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ABSTRACT

In this thesis mathematical models of air pollution
concentrations are devised for the purpose of air quality management. The
mcdels constructed predict the entire distribution of concentration,
although emphasis is given to the prediction of the upper percentiles as
it is these concentrations which are most often referred to by air quality
criteria. Models are developed which combine two key approaches to air
quality modelling, namely deterministic and statistical modelling. They
are linked in such a manner that the strengths of each approach are
exploited and the weaknesses attenuated. This approach to air quality
modelling is referred to here as the hybrid modelling approach.
Statistical models have also been developed to assist in the forgglgiiip
of monitoring programs which assess compliance with air quality criteria
based upon complete and restricted data sets. All models in this thesis
incorporate a level of complexity which is compatible both with the
available data and with the objectives of the modelling exercise.

The methods of estimation of the parameters of the
distributional model component of the hybrid models are considered and it
is demonstrated how simple empirical models can be constructed which
approximate the minimum levels of uncertainty associated with model
predictions. The problem of identification of a distributional model for
air quality data is also examined and it 1is shown that model
identification performed using the maximum of the log likelihood functions
in combination with modified Kolmogorov statistics selects the best
distributional model with high probability from amongst the lognormal,
gamma, Weibull and the exponential models. The model identification
procedure is applied to a data set consisting of measurements of six
pollutants recorded in a large urban area at a number of sites and over
seyeral years.

With these techniques of model identification and parameter
estimation hybrid models were developed for three emission source regimes
- area, line and point sources. The data sets considered include acid gas
concentrations recorded in Newcastle, Australia, carbon monoxide levels
observed near a roadway in Melbourne and sulphur dioxide levels produced
by gold roasting and nickel smelting in Kalgoorlie. The hybrid models
employ the variance-covariance matrix of the maximum likelihood parameter
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estimates in conjunction with Monte Carlo experimentation to generate
approximate confidence intervals for model predictions. These confidence
intervals were found to provide reasonable bounds upon model uncertainty.

The problem of assessing compliance with air quality standards
where the data set may be both complete or incomplete is also addressed.
The procedures of statistical model identification and parameter
estimation were applied. Additionally. a nonparametric procedure based
upon an empirical quantile-quantile comparison of data at two monitoring
sites was developed. The importance of model identification was clearly
demonstrated. However, the empirical quantile-quantile model yielded the
best results and should be employed where applicable.
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CHAPTER 1
AIR QUALITY - THE STUDY OF A COMPLEX SYSTEM

1.1 Introduction

The introduction in the United States of the Clean Air Act
Amendments of 1970 and 1977, which included the prevention of significant
deterioration, air quality maintenance plans and new source permits,
initiated a substantial and continuing research effort into the
development of air quality models in that country. These amendments saw
the adoption of an approach to the control of air pollution which defined
air quality management as the regulation of pollutant emissions in such a
manner as to achieve a specified set of national ambient air quality
standards or goals (De Nevers et al., 1977). This definition implies,
along with the statement of air quality goals, that estimates of the
pollutant emissions, observations of ambient air quality and models for
the dispersion of air pollutants, be available. This air quality
management approach to the control of air pollution has been adopted in
numerous countries (Campbell and Heath, 1977).

Mathematical models for the dispersion of air pollutants may be
constructed for scientific understanding with an aim to explain the
complex detail of the physical and chemical processes involved.
Alternatively models may be developed for the purpose of air quality
management. While the former épproach can involve considerable complexity
of description, the latter requifes only that detail comensurate with the
aims of air quality management and sympathetic to the available a priori
information be incorporated within the model.

The aim of this thesis is to demonstrate that simple but
effective models can be constructed for the purpose of air quality
management in spite of problems associated with poor data and in some
cases limited knowledge. The models are used to predict ambient pollutant
concentrations in a form that allows direct comparison with air quality
criteria. The models are simple only in the sense that they contain as
few parameters as are necessary for good prediction. Importantly the
models developed yield estimates of the uncertainty associated with model
predictions. This form of model output, while suited to other
app]icgtions, is of particular importance to the problem of air quality

management where accurate predictions are not generally possible.



1.2 The air pollution problem

The term 'air pollution' is defined here to mean the addition of
any substance to the atmosphere from sources which directly or through
transformation is present at a concentration sufficiently above normal
ambient levels to produce a measurable effect upon humans, ecosystem or
materials. A pollutant may be}a substance that has been manufactured or
is naturally occurring and may be a gas, aerosol or solid.

Gaseous pollutants added directly to the atmosphere include the
oxides of nitrogen, sulphur and carbon to name but a few. These
pollutants are usually termed primary pollutants whereas the secondary
pollutants, including ozone and compounds derived from the sulphur and
nitrogen oxides, are produced in the atmosphere by chemical reaction.
These chemical reactions can take place between the primary pollutants,
the normal constituents of the atmosphere and other secondary
pollutants. Secondary pollutants are also produced by the decay of
radioactive substances.

Perhaps the most well known form of secondary pollution is
collectively known as photochemical smog. Unlike the primary pollutants
such as sulphur dioxide and particulates which are produced by the
combustion of coal, photochemical smog represents a complex series of
reactions involving nitrogen oxides, non-methane hydrocarbons and sunlight
(Seinfeld, 1975). Photochemical smog is generally associated with cities
possessing large motor vehicle populations, poor dispersive conditions
such as occur in river valleys and high solar radiation. Los Angeles is
probably the best known of the cities experiencing photochemical smog and
was the first to report a severe episode for which acute eye iritation and
sore throats were indicators. In Australia the cities of Sydney,
Melbourne and Brisbane experience high 1levels of photochemical smog
(Lawlor, 1982).

While it would be desirable to eliminate air pollution
altogether, economic constraints and the presence of natural background
pollutant concentrations makes this task all but impossible. Australia
currently contributes to a world-wide network of monitoring stations whose
purpose is to monitor the global background concentrations of pollutants
including carbon dioxide, carbon monoxide, methane, ozone, nitrogen oxides



Table 1.1:Natural source and background concentrations for selected
pollutants for which the World Health Organization has
established ambient air quality standards.

Pollutant Natural Source Background
' concentration
-3
(ugm )
Sulphur dioxide Volcanoes 1-4
Nitrogen oxide Bacterial action in 0.3-2.5

soil; photodissociation
of NZO and NO2

Nitrogén dioxide Bacterial action in 2-2.5
soil; oxidation of NO

Ammonia Biological decay 4

Carbon monoxide Oxidation of methane; 100
forest fires; oceans

Ozone ' Tropospheric reactions 20-60
and transport from
the stratosphere

Source: World Health Organization (1972)

and halocarbons (Francey, 1984). Table 1.1 lists for selected pollutants,
estimates of background concentrations as derived by the World Health
Organization (1972). Observations of pollutant concentrations within

urban areas and about industrial complexes are usually many orders of
magnitude above these levels (Lawlor, 1982).



Air pollution affects the well-being of humans, ecosystems and
materials over areas ranging in scale from the local through regional and
national and, more recently, to the global scale. With the advent of the
Industrial Revolution the effects of air pollution were no longer
restricted to the area local to the pollution source. The long range
transport of acid gases in Europe and North America (United States
National Research Council, 1983a) is not only due to the increased
emission levels of recent times, but is also due to the construction of
tall chimneys from which the primary pollutants are emitted. This
strategy has converted a local pollution problem to one of international
concern requiring international cooperation to ameliorate.

Examples of air pollution problems of global concern include the
. effects of the halocarbons upon the ozone layer (United States National
Research Council, 1976) and the potential effects of increasing carbon
dioxide 1levels (Bach, 1978; United States National Research Council,
1983b). It is hypothesised that the increased carbon dioxide levels
brought about by the burning of wood and fossil fuels will lead to a
global increase in temperature. Some of the effects of this increase in
temperature are considered to be raised sea levels flooding many of the
world's cities, and changes in the pattern of rainfall significantly
altering agricultural production (United States National Research Council;
1983b).

In this thesis the problems examined have been restricted to the
regional and local scales. Models are developed for area sources such as
cities, and for large point sources which affect the air quality over
large regions. At the local scale a model is developed to describe the
dispersion of pollutants from roadway line sources. Obviously this model
could be applied many times to represent a regional road network although
this problem is not considered in this thesis.

In summary, air pollution arises from interactions within a
complex system involving the emission of numerous pollutants from a wide
range of sources. These pollutants are dispersed within the atmosphere
where they may undergo transformation. Ultimately they affect ecosystems
on a scale ranging from local to global. In the following section general
approaches to modelling this complex system are considered.



1.3 Modelling atmospheric dispersion - a badly defined
system

In a study of the long-range transport and deposition of
pollutants Venkatram and Pleim (1985) considered that our understanding of
this system is derived from two modelling approaches, namely the
theoretical or ‘reductionist' method and the empirical or ‘holistic'
method. This is true not only for long fange transport of pollutants but
for the study of atmospheric dispersion in general (Hanna, 1982a).
Venkatram and Pleim (1985) consider that empirical models are important
because of the difficulty in developing theoretically based models due to
gaps in our understanding of the components of these models, lack of the
extensive data sets required to run such models, and that these models
generate responses which are not readily intelligible. They considered
that empirical models whose structure is closely tied to observations were
required to complement theoretical models.

While Venkatram and Pleim (1985) perceive modelling approaches
at two extremes, they cite the work of Beck (1981) who describes the
development of mathematical models as occurring over a wide spectrum.
This spectrum varies from ‘'hard' systems such as electrical systems, to
'soft' systems such as social systems. The degree to which the behaviour
of the system may be inferred a priori and planned experiments undertaken
to verify the model formulation determines the ‘'hardness' of the system.
Karplus (1976) and Vemuri (1978) describe this spectrum of models as
ranging from white box systems (hard) to black box systems (soft). Air
pollution systems are considered to fall within the grey area between
these two extremes. Table 1.2 lists examples of systems lying within this
spectrum.,

Beck (1981) cites the work of Young (1978) who has suggested
that natural environmental systems are difficult to analyse in
mathematical terms because their underlying mechanisms tend to be ‘badly
defined'. The poor definition arises from the inability to conduct
planned experiments on the system. Thus models lying within the grey
area, as delineated in Table 1.2, may not necessarily move inexorably
towards a white box model where a near complete understanding of the

system has been reached. Hence uncertainty may remain a significant
~ 19929
feature of the system (Young, 1978,198%1).



Table 1.2: Spectrum of modelling activities.

Model character

Model description

Black box (or soft
or empirical) model
A

Grey area

A4
White box (or hard
or theoretical) models

Social systems
Political systems
Economic systems
Physiological systems
Air pollution systems

Ecological systems

Water pollution systems

Industrial process
control

Aircraft control

Electrical circuits




14820 faced with badly defined environmental systems Young (1978,
1981, 198;Q developed a methodology for the systematic analysis of systems
based upon several considerations. While the methodology was specifically
developed for dynamic systems some of the concepts are also relevant to
systems that are modelled as static. These concepts are:

(i) while the system is nominally complex its
passively observed behaviour is- often dominated by
relatively simple linear or nonlinear
relationships;

(i1) that hypothetico-deductive procedures of the
scientific method be used to establish those modes
of behaviour consistent with the observations; and

(i1i) the identifiable modes of behaviour may not
provide a total description of the system as
further data collection may suggest that other
modes are also significant.

This approach to modelling environmental s*ggggs has been
applied successfully to water quality problems by Young (398%}), Hornberger
and Spear (1980) and Jakeman et al. (1984) and has been applied to the
study of air quality by Steele (1981) and Steele and Jakeman (1980). Most
of these studies applied recursive methods of time series analysis

d d by Y 1974, 1976), Y Jakema 1979, 1980
eveloped by Young ( ), Young and Jakeman (19 :q) ¥qu§7e%
a+—1980)5 Jakeman et al. (1980), and Jakeman and Young (l%éia, 1982h,

1983).

In this study, while time series analysis methods have not been
employed as the analytic tool, the general principles of modelling badly
defined systems as outlined above have been adopted. Thus models
developed here are simple models aimed at producing a parametrically
efficient description of the air quality data. The models developed are
not black box models but are simple descriptions of the physical
dispersive’system where many of the state variables and mechanisms are
capable of clear interpretation.

1.4 Thesis 6ut11ne

The thesis structure is as follows. Chapter 2 presents a survey
of the relevant air pollution literature and introduces the principles for



the development of the air quality models. In Chapters 3 and 4 the methods
of parameter estimation and model identification necessary for the
improved use of statistical models and for the development of statistical
model components of hybrid models are examined. The subsequent three
chapters form a series of investigations into the modelling of air
quality. To demonstrate the generality of the approach models are
constructed for the three key emission source regimes, namely for area,
line and point sources. The problem of .designing monitoring networks to
provide maximum information return in terms of assessing compliance with
air quality standards is considered in Chapter 8. A more detailed
description of the individual chapters follows.

In Chapter 2 models capable of describing the distribution of
pollutant concentration are examined. The two major approaches,
deterministic and statistical modelling, and the advantages and
limitations of each are considered. The combination of these two
modelling approaches, the hybrid modelling methodology, is described here.

Numerous methods are availible for estimating the parameters of
distributional models considered applicable to the study of air quality
data. Chapter 3 examines various methods of parameter estimation using
Monte Carlo experimentation. For each of the methods the bias, variance
and more practical considerations such as the computational demands of the

methods are examined. A method for generating approximate confidence
intervals at percentiles of interest for each of the distributional models
examined in the Monte Carlo studies is presented.

In Chapter 4, employing the methods of parameter estimation
examined in Chapter 3, model identification procedures are considered.
Based upon an examination of their performance a new procedure for the
selection of appropriate distributional models for air quality data is
presented. The model identification procedure is applied to air quality
observations recorded in Melbourne, Australia.

In Chapter 5 a hybrid model combining a simple deterministic
model and an identified distributional model is developed for predicting
acid gas concentrations in the industrial city of Newcastle, Australia.
Approximate confidence intervals were derived for model predictions and
were found to yield a useful measure of model uncertainty.



The problem of predicting the dispersion of pollutants from
roadway line sources is considered in Chapter 6. A brief review of models
applied to roadway line sources and their performance is given. On the
basis of model calibration and model validation exercises the hybrid model
is found to yield considerably improved estimates, when compared with the
deterministic model applied alone, of the upper percentiles of the
distribution of pollutant concentrations.

Chapter 7 describes the develdpment of a hybrid model for the
dispersion of sulphur dioxide from point sources. The calibration of the
deterministic component of the hybrid model is performed using the
percentiles rather than time-wise matched pairs. The hybrid model
produces estimates of pollutant concentration at 24-h, 8-h, 3-h, 1-h and
0.5-h averaging times. Compared with the deterministic model applied
alone the ‘hybrid modelling approach provides a significant improvement in
the prediction of the upper percentiles of the distribution of pollutant
concentrations observed about point sources. Approximate confidence
intervals were derived for model estimates and were found to provide
reasonable bounds for model uncertainty.

The need to design air quality monitoring networks to obtain the
maximum return of information forms the basis of the work reported in
Chapter 8. Here three approaches for increasing the spatial resolution
of air monitoring networks based wupon restricted data sets are
considered. The importance of the application of a model identification
procedure such as that developed in Chapter 4 is demonstrated. Where a
second complete data set is availablé, an empirical quantile-quantile
model may be applied. This modelling approach does not require the
assumption of a distributional form for the air quality data. The
empirical quantile-quantile model is found to provide the best estimates
of the upper percentiles of the pollutant distribution.

Finally, in Chapter 9 a summary of the principal conclusions of
the thesis and a discussion of future directions that this research may
take are presented.



CHAPTER 2
MODELLING THE DISTRIBUTION OF AIR POLLUTANT CONCENTRATIONS

2.1 Introduction

This chapter examines the two major approaches to the problem of
modelling the distribution of air pollutant concentrations. It should be
noted that this thesis 1is concerned with pollutants which may be
considered inert, or at least relatively inert, over the measurement time
scale. The two modelling approaches considered can be broadly classified
as deterministic and statistical modelling. Here the term ‘'deterministic'’
refers to models formulated using physical laws. These models yield a
mechanistic description of the dispersion of pollutants within the
atmosphere.

The origins of the deterministic approach to modelling
dispersion are attributed to the work of Taylor (1915, 1921, 1927) who
measured turbulent velocities in the horizontal plane using the widths of
the traces produced by the wind speed and direction. This work was
followed by full scale tracer experiments performed by Sutton (1932,
1934). Under near ideal conditions the first specifications of the cross
wind and vertical spread of suspended material were obtained over a range
of a few hundred metres from the source.

- The term ‘'statistical' refers to those approaches where outputs
are inferred from non-mechanistic non-physical relationships wusing
statistical methods. Here models are developed to describe the
distribution of pollutant observations. These models are descriptive and
are not strictly applicable beyond the conditions existing when the data
upon which they have been developed were collected. The stimulus for the
development of these models can be attributed to the formulation of air
quality standards written in terms of a pollutant concentration which must
not be exceeded by more than a stated frequency. Larsen (1969, 1971,
1973, 1974), in an extensive analysis of data sets monitored in the United
States, concluded that the 1lognormal model yielded a good fit to the
distributions'of all pollutants, over all averaging times and at all sites
considered. This statement has attracted and continues to attract much
attention and is considered to provide the empirical basis for the



11

application of distributional models to air quality data. Attempts have
been made to infer a priori the distribution that air quality data should
follow. However, to date this approach has met with only limited success.

A second type of statistical modelling undertaken in this thesis
relates the percentiles of the distribution of pollutant concentration
using a simple linear relationship. This model, termed an empirica]
quantile-quantile model (Chambers et al., 1983}, is of importance to the
design of monitoring networks and the deQelopment of’monitoring strategies
where restricted data sets are collected.

In this chapter the deterministic and statistical modelling
approaches will be examined with the view to identifying the strengths and
the limitations of each in determining the distribution of pollutant
observations. Further, the concept will be introduced that these two
modelling approaches can be combined in such a manner so that the
strengths of each approach are exploited while the weaknesses of each are
attenuated. '

2.2 Deterministic air quality models

In this section deterministic models for the dispersion of inert
gases within the atmospheric boundary layer are critically examined.
There are many reviews which cover the full range of air quality models
including those by Lamb and Seinfeld (1973), Eschenroeder (1975), Johnson
et al. (1976), Turner (1979), Simpson and Hanna (1981), Hanna (1982a) and
Geraghty and Ricci (1984). The various theories of atmospheric dispersion
are examined on the basis of how each predicts pollutant concentrations.
Thus it is the different model treatments of turbulent diffusion which
will be examined here. An understanding of the accuracy of air pollution
model predictions is important in environmental management as this allows
an assessment of the risk of exceeding air quality standards to be
undertaken. Accordingly a discussion of the accuracy with which
deterministic models predict pollutant concentrations and the likely
limits to model accuracy is presented. The problem of assessing model
performance is also considered as no single method for evaluating model
performance is clearly best.
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2.2.1 Gradient transport model

The set of equations that form the basis for the development of
mathematical models for the dispersion of pollutants within the planetary
boundary layer describe the motions of a viscous, compressible, Newtonian
fluid in a rotating system. The equation of continuity, which is an
expression of the conservation of mass is Stated_as

38 ,+2U 3% W _, (2.1)
ot ox . 3y 9z

where p 1is the instantaneous density and u, v, w are the instantaneous
velocity components describing the motion of the fluid in the x, y and z
directions respectively, at the point (x,y,z) at time t and in a Cartesian
co-ordinate system. Equation (2.1) may also be written in the form

au,av, oM _-ldp
9x 3y 3z p dt

(2.2)

where the individual terms on the left side are usually at least two
orders of magnitude 1larger than the right side. Consequently the
assumption

Ll AL (2.3)

9X 3y 90z

that the atmosphere is incompressibie is a good and useful approximation
(e.g. see Businger, 1982).

The differential equation which has become the starting point of
most mathematical treatments of diffusion from sources is a generalization
of the classical equation for the conduction of heat in a solid and is
essentially a statement of the conservation of the mass of suspended
material (Pasquill and Smith, 1983). Denoting the concentration by x
units of mass per unit volume of a fluid which is assumed incompressible
we have
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Y = - [a(ux) + alv) 3(Wx)] (2.4)
ot ax oy 9z

The above equation constitutes only one of five coupled fundamental
equations describing all aspects of the interaction of chemically active
constituents in a fluid (Businger, 1982). However, since air pollutant
concentrations only rarely exceed a few parts per million (ppm) by volume,
the presence of air pollutants will produce insignificant changes to the
heat balance of the atmosphere. An exception to this rule is the
reduction in solar radiation intensity resulting from air pollutants over
urban areas (Bach, 1971). In general, the assumption that meteorology
remains unchanged is reasonable. This assumption allows equation (2.4) to
be solved with the fluid velocities u, v, w considered independent of the
concentration terms Xj *

Unfortunately the complexity of turbulent flow is so formidable
that even if we were able to describe its structure in detail,
comprehension would be close to impossible (Businger, 1982; Pasquill and
Smith, 1983). This has led to the development of the description of
turbulent flow in terms of its statistical characteristics. It has been
assumed therefore that the fluid motions can be separated into a slowly
varying mean flow (u,v,w) and a rapidly varying turbulent flow
(u'yv'y,w'). Hence the instantaneous velocity components in a rectangular
co-ordinate system are given by

(2.5)

Similarly the instantaneous concentration terms X; are themselves random
variables

- ‘ (2.6)
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Writing u, v, w and x as the sum of a mean and eddy fluctuations as
given in equations (2.5) and (2.6), expanding, averaging and rearranging
equation (2.4) gives

o4 G 4§34+ & = [2ux") 4 2utx’ , alw'x') (2.7)
ot X Yy 9Z X oy 9z

Physically the velocity components refer to an element of air
passing through a specified point. In the Eulerian-space system the
velocities are in principle specified at all positions in the field of
flow at a given instant. In the system known as Lagrangian, the concern
is with the variations in time of the velocity of a particular element,
which is of course continuously changing its position. The analysis of
atmospheric turbulence is usually concerned with the fluctuation recorded
by a fixed instrument responding more or less rapidly to the relative
motion of the air. This situation is customarily regarded as equivalent
to the Eulerian-space description (Pasquill and Smith, 1983), the
equivalence is based upon the hypothesis that the sequence of variations
at a fixed point is statistically the same as the instantaneous spatial
variation.

The gradient-transport approach assumes that turbulence causes a
net movement of material down the gradient at a rate which is proportional
to the magnitude of the gradient. The turbulent transfer of material in
this manner is referred to as a simple diffusion process (Pasquill and
Smith, 1983). By replacing the eddy flux terms by the simplest gradient-
transport forms equation (2.7) becomes

e L R T e (2.8)
dt  ax X Y ay 9Z 3z
This equation allows for differences in the eddy

diffusivities (Kx’ Ky, Kz) in the component directions and also for the
spatial variation of these diffusivities. If the K's are constant and
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independent of x, y or z then the resulting equation and type of diffusion
implied are Fickian. In this case the distribution of material is of a
Gaussian form with variances

2 _ . |
o, 2th 2Kxx/u (2.9)

however, experimental studies have shown that the equivalent values of K
vary systematically with the time of travel, with the position, and with
the scale of the diffusion process (Pasquill and Smith, 1983).

The gradient-transport formulation may be expected to be the
most successful when the diffusive action of the turbulence is effectively
- confined to scales small relative to the volume occupied by the suspended
material. For vertical spread this condition is approached for ground
level releases of pollutants. However, it is not met in the case of time-
mean lateral dispersion from a continuous point source and for vertical
dispersion from an elevated source.

2.2.2 Gaussian plume models

The Gaussian plume model is the most widely applied diffusion
model (Hanna, 1982a; Turner, 1979). The Gaussian plume model takes its
name from the assumed Gaussian form describing the vertical and cross-wind
concentration profiles. As noted earlier the Gaussian plume formula can
be derived from equation (2.8) providing that the turbulence is
homogeneous and stationary and only a point source is considered. The
Gaussian expression is (e.g. Hanna, 1982a)

2 2 2
- -(z- -(z+
X (os2) = —L= e (<L) [er (—(Z—’ZiL) + exp (J—Z—QL)] (2.10)
wUg o
yz 2°y Zaz 2°z
where Q is the source strength (mass emission rate), u the mean wind
speed, oy and g, the standard deviations in concentration in the
crosswind (y) and vertical (z) directions respectively, and H is the
effective height of emission. The wind flow is assumed to be in the x-

direction.
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The application of equation (2.10) is based upon the following
assumptions that:

(a) both the emission rates and meteorological
conditions have attained a steady state;

(b) a constant windspeed and wind direction, valid for
the entire region, may be specified;

(c) no absorption or generation by the ground occurs;
(d) there is no inversion layer;

(e) the diffusivities in the vertical and cross-wind
directions vary only with downwind distance and are
constant in the diffusion domain; and,

(f) the pollutant does not undergo chemical reaction.

Observations of passive plumes have confirmed that the Gaussian form is a
satisfactory description for the cross-wind distribution, at least for
ensemble averages (Pasquill and Smith, 1983). In spite of the above
simplifying assumptions necessary for the application of the Gaussian
plume model, this model has seen widespread application (Simpson and
Hanna, 1981; Turner, 1979). This model, in various forms for point area
and line sources constitutes the basis of the UNAMAP (User's Network for
Applied Modeling of Air Pollution) developed by the United States
Environmental Protection Agency as an aid to the development of air
quality management strategies. :

The Gaussian plume model has also been modified by Davis and
Metz (1978) for the special case of particulate matter to allow for
surface deposition and -reflection. More recently Hanna et al. (1984)
modified the Gaussian plume model for application in complex terrain. The
Gaussian plume formula as stated in equation (2.10), with suitable
integration may be applied to line and area sources. The specific details
of the Gaussian plume models developed in this study for 1line and point
sources are presented in Chapters 6 and 7. The models developed in these
chapters employ the most recent improvements to the Gaussian plume model
(see Hanna, 198 in such areas as wind speed evaluation, plume rise
calculations and the estimation of o _ and g e The application of these
improvements is limited only by the availability of the data necessary for
their implementation.
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2.2.3 Rollback models

The rollback model was developed to provide a simple method by
which source pollutant emissions could be assessed (Chang and Weinstock,
1975). The original model assumes that pollutant concentrations are
directly proportional to emissions according to some simple
relationship. Thus the emission control requirements are presumed
proportional to the amount by which the peak pollutant concentration
exceeds the standards. The nonlinearity of the atmospheric processes
limits the usefulness of the rollback model to a role in which a first
rough estimate is made of the emission controls required. The simplest
form is of the type '

where x is the pollutant concentration due to emissions at a rate e,
with b being a measure of the background pollutant concentration and k the
constant of proportionality. A1l the effects associated with the
meteorology, the distribution of sources and all other factors are
included in k. De Nevers and Morris (1975) define k in terms of the
highest concentration

k= (x, - b)e (2.12)

where Xmax is the highest pollutant concentration in the region of
interest. The allowable emission rate emax is then

e (xepq - D)
e =__.std (2.13)
Xmax
where Xstd is the air quality standard required for the pollutant being
considered.

A more general form of the simple Eo]]back model allowing for a
range of source and receptor interactions is given by
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Xy = I k..e. +b (2.14)

where X; is the concentration at receptor i, e is the emission rate
at source j, and ki' is the source-receptor interaction for source j and
receptor i. Peterson and Moyers (1980) have extended the above model to
the case where continuous measurement of ambient concentrations and
emissions are available and recorded over time intervals corresponding to
air quality standards.

Georgopoulos and Seinfeld (1982) examined these rollback
‘calculations and recommended the replacement of Xmax and Xstq with the
expected mean values, denoted E(xmax) and E(xstd) respectively where

E(xstd) represents the expected mean concentration from a distribution
in which Xstd is an extreme. Applying the expected values in rollback
calculations allows for the conservation of mass of non-reactive
pollutant. Georgopoulos and Seinfeld (1982) then considered whether the
concentration Xmax would increase linearly with emissions as does the
expected value E(xmax). They found that 1linearity holds for the
particular case where pollutant concentration is lognormally distributed
and meteorological conditions remain unchanged. In particular the
geometric standard deviation must remain unchanged. There is of course
ample evidence indicating that these conditions are rarely met (Simpson et
al, 1985). Thus rollback models are only useful at the initial stages or
as screening models with which a crude indication of future trends may be
determined.

2.2.4 Box models .

A useful evaluation of the effects of a large area source may be
made using the simple box model described by Gifford and Hanna (1971,
1973), referred to as the ATDL (Atmospheric Turbulence and Diffusion
Laboratory) model. This model has seen widespread application
(Eschenroeder, 1975; Pasquill and Smith, 1983). The ATDL model is
applicable to urban area sources in which the emissions are assumed
uniform over grid squares that may vary in size from 1- to 10-km square.
For a grid pattern with uniform source strengths in each square, the

ground level concentration Xq in a grid square is given by



19

xg = (2/m)(x/2)'™ [ua (1-6)]7F

X (2.15)

g, + 1o (2 + )PP - (2 - i)
=1 |

where N 1is the number of upstream grid squares contributing to the
concentration in the grid square under consideration (designated by the
subscript o), a and b are parameters dependent on atmospheric stability,
Ax 1is the size of the grid square, u is the average horizontal windspeed
assumed to be in the x-direction, and Q (i = 0, 1, 2, ..., N) are the area
source strengths for each grid square.

When the spatial variation in the source strengths are smooth
slowly varying: functions the above equation may be simplified (Hanna,
1971) to

Xg = - (2.16)

where C is a constant that depends on atmospheric stability. Equation
(2.16) follows from (2.15), only for smooth area source distributions in
which the terms involving Qi (i #0) in (2.15) are significantly less
than the Q0 term. Benarie (1976) has shown that this equation is widely
applicable.

The ATDL model has been shown to yield predictions that compare
favourably with those given by four more complex models (Hanna, 1971) and
has been demonstrated to be applicable to a wide range of wurban
environments including Frankfurt (Hanna and Gifford, 1977), Canberra (Daly
and Steele, 1976) and Milan (Gualdi and Tebaldi, 1982).

Benarie (1978) examined the box model and revised the usual

formulation to include a parameter for the exponent of the windspeed. His
form of the box model is then
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x = cquP | (2.17)

where p 1is the windspeed exponent which may vary between 0 and -1.
Benarie considered that only where advective mixing dominates would the -1
‘power, as stated in equation (2.16), be correct. In the case of
predominant convective mixing, Benarie states .that advection would not
change the concentration and thus windspeed should have an exponent of
zero. Benarie found from a review of experimental studies that the Qa]ue
of the exponent ranged between -0.2 and -0.5. Benarie also speculated
‘that the exponent p may be a climatological characteristic for any given
city and may vary with season.

Daly and Steele (1976) and Simpson et al. (1983) have relaxed
the assumption implied in equation (2.16) that the windspeed and pollutant
concentration are inversely related as matched pairs of observations.
Instead it is assumed that opposite percentile values of windspeed and air
pollution distributions are related by a simple inverse relationship,
stated as (Simpson et al., 1983)

K
= 2.18
Xp ( )

Y100-p

where is the air pollution concentration corresponding to the p-
percentile ordinate of the air pollution cumulative frequency
distribution, u100-p is the windspeed corresponding to the (100-p)-
percentile ordinate of the windspeed cumulative frequency distribution and
K is a constant. The constant is derived from the relationship between
Xp and "100-p for each sampling station under consideration over some
percentile range for which K is approximately constant. Simpson et al.
(1983) use the medians to estimate K so that

K = (2.19)

YsoXs0
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Knox and Lange (1974) and Benarie (1976) suggested a similar
measure and noted that the constant K derived in this manner requires no
direct knowledge of the source strength. Simpson et al. (1985) observed
for total suspended particulates and acid gas observations that xpu100-
is reasonably constant over the 30-70 percentile range. Thus for their
data at least +hat the model given by equation (2.18) is a good
representation of the relationship of the statistical distributions of
windspeed and pollutant concentration for at least the 30-70 percentile
range.

The model as given in equation (2.18) was combined with the
assumption of a Tlognormal distribution of pollutant concentrations and
windspeed data to yield estimates of the entire distribution of pollutant
concentration (Simpson et al., 1983). The p-percentile concentration is
easily found from

4
=K (g, P (2.20).

%y

Xp

where B, is the geometric standard deviation, @ the geometric mean
(median) of the windspeed data and 2z is the standard variate
corresponding to the p-percentile, This’)model, equation (2.20) with
(2.19), has been applied by Simpson and Jakeman (1985) to forecast worst
case pollution scenarios for acid gas and suspended particulates due to
urban industrial development. Thirty years of windspeed data were
parameterised to obtain estimates of @, and Bu for each year in order to

obtain a range of extreme values in (2.20) for a given K.

2.2.5 Deterministic model performance

Several discussions have recently appeared on the accuracy
attainable in the prediction of air pollution concentrations (Hanné,
1982a; Benarie, 1976, 1982; Pasquill and Smith, 1983; Venkatram,
1984). In principle, were the boundary and initial conditions completely
specified, the solution of the equations of motion would describe all the
details of turbulent flow and hence air pollutant concentration. However
this 1is impossible in practice due to the nature of turbulent flow. We
treat this motion as a mean flow with which can be associated an infinite
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set of unresolved residual turbulent flows. Therefore the best an air
quality model can be expected to produce are estimates of average
concentrations (Venkatram, 1983) and a.model estimate can be expected to
differ from the corresponding observation.

This conclusion is supported by the study of Hanna (1982c) who
from an analysis of & meteorological and pollutant data sets examined the
effect of “natural variability". Hanna considered the variation inherent
in pollution concentrations based upon the division of pollutant
observations into 18 wind direction classes, 10 wind speed classes and 7
stability classes. The data examined were hourly carbon monoxide and
sulphur dioxide data recorded at 25 stations in St Louis for all hours of
1976. Hanna (1982c) concluded that the natural variability of hourly
average concentrations in St Louis for given meteorological and source
conditions is typically a factor of two.

It could be argued that the limitations encountered in the
application of deterministic models are due to the lack of meteorological
information, particularly in respect of special factors which are required
for the full application of the more compiex models. However, it has been
recognized that the cost of the required observational programmes would
more than 1likely outweigh any benefits achieved from the increased
reliability of pollutant concentration estimates (Pasquill and Smith,
1983). The proposal for increased data collection has been further
criticized on the basis that the underlying dispersion relations apply at
best only to idealized situations of air flow and topography which are
rarely of practical significance particularly when determining the more
adverse conditions of dispersion (Benarie, 1982; Pasquill and Smith,
1983).

It is not surprising then, that comparisons of simple and
compliex modelling methodologies have shown that model performances are
similar (Simpson and Hanna, 1981; Benarie, 1976, 1982). Pierce (1984) in
a study of point source Gaussian plume models used to estimate hourly
sulphur dioxide concentrations, noted that the more sophisticated models
did not appreciably oug@erform the routinely applied models. Given the
greater input data requirements and the wusually significantly larger
computational requirements of the more complex models, a simple model is
usually preferred. Hanna et al. (1984) noted that the computational
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demands of a model for hourly pollutant observations recorded over two
years limited the complexity of the model that could be developed. The
models developed in this thesis are based upon the Gaussian plume
assumption which allows an analytical approach. On the other hand, the K
diffusion models require numerical solution employing methods such as
finite elements or finite differences which themselves may introduce error
(Chock, 1985a; Pasquill and Smith, 1983).

For most practical applicatiohs the accuracy of air quality
models for ensemble averages is not expected to be less than several tens
percent, while for comparisons with individual observations factors of two
or more may be expected (Benarie, 1976, 1982; Hanna, 1982b; Pasquill and
Smith, 1983; Simpson and Hanna, 1981). For the point source Gaussian
plume model Nieuwstadt (1980) found that an accuracy of a factor of 2 for
mean concentrations, and for the upper percentiles a factor 4, could be
expected. Turner and Irwin (1982) when using a point source Gaussian
plume model to predict the second highest 3-h and 24-h average sulphur
dioxide concentrations observed considerable scatter between model
predictions and observations. For the 37 data sets they examined for 24-h
periods 68% of model predictions were within a factor of 2 while for 3-h
periods 84% were within a factor of 2. No significant biases in model
estimates were revealed. Venkatram (1984) in a theoretical analysis of
the uncertainty of model predictions of 1-h average concentrations
considered that 25% of the observations would lie outside a factor of two
of the maximum predicted concentration.

