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Chapters two to six of this thesis describe original 
research. Of these, sections 2.3, 3.3, 3.4, 4.1.5, 4.2, 
4.3.1.1, 4.3.1.3, 4.3.3, 4.4, 5.2 and 6.1 contain work 
that is entirely mine. Sections 3.1, 3.5, 4.3.2, 5.1 
and 6.2 are almost entirely and the rest substantially 
mine.
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Abstract

This thesis considers the identification and control 
of linear time-invariant continuous time systems whose unknown 
parameters have direct physical relevance. In many such systems 
the transfer functions are shown to be ratios of two polynomials 
multilinear in the unknown parameters. Accordingly the algor
ithms proposed exploit this multilinearity.

For identification, several equation and output error 
algorithms are formulated. Barring one exception, all of these 
conform to a two step structure. The first, generates an 
unconstrained estimate of the parameter vector, by ignoring 
the inherent multilinearity. The second obtains a constrained 
estimate which is in some sense the nearest to the 
unconstrained estimate. In the presence of unideal plant 
behaviour, simulations show that this second step improves 
upon the accuracy of the estimates obtained in the first.
The remaining identification algorithm essentially combines 
these two steps into one by employing a penalty function term.

One of the equation error algorithms, called the least 
squares two step algorithm, is uniformly asymptotically 
stable (u.a.s.) whenever it is implementable and its
parameter estimates are initialized to zero. Implementability, 
however, is conditional on a persistence of excitation (p.e.) 
condition on the system inputs. The other algorithms are always 
implementable but are u.a.s. only when theis pe condition is 
met and when information about the parameter magnitude bounds 
is available. The latter knowledge is reasonable in view of 
the physical significance of the unknown parameters.



Also formulated are two indirect adaptive controllers. 
Both employ a general controller but differ in the identifier 
used. When excited by pe reference inputs, the first algorithm 
is globally stable, with uniform asymptotic parameter converg
ence, as long as the plant is completely controllable and 
observable. For the second law, the knowledge of a convex 
region, containing the true parameter value, is assumed. This 
region has the added property that the frozen closed loop 
system is asymptotically stable whenever both the plant and 
the controller are conditioned on the same parameter value 
belonging to this region. Subject to this assumption, uniform 
asymptotic parameter estimate convergence and signal bounded
ness follows due to pe reference inputs.

As a means of establishing input only p.e. conditions, 
several general tools are derived here. These are applicable 
not just to the parametrizations of this thesis
alone but also to more conventional parametrization found in 
the literature. Furthermore the p.e. results are not restricted 
to stable time-invariant systems but apply also to unstable 
time-invariant plants and slowly time varying plants with b 
bounded signals
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§1. Introduction 

1.1 Problem Statement;

This thesis considers the adaptive identification 
and control of partially known continuous time systems.
The systems considered here are linear, time invariant, 
single input - single output and of known finite order.

In general linear, time invariant systems can be 
described by ordinary differential equations of the form

y (t) + l a. y 1' (t) = l b. U l:l,(t) (1.1)
i=l 1 j=0 ]

If the coefficients {a.} and {b.} are known and if thel l
system satisfies stabilizability and detectability 
conditions, then the task of designing stable controllers 
is straightforward. Many of the coefficients may, however, 
be unknown and even slowly time varying. In such cases 
adaptive control constitutes one attractive approach to 
controller design involving a two step process. In the 
first unknown system parameters are estimated on line and 
are updated progressively as more and more data become 
available. In the second, these parameter estimates are 
used at each time instant to synthesize appropriate control 
signals.

Clearly such schemes depend heavily on the 
parameterisations selected. The easiest to handle and the 
most commonly used parametrisation has the {a^} and {b^} 
in (1.1) as the unknown parameters. Thereafter under 
the assumption of a complete lack of knowledge of the 
{a^} and {b^} , barring possibly that of the order and
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the relative order, the system is identified and 
controlled on-line.

In practice, many of these parameters are known 
a priori as also are certain relationships, albeit 
nonlinear, which exists between them. The premise of this 
thesis is that the exploitation of this additional 
knowledge should lead to more efficient adaptive algorithms. 
Usually the unknownness in a system relates to certain 
physical parameter values. Thus all parts of a mechanical 
system may be known a priori except perhaps the values 
of a moment of inertia, a frictional coefficient or the 
like. Accordingly in the parametrization that we consider 
the unknown parameters have direct physical significance.
Such a parametrization also has the following added 
attraction : the physics of the system allows us to make 
assumptions on the parameter magnitude bounds and in most 
cases on the knowledge of their signs. Of the various 
algorithms formulated in this thesis the stability analyses 
of some, but not all, exploit the knowledge of these 
assumed magnitude bounds.

Adaptive algorithms are usually designed and analysed 
under certain idealizing assumptions. It is thus commonly 
assumed that the system has no noise or other spurious 
disturbances, is time invariant and lies within an assumed 
model set. In all likelihood none of these ever hold.
The algorithms designed should, thus not only work in 
the ideal case, but should be robust enough to withstand 
reasonable departures from these assumptions. A pre-condition 
for such robustness is that parameter convergence occur 
uniformly asymptotically when the idealizing assumptions
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hold [1,2] . Thus, as uniformly asymptotically stable
algorithms are totally stable [3,107-108], the algorithms 
are equipped to overcome moderate deviations from ideality.

In summary, the object of this thesis is to formulate 
robust identification and control algorithms for systems 
where the unknown parameters are directly related to 
physical element values. In all the algorithms presented, 
we shall demand that parameter convergence occur in a 
uniform asymptotic manner as a pre-requisite to robust 
behaviour.

1.2 Survey of recent adaptive identification and

Since this thesis is primarily concerned with 
continuous time systems this survey will mostly restrict 
itself to continuous time algorithms. In conducting 
this survey we shall treat the identification and control 
literature separately.

1.2.1. Adaptive Identification

Adaptive Identifiers in the literature can broadly be 
classified into two categories : equation error and output 
error. Consider the system defined by equation (1.1).
In equation error an error signal e(t), defined below, 
is formed where the {ot̂ } and (8. } are respectively the 
estimates of {a^} and {b^}

control literature

n-1
e(t) = yR (t) + I ou(t) Yi(t)

i=0
I 8.(t) u .(t) 

j = 0 J -1
m

(1 .2)
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Here i
A Py. (t) = ----  y (t) ,

a(p)

A plu . (t) = ----  u (t) ,
a (p)

(1.3)

p is the differential operator and a(p) is a Hurwitz 

polynomial. The signal e(t) is then used to progressively 

update the {ot̂  (t) } and {  ̂(t) } , with the object that 

they approach {a^} and {b^} , respectively. The notion 

of using filtered versions of the derivatives of the system 

inputs and outputs is commonly known as state variable 

filtering. It was perhaps first introduced by Rucker [4] 

and is used primarily to avoid explicit differentiation 

of the system signals.

Output error algorithms on the other hand form an 

adjustable model

~ n_1 ^ my (t) + Z a.(t)y. (t) = Z 3 . (t) u.(t) (1.4)
n i=0 1 1 j=0 : 3

with y^(t) obviously defined. The output error
A

y (t) -y(t) is then used to adjust the parameter estimates 

{a^(t)} and {(3j(t)} . The difference between equation 

and output error algorithms is best understood through 

Figure 1.1. It is essentially a question of what constitute 

the inputs to the adjustable model. In equation error the 

exogenous inputs to this model are three : the unknown 

system input, the unknown system output and the difference 

between the outputs of the unknown system and the 

adjustable model. In output error, however, the unknown
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system output enters the adjustable model through the
Aoutput error yQ(t) - y(t), only.

The main disadvantage of equation error algorithms 
is that they yield biased parameter estimates in the 
presence of unbiased measurement noise. Output error 
algorithms do not have this drawback, but their convergence 
is conditional on a certain transfer function being 
strictly positive real (SPR). Unfortunately, this transfer 
function depends on the system parameters and hence this 
condition for convergence cannot always be checked a priori.

Equation error algorithms in their simplest form are 
typified by those presented by Young [5] and Lion [6]
(Lion calls equation error algorithms using state variable 
filtering as "generalized equation error" schemes). A 
further level of complexity is introduced in the schemes of 
Narendra and Kudva [7] , Luders and Narendra [8] , Parks [9]
and Caroll and Lindorff [10] . Their schemes lead to the
use of fewer integrators and involve the use of positive 
real transfer functions. Unlike the output error 
situation, however, these transfer functions are independent 
of the unknown parameters and are thus not difficult to 
design. Anderson in [11] considers the multivariable 
extension of these schemes and demonstrates how all of 
the above [5 - 10] can be unified within the general 
framework of two prototype structures. As we shall 
demonstrate in Chapter 3 these schemes may fail to converge 
to the right parameter values in the presence of unbounded 
signals. Schemes suggested by Kreisselmeier [12 - 13] 
on the other hand are capable of tackling unbounded signals 
as well.



Conditions for the exponential convergence of the 
schemes in [5 - 13] have been derived variously by 
Morgan and Narendra [14,15] , Kreisselmeier [12, 13] ,
Sondhi and Mitra [16] and Anderson [11,17] . In direct
terms their's is a persistently spanning condition on 
certain regression vectors involving system inputs and 
outputs. For a system with n+m-1 unknowns, for example, 
the condition requires that the regression vectors span 
the entire Rn+m  ̂ space with time. Intuitively, this 
translates to a persistence of excitation condition on 
the system input, even though none of the above results 
have formalized this assertion.

Persistence of excitation can be viewed as a condition 
on system identifiability with the proviso that such 
identifiability should not be lost asymptotically. This in 
turn requires that the system be excited by inputs which 
are sufficiently rich in frequencies. For example, a system 
with two unknown parameters cannot be identified if the 
input is a d.c. signal. On the other hand a sinusoidal 
input should suffice as it carries with it two pieces of 
information namely its magnitude and phase.

As we have stated no precise connection between the 
persistently spanning conditions on the regression vectors 
and a persistently exciting condition on the system inputs 
emerges from [14 - 17] . Moreover, the former conditions,
with their explicit dependence on the system outputs, are 
ill-suited to a priori input design. But based on them 
Yuan and Wonham [18] have considered the synthesis of almost 
periodic input signals which result in persistently spanning 
regression vectors. More recently [19] (see also Chapter 3
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of this thesis) , has presented persistence Qf excitation 
conditions on the inputs directly. Similar results, using 
the technique of Generalized Harmonic analysis have been 
derived by Boyd et.al. [20,21] . However, whereas the
results in this thesis deal also with unstable systems, 
system stability is crucial to the derivation in [20,21], 
Discrete time analogues of these results can be found in 
[22] .

Discussions of output error algorithms can be found in 
[23] . Although several discrete time proofs of the
exponential convergence of output error algorithms exist 
[24, 22] we were unable to find any complete analysis 
of such convergence in continuous time. In [17,25] 
error models similar to those arising in output error 
algorithms are analysed under the implicit assumption of 
bounded signals. However, since, in principle the 
parameters of the adjustable model in (1.4) can vary 
arbitrarily, such an assumption seems difficult to justify. 
In Chapter 5 of this thesis complete analyses of the 
output error algorithms is presented.

1.2.2. Adaptive Control

Adaptive controllers can in general be classed into two 
categories : those employing the indirect and direct 
approaches. The former involve the explicit estimation of 
the system parameters which are then used to design the 
controller parameters. In the direct approach,on the 
other hand,the first phase is sidestepped and the controller 
parameters are directly estimated.

The analyses of adaptive controllers proved to be much
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more difficult than their identification counterparts.
This stemmed from the feedback configuration which gave 
rise to nonlinear, time varying differential equations.
The first important contribution in the direct control 
area was a model reference scheme for minimum phase plants, 
proposed by Monopoli [26], who used an augmented error 
signal to sidestep a positive real condition otherwise 
implicit in the analysis. These ideas were further 
developed by Feuer and Morse [27] , Narendra and Valvani [28],
Narendra, Lin and Valvani [29] and Morse [30] . The last
two in particular showed global asymptotic convergence of 
the output tracking error to zero. Their analysis, 
however, did not show parameter convergence to the correct 
values, without which, as we have already asserted, 
robustness may not be forthcoming. In [19] it has been 
shown that with persistently exciting reference inputs, 
and with known high frequency gain, parameter convergence 
for [30] not only occurs, but does so exponentially.
Without the knowledge of the high frequency gain, however, 
exponential stability will not be obtainable. Similar 
results for the algorithm in [29] have been derived by 
Boyd et.al. [20,21] .

Äström and co-workers [31 - 33] , Kreisselmeier [34-36],

and Elliott and Wolovich[37] in their work have 
created indirect algorithms which are globally stable, in
that irrespective of the initial parameter estimates the 
system signals are always bounded. Egardt and Samson [38] in 
their work considered algorithms having a specific controller 
but a general identifier satisfying certain assumptions. 
Similarly, Kreisselmeier [36] considered a specific



identifier coupled to a general controller. In [36] 
the minimum phase requirement is substituted by the 
assumption that the extent of a convex region containing 
the plant parameters, in which the plant is stabilizable 
and detectable is known.

Recent work by Rohrs et.al.[39] and Äström and 
Wittenmark [40] have thrown light upon the behaviour of 
adaptive controllers in the presence of unmodelled high 
frequency modes and bounded disturbances. Ioannou [41] 
and Ioannou and Kokotovic [42] have applied the singular 
perturbation method to show that the algorithm in [28] 
retains local stability in face of very high frequency 
dynamics. Moreover, Narendra and Peterson [43] ,
Kreisselmeier and Narendra [44] and Sastry [45] have 
considered the introduction of dead zones in adaptive 
controllers to tackle bounded disturbances. In [46-48] 
error models have been developed, based on which many 
adaptive controllers have been shown to retain local 
stability, even in face of departures from some of the 
idealizing assumptions, as long as the inputs are 
persistently exciting.

§1.3 Contributions of this thesis.
As stated earlier the primary objective is to formulate 

adaptive algorithms for the robust control of systems 
where the unknown parameters have direct physical relevance. 
In chapter 2 we motivate the parametrisation of interest .
It is shown that the unknown physical element values of 
most linear time invariant electrical circuits affect the 
numerator and denominator polynomial coefficients in a
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multilinear fashion. Thus when two such parameters are 
unknown, the transfer function becomes

p (s)+k p (s)+k p (s)+k k p (s)
T(s,k ,k ) = -- -----— ---- — — ---  (1.5)qQ (s)+k1q1 (s)+k2q2 ( s) +k][k2q12 ( s )

where the k^ are the unknown parameters and the 
polynomials p^(s) and q^(s) are known a priori 
This result extends to mechanical and chemical analogues 
but excludes physical elements such as mutual inductors, 
which permit cross-coupling between energy storage 
devices and elements such as gyrators.

The algorithms we devise thus exploit the intrinsic 
multilinearity outlined above. As stated above, their 
robust behaviour would require that the input signals 
be persistently exciting (p.e.). However, even in the 
simple parametrisation of (1.1) , the p.e. conditions
involve system outputs as well. In chapter 3 we develop 
a set of general tools for translating th^se to input 
only conditions. The systems for which these tools are 
applicable include ones which maybe unstable and those 
which are slowly time varying but have bounded system 
signals. These results are appealed to in specialized 
forms in establishing convergence conditions in the later 
chapters.

In chapter 4 three equation error algorithms are 
proposed for the identification of the systems in question.



Two of these involve two step methods which we illustrate
through a two parameter example. Assume and are
the unknown parameters and consider the vector 

A TK = [k^^k^/k^k^] .o The first steps ignore the dependence
of the third element of K on the first two and generate

A Tan "unconstrained" estimate K = [K W K 0,K - . Theu ul u2 ul2
second step, which is common to both algorithms then finds
/N A A A A A ip
kp and k^ such that [k^k^fk^k^] is the "closest" 
to . The third algorithm, on the other hand, combines
these two steps into one by using penalty functions ideas.

Chapter 5 presents two output error algorithms, based 
on the first two methods outlined above. These are analysed 
for uniform asymptotic convergence under the assumption of 
known parameter magnitude bounds. Chapter 6 presents two 
indirect adaptive controllers, both of which employ the 
same, general controller, but differ in the identifiers 
used. One is shown to be globally stable while stability 
of the second is established under assumptions similar to 
those in [36], In all algorithms of chapters 4 - 6 , 
persistence of excitation conditions, which yield global 
uniform asymptotic parameter convergence, are presented.

Chapter 7 presents the concluding remarks and indicates 
areas of further investigation.
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§1.4 Notation of this thesis:
In this thesis, for the sake of clarity, notation shall 

be abused on several counts. To begin with quantities like

v(t) = a(s). u(t)V(t' b(s)

shall refer to the solutions of the differential equation 

b (p) v (t) = a (p) u (t) ,

A dp = , with arbitrary but finite initial conditions.
In vectors such as

V (t) 4 {• y ft) 7 sy (t) sn 1y(t)> u(t) , . .smu(t)  ̂T
Cs+a)n (s+a)n (s+a)n (s+a)n (s+a)n

or

W(t) = [ U (t) ,
s+ß

U(t) .T 
(s+P)n+m

the initial conditions shall be assumed to be zero. Also 
v(s) will refer to the Laplace transform of v(t) .
We shall often use sets as subscripts for denoting elements
of a vector. For example, the elements of a vector
shall be denoted by K where r is a set. Thus ifJ ur
r = {1,2} K will K n _ .ur ul2

The symbol "=" shall denote "identically equal to". 
Thus v(x) E u(x) is the same as v(x) = u(x) for all x 
belonging to the domain of x .
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Ay (t)

Ay (t)
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System
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Figure 1.1(a) Equation error configuration.

Ay (t)

Adj ustable

Model

Unknown

System

Figure 1.1(b) Output error configuration.



