (or zero) region 

followed by a dispersive (or nonzero) region [1]. Furthermore, the inactive region 

maybe considerably longer than the dispersive region. This suggests that a suitable 

parametrization for circuit echo cancellers is that in which the coefficients of the first 

M  FIR taps is set to zero, where M  is an unknown number to be determined.

Like circuit echo paths, the impulse responses of acoustic echo paths may also show 

an initial flat region. They may also show a sparse structure - that is, nonzero 

taps or groups of nonzero taps sparsely separated by taps having zero or insignificant
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coefficients. This sparse structure description is suggested by the fact that only certain 

acoustic tracks between the loudspeaker (receiver) and microphone (transmitter) of 

the acoustic enclosure will involve dominant reflection points, such as walls. Such 

tracks result in dominant nonzero taps (or small groups of dominant nonzero taps) 
within the impulse response of the acoustic echo path. Furthermore, these nonzero 
taps will tend to be sparsely separated and their number, considerably less than the 
total tap length of the echo path.

This sparse structure description for acoustic echo paths also has been suggested 
by other authors, [90], [91]. In particular, [91] proposes as a model for acoustic echo 
paths, a sequence of two filters such that the overall impulse is formed by the response 

of an FIR filter driven by a sparse delta sequence. An examination of acoustic echo 
path impulse responses lends support to this notion that acoustic echo paths are 
sparsely structured. An example is shown in Figure 6.1a. This impulse response 
was derived from a measured acoustic echo path impulse response, Figure 6.1b, by 
applying the technique presented in Appendix E, which essentially removes the effects 
of estimation/measurement noise. The measured impulse response of Figure 6.1b was 
obtained 1 from a room approximately 5m x 10m X 3m.

(a)

200 400 600 800 1000 1200 1400 1600 1800 2000

(b)

200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 6.1: Acoustic echo path impulse response showing sparse structure: (a) is de­
rived from the measured impulse response shown in (b) via the technique of Appendix 
E.

rThe measurements were made by CSIRO Radiophysics, Sydney, Australia.
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The above comments suggest that a suitable parametrization model for both circuit 

and acoustic echo cancellers is that of an FIR filter in which the coefficients of n — m 

of the n FIR taps are set to zero. The remaining m taps are allowed to be nonzero 
or ‘active’. The position or lag of each of these active taps is to be determined. The 
number m should also be determined, although, a simpler approach might involve 
selecting a value for m, one which over-estimates the number of active taps.

6.3 System  D escription

Throughout this chapter we consider the open loop LMS adaptive estimation set-up 

of Figure 1.5 of Chapter 3. We assume that Assumptions 1-6 of Chapter 3 are valid - 
see Appendix I for an easy reference to these assumptions. At sampling instant k, the 
input to the echo path/unknown channel is u(k), an additive disturbance s(k) occurs 
within the unknown channel, v(k) is the observed output of the unknown channel and 
z(k) is the output of the unknown channel estimator. As will become evident in the 
following sections, to avoid problems with the use of the active tap parametrization as 
well as to enable the development of our fast, low computational active tap detection 
schemes, we require that the input signal satisfies the following assumption.

Assumption 21 The input signal is uncorrelated over time (white) such that the 
autocorrelation matrix of the input signal u(k):

Rn = ° l l

where I  is the n X n identity matrix and is the variance of u(k).

The use of the active tap parametrization is based on the validity of the following 
assumption.

Assumption 22 The time invariant n-tuple FIR modelled echo , Q(q~1), has only 
m < n nonzero taps:

©(? *) = 31 + bj29 32 + ••• + bjm<l 3m (6-3)

where 0 < ji < ji+\ < n, i = 1, 2,..., m.
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Remark:

1. Assumption 22 is rather general. Clearly it includes the case in which the echo 

path has a sparse impulse response structure, typical of acoustic echo paths, and 
the case in which the impulse response has an initial flat or ‘inactive’ region, as 
in circuit echo paths.

6.4 R equirem ents and Benefits of A ctive Tap Param etriza- 
tion

In this section we argue that the active tap parametrization tends to cause difficulties, 
unless the input signal is white. After invoking Assumption 21, we then carry out a 
brief analysis to indicate the benefits such a parametrization can yield when the echo 
path satisfies Assumption 22.

Consider the case in which the input is filtered white noise, w(k):

u(k) = F{q~l )w(k), E[w2(k )] = o\

The observed output of the echo path of Assumption 22 is:
m

v(k) = Q{q~1)F(q~1)w(k) + s(k) = ]T  bJtF{q~l )w(k -  j i ) + s(k) (6.4)
t = i

and the output of the estimator 0 (^ _1) with all n taps active is:

n

z(k) = Q(q~l )F(q~l )w(k) = ^  OiF(q~l )w(k — i) (6-5)
i—i

The quality/performance of the estimated model can be measured by (for fixed 

0(<7-1))? E[(v(k) — £(&))2]- Observe that:

E[(v(k)-  z(*0)2] = T  j T  lOfe1“ ) -  Q(e'“)\2\ F ( e n \ 2°l<^ + *2 (6-6)

The input signal filter F(q-1 ) results in a frequency weighting on the estimation 

error, that is, a biased estimation error. In the time domain, this may be interpretted 
as coupling between the taps of the residual filter Q(q~1) — 0(<jr-1). In particular, 
coupling leads to nonactive taps appearing to be active and active taps appearing less 

active. Under such coupling, the detection of active taps and the unbiased estimation 
of their coefficients is likely to be difficult.
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The coupling increases as the impulse response of F(^_1) lengthens, or equivalently, 
as the input becomes more autocorrelated. On the other hand, coupling can be 
reduced by using approximate input signal whitening schemes. If the active taps 
are sufficiently sparsely separated, the whitening schemes may remove the coupling 
completely. Zero coupling, however, is only guaranteed when the input signal is white 

or satisfies Assumption 21, so that

Fig'1) = 1 = \F(en\

Under the validity of Assumption 21, the following discussion motivates the use of 
the active tap parametrization. When the input is white (6.6) becomes:

m

E[v(k) -  z(k))2] = []£(&* -  h i ?  + Y  hWu + (6T)
1=1

Note that the taps of the estimates are decoupled. Define

A9i(N) = $i - 6 i ( N )

where N is the number of data points used to obtain the estimate. Since the input is 

white, then the following property will hold asymptotically in N for different estimates 

of Si.

lim {ABAN)} ~ AsN(0,  crt),
N —<-oo

lim E(A6x(N)A0j(N)) =
N —►oo

For example, the cross correlation estimator

E L ti  v ( k ) « ( k - i )

. T & n + l «(* -  'T  .

has this property with ox = J ^ ■ The same holds for the least squares (LS) 

estimator. The equivalent result for the LMS estimator is:

OiiN)

<7,  = ( 6 .8 )

Consequently, with expectation now with respect to A0t(iV):

E ( T  |0(e*“ ) -  Q ^ t o l d w

E - . 2
-i — l

(6.9)
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This implies that the asymptotic error increases Linearly with the number of estimated 
coefficients. On the other hand, as indicated by (6.7), neglecting to estimate a tap 
bJi which contributes to v(k) results in a bias error. The corresponding error is 

proportional to:
l2 '2

The above discussion indicates that improved asymptotic performance of the LMS 
estimator (and of the LS estimator) can be expected by estimating only those taps 

which satisfy:
0} > a?

that is, only those taps which can be distinguished from the estimation noise, or, are 
“active” . This clearly motivates the use of active tap detection schemes.

Remark:

2. The above discussion does not consider transient performance. However, as 
quantified in Chapter 3, when the input signal is white (that is Assumption 21 is 

valid), then for fixed ẑ, the convergence rate of the LMS estimator is essentially 

independent of the number of estimated coefficients, n. On the other hand, 
if an improvement in asymptotic performance is not as important as transient 
performance, then /z could be increased linearly as the number of estimated 
coefficients n decreases. According to the analyses of Chapter 3, this leads to 
the asymptotic performance being maintained and the transient performance 
increasing linearly.

In short, a reduction in the number of estimated parameters (but not below the 
number of active taps within the echo path), improves transient performance (if 
/z is increased with decreasing n) or asymptotic performance (if /z is fixed). The 

LMS estimation algorithm presented in this chapter considers only the case of 
fixed fj, - which results in enhanced asymptotic performance.

6.5 A ctive Tap D etection

In this section we develop procedures, based on the Least Squares (LS) method, for 
detecting the position of the active taps of the FIR modelled echo path. We begin by 
considering the case in which the number of active taps, m, is known, or, alternatively, 

the case in which we want to detect only the m most active taps. By modifying 
the LS method appropriately, we then develop a simple scheme for determining the
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number of unknown active taps, in addition to detecting their positions. Simulations 
demonstrate the ability of the scheme to detect the correct number of active taps even 

with an input to disturbance ratio of 0dB.

Consider the echo path as described by Assumption 22, which we parametrize by the 
n long parameter vector 9:

0 = (0 (7 i -  1), 67l, 0 ( j2 -  j \  ~ 1)? &j2, ••••> 0(jm -  bjm, 0(n — j m))T (6-10)

where 0(j)  is the zero matrix of size 1 x j .  Our aim is to determine the positions 

of the m nonzero elements of 0. We can achieve this by obtaining an estimate 9 of 
9 which has only m nonzero elements. An approach to obtaining this estimate is to 
consider minimizing the Least Squares cost function:

N
Vn (§(N)) = £ ( » ( * )  -  U(k)T0(N))2 (6.11)

f c=l

under the restriction that all but m elements of 9 are zero. As before, U(k) is the 
n x 1 input signal vector at time k.

To write this more formally, we introduce the following notation. 

tm = the set{<i, <2> tm}

9(N, tm) =  (bh (N),bh (N),. . . ,btm{N)j I

J( tm) = n X m matrix with

/</lrow = 0(m) if / ^  t{

Ithrow = (0(ti -  1), 1 ,0(m — t{)) if / = t{

The restricted LS cost function of (6.11) can be then rewritten as:

VN(9(N, tm)) = N[J(tm)Ö(N,tm) -  Öl s (N)]t RN[J(tm)e{N,tm) -  $LS(N)}

+ Vn (»l s (N))  (6.12)

where 9LS( N ) is the unrestricted LS estimate (that is, all n elements of 9L ~'( /V) may 
be nonzero) and is given by:

9l s (N)  = R ( N ) - ' f ( N ) (6.13)

R(N)  =
N

^ j r u ( k ) u ( k f
k— 1

(6.14)

f ( N)  =
k- 1

(6.15)
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Remark:

3. Since v(k) = 0TU(k ) + s(k) then

f ( N)  =  R ( N ) e + ~ ' j r u ( k ) s ( k )
^  k= 1

—* Rß as N —► oo when Assumption 3 is valid 

This leads to 0LS(N) —*■ 0 as N  —*• oo, that is, consistency.