In summary the Tlevel of uncertainty expected from simple
deterministic models would be in the order of a factor of 2 for ensemble
means and larger for the more extreme pollutant concentrations. Finally
Pasquill and Smith (1983) note that, "It remains to be seen whether any
significant improvement in this capability will ensue as a consequence
either of the ever-increasing sophistication in the studies of atmospheric
flow or of the continuing elaboration in mathematical modelling
techniques”. This view is supported by the theoretical considerations
discussed by Benarie (1976, 1982) and Venkatram (1984), and from the
analysis of observational data by Hanna (1982c).
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2.2.6 Assessing model performance

The assessment of the performance of air quality models cannot
be undertaken simply by application of a few clear-cut criteria. This is
because most air quality models are essentially empirical in nature. Each
model needs to be assessed on its own merit while keeping in mind the
purpose for which the model was developed. Model performance and model
validity should be distinguished. In general, the evaluation of model
performance centres upon the comparison-of the observations with model
predictions whereas model validity refers to the fundamental correctness
of the model formulation. Clearly when considering the behaviour of air
quality models many aspects must be examined, such as the magnitude of
model predictions and the spatial and temporal resolution.

Bencala and Seinfeld (1979) reviewed methods for assessing air
quality models and categorized the methods under the headings of the
analysis of residuals, the analysis of trends and the analysis of indices
of air quality. A fourth category, other analyses, included the chi-
square test and spectral analysis. The analysis of residuals consisted
essentially of the evaluation of mean and root mean square errors and
included plots of the residual errors versus time. Residual errors were
also plotted against observed and predicted concentrations and also for
each monitor location. The analysis of trends comprised the evaluation of
the correlation coefficient, regression analysis and included scatter
plots. The indices of air quality centred on comparing high predicted and
observed pollutant concentrations. The frequency distribution of the
predicted and observed concentrations were also plotted.

Hayes (1979) also reviewed the criteria which could be used to
evaluate air quality model performance. Hayes showed that the criteria
adopted depended largely on what the model was designed to predict. More
recently the United States Environmental Protection Agency recommended
three statistical performance measures (Fox, 1981). These were bias,
average gross error and the correlation coefficient. The evaluation of
the bias and average gross error were normalized to eliminate differences
in magnitude by division with the observed concentration.' In addition, it
was suggested that plots of the observed and predicted cumulative
distribution functions be prepared.
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Several authors have noted the importance of graphical
presentations to assist in the analysis of model performance. These
methods should be considered complementary to numerical assessments
(Eschenroeder, 1975; Simpson and Hanna, 1981). In particular the study
of Anscombe (1973) is cited where four data sets exhibiting very different
graphical forms produced the same correlation coefficients. Chambers et
al. (1983) provided an extensive review of the many graphical methods
available for data analysis and demonstrated the importance of graphical
methods for various applications and the édvantages of particular methods.

In the following chapters the performance of the models
developed are assessed using, where appropriate, a range of numerical
indicators 1including those described by Fox (1981) and Bencala and
Seinfeld (1979). Graphical methods are also used extensively in order to
both support the numerical. analyses and reveal more detailed model
behaviour, especially with regard to the spatial and temporal variations.

2.3 Statistical models for air quality concentrations

In the preceding section the range, value and limitations of
deterministic models in predicting the distribution of air quality
observations were discussed. The important advantages of this approach
were identified as (a) the 1link between the driving variables such as
emissions and meteorological conditions and (b) the ability to predict
ensemble averages well. A major limitation of this modelling approach was
the inability to predict the upper percentiles of distribution of
pollutant concentrations. In this section models which describe the
entire distribution of air quality observations are examined.

These models are phenomenological in that they only seek to
describe the observations rather than relate the atmospheric and emission
variables to the observations. A distributional model is a description of
the behaviour of a random variable. The distribution function determines
how‘ the cumulative probability is distributed over the possible values
that a random variable may take. Air quality observations are considered
to be random variables as they represent the result of fluctuations of
both the meteorological conditions governing dispersidn, in particular the
turbulent flow, and the factors affecting pollutant emission rates, such
as a change in human activities. Based upon assumptions requiring that
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the pollutant observations be independent and identically distributed, a
probability model may be constructed.

The major advantages of the statistical model are that (a) it
provides a simple representation of the entire distribution of pollutant
concentration; (b) it allows interpolation between, and extrapolation
from, the observed concentrations; (c) it may be readily plotted to yield
a complete pictorial representation; (d) it provides the basis for
further statistical analyses such as the evaluation of confidence
intervals and the analysis of trends; (e) inferences regarding the nature
of the underlying physical processeé may be generated; and, (f) estimated
pollutant concentrations may be directly compared with air quality
standards.

By contrast the major disadvantages of statistical models are
that they are non-causal and thus cannot readily be related to the driving
variables of the air pollution system such as emissions and meteorology.
As a consequence statistical models are restricted to the conditions under
which they were developed.

As air quality standards form the basis upon which many air
quality management decisions are formulated the nature of these standards
are considered next. It will be shown that while air quality standards
may change in regard to the actual level specified, the statement of these
standards in probabilistic terms is likely to remain unchanged.

2.3.1 Air quality standards

The formulation of air quality standards represents the result
of the complex interaction of scientific, economic, social and political
considerations (Newill, 1977). Scientific considerations include an
examination of the health effects (Ferris, 1978; Wyzga, 1978;
Chamberlain, 1983) biological effects (Larsen and Heck, 1976, 1984) and
physical effects of air pollutants whereas the economic, social and
political considerations (Fisher, 1981; Brady et al., 1983) determine
what control strategies are affordable and what level of control is
socially and politically acceptable. Thus, air quality standards are
judgemental and represent an expression of public policy. Air quality
standards are subject to review based upon a changing understanding of the
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effects of air pollutants and as a result of changing public perceptions
and expectations. Air quality standards are often formulated in terms of
long and short term goals. For example ambient air quality standards
recently introduced in China (Siddiqi and Chong-Xian, 1984) were
established at three 1levels. The first level represented the ideal
standard at which no harmful effects occur, the second level was believed
to be the threshold at which effects become detectable and the third level
was considered necessary to protect people from acute or chronic poisoning
and to protect animals and plants (except sensitive ones). Standards at

Table 2.1: World Health Organization recommended long-term goals.
Pollutant Limiting level
-3
(ugm )
Sulphur oxides (a) Annual mean 60

98% of concentrations below(b) 200

Suspended particulates(a) Annual mean 40

98% of concentrations be]ow(b) 120
Carbon monoxide 8-h average 10000

1-h maximum 40000
Photochemical oxidants 8-h average 60

1-h maximum 120
Nitrogen dioxide 1-h average not to be

exceeded more than

once a month 200-340
(a) Values for sulphur oxides and suspended particulates apply only

in conjunction with one another.

(b) The permissible 2% of observations over this limit may not fall

on consecutive days.
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the first level are determined by the central government of China, whereas
standards at the second and third levels are designated by local
governments based upon the activity taking place in those areas.

The World Health Organization has formulated air quality
criteria based upon analyses of the relationship between ambient pollutant
concentrations and the associated adverse effects. Air quality goals are
the concentrations of particular pollutants which are believed to
represent a safe level so that serious]j adverse effects on human health
and welfare, ecological systems and materials do not occur. Table 2.1
presents the long-term goals recommended by the World Health Organization
for sulphur oxides, suspended particulates, carbon monoxide, photochemical
oxidants and nitrogen dioxide. The majority of air quality goals listed
in Table 2.1 represent a probability statement of the form that the
pollutant concentration recorded over averaging time t is not to exceed

X ugm'3 with more than probability p. The development of air quality
‘standards in this manner reflects the uncertainty associated with the
prediction of dispersion of pollutants within the atmosphere and the
desire to reach a goal that is practically attainable.

The United States standard for ozone was revised to include the
concept of expected exceedances (Curran and Cox, 1979). It is this
statement of air quality standards in terms of an allowable number of
exceedances which has stimulated the application of distributional models
to the analysis of air quality;data. These models readily yield the
expected number of exceedances which can be directly compared with the air
quality standard. Even where an air quality standard is stated in terms
of a concentration which is not to be exceeded, the expected probability
of exceeding this level should still prove to be a particularly useful
measure of the performance of control strategies.

2.3.2 Applying statistical models to air quality data

Many studies of the application of distributional models to air
quality data analysis have been undertaken. Reviews of the application of
statistical distributions include those by Pollack (1975), Bencala and
Seinfeld (1976) and Georgopoulos and Seinfeld (1982). A wide variety of
distributional models have been employed to describe air quality data.
Larsen (1969, 1971) performed a comprehensive analysis of seven pollutants
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in eight «cities and suggested that the two-parameter lognormal
distribution was suitable for all pollutants over all averaging times.
Surman et al. (1982) applied the Larsen model to carbon monoxide and total
suspended particulate data in Brisbane, Australia. Lynn (1974) compared
the two- and three-parameter gamma and lognormal distributions, the normal
distribution, the four-parameter beta distribution and the Pearson
distributions and noted that the two4parameter gamma and lognormal models
were preferred over the three-parameter models. Lynn considered that this
was due to the sensitivity of the method of moments fitting procedure to
the extreme upper tail. Pollack (1975) also considered the two-parameter
Weibull distribution as applicable to air quality data along with the
lognormal, gamma and Pearson distributions.

Extreme value distributions have been considered by Singpurwalla
(1972), Roberts (1979a, 1979b), Horowitz (1980) and Chock (1984).
Giugliano (1985) describes an empirical model for predicting extreme
values by relating the upper percentiles to average concentrations. The
estimation of the parameters of this distribution requires that a sample
of the extreme values be available. In practice, and certainly within the
Australian context, these data may not be available or may only consist of
few observations. The models developed also suffer from the same
limitation applicable to all statistical models of the distribution of air
quality data in that they remain essentially a description of the data
upon which they were developed.

Ott and Mage (1976) and Mage and Ott (1978) suggested a censored
three-parameter 1lognormal distribution as applicable to air quality
data. The additional parameter to that of the usual two parameters was
suggested in order to straighten plots of air quality observations on
lognormal probability paper. This model estimates the third parameter of
the distribution using graphical techniques where the value of this
parameter 1is adjusted until a straight 1line results when plotting
poliutant observations on lognormal graph paper. Difficulties with the
analysis of a large number of data sets and with the estimation of the
confidence limits of the model parameters limits its usefulness.

Bencala and Seinfeld (1976) examined the two and three-parameter
lognormal, Weibull and gamma distributions and found that the three-
parameter lognormal model was, overall, the best model, although the other
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models yielded better results in some cases. The superior performance of
the three-parameter lognormal model over that of the two-parameter model
was attributed to the added flexibility afforded by the extra parameter.
The results of Lynn (1974) show that the addition of the third parameter
will not always improve the fit to air quality data.

Cats and Holtslag (1980) épp]ied the lognormal model to hourly
sulphur dioxide data recorded in the Netherlands. They found that the
two-parameter lognormal model provided a'satisfactory estimate of the 98-
percentile concentrations. Other models were not examined. Berger et al.
(1982) studied 24-h average sulphur dioxide concentrations recorded in the
Gent region of Belgium. It was observed that a two-parameter gamma
distribution was a better representation of the whole ensemble than the
usual lognormal. Tsukatani and Shigemitsu (1980) compared the performance
of the two-parameter lognormal model and the Pearson system of
distributions to fit hourly sulphur dioxide data recorded along Osaka Bay,
Japan. MWhile the Pearson system proved to be more flexible, the lognormal
distribution was found to be a useful representation of air quality data
except about isolated sources.

The -exponential distribution has been proposed as applicable to
air quality data recorded near isolated point sources (Gifford, 1974).
Gifford (1974) cited the tracer studies of Barry (1971) and Scriven (1971)
to support the results of the theoretical analysis indicating that an
exponential distribution of pollutant observations would result from
dispersion from an isolated source. Curran and Frank (1975) also believed
that an exponential or Weibull distribution may in general yield a better
fit to air pollutant data. More recently Simpson et al. (1984) and
Jakeman and Simpson (1985) have successfully applied the exponential
distribution to sulphur dioxide concentrations recorded about an isolated
point source.

Distributional models have also been applied in areas related to
the study of air quality. Mage (1980) employed the Johnson SL and
Johnson SB models to the distribution of windspeeds. A comparison of
the performance of other models was not undertaken. An exponential
distribution produced excellent correspondence with observed precipitation
chemistry ion concentrations (Pack, 1982). Again, however, a comparison

with other candidate distributional models was not reported.
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2.3.3 °©  Developing distributional models for air quality observations

While much attention has been given to the application of
distributional models to air quality data, as evidenced in the preceding
section, the same cannot be said about the process by which distributional
models are developed. It is important to examine this process as the
range of models which can be applied to the analysis of air quality data
is large. No one model can be clearly identified as best for all
applications, and at present no one distributional model exists which
could be selected a priori to represent the distribution of air quality
observations (Georgopoulos and Seinfeld, 1982).

The process of constructing a distributional model for air
quality data may be divided into four stages. These are: (a) the
selection or identification of the appropriate distributional model; (b)
the estimation of the model parameters by fitting the model to the
observations; (c) the estimation of the uncertainty associated with
parameter estimates; and, (d) estimates of confidence intervals for the
percentiles of the distribution, termed interval estimation.

Initially the identification of a suitable distributional model
for air quality data was undertaken by applying graphical techniques.
Larsen (1969, 1971) 1identified the two-parameter lognormal model as
applicable to air quality data and Ott and Mage (1976) identified and
estimated one parameter of a three-parameter model using graphical
techniques. By comparison mathematical goodness-of-fit tests have seen
relatively limited use. The chi-square test was applied by Tong and De
Pietro (1977) to sulphate data which confirmed the hypothesis of
lognormality for nearly all data sets examined. Kalpasanov and Kurchatova
(1976) applied the Kolmogorov test to pollutant data recorded in Sofia,
Bulgaria and found that the hypothesis of lognormality was rejected in
most cases. Bencala and Seinfeld (1976) compared the performance of
several distributional models using a least squares fit criterion, and
concluded on the basis of the data examined, that overall a three-
parameter lognormal model gave the best fit. O0Ott et al. (1979) used the
chi-square statistic, Kolmogorov statistic and value of the log likelihood
function to test the validity of the lognormal model and to assess methods
of parameter estimation. They found that if the problems of statistical
independence are ignored, then the two-parameter lognormal model would be
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rejected with a high degree of confidence for all the carbon monoxide data
sets considered. Holland and Fitz-Simons (1982) developed a computer
program to fit six distributions with nearly all having three or four
parameters using the method of maximum 1likelihood. Their program
evaluated six goodness-of-fit criteria including the chi-square, absolute
deviation and Kolmogorov statistics, but no comparison of the performance
of the goodness-of-fit statistics was presented..

In Chapter 4 the problem' of identifying a suitable
distributional form for air quality data is examined in detail. Using
Monte Carlo experimentation the ability of several goodness-of-fit tests
to select the 'best' model is examined. The problem of selecting from a
range of alternative models is considered and a procedure for increasing
the probability of selecting the best model developed. Using this model
identification procedure ‘a large urban air quality data set is examined.

The estimation of the parameters of a distributional model may
be achieved using numerous techniques (Johnson and Kotz, 1970). The two
most commonly applied methods are the method of moments and the method of
maximum likelihood. Very little attention has been given to the effect
that the method of evaluation of the parameters of the distributional form
has upon the estimates of the percentiles of the distribution. Mage and
Ott (1984) on the basis of 100 Monte Carlo experiments concluded that the
method of maximum likelihood provided the best parameter estimates for the
two-parameter lognormal distribution when compared with the method of
fractiles and method of moments. No studies have been reported in the air
pollution 1literature of other methods of parameter estimation for the
lognormal distribution, or of methods of parameter estimation for other
distributions. In Chapter 3 several methods of parameter estimation for
the two-parameter 1lognormal, two-parameter gamma, two-parameter Weibull
and the one-parameter exponential distributions are examined. The
assessment of model performance is based upon the ability of each model to
predict the upper percentiles of the distribution.

The estimation of confidence intervals, exact or approximate,
for model parameters and the resulting percentile estimates, has to date
received little attention. A simple procedure for the estimation of
confidence intervals is not available and studies of the distribution of
air quality data do not report confidence intervals for model
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predictions. In the chapter following, a simple method for obtaining
approximate confidence intervals for various sample sizes and parameter
values is developed. In Chapters 5, 6 and 7 the models developed include
a submodel which approximates the confidence intervals associated with
estimates of particular percentiles.

2.4 The hybrid modelling approach

The methodology employed in this thesis combines the two areas
of air quality modei]ing examined previously»'to yield the hybrid
deterministic/statistical model. The hybrid modelling approach was
developed to allow estimation of the entire distribution of air quality
data, in particular the upper percentiles, to be reliably estimated from
major causal variables and to provide approximate confidence intervals for
these estimates. This form of model output is desirable as it may be
compared with air quality standards. The measure of uncertainty
associated with the model estimates allows an assessment of the risk of
exceeding an environmental standard to be determined. Thus the hybrid
modelling approach 1is particularly suited to the problems of the
management of airsheds (including monitoring strategies) and the
assessment of pollution control strategies.

The hybrid model offers numerous advantages over the application
of deterministic or statistical models alone, these are:

(i) it accepts the inevitability of uncertainty in
modelling air quality and seeks to quantify this
uncertainty in model predictions;

(ii) the deterministic model component relates estimates
of air pollution levels to causal variables such as
meteorological and emissions data;

(iii) . the statistical component wusing only the
deterministic model output within its range of
greatest reliability (usually about the mean
concentration) provides estimates of the entire
distribution of pollutant concentrations;
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(iv) the statistical component allows approximate
confidence 1intervals for any percentile of the
distribution of pollutant concentration to be
determined;

(v) the approach is applicable to a wide range of
pollutant emission source types and hence to the
many problems of air quality management;

(vi) the hybrid modelling approach is sufficiently
general that it is not restricted to a particular
deterministic or statistical model component and
will allow new model components to be readily
incorporated within existing hybrid models as our
understanding of the deterministic and statistical
descriptions of air quality data improves; and,

(vii) wusing the deterministic component, with its link to
the variables governing dispersion, the natural
variability due to long-term meteorological change
and the effect of emission control strategies such
as changing stack heights and pollutant emission
levels, can be incorporated into the analysis of
impacts and through the statistical. component these
effects can be compared with air quality criteria.

While the hybrid modelling approach offers the above advantages, the
following limitations should also be noted:
(i) the deterministic model component must be capable

of predicting a percentile range of the
distribution of pollutant concentration reliably;

(ii) the distributional form assumed as the statistical
component of the hybrid model must remain
consistent as input variables change; and

(iii) the hybrid model will not predict when a particular
pollutant concentration will occur but rather with
what frequency a pollutant concentration will be
exceeded. '

Although the air quality literature currently abounds with descriptions of
deterministic and statistical models which have been applied to predict
the distribution of air quality observations few studies report models
combining the two approaches. Some early studies have been found
indicating that deterministic and statistical models might be usefully
combined. At the end of a 1lengthy review of air quality models
Eschenroeder (1975) considered that deterministic model output did not
match user needs and speculated that analytical linkages could be made
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between observed frequency distributions and computed (deterministic)
model results. Eschenroeder suggested estimating the parameters of a
lognormal model using the distribution of the deterministic model output.

Benarie (1976) linked the distribution of windspeeds and
pollutant observations through a simple inverse relationship between
percentiles. The constant in this model was obtained as the multiple of
the medians of the windspeed and pollutant data sets as had been suggested
by Knox and Lange (1974) from their work with hourly averaged carbon
monoxide data recorded in San Francisco. This proportionality factor was
found to be nearly constant for all percentiles.

Liu and Moore (1984) used random inputs instead of 1inputs
matched by time with a point source Gaussian plume model. They found that
uncoupling the time linkage in the model input had no systematic effect on
the predicted cumulative frequency distribution of concentrations.

Only recently has the hybrid approach been applied to the study
of air quality data. Most notably Simpson et al. (1983) combined the ATDL
model with Larsen's statistical model to yield estimates of pollutant
concentration. This model was limited to the assumption of a lognormal
distribution of both the air quality and windspeed data sets. However,
where these assumptions were met, the upper percentiles of the
distribution of air pollutant data were predicted within the accuracy
usually observed only for mean concentrations. Estimates of the
uncertainty associated with model predictions were not developed in this
study, partly because the Larsen model is not readily amenable to this
analysis. Simpson and Jakeman (1984) extended their analysis to estimate
the effect of fluctuations in long-term meteorology on observed maximum
acid gas levels. Simpson and Jakeman (1985) demonstrated the application
of this model as an air quality management tool which could be used in the
planning of industrial development.

In this thesis the hybrid modelling methodology is developed and
demonstrated for the three key emission source types: area, line and point
sources. For each application a deterministic model component was
selected and the statistical model component identified from amongst a
range of alternatives. The deterministic model component provides
estimates of the pollutant concentration but only about the median
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concentration. Using a percentile range about the median the parameters
of the statistical model component and associated uncertainty were
estimated. With these data the entire distribution of pollutant
concentration and approximate confidence intervals at any percentile, may
be inferred. Figure 2.1 illustrates the major steps in the application of
the hybrid modelling methodology to area, line and point pollutant
emission source types.

DETERMINISTIC MODEL COMPONENT

‘J{——‘ INPUT SOURCE STRENGTH AND METEOROLOGICAL DATA '—J(
NE . . L

LINE SOURCE AREA SOURCE POINT SOURCE

GAUSSIAN PLUME ATDL TYPE GAUSSIAN PLUME

A} | J

ESTIMATES OF POLLUTANT CONCENTRATION ABOUT MEDIAN

STATISTICAL MODEL COMPONENT

IDENTIFY DISTRIBUTIONAL MODEL

N N A NP N
EXPONENTIAL GAMMA LOGNORMAL NORMAL WEIBULL
[ | [ | I

ESTIMATE PARAMETERS FROM DETERMINISTIC MODEL OUTPUT ABOUT MEDIAN

J .
ESTIMATES OF ENTIRE DISTRIBUTION WITH CONFIDENCE INTERVALS

Figure 2.1: An example of the major steps in the application of the
hybrid modelling methodology to area, line and point source
emission regimes.
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Figure 2.1 1is 1intended to illustrate only how the hybrid
modelling methodology might be applied. The deterministic and statistical
models listed in Figure 2.1, while representing models actually developed
in this thesis, are intended only as examples of the deterministic and
statistical models which could be combined to form a hybrid model.
However, the important steps in the hybrid model building process are
indicated.

Of course some basis upon' which the deterministic and
statistical models can be selected is required. Unfortunately no
theoretical analysis indicates which deterministic or statistical model is
best for modelling air quality data. However, Pollack (1975) examined
conditions which would lead to a lognormal distribution of air quality
observations and Bencala and Seinfeld (1976) showed that for several
possible distributional forms for windspeed data that the inverse of these
distributions produced approximately lognormal distributions.

In view of the lack of theoretical guidance in the selection of
models, an empirical basis for model selection was adopted. As noted
earlier the simpler deterministic models were shown in many cases to
provide a level of wmodel performance equal to that of more complex
models. As these models require fewer parameters and are more easily
evaluated with a concomittant reduction in the use of computational
resources, simpler models have been preferred. Of course the assumptions
necessary to apply the models selected must be satisfied.

That models be commensurate with the amount and type of data
available for analysis has also lead to the selection of simpler models.
In Australia this is particularly important as only limited meteorological
and emissions data are available. Thus the models developed here mostly
rely on data collected on a routine basis. Of course when more detailed
information becomes available more complex models can be constructed.

The selection of distributional models for inclusion within
hybrid models can proceed in a more direct manner than that for the
deterministic model component. Once a range of models which could be
employed to describe the distribution of air quality data have been
selected then the methods of statistical modelling may be applied
(Gilchrist, 1984; Shapiro and Gross, 1981). The range of models selected
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represents those models commonly considered applicable to afr quality data
(Bencala and Seinfeld, 1976; Georgopoulos and Seinfeld, 1982). The
models selected have been those with as few parameters as possible. In
this way unnecessary parameterization has been avoided. The smallest
number of parameters is particularly desirable as the parameters must be
estimated from a restricted percentile range and then the upper
percentiles of the distribution estimated by extrapolation. As the‘upper
percentiles are determined by extrapolation, increasing the number of
parameters will not necessarily reduce the uncertainty associated with
predictions of these percentiles. This can arise because the reduced
noise of the fit to the restricted percentile range resulting from the
increased parameterization of the model appears as increased uncertainty
in the parameter estimates.

The methods for the estimation of parameters for statistical
distributions are presented in Chapter 3. The problems of identification
of a distributional model in general and selection of a distributional
model from amongst a range of alternatives are considered in detail in
Chapter 4. The tests developed are independent of differences of scale
allowing the results of a test on one data set to be readily compared with
a test upon another. Following Chapter 4, it is demonstrated that the
model selection procedure based upon goodness-of-fit tests has the
desirable quality of selecting a model which produces good estimates of
the upper percentiles of the distribution of air pollutant concentrations.



CHAPTER 3
STATISTICAL ESTIMATION OF THE PARAMETERS OF THE LOGNORMAL, GAMMA,
WEIBULL AND EXPONENTIAL DISTRIBUTIONS

3.1 Introduction

When fitting distributions to observations of air quality data
we are faced with several practical problems. We would ideally Tike to
describe the entire distribution while determining the upper percentiles
with greatest accuracy. Preferably we wish to characterize the data by
only one or two parameter distributional forms. Such simple
distributional forms may then be readily applied by those concerned with
the assessment or management of air quality whose primary interest may be
the frequency with which a pollutant concentration is equalled or
exceeded. This information is wusually required for a number of
pollutants, such as carbon monoxide, nitrogen dioxide and ozone, and over
a range of averaging times varying from several minutes to a full year.
This information is wusually required for a variety of source types
including area, line and point sources.

In this chapter, methods are examined by which the parameters of
the two-parameter lognormal, gamma and Weibull distributions, and the one
parameter exponential distribution, may be estimated. Specific attention
is given, for each method of parameter estimation, to the evaluation of
the upper percentiles of each distribution. Also a simple method yielding
an approximate confidence interval for the estimates of the upper
percentiles of each distribution is derived. This approach does not
require substantial numerical computation in order to provide an estimate
of the confidence interval for a particular percentile.

3.2 Goodness-of-fit

In this chapter the problem of testing the hypothesis that the
data are drawn from a particular distributional form is not considered.
We are concerned with the effect that the method of parameter estimation
has upon the evaluation of the percentiles of the distribution. The
performance-é;iéz:ge-with which we shall assess the goodness-of-fit of the
estimated distributions to the actual distributions is the root mean

square error (rmse) evaluated at particular percentiles. Traditional
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statistical measures for assessing the suitability of a method of
estimating the parameters of a distribution consider the bias or otherwise
of the estimators and their variance about the true value of the
parameter. It should be noted that such criteria are implicitly
incorporated in the examination of the root mean square errors. The
advantage, however, of examining the errors in the percentiles is that
methods of parameter estimation which minimize the errors in fitting the
percentiles in the region of greatest interest may be selected. Again for
air quality data this will be the upper percentiles of the distribution.
Clearly where management and policy decisions are based upon estimates of
the upper percentiles then we wish to reduce losses in accuracy about
these percentiles.

For the lognormal distribution the first two error or 1loss
functions are the root mean square error (rmse) of estimation of the 1-
and 99-percentiles, rmse [;0‘01] and rmse [§0.99]. These percentiles
were chosen in order to evaluate the efficiency with which the more
extreme events are described and also to provide an indication as to any
bias associated with the estimators. The third loss function, designated
L, is the average mean squared deviation between the actual and estimated
distributions (Stedinger, 1980). This error function measures the overall
deviation between the true and fitted distributions and could be
considered an appropriate criteria for selecting the best estimators when
the entire distribution of pollutant concentration is significant as may
be the case where damages are evaluated. The error function is stated as
follows (Stedinger, 1980)

1 -2 1 .
L=Ely (Xp' Xp) dp] = of E [(xp - xp)ﬁdp - (3.1)

where x is the true value of the p-percentile and ;p is the estimate
of xp . For the two-parameter lognormal distribution, xp » is given by

Xp = exp [a+bzp] (3.2)
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where z_ corresponds to the 100p percentile of the standard normal
distribution and will henceforth be referred to as the standard variate.
If a and b are the sample estimates of the location, a, and scale
parameter, b, then

1 R «
of (xp - xp)zdp =[_ {exp [ a+bz]

(a+bz)}? 1 e -y ade

- exp( a + bz exp [- = z
(2x)72 2

L~ 2 2 - s

of (xp=xp)“dp = exp [2a + 26°] + exp [2a + 2b°] (3.4)

- 2exp [a + a +3 (b + l‘;)2]

In order to estimate the effect of differences in magnitude of the root
mean square error, relative errors were determined. These were chosen as
the rQPios L/o 2 where 02 is the variance, rmse [;O.OIJ/XO.OI’ and
rmse[x0.99]/ X0.99° Unbiased estimators should produce equivalent
relative errors at all percentiles including the 1- and 99-percentiles.

As will be demonstrated the use of the error function L is of
little value when examining the exponential distribution as the single
parameter is estimated using two unbiased methods. For the gamma and
Weibull distribution the bias of all methods of parameter estimation
limits the usefulness of the error function L. Thus for the exponential,
gamma and Weibull distributions three error criteria,

rmselxg o11/xg.01» MMelxg sgl/xg.50  and  rmselxy gol/xg g  Were
evaluated.

3.3 Fitting the two-parameter lognormal distribution to air quality
data

The lognormal distribution has been widely employed in the study
of air pollution data over the past decade. While attracting a great deal
of interest both as an empirical model and as a theoretical model only one
study (Mage and Ott, 1984) has either repbrted findings on the errors in
estimation of the percentiles associated with the application of the
lognormal assumption, or has given attention to the methods by which the



42

parameters of the distribution may be estimated. Of particular interest
is the method attributed to Larsen (1971) where the upper percentiles of
the distribution are fitted, assuming that the air poliutant data are
adequately described as lognormal.

Reported here are the findings of a Monte Carlo study evaluating
the behaviour of several methods of estimating the parameters in terms of
the relative root mean square error at 1- ahd 99-percentiles and the
average mean squared deviation between the true and fitted
distributions. The study reports the minimum errors which may be expected
for various estimators of the parameters when fitting data drawn from a
lognormal distribution. The performance of the estimators are considered
over a range of sample sizes equivalent to those that may be encountered
when examining 24-h averaged data collected over one year. It will be
shown that the results obtained may be readily extrapolated to larger
sample sizes with empirical models developed using the results obtained
for the smaller sample sizes.

3.3.1 Parameter estimation

Traditional statistical techniques for determining estimates of
the location parameter, a, and scale parameter, b, are the method of
moments and the method of maximum likelihood (Kendall and Stuart, 1973).
The maximum likelihood estimates of a and b are given by

"t
w—r

(3.5)
and
(3.6)

where ]i = ]ﬂ(xi) « Thus the maximum likelihood estimators of a and b
are equivalent to the moment estimates of the variate 1 = ]n(xi) using

the biased estimate vf of the variance, 2 of 1.
‘l!
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For the method of moments, the evaluation of

n
n i=l
2 1 M 2
S, = = ¢ (x; =-x)
X el =1 !

allows the determination of the estimators

- - - 1
a = Infx/ [1+s2/()%1 72)

82 =In[1+ Si/ (;)2]

(3.7)

(3.8)

according to

(3.9)

(3.10)

The method first applied by Larsen (1971) to the study of air
pollutant data is derived from the ordinary least squares fit to the

equation

1 =M +5
p- g g%

where 1 = 1n (xp)
the geometric standard deviation
evaluated at the p-percentile.

and

this linear equation and are given by

are order statistics, M

(3.11)

g is the geometric mean, Sg
z is the standard variate

; is the intercept and B the slope of

n n n
n ¢ z,1.-(z z)(z 1;)
P 1 S & B I
b"S - (3.12)
g 0 0
2 2
n I z;" - (z zi)
i=1 i=1
a=M =1-52z (3.13)
g g
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Note that at z=0 equation (3.13) reduces to the maximum
1ikelihood estimator of a and equation (3.12) similarly reduces to the
equivalent maximum likelihood estimator of b, but only when using the full
data set. However, given the different numerical techniques involved, it
was considered worthwhile to assess the performance of these estimators as
well. It should also be noted that such estimators assume implicitly that
the distribution of pollutant concentrations is lognormal, that is, the
data plots as a straight line on lognormal graph paper. If, for instance,
data were drawn from the gamma distribution the curve would, in most
cases, not be linear.

The primary advantage of such a method is that the estimators,
; and B s may be determined from a restricted set of percentiles. In
particular such a method allows a lognormal model to be established for
the upper percentiles of the distribution of frequency concentration.
Larsen (1971) considered that the upper percentiles are well described by
a lognormal model for several pollutants over a broad range of averaging
times. Accordingly we have examined the performance of the estimators,
given by equations (3.12) and (3.13) using a restricted range of
percentiles. The upper 30% and 50% of available data were chosen. The
Larsen (1971) method itself can be viewed as a special case of the least
squares fit to certain percentiles. As initially developed, the method
required two data points (usually the p = 70.0 and p = 99.9 percentiles)
to estimate the parameters.

3.3.2 Monte Carlo simulation studies

The parameters of the lognormal distributions investigated are
listed in Table 3.1. The range of parameter values was chosen to reflect
those observed in studies -of air quality data. Sample sizes of n = 50,
100, 200 and 365 were selected to represent samples drawn from a full year
of 24-h average data. It will be shown later that the results obtained
may be extrapolated to larger sample sizes. At each sample size the three
methods of estimation were examined. The estimators are

(x,Sz), (],Vf) and (1n Mg, In Sg). Table 3.2 presents the values of the

ratios  L/q ®, mse [xg 1)/ xg,01 and rmse [xg,g9)xg,gg O €3N OF

the estimators at each sample size for the 1lognormal distributions
considered. The results of Table 3.2 were obtained from 5000 Monte Carlo
experiments. 5000 Monte €Carlo experiments were undertaken in order to
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Table 3.1: Parameters and percentiles of the lognormal distributions
used in the Monte Carlo experiments

Coefficient Coefficient
a b X0.01 X0.99 of variation of skewness
3.00 0.1 15,917 25.346 .0.100 0.310
3.00 0.3 9.995 40.363. 0.307 1,028
3.00 0.5 6.277 64.275 0.533 1.945
3.00 0.7 3.941 102.355 0.795 3.191

obtain estimates of the rmse values to a precision of about three
significant figures.

Examining Table 3.2 we note in general for all estimators that

the error measurements L/az, rmse [xo 01]/x0 01 and
rmse [xo 99]/x0 99 increase with the value of b while decreasing with
increased sample size. For all sample sizes n>50 the estimators

(1, v¥)  and (In Mg, 1n Sg) are almost equivalent at the 1- and 99-

percentiles and the root mean square criteria indicates that

Vf) and (In Mg, In Sg) provide the best estimators of the parameters

of the underlying distribution. The results of Table 3.2 for n=365

indicate that_even for very large sample sizes n>365 the use of the.

estimators (x- Sz) will produce significantly 1larger relative errors
than the estimators (1, Vi ) and (1n M In'S )

So the estimators 1, Vz) and (In M, In S ) produce
essentially equivalent results for large sample s1zéi. fie estimators
also appear to be unbiased as indicated by the equivalent magnitude of the
errors at the X0.01 and y 0.99 percentiles which is to be expected from
theoretical considerations (Kendall and Stuart, 1973). Given then the
relatively low computational effort required to obtain the estimates

(1, Vf) these estimators would be preferred.

The estimators (In M, In S ) have also been investigated
where the estimators are derived from the upper 30 and 50 percentiles of
the distributions. The parameters of the lognormal distributions used in
the analysis are again those of Table 3.1. The error criteria are as



TABLE 3.2:

calculations with 5000 samples

Results of fitting the Yognormal distribution by three methods.