14

References for Chapter 1
1. B.D.O. Anderson, "Adaptive systems, lack of persistence of 

excitation and bursting phenomena". Submitted to Automatica.
2. B.D.O. Anderson and R.M. Johnstone, "when Will adaptive 

systems really adapt? The robustness issue",Proc. 2nd Conf. 
Control Engg, IE Australia, 1982, pp 59-66

3. W. Hahn, Stability of motion, Berlin, Springer Verlag, 1967.
4. R.A. Rucker,"Real time system identification in the presence 

of noise". Proc. Western Electronics Conv,Paper 2-3,Aug, 1963.
5. P.C. Young,"Discussion on 'In flight dynamic checkout' by 

J.E. Walker", IEEE Trans. Aerospace, AS-2, No. 3, pp 1106- 
1111.

6. P.M. Lion, "Rapid identification of linear and nonlinear 
systems", AIAA Journal,vol 5, Oct 1967, pp 1835- 1842.

7. K.S. Narendra and P. Kudva, "Stable adaptive schemes for 
system identification and control - parts I and II",IEEE 
Trans Systems Man Cyber, vol SMC-4, pp 542-560, Nov 1974.

8. G. Luders and K.S. Narendra, "Stable adaptive schemes for 
estimation and identification of linear systems", IEEE Trans 
Auto Contr, AC-19, pp 841-847, Dec 1974.

9. P.C. Parks, "Lyapunov redesign of model reference adaptive 
control systems", IEEE Trans Aut Contr, AC-11, No. 3,pp 362- 
367, 1966.

10. R.L. Carroll and D.P. Lindorff, "An adaptive observer for 
single input single output linear systems", IEEE Trans 
Auto Contr., AC-18, NO. 5, pp 428-435, 1973.

11. B.D.O. Anderson, "An approach to multivariable system 
identification", Automatica, vol 13, pp 401-408,1977.

12. G. Kreisselmeier, "Adaptive observers with arbitrary 
exponential rates of convergence", IEEE Trans Aut Contr, 
AC-21, Jan 1977 pp 2-8.



13. G. Kreisselmeier, "Algebraic separation in realizing a 
linear state feedback control law by means of adaptive 
observers", IEEE Trans Auto Cont, AC-25, April 1980, pp

15

238-243.
14. A .P. Morgan and K.S. Narendra, "On the uniform asymptotic 

stability of certain linear nonautonomous differential 
equations", SIAM J Contr, vol 15, Jan 1977, pp 5-24.

15. A .P. Morgan and K.S. Narendra, "on the stability of non
autonomous differential equations &=(A+B(t))x with skew- 
symmetric matrix B(t)", SIAM J Cont Opt, vol 15, Jan 1977 
pp 163-176.

16. M.M. Sondhi and D. Mitra, "New results on the performance 
of a well known class of adaptive filters", Proc. IEEE, 
vol 64, Nov 76, pp 1583-1597.

17. B.D.O. Anderson, "Exponential stability of linear 
equations arising in adaptive identification", IEEE Trans 
Auto Cont, AC-22, Feb 1977, pp 83-88.

18. J.S.C. Yuan and W.M. Wonham, "Probing signals for model 
reference identification", IEEE Trans Auto Cont, AC-22,
Aug 1977, pp 530-538.

19. S. Dasgupta, B.D.O. Anderson and A.C. Tsoi, "Input condi
tions for continuous time adaptive system problems", Proc 
22nd CPC,San Antonio, Texas, Dec 1983. Submitted to IEEE 
Trans Auto Contr.

20. S. Boyd and S. Sastry, "Necessary and sufficient conditions 
for parameter convergence in adaptive control", Tech.
Report, University of California, Berkeley, UCB/ERL M84/25, 
1984.

21. S. Boyd and S. Sastry, "On parameter convergence in adaptive 
control", Systems and Control Letters, pp 311-319, Dec 1983



16

22. B.D.O. Anderson and C.R. Johnson Jr., "Exponential 
convergence of adaptive identification and control algo
rithms", Automaatica, vol 18, Jan 1982, pp 1-13.

23. Y.D. Landau, Adaptive control: the model reference approach 
Marcel Dekker, Inc., 1979.

24. C.R. Johnson, Jr.," A convergence proof for a hyperstable 
adaptive recursive filter", IEEE Trans Info Thy, vol IT-25 
Nov 1979, pp 746-749.

25. K.S. Narendra and L.S, Valvani, "A comparison of Lyapunov 
and hyperstability approaches to adaptive control of 
continuous systems", April, 1980, pp 243-247, AC-25.

26. R.V. Monopoli, "Model reference adaptive control with an 
augmented error signal", IEEE Trans Auto Cont, AC-19,pp 
474-484, October 1974.

27. A. Feuer and A.S. Morse, "Adaptive control of single input 
single output linear systems", IEEE Trans Auto Contr, AC-23 
pp 557-570, Aug 1978.

28. K.S. Narendra and L.S. Valvani, "Stable adaptive controller 
design- direct control", IEEE Trans Auto Contr, AC-23,pp 
570 - 583, Aug 1978.

29. K.S. Narendra, Y.H. Lin and L.S. Valavani, "Stable adaptive 
controller design - part II :Proof of stability",AC-25, pp 
440-448, June 1980.

30. A.S. Morse, "Global stability of parameter adaptive control 
systems", IEEE Trans Aut Contr, AC-25, pp 433-440, June 1980.

31. K.J. Astrom and B. Wittenmark, "On self-tuning regulator", 
Automatica,No. 8, pp 185-199, 1973.

32. K.J. Astrom, U. Borisson, L. Ljung and B. Wittenmark,



"Theory and applications of self tuning regulators 
Automatica, vol 13, pp 457-476, 1977.

17

33. K.J. Astrom, B.Westerberg, B. Wittenmark,"Self - tuning 
controllers based on pole placement design", CODEN:
LUTFD2/(tfrt-3148)/1-52/ Department of Automatic Control 
Lund Inst, of Tech, Sweden, 1978.

34. G. Kreisselmeier, "Adaptive control via adaptive observation 
and asymptotic feedback matrix synthesis," IEEE Trans
Auto Contr,AC-25, pp 712-722, Aug 1980.

35. G. Kreisselmeier, "On Adaptive state regulation", IEEE 
Trans Auto Contr, AC-27, pp 3-16, Feb, 1982.

36. G. Kreisselmeier, "An approach to stable indirect adaptive 
control", Submitted for publication.

37. H. Elliot and W.A. Wolovich, "Parameter adaptive 
identification and control", IEEE Trans Auto Contr, AC-24, 
pp 592-599, Aug 1979.

38. B. Egardt and C. Samson,"Stable adaptive control of non- 
mimimum phase systems", Systems And Control Letters, vol 2 
pp 137-144, Oct. 1982.

39. C. Rohrs, L.S. Valavani and M. Athans, "Convergence studies 
of adaptive control algorithms, part I: Analysis," Proc 
CPC, Albuquerque, New Mexico, 1980, pp 1138-1141.

40. K.J. Astrom, "Analysis of Rohrs counterexamples to adaptive 
control", Proc. 22nd CPC, San Antonio, Texas, vol 2,pp 982- 
987, Dec 1983.

41. P. Ioannou, Robustness of model reference adaptive schemes 
with respect to modelling errors, Ph.D. Thesis, University 
of Illinois at Urbana-Champaign, August 1982.

42. P. Ioannou and P. Kokotovic, "Singular perturbations on 
robust redesign of adaptive control", IFAC workshop on



Singular perturbations and robustness of control systems, 
Lake Ohrid, Yugoslavia, July 1982.

18

43. B.B. Peterson and K.S. Narendra, "Bounded error adaptive 
control", IEEE Trans Auto Contr, AC-27 1982 pp 1161-1168.

44. G. Kreisselmeier and K.S. Narendra, "Stable model reference 
adaptive control in the presence of bounded disturbances", 
IEEE Trans Auto Contr ,ac-27, 1982, pp 1169-1176.

45. S. Sastry,"Model reference adaptive control- stability, 
parameter convergence and robustness", Tech. Report, 
University of California at Berkeley, No. UCB/ERL M83/59, 
1983.

46. R.L. Kosut, C.R.Johnson, Jr. and B.D.O. Anderson, "Robust
ness of reduced-order adaptive model following", Workshop 
on applications of adaptive systems theory, Yale 
University, 1983.

47. R.L. Kosut, C.R. Johnson,Jr. and B.D.O. Anderson, 
"Conditions for local stability and robustness of adaptive 
control systems", Proc. 22nd CPC, San Antonio 1983, pp 972- 
976.

48. C.R. Johnson, Jr., B.D.O. Anderson and R.R. Bitmead, "A 
model reference adaptive controller formulated for local
optimality in non-ideal use", Presented at the 18th Conf. 
on Info. Sciences and Sys., Princeton NJ, 1984.



19

§2. Realization Theory

The purpose of this chapter is to motivate the form 
of models to which the adaptive algorithms of this thesis 
are applicable. As stated earlier the object is to 
arrive at parameterizations which involve quantities with 
direct physical relevance. Accordingly, this chapter analyses 
the way in which physical element values of lumped linear 
electric circuits appear in state variable realizations and 
transfer function descriptions. Extensions to mechanical 
and chemical analogues are then immediate.

The primary goal is to show that when most parts of a 
linear, time-invariant, finite-dimensional system are 
known,but certain parameters associated with physical 
components of the system are unknown, then the transfer 
function of the system can be viewed as a ratio of two 
polynomials, with the polynomial coefficients multilinear 
in the unknown parameters. For example, with three unknown 
parameters, the transfer function of a single input 
single output (SISO) system is of the form

P(s,k ,k ,k )
T(s-k ,k ,k ) = -----------—  ; (2.1)

1 1 J Q(s,k1,k2,k3)

P(s1,k1,k2,k3) = pQ (s)+k1p1(s)+k2p2(s)+k3p3(s)+k1k2p12(s)

+ k1k3p13(s) + k2k3p23(s)+k1k2k3p123(s)

and

Q(s,k1,k2,k3)=qo(s)+k1q1 (s )+k2q2 *s ̂ +k3q3 (s)+k1k2qi2

+ k1k3q13(s)+k2k3q23(s)+k1k2k3q123(s)
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Here, are the unknown parameters, the polynomials
p^(s) and q^(s) are known a priori and T is 

proper.
As a means of establishing this property we shall first 

examine the manner in which the state variable realizations 
of the systems in question are affected by these unknown 
parameters. In particular it will be shown that such 
parameters appear in state variable realizations in a 
rank-1 fashion, the definition of which is given below.

Definition 2.1
A state variable realization described by the quadruple 

{F,G,H,J} has a rank-1 dependence on N parameters 
k^,...,k if for all i G {1,...,N} g a^,b^ G ^ '
independent of k^ , such that if we define by either

1a . = ---------1 a . + k . b .l l i

or
k..la . = ------------

1 a . + k .b .l l i

then the following hold :

(i) The elements of F,G,H and J are multilinear 
in the a . .l

(ii) The matrices

si - F G 

-H j

have rank no greater than 1, ViG{l,...,N}.
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Remark:
(2.1) The and defined above may depend

on k . V i # j .
3 J

In section 2.1 we shall establish this rank-1 property 
for electrical circuits. This will be done by examining 
in turn electric circuits having :

(i) resistor, inductor and capacitor (RLC) elements only, 
and no capacitor loops or inductor cutsets.
(ii) the above elements and possibly also pathologies 
such as inductor cutsets and capacitor loops.

In section 2.2 the corresponding transfer function result 
for the SISO case will be given while, in section 2.3 
we shall also show that most electric circuits will retain 
this transfer function property even if one is unable to 
make definite statements about the state variable 
realizations. This result will pre-suppose the existence 
of certain input-output descriptions.

The contents of this chapter are the subject of [1] .

2.1 State variable realizations:
Much of the background material for this section, 

namely the construction of state variable realizations for 
electric circuits, is contained in [2,ppl56-209]. We 
shall show that by following the general construction 
procedure outlined in [2] we arrive at state variable 
realizations which obey the rank-1 property.

To understand how electric circuit elements generally 
appear,consider a resistor R appearing in an n-port 
circuit. Clearly, the resistor can be extracted from the
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rest of the circuit in a manner depicted in figure 2.1.
Now,suppose U is a vector of inputs having a set of

voltages or currents at the n-ports as its elements.
Similarly suppose Y is an output vector, containing a
disjoint set of voltages and currents as its elements.
Suppose also that u- and y., are v_ and i0 ,
respectively (v and i are the respective voltage across K K
and current through the resistor R) . Then, if the hybrid

T T T Tmatrix relating [U ,û ] to [Y ,ŷ ] exists, the input-
output description typified by figure 2.2 exists. In
figure 2.2, k ̂ = R . Sometimes, when the hybrid

T T T Tdescription relating [U ,û ] to [Y ,y ] does not 
exist, one may need to replace by , with u^ = iR
and Yi = vr * Similarly other element values can also 
be extracted, in most circuits, in a manner typified by 
figure 2.1, though u^ and y^ may not necessarily 
represent voltages and currents. The exceptions to this 
rule arise from element values like mutual inductors, which 
allow crosscoupling to occur between different energy 
storage elements or from elements such as gyrators .
In this section, however, we are only interested in 
extracting resistor values, in a manner depicted in 
figure 2.2. The following lemma indicates the special way 
in which the parameter kp extractable as in figure 2.2, 
affects input-output description relating U and Y .
Here, as in the rest of the thesis we shall abuse notation 
by denoting U(s) , for example, to be the Laplace transform 
of U (t) . Similarly H(s)U(t) will denote the inverse
Laplace transform of H(s)U(s) .
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Lemma 2.1
Consider a multiinput-multioutput system with input

vector U(t) and output vector Y(t) and a parameter .
Suppose that the parameter k^ can be extracted as in
figure 2.2, with u^ (t) and y^(t) scalar signals and

T Tthe input-output description relating [U (t),u (t)]
T Tto [Y (t),y^(t)] exists and is independent of k^ . 

Suppose H(s,k^)is the rational transfer function from 
U(s) to Y(s) , i.e.

Y(s) = H(s,k1)U(s) .

Then there exist rational matrices M(s) and N(s) and 
scalar rationals c(s) and d(s), all independent of 
k^ such that

M (s) + k^N(s)
H(s,k1) = --------------  (2.2)

c (s) + k^d(s)

3H(s,k1) c (s)N (s) - d(s)M(s)
--------  = --------------------- (2.3)

3k1 {c(s)+k d (s) }2

rank (c(s)N(s) - d(s)M(s)} < 1  V s C .

Also if d(s) £ 0 then there exists 

a(s,k^) = 1/{c(s)+k^d(s)}

such that

(2.3a)

H(s,k1) = H(s)+a(s/k1) M(s) (2.4)



with H (•) and M(*) independent of a(s,k^) and 
rank M(-) < 1  . Similarly if c(s) £ 0 then there 
exists

ot(s,k1) = k1/(c (s)+k1d(s) )

such that
A  / \

H(s,k1) = H(s) + a(s,k1)M(s) (2.5)

H(s), M (s) independent of a(s,k^) and rank M(») < 1 .

Proof.
Suppose

'Y(s) 'h 11 ( s) h12(s)- ~ U(s)

y x (s > h21(s) h 22<S) Y 1 (s)

where H^(s) is a matrix, h^2 (s) and h2^(s) 
vectors and h22(s) a scalar. Thus

y1 (s) = h21(s) U (s) - k 1h22(s) y^s)

whence

Y(s)
k h ( s) h (s)

[H1 n ( s) + ^ --- ]
1 + klh22(s*

U(s) (2.7)

from which (2.2) and (2.3) follow with c(s) = 1 
and d (s) = h22(s). Further



25

3H(s,k1) h22 (s)h12 (s)h21 (s)
3'sk̂ 1 + k1h22 (s)

with a defined as in (2.3a) . Thus (2.4) follows.
Similarly (2.5) also follows. VVV

Remarks
(2.2) Replacing kn by /̂, does not alter the

1 K1
conclusions of the lemma, though (2.4) and (2.5) 
will be interchanged.

(2.3) If k^ is a resistor value then a(s,k^) is 
independent of s .

Consider now a circuit having N parameter values,
k-.....k.T such that each k. can be extracted so that I N l
input-output description of the form in figure 2.3 exist, 
with U and Y containing appropriate currents and 
voltages as their elements. Then the following lemma 
extends the result of lemma 2.1 to this case.

Lemma 2.2
Consider a system with input vector U(t) and output 

vector Y (t) and N parameters k^,...,k . Suppose
each parameter can be extracted so that input-output 
descriptions of the form of figure 2.3 exist. Define
k = [k^, .. . ,k ] T and k (i> = [k1, T

* **^i-l'^i+i'* *
Then Vi 3 c. (s,k^^) and d . (s, kl ^ ) , rational scalars
in s and elements of

•H such that every element of
H(s,k) , defined by

Y (s) = H(s,k)U(s)
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is multilinear in the {a.} with a. defined asl l
l/(c .(s,k ̂ ) + k^d^ (s,k ̂  ) ) or 

or k . / (c . ( s, k ̂  ) + k.d.(s,k^)) .l i l i

Remark:
(2.4) The correspond to the in lemma 2.1,

the first definition of ou will not apply if d^ = 0 
and the second if c. = 0 . If neither c. nor d. isl l i
zero then the lemma holds for defined either way.

Proof
Consider an arbitrary element h^(s,k) of H(s,k) . 