4. In general, even if 6 has only m nonzero elements, the unrestricted LS estimate 
Ol s (N)  will be optimal (in a LS sense):

VN(eLS( N) ) < VN(9(N

The solution to our problem is given by the argO(N,tm) which minimizes the multi- 
variable LS cost function

WN(9(N, tm)) = N[J(tm)9(N,tm) - 6 LS(N)]TR(N)[J(trn)0(N, fn(6.16)

and is given by:

eLS( N , tm) = [J{tm)T R(N)J( tm))~l J{tm

= [J(tm)T R(N)J( tm)}-1J(tm)T f ( N)  (6.17)

The corresponding cost is

WN(8LS( N , t m)) = N(9l s (N))t [R(N)

- R ( N ) J ( t m)[J(tm)T R(N)J( tm)]~

= ,V/(Af)r [Ä()V)-1

- J ( t m){J(tm)T R i Ny i t™)} -1 J( tm)T]f (N)  (6.18)

The cost function of (6.18) depends only on the input and disturbance signals, through 
R ( N ) and f {N) ,  and on the set of tap/element positions tm. We can achieve our aim 
of determining the positions of the m active taps of the unknown channel by deter­
mining the set tm which minimizes the RHS of (6.18). This involves calculating and 
comparing the value of the RHS of (6.18) for (n)!/[(ra)!(n — m)\] different combina­
tions. This is likely to be a mammoth task. The following Lemma, which extends 
the work of [92], indicates that, for sufficiently large N , the task can be considerably 
simplified if the input signal is white.
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Lem m a 2 Consider signals u(k) and s(k) which satisfy the assumptions detailed in 

Section 3. Let U(k) be the n-tap input signal vector, and R(N),  f ( N ) , 0 LS( N , t m), 

Wiv(QLS( N , t m)) be as defined in (6.14), (6.15), (6.13), (6.18), respectively.

Then:

\\0LS( N , t m) -  d (N , tm)\\2 — 0 w.p.l as N  -  oo (6.19)

l / N \ \ W N(§LS( N f i m)) ~ WN(tm)\\2 — 0 w.p.l as N  -  oo (6.20)

where:

9 ( N , tm) = [J(tm )T R (N )J ( tm)}-l J ( t ,n)T f ( N) (6.21)

WN (tm) = N f { N ) T[R(N)- '

(6.22)

R( N)  =
1 ^

— V ' diag(u(k)2, u(k — l ) 2, ..., u(k — n -f l ) 2) 
A .

(6.23)

Proof: See Appendix H.

The cost function has the important property that the contribution of each
tap is decoupled from the rest. Consequently, the set of m tap positions which 
minimizes W ^ { t rn) is given by the indices t{ — j  corresponding to the m greatest 

values of:
A [£te=j+l « ( k ) u ( k - j )

■ ÜE.j+1 “2(* - i )

This leads to the following important result.

Result 10 Subject to the conditions of Lemma 2, then, for sufficiently large N,  the 

positions of the m  most active taps of the FIR modelled channel are given by the 

indices corresponding to the m greatest values of X ^ ( j )  of (6.24).

An equivalent way of stating Result 10, which will prove more useful in the subsequent 

discussion, is that the positions of the m  most active taps are given by the indices 

corresponding to the m  smallest values of the single tap LS cost functions:

N

VN(j) = E  w2W  -  X ^U)  (6-25)
A:=l
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It is important to note that, subject to the conditions of Lemma 2

m N
5Z Viv(*i) — VN(0(N,tm)) + m Y ^ v2(k) as
t= 0  A:=l

iV oo (6.26)

A more sophisticated approach than that above enables the number of active taps to 
be determined as well as their positions. Such an approach requires the cost function 
considered to have the property of structural consistency ( that is the correct number 
and position of active taps is determined as N  oo). The LS cost function does not 
enjoy this property. In particular, the LS cost function Vv(0), irrespective of the true 
order of the FIR modelled unknown channel, decreases as the order of the LS estimate 
increases. A standard approach to counteract against this bias towards higher order 

estimates, so as to enable estimation of the true model order, is to introduce some 
term which penalizes order or dimension. Typically, one uses

+ (6.27)

or
log Vn (9) + m — (6. 28)

where m  is the dimension or number of estimated taps. To guarantee structural 
consistency [93] , the following condition must hold.

C(N)  —► oo, ^  ^   ̂ —*■ 0 as N  —*■ oo. (6.29)
N

Some of the well known dimension penalizing cost functions [93] which satisfy this 
consistency condition are:

V/v/C = logV/v(0) + m~yv~ Akaike’s B-Information Criterium 

V]y = log Vjv(Q) + m ^ <^Criterium

Because V/v(0) = 0( N) ,  the following alternate cost function also enjoys the property 
of structural consistency:

l /“'! = VN(9) + ml ogN  (6.30)
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Remark:

5. A more general form of (6.30) is:

Vftlt2 = VN(ß) + K m log A (6.32)

where K  is a constant independent of m and A, but may be dependent on, 
for example, the variance, a2 and a2, of the disturbance and input signals, 
respectively.

Subject to the conditions of Lemma 2, for sufficiently large A, the result of (6.26) 
indicates that we can approximate

V%u(N ,tm) = VN(e(N ,tm)) + mlogjV

by the decoupled cost function:

m N

v2{k)
t=l k—1

(6.33)

where V^lt{ti) = Vn (U) + log A (6.34)

and Vn (U) is as defined in (6.25). Alternatively,

N  m

V t f ' i n  = £  v \ k )  -  £ [ * * ( < , ) -  log N] (6.35)
A := l  t =  1

Thus, for sufficiently large A, an estimate of the number m and the positions i = 
1,2, ...,m  of active taps is given by that set of indices which minimizes the RHS of 
(6.35) or, equivalently, which maximizes

m

-  log N] (6.36)
t  =  l

ft is clear that the RHS of (6.36) is a monotonically increasing function of m so long 

as X f j t(ti) > log A. This leads to the following important result.

Result 11 Subject to the conditions of Lemma 2, then, for sufficiently large N, the
positions of the active taps of an FIR modelled channel are given by those indices j
for which

X n U) > log A (6.37)
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Remark:

6. It should be emphasized that Result 11 provides a criterion for estimating the 

number m and positions t{ of the active taps of the echo path. In comparison, 
Result 10 only provides a criterion for determining the positions of the m most 
active taps, or alternatively, the positions of an a-priori known number of active 
taps.

Result 11 suggests the following simple procedure for detecting the positions of the 

active taps of the echo path.

Algorithm  1 1 . Set fj(0) = 0, r; (0) = r0, 2j(0) = 0, j  = 1,2, ...,n.

2. Update fj<k{k), rj<^(fc), xj<k(k) at time k via:

f j(k) = f j(k  -  1) + v(k)u(k -  j )  

Tj(k) = r j(k — \) + u{k — j ) 2

X j ( k )
m
r j { k )

3. At time k, an estimate of the positions of the active taps is given by the set of 
indices which satisfy:

X j ( k ) > log(fc) (6.38)

Remark:

7. The initial condition ro of rj, j  = 1,2, ...,n  must be nonzero but should be 

sufficiently small so that its effect on rj(k) rapidly decays with k.

8. The condition of (6.37) does not require a comparison of all n taps (which is the 

requirement suggested by Result 10). That is, there is no need for simultaneous 

computation of n values of X^ ( j ) .  In particular, this means that the detection 
of the active taps can be carried out in consecutive blocks of length n < n rather 

than in one block of length n - as is the method of Algorithm 1. Clearly this is 
beneficial when there are computational constraints.
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The results of two sets of simulations based on Algorithm 1 are shown in Figure 6.2 
- plotted is the number of active taps detected over time. The mean result of ten 
similar simulations is shown. The impulse response (in discrete time domain) of the 
channel being estimated is shown in Figure 6.3 - 11 out of 300 taps are nonzero. This 
impulse response was derived (via the approach of Appendix E) from a truncated 
version of a room acoustic impulse response. The input and disturbance signals used 
in the simulations were both zero mean white Gaussian signals with variance:
(a) = 1.0 and a* — 0.01, (b) o\ — 1.0 and a] = 1.0.

Similar results were achieved for nonGaussian (zero mean white) signals and for the 

case in which the disturbance signal is nonwhite (but still zero mean and uncorrelated 

with the input).

It is interesting to note that in the case of relatively low level disturbance, the al­
gorithm, as indicated by Figure 6.2a, converges relatively slowly but smoothly to 
provide an unbiased estimate of the number of active taps. In the relatively high level 
disturbance case of Figure 6.2b, the algorithm provides an estimate which increases 
quickly towards the active tap number rapidly, but overshoots. The estimate then 
decays, with some ‘ringing’, towards the true number of active taps. The apparent 

asymptotic overestimation is due to estimation noise - an examination of the results 
of individual simulations indicates the estimation is unbiased. Many simulations 
support these comments and suggest that the algorithm experiences significant over- 
shooting/overestimation problems when the input to disturbance ratio drops below 
0 dB.

6.6 LMS E stim ation  via D etection

In this section we use Result 11 to propose an algorithm for LMS estimating the 
coefficients of only the active taps of the FIR modelled unknown channel/echo path. 
Simulations demonstrate the performance advantages of this algorithm over that of 

the standard LMS algorithm.

One approach to LMS estimating the active taps of the echo path, which makes use of 

the detection results derived in Section 5, would involve first running Algorithm 1 for 
a given number N  >> n of sample intervals and then LMS estimating the coefficients 
only of those taps detected as being active (at time k = N).  The approximate LS

144



(a)

10000

10000

Figure 6.2: Number of active FIR taps detected over time of the Channel of Figure 
6.3 - detection scheme based on that of Result 11

estimate of each of the detected active taps, as given by (6.21):

Eitej+i «(*)«(*- j )

could be used as the initial LMS estimate.

An alternative LMS estimation approach to that suggested above involves determining 
at each sample interval k the indices which satisfy the active condition Xj > log(fc). 
The corresponding taps in the LMS estimator are then LMS adapted for that sample 
interval. The LMS coefficients of those taps which are not detected as being active 
may be frozen for that sample interval or, alternatively, may have a forgetting function 

applied to them. The application of a forgetting function is actually preferred because 
it ensures that the estimate is structurally consistent. This approach is summarized 

by the following algorithm.

Öj(N)

A lgorithm  2 1. Choose the LM S forgetting factor a  (E [0,1). 

Set f j ( 0) =  0, 7\,(0) = r0, *j(0) = 0, 0j(O) = 0, j  = l ,2 , . . . ,n .

2. Update f j ( j  < k), rj ( j  < k ), xj ( j  < k ) at time k via:

f j ( k ) = f j ( k - l )  + v ( k ) u ( k - j )  

r j (k) = Tj(k — 1) + u(k — j ) 2
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Figure 6.3: The impulse response of the Channel used in simulations.

3. Determine the set of indices {tm} which satisfy xj(k) > log(fc). Construct an n x  1 
vector g(k) with ones in the positions corresponding to the set of indices {tm} and 
zeros in the remaining positions.

Update Oj(k) at time k via:

e(k) = v(k) — U{k)T0(k), where 9(k) = (0o(k), Oi(k), ...,0n^\(k))T

Oj(k + 1 ) = a 1~9̂ k^0j(k) -F pe(k)gj(k)u(k — j )

5. Return to step 2.

Remark:

m
T j ( k )

9. Choice of a = 1 corresponds to freezing of the LMS estimates of those taps not 
detected during each sample interval. Because this leads to structural inconsis­
tency, such a choice is not permitted in Algorithm 2.