The numbers are the result of Monte Carlo

2 - R
Liey rmse [xg,011/%0.01 rmse [xg,q91/Xq, 99
b b b
Estimators used 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7
Sainple Size n = 50
X» Si 12.76 17.68 33.64 82.4 0.0280 0.091 0.175 0.297 0.0276 0,088 0,160 0,241
i, V? 12,68 16,37 26,93 55.1 0.0279 0.085 0.144 0.206 0.0273 0,082 0.137 n.194
In (Hg), In (Sg) 12.71 16.31 26.67 54.1 0.0279 0.084 0.143 0.208 0.0274 0.082 0,136 0,192
Sample Size n = 100
i, Si 6.10 8.63 16.96 43.8 0.0192 0,064 0.127 0,220 0.0193 0.062 ’ 0,115 0,179
T, Vf 6.05 7.86 12.94 26.2 0.0191 0.058 0.097 0.138 0.0191 0,057 0,095 0.134
In (Mg), In (Sg) 6.06 7.85 12.88 25.9 0.0191 0.058 0.097 0,137 n.0191 0,057 0,095 0,133
Sample Size n = 200
i, 5,2( 3.21 4.49 8.85 23.83 0.0141 0,047 0.094 O0.1A8 0.0138 0,044 0,083 0.132
T. Vlz 3.18 4,09 6.65 13.30 0.0140 0.042 0.070 0.099 0.0136 0,041 0,068 0,095
In (Mg). In (Sg) 3.19 4.09 6.64 13.24 0.0140 0.042 0.070 0.099 0.0136 0.041 0.068 0,095
Sample Size n = 365
X, 2 1.70  2.47 4,85 13.83 0,002 0.038 0.071 0.129  0.0101 0.033 0.06? 0,102
i, V] 1.69 2.24 3.58 7.29 0.0101 0.030 0.050 0.070 0.0100 0,030 0.050 0,070
1n (Mg). In (Sg) 1.69 2.23 3.57 7.26 0.0101 0.030 0.050 0,070 0.0100 0.030 0.050 0,070
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stated previously and were evaluated for sample sizes of n=50, 100, 200
and 365. Again for all distributions at each sample size, 5000 Monte
Carlo experiments were performed from which the error criteria were
evaluated. The results are given in Table 3.3. It should be noted that
all three measurements of error increase with the increasing magnitude of
the scale parameter and decrease with larger sample size.

Comparing values of the rmse‘[;(o.gg:]/xo.99 criterion where
the estimators are derived for the upper 50% of the data with that
obtained when fitting all the data (see Table 3.2) we find that the value
for the upper 50% estimators is almost equivalent to that found when
fitting all the data when this is undertaken at half the sample size.
This is not, however, the case for rmse [;0.01]/x0.01 where substantial
increases in error are recorded as might be expected given that the upper
percentiles form the basis of the parameter estimation. ?

When estimating the parameters of the distribution using only
the upper 30% of the data increases in all error criteria over that
obtained for the upper 50% of the data resulted. These increases are
particular]y marked for the overall measure of error, L/ox2 » and

rmse CXO.OI]/XO.OI reflecting the inherent bias of the estimation
procedure.

3.3.3 The relative root mean square errors associated with the

estimation of the percentiles of the lognormal distribution

The results of Tables 3.2 and 3.3 represent the minimum root
mean square errors that may be expected for 1- and 99-percentiles when
fitting the two-parameters of the distribution to data where the
parameters of the distribution are unknown. An empirical model of these
errors for X0.99 using the maximum likelihood method results for varying
scale parameter o , and sample size, n, has been derived. The model
allows estimates of this error to be derived for sample sizes and sample
scale parameters other than those listed in Table 3.2. This estimate of
the error is the minimum to be expected when used in conjunction with air
quality data where parameters are evaluated from the sample and the
assumption of lognormality may hold only approximately.
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location parameters of the distribution.

Table 3.3: Results based on the estimators (1In Mg, In Sg) derived using
the upper percentiles of the available data.
b Lo © rmse [xo,011/x0.01 rmse [x.991/xg, 99
X . . . .
505 30%(a) 50% 30% 50% 30%
Sample Size n = 50
0.1 25.6 51.2 0.054 0.082 0.034 0.038
0.3 28.0 50.9 0.169 0.267 0.102 0.114
0.5 40.6 64.0 0.298 0.475 0.168 0.190
0.7 83.5 118.8 0.442 0.770 0.239 0.263
Sample Size n = 100
0.1 13.0 26.3 0.038 0.059 0.024 0.027
0.3 13.8 25.1 0.117 0.184 0.072 0.080
0.5 20.4 31.4 0.202 0.320 0.120 0.133
0.7 41.0 56.6 0.293 0.489 0.168 0.185
Sample Size n = 200
0.1 6.4 13.3 0.027 0.042 0.017 0.019
0.3 6.9 12.5 0.083 0.127 0.052 0.057
0.5 10.4 15.8 0.142 0.219 0.085 0.095
0.7 20.8 27.9 0.201 0.323 0.120 0.131
Sample Size n = 365
0.1 3.5 7.3 0.020 0.031 0.012 0.014
0.3 3.8 6.8 0.060 0.094 0.038 0.042
0.5 5.6 8.7 0.104 0.160 0.062 0.071
0.7 11.5 15.6 0.148 0.230 0.089 0.099
(a) Upper percentiles used to derive estimators of the scale and
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Figure 3.1: The fit accerding to the empirical model (equation 3.14) to
the rmse Cxg 99]/X0 99 _data of Table 3.2 for the maximum

likelihood estimators of the lognormal
distribution parameters.

The basic empirical model is

Flo,n) = <2 (3.14)
/n

where F(o,n) in this case is rmse [;0 99]/x0 99. © is the scale
. L] )

parameter of the underlying lognormal distribution, n is the sample size

and k 1is a constant.

The value of ¢ may vary with the percentile of the distribution
under consideration. The constant « was determined by non-linear least
squares methods using an algorithm based on a golden section search. For
the 99-percentile a value of k = 1.975 was calculated. Figure 3.1
illustrates the fit of the model (3.14) to the rmse [;o.ggl/xo.gg data
of Table 3.2 for the estimators (1,V$) . It should be noted that
equation (3.14) also provides an excellent model with which to approximate

rmse [;0.01]/x0.01 for the estimators (I, vlz) and for the rmse errors

associated with the estimators (In Mg, In Sg) at larger sample sizes.
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3.3.4 Conclusions for the lognormal distribution

When fitting lognormal distributions to air quality data we note
for the range of sample sizes considered that the maximum 1likelihood
estimators (1, V%) and the estimators (1n Mg, In Sg) provide the best
estimators of the upper percentiles of the lognormal distribution. Where
the data are considered to be drawn from a lognormal distribution fitting
all the data will yield the best overall estimates of the distribution
including the upper percentiles. '

However for larger sample sizes relatively small increases in
rmse [;0.99]/x0.99 occur. A convenient empirical model was found for
determining an approximation to the error associated with the estimation
of a particular percentile where the estimators of the parameters of the
lognormal distribution are (T; Vf) and (InM , InS ) . Where the
parameters of the distribution must be estimated from the sample such a
model may still yield a useful estimate of the possible error. When
considering air quality data which has been tested for goodness-of-fit to
the lognormal form then this estimate might be adopted as the likely
minimum error. It should also be noted that the empirical model developed
here for the 1- and 99-percentiles may be constructed at other percentiles
of interest based on suitable sampling studies.

3.4 Fitting the exponential distribution to air quality data

The exponential distribution has been of interest in the study
of air quality data partly due to its application to describe pollutant
data observed about isolated point sources (Curran and Frank, 1975;
Simpson, Butt and Jakeman, 1984). The two-parameter exponential model
(Berger et al., 1982) has also been applied to observations of pollutant
concentrations where the source is a combination of several point sources
in conjunction with an area source. While the exponential distribution
has not been established as a model applicable to a wide range of
pollutants at various averaging times, there exists sufficient interest in
this model to warrant examination of the estimation of the parameter of

this distribution and the variance associated with the estimate of
particular percentiles over a range of sample sizes.
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3.4.1 Parameter estimation

The exponential distribution has the scale parameter, b, which
must be estimated. The usual method of estimation is to use the
arithmetic mean, which 1is the maximum 1likelihood estimator of this
parameter and is stated thus,

X . (3.15)

Another useful estimate of the scale parameter can be derived
from the relationship between the median, M,, and mean b of an exponential
distribution where

b = Ma / In 2 (3.16)
so that the estimator is
b = 1.4427 M, (3.17)

This method of estimation will of course be more useful if the
estimate of the median is more accurate than the mean, for example when
the sample distribution contains outliers.

3.4.2 Monte Carlo simulation studies

Since the relative root mean square errors are evaluated the
results obtained will be independent of the value of the scale
parameter. Thus for all Monte Carlo experiments the underlying scale
parameter of the exponential distribution was chosen as b=1. Sample sizes
of n=50, 100, 200 and 365 were selected to represent a range of sample
sizes which might be observed in a year of monitoring 24-h average
pollutant levels. It will be shown that the results obtained here may be
readily extrapolated to larger sample sizes. At each sample size the two
methods of estimation of b, as given by equations (3.15) and (3.17) , were
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Table 3.4: Results of estimation of the scale parameter of the
exponential distribution based on 5000 Monte Carlo

experiments.
Sample size rmse[ip]/xp

. 1.4427 M

a

50 0.1410 0.2045
100 0.0995 0.1418
200 0.0692 0.1015
365 0.0518 0.0749

examined using 5000 Monte Carlo experiments. These results appear in
Table 3.4. It should be noted that for rmse[xp]/xp at p = 1, 50 and 99
equivalent results: for both methods of parameter estimation were obtained.

The results of Table 3.4 indicate, as would be expected, that in
all cases both estimators are unbiased. The estimator based on the sample
mean is clearly that with the lowest variance. The estimator based on the
median has produced rmse results which are not substantially greater than
those based on the sample mean. These results illustrate the possible
usefulness of the median as a basis for the estimation of the parameter of
the exponential distribution where either the sample mean may not be
calculated directly or the sample distribution contains outliers.
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3.4.3 The relative root mean square errors associated with the
estimation of the percentiles of the exponential distribution

A useful empirical model for determining the relative rmse at
all percentiles and for sample sizes n>49 was also developed for the
exponential distribution. The model form identified is:-

F(n) = & ' (3.18)
/n

where F(n) is rmsely 1/x at the p-percentile and n is the sample
size. The constant Kp was calculated as the average value of the four
values of F(n)/n derived from Table 3.4 for both estimators. These
values are for the estimator based on the sample mean, x = 0.990, and for
the estimator based on the sample median « = 1.433. The results of
Table 3.4 with the fit according to equation (3.18) with the appropriate
value of constant « are presented as Figure 3.2.
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Figure 3.2: The fit according to the empirical model (equation 3.18) to.
the rmse [; Vx data of Table 3.4 for the estimators of

the p= 7P exponential distribution parameter based
upon the mean and the median.
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3.4.4 Conclusions for the exponential distribution

Where the full sample distribution is available and reliable,
the sample mean provides the most accurate estimate of the exponential
distribution parameter. However, when modelling the distribution of
pollutant concentrations the median concentration may provide a more
accurate estimate of the scale parameter. Therefore where an exponential
model 1is considered applicable only to a limited range of percentiles
including the median or the data contains outliers, then the median may
provide a useful estimate of the scale parameter for such a model. For
both estimators equation (3.18) with the appropriate value of «x should
yield a useful estimate of the minimum variance to be expected when
estimating a percentile of the distribution.

3.5. Fitting the two-parameter gamma distribution to air quality data

The gamma distribution has found application in air pollution
studies as the distribution is skewed to the right, as is the case for
most air quality data. The gamma distribution has generally been
considered to be of importance 1in the study of the statistical
distribution of air quality data (Bencala and Seinfeld, 1976; Pollack,
1975). Berger et al. (1982) found that a gamma distribution may provide a
better description of 24-h average sulphur dioxide concentrations than the
lognormal distribution.

While the gamma distribution has been found to be of value as a
useful distributional model no studies have reported the errors
associated with the estimation of the percentiles. In fact, not even the
estimation of the parameters of the distribution has been examined from
the point of view of air quality studies. In this study three methods of
estimation of.the parameters of the distribution are examined and their
performance afe evaluated at the 1-, 50- and 99-percentiles using the
relative root mean square error (rmse) as the performance criteria. These
performance criteria were evaluated over a range of sample sizes which
might represent those encountered when examining 24-h averaged data.
However the results obtained may be readily extrapolated to larger sample
sizes using a simple empirical model. '
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Known methods of parameter estimation for the gamma distribution
examined in this study are the method of maximum likelihood, the method of
moments and a modified method of moments. These methods have been
examined in the study of flood frequency analysis (Nozdryn-Plotnicki and
Watt, 1979) but the form of the distribution widely used in hydrology is
not of great interest in air quality studies as it is the three parameter
form which is applied in conjunction with a logarithmic transformation of
the hydrologic data. A method proposed by Bobee (1975) applicable to such
distributions where the moments of the untransformed data are preserved
was found by Nozdryn-Plotnicki and Watt (1979) to yield best results only
where the scale parameter is negative in the form of gamma distribution
examined. They considered both the method of moments and the method of
maximum 1likelihood as superior procedures for the estimation of the
parameters of the gamma distribution.

The efficiency with which the shape parameter of the gamma
distribution may be estimated by the method of moments relative to the
maximum likelihood method was found to be as low as 22% (Kendall and
Stuart, 1973). Efficiency is the ratio of the variance of the estimates
of the parameters derived from two methods (in this case the method of
moments and the method of maximum 1likelihood). While this result
indicates that the method of maximum likelihood should be favoured as the
method of estimation the ability of both methods to estimate the
percentiles of the distribution is examined. In particular the concern is
with the upper percentiles of the distribution.

Finally it should be noted that the maximum 1likelihood
estimators produce biased estimates of the parameters of the gamma
distribution. This result was inferred from numerical studies by Choi and
Wette (1969) who considered that the estimators were positively biased.
Shenton and Bowman (1972) obtained the asymptotic expansions for the
biases of the parameters. Anderson and Ray (1975) extended the work of
Shenton and Bowman (1972) and obtained modified maximum likelihood
estimators to yield approximately unbiased estimators. Finally Berman
(1981) showed from theoretical considerations that the method of maximum
likelihood yields estimator;fg}e always positively biased. It should be
noted that the bias of the maximum likelihood estimators decreases with
increasing sample size.
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3.5.1 Parameter estimation for the gamma distribution

The probability density function of the random variable denoting
pollutant concentration, x, described as having a gamma dis;ribution with
parameters a and 8 , termed the scale and shape parameters respectively
is

f(x) = (x/a)®~llexp(-x/a)/ar(8) (3.19)

where T denotes the gamma function.
Let xl,xz,...,xn(n>1) represent a random sample of values of y and let L

denote the log likelihood function. Then we have

n
L = n[gloga - log r(B)] + (g-1) £ 1log X; - @
i=1 i

"™~ S

and taking the partial derivatives with respect to the parameters
a and B8 we obtain

sl n
—=n[loga -v (B)] + £ Tlog X3 (3.21)
Y] i=1
n
L n (8la) - X; (3.22)
Ja i=1
where
d
¥ (8) =—log r(g) (3.23)
dg

and is referred to as the digamma function. Analytical solutions for the
maximum likelihood estimators cannot be derived and thus the solution of
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aL/3a = 0 and aL/3g = 0 yielding the parameter estimates a and ﬁ must
be obtained numerically. The method selected was the Newton-Raphson
method (Choi and Wette, 1969). The solution of equations (3.21) and
(3.22) for B produces the equation

logg -¥(8) = M (3.24)
where

n
1 i=1

=
]
[ =]

i

The Newton-Raphson iteration method then gives

~ ~ log Br_1 - W(kal) - M (3.26)
B = By-1 -

~ _14\
1/Bk_l -y (Bk-l)
where ; denotes the kth estimate starting with the initial value 80
and ¢ (g) represents dy(g)/dg which is referred to as the trigamma
function. Jordan (1960) gives good approximations to the digamma and

trigamma functions as

v (8) ~ log g - {1 + [1- (0.1 - 1/(21))/8%1/68 }/(28) (3.27)

and

y' (8) ~{1+{1+[1-(0.2-1/(78 2))/82]/(38)}/(28)}/6 (3.28)

Once g is determined, may be estimated from

a
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Xi/n (3.29)

The method of moments is based on the assumption that the sample
moments should provide good estimates of the corresponding population
moments. The estimator of the gamma scale parameter by the method of
moments, here designated 3, is given by-

a= 52/; (3.30)

where x 1is the sample mean and 52 is the unadjusted sample variance.

The shape parameter of the gamma distribution is, by the method of
moments, estimated by

b= (x/9)° (3.31)
It should be noted that the unadjusted sample variance is given by

(3.32)

In addition to the maximum likelihood and method of moments
techniques it was also considered worthwhile to examine the application of
the unbiased estimates of the sample variance to the calculation of the
estimators of the gamma distribution. The unbiased estimator of the
sample variance is given by

1 " -2
n-1i=

1

so the estimator of the gamma scale parameter, 3 , is given by
u X
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a =S/x (3.34)
and the shape parameter, Bu, by the equation

b, = (x / 5,)° . (3.39)

3.5.2 Monte Carlo simulation studies

The parameters of the gamma distributions examined in this
thesis are given in Table 3.5. The range of parameter values selected
reflects that which may be observed from air quality data. Sample sizes
of n=50, 100, 200, 365 were selected to represent the range of sample
sizes which may be obtained in a year of recording 24-h average data. It
should be noted that the results obtained may be extrapolated to larger
sample sizes. At each sample size considered the three methods of
estimation were examined. The pairs of  estimators are

(;,g). (;,B) and (Su,Bu) R Table 3.6 presents the values of the relative
root mean square error [xp]/xp at the p= 1-, 50- and 99-percentiles for
each of the estimators at each sample size for all the gamma distributions
considered. The results listed in Table 3.6 were obtained as 'the result
of 5000 Monte Carlo expefiments.

Examining Table 3.6 it should be noted that the estimators
(;u’ Bu) based upon the wunbiased sample variance provide improved
estimates of the percentiles of the distributions in all cases over that
of the method of moments, (3, B). For all sample sizes the method of
maximum likelihood provides the superior estimates of the parameters of
the gamma distribution as reflected in the reduced root mean square errors
at all percentiles and over the range of the shape parameter considered.
In particular the maximum 1likelihood estimators provide significantly
improved estimates of the 1- and 50-percentiles.
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Table 3.5: Parameters and percentiles of the gamma distributions used
in the Monte Carlo experiments.

a B X0.01 X0.99 Coefficient of Coefficient of
variation skewness
1.00 1.00 0.010 4.605 1.000 2.000
1.00 2.00 0.149 6.638 0.707 1.414
1.00 3.00 0.436 8.406 0.577 1.155

1.00 4.00 0.823 10.045 0.500 1.000

The positive bias of all three methods of estimation of the
parameters of gamma distribution may be clearly observed in Table 3.6.
Here the relative root mean square errors decrease as we move successively
from the 1- to the 50- and 99-percentiles. It appears from the small

change in with the changing shape parameter of the gamma

[x0.991/%0.99
distribution that the positive bias does not affect as significantly the

estimation of the upper percentiles of the distribution.

3.5.3 The relative root mean square errors associated with the

estimation of the percentiles of the gamma distribution

The results listed in Table 3.6 represent the minimum relative
root mean square errors that may be expected when fitting the two-
parameter gamma distribution where the parameters of the distribution are
unknown. For the 50- and 99-percentiles an empirical model has been
developed to provide an estimate of rpse [;p]/Xp based wupon the

following general expression
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Table 3,6: Resul ts of om._._a_o.::m the parameters of the gamma distritution by three methods, The numbers are the results of 5000 Monte
Carlo experiments,

o] A - A

Estimtors Xo,01X0,01 Xo.50"X0.50 5,99 X099
Shape Parameter Shape Parameter ) Shape Paramater
1,000 2,000 3,000 4,000 1,000 2,000 3,000 4,000 1,000 2,000 3,000 4,000
. A Sample Size n=50
S:.w:v 2,793 0.930 0,665 0,561 0,411 0,306 0.282 0,274 0,139 0,141 0,148 0,157
(a,b) 3,021 0,993 0,705 0,591 0.430 0,319 0.294 0.285 0,144 0,146 0,154 0,162
«,B) 1,699 0,737 0,591 0,525 0.279 0,245 0,250 0,253 0,095 0,113 0,131 0,144
A A Sample Size n=100
S:.ccv 1,384 0,581 0,425 0,363 0.2771 0,206 0.189 0,184 0.097 0,096 0,100 0,106
(a,b) 1,455 0,603 0,439 0.374 0.283 0,211 0.193 0,188 0,099 0,098 0,102 0,108
@,B) 0,889 0.439 0,373 0,326 0,184 0,160 0.166 0,165 0,064 0,075 0,088 0,095
PN Sample Size n=200
Aac .vcv 0.879 0,385 0,289 0,248 0,203 0.144 0,132 0,128 0,072 0,068 0.072 0,075
(a,b) 0.904 0,393 0.294 0.252 0,205 0,145 0,134 0,130 0.072 0,068 0,072 0,075
(a,8) 0,507 0,298 0.252 0,217 0,125 0,113 0.115 0,112 0,044 0,053 0,062 0,065
~ o~ Sample Size n=365
3: .ucv 0,601 0,273 0,206 0,171 0,151 0,105 0,095 0,089 0,054 0,049 0,051 0,052
(a,b) 0,611 0,276 0,208 0,173 0,152 0,105 0,096 0,090 0,054 0,050 0,052 0,052

A A

(«,B) 0.371 0,211 0,175 0.150 0,096 0.081 0,081 0,078 0,034 0,038 0,043 0,046
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F(n) = X (3.36)

where F(n) is rmse[§ J/x.» n is the sample size and = 1,087 was
determined as the mean value of F(n)/n for the data available in Table
3.6.

Expressions based on equation’ (3.36) were developed with the
values of rmse[;p]/x obtained using the method of maximum likelihood.
The empirical model was developed for sample sizes of n>10, though the
model provides the best approximations for sample sizes of n > 50.
Figure 3.3 presents the fit of the empirical model, equation (3.36), to
the rmse[;(o.ggjl/xo.99 of Table 3.6. It should be noted that the
empirical model does not account for the small change in

rmse [)(0.99]/)(0.99 that occurs with the change in the gamma shape
parameter. However equation (3.36) should provide a useful approximation
for air quality data as this small error may, for most applications, not
be significant.
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Figure 3.3: The fit according to the empirical model (equation 3.36) to
the rpse [‘ 1/ data of Table 3.6 for the maximum
X0.99-%0.99

likelihood estimators of the gamma
distribution parameters.
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3.5.4 Conclusions for the gamma distribution

The method of maximum likelihood provides the best estimators of
the parameters of the gamma distribution. For large sample sizes, the
method of moments may provide a more convenient approach to the estimation
of the parameters of the gamma distribution. This is proposed as the
estimators based on the method of moments can be rapidly computed with
little loss of accuracy over that of the method of maximum likelihood.
This is particularly the case when considering the estimates of the upper
percentiles of the distribution.

It should be noted that where the method of moments is applied
the unbiased estimators A(;u? Bu) should be used in ﬁ?voqr of the
traditional estimators (a, b) . In all cases the (a,» b,) will
provide improved estimates of the percentiles of the distribution.

The positive bias of the maximum likelihood estimators appears
to predominantly affect estimation of the lower percentiles of the
distribution. The application of unbiasing factors does not therefore
appear warranted where the concern is with the upper percentiles of the
distribution. Finally it should be noted that the effect of bias will be
less significant for large sample sizes.

3.6 Fitting the two-parameter Weibull distribution to air quality
data

Like the gamma distribution the Weibull distribution (Weibull,
1951) has found application in air quality studies because of its
similarity 1in form to the Tlognormal distribution in that both
distributions are positively skewed. The Weibull distribution takes the
exponential form when the shape parameter has the value 1. Bencala and
Seinfeld (1976) examined the sum of squares error in fitting the Weibull
distribution to carbon monoxide data from 8 cities. Using this criteria
the Weibull model produced lower values than that obtained by Larsen
(1971) when fitting the two-parameter lognormal distribution for five of
the eight data sets. In Chapter 6 the Weibull distribution is applied to
model carbon monoxide dispersed from roadway line sources. Pollack (1975)
also considered the Weibull distribution as relevant to air quality
studies, though predominantly due to its similarity to the lognormal
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distribution. Pollack (1975) did not present evidence from the
examination of air quality data as to the validity of the application of
the Weibull distribution.

This section reports a study of the estimation of the parameters
of the Weibull distribution by the method of maximum likelihood, the
method of moments, a method attributed to Menon (1963) and an ordinary
least squares method. In particular we examine the errors associated with
estimating the percentiles of the distribution where the parameters must
be estimated from the sample.

3.6.1 Parameter estimation

Defining the Weibull distribution function with two parameters,
o the scale parameter and p the shape parameter as

F(x) =1-exp [-(x/0)"] (3.37)

Letting X132 XgreseaXp be a random sample from the two-parameter HWeibull
distribution with parameters ¢ and p then Thoman et al. (1969)
demonstrated that the maximum likelihood estimators of & and p are
obtained by solving the equations

p
nx: 1n x;
Fo—— +1lny =0 (3.38)
P ng
and
s = (A &ml/P (3.39)

Equation (3.38) can be solved using the Newton-Raphson iterative method to
yield the estimate 5 which on substitution into equation (3.39) yields

the 5 estimator.
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The method of moments estimators, here designated as p, and
dm, are derived from the solution of the equation giving the coefficient
of variation, Vp, as

. [r((pm+z)/pm) - r2((pm+1)/pm)] 1, (3.40)
P ((p,+1)/p,)

where vp = s/x, With y being the sample mean and s2 the variance.
Equation (3.40) may be solved to yield pm using an iterative
technique. We then derive the moment estimator of ¢ from

Y S — S (3.81)
ri(p +1)/p_

It should be noted that tables of p, corresponding to Vp can be
constructed using equation (3.40). Sinha and Kale (1980) provide tables
of vp for p, = 0.1(0.05)4.00 which using interpolation would provide
moment estimates with an accuracy of two decimal places. Such a procedure

might be adopted where access to computing facilities is limited.

Menon (1963) obtained the method of moments estimates for
g and p, here denoted aeand Pes using the distribution of the log-
Weibull variable. These estimators are

[(6/x2) §y21%@ (3.42)

=R4
1
]

and

>

exp [; + 0.5772 (1/6e)] (3.43)

Q
1]

where y; = log Xj» 1=, «eey n and g apq 5 are the usual sample mean

and standard deviation.

Using a transformation of the Weibull distribution function,
equation (3.37), the following equation results
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log x = log ¢ + (1/p) log [-log(1-F(x))] (3.44)
which may readily be written in linear form as
Yy =a t BX , (3.45)

where y = 10g x, a = 10g 0, 8 = 1/p, and x = Tog [-1og(1-F(x))]. Given
estimates of F(xi)’ say np;j, where i is the index of the ith ordered
Weibull random variable, the ordinary least squares analysis can be
applied to estimate o and B. Using these estimates the least squares
eftimators are 9erived for the Weibull parameters (;0, Bo) as
o, = exp (a) and Po™ 1/8. Several methods have been proposed for
estimating F(xi)' Following Engeman and Keefe (1982), np; = i/(n+l), is

evaluated where i is the index of the ith ordered Weibull random variable.

3.6.2 Monte Carlo simulation studies

The parameters of the Weibull distributions examined in this
study are given in Table 3.7. The parameter values were selected to
represent the range that may be observed in the study of air quality
data. The sample sizes n=50, 100, 200 and 365 were chosen to represent
the range of sample sizes which may be obtained when recording 24-h
average data over a full year. For each sample size 5000 Monte Carlo
experiments were undertaken with p = 1, 2, 3 and 4. The results are
presented in Table 3.8.
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Table 3.7: Parameters of the Weibull distributions used in the Monte
Carlo experiments

b c X0.01 X0.99 Coefficient
of variation

1.00 1.00 0.010 4.605 1.0000
1.00 2.00 0.100 2.146 0.5227
1.00 3.00 0.216 1.664 0.3690
1.00 4.00 0.317 1.465 0.2838

The results of Table 3.8 demonstrate in nearly all cases that
the maximum likelihood estimators provide the best approximations to the
upper percentiles of the Weibull distribution. A1l methods of parameter
estimation are biased as indicated by the variation in the relative root
mean square error with the percentile of the distribution.

The ordinary least squares estimators and the estimators derived
by Menon (1963) would be preferred over the method of moments for deriving
estimates of the upper percentiles of the Weibull distribution. The
results of Table 3.8 indicate that [;0.99]/x0.99’ for the method of
moments, remains significantly above all other methods for all sample
sizes with the exception being where o =1, that 1is where the
distribution is exponential. Given that the estimators derived by Menon
(1963) may be rapidly computed, this method might be preferred over the
ordinary least squares method and over the method of maximum likelihood
for sample sizes larger than n = 365.
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TABLE 3.8: Results of estimating the parameters of the Weibull distribution by four methods. The numbers are the result
of 5000 Monte Carlo experiments.

[x0.01%0.01 (xg.503/%0.50 0,990, a0
Shape parameter Shape parameter Shape parameter
Estimator 1.000 2.000 3.000 4,000 1.000 2,000 3.000 4,000 1.000 2.000 3.onn 4,000

Sample Size n = 50

(;, ;) 0.757 0.310 0.194 0.148 0.165 0.083 0.054 0.0416 0.187 0.094 0.063 0.n47
(;m' ;m) 0.918 0.369 0.271 0.245 0.185 0.164 0.158 0.1600 n.210 n.149 0.145 0.147
(;e' ;e) 0.849 0.350 0.224 0.175 0.166 0.083 0.054 0.0417 0.285 0.133 0.087 0.066
(;o' ;o) 0.679 0.330 0.226 0.181 0.164 0.083 0.054 0.0419 0.348 0.153 0.099 n.n75

Sample Size n = 100

(o0, p) 0.464 0.212 0.136 0.103 0.118 0.0585 0.0390 0.0204 0.133 0,066 0,044 n.n33
(;m' ;m) 0.570 0.251 0.189 0.167 0.129 0.1130 0.1106 0.1105 0.151 0,104 0.102 0.10?
(;e' ;e) 0.558 0.252 0.165 0.125 0.119 0.0588 0.0391 N.029% 0.145 0.na3 0,062 0,044
(;O, ;o) 0.482 0.243 0.166 0.128 0.118 0.0587 0.0392 0.0296 0.224 0.103 0,068 0,051

Sample Size n = 200

a A

(o ) 0.315  0.148  0.09  0.072  0.0836 0.0415 0.0280 0.0207 0,094 0,047 0.031 0,07
(ome Py)  0.388  0.175  0.133  0.115  0.0910 0.079 0.0788 0.074  0.105  0.073  0.072  0.072
(Ggr Pg)  0.381  0.179  0.115  0.088  0.0839 0.0416 0.0281 0.0208  0.135  0.066  0.043  0.033
(g0 pg)  0.387  0.175 0.116 0.090  0.083 0.0415 0.0281 0.0208  0.14y  0.071  0.045  0.036

Sample Size n = 365

(o, p) 0.224 0.108 0.070 0.053 0.0609 0.0307 0.0203 0.0154 0.069 0.n35 n.n23 n.m7
(o pm) 0.279 0.127 0.096 0.085 0.0663 0.0584 0,0566 0.0571 0.078 0.054 0.052 n.ns3
(oe, pe) 0.273 0.132 0.087 0.065 0.0611 0.0308 0.0204 0.0154 0.098 0.049 0.032 0.025

(ao, po) 0.257 0.131 0.088 0.067 0.0610 0.0308 0.0204 0.0154 0.105 0.052 n.034 n.n26
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Figure 3.4: The fit accqrding to the empirical model (equation 3.46) to
the prmse [XO 99]/X0 99 data of Table 3.8 for the maximum

likelihood estimators of the Weibull
distribution parameters.

3.6.3 The relative root mean square errors associated with the

estimation of the percentiles of the Weibull distribution

The results of Table 3.8 give the minimum relative root mean
square errors that may be expected when fitting the Weibull distribution
to air quality data where the parameters of the distribution are
unknown. For the 99-percentile an empirical model has been developed to
provide an estimate of rmse [;0.99]/X0.99’ given by F(p,n). This
empirical model is stated as

F(p,n) = — (3.46)
pYn

where p is the Weibull shape parameter, n is the sample size, x = 1.326
is a constant derived as the mean value of « = F(p,n)p/n using the data
available in Table 3.8 for the maximum likelihood estimators. The fit

according to equation (3.46) to the pse data for the

[x0.991/%0.9
maximum likelihood estimators is presented as Figure 3.4. It should be
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noted that a similar empirical model to that of equation (3.46) cannot be
constructed for the estimators derived using the method of Menon (1963).

3.6.4 Conclusions for the Weibull distribution

The maximum Tlikelihood estimators ¢ and 5 provide the best
estimates of upper percentiles of the Weibull distribution. The
estimators derived by Menon (1963), Ge‘and Ee’ should provide the best
alternative estimators to the maximum likelihood estimators especially at
larger sample sizes (n > 365).

3.7 Autocorrelation and parameter estimation

In the preceding sections it has been assumed that the air
quality observations are independently distributed random variables.
However it is known that air quality observations do exhibit significant
positive autocorrelations particularly for pollutants recorded over short
time periods and pollutants exhibiting strong seasonal fluctuations, such
as observations of ozone (Horowitz and Barakat, 1979; Hirtzel and Quon,
1981; Chock, 1984) where the autocorrelation, p, at lag 1 may be as high
as 0.7.

The effect of autocorrelation upon the distribution of air
quality observations does not change the expected value at a particular
percentile but does increase the variance about that value (Chock,
1984). Hence based upon the assumption of no autocorrelation, the
expected value at a particular percentile and the associated 95%
confidence bound may indicate that air quality criteria will be violated
only occasionally. However, the true variance may be consistent with a
more frequent exceedance of the criteria.

In order to investigate the effect of autocorrelation, lognormal
random deviates were generated with known autocorrelation ( p= 0.25, 0.5,
0.75). The parameter values chosen for the lognormal distributions are
listed in Table 3.1. Only the method of maximum likelihood has been
considered in this study. Table 3.9 reports the rmse results based upon
1000 Monte Carlo experiments. Unfortunately a similar number of
experiments (5000) to that of the original study of the lognormal
distribution (the results of which are reported in Table 3.2) were not
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Table 3.9: The rmse errors for the 99-percentile. for autocorrelated
| lognormally distributed data wusing maximum likelihood
parameter estimates.

lognormal parameter Autocorrelation
g p = 0.25 p = 0.50 p = 0.75

Sample size n=50

0.1 0.0298 0.0339 0.0471

0.3 0.0933 0.1085 0.1445
0.5 0.1564 0.1727 0.2455
0.7 0.2111 0.2418 - 0.3340

Sample size n=100

0.1 0.0213 0.0249 0.0330
0.3 0.0637 0.0706 0.1056
0.5 0.1106 0.1261 0.1684
0.7 0.1529 0.1696 0.2409

Sample size n=200

0.1 0.0152 0.0175 0.0237
0.3 0.0437 0.0503 0.0699
0.5 0.0754 0.0877 0.1228
0.7 0.1068 0.1230 0.1646

Sample size n=365

0.1 0.0110 0.0128 0.0173
0.3 0.0338 0.0379 0.0518
0.5 0.0570 0.0663 0.0918

0.7 0.0773 0.0884 0.1275
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possible due to the computational demands of generating autocorrelated
sequences of data. Nevertheless the results of Table 3.9 remain
sufficiently accurate for the purpose of demonstrating the effect of
autocorrelation upon the variance of estimates of the upper percentiles.
The results of Table 3.9 indicate that at p = 0.25 1little difference
between the rmse values of Table 3.9 and those of Table 3.2 can be
observed. Even at p = 0.5 the rmse values have incressed only by about
25%. On the other hand the results where p = 0.75 indicate that for
p > 0.5 underestimation of the variance in the estimates of the upper
percentiles increases rapidly.