Then from (2.4) or (2.5) of lemma 2.1, we have that

h (s,k) = h ̂ ̂ ̂ ( s, k ̂ ̂  ) + a . m ^ ( s , k ^ )  (2.8)pq pq i pq

where h ^  and m^^ are independent of a. . Considerpq pq i

h (s,k) = h8, (s,k ( } ) + a. mÄ <s,k<£)) (2.9)pq pq £ pq

— z £where h and m are independent of a„ but notpq pq ^ £
necessarily of ou . From (2.8) , h is affine
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—  (£)in . Thus a simple argument shows that h and
(Z)m are also affine in a. and that h ispq l pq

bilinear in and for all i and Z, i ^ Z .
Proceeding along these lines the result follows.

vvv

2.1.1. RLC circuits with no pathologies:

Consider an n-port RLC circuit having n^ inputs
and nQ outputs. Suppose that all input and output
quantities are either port currents or port voltages.
Denote u to be the n^ dimensional input vector and y
to be the nQ dimensional output vector and assume that the
elements of u and y do not overlap. Augment u and
y to form the n-dimensional input and output vectors U
and Y respectively, in the following manner. Assign all
elements of u and y to U and Y respectively.

thSuppose that the j port current is an input. Then 
t hassign the j port voltage to Y . Similarly, if the 

thj port current is an output then assign the corresponding
voltage to U . If for a particular port neither the
current nor the voltage are in either of u or y , then
assign one of these arbitrarily to U and the other to Y.
In this way for every port either the voltage or the
current appears in U and the other appears in Y .

Consider next the following reactance extraction
procedure illustrated in figure 2.4. Suppose there are
n inductors and n capacitors in the circuit in question, i-i c
Form the vectors U , U , Y and Y in the followingC C -Lit hway. Assign the voltage across the j capacitor to 

ththe j element of Uc and the corresponding current 
to the element of Y^ . Likewise, assign the



thinductor current to the j element of U and the-Li
thcorresponding voltage to the j element of .

Now, suppose all the capacitor and inductor connections
were open-circuited. Then we are left with an n + n +nLi C

circuit containing resistors only. Then denoting
[UT,UT,U?]T and [YT,YT,Y?']T as input and output vectors c li c Li
respectively, define M

as the hybrid matrix relating the two, i.e.

Y M11 M12 M13 U

Yc = M21 M22 M2 3 Uc (2.

yl M31 M32 M33 UL

Since, the network relating the two vectors is resistive, 
M is non-dynamic. Moreover, it has been shown in [2] 
that with Y, Y , Y , U, U and U selected as aboveC Li C -L i

M exists and is unique, whenever the RLC circuit we 
started with is free of inductor cutsets and capacitor 
loops. Indeed the existence and uniqueness of this M 
is the standing assumption for this sub-section.

Assumption 2.1

with Y' V  yl ' u’ V  yl 
M exists and is unique.

and M defined as above,
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Theorem 2.1
Consider an RLC circuit having n inductors and

Xj .

nc capacitors, with quantities y, Y, Yc, YL, u, U, U , UL
and M defined as above. Suppose, assumption 2.1 holds.
Then the (n^+n^)-dimensional state variable representation

T T Thaving u and y as input and output and [U ,U ] asc J_i
the state vector, has a rank-1 dependence on all the 
inductor, capacitor and resistor values appearing in the 
circuit.

Proof:
We first show that the state variable representation 
• T T Thaving U, Y and [U ,U ] as the input, output and state 

vectors respectively has a rank-1 dependence on all the 
elements. From this the conclusion of the theorem will 
directly follow.
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Suppose is a resistance appearing in the
reactance extracted network. Then as argued before an
input-output description of the form in figure 2.5 is
possible. Then by lemma 2.1 there exist â ,b_̂  R such
that with = R^/(a^+R^b_^) or ou = V(â +R̂ b_̂ ) , 3M/3a^ ,
M defined in (2.10) , has rank-1 . Also by lemma 2.2
the elements of M are multilinear in a. . Let A and1 c
A l be diagonal matrices having all the capacitor and 
inductor values respectively. Then provided that elements

a lu l

as the input, output 
and state vectors respectively, the following representation 
results :

: a l are appropr

Y = A Ü andc c c

U , Y and T T 1
fU c ’UL ]

x = Fx + GU 

Y = Hx + JU

where

(2.11)

H = [M12 M 1 13J 11

Clearly, if we choose a to be
icapacitor value and a =

J_j . V
then a . ,  a , a appear1 C . L . in (2
Hence the result follows.

for each
each inductor value 

in a rank-1 fashion.
v v v
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2.1.2 RLC circuits with inductor cutsets and 
capacitor loops

Suppose inductor cutsets and capacitor loops do appear 
in the circuits in question. Then from [2] it is clear 
that assumption 1 need not hold. As it turns out 
reactance extraction is still possible but Uc,UL,Yc and 
Y need to be redefined.

i-i

Suppose the reactance extracted n+nc+nL port circuit
has (n+nL+nc)-dimenstional input and output vectors U
and Y respectively. Suppose also that all the elements of
U , defined in the previous section, are in U and all

_ ththe elements of Y are in Y . Also if the j capacitor 
or inductor current appears in U then the corresponding 
voltage appears in Y and vice versa. Then by [2] 
there always exists a selection of U and Y such that 
with M defined as

Y = M Ü

M exists and is unique. Clearly M is also non-dynamic.

Moreover, U and Y can be partitioned as
_m m m  m m mir = [tr,u* , u* ,tr , uT ]

ci L1 c2 L 2
and

— T  Y1

where U and U carry, respectively, those of the 
C1 L1

capacitor voltages and inductor currents which have been
assigned to U . As before, if any element of U orc ̂
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U is a voltage then the corresponding element of Y I_j • c1
or Y is a current and vice versa. Then theLi •1
following theorem is true.

Theorem 2.2
Consider an RLC circuit with input u and output y

and with U,Y,U ,Y ,U ,Y ,U ,Y ,U ,Y and M
1 1 L1 hl 2 2 L2 L2

defined as above. Suppose n and n are the dimensions
C1 L1

of U and U respectively and that M exists and 
C1 1

is unique. Suppose also that the transfer function
relating U to Y is proper. Then the (n +nT )

C1 1
dimensional state variable realization of

T T Tthe circuit, having, u,y and [U ,U ] as the input,
C1 L1

output and state vectors respectively, has a rank-1 
dependence on the elements of the circuit.

Proof:
As in theorem 2.1 we first show that the state

T T Tvariable realization having U, Y and [U ,U ] as
C1 1

the input, output and state vectors respectively, has a 
rank-1 dependence on the circuit elements. From this 
the result will follow. According to [2]

(2 .12)
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where i4
— T —  — T- M, . and M . = - MI! .4i i5 5i Now as in

the proof of theorem 2.1 we see that for every resistor 

there exists cu such that 9M/3ou has rank-1 with respect 

to a . .l
Now if the column IVL̂. is dependent on ou then the

elementsrow M _ . cannot be as the 5i
are zero. Moreover M.,_ =

M.„ M C[_, M . _ and M_ .44, 55 45 54
— T

- M5i Thus the fourth and

fifth rows and columns are independent of all

Moreover, from [2] we have that the following state

space realization is possible, where x T T
[Uc '°£ ] 1 L1

x = D - ^ x  + D-1 (D3-D2D-1D4D5)U

y = (D6+DjD4D”1D2)x+[D7-D6d "1D3 + (2.13)

D5D4D11(D3_D2D11d 4D5)]U + ° 5 (D8~D4D1^4> °5Ö

Here

D1

with A l obviously defined; 
2



34

D6 13

D7

T -1and Dg - positive definite symmetric. Thus if the
T T -1system is proper D,_ (Dg-D^D^ D4)D5 and hence D5 must be 

zero. Thus (2.13) can be rewritten (see [2]) as

X = D_1D2x  + D ^ D g U
(2.14)

y = D x + D_U
D /

Clearly, as is independent of ai

the state-variable realization in (2.14) has a rank-1 
dependence on all ou . Consider any capacitor or inductor 
in set 1, i.e. in the set whose elements are represented in

Let this be . Then

T= D + k̂ ê e.. for some j

where e .3
and B11

4" Viis the unit vector with unity in the j element,
is independent of k
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Thus

T -1, , k . D. te .e .Dt _D-x = D-1 . „X 11 3 3 ^
1+k.e.D.,e. i 3 11 3

- k
so that with a

1+k . e . D, t e .1 3 11 J

the rank-1 property is satisfied

Similarly for an element k. in set 2

D1 = °12 + kiXxT

where x and are independent of k^ and x is a
vector.

Thus

-1 -1
— - 1-- T - 1

ki°12XX °12_ _t _ 1+k.x D-„Xl 12

whence with a _ _t —1+k.x D, ~xl 12

the rank-1 property holds. v v v

The above results were derived purely from the standpoint 
of electric circuits. However, as we have already stated the 
extension to mechanical and chemical analogues are immediate. 
Indeed, presented below is a non-electrical example where the 
state variable realization has a rank-1 dependence on most
element values.



Given are the dynamics pertinent to the attitude
control of the communications technology satellite, Hermes
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[3].

x = Ax + BU

Y = Cx

where

A 0 1 0 0
a)0h/I1 0 0 w0-h/I2

0 0 0 1
0 h/I2-u)0 -w0h/12 0

B

FiLlGlCosa^Il
0

FlLlGlsina/I2 F2L2G2/I2

C = 0
0

0 0 
1 0
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Here $ is the roll, \p the yaw, I the moment of
inertia about the roll axis, I2 , that about the yaw axis,
o)0 the orbital rate, h the nominal wheel angular momentum,
a the offset angle, and F2 the offset and yaw
thruster levels respectively, L1 and L2 the offset and
yaw thruster moment arms respectively and G1 and G2 the 
impulse bit factors. The inputs u-̂ and u2 provide a 
guide for the level of consumed fuel.

It is evident that the parameters Ii,J2,F^,^2,L^,L2,G1 
and G2 appear in the state variable representation in a 
rank-1 fashion. Although

sI-A I BI------T------
-C j o

has rank-1, the system matrix is obviously not multilinear 
in a . Thus a does not quite conform to the definition 
of rank-1 dependence. The parameters o)o and h , on the 
other hand, clearly do not appear in a rank-1 fashion. But, 
by definition (one is the orbital rate and the other the 
wheel angular momentum) one can see that they must allow 
cross-coupling between energy storage elements. They thus 
fall in the same category as mutual inductors or gyrators, 
which as we have emphasized do not appear in state variable 
realizations in a rank-1 fashion.

2.2 Transfer functions for SISO systems
In this section we show that rank-1 SISO systems have 

minimal transfer function descriptions typified by (2.1).
To begin our analysis we consider first the manner in which

_3 _
3a
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a single parameter appearing in a rank-1 system affects the 
transfer function.

At the outset we introduce the following definition of 
coprimeness of polynomials in more than one variable:

Definition 2.2
Consider p (X^, . . . Xr ,Xn+  ̂/ • • • xm) and q(X^,...Xn,

X ^f...Xm) which are polynomials in the indeterminates
Xl'***Xm * T^en P an<3 <3 are coprime with respect to the
variables X.....X if there exist no nontrivial f, which ----------- 1 -i---- n i
is a polynomial in xi'*’*xn • rational in Xn+l'**'Xm
such that

flf2 = P

and

flf 3 = *

with f2 and f^ , polynomials in xi'***xn anĉ  nationals
in X .......X .as well. The extension to the case wheren+1 m
the coprimeness of more than two polynomials is in question 
is obvious.

The following theorem shows that a system having a state 
variable realization which has a rank-1 dependence on a 
single parameter a has a transfer function whose numerator 
and denominator are affine in a .

Theorem 2.3
An n-dimensional SISO system represented by
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x = F(a^)x + g(a^)u 

Ty = h (a^) x + j (a^) u

with a system matrix of the form

sI-FU-^j gtc^)
I

f sI-F J g O 1 ^o
1 1—1

Ö+ ' V
r  rp 1 1

9 i 1 g 2
~1

-hT (a1 ) | j (ax )
1-----T 1 .-h J j

O  1 o _ _ h 2  _
(2.15)

where F0 • 90 '^o' -̂ o '^1 '^2 ' ̂ 1 anĉ  ^2 independent of a, has 
a transfer function

a (s) + a,b (s)
W (s) = -------- -----  (2.16)

c (s) + a1d(s)

for every . The polynomials a(s),b(s),c(s) and d(s) are
independent of and obey the following restrictions:

(a) 6[c(s)] = n, 6[d(s)] < n, 6[a(s)] < n and 6[b(s)]< n

(b) a(s)d(s) - b(s)c(s) is factorizable into two polynomials 
of degree not exceeding n .

Conversely, any transfer function of the form (2.16) has a 
state variable realization of the form (2.15) provided that 
conditions (a) and (b) hold.

Proof:
(i) From equation (2.15)

2W(s) = [a(s)c(s) + a^{a(s)d(s) + g2h 2c (s) - h 2y(s)c(s) 
+ g2 ß (s) c (s) - ß (s) y (s) } ]/{c2 (s) + a1c(s)d(s)} (2.17)
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where

a (s) 

c (s)
hT (sI - F ) 1 g + j o o Jo

c(s) = det (si - F )

d (s) 

c (s)

Y (s) 

c (s)

3 (s) 

c (s)

gl (sI _ F o r l h l

T -1gn (si - F ) g

T -1h (si - F ) ± h, o o' 1

 ̂ (2.18)

We note that

a (s) d (s) + g2h2c (s) “ h2y(s)c(s) + g2$(s)c(s) - y(s)3(s) 

= a(s)d (s) - (y (s) - g2c (s)) (3 (s) + h2c (s)) (2.19)

is divisible by c(s) because

W (s) a(s)/c(s) 3 (s) /c (s) ”hT lo

Y(s)/c(s) d(s)/c (s) T
LgiJ

-1
[sI-Fo ] [g h ]

_ thThus W(s) has an n order realization and its Macmillan 

degree is not greater than n . Thus ad-3y is divisible 

by c(s) whence (2.19) is divisible by c(s) . Define 

b (s) by

b(s)c(s) = a(s)d(s) - Cy(s) - g2c (s) ][ 3 (s) + h 2c(s)] (2.20)
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Then (2.17) has the same form as (2.16) and by (2.20) and 
(2.18) conditions (a) and (b) are satisfied.

(ii) Suppose that (a) and (b) hold for (2.16). Let

a (s) d (s) - b (s) c (s) = f1 (s)f2 (s) = (y(s) - g 2c(s)) (3(s) 
+ h2c (s))

with 6[3 (s)] and 6[y(s) ] < n . Then a(s)d(s) - f^(s)f2 (s) is 
divisible by c(s) whence

W(s)
a(s)/c(s) f2 (s)/c(s)
f1 (s)/c(s) d(s)/c(s)

has Macmillan degree not greater than n .
A

Hence W(s) can be expressed as

r , T i r -1h sI-F g  h.. I + j h 0o L o  J _ o  1 J J o  2

T
g i - _"g 2 0

so that by reversing the argument in the first part of this 
theorem a state variable realization of (2.16) exists in 
the form typified by (2.15). VVV

Remark
(2.5) The reverse implication of theorem 2.3 is 

interesting. It shows that not all transfer functions whose 
numerator and denominator polynomials are affine in ot̂  , 
have state variable descriptions which have rank-1
dependence on 1  *

-b (s) s3 + 1For example if c(s)
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and a(s) and d(s) are such that 

a(s)d(s) = 6s4 - 2s3 + ils(i) 2 + 5 .

Then

a(s)d(s) - b (s)c (s) = (s2+l) (s2 + 2) (s2+3) .

Thus there do not exist f-^s) and f2(s) of degree less 
than or equal to 3 , for which

a (s) d (s) - b (s) c (s) = f1(s)f2(s)

is true. Thus

a (s) + a,b (s)
W(s) = -------------

c(s) + a1d(s)

has no state variable realization which has a rank-1 
dependence on a . In general one of the following three 
conditions obtain:

(i) If 6[b(s)] < 6[c(s)3 = n then <5[a(s)d(s) -b(s)c(s)]
< 2n - 1 (as 6[d(s)]<n) . Thus a(s)d(s) - b(s)c(s) is 
always expressible as a product of two polynomials of degree 
less than or equal to n .

(ii) If 6[b(sj] = n and n is even, then again f^(s) and 
f2(s) will have degree no greater than n .

(iii) However, if 6[b(sj] = n and n is odd then such 

(s) and f2(s) may not be found.
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Case I I : m is dependent on k . Then m is linear in

and p,q are independent of k^ . Suppose m(s,k^,k2) 

= r1 (s,k2) + k±r2 (s,k2) .

Then a(s,k2) = r1 (s,k2 )p(s,k2
b(s rk 2) = r2 (s,k2 )p(s,k2
c (s,k2) = rx (s,k2 )q(s,k2

d (s,k2 ) = r2 (s,k2 )q(s,k2

whence ad-bc = 0 , which too contradicts our hypothesis.

v v v

Remark: (2.6) Violation of (ii) implies that W is
independent of k^ .

Lemma 2.4
Suppose that the transfer function Wts,k^,-kN ) is 

expressible as

W (s ,k^, . . .k ^ )

a± (s,K(l) ) + k ib i ts,KU) ) 

ci (s,K(l) ) + k id i (s,K(l) )
V i e {1,...N}

where = {k ,...k^} - {k } and and d^ are

polynomials in s,k^,...kN . Suppose a^d^ “ ■*:>:Lci ^ 0 and
/ • %

a^,b^,c^,d^ are coprime with respect to s and K v 

Then

W (Sfk^.,
P (s,k^,...k ^ ) 

Q (s ,k^, . . *k ^ )

where P and Q are multilinear in k
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Thus for a strictly proper transfer function like (2 .16) 
there always exists a state-variable realization which has 
a rank-1 dependence on ou .

We now extend the first part of Theorem 2.3 to the case 
where there are N-parameters.

Lemma 2.3
Consider a transfer function

a (s,k~) + k-.b (s ,k9)
W(s,k k ) = ----- ------ ------ -

c (s *k2) + k1d(s,k2)

where a,b,c,d are polynomials in s and • Suppose

(l) a(s,k2) , b(s,k2) , 0(3^2) and d(s,k2) are coprime 
with respect to s and k2 .
(ii) a (s ,k2) d (s fk 2) - b(s,k2)c(s,k2) ^ 0 .