10. One approach to modifying Algorithm 2 to enable estimation of a slowly time 

varying echo path involves:
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(i) periodically reinitializing fj (k), rj (k),Xj(k):

fj(k) = 0, Tj(k) =  ro, Xj(k) = 0, k = cT, c — 0 , 1 , and T sufficiently large

(ii) LMS updating the j th tap coefficient at time k = cT + k, 1 < k < T 

only if
Xj(k) > log(fc)

Figure 6.4 shows the results of simulations based on Algorithm 2 - plotted is the 

squared Euclidean norm of the residual parameter vector (||0—0(fc)||2)2 over number of 
sample intervals. The mean results of ten similar simulations are shown in both Figure 
6.4a and 6.4b. The impulse response, 9, of the channel being estimated is that shown 
in Figure 6.3. In both Figure 6.4a and 6.4b, the input and disturbance signals are zero 
mean Gaussian signals of unity variance. In Figure 6.4a the disturbance signal is white 
while in Figure 6.4b the disturbance signal is generated by a first order autoregressive 

filter H( z ) = 1/(1 — O.82-1) and, consequently, is autocorrelated. Similar results were 

achieved with nonGaussian signals. For comparison purposes, Figure 6.5 shows the 

results of similar simulations based on the standard LMS algorithm in which all n = 

300 taps are estimated. The simulation results indicate a considerable improvement 
in asymptotic performance of the LMS-active tap estimator over the standard LMS 
estimator. Furthermore, this improvement does not depend on the disturbance signal 
being white (or the input and disturbance signals being Gaussian).

Remark:

11. As remarked in Section 4, the LMS estimation algorithm presented above consid­

ers only the case of fixed fi - which results in enhanced asymptotic performance. 
To enhance transient performance instead, the proposed algorithm could be 
modified so that fi is made proportional to the number of active taps detected.

6.7 Conclusion

In this chapter we tackled the adverse effects of large filter parameter dimension on the 
performance of the LMS adaptive FIR filter. This problem is particularly relevant 
to echo cancellation since the impulse response length n of echo paths is typically 

moderately long to very long. We began by proposing, as a means of reducing the 
parameter dimension, an ‘active’ tap parametrization in which only m < n taps in
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(a)

(b)

Figure 6.4: Performance over time of the LMS-active tap estimator of Algorithm 2. 
Plotted is (||0 — 0(fc)||2)2 over time, where 9 is the impulse response vector of the 
channel of Figure 6.3. The input signal in both (a) and (b) is a zero mean Gaussian 
white process, while the disturbance signal is either (a) a zero mean Gaussian white 
process or (b) a zero mean Gaussian first order AR process with pole p = 0.8. The 
forgetting factor a =  0.9 and update constant p =  0.001.

the adaptive FIR echo canceller were allowed to be nonzero. This parametrization 

was chosen due to the observation that echo path impulse responses typically show 

zero or ‘inactive’ regions.

Analyses carried out showed that, under the condition that the input signal is white, 

performance improvements in LMS estimation are achievable with this parametriza­

tion. A simple procedure, based on the Least Squares method, was then developed 

which, for sufficiently large N  (the number of sample intervals), detects the correct 

number and position of active taps. Using this active tap detection procedure we 

proposed an LMS based estimation algorithm. Simulations indicated that such an 

“LMS-active tap detection” algorithm provides considerable performance improve­

ment over the standard LMS algorithm.
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(a)

Figure 6.5: Performance over time of the standard LMS estimator. Plotted is (||0 — 
9(k)H2)2 over time, where 0 is the impulse response vector of the channel of Figure 
6.3. The input signal in both (a) and (b) is a zero mean Gaussian white process, 
while the disturbance signal is either (a) a zero mean Gaussian white process or (b) 
a zero mean Gaussian first order AR process with pole p = 0.8. The update constant
p =  0 .001.
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C hapter 7

C on clu sion s and F uture W ork

7.1 C o n c lu sio n s

In this thesis we have focussed on echo cancellation in speech transmission telecom­
munication systems via the popular LMS adaptive FIR filter. This technique typically 

provides adequate suppression of circuit echoes, generated by impedance mismatch­
ing within centred 4-wire loop telephone networks. However, poor performance is 
occasionally observed. The LMS adaptive FIR echo canceller is also used to suppress 
acoustic echoes which occur during hands free telephony and teleconferencing. High 
computational cost and poor transient performance, however, are common problems.

The performance problems in both of these applications has been linked to the correla­

tion characteristics of the transmitted/driving signals. The large FIR filter parameter 
dimensions required in the latter application (to adequately model the ‘long’ acoustic 

echo paths) has been also linked to the observed poor transient performance. Moti­

vated by this, the objectives of the work leading to this thesis were as follows.

1. Quantify the effects of signal correlation characteristics and filter dimension on 
performance of the LMS adaptive FIR filter.

2. Based on these results and the typical characteristics of the echo cancellation 
application, develop performance enhancing schemes for the LMS adaptive FIR 
echo canceller.

The first objective was tackled by conducting dynamical analyses on an open loop 

and a closed loop LMS adaptive FIR filter system, the former being representative of 

one end of an echo cancellation network, while the latter is representative of the full
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network. In particular, the open loop system consisted of:
- the adaptive filter connected next to and in parallel with time invariant FIR 

modelled unknown channel of equal tap length;
- additive disturbance within the unknown channel;
- stationary, zero mean input and disturbance signals which were not cross corre­

lated;
- positive definite input power spectrum;
- ‘sufficiently small’ LMS update stepsize, /z.

This setup ensured unbiased estimation of the unknown channel.

We began by developing a quantitative measure of the expected convergence rate of 
the LMS adaptive FIR filter to the unknown channel. We proposed the cost function:

c  _  TracejR~l ) 
e 2 fm

where Rn is the n x n autocorrelation matrix of the input signal and n is the tap 

length of the FIR filter. An increase in the cost function implied a decrease in the 

expected convergence rate. Analysis of the cost function Ce followed, with particular 
attention being given to input signals, such as speech, which are well modelled as 
autoregressive (AR) processes. The results are summarized below.

• In general, for a given
- the cost function increases monotonically with dimension for ‘non-white’ or 

coloured inputs and is independent of dimension when the input is ‘white’;
- as dimension n increases, the cost function increases towards a finite value which 

is determined by and increases with input autocorrelation level.

• For autoregressive (AR) input signals, an explicit relationship is obtained between 

the cost function, the AR coefficients, filter dimension, n, and /z. The adverse effect 
of dimension tends to increase with input autocorrelation level.

• For the filter dimensions typical in echo cancellation, the cost function is of the 
order of 100 times greater with AR modelled speech input signals than with ‘white’ 
inputs of the same variance. This is due to the high autocorrelation level of speech.

• When ß is adjusted to maintain asymptotic performance, the cost function increases 

approximately linearly with dimension. The linear rate increases with increasing input 

autocorrelation level.

The closed loop adaptive filter system consisted of:
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- an LMS adaptive FIR filter and FIR modelled unknown channel at each end of 

the loop;
- the tap lengths of the adaptive filters and unknown channels were equal;
- the loop driven by signals entering from within the unknown channels;
- driving signals stationary and zero mean;
- sufficiently small ft.

With reference to echo cancellation, the driving signals represented the subscriber 

signals. Semi-formal to rigorous analyses were conducted. The results are summarized 

below.

• For given filter dimension/tap length and fi, the transient and asymptotic perfor­
mance of both adaptive filters deteriorates with increasing autocorrelation and cross 
correlation levels of the subscriber signals. An increase in dimension accentuates this 
effect.

• For given dimension and /.i , asymptotic and transient performance improves as the 

subscriber signals become ‘whiter’.

• When the channels connecting the two adaptive channel pairs impose a sufficiently 
long delay and/or the subscriber signals are sufficiently ‘white’, the dynamics simplify 
to those of a pair of open loop systems.

These results together with the properties of speech transmission echo cancellation 
telecommunication systems - highly autocorrelated input/subscriber signals and large 
filter dimensions - indicate convincingly that considerable performance improvements 
of such systems can be achieved by employing schemes which:

• whiten the subscriber signals, or, if the telecommunication channels impose a suffi­
ciently large delay, whiten the input signals to the echo cancellers;

• reduce the filter dimension, i.e. the number of adaptive parameters of the FIR echo 
canceller.

Following the first approach we proposed a scheme which uses digital scramblers at 

each end of the network to ensure the subscriber signals are ‘white’. Under the as­
sumption of a fully digital network, the scheme is shown to provide greatly enhanced 
performance. A second scheme considered makes use of the autoregressive (AR) na­
ture of speech signals. It involves using estimates of the AR filter of the echo canceller 
input signal to reduce input signal autocorrelation. We heuristically analysed exist-
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ing versions of this AR based scheme as well as proposed and analysed modifications. 
The analyses indicated that the schemes, under a variety of conditions, essentially 
‘whiten’ the input signal. Simulations supported the analytical results.

The second approach, that of reducing filter dimension, was tackled by proposing a 
parametrization for the n-tap FIR based echo canceller in which only m < n taps 
are allowed to be nonzero or ‘active’. The remaining n — m are set to zero. This 
parametrization was based on the observation that the (discrete time domain) impulse 

responses of echo paths typically contain regions of inactive or zero taps. We showed 

that when the input signal is white, such a parametrization can lead to improved 

transient and/or asymptotic performance of the adaptive filter. Assuming a ‘white’ 

input signal we then:

• developed, via a least squares approach, a measure of the activity/inactivity of each 
tap of an FIR modelled echo path;

• developed, using this activity measure, a low computational cost algorithm for 
determining the lag position of the ‘active’ or nonzero taps of an echo path;

• proposed a modified LMS algorithm which uses the ‘active’ tap detection algo­
rithm to reduce the echo canceller parameter dimension and, hence provide improved 
asymptotic and/or transient performance - importantly, the modification introduces 
only a minor increase in computation.

7.2 Future D irections of Research

7.2.1 D yn am ica l A nalyses

Open Loop Analyses

• Extend the open loop analytical results of the thesis, at least qualitatively, to 

allow for some degree of nonstationarity within the input/disturbance signals 

and the unknown channel. This might involve first developing a suitable signal 

model and possibly a new performance cost function.

• Determine the performance of the LMS adaptive FIR filter with nonstationary 
speech driving signals, using as a reference, the performance with ‘white’ driving 
signals. This may be based solely on simulation results, or, more ambitiously, 
on the analysis of a performance cost function.
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Closed Loop Analyses

• Apply the Lyapunov technique, which enabled rigorous analysis of a simplified 
closed loop system consisting of single tap echo paths/cancellers, single sample 
delay transmission channels and first order autoregressive (AR) subscriber sig­
nals, to the cases of:

larger delay systems;
higher order AR subscriber signals.

• Strengthen the semi-quantitative results obtained for closed loop systems of 

arbitrary echo path/canceller dimension (tap length). In particular, obtain a 

quantitative relationship relating performance, dimension and subscriber signal 
correlation levels. This will require a performance cost function to be developed.

• Carry out a simulation study of closed loop systems having arbitrary dimensions 
and channel delays and driven by speech subscriber signals. Compare to ‘white’ 
subscriber signals.

• Show more conclusively, through simulation and/or theoretical analysis, that 

the dynamics of the closed loop system simplify to a pair of decoupled open 
loop systems when the channel delay is sufficiently longer than the cross and 
autocorrelation lengths of the subscriber signals.

7.2 .2  S ignal C on d ition in g  Schem es

Scrambler Scheme
Carry out simulation studies to determine the performance improvements achievable 
with the scrambler scheme when the subscriber signals are speech.

