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ABSTRACT

This thesis is an inquiry into the use of recursive estimation 
procedures in both modeling and measurement of air pollution. Recursive 
estimation methods were selected for investigation partly because little 
use has been made of them in air pollution modeling, but primarily for 
the reason that they offered a promising additional method of time 
series analysis. In particular the presence of parameter variation in 
time series models in readily determined, thus assisting the choice of 
appropriate structures for air pollution models. The modeling 
undertaken in this thesis has as its principal objective the derivation 
of simple and operational models for use in air quality management. 
Since the management of air quality is usually based upon a model of air 
pollution, such management should be assisted by improved measurement of 
ambient pollutant levels. A possible added benefit of these improved 
measurements is that they may enable a better discrimination between 
alternative air pollution models.

The first three chapters constitute a framework within which the 
subsequent empirical chapters are appropriately located. A broad 
perspective of the modeling of complex systems in general is offered in 
Chapter 1. In Chapter 2 the focus is narrowed to models of air 
pollution - the primary concern of the thesis. The following chapter 
introduces the recursive estimation techniques which were employed 
extensively in later chapters. A series of inquiries into aspects of 
both air pollution monitoring and modeling are then reported. In 
Chapter 4 transfer function models of a continuous air pollution 
analyser were secured and employed in the derivation of robust input 
signal estimation algorithms. Then, in Chapter 5, estimates are made of 
missing air pollution data using simple linear dynamic models. There 
follows in Chapter 6 an attempt at developing a simple time series model 
for carbon monoxide levels in an urban area. Finally in Chapter 7, an 
investigation is reported into the dynamic properties of a deterministic 
model for simulating urban air pollutant levels.

The results of the thesis may be summarised succinctly. Recursive 
estimation methods have been found both appropriate and effective at 
several stages in the empirical sections of the thesis: in the
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identification of model order and estimation of parameters in dynamic 
models of continuous air pollution analysers; in the estimation of 
’true’ input pollutant concentration; in examining the dynamic 
properties of a deterministic simulation model for urban air pollutant 
levels; and in the analysis of air pollution and meteorological data. 
Additionally, it is successfully demonstrated that simple linear dynamic 
models yield satisfactory estimates of data missing from time series of 
air pollutant levels. Finally, recursive algorithms are developed for 
estimating the parameters in a particular class of linear dynamic 
stochastic models, and are shown to have excellent performance.
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Chapter 1

MODELING COMPLEX SYSTEMS - AN OVERVIEW

1.1 Introduction

The aim of this thesis is to demonstrate that for the purposes of 
air quality management simple but effective dynamic air pollution 
models may be obtained by a particular model building procedure based 
upon recursive estimation methods. The models are simple in the sense 
that they have few parameters, and they differ from many others in that 
they are stochastic rather than deterministic. Often linear models are 
found to be adequate, but even in cases where the overall model is 
non-linear it is usually possible to separate it into linear and 
non-linear components, so that the methods of linear systems analysis 
may still be employed for the linear component.

The development of air pollution models was greatly spurred by 
the United States Clean Air Act amendments of 1970, although 
legislation to control air pollution had existed in several 
industrialised countries prior to that time (Persson, 1977). The 
crucial aspect of the amendments was the adoption of an air quality 
management approach to air pollution control (de Nevers et al., 1977), 
an approach which was based on the specification of a set of national 
ambient air quality standards. The three basic requirements of an air 
quality management approach are knowledge of pollutant emissions, air 
quality monitoring data and air pollution models. Many countries have 
now adopted some variation of this approach to air pollution control 
(see, for example, Campbell and Heath, 1977).

It has been recognised for some time (for example, Stern, 1970) 
that air pollution models may serve two quite diverse purposes: they 
assist our understanding of the physical nature of the atmosphere; 
alternatively, they may be used as aids in decision making in air 
pollution control and city and regional planning. It is the use of 
models for this latter purpose which is of interest in this thesis.

The development of models suitable for the purposes of air 
quality management has proved very difficult, and presumably as a 
consequence, there are a wide variety of such models in the literature



2

(see, for example, Hanna, 1975). Scorer (1976) concludes that the 
problems encountered in air pollution modeling lie primarily in the 
complexity of atmospheric behaviour, and also that the limitations of 
the models greatly restrict the usefulness of the air quality 
management approach to air pollution control. However, it is a central 
contention of this thesis that the pessimism of Scorer is not 
warranted. By placing air pollution modeling in the wider context of 
modeling complex systems it is argued here that there exists 
considerable scope for improving the performance of air pollution 
models, and hence the usefulness of the air quality management approach 
to controlling atmospheric pollution.

1.2 Complex Systems and fBadly Defined’ Systems

Simon (1965) defines a complex system as one 'made up of a large 
number of parts that interact in a non-simple way. In such systems, 
the whole is more than the sum of the parts, not in an ultimate, 
metaphysical sense, but in the important pragmatic sense that, given 
the properties of the parts and the laws of their interaction, it is 
not a trivial matter to infer the properties of the whole.' Ecosystems 
are complex in this sense. For example, if the respiration of each 
organism inhabiting an ecosystem was measured by placing it into a 
respirometer, the sum of the respiration of individuals would not equal 
that of the whole ecosystem measured by placing it in a single giant 
respirometer. Those characteristics which arise from such 
non-additivity of the component parts are called emergent properties 
(Perkins, 1975).

Related to the concept of complexity is that of a 'badly defined' 
system (Young, 1978). Poor understanding of a system may be due either 
to its complexity or to a number of other factors such as (i) the 
difficulty or impossibility of performing planned experiments, (ii) the 
uncertain quality of measurements drawn from the system, and (iii) the 
limited resources available for making comprehensive measurements of 
the system. For instance, macroeconomic systems may be considered to 
be 'badly defined' because they are complex, subject to the vagaries of 
human behaviour, and plagued by the three factors listed above.

We would contend that for the purposes of modeling for air 
quality management, urban airsheds also need to be considered as 'badly
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defined' systems. Although the physical and chemical interactions that 
underlie the transport, diffusion and transformation of air pollutants 
are not conceptually complex, urban airsheds are characterised by 
conditions (i) to (iii). First, planned experiments in the form of 
atmospheric tracer experiments are possible (for example, McElroy, 1969 
and Lange, 1978) but are difficult and costly. Second, measurements of 
air pollution levels may be uncertain because the method chosen may not 
be completely specific for a particular pollutant (for example, Winer 
et al., 1974), there may be unrecognised calibration errors (for 
example, see Pitts, 1976), or the location of monitoring stations may 
not be appropriate to the purposes of the measurements (for example, 
Ludwig and Shelar, 1978). Moreover, estimates of pollutant emissions 
are notoriously uncertain, particularly those of motor vehicle 
emissions (see, for example, Bullin et al., 1980). The third 
condition, that usually only limited resources are available for 
measurements of an urban airshed, is perhaps best illustrated by 
reference to a well known exception, namely, the ambitious St. Louis 
regional air pollution study (RAPS) in which an extensive network of 
monitoring stations was established (see, for example, Pooler, 1974). 
Finally, additional complexity is introduced because dispersion of 
pollutants in the airshed may be altered due to changes in the surface 
roughness and as a consequence of the development of urban heat islands 
(see, for example, Kopec, 1970).

1.3 Modeling 'Badly Defined' Systems

Vemuri (1978) has suggested that the range of problems 
encountered in the mathematical modeling of complex or 'badly defined’ 
systems can be shown diagrammatically by means of a spectrum with 
'black box' modeling at one extreme and 'white box' modeling at the 
other. Some additions have been made to his diagram which is shown as
Figure 1.1. In pure black box modeling there is no explicit knowledge 
of the processes occurring in the system and only the input(s) and 
output(s) may be observed. By contrast, in pure white box modeling, 
there is complete knowledge of the detailed workings of the system. 
These two extremes are useful abstractions since there inevitably 
exists some a priori knowledge of a system before attempts are made to 
construct a mathematical model of it.

t

t
A.
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Figure 1.1 The spectrum of modeling problems

Modeling ’badly defined’ systems is an inherently difficult task. 
To illustrate, reference will be made to certain crucial problems with 
the well-known global models, World2 of Forrester (1971) and World3 of 
Meadows et al. (1972). Thissen (1978), in concluding his comprehensive 
analysis of the World3 model, found that 'each specific type of 
behaviour of World3 appears to be primarily determined by only a 
fraction of all the assumptions and equations. ... The model 
builders. . . have spent needless amounts of time and energy on the 
formulation and quantification of equations that, in fact, do not 
matter at all as far as overall behaviour and conclusions are 
concerned.’ More importantly, Thissen argues that ’model analyses 
ought to be performed during the model construction phase in order to 
know better on what to focus attention. ... Only thus can it be 
determined which model parts and what circumstances deserve close 
attention, and what can be ignored in the light of the goals set to the 
study as a whole.’

The importance of clearly specified goals prior to modeling 
’badly defined’ dynamic systems has also been stressed by Young (1978, 
1980a). He discusses the relative merits of reductionist and holistic
approaches to modeling and favours the latter. This does not preclude
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consideration of components of the system but does impose some 
restraints on the way measurements of the components are made and 
utilised. His emphasis on dynamic systems is important because 
methodologies such as regression analysis, which are appropriate for 
the analysis of static systems, may not be applicable to dynamic 
systems (see Young, 1968). Some models of ’badly defined' dynamic 
systems are specifically designed for control and management 
applications. By such a specification of objectives, and by use of the 
concept of modal dominance in a complex system, Young (1978) argues 
that 'the model structure should be chosen so that it 'explains' the 
data in the simplest, physically meaningful manner possible, and then 
only to a degree which is defined carefully in relation to the 
uncertainty on the data.' Before turning in the next section to a 
detailed consideration of Young's model building procedure, some 
emphasis must be given to the points raised in this and previous 
paragraphs.

The position adopted in this thesis is in sympathy with these 
above views, namely that in modeling complex or 'badly defined' dynamic 
systems for control and management purposes, the principle of Occam's 
razor should apply. Thus it is argued that air pollution models for 
such management purposes should incorporate only as much complexity and 
data intensiveness as is strictly necessary to achieve consistency with 
the available air pollution measurements and the goals of the modeling. 
Similar views have been expressed by Johnson (1979a), Phadke et al., 
(1976) and, perhaps most convincingly, by Gifford and Hanna (1973) who 
concluded that 'the detailed urban diffusion models developed so far 
have the property that they generate much more pollution variability 
than is actually observed to occur. This seems to us to be a strong 
argument for the use of simpler models.'

1.4 The Model Building Procedure and the Model Form

The model building procedure suggested by Young (1978, 1980a), 
and adopted in this thesis, is basically heuristic but has the 
advantage of being comprehensive. It consists of four major stages -

(i) the formulation of plausible a_ priori model structures, 
possibly by resort to speculative simulation modeling;

(ii) the choice or identification of appropriate and suitably
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parameterised model structures on the basis of the 
results obtained in the first stage, and in relation to 
the objectives of the modeling;

(iii) the estimation of those parameters which characterise 
the model structures eventually chosen; and 

(iv) the conditional validation of the estimated models, as 
implied by the failure to reject the models as reasonable 
representations of the system's behaviour.

In the first stage, speculative simulation models may be 
formulated within a probabilistic context by defining the model 
parameters in terms of statistical probability distributions (see, for 
example, Hornberger and Spear, 1980; Spear and Hornberger, 1980; and 
Humphries et al., 1981). The resultant ensemble of models may then be 
investigated by use of Monte-Carlo simulation analysis in which the 
model equations are solved repeatedly with the parameters specified by 
sampling at random from their assumed parent probability distributions. 
Such analysis may allow determination of those parameters which are 
most important in giving rise to the observed behaviour in the system. 
It is well known that the dominant factors in air pollution episodes 
are the levels of pollutant emissions and certain meteorological 
variables such as wind speed (see, for example, Hanna, 1971). As the 
specific purpose of stage (i) is to determine just such basic 
structural features of the system, this first stage of speculative 
simulation modeling is not considered in this thesis. The subsequent 
stages of the modeling procedure are discussed in the next section, but 
it will first be helpful to explain briefly the philosophy underlying 
this approach to modeling and to describe the preferred model form.

While recognising that ’badly defined’ dynamic systems will in 
general exhibit both non-linear and non-stationary behaviour, Young 
(1978) proposes that attention be limited to models designed for 
control and management purposes and that initially the analysis be 
restricted to small perturbation behaviour. A linear model is then 
assumed to be applicable for describing the system behaviour. Whether 
this assumption holds can be assessed directly because the recursive 
estimation procedure allows examination of the model parameters to see 
if they are time invariant. If this is found to be the case (as will 
be seen for the models of a continuous air pollution analyser in 
Chapter 4) the estimation of the model can proceed by using the methods
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of linear systems analysis. However, if the assumption of linearity 
does not hold (as will be observed in Chapter 6 for a model of ambient 
carbon monoxide levels), the non-linear characteristics of the system 
will be revealed in the pattern of time variation of the model 
parameters. This is the case because, in general, a non-linear system 
may be described by a linear model with time-varying parameters. If 
the causes of the time variation of the parameters can be identified it 
may be possible to incorporate these causal factors directly into the 
model. Hence the final model parameters become time invariant, once 
again enabling them to be estimated by the methods of linear systems 
analysis.

Young (1978) goes on to argue that, since in practice, the 
observations of the system will be made in discrete time, and will be 
characterised by stochastic effects, it is desirable to formulate a 
discrete time, linear, stochastic model with parameters that may be 
time variable to allow for any non-stationary behaviour. Furthermore, 
since it is not usually possible to observe all the variables in a 
system, he recommends the use of the concept of an observation space 
which will have a dimension less than that of the full state space. 
The model is then defined directly in the observation space and is 
linear in the observations.

The discrete time series transfer function model suggested by Box 
and Jenkins (1970) is the preferred model form since it is a stochastic 
model which emphasises the separation of deterministic and stochastic 
components. This model form is shown diagrammatically in Figure 1.2 
for the general case with multiple measured inputs (denoted by the 
vector u^) to the deterministic component of the model (the ’system' 
model), and multiple outputs y^ which can only be measured in error. 
The stochastic effects are assumed to be generated by the 'noise' 
model, and since they are assumed to be additive to the deterministic 
output x^ from the system model, this model form is sometimes 
referred to as an errors-in-variables model (see Young, 1980b). The 
particular terminology used in the formulation of such transfer 
function models and the methods used for generating the stochastic 
terms will be introduced in Chapter 3. We now turn to a
description of stages (ii) to (iv) of the model building procedure.
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Figure 1.2 The transfer function model

1.5 Identification, Estimation and Validation

The second stage of the model building procedure is the choice or 
identification of appropriate model structures. The approach to this 
task suggested by Young (1978) is based upon the use of recursive 
estimation techniques (for a good introduction, see Young, 1981) in 
which estimates of the parameter values are obtained at each sampling 
instant while working serially through the data. An identified model 
structure is deemed acceptable only if it satisfies certain conditions, 
a detailed description of which is deferred until Chapter 3. For now 
it will be sufficient to say that an acceptable model must have a 
satisfactory physical interpretation and the statistical properties of 
the parameter estimates should not reveal any evidence of 
over-parameterisation. In this way the method ensures that the 
simplest or most parametrically efficient model which is consistent 
with the observations is chosen to explain the data.

The third stage of the model building procedure, namely the 
estimation of the parameters in the identified model, is also carried 
out by use of the recursive techniques utilised in the identification
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stage. We also defer the description of these techniques until Chapter 
3 and simply say that they are available in the CAPTAIN (Computer Aided 
Program for Time Series Analysis and the Identification of Noisy 
Systems) computer package first developed in Cambridge (see Shellswell 
and Young, 1973) and subsequently in the Centre for Resource and 
Environmental Studies at the Australian National University (see Young 
and Jakeman, 1979b). Extensive use of the CAPTAIN package has been 
made in this thesis and descriptions of it may be found in Moore and 
Whitehead (1975), Venn and Day (1977) and Freeman (1981).

The final stage in the modeling procedure is validation in which 
the forecasting ability of the model is evaluated by use of data other 
than those used in the identification and estimation stages. If such 
forecasts are found to be acceptable then the model may be considered 
to be conditionally validated. However, the process of validation does 
not end at this stage because subsequent data collected from the system 
may indicate a significant change in its behaviour. If this is the 
case then further identification, estimation and validation may be 
required.

In concluding this section it should be mentioned that this 
particular interpretation of model validation is not universally 
accepted in the air pollution modeling literature. For example, many 
claims are made of model validation which are based simply upon a 
comparison of the measured, and the model's estimated, pollutant 
concentrations (see, for example, Johnson, 1972). Turner (1979) has 
attempted to overcome the confusion of terminology surrounding the 
evaluation of air pollution models by proposing definitions which are 
consistent with normal dictionary usage. He employs the term model 
verification to describe a process in which 'some sort of mathematical 
analysis was performed on a set of data, usually consisting of measured 
air quality and modeled estimates for the same locations and times, and 
that the results were favourable.' He restricts the term validation to 
mean a second verification that substantiates the first, but recommends 
that any statement regarding model validation should include 
information on the nature of the data utilised in the model (for 
example, whether the pollutant concentrations are averaged over three 
hour or three month periods). Implicit in his definition of validation 
is the assumption that a model should be tested on a data set different 
from that used in the first verification. This is a widely accepted
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definition of validation and is that which is used in this thesis. 
Turner also recognises that a good result in the verification of a 
model may be due to compensating errors in various portions of it, and 
his solution to this problem is to attempt independently to verify the 
individual components of the model. While this is an acceptable 
procedure as far as it goes, he omits to recommend any subsequent 
attempt to verify the model as a whole. Failure to do this may lead to 
over-parameterisation and ’surplus content' of the model, 
characteristics which may not be necessary to explain observed 
behaviour and which may not be capable of validation against the 
observations. It is believed that the modeling procedure adopted in 
this thesis overcomes these problems, and at the same time constitutes 
an effective and systematic approach to simple air pollution models 
useful in the task of air quality management.

1.6 Thesis Outline

This thesis has the following broad structure. In Chapters 2 and 
3 a survey of the relevant air pollution literature is offered, and the 
terms and methods of recursive estimation are introduced. In 
subsequent chapters the principal results of the thesis are reported in 
the form of a series of investigations into aspects of air pollution 
monitoring and modeling.

In Chapter 2 the air pollution problem is outlined and important 
concepts that underlie the air quality management approach to air 
pollution control are briefly described. The procedures used in the 
measurement of air pollution are also sketched and the difficulties of 
air pollution monitoring discussed. Finally, the major types of models 
used in the management of air pollution are briefly reviewed.

Chapter 3 is primarily a description of the recursive estimation 
techniques used in the identification and estimation stages of the 
model building procedure. Representations of dynamic systems are also 
briefly described.

In Chapter 4 it is shown that a continuous air pollution analyser 
may be regarded as a single input-single output (SISO) dynamic system, 
and may be modeled by simple discrete time or continuous time linear
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transfer function models. It is then shown that the discrete time 
models may be used in the development of robust filtering and smoothing 
algorithms for estimation of the true pollutant concentrations entering 
the analyser. The algorithms are robust in the sense that they operate 
successfully in the presence of noise on the measured output signal of 
the analyser.

The problem of estimating air pollution data missing at one 
location by using available data at other locations is considered in 
Chapter 5, and simple linear SISO models are shown to be useful in this 
task. In an attempt to obtain better estimates of the missing data, 
linear multiple input-single output (MISO) models are evaluated. A 
particular class of linear MISO models, in which the characteristic 
polynomials of the transfer functions associated with each input are 
not constrained to be identical, was thought to be appropriate, and 
algorithms are developed for estimating the parameters in such models. 
Stochastic Monte-Carlo simulation analysis is used to demonstrate the 
properties of the algorithms.

In Chapter 6 we begin with a brief review of the types of models 
used for the modeling of the dispersion of vehicular pollutants from 
roadways. Then we develop a simple time series model which describes 
carbon monoxide levels in the Canberra City area. We go on to report 
in Chapter 7 a preliminary investigation of the dynamic behaviour of a 
deterministic computer-based model of the Eulerian type developed for 
the simulation of the dispersion of an inert pollutant over an urban 
area. Finally, in Chapter 8 a summary of the principal conclusions of 
the thesis is offered.
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Chapter 2

INTRODUCTION TO THE AIR POLLUTION PROBLEM AND AIR POLLUTION MODELING

2.1 A Brief History

Air pollution is not a new phenomenon. In England there were 
serious complaints about air pollution as early as the thirteenth 
century, and in 1307 Edward I issued a proclamation prohibiting the 
burning of sea coals in lime kilns in London because of the nuisance 
caused by smoke (Te Brake, 1975). The nineteenth century poet Shelley 
(1792-1822) wrote

'Hell is a city much like London - 
A populous and smoky city'.

Most of the air pollution described in early accounts of the problem 
arose from the relatively inefficient burning of coal for industrial 
purposes and domestic heating and has been termed 'traditional' air 
pollution. As industrialisation progressed and the population of towns 
and cities grew rapidly during the nineteenth century so the problem of 
air pollution became more serious.

Another factor which exacerbated the air pollution problem in the 
emerging industrial centers was their geographical location. Nearly 
all were located in river valleys so that atmospheric dispersion of the 
pollutants was often very poor. Pittsburgh in Pennsylvania is such a 
center and was known as the Smoky City. There, as recently as the 
1940's, it was sometimes necessary to switch on street and vehicle 
lights during the day since it was often difficult even to see the 
opposite side of the street (Faith, 1959). The three most well known 
air pollution disasters in this century have occurred in river valleys 
- the Meuse Valley in Belgium in December 1930, Donora, Pennsylvania in 
October 1948 and London in 1952. The great London smog of 1952 
occurred over the period 5 to 9 December and caused the death of 4,000 
people (UK Govt., 1953). It is generally agreed that the smog 
mortality was due to irritation of the respiratory tract of persons 
already suffering from respiratory or cardiovascular disease (Meetham, 
1964). Such incidents led to legislative action and the reduction of 
emissions so that 'traditional' air pollution in most cities has now
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been greatly reduced.

While significant advances were being made in the fight against 
’traditional' air pollution, a new form was emerging. It was first 
experienced in Los Angeles where little coal had been used and where 
most of the energy requirements had been supplied by burning petroleum. 
This new form of air pollution is now termed photochemical smog since 
it has been shown to be due to a complex sequence of chemical reactions 
initiated by sunlight in atmospheres containing non-methane 
hydrocarbons and nitrogen oxides (Leighton, 1961). The first severe 
episode of photochemical smog occurred in Los Angeles in the late 
summer of 1943 ’when a grey-blue pall settled over the city, burning 
eyes and chafing throats’ (Bart, 1965). This form of air pollution is 
now common in large cities which have significant numbers of motor 
vehicles (Nieboer et al., 1976).

The effects of either traditional air pollution or that 
associated with motor vehicle emissions are usually restricted to 
urban and industrial areas. However, there is now a growing awareness 
that air pollutants emitted in urban areas may contribute significantly 
to undesirable effects over large non-urban regions. For example, 
there is considerable evidence that sulphur dioxide and nitrogen oxide 
emissions into the atmosphere may significantly increase the acidity of 
rainfall over wide areas. Some ecological systems are very sensitive 
to increases in the acidity of rainfall and may suffer serious damage 
as a result (Oden, 1976). The use of very tall chimney stacks as a 
means of minimising ground level concentrations of pollutants (such as 
sulphur dioxide) close to the source may simply help to convert a local 
problem into a regional one. The long range transport of photochemical 
pollutants from New York City has been reported by Cleveland et al. 
(1976) and from Los Angeles by Hanna (1977). In addition, 
photochemical smog clouds covering areas of thousands of square 
kilometers have been reported in Europe (Guicherit, 1976). These cases 
underline the fact that international cooperation may become 
increasingly necessary to solve many of the problems of regional air 
pollution.

Recently there has arisen the spectre of global air pollution 
(Bach, 1976). At the present time there are two areas of major 
concern, namely the increasing atmospheric carbon dioxide levels and
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the possible effects of chlorofluoromethanes (CFM's) on the ozone layer 
in the stratosphere. With respect to the former, there can be no doubt 
that the mean concentration of carbon dioxide in the atmosphere has 
been rising steadily since 1958 when routine measurements began at the 
Mauna Loa Observatory in Hawaii and at the South Pole (Keeling, 1978). 
However, it is generally accepted that this has been occurring since 
the mid-nineteenth century when the use of fossil fuels started to 
become significant. Much of the observed increase in atmospheric 
carbon dioxide levels is attributed to the large scale burning of 
fossil fuels while the role played by deforestation, particularly of 
the tropical rainforests, is still uncertain (see, for example, 
Pearman, 1980). More uncertain are the climatic consequences of a 
continuing increase in atmospheric carbon dioxide levels, which it is 
believed will lead to a global warming effect, particularly in the cold 
and temperate latitudes (Williams, 1978).

The second major concern over global air pollution is that 
relating to CFM's and is of quite recent origin. The alarm was first 
raised by Molina and Rowland (1974) and Rowland and Molina (1975). 
After considerable debate the United States imposed a total ban on the 
use of CFM's as aerosol propellants in April 1979, but the production 
of CFM’s for non-aerosol uses such as refrigerants continues at a high 
level (US Nat Acad Sciences, 1979). No other countries have yet 
introduced any restrictions on the use of CFM's. The political 
decisions to restrict CFM's in the United States have been 
controversial since uncertainty remains in the understanding of 
atmospheric behaviour, of the complex chemical interactions that take 
place in the stratosphere, and of the role that naturally occurring 
chlorine-containing gases may play in the stratospheric chemistry. 
These decisions have been particularly difficult to achieve since large 
industries are based on the manufacture and use of CFM's (Dotto and 
Schiff, 1978).

In the remainder of this chapter it is first proposed to 
introduce some of the concepts which are central to much of the current 
discussion about air pollution control. This is followed by a brief 
review of air pollution modeling in which more than the usual emphasis 
is given to dynamic stochastic models and time series models, since it 
is these types of models which will be considered in this thesis. Two 
additional points should be made, however, before concluding the
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present section.

First, in the discussion to this point various scales of air 
pollution have been implied. Stern (1970) provides a useful guide to 
the dimensional scales of air pollution systems which is reproduced 
here as Table 2.1.

TABLE 2.1

Scales of Air Pollution Systems

System Vertical Scale Temporal Scale
global atmosphere decades
national stratosphere years
state troposphere months
regional lowest mile days
city block heights of buildings hours

The various scales are linked because as the horizontal scale is 
changed there are corresponding changes in the vertical and temporal 
scales. The temporal scale can be interpreted as the approximate time 
for the more immediate effects to manifest themselves, or the time 
period inherent in any immediate corrective or management action. In 
this thesis attention will be restricted to the two smallest of the air 
pollution systems in Table 2.1, namely the regional and city block 
systems.

Secondly, the literature relating to the whole subject of air 
pollution is now very large, and except for a brief review of urban air 
pollution modeling in Section 2.4, no attempt will be made to review 
this. We merely note that there are many good texts on the various 
aspects of the subject (for example, Magill et al., 1956; Williamson, 
1973; and Seinfeld, 1975) with the most comprehensive treatment 
probably being the third edition of Stern (1976).

2.2 Air Quality

The growing awareness of environmental issues in the past two 
decades has led to the use of the now ubiquitous concept of ’quality of 
life'. Embodied in this concept is the realisation that the good
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health and well-being of individuals and societies depends on many 
factors besides those which merely sustain survival. Air quality is a 
very important aspect of the quality of life both for reasons of public 
health as well as for reasons of aesthetics. However, a direct 
definition of air quality is not feasible. We thus choose to indicate 
three relevant aspects - its public good nature, air quality criteria 
and air quality standards.

It has been pointed out by Spofford (1975) that air quality 
exhibits some of the characteristics of a public good and that the air 
itself may be considered as a common property resource. There are two 
essential characteristics of the consumption of a public good -

(i) non-excludability - it cannot be provided to one person 
without others being able to consume it; and

(ii) non-rivalness - the consumption of it by one member of 
society does not reduce the quantity available for 
consumption by others.

The public good nature of environmental quality in general and air 
quality in particular has been discussed by Seneca and Taussig (1974). 
The air is an example of a common property resource which cannot be 
owned privately. Hence the market system fails to assign the full cost 
to users of the resource, and there is an incentive for individuals or 
organisations to overexploit it, imposing unsolicited costs (less 
frequently, benefits) on others.

Because of these properties of the atmosphere, there is a need 
for a collective choice mechanism to improve the utilisation of this 
common property resource and, hopefully, to achieve more socially 
acceptable levels of air quality. It is for these reasons that 
governments have accepted some responsibility for management of air 
quality. Such management has been, and continues to be, difficult 
because of the complexity of the problem and the lack of important 
knowledge about the effects on humans of long term exposure to a 
variety of pollutants (see, for example, Lave and Seskin, 1976 and the 
discussion of their paper by Whittenberger, 1976 and by Tukey, 1976).

Air quality criteria describe the state of our knowledge of the
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relationship between pollutant concentrations in the air and the 
associated adverse effects (the dose-response relationship). These 
adverse effects may be on human health, plants, animals, materials, 
ecosystems or climate. Present knowledge of these dose-response 
relationships is far from complete, particularly in the area of the 
synergistic effects on human health of exposure to several different 
pollutants.

Air quality standards are legal limits placed on the average
levels of ambient air pollutants. Such standards are expressions of
public policy and are based upon consideration of the air quality
criteria together with a broad range of economic, political, technical
and social constraints. Consequently, air quality standards have
evolved differently in different countries (Newill, 1977). It should
be mentioned, however, that at present there are many air pollutants
for which there are no air quality standards. These standards may be
specified in a variety of ways, but the most common method involves the
specification of an averaging time, an average concentration (over the
averaging time) and a frequency of occurrence. For example, the
primary ambient air quality standard for oxidants in the United States

»12.is an average concentration of oxidants (measured as ozone) of 0.H3 
parts per million (ppm) for any one hour period which is not to be 
exceeded more than once per year.

Air quality standards are subject to revision as more knowledge 
of dose-response relationships becomes available or as better emission 
control techniques are developed. Thus in 1978 the United States 
primary standard for oxidants was relaxed from 0.08 ppm to 0.10 ppm. 
Also, it has been reported recently by Ott and Mage (1978) that the 
present United States national ambient air quality standard for carbon 
monoxide does not necessarily protect a non-smoking individual from 
levels of carboxyhaemoglobin in the blood in excess of two percent. 
These findings may require the standard to be specified more 
accurately.

2.3 Measuring and Monitoring Air Pollution

If we are to have air quality standards then there must be 
standards for the measurement of air pollution. Measurements of air 
pollutants are made with a large variety of instruments based upon many
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different analytical techniques. The so-called ’wet chemical* methods 
are increasingly being replaced by the usually more reliable and more 
specific physical methods of measurement. These physical methods have 
been surveyed by Bryan (1976). However, the physical methods are not 
without their problems and Monkman (1976) has drawn attention to poor 
design and poor manufacture in some instruments. Often there are 
alternative methods available for the measurement of a particular 
pollutant and it is now the usual practice for governments to specify a 
reference method for the measurement of each particular pollutant. 
Alternative methods must then be demonstrated to produce results which 
are equivalent to those obtained from the reference method.

Most of the analysers used for the measurement of air pollution 
are continuous (rather than discrete) analysers and the dynamic 
properties of these have been described by Larsen et al. (1965), 
Saltzman (1970) and Schnelle and Neeley (1972). It is important for 
the time resolution of continuous analysers to satisfy the objectives 
of the measurement program, and in particular to be dynamically fast 
enough so that transient violations of air quality standards will be 
detected. The dynamic properties of continuous analysers will be 
considered in some detail in Chapter 4.

Most air pollution measurements are made at fixed locations. The 
data obtained from such a fixed monitoring station can, in the 
strictest sense, only be associated with that particular point. 
However, it is common practice to assume that data from a fixed station 
represent the air quality in a certain geographical area surrounding 
the station. Whether this assumption is reasonable depends on a number 
of factors such as the type of pollutant, the time period over which 
the pollutant concentrations are averaged and the proximity of the 
monitoring station to local pollution sources. In general this 
assumption is more reasonable for longer averaging times such as one 
month or one year. However, if pollutant concentrations averaged over 
shorter periods (such as one day or one hour) are of interest then the 
assumption may be invalid. Certainly the findings of Goldstein and 
Landovitz (1977a, 1977b) seem to indicate that in New York City the 
daily average measurements of sulphur dioxide and sraokeshade obtained 
at 40 air monitoring stations do not adequately represent the areas 
surrounding each station.
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The siting of monitoring stations for carbon monoxide is 
particularly difficult since Ott (1972) has shown that eight-hour 
carbon monoxide concentrations can vary by a factor of three between 
sites which are less than three kilometers apart. Some guidelines for 
the selection of sites for carbon monoxide monitoring have been 
provided by Ludwig and Kealoha (1975), although it is apparent that 
there is no perfect station siting plan (Bryan, 1976). Generally it is 
necessary to strike a balance between the density of the monitoring 
network and the costs of operating the monitoring program. There have 
been calls for development of procedures such as small and unobtrusive 
individual air pollution monitors in order to obtain better estimates 
of air pollutant exposure in urban populations (Morgan and Morris, 
1977). Such devices may be able to provide data which supplement those 
from the fixed monitoring stations.

Fully automated air quality monitoring systems which use 
telecommunications to provide a direct link between the field 
monitoring stations and the central office of the control agency have 
been described by Zimmer (1976). These fully automated systems may 
operate in delayed batch mode or real time mode. The delayed batch 
mode is the more common, with data being measured and recorded at the 
field station and transmitted to the central office only once or twice 
a day. In the real time mode the data are transmitted from the field 
station to the central office as the data are being recorded. The real 
time mode permits real time modeling and instantaneously provides data 
for management decision making, but the high costs of a real time 
system do not justify its use in most situations.

Finally, it should be remembered that the data obtained from 
fixed monitoring stations normally provide the basis for calibration or 
validation of air pollution models. This fact should be recognised in 
the siting of monitoring stations so that maximum use can be made of 
the data they provide in air pollution modeling studies.

2.4 Urban Air Pollution Modeling

Air pollution modeling for entire urban areas is a relatively 
recent development. The first such model was suggested for the Los 
Angeles area by Frenkiel (1956). Since that time there has been a 
rapid growth in the use of mathematical models to simulate the
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dispersion of airborne pollutants over cities. The subject area of 
urban air pollution modeling has been reviewed by several authors (for 
example, Fan and Horie, 1971; Johnson, 1974; Pasquill, 1974; Hanna, 
1975; Eschenroeder, 1975; Johnson et al., 1976; Turner, 1979; and 
Johnson, 1979a) and no attempt is made here to provide a comprehensive 
review of the subject. Rather, the various types of models are briefly 
described while discussion of the modeling of dispersion of vehicular 
pollutants from roadways will be deferred until Chapter 6. More 
emphasis than usual is given to stochastic and time series models since 
these have received relatively little attention in the reviews.

2.4.1 Mass Conservation Models

The mass conservation approach gives rise to two main types of 
models, namely the Eulerian or multibox and the Lagrangian. In the 
Eulerian models the atmosphere over a region is divided into boxes by 
specifying a fixed horizontal grid and restricting attention to a layer 
of air between the ground and an upper boundary, usually the inversion 
base. The number of vertical divisions is usually kept fixed and 
variation of the height of the inversion base is allowed for by 
variation of the vertical dimension of the boxes. By contrast the 
Lagrangian models are characterised by a framework which moves with the 
air mass. However, wind shear causes distortion of the framework which 
poses difficulties such as the accurate introduction of source 
emissions to the system. This problem can be avoided by considering 
the movement of only a single cell, models of which are known as 
trajectory models.

The solution of both the Eulerian and Lagrangian formulations 
presents problems. For example, the accurate treatment of the 
advective terms is difficult in the Eulerian formulation, while in the 
Lagrangian formulation the difficulty encountered in specification of 
the turbulent diffusion term usually leads to it being ignored. The 
concepts of advection and turbulent diffusion are described in more 
detail later in this sub-section.

An alternative to either the Eulerian or Lagrangian formulations 
is the particle-in-cell method which Sklarew et al. (1972) have 
modified to include diffusive transport. This is essentially a hybrid 
of the Eulerian and Lagrangian formulations, in which the mass of



21

p o l l u t a n t  i s  d i v i d e d  i n t o  e q u a l  d i s c r e t e  e l e m en t s  ( p a r t i c l e s )  so t h a t  

each  p a r t i c l e  may be c o n s i d e r e d  as  a L ag ran g ia n  c e l l  moving i n  r e l a t i o n  

to  a f i x e d  E u l e r i a n  framework.. The number of  p a r t i c l e s  i n  each 

E u l e r i a n  c e l l  a t  any t ime i s  t h e n  used to  i n d i c a t e  the  mean 

c o n c e n t r a t i o n  of  p o l l u t a n t  i n  t h a t  c e l l  a t  t h a t  t im e .