Then a(s,k2) + k^b(s,k2) and c(s,k2) + k^d(s,k2) are 
coprime with respect to s,k^ and k2 .

Proof
After [4 ,p36] we have that the ring of polynomials in 

the variables s,k^k2 over the field of real numbers, 
is a unique factorization domain.

Let a(s,k2) + k1b(s,k2) = m(s,kn,k2)P(s/k1,k2) 
c^s,k2) + k^d (s ,k2) = m(s ,klfk2) q (s ,kirk2)

with m,p,q are polynomials in s,k^ and k2 . Consider 
the following cases:

Case I: m is independent of k^ . It is immediate that
(i) is violated.
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Remark: The proof of the above theorem is not trivial as
even though a ^ ( s , K ^ )  + k^b^fs,!^1 )̂ and a2 (s,K^)

(2)+ k2b2 (s,K ) , for example, are respectively affine in
k^ and k2 , it is not clear that a^ and b^ are 
affine in k2 or for that matter, that a2 and b2 are 
affine in k-̂  .

Proof
We shall prove the case when N = 2 . The more general 

case follows along the same lines. Suppose

a, (s ,k ) + k,b (s,k9)
W(s,k k ) = — ---- -̂---- — ---- —

c1 (s,k2) + k1d1 (s,k2)

a2 (s ,k1) + k2b2 (s,k1) 
c2 (s,k1) + k2d2 (s,k1)

and suppose that the other hypotheses specialized to N = 2 , 
hold. Then

[a1 (s,k2) + k1b1 (s,k2)][c2 (s,k1) + k2d2 (s,k1)]

= C a ^ s , ^ )  + k2b2 (s ,k1) ][c1 (s ,k2) + k1d1 (s,k2)] .

By lemma 2.3 a^(s,k2) +k^b^(s,k2) and c^(s,k2) +k^d^(s,k2)
are coprime with respect to s,k^ and k2 . Thus 
a^(s,k2) +k^b^(s,k2) divides a2 (s,k^) + k 2b2 (s,k^) . Thus
a1 (s,k2) and b^Cs,^) can be at most linear in k2 . 
Similarly c^(s,k2) and d1 (s,k2) can be at most linear 
in k2 . Hence the transfer function W(s,k ,...kN ) can
be written as
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p (s) +k 1p1(s) +k2p2(s) + k 1k2p12(s) 
q (s) +k1q1(s) + k2q2(s) + k1k2l12 (s)

Arguing along similar lines, the result follows. VVV

We are interested in minimality with respect to s alone. 
That is, we wish to show that if the hypothesis of Lemma 2.4 
holds tnen P and Q nave no common factors which are 
polynomial in s but rational in the k^ . The following 
lemma which follows from [5], shows that this is indeed the 
case.

Lemma 2.5
If P is ,k1,k2,...k ) and Q(s,k^,...k̂ ) , polynomials 

in s,k,,...k-T , have no common factors which are 
polynomials in s,k^,...k^ , then they have no common 
factors which are polynomials in s but rational in
V 1' # • N #

Proof
If P and Q have no common factors which are 

polynomials in s,k^,...kN then P and Q are minor 
coprime as well (see [5] for a definition). Thus by [5] 
there exist polynomials x,y and ij; , with ip nontrivial 
and independent of s for which

P(s,k^,...k^)x(s,k^,...k̂ ) t Q(s,k^,...kN)y(s,k^,...k^)

= ip (k1, . . .kN) .

Thus dividing both sides by ij; the result is immediate.
VVV



Thus theorem 2.3 and lemmata 2.3 -2.5 together yield the 
following main result of this chapter.
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Theorem 2.4
If the state variable realization of a linear time 

invariant finite dimensional system has a rank-1 dependence 
on N parameters k^,...kN , then it has a minimal transfer 
function description whose numerator and denominator 
polynomials are multilinear in the k^ .

Remark (2.7) From (a) of theorem 2.3 it follows that one 
can find a transformation in k^ (viz by replacing by ou 
of definition 2.1) to make the denominator polynomial with 
coefficients independent of k^,...kN , have a higher degree 
than all other polynomials in the denominator. In other 
words in (2.1) qQ has a higher degree than all other qr .

(2.8) Suppose we have a transfer function

W (s , k ^ ,..• k ^ )
P (s ,k^,...k^) 
Q (s ,k^, . . • k^)

where P and Q are coprime in s and k^,...kN and are 
multilinear in the k^ . Suppose also that

W(s ,k^, . . .k^)
a^(s,k^) +k^b^(s,k^) 
c^(s, k ^ )  +k^ d ^ ( s , k ^ )

V iG(l,...N}

and that the degree of Q with respect to s is n . Here
(i) Tk V ; = Ck1 ...ki_1/k.+1/...kN ]1 .

Then by Theorem 2.3 a necessary condition for a state
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variable representation having a rank-1 dependence on all 
of the ki is that 3 fli(s,k^i )̂ and f2i(s,k^) such 
that

aidi “ bici = flif2i V i e U,...N}

and the degrees of f a n d  f2  ̂ with respect to s do 
not exceed n . It is not clear however that this is also 
a sufficient condition. This is because while there exists 
at least one state variable realization which is rank-1 
with respect to a given k. it is not obvious that all of 
these need necessarily be the same.

(2.9) The results of this and the previous section 
show that all RLC circuits have minimal transfer function 
descriptions which have both denominator and numerator 
polynomials multilinear in the circuit element values.

2.3 A Multiinput Multioutput extension of the transfer 
function result:
In this section we present a multi-input, multi-output 

(MIMO) extension of theorem 2.4 by showing that there exists 
a transfer function description of a rank-1 system, whose 
numerator and denominator are multilinear in the k_̂ . The 
particular representation used here will be referred to as 
a quasi-minimal representation. It is defined as follows.

Definition 2.3
Consider a MIMO system having a rational transfer 

function matrix W(s,k^,...k ) with
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(s ,k^, . . • k̂ j) a.̂  (s , k ̂ , • . . k^) /b^ j (s , k ̂ / • • • k.̂ )

with aij'^ij coprime in s and k^,...k^ . Then the 
transfer function description N(s,k^,..,kN)/d(s,k^,...kN), 
d scalar, is quasi-minimal if d is the l.c.m. of .

Remark: (2.10) It is not difficult to see from [4,p36]
that the numerator and denominator of the quasi minimal 
transfer function matrix are unique to within a scalar 
constant.

(2.11) By lemma 2.5 a.. . and must be
coprime in s alone as well.

We then have the following result.

Theorem 2.5
Consider a system having a state variable description 

which is rank-1 with respect to N parameters k^ . Let 
ou be the corresponding parameters defined in Definition 2.1. 
Then the quasi minimal tranfer function matrix monic in s , 
is given by

W(s,a) = Aq (s)+a1A1 (s) +....+0^ 01^ ^  (s) +.... +a1..*aNA12-N (s)

bQ (s) +a^b1 (s) +..........+......... +ot1. . -aNb12-N ̂

(2.21)

where a = [a^,...aN]T 

Proof
By mimicking the proof of theorem 2.3 one can see that 

the transfer function W(s,a) can be written as
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W (s,a)
M i (s,a* (l)) + aiNi (s,a(l)) 

c ^ ( s , a ^ )  + a . (s #a ̂  )
(2 .22)

where

(i) Ca1 ' ai-l'ai+l' V
and 6 Cc.(s,a ^ )] > 6 [d.(s,a^^)] ( 5 refers to degreeS 1 S 3 .  3
with respect to s ).

Suppose A(s,a)/b(s,a) is the quasi minimal represent

ation of W(s,a) . Then

b (s,a) I {Cj. (s,a ̂  ) + a^ c h ( s , a ^ ) }

and one can show that b(s,a) is multilinear in the ou . 

Let p(s,a) be such that

p(s,a)b(s,a) = c ^ ( s , a ^ )  + o u d ^ ( s , a ^ )  .

Then p(s,a) divides every element of IVL + . It is

then easy to show that A(s,a) is multilinear in the .

Here 5[b (s) ] > 6[b (s)] for all r ^ 0 .

Remark (2.12) There clearly also exists an equavalent

representation of the quasi-minimal tranfer function which 

is multilinear with respect to the . However, the

property that 5[bQ (s)] > 6[b^(s)] will no longer hold.

As this proves useful in proving results in later chapters, 

henceforth when discussing transfer function descriptions 

we shall assume that k.'s refer to their transformedl
versions i.e. to erstwhile a .'s .l



Assumption 2.2

Consider a system with N unknown parameters k^...k .

Then all the parameters can be so extracted as to yield 

equivalent block diagram representations of the form in 

fig. 2.3. Sometimes in fig. 2.3, k^ may need to be 

replaced by ^/k^ •

We thus have the following lemma and theorem.

Lemma 2.7

Consider a linear time invariant, finite dimensional

system with N unknown parameters k^,...kN . Suppose
Tassumption 2.2 holds. Denote k = [k^,...kN ] and

k ^  = [k^, . . .k^_^,k^+ -̂, . . .kN ]T . Then for all i£{l,...N)

there exist matrices A.(s,k^), vectors h ^ ( s , k ^ )  and

(s ,k ̂  ̂ ) and scalars b ^ ( s , k ^ )  , c^(s,k^) and
/ • \

d^(s,k^ ) all polynomials in s and {k^,...k^_^,k^+1,...

and independent of k^ such that the transfer function 

W(s,k) can be expressed as

A (s ,k ̂  ) k.h, . (s ,k )h9T. (s ,k ̂  )
W(s,k) = — -------- + ■ -.. ............ — -------- (2.23)

bi(s,k^1 )̂ ci(s,k^1 )̂ + kidi(s,k^1 )̂

Proof

Proceeds as in lemma 2.1.

v v v

Theorem 2.7

Consider a system which satisfies the hypotheses of 

lemma 2.7. Then the quasi minimal transfer function has 

the form of (2.21) with the k^ replacing ou .
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Proof
Proceeds as in theorem 2.6, using lemma 2.7.

vvv

Remark
(2.13) Equation (2.23) acts as a guide to the question of 

the existence of state variable realizations having a rank-1 
dependence on all the k. , whenever (2.23) is satisfied.
It would appear from this that given a transfer function of 
the form

W + kW 11 12
w2i + kw22

where and W^2 are matrix polynomials and w2  ̂ and
w 22 are scalar polynomials, a rank-1 state variable 
realization with respect to k exists if

W11W22 W12W21 hlh2

where h^ and h2 are vectors having elements of degree 
no greater than 6[w2-̂] . As in the SISO case, the 
extension to the multiparameter problem is nontrivial.
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Circuit without
resistor

Figure 2.1 A circuit with a resistor.

u
*-- " ' block*

Y
Input-output
independent of * Relation

U-, refers to tha
± i—1 Tbetween (U , i

-k„

and (YT ,y1)

Figure 2.2 A common input-output description for 
a circuit with a physical element of 
value k 1.

* Relation re:
refers to t]
between
(UT ,u .) and 

T 1(Yi/yi) .

- k .i
Figure 2 . J Common input-output descriptions for 

circuits with unknown physical 
parameters k^.

Input - output block* 
independent of k.

y±
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(uT, u > £ ) T
Input-output descript-

T T T T 
<Y  , * c 'Y L>

ion of n+n +n port L cresistive network 
independent of R^.

-k

n = number of inductors in the circuit of fig 2.4 Li
nc= number of capacitors in the circuit of fig 2.4 

Figure 2.5 Equivalent input-output description of the
network in fig. 2.4
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§3. PERSISTENCE OF EXCITATION
The purpose of this chapter is to develop a set of 

general tools for establishing persistence of excitation 
(p.e.) conditions, guaranteeing the uniform asymptotic 
(exponential for linear algorithms) convergence of a 
general class of adaptive identification and control 
algorithms. The tools developed here will be used in 
later chapters to establish the uniform asymptotic 
convergence of algorithms proposed for the special 
parameterizations considered in this thesis.

Uniform asymptotic convergence, we believe, is 
important for robustness. Adaptive algorithms without such 
convergence have been known to display unacceptable behaviour 
in the presence of modelling inadequacies and noise [1,2]. 
Uniformly asymptotically convergent algorithms on the other 
hand are totally stable [3, pp. 107-108] , a property which 
allows them to retain stability in face of modest departures 
from ideality.

Most results for the exponential convergence of 
continuous time algorithms [4-10] require the uniform 
positive definiteness of gramians of certain regression 
vectors. Unfortunately, apart from the inputs, these 
vectors involve the system outputs as well, so that the 
conditions in question are not useful for a priori input 
design. The tools developed in this chapter are aimed, 
primarily, at translating these conditions to ones 
involving the system inputs only. Earlier Yuan and 
Wonham [11] had developed some techniques for input design.
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These, however, were based primarily on conditions similar 
to those established in [4-10] and did not involve 
conditions independent of system outputs.

The first contribution of this chapter (section 3.1) 
is to use the criterion given in [10] as the basis for 
deriving a convergence condition on input signals alone 
for the identification of a stable plant. This is 
similar in statement, but not in proof, to a condition 
derived in [12] for discrete time plants and for inputs 
which are linear combinations of sinusoids. The proofs of 
this chapter use a possibly little known but potentially 
very useful inequality relating derivatives of functions 
of one variable (See Lemma (3.A.1) in Appendix 3.A).

In section 3.2 the result of section 3.1 is extended 
to consider plants which are not necessarily stable but 
are stabilized by feedback. Section 3.3 considers plants 
with possibly unbounded signals while section 3.4 considers 
slowly time varying plants with bounded signals. While 
the results in sections 3.2 and 3.3 have no discrete time 
parallels, the corresponding result for slowly time varying 
plants has been presented in [13]. As with the results of 
section 3.1, however, the technical artifacts used in the 
continuous and discrete time cases are substantially 
different. In [14,15] Boyd and Sastry have independently 
derived input only conditions using generalized harmonic 
analysis. Their results are restricted, however, to 
stable, linear time-invariant systems and thus do not 
encapsulate the results in sections 3.2-3.4.

In sections 3.5 and 3.6 we consider the exponential 
stability of a model reference adaptive control (MRAC)
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algorithm studied by Morse [16] , by examining in turn the 
situations where (a) the constant gain of the process 
transfer function is known and (b) where no such 
information is available a priori. In the former case 
exponential stability is shown to be conditional on the 
satisfaction of a p.e. condition on the reference input 
while in the latter such stability is shown as impossible 
to achieve; even with a p.e. condition. The negative 
result uses a stability lemma which is similar to a discrete 
time result derived in [17] .

An MRAC algorithm, similar to [16] and proposed in [18], 
has been analysed in [14], with conclusions which parallel 
the ones derived in sections 3.5 and 3.6.

As some of the technical proofs of this chapter tend to 
be involved without always being very illuminating, they 
have been relegated to appendices at the end of this 
chapter. Most of the work contained here is available in 
the papers [19-20].

In this chapter the exponential convergence of adaptive 
controllers refers to the rates of convergence of the 
controller parameters and not to any characteristic of the 
controller itself. In fact the controller in the limit 
may well approach a control law which is not exponentially 
stabilizing, though the rate of convergence of the 
controller itself, to this law must be exponential.
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3.1 Identification of Stable Plants:

Consider an n-dimensional asymptotically stable, 

single-input single-output (SISO) system

y (n) + I ai y (l) = I b. u <3) (m<n) . (3.1)
i=0 j =0 3

Define

V = tyn_1 (t),...,yQ (t),um (t),...,u0 (t)]T (3.1a)

with

y^(t) = s^y(t)/(s+a)n and u^(t) = s^ u (t)/ (s+a)n .

Throughout this thesis notation shall be abused by 
referring, for example, to y(s) as the Laplace transform 

of y(t). By the same token

yi (t) = s1 y(t) / (s+a)n

will denote the solution of the differential equation 

(p+a) n yi (t) = p1 y (t)

with p defined as the differential operator d/dt and 

unless otherwise mentioned, with all initial conditions 

set to zero.

In the sequel, vector time functions such as V(t) 

will be required to belong to a special set fî [0,°°) ,

defined below.
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The importance of this set in identification problems 
was first illustrated in [11].

Definition 3.1:
is a set {t^} of points in [O,00) for which

there exists a A such that for any t^, t̂ e with
t .  ̂t . , one i 3 has Iv t . I > A , (i.e. CAj 1 A comprises
points spaced at least A apart).

Definition 3.2:
A function f(*) belongs to if there

corresponds some A and such that

(1) f (t) and f(t) are continuous on { [0,°o)-CA)
(2) there exist constants M^ and M 2 such that

| f (t) | < M  ̂V t e [ 0 ,°°) and II f <t) 11< M 2 V t £
{ [0 ,~ >-cA > •

(3) f (t) has finite limits as tit.1 and tit.1
for each fci e CA •

other words functions in ^  are smooth enough to
have bounded continuous derivatives, except that a 
countable number of switchings are allowed and these 
do not occur "too" frequently. Note, that conditions 
(1) and (2) also imply that f(t) has finite one-sided 
limits everywhere. Anderson's result derived in [10] 
is now restated. Following the restatement we shall 
explain the role of V(t) in identification.