AR Whitening Schemes Compare the performance benefits obtained with the six AR 

whitening schemes presented using more realistic simulation conditions, such as (i) 

speech input and disturbance signals and (ii) measured echo path impulse responses.

7 .2 .3  D im en sion  R educed  L M S /F IR  E stim ation

• The proposed structurally consistent cost function - which lead to the active tap 
criterion - involved replacing the LS cost function Vjy = 0 ( N ) by N.  The use 
of other possible 0 ( N ) replacements such as those depending on the variance of 
the disturbance and/or input signals (e.g. cr^N, a^N/al )  should be explored.
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• Determine the deterioration in performance of the active tap detection algorithm 
when the ‘white’ input is replaced by an approximately ‘white’ input. This will 

require the development of a suitable signal model as well as a performance cost 

function.

• Explore the effect of the disturbance level on the transient and asymptotic 
performance of the active tap detection algorithm.

• Explore, more fully, extensions to the proposed active tap LMS algorithm which 
enable tracking of time varying echo paths.

7.2 .4  N onlin ear E ffects in C hannels

Determine sources of nonlinearity in speech transmission echo cancellation networks. 
Examples are A/D (analogue to digital) and D/A conversion, the loudspeaker and/or 
microphone in acoustic systems. Quantify the effects of these nonlinearities and, if 
detrimental, develop methods which reduce the effects.

155



A ppendix A

P relim in ary  C on cep ts

A .l  Order Function and 0 ( .)  Function

A function ö(ß) is called an order function if 6(fi) is continuous and positive in an 
interval (0 ,^+] and if lim ^ o  exists [78].

The 0 (.) function is defined as follows [78]. Consider two order functions 61 and 62- 

If there exists a constant, C, such that:

JMM
IM aOI

for ß —* 0

then

£2(a0 = 0(6i(//)) for [i — 0

A .2 T im e Scale

Consider a function <t>ß(k), parametrized by (i, and an order function 6(ß). If the 
equality:

<f>n(k) = 0 (6(n)) as n -+ 0

is vahd for 0 < k < L/ [i, with L being a constant independent of ß, then the equahty 
is said to hold on the timescale l / ß  [78].
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A .3 Lipschitz Continuity

Consider the vectorfield f ( k , x ) with:

k > 0, x e D C  Rn, J : N  x Rn -  Rn 

If there exists some A, which is independent of k , x, such that for all £ 1 , 0 : 2  E D

| | / ( M i )  -  f ( k , x  2)|| < A11 x 1 -  x2||

Then, f ( k , x ) is Lipschitz continuous in x E D, uniformly in k [78].

A .4 Uniform  Contraction

Consider the difference equation [94]:

Xk+ 1 = A(x k)xk + b(xk), xk=o = x0 (A.l)

where x, xq E D C Rn, A is an n X n matrix, b is an n X 1 matrix and D is an open 
set containing the origin.

Suppose the induced lv norm of A(x) is bounded by:

P ( x ) | | ,p < 1 - c  (A.2)

for all x € Do = {x € D : ||x ||p < x(constant)} (A.3)

for some 0 < e < 1 which is independent of fc,x,

(a) If
b{xk) = 0 V xk (A.4)

then (A .l) is a uniform contraction to zero on 1  G Do •

This implies that:

(i) there exists a unique equilibrium at x = 0 for all xo E Do

(ii) the solution x = 0 is exponentially stable with Do being a subset of the domain 
of exponential attraction.

Note that ||xfc -  0||p is bounded by:

\\*k ~ 0||p < (1 -  c^llxollp (A.5)
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and that this bound will converge more quickly to zero as e increases towards unity.

(b) If

I(ö(xjt)l|p < 6(constant) V Xk 

6/e < x( const ant)

(A.6) 

(A.7)

then (A.l) is a uniform contraction on i  E Do to the lp ball, B:

I Win = b ! (- (A.8)

This imphes that a unique solution does not necessarily exist, but that for all x0 £ Dq 
the solution Xk will remain stable.

Note that as e increases towards unity:
(i) the lp ball B will reduce in size

(ii) if ||xo||p > 6/e, then the solution Xk will converge more quickly to within the
lp ball B since ||xjt||p — 6/e < (1 — e)fc||xo||p.
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A ppendix B

T h e A veraging  M eth od

Consider the difference equation [78]:

X k + i  = xk -  n f ( k , x k), x k=0 = x0 (B.l)

where x, xo E D C Rn, k > 0, /  : N  x Rn —► iün.

Suppose the Hm.it:
M-l+fco

/ ( 2 ) =  lim 1/M / ( M )  (B.2)
M —>00

AC —  ACq

where x = 2  is held constant, is well defined and is independent of ko.

Consider the difference equation:

Xk+i = *k ~ /*/(**)> x k=0 = x0 (B.3)

where x 6 D C Rn, and /  is as defined in (B.2).

(a) If f (k,  x k) is Lipschitz continuous in x £ D,  uniformly in k, then, f ( x k) is Lipschitz 
continuous in x £ D and

\xk — xk\ = 0(<5ly/2(/a)), on the time scale l /fi  (B.4)
k+k0

where S(^l) = sup sup sup ^  /(m , x) — /(x )| (B.5)
ko x £ D  k£[ 0 , L/ ß)  rn=ko

(b) If the condition in (a) is satisfied and f ( k , x k) has Lipschitz continuous first order 
partial derivatives with respect to x in D then:

\xk — xkI = 0(6(n)),  on the time scale l / f i  (B.6)

(c) If the condition in (a) or (b) is satisfied and x = 0 (with x0 = 0) is an exponentiahy 
stable solution of (B.3) with domain of exponential attraction D0 C  D then, for
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£o £ Do, the bound on the approximation in (B.4) or (B.6), respectively, holds for all 
time, that is, the time scale of the approximation is extended to infinity.
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A ppendix C

R ecu rsive  Least Squares

The Recursive Least Squares (RLS) method is a popular approach for obtaining an 
estimate 0 of an unknown parameter vector 0 of a linear regression:

v(t) = 9T<f>(t) + e(t) (C .l)

where
v(t) is an observed variable;
cf)(t) is an observed vector and is called the regression vector; and
e(t) is unobserved noise resulting from additive disturbance and/or measurement
errors.

As an example, the output of an FIR modelled system is often described by a linear 
regression:

n(£) — 0Qit(i) 0\u(t — 1) T ... -f- 9n^.\u{t — Ti T 1) T c(/) (C.2)

for which

0 = (0O 0i ... 0n_ i)T, 4>(t) = (u(t) u(t -  1) ... u(t -  n + 1))T (C.3)

Other examples are outputs from AR modelled and ARX modelled systems.

The Least Squares approach is based on the idea of choosing as an estimate, that 0 
which minimizes the cost function:

VN(0) = d f ; 7 (JV, -  §Tm 2 (C.4)
iv t=1

where 7 (A ,/) is a weighting function.
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We will consider here the exponential weighting function (see e.g [95] for a more 

general approach):

7(iV, <) = (1 — 0 < q < 1  (C.5)

The criterion Vn (0) is quadratic in 9. We can obtain the Least Squares estimate by 
differentiating (C.4) with respect to 0,

dVN(0)
dO

N
= 2 £ ( 1  - a f ~ ‘

t = 1
-4>{t)v(t) + <f>(t)<p(t)T §],

equating the result to zero and then solving for 0:

(C.6)

0 = 0(N)  = ä(a t 7 W (C.7)

fl(iV) =
TV

j ^ ( l  -  a)N- t<f>(t)<f>(t)T (C.8)

=

t = 1

-  q)a’- v (o k o (C.9)

From (C.7)-(C.9) we have:

(1 — a)R(t  — 1) =

<=l

R(t) -  4>{t)4>T(t) (C.10)

(1 -  a) f ( t  -  1) = (1 -  a)R(t  -  l)0(t -  1)

R(t)0(t — 1) — 4>(t)<pT(t)O(t -  1) (C .ll)

Thus

0(N) = R( N) ~l [ ( l - a ) f ( N  -  1) + <j>(N)v(N)]

= R ( N ) - 1 [.R(N)9(N -  1) + 4>(N){-<pT(N)0(N -  1) + v{N)}

= 0(N -  1) + R{N)~l4>(N){v(N) -  4>T(N)0(N -  1)} (C.12)

Equation (C.12) together with

R( N)  = (1 -  a)R(N  -  1) + <p(N)4>T(N)  (C.13)

is a version of the exponentially weighted RLS algorithm.

The computational complexity, resulting from the need to obtain the inverse of the 
matrix R( N)  every sampling interval, can be avoided by using the matrix inversion 
lemma [95]:
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Lemma 3 Let A , B ,C  and D be matrices of compatible dimensions, so that the prod­

uct BCD and the sum A + BCD exist. Then

[A + BCD}-1 = A~l -  A~l B[DA~xB + C - l] - l DA~l (C.14)

Following common practice we define P(N)  = R 1(N).  Applying (C.14) to (C.13) 
with

A = (1 -  a)R(N -  1) = (1 -  a)P(N -  l ) -1 , = <p(N), 1, <pT(N)

leads to

P(N  -  1)
P(N)  =

1  —  a 
P(N -  1)

l  —  o
4>T( N ) P i N - 1] 4>(N) + 1

-1 Ti^P(N-  1)

1
1 — 0

Using (C.15) we also obtain: 

1

P{N -  1) -

l — o
P(N  -  1)4>(N)<Pt (N)P(IV -  1)

1 — 0

P(N)<h(N) = l — o
P(N -  1 )(p(N)~ 

P(N  -  1 )4>{N)

<f?(N)P{N -  1 )<p{N) + (1 -  o)

P{N -  1 )<f)(N)<pT(N)P{N  -  l)0(Ar)

(C.15)

4>t (N)P(N  -  l)<p(N) + (1 -  o)

<pT(N)P(N  -  1 )(f>(N) + (1 -  o)

Combining (C.12), (C.16) and (C.15) leads to the standard RLS algorithm.

(C.16)

Algorithm 3 Initialization: Choose P(0) and ^(0). 

Recursion:

0(N)

U N )

P( N)

9(N -  1) + L( N) {v( N)  -  (pT(N)9(N  -  1)} 
P(N -  1 )<f>(N)

<f>T(N)P{N  -  1 )<P(N) + (1 -  o)
1

l  —  o

p , N _  n  _  P(N -  1 )<t>(N)4>T(N)P(N -  1) 
' ' <t?(N)P(N-l)<j>(N) + ( \ - a )

(C. 17) 

(C.18)

(C.19)

Remark:

A common choice [95] of initial values is:

P (0) = K  I, 0(0) = 0

where /  is the identity matrix and K  is a large constant.
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A ppendix D

A utoregressive Filter  
E stim ation  - the  
Levinson-D urbin A lgorithm

In this appendix we present the Levinson-Durbin Algorithm which is a recursive 
procedure, based on the Yule-Walker Method, for obtaining an estimate of the au­
toregressive (AR) filter of an autoregressive signal [85]. The technique uses the auto­
correlation values of the signal and, therefore, assumes that the signal is stationary. 
For nonstationary AR signals such as speech, the signal is assumed to be stationary 

over a given period of time. For speech, a period of 20ms is often suggested [20].

A lgorithm  4 Levinson-D urbin A lgorithm :

Let rj, j  = 0,1,... be the autocorrelation function of an AR modelled signal. Let p be 
the order of the AR filter to be estimated.