Johnson  e t  a l .  (1976)  have compared the  c o m p u t a t i o n a l  

r e q u i r e m e n t s  of  E u l e r i a n ,  L a g r a n g ia n  and p a r t i c l e - i n - c e l l  models  and 

c o n c lu d e  t h a t  each of  the  t h r e e  t y p e s  has  c o m p u t a t i o n a l  a d v a n ta g e s  f o r  

s p e c i f i c  a p p l i c a t i o n s .  While  c o n s i d e r a t i o n  of  t h e  c o m p u t a t i o n a l  

r e q u i r e m e n t s  i s  i m p o r t a n t ,  i t  sho u ld  not  be t h e  on ly  c r i t e r i o n  used f o r  

t h e  s e l e c t i o n  of a p a r t i c u l a r  model s i n c e  t h e  d a t a  r e q u i r e m e n t s  of  

models  may d i f f e r  g r e a t l y  and t h e  d a t a  p r e p a r a t i o n  may p l a c e  heavy 

demands on c o m p u ta t io n  t ime ( Jo h n s o n ,  1980a) .  In  t h e  f o l l o w i n g  

d e s c r i p t i o n  of the  mass c o n s e r v a t i o n  a pp roach  to  a i r  p o l l u t i o n  model ing  

a t t e n t i o n  i s  l i m i t e d  to  the  E u l e r i a n  f o r m u l a t i o n .  Th is  i s  done bo th  

f o r  s i m p l i c i t y  o f  e x p o s i t i o n  and to  i n t r o d u c e  th e  type  of  model which 

i s  examined i n  C hap te r  7.

The m a t h e m a t i c a l  f o r m u l a t i o n  of  models  based  upon th e  mass 

c o n s e r v a t i o n  a pproach  u s u a l l y  beg ins  w i t h  the  c o n t i n u i t y  e q u a t i o n  

( 2 . 1 ) ,  which  d e s c r i b e s  t h e  b e h a v io u r  of  N c h e m i c a l l y  r e a c t i v e  

c o n s t i t u e n t s  suspended  i n  a f l u i d

3c. 3 ( u c . )  3 ( v c . )  3(wc.)
1  +  — +  — — i —

3y

3 2 i

v- +
3 2 c

3y2

3 2 c

- )  + R. + S., 2 i i

( 2 . 1)

where c^ i s  t h e  i n s t a n t a n e o u s  c o n c e n t r a t i o n  of  t h e  i t h  c o n s t i t u e n t  a t  

the  p o i n t  ( x , y , z )  and t ime t  i n  a r e c t a n g u l a r  c o - o r d i n a t e  

sys tem

u,  v ,  w a r e  t h e  i n s t a n t a n e o u s  v e l o c i t y  components  d e s c r i b i n g  

t h e  motion of t h e  f l u i d  a t  t h e  p o i n t  ( x , y , z )  a t  t im e  t  

D-j_ i s  t h e  m o le c u la r  d i f f u s i v i t y  of  t h e  i t h  c o n s t i t u e n t  

R-l i s  t h e  n e t  r a t e  of  change of  c o n c e n t r a t i o n  of  t h e  s p e c i e s  i  

due to  c h em ica l  r e a c t i o n  and w i l l  be a f u n c t i o n  of  t h e  

c o n c e n t r a t i o n  terms c ^ ,  C2 , . . . ,  Cjj and the  f l u i d
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temperature, and
Si is the net rate of change of concentration of the species i 

due to sources and sinks and will in general be a function of 
position (x,y,z) and time t.

While equation (2.1) is often used as the fundamental equation 
describing the behaviour of air pollutants in the atmosphere, it is 
important to remember that it constitutes only one of f ive coupled 
fundamental equations describing all aspects of the interaction between 
chemically active constituents in a fluid (Lamb, 1971). However, since 
concentrations of air pollution in the atmosphere rarely exceed levels 
of a few parts per million by volume, the presence of air pollutants 
will cause only negligible changes in atmospheric density and 
negligible changes to the heat balance of the atmosphere. An important 
exception is the attenuation of solar radiation by air pollution over 
urban areas (Bach, 1971). Nevertheless, the reasonable assumption is 
made that the presence of the air pollutants in the atmosphere does not 
alter the meteorology and on this basis equation (2.1) becomes 
uncoupled from the other four fundamental equations and may be solved 
separately. Moreover, the fluid velocities u,v,w in (2.1) may be 
considered independent of the concentration terms c^.

In dealing with turbulent flow in fluids it is customary to
assume that the overall motion can be resolved into a fluctuating
component superimposed on a general mean flow. Consequently, the 
instantaneous velocity components are usually represented in a
rectangular co-ordinate system as the sum of deterministic mean
velocities (u,v,w) and zero mean stochastic terras 
(uf,v ',w *)

u = u + u'

V = V + v' (2.2)

w = w + w*

The instantaneous concentration terms are themselves random
variables which are similarly represented

c .l + (2.3)
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while for Che purposes of air pollution modeling it is usual to assume 
that the atmosphere is incompressible, so that

3ü 3v 3w
3x 3y 3z 0 (2.4)

Substitution of equations (2.2) and (2.3) into (2.1) followed by 
expansion, rearrangement, use of the assumption of incompressibility 
(2.4) and finally ensemble averaging leads to the following equation

3 < c . >l 3 < c . >
l

3 < c . >
l

3t -U 3x v 3y

3 < v Tc:>
1

3 < w ’c!>
1

3y 3z

32< c .>

+ äP* +  < R .> +
l

w

+ D.l

g
i

3<c >
3z

3 2 < c .>. l

3<u'c!>_____ l
3x
32<c >
3y' (2.5)

where < > denotes the ensemble average (see, for example, Batchelor, 
1960).

The equation (2.5) may be interpreted as meaning that the time 
rate of change of mean pollutant concentration is caused by advection 
or transportation of the mean concentration by the mean wind (the first 
three terms on the right-hand side), transportation of the 
concentration fluctuations by the correlated velocity fluctuations (the 
fourth, fifth and sixth terms on the right-hand side), molecular 
diffusion, the chemical reactions, and the rate of change due to 
sources and sinks.

The terms such as 3<u c.>/3x mean that there is al
closure problem and analytic solutions of equation (2.5) cannot be 
found (Lamb, 1971). Since there is generally little knowledge of the
stochastic fluctuation terms it is usual to hypothesise that terms such

• « of .as <u c / canl
concentration

approximated by a diffusion mean
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<u’c !>l -K
9 < c . >l

x 9x

<v c .> = -K
9 < c . >l

y 3y

< w 'c .> 1 -K
9<c. >l

z 9z

(2.6)

where K^, Ky and Kz are the eddy or turbulent dif fusivities and 
are generally functions of space and time. The approximations in (2.6) 
can be based upon the mixing length theory of the gradient transport 
description of diffusion (Pasquill, 1974). It should be noted that it 
is the terms such as <u c^> which lead to the notion of 
turbulent diffusion. Turbulent diffusion is thus not an inherent 
phenomenon of fluid motion but simply an artifact of the lack of 
complete knowledge of the true velocity field (Lamb, 1971). It is 
clear also that the conceptual separation of dispersion into the 
components of advection and turbulent diffusion arises from the 
assumptions (2.2) made about the fluid velocity components. This is 
not the only way of providing a mathematical treatment of dispersion 
and alternative treatments have been considered, particularly in the 
engineering literature (for example, Buffham and Gibilaro, 1970).

In the usual co-ordinate system adopted for air pollution 
modeling the z-axis is chosen to be normal to the plane of the ground 
and the eddy dif fusivities are then written as Kz = K y (vertical) 
and = Ky = Ky (horizontal). Then substitution of equation
(2.6) into (2.5) and making the assumption that molecular diffusion is 
negligible compared to turbulent diffusion leads to the following 
equation which is known as the advection - diffusion equation

9<c. >
9<c. >l 9<c .>l 9<c.> 9<c.>1 1 3 ( K H 3X1 )

9t ~a 9x v 9y w 9z 9x

(2.7)

9<c. > 9<c. >
3( k h  ay1 > 9<*v 3z1 >- + ------ ------- 4- <R . > + S.

9y 9z i i
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In equation (2.7) the term <R^> will contain terms of the form 
<Cj_Cj> which arise when chemical reactions occur in turbulent 
flow. It is very difficult to assess the importance of such terms 
(Donaldson and Hilst, 1972) and it is usual to assume that <R-̂ > is a 
function of mean concentrations and temperature only.

Of course, assumptions such as the mixing length theory which 
leads to equation (2.7) cannot in general be true in an atmospheric 
boundary layer. As a consequence the diffusion equation (2.7) cannot 
be generally valid for the atmosphere (Calder, 1965). Nevertheless, 
equation (2.7) is still very useful and the conditions under which it 
is valid for describing the transport and reactions of air pollutants 
in the atmosphere have been examined by Lamb (1973) and Lamb and 
Seinfeld (1973). Reynolds et al. (1973) found that the maximum 
temporal and horizontal spatial resolution in the source emission 
function must be 1000 s and 2000 m respectively, so that emissions must 
be averaged over relatively large distances to conform to the 
resolution of equation (2.7). This poses difficulties for the accurate 
treatment of large point sources of pollution, particularly if the 
pollutants are very reactive.

Air pollution models based upon the advection - diffusion 
equation (2.7) are implemented by employing a numerical integration 
procedure to solve the partial differential equation. Finite 
-difference methods used to solve the equation may cause a pseudo or 
numerical diffusion which is due to errors in approximating the 
advective terms (Molenkamp, 1968). Various procedures have been 
suggested to overcome or minimise this numerical diffusion. Sklarew et 
al. (1972) use the particle-in-cell method modified to include 
diffusive transport. However, a large number of particles is necessary 
to obtain acceptable accuracy. Egan and Mahoney (1972) use a method of 
moments which requires computation of the zeroth, first and second 
moments of the concentration distribution within each grid element. 
Boris and Book (1973) utilise a technique called 'flux correction' 
while Christensen and Prahm (1976) use a pseudospectral method.

If in equation (2.7) the eddy diffusivities are constant and 
independent of x, y or z and <R^> = Sj_ = 0 then the simplified 
equation will describe Fickian diffusion. Analytic solution of the 
equation is then possible and, in the absence of boundaries, the
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solution is Gaussian. For example, in the case of a ’puff' of 
pollution generated by an instantaneous release from a point source, 
the distribution of pollutant with respect to distance from the center 
of the 'puff' is Gaussian. It is this result which has given rise to 
the so called Gaussian diffusion models.

2.4.2 Gaussian Diffusion Models

The Gaussian diffusion models are the most widely used models for 
describing the dispersion of primary pollutants. In fact, all eleven 
dispersion models currently available on the United States
Environmental Protection Agency's User's Network for Applied Modeling 
of Air Pollution (UNAMAP) are Gaussian models (Turner, 1979). Lamb 
(1971) has shown that the so-called Gaussian puff and Gaussian plume 
models may be derived as special solutions of equation (2.5) but since 
the latter are much more common than the former they will be described 
first. Their essential nature can be best appreciated if they are 
derived from first principles as shown by Johnson (1979a).

The derivation of the Gaussian plume models is based upon the 
assumptions that:

(i) both the meteorological conditions and the pollutant
emission rates are steady, so that an equilibrium
situation has been achieved;

(ii) a single horizontal wind speed u and single wind
direction, valid for the whole region, may be specified;

(iii) the effect of the turbulent motion of the atmosphere is 
to produce cross-wind and vertical concentrations of 
pollutant which are normally distributed and independent; 
and

(iv) the pollutant is unreactive.

Assumption (iii) has been partially substantiated by field 
experiments such as those described by Barad (1958). As is 
conventional, a rectangular co-ordinate system is chosen with the 
x-axis aligned with the wind direction and the z-axis normal to the 
ground so that cross-wind and vertical standard deviations of pollutant 
concentration can be represented by <jy and az respectively. If the 
conservation of mass is invoked and a mixing layer of infinite depth is 
assumed, then the Gaussian plume models for single point, line and area
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sources may be derived by suitable integration (Johnson, 1979a). Since 
the ground is a barrier to the dispersion of pollutant, it is usually 
assumed that it behaves as a perfect reflector. Thus for a continuous 
point source at the point (0,0,H) emitting pollutant at a steady rate 
of Q (in units of mass per unit time), reflection of the pollutant at 
the ground is modeled by means of an identical imaginary source at the 
point (0,0,-H). Remembering that u is the horizontal wind speed, the 
Gaussian plume formula for such a point source gives the concentration 
c at any point downwind of the source as

c(x’?’z) = exp( 2 ^  ' (Z2'ä'2'H“  ) (2-8)y z y Z

The standard deviation terms Oy and az are usually expressed 
as empirical functions of both distance downwind from the source and 
atmospheric stability. The wide range of atmospheric stability 
typically is represented by a relatively small number of categories 
(usually six). The choice of these and the specification of the terms 
Oy and a z have been reviewed by Gifford (1976).

There is a wide variety of Gaussian plume models in use, some of 
which have been modified to allow for an increase of wind speed with 
height (Turner, 1979). While these models have the advantage of 
simplicity they do have limitations such as an inability to perform 
satisfactorily when wind speed is very low and its direction is poorly 
specified (Johnson et al., 1976). Gifford (1968) gives a good account 
of Gaussian plume models while Turner (1979) considers various sources 
of errors in these models and makes suggestions for improving their 
performance. Perhaps the most controversial aspect of the use of 
Gaussian plume models is their application in areas of rough terrain 
because tracer experiments over such terrain have not been performed. 
Thus the validity of the assumptions in the Gaussian plume model cannot 
be tested adequately (Budiansky, 1980).

The Gaussian puff model was developed to overcome some of the 
limitations of the Gaussian plume models, particularly the steady state 
assumption and the poor performance in light winds. The Gaussian puff 
model treats emissions as a series of puffs which may follow different 
trajectories and have different rates of diffusion. This type of model
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appears Co perform very well (Roberts et al., 1970) but it has not been 
widely used. This is somewhat surprising because although the Gaussian 
puff model requires extensive calculations these can readily be 
performed on a computer. In fact, the data requirements and 
computational load of the Gaussian puff model are probably similar to 
those of an Eulerian model simulation for the same urban region. 
However, the author is not aware of any comparison of these two types 
of models.

2.4.3 Physically Based Stochastic Dispersion Models

The Gaussian diffusion models may be considered deterministic, 
and the models based upon the mass conservation equation may also be 
considered deterministic even though the fluid velocity components are 
treated as random variables. Implicit in the formulation of these 
models is the assumption that variables such as mean pollutant 
concentration and emission rates can be measured exactly. In view of 
the discussion in Chapter 1 it would seem highly desirable to make some 
explicit allowance for uncertainties in the knowledge of the airshed 
system, and several authors have attempted this.

Desalu et al. (1974) begin with the advection-diffusion equation 
(2.7) and reduce it to a linear discrete difference equation in which 
the input terms are pollutant sources, transportation of pollutants by 
the wind (the advection term) and the boundary conditions. They then 
develop a stochastic model using a state-space representation of the 
system in which allowance is made for stochastic inputs and noisy 
observations of pollutant concentration. Since the discretisation 
implies a subdivision of the region of interest into grid cells, the 
states of the system are taken to be the average value of the 
distribution of pollutant concentration in each cell at each time 
instant. The state estimates are generated by use of a modified Kalman 
filter method. The Kalman filter may be thought of as an estimation 
technique which utilises knowledge of the observations, the process 
dynamics and the noise statistics. It combines all the information 
available up to and including the time of the latest measurement to 
generate the state estimates at that time.

Desalu et al. (1974) go on to describe a simple simulation 
example of dispersion of sulphur dioxide from a single elevated
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continuous source, and compare the downwind ground-level pollutant 
concentrations estimated from their dynamic model with those obtained 
from the steady state Gaussian plume model of equation (2.8). They use 
the conventional co-ordinate system, assume an inversion layer of 
constant height as the upper boundary, and divide a region downwind of 
the source into 500 grid cells of fixed dimensions. The estimation of 
the resultant state vector of dimension 500 creates a very large 
computational burden for a normal Kalman filter technique. They 
therefore use a modified technique which bypasses direct calculation of 
the error covariances. While they find that their model gives 
reasonably similar results to the Gaussian plume model they realise 
that such a comparison does not illustrate the full capability of their 
model because in such a comparison their model is restricted to a 
steady input and the stochastic terms are set to zero.

Bankoff and Hanzevack (1975) have also developed a stochastic air 
pollution model based upon the advection-diffusion equation (2.7). 
These authors address the problem of short term or incident control of 
urban air pollution (where real-time prediction of pollution levels is 
essential) and introduce an adaptive, or learning, algorithm to the 
overall model so as to allow for on-line corrections (based on incoming 
measurements) to predicted concentrations and selected model 
parameters. The on-line correction procedure is based upon the Kalman 
filter technique. They apply their stochastic model to the problem of 
the estimation of sulphur dioxide concentrations at eight monitoring 
stations in the Chicago area during a short term pollution incident. 
Comparison of the pollutant concentrations over periods ranging from 
one to four hours predicted by their model and by a Gaussian puff model 
(using the same data) showed their model to be significantly better.

More recently, several authors have modeled sulphur dioxide 
pollution in the Venetian Lagoon area. Runca et al. (1976) show that a 
Gaussian plume model is satisfactory for describing long term (three 
month or twelve month) average pollutant concentrations in the region 
but is unable to provide an adequate description over shorter periods. 
For the latter task, and especially for forecasting air pollution 
episodes (that is, periods of hours or days of greatly elevated 
pollutant concentrations), Runca et al. (1979) and Fronza et al. (1979) 
have developed both deterministic and stochastic models based upon the 
advection-diffusion equation (2.7). The deterministic model
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formulation is solved by means of a fractional step algorithm and they 
use a non-uniform grid spacing in all directions. This allows for fine 
grid spacing in areas of particular interest and the location of grid 
points at monitoring stations, thus avoiding the need for interpolation 
when comparing model output and measured data. The deterministic model 
performs adequately under ’normal' pollution conditions but it is 
unsatisfactory for the forecasting of pollution episodes. They 
overcome this problem by means of a stochastic model which is derived 
from the deterministic model by the incorporation of suitably defined 
noise terms. Application of the stochastic model is restricted to 
small grid subregions so that relatively few state variables require 
calculation. These authors examined three separate subregions with 18, 
18 and 16 state variables respectively. The stochastic model provides 
forecasts by means of a Kalman filter technique and the four-hour ahead 
forecasts during pollution episodes show a dramatic improvement over 
those obtained from the deterministic model.

The stochastic model formulations described in this section can 
be seen as belonging to the category of models mentioned in Chapter 1, 
namely those which consist of a deterministic system component and a 
stochastic noise component. This category of models will be considered 
in more detail in Chapter 3. Although the results described in this 
section are not conclusive, it seems clear that stochastic formulations 
of air pollution models based on the advection-diffusion equation (2.7) 
are generally superior to purely deterministic formulations, at least 
for real-time prediction of air pollution levels. At first sight this 
may appear a little odd, but it is suggested that these findings 
support the hypothesis that models of badly defined systems will in 
general give better performance if they make some explicit allowance 
for the uncertainties in the system.

2.4.4 Statistical Models and Time Series Models

For control and management of air pollution there are
alternatives to the types of models described so far. These are the 
statistical models which are based upon data analysis. Of course,
analysis requires the existence of appropriate data and/or the planning 
of experiments for the collection of such data. The linear rollback 
models are of this type and are based upon the simple concept that 
pollutant concentrations are proportional to emissions. This concept
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cannot be useful for secondary pollutants such as photochemical 
oxidants, and a modified rollback procedure has been suggested for such 
cases (see, for example, de Nevers and Morris, 1975). Other types of 
statistical models relate ambient pollutant concentrations to 
meteorological factors and pollutant emissions (for example, Hanna, 
1971) or some surrogate measure of emissions (see, for example, Smith 
and Jeffrey, 1972). Several other statistical models have been 
described in the reviews by Hanna (1975) and Johnson (1979a).

A class of statistical air pollution models which is of 
particular interest here is the time series models. The methods of 
analysis used in the construction of such linear time series models are 
well described in the pioneering publication of Box and Jenkins (1970). 
A Box-Jenkins model form will be considered in some detail in Chapter 
3, but for now it should be emphasised that normally such models are 
not mechanistic and only provide an empirical description of the data. 
A guiding principle in the choice of such time series models is that of 
parsimony, that is, a model is sought which has few parameters and at 
the same time provides a good description of the data. This is also 
the essence of the modeling methodology proposed by Young (1978) and 
described in Chapter 1. The presence of over-parameterisation in 
models may make them unreliable if they are used for prediction. 
Box-Jenkins techniques are also able easily to handle time series which 
have high serial correlations (as do most air pollution and 
meteorological time series) or an autoregressive and/or moving average 
character. By contrast, ordinary regression techniques cannot handle 
time series with a moving average character.

The linear time series models in the literature can be divided 
into two categories. Firstly, there are the purely stochastic models 
in which some variable or transformation of it is assumed stationary in 
a probabilistic sense and in which statistical patterns are deduced 
from the data. The models generally utilised are autoregressive (AR), 
moving ayerage (MA) or autoregressive moving average (ARMA). Time 
series which exhibit non-stationary behaviour (as do many air pollution 
time series) may often be transformed by suitable differencing of the 
original series to produce a behaviour which may be considered 
stationary. Such differencing procedures lead to the ARIMA 
(autoregressive integrated moving ayerage) model, but use of these 
differencing procedures can be dangerous since amplification of the
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noise may occur. The second category of time series models is the 
transfer function models which are composed of a deterministic system 
component (with input variable(s)) and a stochastic noise component. 
These will be considered in detail in Chapter 3.

Most of the time series air pollution models described in the 
literature are of the purely stochastic type. Thus Merz et al. (1972) 
described univariate ARIMA models for several air pollutants in Los 
Angeles and were able to discern trends which were qualitatively in 
agreement with the expected changes in air quality resulting from 
programs to control emission of air pollutants. Similar types of 
models for several air pollutants in Riverside, California, have been 
described by Chock et al. (1975) who find an anomaly in the trend of 
carbon monoxide levels which they are unable to explain. This 
illustrates the value of simple time series models for purposes of data 
verification whereby errors such as those due to calibration faults 
would readily become apparent. For their modeling studies both Merz et 
al. (1972) and Chock et al. (1975) use time series which consist of the 
logarithms of the pollutant concentrations rather than the pollutant 
concentrations themselves.

McCollister and Wilson (1975) describe two purely stochastic 
univariate time series models used to forecast concentration of carbon 
monoxide and photochemical oxidant in Los Angeles. One model utilises 
past daily maximum concentrations to forecast daily maxima while the 
other model utilises hourly concentrations to provide forecasts of 
hourly concentrations. Both models were found to provide forecasts 
which were significantly more accurate than forecasts based upon 
persistence (that is, forecasting the concentration at the next time 
instant(s) to be the same as that measured at the present time 
instant). Similar findings are reported by Sawaragi et al. (1979) who 
compare the performance of four non-physical models for predicting air 
pollutant concentration at times of one, two and three hours in 
advance. The four types of models which they consider are a 
persistence model, an autoregressive model, an ARIMA model and a 
multiple linear regression model. The first three of these models are 
purely stochastic in nature whereas the fourth incorporates 
meteorological variables. The prediction accuracy of the models was 
measured by means of three performance indices, the simplest of which 
is the sum of the squares of the prediction errors. The persistence
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model consistently shows the poorest performance of the four models, 
with the autoregressive model the best for prediction at one hour in 
advance and the multiple linear regression model the best for 
prediction at two or three hours in advance. These findings of
Sawaragi et al. (1979) are not necessarily inconsistent with the 
comment in Chapter 1 that linear regression analysis may not be 
applicable for modeling dynamic systems, since regression models of
dynamic systems may yield unbiased predictions of the dependent 
variable (see Johnston, 1972). If however, the parameter estimates 
found by regression•methods are used themselves to make any inferences 
about the physical nature of the dynamic system being modeled, then 
errors may result.

The reliability of air pollution forecasts provided by ARIMA 
models has been improved by Finzi et al. (1979) through the explicit 
incorporation of meteorological inputs, yielding the so-called ARMAX 
model (ARMA with exogenous inputs) frequently used by economists and 
statisticians (see, for example, Rowe, 1970). Their ARMAX model, an
example of a transfer function model, is used to obtain reasonably 
accurate real-time forecasts of daily and hourly concentrations of
sulphur dioxide in the Venetian Lagoon area.

While the purely stochastic time series models are useful for 
providing real-time forecasts of air pollution concentrations they 
suffer from the drawback that they do not explicitly relate emission to 
the air pollution concentrations as do the Gaussian models or the 
models based upon the advection-diffusion equation (2.7). Thus if a 
violation of an air quality standard is predicted to occur by a purely 
stochastic model, the type or degree of emission control required to 
avert the pollution episode cannot be specified by the model. This 
drawback of the purely stochastic models can be overcome by the 
development of input-output stochastic models (the transfer function 
and ARMAX models mentioned earlier) which d<D describe the relationship 
between inputs such as emissions and/or meteorological variables and 
outputs which are usually ambient pollutant concentrations. For 
example, Chock et al. (1975) describe a transfer function model which 
relates photochemical oxidant (output) to three meteorological 
variables (inputs) but their model does not include pollutant emission 
explicitly.
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More recently Tiao and Hillmer (1978) have described an 
interesting approach to the modeling of carbon monoxide and lead levels 
at several closely related locations in Los Angeles. While their 
models are not of the linear transfer function type, their approach has 
similarities to that adopted in this thesis. Firstly, they rely heavily 
upon analysis of data and then use statistical procedures to estimate 
parameter values in their proposed models. Secondly, they make some 
explicit allowances for uncertainty in the system by incorporation in 
their model of an additive noise or error term. They then assume that 
the noise sequence is normally distributed with zero mean. This 
approach of Tiao and Hillmer (1978) will be examined in more detail in 
Chapter 6 where another approach to the modeling of carbon monoxide 
levels is described.

In summary, the applicability of transfer function models in air 
pollution modeling has so far received scant attention. Since suitable 
transfer function models offer the advantages of being stochastic as 
well as incorporating the relevant emission and meteorological 
variables as inputs, they are proposed as an alternative to the other 
types of models described in this chapter. Further, if the parameters 
in the transfer function models are estimated by the recursive 
procedures described briefly in the next chapter it is believed that 
further flexibility is achieved in this approach to modeling, since 
time variation of the model parameters can be readily investigated.
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Chapter 3

RECURSIVE METHODS FOR THE IDENTIFICATION AND ESTIMATION 
OF TIME SERIES MODELS

3.1 Introduction

In Chapter 1 the four stages of the model building procedure 
adopted in this thesis were briefly described and the general form of 
the preferred time series model was introduced. In addition the 
concept of recursive procedures for the identification and estimation 
of time series models was outlined. Part of the identification 
procedure is the estimation of parameters which are allowed to be time 
varying. This is accomplished by a minor modification to the usual 
recursive estimation algorithm. In this chapter it is proposed to 
amplify these points so that the concepts and methods frequently used 
in subsequent chapters may be referred to conveniently.

3.2 Recursive Estimation

It may be recalled from Chapter 1 that recursive estimation is a 
procedure in which estimates (such as parameter or state estimates) are 
obtained at each sampling instant by working serially through a data 
set a sample at a time. Thus recursive estimation procedures can be 
contrasted with the more familiar enn bloc methods in which the whole 
data set is processed in a single operation. The notable feature of 
recursive estimation algorithms is that they provide an estimate at any 
particular ' sampling instant simply by updating the estimate at the 
previous sample by means of a correction term which itself is composed 
of terms relevant to either the previous or present sample. It does 
not seem to be widely known, but the familiar least squares procedure 
for estimating the single unknown parameter ’a’ in the regression 
relationship

yi ax. + e . l yi (3.1)

may be formulated as a recursive procedure. In (3.1) it is assumed 
that the regression variable x^ is exactly known for all samples (i = 
1, 2, ... , k) and that ey^ is the error or noise associated with the
measurement of y^. If we denote the least squares estimate of the
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parameter *af by a, then a is obtained by minimising the least squares 
cost function J

k k
J = E (y. - x.ä)2 = E e2 (3.2)

i-i 1 1  i-i 1

with respect to a. Differentiation of J with respect to ä and setting 
the result to zero yields the familiar least squares estimate a^ for 
k samples as

k
-1 W

where and b.k
k
E

i= 1
x.y. l l

(3.3)

and the weighting factor of gain p^ is a strictly decreasing function 
of k.

The recursive form of (3.3) may be derived quite simply as shown 
by Young (1981). Firstly it is clear that

k
E x2 

i=l 1
+ (3.4)

k
and . V i yi = bk = \ - l  + V k  (3’3)1=1

Multiplying (3.4) by P^P^-l yields

Pk-1 Pk + Pk \ Pk-l (3-6)

and then further multiplying through by x^ gives us

Pk - A  = pkxk + pkxkpk-i
(3.7)

= Pkxk (1 + Pk - 1 < )
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so that division by the term in brackets gives the expression

Pk’Sc = V l xk(1 + pk-l< )_1 (3.8)

Multiplying (3.8) by Pk-lxk an<̂  using (3.6) gives

v ^ k - i  = pk-i^ (1 +

pk-l * Pk (3.9)

Thus by rearrangement

pk = Pk-1 - pk - l < (1 + Pk - l < )_1 (3.10)

Substitution of this result in (3.3), use of (3.5) and noting that
a^-i = Pk-l^k-1 we obtain the expression

lk-i ' V xA - i  ' yk> (3.11)
where

(3.12)
An alternative expression for k^ can be obtained by writing

\  = (pkpk1)pk - i \ (1 + pk-ixkr l

and substituting the expression for p^  ̂ from (3.4)

\  * Pk (pk-1 + xk)pk-lxk (1 + Pk - l ^ r l

Pk\ (1 + pk-l*k)(1 + Pk-l<rl

PkXk
(3.13)
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The r e c u r s i v e  l e a s t  s q u a r e s  a l g o r i t h m  f o r  the  e s t i m a t i o n  of  the  

s i n g l e  unknown pa ra m e te r  ' a '  i n  t h e  r e g r e s s i o n  r e l a t i o n s h i p  ( 3 . 1 )  i s  

t h u s  g iv e n  by e q u a t i o n s  ( 3 . 1 0 ) ,  ( 3 . 1 1 )  and ( 3 . 1 2 )  or  ( 3 . 1 3 ) .  I t  i s  

c l e a r  t h a t  t h e  e s t i m a t e  ä a t  t h e  k t h  i n s t a n t  i s  a l i n e a r  sum of t h e  

e s t i m a t e  a t  the  ( k - l ) t h  i n s t a n t  and a c o r r e c t i o n  term based  upon the  

d a t a  a t  t h e  k t h  i n s t a n t  and th e  e s t i m a t e  ä a t  t h e  ( k - l ) t h  i n s t a n t .  In  

o r d e r  to  use  the  r e c u r s i v e  a l g o r i t h m  ( 3 .1 0 )  to  ( 3 . 1 2 )  i t  must be 

i n i t i a t e d ,  and t h i s  may be a c h i e v e d  i n  two ways. F i r s t l y ,  a^ and 

Pl can be c a l c u l a t e d  from th e  n o n - r e c u r s i v e  l e a s t  s q u a r e s  a l g o r i t h m  

( 3 . 3 )  so e n a b l i n g  th e  r e c u r s i v e  a l g o r i t h m  to  be used  f o r  a l l  s u b s e q u e n t  

s a m p le s .  Se c ond ly ,  t h e  v a lu e  of  a Q can  be s e t  to  some a r b i t r a r y  

f i n i t e  v a lu e  such  a s  z e ro  w h i l e  P0 i s  s e t  to  a l a r g e  number such as  

ICH. I t  can be shown ( s e e  Young, 1981) t h a t  t h e  r e c u r s i v e  l e a s t  

s q u a r e s  a l g o r i t h m  ( 3 . 1 0 )  t o  ( 3 . 1 2 )  p r o v id e s  e s t i m a t e s  t h a t  a r e  

e q u i v a l e n t  to  th o se  o b t a i n e d  by the  e n - b l o c  method ( 3 . 3 )  i f  the  v a lu e  

of  p0 i s  chosen  t o  be l a r g e  enough.

I t  s h o u ld  be n o t e d  t h a t  e q u a t i o n  ( 3 .1 1 )  can be se en  as  a d i s c r e t e  

s t e p  g r a d i e n t  a l g o r i t h m  ( s e e  Wilde ,  1964) i n  which th e  e s t i m a t e  a ^ - i  

i s  u p d a te d  a t  each  sa m p le .  The d i r e c t i o n  of  the  u p d a te  i s  de te rm ine d  

by the  g r a d i e n t  of  t h e  i n s t a n t a n e o u s  c o s t ,  and i t s  magni tude  by th e  

t ime  v a r i a b l e  g a i n  p^ which r e d u c e s  m o n o t o n i c a l l y  as  k t en d s  t o  

i n f i n i t y .  Thus t h e  g r a d i e n t  measure  has  a s t e a d i l y  d e c r e a s i n g  e f f e c t  

a s  more samples  a r e  t a k e n ,  so t h a t  the  t im e  v a r y i n g  g a i n  p^ can be 

s e en  as  smooth ing  ou t  the  i n a c c u r a c i e s  i n t r o d u c e d  by t h e  n o i s e  terms

e yi*

A r e c u r s i v e  l e a s t  s q u a r e s  a l g o r i t h m  f o r  t h e  more g e n e r a l  problem 

of t h e  e s t i m a t i o n  of  the  n unknown p a ra m e t e r s  a j  ( j  = 1, . . . ,  n)  i n  

t h e  l i n e a r  r e g r e s s i o n  r e l a t i o n s h i p  ( 3 . 1 4 )  a l s o  may be r e a d i l y  o b t a i n e d .

x = a . x  + a 0x 0 + . . .  + a x ( 3 .1 4 )o 1 1  2 2  n n  w

As i n  the  c a se  of a s i n g l e  unknown p a r a m e t e r ,  t h e  o b s e r v a t i o n  y of  x 0 

i s  made i n  e r r o r ,  and i f  v e c t o r - m a t r i x  n o t a t i o n  i s  u se d ,  t h i s  

r e l a t i o n s h i p  may be e x p r e s s e d  as
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y i ( 3 .1 5 )

where a.  ̂ = (a^ a 2 . . .  a Q) i s  the  pa ram ete r  v e c t o r ,  the
T

s u p e r s c r i p t  T d e n o te s  the v e c t o r  t r a n s p o s e ,  w h i le  x-  ̂ = ( x ^

x 2i  • • •  Xni)  f o r  i  = 1>2, . . . , k  deno tes  the  v e c t o r  o f  e x a c t l y

known, l i n e a r l y  in d e p e n d e n t  v a r i a b l e s .  I t  i s  f u r t h e r  assumed t h a t  th e
I

e lem en ts  Xj^ t h a t  com prise  the  v e c t o r  x^ a r e  s t a t i s t i c a l l y

in d e p e n d e n t  of  th e  measurement n o i s e  terms ey^ .  The r e c u r s i v e  l e a s t  

s q u a r e s  a l g o r i t h m  can the n  be w r i t t e n  as

Pk Pk-1 Pk - Ä (1 + ^ k - A ^  - k Pk - l  ( 3 .1 6 )

4 = 4-i - 4 4 4 -i ' V ( 3 . 1 7 )

where
4 = 4-A(1 + 44-A)_1

( 3 .1 8 )

or

ii Tl $ ( 3 .1 9 )

and may a l s o  be i n t e r p r e t e d  as  a g r a d i e n t  p r o c e d u r e .  The w e ig h t in g  

f a c t o r  or g a i n  i n  t h i s  c a s e  i s  t h e  t ime v a r i a b l e  P^ m a t r i x  which 

c o n t a i n s  e lem en ts  which d e c r e a s e  m o n o t o n ic a l ly  a s  k t e n d s  to i n f i n i t y ,  

so t h a t  i t  e x e r t s  a smoothing e f f e c t  which i s  ana logous  to  t h a t  of  P^ 

i n  th e  s i n g l e  pa ram ete r  c a s e .  For the  n o n - r e c u r s i v e  l e a s t  s q u a r e s  

s o l u t i o n ,  th e  P^ m a t r i x  has  the  form

k
( £
i = l

Tx . x . -1 ( 3 .2 0 )

As b e f o r e  i t  i s  n e c e s s a r y  to  s p e c i f y  i n i t i a l  v a l u e s  f o r  th e  r e c u r s i v e  

a l g o r i t h m  ( 3 .1 6 )  to  ( 3 . 1 8 ) .  By s e t t i n g  a.0 to ze ro  and PQ w i th  

l a r g e  d i a g o n a l  e l em en t s  ( such  as  10^) and z e ro s  e l s e w h e r e ,  the  

r e c u r s i v e  a l g o r i t h m  w i l l  p rov ide  per formance  e q u i v a l e n t  to t h a t  

o b t a i n e d  by a s t a g e - w i s e  s o l u t i o n  of  th e  n o n - r e c u r s i v e  l e a s t  s q u a r e s  

e q u a t i o n .

The r e c u r s i v e  l e a s t  s q u a re s  a l g o r i t h m  ( 3 .1 6 )  to  ( 3 . 1 8 )  may be 

though t  of as  a d e t e r m i n i s t i c  e s t i m a t i o n  p ro c e d u re  s i n c e  i t  i s  based  on
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few assumptions about the nature of the regressors or the noise and it 
provides no statistical information on the parameter estimates. 
However, this aspect of the algorithm can be improved by the following 
two mild assumptions about the nature of the noise terms in
equation (3.15), remembering that it has already been assumed that the
ev  ̂ are independent of the variables Xj^ that comprise the vector

2£i:
(i) the are a zero mean sequence of random variables;

and
(ii) the ey-̂  are serially uncorrelated and have a constant 

variance a^.
These assumptions may be summarised as follows

E(e .) = 0 ; E(e .e .) = a 28.. ; E(x.e .) = 0 , for all i,jyi yi yj ij n  yi J

where E( ) denotes the expectation operator and is the Kronecker
delta function

<5ij
1

0
i = j 

i * j

If the estimation error after k samples is - a. then the
covariance matrix of the estimation errors is defined as

E(ä2) E(äxä2) E(ä ä ) l n

E(a2a L) E(a2)

k = E( 44 >

E(ä ä ) 
I n

E(ä ä ) E(ä ä.) n i n z E(ä2)n

but it can be shown (see Young, 1981) that
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P* = a2P. (3.21)k k

where P^ is identical to that defined in equation (3.20), and the 
recursive least squares regression algorithm can be obtained quite 
simply by substituting P^/a ̂  for P^ in the basic recursive
least squares algorithm (3.16) to (3.18). The term 5^ may be either

9an a_ priori estimate of the noise variance a or an estimate obtained 
by use of the recursive algorithm.