It was also found that the use of an empirical model such as
that given by equation (3.14) could accurately describe the rmse values of
Table 3.9 at each value of p. In each case a new value for the constant

« in equation (3.14) was required. These values were- 2.17, 2.45 and
3.41 for autocorrelations of 0.25, 0.5 and 0.75 respectively. Estimates
of the constant « could be obtained at a range of autocorrelations
allowing equation (3.14) to be applied to the full range of
autocorrelation likely to be encountered in the study of air quality data.

For each of the data sets examined in the following chapters the
autocorrelation coefficients were evaluated. Only in Chapter 7 for the 1-
h and 0.5-h average recordings of sulphur dioxide, and in Chapter 6 for
the 1-h average carbon monoxide data were the autocorrelations
significant. Here the autocorrelations fell in the range from 0.25 to
0.75 indicating that the variance associated with model estimates may be
larger than expected. The effect of this autocorrelation will be examined
further in Chapters 6 and 7.

3.8 Conclusions

For all models considered here the method of maximum likelihood
provides estimates of the upper percentiles with the lowest variance even
at reasonably low sample size. However this is achieved at the expense of
increased complexity of the estimation procedures and the need to obtain
estimates using computationally demanding numerical methods. Alternative
methods such as the method of moments may provide useful initial estimates
of the pollutant concentration both for the purposes of air quality
management and as initial guesses for the numerical procedures which
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evaluate maximum likelihood estimates. Where the increased uncertainty
can be tolerated the methods providing direct analytical solutions may be
preferred. Finally, it has been demonstrated that simple analytical
formulae can easily be developed to yield reasonable approximations to the
uncertainty associated with the estimation of the upper percentiles.
These approximate confidence intervals represent the minimum uncertainty
to be accounted for in any decision based upon estimates of the upper
percentiles of the pollutant distribution.



CHAPTER 4
STATISTICAL IDENTIFICATION OF DISTRIBUTIONAL MODELS
FOR AIR QUALITY CONCENTRATIONS

4,1 Introduction

In this chapter wuseful methods for the identification of
statistical models are developed. An evaluation is presented of the
relevance of standard goodness-of-fit tests to air pollution data using
such criteria as power and robustness. Tests are applied to extensive
pollutant data sets from Melbourne, Australia. Distribution type clearly
depends on a number of factors: pollutant, time average, time period,
emission source type (elevated, point, line, area), emission variation,

meteorology and topography. If the effect of these factors on
" distribution type can be clarified then we are in a stronger position to
infer distribution type when preparing impact assessments from new
emission sources. Analysis of the Melbourne data set is a first step
towards illuminating the contribution of these factors to distribution
type.

4,2 Previous work

Many researchers have selected a priori a distribution to
describe air pollution data. In a critical review of statistical
distributions of air quality data, Georgopoulos and Seinfeld (1982) found
for urban air quality data that this distribution is most likely to be the
two-parameter lognormal. The decision to apply the lognormal distribution
a priori can be attributed to the work of Larsen (1969, 1971, 1973, 1974)
who, using graphical techniques, concluded that the upper percentiles of
the distribution of air quality data are lognormally distributed for all
pollutants, at all averaging times and for all urban sites considered.
Clearly the need for a more objective assessment of goodness-of-fit, other
than by a purely graphical approach, is required if the best distribution
describing air quality data is to be determined. Graphical procedures
based upon least squares analysis may however provide a useful measure in
some calculations (Ott et al., 1979).

The earliest comprehensive study to report a comparison of the
fit of several distributions to air quality data was carried out by
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Bencala and Seinfeld (1976). In their study of 1-h average carbon
monoxide data using the sum of squares error as the goodness-of-fit
criteria, they found among the distributions considered, that a three-
parameter  lognormal distribution best described the pollutant
distribution. In addition comparison of the results obtained by Bencala
and Seinfeld (1976) when fitting the two-parameter gamma and lognormal
distributions reveals that the gamma distribution yields a lower sum of
squares error at half the sites studied. Other researchers have variously
reported distributions such as the gamma (Pollack, 1975; Trijonis,
1978; Berger et al., 1982), exponential (Berger et al., 1982; Simpson et
al., 1984) and Weibull distributions (Pollack, 1975) as applicable to the
study of air quality data.

The problem then, given the range of alternatives available, and
as no one distribution is conclusively the 'best', is to-determine which
distributional model 1is applicable to the data under study. Such a
goodness-of -fit criterion should preferably be objective, as is also noted
by Mage and Ott (1984), and should be applicable to a single data set.
This last condition avoids recourse to the accumulation of a sum of
squares error measured for many data sets from which the Tikely
distributional form may be inferred. While such information is clearly
important in the assessment of goodness-of-fit, and should prove useful in
assessing the error associated with such procedures, other statistical
tests are available. Some tests may be termed ‘traditional' tests of
goodness-of-fit of the hypothesized distribution to the observations.
Such statistical tests satisfy the requirements that the measurement of
goodness-of-fit should be objective and should provide a means by which
the results of one analysis for distributional form may be directly
compared with another. These statistical tests also indicate when the
hypothesis of a particular distributional form for air quality data may be
rejected. Thus models which are unsatisfactory may be readily identified
and new models sought.

Finally, traditional goodness-of-fit tests take into account the
variability associated with sampling from a particular distributional
form. Confidence levels may be readily determined. Thus, for example,
the natural fluctuations in sampling from a lognormal distribution can be
accounted for, while variation outside the expected range can be
identified.
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4.3 Model identification - testing goodness-of-fit

When examining air quality data with the view to identifying a
suitable distributional model, two avenues of investigation are
available. In the first case methods can be developed based upon the
observed data, to test the hypothesis, say, that the sampled population of
air quality data is normal, lognormal, exponential, gamma, Weibull or any
other distribution. These are the goodnéss-of-fit methods. There is also
the measure of robustness which refers to how far the distribution of
observations may differ from the hypothesised distribution before
substantial errors arise in the percentile estimates derived theoretically
from a particular distributional form.

In this chapter the methods by which goodness-of-fit may be
evaluated are considered. Robustness is not examined here. However it is
likely that the robustness required will vary with the intended
application and that some measure of goodness-of-fit will be needed to
assess whether the distributional model is sufficiently robust for that
application. |

Using methods of statistical inference, the hypothesis, which is
designated as the null hypothesis (Ho), that air pollution data are
lognormally distributed will be tested against the alternative hypothesis

(Hl), that the data follow some other distributional form. When testing
the null hypothesis the test can be classified as either simple or
composite. The hypothesis is simple when testing for a lognormal model
with the parameters of the distribution known and thus only one
probability function is defined on the sample space. Where the value of
the parameters of the lognormal distribution must be estimated from the
sample, the hypothesis is termed composite.

In this study the parameters of the lognormal, exponential,
Weibull and gamma distributions are estimated from the sample, and thus
the hypotheses tested will be composite. When testing a composite
hypothesis the range of tests available is restricted and the ability of
these tests to distinguish between data drawn from, for example, the
lognormal distribution, from that drawn from some other distributional
form, is reduced. It is advisable to examine the performance of the



77

goodness-of-fit tests using Monte Carlo techniques under a variety of
conditions in order to ascertain whether the test is suitable for the
desired application and to determine which test is likely to be the most
powerful., It should be noted that the power of a statistical test is the
probability of rejecting a false null hypothesis (Conover, 1980). Hence a
statistical test with low power when testing for lognormality would accept
data drawn from, for example, a gamma distribution, with a high
probability.

One further restriction imposed upon the range of goodness-of-
fit tests available is the range of sample sizes to which the tests may be
applied. Particular attention has been given to testing small sample
sizes, typically n < 50 , with several tests for the normal distribution
available for this range of sample sizes. With regard to sample size, it
should also be noted that with an increasing sample size of air pollution
data the probability that a theoretical distribution will fit this data
exactly will decline (Conover, 1980). This problem arises from the
conflict between the limited number of theoretical distributions available
and the infinite number of distributions observable in nature (Conover,
1980). A goodness-of-fit test statistic will still provide a useful
relative measure of fit when comparing alternative distributional
models. Using the test statistic a model may be selected or new models
may be sought. In any case, where new models are considered some measure
of goodness-of-fit will be required to determine whether an improved fit
has resulted.

4.4 Goodness-of-fit tests

Let X12 Xp5 sees X be independent observations of a random
variable with distribution function F(x) which is unknown. The
goodness-of-fit problem is then to test the hypothesis

H @ F(x) =F (x) , (4.1)

where Fo(x) is a particular distribution function which in this case may
be continuous. This study examines the chi-square test, Kolmogorov-
Smirnov test, a test statistic of the Kolmogorov type developed by
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Lilliefors (1967), a test statistic developed by Shapiro and Wilk (1965),
a test statistic developed by Shapiro and Francia (1972) and a test
statistic developed by D'Agostino (1971, 1972).

Given a set of air pollution observations X; (i=1..0n) the
chi-square statistic x2
1973)

may be stated as follows (Kendall and Stuart,

(4.2)

where k is the number of equiprobable cells in which the total number of
observations n, may fall, np, is the expected number of observations in
each cell, and n, the number of observations falling in that cell. When
using X2 as2 a test statistic, Ho is to be rejected when x2 is
large. As X has a chi-squared distribution asymptotically with (k-1)
degrees of freedom we may determine the probability of not exceeding

X2. Where the probability o falls below 0.05, we reject the
hypothesis H0 at the 95% confidence Tlevel. In order to test the
composite hypothesis the number of degrees of freedom should be reduced by
the number of parameters estimated from the sample. Thus, using the chi-

square test, the composite hypothesis may be readily tested.

Unfortunately when applying the chi-square test problems can be
encountered with the selection of the number of equiprobable cells, k.
Goodness-of-fit is tested for only these k classes rather than the n
observations (Gibbons, 1971; Kendall and Stuart, 1973; Conover, 1980).
As an example of the application of the chi-square test to air quality
data Tong and De Pietro (1977) used the chi-square test to examine 24-h
average sulphate particulates and found at the 99% confidence level that
the hypothesis of lognormality could be rejected at only one of the twelve
sites at which data were collected. Other distributional models were not
considered. That lognormality was accepted at most sites does not imply
that better models cannot be found.

There exists a more general test of fit proposed by
Kolmogorov. It is based on the cumulative distribution of the sample, or
sample distribution function, which we define as
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0
Sn(X) =":'l' X(I") <x < x(l"+1) (4.3)
1

The ¥ are the order statistics, that is, the observations arranged so
that

xl < x2 € eoe € xn (4.4)

Thus Sn(x) is the proportion of the observations not exceeding y. If
Fo(x) is the true distribution function, fully specified, from which the
observations are drawn, we have, for each value of 1y, from the Law of
Large Numbers (Kendall and Stuart, 1973)

Tim P { Sn(x) = Fo(x)} =1 (4.5)

N+

The test statistic proposed by Kolmogorov is based on deviations of the
sample distribution function Sn(x) from the completely specified
continuous hypothetical distribution function Fo(x).' The measure of
deviation is the maximum absolute difference between Sn(x) and Fo(x)
defined as

D, = S:PISn(x) - Fo ()| (4.6)

The Kolmogorov statistic is regarded as one of the most
important of the general tests of fit as an alternative to x2 (Kendall
and Stuart, 1973). As the distribution of Dn is known, again we may
determine the probability, «, of not exceeding Dn' At the 95%
confidence level, where the probability o falls below 0.05, we reject
the hypothesis Ho' Kalpasanov and Kurchatova (1976) have applied the
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Kolmogorov statistic to 24-h average lead particulates, phenol, hydrogen
cyanide, nitric oxide, nitrogen dioxide, sulphur dioxide, hydrogen
sulphide, formaldehyde and oxidants and found at a 95% confidence level
that the data were not lognormally distributed. Other distributional
models were not considered in this study.

Unfortunately the standard tables used in conjunction with the
Kolmogorov test are only valid when testing whether a set of observations
were drawn from a completely specified continuous distribution. If one or
more parameters must be estimated from the sample then the tables are no
longer valid. The effect of using these tables when parameters must be
estimated from the sample is to reduce the probability of rejecting the
null hypothesis. Accordingly Lilliefors (1967) developed a statistical
test for normality with the test statistic defined as

D =sup [S (x) - F (x)] (4.7)

*
where F (x) 1is the cumulative distribution function with the parameters
estimated using sample mean and variance. Lilliefors (1967) presents a
tabulation of the critical values of D.

The test statistic developed by Shapiro and Wilk (1965) is
confined to the normal and by transformation the Tlognormal
distributions. It is calculated as

h 2" -\ 2
W = -Ei]_ ain (X(n_i,‘_l) = X(1)) } 1/};1 (X.i' X) (4°8)

where h ==V2n or Vé(n-l) according to whether n be even or odd. Shapiro
and Wilk (1965) give a table of coefficients a; . for n = 2(1)50,
i=1(1)h. This test is thus restricted to a useful range up to a sample
size of n=50. As the test of Shapiro and Wilk (1965) does not extend
beyond n=50 Shapiro and Francia (1972) have suggested a very similar
criterion, '  with which to replace W if n > 50. This test statistic

is given as
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h 2 M -2
W = fi bin (X(n_]'_',l) T X4 )} {il(xi' X) (4.9)

where the coefficients bin are derived from the expected normal order
statistics. Shapiro and Franica (1972) give the 1lower and upper
significance levels, 1, 5, 10, 15, 20% for N' for n = 35, 50, 51(2)99.
In this study we shall not be examining .the power of these tests as they
are applicable to only small sample sizes. However, it is worth noting
that comparative studies of the power of various tests for normality
(Shapiro, Wilk and Chen, 1968; Pearson, D'Agostino and Bowman, 1977) have
indicated that the W test is the most powerful test against a wide range
of alternative tests including those considered in this paper. Thus at
small sample sizes this test would be préferred if there is no practical
problem with incorporating tables of ain coefficients in a computer
program.

The test statistic developed by D'Agostino (1971), which is
denoted by Y, is given by

Y2 b-0,282095
Y = n (222 (4.10)
0.0299860
where
h 3/, n ) zlﬁa
D=2 Cinlx(noi+1) = xi)/In 72 (x5 - x)7) (4.11)
i=1 i=1
and the coefficients Cin adopt the simple linear form
=1 - 1
Cin /2 (n+l) - i (4.12)

D'Agostino (1971) has tabulated the upper and lower 0.5, 1.0, 2.5, 5.0 and
10.0 percentiles of the distribution of the test statistic Y for
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n=100(50)1000 and, D'Agostino (1972) has prepared similar tables for the
small sample sizes n=2(2)50(10)100 at the same percentage points. This
test is applied as a two-sided test and thus the upper and lower
percentage points are required.

In order to assess the ability of the chi-square test, the
Lilliefors test and the D'Agostino test to distinguish samples drawn from
non-normal populations, a simulation study was performed. A wide range of
non-normal populations have been examined. Table 4.1 lists the systems of
population distributions and their equations. The range of distributions
and populations sampled is comparable in range to that used by Shapiro,
Wilk and Chen (1968) and Pearson, D'Agostino and Bowman (1977). In this
thesis the power of these test statistics are examined at a sample size of
n=365. This sample size was chosen to reflect a sample of 24-h averaged
data recorded over one year. The estimates of power, based upon 100 Monte
Carlo replications for the populations sampled, are listed in Table 4.2.

The results of Table 4.2 indicate that the test developed by
Lilliefors (1967) is more powerful in all cases than the chi-square
test. Similarly the D'Agostino statistic provides a more powerful test
than that provided by the chi-square test. However comparison with the
Lilliefors statistic does not clearly distinguish it as more powerful.
The D'Agostino statistic does not appear to reject location contaminated
normal populations. In practice such distributions might occur where a
change in the mean level of emissions has occurred. On the basis of the
range of non-normal populations considered, the Lilliefors test appears to
provide the most powerful test from amongst those considered in this study
for samples of size greater than n=100. The Lilliefors test also has the
advantage that it may be readily applied to all sample sizes, as estimates
of the significance levels are available for all n > 3, which covers the
full range of sample sizes likely to be observed in air quality studies.

4.5 Selecting a distributional model from among exponential, gamma,

lognormal and Weibull alternatives

In the preceding section various test statistics for evaluating

the goodness-of-fit of the normal, and by transformation of the data,
lognormal distributions to air quality observations were examined. It was
found that a modification of the Kolmogorov test developed by Lilliefors

(1967) provides a reasonably powerful goodness-of-fit test.
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Table 4.1: Equations of the distributions sampled for the study of the power of the
tests of goodness-of-fit

Distribution Equation Range

4 b1
rrentx e (0 <x<m)

Gamma or xm (p is fx)
an even integer)

o -1 - 2,0 2
Lognormal f(x) = ﬁxoﬁmav\ww 1 e (Inx)%/20 (0<x<=)
. 1 LUK
Weibull f(x) = .nx_n 1 e X (0<x<=; «>0)
) - N
Logistic f(x) = mmmx\AH+mmxv (mogx <)
ox YoxBS Ty ¥
Scale contaminated?® f(x) = {(1-p)e™ 2%+ (p/a)e 72X *y(2q) 772 ((—ogy <o)
2 2
Location contaminated® f(yx) = ﬁﬁwnuvmp@x+ pe @@Ax-:wﬁmav Y2 (o< y <)
Exponential flx) =+ (1/0) exp (~x/b) (0<xs)
Beta £ = (Bla,b) T a0 (0cx<1)
. -1 1 A4 -
Student's t ) = 1 % (o 1)Hr )y o) Z 1) T (eyem)
a The scale contaminated distribution is composed of two superimposed normal
curves having the same means but differing standard deviations.
b The location contaminated distribution is composed of two superimposed normal

curves having the same standard deviations but different means.
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Table 4.2: Estimates of power based on 100 replications each of size
n=365. The number of samples rejected is given.
Population Sampied Goodness-of-fit Test
Chi-square Lilliefors D'Agostino

Weibull «k=0.5 100 100 100
k=2.0 65 97 24
k=3.0 2 10 24
Beta a=1, b=1 100 100 100
a=2, b=2 64 - 80 100
a=3, b=2 60 90 78
a=2, b=1 100 100 7
Chi-square v=10 78 99 83
v=4 100 100 100
v=l 100 100 100
Student's t v=6 17 68 95
v=4 44 91 B 100
v=2 100 100 100
v=l 100 100 100
Logistic Bg=1 12 44 75
Exponential b=1 100 100 100
Gamma p=1.5 100 100 100
p=0.8 100 100 100
SC;p=0.05, A=3 23 67 97
SC;p=0.10, A=3 47 90 100
SC;p=0.20, r=3 89 100 100
SC;p=0.05, A=5 91 99 100
SC;p=0.10, A=5 100 100 100
SC;p=0.20, A=5 100 100 100
SC;p=0.05, r=7 100 100 100
SC;p=0.10, aA=7 100 100 100
SC;p=0.20, aA=7 100 100 100
LC;p=0.05 yu=3 51 87 96
LC;p=0.10, u=3 85 100 99
LC;p=0.20, p=3 94 100 72
LC;p=0.30, p=3 96 100 7
LC;p=0.05, u=5 100 100 100
LC;p=0.20, u=5 100 100 100
LC;p=0.05, yu=7 100 100 100
LC;p=0.10, yu=7 100 100 100
Lognormal  p=3,0=1.0 100 100 100
u=3,0=0.5 100 100 100
u=3,0=0.3 82 100 89
u=3,0=0.2 37 85 48
p=3,0=0.1 10 26 7

LC = location contaminated; SC=scale contaminated
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In this section the problem of identifying an appropriate
distributional form for a random variable given a random sample of
observations of it is considered. This study is motivated by the need to
identify the appropriate distributional form with which to model air
quality data. For this application it is necessary to assume that air
pollutant concentrations are independent, identically distributed random
variables. That this is a reasonable assumption is confirmed by
Georgopoulos and Seinfeld (1982) who in their review of the statistical
distributions of air pollutant concentrations note that the application of
theoretical results derived for independent, identically distributed
random variables produces satisfactory agreement with observations.

From the study of air quality data collected over a fixed
averaging time, common distributional forms considered appropriate are the
two-parameter lognormal, gamma and Weibull distributions (Bencala and
Seinfeld, 1976). The exponential distribution has also received interest
as a model of pollutant concentration observations about isolated point
sources (Simpson et al., 1984). In general then it 1is reasonable to
assume that the distributions describing air quality data are unimodal and
skewed to the right.

An important goal in the evaluation of air quality is estimation
of the upper percentiles of pollutant distributions. These percentiles
are of interest as many air quality standards are written in terms of the
frequency with which a particular level may be exceeded. For example,
many standards must not be exceeded more than once per year and thus
accurate estimation of the second highest pollutant concentration can be
of «critical importance when comparing air quality observations with
standards. '

Additional to the interest in the upper percentiles is the need
to accurately estimate the entire range of the distributions of pollutant
concentrations. Such information may be applicable for the analysis of
damages sustained. The full range of the distribution is of interest as
significant damage, for example to materials, might also be produced as a
result of low concentrations occurring with high frequency. The Tlower
concentrations may also be of importance where a synergistic combination
of pollutants occurs.
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What is required then, is a procedure by which a distributional
model may be selected which best represents the entire distribution of
pollutant concentrations from amongst a reasonable range of
alternatives. The results obtained here of course are general and extend
to situations other than where the random variable 1is pollutant
concentration over a given averaging time.

Bain and Engelhardt (1980) examined a procedure, based on the
evaluation of the logarithm of the likelihood function, for selecting
between the Weibull and gamma distributions, one of which being the true
distribution. The procedure involves selection of the distributional form
which yields the largest value of the gamma and Weibull 1log likelihood
functions where the parameters of the likelihood functions are estimated
using the method of maximum likelihood. Simulation studies indicated that
the maximized log likelihood function provides an excellent basis for
selecting between the Weibull and gamma distributions.

More recently Kappenman (1982) extended the work of Bain and
Engelhardt (1980) to include the lognormal distribution. In this study
the results of selecting the model which produced the largest logarithm of
the maximimum 1ikelihood function showed that even where three

distributions are considered a high probability existed of selecting the
correct distribution.

However when considering air quality data it is unlikely that
only three models of the distribution will adequately describe all sets of
observations. In particular, and as noted earlier, the exponential model
should be included in such an analysis. Including such a model is of
practical importance as it 1is desirable to model air quality data
especially, with the smallest number of parameters. Conversely it is
necessary to determine when a 2-parameter model may be more appropriate
than the 1l-parameter exponential model. Such a result is of importance in
the study of isolated point sources where resultant ambient concentrations
can be exponential.

In addition to achieving model parsimony where appropriate, it
may also be desirable to reject the hypothesis of the observations
belonging to one of the distributional models selected where in fact none
of the models are adequate. Bain and Engelhardt (1980) do not choose a
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significance level with which to apply their tests as the assumption is
made that one of the distributions is the correct one. Effectively then
the probability of making a type I error as well as rejecting the
remaining distributional models is zero.

In order to provide a test of the appropriateness of the
distributional models, test statistics of the Kolmogorov type were
employed, where account is taken for the estimation of the parameters from
the sample using the method of maximuﬁ likelihood (Lilliefors, 1967).
This test was chosen because of its high power and ease of application but
clearly other tests of goodness-of-fit where a confidence level may be
stated could be substituted. The commonly used chi-squared test for
example, does have the disadvantages that the number and character of
class intervals used is arbitrary and for the smaller samples the number
of cells in the chi-square test must also be small.

As a comparison with the procedure which selects the
distribution with the largest value of the likelihood function, the ratio
of the Kolmogorov test statistic to a given confidence level is
calculated. Using such a ratio, the distributional model with the lowest
value of this ratio is selected. The 95% confidence level was chosen to
provide a reasonably low probability of making a type I error while
retaining the ability to reject an incorrect hypothesis and thus allowing
new models to be developed where necessary. Depending upon the objectives
of the model identification, other confidence levels could also be
useful. A range of confidence levels could be investigated by examining
the errors associated with the application of models accepted at various
confidence levels, however this problem is not examined here.

To assess the performance of these two selection procedures a
simulation study was performed. For each exercise the choice was among
Weibull, gamma, exponential and lognormal forms with the true distribution
being one of these. To provide a direct comparison with the likelihood
ratio selection criterion, the distributional model with the minimum value
of the Kolmogorov ratio is selected without rejecting distributional
models which are not accepted at the 95% confidence level.
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4.5.1 The selection criteria

The probability density functions for the two parameter
lognormal, gamma, Weibull and exponential distributions are, respectively,
of the form

£1(x) = (1W2nc) exp {-[In (x/§]%/2c?) | (4.13)
f,(x) = [1/6°1(c)] x* ™! exp (x/b) (4.14)
f300) = (c/b) (/D)™  exp [- (x/b)°] (4.15)
f,(x) = (1/b) exp (- x/b) (4.16)

where 1in all cases c¢ represents the shape parameter and b the scale
parameter. Now if X1 X3 o5 Xp, represents a random sample of n
observations of say, air quality data, then the logarithms of the maximum
likelihood functions for the Tlognormal, gamma, Weibull and exponential
distributions are respectively

Ly =nln(——) - 2 ln -1, (Iny - n b)? (4.17)
o2 i=1 2c¢ i=1
n n
InL,=-ncInb-ninr(c) + (c-1) ¢ In (x.) - £ x./b (4.18)
2 . _ 1 :_1 1
i=1 i=1 :
n n
Inly=n(Inc-1nb)+(c-1) £ In (x;) - £ xS (4.19)
i=1 i=1
ln
InLy=-nlnb-= 5 x, (4.20)
b i=1

Here T is the gamma function. The parameters b and c¢ for each
likelihood function were calculated using the method of maximum likelihood
(see Chapter 3).
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The distributions of test statistics were obtained by Monte
Carlo simulation for all distributions in this thesis excepting the
exponential distribution for which tables of the exact distribution are
available (Durbin, 1975). The test statistics are of the Kolmogorov type
and may be evaluated as

Th= S;P | F(x) - S(x) | . (4.21)

where S(x) is the empirical distribution function and F(x) 1is the
distribution function for the lognormal, gamma and Weibull models. Using
10,000 Monte Carlo experiments and estimating the parameters of F(x)
using the method of maximum likelihood the 95% confidence levels were
obtained at n = 4(1)30. Using these data, approximations to the 95%
confidence levels at n=50, 200 and 365 were derived (for example
Lilliefors, 1967). For the gamma distribution, however, a single table of
the test statistic is not obtainable. The distribution of this test
statistic changes with the value of the shape parameter since it is not
possible to transform the gamma distribution to a form independent of the
value of the shape parameter (Johnson and Kotz, 1970). Fortunately the
critical value undergoes only a small change over the range of values of
the shape parameter (¢ = 1-8) of interest in the study of air quality.
Larger variations do occur where the shape parameter is less than unity.
The procedure adopted then was to use the maximum value of the test
statistic over this range thus slightly increasing the risk of a type II
error. For the gamma distribution this allows comparison of the ratio of
the Kolmogorov statistic to a confidence level with that obtained for the
other distributional models.

In order to select the distributional model from among the
Weibull, gamma, exponential and lognormal models the distribution with the
minimum value of the ratio of the test statistic Tn to the respective
95% confidence level 095 or in the case of the gamma distribution its
approximate 95% confidence level, is selected. The procedure based on the
log likelihood function selects the distributional model yielding the

maximum value of the log likelihood function.
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4.,5,2 Simulation procedure and results

To assess the performances of these procedures estimates of the
probabilities of the correct selection have been obtained by simulation
over a range of possible cases which may arise in the study of air
quality. The probability of correct selection can be shown to be
independent of the value of the scale parameter b, without regard for the
underlying distribution (Kappenman, 1982), however it does vary with the
value of the shape parameter. Accordingly 1000 simulations of sample size
n = 10 and 25, 500 simulations with a sample size n = 50 and 100, 250
simulations with sample size n = 200 and 365, were undertaken

(i) from lognormal distributions with shape parameter
¢ = 0.5, 1.0, 2.0, 3.0, 4.0,

(i1) from gamma distributions with shape parameter
¢ = 1.0, 2.0, 3.0, 4.0, -

(iii) from Weibull distributions with shape parameter
¢ = 1.0, 2.0, 3.0, 4.0 and,

(iv) from an exponential distribution with scale
parameter b = 1.

For each of the above sample size-shape parameter combinations,
the probabilities of selecting the exponential, Weibull, gamma and
lognormal models using both criteria were evaluated. As a first step, and
in order to verify the operation of the simulation program, the results of
Képpenman (1982) were examined for the case where the three models
Weibull, gamma and lognormal were selected on the basis of the maximum
value of the log likelihood function. Agreement was found except in the
case of the gamma distribution. In contrast to Kappenman (1982), very low
values for the probability of correctly selecting the gamma model did not
result. A possible explanation for obtaining unusually low probabilities
is that the estimate of the scale parameter may not have been included in
the evaluation of the log likelihood function. Where the estimate of the
scale parameter is included in the evaluation of the gamma log likelihood
function the probability of correct selection of the gamma model rises to
similar levels obtained for the Weibull and lognormal models.

Results of the Monte Carlo experimentation are presented for the
case where the exponential distribution is the underlying distribution in
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Table 4.3; for the gamma distribution with ¢ = 2.0 in Table 4.4; for the
Weibull distribution with ¢ = 2.0 in Table 4.5; and for the lognormal
distribution with ¢ = 0.5, 1.0 in Tables 4.6 and 4.7. Figure 4.1 presents
the probability of selecting a particular model where the underlying
distribution is exponential when applying the criterion based on the
minimum value of the ratio of the Kolmogorov type test statistic to the
respective confidence interval. The results of the 1log 1likelihood
procedure are not displayed, as from Table 4.3 the probability of
selecting the exponential distribution uéing this criterion is zero over
all the sample sizes considered. Figure 4.2 presents for the gamma
distribution the probability of selecting the correct distribution using
both the log Tikelihood and Kolmogorov selection criteria. Figures 4.3
and 4.4 present similar plots for the Weibull and lognormal distributions.

Examining Table 4.3 it should be noted that for all sample sizes
that the 1log 1likelihood criterion fails to select the exponential
distribution as the appropriate model. This is not the case however for
the Kolmogorov based selection criterion. Figure 4.1 illustrates the
behaviour of this selection criterion. This test selects the exponential
model with high probability over the majority of the range of sample
sizes. It should also be noted that this procedure selects the lognormal
model, an important alternative model applicable to point source air
pollution observations (Simpson et al., 1984), with very low probability
for sample sizes above n = 50, Selection of the Weibull and gamma
alternatives does not appear to decline with increasing sample size
reflecting the fact that the exponential distribution is a special case of
both the Weibull and gamma distributions.
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Percentage of distributions selected where the underlying
distribution is exponential. The first column gives, for
each model, the percentage accepted at the 95% confidence
level using the Kolmogorov based test statistics. The
second and third columns represent the frequency with which
each model was selected as the best distributional model
from amongst the listed alternatives.

* Ma ximum Minimum
Distribution Accepted log- likelihood T./Dgs
Sample size n = 10
lognormal 94.1 30.4 24,0
exponential 96.4 0.0 52.6
gamma 95.9 55.5 7.7
Weibull 97.0 14.1 15.7
Sample size n = 25
lognormal 78.4 16.5 12.9
exponential 95.6 0.0 58.9
gamma 92.7 64.1 11.1
Weibull 94.7 19.4 17.1
Sample size n = 50
lognormal 54.8 8.4 8.2
exponential 95.6 0.0 63.6
gamma 91.4 66.8 8.4
Weibull 94.0 24.8 19.8
Sample size n = 100
lognormal 25.2 3.6 4.0
exponential 94.4 0.0 66.8
gamma 90.6 66.6 11.4
Weibull 93.0 29.8 17.8
Sample size n = 200
lognormal 2.8 0.8 0.4
exponential 93.6 0.0 70.0
gamma 90.4 71.2 14.4
Weibull 92.4 28.0 15.2
Sample size n = 365
lognormal 0.4 0.0 0.0
exponential 96.8 0.0 65.6
gamma 94.0 48.0 16.0
Weibull 92.9 52.0 18.4
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Percentage of distributions selected where the underlying
distribution is gamma with ¢ = 2.0, The first column
gives, for each model, the percentage accepted at the 95%
confidence level using the Kolmogorov based test
statistics. The second and third columns represent the
frequency with which each model was selected as the best
distributional model from amongst the listed alternatives.

) Maximum Minimum
Distribution Accepted log likelihood Tn/Dg5
Sample size n = 10
lognormal 94.6 35.4 35.7
exponential 83.1 0.0 22.8
gamma 94.6 61.0 15.7
Weibull 96.4 3.6 25.8
Sample size n = 25
lognormal 86.3 25.0 28.6
exponential 56.7 0.0 6.2
gamma 95.0 74.2 32.3
Weibull 92.9 0.8 32.9
Sample size n = 50
lognormal 76.8 18.8 22.8
exponential 15.0 0.0 1.4
gamma 94.4 91.2 43.0
Weibull 89.2 0.0 32.8
Sample size n = 100
lognormal 54.4 7.6 16.0
exponential 0.6 0.0 0.0
gamma 94.8 92.4 52.0
Weibull 87.2 0.0 32.0
Sample size n = 200
lognormal 26.0 2.0 6.4
exponential 0.0 0.0 0.0
gamma 93.2 98.0 68.4
Weibull 80.0 0.0 25.2
Sample size n = 365
ltognormal 5.2 0.0 1.2
exponential 0.0 0.0 0.0
gamma 94.4 100.0 81.6
Weibull 70.8 0.0 17.2
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Table 4.5: Percentage of distributions selected where the underlying
distribution is Weibull with ¢ = 2.0, The first column
gives, for each model, the percentage accepted at the 95%
confidence level using the Kolmogorov based test
statistics. The second and third columns represent the
frequency with which each model was selected as the best
distributional model from amongst the listed alternatives.
% ~ Maximum Minimum
Distribution Accepted log likelihood Tn/Dg5
Sample size n = 10
lognormal 92.7 22.5 33.8
exponential 58.5 0.0 8.4
gamma 94.3 32.4 12.7
Weibull 96.2 45,1 45.1
Sample size n = 25
lognormal 79.4 9.8 19.5
exponential 9.7 0.0 1.2
gamma 91.8 32.8 22.6
Weibull 94.8 57.4 56.7
Sample size n = 50
lognormal 56.8 3.6 8.2
exponential 0.2 0.0 0.2
gamma 85.0 30.2 25.4
Weibull 95.4 66.2 66.2
Sample size n = 100
lognormal 27.0 0.2 2.0
exponential 0.0 0.0 0.0
gamma 74.8 22.2 25.8
Weibull 93.8 77.6 72.2
Sample size n = 200
lognormal 3.6 0.0 0.0
exponential 0.0 0.0 0.0
gamma 49.2 8.8 13.6
Weibull 94.0 91.2 86.4
Sample size n = 365
lognormal 0.0 0.0 0.0
exponential 0.0 0.0 0.0
gamma 40.0 7.6 10.4
Weibull 93.6 92.4 89.6




95

Table 4.6: Percentage of the distributions selected where the
underlying distribution is lognormal with ¢ = 0.5, The
first column gives, for each model, the percentage accepted
at the 95% confidence level using the Kolmogorov based test
statistics. The second and third columns represent the
frequency with which each model was selected as the best
distributional model from amongst the listed alternatives.

% Maximum Minimum

Distribution Accepted log likelihood Tn/Dg5

Sample size n = 10

lognormal 96.4 58.8 68.1

exponential 31.6 0.0 14.0

gamma 93.7 41.2 10.4

Weibull 93.4 0.0 20.1

Sample size n = 25

lognormal 95.5 65.4 68.7

exponential 0.1 0.0 0.0

gamma 89.0 34.6 16.9

Weibull 80.1 0.0 14.4

Sample size n = 50

lognormal 94.4 73.2 72.6

exponential 0.0 0.0 0.0

gamma 81.8 26.8 20.0

Weibull 58.4 0.0 7.4

Sample size n = 100

lognormal 94.8 82.0 79.6

exponential 0.0 0.0 0.0

gamma 71.0 18.0 18.4

Weibull 31.6 0.0 2.0

Sample size n = 200

lognormal 94.2 92.8 85.2

exponential 0.0 0.0 0.0

gamma 48.8 7.2 14.4

Weibull 4.8 0.0 0.4

Sample size n = 365

lognormal 95.6 96.8 90.0

exponential 0.0 0.0 0.0

gamma 33.6 3.2 10.0

Weibull 0.0 0.0 0.0
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Percentage of distributions selected where the underlying
distribution is lognormal with ¢ = 1.0. The first column
gives, for each model, the percentage accepted at the 95%
confidence level using the Kolmogorov based test
statistics. The second and third columns represent the
frequency with which each model was selected as the best
distributional model from amongst the listed alternatives.