Theorem 3.1: Suppose U (•) : R+ Rn be such that
U(*) efi^tO,00). The differential equations listed below 
are exponentially stable iff there exist positive 6,
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and (*2 such that for all s e R+

c^I <
s+6

U (t) U (t) dt < a2I (3.2)

(a) x = -UU x (3.3)

(b) x
-UB'

(3.4)

(c) x
-d $ u u t -c t ® u

B^U'
(3.5)

In (3.4) A is a real constant n x n matrix, with 
TA + A = -I and B is a real constant nonzero

n-dimensional vector. In (3.5) {A,B,C,D} is a
quadruple of constant matrices defining a minimal realiza-

T -1tion of a transfer function matrix Z(s) = D + C (sI-A) B
with Z(s-a) positive real for some o > 0, nonsingular

Talmost everywhere and with D = D

Remarks
(3.1) The satisfaction of (3.2) for some 6 = 6q 

implies the same for all 6 > 6q

(3.2) It can be seen [9,10] that if U is replaced 

by V , defined in (3.1a) then the differential equations 

(3.3-3.5) represent most of the better known identification 

schemes. Thus if Ve^[0,°°) then (3.2) is a necessary
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and sufficient condition for the exponential convergence 

of most identification schemes. The vector V is a 

regression vector required by (3.2) to be persistently 

spanning (i.e. V(*) should span the entire Rn space

over time). The point of this chapter is to assert that 

this persistently spanning condition is synonymous with 

the requirement that the inputs to the system be 

"sufficiently rich".

(3.3) It has been shown in [21] that for the 

differential equation (3.3)

Hx (t+6) 11 2 - ||x(t) ||2 < _ 2al
|| x(t) II2 " (1 a,) 2

/2

Thus the convergence rate of x(t) increases with 

increasing ot̂ , and decreasing a 2 • Equally, a smaller 

6 results in faster convergence.

We now state the main result of this section.

Theorem 3.2 Consider a strictly stable n-dimension-

al SISO system with

(n) Uv^ (i) Y + I a,y 
i=0

m
I b .u

1«0 3
(j)

n-1n r  im < n , the polynomials A(s) = s + 1 a^s and
i=0

B (s) \ b-s^ coprime and u(t) e fi*[0,°°) .
j=o 3

V (t) , W (t) as

V [yn_i/•••fYn'0' m

Define
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[u, s+3 (s+3) n+m

where y± = s1y/(s+a)n and u± = s^-u/Ms+a)11 , $, a > 0 .
Suppose there exist some positive , a2 and 6', such 
that

a1I <
ro+6 '

W(t)WT (t) dt < a2I (3.6)

V a e R + . Then there exist positive a^, and a suitably
large 6 > 6' also independent of a such that V a e R +

a3I <
•a+6

•'a
V (t)VT (t)dt < a4I (3.7)

Conversely, if there exist some positive a^, and 6"
independent of c such that

acI <D
ra+6"

V (t) V (t) dt < acl (3.8)

for all a e R+ , then there exist positive a^, ag and 
a suitably large 6 > 6" independent of a such that

a?I < ■a+6

a
W (t)WT (t)dt < a8I (3.9)

Proof
While the detailed proof has been given in appendix 

3.A, here we sketch a brief outline. That the upper 
bounds of (3.6) and (3.8) imply those of (3.7) and (3.9), 
respectively, follows from the boundedness and stability 
assumptions. As far as the lower bounds are concerned, a



contradiction argument is used. It is shown that the 
violation of the lower bound in (3.7) implies the same 
for that in (3.6), whence (3.6) must imply (3.7) (the 
proof relating (3.8) to (3.9) proceeds likewise).

The proof uses the Lemmata 3.A.1 (taken from [22]) 
and 3.A.2 given in appendix 3.A. Briefly, Lemma 3.A.1 
states that if a function and its nth derivative are 
respectively "small" and bounded over a given interval 
then the first n-1 derivatives must also be "small" 
over the same interval.

Lemma 3.A.2 states that if the input to an asymptotic
ally stable system is "small" over an interval then so must 
be its output over a smaller interval. This reduction in 
the size of the interval arises because of the need for 
effects of the boundary conditions at the start of the 
first interval to decay.

Using Lemma 3.A.1 one can show that if the lower
bound in (3.7) is arbitrarily small for some o then
there exists a constant unit vector 0 such that
|0 V(t)I is also arbitrarily small over the interval

T[g ,ö+5] . Then by using 0 V(t) as the input to an 
appropriately selected stable system, applying Lemma 3.A.2 
and the coprimeness of A(s) and B(s) , it follows that 
the lower bound in (3.6) will be arbitrarily small.
Similar arguments are employed in proving the implication 
from (3.8) to (3.9).
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Remarks
(3.4) Theorem 3.2 in conjunction with theorem 3.1 and 

the remarks thereafter demonstrates that the 
input-only conditions are necessary and sufficient 
for the exponential convergence of identification 
schemes typified by (3.3-3.5).

(3.5) As can be seen from the proof in Appendix 3.A , 
the reduction in the intervals of (3.6) and (3.8) 
stems from the need for transients associated 
with nonzero boundary conditions at t = a to 
die away. The extents of the reductions are 
functions of the ou . This remark shall apply 
to all other such results of this chapter.

(3.6) The system (3.1) is described by a total of
m + n + 1 parameters once the integers m and 
n have been specified. Application of a single 
sinusoid to a stable linear system allows 
identification of the real and imaginary parts of 
the transfer function at one frequency. More 
generally, application of

q ju) t
u (t) = £ u.e (3.10)

i=l 1

where the are real, ^ for i ^ j ,
u^ 4 0 and u(t) real, allows identification of 
q real pieces of information about the transfer 
function as there arise q independent equations 
of the system parameters. The following result is



therefore no surprise and is applicable to the 
identification problem when p = m + n + 1 .

Corollary 3.1
Let ß > 0 and define

W =
(s+ß)p_1 1

(3.

Suppose that u(*) satisfies (3.10) and the associated 
conditions. Then

a9I <
•a+S

G
W(t)WT (t) dt < a1QI

V o  ) 0 , 6 ^ 6 q > 0, with ay , a^Q , depending on 6 ,
u , 0)̂  for i = 1, . . . ,q iff p < q .

Proof
Since the derivatives of u(t) are now all 

continuous and bounded, one can show by an argument 
similar to that used in proving in theorem 3.2 that the

G+6 m
lower boundedness condition on W(t)W (t)dt in
(3.11) is equivalent to a similar lower boundedness

•c+S -  _ Tcondition on W(t)W (t)dt where

W (t) = [U/SU , . . . , s^ :u]T

and 6
in question the integral

is independent of o . Moreover,
c+<$ -  - mW (t) W (t) dt

below, away from zero if and only if q >

for the u(t) 
is bounded 

p . This
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completes the proof of the corollary.

3.2 Identification of Unstable Plants Inside an Overall 

Stable System

In this section, we shall consider the plants 

described by (3.1), but with the stability assumption 

removed. Instead, the following assumption is in force 

throughout this section.

Assumption 3.1: The plant is part of an overall

system which is stable, and in which all signals are 

bounded.

This overall stability assumption is by no means 

unreasonable. In many adaptive control algorithms (eg. [23]) 

boundedness of signals results even without p.e.

Theorem 3.2 Assume the plant is described by (3.1),

with

n-1
A(s) = s n + £ a.s 

i=0 1
and B (s) = £ b-s-1 coprime

j=0 11

u(t) e^^[0,°°) , and

(3.12)

u T (3.13)t • • • r n+m(s+3)
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i n  i nwhere = s y/(s+a)n , u^ = s u/(s+a)n , (3,a > 0 .

If there exist positive a^ and 6' such that

a-̂  I <
•o+6 '

G
W (t) WT (t) dt (3.14)

for all g s R+ , then there exist a positive 0 2  and a 

6 > 6' , such that YaeR+ ,

a2I <
fO+6

V (t) V (t) dt
a

(3.15)

Proof
This runs similar to the proof of Theorem 3.2. 

Defining £ with II £ II = 1  such that |£TV| is 
arbitrarily small on [g , g + 6 ]  for some a implies that

n-l ,
(s+a) n (sn + I a, s ) 

k=0

+

ill

£ 0 . s-1 u
1=0 D
(s+a) n

+ i (t)

is also arbitrarily small where i(t) consists of 
quantities decaying at rates determined by poles of the 

overall closed-loop system, which is stable by the 
standing assumption. So for t > 6^ , and thus 

t > o + , i(t) becomes "small". The remainder of the
proof goes as before.

v v v
It is the reverse implication of Theorem 3.3 which

no longer parallels Theorem 3.2. Let us illustrate the
2

problem with the plant of transfer function — ~-- 2 which
sz+oo

is part of an overall stable system, with go unknown.
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This plant may then have an input-output pair

u(t) = 1

y(t) = 1 - coswt

provided that the overall stable system has an external

input of the form Xq + X^cos (ü)t+<|>) for some Xq , X^ and
T

(j) . It can be checked that V (t)V (t)dt is positive

definite for all 6, while obviously the same is not true 
fQ+6 Tof W(t)W (t)dt . The problem, as we shall see, is
a

associated with a pole on the jw-axis: poles of the plant

in Re[s] > 0 cause no problem (so long as the plant is 

embedded in an overall stabilizing arrangement of course, 

in accordance with the standing assumption). Analysis of 

this situation depends on the following Lemma.

Lemma 3.1 Let Ax + Bu be a possibly unstable

subsystem of an overall larger linear, time-invariant, 

finite-dimensional system with bounded input which is 

asymptotically stable, so that all variables associated 

with the system are bounded by M. Let

A_
0 + B +

with ReX^(A_) < 0 , ReX^(A+) > 0 and ReX^(Ag) = 0 for 

all i. For some e > 0 define 6  ̂(c) , 62(e) by
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A_6 - (e)
lie 1 II M = e

-A 69 (e)
Ile +  ̂ II M = e

[Notice that 6^(e) < K^|£ne| for some K^] . Suppose 

that the zero-input component of all the large system 

variables (i.e. the component due to nonzero initial state) 

is 0(e) for t>ÖQ(e) . Let w(s) be a proper stable 

transfer function and

where o > Oq and 6 > 6  ̂ + 62 . Then for some complex ,

a j oo. t
w(s) [x(t) - \ x.e 1 ] I < 0(e) + 60(e)

i=l 1

Figure 3.1 illustrates the conclusions of the Lemma.

Make the definitions U = w(s)u , X = w(s)x . Also, 

let u,x denote the u,x which would result with zero 

initial conditions, with U,X defined obviously. Since 

for a > Gq , IU — UI is 0(e) , |X—X j is 0(e) , it is 

enough to prove that |u| < e  on [o,a + 6] implies that

w(s)u| < e on [cj, ct +  6]

on [<j + 61 ,g + ö - 69] , where jw±t
A~ and E x.e is real.0 1

jco. are the eigenvalues of

Remark 3.7

Proof

X - E Xie < 0 (e) + 60(e) on (0 + 6^,04-6 - 62] .
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As the figure shows, and recognizing the relevance 

of zero initial condition,

X = AX + BÜ

Now with X(t) = [X^ (t) X^ (t) X q (t) ]T , we have

X (t)
A_ (t-cr) _ 
e X (a) +

•t A_(t-x)
e B_U(x)dx

a

and immediately, II X_ (t) II is 0(e) on (g + <5̂ ,g + 6) .

Similarly, using

X+ (t)
A (t-G-6)_ r O + 6  A (t-x)
e X+ (g + 6) - e B+U(x)dx

we obtain IIX+ (t) II is 0 (e) on (g ,g + 6-<$2) . Last,

A n (T-a) _ A q (t-x)
* o (t) = e ° X Q (G) + e BQÜ(x)dx

<G

and this yields

j 0J . t
IIXQ (t) - l XQ e II = 0 (eö) 

1

The result is then immediate.

Theorem 3.4 Assume the plant is described by (3.1),

n-1
A (s) sn + £ a^s1 and B(s) = £ b.s-1 coprime,

i=0 j = 0

with
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and u(t) tfi^[0,°°) . Let A(s) have no more than p zeros 
with zero real part, and thus at least n-p zeros with 
nonzero real part. With V(t) as in (3.12) and

W(t) u _____u_____•, T
(s+ß) (s+ß)n+m"p

(3.16)

if there exist a positive and 6' such that

a3I <
f G+5 TV(t)Vi (t) dt
a

(3.17)

for all g , then there exist a positive a^, a Gq and 
suitably large 6 > 6' such that

a 4 I <
f a+6 -  - TW(t) W (t)dt
G

(3.18)

for all o > Oq .
For a proof, see appendix 3.B.

Remarks
(3.8) If nothing is known about the zeros of A(s), 

one must assume p = n in applying this theorem.
(3.9) Taken together, Theorems 3.3 and 3.4 show that 

if u(*) is a real linear combination of imaginary 
exponentials, m + n + 1 different exponents are sufficient, 
but only m + n + 1 - p  may be necessary, to identify the 
system. Nondecaying, nongrowing components of the system 
output stemming from nonzero initial conditions may make up 
the remaining information required to give the spanning 
condition on V(*) . Given that the unknown system is part
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of an overall stable system, such special output components 
can only be present if the external input to the overall 
stable system contains a sinusoidal component at each of 
the relevant frequencies. We return to the question of 
conditions on the external input below.

This theorem is the best possible in the sense that 
we cannot necessarily expect to have (3.17) implying (3.18) 
when W (t) in (3.18) is replaced by
W(t) = [u, (s+3) 1 u,..., (s+ß) n̂+m P+1>U] , at least without 
further assumptions on the poles of the plant.

For example if B(s) = 1 (i.e. m =0) and

n _ j a). t
y(t) = I yie 1 yi 7̂ 0 , O)i ^03j, y(t) real

(3.19)

it is easily verified that (3.17) holds. Now as many as 
p of the frequencies in (3.19) could coincide with the 
poles of the plant; and in consequence u(t) need 
contain as few as n-p frequencies. Whence from 
corollary 3.1 it is clear that while (3.18) holds, the

_  A

same cannot be said if W were to be replaced by W.
Theorems 3.3 and 3.4 relate V(t) , the vector which 

is crucial in the adaptive parameter adjustment law to the 
input u of a subsystem of a larger system, itself 
possessing an external input, r. It is relevant to ask 
what conditions on r imply condition (3.14) on W (which 
in turn implies condition (3.15) on V, guaranteeing 
exponential convergence of an equation error identifier).

The standing assumption for the section implies that
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u k(s) 
a (s) (3.20)

for some a(s) with all zeros in Re[s] < 0 and with b/a
proper. Note that it may be the case that b,a depend
on the parameters of the subsystem, and so may not be

N _ j 0). t
known. Suppose that r(t) = £ r.e 1 . Then

M _ i=l 1
u(t) = I u, e where M < N is possible if b(s)

k=l K
has purely imaginary zeros, and if the uk are such that 

is a zero of b(s). Notice that if A(s), the 
denominator of the plant or unknown subsystem transfer 
function, has jw-axis zeros, b(s) necessarily has such 
zeros when the overall setup is stable. Now in order that 
a condition like (3.14) hold for u(t) above it is 
necessary and sufficient that M = m + n + 1. In the absence 
of any information about the zeros of b(s), one needs

N = m  + n + l +  deg b (s) . (3.21)

The above argument is developed for sinusoids. The content 
of the next theorem generalizes the above argument.

Theorem 3.5 Assume that the overall system input
reft^[0,°°) is related to the input of the plant being 
identified by (3.20), with b/a proper and a(s) 
possessing all zeros in Re[s] < 0 . Suppose that the 
number of joo-axis zeros of b(s) is no greater than 
p ( p  = deg b(s) is a possibility). Define

R(t) [r r
(sty)

_____ r____
(s+Y)n+m+P

(3.22)
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with Y > 0 and suppose that for some positive , a 2 
and 6, and for all o

a ^ I  <
•o+6

R(t)Rr (t) dt < a2I (3.23)

Then there exist positive a^, such that for some

6' > 6, with W(t) defined as in (3.13)

1*0+6 '

a3I < I W(t)WT (t)dt < a 4I (3.24)
* a

for all a.

Proof
Suppose that (3.24) fails. Then given arbitrary 

e > 0,6' , we can find a £ of unit length such that

|£TW(t)| < e on [0,0 + 6']

i. e.

i. e.

n+m
li=0

c. (s+e)1141"-1 

(s+ß)n+m
U < e on [o,o + 6']

q (s) b (s) r 
a (s) (s+ß)n+m

< e on [ o , o + 6 ' ]

for some polynomial q(s) of degree n + m  .
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Write b(s) = b+ (s)bQ(s) , where deg bß(s) = p 

and all joo-axis zeros of b(s) are included in bg . 

It follows, using arguments contained in appendix 3.A

that

a(s) (s+3)n+m q(s)b(s) r
b+ (s) (s+y)n+m+p a (s) (s+3)n+m

< 0 (£1/V)

on (a+6^,a+6). Here, v = 1 + deg a - deg b

i . e.

q(s) bQ (s)

(s+Y)n+m+P r
< 0 [ £ 1/v ]

on [a + 6^,a + 6]. From this, it is easy to obtain a 

contradiction to (3.23), and the theorem is proved.

Remark (3.10)

Observe that in this theorem the coprimeness of A(S) 

and B (S) is not required.

3.3 Persistence of Excitation for Unstable Plants with

Possibly Unbounded Signals

In this section we consider plants which are possibly 

unstable. Clearly, one cannot expect the upper bound in 

(3.7) to hold. What is of interest, however, is whether 

or not the lower bound condition can hold. One should 

stress that if the upper bound is violated equations of 

the form in (3.3-3.5) may not be exponentially convergent 

even if the lower bound is satisfied. Consider for example
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the system of equations

X (t) = - [et/2 1]T [et/2 1] X (t)

Clearly with V(t) = [e1"̂ 2 1] the lower bound in (3.2) is
112satisfied as e and 1 are linearly independent.

However, it can be verified that

and

x2 = -1 + ^e_t

form a solution and clearly x2 does not converge to 
zero. There are, however, adaptive laws, (see for 
example [7]) where the lower bound alone is guaranteed 
to assure convergence. Also for some of the algorithms 
to be studied in the later chapters the lower bound in 
(3.2) guarantees that all signals eventually become 
bounded. Whence, the upper bound is also satisfied.