02k
1
k (3.22)

It should be noted, however, that the estimates obtained from (3.22) 
will be biased for low values of k because it does not include any 
adjustment for degrees of freedom.

While the recursive least squares algorithm provides the basis 
for the estimation procedures used in this thesis, it cannot be used 
directly because it is not suitable for the estimation of parameters in 
some dynamic models. In the next section we describe dynamic time 
series models and the means by which unbiased recursive estimates of 
their parameters are obtained.

3.3 Dynamic Time Series Models

Dynamic systems with a deterministic input (as distinct from 
purely stochastic dynamic systems) may be represented in the most 
general way either by a differential equation

dqu + g d ^ u
q-1 d t q-i + + gou

(3.23)

d^K
dtP

+ f dp-1x
P-1 dtP'1 + +  X

or a convolution integral equation
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x(t) = r(t-w)u(w)dw 
o (3.24)

where u(t) is the input, x(t) is the output and w is a dummy variable 
introduced for the purpose of the integration. The convolution 
integral equation (3.24) may also be used in a multivariable form (see 
Jakeman and Young, 1980a) to describe dynamic systems with multiple 
inputs and outputs, but for ease of presentation we will restrict 
attention here to single input-single output (SISO) dynamic systems. 
If in (3.23) the coefficients g^ (i = 0, 1, ..., q) and p^ (i = 1, 
2, ..., p) are functions of time then it may be used as a description 
of a non-linear dynamic system. If, however, the coefficients gj_ and 
p-L are constant then the equation (3.23) will describe a linear 
dynamic system. For the moment we will restrict attention to linear 
dynamic systems and will use the convolution integral (3.24) as the 
basis for deriving equivalent but more useful representations of 
dynamic systems. Firstly, we assume that the output x(t) in (3.24) is 
measured exactly. Then taking the Laplace transform L{ } of (3.24) 
yields

L (x(t)} = L (r( t)} L (u(t)}
(3.25)

It is well known (see Takahashi et al., 1972) that for linear systems 
it is possible to replace L{ r(t)} by a ratio of usually finite order 
polynomials (known as the rational transfer function) in the Laplace 
operator s, so that

L (x(t)} - [Gq (s) / F (s)3 L {u (t) } 
P (3.26)

F p (s) = 1 + f Is + ^2s2 +  • * * +  f s^ 
p

G (s)
q = S o + g L s +  g 2 s 2 +  ... +  g q s q

The benefit in this approach is that (3.26) provides an efficient 
parameterisation of the convolution integral equation (3.24) which is 
nominally infinite dimensional. By taking inverse Laplace transforms 
of (3.26) and returning to the time domain, the differential equation 
model (3.27) is obtained

F (D)x(t) G (D)u(t) (3.27)
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where D denotes the derivative operator. This is, of course the 
operator representation of the differential equation (3.23).

The representation of dynamic systems considered so far have been 
in continuous time. This presents no difficulties for modeling if the 
systems can be studied intensively, but in studying environmental 
systems it is much more likely that observations will be made in 
discrete time and that they will comprise a finite time series. With 
this in mind we seek discrete time representations of dynamic systems 
that are also efficient in the sense of having few parameters. This is 
straightforward since it can be shown (see Phadke and Wu, 1974) that a 
differential equation model such as (3.27) can be transformed into the 
discrete time transfer function model

xk
EKz"1) 
A(z 1)

(3.28)

where x^ and u^ are the values of x(t) and u(t) at the kth sampling 
instant. A(z” )̂ and B(z~l) are polynomials in the backward shift 
operator z-  ̂ (that is, z^x^ = x^_^) of the form

A(z *■) = 1 + a^z

B(z )̂ = b + b. zo 1

where n and m are positive integers. The values of n and m are not 
necessarily equal to p and q in (3.26) but the sampling interval may be 
chosen so that n = p, that is, the dynamic orders of the continuous and
discrete time models are equal. The z-  ̂notation is chosen for the
backward shift operator in preference to the B notation used by Box and 
Jenkins (1970) because we wish to stress the relationship between the 
forward shift operator z and the z-transform operator (see, for 
example, Takahashi et al., 1972).

In considering dynamic systems we have assumed so far that the 
inputs u(t) or u^ and the outputs x(t) or x^ have been measured

+ a z n
-n

+ b z m
- m
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e x a c t l y .  S i n c e  t h i s  i s  u n l i k e l y  t o  be t h e  c a s e  when t a k i n g  m e a s u r e 

m ents  of  e n v i r o n m e n t a l  s y s t e m s ,  i t  seems r e a s o n a b l e  t o  a l l o w  e x p l i c i t l y  

f o r  e r r o r  or  n o i s e  o f  a g e n e r a l  n a t u r e  on t h e  o b s e r v a t i o n  of  t h e  o u t p u t  

s i g n a l  x ^ .  T h i s  n o i s e  t e r m  c a n  be c o n s i d e r e d  t o  a c c o u n t  f o r  b o t h  

m easu rem en t  e r r o r  and any o t h e r  s t o c h a s t i c  d i s t u r b a n c e s  a f f e c t i n g  t h e  

s y s t e m .  By a s su m in g  t h a t  i n  g e n e r a l  t h e  n o i s e  w i l l  be ’ c o l o u r e d '  and 

have  r a t i o n a l  s p e c t r a l  d e n s i t y ,  t h e  n o i s e  ^  c a n  be c o n s i d e r e d  t o  be 

g e n e r a t e d  from a d i s c r e t e  ’w h i t e ’ n o i s e  s e q u e n c e  e^  w i t h  z e r o  mean 

and c o n s t a n t  v a r i a n c e  a by a r a t i o n a l  t r a n s f e r  f u n c t i o n  model  such  

as

Sk
D(z- 1 )

C(z_1)
( 3 . 2 9 )

Thus t h e  r e p r e s e n t a t i o n  o f  l i n e a r  dynamic  s y s t e m s  t h a t  i s  

p r e f e r r e d  i n  t h i s  t h e s i s  may be w r i t t e n  as

y k
M £ liu +

- l k  - l k
A(z X) k C ( -  X)

( 3 . 3 0 )

where  t h e  s u b s c r i p t  k d e n o t e s  s a m p le s  t a k e n  a t  e q u a l l y  s p a c e d  t ime  

i n t e r v a l s .  The t e r m s  A (z - ^ ) ,  B (z - ^ ) ,  C ( z - ^) and  DCz- '*’) a r e

p o l y n o m i a l s  i n  z~^ o f  t h e  f o l l o w i n g  form

A(z *) = 1 + a z  ̂ + . . .  + a z n1 n

B(z ) = b + b.  z + . . .  + b z
o 1 m

C(z S  = 1 + c,  z 1 4- . . .  + c z S1 s

( 3 . 3 1 )

D (z_ 1 ) = 1  + d . z  1 + . . .  + d z r1 r

The model  fo rm ( 3 . 3 0 )  i s  t h e  d i s c r e t e  t im e  t r a n s f e r  f u n c t i o n  model  of  

Box and J e n k i n s  (1970 )  and may a l s o  be c o n s i d e r e d  to  be a d i f f e r e n c e  

e q u a t i o n  or  t im e  s e r i e s  r e p r e s e n t a t i o n  of  a t im e  i n v a r i a n t  p a r a m e t e r  

s y s t e m  w i t h  a d d i t i v e  s t o c h a s t i c  d i s t u r b a n c e s .  I t  i s  shown i n  b l o c k  

d i a g r a m  fo rm i n  F i g u r e  3 .1  where i t  i s  c l e a r  t h a t  y^ i s  t h e  o b s e r v e d
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NOISE MODEL
ek — 1D(z )

C(z-i)

5k

SYSTEM MODEL r
uk -lxB(z ) 

1 iVA(z L)

Figure 3.1 Block diagram of discrete time 
transfer function model

'noisy' output of the 'system' model which is perturbed by the 
deterministic (measurable) input u^. The superposition property of 
linear systems (see Naslin, 1965) allows us to write equation (3.30) as 
the following connected equations

Deterministic component: A(z ^x^ = B(z‘’1)uk (i)

Stochastic component : c(z_1)?k = D(z ’1)ek (il)

Observation equation : yk = Xk + ^k (iii)

where y^ is obtained as the sum of a hypothetical 'noise free' output 
of the system, x^, and the noise signal £]<.• It is usually assumed 
that the are statistically independent of the input terms u^ so 
that the properties of the white noise may be written as

E(ek) 0 ; E(e.ek) = a2«.k ; E(e.uk) 0 ; for all j ,k

where E( ) is the expected value operator and is the Kronecker
delta function.
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Several other assumptions about the model form (3.30) and (3.32)
need to be made (see Young et al., 1971) and may be summarised as
follows:

(a) The process (3.32) (i) should be stable; that is, the
roots of A(z- )̂ lie outside the unit circle in the 
complex plane.

(b) The coefficients bj (j = 0, 1, ..., m) of the
polynomial B(z- )̂ should not all be zero, since
otherwise the output will not be activated by the input.

(c) The polynomials A(z- )̂ and B(z- )̂ should have no
common factors.

(d) The input u^ should be persistently exciting so that
adequate excitation of the system takes place to allow 
estimation of all the unknown parameters (see Astrom and 
Bohlin, 1966).

(e) The noise model (3.32)(ii) should be stable and minimum
phase; that is, all the roots of both C(z--*-) and
D(z- )̂ should lie outside the unit circle in the 
complex plane.

(f) The time series data are stationary in a statistical
sense (see Box and Jenkins, 1970) either because they are
naturally so or because such stationarity has been
induced by prior data processing.

These assumptions will ensure that asymptotically efficient estimates 
are obtained. However, even if some of the assumptions are not
satisfied, reasonable (if not asymptotically efficient) estimates may 
still be obtained.

We now turn to the problem of estimating the parameters in the 
time series model (3.30). For the moment let us restrict attention to 
the estimation of the coefficients in the polynomials A(z- )̂ and
B(z-'*') and assume that the model structure has been identified; that 
is the number of coefficients required in the polynomials has been 
determined. Least squares estimation procedures will not in general 
provide acceptable estimates of the parameters because (3.30) is a 
structural rather than a regression model (see Kendall and Stuart, 
1961). Hence least squares estimates may not be statistically 
consistent and may be biased. This can be seen most readily by writing 
(3.30) in the form of the vector relationship
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T + (3.33)

where
T

^k = (-yk-i ... -y u ... u )k-n k k-m

a = (ai •. . a b ... b )n o  m

\ = 5k + a E, + ... + a C1 k-1 n k-n

Clearly the residuals n k in (3.33) are, in general, both serially
dependent and correlated with elements of the vector z

This problem of estimating the parameters in time series models
of the form (3.30) can be approached in a number of ways and the 
available techniques have been surveyed by Astrom and Eykhoff (1971). 
One technique which overcomes the problem of bias is the maximum 
likelihood method suggested by Box and Jenkins (1970) and Astrom and 
Bohlin (1966), in which all the parameters in the polynomials A(z- )̂, 
B(z 1), C(z~-‘-) and D(z” )̂ are estimated simultaneously. However, 
this procedure requires non-linear estimation to determine the 
parameters that maximise the likelihood function and, more importantly, 
it does not readily permit the estimation of time variable parameters. 
This latter point is of concern to us here because although the model 
form (3.30) was derived as a representation of a linear dynamic system 
with time invariant parameters, it can be argued that (3.30) provides a 
general description of non-linear systems if the parameters are allowed 
to be time varying (see Young, 1978).

Thus we seek an estimation procedure that readily permits an 
investigation of any time variation of the parameters in models of the 
form (3.30). One approach that will allow such an investigation is to 
formulate the problem in state-space terms and apply the extended 
Kalman filter (EKF) methods (see Jazwinski, 1970). But the method 
preferred in this thesis is the alternative recursive instrumental 
variable-approximate maximum likelihood (IV-AML) procedure suggested by 
Young (1974). This approach conveniently breaks the estimation problem 
into two separate parts. First, the coefficients of the polynomials 
A(z-'*-) and B(z~-*-) are estimated by a recursive IV algorithm, and
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second, if they are desired the noise model parameters are estimated by 
a recursive AML algorithm.

The use of instrumental variables for the estimation of 
parameters in structural models such as (3.30) overcomes the problems 
of lack, of consistency and bias in the estimates and involves only a 
simple modification to the recursive least squares regression algorithm 
described in the previous section. The recursive IV algorithm may be 
written as follows

4 = 4-i - 4 4<4-i " V  
4 = 4-l4 (1 + -k̂k-l-k̂

(3.34)

(3.35)

k-1 fk - A (1 + (3.36)

where is as defined in (3.33) and x^ is an IV vector of the
form

4 ( *k-l uk-n k (3.37)

The methods used for the construction of the IV vector x^ have been 
well described by Young (1974) and it will be sufficient to mention 
here that it involves the construction of an ’auxiliary' model of the 
system which has the same form as the system component of (3.30), that 
is, (3.32)(i). The algorithm (3.34) to (3.36) provides the basis for 
the IV estimation procedures used in this thesis.

Once the system model parameters have been estimated with the IV 
algorithm (3.34) to (3.36) it remains to estimate the noise model 
parameters, that is, to find the vector c_ in equation (3.38)

c + e. (3.38)

where c (ci ... cs d]_ ... dr). But if the IV algorithm
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p r o v i d e s  a good e s t i m a t e  of  t h e  h y p o t h e t i c a l  n o i s e - f r e e  o u t p u t

x^> t h e n  a good e s t i m a t e  of  t h e  n o i s e  i s  p r o v i d e d  s im p l y  by

-  x , ( 3 . 3 9 )

The AML a l g o r i t h m  f o r  e s t i m a t i n g  c_ ( s e e  Young, 1974)  may be w r i t t e n  as

4  ■ S k - i  -  £  (^ k - i  -  V

where ii

Pk - A  + Ä A 5' 1

and pk ■ C i -  (1 + Ä A ’ ^ k - i

( 3 . 4 0 )

( 3 . 4 1 )

( 3 . 4 2 )

w i t h  hjj, d e f i n e d  as

^ k  ( ?k - l  *** ^ k - s  6k - l  *“  6k - r   ̂ ( 3 . 4 3 )

The e s t i m a t e s  e .̂ a r e  b a s e d  on t h e  c u r r e n t  e s t i m a t e s  o f  c^  and  a r e  

p r o v i d e d  by u s i n g  e q u a t i o n  ( 3 . 3 8 ) ,  t h a t  i s

§k ^k ^k-^k ( 3 . 4 4 )

The b a s i c  IVAML a l g o r i t h m s  o u t l i n e d  h e r e  have  be e n  d e v e l o p e d  

f u r t h e r  and a ' r e f i n e d '  IVAML p r o c e d u r e  w h ich  i n v o l v e s  ' p r e f i l t e r i n g '  

o f  t h e  v a r i a b l e s  i n  t h e  b a s i c  IV s o l u t i o n  h a s  been  d e s c r i b e d  by Young 

( 1 9 7 6 ) .  R e f in e d  IVAML a l g o r i t h m s  have been  im p lem en ted  and e v a l u a t e d  

f o r  b o t h  SISO and m u l t i v a r i a b l e  s y s t e m s  ( s e e  Young and J akem an ,  1979c;  

Jakeraan and Young,  1979;  and Young and Jakem an ,  1 9 80 ) .  The d e v e lo p m e n t  

and e v a l u a t i o n  of  t h e  r e f i n e d  IVAML a l g o r i t h m s  f o r  a p a r t i c u l a r  c l a s s  

o f  m u l t i p l e  i n p u t  l i n e a r  s y s t e m s  has  b e e n  p a r t  of  t h e  p r e s e n t  r e s e a r c h  

programme and  w i l l  be d e s c r i b e d  i n  C h a p t e r  5.

3 . 4  E s t i m a t i o n  o f  Time V a ry in g  P a r a m e t e r s

The d e r i v a t i o n  of  t h e  r e c u r s i v e  l e a s t  s q u a r e s  r e g r e s s i o n
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a l g o r i t h m  which  was d e s c r i b e d  i n  S e c t i o n  3 .2  was b a s e d  upon th e  

a s s u m p t i o n  t h a t  t h e  p a r a m e t e r s  i n  t h e  r e g r e s s i o n  model  were  c o n s t a n t  

o v e r  t h e  o b s e r v a t i o n  p e r i o d ,  t h a t  i s

S k - i f o r  a l l  k

I f  t h i s  a s s u m p t i o n  i s  n o t  c o r r e c t ,  t h e n  u s e  of  t h e  r e c u r s i v e  IVAML 

a l g o r i t h m s  d e s c r i b e d  i n  t h e  p r e v i o u s  s e c t i o n  f o r  t im e  s e r i e s  a n a l y s i s  

may n o t  y i e l d  s a t i s f a c t o r y  r e s u l t s .  A s i m p l e  s o l u t i o n  t o  t h i s  p rob lem  

h a s  b e e n  s u g g e s t e d  by Young (1974)  and i n v o l v e s  o n l y  a m inor  m o d i f i c a 

t i o n  t o  t h e  r e c u r s i v e  l e a s t  s q u a r e s  a l g o r i t h m .

I t  i s  f i r s t  assumed t h a t  t h e  r e g r e s s i o n  model  p a r a m e t e r s  i n  

e q u a t i o n  ( 3 . 1 5 )  a r e  t ime  v a r y i n g  and t h a t  t h e i r  v a r i a t i o n  can  be 

d e s c r i b e d  by a Gauss-M arkov s t o c h a s t i c  m a t r i x  d i f f e r e n c e  e q u a t i o n

- k  ^ k - 1  + T\ - l
( 3 . 4 5 )

where  $ i s  a t r a n s i t i o n  m a t r i x ,  V i s  an  i n p u t  m a t r i x  and i s  a

v e c t o r  of  s e r i a l l y  i n d e p e n d e n t ,  random v a r i a b l e s  w i t h  z e r o  mean and 

c o v a r i a n c e  m a t r i x  Qp, so t h a t

E (q k ) = 0 and  E ( q .q £ )  = Qp «j k

The s i m p l e s t  example  of  su c h  p a r a m e t e r  v a r i a t i o n  i s  t h e  random walk 

model

^  = sw  + \ - i ( 3 . 4 6 )

I n  t h e  c a s e  of  t h e  r e c u r s i v e  l e a s t  s q u a r e s  a l g o r i t h m ,  t h e  a d d i t i o n a l  

i n f o r m a t i o n  p r o v i d e d  by e q u a t i o n  ( 3 . 4 5 )  a l l o w s  ’ p r e d i c t i o n s ' ,  or
•k ^

u p d a t e s  ( d e n o t e d  by a k / k - l  and ^ k / k - 1 ^  Co ^ k -1  anc*
k

P ^ - i  o b t a i n e d  a t  t h e  ( k - l ) t h  s a m p l e ,  and  t h e s e  ’ p r e d i c t i o n '  

e q u a t i o n s  may be w r i t t e n
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—k/k-l % - l  (3.47)

Pk/k-l - + r% fT <3'48)

If the random walk model (3.46) is used to describe the parameter 
variations then $ = T = I (where I is the identity matrix) and the 
’prediction’ equations simply become

-k/k-l At-1 (3.49)

P*k/k-l P* + k-1 (3.50)

The estimation of the time varying parameters a^ is completed by 
means of the ’correction’ equations

4
= Âk/k-1

p*k = P*k/k-l

Pk / k - Ä W2 + 4  Pk / k-Arl(2k^k/k-l - V

PW - A (a2 + A^k/k- Ä 5" l-kPk/k-1

(3.51)

(3.52)

which are applied after receipt of the samples at the kth instant. It 
can be noted at this stage that the prediction-correction algorithm 
described by equations (3.47), (3.48), (3.51) and (3.52) can be 
considered as a 'dynamic' least squares procedure and is identical in 
form to the optimal filter-estimation algorithm first derived by Kalman 
(1960) for estimating the state vector of a linear discrete time 
stochastic dynamic system. This latter algorithm is now known as the 
Kalman filter.

These modifications to allow for the estimation of time variation
in the parameters can also be applied to the basic and refined IV
algorithms. In the basic IV case, they are completely heuristic in the
sense that the modifications are incorporated for purely algorithmic
reasons to allow the algorithm to 'track' any changes in the
parameters. In effect, the introduction of the prediction equations

*prevents the elements of the P^ matrix from reducing to zero as
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k tends to infinity, as we have seen happen in the normal 'constant 
parameter’ recursive algorithms of the least squares type.
Consequently the algorithm is always able to monitor changes in the 
gradient caused by variations in the parameters and so it will adjust 
the parameter estimates accordingly.

In the refined IV case, this modification can be fully justified
kon theoretical grounds (Young and Jakeman, 1980) since the

kmatrix generated by the algorithm, like the matrix in the
recursive least squares algorithm, can be considered as a good estimate 
of the error covariance matrix associated with the recursive estimates.

If the random walk model (3.46) is used, least squares 
prediction-correction algorithms such as (3.49) to (3.52) or their IV 
relations can be implemented simply by specifying the covariance matrix 
Qp of the parameter variations between samples, and this provides a 
reasonable approach to the estimation of parameters which are varying 
slowly, that is, those whose percentage change at each sampling instant 
is reasonably constant. Also for simplicity it is usually assumed that 
the patterns of variation of the different parameters are not 
correlated so that the Qp matrix can be chosen to be of diagonal 
form, where the magnitude of each diagonal element may be specified 
separately to allow for different rates of variation of each of the 
parameters. In practice, it is unlikely that a_ priori information 
which allows the user to specify Qp is available. As a result the 
Qp elements can be considered as ’program parameters’ and adjusted on 
a trial-and-error basis to investigate any parameter variations. This 
is usually quite acceptable because, as we will see, such time-variable 
parameter estimation algorithms are used mainly as a device to 
investigate the presence of non-linearities in the time series data 
rather than explicitly to obtain 'good' estimates of the parameters. In 
other words it is the relative changes in the parameters which are 
important to the analysis rather than the exact numerical changes. In 
addition, small changes in magnitude of Qp result in small changes in 
magnitude of variation. Also, for relatively smooth input data, the 
values of Qp which yield a better time varying model fit to the 
output data are preferred. Usually only one parameter is varied at a 
time so there is no sympathetic, ambiguous parametric variation. In 
this way, only one diagonal element of Qp is non-zero and need be 
specified.
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3.5 Model Order Identification

In the description of the recursive estimation algorithms
introduced in previous sections, it was assumed that the model
structure had been 'identified’ in the sense that the need for the
presence of each of the parameters in the model had already been
determined. For the time series model form (3.30) this identification
stage consists of choosing the order of the polynomials (3.31).
Several model order identification procedures have been proposed (see,
for example, Box and Jenkins, 1970; and Akaike, 1970) but the method
preferred in this thesis is one proposed by Young et al. (1980) which
is based on the IV estimation algorithm described in Section 3.3. Here
the order identification is based on test statistics which are computed
directly from the IV estimation procedure. The aim of the method is to
determine that model structure (if any) which provides both a good
explanation of the data and a small estimation error for the model
parameters. As was mentioned briefly in Chapter 1, the emphasis is
placed on obtaining a model structure which avoids
over-parameterisation and the ambiguity that can result from the poor
definition of parameter estimates. Such over-parameterisation is
indicated by monitoring an 'error variance norm' associated with the*covariance matrix of the parametric estimation errors P^.

The primary test statistic used in the identification procedure 
of Young et al. (1980) is an estimation error variance norm (EVN)

^kassociated with the P̂_ matrix obtained from the refined IV
algorithm, and is defined as the arithmetic mean of the diagonal

k Ä kelements p-Q of P^, that is

EVN (n,m) 1
n + m + 1

n A
Z PjLi + Z Pft+i+1, h+i+1i=l i=0

(3.53)

Other norms can be defined (see Young et al., 1980) but the one which 
is of particular use in this thesis is the normalised EVN (NEVN) 
defined as

1
n + m + 1

n
Z

i=l
+ E fl+1+̂  ) (3.54)

i=0 |bi|
NEVN (h,m)
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w hich  o f f e r s  some a d v a n t a g e  when t h e  m a g n i tu d e s  of  t h e  e s t i m a t e d  

p a r a m e t e r s  d i f f e r  w i d e l y .  S i n c e  t h e  r e c u r s i v e  r e f i n e d  IV a l g o r i t h m  

( s e e  Young and Jakem an ,  1979c) g e n e r a t e s  an e s t i m a t e  of
■k

P^ a t  e a c h  r e c u r s i v e  s t e p  by

P*
k a, Pk k ( 3 . 5 5 )

where  i s  t h e  e s t i m a t e  ( a f t e r  k s a m p l e s )  of  t h e  v a r i a n c e  of 

t h e  e^ s e q u e n c e  i n  ( 3 . 3 0 ) ,  t h e  P^ m a t r i x  may i t s e l f  be u s e d  to  

a s s e s s  w h e t h e r  t h e  c o v a r i a n c e  m a t r i x  o f  t h e  e s t i m a t i o n  e r r o r s  has  

become l a r g e .  The norms c a n  a l s o  be b a s e d  on t h e  P^ m a t r i x  c a l c u l a t e d  

i n  t h e  b a s i c  IV a l g o r i t h m  a n d ,  a l t h o u g h  somewhat  i n f e r i o r  to  t h o s e  

o b t a i n e d  f rom  t h e  r e f i n e d  IV m e t h o d s ,  t h e y  a r e  u s u a l l y  a d e q u a t e  i n  most  

c a s e s .  F i n a l l y ,  s i n c e  t h e  norms c a n  v a r y  o v e r  a l a r g e  r a n g e  i t  i s  

c o n v e n i e n t  t o  u s e  t h e  n a t u r a l  l o g a r i t h m s  of  t h e  norms r a t h e r  t h a n  t h e  

norms t h e m s e l v e s .

A no the r  of  t h e  t e s t  s t a t i s t i c s  u sed  i n  t h e  i d e n t i f i c a t i o n

p r o c e d u r e  i s  t h e  t o t a l  c o r r e l a t i o n  c o e f f i c i e n t  ( o r  c o e f f i c i e n t  of  
2

d e t e r m i n a t i o n )  R-p d e f i n e d  as

R2
T 1

N
E

k=l
N
E

k=l

( 3 . 5 6 )

where  N i s  t h e  t o t a l  number of  s a m p le s  i n  t h e  d a t a  s e t  and y^ i s  t h e
2

mean v a l u e  of  t h e  o b s e r v a t i o n s  y ^ .  Thus R^ can  be s e e n  a s  a

n o r m a l i s e d  m easu re  of  t h e  d e g r e e  t o  which  t h e  model  e x p l a i n s  t h e  d a t a ,  
2

so t h a t  i f  Rt = 1 .0  t h e  d a t a  a r e  e x p l a i n e d  p e r f e c t l y  by t h e
2

m o d e l ,  w h i l e  i f  R-p = 0 t h e r e  i s  no e x p l a n a t i o n  a t  a l l .

The r e m a i n i n g  t e s t  s t a t i s t i c s  a r e  t h e  m u l t i p l e  c o r r e l a t i o n  

c o e f f i c i e n t s  d e f i n e d  as
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R2 1

n±
i

" T "
z

k = l
( 3 . 5 7 )

*b
j - 1

1  -

p* ..  2 u2*J+ n , J+ n  k=1 He

( 3 .5 8 )

where Ra  ̂ ( i  = 1 ,2 ,  . . . ,  h) i s  t h e  m u l t i p l e  c o r r e l a t i o n

c o e f f i c i e n t  (MCC) f o r  the  i t h  pa ra m e te r  i n  the  po lynomia l  A(z- ^ ) ,  and 
2

R̂ _. ( j  = 0 , 1 ,  . . .  ,m) i s  the  MCC fo r  the j t h  pa ram ete r  in

B(z- ^ ) .  I f  any of  t h e  MCC's t e n d  t o  u n i t y ,  i t  i s  i n d i c a t e d  t h a t  a 

lower o r d e r  model can a d e q u a t e l y  r e p r e s e n t  the  d a t a .  While the  

m u l t i p l e  c o r r e l a t i o n  a n a l y s i s  i s  u s e f u l  when used  w i t h  a r e f i n e d  IV 

a l g o r i t h m  i t  t e n d s  to  be l e s s  so w i t h  b a s i c  IV e s t i m a t i o n  where the  

MCC’ s a r e  b i a s e d  towards  u n i t y  by n o i s e  on the  d a t a  and can be a f f e c t e d  

v e r y  b a d ly  a t  h i g h e r  n o i s e  l e v e l s .

The s e l e c t i o n  p r o c e d u r e  based  on t h i s  IV method s u g g e s t e d  by 

Young e t  a l .  (1980)  may be summarised as  f o l l o w s :

( a )  Look f o r  t h a t  model s t r u c t u r e  which c a u s e s  the  EVN (or  

NEVN) to  a t t a i n ,  or  be c l o s e  t o ,  i t s  minimum v a l u e ,  so 

t h a t  f u r t h e r  i n c r e a s e s  i n  n l e a d  to  s u b s t a n t i a l  

i n c r e a s e s  i n  t h e  EVN.
2

(b)  Look f o r  a v a lu e  of  Rx which i s  c o n s i s t e n t  w i th

the  d e g re e  of model f i t  e x p e c t e d ,  where t h i s  deg re e  of

f i t  w i l l  be dependen t  on th e  l e v e l s  of  n o i s e  on the  d a t a .  
2

The v a lu e  of  Rx shou ld  u s u a l l y  r e a c h  a p l a t e a u

l e v e l  a t  a p a r t i c u l a r  v a lu e  of  h ,  where f u r t h e r  i n c r e a s e s

i n  h s hou ld  not  s u b s t a n t i a l l y  i n c r e a s e  the  v a lu e  of 
2

R x  •

( c )  Look f o r  v a l u e s  of  the  MCC t h a t  a r e  w e l l  removed from

u n i t y ,  bu t  remember t h a t  t hey  may be b i a s e d  towards  

u n i t y  by n o i s e  e f f e c t s .

(d)  Check fo r  any t im e v a r i a t i o n  of the  p a ra m e te r s  i n  the

i d e n t i f i e d  model u s in g  t h e  IV a l g o r i t h m  d e s c r i b e d  i n  the  

p r e v i o u s  s e c t i o n .  I f  some m ea n in g fu l  p a r a m e t r i c
v a r i a t i o n  i s  i n d i c a t e d ,  f u r t h e r  model m o d i f i c a t i o n



and identification may be necessary.
Check that the estimated £ ̂  terms are purely 
stochastic and that they are statistically independent of 
the deterministic input u^. This is to ensure that all 
the systematic components present in the data have been 
adequately modeled.
Check that when using the refined IV algorithm, the 
estimated residual error sequence has the required 
zero mean, serially uncorrelated 'white noise' 
properties.
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Chapter 4

APPLICATION OF RECURSIVE TECHNIQUES TO MODELING 
A CONTINUOUS AIR POLLUTION ANALYSER

4.1 Introduction

Most of the continuous air pollution analysers in use today may 
be seen as simple linear SISO dynamic systems. These devices usually 
operate by continuously pumping an air sample at a constant rate 
through a detection cell where some property of the pollutant gas is 
measured. The concentration of pollutant in the air sample is thus the 
input to the SISO dynamic system while the device’s recording of the 
pollutant concentration is the output. The measured property of the 
pollutant gas may be the absorption of infrared radiation (for carbon 
monoxide detection), the absorption of ultraviolet radiation (for ozone 
detection), the fluorescence of the pollutant gas after absorption of 
light of a suitable wavelength (for sulphur dioxide detection), or the 
emission of light (chemiluminescence) when the pollutant gas chemically 
reacts with some reagent gas (for nitric oxide and ozone detection).

It has long been appreciated that such analysers do not always 
produce an exact recording of the input pollutant concentrations 
because of their dynamic characteristics (Larsen et al., 1965; 
Saltzman, 1970; Mage and Noghrey, 1972). A lack of appreciation of 
the dynamic properties of these devices may lead to their failure to 
register violations of air quality standards (Schnelle and Neeley, 
1972). Larsen et al. (1965) use a first-order differential equation to 
describe the dynamic response of continuous air pollution analysers 
and, in order to minimise the noise on the measured output, make 
recommendations for the selection of flow rate through the analyser. 
Further, they demonstrate that the first-order differential equation 
may be solved continuously so as to provide estimates of the true 
pollutant concentrations.

Both Mage and Noghrey (1972) and Schnelle and Neeley (1972) 
characterised continuous air pollution analysers by transfer function 
models. The former used a single step input signal to such a device 
and differentiated the recorded step response to obtain the discrete 
time impulse response. This discrete approximation of the impulse
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response was then used to estimate true input pollutant concentrations 
by employing a finite difference method for the solution of the 
convolution integral equation. Schnelle and Neeley (1972) used a pulse 
testing technique, followed by data reduction to the frequency domain 
and a non-linear least squares method to determine the parameters of 
the transfer function model. A particular feature of the work of 
Larsen et al. (1965) and Mage and Noghrey (1972) is that neither 
addressed the problem of noisy output data when devising methods to 
estimate true input pollutant concentrations.

In this chapter experiments on a continuous air pollution 
analyser are reported and the applicability of recursive IV 
algorithms to the identification and estimation of both discrete time 
and continuous time transfer function models of the analyser is 
demonstrated. More importantly, the discrete time transfer function 
model is subsequently used in a stochastic state space formulation 
which allows the estimation of the true input pollutant concentrations 
entering the analyser even though the output signal of the analyser is 
contaminated by noise.

4.2 Experimental Procedure

The experiments were carried out on a Mine Safety Appliances 
(MSA) carbon monoxide analyser. The particular model was a Model 202 
Luft-type infrared analyser (LIRA) which was designed to measure 
concentrations of carbon monoxide in the concentration range 0 to 200 
parts per million (ppm) by volume. This particular device was chosen 
partly because the generation of input signals was relatively easy and 
partly because previous studies (Schnelle and Neeley, 1972, and Mage 
and Noghrey, 1972) have examined the dynamic properties of MSA LIRA 
carbon monoxide analysers. A schematic diagram of the MSA LIRA Model 
202 is shown in Figure 4.1. The principle of operation of this device 
can be described briefly. Similar beams of infrared radiation pass 
through the parallel sample and comparison cells and thence into a 
single detector cell, which in this case contains four per cent carbon 
monoxide in argon. Between the infrared sources and the cells is a 
semi-circular beam chopper which operates at a frequency of 2.0 hertz. 
The chopper alternately blocks the infrared radiation to the sample 
cell and to the comparison cell. Absorption of infrared radiation by 
the gas in the detector cell causes an increase in its temperature and
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pressure which moves the membrane of a condenser microphone.

Recorder

Sample In Sample Out AmplifierBeam
Chopper

Infrared
Source

Sample Cell
Motor

■Detector

Infrared
Source

Sealed-in Detector

Comparison Cell

Detector Gas Membrane

Figure 4.1 Schematic diagram of MSA LIRA Model 202

carbon monoxide analyser

This movement is converted to an electrical signal and amplified by a 
phase sensitive amplifier which amplifies only those variations which 
are occurring at the chopped frequency. The amplified signal is then 
fed to a meter and a chart recorder. The chart recorder has a suitably 
high impedance so that no significant errors are introduced into the 
measurement of the output of the device.

A block diagram of the experimental apparatus is shown in Figure 
4.2. The plastic bags had a capacity of approximately 40 litres and 
the gas samples were prepared in the bags immediately prior to the 
experiments. One bag was filled with dry nitrogen gas from a 
compressed gas cylinder while in the other bag was prepared a mixture 
of carbon monoxide in dry nitrogen gas. Thorough mixing of the carbon 
monoxide in the dry nitrogen was achieved by placing a 20 cm diameter 
plastic ball inside the plastic bag and shaking vigorously for several 
minutes. It was verified that such gas mixtures prepared in these 
plastic bags maintain a stable concentration for periods of several 
hours. The tap was of a type that, depending on its position,
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permitted gas from either bag to be pumped through the sample 
conditioning system (silica gel filter to remove moisture, a 
particulate filter to remove dust, plus the associated tubing) and then 
the analyser. The position of this tap could be changed rapidly so 
that abrupt changes of the type of gas passing to the analyser could 
easily be effected. All experiments began with the tap in such a 
position that allowed pure nitrogen to pass through the device. 
Experiments were then carried out by changing the position of the tap 
at known times to produce step-up and step-down changes in the input 
gas stream. Such changes in the position of the tap were always 
carried out at times which were integer multiples of the sampling 
interval which was chosen as 5 s.

The analyser was calibrated in the normal way prior to the 
experiments. This calibration procedure was a steady state one and 
first involved the passing of pure dry nitrogen through the analyser 
for a sufficient time so that the device's output reached a steady 
state. When this was achieved the device's output was set to zero. In 
a similar fashion, a known standard concentration of carbon monoxide in 
nitrogen was passed through the device until a steady state output was 
achieved and the machine output was altered to match the known 
concentration. The steady state calibration curve for the analyser is 
shown in Figure 4.3 and it can be seen that the response is not 
perfectly linear. This does not affect the investigation of the 
analyser's dynamic properties because we express all inputs and outputs 
as a percentage of the full scale deflection (FSD) of the instrument, 
where this occurred with a concentration of 200 ppm of carbon monoxide. 
The output from the instrument was recorded in continuous analogue form 
by a chart recorder which was adjusted to a chart speed of 0.1 cm s--*- 
where the chart paper was marked in divisions of 0.5 cm along the time 
axis. The chart records were then digitised with a value of the 
recorder trace being taken at the chosen sampling interval of 5 s.