Initialization: = 1 and Do = ro-

Recursion: For m = 0 , 1 — 1, do:

m

ß m  =  X ]  a t Trn +  l - t ( D . l )
t= 0

ts ß m

m+1 "  ~ d Z
( D . 2 )

<4m+1) =  i ( D .3)

ajm+1) = a [ m)  + A'm + i o ^ , _ „  for t =  l , 2 , . . . , m +  1 ( D . 4 )

D m  + 1 =  (1 — m + l ) D m ( D . 5 )
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The coefficients of the AR estimate are given by:

,(p) a[p). ( P ) 
V

In the case of an AR signal which is non-stationarv but is assumed to be stationary 

over L sample intervals, the autocorrelation values tj  are replaced by appropriate 

short term autocorrelation estimates, such as:

fco - \ - L

rj(k0, L ) = j  ]jT u(k)u(k — j)w(k),  j  =  0 ,1 ,2 , ...,p 
k=k0 +j + l

wehere w(k)  is associated with a windowing function. The relatively high computa­

tional complexity of this approach could be avoided by using, instead, an iterative 

procedure such as [86],

dl(k)  = aol (k  -  1) -f (1 -  a)u(k)2 

r ,- ( * + 1) = ar i i k ) + U(k)i 2 ikk) 3)< j  =  0 ,1 ,2 , ...p (D.6)

The number of multiplications per sampling interval required in this autocorrelation 

scheme is only 2(p + 1 ).

The complexity of the Levinson-Durbin recursion is approximately 4p + p2. If a new 

AR estimate is obtained every M  sample intervals and we assume the complexity to 

be spread evenly over the M  sample block then:

The total complexity of the Levinson-Durbin per sampling interval % 2p+(4p+p2) /M  

where we have assumed the autocorrelation estimate is obtained via (D.6).
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A ppendix  E

R em ovin g  M easu rem en t N o ise  
E ffects - Sparse C hannel 
Im p u lse  R esp o n se  E stim ation

In this appendix we present a procedure for removing the effects of measurement 
noise from estimated time domain channel impulse responses. The procedure relies 
on the true impulse response having a sufficiently large number of zero taps and, 
consequently, its applicability is restricted to channels having, for example, a sparse 
structure. This procedure may be viewed as an off-line scheme for active tap detection 
of sparse channels.

Consider an unbiased estimate of the discrete time domain impulse response of a 

sparse channel. Generally, the presence of measurement noise or disturbance causes 

the tap coefficient estimate of each of the zero taps of the sparse channel to be 
nonzero. If we assume the input is white, then the discussion of Section 6.5 suggests 

that asymptotically (at least for LS,LMS estimates) the zero tap estimates form a 

zero mean i.i.d. Gaussian distribution:

{0t} ~ iV(0,<72), i.i.d., where 0% — 0 (E .l)

Under the validity of (E .l), we use the following result, which is inspired by the work 

of Donoho cited in [99], to develop a procedure for removing the effects of the noise, 
or, equivalently, for determining which taps are zero.

Result 12 Let {z{} ~  N(0,  a2), i.i.d.. Define the event Am  = {supt<jV; |zt | < a \J2logM} 

Then, Prob(AM) —*► 1 as M  —► oo.
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A first glance suggests that, in order to use the threshold Oy/2logM to determine 
which taps are zero, a-priori knowledge of the indices i of the zero taps is required. 

This requirement is avoided for sparse channels by applying the following iterative 

procedure.

Algorithm 5 1. Include initially the indices of all n tap estimates {0t} in the set S 
of zero taps. Set M = n.

2. Determine rms value as of the estimates of the taps in set S.

3. Determine the indices i of those taps, the estimated coefficients of which satisfy:

!<?,| < <T5\/21ogM. (E.2)

Include only these indices in the set S. Set M = number of elements of set S.

\. Repeat steps 2 to 3 a given number of times or, alternatively, until the difference 
in as from one iteration to the next has dropped below a given value.
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A ppendix F

C h ap ter 3 P roofs

F .l  P roof of T heorem  1

The proof of Theorem 1 follows from proof that Tr(R~l )/n  is a nondecreasing function 
of n and, furthermore, is a nonincreasing function of n only when the input is white, 

or, equivalently:

Rn = Io \ ,  where I is the n x n identity matrix

To begin, we note that Rn is an nih order positive definite symmetric Toeplitz matrix. 
Let R n + 1  be a n + Ith order symmetric Toeplitz matrix, with first row:

Denote the inverse of Rn+\ by Qn+i the ( h j ) th element of which is quj.  Following 
the procedure outlined in [80] we let

After an extension of the Levinson algorithm, as given in [80], for the inverse of a 
symmetric Toeplitz matrix, we have:

Tr(Qn+1 ) -  [(re+l)+(n—1)&J+1(2, l)+ (n -3 )6^+1(3, l)+ ...+ ( l—n)6j+1(7i+l, 1)]
Pn+1

(F.3)
An extension of the results given in [80] for the Cholesky decomposition, via the 

Levinson algorithm, of the inverse of a symmetric Toeplitz matrix leads to

ro, r2 , ••• , rn.

&n(M) = qk,i/q\,i for k = 1, 2, ..., n + 1

Pn+1 = 1/ 91,1

(F .l)

(F.2)

Tr(Qn+1) = L ( 1 + 62(1) + 62(2 )+  ... + i 2(n))
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+ ------(l + öj_1(l)+ ... + b2_1(n — 1))
Pn — 1

+ .......

+ 1 ( 1  + 65(1))+! (F.4)
P\ Po

Combining (F.3) and (F.4) yields:

Tr(Qn+i) ^  Tr(Qn) _  2 b2+l(2 ,1) + 26^+1(3 ,1) + .... + n6^+1(n + 1,1)
n + 1 n n ( n + l ) [ pn+i

(F.5)

As indicated by the Levinson algorithm given in [80], the following properties hold 

for symmetric Toeplitz matrices:

Pn+l = Pn(l -  &n+r(rc+ 1,1))

det(Rn+1 ) = II ”+iPi

where det(.) denotes determinant. Combining these properties with the fact that for 

positive definite matrices, det(Rn) > 0 leads to pn > 0. This, together with (F.5), 

leads to:
> 0 (F 6)

n + 1 71
with equality only if:

&£_l_i(fc, 1) = 0 for 2 < k < n -1- 1 (F.7)

Combining (F.7) with the following Levinson algorithm equation (from [80]) for sym­
metric Toeplitz matrices:

Qj + l,k+1 = [^n+l(j I  L, l)&n-(-l(  ̂H“ 1? 1) ^n+1 (^ 4* 2 — j ) 1  (n T 2 — k )] /pn+i

+ qj,k, 1 < j , k < n  (F.8)

indicates that:
Qj,k = Qi,i j  = k

= 0 j  ^  k
Thus, (F.7) implies Qn+i = Iq\,\ (where /  = (n -f 1) x (n + 1) identity matrix) or 
equivalently Rn+X = I/qi,\  = I r0.

For the LMS/FIR system in question, ro = o\  and the proof is complete.

F.2 Proof of Theorem 2

According to Gray [59] we have the following result.
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L em m a 4 Consider a real sequence {r }, \k\ = 0, 1, 2,... which is absolutely 

summable:
oo

H  < 00
k =  — oo

and is symmetric with respesct to k — 0 : r^ = r_/;. Let
(a) f (u )  be the Fourier transform of the sequence, {?>}.'

/(<*>) =  l im  r ketku'n —►oo 11
k——n

(b) Rn be the symmetric Toeplitz matrix of order n constructed from { }  such that 

the first row is

^1?  ^2?  ••• ? ^ n —1

If f{oj) > 0 ,  Vw, then

l im  ~ T r (Rn l ) =  Ö“  /  f ~ \ v ) ( L j
n —>oo n Z7T J - 7T

Combining this result with the expression for Ce(oo) of (3.24) leads to (3.25) of 

Theorem 2.

F .3  P r o o f  o f  L em m a  1

<72 = 1/27T J  $ uu(u)(L>

be the given signal power. Consider the power spectrum:

$ u u ( w )  =  o 2 +  aÖ(u)

where a is a positive constant. According to (F.9) <$(u>) must satisfy:

1/27T f  6(u)du> — 0
J — 7T

The extrema of

F(a)  = 1/2tt [  $-*(w)du  

are given by dF/da  = 0, that is:

1/27r f  j - [ —— 1 r J doj = 1/27r f  — — — -yfidw = 0 
J - k da a 2 + ab(u) J - T [(J2 +  a<$(u>)]2

(F.9)

(F.10)

(F-11)

(F.12)

170



Now let:

fli = {w|6(u;) > 0} 

Q,2 = {u;|6(u;) < 0}

So, the extrema of F  satisfy:

- S ( uj)
1 / - „  [o2 +  a(5(w)]2

1_  f
■ F L

(ko

( k o  + /Ja
- S ( lo)

;du>]
27ra27fi1 [1 + ^ 7 % )]2 Jn2 I1 + ^ H l 2

> / —b(u)<L) + / -b(u)doj  with equality when a6(uF
Jq i J

However, from (F .l l) ,  we have

[  —6(u)(ko-\- [  —6(oj)doj = 0

Thus, the only noncontradictory solution to (F.12) occurs when

a6(u;) = 0, Vu; 

or $ uu(u;) = ° 2, Vu;

= 0 Vw(F.13)

F .4  P r o o f  o f  T h eo rem  3

Consider first when n > p + 1. Let

R n be the n X n covariance matrix constructed from the signal Uk\ 

A  be the n x 1 AR vector A  = (1, a i, a2, ap, 0, 0 , 0)T;

S  be the n X 1 vector S = ( a 2, 0, 0 , 0)r .

As shown in [80] for n > p + 1:

R nA  =  S

Thus, assuming R n is invertible then

A = R ~ l S

It follows tha t, if qk,i(n ) is the (fc, l ) t l element of Rn 1, then

?r "s
'

II ju* 'o
' to II 'o
' to k = 1

= ak/cr2 2 < k < p +  1
= 0 p + 2 < k < n

By combining the above set of equalities with (F.3), and noting that pn = <72, bn(k , 1) = 

A(k),  then we obtain, for n > p + 1:

= - l [ l  +  (1 -  l ) a \  + (1 -  i )aj + ... + (1 -  ^ ) « 2] 
n crz n n n y

(F -14)
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By using the result of (F.14) together with (F.5) and (F .l) then it can be easily 

verified that the result of (F.14) also holds for n = p. The result of Theorem 3 follows 

from (F.14) and (3.23).

F .5  P r o o f  o f  T h eo rem  4

Let 0 < k < L/fi and

Ak+i(k0) = (I -  fiR(k + k0))(I -  fiR(k -  1 + k0))...(I -  fiR(k0))

- ( I - l i R ) k+1 (F.15)

Bk+i(*o) = [(/ -  fiR(k +  k0))(I -  iiR(k -  1 -f k0))...(I -  nR(l  + k0))nP(k0)

+ (I -  fJ>R(k +  ko))(I -  fiR{k -  1 + k0))...(I -  fiR(2 +  k0))fiP{ 1 + k0)

+ ........