The particular results we shall establish are the 
following:
(1) Condition for satisfaction of the lower bound in

(3.7) given bounded inputs
(2) Condition for satisfaction of the lower bound in

(3.7) given possibly unbounded inputs
(3) Condition for satisfaction of the lower bound of a 

gramian of the form in (3.7) but involving a vector 
of the output and its filtered versions, viz.
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Yk _______ y _

(s+y) k-1
T

For the rest of the chapter the subscript k used with 
any of the vectors Y, W or V will denote the dimension 
of that vector. The proofs require technical lemmata 
which are given in Appendix 3.C. It is worth noting that 
the proofs in this section differ from the ones in the 
previous sections on several counts. To begin with 
Lemma 3.A.1 is no longer applicable due to unbounded 
signals. Thus, our arguments will involve integrals of

■ü+6 m
the form

T0 V
0 VIdt as opposed to quantities like

Consequently Lemma 3.A.2 is modified.
Suppose the input v(t) to an asymptotically stable

c+<5
system is bounded and 
the integral

v(t)Idt is "small". Then

rG + 6
|w(t) I dt (3.26)

G + Ö '

is also "small", w(t) being the output of the system 
and 6' a positive number. However, if v(t) is not 
bounded for all te R+ then this may not always be true. 
Consider, however, the case where v(t) is the output of 
a system having a transfer function

G (s)___
Hjs)H(s)

where H_(s) is Hurwitz. Then w(t) given by

G1 (s)H(s)W = — -------- v
H2
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with G^H/H2 proper, and Hurwitz, will be such that

the integral in (3.26) will be "small". This is mainly 

because the unstable components of v would be unobservable 

at w. The lemmata (3.C.1-3.C.3) used at various points 

in the proofs of this section are special cases of this 

result.

Finally, the following lemma, similar to lemma 3.1 

will also prove useful.

Lemma 3.2 Consider the output y(t) of a system with

a transfer function (s-a)/(s+b), bounded input v(t) and 

arbitrary finite initial conditions, a and b being 

complex numbers with positive real part. Define w(t) as 

the output of any system with transfer function l/(s+b) 

and input v(t) . Suppose 3 M  such

I w (t) I < M V teR +

For any e > 0, define a real 6' (e) by

Suppose 3 a  6 > 6 ' (e) and a a > 0 such that

I y (t) I < e V t e [a, a+ 6] (3.27)

Then

I w (t) I < 0(e) V t e [ a , a + 6-6 ' (e) ] (3.28)
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Proof

Since

y (t) s-a
s+b v (t)

and

w(t) s+b v (t )

w(t) = i=i y(t)
. , -a (a+6-t) w(o+<5)e +

t a (t - T ) . . je y( t )dx
g+6

V t < a + 6

_  JC I / p. \Now, <S ’ ( c )  is such that M j e  | =  e .
Thus I w(t) I < 0(e)^ te[a,o + 5-6r]
as from (3.27) |y(t) | < e v te[o + 6-S' (e) ,o+6]

We now prove the main results of this section.

Theorem 3.6 Consider the linear, time invariant SISO,
proper system described by

A(s)y(t) = B (s) u (t) (3.29)

where A(s) and B(s) are coprime polynomials of degrees 

n and m respectively, m < n and u(t) eß^[0,°°).

Define
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V n+m +l (t) = [
y (t)

(s+a)1
n-l n

—--- - y (t) , ------- u (t) ,...,
(s+a) (s+a)

(s+a)
u(t) ]

and

u (t)
n +m+1(t) (s+3)

u (t)
(s+ß) n+m

ßeR+ and asR . Let aa^,6' > 0 such that v oeR+

g +6
W n+m +l (t) W n+m+l (t)dt > “l1 (3.30)

Then a a 2 and 6 > 6' such that v g e R+

o+6
V  ̂ (t) V  ̂ , n (t) dt > a~In+m+1 n+m+1 2 (3.31)

Proof
See Appendix 3.C.

Remark (3.11)

It is possible to show that in going from (3.31) to 

(3.30) the dimension of W may be reduced to as small as 

n + m + l - p ,  y being the number of poles of (3.29) 

which lie in the closed right half plane. This is because 

in general the system is capable of producing upto y 

independent excitations, arising due to initial condition 

effects, which do not decay to zero.
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(3.12)
Notice that a is no longer required to be positive.

We now prove a result with bounded inputs which relates 
p.e. conditions on the input to their counterparts 
involving outputs. Such a result is important in adaptive 
control. In particular in chapter 6 the controller-cum- 
system can be configured as depicted in figure 3.2, where 
u(t) could well be unbounded. Equivalently, a non- 
minimal representation of the form in fig. 3.3 also exists. 
Then the result given below helps to establish conditions on 
the reference input r(t) which guarantee the p.e. of u(t) 
and thus indirectly of a relevant regression vector.

Theorem 3.7 Consider the proper time-invariant SISO
system described by

with A(s) and B(s) polynomials of degree n and m 
respectively. Assume u(t) eft^[0,°°) and let z be the 
number of zeros of B(s) with zero real part.

A (s) y (t) = B (s) u (t) (3.32)

Define

=
y__ ,t, . . . ,

and

W = [u u u T
v+z s+a , . . . , v+z(s+a)



Let aeR+ and (3eR . Suppose there exist and 6' ,

such that V oeR+

o+6
W ̂  (t)W , (t)dt > a, I .v+z v+z 1 (3.33)

Then there exist 6 > 6' and > 0 such that Y geR+

g+6
Yv (t)Yv (t)dt > a2I (3.34)

Proof

See Appendix 3.C.

Remark (3.13)

The result does not require A(s) and B(s) to be 
coprime. The reduction in the dimension of Y is due to 

the fact that if u(t) were a linear combination of 

v + z  sinusoids then as many of z of these could 

correspond to the z imaginary axis zeros of B(s). Had 

we allowed u(t) to be unbounded then the number z 

would have equalled the number of zeros of B(s) which 

belong to the closed right half plane.

We now extend theorem 3.6 by relaxing the boundedness 

assumption on u(t) and remark that theorem 3.7 can be 

similarly extended.

Let {F,G,H,j} be any minimal state variable 

realization of the single-input multiple-output transfer

function



1 t ... f 1[
(s + 3) n-m (s+3) 2n+l iT .

Let x (t) be the corresponding state vector. Clearly

W(t) = Hx(t) + ju(t)

Define the set to be the set of all trajectories

W (• ) for which II x (a) II < M  . Then the following is 

true

Theorem 3.8 Consider the linear, time invariant,

proper system

A (s) y (t) = B (s) y (t)

where A(s) and B(s) are coprime polynomials of degrees 

n and m respectively.

Define

TVn+m+1 (t) r y(t)
(s+a)n

and

n-1

(s+a)
y(t) ,

(s+a)
u(t) ,

s „ u(t) ] 
(s+a)n

TW 1 (t) u  (t)

(s+3)n-m
u (t)

(s+e>2n

3eR+ and aeR . Suppose 3 a ^ ,61 > 0 and independent of 

such that V g s R+ , any finite M and any W(*)
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W (t) WT (t)dt > a^I (3.35)
a

where W^G/M  ̂ is defined above.
Then 3a2'  ̂ >  ̂' anĉ  independent of a such that

VgeR+

See Appendix 3.C.

Remark (3.14)
If the condition on the Gramian in (3.35) holds for 

a particular M and 6' then it holds for any other M' 
which is finite and for some 6". This is because, by 
definition IIx (q )II < M in the one case and II x (a) II < M' 
in the other. Thus 6" is determined by the time 
required for the boundary conditions to decay, at rates 
governed by 3.

(3.15)
The above remark indicates how one would proceed to 

check condition (3.35) in practice:

Step I

rO+6
(t)dt ^ 0^1 • (3.36)

G

Proof

Pick an arbitrary M
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Step II
Choose an arbitrary, minimal realization of

[--- ] (viz. F , G , H , j ) , initialize the(s+ß)n m  (s+ßrn
state to zero and generate W(t) = Hx(t) + ju(t) 
until llx(t)il > M . Compute the Gramian (3.35) using 
W (t) .

Step III
At any t^ where ||x(t̂ )ll = M, reinitialize 

x(t^) to zero. Repeat step II.

Finally, we note that the results of this section are 
also useful in proving global exponential convergence of 
hybrid controllers [24, 25]. Consider for example the 
configurations of figures 3.2 and 3.3. Let the controller 
parameters be updated at discrete time instants and let 
them be constant over intervals of length T^. Then using 
the results of this section it is easy to prove that the 
associated regression vector is p.e. whenever r(t) is 
p.e. Thus parameter convergence at an exponential rate is 
immediate. Suppose the controller is designed in a way 
that when the controller parameters equal the true plant 
parameters, the stationary closed loop system is stable.
Then global, robust stability can be concluded. In [25] 
a similar analysis has been carried out under the assumption 
that r(t) is a linear combination of sinusoids. This work, 
however, deals with a far more general class of reference 
inputs.



3.4 Persistence of Excitation of Slowly Varying Plants
with Bounded Signals
In this section we consider persistence of excitation 

properties for slowly time varying plants. The main result 
derived here may have wide applicability in the analysis of 
a wide class of adaptive controllers. As stated earlier, 
many adaptive controllers can be configured as in fig. 3.2, 
where the controller may well be time varying. However, in 
most adaptive control applications eq. in [23] the 
variations in the controller parameters approach asymptotic
ally to zero, even without persistence of excitation. Thus 
the results of this section will give conditions on the 
reference input which will ensure p.e. of the control input 
once the initial parameter variations decay. We now state 
the main result of this section, a discrete time equivalent 
of which can be found in [13]. The proof is available in 
Appendix 3.D.

Theorem 3.9 Consider the linear time varying n-dimensional,
SISO system

x(t) = A (t) x (t) + b(t)r(t) 

u(t) = cT (t)x(t) + d (t) r (t)
(3.37)

with r(t) and x(t) eft̂ [0,°°) . A(*), b(*)/ c(*) and d(*)
are bounded. Suppose a m s u c h  that
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I|c(t)|I I|b(t)|I ♦ |d(t)| > mi (3.38)

Vt except on a set of measure zero. Suppose there also exist MA , Mg, , 
Mg and <5 such that

A(t + 6) 
b(t + 5) 
c(t + <5) 
d(t + 6)

A(t)
b(t)
c(t)
d(t)

< MA
< Mg
< Mr
< MD

(3.38a)

Vt. Define

Rv+n^) = [r(t), r(t) j
(s + a)v+n

where a > 0 and n is the dimension of x(*). Suppose there exists a unit 
length vector 9^ = [9Q> ... , 9v] and e > 0 such that for some o

I I9TWv(t)|dt < e 
a

(3.38b)

with
u(t)Wy(t) = [u(t),
(s+6)v
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and some 3 > 0. Then 3 a 6' < 6  and 

away from zero for which

•o+6
J g+6 '

|YTRv + n (t) |dt < 0(e) + {K1 (ß,a)MÄ

a y, II y II bounded

+ K2 (3,a)Mb
(3.38c)

+ K3 (3,a)Mc + K4 (3,a)Md}M

where the are the functions of 3 and a and M is

the bound on |r(t) | and llx(t)ll .

Remark (3.16)

Put differently,the above theorem requires that if

•g+6
a

R , v+n (t) v+n (t)dt > I

where is greater than some quantity determined by

the magnitude of the system signals and time variation in 

the parameters then a2 > 0 such that

•a+6
a

W v (t) ,WTv(t)dt > ct2I

for some 6' < 6 .

(3.17)

Condition (3.38) ensures that the output signal is 

not identically zero over an interval for arbitrary input. 

It is worth noting that in contrast with the previous 

sections the boundedness of signals is crucial even to 

get the lower bound of the p.e. condition to hold.
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3.5 Model Reference Control : known gain.

In the remainder of this chapter we examine the
exponential stability of a Model Reference Adaptive Control
algorithm proposed by Morse [16]. Apart from being an
interesting problem in its own right this will demonstrate
an application of some of the results derived in this
chapter. In this section we consider the case where
the high frequency gain, g , of the plant to beP
controlled is known a priori while in section 3.6 the
unknown g case is considered.P

First we briefly outline the philosophy and nature 
of Morse's algorithm, adhering closely to the terminology 
employed in [16] , but omitting details irrelevant to
the course of our development.

Consider a single-input single-output plant, 
modelled by a strictly proper transfer function

Tp(s) g a (s) P P
Vs) (3.39)

having degree and relative degree of n and n* 
respectively; g^ is a non zero constant with known 
signs (assumed positive) and and 6^ are monic,
coprime polynomials and a^(s) is strictly stable as well 
It is assumed that the output y(t) is required to track 
a reference trajectory y (t) , itself the output of a
known, stable transfer function , having relative
degree no smaller than n* (as otherwise explicit 
differentiation would be required) and a reference input 
r (t) .
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Consider next the scheme depicted in figure 3.4. 
Here 1/3 is an arbitrary, known, stable, all pole
transfer function of degree

,T
W(s) is a stable

transfer function, 0 (0^/A^,0r) is an auxiliary
/\ ys #signal vector and k = (k^,k ,k̂ J is a

parameter estimate vector. The true value k^ of k is
such that when k kp , the transfer function relating
0 to y equals 1/3 , with k , k and k = 1/gr 2  ̂ r up yp rp ^p
serving to assign the zeros, poles and gain of the plant 
respectively.

Defining k
figure 3.5 with the transfer function representing the

k-kp we can redraw figure 3.4 as

system within the dotted box equalling 1/3 (s)
Accordingly we have the error model of figure 3.6 as

y-y = (0 +g kT0) -J 3r r ^p 3r Ze Tk 0.

Now if we were to identify k by performing a steepest 
2descent on e , existing results tell us [10] that 

1/3r will need to be strictly positive real, a condition 
clearly unattainable for n* > 1 . In [16] this problem 
is circumvented by adding an auxiliary signal so that 
the error model for this augmented signal e" approaches 
that in figure 3.7 asymptotically. This auxiliary

Asignal is ip (t)g(t) in figure 3.8 and the augmented 
error equals e" .
Clearly ip = - (0T(kp+k))+ (f)T (k^+k)

= 4>Tk(t) - r j — 0T (t)k(t)
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Thus if g(t) = g , e" = g 4) k(t) . However, inP P
general unless g^ is known a priori, this condition will 
not hold. Given below are the equations which define the
signals in figure 3.8. Let A, 
with

cT (sI-A) _1b = l/fir

,T T„4» = c H

H = AH + b 0T

z = Az + bkT0
/xm m= k <f) - c z

g = - q ip e , q >

£ = — Q 4> e Q >

with

r °i 0
Q =

0 q2_

and
1 Ae = - p  (g^ + e) /

Ao + Q4>

Observe that e in (3.48) is
3.8 divided by ( + •

The vector 0t ä T[e1, T0, ,u y

0 =y

,c be a minimal realization

(3 .4 0 )

(3 .4 1 )

(3 .4 2 )

(3 .4 3 )

(3 .4 4 )

0 (3 .4 5 )

0 (3 .4 6 )

(3 .4 7 )

D V O (3 .4 8 )

in fact e" of figure

0 ] is generated by

A 0 + b y0 y o (3 .4 9 )
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 ̂mu = k 0 (3.50)

0 = 3 ( s) T ( s) rr r r (3.51)

y r  = Tr (s)r ( 3 o 52)

0 = A n0 + b_uu 0 u 0 (3.53)

where [A^b^] is a completely controllable n- 
dimensional stable system. If g^ is known a priori

Athen g(t) can be set to g^ and (3.45) can be 
dispensed with. Then by specializing the error model 
given in [16] we get

x = Ax + b(kT0 + r) (3.54)

0 = cx + dr + e(t) (3.55)
•

H = AH + b©T (3.56)

(f)T = T= c H (3.57)

z - Az + bkT0 (3.58)

II - Q 1^e (3.59)

e = (Aq + <t>T Q < M _ 1 (g + e (t ) ) (3.60)

Here e(t) and e(t) are exponentially decaying 
quantities, (Ä,b,c,d) is an unknown but strictly stable 
system and k and $ are given by

r
oH

1--- k (p =

i—
o

iH
i ___

2n 2n

0 0 0 0

k <p (3.61)
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Note that the replacement of k and <J> by k and 5 
respectively becomes possible since, with known g ,
the last element of becomes zero. The stability
results of [16] , applicable for unknown g , may inP
this case be trivially modified to yield the Proposition 
below. Following the Proposition, we indicate in 
Theorem 3.10 a development of this stability result to 
reflect exponential stability under a persistence of 
excitation condition.

Proposition 3.1: For any time t > 0 and bounded,
piecewise continuous input r(t) , the state response of
the adaptive control system defined by (3.54 - 3.61) is

Auniformly bounded and the quantities e and k decay 
asymptotically to zero.

Remark;
(3.18) Observe that Proposition 3.1 assures the

boundedness of signals without pe. This is precisely
the situation we had stated in the beginning of section
3.2, as being typical of adaptive controllers. As matters
stand, however, only the tracking error converges to zero. 

AAlthough k decays to zero, k need not converge to the 
right parameter values, let alone doing so exponentially. 
Theorem 3.10 presents a condition on the reference input 
which guarantees exponential convergence.
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Theorem 3.10: For a reference input r(t)e ^ [ O , 00)
and the adaptive control system with known g^ defined by 
(3.54 - 3.61), the quantities k and e approach zero 
exponentially fast, provided that for some a.^, ai2 anc  ̂
A>0 and all aeR+ the following relation holds:

■a+A m
allI < R(t)R (t) dt < a12I (3.62)

where
r,-

s+8 (s+£J)
2n+n -1 r

3 is any positive number, and n^ is the number of 
imaginary axis zeros of (s) .

For a proof, see Appendix 3.E.

Remark:
(3..19) It is evident from figure 3.6, that the 

exponential decay of k leads to the exponential decay 
of the tracking error e . Thus the condition in (3.62) 
also guarantees the exponential convergence of e . A 
similar result for the adaptive controller in [18] 
has been derived in [14-15] .
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3.6 Model reference control : Unknown gain.