% Maximum Minimum
Distribution Accepted log likelihood T./Dgs
Sample size n = 10
lognormal 95.1 66.2 47.8
exponential 92.3 0.0 36.7
gamma 86.8 33.8 6.2
Weibull 91.9 0.0 9.3
Sample size n = 25
lognormal 96.3 77.1 62.4
exponential 85.7 0.0 26.2
gamma 72.4 22.9 5.7
Weibull 79.2 0.0 5.7
Sample size n = 50
lognormal 95.8 86.8 74.4
exponential 76.4 0.0 17.0
gamma 53.6 13,2 5.2
Weibull 61.4 0.0 3.4
Sample size n = 100
lognormal 94.2 95.6 85.8
exponential 55.4 0.0 10.2
gamma 24.8 4.4 2.8
Weibull 31.6 0.0 1.2
Sample size n = 200
lognormal 94.4 98.8 94.8
exponential 15.6 0.0 2.8
gamma 3.6 1.2 2.0
Weibull 7.6 0.0 0.4
Sample size n = 365
lognormal 94.0 100.0 98.8
exponential 0.0 0.0 0.8
gamma 0.0 0.0 0.0
Weibull 0.0 0.0 0.4
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An explanation for the exponential distribution not being
selected with an equal probability of approximately 0.33 with the gamma
and Weibull models is because the maximum likelihood estimators for the
parameters of both the gamma and Weibull distributions are postively
biased. The implication being that the test statistic based on 1log
likelihood is particularly sensitive to the method of estimation of the
unknown parameters. Bain and Engelhardt (1980) noted that the test
statistic for selecting between the Weibull and gamma models based on the
ratio of the respective log likelihood functions was sensitive to the
method of estimation of the unknown parameters. They recommended that
simpler estimates should not be substituted for the maximum 1likelihood
estimates. That the maximum likelihood estimators of the parameters of
the gamma distribution are always positively biased has been shown by
Berman (1981). For the Weibull distribution the positive bias has been
observed over the range of sample sizes and parametéf values under
consideration (Thoman et al., 1969). |

In all the Monte Carlo experiments with the exponential
distribution the 1log likelihood selection criteria selected either the
Weibull or gamma distribution. Table 4.8 presents the results of
selecting between the gamma and exponential models and similarly for the
Weibull and exponential models. Selection of the gamma model over the
exponential model wusing the 1log 1likelihood criteria occurs for all
simulations and sample sizes. For the Weibull versus exponential case the
exponential distribution is selected when using only the log likelihood
functions, with low probability. In both cases selecting the exponential
distribution as the minimum ratio of the Kolmogorov test statistic to its
95% confidence interval occurs with a probability of ~ 0.7 over the
range of sample sizes considered. Clearly this is an improvement over the
log likelihood procedure. The problem in the case of the log likelihood
procedure may be rectified to some extent through the use of unbiased
estimators of the parameters. However, in this case the probability of
selecting the exponential distribution will be equal to that of selecting
any two-parameter model in which the exponential distribution is a special
case. Thus where the gamma, Weibull and exponential models are considered
the models will each be selected with a probability of 0.33. By
comparison the Kolmogorov statistic yields a probability of correctly
selecting the exponential distribution from amongst four possible
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distributions, including the gamma and Weibull models, above 0.5 for all
the sample sizes considered here.

4,5.3 Model identification procedure

Clearly from the discussion of the simulation results no one
method is likely to provide the ‘'best' selection criteria. The Kolmogorov
based criteria yields an improved probability of correct selection when
the true model is the exponential distribution. However where the choice
is amongst the two-parameter lognormal, Weibull and gamma models the
maximum value of the log likelihood functions will select the correct
model with about equal to higher probability. Figure 4.2 illustrates that
this difference in correct selection is most significant when the correct
model is the gamma distribution.

Table 4.8: Probability of correctly selecting the exponential
distribution according to log likelihood ratio and Tn/D95
tests, at various sample sizes.

Sample Size Exponential Gamma
T,/Dgs, Likelihood Th/Dgs Likelihood
10 72.7 0 27.3 100
25 74.3 0 25.7 100
50 72.0 0 28.0 100
100 70.4 0 28.6 100
200 74.4 0 25.6 100
365 70.0 0 30.0 100
Sample Size Exponential Weibull
T /Dgc Likelihood  T,/Dgs Likelihood
10 69.1 13.9 30.9 86.1
25 69.2 3.4 30.8 96.6
50 65.6 0.8 34.4 99.2
100 69.2 0 30.8 100
200 73.2 0 26.8 100
365 66.0 0 34.0 100
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When selecting a model appropriate for air quality data it will
be necessary to have the facility to reject all models. This should allow
new models to be developed when necessary. However where the maximized
log likelihood is applied alone as the selection criteria, one model will
always be selected.

It is proposed then, for selecting between fhe exponential,
Weibull, gamma and lognormal models, that the Kolmogorov and 1log
likelihood criteria be combined to yield an optimal selection criteria.
In this case only the models accepted at a suitable confidence level, for
example the 95% confidence level, are considered. At this stage all
models may be identified as inapplicable. If amongst the models accepted
the exponential model yields the minimum value of the Kolmogorov ratio
then this model is accepted. If this is not the case then the 1log
likelihood function is evaluated for each of the remaining models and the
model with the maximum value selected. This procedure should provide an
excellent method for selection among the exponential, Weibull, gamma and
lognormal models while retaining the ability to reject all models.

4.6 Identification of a distributional model for air quality data
recorded in Melbourne, Australia

Using the procedure for the investigation of goodness-of-fit of
the exponential, gamma, lognormal and Weibull distributions to air quality
data as discussed in the preceding section, the hypothesis was examined
that all 24-h averaged air quality data are best described by a two-
parameter lognormal distribution. The data examined are suspended
particulates (g-scattering), nitric oxide, nitrogen dioxide, nitrogen
oxides, ozone, sulphur dioxide and carbon monoxide recorded in Melbourne,
Australia at 19 sites. Table 4.9 lists the monitoring sites with a brief
description of the surrounding area and the period of operation. From
Table 4.9 it may be readily ascertained that the monitoring sites are
representative of the range of land use conditions to be found in and
around a major urban area. The data sets span the entire 'period of
operation of the monitoring network.
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Table 4.9: A brief description of the monitoring sites in Melbourne,
Australia
Monitoring station Monitoring environment Data available

during years

Museum Central business district 1975-1984
Alphington Residential/light industrial 1978-1984
Maribyrnong Industrial ' 1975
Monash Light industrial 1975
Traralgon West Residential/industrial 1975
Materials Research Industrial 1976
Laboratory

Watsonia Residential 1976
Geelong Industrial 1976-1978
Box Hill Residential 1977
Flynn Residential 1976-1977
Rosedale Residential/industrial . 1978
Morwell East Residential/industrial 1978-1984
Parliament Place Central business district 1975-1976 1978-1980
Mt Cottrell Rural 1981-1984
Camberwell Residential 1981-1984
Footscray Industrial 1981-1984
Westmeadows Semi-rural 1979-1984
Traralgon Residential 1981-1984
Moe Residential 1981-1984

The measurement of the pollutants is achieved using a variety of
techniques (Environment Protection Authority of Victoria, 1983). For
ozone and the nitrogen oxides chemiluminescence is used. Carbon monoxide
concentrations are determined using infra red absorption while sulphur
dioxide concentrations are measured using flame photometry with a hydrogen
flame. A nephelometer measures the amount of light scattered by suspended
particulates.

For each year of data, 24-h average concentrations were
constructed from hourly averaged data. Only data sets with more than 100
24-h averages were considered in the analysis. Using the procedure
discussed above for each data set the Tn/D95 statistic and log likelihood
function were evaluated. The exponential distribution was selected when
the Tn/D95 statistic was at a minimum, otherwise the distributional
model with the largest value of the log likelihood function was chosen.
The results of this analysis are presented in Figure 4.5. For each
pollutant the frequencies with which each distributional model was
selected from amongst the exponential, gamma, lognormal and Weibull modé]s
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are given. The results clearly indicate that the two-parameter lognormal
model, on the basis of the goodness-of-fit tests considered here, is not
the best model for all pollutants. In fact the lognormal distribution was
selected as the best distributional model for only 40% of all the data
sets. However, for suspended particulates, measured as g-scattering,

the Tlognormal distribution does appear to provide the best model for the
observations with all but one data set selected as lognormal.

For the sulphur dioxide data sets the lognormal distribution was
found to be representative of the majority of data sets. However a gamma
model, and to a lesser extent the Weibull model, should be given
consideration in any analysis of sulphur dioxide concentrations generated
by area sources. It is noted that Berger et al.(1982) found that a two-
parameter gamma model provided a better description than the usual two-
parameter lognormal for the sulphur dioxide data sets examined in the Gent
region of Belgium, although they also indicated that a two-parameter
exponential form may be appropriate for the extreme concentrations.

For the carbon monoxide data sets studied it was observed that a
gamma distribution was the model selected most often. The major
alternative to the gamma model was the Weibull model. Clearly the gamma
and Weibull models should be considered in any study of the distribution
of carbon monoxide observations.

For ozone the distributional model selected for nearly all data
sets was gamma. The 1ognorma1 and Weibull models were found to provide
the best models for very few data sets. Similarly for nitrogen dioxide,
the gamma model has found greatest acceptance. Trijonis (1978) also
observed that the gamma model provided a better representation of nitrogen
dioxide data than the lognormal.
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This situation is reversed for nitric oxide and for oxides of
nitrogen. Here the lognormal distribution is preferred but the gamma
distribution remains an important model. That nitric oxide data should
prefer a lognormal distribution while nitrogen dioxide is better described
by a gamma distribution is related to the frequency of occurrence of the
higher concentrations. Table 4.10 lists the yearly mean and maxima for
nitrogen dioxide and nitric oxide recorded at two sites over several
years. These data sets are considered representative of the entire data
set. The data of Table 4.10 indicate that while the mean concentrations
are about the same for the two pollutants substantial differences in the
maximum concentrations were recorded. It is this tendency towards a long
tailed distribution which produces the preference for the lognormal
distribution in the case of nitric oxide. Oxides of nitrogen represent
the total of the nitric oxide and nitrogen dioxide observations. It would
appear that the greater frequency of observaticns in the uﬁper percentiles
of the nitric oxide distribution produces the observed preference of the
lognormal model for oxides of nitrogen.

Table 4.10: The yearly mean and maximum concentrations ({ppm) of
nitrogen dioxide and nitrogen oxide recorded at the
Alphington and Museum monitoring stations in Melbourne,
Australia 1978-1981. ’

Monitoring site Year Nitrogen dioxide Nitric oxide
mean maximum mean maximum
Alphington 1978 0.016 0.041 0.007 0.030
1979 0.012 0.040 0.018 0.140
1980 0.013 0.040 0.019 0.170
1981 0.013 0.030 0.016 0.120
Museum 1978 0.025 0.077 0.060 0.344
1979 0.020 0.050 0.041 0.200
1980 0.025 0.070 0.040 0.150

1981 0.021 0.060 0.031 0.160
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4.7 Conclusions

When identifying normal, or by transformation lognormal,
distributions for air quality data it was found that Lilliefors test and
the D'Agostino statistic were more powerful than the chi-square test for
the wide range of non-normal populations considered. Overall the
Lilliefors test was the more powerful for air quality data. A selection
procedure which combined the Lilliefors statistic with the log likelihood
function to identify the best model 'from amongst the two-parameter
lognormal, two-parameter gamma, two-parameter Weibull and one-parameter
exponential alternatives was developed. Then the problem of selecting the
best distributional form for an extensive air quality data set recorded in
Melbourne, Australia was considered. It was found that the two-parameter
lognormal distribution was best for suspended particulates and for the
majority of the nitric oxide, oxides of nitrogen, and sulphur dioxide data
sets. The gamma distribution was found to provide the best distributional
model for ozone, nitrogen dioxide and carbon monoxide observations, while
the Weibull form was significant for carbon monoxide and sulphur dioxide
data.



CHAPTER 5
A MODEL FOR PREDICTING THE DISTRIBUTION OF AREA
SOURCE ACID GAS CONCENTRATIONS

5.1 Introduction

A hybrid modelling approach was recently applied by Simpson et
al. (1983) to predict the maximum 24-h average pollutant concentration for
carbon monoxide in Canberra, Australia and total suspended particulates in
Brisbane, Australia. Simpson and Jakeman (1984) invoked the same model to
predict maximum 24-h average acid gas concentrations for Newcastle,
Australia. They showed that over a 10 year period a variation in annual
maxima of the order of a factor of 2 is to be expected simply due to
changes in the windspeed distribution.

In this chapter, the hybrid modelling approach is applied to
predict the upper percentiles, and in particular the 98-percentile, of 24-
h average acid gas data collected at 6 sites within the urban area of
Newcastle, Australia over 8-10 years. Estimates of the 98-percentile
concentration are evaluated for direct comparison with the World Health
Organisation goal for acid gases which is 200 y gm'3, a level which is
not to be exceeded more than 2% of the time.

The model applied here employs the same deterministic component
as that of Simpson and Jakeman (1984) in their study of acid gas
concentrations from two of the monitoring'sites in Newcastle. However,
for the 55 records of yearly 24-h average data available, the gamma
distribution is identified as a more appropriate statistical component
than the previous lognormal distribution for the prediction of the 98-
percentile concentration. The work illustrates the importance of powerful
methods of identification for determining the most appropriate
distributional form of poliution data. Identification methods based upon
the chi-square test accept the data analysed in Simpson and Jakeman (1984)
as lognormal but the more powerful test developed in Chapter 4 of this
thesis prefers a gamma representation over Weibull, exponential and
lognormal types. As we shall see, this leads to increased flexibility in
application of the model,
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In this chapter a method to quantify the level of uncertainty
associated with the hybrid model predictions is presented. This is
achieved by applying the maximum likelihood method to fit the truncated
distribution of pollutant concentration produced by the deterministic
model component. This yields parameter estimates with normally
distributed statistical properties. A Monte Carlo simulation exercise is
then performed to yield approximate 95% confidence levels for the
percentiles of the distribution. This theoretical evaluation of the
confidence levels, at least for the data sets examined in this study,
provides realistic estimates of the uncertainty in model predictions.

5.2 The area source hybrid model

The model of Simpson and Jakeman (1984) assumes that : (1) the
air pollution data and wind speed data are lognormally distributed and (2)
there is, on average, an inverse relationship between wind speed and air
pollution levels. Larsen (1969, 1971) has observed using graphical
methods that condition (1) is valid for many air pollution data sets.
This was also observed for those data sets used in the Australian examples
referred to above by plotting them on lognormal-probability axes (see for
example, Simpson and Jakeman, 1984, Fig. 1). Condition (2) can be derived
from the ATDL model developed by Gifford and Hanna (1973) where
concentration yx is related to wind speed u according to

x = CQ/u = K'/u (5.1)

where K'=CQ is a constant dependent on source strength Q, and atmospheric
stability, C. Simpson et al. (1983) use instead the fo]]oWing percentile
relationship, an approach also used by Benarie (1976) and Knox and
Lange(1974)

(5.2)
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where xp is the p-percentile of concentration and u100-p is the
opposite percentile of the distribution of wind speed. Simpson and
Jakeman (1984) show that K 1is reasonably constant for the 30<p<70
percentiles for their acid gas data. The equation (5.2) differs from
equation (5.1) in that it only requires opposing percentiles to be related
by a constant rather than time-wise pairs of po]lution‘and windspeed.

The hybrid procedure based upon equation (5.2) works as
follows. The sample probability distributions of concentration and
windspeed are constructed so that the range of values of p for which K is
constant can be evaluated using equation (5.2). For a given windspeed
distribution this permits those concentrations, over the percentile range
for which K is constant, to be determined. This is the deterministic
component of the hybrid model. It allows the prediction of pollutant
concentrations but only within the range of reliability of the
deterministic component as ascertained by analysis of actual dateigz The
statistical component which is a phenomenological model (Benarie, 39+44) in
that it is non-causal or non-predictive, containing the observed history
of the pollution phenomena, is then invoked in a two step procedure.
Firstly, the relevant parametric form of the distribution of pollution
data (lognormal in the previous examples) is identified using the
statistical tests developed in Chapter 4. Secondly, the parameters of the
identified form are estimated (for example, by least squares curve fitting
or by applying the method of maximum likelihood) using those percentile
points reliably predicted from the deterministic model. Once the
parameters are known, the full distribution including the maximum can be
inferred.

The hybrid model 1is not limited by the assumption of
lognormality. As long as assumption (5.2) is valid in the sense that
within a specified range the opposing percentiles of wind speed and air
pollution are related by a constant, any identified distributional form of
the pollution data can be used. Equation (5.2) is quite general and does
not depend on lognormality of the pollution nor the wind speed data.

In order to identify an appropriate model for the distribution
of the acid gas data sets, goodness-of-fit tests of the Kolmogorov type
and the maximum of the log likelihood function were employed to compare
the two-parameter lognormal, gamma and Weibull distributions and the
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exponential distribution. The parameters of these distributions were
estimated using the method of maximum 1likelihood. The results of the
goodness-of-fit tests to the 55 data sets indicated that the gamma
distribution was preferred over the lognormal for 41 of the data sets.
Such a result indicated that a gamma model should be a better
representation of the whole ensemble than the lognormal model. However
this result does not necessarily imply that the gamma distribution will
provide the best model for estimating maximum concentrations.

5.3 The data set and model assumptions -

Newcastle 1is recognised as a major industrial city and
seaport. The industrial area consists of such industries as steelworks,
chemical and metallurgical plants and brickworks and are located along the
Hunter River with the major population areas to the south. Data are
recorded at 6 sites, referred to here as the Watt Street, Mounter Street,
City Hall, Turton Road, Elder Street and Seaview monitors, and all have
been employed in this study (see Figure 5.1). The 3 sites, the Watt
Street, Mounter Street and City monitors lie in close proximity to the
industrial area and have records over the 10 year period, 1972-1981. The
remaining three sites lie within 5-10 km of the industrial complex in the
residential area of Newcastle and recordings are available for the years
1973-1981 for Turton Road and for the years 1974-1981 for both the Elder
and Seaview monitoring locations.

The acid gas data set used consists of observations of 24-h
average acid gas levels measured by the Health Division of the Newcastle
City Council at 6 sites within the city of Newcastle, NSW, Australia. The
acid gas concentrations were determined using the British Standard Method
No. 1747 Part 3. The acid gas levels were obtained for the 24 hour period
beginning at 9am for 5 days per week extending over the full year.

The windspeed data were recorded as 10 minute averages using a
Dines anemometer every 3 hours at the Williamtown Airport weather station
which Tlies about 20-25%m to the north of the air quality monitoring
stations. With these data average windspeed measurements were computed
for the 24 hour period from 9am each day.
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It should be noted that the model developed here is applicable
not only to the 2 sites originally examined by Simpson and Jakeman (1984),
but to all sites at which measurements are available. This result was
obtained by relaxing the assumption of Simpson and Jakeman (1984) that
both the air pollution data and windspeed data are lognormally
distributed. In particular the close agreement between the geometric
standard deviations of the windspeed and pollutant data sets is not
required. This correlation is a requirement for the estimation of the
maximum pollutant concentration (Xmax) using the lognormal assumption.
In the latter case the maximum is calculated according to the expression

=ﬁs m (5.3)
a

where B, is the geometric standard deviation of the windspeed data set,
a, the geometric mean and Zm the number of standard deviations from
the mean corresponding to the percentile point for the maximum value. If

By in equation (5.3) does not closely correspond with that evaluated
from the pollutant data, significant errors (greater than a factor of 2)
may arise. ‘

For all windspeed and pollutant data sets it is required that
the condition as stated by equation (5.2) holds, that is, there 1is on
average, an inverse relationship between windspeed and pollutant
concentration. Simpson and Jakeman (1984) have clearly demonstrated that
this condition 1is met for the observations recorded at the Watt and
Mounter sites. Table 5.1 presents a representative sample of K values
obtained for the 30-70 percentiles using the method of Simpson and Jakeman
(1984) for 2 years of data for each of the City, Turton, Elder and Seaview
monitors. Figure 5.2 illustrates the variation of the K-value over all
sites for the data sets of 1978 while Figure 5.3 presents the K-values
obtained for the Elder monitor. Figures 5.2 and 5.3 and the data listed
in Table 5.1 are considered representative of the variation of K
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Figure 5.2: Variation in K (ugm'zs"l) for all sites for the year
1978.

100

0- T ~ T T T
40 60 80 100
PERCENTILE

Figure 5.3: K (,gm-%s~l) determined at the Elder Street monitor for
all years.
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observed over the whole sample of acid gas concentrations. These values
indicate that equation (5.2), except in the case of the City monitor, is a
good approximation over this range of percentiles. As shall be
demonstrated, the results of the hybrid model prediction of the 98-
percentile are poorest for the City site.

Table 5.1: Estimates of K (ug m'2 s'l) for a range of deciles.

Year Site K at decile

30 40 50 60 70
1973 City 48 46 45 49 52
1974 Turton 139 144 144 144 152
1975 Elder 76 82 86 .. 87 85
1976 Seaview 36 40 36 35 29
1977 City 95 99 95 94 85
1978 Turton 47 46 46 44 44
1979 Elder 41 39 38 38 40
1930 Seaview 70 74 75 79 80

The debate concerning the simple relationship, described by
equation (5.2), is examined in detail by Simpson et al. (1985). The
interpretation of this simple relationship does not form part of this
thesis. Suffice it to say here that the deterministic component of the
hybrid model, equation (5.2), does provide reliable estimates of
percentiles in the range 30<p<70 as evidenced empirically by the
constancy of the K-factors (see Table 5.1) over all sites. The effect
{gr1at1on in the K- factor w111 be examined in detail in section 5.5. Thus
assuming that the data sa%4s#+e& the conditions for the application of the
model, estimation of the 98-percentile concentration will now be
considered.
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5.4 Estimating the 98-percentile pollutant concéntration

For the two-parameter gamma distribution the 98-percentile
(x98) may be obtained as the solution to the equation

0.98 = L [¥98 ot/b(y pyc-lgg (5.4)
r(c)o :

where T is the gamma function, b the scale parameter and ¢ the shape
parameter. Equation (5.4) can be solved numerically given estimates of
the scale and shape parameters.

The estimation of the parameters of the gamma distribution from

the truncated sample (i.e. for the restricted pércentile range
30<p<70) was performed using the method of maximum likelihood. This
approach selects parameters of the gamma distribution in which the
observed concentrations occur with the highest joint probability. These
estimates are the values of the gamma scale parameter b, and shape
parameter ¢, which maximize the likelihood function. When the first r
smallest values and last n-m largest values are censored yielding the

(m-r) order statistics Xpel? Xp42200s Xq from a total sample of size n
the natural logarithm of the likelihood function is known as (Cohen and
Norgaard, 1977)

InL=-(m-r) Inr(c) =-(m-r)c Inb

1 m | m
= I oy *(e-1) T In (x) (5.5)
b i=r+l i=r+1

+ (n-m) In {1 - F(xm)} +r 1In {F(xr+1)}

N\

where F(x) is the cumulative gamma distribution function. Using the
partial derivatives with respect to the shape and scale parameters an
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iterative search algorithm was applied to determine the maximum value of
the likelihood function. The inverse of the information matrix, the
variance-covariance matrix, was evaluated for each data set based on the
maximum likelihood parameter estimates.

In order to determine the confidence intervals for a given
percentile a simple Monte Carlo procedure was utilised in conjunction with
equation (5.4). 200 samples of each of the gamma distribution parameters
were selected from a correlated multivariate normal distribution (Naylor
et al., 1966) with the mean values being the maximum likelihood estimates
of the gamma parameters, and the standard deviations being derived from
the variance-covariance matrix associated with the maximum 1likelihood
estimates. For each pair of parameters the 98-percentile was calculated
according to equation (5.4). The 200 estimates of the 98-percentile were
ordered and the approximate 95% confidence levels determined. The choice
of a sample size of 200 represents a balance between excessive computing
time and accuracy. The sample size of 200 provides estimates of the
confidence bounds to within a few percent, which is sufficiently accurate
for the purposes of obtaining approximate confidence bounds and
demonstrating their usefulness.

2

Table 5.2: Estimates of K (ugm" s'l) for all sites

Year Watt Mounter City Turton Elder Seaview
1972 98 98 59 - - -
1973 61 51 45 74 - -
1974 76 97 71 144 88 . 85
1975 73 82 80 132 86 97
1976 54 62 36 46 36 36
1977 55 49 - 95 46 41 38
1978 61 52 91 46 38 41
1979 57 68 65 52 38 52
1980 90 87 95 95 75 75

1981 92 67 80 45 92 87
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The K-factors for the Watt and Mounter data are those derived by
Simpson and Jakeman (1984). These were calculated simply as the product
of the medians of the distribution of pollutant concentration and
windspeed. The K-factors for the City, Turton, Elder and Seaview monitors
were obtained in the same way. Table 5.2 presents those K-factors. For
the Watt and Mounter sites, the more rigid assumptions of the Simpson and
Jakeman (1984) model also apply since the Tlognormal assumption of
pollution concentration and windspeed are reasonable for these data
sets. Hence we can calculate estimates of the 98-percentile concentration
derived from the application of the model of Simpson and Jakeman (1984)
and compare them with those of the model developed in this paper. In the
former case, the p-percentile concentration, xp, can be obtained from

z

- K p . 5
Xp ag B, | (5.6)

where @, is the median windspeed and Bu is the geometric standard
deviation, Z is the number of standard deviations from the mean to the
p-percentile and K is as listed in Table 5.2. Using values of a, and B,
obtained by Simpson and Jakeman (1984), and a value of Z_ of 2.054 which

P
corresponds to the 98-percentile, estimates of Xgg were determined.

Table 5.3 presents the estimates of Xgg obtained from both
models. For the 1lognormal model the root mean square error between
estimated and observed is 21.6 ug m'3 while for a gamma distribution this
value is 24.1 yug m_3 . This result indicates that the gamma distribution
yields estimates of the 98-percentile with similar accuracy to that of the
lognormal model. However for the 1981 Watt and 1980 Mounter data sets the
goodness-of-fit tests identified the 1lognormal distribution as more
appropriate than the gamma distribution and this is reflected in the
results of Table 5.3. If the estimates for these sites are omitted, the
root mean square error between estimated and observed becomes

16.4 ug m-3 for the gamma distribution, which is Tlower than the

17.2 ug m-3 for the lognormal case. Figures 5.4 and 5.5 show the

observed and predicted 98-percentile concentrations for the Watt and
Mounter data sets using the hybrid model developed here.
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Table 5.3: The e§timated 98-percentile acid gas concentration
(ng m™) for the Watt and Mounter monitoring sites using
the lognormal and gamma models compared with the observed

98-percentile value.

Watt Mounter
Year Gamma Lognormal Xgg Gamma Lognormal X98
Model Model obsefVed Model Model observed
1972 150 140 96 - 154 137 92
1973 44 51 52 53 43 46
1974 65 55 69 68 70 73
1975 72 87 69 84 98 83
1976 64 63 45 82 72 65
1977 67 88 42 65 78 44
1978 57 62 45 50 53 46
1979 67 58 60 77 69 62
1980 91 92 88 65 89 104
1981 115 136 146 85 95 81

For the City, Turton Street, Elder Street and Seaview monitoring
sites the results are given in Table 5.4 and Figures 5.6 to 5.9. For
these sites no comparison may be made with the model of Simpson and
Jakeman (1984) as the assumptions on which that model were based are not
valid for the data monitored there. In general, it can be seen that the
model predicts the 98-percentile acid gas concentration to well within a
factor of 2 in most cases, and that the observations generally fall within
the predicted confidence intervals. Where the model does not provide
close agreement with the observed 98-percentile the differences can mainly
be attributed to the gamma distribution being inapplicable. In a minority
of cases the simple inverse relationship of equation (5.2) is
inappropriate even though the observations follow a gamma distribution.
Consider the following cases where poor estimates of the 98-percentile
were obtained. The 1981 Watt Street and 1980 Mounter Street data sets
have already been mentioned where the Kolmogorov test preferred the
lognormal distribution. Figures 5.2 and 5.3 show, for the 1978 City and
1980 Elder Street data sets, that the K-value does not remain constant
indicating that equation (5.2) may not be valid. Similarly, for the 1972
Watt Street and Mounter Street data sets, the K-value decreases by over
30% from the 50 to the 70 percentile.
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Table 5.4: Comparison of the estimated 98-percentile (Xo) with the
observed 98-percentile concentration (x98) for acid gas
data (ug m'3) at the City, Turton Road, Elder Street and
Seaview monitoring sites.

City Turton Elder Seaview
Year  xgg X Xgg X Xgg X Xgg Xo
1972 71 80 - - - - - -
1973 42 42 124 62 - - - -
1974 93 56 89 115 63 55 60 53
1975 94 83 140 145 95 . 84 94 100
1976 52 40 - 63 64 59 48 56 41
1977 76 111 38 54 43 -50 26 45
1978 59 78 37 45 42 27 30 35
1979 54 71 56 57 40 41 42 64
1980 90 95 90 = 99 108 64 86 77
1981 121 88 70 50 126 102 116 106
- 5.5 Sensitivity of the 98-percentile estimate to the K-factor

For any given set of observations which are considered to follow
a gamma distribution, the scale parameter b, may be estimated by

M1 C
b = M_L_ (5.7)
b,c
where Mb c is the median of observations from a distribution with scale
and shape’parameters, b and ¢ respectively, and M is the median when

_ l,c .
the scale parameter is unity. In fact at any percentile p, by definition

X
b = “p,l,c (5.8)
Xp,b,c
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Figure 5.6:  The qgferved and predicted (--) acid gas concentrations
(ugm ~) for the City Hall data. The estimated 95%
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Figure 5.8: The qgferved and predicted (--) acid gas concentrations
(ugm ~) for the Elder Street data. The estimated 95%

confidence intervals are also presented (- -).

125 A . ’
7\ A A OBSERVED CONCENTRATION . A
/N e PREDICTED CONCENTRATION ’
z / \ —— 95% CONFIDENCE INTERVAL ’ P
2 100 - /oA R
é // .l" ““1 \ 7 < A
[ /7 ':' ‘\_ \\ , 7/ 'p'
E§ 751 - SN o
-é 4 Y 3 /s g o
[&] 6" Ve \ ‘\‘ \A""——\\\ // '."' ’/’
v 50 - t A ~0 -7
g 4 \ NemeemmtT L ‘.'. A - -
',
a \\ _- P
S 25 - T A
S 25
0 T T T T
1974 1976 1978 1980
YEAR .

Figure 5.9: The observed and predicted (--) acid gas concentrations
(ugm-3) for the Seaview data. The estimated 95%

confidence intervals are also presented (- -).



124

Now from equation (5.2) the K-factor of the deterministic model is related
to the scale parameter as

K
M =2 (5.9)
b,c Ugg

where u50

equation (5.9) into equation (5.7) and rearranging obtains

is the 50-percentile or median windspeed value. Substituting

M u

b = L&Kﬂ (5.10)

Thus, the K-factor is inversely proportional to the scale parameter, so
that a given percentage uncertainty in the K-factor, will produce a
percentage uncertainty in the scale parameter which may be determined by
equation (5.10). As b is the scale parameter, equation (5.8) implies that
this same percentage uncertainty due to errors in K will result for
estimates of any percentile in the gamma distribution.

Estimates of the value of the K-factor evaluated over the entire
30-70 percentile range for all 55 data sets have an average relative
standard deviation of approximately 5.0%. While it might appear from
Figures 5.4-5.9 that the contribution to error in the estimate of the 98-
percentile due to uncertainty in the K-factor is minor in comparison with
the total uncertainty, the assumption of the constancy of the K-factor
over the 30-70 percentile range has been examined in detail.

As a first step, the K-factor was evaluated for each percentile
using the acid gas and windspeed data over the 30-70 percentile range by
rearranging equation (5.2). These estimates were plotted against the
order statistic corresponding to the acid gas data set. = The hypothesis
that the slope of a line through these data was non-zero was examined
using the F-test for each of the 55 data sets. The hypothesis was
rejected at the 95% confidence level on only 9 occasions. This'result
indicates that the K-factor varies systematically over the 30-70
percentile range although in most cases the slope, while significant, is
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close to zero. However the F-test is not strictly applicable to data
which has been ordered as the test will tend to accept the hypothesis of a
non-zero slope more frequently than the confidence level would suggest.
Using the estimates of the slope derived previously, the hypothesis that
these values were normally distributed was examined using the modified
Kolmogorov test developed by Lilliefors (1967). The ratio of the test
statistic to the 95% confidence level was 0.564 indicating that the
hypothesis of normality may be accepted at this confidence level.

Based upon the assumption of normality the hypothesis'that the
slopes were drawn from a population with mean zero is considered next.
The following test statistic was evaluated

, = un’ (5.11)

where u is the sample mean, 52

is the sample variance and n the sample
size. A value of z = 0.595 resulted which may be compared with the 95%
confidence level of 1.96. This means that the hypothesis that these data
have mean zero can be accepted at the 95% confidence level. The result
implies, when considering the 55 acid gas data sets, that there is no
systematic deviation from the assumption of a constant value of K at least

over the 30-70 percentile range.

In order to assess the likely effect of the variation in K for
individual data sets a Monte Carlo study was performed. Here the value of
K was allowed to vary over the percentile range employed to estimate the
parameters of the gamma distribution. The value of K was assumed to vary
linearly over this range. A suitable range of values for the slope, @
was determined by evaluating @ for each of the 55 acid gas data sets.
The range was found to be from -0.0015 to 0.0015. Differences in
>ak resulting from the different magnitudes of K were eliminated by
normalizing the K-values to the mean K-value as determined over the 30-70
percentile range. Similarly, a range for the gamma shape parameter was
determined by evaluating this parameter for the 55 acid gas data sets.
The gamma shape parameter was found to vary within the bounds 2 to 4. A
sample size of n=260, reflecting the average size of the acid gas data
sets, was chosen for the Monte Carlo experiments.
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With these parameter values 100 Monte Carlo experiments were
performed. The relative root mean square errors and the average relative
bias were evaluated for each combination of @) and gamma shape
parameter. These results are reported in Tables 5.5 and 5.6. In order to
assess the accuracy of the values reported in Tables 5.5 and 5.6, 200
Monte Carlo experiments were performed with the random number generator
initiated with a different seed, with a gamma shape parameter of 3 and
setting @ = 0.0005, 0.0015. The relative root mean square values were
respectively 0.159 and 0.429 while the bias estimates were 0.133 and
0.416. These results indicate that the numbers reported in tables are

accurate to about +0.01.

The results of Tables 5.5 and 5.6 show that for the majority of
data sets considered here the effect of a changing K-factor will be
considerably less than a factor of 2. In fact for the fit to the 30-70
percentile range the relative root mean square error for all 55 acid gas
data sets was 0.290 with the relative bias being -0.0582. Tables 5.5 and
5.6 also indicate that the value of the gamma shape parameter does not
significantly affect the value of the relative root mean square errors or

bias when compared with the effect of variation of @ Also from Tables
5.5 and 5.6 the magnitude of the results are nearly equivalent for the
same absolute value of @y Hence the effect of positive and negative
values of @ will, overall, tend to cancel out. This is reflected in the
relative bias for the 55 acid gas data sets of -0.0582.

The préb]em of what constitutes an acceptable level of variation
in the K-factor will require careful investigation for each application of
the hybrid model. Certainly the magnitude of estimates of @ will vary
with sample size. For the sample size of n=260 considered here, an
acceptable range of %y values would be $0.0010 which would result in a
variance of about +20-30% for estimates of the 98-percentile
concentration. This is well within the factor of 2 normally expected of
air quality models. Also, providing &y does not exhibit a significant
bias from mean zero, predictions of the 98-percentile should exhibit only
a small bias relative to the variance of the estimates. |
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Table 5.5: Average relative root mean square errors for estimates of
the 98-percentile of the gamma distribution with the K-
factor varying over the 30-70 percentile range.