+ ( /  -  fiR(k + k0))nP(k -  1 + k0)

+ fj,P(k + fc0)] (F.16)

We begin by showing that

^ k + l + m L / B k-\-\ + m L / ß  (0)? TTl ^  0

can be written in terms of the l//z time scale terms Ak(iL/n), Bk{iL/fi), i < m.

Consider the l/fi  scale time interval mL/ß < mL/n + k < (m+  1 )L/[i. The difference 

between the original and averaged parameter vectors in this time interval is given by:

a a — Q Äav
1 — “ ttiL / m+^+1 ^ m L / ß + k + 1

= Ak+i {mL/^)ÖmL/ß + (I -  iiR)k+\ÖmL/n ~ C l/ m) + Bk+1(mL/fi) 

= Ak+1(mL/fi)e™L/ß (F.17)

+ [Ak+1(mL/ii) +  ( /  -  pR)k+1](0nL/ß -  C l / m) +  BM ( m L / p )

It follows from (F.17) that:

A ÖmL/ß =  AL/ß((m -  1 )L/ß)(I-  + BL/ß((m -  1

+ [(/ -  ß R f / »  + AL/ß{{m -  1 )£ /p)](0 ,ra_1)i/(1 -  0 $ _ l)L/ß)
m — 1

= £  [nr=7h (u - ^ ) i/M +
3= 0

x \ A L / A j L / ß ) ( I - ß R y L/ß0 + BL/ß(jL/ß)]  (F.18)
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Substitution of (F.18) into (F.17) then leads to:

± Ö m L / n + k + 1 = {Ak+i(mL/fj,){I -  f i R ) m L ^  + ( / - r f +1+ . 4H i ( ^ W
m— 1

x [ E [nr=7h (u -  v r )l / “ + ))'
j -  o

x [AliS H ' I M I - v R),LIix\]}<>

+ {Bk+1(mL/ß)  + [(/ -  ßR)k+1 + Ak+\(mL/ß)
m  — 1
E [nr=7li ( u  -  ßR)L/ß + AL/„(iLlßj)\  BL/ß( j L/ß)

(F.19)

3=0
}

Comparing (F.19) with (3.56) implies that the first bracketted '{ }' term of (F.19) is

l ( 0 )  A m L / ß-\-k+l

and that the second bracketted '{ }' term is

B m L / n + k + 1 ( 0 )  B m L / ß+k+1 ’

Consider now || AmL/lfl+k+\0\\i' Combining properties (iv) and (v) of the ensemble 
leads to

(F.20)

By applying the triangular inequality together with the following inequalities:

\\AB\\i2 < ||A |M |7% 2, where A , B e  TlnXn (F.21)

\\AB\\hs < P ||i2||5||i/s, WAWh s WBWu , where A , B e K nxn (F.22)

we obtain:

\\AmL/ß+k+i\\HS < \\Ak+i(mL/n)\\Hs\\(I ~ ^R)mL,ß\\i2

+ [1 + \\Ak+i(mL/n)\\i2]
m—1

x IE [ K J ] h \ \ U - ßR)L/l,\\i2 + \\AL/ß( a /ß ) \ \ t2
3=0

X \ \ ( I -n R ) iLlli\\i2\\ALlß(jLlß)\\HS\\\(F.23)

< \\AM {mLlß)\\Hs\\{I -  »R)mLlß\\x

+ [1 + sup sup \\Ak(k0)\\i2]
ko ke[0,L/n)

X

m —1
IE
3=0

| |( /  -  nR)L^ \ \ i 2 + sup sup pfc(A:o)||i2 
fco ke[0,L/ß)

m - l - j
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X

<

+

X

\\(l -  ßRy^^W,2 \\ALh( j L / ß )\\„s\\} 

\\Ak+l(mL/^)\\HS\\(I -  ß R r L/ “\\,2 

2 - \ \ { I - ß R)Ll“\\i2

( m — 1

{ Y .  \ \ ( i - ß R Y L/ß\\.2 \\AL/ßUL/ß)\\Hs\\
1 3 = 0

where in the last step we apphed the condition of (3.63).

Using the fact that,

(F.24)

||(7 -  p R y 1/“||,-2 = (1 -  ß \ m,n(R)yLlß

and the ergodic property of the ensemble, then it follows that Vra > 0

R[\1 1\hs] <

X

<

2 -  (1 -  ß \ m>n( R ) ) LIU ~  (1 ~  A m, n ( R ) ) mL/ß  

i - ( l - t i \ min(R))L/“
sup E[||A*||hs] 

ke[0,L/v)

2 - ( l - p \ min(R))L^
----- 1------------------ " ~ n  ■ sup
1 -  (1  -  ß \ m i n { R ) ) L / ß  fce[0,L/M)

-F[| |t4.̂ | \h s \ I] (F.25)

The proof of (3.64) is completed by examining the 1 / n time scale term

sup E[\\Ak\\Hs] 
ke[0 ,L/ß)

The RHS of (3.58) can be expanded as in (3.60). We make the following denotations 

to simplify notation:

k— 1
Ahk =  £ ( Ä ( i ) - Ä )  (F.26)

1=0

A2,k = I E  ( R ( j ) R ( i ) - R 2)
t=0j=t + l

Ajtk = the j tk bracketed'{ Y term on the RHS of (3.60) (F.27)

Using the triangular inequality of the Hilbert Schmidt norm yields:

E[\\Ak\\Hs] < ^ £ [ | |^ u l |/ / s ]  + î2 E[\\A2,k\\Hs] + ••• + fikE[\\Ak,k\\Hs] (F.28)

We will show that, on a 1/^ time scale, each of the terms 2 < j  < k is

overbounded by an expression involving supfc6[0,L/M) -F[||^i,Jt||]-
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From the definition of Â ^k above, it follows that:

A2,k
k - 1 k - 2 k — 1 k — 2 —i

El E (R(j)-R)]R(i)+RY,[E
k — l k —l

A i , k - i ~ i ( i + i)-ß(o+ -ß ^  .̂1,/c-i-i
t=0 i=0

(F.29)

where A hh(k0)i E ^ +fe(Äi -  Ä).

Combining the inequality of (F.22) with ß = sup*. ||_ß/c||i2 and the ergodic property 

of the ensemble leads to

A:— 1

E[\\A2,k\\Hs] < ^[ll^i,fc-t-illH5] (F .30)
t= 0

< 2 ßk sup £ [||A lifc||tfs] (F.31)
k e [ o , L / n )

From the definition of A^.k above, it follows that

k - 2  k - 3 k- 4 k - 2  k - 3 - i  k - 4 - i - j

M , k = E tE  E ( R ( l ) R ( j ) - R 2)}R( i )+R2 Y . l  E E (Ä(0 - Ä)]
1=0 j = t + l  l—j -f-1 1=0 j — 0 /= 0

A c - 2  k - 2  k - 3 - i

= £  A2,Jfc_;_2(i +  l)Ä (i) + ß2E[ E (F.3-2)
t= 0  t= 0  j= o

Applying (F.22), (F.31) and the ergodic property of the ensemble leads to

k - 2

£ [||A 3,*||Ws] < 2/32 -  i -  2) sup £ [ ||A lifc| |„ s ]
i= 0  Ac6 [0 ,L /m)

+ sup £ [||A i)jt||Hs]
1=0 j —0 ^€[0 ,L/ß)

= 3/4

Similarly, it can be shown that:

E [\\A j,k\\Hs] <

(2/3 )2h h ^ i  sup £ [ ||A ll* p s ]
^  Ac6 [0 ,L /m)

-1 (2ß ) 3 l c l-_ l  sup E[\\A^k\\Hs]
ke[0,L/ß)

< (2/3 r 'C j L ,  sup £ [ ||A 1,*||h s]

(F.33)

Ac€ [0 ,L /m)

where C 1- = k\/((k — j)\j\).  Combining (F.28) and (F.34) with the fact that

(F.34)

( i  + x)'< = E c b :'
j=o
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leads to
k

sup £ [ P * | |f f s ] <  sup £ [ ||M^ ( Ä ( i ) - ß ) l ! « s ] ( l  +  2/3M)i / '‘ (F.35)
ke[0,L/ß) ke[Q,L/n) j_ o

By following a similar procedure to that above it can be shown that

E [ \ \ B m L / n + k ( k o ) \  <  

X

<

X

sup E[\\Bk\\2} <
ke[0,L/ß)

r __________ i + supfce[(U/M) \ \Ak\\i2_________i
\  1 -  [supsupfce[0jL/Al) \\Ak\\i2 +  (J  -  pR)L^]  J

sup E[\\Bk ||2]
ke[0,L/n)

____________2 -  ( /  -  pR)L^ ____________
1 -  [supsupfc6[0)L/M) \\Ak\\i2 +  ( /  -  pR )L^}  

sup E[\\Bk\\2] (F.36)
ke[0,L/v)

k—1

sup E [\ \ß '£ 'P(i) M 1 + » (1 + G)t})L/l‘<F -37)
ke[0,L/n)  t_ o

where G is as defined in Theorem 4.

F.6 P roof of Theorem  5

The results of ( 3.72) and (3.73) of Theorem 5 follow directly from applying the result 

of the following Lemma to:
k— 1

£[ m2I I H ( ä -  Ä (0)ll«s] 
/=0

I I  ( i -  ~ ) E \.1/ k ( Y j rG ~  n )2]}
l = —  n - f l  »=0

£ [ M 2| l E W ) ) l l ä  =  E  ( 1 - ^ ) £ [ 1/ M E p , , , ) 2 ] }
/=0 l=—n+1 i=0

The Lemma below was obtained by Bitmead [69] through an extension of the work 

of [81].

L em m a  5 Consider a stationary sequence rk with mean r. Suppose the power spec­

trum of rk exists and is twice differentiable at u  = 0. Then

k - l + t

m —t
E [ l/k (  X I (rm ~ r))2] = { X I E[(r{ -  r)(r%+m -  r)} (F.38)

m = —oo

+ 0 ( k ~1/2^ - f f f  U=o) +  0 ( k - V 4) + 0 ( * - 3/2)]}

We prove now (3.75). Assuming the limit

N - l + t o

l im  l / N  X I  O m  ~  r / ) ( r t + |mM “  r0  =  E KrG ~ r i ) ( r t+\m\,i  ~  n ) ]  
00 t= t 0
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exists uniformly in to, then it can be easily verified that:

m = — fc+1

Therefore,

k ~ 1 \ m \ * - ! + *

Y u  -  k ^E ^ rt'1 ~ rNrt+\m\’1 ~ = E{l!k( Y r'j - r ' )2] (F -39)
i z z t

2tt/ / (0) =  lim Y  E [(rt , i -  ri)(rt+lmli - r i ) }k—►oo .m — — k
k I I jYi

= Y  - y El(rt,i-ri)(rt+\™ii-ri)}
m — — k

k-l+t
+ lim E[l/k( Y  ri,i ~ ri)2}k —►oo —i—t

The twice differentiability condition of Theorem 5 requires the existence of 

d2f(u)

(F.40)

du2 =o = —1/2tt Y  {E[{rtJ- n ) { r t+lrnll- r i ) ] }m 2.

This imphes

Thus,

1 k
Jim t  Y  \m \\E [(rU ~ rl){rt+\m\,i — r/)]| = 0 (F.41)
/c—►oo K m=—k

k—l+t
2tt/ /(0) = lim E[l/k( Y  rG “  r/)2] > 0

k —► oc %—t
The proof of fif/(0) > 0 follows along similar lines.