Five experiments were performed and their basic details are shown 
in Table 4.1. The experiments were designed to investigate the 
linearity of the analyser in a dynamic sense (experiments 1 and 2), to 
examine the efficacy of input signals of differing complexity (1 and 
3), and to demonstrate the effect of sample gas flow rate on the 
dynamic response of the analyser (1, 4 and 5).



61

Particulate
Mixture of 

carbon monoxide 
in nitrogen

filter

Silica gel
filter

Carbon
monoxide

Flowmeteranalyser

Mixing
ball

Chart Pump ~Xrecorder

nitrogen
Exhaust

Block diagram of apparatus usedFigure 4.2
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Figure 4.3
Steady state calibration curve (— ) of the carbon monoxide analyser 
with a hypothetical perfectly linear response (— ) for comparison.
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Before going on to describe the findings of these experiments it 
is necessary to discuss the identification of model order and the 
estimation of model parameters, and this is the purpose of the next 
section. To avoid unnecessary repetition, we will illustrate the 
general procedures used in all experiments by reference to experiment 
1.

Table 4.1

Conditions for Experiments on the Carbon Monoxide Analyser

Experiment Number 1 2 3 4 5

Flow rate of sample gas 
through analyser3

1.0 1.0 1.0 2.0 0.7

Carbon monoxide concen
tration used for input 
signal (ppm)

151 11.2 151 151 125

Carbon monoxide concen
tration for input signal 
(per cent of FSD)^

78.0 5.5 78.0 78.0 66.0

Type of input signal0 PRBS PRBS SS PRBS PRBS

In litres rain ^
b FSD is full scale deflection
c PRBS is psuedo random binary signal, and SS is single step 

4.3 Identification of Model Order and Estimation of Model Parameters

The problem of model order identification can be represented
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diagrammatically as follows

where we utilise knowledge of the input u^ and the recorded output 
to deduce the dynamic structure of the analyser. If both u^ and 

y^ are measured exactly then the identification problem is relatively 
straightforward. But we know that the output of continuous air 
pollution analysers is noisy and the noise level usually is quoted by 
manufacturers as being of the order of one per cent of the full scale 
deflection. This level of noise is not particularly serious. In a 
previously mentioned study Schnelle and Neeley (1972) were able to 
ignore the noise on the output signal and simply to deduce that the 
characteristic 'S' shaped curve of the single step response indicated a 
second order system with dead time.

However, we propose a discrete time linear dynamic stochastic 
model for the analyser so that the noise on the output can be accounted 
for in an explicit way. We express this model as

yk = \  + 5k

b (2 bm_____

V 2’1)
k-T

b + b z  ̂+ o____1_____
1 + a^z  ̂+

+ b z m
-m

+ a z n
-n

(4.1)

Vt

where y^ is the noisy output at time k, £ is some stochastic 
disturbance, x^ is the ’noise free’ output, u^_ ̂  is the input, and 
T is a time delay integer. The symbol x is introduced for convenience 
since the analyser exhibits a pure time delay between input and 
observable response. The identification problem is then simply one of 
determining those values of the integers n, m and x in equation (4.1) 
which 'best' describe the dynamic properties of the analyser.

For the purpose of determining these integer values we propose to
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use the instrumental variable (IV) method of Young et al. (1980) which 
was introduced in Chapter 3. In this method a range of plausible model 
structures is investigated by evaluation of a number of test statistics 
which arise naturally as part of the estimation process. Basic IV
procedures are shown to be adequate for the model identification but 
refined IV methods are used for the final estimation of the parameters 
in the estimated models, since the refined IV estimates have superior 
statistical properties.

The primary statistics we use here for model order
identification, each of which has been defined in Chapter 3, are the

2coefficient of determination R-p, and the normalised error
variance norm (NEVN) associated with the P matrix obtained from the
basic IV estimation. We use the normalised version of the EVN in
conjunction with the usual EVN because the magnitude of the 'b'
parameters is found in some models to be significantly different from
that of the 'a* parameters. In such cases the weighting of the average
parameter variances provided by the normalised EVN gives a more
discerning criterion than the usual EVN. However, care must be
exercised in the use of the normalised EVN. For example, if the
incorrect time delay has been chosen then the minimum normalised EVN
may indicate a model in which the fit to the output is poor. However,

2this will normally be detected by the poor R^.

The test statistics for a range of model structures are shown in
Table 4.2 for experiment 1. In searching for the most suitable model
we look for that one which yields the best combination of NEVN and 

2R-p. The NEVN should attain or be close to its minimum value and
should increase substantially for further increase in model order. The 

2value of R-j should be consistent with the degree of model fit
2expected. In the present case we would also expect R^ to be

close to unity, partly because of the low level of noise on the
observed data, and partly because the analyser is engineered to have
'nice' properties and we are able to perform well-controlled

2experiments on it. Furthermore, the value of R^ should reach a 
'plateau' level and thereafter not increase significantly with further 
increases in model order.

Young et al. (1980) have suggested further stages in their model 
identification procedure. In the present case we could bypass these
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because we have been able to find models which provide very good 
explanations of the output data, and also because we have £ priori 
information about the analyser which leads us to expect it to exhibit 
both linear and stationary behaviour. For the sake of completeness, 
however, we will describe these further stages, and in so doing we are 
able to assist the discrimination between the alternative models in 
Table 4.2. First, we need to ensure that the recursive estimates of 
the model parameters converge in a well-defined and non-ambiguous 
manner. Second, it is necessary that the estimated noise terms £ ^ 
are purely stochastic and are statistically independent of the input 
terms u^. That is, the £ ̂  should not be correlated with the 
estimated noise free output x^ or with the input û ..

Table 4.2

Model Order Identification Criteria for Experiment 1

Model 
(n,m,x)

ln(NEVN) ln(EVN)

(1,4,6) 0.9877 -6.4379 -9.4655
(1,6,6) 0.9970 -7.0839 -10.5210
(1,7,6) 0.9978 -6.9645 -10.6012
(1,8,6) 0.9984 -6.8701 -10.7145
(1,9,6) 0.9990 -7.1640 -10.9443

(1,10,6) 0.9990 -6.8400 -10.6701
(2,1,6) 0.9831 -6.0625 -6.1453
(2,2,6) 0.9969 -7.0465 -7.4960
(2,3,6) 0.9963 -5.6637 -6.3374
(2,4.6) 0.9970 -5.3328 -5.8034
(2,5,6) 0.9979 -4.8891 -5.3829
(2,6,6) 0.9979 -4.0648 -4.7066
(1,10,5) 0.9992 -7.2634 -11.1252
(2,3,5) 0.9940 -6.9357 -7.7724



66

It can be seen in Table 4.2 that several models provide a good
2description of the analyser's output through having values of 

at the 'plateau' level, while at the same time having NEVN values close 
to the minimum. Since the levels of measurement noise are quite low, 
any one of these models would be adequate for our ultimate purpose of 
estimating the true input pollutant concentrations. However,
consideration of the nature of the recursive parameter estimates, the 
time variation of the parameter estimates and the cross-correlation

Abetween the f ̂  and u^ leads us to conclude that the (2,2,6) model 
is the most acceptable. Thus the (1,9,6) model is rejected in favour 
of the (2,2,6) model even though the former has slightly better 
parameter definition. This is satisfying since a simpler model has 
obvious advantages in analytical terms. The recursive estimates of the 
parameters in the (2,2,6) model are shown in Figure 4.4 and can be seen 
to converge satisfactorily. The time variation of the parameter
estimates is shown in Figure 4.5 and it is clear that the model

•fparameters are time invariant as anticipated. The cross correlation
function for and u^ is shown in Figure 4.6. Clearly the
satisfy requirements with the cross correlation always smaller than the 
confidence bands on the correlation function.

Finally, we estimate the parameters of the identified (2,2,6) 
model by use of refined IV procedures and these are shown in Table 4.3.
The standard errors of the parameter estimates are acceptably low and 
the steady state gain is found to be 1.0400. This is a necessary 
condition for a satisfactory model of the analyser since we know from 
physical considerations that all carbon monoxide molecules that pass 
into the analyser must eventually emerge. The model fit to the 
observed output for experiment 1 is shown in Figure 4.7 together with

. Athe estimated terms

4.4 Dynamic Check of the Linearity of the Analyser

The parameters of the identified (2,2,6) model in experiment 1 
were time invariant, and this would normally be adequate to satisfy any 
doubt that the analyser could be modeled as a linear dynamic system. 
However, in order to provide a dynamic check of the linearity of the 
analyser, experiment 2 was performed. This experiment was identical in 
all respects to experiment 1 except that the magnitude of the input 
signal was reduced from 78.0 per cent of full scale deflection to 5.5
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Figure 4.4 Recursive estimates of the parameters 
model of the carbon monoxide analyser

in the (2,2,6) 
in experiment 1.
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Figure 4.5 Estimated time variation of the parameters in the 
(2,2,6) model of the carbon monoxide analyser in 
experiment 1.
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- 1.0

Figure 4.6 Cross-correlation function for the estimated
residuals anc* the input u^ from the (2,2,6) 
model in experiment 1.
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Figure 4.7 Model fit (— ) to output measurements (+) provided by 
the (2,2,6) model of the carbon monoxide analyser in
experiment 1. Estimated residuals (-- ) are plotted
underneath.
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Table 4.3

Refined IV Parameter Estimates and Standard Errors for the Identified
(2,2,6) Model for Experiment 1

Parameters In Estimated Parameter Standard Errors of 
Identified Model Values Parameter Estimates

al -1.49619 0.00640
a2 0.56415 0.00558
b0 0.04872 0.00118
bl 0.02196 0.00191

per cent. The model identification procedure described in the previous 
section was applied to experiment 2 and the primary test statistics for 
a range of plausible models are shown in Table 4.4. From inspection of 
the results we conclude that the (2,2,6) model has the most acceptable 
model structure. This is the same structure identified for experiment 
1 and thus provides further evidence that the analyser behaves as a 
linear dynamic system. Comparison of the test statistics in Tables 4.2 
and 4.4 shows that neither the fit to the data nor the parameter 
definition are quite as good as in experiment 1. This is consistent 
with the knowledge that the level of measurement noise was considerably 
larger in experiment 2. As with experiment 1, the parameters in the 
identified (2,2,6) model for experiment 2 are estimated finally by 
refined IV methods, the estimates and their standard errors being shown 
in Table 4.5. Comparison of Tables 4.3 and 4.5 shows that for 
experiment 2 the standard errors are three to four times larger than 
those found for experiment 1.

The model fit to the observed data in experiment 2 is shown in 
Figure 4.8. As a final check on the suitability of the model
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Figure 4.8 Model fit (---) to output measurements (+) provided by
the (2,2,6) model of the carbon monoxide analyser in 
experiment 2. Estimated residuals are plotted 
underneath.
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Figure 4.9 Comparison of observed output (+) in experiment 2 with
the noise free output (---) calculated from the (2,2,6)
model estimated in experiment 1.
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parameters found in experiment 1 we calculate the noise free output by 
passing the input for experiment 2 into the model obtained in 
experiment 1, then compare this calculated output with the observed 
output in experiment 2. This comparison is shown in Figure 4.9, 
clearly indicating that the model estimated in experiment 1 provides 
an adequate description of the data in experiment 2. This final step 
in the analysis can be considered as an evaluation of the validity of 
the model of the analyser since it shows the ability of the model to 
explain data other than that on which its parameter estimation was 
based.

Table 4.4

Model Order Identification Criteria for Experiment 2

2Model rt ln(NEVN) ln(EVN)
(n,m,t )

(1,6,6) 0.9859 -5.7149 -9.1061
(1,7,6) 0.9878 -5.6101 -9.0710
(1,8,6) 0.9899 -5.2724 -8.9882
(1,9,6) 0.9909 -5.5537 -8.8533
(2,1,6) 0.9841 -5.9308 -6.0134
(2,2,6) 0.9918 -5.8646 -6.3365
(2,3,6) 0.9891 -4.7767 -5.4324
(2,4,6) 0.9893 -4.0325 -4.6004
(2,5,6) 0.9918 -4.2484 -4.7488

4.5 Choice of Input Signals for Optimal Estimation

We would expect that relatively simple input signals would
provide adequate information in the output signal for identification 
and estimation of the model parameters because the dynamic behaviour of 
the carbon monoxide analyser is not particularly complex. We therefore 
compare results obtained in experiments 1 and 3 as the only difference
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Table 4.5

Refined IV Parameter Estimates and Standard Errors for the Identified
(2,2,6) Model for Experiment 2

Parameters In Estimated Parameter Standard Errors of
Identified Model Values Parameter Estimates

al -1.57088 0.01742
a2 0.63630 0.01503
b0 0.04581 0.00454
»1 0.02312 0.00670

between the two was the nature of the input signal used, namely, a 
random binary signal (RBS) in experiment 1 and a single step signal in 
experiment 3. These two input signals are shown in Figure 4.10. It is 
expected that use of the random binary input signal will lead to better 
definition of the parameter estimates. This is because adequate 
excitation of the system exposes, via the output response, all of the 
important modes of the system behaviour (Goodwin and Payne, 1977).

The primary test statistics for various plausible model 
structures for experiment 3 are shown in Table 4.6, and inspection of 
these results indicates the (2,1,6) model as the most suitable. Such a 
structure is only slightly different from that identified for 
experiment 1, since it is the 'a’ parameters that are the major 
determinants of the dynamic behaviour of the model. The model fit to 
the step response of experiment 3 is shown in Figure 4.11. The refined 
IV estimates of the parameters in the (2,1,6) model are shown in Table 
4.7 and comparison of the standard errors with those in Table 4.3 shows 
that a slight improvement may be obtained by use of the RBS input. For 
this reason we choose a RBS input in all other experiments.
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Figure 4.10 Pseudo random binary signal (PRBS) and single step 
inputs used for experiments on the carbon monoxide 
analyser.
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Figure 4.11 Model fit (---) to output measurements (+) provided
by the (2,1,6) model of the carbon monoxide analyser
in experiment 3. Estimated residuals (-- ) are
plotted underneath.
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Table 4.6

Model Order Identification Criteria for Experiment 3

2Model Rt ln(NEVN) ln(EVN)
(n,m,x)

(1,1,6) 0.9882 -6.7063 -8.1189
(1,2,6) 0.9957 -4.7398 -7.4314
(1,3,6) 0.9974 -4.7096 -7.5127
(1,4,6) 0.9986 -4.5396 -7.9216
(1,5,6) 0.9987 -4.5469 -7.9348
(1,6,6) 0.9989 -4.5739 -8.0429
(2,1,6) 0.9991 -5.7377 -5.9266
(2,2,6) 0.9964 -3.6795 -4.2918
(2,3,6) 0.9954 -2.7637 -3.3841
(2,4,6) 0.9984 -3.3611 -4.0216

Table 4.7

Refined IV Parameter Estimates and Standard Errors for the 
Identified (2,1,6) Model for Experiment 3

Parameters
Identified

In
Model

Estimated Parameter 
Values

Standard Errors of 
Parameter Estimates

al -1.53634 0.00770
a2 0.59824 0.00677
b0 0.06207 0.00102
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4.6 Effect of Sample Gas Flow Rate on the Dynamics of the Analyser

Both Larsen et al. ( 1965) and Schnelle and Neeley (1972) showed 
that the dynamic response of continuous air pollution analysers could 
be altered by changing the flow rate of the sample gas through the 
detection cell. In this section we describe experiments 4 and 5 in 
which the sample gas flow rate was altered from the recommended 1.0 
litre min“-*- used in experiments 1 to 3. In experiment 4 the flow 
rate was increased to 2.0 litres min-*- while in experiment 5 it was 
decreased to 0.7 litres min-'*'. The primary test statistics for model 
order identification are shown in Table 4.8 for experiment 4 and Table 
4.9 for experiment 5. Inspection of these shows a (2,2,4) model for 
experiment 4 and a (2,3,8) model for experiment 5 as the preferred 
models. As we would expect from physical considerations, the pure time 
delay between input stimulus and observable response is related to the 
sample gas flow rate, with shorter delay times at higher flow rates. 
The refined IV parameter estimates for experiments 4 and 5 are shown in 
Table 4.10. In neither experiment 4 nor 5 are the standard errors of 
the parameters as low as those obtained in experiment 1. It is not 
apparent why this has occurred, but it may be due to slight ambiguities 
in the specification of the pure time delay. Thus the true time delay 
may lie between samples rather than being an exact integer multiple of 
the sampling interval. We will consider the results of experiments 4 
and 5 in more detail in the next section where we describe continuous 
time transfer function models and the frequency response 
characteristics of the analyser.

4.7 Continuous Time Models and the Analyser’s Frequency Response

Continuous air pollution analysers may produce a continuous chart 
recording of pollutant concentration, although if they are used in 
conjunction with modern data logging equipment the continuous output is 
usually sampled at some fixed frequency. Since these analysers may 
generate a continuous output it seems appropriate to find continuous 
time models to describe their dynamic behaviour. To do this it is 
convenient to use sampled data to identify discrete time models and 
from them to obtain continuous time models. This is done simply by 
factoring the polynomials in z-*- of the discrete time models into 
factors of the form (1 + az"^). These factors then transform to
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Model Order Identification Criteria for Experiment 4
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Model 
(n,m,T)

2R'p ln(NEVN) ln(EVN)

(0,9,4) 0.9920 -7.0012 -9.3703
(0,10,4) 0.9948 -7.0834 -9.5887
(1,3,4) 0.9900 -7.3588 -9.6283
(1,4,4) 0.9951 -7.3557 -9.9662
(1,5,4) 0.9967 -7.2366 -10.1721
(1,6,4) 0.9975 -6.9872 -10.1073
(1,7,4) 0.9975 -5.2338 -9.6584
(1,8,4) 0.9977 -5.5685 -9.2465
(1,9,4) 0.9976 -5.4159 -8.5081

(1,10,4) 0.9976 -3.5174 -7.8475
(2,2,4) 0.9976 -7.3904 -8.0770
(2,3,4) 0.9971 -5.2002 -6.5896
(2,4,4) 0.9972 -3.0254 -5.3729
(2,3,3) 0.9971 -6.9780 -8.2409

Model Order
Table 4.9

Identification Criteria for Experiment 5

Model
(n,ra,T)

RT ln(NEVN) ln(EVN)

0,5,8) 0.9927 -7.1862 -10.2802
(1,6,8) 0.9967 -7.2513 -10.5231
(1,7,8) 0.9981 -7.4674 -10.8743
(1,8,8) 0.9985 -7.3433 -10.9292

(1,10,8) 0.9987 -5.8523 -10.5284
(2,3,8) 0.9978 -7.1826 -7.8867
(2,4,8) 0.9983 -6.7277 -7.4523
(2,5,8) 0.9973 -5.3846 -6.2356
(2,7,8) 0.9984 -3.9623 -4.7530
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Table 4.10

Refined IV Parameter Estimates and Standard Errors for the 
Identified (2,2,4) Model for Experiment 4 and the (2,3,8) 

Model for Experiment 5

Parameters In 
Identified Model

Estimated Parameter 
Values

Standard Errors of 
Parameter Estimates

Experiment 4

al -1.28312 0.01313
a2 0.41644 0.01084
b0 0.06749 0.00260
bi 0.06795 0.00465

Experiment 5

al -1.45502 0.00893
a2 0.53241 0.00767
b0 0.02847 0.00198
bi 0.01148 0.00405
b2 0.03899 0.00329

(1 - a)(s + 2/T((l + a)/(l - a))) where s = a + jw and T is the 
sampling interval (Caprihan and Neto, 1977). This transformation 
provides the initial estimates for the parameters in the continuous 
time models and the final estimates are obtained by use of the
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continuous time modeling capacity of the CAPTAIN package (see Young and 
Jakeman, 1979b).

In this way continuous time models are obtained for experiments 
1, 4 and 5 and the results are summarised in Table 4.11. In all three 
experiments the continuous time models provide good explanations of the 
output data and are second order with the form

1 + f̂ s +

where g0 is the steady state gain K, f^ is 2 £/wn and f2 is
1/co^. The term C is the damping ratio and wn is the natural
frequency of oscillation. The continuous time model fit obtained for 
experiment 1 is shown in Figure 4.12 where for clarity of presentation 
the measured output and the model fit are separated vertically by two 
units. It is evident that the continuous time model provides as good 
an explanation of the data as the discrete time model (see Figure 4.7).

We have seen that a continuous air pollution analyser can be well 
described by either discrete time or continuous time linear dynamic
models. Given that it is possible to summarise all the information 
about the dynamic behaviour of a linear dynamic system in a Bode
diagram (see, for example, Naslin, 1965), it is surprising that 
manufacturers of continuous air pollution analysers do not utilise such 
diagrams. This is unfortunate because Bode diagrams are easy to
construct once an analyser has been characterised by a transfer
function and would thus enable easy comparison of the dynamic
properties of different analysers. Schnelle and Neeley (1972) 
determine the frequency response characteristics of some continuous 
air pollution analysers and, predictably, found that the gain decreased 
as the frequency of the input signal increased. A desirable property 
of such analysers would be a 'flat* frequency response (that Is,
gain = 0) over the range of input frequencies most likely to be met in 
practice. In the next section it is shown how this can be achieved by
means of a robust input estimation algorithm.
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Before proceeding to describe this, the frequency response 
characteristics of the analyser are determined for experiments 1, 4 and 
5. This is done simply by using the values found for the natural 
frequency of oscillation w n, the damping ratio £ and the steady state 
gain K. Then substitution of s = jw in the continuous time transfer 
function models allows the gain and the phase to be calculated for a 
range of frequencies w (see Truxal, 1955). The former (determined from 
the values for natural frequency, damping ratio and steady state gain 
shown in Table 4.11) is shown for experiments 1, 4 and 5 in Figure 
4.13. The results illustrated in this Figure are in accord with the 
physical nature of the analyser, where an increase in sample gas flow 
rate tends to extend the bandwith of the analyser a little. It can 
also be noted that the analyser has critically damped response ( £ = 
1.0) at the ’design' flow rate of 1.0 litre min- .̂

4.8 Input Estimation

In general the input estimation problem can be represented 
diagrammatically as

v ?) B(z 1 ) Yk _
A (z 1 )

where the aim is to use knowledge of the output y^ and the model 
structure B(z~l)/A(z“l) to estimate the input u^. Finite
difference methods may successfully be used to do this if the output is 
measured exactly but may be unsatisfactory if y^ is measured in 
error. This is demonstrated in the Appendix where the discrete time 
model of the carbon monoxide analyser estimated in experiment 1 is used 
as the description of the analyser.

Another method for input estimation is that described by Young 
and Jakeman (1979a). This first requires the transformation of the 
transfer function model of the dynamic system so that x^ 
(B(z"l)/A(z~l))u^ is inverted to give u^ =
(A( z--*-)/B( z“-*-) )X]C. This method proves useful when there is 
little noise on the data and when B(z“-*-) is invertible (minimum 
phase). The latter condition requires that the roots of the polynomial 
B(z- )̂, in terms of z-*, lie outside the unit circle so that the
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convergence of (A(z-^)/B(z-l) is assured. If this
condition is not satisfied the inverse operation is unstable and the 
solution u^ is unbounded (Jakeman and Young, 1980a). Even if
B(z- )̂ is not invertible it may be possible to approximate the
non-invertible linear operator by an invertible one with similar 
dynamic properties (Jakeman and Young, 1980a). A method of input
estimation can, however, be chosen that bypasses the required
invertibility of B(z- )̂ and which is robust to errors on the output 
y^. It is this method that is now described.

This method is essentially equivalent to synthesising a filter 
for the output data, where the frequency response characteristics of
the filter are chosen such that the series connection of system model
and the filter approximates a ’unity' transfer function; in other 
words, even though no actual filter is formulated, the method can be 
interpreted in terms of such a filter which may be thought of as an 
approximation to the inverse of the transfer function model of the 
analyser, with due allowance made for the attenuation of noise effects. 
This can be represented diagrammatically as

uk B (Z~1) Y k 'Filter' uk w
A(z_1)

where if the 'filter' can be chosen properly, the output from the 
filter should be virtually equivalent to the input u^.

The decision to model the input û _ as a first-order 
Gauss-Markov process is the basis of the method used here (Young and 
Jakeraan, 1979a). The process may be written as

\  ■ *\-i + rvk (4-2)

where u^ may be a vector consisting of u^ appended with other 
states, $ is a transition matrix, T is a partitioned matrix
comprising null and identity submatrices, vk (k = 1, ... , N) is an
independent and identically distributed sequence of random vectors with 
zero mean and covariance matrix Q, and N is the number of samples. The
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simplest example of such a process is the simple random walk where $ 
in (4.2) is the identity matrix of order unity, so that we have

\ Uk-1 + (4.3)

and the covariance matrix Q becomes a scalar denoted by q. The input 
variation may be described in other simple ways and one that is used 
later in this chapter is the integrated random walk

\ = Vi + Vi

\  = sk-i + vk-i

(4.4)

which is also a special form of the general linear Gauss-Markov form 
(4.2).

However, to demonstrate the simplicity of the input estimation 
algorithms we will derive them for the case of the simple random walk 
model (4.3) of the input variation. Then by using a stochastic 
observation equation encompassing equation (4.1) which is placed in a 
special transfer function form, the input estimation problem can be 
formulated as one of estimating the single state u^ of a stochastic 
dynamic system described by

\ = Vi + \

yk = + \
(4.5)

where ê _ denotes a white measurement error sequence (with constant 
variance o^) and the following definitions apply

(V  •••’ Vm>

'k " yk - Vk-1 - a y. n k-n

bT (b b. ... b ) o 1 m
A
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The equations (4.5) may be solved for by either a filtering 
or a smoothing algorithm, where the former provides an estimate of the 
state at the time of measurement of the kth sample, and the
latter generates estimates of û. at each sampling instant which are 
based on all N samples (see Gelb, 1974). The filtering algorithm 
corresponds directly to the Kalman filter of state estimation theory 
(see Gelb, 1974) and may be written as

k k-1 + p, b k o (y£ - T T 
-

pk = (pk-i +  q){ 1
bo (pk-l + q)

°2 + bo(pk-l + q)

(4.6)

A slightly modified form of the algorithm (4.6) which avoids the
Onecessity of providing an estimate of may be derived simply by

dividing through the equation for p̂ _ by and rearranging the term 
within the curly brackets to give

(pk_i + q H  1 " bQ (pk-l + q)

1 + bo (Pk-l + q)
(4.7)

where p^ = p^/ and q = q/a^. In the next section such a
simplified form of the filtering algorithm is used. The filtering 
algorithm offers on-line potential and, as will be shown, it provides 
input estimates which are sufficiently accurate in most cases. 
Implementation of the algorithm requires uQ to be set to zero or to 
some a. priori value, and p0 (or p0) to a high value such as 
106. It is not possible to specify a simple equation for estimation 
of the value of q which corresponds to the level of variation in the 
input signal. While Kaldor (1978) gives a clear review of available 
heuristic procedures for estimating q from the data, it is not 
considered necessary to utilise these procedures in this case. It is 
clear from the properties of the simple random walk that a value of the 
variance q which is too large will force the estimates of the input 
u^ to be very ’spiky', while a value of q which is too small will not 
allow the u^ to change quickly enough to the correct level. Usually 
q lies between 10“  ̂ and 10^ and experience has shown that an order



85

of magnitude estimate of q is usually sufficient to provide good input 
estimates; in other words q (or q) is used as a 'program parameter' to 
be adjusted by a trial and error procedure.

Unlike the filtering solution for equations of the form (4.5), 
the smoothing solution may have many forms, some of which are unstable 
(see Norton, 1975). The solution preferred here is that derived by 
Bryson and Ho (1975) since it provides smoothed estimates by utilising 
the filtered estimates and then working recursively backwards through 
the data with a recursion that is stable. It may be written as

Ük/N \+l/N + qXk

where N

and X,k

0
(4.8)

i(y£ - ̂\})r

for k = N-l, N-2, ..., 1

where the variance o ̂  of the white noise sequence may be estimated 
from the filtered estimates obtained at each sampling instant. 
Alternatively, estimation of may be avoided entirely by a scaling 
similar to that described for the filtering algorithm. In the next 
section we demonstrate both filtering and smoothing algorithms on two 
sets of data, for which it was found that the integrated random walk 
model of the input variation was more suitable than the simple random 
walk.

4.9 Demonstration of the Input Estimation Algorithms

Both sets of data used to demonstrate the performance of the 
input estimation algorithms consist of 720 data points, that is, one 
hour of continuous measurements sampled every five seconds. The first 
set of data was taken from a chart recording of carbon monoxide 
concentrations in Canberra City and the second was a synthetic data set 
constructed to have high frequency components. The former is believed 
to be representative of air quality data normally met in practice, 
whereas the latter was constructed primarily to provide a difficult
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test for the input estimation algorithms. The former data set will be 
considered first.

Even though the data taken from the chart recording are not the 
true input pollutant concentrations, it will be sufficient for our
purposes to assume that they represent the true input signal. The 
input is then passed through the discrete time model of the carbon 
monoxide analyser estimated in experiment 1, so that the noise free 
output is obtained. White noise of a level normally found in such
analysers (about one percent of full scale deflection) is then added to 
this noise free output to give a noisy output. This is shown in Figure 
4.14 where for clarity of presentation the noise free output is
displaced vertically by five units and the noise is plotted directly 
underneath. A plot of the known input and the noisy output is shown in 
Figure 4.15, where again for clarity of presentation the known input is 
displaced vertically by 15 units, and their difference is plotted
underneath.

The filtering algorithm is initiated in the manner described in 
the previous section and various values of q tried in order to 
determine that most suitable. The estimated input using q = 0.1 is 
shown with the known input in Figure 4.16, where two features are 
apparent. First, the estimated input closely ’tracks’ the known input 
although the former is more ’spiky’ than the latter. Second, there is 
a phase lag between the estimated and known inputs. The ’spiky' nature 
of the input estimates may be attributed to the value of q chosen. 
Smaller values of q would produce less ’spiky’ input estimates but 
only at the cost of poorer tracking of the true input variation. The 
phase lag between the estimated and known inputs arises because of the 
dynamic lag between the input and output of the carbon monoxide 
analyser. The filtering algorithm does not correct for this lag, but 
this is not a serious drawback in estimating true pollutant 
concentrations, since it will mean only a slight error in the estimated 
time of occurrence of the maximum instantaneous pollutant 
concentration.

The smoothing algorithm is applied to the same noisy data as 
above and the results obtained using q = 50 are shown in Figure 
4.17. The known input is displaced vertically by two units and the 
difference between the known and the estimated smoothed input is
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Figure 4.14 The noise free output of the carbon monoxide analyser 
(upper graph) resulting from the first known input. 
The noisy output obtained by adding white noise to 
the noise free output is shown for comparison and is 
translated vertically by -10 units for clarity.
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Figure 4.15 Comparison of the first known input (upper graph) 
with the noisy output of the analyser. The known 
input is translated vertically by +15 units for 
clarity, and the difference between the input and 
noisy output is plotted underneath.
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Figure 4.16 Comparison of the known first input (upper graph) and 
the estimate of_the input provided by the filtering 
algorithm with q = 0.10. The known input is translated 
vertically by +15 units for clarity.
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Figure 4.17 Comparison of the first known input (---) and the
estimate (-- ) of the input provided by the smooth
ing algorithm with q = 50. The known input is trans
lated vertically by +2 units for clarity and the 
difference between known and estimated inputs is 
plotted underneath.
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plotted underneath. Unlike the filtered estimates, the smooth 
estimates are not ’spiky’ and there is no lag between the estimated and 
known inputs. Quite obviously if on-line estimates of the input are not 
required, the smoothing algorithm may be used and should provide input 
estimates that are superior to those obtained from the filtering 
algorithm.

For the second data set we proceed as before and pass the assumed 
known input through the same transfer function model of the analyser 
and add a suitable level of noise to the noise free output. The noise 
free and noisy outputs are shown in Figure 4.18. The noisy output and 
the known input are shown in Figure 4.19, and the attenuation of the 
input signal by the analyser is much more pronounced than before. It 
was expected that the value of q necessary to obtain good estimates 
in this case would be significantly larger than that used in the 
previous example. A value of q = 500 was required and the estimated 
smoothed input is shown together with the known input in Figure 4.20.

A visual comparison of the known and the estimated inputs in this 
Figure indicates that the input estimation algorithms work very 
satisfactorily despite the considerable complexity of the noisy output 
signal. However, to provide some quantitative measure of the 
performance of the algorithms, a selection of statistics appropriate to 
the input and output signals were computed and are shown in Table 4.12. 
As would be expected from the dynamic properties of the analyser, the 
noise free and noisy output signals have a variance considerably less 
than that of the known input, but both the filtering and smoothing 
algorithms produce input estimates with variances that are restored to 
values close to that of the known input. Similarly the input 
estimation procedures yield reasonable estimates of the maximum and 
minimum values of the known input. The discrepancy between the mean 
values of the known input and the output signals is probably due to the 
fact that the steady state gain of the analyser was estimated in 
experiment number one to be 1.04. Thus it has not been possible to 
determine the extent to which the frequency response characteristics of 
the carbon monoxide analyser will cause errors in the measurement of 
mean pollutant concentrations which are averaged over periods of one
hour or longer.
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Figure 4.18 The noise free output (upper graph) of the model of 
the carbon monoxide analyser resulting from the 
second known input. The noisy output obtained by 
adding white noise to the noise free output is also 
shown and the noise free output is translated vert
ically by +40 units for clarity.
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Figure 4.19 Comparison of the second known input (upper graph) 
with the noisy output of the model of the analyser. 
Known input is translated vertically by +40 units 
for clarity.
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Table 4.12

Comparison of Some Statistics for the Second Data Set
of 720 Samples

Signal Mean Variance Maximum Minimum
Value Value

Known input 25.11 135.68 54.30 2.30
Noise free output 26.10 90.60 46.91 6.37

Noisy output 26.11 90.93 47.24 6.14
Estimated (filtered) 

input 26.00 138.09 52.85 0.68
Estimated (smoothed) 

input 25.97 127.78 53.12 1.20

- 20.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 M 1 1 M 1 1 1 1 1 M 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

50 100 ISO 200 250 300 350 400 450 500 550 600 650 700

figure 4.20 Comparison of second known input (upper graph - 
translated vertically by +50 units) and smoothed 
estimate of input using q = 500.
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4.10 Conclusion

In this chapter we have shown that a continuous air pollution 
analyser may be described by either discrete time or continuous time 
transfer function models. Recursive instrumental variable techniques 
were seen to be useful in the identification of model order and in the 
estimation of the model parameters. Input estimation algorithms which 
are robust in the presence of noise on the observed output were 
presented and evaluated on two sets of data, such algorithms being 
applicable to any continuous analyser which may be modeled as a linear 
dynamic system. Precisely because such analysers behave as linear 
dynamic systems they have frequency response characteristics which 
result in the attenuation of the input signal, with high frequency 
components being affected more seriously than low frequency ones. 
Consequently the statistics of the true input concentrations may not be 
reproduced exactly. This discrepancy may or may not be serious but as 
the input estimation procedure presented here is so simple, its 
adoption would seem advisable since superior data will be obtained.
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Chapter 5

SIMPLE LINEAR DYNAMIC MODELS FOR ESTIMATING MISSING AIR POLLUTION DATA

5.1 Introduction

In this chapter we investigate the problem of estimating missing 
air pollution time series. Many air pollution measurements of interest 
consist of daily average levels which are computed from the relevant 
hourly data. Most analyses of such air pollution data simply delete 
from consideration the days with incomplete records. This may be 
inefficient if the data set is thereby significantly reduced, and may 
lead to biased estimates if the missing observations are 
unrepresentative. Wyzga (1973) draws attention to these possibilities 
and describes an iterative regression procedure which he employs to 
obtain estimates of the unobserved data. Use is made of pollutant 
measurements obtained at the location from which observations are 
missing (measurements relating both to the required pollutant on days 
adjacent to those for which the observations are lacking, and to 
surrogate pollutants on the same day), as well as measurements obtained 
at other locations in the vicinity (from which he secured same-day 
observations of the required pollutant). Although Wyzga (1973) does 
not report the regression model parameters, it is likely they were 
biased. As has been noted in previous chapters, however, regression 
models may produce unbiased predictions even if the model parameters 
are biased, and this probably accounts for the relative success of his 
procedure.

An alternative method of filling gaps in air pollution time 
series has been used by Chock et al. (19 75). Thd data used in their 
study were obtained from a single location. Their approach was to 
apply a univariate Box Jenkins model to the known data prior to the gap 
in order to forecast the first half of the missing values, and apply a 
similar model to the subsequent known data in order to ’back-forecast* 
the remainder of the missing observations.

The missing air pollution data that we try to estimate in this 
chapter relate to ozone. Measurements were obtained at locations in 
the San Joaquin valley in California in connection with a problem of 
poisoning of agricultural field-workers exposed to organophosphate
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pesticide residues (Spear, 1978). Although the daily average level of 
ozone is usually of less interest than the maximum hourly 
concentration, it was believed in this case that the former exerted a 
significant influence on the rate of chemical conversion of the 
pesticide parathion to its oxygen analogue paraoxon, which was 
suspected to be the chemical agent primarily responsible for the 
poisonings (Spear et al., 1978).