In this section we examine Morse's algorithm, 
described in section 3.5, for exponential stability when 
the high frequency gain is unknown. As shown in [16] ,
the algorithm is globally stable in the sense that all the 
signals are bounded. Yet, while the tracking error 
converges to zero, the parameter estimates do not 
necessarily converge to their desired values. However, as 
we have shown, when the high frequency gain is known a priori, 
the exponential convergence of parameter estimates results 
whenever the reference input is persistently exciting.
We now consider the case where the high frequency gain is 
unknown. Rather surprisingly it is discovered that in such 
a case the structure of the algorithm precludes 
exponential convergence even with sufficiently rich 
reference inputs. The problem appears to lie in the 
identification of the gain parameter. The signal central 
to its identification converges asymptotically to zero and 
consequently loses persistence of excitation.

Before we proceed to prove our assertion we need 
the following stability lemma, a discrete time analogue of 
which is available in [17] .

Lemma 3.2.
Consider the differential equation

w = G (w, t) go (3.63)

with G(u,t) continuous in a) with a Lipschitz condition



uniform in t and u) (•) e Rn . Assume that initial 
conditions on w , lie in some arbitrarily large but 
bounded region. Then the linearization of (3 063) about 
the zero trajectory is exponentially stable whenever 

(3.63) is exponentially stable.

Proof
Exponential stability of (3.63) implies the 

existence of a Lyapunov function V(ca,t) and c^,...,c^ > 

[26,p.86] such that

c 1 II w ||2 < V(U), t) < c 2 11 0) ||2

dV 
dt

7 3V
i=0 9"i

f . (a), t)

3V 
3u) t C4II w||

Consider any two possible initial conditions of (3.63) 
m^(0) and w(0) , both bounded in magnitude by K .
Now, there exists a c^X) such that

|| G(w1 (t) ,t)-G(w(t) ,t) || < c 5 11 co1 (t)-co(t) ||

< c { 11 cô (t) || + || to (t) || }

Since (3.63) is exponentially stable both || co^(t) || 

and || w(t) || decay exponentially to zero. Thus 3 a T 
depending on K , such that Vt > T there holds 

|| (t) [+ || w (t) || < (1-q ' ) c3/(nc4c 5) with c 3 , c 4

c^ defined as above and 0 < q' < 1 .

and



Thus
(1—q *)c3

|| G (C0-. (t) , t) - G(io(t) ,t) || < --— ---- ,Vt > T (3.64)i nc4

Now, as shown in [26, p.86] the perturbed system

(I) (t) = G(w,t)oj + R(oj,t) will be exponentially stable if

(1-q' )c. || ml I
|R.(u(t),t)I< ----- — ------  i = .i no 4

Thus using (3.64), for all sufficiently large t

w = G (u) (t) , t) (a) + (G (o)̂  (t) , t) o) -

G (a) (t) , t) a)) = G (t) , t) u (3.65)

is exponentially stable by (3.64) . Now, suppose
0)4(0) = 0  . Then clearly m^t) = 0 Vt > 0 . Thus by

(3.65) or = G(0,t)o) is exponentially stable as well.

v v v

It has been shown in [16] that the error model reduces

9£

to



9

x = A x + b ( kT 0 + r )

0 = c x  + d r  + e ( t )

H = AH + b0 T

( 3 . 6 6 )

Az + bk  0T
z

k = -Q<J>e

§ = -qijje

e ------------- [g k T(j) + g^ + e ( t ) ]
X0+(j) Q(j) P

w h e r e  [ A , b , c , d ]  i s  a s t a b l e ,  unknown s y s t e m  a n d  e ( t )  

a n d  e ( t )  a r e  l i n e a r  c o m b i n a t i o n s  o f  e x p o n e n t i a l l y  

d e c a y i n g  s i g n a l s .

We h a v e  t h e n  t h e  f o l l o w i n g  t h e o r e m .

T h e o re m  3 . 1 1 . C o n s i d e r  e q u a t i o n s  ( 3 . 6 6 )  .

D e f i n e  x ( t ) , H ( t )  a n d  ( t )  a s  t h e  v a l u e s  o b t a i n e d  
o °  °

f o r  x ( t ) , H ( t ) an d  4>(t) when k = 0 , g = g - g p = 0 

a n d  x ,  H a n d  $ a s  x - x q , H-Hq a n d  4> -4>0 

r e s p e c t i v e l y .  Then  f o r  b o u n d e d  an d  p i e c e w i s e  c o n t i n u o u s

r e f e r e n c e  i n p u t s ,

i s  n o t  e x p o n e n t i a l l y  s t a b l e ,  w i t h  H , . . • ' h 2n+ l

h i  b e i n g  t h e  i t h  c o l u m n  o f  H .
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Proof.

The error model becomes
~ —  m

x = A x + b k 0

0 = c x

H = AH + b0T

z = Az + bkT0 

T T
ijj = k <J> - c z

k = - fro (gPkT*+g*>

g = HI7t) (gpkT* + g ’M

where a(t) = (Aq+ c}> Q<£) • In this we have neglected the

exponentially decaying signals e(t) and e(t) . Thus 

we have

(5 = G (a), t) w (3.67)

with
— TG ( g o , t) = A 0 0 b©1 0

f(b,c) A 0 0 0

0 0 A Tb0 0

0 0 0 Q4> „
a(t)gp* - § T t ) * (t>

, t
0 0 0 - a (t)gp ^ -  - % ■  ^  a  (t) ̂

for some function f(b,c) , bounded, for bounded b,c
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Now by [16] for piecewise continuous and bounded r(t) 
all entries of G(«,*) are bounded and G(«,») can 
easily be shown to be Lipschitz. Now the last row

Acorresponding to update law for g is zero when w = 0 , 
since ip = 0 when u) = 0 . Thus (!) = G(0,t)co is not 
exponentially stable, whence by Lemma 3.2, (3.67) cannot
be exponentially stable.

Remark.
(3.20)The intuition behind the lack of exponential stability 
is the following. The equations governing the update laws

/\ Afor k and g can be rewritten as

Q/a(t) 0 
0 q/a(t)

Q/g

t— l ______

t 1-
--

--
-

a (t)
T

4> ^
k
g + e2(t)

(3.68)

where is exPonent^a^ y  decaying. Thus by a
result in [10] (3.68) will be exponentially stable

Twhen [(f) ,ip] is persistently exciting. However, in [16] ,
Xit is shown that lim k(t) = 0  . Thus from figure 3.8

t->°°
it is clear that lim ifMt) = 0  • Thus persistence

t-*°°

of excitation is being asymptotically lost.

(3.21)It is clear from the foregoing that the lack of 
exponential stability is inherent in the very structure 
of this algorithm. More precisely the problem lies in 
the fact that q is estimated as both l/£ and g 
and the update law of g is structurally deficient in



the sense that the associated component of the regression
/Nvector approaches zero. The reason for updating g in

A
the first place is to avoid the problem of inverting

when the latter crosses zero. If a lower bound on the
magnitude of g^ is known this problem is avoidable [27].

(3.22) The convergence in the n* < 1 case is of course 
trivial as then 1/3 can be chosen as positive real and 
the artifact of figure 3.8 becomes redundant.

(3.23) Whether or not this result applies to other
model reference adaptive control algorithms, is in 
principle an open question. However, in view of the broad 
similarity of the algorithms [16,18] , for example,
and in the light of the results in [15] one would expect 
the conclusion to be general.
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APPENDIX 3.A ; Proof of Theorem 3.2

The proof of Theorem 3.2 depends on the following 
Lemmas, the first of which has been obtained from [22].

Lemma 3.A.1: If f(.) is an n times differentiable
function on an interval I of length A and if |f(x)| < 
and I f ( x ) I  < M then for xel and for 0 < k < nI ' I  n

|f(k)(x)| < 4e2k{nC, }kM (k/n) (3„A01)k u n

where M' = max(M ,Mnn!A n) , and nC, = nV{(n-k)!k!} . n n 0 k

Lemma 3.A.2: For any stable system with a proper
transfer function T(s) , if the input u(t) is such 
that there exist M and e > 0 for which

Iu(t)I < M on [0,T] (3.A.2)

|u(t)I < s for all t > T ,

and if the initial state lies in some fixed ball B of 
radius R then there exists a v(e) independent of 
T , such that for t > v + T, |y(t)| < 0(e) .

Proof: For any minimal realization {F,G,H,J} of
T(s) stability and (3.A.2) imply the existence of a K 
such that

|x(t) I < KM + || eFt|| R on [0,T]

where x(t) is the state of the system.



104

Thus, for t > T

11 x (t) || < II KMeF(t_T) || + II eFt 11 R + 0(e) 

whence,

I y (t) I < KM || HeF(t"T) ||+ || H eFT || R + 0(e)

since
y (t) = Hx(t) + Ju(t) .

F vThus if v is selected to make || e || < e it follows 
that for t > v + T

|y(t)I < 0(e) . VVV

Lemma 3. A. 3: If u(t)efî [0,°°) , then under the
assumption of arbitrary finite initial conditions, for any 
Hurwitz polynomial D(s) and polynomials N^(s) and 
N^ls) , such that 6[N^(s)] < 6[D(s)] and 
^[^(s)] = 1 + 5[D(s)] , the following properties hold:

(i) {N1 (s) /D(s) }ueT?A[0,°°]

and
(ii) {N2(s)/D(s)}u is continuous and bounded
on {[ 0,00) - C^} , and has finite limits as t 1 t^
and t i t .  , t . e C . .

Proof: The proof follows from a simple modification
of the argument presented in the proof of Lemma 3.A.2.

VVV
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Proof of Theorem 3.2: We note first of all that as
liefet 0,«>) , Lemma 3. A. 3 implies that both W and V must
belong to this set as well. Thus the equivalence of the 
upper bounds in (3.6), (3.7), and (3.8) , (3.9) follows
from the resultant boundedness of W(t) and V(t) .

Consider now the situation where in (3.7) , no matter
what choice of 6 is made, the lower bound is violated.

We shall establish a contradiction. The flow of the
proof in outline is : Lower bound in (3.7) is violated 

T=> £ V(t) is small for some £ over an interval => 
(recognizing each entry of V(t) is a linear functional 
of u (t) , t < t) a linear combination of causal

Tfunctionals of u(.) is small over an interval => n W(t)
is small over an interval for some n .

In the process, we must be concerned with initial
conditions (which decay because of the stability assumption)
and with showing that || n || cannot be vanishingly small.

Violation of the lower bound in (3.7) means that
for arbitrary e > 0 , and arbitrary 6 there exists a
particular a and a particular unit length vector 
T£ = [yA,...,Y , 0A,...,0 ], with g and E, both0 n-1' 0 m
depending on e,6 , such that

f (t) U TV ( T ) } 2dl < e4 
G

Vte[G,o+6] .

Now

f(t) = U Tv(t)}2

and



106

f (t) = v(t) r

Below, we shall require 6 > <5̂ i= 1,2 where 6^ is
a certain constant associated with the decaying of initial
condition effects and e , and 6^ depends on e,n,m and,
ultimately, bounds on V ; details are given below. We
shall also require that 6 > A .

Now, as V( t) e [0 ,°°) , I f (t) I < C on [o,o +6] -
for some finite positive constant C . Moreover, if e4
is chosen to be small enough to ensure that 2e4 < CA2
[or that M' = max(C,e42!A 2) = C holds] an application n
of Lemma 3.A.1 to any subinterval of length A in 
[ c r , o +  6] - ensures that on this subinterval,

U TV}2 < 8e2e2/C 

TNow £ V has one sided limits approaching the points 
belonging to , and so

| £TV| < 0(e) on [o,o + 6]

Now y = A ^(s)B(s)u + initial condition effects due to any 
nonzero initial condition at t = 0 . Hence

n-i . m k m .
Z y.s [ Z b,s ]u Z 0.sJu

i=0 1 k=0 j=0 3
n n“l i(s+a)n (s + Z a,sv) (s+a)n 

k=0

+ i(t) < 0(e)

on [a,a + 6] . Here, i(t) denotes initial condition
effects.
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Let us make the assumption that all initial conditions 

for the plant lie in some finite ball. Then there exists a 

6^ depending on £ , but independent of the y^,0j choice 

(note that these constants are bounded in magnitude by 1!), 

such that Ii (t) |= 0(e) for all t > 6^ and so for all 

t > a + 6^ , no matter what o is. Hence

n-1 m , m
Z y . s1 [ Z b, s ] u Z O.s-’u 

i=0 1 k=0 k + j=0 J
n-1 ,

(s+a)n (sn + I a, s ) (s+a)n 
k=0 K

< 0(e) ( 3 . A c 3)

on [ a + , a + 6]

Now as a consequence of Lemma 3..A.3, it follows that 

the first (n-m+1) derivatives of the quantity under the 

modulus sign in (3.A.3) are bounded in magnitude by some 

constant . This bound can be taken to be independent

of £ , since || £ || = 1  . Now suppose that

(n-m+1) iK 2 e 1/(n-m+1)

where K 2e can be used on the right side of (3.A.3) .

Assume also that 6 - *5-> 2 . Then Lemma 3.A.1 and the

existence of one-sided limits of u and u imply after 

some manipulation that
n-1 . m ,
Z y .s1 [ Z b s ] u

(s+q)n-m {i=0 1--- ^ 0 ---------  +
n-1 k 

(s+a)n (sn + Z a, s ) 
k=0

Z 0 . sJu
2zOl

(s+a)

< 0 (e17(n-m+1))

(3.A.4)
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on [a + 63,0 + 6], i.e

(3.A.5)

on [0+63,0+6] .

Now the left side of (3.A.5) is bounded for all 

time. Hence, by Lemma 3.A .2 , we can postulate the 

existence of a 63 , independent of o , such that 

with 6 > "̂ 3 + *63 ,

n - l  ,
(s+a)m (sn + E a s )  

k=0 k x [contents of in (3 .A.5)]
(s+fi)n+m

< 0(e1/(n-m+1)

on (0+T3+63 , 0+6 )

i.e.
n-l . m m

( E 0 .s1)(sn + 
i=0 1

m

(s+ß)n+m (s+ß) n+m

< 0(c 1/(n-m+1)

on [ 0 + 6 3 + 6 3 , 0 + 6 ]

Furthermore, defining R as



R 0
R =

1

where aT a0 al* *,an-l]
<----------------- --------------*n

and R is the (n+m) x (n+m) resultant matrix

we find that

n-l i m  -I 
( I y .s 1) ( I b.s]) + 
i=0 j =0 3

m . n-l ,
( Z 0 . s1) (sn + £ a, s )
i=0 1 k=0 K

can be expressed as

T-C R[1 s n+m, T s ]

Define 3 as 3

The coprimeness of A(s) and B(s)

nonsingularity of R and hence of 
||  ̂|| = 1 by hypothesis

assures the 
. Thus, as
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II Ml > 1/1| R_1 II = K3 > 0

where depends on the and only. Hence
(3.A.5) implies that

f G+6 TW (t) W (t)dx
a+^+63

cannot be uniformly positive definite, since e is 
arbitrary. Defining 6' = 6 - 6  ̂ - 6^ and t = t + 6 - 6' , 

we conclude the lower bound in (3.6) is also violated.
Hence if (3.6) holds, (3.7) must hold.

The proof of theorem 3.2 in the opposite direction 
proceeds in much the same way. Here we shall simply outline 
the steps. Assume that (3.9) fails. Then for arbitrary 
e > 0 there is a X, || X|| = 1 , with XTW of 0(e) on 
some [o,o + 6] . Then

(s+B)n+m n+m (s+B)n+m- h .
_ yn-1 A w

(s+a)n (sn + E a.s1) 
i=0 1

i=0 (s+a)n (sn + E a.s1) 
i=0 1

is small over
n-1 -

(0+6 ,0+6) for some 6 . [The stability of (sn + E a.s11 )
i=0 1

is crucial here.] Now, using the coprimeness of
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Z b . s3
j = 0 3

and ns +
n-1
Z

i=0
a . sl define 0i , i=0,..

by

n+mv i ,n\n+m—i, Z (s+B) X
i=0

n-1 . m
( Z 6.s1) ( Z b.s3) 

1 j = 0 3i=0

m . n-1
+ ( Z 0 , . s1) (sn + Z a. s1) 

i=0 n+1 i=0 1

Then we find that

n-1 mz eZ 0 . s
i=0 1 , i=0----- y + -- n+i'

(s+a) (s+a)
< 0 ( e )

on [a+£^ + / ° + $1 • Failure of (3.8) is then

immediate.

.,n+m ,
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APPENDIX 3.B : PROOF OF THEOREM 3.4

Suppose that the conclusion is not valid. Then for 

any e > 0 and any 6 > 6].(e) + 62(e) (as defined in 

Lemma 3.1), we can find a such that for a certain £ 

with || £ || = 1 ,

fG+(S T—u  W(t)]2dt < e4 
a

while (3.17) holds. Following the same argument as for 

Theorem 3.2, we conclude that on [a,a+ 6] ,

and so

|CTW(t)| < 0(e )

n+mE
i=0

(s+3)n+m 1^i 
------------  u

(s+3)R+m
< 0(e)

where n = n-p .

Recognize that (s+3)m 
A (s) u can be regarded as a

linear functional of the state of the plant assuming zero 

initial condition. It follows by Lemma 3.1 that, with 

the X^ satisfying conditions as specified in the Lemma,

, , . . n+m-ir
zm (S 3) Si (S+B)

i=0 (s+B)"+m A(s)

n-n jw.t 
Z A . e 1 < 0(e)

on (ö + 6 1,g + 6 - 6 2) . There is a monic polynomial of

degree n-n with zeros jok , i=l,...,n-n . Call it q(s).