(F.42)

F.T P roof of Theorem  6

From (3.72) we have
oo

27T//(0) = Y  £[(r<4 -  ri)(rt+\m\,l ~ n)]
m =  — oo 

oo

=  Y  [E lr t,lr t+\mll] -  r f]
m = —oo 

oo

= Y ,  [E[u(t)u(t -  l)u(t + \m\)u(t + \m\ — /)] -  E2[u(t)u(t -  /)]]
m = —oo

Since u(k) is assumed to be Gaussian, then

E[u(t)u(t — l)u(t + m)u(t + m — /)] = E[u(t)u(t — l)]E[u(t + m)u(t + m — l)]

+ E[u(t)u(t + m)]E[u(t — l)u(t + m — /)] 

+ E[u(t)u(t + m — l)]E[u(t — l)u(t + m)]
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and , therefore,

E[u(t)u(t — l)u(t +  m)u{t +  m  — /)] — E 2[u(t)u(t — /)] =  B2m +  (F .43)

W hen \Bq\ < Ba)^, w ith  B = Bq|9=0, 0 < au <  1, then

oo
2 tT f i ( 0 )  =  ( B\m\ ”1" ^ l+ \m \)

1-1
— Bq +  B 2 -f 2 ^  B^  +  2 ^  Bi_mBi+m +  2 ^  Bi_mBi+r

m =|/ |m =  l m = l

t2|/| + x o n / i - n ^ l  ■ 2au
u 1 -  <

= B2f(1 + 0“)(1 + a“'l) + 2|i|ayi]

2|i|

< ß 2[l + a f  + — Ay + 2(|i| -  l ) « f  + — i
I cl^ I cl^

2 |/|>

1 — a,2,
(F .44)

C om bining (F .44) w ith  (3.72) leads to  (3.77). T he p roof to  (3.78) follows along sim ilar 

lines to  th a t  above.
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A ppendix G

C hapter 4 Proofs

G .l  Proof of (4.27)

Consider the update equations of (4.21) and (4.24) in the more general form:

where we assume:

(i) A{6) has Lipschitz continuous first order derivatives in 0;
(ii) h(0,x) is Lipschitz continuous in (0, x);
(iii) A(0) is stable for 0 E D.

Suppose 0(0) E D° C D, then 0(k) remains inside D over a 0 ( 1 / /j,) time interval. 

Consider:

Assumption (iii) implies that xs(k) is well defined on k E [0, oo). Moreover, Assump­

tion (i) and (iii) imply that xs(k) is continuously differentiable in Ö, since

x(k + 1) = A(9(k))x(k) + Bu(k) 

0(k + l) = 6(k) + nh(0(k),x(k))

(G .l)

(G.2)

xs{k + 1,0) = A{0)xs{k, 0) + Bu(k), 0 E D (G.3)

Vxs(k + 1 ,0 ) = (VA(6))xs(k, 0) + A{6)[Vxs(k, 0)] (G.4)

where V is the differentiable operator in 0.

Define: z(k) = x(k) — xs(k, 0(k)). Then
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z(k + 1) = x(k + 1) -  xs(k, 9(k + 1))

= A(9(k))x(k) + Bu(k) -  [A{0(k + 1 ))xs(k, 9(k + 1)) + Bu(k)}

= A(0(fc))[x(fc) — x s(k, 0(fc))]

+ A(9(k))xs(k ,9(k) )~ A(9(k + l ) )xs(k + l,0(fc + 1))

= A(0(k))z{k) + [A(0(*)) -  A($(k + 1 ))}xs(k, 0(k))

+ A(0(k + 1 ))[xs(k, 9(k)) -  xs{k, 0(k + 1))] (G.5)

Assumption (i) implies that

I\[A(9(k)) -  A(9(k + l))]xs(k,0(k))\\ < 7i||^(fc) -  9(k + l)||||a ;s(M(A0)|| (G.6)

where 7! is the Lipschitz constant of A{9). Since x s(k) is well defined then the RHS 
of (G.6) is O(p). Also, since x s(k ) is continuously differentiable in 9, then

||A(Ö(fc + l))[o;s(Ä:,ö(fc))-xs(A:,ö(A: + l))]|| < \\A(9(k + l))\\l2\ \9(k)-9(k + l)\\ (G.7)

the RHS of which is 0(/i).

Thus, with A{9) stable, we have

I\z(k+ 1)|| = O(n)

for as long as 9(k) remains in D.

G.2 P roof of Theorem  7

The aim is to determine conditions which will ensure (4.40) is a uniform contraction 
to zero over some domain Do C D, where D : \9\§2\ < 1. (See Appendix A for a 
discussion on Uniform Contraction.)

Using the l\ induced norm in the uniform contraction condition of (A.2) and applying 

this to (4.40), we find the required condition is:

max[|l -  an -  7ü| + \ßn + 77̂ |] < 1 -  e for some 0 < e < 1 (G.8)
1=1,2

Equation (A.3) specifies a condition on the domain Do over which this may hold. 

Taking this into account and the restriction on D, we define Do by:

Oo: II(»i ,»2)IIi < 2 ( 0 ) V 2 (G.9)
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where 0  £ [0,1) is given by:

|M 2| < 0 < 1.

Considering (G.8), we choose to restrict an + 7a by:

0 < an + 7a < 1, * == {1,2} (G.10)

The lower bound is necessary, while the upper bound inhibits the oscillatory behaviour 
which is likely to occur if the upper bound is increased to its allowable limit of 2 — e.

With this restriction, (G.8) will be satisfied if:

min[a„- + 7a -  \ßu + tyi\] > €
4 =  1,2

(G .ll)

Let |AvSiS;(/)| be overbounded by:

|Austst(/)| < Rtrlt where 0 < r{ < 1, R{ = Av5lst(0) is finite 

A sufficient condition for the upper bound of (G.10) is:

max1,2 1 -  0 2

that is,

[£ +  ^ ( 0 ) n20fi,r,2+2,* + g] < 1
n = 0

Rin + Qr?)
ß < m in(l — 0 2)/[ 7 i ' » " T  + <?.]

(G.12)

(G.13)
■1,r  (1 -  Qr?)

A sufficient condition for the lower bound of (G.10) is (G .ll). A sufficient condition 

for (G .ll)  is:
1 R :( 1 -  r 2M 4- 9 0 A

(G.14)e/ß < min ^ 7 5 ( ^ 7 ^ 7 ( 1 7 ^  + Qi]=1,2 1 + 0 1 (1 — Qrj)

With v substituted for e//i, the above results lead to Theorem 7.

G .3 P r o o f  o f  T h eo rem  8

Following a similar procedure to the proof of Theorem 7, we find the required condi­

tions for (4.53) to be a uniform contraction to the l\ ball B:

ll(M 2 ) l l i <f l ,  for all (9, €

where Do is as defined in (G.9), are given by:

max [|1 -  an -  pij \ + \ßn + tij\\ < 1 -  e for some 0 < e < 1 (G.15)

M l ^ s l s 2 ( l ) l  +  1 ^ 5 2 5 1 ( 1 ) 1 )  _  jS < 2 ( 0 ) 1/ 2 (G.16)
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As in Theorem 7 proof, we satisfy (G.15) by applying the restrictions:

0 < an + pij < 1, i , j  = {1,2} i f  j  (G.17)

T P i j  |ßii T £ i j | ]  ^ £ (G.18)

Let |AnSjSt(/)| be overbounded as in (G.T2) and |Ansls2(/)|, |Ans2si(/)| be overbounded 

by:

I ^ sis2(oM ^ us2s1(/)| < Ggl, where 0 < g < 1, G = Avsls2(0), Avs2sl(0) (G.19)

Following the same procedure as in Theorem 7 proof, we find that with v substituted 

for e /p , equations (4.56),(4.57) are sufficient conditions for (G.17),(G.18) respectively. 

Finally, (G.16) is satisfied by (4.58).

G .4 P r o o f  o f  T h eo rem  9

The averaged system (4.68) has equilibria given by the solutions to:

Avy\y2(\)(z)  =  A v y u y i ^ z )  =  0

We, therefore, begin by determining an explicit expression for these averaged terms 

of (4.69). This is achieved by combining the equations (4.70) and (4.63) with As­
sumptions 16-18 to construct a Lyapunov equation, the solution of which depends 

explicitly on the averaged terms (4.69) - see next section. The constructed Lyapunov 

equation was solved by using MAPLE V (see Section G.6) to obtain:

A Vy l y 2 ( l ) ( Z )

AVy\yl(\)(Z)

V

V

2 apz2z 2 -I- a2z 2z2 +  z \ z \  +  2apziz2 +  Z\ + a2z2 + ap 
(1 -  z \z \ ) {  1 -  a2z xz2)

2 a p z 2Z2 +  a2z 2z\  +  z2z \  +  2apz \ z2 +  z2 +  a2Z\ +  ap 
(1 -  z \ z \ ) {  1 -  a2z l z2)

(G.20)

(G.21)

From the expressions (G.20) and (G.21) we conclude that the averaged system (4.68) 

has two finite equilibria 9asv = (^i2,„ Öi2,s) and 9U = (9u,u, ^i2.u) given by (via MAPLE 

V):

012,s =  - (1  + a2) + y/ ( l  -I- a2)2 -  Aa2p2/2ap 
0"i2,u = - (1  + a2) -  0 1  -(- a2)2 -  Aa2p2/2ap

(G.22)

It is easily verified that for all |a| < 1 and all \p\ < 1, 9U = (0i2,u»0i2,u) bes outside 

the domain D of interest, indeed |0i2,ul > 1- Consequently, this equilibrium will
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be ignored. On the other hand, 9S = (#12.S5 #12.s) E D. This is because, from the 

definition of 0  in Theorem 9,

I a I < y/Q < 1 (G.23)

which guarantees |^ i2,s| < \/© < 1. We, therefore, consider only 9S.

From the Jacobian evaluated at 9S we obtain that the equilibrium 9S is (locally) 

asymptotically stable. A domain of attraction may be estimated as follows.