The complex and non-linear chemical reactions typical of photo
chemical smog formation (see Guicherit, 1976) are not modeled 
explicitly in the present attempt to estimate missing ozone 
measurements because this is not believed to be necessary. This is not 
a novel approach since it was used by Hanna (1977) who outlined a 
useful but simple model of photochemical smog movement along the Los 
Angeles-Palm Springs trajectory. Reference to this work by Hanna is 
pertinent for the additional reason that the linear dynamic models used 
here to estimate missing ozone data are, in effect, similarly 
describing ozone transport between different locations.

In the course of investigating model structures which were 
believed suitable for the estimation of the missing ozone data, 
instrumental variable (IV) algorithms were developed (Sections 5.2 and 
5.3) and evaluated (Sections 5.4 and 5.5). These algorithms were used 
to determine the parameter values in a particular class of multiple 
input-single output (MISO) models, in which the characteristic 
polynomials of the transfer functions associated with each input are 
not constrained to be identical. In the remainder of this chapter we 
describe the application of both single input-single output (SISO) and 
MISO models to the estimation of the missing observations in the San 
Joaquin valley data set referred to earlier.

5.2 Derivation of the Instrumental Variable Methods

Estimation procedures for linear MISO systems have usually been 
developed for the following multiple input autoregressive moving 
average, exogenous variables (ARMAX) model

I B . (z l) D(z L)£ —— zr~ u-u + — rr~ ev
i=l A(z b  lk A(z b  k

(5.1)
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where A(z-^), B^(z~l), and D(z~l) are appropriate polynomials
in the backward shift operator z~^; is the single measured
output of the system; u^, i = 1,2, . .. , l, are the multiple inputs;

Oand e^ is a zero mean white noise input with variance a . 
In this chapter, however, an alternative time series model
representation is considered and has the form

Bi(z"1)
. -1. uik (z )

b . + b . z 4-io il
1 + a zil

-1
. + b. z miinu

. + a. z ni
ini

(5.2)

.E,xik + 5ki=l

where £^ denotes output noise of a general nature. In this manner 
direct allowance is made for Z transfer functions between each of the 
multiple inputs and single output which have different denominator 
polynomials. This model, which can be considered the dynamic 
equivalent of the linear regression model with regression coefficients 
replaced by transfer functions, can be contrasted with (5.1) where the 
denominator polynomials are assumed identical. In general, this
multiple input transfer function (MITF) model should ensure a 
parametrically more efficient representation. It has been considered 
briefly by Box and Jenkins (1970), and in more detail by 
Barrett-Lennard (1978) who used it to model a chemical process in an 
aluminium plant. It should also be noted that the formulation (5.2) 
allows for a mixed transfer function-regression model simply by 
setting the appropriate parameters a^, ..., ain_̂ to zero for one
or more of the inputs u^.

With no assumptions about £ ̂  we will see that basic 
instrumental variable procedures can be used to obtain consistent
estimates of the parameter vectors a^ = (a^ ... aj_n. b^Q ...

T 1) , i = 1,2, ..., Z in (5.2). However, if it is assumed
i
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further that £ ̂  can be generated from a white noise process via an 
auto-regressive moving average model of the form

D(z S

C(z )-1. ®k
. 1 + d.z + ... + d zA 1 r

1 +  c^z * + + c z s
-s k (5.3)

then the noise parameter vector c_ = (c ̂ • •• cs^l ••• dr and
nthe variance = var (e^) can be estimated by a procedure such as

approximate maximum likelihood (AML)(see Young, 1974).

In addition we will see that these assumptions facilitate the 
derivation of a refined IVAML procedure, which has the advantage of 
asymptotic efficiency. As might be expected from the results of Young 
and Jakeman (1979c) and Jakeman and Young (1979) refined IVAML proves 
to be asymptotically efficient while basic IVAML and basic IV yield 
consistent estimates and seem statistically efficient enough for most 
practical purposes. Also we will see that the IV model order
identification procedure detailed in Young et al. (1980) is reasonably 
successful for the structure (5.2) although the identification of model 
order in the simulation experiments is not as clearly defined as in the 
equivalent SISO situation.

Recursive IV methods for the estimation of the system model in 
(5.2) and AML methods for the noise model (5.3) can be derived by 
approaches based either on the concept of generalised equation error 
(GEE) minimisation or that of prediction error minimisation. In the 
present case estimates are chosen to minimize a cost function J of the 
form

(5.4)

ek
l
Z
i= 1

B.l
A.l

)where
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la seeking to minimise (5.4) the following definitions are useful

Ik ( Xik-1.....  Xik-n.’ Uik’ Uik-m

%  = ( h i ..... ain.’ bio’ ••• bim. )

xik (5.5)

= yk - 4^
and ( nlk_j. . .  nik-ni’ uik’ uik-m. )

Also

x*xik A.D ikl

A.D ikl
(5.6)

n*ik A.D ikl

In (5.6) the star superscripts are used to denote those variables which 
are prefiltered by C/A^D and which are associated with the i-th 
transfer function B^/A^. Such prefiltering is an essential part of 
refined IV estimation (see Young, 1976).

With these definitions, another useful expression for e^ is the 
following

C , Bi . . C ( k  i -  >Ji-—  ( n , - —  u., ) —  a vAD'k _ ik ikD A.l

A.Dl
( n., - n., a. )ik —nk —i
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A . T= n*, - n*, a.ik -T.k l

Now by setting the gradient V J = Ee, (3e. /3a ) to zero we obtain the_a. k k —i
following ’normal’ equations 1

T T T
* ( i i  > *Jk ■ °k=l

(5.7)

where it will be noted that evaluation of this expression nominally 
requires knowledge of the noise model parameters, as well as the 
parameters of the other transfer functions.

The linearised system of estimation equations (5.7) for finding 
a-,- can be placed quite straightforwardly in recursive form. In a 
similar manner to that described for the SISO case (see Young and 
Jakeraan, 1979c), the symmetric matrix gain version of the recursive 
algorithm is given by equation (5.8) for i = 1, 2, ... , 7

a = a - P x* ( 1 + X*? P x* ) 1(fi*Ja -  fj* ) -nk -T.k-1 ik-l^Lk -ak ik-1 —ik —ik—ik-1 ik

(5.8)
/N /N T *  A — 1 ̂  T ^P M = P41 . - P #1 -X* ( 1 + X* P.. . X*. ) X*. P.. .ik ik-1 ik-1—ik — Lk ik-1 —ik —ik ik-1

Since we do not have knowledge of all the variables in (5.8), those 
which cannot be obtained exactly have been given hat superscripts to 
denote replacement by their estimated values; we will discuss 
subsequently both how these estimates ( x ^  and ) are generated, and
the initialisation of a^Q and P-j_0.

If it is assumed for the moment that the estimates x.^  ̂ =
1,2,..., 7 are available, an estimate may be obtained from

-x7k’

and then the refined AML algorithm is found by setting the derivative 
of J (with respect to c) to zero, and placing the result in recursive



99

form as

%  % - l  ( 1 + ^k \ - l  ^k ) (£kCk-l ^k }
(5.9)

Pn = vn 
k k-1 Pn n* ( 1 + n*T Pn n* ) 1n*T Pn k- A  K \  k-1 ^k ' ^  k-1

with ft. = ( -i . .. . -i S. .... 6. )—k k-1 k-s k-1 k-r

and flj - ( -SVi ' ' • ‘5k-s®k-l ' *' ®k-r >

obtained from the prefiltering operations

k  - and ■ L~ %  <5-10>

where D is the estimate of the polynomial DCz-1’). As in the case of 
xik and Pile» generation of the estimates £k and ek will be 
considered in the next section.

It should be noted that certain non-symmetric gain algorithms can 
be obtained as alternatives to (5.8) and (5.9) by using, for example, 
the GEE approach. In the case of (5.9), the non-symmetric algorithm 
offers no advantages but we will see that for (5.8) the non-symmetric 
form possesses superior robustness and convergence characteristics, 
particularly when there is a paucity of data and low signal to noise 
ratios (see Young and Jakeman, 1979c). In the non-symmetric gain form 
of (5.8), the transposed vector x*£ is replaced by wherever it 
appears.

5.3 Implementation of the Algorithms

In this section we discuss the implementation of the refined 
IVAML algorithm for the multiple transfer function formulation (5.2) 
and (5.3). The implementation of the basic IV (AML) algorithm follows
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easily from this since the only differences are the following:
(a) the prefiltering operations given by (5.6) and (5.10) are not 

utilised and recursive estimation proceeds according to (5.8) 
and (5.9) with star superscripts removed from all variable 
definitions.

(b) if a noise model is required, estimation of the parmeters in 
(5.3) is best performed subsequent to all system models being 
satisfactorily estimated. Alternatively it can be omitted 
entirely either if it is not required or does not correspond 
to the form (5.3).

Figure 5.1 is a summary of the refined IVAML algorithm for a 
system with 1 = 2  inputs. It shows the decomposition into three
co-ordinated sub-system estimators, the refined IV for each of the 
two system transfer functions, and the refined AML sub-algorithm for 
the noise model. As described for the SISO system (see Young and 
Jakeman, 1979c), iterative and fully recursive versions of the 
algorithms can be specified. In both cases, recursive updating of the 
parameter estimates is utilised but, in the iterative case, the 
parameters a^ (i = 1, 2) of the three prefilters and two auxiliary
models are not updated recursively. In fact, these parameters are kept 
constant during each iteration (pass) through the entire data and are 
updated only at the completion of the iteration. Henceforth we will 
restrict attention to the iterative case for convenience of 
presentation. The fully recursive version is conceptually simpler 
except that devices must be employed to facilitate convergence. The 
interested reader is referred to Söderström, Ljung and Gustavsson 
(1974) for discussion of this topic.

In order to consider the details of the refined IV algorithm in 
the general 1 input case, consider the estimation of parameters â_ 
for a particular transfer function operating on the i-th input. At the 
k-th recursive step, the new variable required is and to obtain
this we note the following relationships:
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C a 
A . D 'ikl

To make use of these, we require (i) the auxiliary model outputs xj^

x a  . - 3k -3

for the other l - 1 transfer functions; (ii) an estimate of A^ for 
the current transfer function being considered; and (iii) estimates of 
C and D from the noise model.

For the basic IV algorithm on first iteration, initial estimates 
for a particular transfer function 3 can be obtained using either SISO 
modeling of against each input Uj^ (k = 1, 2, ..., N) in turn
or, preferably, the converged basic IV estimates obtained from an ARMAX 
model of the form (5.1). For the noise model, we usually set C = D = I 
initially. Such initial estimates also may be used for the refined 
INVAML algorithm (5.8) and (5.9) but it is preferable that the 
converged parameter estimates from the basic IVAML form of the 
algorithm (5.8) and (5.9) be used.

Clearly, an estimate of can be obtained either after an
iteration on just one transfer function or after an iteration on them 
all. We chose to implement AML each time an iteration was completed 
for the estimation of a single transfer function. If time is not 
critical, this is a good strategy since it ensures that the 
prefiltering used for the estimation of the next transfer function 
involves the best current estimates of the noise model.

The remaining details of the algorithm are are as given in Young 
and Jakeman ( 1979c) for the SISO case. Thus, the matrices P^Q (i = 
1, 2, ..., 1 ) and are assumed to be diagonal on the first
iteration, with all elements set to a high level like 10^; and for 
each iteration after the first, P^0 and P§ are given the values 
of Pj,q and Pq (q = N/10) at the previous iteration, in order to 
inject (heuristically) into the algorithm our increasing confidence in 
the post-iteration 1 estimates. Also the recursive algorithms are not 
called until the initialisation of the vectors —jk’ ^k anc* — k
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c o m p l e t e .  I n  t h i s  way, äj_0 i s  no t  upda ted  u n t i l  t h e  r e c u r s i v e  s t e p  

max. ( n i  + 1, mi  + 1) and c^ u n t i l  r e c u r s i v e  s t e p  max. ( s  + 1, r

+ 1 ) .  A l s o ,  w h i l e  i s  o b t a i n e d  from th e  a u x i l i a r y  model ( t h a t  i s ,  

v i a  t h e  e s t i m a t e s  of  and a t  the  p r e v i o u s  i t e r a t i o n ) ,  e .̂ i s

a lways o b t a i n e d  r e c u r s i v e l y  u s in g  t h e  l a t e s t  r e c u r s i v e  e s t i m a t e  of  C 

and D. I t e r a t i o n  i n  t h i s  manner c o n t i n u e s  u n t i l  c onve rgence  i s  

a c h i e v e d .

F i n a l l y ,  by s im p le  e x t e n s i o n  of  the  r e s u l t s  of  P i e r c e  (1972)  the  

P jk  and p£ m a t r i c e s  i n  ( 5 . 8 )  and ( 5 . 9 )  can  be used  to  p r o v id e  

e s t i m a t e s  of  t h e  v a r i a n c e - c o v a r i a n c e  m a t r i x  of  t h e  pa ra m e te r  e s t i m a t i o n  

e r r o r s .  Th is  i s  b e s t  a c h i e v e d  by pe r fo rm ing  a dummy i t e r a t i o n  on t h e  

l  + 1 subsys tem s  w i t h  the  a u x i l i a r y  model ,  t h e  aj_ and _c p a r a m e t e r s  

and p r e f i l t e r s  s e t  t o  t h e i r  converged  v a l u e s ,  and t h e  P m a t r i c e s  s e t  t o  

t h e i r  i n i t i a l  v a lu e s  w i t h  l a r g e  d i a g o n a l  e l e m e n t s .  We w i l l  s e e  how 

t h i s  s t r a t e g y  can be used  to  o b t a i n  a ve ry  s a t i s f a c t o r y  e s t i m a t e  o f  t h e  

e r r o r  c o v a r i a n c e  m a t r i x .  The e x a c t  e r r o r  c o v a r i a n c e  m a t r i x  can  be 

o b t a i n e d  i n  a s i m i l a r  manner by r e p l a c i n g  th e  converged  e s t i m a t e s  i n  

the  dummy i t e r a t i o n  by the  e q u i v a l e n t  t r u e  pa ra m e te r  v a l u e s .  I f  t h e  

non-sym m etr ic  g a i n  a l g o r i t h m  i s  u t i l i s e d ,  a s  seems p r e f e r a b l e  i n  

p r a c t i c e ,  t h e  symmetr ic  g a i n  form i s  s t i l l  u t i l i s e d  i n  t h e s e  dummy 

i t e r a t i o n s  s i n c e  t h e  symmetr ic  g a in s  and PjJ p r o v i d e  a

s u p e r i o r  b a s i s  f o r  t h e  e s t i m a t i o n  of  the  e r r o r  c o v a r i a n c e  m a t r i x .

5 .4  S i m u l a t i o n  S t u d i e s

The major  M onte -Car lo  s i m u l a t i o n  was performed on 2,  3 and 4 

i n p u t  sys tems  of  second o r d e r  u s i n g  b o th  r e f i n e d  and b a s i c  IVAML. The 

models employed were as  f o l l o w s :

Model 1

1.0 + 0 . 5z -1

1 -  1 .5z  1 + 0 . 7z~-2 Ulk  +
0 .4  -  1 . 8z -1

1 -  0 . 5z 1 -  0 . 3z -2  u2k + ^k
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Model 2

1.0 + 0.5z -1

1 - 1.5z 1 + 0.7z~-2 ulk +
0.4 - 1.8z 

-1
-1

1 - 0.5z -0.3z -2 u2k

-0.4 + 1.7z-1

1 - 0.5z 1 + 0.2z-2 U3k +

Model 3

1.0 + 0.5z-1
-1 + 0.7z 

-1

-2 ulk1 - 1.5z

-0.4 4- 1.7z
-1 -2 U3k1 - 0.5z + 0.2z J

+

+

0.4 - 1.8z-1

1 - 0.5z 1

1.0 + 1.0z

- 0.3z 

-1

-2 u2k

1 + 0.9z  ̂+ 0.95z-2 u4k
+

with

1 - 0.2z-1

1 - 0.5z ek

in each case. The system models were adapted from Barrett-Lennard 
(1978).

Results were also obtained for the two input Model 4 given below 
which has the same characteristic polynomial in each transfer function. 
This experiment investigates whether the MITF algorithms are capable of 
handling such a model, even if they are not informed that there is a 
common denominator polynomial.

Model 4

1.0 + 0.5z-1

-1 -2 ulk1 - 1.5z + 0.7z
l.Oz 
-1

-1

1 - 1.5z + 0.7z-2 u2k

In all the simulation exercises, 30 Monte Carlo experiments were
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performed using the same psuedo-random binary input signals and with 
the white noise series (ê .) for each experiment randomly sampled from 
a normal distribution with variance appropriately scaled to yield 
selected signal to noise ratio S, where S is defined as

S Asr
N
Z

k=l

7
( 2
i=l

)2 /

The values of S and N were chosen by analogy with previous 
experimentation. For example, the lowest values that Söderström, Ljung 
and Gustavsson (1974) use for second order SISO models are S = 1 and N 
= 100. Since we have 7 second order system models to estimate, we 
chose N = 100 x 7 for the lowest sample size and S = 1 x 7 for the 
lowest signal to noise ratio. For each Model, three different sample 
sizes and two different signal to noise ratios were chosen. In Figures 
5.2 and 5.3 examples of the signals used in the simulation experiments 
are shown. The input signals, noise free output signals and typical 
noise and noisy output signals are shown for the smallest sample size 
and both signal to noise ratios chosen for Models 1 and 4 respectively.

Satisfactory estimation results were obtained for all the Models 
1 to 4 and the detailed results are shown in Tables 5.1, 5.2 (Model 1), 
Tables 5.3, 5.4 (Model 2), Tables 5.5, 5.6 (Model 3) and Tables 5.7, 
5.8 (Model 4). For each sample size the first column shows the mean 
value of the parameter estimates while the second and third display the 
standard error of the estimate from its true value and mean value 
respectively. The fourth column (in parentheses) contains the standard 
errors of the parameters estimated from the algorithm. For the refined 
IVAML results these standard errors for the system parameters are given 
by the square root of the diagonal elements of o^P^, i = 1 > 2, 
..., 7, the estimated covariance matrices. Similarly, for the noise 
model parameters the standard errors are given by the square root of

/v 9 ~T1the diagonal elements of o Pft* The estimate of the white 
noise variance is obtained as follows subsequent to convergence

dz 1
N

N
Z

k=l
A 2
k
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SAMPLE NUMBER

ISO too
SAMPLE NUMBER

Figure 5.2 Plot of the input signals, noise free output signals
and typical noise and noisy output signals for Model 1
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1.0
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INPUT 2

1 I H J I L 1 I I T 1
- J .0 a

20 «3 SO SO 100 120 UO ISO ISO 200

SAMPLE NUMBER

- J .0 Q 20 ta  SO SO 100 120 1 .0  ISO ISO 200

SAMPLE NUMBER

is .o

10.0

N01SE FREE OUTPUT 1

i s . o

10.0

N0ISE FREE 3UTPUT 2

s .o

.0

- s .o

-1 0 .0

A/wwvift/VV s .o

.0

- s .o

- t o . o

20 40 SO SO 100 120 140 ISO ISO 200

S flf IP L E  NUflBER

- IS .O j 20 40 SO SO 100 120 140 ISO ISO 200
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sun OF N O I S E  FREE OUTPUTS 1 RNO 2
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NOISY OUTPUT WHEN S=2

NOISE WHEN Ss lO

NOISY OUTPUT WHEN SslO

Figure 5.3 Plot of the input signals, noise free output signals

and typical noise and noisy output signals for Model 4
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When basic IV is used, it is not possible to procure a“6 in the above 
manner since e^ is not available. As a crude approach, however, o 4

A  Ocan be replaced by of where

Q 25

is an estimate of the variance of the sequence. The resulting 
covariance matrices will not provide good estimates of error estimation 
statistics but they will be useful in indicating the relative errors in 
different estimates and they will usually be conservative. For 
interest, these calculations were used in the basic IV simulations: 
this allows us to investigate quantitatively how the crude 
approximation to the covariance matrix using a4 compares with the 
empirically computed results. Thus for the basic IVAML results in 
Tables 5.1 to 5.8 the standard errors in column 4 are determined in a 
fashion similar to that described for refined IVAML except that for the

" ' O  ' • ' )system parameters a- is used instead of a .

The standard errors associated with the minimum variance
estimates^are given (in parentheses) in the fifth column. Finally, in

2all the Tables 5.1 to 5.8 the coefficient of determination R-p,
which was defined in Chapter 3, is also quoted. Here the value of

2R-p is the average value over 30 experiments.

In connection with the results of Tables 5.1 to 5.8, the 
following additional points should be mentioned. When the symmetric 
refined IVAML algorithm was implemented on data generated with the 
lower S ratios and lowest samples sizes, some of the experiments failed 
to converge. It was found, however, that the non-symmetric refined IV 
did not suffer from this problem.

These observations are consistent with the results obtained by 
Young and Jakeman (1979c) for SISO models and Jakeman and Young (1979) 
for multiple input-multiple output models, and they provide further 
evidence for the superiority of non-symmetric gain IV algorithms in low 
signal/noise, low sample size situations. In this connection, it is 
interesting to note that the equivalent algorithms to (5.8) and (5.9) 
generated by GEE minimisation procedures are naturally in the

”Y  Ste io^ v4 sa«-In 4/%̂ (aa'as 'fCtSJL Gq-C C<v vi
a
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non-symmetric form.

For higher values of S and N, the performance of the symmetric 
and non-symmetric gain algorithms were virtually identical but, to be 
consistent, only the non-symmetric gain results are quoted in Tables 
5.1 to 5.8. On the other hand, the error covariance matrices were 
generated in all cases from the ’dummy’ run mentioned earlier, using 
the symmetric gain algorithms.

One final but important simulation study investigated the 
accuracy of the IV model structure identification procedure of Young et 
al. (1980) (outlined in Chapter 3) when applied to the MITF model form 
(5.2). Using Models 1 and 2 an attempt was made to identify the model 
order (ni = mi = 2) i = 1, 2, ..., 1 , by reference to the IV 
structure identification statistics obtained from SISO modeling. In 
this particular case the IV structure identification procedure makes 
full use of the robustness of the IV algorithm in the presence of noise 
by determining separately the model order of each transfer function 
using SISO modeling. Thus for a particular SISO sub-system, 
contributions to the output from all other transfer functions are 
regarded as ’noise’ additional to the term. The results are given 
in Tables 5.9 and in 5.10 for each transfer function of Models 1 and 2 
respectively.

5.5 Discussion of the Simulation Results

The results in Tables 5.1 to 5.8 confirm the robustness of the IV
algorithms proposed in this chapter. As expected the parameter 

2estimates and values are superior and the standard errors
lower for refined IVAML than for basic IVAML. The results also confirm 
that the standard errors obtained directly from the refined algorithm 
(column 4) agree well with those calculated empirically (columns 2 and 
3). Even for the basic IV algorithm, there is a very useful 
sympathetic relationship between the standard errors calculated 
empirically and the standard errors obtained from the algorithm in 
which is used. As expected, the crude standard errors in this
case are always safely conservative, being larger than the standard 
errors obtained when the white noise variance is used to estimate 
the standard errors.
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Comparison of the Pierce minimum standard errors with the 
empirical quantitities in columns 2, 3 and 4 of Tables 5.1 to 5.8 shows 
that the refined IVAML algorithm is certainly asymptotically efficient 
and seems to obtain minimum variance with respect to the system 
parameters even for low sample size. However, as in the case of SISO 
and multiple input-multiple output (MIMO) models (Young and Jakeraan, 
1979c; Jakeman and Young, 1979) the algorithm is, at best, only 
asymptotically efficient in the case of the noise parameters. Here 
there is clearly an improvement in the comparison between the estimated 
(column 4) and Pierce standard errors (column 5) as sample size 
increases, but a very large number of samples is obviously needed to 
show good agreement.

The parameter values and their standard errors (columns 2 and 3) 
given by basic IVAML were quite insensitive to initialisation. Most of 
the time, almost identical results were obtained whether the poor SISO 
estimates or the exact values were used initially. Similarly, good 
convergence was obtained in the case of refined IVAML whether 
initialisation was from basic IVAML results or exact values. The only 
initialisation problem came with Model 3 for basic IVAML using S = 4 
and 20 with N = 400. To obtain convergence, the SISO estimate of the 
noise-free output corresponding to the transfer function with the
largest steady state gain was subtracted from the noisy output, so that 
SISO estimation could proceed on the other two inputs in the presence 
of less 'noise'. In these difficult cases, the multiple auxiliary
models concept of Finigan (1978) may be of use for improving 
convergence. He considers these more complex updating schemes 
justifiable for small signal to noise ratios.

The following observations can be made in connection with the 
modeling of MIMO systems described by Jakeman and Young (1979).
Firstly, in order to obtain sensible parameter estimates in the case of 
Model 3 one needs 400/12 = 30 samples per parameter. This is quite 
high as Jakeman and Young (1979) obtain sensible estimates for 20 
system parameters with only 150 samples for a 2 input - 2 output 
system. The relatively high number of samples required for the 
successful estimation of the parameters in MITF models may be due to 
the fact that so much information is convoluted into a single output 
series. Secondly, the simulation results from Model 4 indicate that 
the algorithms presented in this chapter perform very well in those
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cases where each transfer function has the same characteristic 
polynomial, even where the algorithm is not supplied with this 
information.

Investigations into the application of successive SISO model 
order detection for the identification of MITF model structures were 
carried out for Models 1 and 2 and the results are displayed in Tables 
5.9 and 5.10 respectively. In both cases the most difficult test was 
chosen, namely that one with the lowest sample size and the smaller 
signal to noise ratio. While the procedure correctly identifies the 
order of both transfer functions in Model 1, the results in Table 5.10 
show that it is not as successful for Model 2 since there is some 
ambiguity about which is the correct model order for inputs 1 and 3. 
In the SISO situation, the choice of best model is usually clear cut 
since the correct model's EVN is singularly low in relation to higher 
order models (Young et al., 1980). However, in the cases mentioned 
above, some of the models within one order of the true model possess 
very similar criteria. In such cases, the intuitive procedure is to 
choose the model with the lowest number of parameters. From Table 
5.10, this would mean that the model chosen would be incorrect on the 
first transfer function.

It appears that this difficulty in precisely identifying the
correct model may be a consequence of the input perturbations selected
in the Monte Carlo experiments. For example, simply changing one of
the inputs to a sinusoidal type made the EVN criterion more discerning.
It should be noted, however, that when some slightly incorrect model
orders were chosen for Models 1 and 2 then the standard errors of the
parameters in these cases were as low as those obtained when the
correct model order was chosen. Also, some incorrect model orders gave 

2values of which were almost the same as those obtained by
selection of the correct model order. In other words, the 'wrong'

2models with the equally attractive EVN and R-j criteria obtained 
by SISO identification may well be satisfactory for most purposes. In 
addition, this ambiguity has not been noticed in the analysis of real 
data. For example, in the next section a two input process for
modeling atmospheric ozone levels is discussed and the model order
seems well defined in this case.

One final point should be made in relation to Table 5.10: for



122

models of higher order than the correct one, the values do
improve a little more than has been experienced in the case of the SISO 
systems. This is due to the large amount of ’noise* involved when each 
SISO sub-system of the decomposed MISO system is considered 
individually. Redundant parameters will always try to explain more of 
the output and, in these circumstances, there is much more ’noise’ to 
be explained than that indicated by the S values.

Table 5.9

Identification of Model Order for Model 1 with 200 Samples and S=2

Non-•Zero Model
Input 1 Input 2

Parameters
ln(EVN) ln(EVN) R^

hlO -2.255 0.2103 * *
a u
hlO
ail ai2

-0.702 0.2821 * *

b.lO
ail
b

bn
ai2
b , b

-2.543 0.5364 -2.167 0.2094

io
ail
b

il 12
ai2 
b ,

-2.444 0.5471 -2.036 0.2150

10
aii
b

il
ai2 ai3
b b „

+ 0.5463 -2.270 0.2084

10
ail

il i2
ai2 ai3

* * * *

+ denotes no satisfactory convergence 
* denotes total lack of convergence



Table 5.10
Identification of Model Order for Model 2 with 300 Samples and S=3
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Assumed
Model
Structure

Input 1 Input 2 Input 3

ln(EVN) ln(EVN) ln(EVN)

(i,D -3.010 0.1877 + -0.0204 -1.106 -0.0234
(2,1) -3.503 0.5020 3.071 -0.0217 -0.716 -0.0186
(2,2) -3.088 0.5133 -2.639 0.0726 -2.517 0.0518
(2,3) -3.053 0.5096 -2.556 0.0739 -2.452 0.0542
(3,2) + 0.5246 -2.191 0.0737 -2.576 0.0577
(4,2) * * * * * *

+ denotes no satisfactory convergence
* denotes total lack of convergence

5.6 Estimating Missing Ozone Data

In the introduction to this chapter reference was made to the 
problem of poisoning of agricultural field-workers by pesticide 
residues, and to the suspicion that atmospheric ozone levels may have 
played a significant role in the conversion of the pesticide parathion 
to its oxygen analogue paraoxon (Spear et al., 19 78). As part of a 
field study by Spear (1978) to investigate this problem a continuous 
ozone analyser was set up in a citrus grove in which parathion was 
routinely applied. The citrus grove was located near Lindcove in the 
San Joaquin valley and hourly average ozone measurements were taken 
over the period 19 July to 30 September 1977. Breakdowns of the ozone 
analyser resulted, however, in several periods for which measurements 
for the citrus grove were not available, although routine measurements 
of ozone levels at two nearby locations over the same period of time 
were made by State or municipal bodies. These were in the city of 
Visalia (population approximately 40,000) and the Kearney station which 
was situated at the rural location of Reedley. The position of the 
three sites is shown on the location map in Figure 5.4 and plots of the 
hourly average ozone measurements taken at each are shown in Figure
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5.5, where periods of missing data are indicated by arrows. It is 
clear from Figure 5.5 that the ozone levels measured in Visalia are 
significantly lower than those at Kearney or Lindcove. This can 
probably be explained in terms of Visalia being the only urban location 
of the three sites. The greater density of motor vehicles there will 
lead, in general, to higher atmospheric levels of exhaust pollutants 
than in rural locations. Nitric oxide, a component of motor vehicle 
exhaust gases, is well known to react very rapidly with ozone, 
resulting in its destruction (see Leighton, 1961). It should also be 
noted that the ozone measurements at Visalia and Kearney are reported 
to the nearest ten parts per billion by volume (ppb) while those at

QLindcove are reported to the nearest one ppb, where 1 billion = 10 .

For several reasons it was believed that the ozone measurements 
at Visalia and Kearney provided the most suitable basis for estimating 
the missing data at Lindcove. The prevailing winds in the region are 
from the west and Visalia and Kearney were the nearest locations west 
of Lindcove at which routine ozone measurements were available. 
Furthermore it was thought that the levels of ozone experienced at 
Lindcove were strongly related to the emission of photochemical smog

kilometers
San Francisco

Fresno
.Reedley

Visalia ̂
Lindcove

Figure 5.4 Location of the three sites in the San Joaquin 
valley at which ozone measurements were taken.
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precursors (nitrogen oxides and non-methane hydrocarbons) in the 
heavily populated regions to the west.

In the rest of this section we first investigate whether simple 
linear dynamic SISO models provide a useful description of the 
relationship between ozone levels at the different sites. Because the 
objective of such modeling is the estimation of missing Lindcove data, 
and owing to the direction of the prevailing winds, we choose the time 
series at Lindcove as the output. We then investigate various MISO 
models to see if better descriptions of the data at Lindcove may be 
obtained. Finally, the usefulness of such models for estimating 
missing ozone data is demonstrated by a comparison of known and 
predicted ozone levels over a 24 hour period.

5.6.1 Simple SISO Models

Because of the wish subsequently to investigate the applicability 
of MISO models, and to make direct comparisons with the SISO models, it 
was necessary to restrict attention to those periods for which data are 
available at all three sites and not simply at Lindcove. These periods 
are shown in Table 5.11, and it can be seen that nearly all 
observations have been utilised.

Table 5.11

Periods Selected for Ozone Modeling

Period Number of
Number Hourly Samples Period in 1977 Covered by Data

1 128 1700 hours 19 July - 2400 hours 24 July
2 93 0000 hours 26 July - 2100 hours 29 July
3 101 1600 hours 3 Aug. - 2000 hours 7 Aug.
4 515 0700 hours 9 Aug. - 1700 hours 30 Aug.
5 431 0700 hours 9 Sept. - 0500 hours 27 Sept.
6 61 1200 hours 28 Sept. - 2400 hours 30 Sept.
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SISO models  a p p l i e d  t o  t h e  d a t a  from ( s u b s e q u e n t l y  a b b r e v i a t e d  to 

'SISO models b e tw e e n ’ ) Kearney and Lindcove and V i s a l i a  and Lindcove 

were i d e n t i f i e d  u s in g  t h e  b a s i c  IV p r o c e d u r e s  d e s c r i b e d  i n  Chapte r  3 .  

For i l l u s t r a t i o n  the  p r im ary  t e s t  s t a t i s t i c s  a r e  shown i n  Table  5 .12  

fo r  a range  of  model s t r u c t u r e s  c o n s i d e r e d  f o r  the  f i r s t  p e r i o d  of  

d a t a .  I t  can be se en  from t h e  Tab le  t h a t  a pure  t ime d e l a y  of  z e ro  

seems most a p p r o p r i a t e  i n  t h e  model between V i s a l i a  and L indcove ,  

whereas  a d e l a y  of  one hour  i s  most  s u i t a b l e  between Kearney and 

L indcove .  Th is  was a l s o  found to  be t h e  c a se  i n  t h e  i d e n t i f i c a t i o n  of  

models  fo r  t h e  r e m a in i n g  f i v e  p e r i o d s .  Th is  p a t t e r n  of  t im e  d e l a y s  i s  

c o n s i s t e n t  w i t h  the  g e o g r a p h i c a l  r e l a t i o n s h i p  between th e  s i t e s ,  and 

w i t h  t h e  h y p o t h e s i s  t h a t  much of  t h e  ozone measured  i n  t h e  s tu d y  r e g i o n  

i s  due to  a d v e c t i o n  of  p o l l u t e d  a i r  from t h e  p o p u l a t e d  r e g i o n s  to  the  

w e s t .  In  a d d i t i o n ,  i t  i s  e v i d e n t  f rom Table  5 .12  t h a t  t h e  i d e n t i f i e d  

model s t r u c t u r e  i n  each c a se  i s  a two p a ra m e te r  model com pr i s ing  one 

' a '  and one ’b ’ p a r a m e t e r .  S i m i l a r  model s t r u c t u r e s  were a l s o  

i d e n t i f i e d  f o r  t h e  o t h e r  f i v e  p e r i o d s .