@y Gamma shape parameter
2.0 3.0 4.0
0.0015 0.398 0.426 0.435
0.0010 0.268 0.287 0.291
0.0015 0.148 0.157 0.153
0.0000 0.090 0.079 0.062
-0.0005 0.167 0.156 0.149
-0.0010 0.281 0.275 0.270
-0.0015 0.398 0.389 0.375
Table 5.6: Average relative bias for estimates of the 98-percentile of

the gamma distribution with the K-factor varying over the
30-70 percentile range.

%y Gamma shape parameter
2.0 3.0 4.0
0.0015 0.378 0.412 0.426
0.0010 0.244 v 0.269 0.279
0.0015 0.110 0.129 0.136
0.0000 0.0203 -0.0068 -0.0041
-0.0005 -0.148 -0.140 -0.139
-0.0010 -0.273 -0.269 -0.267
-0.0015 -0.393 -0.387 -0.373




128

Figures 5.2 and 5.3 indicate that the 20-80 percentile range may
provide improved estimates of the 98-percentile as the increased number of
data points would lead to a decrease in the uncertainty associated with
estimates of the parameters of the gamma distribution. Accordingly, the
average relative sum of squares error and average relative bias were
evaluated for the estimates derived using the 20-80 percentile range. The
sum of squares error was 0.344 while the bias was -0.140. These results
demonstrate that the performance based upon the 30-70 percentile range is
better than that for the 20-80 percentile range. This result is further
supported by the correlation coefficients obtained from the fit of model
predictions against observations. For the 30-70 percentile range the
correlation coefficient was 0.707 while for the 20-80 percentile range
this value was 0.674.
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Figure 5.10: Hybrid model estimates of the 98-percentile acid gas
concentration for the Watt Street data using the 30-70
percentile range (—-) and the 20-80 percentile range (---)
with 95% confidence intervals indicated.
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Why the 30-70 percentile range produces better model estimates
of the 98-percentile than the 20-80 percentile range is considered to be
due to the increasing uncertainty associated with the estimates of the 20-
30 and 70-80 percentiles produced by equation (5.2). This uncertainty
counters the advantage of estimating the gamma model parameters from the
larger percentile range. Using the 20-80 percentile range reduces the
size of the 95% confidence interval because of the increased sample
size. Figure 5.10 illustrates, for the Watt Street data, model estimates
and approximate confidence intervals based upon the 30-70 and 20-80
percentile ranges. Figure 5.10 shows that the 95% confidence intervals
are reduced when fitting the 20-80 percentile range. However, for the
confidence intervals based upon the 20-80 percentile range more
observations have been excluded. Again the uncertainty associated with
concentrations predicted by equation (5.2) over the more extreme
percentiles has resulted in poorer performance of the hybrid model when
estimating the confidence intervals.

5.6 Discussion

Simpson and Jakeman (1984) were able to demonstrate how a hybrid
model could be applied to estimate the effects of fluctuations in long
term meteorology on observed maximum acid gas levels. Their model was
restricted to 2 of a possible 6 data sets by the assumption that both
windspeed and pollutant concentration are required to be Tlognormally
distributed.

Their results indicated that fluctuations in maximum
concentrations of the order of a factor of 2-4 could be attributed to the
effect of long-term meteorological change. The unexplained variation of
the order of a factor of 2 was considered to be incorporated in the
variation in the estimate of the K-factor, which as is given in equation
(5.1), is dependent on the area source strength and atmospheric stability.

For the 98-percentile concentration a similar variation to that
obtained by Simpson and Jakeman (1984) for the maximum concentrations is
evident. This fluctuation may be observed for all acid gas monitoring
sites within Newcastle over all years for which records are available. As
might have been expected, the variation in 30-70 percentile range due to
factors other than meteorological change would appear to be reduced over
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that for the maximum concentration. Rather than being about a factor of 2
this variation is about +30% and is attributed to changing source strength
and to a lesser extent to varying atmospheric conditions. It should be
noted, however, that this wvariation may in fact be smaller than
hypothesized as the confidence intervals derived for each model estimate
are theoretical and should only account for the uncertainty in the
estimation of the gamma model parameters from the sample data within

30 p< 70 percentiles. In section 5.5 it was shown that uncertainty in
the estimate of K would have a relatively small effect on the estimate of
the gamma scale parameter. Thus it would be expected that the 95%
confidence levels are representative of the variation in the composite
model estimate of the Xgg * That some 85% of the estimated Xgg values
fall within the 95% confidence interval, with most of those falling
outside this interval doing so by only a small margin, would indicate
that the hybrid model may explain more of the variation than originally
hypothesised by Simpson and Jakeman (1984).

Furthermore, a simple analysis of the scatter of observed values
within the 95% confidence region reveals that no obvious systematic error
is apparent. However where the assumption of a constant K-factor over
the 30-70 percentile range of the gamma model is not appropriate, as noted
in the previous section, then the observed 98-percentile may fall outside
the 95% confidence interval. This is the case for the observations of
acid gas at the Watt and Mounter sites in 1972.

5.7 Conclusions

This chapter has refined the hybrid urban model of Simpson and
Jakeman (1984), making it more flexible in application and providing a
methodology for quantifying the effects of uncertainty associated with
model predictions. Having stressed the importance of using powerful tests
of 1identification of distributional forms, the gamma distribution was
chosen as the relevant representation for the 55 years of data
available. With this distribution as the statistical component of the
hybrid model, it was seen that at least 85% of the predictions of the 98-
percentile concentration fall within a 95% confidence interval. The 85%
figure 1is conservative because obvious cases where the assumptions of the

model are not satisfied a priori have not been omitted from consideration.
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Clearly the approach could be further refined and extended if
more comprehensive datawée-availab]e. With more detailed information on
emission strengths and meteorology, a more sophisticated deterministic
component could be used which should produce a concomitant reduction in
the uncertainty of hybrid model predictions, and the meaning of the K-
factor could be interpreted in terms of emissions and meteorological
factors such as atmospheric stability.



CHAPTER 6
A HYBRID MODEL FOR PREDICTING THE DISTRIBUTION OF
POLLUTANTS DISPERSED FROM ROADWAY LINE SOURCES

6.1 Introduction

Many mathematical models have been developed to predict the
dispersion of inert pollutants from roadways. These models employ a range
of techniques from the simple ATDL assumﬁtion at one extreme (Hanna,
1978), often the Gaussian line source assumption (Zimmerman and Thompson,
1975), statistical models aimed at detecting trends (Tiao and Hillmer,
1978) and through to computationally complex solutions based upon the
conservation of pollutant mass (Maddukuri, 1982). In this chapter the
best features of a deterministic model are combined with those of a
suitable statistical model to obtain estimates of pollutant concentration
over the entire range of its distribution.

The deterministic model used is the General Motors (GM) model
developed by Chock (1978). This model is used to predict carbon monoxide
(CO) concentrations about the median. The model output is then used to
estimate parameters of a suitable statistical model from which the
probability of the occurrence of extreme pollution episodes can be
evaluated. For the CO data, the Weibull frequency distribution was
identified from a range of alternatives as an appropriate statistical
model using the selection procedure developed in Chapter 4. The hybrid
model developed in this study was calibrated using data recorded near a
roadway line source. A model validation exercise was performed using data
obtained at a second roadway site 7 km distant from the model calibration
site. Good agreement was found between the hybrid model predictions and
observations over the entire distribution of pollutant concentration.

6.2 Line source dispersion models

The calibration of deterministic models for line sources is
often based on a limited number of valid data sets (Chock, 1982a). For
example, the calibrations performed by Chock (1978) and Sistla et al.
(1979) were based on the dispersion of known amounts of sulphur
hexafluoride ( SF6 ). For the dispersion of SF6 » these models were

found to give high correlations between the predicted and observed
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concentrations. In particular, the GM model (Chock, 1978) was found in an
independent review of several models to yield the most reliable estimates
of SF6 concentrations (Sistla et al., 1979). It was found that the
Gaussian models performed at least as well as the numerical models and in

the case of the GM model, often better.

Sistla et al. (1979) found that the GM model reproduced the
observed vertical dispersion parametep for SF6 observed in this
experiment. In the GM model this parameter represents the dispersion of
pollutant concentration with increasing distance, wind-road angle and
atmospheric stability. It was concluded that SF6 gas may be employed to
validate models for CO on the basis of the similarity of concurrent
measurements of the vertical dispersion of CO and SF6 (Sistla et al.,
1979). It is noted for all the data (n=108) that the correlation
coefficients between predicted and observed concentrations-for the various
models ranged from 0.48 to 0.80. The high correlation coefficient for the
GM mdde] predictions is consistent with the level of correlation obtained
in the calibration of this model by Chock (1978). From these results it
may be reasonably concluded that the GM model adequately describes

dispersion from roadways when all input variables are accurately measured
over appropriate time scales.

In a more recent review (Rodden et al., 1982) the Gaussian plume
models CALINE-3, CALINE-2, AIRPOL-4A, HIWAY and TRAPSIIM were compared on
the basis of predicting the pollutant concentrations obtained from five
experiments including the one used to validate the GM model. The
remaining four experiments represent the observation of CO concentrations
near roadways recorded as 15 minute averages. No single model yielded a
clear 'best' result. For the majority of data sets, to which all models
were applied, the correlation coefficients fell below 0.5. Plots of the
predicted concentrations against experimental observations showed no
strong correlation over the entire range of pollutant concentration. All
models were found to overpredict in the range below 0.5-1.5 ppm while the
higher values were underpredicted (Rodden et al., 1982). In general for
the CO data only 50% of the predicted CO concentrations fell within 1 ppm
of the observed concentration. Such results, while not including the GM
model performance, indicate the increased uncertainty in prediction which
is produced when comprehensive monitoring of windspeed, wind direction,
and atmospheric stability do not take place and the source strength of the
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pollutant must be estimated. When normal monitoring is carried out, as
distinct from intensive experimentation, these problems will usually
arise. Chock (1985b) notes the very serious problems of comparing model
performance using CO where there exists uncertainty in the emission rate
and the background CO concentration. Such difficulties are apparent when,
as was noted by Rodden et al. (1982), negative pollutant values are
obtained after subtracting upwind from downwind concentrations. These
results were attributed to the fluctuation of windspeed and wind angle
occurring over the 15 minute averaging time. Clearly where longer
averaging times are involved this problem will be amplified.

Green and Bullin (1982) also found that the three models CALINE-
2, HIWAY and AIRPOL-4 were unable to reproduce the variation of mass flux
profiles with height. They also demonstrated that these dispersion models
were inaccurate due to the assumption of a constant windspeed with height
and as a result of incorrectly representing dispersion when the wind angle
to the roadway differs from 90°. ’

Studies of the dispersion of CO by Watson (1983), and
particulate lead by Mainwaring and Thorpe (1983), applied the GM model to
predict pollutant concentration. Both studies found that the GM model
provided excellent agreement with observed pollutant concentrations.
However these studies examined small data sets (n=24, n=44). Watson
(1983) examined the performance of the GM model in predicting pollutant
observations obtained at the road edge where the 1line source had an
accompanying self-generated turbulence, a region in which the GM model may
not be applicable. Benson (1982) discusses modifications to the Gaussian
vertical dispersion parameter g, under these conditions.

Rao and Visalli (1981) compared the performance of air quality
models on the basis of paired and unpaired observations. They examined
the ability of four line source dispersion models, HIWAY-1, HIWAY-2,
AIRPOL-4, and CALINE-3 to predict the GM model SF6 experimental data as
both paired and unpaired observations and concluded that an exponential
model will describe the upper percentiles of the distribution of pollutant
concentration. Rao and Visalli (1981) noted the unknown sensitivity of
the upper percentiles of the distribution to variation given that the
results of paired analysis indicated the models were estimating the upper

percentiles for the wrong physical reasons. This point is particularly
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emphasised by Chock (1982b) who recognises the importance of pair-wise
analysis of air pollutant data in order to establish where deterministic
air quality models provide the most accurate estimates and where the
weaknesses exist within these models. Clearly such an analysis should
eventually lead to a model capable of accurate prediction of the upper
percentiles of pollutant concentration, but such a result has yet to be
forthcoming. Nevertheless, the paired comparison approach does allow an
assessment of central tendencies or average situations (Rao and Visalli,
1981).

6.3 Data set for the hybrid model calibration

The data set examined consists of hourly average measurements of
CO concentration recorded at a height of 3.5m near a freeway in the
surburban area of Melbourne, Australia, by the Victorian Country Roads
Board (Maccarrone, 1985). The section of freeway is a 1lkm straight
segmént running approximately north-west to south-east. The roadway has
two lanes in each direction separated by a wide median strip and has an
average daily traffic volume in excess of 30,000 vehicles. Figure 6.1
illustrates the Tlocation of the air quality monitor relative to the
roadway . Meteorological information including windspeed as an hourly
average and wind direction as an hourly sector average were determined at
a height of 10m at the CO monitoring site. Atmospheric stability
categories were recorded according to the Pasquill-Turner
classification. Data sets were obtained through the months of November
1981, February 1982 and March 1982 but the data set for February 1982
consists only of four days of records.

Motor vehicle traffic counts were determined in both directions
on an hourly basis for several days each month. The average traffic
counts for each hour of the day and for each carriageway were
determined. Table 6.1 presents the mean and standard deviation of the
traffic counts over the three months. In general the standard deviation
falls within 15% of the mean. These mean values were employed in the
prediction of pollutant concentration. A traffic count during a working
weekday yielded an estimate of the percentage of heavy duty vehicles as
6.6% of the total vehicle count.
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Figure 6.1: Location of the air quality monitoring equipment in
relation to the roadway for the model calibration data
collection.
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Table 6.1: Average traffic counts.
Nearside traffic Farside traffic
Hour Mean traffic Standard Mean traffic Standard
count deviation (%) count deviation (%)
1 140 14 (10) 245 92 (38)
2 91 17 (19) 133 60 (45)
3 80 15 (19) 81 28 (36)
4 98 23 (23) 71 18 (25)
5 133 17 (13) 89 20 (23)
6 269 32 (12) 169 20 (12)
7 1162 215 (18) 452 48 (11)
8 2460 65 (3) 1008 130 (13)
9 2266 253 (11) 1451 104 (7)
10 1214 229 (19) 973 87 (9)
11 961 101 (11) 868 88 (10)
12 897 69 (8) 845 100 (12)
13 824 78 (9) 805 59 (7)
14 836 98 (12) 792 56 (7)
15 884 76 (9) 874 41 (5)
16 1104 14 (1) 1195 63 (5)
17 1488 67 (5) 1964 151 (8)
18 1416 126 (9) 2006 58 (3)
19 1034 193 (19) 1471 230 (16)
20 782 123 (16) 942 150 (16)
21 522 72 (14) 669 143 (21)
22 378 71 (19) 527 113 (21)
23 344 48 (14) 490 15 (3)
24 257 56 (22) 394 83 (21)

In previous tests of the GM model the input parameter about
which there is least certainty is the hourly average source strength of
Co. Kent and Mudford (1978) have derived an expression for the CO
emission rate from the performance of 28 vehicles in Australian city
driving cycles and concluded that CO was emitted at a rate of 4653'0'97
g/km where S is the vehicle speed in km/hr. It should be noted that this
expression was considered applicable in the range 10<S<70 km/hr. In this
thesis for the hybrid model calibration the average vehicle speed was
estimated as 97km/hr. However an examination of the data of Kent and
Mudford (1978) indicated that the CO emission rate was asymptotically
approaching a minimum emission rate of approximately 6.0g/km with
increasing vehicle speed. In a more recent study based on Australian and
United States experience, Johnson (1980), gave separate emission rate
estimates for CO from light duty vehicles as gg2570+8% g/km and for



138

heavy duty vehicles as 12205'0'85 g/km. Given that around 6.6% of the
total vehicle count comprised heavy duty motor vehicles the results of
Johnson (1980) were applied in this study.

6.4 The GM model

The GM model (Chock, 1978) was developed under the assumption of
an infinite line source pollutant emission regime. This assumption avoids
the problem of the usual Gaussian line source model which is based on the
superposition of the contributions from all the infinitesimal point
sources making up the line source and thus requires numerical integration
over the length of the 1line source considered to contribute to the
pollutant concentration at some point away from the line source. The GM
model may be stated as follows:

h
x(x,z) = &— {expl[- 21+ exp [- Yy ( )2]} (6.1)
/ZﬂUa O,

where z 1is vertical height, x(x,z) 1is the concentration at the point
(x,2) relative to the line source at x=0 where the x-direction is
perpendicular to the line source, Q is the emission rate per unit length,
U is the windspeed perpendicular to the roadway, g, is the vertical
dispersion parameter and ho is the plume centre height at distance x
from the road. The form of °, adopted is that given by Chock (1978)
incorporating the variation of 7, with wind direction, o, as

o, = (a+bF(8)x)° (6.2)

where F(8) is defined as

8-90,Y (6.3)

F(e) = 148 |—— "
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with a, b, ¢, B and y determined for neutral, stable and unstable
conditions by Chock (1978).

Included in the windspeed measurement is a correction for the
effective advection of pollutants due to the wake generated by the traffic
(Chock, 1978). When the crossroad windspeed is >1ms ™1 the effect of
plume rise is negligible and thus hgy corresponds to the source height,
otherwise the height of plume z is determined as (Chock, 1978)

F
2= (L2 « (6.4)
‘3
al
where Fl = 0.052m35'3, x is the distance from the roadway, U' = Ua + Ul’
Ua is the ambient crossroad wind, U, 1is a windspeed corfection, and «

1
is a constant.

Since windspeed was measured as a 45° sector average, pollutant
concentrations were evaluated according to

1 0+A0
Xg == [x(x,2) de (6.5)
AG @

where (8, 0+a0) define the bounds of the sector over which the average
concentration 1is determined. The importance of the application of
equation (6.5) is a result of the nonlinear variation of concentration
with 6. As o approaches 0° or 180° small changes in & produce large
concentration changes. Clearly were an average value of 6 used in
equation (6.1) near 0° or 180°, the resulting estimate of concentration
might vary significantly with small changes in o.

~ The windspeed data collected at the monitoring site were
obtained at a height of 10m. These data have been corrected to a height
of 3.5m corresponding to the CO monitor height according to (Stern, 1976)

Tog (U/Uo) = (1/r) log (Z/Zo) (6.6)
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where Z0 is the height at which the windspeed, Uo’ is known. r = 4.5
is taken as an appropriate constant for surface roughness of towns and
city outskirts (Mainwaring and Thorpe, 1983). This yields the following
expression relating windspeed at 10m to that at the CO monitor height

U =0.79 U, . (6.7)

6.5 The Weibull distribution

The Weibull probability density function f(x), where x denotes
pollutant concentration, is given by the equation

fFix) = (xS 7Ib) exp [ ~(x/b)°] (6.8)

where ¢ is the shape parameter and b is the scale parameter. Using test
statistics of the Kolmogorov type and the maximum of the log likelihood
function as discussed in Chapter 4 the observed carbon monoxide
concentrations were tested against the hypothesis of being sampled from
the Weibull, exponential, gamma, lognormal and normal disfributions. The
results are given in Table 6.2 and indicate the applicability of the
Weibull distribution to the carbon monoxide data in this study. In Table
6.2 Dn represents the maximum difference on the probability axis between
the empirical distribution function and the hypothesized distribution
function. The term Tn represents the value below which 95% of Dn

values would fall if the hypothesized distribution is the actual
distribution from which the samples were drawn. Hence the lower the value
of the ratio Dn/Tn the higher the probability that this is the correct
distributional model.
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Table 6.2: Results of the statistical tests of the CO data set.
Model Dn 95% Confidence Dp/Th Log
level (T.) Tikelihood
exponential 0.168 0.060 2.80 - -554.79
normal 0.129 0.049 2.63 -1231.37
lognormal 0.114 0.049 ' 2.33 -556.68
gamma 0.0517 0.0486 1.064 -527.22
Weibull 0.0502 0.0474 1.059 -524,36

In order to predict the upper percentiles of the CO distribution
a two-stage procedure was employed. Initially the GM model was used to
generate estimates of pollutant concentration. These concentrations were
then combined into a sample probability distribution. Hypothesising that
the GM model predicts the middle percentiles with greatest accuracy, the
parameters of the Weibull distribution were estimated by fitting these
percentile points to the sample distribution.

The estimation procedure employs the method of maximum
likelihood to evaluate the parameters of the Weibull distribution for
the  30-70 percentiles. When the first r smallest values and (n-m)
largest values are censored yielding the (m-r) order statistics
93 tees Xp from a total sample of size n, the natural logarithm

Xpe1® Xpt
of the likelihood function is known as (Lemon, 1975)

m m
L=(m-r) (Inc-clnb) +(c-1)z Inyxy - t (x/b)°
i=r+l i=r+l

Cc c ¢
- (nem) (x,/b) *+ r In[l-expi-(x_,,) /b 3] (6.9)

where b and c are the Weibull scale and shape parameters respectively.
The estimated concentrations for a given pair of Weibull parameters are
derived from the inverse Weibull distribution function which is given by
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.
/
P, = b {log [1/(1-a;)]} ¢ (6.10)

where the ¥ represent the probability of some value drawn from the
Weibull distribution satisfying Pr(x<Pi) . The probability values may
be calculated using the the empirical distribution function which relates
the order statistic to probability as

a; = Pr (X<Pi) = (i-0.5)/n (6.11)

where n is the total sample size and i represents the i-th order statistic
(for example, Chambers et al., 1983).

An iterative search algorithm was applied to determine the
maximum value of the likelihood function and hence the parameters of the
Weibull distribution. Based upon the maximum likelihood estimates the
inverse of the information matrix, the variance-covariance matrix, was
evaluated for each data set. In order to determine the confidence
intervals for a given percentile, a Monte Carlo procedure was utilised in
conjunction with equation (6.10). 200 samples of each of the Weibull
distribution parameters were selected from a correlated multivariate
normal distribution (Naylor et al., 1966) with the mean values being the
maximum likelihood estimates of the Weibull parameters and the standard
deviations being derived from the variance-covariance matrix associated
with the maximum 1likelihood estimates. For each péir of Weibull
parameters the 98-percentile was evaluated according to equation (6.10).
The 200 estimates of the 98-percentile were ordered and the approximate
95% confidence interval determined.

6.6 The hybrid model calibration

The GM model as given by equation (6.5) was applied to the
carbon monoxide data set. The experimental program unfortunately did not
include measurement of the background CO concentration. However estimates
of the background CO concentrations were determined using the simple model
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x =X (6.12)
Y100-p

where x is the CO concentration and “p the windspeed. The K-factor
for each hour was determined according to the expression (see Simpson and
Jakeman, 1984)

K (6.13)

" Xg0 Ysp

where is the median background CO concentration and u is the

X

median wfﬁzspeed recorded at the roadway monitoring site. The gg data set
used for background data was recorded as hourly averages for November 1981
at the Dandenong collection site located some 5 km distant from the
roadway monitoring site at least 92 km from any major traffic routes and

within the same surburban area in Melbourne. This site is considered to

Table 6.3: K-factor derived using the Dandenong background CO data.
Median Median
Hour windspeed [co] K
ending (ms-1) (ppm) (ms=lppm)
7 2.42 0.73 1.77
8 2.43 0.80 1.94
9 3.09 0.77 2.38
10 3.40 0.59 2.01
11 4.02 0.40 1.61
12 4,67 0.46 2.15
13 4,78 0.40 1.91
14 4,66 0.266 1.24
15 . 3.47 0.166 0.58
16 3.99 0.166 0.66
17 3.70 0.178 0.66
18 3.63 0.178 0.65
19 3.36 0.199 0.67
20 3.07 0.266 0.82
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provide reasonable estimates of the background pollutant concentration.
The K-factors so determined appear as Table 6.3. The model, equation
(6.12), of the background concentration 1is however inappropriate for

windspeed u<2ms ™1

(Simpson and Jakeman, 1984) and thus is not applied in
this range. Examination of the K-factors obtained indicates that the
background concentrations are quite low. The majority of background

concentrations should fall well below Z2ppm.

Benarie (1980) notes that whére convective mixing dominates
pollutant dispersion advection would not change the concentration and thus
in equation (6.12) windspeed should have an exponent near to zero. Using
the background pollutant data recorded at the Dandenong site and windspeed
data the power of u was evaluated using least squares analysis by taking
the logarithms of both sides of equation (6.12). The value obtained for
the power of u was -1.104 with a 95% confidence interval of -0.923 to
-1.284. It would appear that for our data a power of -1 is appropriate
for this study. This result may not however hold true for all data
recorded in the Melbourne airshed as this result is based upon the
analysis of the data appropriate to this thesis only.

For the purpose of this wmodelling exercise the data set
considered has been restricted to that which the deterministic component
may be applied without invalidating the assumptions on which it is
based. Consequently, the modelling exercise has employed data recorded
between the hours of 6 a.m. and 8 p.m. during the weekdays only. Such
restrictions reduce the data set to 325 measurements of CO at the
monitoring site for which all the necessary input variables are available
for the GM model. This sample size is comparable with those examined by
Rodden et al. (1982) and is well above that of Mainwarihg and Thorpe
(1983) and Watson (1983).

Figure 6.2 presents the plot of the observed CO concentrations
against the predicted concentrations derived using the GM model where
account is taken of the background concentration. The plot indicates the
underestimation by the GM model of pollutant concentrations and the poor
correlation between the predicted and observed concentrations. The
correlation coefficient from the least squares fit to the data is 0.40.
The diurnal variation of the observed mean CO concentration is presented
in Figure 6.3 with the calibrated GM model estimates of these CO
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Figure 6.2: Observed versus predicted concentrations (ppm) for the
model calibration data set.
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Figure 6.3: The observed and predicted diurnal variation of CO
concentration (ppm) for the model calibration data set.
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Table 6.4: Observed mean hourly carbon monoxide concentration (ppm)
classified according to windspeed and wind direction with
the GM model prediction and associated error.

Wind angle (degrees)
Windspeed o(a) 45 90 135 180
range (ms'l)

10 - 11 5.30 .00 .00 .00 .00
Model 1.01 .00 .00 .00 .00
Error(b) 18.38 .00 .00 .00 .00
9 - 10 .00 1.34 .00 .00 .00
Model .00 7 .00 .00 .00
Error .00 .50 .00 .00 _ .00
8 -9 .75 1.00 .00 .00 .00
Model ' .78 1.10 .00 .00 .00
Error .01 .49 .00 .00 N .00
7-8 3.50 1.15 .00 - 1.50 1.50
Model .94 1.10 .00 1.17 .62
Error 6.57 .81 .00 .12 .78
6 -7 1.75 1.96 .00 1.40 1.60
Model 1.14 1.78 .00 J1 77
Error .81 .57 .00 .48 .69
5 -6 2.80 1.55 .00 .00 1.40
Model 1.55 1.66 .00 .00 1.23
Error 2.77 .93 .00 .00 .68
4 -5 1.10 1.44 .00 .00 1.52
Model .87 1.99 .00 .00 1.30
Error .05 1.24 .00 .00 1.10
3-4 3.00 2.44 .00 1.40 1.47
Model 2.28 3.20 .00 1.63 1.63
Error 2.34 3.42 .00 .05 1.10
2 -3 2.87 2.92 2.50 1.77 2.13
Model 4,45 3.71 2.47 3.36 2.65
Error 4.71 3.15 2.94 3.42 2.03
1 -2 1.90 3.36 2.73 1.75 2.83
Model ' .58 2.47 1.87 2.26 1.10
Error 1.74 3.43 3.82 1.37 5.36
0 -1 .00 1.10 .00 2.85 .00
Model .00 2.19 .00 2.35 .00
Error .00 1.19 .00 1.81 .00

(a) & =90 = wind perpendicular to roadway
(b) average sum of squares error
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concentrations. In this plot the GM model has been calibrated to the
observed mean CO concentration to overcome the difference in scale. This
calibration factor is (C=3.38. Table 6.4 also presents the mean CO
concentration as an average of windspeed classified in Ims~! intervals and
wind direction according to the sector average. In general the mean CO
value is predicted by the calibrated model to within a factor of 2 over
the range of windspeed and wind direction.

Using the calibrated GM model output the parameters of the
Weibull distribution were estimated from data within 30-70 percentile
range using the method of maximum likelihood. The GM model output is
presented on Weibull graph paper with the observed CO concentration as
Figure 6.4. The close correlation of the GM model estimates to the
observed concentrations over the 30-70 percentile range is apparent. It
should also be noted that coincidental agreement with 70-100 percenti]es
has also resulted but as we shall see in the model validation section this
is not always the case. The shape and scale parameters determined using
the method of maximum likelihood over the 30-70 percentile range from the
GM model output were b=2.118 and c=1.844 which may be compared with those
estimated by the method of maximum likelihood (Thoman et al., 1969) using
all the observed CO concentrations which returned values of b = 2,235 and
¢ = 1.450. Table 6.5 gives estimates of the percentiles of the
distribution of CO concentration derived using both sets of Weibull
parameters. They are presented with the observed CO concentration. The
resulting estimates of the percentiles of the distribution are, for the
hybrid model, in excellent agreement with the observed concentrations.
For the maximum concentration the approximate 95% confidence interval was
evaluated as described previously. The upper and lower limits of this
interval are stated with the estimated maximum in Table 6.5. The
approximate confidence interval includes the observed value indicating
that this approximate confidence interval provides a useful indicator of
model uncertainty.

6.7 The hybrid model validation

The data for validation consists of hourly average measurements
of CO concentration recorded at a height of 3.5 m near a segment of
roadway some 7 km distant from‘é%gg site at which the model calibration
data were recorded (Maccarrone, 1984). The section of highway has two
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lanes in each direction separated by a median strip with the average daily
traffic volume estimated to be approximately 29,000 vehicles. The
meteorological data, consisting of hourly average windspeed and wind
direction as an hourly sector average, were determined at the site at a
height of 10 m. Figure 6.5 illustrates the location of the air quality
monitor relative to the roadway. The atmospheric stability categories,
according to the Pasquill-Turner classification, were those determined on
an hourly basis at the Dandenong monitoring site. The CO monitoring
occurred during November 1981. However, failures of the windspeed and
carbon monoxide recording instruments have restricted this data set to a
smaller set of 29 observations from November 17 to 26.

Motor vehicle traffic counts were determined in both directions
on an hourly basis for several days during the monitoring period. Using
these data the average traffic count for each hour of the day and for each
carriageway were calculated. The standard deviation of these traffic
counts was on average about 15% of the vehicle count for that hour. A

Table 6.5: Hybrid model fit and maximum likelihood estimates of the
observed [CO] distribution. The approximate 95% confidence
interval is given for the maximum concentration.

Hybrid Maximum

Percentile mode] likelihood Observed

[co] (co] [co]

(ppm) (ppm) (ppm)
2.50 .28 .17 .1
5.00 .42 .28 .2
10.00 .63 47 4
20.00 .94 .79 .8
30.00 1.21 1.09 1.2
40.00 1.47 1.40 1.5
50.00 1.74 1.73 1.7
60.00 2.01 2.10 2.0
70.00 2.34 2.53 2.5
80.00 2.74 3.10 3.0
90.00 3.33 3.97 4.1
95.00 3.84 4.76 5.0
97.50 4.30 5.49 5.8
99.00 4.85 6.40 6.1
99.84 5.08 ( 5.83 ) 7.01 7.94 6.5
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traffic count during a working weekday yielded an estimate of the
percentage of heavy duty vehicles as 10.7% of the total vehicle count.
The average vehicle speed was estimated at 73 km/hr. As in the model
calibration exercise the source strengths were evaluated using the
expressions of Johnson (1980).

The GM model as given by equation (6.5) was applied to estimate
the CO concentration. Background concentrations were estimated using
equation (6.12) with the K-factors being those derived for the model
calibration study, as listed in Table 6.3. These K-factors were derived
from data collected at the Dandenong station over the same period,
November 1981, as the CO data recorded at the roadway site. The
calibration factor derived for the hybrid model was incorporated in the
estimates of CO concentration derived here.

Figure 6.6 presents the plot of the observed CO concentration
against the predicted concentrations derived using the calibrated model.
The predicted mean CO concentration of 2.12 ppm is in good agreement with
the observed mean CO concentration of 2.14 ppm. The model predictions
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Figure 6.6: Observed versus predicted CO concentrations (ppm) using the
calibrated model for the model validation data set.
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Table 6.6: Observed mean hourly carbon monoxide concentration (ppm)
classified according to windspeed and wind direction with the
GM model prediction and associated error.

Wind angle (degrees)
Windspeed 22.5(a) 67.5 112.5 157.5
range  (ms~1) '

6 - 7 2.57 000 000 2.55
Model 1.62 .00 .00 1.44
Error(b) .94 .00 .00 1.24
5 -6 2.25 .00 .00 2.27
Model 1.13 .00 .00 1.78
Error 1.29 .00 .00 .. 0.41
4 - 5 - 2.40 .00 A 2.50 2.41
Model 2.30 .00 2.07 2.40
Error .01 .00 .18 .15
3 - 4’ 000 .00 000 n65
Model .00 .00 .00 1.74
Error .00 .00 .00 1.30
2 -3 1.84 .00 2.40 1.50
Model 3.91 .00 3.80 3.69
Error 4.84 .00 1.97 4.81
1 -2 2.13 .00 .00 .00
Model 1.79 .00 .00 .00
Error .37 .00 .00 .00
0-1 .00 .90 .00 .00
Model .00 .83 .00 .00
Error .00 .00 .00 .00
(a) © = 90 = wind perpendicular to road

(b) average sum of squares error
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were found to be within 1 ppm of the observed value 69% of the time, and
within 2 ppm for 93% of the predictions. The correlation coefficient was
0.326. These results compare favourably with those obtained by Rodden et
al. (1982) in their study of the performance of several pollutant
dispersion models. Table 6.6 gives the mean CO concentration, predicted
and observed, classified into windspeed classes of 1 ms~! and wind
direction according to a 45° sector average. Figure 6.7 gives the diurnal
variation of the observed mean CO concentration with the corresponding
model estimate. These results indicate that the deterministic component
of the hybrid model predicts to within a factor of 2 the mean
concentrations over a variety of conditions.

Using the GM model output the parameters of the distributional
model, equation (6.8), were estimated from the data within the 30-70
percentile range using the method of maximum likelihood. Analysis of the
CO validation data set using the goodness-of-fit data again preferred the
Weibull model with the gamma model yielding the next best goodness-of-fit
statistics. Figure 6.8 gives the GM mode]i estimates over the entire
percentile range plotted on Weibull graph paper with the observed CO
concentration distribution. Agreement between the predicted and observed
concentrations over the 30-70 percentile range is reasonable. It should
be noted that poor correlation has resulted between the upper percentiles
of the GM model output and observations. The shape and scale parameters
evaluated using the method of maximum likelihood to the truncated sample
over the 30-70 percentile range of the deterministic model component were
b = 2.168 and ¢ = 3.303 which may be compared with those estimated by the
method of maximum likelihood from all the observed CO concentration data
giving b = 2.385 and ¢ = 3.376. Using both these sets of parameters the
percentiles of the distribution of CO concentration have been calculated
and are presented with the observed CO concentrations as Table 6.7. The
hybrid model has produced estimates of the observed CO concentration to an
accuracy of 20% over most of the range of its distribution. This may be
compared with the original GM model output (in Figure 6.8) where at both
extremes of the distribution overprediction of observed CO levels has
occurred. For the hybrid model estimate of the maximum concentration the

approximate 95% confidence interval has been evaluated and is given in
Table 6.7. Again this confidence interval includes the observed maximum
value indicating that the approximate confidence intervals provide useful

bounds upon model uncertainty.
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Table 6.7: Hybrid model fit and maximum likelihood estimates of the
observed [CO] distribution of the model validation data
set. The approximate 95% confidence interval for the
hybrid model estimate of the maximum concentration is also

given.