First we rewrite the system as follows:

[^(k + ^+^i k+i ) }  = [6>n*o+ h v(k)\
1 + a2

(1 -  ~9axv{k)9a2\ k ) ) {  1 -  a29«v(k)9*v(k))
V 2 2ap(l + 9r(k)9a2%k))

M ( 1  -  0°v(k)0$v(k))(l -  a20°v(k)0“v(k))

1 -  pV

+ 1) -  + 1 )] = [ä h * ) - « T W ]
(  1 1 — a2

x [ l - p V 2-------=------- =------------------ =------- =-------
\  (1 + 9$v(k)0%v(k))( 1 -  a20axv{k)0a2v{k))

Let us select both \9\\ < >/© < 1 and |#2 | < \ / 0  < 1. Consider the domain:

E  =  {(0'n*O Ä a,W )  : l#T (* ) l  +  I^T W I < 2 \/0 }  C D (G.24) 

On this domain E  we have the estimates:

i0r(fc+i) + 0r(* + i)i <

19^v(k-\- l ) - 0 % v( k + l ) \  <
i +  c

Here

____________ V 2(l + a2)____________
(1 -  0°v(k)0°v(k)){ 1 -  a20*v{k)0a2v{k))

On the domain E  C D, is positive and bounded above by 

p be sufficiently small (and positive), such that p

Vr2(l + a2)
(1 — 0)(1 — a2© )' 

V 2(l  + a2)
(1 -  ©)(1 -  a2©)

< 1.
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As the initial conditions are such that they belong to E , we conclude by induction 

that the domain E is invariant and that the trajectories converge to the invariant 

subset F = {0ju(.) = 0%v{.)} 0 E- Indeed:

I « r e * + i ) i  +  i « r ( * + d i  <  2  v&,vk

since:

|« H *  + l)  + ^ ( *  + l) | < (1 -  p a k)(2V0)  +  v a k A- P} [ 1 +.  0 )  <  2v/Q
l + ct“

'ik

< 1̂1 - 02|(1 - M(1 + â Q) )fe -
—► 0 cis k —► oo (G.25)

We now consider the dynamics restricted to the invariant set F. In F the dynamics 
are governed by the recursion:

<Pk+l
t/2 aVV\ +  (a2 +  +  ap

V k ~ ß  d - ^ ) ( i - « M )
which can be rewritten as:

(G.26)

i9 ,+1 -  = (i -  "  <>,2' s l  ( G ' 2 7 )

On the domain \(fk\ < \ /0  we have the estimate

E (1 + a2) + \J(1 + a2)2 -  4a2p2 -
ap(<fk -  0i2,u) > --------- --------- ---------------------- \ap\y/Q > 0

Thus with |(̂ o| < >/0, 9A: converges exponentially to 0i2,s-

G .4.1  C on stru ctin g  th e  L yapunov E quation

The Lyapunov equation relevant to our system can be constructed by combining 

Equations (4.70) and (4.63) in conjunction with the Assumptions 16-18 as follows.

Let: x(k) = (yx{k,z) y2(k,z)  s1(k) s2(k))T, wk = (wi(k) w2(k))T, z = (zl , z2)T.

Then,

x (k+l )x (k+l )T = Ax(k)x(k)T At +Ax(k)w(k)T Bt  -\-Bw(k)x(k)T At + Bw(k)w(k)T Bt
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where:

A =

* 0 z\ a 0 ^
z2 0 0 a
0 0 a 0 ß  = N/ ( l - a 2)

/  1 0 \  
0 1 
1 0

 ̂ 0 0 0 a j 0 1 /

Define:
M  -f m —1

Pm+i = lim 1/M V ' x(k + l)x(k  + 1)TM—► oo , —'k=m

Assumption 18 implies that

M + m  — 1
Hm 1/M x(k)w(k)T = 0 (4 X 2 zero matrix)M —>00 , —'k—m

Combining this with Assumption 17 leads to

Pm+i = APmAT + BW B '1

where
W = V2

1
P

P
1

For a2, z \ , z \  < 1 and w\(k),w2(k) bounded (Assumption 16) we have x{k) 
bounded. This leads to the existence of the following limit and, consequently, the 
Lyapunov equation:

lim Pm+i = P = APAt + BW Bt

The averaged term Avyiy2(\)(z) is obtained from the solution P of this Lyapunov 

equation via:

M —1+m

Avvi y 2 ( i ) W  = Jini^ 1/M ^  2/i(*)(«)y2(fc -  1)(^) = ciPc^
k=m

with

d = ^ 0  a 0 ) C 2 = ( o  1 0 0 )

The term Avy2yin){z) is similarly obtained.

G .4.2  M aple procedures to  solve a Lyapunov equation

The following Maple procedures were used to find the expressions for the averaged 

terms Avylv2^ ( z )  and AvV2yi(i)(z).
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These procedures allow one to solve a Lyapunov equation of the type P = APA1 + 

B W B t where W  = W T > 0.

with(linalg);

tenp:=proc(a) local i, j,k,l,n,aa; 
n:=coldim(a); 
aa:=matrix(n''2,n"2) ; 
for i to n do 

for j to n do 
for k to n do 
for 1 to n do

aa[(i-l)*n+k,(j-l)*n+l]:=a[i,j]*a[k,l] 
od;od;od;od; 
aa 
end;

colstack:=proc(b) local i,j,n; 
n:=coldim(b); 
aa: =matrix(n'"2,1) ; 
for i to n do 

for j to n do 
aa[(i-l)*n+j,1]:=b [i,j] 
od;od; 
aa 
end;

makemat:=proc(p) local n,i,j,a; 
n:=sqrt(rowdim(p)); 
a:=matrix(n,n); 
for i to n do 

for j to n do 
a[i,j]:=p[(i-1)*n+j,1] 
od;od; 
a
end;
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lyap:=proc(a,b,v) local d,c,f;
d: =add(scalarmul(tenp(a),-1),array(identity,1..coldim(a)"2,1..coldim(a)~2));
c :=multiply(multiply(b,v),transpose(b));
f:=colstack(c);
makemat(linsolve(d,f))
end;
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A ppendix H

P r o o f o f  L em m a 2

The results of [92] indicate that for an input signal which satisfies Assumptions 2 and 

21 the following holds w.p.l. as N  —» oo:

IIÄJV -  o l  J||2 < 2n (log + C ^ r .  (H .l)

where n is the dimension of Ryv, /  is the n x n identity matrix and C  is a constant. 

This implies that

\\Rn  — Ä/vlh —*■ 0, w.p.l. N  —*■ oo. (H.2)

Since

P ,v ' -  Rj?\\ < (H.3)

llfiw lb < Ci (constant)and Ij^v'tlj < Ci (constant) for large iV,(H.4)

we have

ll#^1 -  0, w.p.l. N  -* 0 0 . (H.5)

Since /v  is bounded then

\\Rn *In  -  R n  f N h  -*■ 0, w.p.l. N  -+ 0 0  (H.6)

W/n R ^ / n  -  f N ^ / N h  -+ w.p.l. N  -+ 0 0 . (H.7)

The results of Lemma 2 follow.
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A p p en d ix  I

List o f A ssum ptions

A ssum ption  1

(i) The unknown channel is time invariant and is adequately modelled by an n-tap 
digital FIR filter with tap coefficient vector

9  =  («0  9 l  »2 . . .  « n - ! ? ■  ( 1. 1 )

(ii) The LMS adaptive FIR filter has a tap length of n and at sampling instant k has 
the tap coefficient vector

9(k) = (flo(fc) 9i(fc) U k )  ... 9„-i(k))T . (1.2)

(iii) The tap coefficients of the LMS adaptive FIR filter are initially set to zero:

0t(O) = 0, i = 0,1,2, ...,n — 1.

A ssum ption  2

The input, u(k), and disturbance, s(k), signals are zero mean, bounded and stationary 
so that the limits:

Rm = E(U(k)U(k)T) = 

Pm = E(U(k)s(k)) =

N - l + k o
lim 1 / N  V  , V/t0

N ~ ° °  k=ko
N - l+ k o

hm 1/A V  U(k)s(k), Vk0
N - ° °  k= ko

N - l + k o

hm l / N  V'' u(k)2, Vko
N ^ ° °  k=ko

N - l+ k o

Um l / N  s W 2’ v*oN—>oo r~r
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exist for all m,  where m =length of U(k) = (u(k) u(k — 1) ... u(k — m -f 1))^.

A ssum ption  3

The input and disturbance signals are uncorrelated with each other over time:

N - 1
lim 1/iV ^  u(k — l)s(k) = 0, V/

k = 0

that is, Pm — 0.

A ssum ption  4

The input signal, u(k), is such that the autocorrelation sequence {r/}:

N - i
Ti = .1™ l / N  T  u(k)u(k -  j) ,  j  = ... -  2, -1 , 0, 1, 2, ...

N ~ ° °  k = o

is absolutely summable:
oo

Y  N  <  °°-
j  =  — OO

A ssum ption  5

The power spectrum 4>uu(u7) of the input signal is positive definite:

$ ull(w) > 0  0 < uj <  2tt.

A ssum ption  6

The update stepsize is such that:

1 A 1 1
p  ^  2 — T  (  D \ ^  /  n  \ ( 1 * 3 )

where TV(.) = Trace(.).

A ssum ption  7

The input signal vectors U(k) are independent and identically distributed.

A ssu m p tion  8

Each echo path is attenuating, that is:

I N l i d  (1.4)

where ||.||i is the 1-norm.

A ssum ption  9

Both transmission channels of the DEC system loop ( i.e. channel A —*■ B and channel 

C —► D of Figure 4.1) impose a transmission delay of d > 1 sample intervals.
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A ssu m p tion  10

The subscriber and channel noise signals are bounded and stationary so that the 

limits:

h  — 1 + ko

AvsisJ(i) = lim 1/A  ]T  S{(k)sj(k -  /), Vfc0,V/ i , j  = { 1,2} (1.5)
k = k o

N—1+fco
Avm-ni(/) =  lim 1/A  51  n»'(*)nj ( * - 0 >  VA:0,V/ i , j  = { 1,2} (1.6)

N-l+fco
Avsinj(i) = lim 1/A  5Z *(fc)7ij(fc -  /), Vfc0, V/ i , j  =  {1,2} (1.7)

rC —  /CO

exist.

A ssum ption  11

(ct) Aun;nj(^

(6) Avntsj(/)

öijQi l = 0 
0 otherwise
0 V/, i , j  = {1,2}

A ssu m p tion  12

^ v s la 2 (0 >  ^1^ s2s 1(/) =  0?

A ssu m p tion  13
n\(k),  n2(fc) — 0, Vfc.

A ssu m p tion  14

The subscriber signals are described by the first order autoregressive processes:

si(k + l) =  asi(k)  + (1 -  a2y / 2wi(k) $i(0) = 0 
S2 {k + l) = as2(k) + (1 -  a2)ll2w2{k) 52(0) = 0

where: \a\ < 1 and W\(k) and ic2(fc) are wide sense stationary discrete white signals.

A ssum ption  15

Bounded signals:

\wi(k)\ < W, Vfc

A ssu m p tion  16

Zero mean property:

. iVf+m— 1 /-.

M £
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A ssu m p tio n  17

Well defined autocorrelation properties:

i M + m —1
|— Wi(k)wi{k -  l) -  l /2<50,/| < —7=j Vm, M J

M  £ In ' W

A s s u m p t io n  18

Well defined cross correlation properties:

■ M +m  — 1 /  >
I— V  Wi(k)wj(k — l) -  pV"26o/| < —=  Vm,/, M  where \p\ < 1 
M  ' V ' /

where the constant C is positive and independent of the integers m, / and M in the 
above inequalities.

A s s u m p t io n  19

. M +m  — 1
|— Wi(k)wi(k - / ) -  Vf^o,i\ < - j =  where V, > 0

k=m  v 1

A s s u m p t io n  20

. M+m —1 ^
|—  ^  Wi(k)wj(k — l) — pViVrfO'il < — Vm,  /, M  where |p| < 1
M  ib ti VM

where i , j  = {1,2} , i ^  j .

A s s u m p t io n  21

The input signal «(&) is uncorrelated over time (white) so that its n x n  autocorrelation 
matrix:

Rn = a \ l

where I  is the n x n  identity matrix and o\ is the variance of u(k).

A s s u m p t io n  22

The time invariant «-tuple FIR modelled echo , 0 (^_1), has only m < n nonzero 
taps:

0 (9_1) = bh < l ~ Jl +  bn Q ~ J2 + -  + bjm Q ~ jTn (1-9)

where 0 < ji < j x+i < «, i = 1,2, ...,m.
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