In  g e n e r a l ,  the  i d e n t i f i e d  models p ro v id e  a r e a s o n a b l e
2

d e s c r i p t i o n  of  t h e  d a t a .  Th is  i s  i n d i c a t e d  by t h e  v a l u e s  o f  R-p 

shown i n  Tab le  5 . 1 3 ,  and i l l u s t r a t e d  i n  F i g u r e  5 .6  f o r  the  model 

be tween  Kearney and Lindcove  over  t h e  f i r s t  p e r i o d .  A. minor  problem i s  

t h a t  t h e s e  v a l u e s  v a ry  be tween  d i f f e r e n t  t ime p e r i o d s ,  a l t h o u g h  t h i s  

was e x p e c t e d  g iv e n  t h e  known c o m p le x i ty  of  m e t e o r o l o g i c a l  sys tems  and 

g i v e n  t h a t  t h i s  c o m p le x i ty  has  no t  been i n c o r p o r a t e d  e x p l i c i t l y  i n  the  

m ode l s .  More s e r i o u s  i s  t h e  s i g n i f i c a n t  t im e  v a r i a t i o n  of  t h e  

pa ra m e te r s  i n  t h e  i d e n t i f i e d  m odels ,  which i n d i c a t e s  t h a t  they  a r e  no t  

p e r f e c t l y  a c c e p t a b l e  l i n e a r  m ode l s .  This  t ime v a r i a t i o n  of  t h e  

p a ra m e te r s  i s  i l l u s t r a t e d  i n  F i g u r e  5.7 f o r  the  i d e n t i f i e d  model 

be tween  Kearney and Lindcove f o r  t h e  f i r s t  p e r i o d .  In  t h e o r y  i t  may be 

p o s s i b l e  to  a c c o u n t  f o r  t h i s  v a r i a t i o n  by c o n s i d e r a t i o n  of  known 

i n f l u e n c e s  on p h o to c h e m ic a l  smog f o r m a t i o n .  While t h i s  may be 

d e s i r a b l e  as  l e a d i n g  t o  models p o s s e s s i n g  more s a t i s f a c t o r y  p r o p e r t i e s  

i t  i s  p r o b a b ly  no t  j u s t i f i e d  h e r e  g iv e n  t h e  s t a t e d  r e q u i r e m e n t s  of  t h e  

m o d e l s .
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Figure 5.6 SISO model fit (— ) to ozone data (+) at Lindcove over 
the first period, using data at Kearney as the input.
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Figure 5.7 Estimated time variation of the parameters in the first- 
order SISO model relating ozone data at Kearney and 
Lindcove over the first period.
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Table 5.12
Identification of Model Order for SISO Models of Ozone Levels

for the First Period

Model Structure RT ln(NEVN) ln(EVN)

A: Input Site 1 (Kearney); Output Site Lindcove

(0,1,0) 0.1292 -5.8695 -6.0158
(0,2,0) 0.4369 -3.3729 -3.6199
(0,1,1) 0.4045 -6.2934 -6.3739
(0,2,1) 0.6391 -3.2717 -4.0317
(1,1,0) 0.8033 -5.2515 -6.4179

*0,1,1) 0.8582 -5.4745 -6.4750
(1,1,2) 0.8683 -5.3505 -6.1972
0,2,1) 0.8740 -3.1143 -4.9644
(1,3,1) 0.8821 -2.6962 -4.5342
(2,1,1) 0.8734 -3.1216 -3.3531
(2,2,1) 0.8734 2.1698 -2.9472
(3,1,1) 0.8748 1.6817 0.0400

B: Input Site 2 (Visalia); Output Site Lindcove

(0,1,0) 0.4754 -5.8918 -5.4040
(0,2,0) 0.6679 -2.4206 -3.4974
(0,1,1) 0.6655 -6.3716 -5.8444
(0,2,1) 0.7724 -3.6326 -3.8602

*0,1,0) 0.8248 -4.7488 -5.4247
0,1,1) 0.8258 -4.6044 -5.0936
0,1,2) 0.7749 -4.0234 -4.3551
0,2,0) 0.8466 -3.0564 -4.2389
(1,3,0) 0.8563 -2.3407 -3.8862
(2,1,0) 0.8401 -3.0658 -3.3805
(2,2,0) 0.8492 -1.6233 -2.9446
(3,1,0) 0.8439 -0.5561 -0.8672

^denotes identified model
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P e r io d  Number ( 1 , 1 , 0 )  Model f o r  ( 1 , 1 , 1 )  Model fo r

V i s a l i a  -  Lindcove  Kearney -  Lindcove

1 0.8248 0.8582

2 0.7326 0.7653

3 0.6957 0 .7 013

4 0.8060 0.8210

5 0.7140 0 .6494

6 0.7637 0.7987

The pa ra m e te r  v a lu e s  i n  a l l  t h e  i d e n t i f i e d  SISO models  were 

e s t i m a t e d  by b a s i c  IV p r o c e d u r e s  s i n c e  t h e  t ime v a r i a t i o n  of  t h e  model 

p a ra m e t e r s  d id  n o t  w a r r a n t  the  use  of  r e f i n e d  IVAML m ethods .  They a r e  

shown i n  Tab le  5 .14  w i th  the  c o n s e r v a t i v e  measures  of  t h e  s t a n d a r d  

e r r o r s  of t h e  p a r a m e t e r s  p r o v id e d  by t h e  b a s i c  IV a l g o r i t h m .  I t  i s  

c l e a r  t h a t  w h i l e  t h e  sys tem model p a r a m e t e r s  have s i m i l a r  v a l u e s  i n  

s e v e r a l  of  t h e  m odels ,  i t  i s  n o t  p o s s i b l e  t o  s p e c i f y  a s i n g l e  model  f o r  

t h e  whole p e r i o d  of  a p p r o x i m a t e ly  t e n  weeks which would p r o v id e  a f i t  

t o  t h e  d a t a  t h a t  was a s  good as  t h a t  p r o v i d e d  by t h e  s e p a r a t e  m ode l s .  

I n  t h e  nex t  s u b - s e c t i o n  we look  a t  t h e  u s e f u l n e s s  of MISO models  f o r  

d e s c r i b i n g  t h e  r e l a t i o n s h i p  between  t h e  ozone l e v e l s  measured  a t  t h e  

t h r e e  s i t e s .

5 . 6 . 2  MISO Models

M u l t i p l e  (two i n  t h i s  c a s e )  i n p u t  models  were i n v e s t i g a t e d  to  see

whether  t h e y  ’exp la in ed *  t h e  ozone l e v e l s  a t  t h e  o u t p u t  s i t e  of

Lindcove  b e t t e r  t han  the  SISO models  d e s c r i b e d  p r e v i o u s l y .  The

e x p e c t a t i o n  was t h a t  MISO models would show improved pe r fo rm ance  
2

( h i g h e r  R-p) a s  they  make use  of a l l  a v a i l a b l e  d a t a  i n  c o n t r a s t  

to  t h e  SISO models  which c o u ld  n o t  s i m u l t a n e o u s l y  u t i l i s e  t h e  d a t a  f rom 

bo th  i n p u t  s i t e s .  The MISO models  c o n s i d e r e d  were of  t h e  forms ( 5 . 1 )
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and ( 5 . 2 )  d e s c r i b e d  e a r l i e r  i n  the  c h a p t e r .  In  b o t h ,  f i r s t  o r d e r  

t r a n s f e r  f u n c t i o n s  were b e l i e v e d  to  be a p p r o p r i a t e  o p e r a t o r s  on each  

i n p u t  because  such t r a n s f e r  f u n c t i o n s  w i t h  a p p r o p r i a t e  pure  t ime d e la y s  

were i d e n t i f i e d  i n  t h e  p r e v i o u s l y  d e s c r i b e d  SISO m odels .  In d e r i v i n g  

th e  IV a l g o r i t h m s  e a r l i e r  i n  the  c h a p t e r  i t  was se en  t h a t  the  

e s t i m a t i o n  p r o c e d u r e  f o r  models of t h e  form ( 5 . 2 )  r e q u i r e s  e x p l i c i t  

p r o v i s i o n  of i n i t i a l  pa ra m e te r  e s t i m a t e s ,  whereas  t h e  IV e s t i m a t i o n  

p r o c e d u r e  f o r  models  of  t h e  form ( 5 . 1 )  g e n e r a t e s  i n i t i a l  e s t i m a t e s  by a 

l i n e a r  l e a s t  s q u a r e s  method .  The i n i t i a l  e s t i m a t e s  f o r  t h e  form ( 5 . 2 )  

were o b t a i n e d  e i t h e r  as  the  converged  p a ram ete r  v a l u e s  f rom t h e  

p r e v i o u s l y  d e s c r i b e d  SISO models  or  as  converged  p a ra m e te r  v a lu e s  from 

models  of  t h e  form ( 5 . 1 ) .

In  o r d e r  to  i l l u s t r a t e  t h e  r e s u l t s  o b t a i n e d  from t h e s e  MISO

m odel s ,  t h e  e s t i m a t e d  p a ra m e t e r s  f o r  t h e  f i r s t  p e r i o d ,  t o g e t h e r  w i t h  a

measure  of  t h e i r  s t a n d a r d  e r r o r s  p ro v id e d  by b a s i c  IV p r o c e d u r e s ,  a r e

shown i n  Table  5 . 1 5 .  For t h e  p u rp o se s  of  com par i son ,  t h e  p r e v i o u s l y

r e p o r t e d  p a ra m e t e r s  of  t h e  c o r r e s p o n d i n g  SISO models  ( s e e  Tab le  5 .1 4 )
2

a r e  a l s o  shown, t o g e t h e r  w i t h  v a lu e s  of I t  i s  a p p a r e n t  from

Tab le  5.15  t h a t  t h e  MISO models p ro v id e  b e t t e r  d e s c r i p t i o n s  of  t h e  d a t a  

t h a n  e i t h e r  of  the  SISO m ode l s .  However,  t h i s  i s  a c h ie v e d  on ly  w i th  

a s s o c i a t e d  s i g n i f i c a n t  i n c r e a s e s  i n  t h e  e s t i m a t e d  s t a n d a r d  e r r o r s  of 

t h e  model p a r a m e t e r s .  This  i s  o f t e n  an i n d i c a t i o n  of

o v e r - p a r a m e t e r i s a t i o n  b u t ,  i n  t h i s  c a s e ,  i t  i s  more l i k e l y  to  be 

i n d i c a t i v e  of  some c o r r e l a t i o n  between  the  ozone measurements  a t  the 

two i n p u t  s i t e s .  T h i s  i s  a n a la g o u s  to  t h e  m u l t i c o l l i n e a r i t y  problem i n  

r e g r e s s i o n  a n a l y s i s  where p a r t i a l  l i n e a r  dependence between the  

r e g r e s s o r s  l e a d s  to  h i g h  e s t i m a t i o n  e r r o r  v a r i a n c e  even though t h e  

’ f i t *  to  the  d a t a  may appe ar  to  be v e ry  good ( s e e  Brownlee ,  1965) .  I t  

s h o u ld  a l s o  be n o t e d  t h a t  s m a l l e r  s t a n d a r d  e r r o r s  were o b t a i n e d  from 

use  of  the  models  of t h e  form ( 5 . 2 )  t h a n  models  of  t h e  form ( 5 . 1 ) ,  a 

r e s u l t  p ro b ab ly  due t o  t h e  a l l o w a n c e  i n  t h e  former f o r  d i f f e r e n t  

denom ina to r  p o ly n o m ia l s  i n  t h e  t r a n s f e r  f u n c t i o n s  o p e r a t i n g  on the  

d i f f e r e n t  i n p u t s .  N e v e r t h e l e s s ,  t h e  s t a n d a r d  e r r o r s  o b t a i n e d  from th e  

model  form ( 5 . 2 )  were s t i l l  much l a r g e r  t h a n  th o s e  o b t a i n e d  i n  the  SISO 

m ode l s .  In  an  a t t e m p t  t o  improve on t h e s e  r e s u l t s ,  i n  t h e  n e x t  

s u b - s e c t i o n  we overcome th e  problem of  c o r r e l a t e d  i n p u t s  by c r e a t i n g  a 

s i n g l e  i n p u t  s e r i e s  i n  t h e  form of a w e igh te d  a v e ra g e  of  t h e  o r i g i n a l  

two i n p u t  s e r i e s .  Such a s im ple  p r o c e d u r e  s i m u l t a n e o u s l y  p e r m i t s  the  

a t t a i n m e n t  of  two d e s i r a b l e  o b j e c t i v e s  -  t h e  use  of a l l  the  d a t a  and
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the retention of the preferred, simpler SISO model form, with its 
better defined parameter estimates.

Table 5.14

Summary of Estimated Parameters in SISO Models for the Six Periods

Model
For

Period
No

'â ' parameter 
(and standard error*3)

' b' parameter 
(and standard error*3)

1 -0.7859 (.0391) 0.2444 (.0395)
2 -0.8518 (.0425) 0.1976 (.0459)

Kearney to 3 -0.7167 (.0929) 0.1975 (.0627)
Lindcove 4 -0.7759 (.0224) 0.2154 (.0197)

5 -0.8170 (.0303) 0.1995 (.0294)
6 -0.8250 (.0566) 0.2296 (.0665)

1 -0.7633 (.0469) 0.4547 (.0813)
2 -0.8665 (.0426) 0.2898 (.0737)

Visalia to 3 -0.7980 (.0651) 0.3473 (.1017)
Lindcove 4 -0.7846 (.0243) 0.3879 (.0401)

5 -0.8256 (.0266) 0.3436 (.0464)
6 -0.8458 (.0602) 0.3723 (.1246)

aEstimated using basic IV procedures
k Standard errors based on estimated variance of Cl ̂  terms

5.6.3 SISO Models Using 'Averaged* Inputs

It was not clear a. priori what weights should be applied to the 
input series from Kearney and Visalia in order to create a single 
input. This problem was approached by means of a sensitivity analysis 
in which the weights were systematically varied to produce a number of 
single input series. These were evaluated by identifying the model 
structure of the SISO models and comparing the test statistics arising 
from the basic IV estimation procedure. These are shown in Table 5.16,
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Table 5.15

Comparison of SISO and MISO Models for the First Period

Model Parameter
Estimates3

Standard Error 
Estimates3

R^

SISO al = -0.7859 0.0393 0.8582
(Kearney input) bl = 0.2444 0.0393

SISO al = -0.7633 0.0469 0.8248
(Visalia input) b0 = 0.4547 0.0813

MISOb al = -0.7082 0.1889
bl = 0.0272 0.5014
^2 = 0.0419 0.8537 0.8638
b3 = 0.1185 0.6597
b4 = 0.2707 0.8275

MIS0C al 1 = -0.7485 0.0978
al2 = -0.6851 0.0785
b10 = 0.0240 0.0837 0.8643
bl 1 = 0.1023 0.1025
b20 = 0.0573 0.1100
b21 = 0.2775 0.1375

3 Found from basic IV procedures 
b Model of the ARMAX form (5.1) 
c Model of the MITF form (5.2)

where it can be seen that any of the selected weights leads to models
2which have larger values of Rj than either of the SISO models

which use the single unweighted input series. While no single set of
2weights leads to a model form which maximizes the value of R^ 

for all six periods, the ’optimum’ weighting appears to be 0.6 x 
Visalia + 0.4 x Kearney. The differences in the values of ln(NEVN) are 
minor, indicating that the weighting procedure has not resulted in any 
significant increase in the standard errors of the model parameters.

It is evident from a comparison of Tables 5.15 and 5.16 that the
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SISO models which arise from use of the ’optimum' weighting of the two
inputs provide descriptions of the data relating to the first period
that are superior to those provided by either of the MISO models. This
is also found to be the case for the other five periods. It is
believed these results provide a good example of the value of simple
model forms, and illustrate how attempts to incorporate too much detail
in more complex forms may be counter-productive. The ’optimum’ SISO
models still exhibit some time-variation of the parameters and so are
not entirely acceptable linear models. Nevertheless, this time
variation does not appear critical for two reasons. First, since the
objective is to obtain estimates of missing data, it is anticipated
that models which provide a better description of the existing data

2(that is, resulting in a higher R-jO will be more useful.
Second, smaller standard errors of the model parameters will lead to 
forecasts which have more acceptable (narrower) confidence bands. 
While evaluation of the estimates for the actual missing data was not 
possible, in the next subsection the 'optimum' SISO models are used to 
generate estimates for a period in which output data were available, 
thus permitting a comparison of forecast with original observations.

5.6.4 Direct Evaluation of the SISO Model Forecasts

The strategy adopted to evaluate directly the usefulness of the
'optimum’ SISO models for providing forecasts of ozone levels was to
take the first 400 points of the fourth period, and estimate the model
parameters for that portion of the period. Then, those model
parameters were used to provide deterministic forecasts of the hourly
ozone levels for the remainder of the period. These forecasts then
could be compared with the observations made at Lindcove over the same
period. The model parameters estimated by basic IV methods for the
period on which the forecast was based were a^ = -0.7195 and b0 =

20.3720. A pure time delay of one hour was employed, and a R-j of 
0.8492 was recorded. The forecast of the hourly ozone levels was
highly successful, and a comparison with the known levels is shown in 
Figure 5.8. The success of the forecasting is reflected in the value 
of RT °f 0.8629, which was obtained as the correlation between
known and forecast hourly ozone levels. If a noise model had been 
estimated stochastic forecasts could have been made. However, given 
the objective of obtaining forecasts of daily average ozone readings,
the additional difficulty of providing stochastic forecasts did not 
seem warranted.
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Table 5.16
2Comparison of R^ and ln(NEVN) for a Range of SISO Models which

use 'Averaged ' Inputs

Period ln(NEVN) ln(NEVN) ln(NEVN) ln(NEVN)
(1,1,0) Model (1,1,1)Model (1,1,1)Model (1,1,1) Model
1.0V + 0.OK 0.9V + 0.IK 0.8V + 0.2K 0.7V + 0.3K

1 0.8248 -4.7488 0.8543 -4.8167 0.8691 -4.9753 0.8758 -5.0987
2 0.7326 -4.4386 0.7688 -4.8037 0.7974 -4.9385 0.8113 -5.0238
3 0.6957 -3.5198 0.7596 -4.0879 0.7686 -4.1293 0.7675 -4.1426
4 0.8060 -5.9981 0.8281 -6.0816 0.8432 -6.2518 0.8494 -6.3761
5 0.7140 -5.5785 0.6966 -5.5540 0.7128 -5.6589 0.7178 -5.7326
6 0.7637 -3.8665 0.8229 -4.0454 0.8360 -4.2034 0.8413 -4.2536

(1,1,1) Model (1,1,1) Model (1,1,1) Model (1,1,1) Model
0.6V + 0.4K 0.5V + 0.5K 0.4V + 0.6K 0.3V + 0.7K

1 0.8777 -5.1967 0.8768 -5.2656 0.8743 -5.3281 0.8709 -5.3710
2 0.8154 -5.0699 0.8132 -5.0900 0.8069 -5.0928 0.7982 -5.0812
3 0.7611 -4.1411 0.7520 -4.1382 0.7418 -4.1369 0.7313 -4.1337
4 0.8504 -6.4668 0.8482 -6.5341 0.8442 -6.5854 0.8390 -6.6260
5 0.7156 -5.7852 0.7088 -5.8205 0.6992 -5.8474 0.6877 -5.8681
6 0.8415 -4.3399 0.8380 -4.3983 0.8322 -2.0937 0.8249 -4.4311

(1,1,1) Model (1,1,1) Model (1,1,1) Model
0.2V + 0.8K 0.1V + 0.9K 0.0V + 1.OK

1 0.8669 -5.4033 0.8626 -5.4413 0.8582 -5.4745
2 0.7879 -5.0758 0.7768 -5.0638 0.7653 -5.0510
3 0.7209 -4.1380 0.7108 -4.1419 0.7013 -4.1373
4 0.8333 -6.6593 0.8272 -6.6873 0.8210 -6.7115
5 0.6753 -5.8854 0.6624 -5.8990 0.6494 -5.9129
6 0.8166 -4.4924 0.8078 -4.4341 0.7987 -4.4711

5.7 Conclusions

In this chapter linear dynamic models have been shown to provide 
a simple method for estimating missing air pollution data at one 
location by utilising data at other locations. Such models are 
particularly useful for estimating missing ozone data because, apart 
from discrepancies caused by local effects, ozone levels tend to be
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Figure 5.8 Comparison of deterministic forecast (— ) and actual 
observations (+) of ozone at Lindcove, with their
difference (---).
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correlated spatially over relatively large regions. However, forecasts 
made in this way will be most reliable if they are restricted to 
relatively short periods of missing data.

In the course of investigating different types of linear dynamic 
models that may have been useful for estimating missing air pollution 
data, recursive refined IVAML algorithms were developed for estimating 
the parameters in a multiple input transfer function model of 
stochastic dynamic systems. Such a model can be considered as the 
dynamic equivalent of the regression model, with the regression 
coefficients replaced by the unknown transfer functions. The excellent 
performance of the algorithms has been demonstrated by a comprehensive 
stochastic (Monte Carlo) simulation exercise.
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Chapter 6

RECURSIVE METHODS FOR MODELING CARBON MONOXIDE IN AN URBAN AREA

6.1 Introduction

Linear models were shown in Chapters 4 and 5 to be appropriate in 
applications to aspects of air pollution measurement, and significant 
temporal variation of the parameters was not encountered. In modeling 
carbon monoxide levels in urban areas, however, we know from previous 
research that these levels are a non-linear function of emission rates 
and wind speed, thought to be the major determinants of carbon monoxide 
levels in urban areas (Hanna, 1971). In this chapter the recursive 
techniques will be used to aid the initial data analysis, and in 
addition, an attempt is made to identify any non-linearities in time 
series models of carbon monoxide levels by making full use of the 
ability of the recursive estimation methods to reveal temporal changes 
in model parameters.

Special problems are encountered in modeling carbon monoxide 
levels in urban areas due to the fact that the major proportion of 
carbon monoxide emissions are from motor vehicle exhausts - in 
Washington D.C. and Canberra Australia (both non-industrial cities) it 
is estimated to be as high as 99 per cent (US Dept. HEW, 1970; Daly and 
Steele, 1975). Unlike stationary sources of pollution, the wide 
spatial distribution of motor vehicles is constantly changing. As a 
consequence the spatial and temporal variations of carbon monoxide 
levels in an urban area are large. For example, Ott (19 72) has shown 
that eight-hour carbon monoxide concentrations can vary by a factor of 
three between sites which are less than three kilometers apart. It 
follows that areas of concern about pollution tend to be at locations 
where these concentrations are very high, such as areas with heavy 
traffic, or in locations with poor dispersion characteristics such as 
street canyons, both now frequently referred to as ’hot spots'. One 
consequence is that models based upon the advection-diffusion equation 
are not readily applicable because of their limited spatial resolution 
(see Section 2.4.1). These difficulties have encouraged alternative 
approaches to modeling the vehicular pollutant levels in such 'hot 
spots'.



138

Perhaps the greatest difficulty faced in the modeling of carbon 
monoxide levels is that of accurately specifying the emissions. It is 
well established that many factors greatly influence the emission rates 
of carbon monoxide from vehicles (US EPA 1978). Among these are the 
average speed of the vehicle (see Rashidi and Massoudi, 1980), its age 
(which may determine whether the vehicle is fitted with emission 
control devices), the engine size, the type of transmission, the type 
of fuel (petrol, diesel or LPG), the ambient temperature, and whether 
or not the vehicle has started from cold. While considerable effort 
has been expended in the search for methods that provide better 
estimates of vehicle emission rates from roadways (for example, Bullin 
and Polasek, 1978, and Bullin et al., 1980), uncertainties are likely 
to persist because of the factors enumerated above and the limited 
resources available for air pollution analysis.

An additional problem in modeling pollution in ’hot spots’ is 
that the motion of air over such locations is made more complex by 
irregular arrays of buildings and by the existence of urban heat 
islands. Whereas the former may lead to channeling and vertical 
circulations in street canyons, and the latter to less stabilization of 
the surface air on clear nights, both may cause an increased mixing 
action of the air as compared to rural sites (see, for example, 
Bornstein and Johnson, 1977). Under some meteorological conditions 
these complex air movements may actually assist the dispersion of 
airborne pollutants, but under others, such as in light winds, street 
canyons can act as pollution traps.

In the remainder of this chapter we first briefly describe the 
types of models that have been developed for predicting dispersion of 
vehicular pollutants from roadways. Then the recursive methods of time 
series analysis are used in an attempt to develop a model of carbon 
monoxide levels in the Canberra City area. This is done initially for 
weekdays with the objective of proceeding to its validation by use of 
data from weekend days. Discrepancies between the modeled and observed 
concentrations during afternoon peak hours on weekdays are discussed 
and suggested causes are advanced.

6.2 Review of Models for Describing Vehicle Pollution From Roadways

The need to assess the environmental effects of proposed roadways
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has led to the development of models for the specific purpose of 
determining the impact of traffic on air quality. Many of these models 
(see, for example, Turner, 1970; Calder, 1973; and Zimmerman and 
Thompson, 1974) are based upon a simple Gaussian plume formulation in 
which no allowance is made for site topography, and wind speed is 
assumed to be uniform with height. The application of such simple 
formulations appears satisfactory where there exist long, straight 
sections of roadway at ground level with few nearby obstructions to 
wind flow. However, as Maldonado and Bullin (1977) have shown by a 
comparison of the performance of several of these models, they usually 
do not perform well at sites located in urban areas.

These authors described a model which also was based upon the 
Gaussian plume formulation except that they explicitly allowed for the 
incorporation of knowledge of the surface roughness of the site, as 
well as for variation of wind speed and eddy diffusivity with height. 
Their model performed quite well when tested on several independent 
data sets and was a significant improvement on several previously 
reported models which also used a Gaussian plume formulation. Like the 
previously mentioned models, theirs was limited to the consideration of 
single locations, rather than entire urban areas, in the sense of being 
unsuitable for simultaneously estimating pollutant levels at other but 
nearby locations. They approached the task of modeling carbon monoxide 
pollution in two stages since they adopted the view that the initial 
dispersion over the roadway was due to mechanical turbulence created by 
the movement of vehicles, whereas the dispersion downwind of the 
roadway was the result of normal atmospheric turbulence. The inputs 
required for their model were the width of the roadway, the wind 
velocity at some reference height, the mean height of buildings in the 
vicinity, and the estimated mass of pollutant emitted from the vehicles 
per unit time. For the first stage they used correlation methods to 
estimate the vertical profile of pollutant concentrations at the edge 
of the roadway. The second stage required that this profile be matched 
by a Gaussian plume model which was subsequently used to predict 
pollutant concentrations downwind from the roadway.

A more ambitious attempt to model dispersion of vehicle 
pollutants from roadways is that described by Ludwig et al. (1970) and 
Johnson et al. (1973). Whereas the model referred to in the previous 
paragraph was limited to the sequential consideration of single
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locations, these authors endeavoured to model simultaneously the 
pollutant levels for an entire urban area. The inputs to the model of 
Ludwig et al. (1970) were traffic volumes on major streets and highways 
in the urban area, wind speed and direction, atmospheric stability and 
mixing depth. The last two of these were estimated from twice daily 
radiosonde data and hourly meteorological measurements taken at the 
city airport. The meteorological measurements were assumed to be 
uniform over the urban area. During calms at the airport a small 
finite value of 1 ms"^ was used for wind speed together with the last 
observed wind direction. The model was capable of producing outputs in 
the form of concentration isopleths, sequences of hourly concentrations 
at a single site, or cumulative frequency distributions of 
concentrations. However, the agreement between the calculated and the 
observed concentrations was not good, with the latter usually being 
higher.

These discrepancies, which were believed to be due partly to the 
inability of the urban scale model to account for local effects, were 
reduced by subsequent incorporation of an empirical sub-model to 
account in particular for the street canyon effects (Johnson et al., 
1973). These in turn were thought to result from cross-street 
circulation, a representation of which is shown in Figure 6.1. The 
sub-model estimated concentration components on the leeward and 
windward sides of streetside buildings, and the total concentration was 
then found by adding the component from the sub-model to the urban 
'background* concentration calculated by the urban scale model. The 
performance of the modified model was reasonable with 80 per cent of 
calculated hourly values within three ppm of observed values. 
Supporting the view that street canyon effects may be ubiquitous, an 
Australian study by Bailey (1976) found that significant differences 
existed in the levels of carbon monoxide on the leeward and windward 
sides of a Sydney street.

A common feature of the models described so far is their total or 
partial reliance on a Gaussian plume formulation. Other approaches to 
modeling vehicular pollutants near roadways which avoid the assumptions 
inherent in this formulation have been suggested. Thus Danard (1972) 
employed a two-dimensional diffusion equation (see Section 2.4.1) to 
describe carbon monoxide concentrations in the vicinity of a plane 
highway and a depressed highway. A numerical integration procedure was
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Figure 6.1 Representation of cross-street air circulation 
in a street canyon surrounded by buildings.

then used to solve the two dimensional diffusion equation. In his 
method the vertical and horizontal eddy diffusivities were variable to 
allow both for mechanical mixing of the air over the roadway caused by 
the traffic movement, and for the increased mixing action of the air if 
cold air advection was occurring. He also allowed wind speed to vary 
logarithmically in the lowest ten meters and linearly above that. 
Simple correlation coefficients of 0.82 to 0.94 were reported for the 
observed and modeled concentrations.

The use of a Gaussian plume assumption has also been avoided by 
the development of statistical models for vehicular pollutant 
concentrations near roadways (for example, Phadke et al. , 1976; Tiao 
and Hillmer, 1978). Such models are based upon statistical analysis of 
data and do not require any prior assumptions about atmospheric 
behaviour. In their statistical models, Tiao and Hillmer (1978) have 
stressed the importance of efficiency (that is, few parameters with low 
variance) and have explicitly allowed for ’noise’ or error terms which 
they assumed to be independently and normally distributed with zero 
mean. They estimated the model parameters by employing a non-linear 
least squares procedure in which the sum of squares of the error terms
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was minimized. Some features of their approach are similar to the one 
which is described later in this chapter.

6. 3 Description of the System

The data used in the modeling in this chapter were taken from a 
study of carbon monoxide levels in Canberra City during 1973-74 (Daly 
and Steele, 1975). The principal series available were (i) five minute 
average concentrations of carbon monoxide measured at one location; 
(ii) half-hourly average wind speed and direction also measured at one 
location and at a height of 10 meters above the ground with a Woelfle 
anemometer; and (iii) hourly traffic counts on the major roadway 
nearest the carbon monoxide monitoring location. Some additional 
comments on the methods by which these data were obtained, and on 
adjustments made to them prior to their use in the modeling, seems 
warranted, and is the purpose of this section.

The primary objective in selecting a monitoring site for carbon 
monoxide was to obtain estimates of the carbon monoxide concentrations 
to which people in the Canberra City area were exposed. Consequently a 
site in West Row, one block west of the major north-south roadway 
(Commonwealth/Horthbourne Avenue) passing through the city center, was 
selected as more appropriate than a site adjacent to this roadway 
itself. The streetside sampling point was three meters above the 
pavement and five meters back from the kerb. A Mine Safety Appliances 
(MSA) LIRA Model 202 carbon monoxide analyser of the non-dispersive 
infrared type was employed to make the measurements. Water vapour in 
the air sample was removed by silica gel filters prior to its entry to 
the analyser. Particulate matter was also removed by passing the air 
sample through a filter with a pore size of 0.5 micron.

It can be seen from the map showing the location of the various 
sites at which data were collected (Figure 6.2) that the wind and 
carbon monoxide measurements were made some distance from each other. 
There are two reasons why this is a not unusual feature of air 
pollution modeling studies. One is that measurements of local winds in 
the city center may not be representative of regional average winds 
because the location of anemometers near obstacles such as buildings 
may distort the wind flow. An ideal location for obtaining 
measurements of regional average winds is thus a large, open and 
relatively flat space free of tall trees and buildings, where any grass
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Figure 6.1 Map showing the locations at which traffic counts
and wind and carbon monoxide measurements were made.
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is kept cut close to the ground. Hence, it is not surprising that 
airports are favoured sites for taking meteorological observations. A 
second reason is that anemometer data may already have been collected, 
and funds to set up anemometers specifically for the air pollution 
modeling study may not be available. Measurements of both local and 
regional average winds would be very desirable for any air pollution 
modeling, but as this was not possible in the present case, 
measurements of the regional average winds had to suffice. This use of 
less than ideal wind measurements is an example of the poorly defined 
nature of the system. In defence of our use of regional average rather 
than local winds it should be noted that Gifford (1974) found that the 
prediction of carbon monoxide levels in Los Angeles (by the use of 
Hanna’s (1973) model) was considerably improved if regional average, 
rather than local, winds were used. Of the two available records of 
regional winds, the measurements recorded at Belconnen were preferred 
to those made at Canberra airport because the Woelfle anemometer used 
at the former site was specially designed for micrometeorological 
studies and had the low starting speed of 0.5 ms"'*’.

The traffic counts of vehicles passing along Commonwealth Avenue 
in both directions were obtained by use of induction loop counters 
installed in each lane of the roadway, the location of which - and 
relation to the site at which the carbon monoxide measurements were 
recorded - can also be seen in Figure 6.2. The siting of the traffic 
measurements may be less than ideal, but other available traffic flow 
data for the area related to comparatively minor city streets, and the 
measurements were not thought to constitute a reliable indication of 
traffic passing through Canberra City. This is because the principal 
traffic movements are north-south and constrained to pass the traffic 
monitoring point in order to gain access to one of only two roadways 
crossing the nearby Lake Burley Griffin. As in the case of the wind 
data, the reliance on existing traffic flow counts made for other 
purposes as a surrogate for the desired traffic measurements - a 
characteristic of studies of this type - only serves to emphasize 
further the poorly defined nature of the system.

A period of 20 weeks was chosen on the basis of the completeness 
of the carbon monoxide, wind speed and wind direction data sets for 
each week. These 20 weeks were spread between November 1973 and August 
1974. It should be noted that none contained public holidays or
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covered periods of petrol shortages. The hourly traffic counts were 
supplied by the National Capital Development Commission and covered the 
week 11 to 17 February 1974. Unfortunately, estimates of average 
traffic speed were not available, so that the importance of ’traffic 
density' as defined by Tiao and Hillmer (1978) in determining carbon 
monoxide levels could not be evaluated here. However, total daily 
traffic counts at the same location were measured for many of the 20 
weeks selected. These revealed significant weekly variation, raising 
the problem of defining an average time resolved traffic count over the 
20 week period. To meet this, we have assumed the traffic data for the 
week in February to be highly representative of all the 20 weeks 
considered. However, it seems likely that significant hourly 
variations in traffic flow occurred since, as mentioned above, such is 
the case with the daily traffic counts if a comparison is made of the 
week in February and other weeks in the study period. This feature of 
the data can be cited as a third example of the poorly defined nature 
of this system.

For all the modeling described in this chapter, hourly data were 
used. These were derived by averaging the five-minute mean carbon 
monoxide measurements and the half-hourly mean wind speeds. The hourly 
observations so obtained were, in turn, averaged over the 20 week 
period yielding a 'typical' seven-day week. In Figure 6.3 the 
resultant hourly carbon monoxide and wind speed estimates are shown 
together with the hourly traffic counts for the week in February. 
Superficial inspection reveals that whereas the weekday morning peak is 
greater than the afternoon peak in the traffic flow, the reverse 
pattern is evident for the carbon monoxide concentrations. This 
implies the possibility that the emissions per vehicle are larger in 
the afternoon peak period on weekdays.

6.4 Initial Modeling

It is appropriate, methodologically, to begin by considering the 
most simple linear model form. Then, additional variables required in 
the model may be suggested by inspection of any patterns of time 
variation in the parameters of the initial model as revealed by the 
recursive estimation methods. The objective of this approach is to 
secure an overall non-linear model which could be separated into a 
component which is linear in the parameters, and a non-linear
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Figure 6.3 Average levels of carbon monoxide in ppm (---), wind
speed in ms  ̂ (--) , and traffic count -+ 1000 (----) .
Wind speed translated +5.0 and traffic count -5.0 on 
vertical axis for clarity.
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Figure 6.4 Estimated time varying b parameter in the initialK.
two parameter model relating carbon monoxide levels
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component.

Knowing that the major source of carbon monoxide in urban areas
is motor vehicles, it seems defensible to start with a simple SISO
model with counts of traffic flow as the input and carbon monoxide
concentrations as the output. In choosing between alternative
model structures, it is pertinent to indicate a difference in procedure
from that followed in Chapters 4 and 5. In the present context the aim
is not necessarily to select that model which simultaneously minimizes

2the EVN or NEVN criterion and provides a value of at the
plateau level. Rather, a model is sought which is both plausible in 
its physical properties (for example, does not produce negative 
concentrations of carbon monoxide) and at the same time is efficient in 
terms of containing as few parameters as possible.

Since the immediate aim is to investigate any patterns of 
temporal variation in the model parameters, the most simple model 
consistent with both autoregressive and moving average behaviour has 
been selected, that is, a model with one 'a' and one ’b ’ parameter. 
This can be written as

-ai\-i + V k  + 5k

where k = 1,2,..., N (in this case N, the number of samples, being 
120), and are the ’noise' terms. In the absence of prior 
information as to the time variation of the model parameters, they are 
allowed to vary as a random walk, for example, in the case of b^

where v^ is serially uncorrelated white noise.

To obtain an indication of whether factors other than the input 
traffic term may be influencing carbon monoxide levels at all 
significantly, a close examination is required of the estimated 
temporal variation of the ’b ’ parameter. This is because the 
non-linearities expected, and found, in this case related to the 
amplitude of the carbon monoxide signal, rather than to the dynamic
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lags in the system. This pattern of variation, t-oĝ t-her— wi-t-h— wind 
speed , is shown in Figure 6.4. A significant inverse relationship 
between the two is clearly evident. Given the findings of other 
researchers (for example, Hanna, 1971), this result is not surprising. 
Whether wind direction as well as speed should be incorporated 
explicitly into the model is not clear at this stage. For the present 
an attempt to include just wind speed will be made, with the intention 
of using evidence of any remaining patterns of time variation of the 
model parameters as a basis for deciding whether yet further variables 
need to be added to the model. Thus in the next section consideration 
is given the alternative means by which wind speed may be incorporated, 
together with the question of wind direction.

6.5 Modeling the Wind Effects

The incorporation of wind effects into the model, and the results 
obtained from this extension, will be described in the following 
sequence. An analysis of the additional data is first presented, in 
which the diurnal and weekly patterns of measured wind speed and 
direction are carefully scrutinised and compared with the pattern of 
recorded carbon monoxide concentrations. The concept of an 'effective 
traffic' flow, incorporating some allowance for wind effects, is also 
introduced. Using the present data this permits a brief evaluation of 
Hanna's (1971) relatively simple model for air pollution levels arising 
from urban area sources. The principal findings of this section (and 
chapter) are then presented. These comprise a comparison of results 
obtained from several models in which the wind effects are differently 
specified, as no single model unambiguously out-performed all others 
when applied to the weekday averaged data. These findings raise a 
number of issues regarding the modeling methodology adopted as well as 
the quality and suitability of the data employed, issues fully 
appraised in section 6.6.

6.5.1 Analysis of Wind Speed and Direction

The basic information on wind speed was shown earlier, together 
with concentrations of carbon monoxide and traffic flow, in Figure 6.3. 
We now wish to examine this information in more detail in order to 
ascertain the most appropriate form in which to incorporate wind 
effects into the model.
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To readily comprehend the relationship between wind speed and 
carbon monoxide concentrations, particularly given their wide scatter 
when cross-tabulated, it has been necessary to group the former 
observations in a limited number of categories. These categories were 
selected so that each spanned a range of 0.5. Thus the first category 
included winds 0 < Wj^ < 0.5, the second 0.5 < Wj^ < 1.0, 
and so on where j = 1, ..., 20 denotes the week and k = 1, ..., 120 
denotes the hour of the week. For all values of falling within a 
particular category, the corresponding values of Cj^ were accumulated 
so that a mean concentration for that category was determined. The 
results are shown in Figure 6.5 and a relationship of the form

ln(carbon monoxide) = 1.34 - 0.12 x wind speed

provided a good fit to the data. This outcome is intuitively 
reasonable, simply indicating a decline in pollution concentrations 
with increased wind speed, even though no adjustment has been made to 
account for variations in the level of traffic flow.