Percentile Hybrid model Maximum likelihood Observed

[CO] (ppm) [CO] (ppm) (coJ (ppm)
2.50 g1 .89 .60
5.00 .88 .99 .60
10.00 1.10 1.22 - .70
20.00 - 1.38 o 1.53 1.40
30.00 1.59 1.76 1.90
40.00 1.77 1.96 ‘ 2.20
50.00 1.94 2.14 2.30
60.00 2.11 2.32 2.40
70.00 2.29 2.52 - 2.50
80.00 2.50 2.75 2.70
90.00 2.79 3.05 3.10
98.27 2.65 ( 3.31 ) 4.65 3.61 3.20

6.8 ~ Discussion

The GM model judged on the basis of a point by point comparison
does not perform as well as in the original model calibration by Chock
(1978). However this is not surprising given the uncertainty associated
with model inputs, for example source strength. The results obtained are
consistent with those found by Rodden et al. (1982) in their study of the
performance of several Gaussian type models based on 15 minute averaged CO
data. In fact the regression coefficient and the percentages of estimates
within 1 and 2 ppm of the observed CO concentration are in nearly all
cases above those observed by Rodden et al. (1982). Although a direct
comparison using the same data sets would provide the best measure of
model performance, these results are encouraging. Both Rodden et al.

(1982) and Watson (1983) note the difficulties in obtaining accurate
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estimates of average quantities such as wind direction due to natural
variations occurring over much shorter time scales than the measurement
averaging time. In view of the hourly average measurements used in this
study, and in comparison with the results of Rodden et al. (1982), the GM
model has yielded hourly average CO concentrations to an expected accuracy
of a factor of 2.

In this chapter the parameter of the GM model about which the
greatest uncertainty exists is the motor vehicle emission source
strength. This is illustrated by the emission factors for 1light duty
vehicles derived by Kent and Mudford (1978) and Johnson (1980) at a
vehicle speed of 70km/hr differing by more than a factor of 2. Kim and
Hoskote (1983) found in a study of methods for estimating CO zonal mobile
source emissions in the United States that alternative speed aggregation
procedures can lead to widely divergent emission estimates. They observed
that the greater the variation in link speeds within a zone and the
greafér the skewness of the speed frequency distribution, the greater the
divergence in zonal emissions that resulted.

This uncertainty in the source strength is considered likely to
have produced the high value of the calibration factor. Several factors

contribute in varying degrees to this level of uncertainty. Of lesser
significance is the uncertainty associated with the actual traffic volume

and the percentage of heavy duty vehicles which comprise the total. For
the hours 7 a.m. to 9 p.m. the variance is within about + 15% of the
average value. A similar percentage variation in the heavy duty vehicle
component of the traffic volume is considered likely. In this case such
variation will produce a relatively small change in source strength.

While it 1is desirable to obtain accurate estimates of all
parameter values, the average vehicle speed is based on a limited number
of observations. The average vehicle speed may vary significantly with
traffic conditions and thus the high average velocity observed is 1ikely
to represent the traffic flow under optimal conditions. This is reflected
in the average vehicle speed being within 3km/hr of the legal limit. Also
the data of Johnson (1980) and Kent and Mudford (1978) show that
increasing motor vehicle speed above 97km/hr produces only small decreases
in CO emission rates. As traffic conditions may produce substantial
reductions in the average vehicle speed so the emission rate of CO will

increase. A drop in vehicle speed to 50km/hr would nearly double the
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emission rates of both heavy and light duty vehicles according to the
expressions given by Johnson (1980) and Kent and Mudford (1978). They
noted emission rates of 50g/km when vehicle speed is substantially below
the average vehicle speed and thus under these conditions the GM model
will underpredict the concentration. If average vehicle speed fell below
97km/hr on a number of occasions this might produce the calibration factor
of 3.38.

It should be noted that the vehicle emission rates are based on
small samples of the total vehicle population and thus the expressions
derived by Kent and Mudford (1978) and Johnson (1980) may not fully
represent the complex mixture of motor vehicles occurring on the
roadway. For example vehicles in poor tune may produce more CO. For the
Australian heavy duty motor vehicle population the precise emission levels
for CO are not known. The emission factors of Johnson (1980) are based on
experience in the United States and whether these emission rates are
repréﬁentative of the heavy duty motor vehicle population is unknown.

Given then the uncertainty in the emission factors input to the
GM model it is to be expected that this model will produce best results
about the mean concentration. Even though Figure 6.4 indicates a close
correlation between the upper percentiles of the GM model output and the
observed CO concentration distributions, the GM model is probably
predicting these concentrations for the wrong physical reasons. Figure
6.2 illustrates this case from the model calibration results. For the
model validation exercise, the GM model output did not provide accurate
estimates of the upper percentiles of the observed CO distribution as may
be seen from Figure 6.8. Thus the GM model will not necessarily provide
reliable estimates of the upper percentiles of the pollutant distribution.

Instead, to predict these percentiles estimates based on the CO
concentrations which the GM model predicts with greatest accuracy are
derived. This region is considered to be about the mean concentration.
Having identified an appropriate parametric form, in this case the Weibull
distribution, the parameters of the distribution can be estimated using
only the GM model data considered reliable. The accuracy of the hybrid
model estimates does not depend on the fortuitous coincidence of GM model
output with the upper percentiles of the pollutant distribution.
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Estimates of the uncertainty associated with model estimates are
derived assuming that the observations are not autocorrelated. However,
as noted in Chapter 3, the CO data exhibit a significant
autocorrelation. This implies that the estimates of model uncertainty
developed here are conservative and represent the minimum level of model
uncertainty likely to be encountered. Examination of the results for the
model calibration and model validation exercises indicate that the
estimated model uncertainty does provide a reasonable estimate of model
uncertainty. This may be due to the incorporation of this uncertainty, at
least to some extent, within the information matrix used to derive
estimates of model variance. Clearly the effects of autocorrelation
warrant further investigation with the view to accounting for the effects
of autocorrelation upon model uncertainty.

6.9 Conclusions

In this chapter the hybrid approach has been further developed
and demonstrated for describing the dispersion of carbon monoxide from a
line source. Again the result has been achieved using the deterministic
model output only within its range of greatest reliability, which is
considered to be about the median concentration, from which the parameters
of a statistical model were evaluated. Approximate confidence intervals
for model predictions of the maximum concentration were also derived and
were found to provide reasonable bounds upon model uncertainty in that the
observed maximum concentrations fell within these bounds. While the
results obtained here are encouraging further application of the hybrid
model will be necessary to determine how reliable these confidence
intervals are.

The deterministic component, the GM model, has yielded results
comparable with other deterministic models (Rodden et al., 1982) in both
the model calibration and model validation exercises. The calibration
factor determined for the GM model output indicates that either more
precise information concerning motor vehicle speed is required or that the
estimated CO emission rates for Australian motor vehicles are higher than
earlier measurements have indicated (Johnson, 1980).

The statistical model applied in the hybrid model has been
identified as the Weibull model from a range of alternative distributions

applicable to the study of air quality data. However it is not possible
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to state that this distributional model is the most useful distributional
model for hourly average CO pollutant observations measured near roadway
line sources 1in general. Also, at other averaging times, for other
pollutants under different emission regimes and perhaps at new locations,
statistical models besides the Weibull may be more applicable.
Nevertheless, the approach here is general and allows the inclusion of

other appropriately identified statistical distributions in the hybrid
model.



CHAPTER 7
A HYBRID MODEL FOR PREDICTING THE DISTRIBUTION OF SULPHUR DIOXIDE
CONCENTRATIONS OBSERVED NEAR ELEVATED POINT SOURCES

7.1 Introduction

Recent applications to increase emissions of sulphur dioxide
arising from gold processing operations in Kalgoorlie, Western Australia
have led to the introduction of a monitoring program recording sulphur
dioxide concentrations in conjunction with the associated meteorological
conditions. The monitoring study was to provide the necessary data for
the construction of a mathematical model of pollutant dispersion. The
limits on emissions were to be determined on the basis of meeting the
World Health Organization goals for 24-h average sulphur dioxide
concentrations. Thus a central aim was to estimate the mean and 98-
percentile 24-h average sulphur dioxide concentrations. As air quality
criteria have been prepared for sulphur dioxide over shorter averaging
times than 24 hours (Newill, 1977) hybrid models are developed for sulphur
dioxide concentrations at 8-h, 3-h, 1-h and 0.5-h averaging times also.

The hybrid models are calibrated using a full year of sulphur
dioxide and meteorological data, then a model verification exercise is
performed. Predicted pollutant concentrations are compared with the
observations recorded at the same monitoring site and at a separate
monitoring site to that of the model calibration and over different annual
periods.

Jakeman and Simpson (1985) developed a hybrid model for the
estimation of pollutant concentrations observed near elevated point
sources. They combined the Gaussian plume model with the exponential
distributional model to yield estimates of the entire distribution of
pollutant concentrations. In this chapter the hybrid modelling approach
for thé prediction of the distribution of pollutant concentrations
observed about point sources is further developed. Approximate 95%
confidence intervals for percentile estimates are constructed. A point
source Gaussian plume model is combined with the exponential, lognormal,
Weibull and gamma distributional models to predict the distribution of
24-h, 8-h, 3-h, 1-h and 0.5-h average concentrations recorded in
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Kalgoorlie, Australia. In this chapter the Gaussian plume model output is
calibrated using a quantile-quantile comparison with the observations
rather than as matched pairs.

7.2 The data set

The data were collected in Kalgoorlie, Western Australia.
Rosher et al. (1984) describe in detail the data collection procedures for
sulphur dioxide concentrations and for the meteorological parameters. A
brief description of the Kalgoorlie environment and the data colliection
procedures follows.

Kalgoorlie lies about 360 m above sea level. The climate is hot
and dry with a mean annual rainfall of about 240 mm and an annual average
temperature of 26°C and minimum of 12°C. The primary sources of sulphur
dioxide arise from gold roasting and nickel smelting operations using ore
concentrates rich in sulphur. The four major sources of sulphur dioxide
are North Kalgoorlie Mines Ltd, Gold Resources Pty Ltd, and Kalgoorlie
Lake View Pty Ltd which are all located within a few kilometres of
Kalgoorlie, and Kalgoorlie Nickel Smelter which is about 12 km south of
the town. Two monitoring sites, one at Kalgoorlie Base Hospital and the
other at Kalgoorlie Technical School, were used to obtain measurements of
the sulphur dioxide concentrations. Figure 7.1 shows the location of the
major sources of sulphur dioxide and the monitors within the Kalgoorlie
region.

Continuous air sampling was achieved using a TRACOR 270 HA
atmospheric sulphur analyser. This instrument has a cycle time of 226
seconds to analyse each ambient air sample. Any variation of sulphur
dioxide concentration over a shorter time period than the cycle time will
not be detected. Ten minute averages were recorded.

Meteorological parameters were recorded at both monitoring sites
using instrumented 10 m towers. Windspeeds were mﬁésured using a cup
anemometer with an estimated accuracy of 0.1 m sec . Wind direction
was recorded to an accuracy of three degrees. A continuous real-time
measurement of the standard deviation of the wind direction (ce) was
also recorded with an estimated accuracy of 2.5 per cent over a measured
range of 0 to 45 degrees. Unfortunately no measurements of the standard
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deviation of wind direction in the vertical direction (°e) were
obtained. Air temperature measurements were recorded with an accuracy of
0.15 degrees. A1l meteorological parameters were averaged over a 10
minute recording period.

In this chapter the data employed were recorded from August 1,
1982 until July 31, 1983 and from January 1, 1984 to December 31, 1984 at
the Kalgoorlie Regional Hospital and data were recorded at the Technical
School monitoring station from March 1, 1983 until February 29, 1984 and
from March 1, 1984 to December 31, 1984, The former data set was used to
calibrate the hybrid model, the latter three data sets in the model
validation exercise. The two data sets recorded'predominant]y during 1983
will be referred to as the 1983 data sets while the data sets recorded
during 1984 wi]1 be referred to by that year. Table 7.1 presents the
percentage of data available for analysis for the meteorological and
sulphur dioxide data sets at both monitoring sites on a monthly basis.
Table 7.1 shows that the available data are representative of the entire
years over which data were recorded at each site. Only during the period
October, November and December 1983 at the Technical School monitoring
site, and in December 1984 at the Hospital monitor was data recovery
particularly low. During 1984 meteorological data was recorded only at
the Technical School monitor site where 100% of the data was available for
all but two months when data recovery was 99.9% and 99.7% respectively.
Rosher et al. (1984) noted for the Technical School monitor that the wind
direction sensor performance was unsatisfactory up until 16 June, 1983 and
recommended the substitution of the Hospital meteorological data set for
this period. Accordingly, until the 16 June, 1983 the meteorological data
employed in the modelling exercise was the Hospital data set. Rosher et
al. (1984) also considered that the data recorded at the Technical School
were more representative of meteorological conditions at Kalgoorlie due to
the proximity of the Hospital Base Station to trees and buildings which
may have affected windspeed and wind direction measurements.
Unfortunately meteorological data at the Technical School is only reliably
available for the period July and August‘1983 for combination with the
sulphur dioxide data set recorded at the Hospital monitor. As such a
short time period was available, the use of the meteorological data
recorded at the Hospital site was preferred. '
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Table 7.1: Percentage of data availa?1? for both monitoring sites in
Kalgoorlie for each monthid

Month Hospital site Technical School site
Meteorological Sulphur dioxide Meteorological Sulphur dioxide
data data data data
1983 1984 1983 1984
1 100.0 98.5 36.9 51.8 50.6 -
2 100.0 97.5 71.1 100.0 99.3 -
3 100.0 98.4 99.6 100.0 99.6 84.2
4 100.0 98.7 99.3 97.5 98.3 61.7
5 100.0 98.3 98.6 100.0 99.1 99.0
6 96.9 89.3 99.4 100.0 98.2 98.8
7 96.8 90.7 93.1 99.9 92.3 98.9
8 61.1 99.1 90.1 100.0 22.2 97.5
9 100.0 97.4 22.1 100.0 66.9 57.7
10 99.8 88.3 72.1 99.8 68.4 94.3
11 100.0 98.1 99.0 99.9 90.8 20.6
12 100.0 99.1 0.0 100.0 97.3 81.4
(a) Data for 1983 adapted from Rosher et al. (1984)

Clearly there is some overlap in the meteorological data sets for the
model calibration and model validation exercises for the 1983 data sets.
However the model validation is also carried out at a separate monitoring
site for an additional year and at the Hospital monitor over a separate
yearly period to that of the model calibration. It is considered then
that the model validation 1is adequate to test both the spatial and
temporal predictive capabilities of the model.
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7.3 Deterministic model component

The development of modelling methods for the prediction of the
dispersion of pollutants from point sources has centred on the gradient
transport and the Gaussian plume formulations (Pasquill and Smith,
1983). Hanna (1982a) in a review of deterministic models found that the
predictive ability of the two approaches were similar despite differences
in their plume rise and diffusion submodels. Pasquill and Smith (1983)
note that the K-theory approach is restricted to situations in which the
scale of turbulence is small in comparison with scale of the concentration
field. Hanna (1982a) also notes that numerical instabilities arise in the
solution of the gradient diffusion equation. Such numerical solutions
would of course be computationally demanding. Given thgt the Gaussian
plume formula has a simple analytic form and may be applied with
meteorological data collected on a routine basis, this deterministic model
form was preferred for the purpose of demonstrating the effica@y of the
hybrid modelling approach for point sources.

While for this study of an elevated point source the preferred
form of the deterministic model component is the Gaussian plume model, it
should be noted that the hybrid modelling approach is not limited to
applications only with this deterministic model. Any other deterministic
model may be employed provided that the conditions under which such models
are applicable are met, and that the output of these models reliably
predicts some percentile range of the distribution of pollutant
concentration.

The Gaussian plume model predicts the ground level concentration
-3 .
of pollutant y (ygm ) due to a point source release at height Zr (m)
as

2 HZ
U exp (B exp (FH (7.1)
2 , 2

ncyczu Zoy 20

X (x,y,o,H) =
z

where x 1is the horizontal wind distance (m), and y is the horizontal

crosswind distance (m), Q is the source strength (ug m'3), u is the

windspeed (p s=), ¢ and 5. are the lateral and vertical dispersion
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parameters (m) respectively, and H is the effective height of the plume

(m).

Given equation (7.1) above, two submodels must be evaluated.

Values for °y and ¢, are required, and a model for plume rise, aH,

b4
where

H=12 +ah (7.2)

The submodel used in this study is based on a modification of the Briggs'
(1975) formula obtained by Carras and Williams (1981) from their
investigation of the Mt Isa, Australia, smelter plumes Where conditions
for dispersion are very similar to those at Kalgoorlie, and is given by

-1
1/3 x2/3 "

AH = 1.3 Fo (7.3)

where F0 is the buoyancy flux parameter. Carras and Williams (1981)
replaced the factor 1.6, as used by Briggs (1975), by the factor 1.3. The
buoyancy flux parameter is given by

F -4l (0 a (7.4)

-2 '

where g is gravitational acceleration (ms ), V is the efflux volume in
3 21

(m s ), To is the temperature of the exit gas (OK) and T, s the

ambient air temperature (OK).

As measurements of ae, the standard deviation of wind

fluctuations in the horizontal direction, are available, the approach of
Hanna (1982a) was adopted which estimates o according to

o =g X3S o (7.5)



166
where x is the horizontal wind distance (m), and Sy is defined according
to Irwin (1979) as

- )
(1 +0.031 x%)1 s 10w

w
"

(7.6)

- ) y
0.5 Xx>10 m

w
n
w
w

x

Unfortunate]y no data for Oy the standard deviation of the vertical
wind direction fluctuations, were collected and thus a similar expression
to that of equation (7.5) above could not be used to estimate .

Instead estimates of g, are based upon the formula derived by Carras and
Williams (1981) to describe the dispersion of the Mt Isa smelter plumes.
The eﬁuation giving o, for daytime neutral-unstable conditions is

67

o, = 3.5 to' (7.7)

where t is the time of travel in seconds from source to receptor. An
average inversion height of 1000m has been adopted as no detailed
inversion height data are currently available. Following Hanna, (1982a)
g, has been allowed to grow to no more than 0.8 of the"invérsion
height. It should be noted that Carras and Williams (1983) and Chambers
et al. (1982) also found from experimental studies that equation (7.7)
provided a reasonable description for this dispersion parameter for the
Liddell power station in the Hunter Valley, Australia. Equation (7.7) is,
however, only applicable during the day-time hours. For night-time
conditions the a, formulae recommended by Briggs (1973) have been
applied.,

For each of the four major point sources of sulphur dioxide
within Kalgoorlie the source emission characteristics necessary for
application of the Gaussian plume model are listed in Table 7.2. The
source to monitor bearings and distances are given in Table 7.3.



167

Table 7.2: Source emission parameters.

Source  Stack height  Source strength Exit temperature Exit flux
1

(m) (tonnes day'l) (Kelvin) (m3 sec” )
1 76 50 533 20.58
2 76 30 533 20.58
3 64 100 535 10.56
4 153 840 573 95.78

Table 7.3 shows that the largest point source is about 14706m
from the Kalgoorlie Hospital monitor. It is wusually considered that
dispersion over distances greater than 10000m is not well described by the
Gaussian plume model. On the other hand this source is reasonably well
separated according to the prevailing wind direction and, as will be
shown, dispersion from this source has a sufficiently large impact that ft
may not be ignored. Fortunately the topography between the source and
receptor is level, with no major obstacles such as buildings or lakes
between source and receptor. Also, as will be noted in section 7.7, the

Table 7.3: Monitor to source bearings and distances.
Source : Monitor location
Kalgoorlie Hospital Technical School
Bearing Distance Bearing Distance
(m) (m)
1 137.3° 2685 70.3° 653
2 137.9° 4298 120.7° 1948
3 137.6° 5535 126.9° 3157
4 174.0° 14706 179.0° 12444
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estimates produced by the Gaussian plume model for this source agree with
the observed concentrations to within a factor of 2. These results
indicate that the Gaussian plume still provides a reasonable model for
dispersion from the most distant source to the monitors in Kalgoorlie.

7.4 Statistical model component

The best distributional model with which sulphur dioxide
concentrations may be described remains the subject of debate. Larsen
(1971) assumed that all pollutants at all averaging times could be
described using a model based upon the lognormal distribution. However
Pollack (1975) considered that an exponential distribution should provide
a better distributional model for pollutant concentrations observed about
isolated point sources. For 24-h average sulphur dioxide concentrations
recorded in the Gent region of Belgium, Berger et al, (1982) found that
the ‘gamma distribution provided a good description of the entire
percentile range, while a model based upon the exponential distribution
gave a better fit to the distribution of the 1largest pollutant
observations.

In this section we examine the goodness-of-fit of the two-
parameter lognormal, Weibull and gamma distributions and the one-parameter
exponential to the distribution of non-zero 24-h, 8-h, 3-h, 1-h and 0.5-h
average pollutant concentrations recorded at the two monitoring sites in
Kalgoorlie. The method of model identification from amongst this set of
alternatives was described in detail in Chapter 4. A brief description
follows of the most important aspects of the model idehtification
procedure,

For each distributional model the parameters are estimated using
the method of maximum likelihood. Using these parameter estimates test
statistics of’ the Kolmogorov type, the maximum difference between the
hypothesized cumulative distribution function and the empirical,
distribution function, are computed.  For each distributional model the
ratio of the maximum observed difference to the respective 95% confidence
level is evaluated. Where this ratio is < 1, the distributional model
is accepted at the 95% confidence level.
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In addition to the Kolmogorov statistic, the maximum value of
the log likelihood functions were calculated. The model with the largest
value of this function is selected as the model providing the best fit to
the observations. In Chapter 5 it was found that the likelihood function
selection criterion never selected the exponential distribution over the
gamma or Weibull distributions, even when the underlying distribution is
exponential. Where the observations follow an exponential distribution
then using the likelihood function criterion should result in exponential,
Weibull and gamma models being selected equally. It was considered that
the preference for the gamma and Weibull distributions 1is due to the
positive bias of the maximum likelihood parameter estimates. On the basis
of Monte Carlo experiments it was recommended that where the Kolmogorov
type statistic prefers the exponential model over the Weibull or gamma
alternatives this model should be selected as the best distributional
model.

For the 24-h, 8-h, 3-h, 1-h and 0.5-h average sulphur dioxide
data sets constructed from the 10-minute average concentrations recorded
at the Hospital and Technical School monitoring sites, the ratio of the
Kolmogorov test statistic to the respective 95% confidence level and the
maximum values of log likelihood functions are presented as Table 7.4 for
each distributional model. The results indicate that neither test
statistic prefers the exponential or lognormal distributional models at
all averaging times examined here. For the exponential model the
Kolmogorov ratio is greater than that for the gamma or Weibull models and
thus these distributions should provide the better models for the entire
distribution of sulphur dioxide observations.

For the 1983 Hospital 24-h average data set the 1likelihood
statistic prefers the gamma distribution, while for the 1983 Technical
School 24-h average data set the Weibull distribution is selected. Table
7.4 also demonstrates that the Kolmogorov statistic prefers the opposite
models to that of the likelihood statistic for 24-h average data sets.
That this should occur is attributed to the sensitivity of the Kolmogorov
ratio to the effects of rounding of the sulphur dioxide measurements to
within * 2 86 g n~>. |
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Table 7.4: Test statistics for 24-h, 8-h, 3-h, 1-h and 0.5-h average
sulphur dioxide observations recorded 1in Kalgoorlie,
Australia.

Distributional model Hospital Monitor Technical School Monitor
(1983 data set) (1983 data set)
Kolmogorov Log Kolmogorov Log

statistic likelihood statistic likelihood

24-h average data

exponential 1.4697 -748.10 2.8747 -940.53
lTognormal 1.6312 -756.12 1.6327 -921.97
gamma 1.2486 -742.56 1.1124 -921.46
Weibull 0.9871 -743.16 1.5494 -919.17

) 8-h average data
exponential 1.2519 -2077.69 1.4523 -1480.39

lognormal 2.3055 -2125.24 1.7625 -1486.26
gamma 1.895 -2074.42 0.6799 -1469.62
Weibull 0.973 -2075.82 0.5579 -1469.02

3-h average data

exponential 3.7219 -2876.92 3.3130 -3147.56
lognormal 2.0203 -2817.95 2.1509 -3131.67
gamma - 1.1673 -2802.66 1.4576 -3096.56
Weibull 0.7274 -2797.16 1.0957 -3097.05

1-h average data

exponential 6.7955 -6461.97 5.6621 -7338.11
lognormal 2.4217 -6219.17 3.7224 -7279.15
gamma , 2.6137 -6195.85 2.6415 -7181.99

Weibull 0.8973 -6173.29 2,0131 ~-7187.28

0.5-h average data

exponential 7.4110 -10234.79 10.2704 -18353.25
lognormal 2.0436 -9966.26 4,0010 -17861.55
gamma 3.3875 -9956.95 3.0955 -17758.79

Weibull 1.4363 -9924.78 1.8765 -17728.94




171

Table 7.4 (cont.)

Distributional model Hospital Monitor Technical School Monitor
(1984 data set) (1984 data set)
Kolmogorov Log Kolmogorov Log

statistic likelihood statistic likelihood

24-h average data

exponential 1.0971 -629.90 1.4936 -645.40
lognormal 1.1440 -634,37 1.9472 -672.62
gamma 0.6638 -625.24 | 0.7030 -644.07
Weibull 0.6137 -624.88 0.8179 -644,87

8-h average data ~

exponential 1.0101 -1178.92 1.2685 -1327.63
1ogn6rma1 1.6482 -1192.37 1.1437 -1338.43
gamma 0.7024 -1175.18 0.5972 -1323.97
Weibull 0.6416 -1175.06 0.6814 -1323.57

3-h average data

exponential 2.1769 -2380.32 1.4692 -2521.71
lognormal 1.8036 -2389.70 2.3118 -2544.19
gamma 0.8393 -2355.31 0.7770 -2512.48
Weibull 0.5588 -2353.83 0.7447 -2512.92

1-h average data

exponential 4.2840 -5554.23 2.7177 -5610.23
lognormal 2.1976 -5494,37 2.6727 -5644.65
gamma 1.5144 -5455,66 0.7404 -5572.38
Weibull 0.8135 -5447.11 1.0537 -5572.76

O.th average data

exponential 5.8897 -9551.29 3.9051 -9198.67
Tognormal 2.5964 -9391.24 3.1138 -9285,01
gamma 2.5555 -9365.68 1.0898 -9131.76

Weibull 1.0574 -9343.68 1.1144 -9131.59
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rounding produces a between individual
This results in greater the
hypothesized distribution function and the empirical distribution function
than would be expected were the data measured to the same number of
significant figures as the computer upon which the table of quantiles of

the test statistic were generated.

The
measurements.

large step

differences between

With increasing sample size n the 95%

reduces n'0°5.

confidence level in size approximately according to
Hence the effect of rounding of the measured sulphur dioxide level upon
the Kolmogorov ratio will be greatest at larger sample sizes where the
rounding size may be much larger than the 95% confidence level. As the
data of Table 7.4 show, the effect of rounding has been reduced somewhat
due to the averaging of 144 ten minute averages of sulphur dioxide to

produce one 24-h average.

For large sample Sizes, for instance data sets consisting of
half “hourly or hourly averages recorded over one year, the combined
effects of the large sample size decreasing the 95% confidence level and
little averaging out of the rounding of the measurements will produce
large values of the Kolmogorov ratio. The magnitude of the Kolmogorov
ratio under these circumstances does not necessarily imply that the
distributional model tested is not a good representation of observationg,
or that this statistic may not be used to select the best distributional
model from amongst several alternative models.

The variance and covariance estimates of the maximum 1ikelihood
the of the 1lognormal, gamma and Weibull
distributions were obtained in the usual way - that is by inverting the
information matrix with elements which are the negative expected values of
the second of the 1logarithm of the 1likelihood
function. Accordingly for a location parameter a and scale parameter b

estimates for parameters

order derivatives

the approximate variance-covariance matrix is as follows

2 2 a T’ m
[_3_2enl 3 2anl

2
aa

2 2
3 antL 2 anb

2asb

2asb

2
ab

1]

V(a)

Cov(a,b) V(b)

Cov(;,B)
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where L denotes the respective likelihood functions. As noted by Cohen
(1965), this approach is valid in a strict sense only for large samples,
but it may be relied upon to yield reasonable approximations to estimate
variances and covariances for moderate size samples (n > 30) where the
bias is small.

7.5 Hybrid model calibration

A common procedure for model calibration (Simpson and Hanna,
1981) involves the ordinary least squares fitting of model predictions
against observations. This may be stated as

Xobs = 2 Xmodel * b - (7.8)

where a and b are the usual ordinary least squares parameters, is

the observed concentration and

Xobs
Xmodel the equivalent model prediction.

It is wusual to regard a as the calibration factor relating the observed
and model concentrations and b as a zero correction factor. The zero
correction factor would usually be expected to have a relatively smaller
effect upon the model estimates of higher concentration than those at
lower concentrations. A perfect fit between model estimates and
observations would result in parameter estimates of a =1 and b = 0. This
method of model calibration allows prediction of when the maximum
concentration will occur. As noted earlier, however, the ability of the
Gaussian plume model to make such a prediction is limited. Table 7.5
presents the estimates of the parameters a and b of equation (7.8) and the
correlation coefficient for the 24-h, 8-h, 3-h, 1-h and 0.5-h average
Hospital monitor data sets. The correlation coefficients listed in Table
7.5 support the assumption that the question as to when the maximum
concentrgtion will occur will not be reliably answered. Ordering the
calibrated model data also allows the maximum, or any percentile, to be
determined. However, as was discussed earlier, the upper percentiles of
the Gaussian plume model estimates do not usually correlate well with the
observations. This model produces best estimates about the mean
concentration.
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An alternative approach to model calibration is based upon the
empirical quantile-quantile plot (Wilk and Gnanadesikan, 1968; Chambers
et al., 1983). As long as the number of model predictions is the same as
the number of observations the empirical quantile-quantile plot is simply
a plot of one sorted data set against the other. As with the unordered
data set an ordinary least squares model can be employed to relate model
predictions to the observations. This would mean that the two sets of
sorted data are related approximately according to

X + B8 (7.9)

obs T e Xmodel

If the ordered model predictions agreed exactly with the ordered
observations, parameter estimates of o« =1 and g = 0 would result. This
method of model calibration does not directly relate model predictions to
the observations as timewise pairs. Instead we examine the relationship
between the distributions of model predictions and observations.
Importantly, model calibration according to equation (7.9) still allows
the maximum concentration, or any percentile of interest, to be estimated.

Figure 7.2 illustrates an empirical quantile-quantile plot of
the predicted and observed 24-h average data sets for the Hospital
monitor. A least squares fit according to equation (7.9) is also
presented in Figure 7.2. The mean concentration is indicated and the 50-
90 percentile range has been bracketed. Figure 7.2 illustrates the
approximate 1linearity between the observed and predicted quantiles.
However the upper percentiles of this plot deviates from the 1linear
form. This is to be expected as the Gaussian plume model provides the
best estimates about the mean concentration. Thus rather than calibrate
using all the predicted and observed quantiles, model calibration is
performed using only a limited percentile range about the concentration
which tﬁe Gaussian plume model estimates best. This concentration is
considered to be the mean value. For positively skewed distributions the
mean concentration should fall within the 50-90 percentile range. This
percentile range was preferred for model calibration. As indicated in
Figure 7.2 this percentile range, denoted by the bracketed portion of the
graph, is sufficiently Tlinear that the assumption of a calibration curve
given by equation (7.9) will not be seriously violated.
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Table 7.5: Estimates of the parameters a and b of equation (8) and the
"~ correlation coefficient for the 24-, 8-, 3-, 1- and 0.5-h
average Hospital monitor data sets, Kalgoorlie, Western

Australia.
Averaging time a b R2
(h) + Standard error + Standard error
24 0.338 + 0.024 4.0129 + 2.789 0.624
8 0.371 + 0.017 2.206 + 2.355 0.579
3 0.359 + 0.013 3.542 + 2.047 0.493
0.297 + 0.009 7.971 + 1.66 0.356
0.5 0.246 + 0.006 11.522 + 1.32 0.292
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Figure 7.2: A quantile-quantile plot of the observed against predicted
24-h average data for the Hospital monitor with the 50-90
percentile range indicated.
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For the Hospital monitor 24-h, 8-h, 3-h, 1-h and 0.5-h average
data sets Table 7.6 presents estimates of the parameters from the model
calibration according to equation (7.9) using the 50-90 percentiles. The
correlation coefficients are also given in Table 7.6. These correlation
coefficients indicate a very high degree of correlation between the
Gaussian plume model and observations over the 50-90 percentile range.
That the correlation coefficients for the 50-90 percentile range are so
close to unity when compared with the results based upon matched pairs, as
listed in Table 7.5, is to be expected when comparing two ordered data
sets. However as all correlation coefficients are greater than 0.98 this
seems to indicate that this correlation is more than just the result of
the ordering of the data. It would of course be preferable to apply some
goodness-of-fit test to assess whether the two distributions are the
same., A test based upon the Kolmogorov-Smirnov two sample test, which
would have to be modified for application to a truncated percentile range
is cu}rently under investigation.

Table 7.6: The observed and model estimate quantile-quantile
calibration parameters estimated using the 50-90 percentile
range for the Hospital monitor data set, Kalgoorilie,
Western Australia. ,

Averaging time a B8 Correlation
(h) + Standard error + Standard error coefficient
24 0.471 + 0.013 6.51 + 1.84 0.980
0.794 + 0.009 - 32.79 + 1.94 0.992
3 1.059 + 0.009 - 89.12 + 2.29 0.993
1.230 + 0.008 -154.76 + 2.57 0.991

0.5 1.383 + 0.009 -214.46 + 3.39 0.986

The estimates of the parameters o and B, as given in Table
7.6, indicate that the lower percentiles of the 50-90 percentile range are
over-estimated. Such a systematic correction is not apparent from the
matched pair calibration according to equation (7.8) as the calibration
parameters based upon equation (7.8) remain nearly constant. Using the
estimates of the parameters of equation (7.9), as stated in Table 7.6, the
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Gaussian plume model output was calibrated within the 50-90 pefcenti]e
range. With these calibrated data the parameters of a previously
identified distributional model may be estimated.

An additional advantage of model calibration according to
equation (7.9), apart from calibrating a percentile range, is the improved
prediction of the number of non-zero concentrations. The correct
prediction of the number of non-zero concentrations is important when
determining the upper percentiles of the distribution. Too many predicted
concentrations will lead to overprediction, too few and underprediction
will result. Thus when applying the hybrid model the number of non-zero
data points must also be calibrated. In this chapter the Gaussian plume
model produces more non-zero estimates of pollutant concentration than
observed. Jakeman and Simpson (1985) also noted such an effect for the
model employed in their study. Table 7.7 presents the_raf}o of the number
of predicted by the Gaussian plume model, n_, to the number actually
observed, n, » for both monitoring sites for 1983. From Table 7.7 it
may readily be seen that the overprediction decreases with increasing
averaging time. Using the calibration factors of Table 7.6 the number of
non-zero concentrations, n.s Wwas reduced substantially. Table 7.7 also
lists .the ratio nc/no which clearly demonstrates the improvement in the
prediction of the number of non-zero pollutant concentrations after
calibration according to equation (7.9). It should be noted that the
model calibration factors determined using the Hospital monitor data were
applied directly to the Technical School monitor data. This produced a
similar improvement to that observed for the Hospital data set, in the
predicted number of non-zero data.

7.6 Hybrid model results

Using the meteorological data sets recorded at the Hospital and
Technical School monitors, estimates of the 10 minute average sulphur
dioxide 'concentrations were calculated using equation (7.1). With these
estimates 24-h, 8-h, 3-h, 1-h and 0.5-h average concentrations were
constructed where it was assumed that at least 80% of the 10 minute data
were available before an average over a longer time period was
evaluated. From Table 7.1 it may be seen that very few averages were
discarded on this basis.
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Table 7.7: Ratio of the number of non-zero po]lutant concentrations
predicted by the Gaussian plume model (n and number
predicted after model calibration (n )s tJ)that observed
(ng) for both monitoring sites, Ka]goor]ie, Western

Austra11a.
Averaging Time Hospital Monitor Technical Monitor
1983 data 1983 data
(h) (np/no) (nc/ng) (np/ng)  (n¢/ng)
24 1.038 1.038 1.355 1.355
8 _ 1.709 1.139 1.597 1.302
3 1.913 1.130 1.552 1.149
2.129 1.200 1.743 1.189
0.5 2.245 1.225 2.263 1.294

For the Hospital monitor 1983 data set the Gaussian plume model
predicted a mean concentration of 69.17 ugm-s. The observed mean
concentration was 28,58 ugm-3 giving a calibration factor based on these
concentrations of 0.413. This calibration factor falls within the range
to be expected when applying deterministic models (Nieuwstadt, 1980;
Hanna, 1982a; Benarie, 1982; Pasquill and Smith, 1983).