The preferred means by which wind direction together with speed 
may jointly be incorporated into the model is to utilise the wind 
components. The wind vector was decomposed into easterly and southerly 
components following the results obtained by Tiao and Hillmer (1978) 
which indicated that that wind component perpendicular to the direction 
of the street in which the pollution readings were taken was the most 
important in relating wind to pollution concentrations. Since in the 
present study the monitoring device was located in a street running 
north-south, the easterly component is perpendicular and the southerly 
component parallel to the street direction. Inherent is the notion of 
positive, negative and zero wind components. Since the major 
north-south roadway in the vicinity was to the east of the measuring 
station, this determined the assignment of positive and negative wind 
components; that is, easterly and southerly components were of positive 
and westerly and northerly components were of negative sign.

Wind categories were then chosen as before (except that now of 
course the positive and negative components must be allowed for). A 
mean carbon monoxide level was then calculated for each category and 
the results are shown in Figures 6.6 (east wind components) and 6.7
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Figure 6.5 Mean carbon monoxide level (ppm) associated with wind 
speed categories. The number of each category is 
twice the wind speed in ms  ̂.
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Figure 6.6 Mean carbon monoxide level versus east wind component 
categories. Category 35 corresponds to zero east wind 
component. Higher (lower) values indicate increasing 
magnitude of winds from the east (west).
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(south wind components).

The carbon monoxide concentrations associated with the southerly 
wind components are arrayed symmetrically around the value of zero. 
That is, there is little evidence of a directional influence on the 
mean carbon monoxide levels, with the larger values of carbon monoxide 
being associated with winds of low magnitude. However, with the 
easterly wind components there is a significant trend. The results 
indicate that the carbon monoxide levels increase steadily with the 
increasing magnitude of winds from the east. To eliminate the 
possibility that this result may be an artifact of the way the mean 
carbon monoxide values were calculated, a subset of the total data set 
was selected on the basis of traffic counts; specifically, only those 
hours in which the traffic count lay in the range 3375 to 4050. Then 
the same procedure was followed and the result is shown in Figure 6.8. 
This quite clearly replicates the pattern revealed in Figure 6.6, a 
pattern which was found also to be the case for each of the 10 separate 
categories of traffic counts.

This result may indicate that a significant quantity of the 
carbon monoxide measured at the West Row monitoring site is transported 
by the wind from a source or sources to the east. The traffic in 
Commonwealth/Northbourne Avenue is the most likely source. Reinforcing 
rather than offsetting these results, some cross-street circulation of 
carbon monoxide along the lines indicated earlier in this chapter in 
Figure 6.1 may be occurring. The topography of the West Row site is 
not strictly equivalent to the street canyon situation as depicted in 
that figure, since there is a small park and then a carpark opposite 
the monitoring site, not another building. Nevertheless, some cross
street circulation cannot be ruled out and further measurements would 
be needed to resolve these doubts.

A quite different feature of the wind component data which is 
also of relevance is the diurnal patterns averaged over the 20 weeks 
for which the carbon monoxide concentrations were recorded. These are 
shown in Figures 6.9 and 6.10 for the east and south wind components 
respectively. It is noticeable that the times of morning and afternoon 
peak traffic during weekdays fairly closely coincide with times at 
which the east wind component is close to zero.
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Figure 6.9 Average diurnal variation of the east wind component 
over the 20 weeks.
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Figure 6.10 Average diurnal variation of the south wind component 
over the 20 weeks.
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6.5.2 Evaluation of Hanna's Model

An appropriate starting point for modeling carbon monoxide levels 
in Canberra City is the simple model structure employed by Hanna (1971) 
for urban area sources of pollution. This was obtained by him through 
reasoning that the area source in the immediate vicinity of any 
monitoring site is usually the most important in determining the air 
pollution levels measured there, and that this assumption permits a 
simple model specification to be used which incorporates wind speed but 
not wind direction explicitly. The model is specified

X =

where X is the level of air pollution, Q is the source strength of the 
grid square in which the pollutant is measured, U is the wind speed, 
and C is a constant reflecting atmospheric stability, the size of the 
grid squares and the number of grid squares upwind. Like the Gaussian 
plume model for a point source of pollution (see equation 2.8), this 
model becomes degenerate for wind speeds of zero.

Since in the present study the pollution source is motor 
vehicles, we may define an 'effective traffic' for any hourly period in

where Tj^ is the actual traffic count 
and Wjk the wind speed, both referring to the jth week and the kth 
hour of the week. This concept is somewhat analagous to that of 
effective rainfall in hydrological modeling studies (see, for example, 
Whitehead et al., 19 79). Since we are using data 'averaged' over 20 
weeks, the 'effective traffic' is calculated by defining

the 20 weeks as ^jk/^jk»

E1k

20
Z

1 =  1
T W 1jk jk
20

(k = 1, 2, ..., 120)

as the average 'effective traffic'at each hour of the average week. In 
rainfall-runoff modeling 'normalisation' is typical, where 
normalisation is an amplitude scaling so that the effective rainfall 
series possesses a maximum value identical to that of the original 
rainfall series. In the present case this was not considered necessary
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because the recursive estimation algorithm automatically accomodates 
any such scaling factor by incorporating it into the ’b' parameters of 
the identified model.

Although this definition has the theoretical limit property that 
’effective traffic’ tends to infinity as the wind speed tends to zero, 
it can be used in practice because ’real’ wind speeds of zero are rare 
occurrences in the open atmosphere. Normal anemometers will register 
’calms' when the wind speed drops below their starting speed, and so 
accurate measures of very low wind speeds are not normally available. 
When 'calms' occurred in the data set used in the present study, the 
wind speed was set to the value of the starting speed of the anemometer 
(0.5 ms--*-), so overcoming any likelihood of the ’effective traffic’ 
becoming infinite.

Following from the initial model sketched above in Section 6.4 
where the unadjusted traffic count was the input to the model 
(where it was found that the pattern of time variation of the 
parameters indicated the need to incorporate wind), and at the same 
time drawing on Hanna's model to create a measure of 'effective 
traffic’, we are now in a position to evaluate a more realistic model 
structure. By specifying a non-linear component in this way it will be 
possible to use the 'effective traffic' (E^) as the input to a 
transfer function model with carbon monoxide as the output. 
Examination of the time variation of the parameters in this part of the 
model will reveal whether the wind effects have been incorporated 
appropriately.

The overall model may be represented in the form of a block 
diagram

1E
Non-linear k Linear (?)
component component

where time invariant parameters in the second component of the model 
will indicate a successful separation into linear and non-linear 
components. The IV model identification procedure was then applied to
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this second component of the model, and a (1,2) model was selected as
2that structure with the largest value of R-p consistent with 

physical plausibility. The model fit to the data is shown in Figure 
6.11 where two clear patterns are apparent. Firstly, the model 
consistently predicts concentrations of carbon monoxide during the 
afternoon peak hours which are lower than those observed; and secondly, 
the model overestimates the carbon monoxide levels during the time 
between morning and afternoon peak hours. Once again the 'bQ1 
parameter is estimated as a time varying parameter because the model 
fit shown in Figure 6.11 illustrates that the major deficiency of the 
model lies in its inability to reflect fully the magnitude of the 
peaks. The result is shown in Figure 6.12. The pattern of variation 
shows some correlation with the wind speed, and this may indicate 
either that the effectiveness of wind in dispersing carbon monoxide is 
not fully captured in the model structure or that there exists an 
omitted variable such as atmospheric stability.

These findings by themselves do not necessarily imply that basic 
weaknesses exist in Hanna's model. The traffic counts used here as a 
surrogate measure of the pollution source strength may not be a 
particularly good indicator, and in addition, Hanna makes it clear 
that the model (6.2) will be most appropriate for pollutant 
concentrations averaged over long time periods.

In order to investigate whether wind speed may be incorporated 
more appropriately into the model structure (6.3) we now look at 
alternative definitions of 'effective traffic'.

6.5.3 Modeling Wind Speed and Direction

Another definition of 'effective traffic' that simply combines 
traffic counts and wind speed in some non-linear fashion is suggested 
by the results of Tiao and Hillmer (1978) and also by the analysis of 
the relationship between the mean carbon monoxide concentrations and 
wind speed category reported earlier in this section. Tiao and Hillmer 
used a diffusion factor of the form exp (-b(WSj_ - Wq )2) to model 
the dispersion of carbon monoxide from traffic in city streets. The 
term WSj_ denotes the wind component perpendicular to the street 
direction, and b and Wq are empirically determined parameters. So by 
analogy with the expression for we define
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Figure 6.11 Model fit (---) to observed carbon monoxide levels
(+) given by the (1,2) model with as the effective 
traffic input. Estimated residuals are plotted 
directly underneath.
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Figure 6.12 Estimated time varying b parameter in the (1,2)
1 °model with E as the effective traffic input.
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T exp ( ß W.k ) 
3 ~  1__________ ____________________________ ~ (k 1,2, 120)

where the constant parameter B has negative sign, and its value is
found by a process of trial and error. (Alternatively B could have
been estimated by an overall non-linear optimisation procedure.) The

2definition for overcomes the objection raised against
1 2Ek since Ek has the limit property that it tends to Tk

as Wjk tends to zero. This property is intuitively reasonable since 
any wind speeds greater than zero will produce greater dispersion of 
pollutants than would occur with wind speeds of zero, and hence 
'effective traffic' should be expected to be less at higher wind 
speeds.

Before any assessment of the performance of the model
2incorporating the redefined measure of 'effective traffic' (Ek) 

is undertaken, however, it is worthwhile considering an additional 
point: namely, can wind direction as well as wind speed may be combined 
with the traffic count into a new measure of 'effective traffic' by use 
of the concept of wind components previously discussed? Such an 
approach offers a comparatively straightforward method for including 
wind direction in the model. We have chosen to use only the easterly 
component and ignore the southerly, because as previously noted, the 
symmetry of mean carbon monoxide concentrations associated with the 
southerly components implies that little improvement in model
performance over the inclusion of wind speed can be anticipated, 
whereas this implication cannot be drawn with respect to the easterly 
components (because of the asymmetrical distributions of the
concentrations with which they are associated (see Figure 6.6)). Our 
new measure of 'effective traffic' thus becomes

Z T exp ( 3' x EC ) 
1,1 Jk_____________3^

where j = 1,...,20 and k !,...,!20. The value of 6' is found by
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trial and error, that value being sought which gives parameters in the 
linear component of the model which show no correlation with the 
easterly wind component.

6.6 Discussion of Results

From the immediately preceding discussion, two models associated
2with the alternative measures of 'effective traffic' and

3 were chosen for comparison with the model form suggested by
Hanna (1971) and decribed in Section 6.5.2. The first two models were
obtained after specifying values of ß 3 -0.5 and g' = 0.4 to be used in

2 3the derivation of E^ and E^ respectively. At the outset
it may be indicated that none of the models performed as satisfactorily
as anticipated, nor is any one clearly superior where the several
criteria for evaluating model 'performance' are considered. To
introduce the comparative evaluation, a succinct description of the
three models and their respective summary test statistics are shown in
Table 6.1. We observe that in all cases the identified model structure
is a (1,2) model with a zero pure time delay. It is noticeable that 

2the associated with the Hanna model is greater than that for
either of the other two, but this result is in a sense deceptive.
Inspection of the model fit for the Hanna model (Figure 6.11) indicates
that although its overall conformity with the actual pollutant levels
throughout the day is relatively more successful than either of the
other two models, it fails fully to capture either the mid-day troughs
or afternoon peaks in measured concentrations as successfully as the
morning peaks. We may also observe from Table 6.2 that the parameter

3definition of the E^ model as indicated by ln(NEVN) is slightly 
better than that obtained for the other two models. However, this 
ranking has to be seen in the light of additional aspects of model 
performance.

One such aspect is the pattern of time variation of parameters. 
It was observed earlier that with Hanna's (1971) model there was 
evidence of some correlation between this pattern and wind speed 
(Figure 6.12). When the parameter variation of the other two models 
incorporating 'effective traffic' are inspected (Figures 6.13 and 
6.14), there is little evidence to suggest any correlation with either 
wind speed or the easterly wind component. This is not surprising as 
the values of ß and ß' were chosen in order to reduce such correlation.
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Figure 6.14 Estimated time varying b parameter in the (1,2)
3 °model with E as the effective traffic input.
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However, the reduction of this source of parameter variation has not 
eliminated all the variation, rather it has emphasised the existence of 
other sources.

Clearly, a successful decomposition of the model into linear and
non-linear components has not been achieved in the above exercises.
Particularly evident in Figure 6.13 is the coincidence between the
regular pattern of (residual) parameter variation and the times of
afternoon peak traffic flow, a coincidence strongly suggesting some

2remaining deficiency in the measure of 'effective traffic’ (Ek )
that has been used. The incorporation of the easterly wind component,

3and hence derivation of Ek , has reduced the dominance of the 
afternoon peak in the pattern of parameter variation (Figure 6.14), but 
some difficulty remains in closely modeling the concentrations during 
times of both morning and afternoon peak traffic flows.

Another perspective on the performance of the alternative models 
is offered by the plots of the model fits (Figures 6.15 and 6.16). 
Interpreted in conjunction with the evidence of the test statistics and 
parameter variation, it is clear that the results of the modeling 
exercises undertaken in this chapter are somewhat inconclusive, and 
raise a number of substantive issues. In the remainder of this section 
some effort is expended in probing and cautiously speculating on the 
reasons for these results.

Table 6.1
Comparison of Primary Test Statistics for 

Identified Models using 'Effective Traffic' Inputs

Definition 
of Ek

Model ln(NEVN)

Ek (1,2) 0.7290 -3.1882

Ek (1,2) 0.6694 -3.3047

Ek (1,2) 0.6628 -5.1528
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Figure 6.15 Model fit (---) to observed carbon monoxide levels
2

(+) given by the (1,2) model with as the effective 
traffic input. Estimated residuals are plotted 
directly underneath.
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Figure 6.16 Model fit (---) to observed carbon monoxide levels
3(+) given by the (1,2) model with E as the input.



163

As the objective of the modeling procedure we have adopted here
is to separate the overall model into linear and non-linear components
and to secure time invariant parameters in the linear component, a case
might be made that the model in which 'effective traffic' was defined 

2as came closest to meeting this objective. Although as
previously indicated some parameter variation remains (Figure 6.13), a 
plausible explanation for this is that it is strictly associated with 
the afternoon peak traffic flow. Specifically we require an 
explanation for the higher carbon monoxide concentrations per vehicle 
during the afternoon peak period relative to the remainder of the day. 
This suggests that the model may be failing to allow adequately for the 
higher level of carbon monoxide emissions from vehicles which are 
started from cold (see, for example, Roth et al., 1974). In the 
context of Canberra City's diurnal traffic movements, the afternoon 
peak flow almost certainly consists of a higher proportion of vehicles 
passing the vicinity of the monitoring station shortly after leaving 
nearby carparks, and hence with relatively cold engines, than is true 
of the morning peak when the traffic flow through the area more largely 
consists of vehicles nearing the completion of their journey. This 
tentative hypothesis may be amplified by a number of supporting 
observations. The monitoring station is adjacent to a number of large 
carparks, in which parking was largely unrestricted and hence used by 
all-day parkers working in the city area. The majority of vehicles 
leaving the carpark during the afternoon peak period would thus have 
cold engines, generating higher carbon monoxide emissions. An
associated feature of the parking arrangements in the area is that
vehicles leaving carparks must obey a 'Give Way' to all traffic rule,
which leads to engine idling, and thus also to higher carbon monoxide 
emissions. Finally, we should note that during these afternoon peak 
periods the carparks empty relatively quickly compared to the remainder 
of the day when a smaller turnover of vehicles occurs.

One means by which the 'cold start' hypothesis might be subjected 
to assessment within the context of the existing models is to attempt a 
validation of the model estimated on the weekday data by forecasting 
weekend day pollutant concentrations. The pattern of weekend traffic 
flow is very different with no morning or afternoon peak, and the 
utilisation of carpark capacity was markedly lower than during
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weekdays. Hence the failure of the model to account fully for the 
weekday afternoon peak concentrations should be no barrier to its 
usefulness as a description of the weekend day concentration levels if_ 
the 'cold start' hypothesis is valid and given that there exists no 
comparable pattern of traffic movement on weekend days. The results of 
this out-of-sample validation of the model (and associated test of the 
'cold start' hypothesis) is shown in Figure 6.17. The model is 
relatively successful in capturing fluctuations in carbon monoxide 
concentrations, but fairly consistently overestimates the concentration 
levels throughout the weekend. A corollary of the former finding is 
that the validation test lends support to the 'cold start' hypothesis 
in that it establishes the cause of the model's underestimation of 
carbon monoxide levels during weekday afternoon peak hours as deriving 
from some feature of the system behaviour on weekdays which is not 
present during the weekend.

Taking a broader perspective of all the modeling results, some 
comment on the methodological approach seems warranted. In general, 
simply to obtain an overall model consisting of separated linear and 
non-linear components in which the linear component has time invariant 
parameters does not necessarily imply that the model structure is the 
best possible representation of the underlying relationships. This is 
because the evaluation of the model takes the form of a goodness-of-fit 
test, the absence of any evidence of over-parameterisation, and the 
successful validation of the model for a period over which data had not 
been used for the identification and estimation. However, in the 
present case, i_f_ a satisfactory model had been obtained, then the 
'correctness' of the model structure would not be critical because the 
objective of the modeling exercise is the provision of simple models 
which can be used as aids in the management of air quality. The fact 
that we did not achieve a satisfactory model even by resorting to 
'averaged' data indicates that the system behaviour is more complex 
than was originally anticipated. It is likely, therefore, that further 
improvement in the model will only be possible by resorting to the 
first stage of the model building procedure outlined in Chapter 1, 
namely, speculative simulation modeling.

Such an exercise in simulation modeling would permit a systematic 
evaluation of the importance of the variables that have already been 
considered for inclusion in the model structure and plausible
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candidates for variables not yet included. The speculative simulation 
modeling might have as its basis relevant knowledge from meteorology 
and traffic engineering, and pinpoint additional data required for a 
thorough evaluation of the model structure. We are thus in the 
unsatisfactory position that either suggesting other omitted influences 
which might account for the mixed results so far obtained, or offering 
guidance on further amendments to the model structure, must of 
necessity be somewhat speculative.

First, some further brief observations on the data and results
2should be made. It is noticeable that the model consistently

over-estimates the concentration levels at times of low traffic flow, 
not just during weekends (as previously noted) but also during 
weekdays. It is also of interest to note that there exists a strong 
coincidence between the periods of peak traffic flow during weekday 
mornings and afternoons on the one hand and, on the other, periods 
during which the wind direction is changing (from east to west or vice 
versa). Together with this coincidence we note that the model, 
which incorporates the easterly component, fails adequately to estimate 
the peak period concentrations (although the evidence for the 'cold 
start' hypothesis in this model is somewhat reduced). It is unclear, 
however, whether or not this failure resides in poor incorporation of 
wind direction in the model.

Second, it is worth pointing out that an attempt was also made to 
3validate the Eĵ  model against the weekend observations, but with

similar results to those obtained (and previously discussed) when the 
2E^ model was employed. A further example of testing the results

so far reported to different assumptions is that we established the
2relative insensitivity of the performance of the E^ and

3E^ models to changes in the value of ß and S' respectively.

Third, inversion height was not included in any of the models 
because the data were unavailable. This variable has been included in 
some air pollution models and found to be of importance in determining 
urban carbon monoxide levels (Phadke et al., 1976, and Remsberg et al., 
1979). As the Canberra region experiences a high frequency of 
radiation inversions (Daw and O'Loughlin, 1972), we may venture the 
view that the omission of inversion height may be significant in any 
explanation of the results we have obtained.
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Figure 6.17 Comparison of observed carbon monoxide levels on
weekends (+) with predictions (---) made using the
(1,2) model with input and estimated on weekday 
data.

Finally, we conclude by re-emphasising that the principal goal of 
these modeling exercises is to attain models of urban air pollution 
suitable for air quality management. It seems necessary, therefore, 
that any further research should attempt to meet this objective more 
fully. For example, it would be desirable to design models that 
performed well on concentration data that had not been averaged. Since 
a commonly adopted air quality standard for carbon monoxide is 
specified in terms of the frequency of occurrence of eight-hour average 
concentrations, it is particularly important that unaveraged data 
provide the basis for such models. However, this goal has proved very 
elusive, not just in this study, but in several other attempts to model 
carbon monoxide levels. Thus, Tiao et al. (1975), Hanna (1978) and 
Tiao and Hillmer (1978) reported models which were based only on 
averaged data, while attempts to model unaveraged data have not been 
very successful (see Reynolds et al., 1974). A related suggestion is 
that the seasonal variations be incorporated explicitly into any 
extended model. For example, it is known that the incidence of 
radiation inversion in Canberra is higher in autumn and winter (Daw and 
0”Loughlin, 1972). It is also known that easterly winds dominate 
during summer but that during the remainder of the year north-westerly 
winds are predominant (Kalma et al., 1974).
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Chapter 7

INVESTIGATION OF THE DYNAMICS OF A DETERMINISTIC AIR POLLUTION MODEL

7.1 Introduction

In this chapter a preliminary investigation of the dynamics of 
the Macquarie Urban Air Quality (MUAQ) model is reported. In its 
present version this model simulates the dispersion of an inert air 
pollutant in the atmosphere over an urban area, and is based upon a 
model known as the SAI (System Applications, Inc.) model which was 
originally developed by Reynolds et al. (1973, 1974) and Roth et al. 
(1974) to simulate the dispersion of photochemical smog in Los 
Angeles. The SAI model is an example of a model which, having 
originally been designed for one particular urban area, has 
subsequently been applied to others. Thus it has been refined 
(Reynolds et al., 1976) and applied to the Denver air basin (Anderson 
et al., 1977). In Australia application of the SAI model has been made 
to the Sydney air basin (Johnson, 1980a) while the present version of 
the MUAQ model has been applied to that of Canberra (Johnson, 1980b).

It is beyond the scope of this thesis to attempt a complete 
validation of either the SAI or the MUAQ model. Any such exercise 
should include an examination of their dynamic behaviour, since 
unacceptable dynamics, such as physically implausible properties, may 
bring seriously into question the overall performance of the model. 
These types of models may be considered as systems whose internal 
dynamics may be examined by means of their input-output relationships. 
As far as the author is aware an examination of the dynamics of such 
models has not been reported in the literature.

In the investigation of the MUAQ model reported in this chapter 
an input signal representing air pollutant emissions is introduced and 
the modeled atmospheric concentrations of air pollutant are considered 
to be the output signal. The methods of model identification described 
and demonstrated in previous chapters are then used to identify linear 
rational transfer function representations of the MUAQ model. The 
recursive procedures readily permit the investigation of any parametric 
variation in the identified models. Since the MUAQ model is based 
substantially on the SAI model, it is convenient first to describe the
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latter and then subsequently outline how the MUAQ model differs from 
it.

7.2 The SAI Model

The original version of the SAI model has been described in 
detail by Reynolds et al. (1973, 1974) and Roth et al. (1974) and only 
a brief outline will be given here. The SAI model is of the Eulerian 
multi-box type and is based upon the advection-diffusion equations 
described previously (Section 2.4). The air basin is divided into 
cells by laying down a fixed uniform horizontal grid with each grid 
square measuring 2 x 2  miles. The horizontal boundaries of the 
modeling region are taken to be the ground and the base of the 
inversion layer, since it is assumed that the inversion base is the 
upper limit for vertical mixing or transport. The vertical scale is 
divided into five layers of equal depth (H-h)/5 where h(x,y) is the 
ground elevation above sea level at (x,y) and H(x,y,t) is the ground 
elevation above sea level of the inversion base at (x,y) and time t. 
Due to the variations in h and H with x and y and the variation of H 
with time, the modeling region has an irregular 'floor* and 'ceiling'. 
The numerical methods used to solve the partial differential equations 
of the model cannot easily cope with these irregularities, and a change 
of variables is performed to remove them. The northern, southern, 
eastern and western boundaries of the modeling region are usually 
chosen so as to include all of the significant sources of air pollution 
in the air basin as well as the receptor areas likely to be affected by 
the transport of pollutants. The center of each cell is the node and 
is the point to which values of all variables are assigned or 
referenced.

The SAI model can be visualised as consisting of three 
sub-models, namely a meteorological sub-model, an emissions sub-model 
and a sub-model to describe the chemistry of the photochemical smog 
formation process. This last-mentioned sub-model may be 'switched off' 
if only inert pollutants are being modeled. The major task of the 
meteorological sub-model is the construction of a wind field in which 
components of the wind velocity are specified at each node and each 
time step. The wind field is constructed on the basis of observations 
of wind speed and direction in the modeling region. Such observations 
normally consist of data from a network of ground based anemometers
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with perhaps a few measurements of the winds aloft. Due to the paucity 
or even complete lack of measurements of the latter it was assumed in 
the original SAI model that the wind velocity components were identical 
for all levels between the ground and the inversion base. The absence 
of measurements of the winds aloft also means that the turbulent 
diffusivities cannot be estimated directly. Reynolds et al. (1973) 
assumed that for Los Angeles the horizontal diffusivity was constant at 
2980 m^ min~^ over the whole air basin, and used a relationship 
derived from Eschenroeder and Martinez (1969) to describe the variation 
of the vertical diffusivity with height. Subsequent improvements to 
the meteorological sub-model have allowed the treatment of wind-shear 
phenomena and the generation of a wind field that is mass consistent 
(Seinfeld and Wilson, 1977).

The emissions sub-model is described in detail by Roth et al. 
(1974) and is essentially a record of the spatial and temporal nature 
of pollutant emissions. Emissions from elevated sources enter the 
appropriate cell directly and are treated separately from emissions 
from ground level sources. The latter are treated as surface fluxes 
defined at the base of each ground level cell and are specified in the 
boundary conditions.

The sub-model describing the chemistry of smog formation in the 
original SAI model consists of a compact generalised reaction mechanism 
for the photo-oxidation of a complex mixture of hydrocarbons. All the 
reactive hydrocarbons are lumped into two fictitious species, and all 
of the peroxy radicals (those capable of oxidising nitric oxide to 
nitrogen dioxide) are lumped into a single fictitious species. The 
reactive radical species are assumed to be in the pseudo-steady state, 
while carbon monoxide and water vapour are treated as having constant 
concentration since they are present in excess. Thus there are five 
differential equations describing the change with time in concentration 
of the species nitric oxide, nitrogen dioxide, ozone and the two lumped 
hydrocarbon species. A good discussion of the rationale behind the 
choice of a reaction mechanism for inclusion in urban airshed models is 
given by Lamb and Seinfeld (1973). An improved reaction mechanism, 
known as the carbon-bond mechanism, has been developed for describing 
oxidant formation (Whitten et al., 1980) and has been incorporated in 
more recent versions of the SAI model (see Anderson et al., 1977).
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The overall model is implemented by specifying initial and 
boundary conditions and then solving the coupled advection-diffusion 
equations which are in four-dimensional space. The numerical solution 
of the equations is obtained by use of the method of fractional steps 
described by Yanenko (1971) where each four-dimensional equation is 
split into three two-dimensional equations. Then each of the 
two-dimensional equations is integrated in succession over one time 
step, and upon completion, the integration of the full four-dimensional 
equation over one time step has been approximated. Later versions of 
the SAI model (see Anderson et al., 1977) obtain the numerical solution 
of the model equations by employing the method of Boris and Book (1973) 
to treat the advection terra and a Crank-Nicholson method for the 
vertical diffusion and chemistry.

7.3 The Macquarie Urban Air Quality (MUAQ) Model

while the MUAQ model derives from the SAI model, it differs in 
the major respect that the former simulates only the dispersion of an 
inert pollutant whereas the latter may be used also for modeling 
photochemical smog. That is, there is no chemistry sub-model within 
the present version of the MUAQ model. In this section the description 
of the MUAQ model will focus on its additional significant differences 
from the SAI model.

Whereas the modeling region for the original SAI model was 
irregularly shaped to cover the Los Angeles basin, that for the MUAQ 
model, which was developed for the Canberra area, was rectangular. 
Within the region the grid squares of the SAI model measured 2 x 2  
miles, while those in the map reference co-ordinate system of the MUAQ 
model were l x l  kilometers. Each square in this system could be 
unambiguously identified by the co-ordinates (in grid units) of its top 
right hand corner, referenced to the origin located at the lower left 
hand corner of the modeling region. Furthermore, in the MUAQ model the 
simulation area may be selected as some subset of the area defined by 
the map reference co-ordinate system (25 x 43 kilometers). The 
definition of the boundaries of this simulation area can be achieved 
simply by specifying its origin within the grid. An additional 
property of the MUAQ model which adds flexibility is that the grid 
system for the simulation area can be specified as either coarse ( l x l  
kilometer) or fine (0.5 x 0.5 kilometers), but constrained to be an
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area of 25 x 25 squares whichever specification is chosen.

The structure of the MUAQ model and the information flow within 
it is shown in Figure 7.1. It can be seen that there are three basic 
parts: the meteorological data preparation program; the emissions data 
preparation system; and the atmospheric pollution simulation program.

The meteorological program takes raw meteorological data, 
generates from them a wind field and mixing depths for each hour of the 
day over the simulation area, and creates a meteorological data file to 
be used subsequently by the atmospheric pollution simulation program. 
Similarly, the emissions system takes emissions data, evaluates an 
average area source emission rate for each grid square of the area and 
for each hour of the day, and creates an emissions data file for later 
use by the atmospheric pollution simulation program.

Apart from the meteorological and emissions data files, the 
atmospheric pollution simulation program requires specification of the 
initial concentrations of the modeled pollutant over the simulation 
area, the background concentrations of the pollutant both aloft and on 
its northern, southern, eastern and western borders during the 
simulation period, and the emission rates from large point sources. 
The output of the atmospheric pollution simulation program comprises 
both the instantaneous concentrations in the ground-level cells, and 
hourly averaged concentrations in all cells, specified in units of 
parts per million (ppm). The time interval (in minutes) between 
print-outs of the instantaneous concentrations must be specified in the 
atmospheric pollution program. The specification does not necessarily 
guarantee that the print-outs are produced at exactly this time 
interval. This is due to the numerical integration procedure 
automatically altering the time step in a fashion which leads to values 
below the maximum value of four minutes if this is necessary to achieve 
the specified accuracy in the numerical integration. Instructions for 
the use of the MUAQ model have been prepared by Johnson (1979b, 1979c, 
19 79d, 1980c).

7.4 Experimental Procedure

The simple test of the MUAQ model can be thought of as a tracer 
experiment carried out to investigate its behaviour - an approach
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similar to performing such an experiment in the atmosphere itself. 
Sulphur dioxide was chosen as the pollutant and for the purposes of the 
experiment it was assumed to be inert. The temperature and atmospheric 
pressure were set at values of 20°C and 1000 millibars respectively and 
were not varied during the experiment. The one kilometer grid was 
selected with its origin at (0,0) and the single area source of sulphur 
dioxide was located in the grid square (1,12). The meteorological data 
for the experiments were supplied to the model via a single imaginary 
monitoring station at the point (12,12) for recording mixing depth, 
wind speed and wind direction. The mixing depth was chosen as 500 m 
while the wind was specified to be from due west, and also to have a 
speed of 1.5 ms-'*'. All three were held constant at these values for 
the duration of the simulation experiment (that is, 0100 to 2200 
hours). In addition it was assumed that over the entire simulation 
area no variation occurred in wind speed or direction from those set 
for the monitoring station. It should be emphasised, parenthetically, 
that the restrictive assumptions of a uniform wind and of a single area 
source of sulphur dioxide have been made the more readily to obtain 
time series representations of the MUAQ model. The horizontal and 
vertical diffusivities were specified in the same way as that described 
by Reynolds et al. (1973) for the original SAI model. Employing these 
conditions, and specifying a print-time interval of four minutes, led 
to the generation of instantaneous pollutant concentrations at precise 
four minute intervals, and thus led to 316 equally spaced observations 
in each ground-level grid cell during the simulation period (0100 to 
2200 hours). However, it was found that simply changing the wind speed 
from 1.5 to 3.0ms--*- led to observations that were not equally spaced 
in time and hence were less amenable to the methods of time series 
analysis used here. Consequently, only those experiments which 
utilised a constant wind speed of 1.5ms-*- were selected for analysis.

The nominal emission rate of sulphur dioxide in the grid square 
(1,12) was chosen as 0.5 x 1 0 »̂ 5 gm km-  ̂ hour-*- so that 
sufficiently high pollutant levels to permit input-output modeling were 
experienced at the maximum downwind distance of 25 kilometers. The 
actual emission rate for each hour of the day was varied by 
specification of a factor for each hour and then simply multiplying the 
nominal emission rate by the variation factor. The factors for each 
hour were randomly chosen to be either zero or unity in order to 
generate a random binary input signal. The emissions data preparation
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system does not utilise this random binary signal directly, but 
linearly interpolates between the mid-points of the constant hourly 
values of the emission rates to produce a modified signal pattern which 
is shown, together with that of the original, in Figure 7.2.

1 .Sr-
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Figure 7.2 Original random binary input signal (-- ) and the
interpolated signal (---) created by the emissions
data preparation system.

Use of the previously enumerated conditions, together with 
initial and all background concentrations set to zero, led to premature 
termination of the program. This was found to be due to the generation 
of 'negative' pollutant concentrations, also a characteristic of the 
SAI model (Johnson, 1980a), and illustrates the point that care must be 
exercised in any modeling study to ensure that the model results are 
physically plausible. In the present experiment this problem of 
'negative' concentrations was overcome by specifying initial and 
background concentrations of 0.1 ppm sulphur dioxide. This strategy 
resulted in pollutant concentrations which were sometimes less than the 
background level, but since none fell below zero the program continued 
to normal completion, thus enabling an investigation of the conditions 
which led to this undesirable behaviour in the first place.

Although this strategy was successful for the previously 
mentioned nominal emission rate of 0.5 x 10^*^ gm kra-  ̂ hour--'-, it 
was found in subsequent experiments that increasing the emission rate
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to 0.5 x 107-0 gm km  ̂ hour--'- led to the recurrence of Negative' 
pollutant concentrations. It is believed that these may have been 
avoided by increasing further the level of initial and background 
concentrations but this was not verified by further experiments. 
However, for the analyses reported in this chapter the nominal emission 
rate was maintained at the former level of 0.5 x 10^*5 gm km-  ̂
hour“l, and at the completion of the experiment the constant
background concentration of 0.1 ppm was subtracted from all the 
recorded output concentrations.

The results which are analysed and discussed in subsequent 
sections were therefore obtained by specifying for the simulation
period a set of experimental conditions which may be summarised as 
follows:-

(i) a simulation period of 0100 to 2200 hours;
(ii) a one kilometer grid with its origin at (0,0);

(iii) a constant temperature of 20°C;
(iv) a constant pressure at 1000 millibars;
(v) a wind from due west at a constant speed of 1.5 ms-'-

throughout the simulation area;
(vi) sulphur dioxide as the chosen pollutant (and assumed inert) 

from an area source in grid square (1,12) with a nominal
emission rate of 0.5 x 10^*5 gm km~^ hour-'-;

(vii) the initial and background concentrations set as 0.1 ppm 
sulphur dioxide; and

(viii) the instantaneous pollutant concentrations being printed every 
four minutes, yielding 316 observations in each ground-level 
grid cell.

7.5 Initial Results

Brief inspection of the MUAQ model’s simulated pollutant 
concentrations reveals that its behaviour is broadly consistent with 
expectations, since the pollutant is seen to travel downwind and to be 
dispersed vertically and across-wind. To evaluate the performance of 
the model more carefully, it is convenient to focus separately on its 
cross-wind dispersion properties and its advection and longitudinal 
dispersion characteristics. This task is assisted by defining the 
(straight) line of ground level cells due east of the pollutant source 
(that is, cells (2,12) to (25,12)) as the reference cells. Then, the
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a d v e c t i o n  p r o p e r t y  o f  the  model was examined by use of  the  t ime s e r i e s  

of  i n s t a n t a n e o u s  p o l l u t a n t  c o n c e n t r a t i o n s  i n  the  r e f e r e n c e  c e l l s  

( 5 , 1 2 ) ,  ( 1 0 , 1 2 ) ,  ( 1 5 , 1 2 ) ,  ( 2 0 ,1 2 )  and ( 2 5 , 1 2 ) .  These t im e s e r i e s  a r e  

shown i n  F i g u r e  7 .3 .  By c o n t r a s t ,  t h e  c r o s s - w i n d  d i s p e r s i o n  was 

examined by t a k i n g ,  i n  e f f e c t ,  c r o s s - s e c t i o n  ' s n a p s h o t s '  of  t h e  plume, 

t h u s  e n a b l i n g  o b s e r v a t i o n  of  t h e  d i s t r i b u t i o n  of p o l l u t a n t  

c o n c e n t r a t i o n  around ( t h a t  i s ,  n o r t h  and s o u th  o f )  the  r e f e r e n c e  c e l l s .

S e v e r a l  i n t e r e s t i n g  p o i n t s  a r e  r e v e a l e d  i n  t h e  g r a p h s  i n  F i g u r e  

7 .3 .  F i r s t l y ,  t h e  s y s t e m a t i c  o c c u r r e n c e  of  t h e  ' n e g a t i v e '  

c o n c e n t r a t i o n s  as  the  i n i t i a l  r e s p o n s e  to  each  ' s t e p '  i n  the  i n p u t  

s i g n a l  i n d i c a t e s  t h a t  t h e  MUAQ model has  non-minimum phase 

c h a r a c t e r i s t i c s  ( T r u x a l ,  1955) .  Secondly ,  the  magni tude of  the 

' n e g a t i v e '  c o n c e n t r a t i o n s  a s s o c i a t e d  w i th  t h e  r e s p o n s e  to  t h e  f i r s t  

' s t e p '  i n  t h e  i n p u t  s i g n a l  i s  a lways l a r g e r  than  t h a t  of  t h e  ' n e g a t i v e '  

c o n c e n t r a t i o n s  a s s o c i a t e d  w i t h  the  s u b s e q u e n t  i n p u t  ' s t e p s ' .  T h i s  i s  

a lm o s t  c e r t a i n l y  an a r t i f a c t  o f  t h e  c h o ic e  of  0100 h o u r s  r a t h e r  t h a n  

0000 hou r s  a s  t h e  s t a r t  of  the  s i m u l a t i o n  p e r i o d .  More e x p l i c i t l y ,  t h e  

e m i s s io n s  d a t a  p r e p a r a t i o n  sys tem c r e a t e s  a f i l e  c o n t a i n i n g  e m i s s io n  

d a t a  f o r  e ach  hour  of  t h e  day ,  and a l s o  l i n e a r l y  i n t e r p o l a t e s  between  

t h e  m i d - p o i n t s  of  t h e  c o n s t a n t  h o u r l y  v a l u e s  of  t h e  e m i s s io n  r a t e s .  

Hence,  t h e  e m i s s io n  r a t e  a t  t h e  s p e c i f i e d  s t a r t  of t h e  s i m u l a t i o n  

p e r i o d  was 0 . 5  u n i t s  (where one u n i t  c o r r e s p o n d s  to  an e m i s s io n  r a t e  of  

0 . 5  x 106 .5  gjn km~^ h o u r “ -*-) r a t h e r  t h a n  ze ro  u n i t s  which would 

have a p p l i e d  had t h e  s t a r t  of  the  s i m u l a t i o n  p e r i o d  been chosen  a s  0000 

h o u r s .  T h i r d l y ,  t h e r e  i s  a s u g g e s t i o n  t h a t  t h e  o u t p u t  s i g n a l  o f  t h e  

model has  o s c i l l a t o r y  c h a r a c t e r i s t i c s ,  p a r t i c u l a r l y  i n  t h o s e  r e f e r e n c e  

c e l l s  f u r t h e s t  f rom t h e  p o l l u t a n t  s o u r c e .  F i n a l l y ,  a s  the  d i s t a n c e  

downwind of  t h e  sou rc e  i n c r e a s e s ,  the  ' n e g a t i v e '  c o n c e n t r a t i o n s  

a s s o c i a t e d  w i t h  t h e  r e s p o n s e  to  a l l  ' s t e p s '  i n  t h e  i n p u t  s i g n a l  o t h e r  

t h a n  the  f i r s t ,  a r e  found to  i n c r e a s e  i n  magni tude  whereas  t h e  peak 

c o n c e n t r a t i o n s  d e c r e a s e .  To i l l u s t r a t e ,  i n  t h e  r e f e r e n c e  c e l l  ( 5 , 1 2 ) ,  

the  peak c o n c e n t r a t i o n  e x p e r i e n c e d  was 0.4284 ppm, w h i l e  the  ' n e g a t i v e '  

c o n c e n t r a t i o n  ( o f  l a r g e s t  m agn i tude )  was -0 .0 1 5 6  ppm. Comparison w i th  

the  r e f e r e n c e  c e l l  ( 2 5 ,1 2 )  y i e l d s  f i g u r e s  of  0 .0880 ppm and - 0 .0 3 4 6  ppm 

r e s p e c t i v e l y .  I t  i s  s u s p e c t e d  t h a t  t h e  ' n e g a t i v e '  c o n c e n t r a t i o n s  a r i s e  

a s  a r e s u l t  of  t h e  n u m e r i c a l  i n t e g r a t i o n  p r o c e d u r e  and t h i s ,  t o g e t h e r  

w i t h  t h e  p o i n t s  n o t e d  above ,  w i l l  be d i s c u s s e d  f u r t h e r  i n  S e c t i o n  7 .7 .

To comple te  t h i s  s e c t i o n  we c o n s i d e r  t h e  c r o s s - w i n d  d i s p e r s i o n
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Figure 7.3 Time series of instantaneous pollutant concentrations 
(ppm) in each of five reference cells.
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characteristics of the MUAQ model. As mentioned previously this is 
done simply by taking ’snapshots' of the plume to enable observation of 
the distribution of pollutant concentration around the reference cells. 
Since we have chosen to examine the advection characteristics of the 
model by analysis of the instantaneous concentrations in the five 
evenly spaced reference cells (5,12) to (25,12), we will use the same 
reference cells when considering the cross-wind dispersion. The times 
at which the ’snapshots' were taken were selected so that a peak 
concentration of pollutant, resulting from the same ’step' in the input 
signal, was occurring at the five specified downwind distances.

The selected cross-section pollutant concentrations are shown in 
Table 7.1 and plotted in Figure 7.4. Clearly, cross-wind dispersion is 
taking place but the pollutant concentrations are not normally 
distributed around the reference cells as expected. A consistent 
pattern emerges in which the pollutant concentrations in cells one 
kilometer north of the reference cells are approximately double those 
in the cells one kilometer south, for all distances downwind. A clear 
explanation of this unanticipated asymmetry of the pollutant plume is 
not immediately apparent, but further examination of this problem lies 
beyond the scope of this chapter, even though it indicates some 
deficiencies in the performance of the MUAQ model. It is tentatively 
suggested that the asymmetry of the plume may result from errors in the 
specification of wind direction within the model.

7.6 Input-Output Modeling Results

Input-output modeling clearly requires input and output series 
and some method of determining their relationship. Both the input and 
the output series used here have been described in previous sections. 
The input was shown in Figure 7.2 as the modified signal produced as a 
result of the emissions data preparation system linearly interpolating 
between the mid-points of the constant hourly values of the emission 
rates. The output signals were shown in Figure 7.3 as the time series 
for the reference cells (5,12), (10,12), (15,12), (20,12) and (25,12). 
In order to relate the input to the output series, models of the linear 
rational transfer function form were sought. The structure of these 
models was identified using the IV model identification procedure 
described in Chapter 3.
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The principal objective of this modeling is to determine whether 
the MUAQ model possessed any dynamic characteristics, and if so, their 
nature. To do this, we attempt to find a transfer function 
representation of the input-output relationships of the model.

Table 7.1
Cross-Wind Dispersion of Pollutant by Distance 

Downwind and Time Elapsed 
(ppm)

Cells 5 km 
(0808)

10 km 
(0900)

15 km 
(0956)

20 km 
(1048)

2 5 km 
(1136)

4 North -0.0001 -0.0008 -0.0014 -0.0002 -0.0003
3 North -0.0021 -0.0027 0.0004 0.0048 0.0097
2 North -0.0021 0.0148 0.0273 0.0356 0.0415
1 North 0.1013 0.1108 0.1005 0.0906 0.0838
Reference 0.4284 0.2137 0.1401 0.1056 0.0880
1 South 0.0499 0.0557 0.0515 0.0472 0.0442
2 South 0.0027 0.0072 0.0102 0.0122 0.0137
3 South 0.0001 0.0006 0.0013 0.0022 0.0030
4 South 0.0000 0.0000 0.0001 0.0003 0.0005

--- North South

Figure 7.4 Instantaneous cross-section pollutant concentrations (ppm) 
in cells north and south of the reference cells. Plots 
are separated vertically by 0.05 ppm for clarity.
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If successful, the dynamics of the MUAQ model will be captured in the 
’a' parameters of the transfer function model. For example, a 
representation with 'b' parameters but no 'a' parameters would indicate 
that the MUAQ model possessed no inherent ’long term' dynamics, merely 
a dynamic behaviour where the dynamic ’memory’ was limited to a period 
of time corresponding to that number of sampling intervals equal to the 
number of ' b ' coefficients. By contrast, in representations containing 
'a' parameters the 'memory' will extend into the infinite past.

When modeling real world situations it is usual to give
particular emphasis to the basic requirement that models satisfy the 
condition of physical plausibility. However, in the present case our 
objective is simply to find a transfer function representation of the 
MUAQ model. Hence, if the MUAQ model exhibits physically implausible 
behaviour by generating ’negative’ pollutant concentrations, it is 
desirable to capture this in the transfer function representation.

The extent to which the data are ’explained’ is measured by
2R'p, one of the primary test statistics used in the model

identification procedure. Together with other statistics, the
2R-p values are shown in Table 7.2 for selected model structures. 

In all cases the modeling is from the area source in grid square (1,12)
to the specified reference cells. The selection of models is only
made, however, after reference to additional model attributes. Since 
two of these attributes are good parameter definition and no sign of 
over-parameterisation, we seek models that have NEVN values that are 
both low and close to the minimum. Those models which simultaneously 
possess attractive primary test statistics are then examined to see if 
their parameters are time invariant, and if there is correlation 
between the model input and the estimated residuals

Inspection of Table 7.2 shows that for the reference cell (5,12) 
there are two models with very favourable primary test statistics, 
namely the (1,1,9) and (0,1,10) models. While the former offers a 
slightly better fit to the data, the latter is more efficient (only one 
parameter) and has better parameter definition. Both are physically 
plausible in the sense that they do not generate 'negative' 
concentrations from non-negative (by definition) pollutant emissions.
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F u r t h e r m o r e ,  e i t h e r  i s  a s a t i s f a c t o r y  r e p r e s e n t a t i o n  of  the

r e l a t i o n s h i p  be tween th e  p o l l u t a n t  e m is s io n s  a t  the  s o u rc e  and t h e

c o n c e n t r a t i o n s  i n  the  c e l l  ( 5 , 1 2 ) .  For  t h e  r em a in ing  f o u r  r e f e r e n c e

c e l l s  t h e  p r im ary  t e s t  s t a t i s t i c s  unambiguously  i n d i c a t e  a ( 0 , 2 )  model
2

s t r u c t u r e  as  the  most  a c c e p t a b l e ,  w i th  R-p a t  the  p l a t e a u  l e v e l ,  

and NEVN v a l u e s  c l o s e  to  t h e i r  minimum. These ( 0 , 2 )  model s ,  l i k e  the  

MUAQ model ,  may p r e d i c t  ' n e g a t i v e '  c o n c e n t r a t i o n s ,  because  the  ’b o ’

Tab le  7.2

Model Order  I d e n t i f i c a t i o n  C r i t e r i a  f o r  I n p u t - O u t p u t  

R e p r e s e n t a t i o n s  of  the  MUAQ Model

Gr id  C e l l  where Model

Outpu t  Measured (n ,m,x)
4 In(NEVN) ln(EVN)

( 5 ,1 2 )  ( 0 , 1 , 8 ) .9281 -9 .8621 -10.6372

( 0 , 1 , 9 ) .9727 -10 .8412 -11 .6 043

( 0 , 1 , 1 0 ) .9946 -12 .4552 -13 .2133

( 0 , 1 , 1 1 ) .9939 -12 .3351 -13 .0931

( 0 , 2 , 9 ) .9944 -6 .7074 -7 .9 8 4 7

( 0 , 3 , 9 ) .9951 -4 .1 0 6 2 -4 .9 5 7 3

( 1 , 1 , 8 ) .9978 - 9 .5 9  70 -10.5001

* ( 1 , 1 , 9 ) .9988 -9 .5 1 3 0 -10 .3 542

( 1 , 1 , 1 0 ) .9978 -7 .6 7 6 5 -8 .7363

0 , 2 , 9 ) .9989 -5 .7 1 1 6 - 7 .6 4 6 0

( 1 , 3 , 9 ) .9987 -4 .4216 -6 .1575

( 1 0 ,1 2 )  ( 0 , 1 , 2 4 ) .9811 -11 .8702 -13 .3520

( 0 , 1 , 2 5 ) .9803 - 6 .  74 70 -8 .0 8 1 0

( 0 , 1 , 2 6 ) .9460 -10 .7753 -12.2691

( 0 , 2 , 2 4 ) .9812 -4 .8 6 2 3 -8 .1521

* ( 0 , 2 , 2 5 ) .9803 -6 .  74 70 -8 .0810

( 0 , 2 , 2 6 ) .9765 -7 .1 4 8 2 -7 .8 7 6 8

( 0 , 3 , 2 5 ) .9803 -3 .3229 -4 .9076

( 0 , 4 , 2 5 ) .9808 -3 .4281 - 3 .9 7 1 7

( 1 , 1 , 2 5 ) u n s t a b l e

0 , 2 , 2 5 ) .9755 -3 .6302 -3 .8286

( 1 , 3 , 2 5 ) .9730 -2 .1215 -3 .9 300



Table  7 .2  ( c o n t in u e d )

Gr id  C e l l  where Model

Output  Measured (n ,m,x)
4 ln(NEVN) ln(EVN)

( 1 5 ,1 2 )  ( 0 , 1 , 3 9 ) .9385 -11 .0002 -12 .9601

( 0 , 1 , 4 0 ) .9038 -10 .5202 -12 .4870

( 0 , 1 , 4 1 ) .8552 -10 .0 823 -12 .0624

( 0 , 2 , 3 9 ) .9595 -6 .8 4 3 8 -8 .1276

* ( 0 , 2 , 4 0 ) .9546 -7 .0921 - 7 .9 9 4 5

( 0 , 2 , 4 1 ) .9431 - 7 .0 9 6 6 -7 .7573

( 0 , 3 , 4 0 ) .9548 -3 .5 0 9 0 - 4 .8 8 2 7

( 0 , 4 , 4 0 ) .9552 -3 .1 4 1 8 -3 .9270

( 1 , 1 , 4 0 ) u n s t a b l e

( 1 , 2 , 4 0 ) u n s t a b l e

( 2 0 ,1 2 )  ( 0 , 1 , 5 2 ) .9108 -10 .8311 -13 .1252

( 0 , 1 , 5 3 ) .8771 -10 .4754 -12 .7781

( 0 , 1 , 5 4 ) .8293 -10 .1 122 -12 .4290

( 0 , 2 , 5 2 ) .9304 -6 .6049 - 8 .2 5 2 8

* ( 0 , 2 , 5 3 ) .9264 -6 .9321 -8 .1804

( 0 , 2 , 5 4 ) .9159 -7 .0309 -8 .0269

( 0 , 3 , 5 3 ) .9265 -3 .2 0 2 5 -5 .0276

( 0 , 4 , 5 3 ) .9268 -2 .7660 -4 .0 6 4 7

( 1 , 1 , 5 3 ) u n s t a b l e

( 1 , 2 , 5 3 ) u n s t a b l e

( 2 5 ,1 2 )  ( 0 , 1 , 6 5 ) .8792 -10 .6251 -13 .1384

( 0 , 1 , 6 6 ) .8481 -10 .3692 -12 .8964

( 0 , 1 , 6 7 ) .8060 -10 .0 950 -12 .6421

( 0 , 2 , 6 5 ) .8998 -6 .3898 -8 .1662

* ( 0 , 2 , 6 6 ) .8949 - 6 .6 7 9 7 -8 .0 9 6 8

( 0 , 2 , 6 7 ) .882 7 -6 .7709 -7 .9660

( 0 , 3 , 6 6 ) .8952 -3 .4 8 2 0 - 5 .0 5 4 5

( 0 , 4 , 6 6 ) .8954 -2 .5592 -4 .0705

( 1 , 1 , 6 6 ) u n s t a b l e

( 1 , 2 , 6 6 ) u n s t a b l e

* d e n o te s  i d e n t i f i e d  model
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[parameter is positive and the 'bp* parameter is negative in each
(Case. These ’negative’ concentrations will occur under conditions
'where the input emissions are zero at one sample, but greater than zero
•at the previous sample. It should be noted that these (0,2) models are
not strictly non-minimum phase, in that the initial model response to
the input signal results in an output signal which initially moves in
the same direction. This initial conformity between the direction of
movement of the two signals is, however, an outcome of the choice of
the pure time delays being made in order to maximise the value of 
2R-p for each reference cell.

The parameter values in the identified models are estimated by
use of refined IVAML procedures. The system and noise model parameter
estimates are shown in Table 7.3 with their standard errors, together

2with the value of R-p for each identified model. It is evident
that as the distance downwind of the source increases the values of

2Rt and the steady state gain both decline. This was anticipated. The
2decline in the values of R-p is due primarily to the worsening of

the ’negative’ concentrations as distance downwind increases, while the 
decline in the steady state gain values is consistent with increasing 
pollutant dispersion associated with distance from the pollutant 
source. The model fit to the pollutant concentrations in each of the 
five reference cells is shown in Figure 7.5.

An additional point relating to the identified models is 
warranted. The most appropriate pure time delays associated with each 
of these models closely conform to those time intervals that would be 
required for a uniform wind of speed 1.5 ms”-*- (5.4 km hr~^) to
traverse the distance between the pollutant source at (1,12) and the
relevant reference cells downwind. Since the pollution will have to 
travel only four kilometers to reach grid square (5,12), and recalling 
that the time series sampling interval is four minutes, the expected 
time of travel may be computed and compared with the observed pure time 
delay. Such a comparison is made for all the reference cells, and is 
shown in Table 7.4. These satisfactory results confirm that the MUAQ 
model provides an accurate description of the mean speed of pollutant 
transport.
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,40er
( 10, 12)

Figure 7.5 Time series model fit (-- ) to the output signal (— )
of the MUAQ model in each of five reference cells.
The model fit has been translated vertically by 0.10 
ppm in each case for clarity.



Table 7.3
Summary of the Identified Input-Output Model Representations
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of the MUAQ Model

Output from Model Parameter Standard SSGb 2R'P Time
Grid Cell Parameters Estimates3 Error3 Delay

(5,12) al -0.6032 .0042 .4 740 .9988 9
b0 0.1881 .0020
*1 0.3461 .0139

(10,12) b0 0.3121 .0212 .2263 .9803 25
bl -0.0858 .0212
dl 0.6556 .0272

(15,12) b0 0.4125 .0526 .1383 .9546 40
bl -0.2742 .0526
C1 -0.4952 .1230
^1 -0.0998 . 1464

(20,12) b0 0.3233 .0329 .0985 .9264 53
bl -0.2248 .0330
dl 0.3396 .0539

(25,12) b0 0.2302 .0238 .0797 .8949 66
bl -0.1505 .0237
dl 0.5322 .0555

3 Obtained by using refined IVAHL procedures. 
b Steady state gain.

7.7 Discussion and Conclusions

There are three major findings from this preliminary 
investigation of the MUAQ model. Firstly, the model exhibits 
non-minimum phase behaviour which may result in the generation of 
physically implausible 'negative' pollutant concentrations, the 
magnitude of which increases with increasing distance from the 
pollutant source. The generation of 'negative' pollutant
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Table 7.4
Comparison of Pure Time Delays 
and Expected Times of Travel

Reference
Cell

Distance of 
Reference Cell 
Source (km)

Expected Time of 
Travel from Source 
to Reference 

Cella >b

Pure Time Delayb 
Integer found from 
Model Identifica

tion

(5,12) 4 11.1 9 or 10c
(10,12) 9 25.0 25
(15,12) 14 38.9 40
(20,12) 19 52.8 53
(25,12) 24 66. 6 66

a Wind speed constant at 1.5 ms"^.
b Times in units of four minutes.
c Depending on whether the (1,1,9) or (0,1,10) model is chosen.

concentrations is obviously an undesirable characteristic of the model. 
In the case of inert pollutants, serious errors may not necessarily 
arise in practice. This assessment is derived from the knowledge that, 
on the one hand, the 'negative' concentrations that the MUAQ model 
generates are of smaller magnitude for sites close to the pollutant 
source, and on the other, that in reality pollutant sources are spread 
throughout urban areas so that the most significant contributions to 
pollution levels at any given site will generally be made by nearby, 
upwind emission sources. In the case of secondary pollutants such as 
photochemical smog, however, this is not necessarily true, since 
transport of the precursor pollutants over considerable distances will 
often occur before the maximum concentrations of ozone are generated. 
Hence, it seems essential to examine both the SAI model, and the later 
versions of the MUAQ model (which will incorporate a capacity to 
simulate photochemical smog formation), to determine whether 'negative' 
concentrations of secondary pollutants are a serious problem with 
either.
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Some further, brief comments concerning the ’negative' 
concentrations may be warranted. These concentrations are not inherent 
in the model formulation but almost certainly arise from the methods 
employed to solve the model’s partial differential equations. Also, 
there appears to exist a strong resemblance between the initial model 
response (seen most clearly in reference cells (15,12), (20,12) and 
(25,12)) and the Pade approximation to a pure time delay (Korn and 
Korn, 1964).

Secondly, the results of our investigation into the MUAQ model 
reveal that negligible longitudinal dispersion occurs despite an 
expectation that clear evidence of such dispersion would emerge. This 
expectation is derived from knowledge that the model is based on the 
advection-diffusion equation and explicitly incorporates horizontal and 
vertical diffusivity terms Ky and K y respectively (see Section 
2.4). Some tentative explanation for the absence of dispersion may be 
offered. It may simply be an artifact of the conditions chosen for the 
particular experiment described here. This possibility can only be 
assessed by varying these conditions to ascertain whether the absence 
of longitudinal dispersion is a general feature of the MUAQ model. 
Such an exercise (which lies beyond our essentially preliminary inquiry 
into the MUAQ model) should include an investigation of whether the 
value of Kfl (2980 m^ min- )̂ used in the experiment reported here 
may have been too small to allow a realistic simulation of atmospheric 
dispersion. The absence of longitudinal dispersion in the results is 
consistent with the previously mentioned finding that the model 
response strongly resembles a Pade approximation to a pure time delay. 
In other words, restricting attention to the relationships between the 
pollutant emissions at the source and pollutant concentrations at any 
of the downwind reference cells indicates that the behaviour of the 
MUAQ model appears to be well described in terms of a simple 
translation of the pollutant with a suitable reduction in its 
magnitude, that is

y, = b u. + b.u + lyk o k-x 1 k-l-T k

One interpretation of this behaviour which seems most likely in 
practice is that, in the model's partial differential equation (see 
Section 2.4), the second order dispersion term for describing the
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longitudinal dispersion is having a negligible effect compared to the 
advection term. The non-minimum phase oscillatory behaviour then could 
be interpreted as arising from the numerical solution of the resulting 
(largely first-order) partial differential equation. This first-order 
equation, of course, represents only pure translation. Such a 
numerical solution could well exhibit a behaviour like that of a Pade 
approximation to a pure time delay.

A third significant finding was that the MUAQ model displays a 
crosswind dispersion of pollutant resulting in concentrations which 
were not normally distributed around the reference cells. We have 
earlier advanced the tentative view that this asymmetry of the plume 
may be due to problems in the model's specification of wind direction.

It may be appropriate to conclude the preliminary investigation 
of the MUAQ model undertaken in this chapter with some broader comments 
pertaining to its suitability for air pollution modeling tasks. The 
MUAQ model is designed to facilitate the treatment of chemical 
interactions between pollutants. Since these interactions are non
linear it is not straightforward to use a simple additive procedure 
such as multiple source Gaussian plume models for chemically reactive 
pollutants. Hence we should expect that the computer simulation time 
for the experiment described here will be greatly in excess of that 
required for a Gaussian plume or Gaussian puff model simulation of it. 
Nevertheless, we should require that the MUAQ model at least provides 
acceptable estimates of pollutant concentrations for a single source of 
inert pollutant. If it does not meet this simple requirement, then its 
ability to handle multiple sources of pollutants must be questioned, 
not just where these pollutants are inert, but particularly in the more 
difficult case where they are chemically reactive.

Our final comment takes the form of a reiteration. The 
investigation of the MUAQ model reported in this chapter was restricted 
to the simplest case of a single pollutant source and uniform wind 
precisely in order that time series representations of it could easily 
be obtained. Although this strategy resulted in a useful elucidation 
of the limitations of the MUAQ model (and led us to recommend that some 
attention be given to their rectification), we do not wish to imply 
that it can be supplanted by the time series models. This is because 
the MUAQ model has the distinct advantage of being an efficient
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formalisation of basically simple rules for describing the dispersion 
(and chemical interaction) of air pollutants from many scattered 
sources over large urban regions. The fact that a simple time series 
representation of the MUAQ model could easily be obtained was 
methodologically desirable, however, in that it not only highlighted 
the model's essential properties but in addition greatly facilitated 
the evaluation of its dynamic characteristics and more readily 
permitted recommendations to be made for its further development and 
improvement. Specifically, it is recommended that the diagnostic 
methods employed in this chapter should be applied to the refined 
version of the SAI model (Reynolds et al., 1976) to investigate whether 
the improved numerical integration procedures incorporated therein have 
overcome any or all of the problems we have found in the MUAQ model.
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Chapter 8

SUMMARY AND CONCLUSIONS

The aim of this thesis has been to investigate the usefulness of 
recursive estimation methods in the construction of air pollution models 
for the purposes of air quality management and in the provision of 
improved measurements of air pollution. The position which has been 
adopted in this thesis is that air pollution models designed for control 
and management purposes should be simple and incorporate only as much 
complexity and data intensiveness as is strictly necessary to achieve 
consistency with the available air pollution measurements and the goals 
of the modeling. In particular, avoidance of over-parameterisation or 
’surplus content’ has been emphasised. Namely, such models should not 
possess characteristics superfluous to the explanation of observed 
phenomena or incapable of empirical validation.

The thesis essentially comprised two broad sections. In Chapters 
2 and 3 the air quality management approach to the control of air 
pollution was described, the major types of models employed in the 
management of air pollution were reviewed, and a description was offered 
of the recursive estimation techniques extensively used in this thesis. 
These chapters thus provided a necessary context for the empirical 
investigations made into aspects of air pollution modeling and 
monitoring and reported in the remaining chapters of the thesis.

Transfer function models of a continuous air pollution analyser 
were obtained and used in the construction of robust input estimation 
algorithms. Then data missing from air pollution time series were 
estimated by use of simple linear dynamic models which related air 
pollution measurements made at different geographical locations. Next 
an attempt was made to develop a simple time series model of carbon 
monoxide levels in an urban area. Finally, a preliminary investigation 
was undertaken into the dynamic properties of an Eulerian model used for 
the simulation of urban air pollution levels.

The principal findings of this thesis may be summarised concisely. 
Firstly, recursive IV techniques were found to be useful in the



191

i d e n t i f i c a t i o n  of  model o r d e r  and i n  t h e  e s t i m a t i o n  of  p a r a m e t e r s  i n  

t r a n s f e r  f u n c t i o n  models of  a c o n t i n u o u s  a i r  p o l l u t i o n  a n a l y s e r .  These 

nuodels  p ro v id e d  the  b a s i s  f o r  the  c o n s t r u c t i o n  of r o b u s t  inp u t  

e s t i m a t i o n  a l g o r i t h m s ,  which i n  t u r n  have the  p o t e n t i a l  to  y i e l d  more 

a c c u r a t e  e s t i m a t e s  of a i r  p o l l u t i o n  l e v e l s  (C h a p te r  4 ) .  Second, 

r - e c u r s i v e  e s t i m a t i o n  methods were a l s o  found to  p ro v id e  a c o n v e n ie n t  

mieans f o r  examin ing  t h e  dynamic b e h a v io u r  of  a d e t e r m i n i s t i c  s i m u l a t i o n  

miodel f o r  u rban  a i r  p o l l u t i o n .  A s im p le  t ime s e r i e s  model 

r e p r e s e n t a t i o n  of the  MUAQ m o d e l ' s  i n p u t - o u t p u t  r e l a t i o n s h i p s  was 

r e a d i l y  o b t a i n e d ,  t h e  a n a l y t i c a l  s i g n i f i c a n c e  o f  which was t h a t  t h e  

f :ormer e n a b le d  t h e  i n h e r e n t  dynamic p r o p e r t i e s  of  the  l a t t e r  to  be more 

e i a s i l y  comprehended (C h a p te r  7 ) .  T h i r d ,  r e c u r s i v e  methods were a g a i n  

employed  a s  an a i d  i n  t h e  a n a l y s i s  of  a i r  p o l l u t i o n  and m e t e o r o l o g i c a l  

d ia ta  w i th  t h e  f i n a l  o b j e c t i v e  o f  d e v e lo p i n g  f o r  a i r  q u a l i t y  management 

p u r p o s e s  a s im ple  t ime s e r i e s  model of  c a rb o n  monoxide l e v e l s  i n  an 

uirban  e n v i r o n m e n t .  R e g r e t t a b l y ,  somewhat i n c o n c l u s i v e  r e s u l t s  were 

o b t a i n e d  from t h e s e  model ing e x e r c i s e s .  In  p a r t  t h i s  was because  a 

s u c c e s s f u l  d e c o m p o s i t i o n  of  t h e  model i n t o  l i n e a r  and n o n - l i n e a r  

com ponen t s  was no t  a c h i e v e d ,  and p a r t l y  due to  t h e  f a c t  t h a t ,  d e s p i t e  

uise o f  ' a v e r a g e d '  d a t a ,  t h e  sys tem b e h a v io u r  was found to  be more 

com plex  t h a n  o r i g i n a l l y  a n t i c i p a t e d  (C h a p te r  6 ) .  F i n a l l y ,  l i n e a r  

cdynamic models  were shown t o  p r o v id e  a s im p le  method f o r  e s t i m a t i n g  

m i s s i n g  a i r  p o l l u t i o n  d a t a .  I n  t h e  c o u rs e  of  t h i s  e x e r c i s e  r e c u r s i v e  

i r e f i n e d  IVAML a l g o r i t h m s  were de ve lope d  f o r  e s t i m a t i n g  th e  p a r a m e t e r s  i n  

ca m u l t i p l e  i n p u t  t r a n s f e r  f u n c t i o n  (MITF) model of  l i n e a r  s t o c h a s t i c  

j sys tems .  T h i s  MITF model can  be r e g a r d e d  as  t h e  dynamic e q u i v a l e n t  of  

;a l i n e a r  r e g r e s s i o n  model .  By use of a comprehens ive  s t o c h a s t i c  Monte 

(Carlo s i m u l a t i o n  e x e r c i s e ,  t h e  IVAML a l g o r i t h m s  were se en  to  perfo rm 

'very  s a t i s f a c t o r i l y  ( C h a p te r  5 ) .

Th is  t h e s i s  has  d e m o n s t r a t e d  t h a t ,  g i v e n  the  i m p o r t a n t  goa l  of  

improved a i r  q u a l i t y  management ,  r e c u r s i v e  e s t i m a t i o n  t e c h n i q u e s  a r e  a 

]powerful  a n a l y t i c a l  t o o l  bo th  i n  t h e  c o n s t r u c t i o n  of  a i r  p o l l u t i o n  

m o d e l s  and f o r  p r o v i d i n g  b e t t e r  measurements  of  a tm o s p h e r i c  p o l l u t a n t  

l e v e l s .  I t  i s  no t  c l a i m e d ,  however ,  t h a t  the  i n q u i r i e s  r e p o r t e d  h e r e  

f u l l y  e x p l o r e  t h e  p o s s i b l e  a p p l i c a t i o n s  of  r e c u r s i v e  e s t i m a t i o n  methods 

i n  t h e  a n a l y s i s  of  a i r  p o l l u t i o n  r e l e v a n t  to  t h e  d e s ig n  of  p o l i c i e s  f o r  

a i r  q u a l i t y  management .  S p e c i f i c a l l y ,  f u r t h e r  r e s e a r c h  i n  t h e  f o l l o w i n g  

two d i r e c t i o n s  would seem p o t e n t i a l l y  most  f r u i t f u l .  F i r s t ,  a p p l i c a t i o n
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to other dynamic models of the methodology adopted in Chapter 7 seems 
warranted. That is, using recursive methods to secure simple 
representations of more complex models, which yet retain all their 
essential or ’dominant mode’ properties, provides an additional 
important technique for assessing the performance of deterministic 
simulation models. Second, attention might profitably be given both to 
speculative simulation modeling of levels of vehicular pollutants in 
urban areas, with the objective of identifying variables which (in 
addition to those we have incorporated, namely, traffic flow and wind 
components) significantly influence measured pollutant levels, and of 
securing satisfactory models without recourse to ’averaging' of the 
underlying pollution data being necessary. If these can be achieved, 
recursive estimation methods can then be brought to bear in the pursuit 
of simple models suitable for management purposes.
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APPENDIX

As was seen in Chapter 4 Mage and Noghrey ( 19 72) described 
continuous air pollution analysers in terms of the convolution integral 
equation, and obtained estimates of the true input pollutant 
concentration by employing a finite difference method to solve this 
equation. In this appendix it is demonstrated that finite difference 
methods will not always provide a satisfactory solution to the 
convolution integral equation.

The continuous time convolution integral equation may be written 
as

x(t) = / ^ r(t-w)u(w)dw 0 = w = t = T (A.l)0

where x is the output, u is the input, r is the impulse response, t 
denotes time, w is a dummy variable introduced for the purpose of 
integration, and attention is restricted to the time interval (0,T). A 
finite difference approximation for this (or any other) formulation 
involves a two step procedure. Firstly the formulation is discretised 
on an (abscissa) grid which we choose to be of uniform spacing A so 
that the k-th grid point has a data value x^ for x(t). If N is the 
number of samples, then A= T/N-l and equation (A.l) becomes

kAx = / r(kA-w)u(w)dw
k 0

k-1 (i+1)A (A*2)
i.e. x = E / r(kA-w)u(w)dw (k = 1,2, ... ,N)

k i=0 iA

Secondly in order to approximate the integrals in (A.2), a quadrature 
rule is applied so that, in general, equation (A.2) can be written as

xk
k-1
.L- wi+l \ - i  Ui+11 - U

(k = 1,2, ... ,N) (A.3)

where Che w. are Che weighcs corresponding Co Che quadraCure rule
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used and the  and a r e  a p p r o p r i a t e  d i s c r e t i s a t i o n s .  In an

E u l e r  ( s i m p le  r e c t a n g u l a r )  q u a d r a t e ,  f o r  example,  Wj_ i s  A f o r  a l l  i .  

I f  we d e s i g n a t e  t h a t  h e re  we a r e  s o l v i n g  f o r  the  impulse  r e s p o n s e  

f u n c t i o n  r  t h e n  th e  f o l l o w i n g  a rgum ents  a l s o  a p p ly  to  the  s o l u t i o n  f o r  

the  i n p u t  f u n c t i o n  u because  r  and u a r e  i n t e r c h a n g e a b l e  unde r  the  

c o n v o l u t i o n  o p e r a t i o n .

The e q u a t i o n s  ( A .3) form a t r i a n g u l a r  sys tem and the  s o l u t i o n  may be 

o b t a i n e d  d i r e c t l y  a s

ri = xi/(wiV
k-1

(\  * .1 wi+i V i  V i )/("iui ) for k = (2- •••> N)1=1

(A. 4 )

U n f o r t u n a t e l y  i t  does  no t  seem to  be w e l l  known by a p p l i e d  

s c i e n t i s t s  t h a t  u n c o n s t r a i n e d  f i n i t e  d i f f e r e n c e  a l g o r i t h m s  l i k e  (A .4) 

f o r  the  s o l u t i o n  of  e q u a t i o n  ( A . 1) a r e  u n s a t i s f a c t o r y  i n  the p r e s e n c e  

of  even m odera te  n o i s e  l e v e l s  on the  x^ ,  e s p e c i a l l y  i f  t h e  

f o r m u l a t i o n  ( A . 1) i s  i l l - p o s e d  (Tihonov,  1963) .  One example of 

i l l - p o s e d n e s s  o c c u r s  when t h e  r e s p o n s e  r ( t - s )  i s  g iv e n  by ( t - s ) - ^ / “ 

i n  which c a s e  e q u a t i o n  ( A . l )  i s  c a l l e d  an Abel e q u a t i o n  (Jakeman and 

A nde r s se n ,  19 75) .  In  such an e q u a t i o n  sm a l l  e r r o r s  i n  t h e  d a t a  y i e l d  

much l a r g e r  e r r o r  p e r t u r b a t i o n s  i n  the  s o l u t i o n .  This  can be 

d e m o n s t r a t e d  ve ry  s im ply  by c o n s i d e r i n g  t h a t  t h e r e  i s  n o i s e  6 x^ on 

j u s t  one o u t p u t  measurement  x^ .  Then from (A .4 ) ,  a t  the  k t 1̂ g r i d

p o i n t  t h e  e s t i m a t e  f o r  i s  g iv e n  by

r k + 6 r k

k - l
(xk + «xk -  Z wi+1 r k_. u ) / ( w l U l ) 

1=1

where c l e a r l y  6 r ^  = 6 x ^ / ( w^ u ^ ) .  In g e n e r a l ,  wj_ d e c r e a s e s  as 

A d e c r e a s e s  so t h a t  the  e r r o r  <5 r^  i n  t h e  s o l u t i o n  i n c r e a s e s  a s  the  

d i s c r e t i s a t i o n  becomes f i n e r .  In  o t h e r  words ,  t h e  more dense the  d a t a ,  

the  l a r g e r  i s  t h e  q u a d r a t u r e  e r r o r .  However, t h e  use of  a c o a r s e r  g r i d  

s p a c i n g  i n c r e a s e s  t h e  r i s k  of  s ampl ing  o r  d i s c r e t i s a t i o n  e r r o r .  Thus 

i t  i s  n e c e s s a r y  to  compromise to  f i n d  an o p t im a l  A which,  when used i n
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(A.4), may still yield an unacceptable solution. It should be noted 
that in this example we have considered error in just one data point 
x^ and that this error is propagated and compounded into the 
estimates for r^. If error is introduced on all data
points x^ (k=l, N) then the situation becomes considerably worse
and in order to find an acceptable solution it is necessary to play 
around with the values of u^ and x^. This amounts to an intuitive 
smoothing of the data.
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