Figure 7.3 presents the variation of the average predicted and
observed concentrations with wind direction for the Hospital monitor
data. The predicted concentrations have been calibrated to the observed
mean to eliminate differences in scale. The separation of the observed
sulphur dioxide concentration into two distinct peaks can be seen. As may
be noted from Table 7.3 this can be attributed to the three sources
closest to the Hospital monitor sharing almost the same bearing. Figure
7.3 indicates that the peak concentrations fall a few degrees away from
the expécted wind direction. This effect may be attributed to the
presence of buildings in close proximity to the Hospital monitor.
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Figure 7.3: The variation of the predicted
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data set.
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Figure 7.5: Same as Figure 7.3 except for the 1984 Hospital data set.
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Figure 7.6: Same as Figure 7.3 except for the 1984 Technical School
data set.
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To test both temporally and spatially the calibration of the
model derived from the Hospital data, three validation runs were made
using the calibrated model but estimating the 1984 Hospital sulphur
dioxide data and the 1983 and 1984 Technical School data. Figure 7.4
gives the variation of the observed and estimated concentrations with wind
direction for the 1983 Technical School data set. The estimated
concentrations were calibrated using the value obtained from the analysis
of the Hospital data set. Three peaks‘in sulphur dioxide concentration
are apparent in Figure 7.4. Again from Table 7.3 it may be noted that two
of the sources share a similar bearing while the other two sources are at
quite separate bearings. Figure 7.5 gives the variation in average
sulphur dioxide concentration for the 1984 Hospital data set while Figure
7.6 presents a similar plot but for the 1984 Technical school data.
Figures 7.3-7.6 illustrate that the Gaussian plume model,~as developed in
this chapter, provides a good explanation of the average variation of
'sulpﬁhr dioxide concentration with wind direction.

The diurnal variation of the average predicted and observed
concentrations appear as Figure 7.7 for the 1983 Hospital data set while
Figure 7.8 presents a similar plot for the 1983 Technical School data
set. Figures 7.9 and 7.10 give the diurnal variation of predicted aﬁd
observed sulphur dioxide concentrations for the 1984 Hospital and
Technical School data sets respectively. These plots are typical of
Gaussian plume model estimates in that the results are only reasonable for
mean concentration conditions. The model does not provide a good
explanation of the average pollutant concentrations during the morning
hours 9-11 a.m. as these are most likely due to fumigation occurring as a
result of the morning inversion layer breaking up. Clearly any further
studies in the Kalgoorlie region should collect data relating to the
mechanism producing the fumigation episodes. The results of this research
could be 1incorporated into a more sophisticated deterministic model
componen;.

The results of the calibration of the model predictions
according to equation (7.8) are presented in Table 7.5 given previously.
It shows that the correlation coefficient decreases with averaging time.
Figure 7.11 illustrates the Gaussian plume model predictions plotted
against the observed 24-h average data becorded at the Hospital monitor.
Even though these model predictions yielded the highest value of the
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Figure 7.11 The predicted 24-h average sulphur dioxide concentrations
plotted against the observations for the Kalgoorlie Base
Hospital monitoring site.

correlation coefficient for the Hospital monitor data, the upper
percentiles of the model predictions are in nearly all cases unrelated to
the observations. This plot is considered typical of the results obtained
when modelling these data. |

Hanna et al. (1984) conducted a modelling study of dispersion
from a point source using the Gaussian plume formula, modified for
application in complex terrain, and obtained correlation coefficients
between the predicted and observed concentrations for the two years of 24-
h average non-zero data of 0.25. For 3-h average non-zero data a value of
0.24 was obtained. While these correlation coefficients are lower than
observed here, as might be expected when modelling in complex terrain,
Hanna et al. (1984) did find that the average model bias for the two
highest concentrations at their 11 monitors were +7% for 3-h averages and
+1% for the 24-h averages. MWhile this result would indicate that the
upper ~percentiles of the distribution were estimated well, the low
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correlation coefficients imply that this result may not always be obtained
when estimating the upper percentiles of the distribution. Certainly
their results agree with those here in that there is little correlation
between model predictions of the high concentrations and observations.

In order to reduce the uncertainty associated with the direct
prediction of the upper percentiles of the distribution using only the
output of a deterministic model, the hybrid model employs the
deterministic model output over the 50-90 percentile range only.
Percentile ranges other than the 50-90 percentile range could be employed
however, this percentile range was found to produce the highest values of
the correlation coefficient when calibrating the model using the quantile-
quantile comparisons with observations. The results of model calibration
using equation (7.9) were presented previously in Table 7.6. Using this
calibrated output the parameters of the two-parameter gamma, Weibull and
lognormal ‘models were estimated by applying of the method of maximum
Tikelihood. With these parameter estimates the upper percentiles of the
distribution of concentration can be evaluated. For the Hospital monitor

~data set, the estimated 98-percentile (ng)" the second highest
concentration (xmax-l)
hybrid models with 1lognormal, gamma and Weibull distribution model
components. Along with these model estimates the approximate 95%
confidence intervals are presented. For comparison, the observed
concentrations and the Gaussian plume model output, calibrated according
to equation (7.8), are also given in Table 7.8. Finally, the results of a
simple hybrid model using the exponential distribution with the single
parameter estimated as the mean of the calibrated deterministic model
output are also listed.  This hybrid model was included as only one
parameter must be estimated requiring the relatively simple calibration of

the deterministic model output as given in Jakeman and Simpson (1985).

and the maximum concentration (Xmax) for the

The results in Table 7.8 for the calibrated Gaussian plume model
applied alone show that the model has systematically underpredicted the
upper percentiles. The underprediction increases with decreasing
averaging time. Of all the models considered in this chapter the Gaussian
plume model output provides the worst estimates of pollutant
concentration. The simple hybrid model based upon an exponential model
improves upon these estimates in nearly all cases but the improvement is
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the second

Table 7.8: The observed 98- percent1le concentrat1on
h1ghest concentration and max1m3§ concentration
with the Gauss1aﬂ" 6T&nm model estimates and hybrid
mod@?xest1mates with lognormal, gamma, exponential and Weibull
statistical model components for the 1983 Hospital monitor
data, Kalgoorlie, Western Australia. Approximate 95%
confidence intervals for the lognormal, gamma and Weibull
hybrid models are also listed.
Modet Xo8 Xmax-1 Xmax
24-h average data
observed 217 243 295
Gaussian 122 137 153
lognormal 199(307)475 256(419)700 314(540)959
gamma 147(227) 306 179(273)367 208(314)421
Weibull 177(226)318 207(273)397 234(315)471
exponential 141 202 241
8-h average data
observed 396 598 626
Gaussian 174 249 256
lognormal 425(588)815 586(861)1294 699(1068)1678
gamma 325(464)600 417(590)758 473(668)857
Weibull 376(455)587 460(573)765 510(646)877
exponential 238 461 584
3-h average data
observed 855 1042 1127
Gaussian 223 377 392
lognormal 819(1058)1370 1385(1927)2740 1668(2387)3508
gamma 642(827)1006 926(1185)1434 1049(1331)1609
Weibull 709(828)1008 980(1188)1500 1088(1334)1705
exponential 304 761 886
1-h average data
observed 1265 2547 2667
Gaussian 261 601 782
lognormal 1361(1625)1945 3027(3895)5108 3649(4780)6406
gamma 1069(1259)1441 1789(2084)2375 1994(2313)2633
Weibull 1141(1275)1454 1840(2132)2520 2034(2371)2822
exponential 356 1159 1326
. 0.5-h average data
observed 1495 3817 4099
Gaussian 231 747 1518
lognormal 1809(2071)2375 4691(5744)7153 5624(6978)8806
gamma 1421(1609)1788 2564(2875) 3181 2830(3164)3499
Weibull 1492(1625)1793 2605(2929)3336 2860(3230)3697
exponential 391 1482 1680
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not as great as when the gamma or Weibull models are used. Where the more -
complex hybrid models cannot be readily applied, this model could be used
to provide improved estimates of the upper percentiles of the distribution
of pollutant concentration.

For the hybrid model employing the two-parameter loghormal
distribution the estimated concentrations are all overpredicted. This
ongrediction increases with decreasing'averaging time. That this model
does not describe the observations well is not surprising as, in Table
7.4, both the Kolmogorov statistic and the 1log likelihood statistic
indicated that this distributional model did not provide a good fit to the
observations. Instead these test statistics preferred the gamma or
Weibull distributional models. The Kolmogorov statistic does prefer the
Weibull model for 15 of the 20 data sets. However the: log likelihood
statistic prefers the Weibull model for only 13 of the 20 data sets. On
many‘ occasions the 1log likelihood statistics are very similar in
magnitude. Based on these results the models should yield comparable
estimates, with the Weibull model preferred. The results of Table 7.8
demonstrate that the Weibull and gamma models provide better models for

Xgg8> Xpax-1 and X nax than any other model examined in this chapter and
in all cases these models predict these quantiles to well within a factor
of 2. The Weibull model appears to systematically predict higher values
for the upper percentiles than the gamma model.

Using the model developed with the 1983 Hospital monitor data, a
model verification exercise was performed. The data sets chosen were
recorded at the Technical School monitor site with only a short time
period of overlap with the data recorded at the Hospital monitor during
1983, and using a'data set recorded during 1984, A data set recorded
during 1984 at the Hospital monitor was also included in the model
validation exercise. It should be noted that the Gaussian plume model
predicts the average pollutant concentration for the 1983 Technical School
data set as 43.2y m-3 which is well within a factor of 2 of the observed
mean of 52.1ugm- which is itself a factor of 2 greater than that
observed in the model calibration. For the 1984 Technical School data set
the estimated mean was 41.9u9m-3 and while the observed mean was

41-7ugm'3 . The estimated mean for the 1984 Hospital data set was
23,3ugm'3 which compares with an observed mean of 27.8ugm'3 . These
resuits demonstrate the applicability of the calibration factor for the

mean concentration. The results of the prediction of the upper
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Table 7.9: The observed 98-percent1]e concentration the second
h1ghest concentration ) and max1m%% concentration
) with the Gaussian dW%ﬁe model estimates and hybrid model
estmﬁétes with lognormal, gamma, exponential and Weibull
statistical model components for the 1983 Technical School
monitor data, Kalgoorlie, Western Australia. Approximate 95%
confidence intervals for the lognormal, gamma and Weibull hybrid
models are also listed.
Model Xgg Xmax-1 Xmax
24-h average data
observed 391 560 575
Gaussian 196 207 286
lognormal 209(296)420 235(341)503 270(409)636
gamma 151(254)357 168(281)393 193(317)442
Weibull 199(244)327 215(267)364 235(297)414
exponential 219 313 374
’ 8-h average data
observed 697 920 1000
Gaussian 240 377 402
lognormal 486(650)871 668(948)1371 789(1157)1742
gamma 372(526)675 482(670)855 543(755)960
Weibull 429(510)641 523(639)830 575(714)941
exponential 296 545 639
3-h average data
observed 914 1332 1369
Gaussian 289 452 462
lognormal 910(1113)1364 1393(1809)2389 1615(2143)2906
gamma 731(943)1143 1022(1298) 1565 1134(1438)1731
Weibull 811(917)1673 1054(1229)1482 1145(1348)1640
exponential 392 918 1062
1-h average data
observed 1212 2292 2418
Gaussian 349 923 1198
lognormal 1571(1828)2131 3172(3936)4966 3731(4701)6041
gamma 1266(1494)1705 2047(2389)2713 2262(2631)2986
Wetbull 1339(1473)1649 2033(2308)2666 2215(2529)2940
exponential 470 1395 1889
0.5-h average data
observed 1513 2929 2999
Gaussian 350 1542 2199
lognormal 1811(2094)2439 4536(5663)7162 5368(6798)8709
gamma 1340(1557)1761 2381(2732)3074 2615(2990)3362
Weibull 1397(1527)1690 2323(2618)2999 2515(2852)3288
exponential 535 1871 2114
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Table 7.10: The observed 98-percentile concentrat1on the second
h1ghest concentration (x and max1m3§ concentration
with the Gauss1aﬁ'5T&me model estimates and hybrid
mod@? est1mates with lognormal, gamma, exponential and Weibull
statistical model components for the 1984 Technical School
monitor data, Kalgoorlie, Western Australia. Approximate 95%
confidence intervals for the 1lognormal, gamma and Weibull
hybrid models are also listed.
Model Xgg Xmax-1 Xmax
24-h average data
observed 232 278 410
Gaussian 69 71 77
lognormal 193(267)370 221(316)459 253(378)576
gamma 140(227)313 159(255) 350 181(287)393
Weibull 176(213)278 193(236)315 210(262)356
exponential 197 256 308
8-h average data
observed 518 678 854
Gaussian 178 228 307
lognormal 487(662)901 704(1021)1512 844(1267)1956
gamma 372(517)656 490(674)856 557(763)964
Weibull 422(505)642 529(654)860 586(736)983
exponential 198 334 395
3-h average data
observed 757 1153 1206
Gaussian 352 560 1070
lognormal 816(999)1227 1264(1645)2180 1469(1955)2659
gamma 654(841)1018 920(1164)1401 1021(1290) 1551
Weibull 722(816)957 944(1101)1330 1027(1209)1473
exponential 269 588 . 686
1-h average data
observed 1153 1961 3115
Gaussian 550 1200 3792
lognormal 1452(1693)1977 2982(3711)4695 3520(4448)5734
gamma 1157(1364)1556 1879(2192)2489 2080(2416)2741
Weibull 1216(1334)1501 1854(2107)2437 2022(2311)2689
exponential 358 1001 1149
0.5-h average data
observed 1502 2840 3361
Gaussian 700 2580 8076
lognormal 1952(2194)2468 4483(5338)6448 5247(6319)7720
gamma 1584(1798)1994 2738(3077)3399 3004(3366) 3715
Weibull 1643(1770)1927 2664(2950)3303 2888(3209)3609
exponential 440 1439 1637
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Table 7.11: The observed 98-percent1le concentration the second
h1ghest concentration ) and max1ﬁ%% concentration
) with the Gaussian ﬁ?ﬁﬁe model estimates and hybrid model
estmﬁétes with lognormal, gamma, exponential and Weibull
statistical model components for the 1984 Hospital monitor data,
Kalgoorlie, Western Australia. Approximate 95% confidence
intervals for the lognormal, gamma and Weibull hybrid models are
also listed.
Model Xog Xmax-1 Xmax
24-h average data
observed 227 327 414
Gaussian 76 86 91
lognormal 164(266)433 201(342)594 247(446)831
gamma 119(195)270 139(226)312 165(262) 361
Weibull 149(196)289 169(229)347 . 193(266)419
exponential 124 165 200
8-h average data
observed 411 531 545
Gaussian 152 170 173
lognormal 358(494)682 442(638)937 516(774)1189
gamma 270(410)546 326(487)646 369(549)727
Weibull 327(395)511 374(462)614 411(515)698
exponential 120 223 267
3-h average data
observed 754 1013 1164
Gaussian 271 346 383
lognormal 663(854)1102 955(1309)1826 1121(1580)2281
gamma 516(701)877 691(922)1148 773(1032)1282
Weibull 581(676)824 727(872)1097 796(966)1231
exponential 167 410 484
1-h average data
observed 1042 1943 2167
Gaussian 411 552 560
lognormal 1102(1315)1572 2040(2601)3375 2404(3122)4140
gamma 880(1071)1248 1357(1630)1890 1505(1803) 2089
Weibull 942(1051)1201 1360(1569)1852 1485(1726)2052
exponential 229 738 852
0.5-h average data
observed 1369 2419 2523
Gaussian 560 888 932
lognormal 1461(1669)1909 3062(3715)4578 3582(4405)5510
gamma 1182(1370)1544 1951(2238)2512 2144(2455)2753
Weibull 1233(1341)1479 1890(2128)2419 2062(2320)2650
exponential 272 : 1039 1188
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percentiles of the distribution of observed concentrations recorded during
1983 at the Technical School monitor are presented as Table 7.9. Table
7.10 presents these results for the model validation using the 1984
Technical School data set, while Table 7.11 gives the results of a similar
analysis except for the 1984 Hospital data set. As in the model
calibration exercise the Gaussian plume model underpredicts the upper
percentiles, while the hybrid model employing the exponential distribution
improves upon nearly all model estimates. The hybrid model with a
lognormal distribution component overpredicts the concentrations for the
time averages other than for the 24-h averages. The hybrid models based
upon the gamma and Weibull distributional models yield the best results
with the Weibull model preferred at the shorter time averages. In all
cases these models predict the observed concentrations, Xg8® Xmax-1 and
Xmax well within a factor of 2. Of course further application of the
hybrid modelling approach will be necessary in order to determine the

limitations of the approach and to verify its wider applicability.

A1l estimates of the uncertainty in model predictions have been
derived assuming that the observations are not autoCorre1ated. However,
as noted in Chapter 3, the sulphur dioxide data at the 1-h and O.STh
averaging times exhibit significant autocorrelation. This implies that
the estimates of model uncertainty derived at these averaging times
represent the minimum level of uncertainty likely to be encountered.
Examination of the results of the model calibration and model validation
exercises show that the estimates of model uncertainty provide reasonable
bounds upon model uncertainty. That this is the case may be due to the
incorporation of this uncertainty, at least to some extent, within the
information matrix used to derive estimates of model parameter
variances. Further investigation of the effects of autocorrelation should
produce more accurate estimates of model uncertainty. Ideally this might
mean applying a simple empirical model relating autocorrelation to model
uncertainty.

The results of tables 7.4, 7.8 and 7.9-7.11 show how the hybrid
model may be used for prediction. Given the limited data set at one site
(here the 1983 Hospital data set), a Gaussian plume model is calibrated
for the 50-90 percentile range. Statistical tests indicate that the
appropriate statistical model (see Table 7.4) to be used generally is the
Weibull model. So using the Gaussian plume model calibrated on the 1983

Hospital data set, the model would predict the results during 1983 and
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1984 for the Technical School monitor as given in Tables 7.9 and 7.10, and
at the Hospital monitor as given in Table 7.11 corresponding to the
Weibuil distribution. Clearly the agreement between these model
predictions and the observed concentrations is well within the accuracy of
a factor of 2 normally expected for air quality modelling.

1.7 Conclusions

A hybrid model has been developed for predicting the
distribution of pollutant concentrations observed about elevated point
sources. The two-parameter Weibull distribution component of the hybrid
model was selected from amongst the two-parameteh Weibull, gamma,
lognormal and one-parameter exponential model alternatives wusing a
selection procedure based upon test statistics of the Kolmogorov type and
eva]qgtion of the maximum of the respective likelihood functions.

The Gaussian plume model in this chapter predicted the mean
concentration to well within a factor of 2. However prediction of the
upper percentiles by this approach alone was accurate only within a factor
of 4. These results compare favourably with those obtained by Nieuwstadt
(1980).

Gaussian plume model calibration using quantile-quantile
comparisons was found to yield significantly improved calibration factors
than those based upon matched pair analysis. This method of deterministic
model calibration produces accurate estimates of the percentile range
employed in the estimation of the parameters of the distributional
model. This is indicated by the high correlation coefficients observed,
even when account is taken of the fact that the comparison is between the
respective quantiles, not matched pairs of data. It should be noted that
the correlation coefficient could be used as a test statistic, or a
modified two sample Kolmogorov test, with which the following hypothesis
could be examined: that over a particular percentile range the ordered
observations and model predictions are drawn from the samé distribution.
Such a test would to some extent be dependent upon the wunderlying
distribution of the observations.

Of the hybrid models examined in this chapter the model
employing the Weibull distribution component yielded the best model
predictions. The model predictions of the upper percentiles in nearly all

cases fell well within a factor of 2 and offer substantial improvements
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over the estimates provided by the Gaussian plume model applied alone.
Importantly, the observed concentrations, in nearly all cases, fell within
the approximate 95% confidence intervals generated by the statistical
component of the hybrid model. These 95% confidence intervals are of
course the minimum 95% confidence intervals to be expected as they are
evaluated assuming that the data are distributed exactly as modelled.
However the results obtained 1in this chapter indicate that these
confidence intervals provide useful bounds in that nearly all the
observations fall within these intervals. Clearly wide application of
this modelling approach would be needed to confirm this result, although
the results obtained here and in Chapter 5 for an area source hybrid model

application and in Chapter 6 for the line source hybrid model, are
encouraging.



CHAPTER 8
ASSESSING COMPLIANCE WITH AIR QUALITY CRITERIA
USING STATISTICAL MODELS OF RESTRICTED DATA SETS

8.1 Introduction

In order to obtain a clear picture of the air quality within an
airshed of interest it is necessary to have as many air pollution monitors
operating as possible. Unfortunately the cost of installing and operating
air quality monitors will limit their use. The problem then is to make
the network as ‘representative' as possible both in space and time.
Preferrably all ‘'hot spots' and all land use types such as urban,
residential and industrial should be included and the sampling frequency
at each site should allow compliance with chosen air quality E?iteﬁia?to
be reliably assessed. Clearly, continuous monitoring -achieves the latter
requ{rement.

Usually most monitors are fixed 1in position and record
continuously or intermittently (e.g. total suspended particulate high
volume samples collected every six days). A more cost effective method
may be to have mobile monitors which can be used at more sites than fiied
monitors and can be operated at a similar expense to that of a few
continuous monitors. The problem then becomes one of obtaining a
representative sample. It is reasonably straightforward to design a
random sampling strategy to yield reasonable estimates of annual mean
concentrations (e.g. see Ott and Mage, 1981; Simpson, 1984). However it
is a different problem when it comes to obtaining reasonable estimates of
a cumulative frequency distribution from a limited sample so that
exceedances of 98-percentile or maximum air quality standards can be
estimated. In this chapter statistical models are developed to fulfil
that need. The models constructed employ a mixture of fixed continuous
air quality monitors and intermittent monitors which can be mobile or
fixed, allowing the most effective spatial representation of pollutant
levels to be obtained within the prevailing economic constraints.

The first model, the simplest and most successful, is an
empirical quantile-quantile model. The model predicts the upper
percentiles of a restricted data set, provided a more complete data set
from another site in the same airshed and collected over the same time
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period is available. Clearly, any modelling of a restricted data set from
a base data set will only be as good as the information in the latter.
Ideally, the base data set should be able to provide a reliable sample of
air quality observations for comparison with chosen air quality
éi4£éﬁ4aw Continuous recordings will obviously provide this. However,
sufficiently regular or a sufficient number of random recordings would
also achieve this goal. The problem of what constitutes a representative
base data set is not investigated here. The base data set employed
records 24-h acid gas levels five days per week which is the most complete
data set available. An empirical quantile-quantile model is derived from
quantiles of both the more complete and restricted data sets which then
can be used to predict the upper percentiles of the restricted data set
(not observed because of the limited sampling). The model assumes both
the restricted and more complete data sets are of the same distributional
form, an assumption that can be tested by the two-sided Kolmogorov-Smirnov
two-éémp]e test.

The second model assumes a distributional form for the model,
the parameters of which can be estimated from the restricted data set and
the distribution then used to estimate the upper percentiles. Four
standard distributions are used here for that purpose: the two;pérametér
gamma, lognormal, and Weibull and the one-parameter exponential. The
third model is an improvement on the second one in that, for each data
set, the 'best' distribution is selected from amongst the four chosen here
using a goodness-of-fit test. Here the test developed in Chapter 4 is
used. Clearly this 'best fit' method should be an improvement on the
second. The best test of the empirical quantile-quantile model is to
compare its results with those of the third model.

For hourly carbon monoxide observations, Ott and Mage (1981)
were able to demonstrate that accurate estimates of the arithmetic mean,
and associated 95% confidence 1limits, could be obtained by random
sampling. Their approach was based on the application of the Central
Limit Theorem and thus remains independent of the nature of the original
distribution. However, maximum or near maximum concentrations, in terms
of which many air quality standards are written, may not be similarly
estimated. Ott and Mage (198l) originally proposed that ‘random' sampling
could take place between the hours of 9 a.m. and 5 p.m. However, Simpson
(1984) identified the importance of both the diurnal and seasonal
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variations observed in ambient air quality and found that sampling of
hourly pollutant data should be carried out as a completely random process
to obtain best estimates of the mean concentration for ozone, nitrogen
dioxide and total suspended particulates. Simpson (1984) also found that
continuous recordings 1 week out of 4 yielded good results.

In this chapter the various model performances are examined
using restricted data sets which have been generated using a sampling
strategies of 1 day in 4, 1 in 6, 1 in 8, and 1 in 12, Such strategies
should satisfactorily account for seasonal variations. Since the models
are developed with 24-h average acid gas concentrations, problems
associated with the diurnal variation of pollutant concentrations will not
be present.

8.2 The data set

The acid gas data set used consists of daily levels collected by
the Health Division of the Newcastle City Council at their Watt Street,
City and Mounter Street monitoring stations in Newcastle, Australia, over
a 10 year period from January 1972 to December 1981; at the Turton Road
monitoring station over a 9 year period from January 1973 to December
1981; and at their Seaview and Elder Street monitoring stations over an 8
year period from January 1974 to December 1981. The acid gas levels were
determined by scrubbing ambient air at a constant rate through a dilute
solution of hydrogen peroxide and sulphuric acid. Thus any sulphur
dioxide present in the sample is converted to sulphuric acid. The
resulting increase in acidity due to this or other acid gases is
determined by titration. The method is based on the British Standard
Method No. 1747 Part 3. The 24-h average readings are taken daily
commencing at 9 a.m. for five days per week.

The locations of the monitoring sites relative to the industrial
area emitting acid gases are illustrated in Figure 5.1. It should be
noted that the Mounter Street monitor lies in closest proximity to the
industrial area. The Watt Street and City monitors are located within the
central business district. The Seaview Street, Turton Road and Elder
Street monitors are situated in the surrounding urban area. In this
analysis no distinction between different land use categories is drawn.
This does lead to problems and indications as to how future work may

improve on the results are presented here.
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8.3 The empirical quantile-quantile model

We dencle
Denpoting two data sets as Xy (i =1ton) and Yjo (g =1to

m) and their empirical cumulative distribution functions as Qx and Qy
respectively. Then an empirical quantile-quantile plot is a plot of

Qy(p) against Qx(p) for a range of p-probability values where p may
vary from 0 to 1 (Wilk and Gnanadesikan, 1968). If the two distributions
were identical all the points would fall on the line y = x. This simple
model relating the quantiles of the two data sets may be applied only
where both data sets have been drawn from the same distribution. Chambers
et al. (1983) have extended this simple model to allow the quantiles to
differ by both an additive and multiplicative constant. Thus the two data
sets would have the approximate relationship

Q,(p;) =a Q) +8 | BLRY

where the parameters o and B8 may be estimated using ordinary least
squares. Following the terminology of Chambers et al. (1983) equation
(8.1) is referred as the empirical quantile-quantile model. '
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Figure 8.1: Acid gas concentrations (g m'3) selected from the Watt

Street and Mounter Street monitors data sets with the fit
according to equation (8.1).
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With data sets of equal size an empirical quantile-quantile plot
consists of a plot of the sorted data values paired from the lowest to the
highest values for each data set. However, here one data set is larger
than the other. The usual practice is to employ all the sorted values in
the smaller data set and to interpolate a corresponding set of quantiles
from the larger set (Chambers et al., 1983). In order to determine the
corresponding quantile in the larger data set the percentile at which each
of the smaller data set values fall must be estimated. Many empirical
distribution functions are available for this purpose (Looney and
Gulledge, 1985). The form of the empirical distribution function applied
is that suggested by Chambers et al. (1983) which, for a sample of size n,
is

p; = (i - 0.5)/n ~ (8.2)

Now suppose that yj is the smaller data set and X is the larger then
yj, which is the (j - 0.5)/m quantile of the y data, is,matched with the
interpolated (j - 0.5)/m quantile of the x data set. Thus the required
order statistic in the larger data set is determined from

v="2(j - 0.5) + 0.5 ' (8.3)

3 |

If v is not an integer this value is separated into an integer component i
and a fractional component 8. The interpolated quantile is evaluated as

Qx((J - .5)/m) = (1 - e)xi *ox, (8.4)

+1
An example of an empirical quantile-quantile plot using the acid gas data
recorded at the Watt and Mounter monitors is presented as Figure 8.1. The
least squares fit of equation (8.1) to these data yielded parameter
estimates and associated standard errors of o = 0.946 + 0.015 and 8 =
2.602 + 0.750 with a correlation coefficient of 0.994. '
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8.4 Kolmogorov-Smirnov two-sample test

Given independent random samples of sizes n, m respectively from
continuous distribution functions Fn(x) and Fm(x), the hypothesis
following is tested

Ho: Fn(x) = Fm(x), all x (8.5)

This class of nonparametric problem can be solved by distribution free
methods which do not depend on the form of the underlying distributions at
all, provided that they are continuous (Kendall and Stuart, 1973). The
two-sided Kolmogorov-Smirnov two sample test criterion, d;noted by Dn,m
is the maximum absolute difference between the two empirical
distributions, Sn(x) and Sm(x), of Fn(x) and Fm(x) respectivé]y

Dn,m = max | s, (x) - S, (x) | (8.6)

Tables of the quantiles of this test statistic are readily available for
small samples (n < 40) with approximations for larger samples (Birnbaum
and Hall, 1960). The Kolmogorov-Smirnov test is sensitive to all types of
differences between the cumulative distribution functions (Gibbons,
1971; Kendall and Stuart, 1973). The data sets tested here are the
restricted data set and that extracted from the complete data set modified
according to equation (8.1).

An alternative test to the Kolmogorov-Smirnov test, the Cramer-
von Mises test for two samples, could be applied to the data sets examined
here. However, Conover (1980) notes that there is probably 1little
difference in power between the two tests while the Kolmogorov-Smirnov
test can be evaluated more easily. Thus in order to demonstrate the
efficacy of the empirical quantile-quantile model the Kolmogorov-Smirnov
test was applied.
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8.5 Application of the models

Of the six monitoring sites the Watt Street, Mounter Street and
City data sets span the longest time interval (10 years). Thus the data
sets at these monitoring sites have been chosen, each in turn, to
represent the complete data sets. Three sites within the Newcastle
airshed have been chosen in order to illustrate how the empirical
quantile-quantile model performance is affected by the selection of the
monitoring site representing the complete data set.

Having decided on one of the City, Watt Street and Mounter
Street sites as the base data set (providing 10 years of continuous data),
then restricted data sets are made up from one of the other five sites
(see Section 8.2). There are 45 years of continuous data therefore which
can be chosen as restricted data sets. Restricted "data sets were
constructed in four ways: choosing 1 day out of every 4, 1 out of 6, 1
out of 8 and 1 out of 12. AIl the data sets were chosen to be of 1 year
duration thereby providing 10 complete sets for each of the base
stations. For each year, the quantiles for the restricted data sets were
constructed from those of the complete data set using equations (8.3) and
(8.4). Given these quantiles and those of the complete data set, the
parameters (a,8) of the quantile-quantile model in equation (8.1) were
estimated using ordinary least squares analysis. Using these parameter
estimates and the upper percentiles of the complete data set, the
corresponding upper percentiles of each restricted data set were then
estimated.

For each of the restricted data sets the parameters of the two-
parameter Tlognormal, gamma, Weibull and one-parameter exponential
distributions were estimated using the method of maximum likelihood (see
Chapter 3). The model considered to have the ‘'best fit' was identified
from amongst‘these four distributions using the procedure developed in
Chapter 4. The identification of the 'best fit' distributional models

4%3%»based upon the analysis of the limited data sets only.

Estimates of the upper percentiles of the restricted data sets
were then calculated using two statistical models. In the first, a

distributional form was assumed with the estimated maximum 1likelihood
parameters used to produce estimates of the upper percentiles. The four
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standard distributional forms mentioned previously were each chosen in
turn. In the second model, for each data set only the ‘best fit'
distributional form was used to estimate the upper percentiles.

Model performance was evaluated by examining the ability of each
model to estimate the upper percentiles of the distribution of pollutant
concentrations. This region has been selected as many regulatory
standards refer to these upper percentiles. In particular we examine for
each model the prediction of the three highest concentrations, denoted
respectively as Xmax® Xmax-1 and Xmax-2’

Xgg* This last percentile was chosen as the World Health Organization

goal for 24-h average acid gas concentrations refers to this percentile.

and the 98-percentile,

At each of the percentiles listed above the agreement between
observed (xo) and predicted percentiles (xp) was assessed using a
measure of the average relative bias of the estimates and the average
relative root mean square error (rmse). These criteria were recommended

by Fox (1981) for the assessment of air quality models and are defined as
follows

n
bias =< 1 (- %)/ (8.7)
n
2,0,
mse = {11 (= xp)xg) (8.8)

where N is the number of acid gas data sets.

8.6 Results and discussion

For each of the concentrations x _ , x and x.,»

max~ “max- max-2 98
the average relative root mean square errors for each of the models
considered are presented as Table 8.1 for the case of restricted data
based on a choice of one day in four sampling. The average relative
biases for these same data sets are presented in Table 8.2. The results
are presented for the three alternative cases where the Watt Street,

Mounter Street and City monitors represent the complete data set. These

1* X

average values were determined as a result of the analysis of 45 acid gas
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data sets based on acid gas observations from six monitoring sites for
periods of 8-10 years.

Consider first the performance of the second approach where four
distributional models have been applied separately to all 45 data sets.
It should be noted that the gamma model yields the lowest rmse values
overall. This result is not surprising given that in Chapter 5 for these
data the gamma distribution was preferred by the majority of data sets
when compared with the lognormal model. The lognormal model does appear

to provide slightly better estimates of the Xmax and Xmax-1

concentrations however this model performs poorly at the Xmax-2 and Xgg
concentrations when compared with the gamma model. The exponential and
Weibull models both perform badly 1in comparison with the gamma
distributional model. The results of Table 8.1 are supported by the
average relative bias results as listed in Table 8.2. These data show
that “the exponential and lognormal models consistently overpredict the
upper percentiles while the gamma and Weibull models underpreaict. In
particular the lognormal model overpredicts the maxima.

There may be errors however, in assuming one distributional form
for all the years of data and at all sites. Certainly it would appear
that the gamma distribution is preferable but a more accurate procedure is
to identify the 'best' distribution to fit the data for individual sites
and years using a goodness-of-fit test. This procedure has been adopted
here and comprises the third statistical approach. The model
identification procedure has been applied to the restricted data sets to
select the ‘best fit' model for each restricted data set from amongst the
four distributional models which had previously been employed
separately. Again parameter estimates were those derived using the method
of maximum likelihood. The goodness-of-fit method used is described in
Chapter 4.

A comparison of the 'best fit' model results with any of the
four distributional models applied separately indicates that a significant
improvement in the rmse has been obtained (listed in Table 8.1). The one
exception involves the City monitor whose Xmax estimates indicate only
small improvement. The results of Table 8.2 further confirm the improved
performance of the ‘'best fit' model. Very much smaller values of
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Table 8.1: Average relative root mean square errors for the empirical

' quantile-quantile, exponential, lognormal, gamma, Weibull
and best fit models where the Watt Street, Mounter Street
and City monitors are the complete data sets.

Model X

max Xmax-1 Xmax-2 X98
Watt Street monitor
quantile-quantile .228 .186 .157 .127
exponential .393 .381 .364 .351
lognormal .348 .307 .245 .216
gamma .369 .334 .233 172 -
Weibull .449 .372 .249 .170
best fit .336 .295 .192 ~ <146
Mounter Street monitor i
quantile-quantile 411 .197 .148 .136
exponential .418 .390 .372