Then
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(s+fc!)n q(s) »V» (s+g)n+m" lgi (s+B)m 
(s+a)n i=0 (s+^)n+m M s )

u

n-n joj.t 
- Z X .e 1 ] 

i=l 1
< 0(e)

i. e.

n+rn
Z

i=0
(s+BJ^-iqqls)

(s+a)nA (s)
u < 0(e)

Now find 0^, i=0,...,n+m , such that

n+m n+m-i
£ (s+ft) £.q(s)

i=0 1

n-1 
( I 
i=0

0 . sl )B(s)
m

+ ( £ 0 •s1)A (s) 
i=0 n+x

(This is possible because A and B are coprime.) 

Then we have
n-1 m

Z 0Z 0 . s
i=0 1 B (s) , i=0-u + ---

n+i'
(s+a) A (s) (s+a)

< 0(e)

or |[0n-l 0n-2 • "  60 6n+m *•* en ] V( tfI < 0 ( on

[a + 6i,a + 6 - 5 2] . This contradicts (3.17) and the
theorem is established
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APPENDIX 3.C.
Proofs of the theorems in section 3.3 require the 

following lemmata.
Lemma 3.C.1
Consider an asymptotically stable SISO system with 
proper transfer function T(s) , arbitrary finite initial 
conditions and bounded input v(t) . For any e > 0 
define 6^(e) by

e-XSl(£) = e
where X is determined by the poles of T(s) . Suppose 
for some o > 0 and 6 > 6^(e)

■g+6
I v (t) I dt < e

G

Then with w(t) defined as the output 
rO+6j I w(t) I dt < 0 ( e)
0+fi1(e)

Proof
Follows on the same lines as those in the proof of 

lemma 3.A.2. v v v
Note, that if {A,b,c,d} is a minimal realization 
of T(s) , then A is such that for some finite K

ll Atu . „ -At II e || < K e

This applies to all situations where we talk of a A 
"determined by the poles of an asymptotically stable
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transfer function".

Lemma 3.C.2
Let v^(t) G ft. [O,00) and and be

generated by (3.C.1 - 3 .C.3) , with arbitrary finite
initial conditions

v 2(t) - IfiT vi (t) (3-c-1)
V V (t)

v (t) = Z 0. — --- 1 (3.C.2)
J i=i 1 (s+er

I j_ \ A(s) (s+3)v , 0 „v (t) = --------£—  v^(t) (3.C.3)
4 A1(s)

where 6[A(s)] = n > 6[B(s)] , 6[A^(s)l > n + v ,
A^(s) is Hurwitz and 0^ are finite constants.

For any s > 0 define 6'(s) by

-  A 2 <5' ( £) =  £ e

with A 2 determined by the roots of A^(s) . Suppose
for some a > 0 and 6 > 6'(e)

•0 + 0
I ( t ) I d t  < £ (3.C.4)

'0

Then
• g+ 6

|v^(t)|dt < 0(e) (3.C.5)
o+6'(£)

Remark:
The intuition behind this result is the following. 

Consider figure 3.C.1 which is a block diagram 
representation of (3.C.1 - 3.C.3) . Let (t) be "small"
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in some sense over an interval [g ,g+6] . As far as v^(t)
is concerned it comprises two components : the initial 
condition component f , reflecting the history up to 
the instant o and the forced component f , stemming 
from excitation beyond the time g . While f is small, 
the same cannot be said about f^ as the latter depends 
on the past history of v^(t) and v^(t) maybe unbounded. 
The third operator block, however, exactly cancels the 
initial conditions coming from the blocks 1 and 2.
Thus if 6' is the time required for the intial conditions 
due to block 3 to decay down to sufficiently small values 
then v^(t) would be small over an interval [g+6',g+6] .

Proof;
Rewriting (3.C.1) - (3.C.3) as

A ( s) v2 (t) = B ( s) v1 (t) (3.C.6)

( s+3 ) ̂  <Jk (t) = v2 (t) (3.C.7)
V

v3(t) = Z 6̂  <f>̂(t) 
i=l

(3.C.8)

A (s)v4(t) = A ( s) ( st3) Vv3 (t) (3.C.9)

easy to show that
v .

A (s)v.(t) = Z 0.(s+3) 1 B(s)V-(t)
1 q i=l 1 1

(3.C.10)

Let {F,G^,H^,J^} and {F,G 2 ^ ke 
realization of (3.C.9) and (3.C.10) respectively. 
Let Xi'X2 denote the respective state vectors.Then as 
A^(s) is Hurwitz 3 Xi,X2 > 0 • such that
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eF(t-a)|| . A i e “ X 2 < t - a)

Also

v4 (t) = HieF(t a)Xl (a) + H1eF *t T* ( t)dx+J^V j (t)

Vt > a (3.C.11)

n2eF(t-o) X2 <°) + I H2eF *t T*G2v1(T)dx + J2v 1(t)

Vt > a (3.C.12)

We shall now show the existence of a , independent

of c for which

|| H1eF(t ö)x1 (°) II 1 K xe Az(t a) (3.C.13)

The zero input response of (3.C.12) remains unaffected 

by the values of v^(t) beyond t = a . Let v^(t) 

be the value of v^(t) when v^(t) = 0  Vt > a . Then

v 4 (t) = H2eF(t-a)x2 (a)

H1eF(t a)Xl(a) + { H1eF(t t )G 1 v 3 (i)dx +

J1V 3 (t)} (3.C.14)

where v^(t) is the output of (3.C.8) whenever 

v^(t) = 0  Vt > g . But v^(t) lies at the zeros of 

(3.C.3) whence the term within parentheses in (3.C.14) 

is identically zero. Thus



118

TT F(t-a) / v „ F(t-a) . .f^e X x tcr) = H 2e x 2 <a >

Also, from (3.Co10) it is clear that x2 (t ) is hounded
whence (3.C.13) follows. Hence with 6' such that 
- \ 26 '

H eF(t a)x, (a) II 1 0(e) Vt > a+6

Thus
a+6

v . (t) I dt <
a+6 , 1 4

a+6
a+6

HieF(t 0 ’ x 1 (a ) || dt

+
a+6 rt F (t-T)

II H^e G1V3 (T) II dT dt
a+6' G

a+6

a+6 '
J 1v 3 (t) || dt

< 0(e) due to (3.C.4) .
vvv

The point of the next lemma is the following. Consider 
figure 3.C.2. Let

v 1 (t) Pits)
(s+a)n

y (t) + e 2 (s)
(s+a)n

u(t)

be "small" over an interval [a,a+6] . Then

v 2 (t) A ( s) ( s+a) n
A'1 (s1 l l j

6 ! ( s) B ( s) + 9 2 (s)A(s) u(t) 
A1 ( s)
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is "small" over a smaller interval [o+6',g+6] if

(i) A^(s) is Hurwitz and
(ii) the state x^(t) of any state variable 

realization of

rGits) B (s ) + 0 2 (s) A( s) i 
1 A X (S) J Ult)

is bounded by a constant M at t = a . As before the 
last block serves to exactly cancel the initial condition 
effects generated in the preceding ones. The constant 
6' is large enough to ensure that initial condition effects 
due to x^(c) decay by the time a+6' . The proof of this
lemma is similar to that of the previous one and is hence 
omitted.

Lemma 3.C.3.
Consider a proper time invariant system given by

A (s) y (t) = B (s ) u (t) (3.C.15)

with A (s), B (s ) polynomials with degrees n and m 
respectively. Consider also the Hurwitz polynomial 
A^(s), S[A^(s)] > 2n and the differential equations

(s+ot) nv11 (t) = 0i (s ) y (t) (3.C.16)

(s+a)nv12(t) = 02(s)u(t) (3.C.17)

Ai (s) v 2  (t) = A(s) (s+a)n [vl:L (t)+v12 (t) ] (3.C.18)

for
and
all

some polynomials 0i (s) , 02(s); 6[0x(s)] < n-1 
<$[02(s)] < m . In the above systems (3.C.15

initial conditions are arbitrary but finite.
- 3.C.18),
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From (3.C.15 - 3.C.18)

v J t )  = { e i ( s ) B ( s )  +. e ^ ( s ) A ( 5 ) } u ( t )
 ̂ A 1 (S)

(3.C. 19)

Let x^(t) be the state vector in any minimal state 

variable realization of (3.C.19) and let it satisfy

the boundary condition

|| x (a) II < M .

For any e > 0 define 6 1(e) by 

e~A61(e) = £

with X determined by the zeros of A^(s) . Suppose

for some c > 0 and 6 > 6 ' (e)

■ o + 6
|v (t) |dt < e (3.C.20)

Jo

where

v 1 (t) = + v 1 2 (t)

Then

• o+6
|v (t)Idt < 0(e) (3.C.21)

Jc+6'(e) z
vvv

We are now in a position to prove Theorems 3.6 - 3.8.
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Proof of Theorem 3.6

Let (3.31) be violated. Then for arbitrary e > 0 ,
n Tjj a unit vector 0 = [ 0 i, . . . , 0̂  ] such that for some a

fO+6 m
I 0 V(t) I2dt < e2 

n+m+1

By Schwarz's inequality

o + < 5  T  ^  r ° + < 5  T  j, j,
e V(t) |dt < 6 2{[ I 6 V(t) I2d t}2 < 6 2 e (3.C.22)

n+m+1 n+m+1

Then

r 0 +  6

n-1 m
E 0! s y(t) E 0. s Ju(t)

i=0 + j = 0 3+n
(s+a) (s+a)

dt < 0(e)

Let the signal within the modulus signs bd v^(t)

Then defining v 9 (t)

v 2 (t) (s+a)
(s+0) 2n A (s)

we have that
n-1 . m
( 2 e.s1)B(s) + ( Z 8. S-*) A ( s)
i=0 1 i=c ]+n

v 2 (t) = --------------- , .'„,2n--------------  u(t)(s+3) (3oC 0 23 )

Now since u(t) E f^[0,°°) the state vector in any 

minimal realization of (3.C.23) is finite. Thus from 

Lemma 3.C.3 we have that J  a "S’ < 6 such that
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•g+6

' g+6

n-1 . m
( E 0.s1)B(s) + ( l 0. s D)A(s ) 
i=0 1_____________ j = 0 3 _________

(s+0)2n
u (t) dt < 0(e)

Now, since A(s) and B(s) are coprime, by arguments 

similar to that used in the proof of Theorem 3.2, we have 

that there exists a y = [yi ... Yn+ml / H y II bounded 

away from zero, for which

•g+6

g+6

n+m
£ y . (s+3) 1 

i=0 1_______
(s+B) 2n

U ( t) dt < 0(e) (3.C.24)

As 3 > 0 , the term within the modulus sign in 

is bounded and hence Lemma 3.A.1 is applicable, 

in theorem 3.2

T n ( ^ ) 1
i=0 (s+ft) 2n+mu( t)

< 0 (eV(2(n-m+l))

(3.C.24) 

Thus as

(3.C.25)

whence (3.30) is violated. Thus the result follows.

vvv
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Proof of Theorem 3.7

Let (3.34) be violated. Then for arbitrary e > 0,
T T3 a unit vector 0 = [0lf...,0 ] such that for some

a

eT y (t)|dt < «*+
Jo

r Q+ 6

rQ+6 V 0
\( I —  

a i=0 (s+0)
1 .Yv(t) |dt < ShE (3.C.26)

Let the quantity within the modulus signs in (3.C.26) 

be v^(t) • Consider v^(t) defined by

v 4 (t> = v 3 (t)(s+a)

Thus by Lemma 3.C.2

_  Z 0. (s+0)1 B ( s)
0+0 i=0 — ---- — ----- }u I dt < 0(e)_ |{
o+6 (s+3) v+n (3.C.27)

for some 6 depending on a . Let B(s) = B (s)B (s)B (s)

where B is Hurwitz, B (s) has zeros on the imaginary s o
axis and B+ (s) has zeros in the open right half plane. 

Then by Lemma 3.C.1 3  a 6 < 6 such that

o+6

G+Ö
(s+a)IIl~2-Z+ J o  9i (s+t5)i B(S)
e sT s) (s+a) v+n u (t) dt < 0 ( £)

(3.C.28)

where 6[B (s)] = z and 6[B (s)] = z+
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Thus
o+6

o+6
• En 0. (s+8) B (s) B, (s)1=0 1 O +

, , ,v+n-m+z+z,(s+a) +
u (t) dt < 0(e) (3.C.29)

The term within the modulus signs in (3.C.29) is bounded 

Thus Lemma 3.A.1 implies

E 6 . (s+0) B (s) B, (s) 
i=0 1 o +

, , >v+n-m+z+z,(s+a) +
u (t) dt < 0 ( e 2)

whence by the repeated application of Lemma 3.2 we have
v
E 0. (s+0)± B (s) 

i=0 1 °
, , .v+n-m+z+z,(s+a) +

u (t ) dt < 0 (e 2)

Thus following on the lines of the proof of the previous 
theorem we have that the result follows.

v v v

Proof of Theorem 3.8

As before the violation of the implied inequality 

means that 3 a unit 0 and a o such that 
n-1 . m

0+6 . z. e . s1 .zn e ., s'
1=0 1 y(t) + 3 = 0 J-t?— U ( t)
(s+a) (s+a)

dt < 0 (e)

Consider the filtering of the quantity within the 

modulus signs through (s+a)nA (s)/(s+0) .  Let x(t)
be any state vector in a minimal realization of



G (s)
(s + 0)

obeying 11 x (a) 11 < M . Then by Lemma 3.C.3 there

exists 6 < 6 such that

•o+6

- g+6
G (s) u(t) dt < 0(e)

whence by the copriminess assumption J a vector y 

away from zero in modulus such that

■g+6

- o+6
yT W(t) dt < 0(e)

V W (• ) G W (G,M)

bounded

Thus the result follows. v v v
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APPENDIX 3,D : PROOF OF THEOREM 3.9

To prove theorem 3.9 we need the following lemma, 
which follows the same rationale as that behind the 
lemmata 3.C.2 and 3.C.3 . The proof runs similarly 
to that of lemma 3.C.2 and is therefore omitted.

Lemma 3.D.1
Consider the n-dimensional, linear, time-invariant 

multi input - single output system

x  =  A x  ( t )  +  i  r  ( t )
1 1 n (3.D.1

y-̂ ft) = cTx1(t)

T(t) bounded and the SISO system

x2 = A x2 (t) + by (t)
T (3 . D

Y2 = c x2 + dy(t)

y(t) bounded, and a signal y 3(t) such that
y 3(t)| < K ,Vt E R+ . Consider also v(t) given by

v(t) = det(S-̂ > 8 (s) {y (t)+y2 (t)+y (t) } (3.D.3)
(s+a)

where a > 0 and 0(s) is a polynomial with degree 
less than or equal to v .

For any e > 0 define 6 *(e) by

-A 6 1 (e)e = £

X determined by the zeros of (s+a)
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Suppose for some c > 0 / 6 > 6 ' ( e ) ,  and for arbitrary

finite initial conditions for the system within modulus signs,

■ g+6
|-ÜSi_{y (t)+y2 (t)+y3 <t) } |dt < e (3.D.4)

a (s+a) 1

Then
■g+6

g +6' (e)
v (t ) Idt < 0(e)

Proof of Theorem 3.9
Let (3.38b) hold. Thus

G+ 6 £ 0 . (s+0) 
i=0 1

(s+(4)v

v-i

-u (t) dt < 0(e)

(3.D.5)

vvv

(3.D.6)

Thus using (s+0)V / (s+a)V as T(s) in Lemma 3.C.1 we 
have that for some 6 < 6

■g+6

g+6

£ 0.(s+8)
i=0 1

(s+a)

v-i
-u (t) dt < 0(e) (3.D.7)

Let g ' be a point in [g+6,g+6] for which

II cT (o') II II b(a') II + |d(o') I > m 1 (3.D.8)

By hypothesis 3 such a o' . Equation (3.37) can be 
re-written as

x(t) = A( g ')x (t)+b(o')r(t)+Ab(t)r(t)+AA(t ) x (t)
(3.D.9)

u(t) = cT (g 1)x (t)+ d (g ')r (t)+Ac T (t )x (t )+ A d (t )r (t )



where AA(t) = A(t)-A(a') and Ab, Ac and Ad are 

similarly defined. Then u(t) can be expressed as
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y^(t)+y2 (t)+y^(t) where the y^(t) are defined as 

follows.

(t) = A(c')x(t) + I (Ab(t)r(t) + AA(t)x(t) }

y3 (t) = Ac (t)x(t) + Ad(t)r(t) .

Now, by associating A(a'), b(a'), c(a'), d(ö'),
Ab(t)r(t)+AA(t)x(t) and r(t) with A,b,c,d,T(t) and 

y(t) respectively, we find that the assumptions of 

Lemma 3.D.1 hold.

Thus 3 a 6' such that

(3.D.10)
y1 (t) = cT (a')x1(t)

x2 (t) = A(a')x2 (t) + b(a')r(t)
(3.D.11)

Y 2 (t) = cT (a')x0(t) + d (a ')r (t)

and
T

Vz e (s+fj)1 
i=0 1

v
ra+6

' g+6 ' (s+a)V+n
C (s)r(t) + f^(t)+f2 (t) dt < 0(e)

where

£(s) = cT (ö ')Adj(sI-A(a '))b (g 1)

fx(t)

I {Ab(t)r(t)+AA(t)x(t)} n
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and
v

det (sI-A (a ' ) ) { Z e^s+3)1}
f2 (t) = ---------------------------(AcT (t) x(t)+Ad(t) r(t) }

(s+a)

Now if are the coefficients of £(s) , then

(3.D.8) ensures that || £ || is bounded away from zero 

where

5T =  150 . . .  •

Thus the result follows. vvv
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APPENDIX 3 . E : PROOF OF THEOREM 3 . 1 0

(a )  We n o t e  f i r s t  o f  a l l  t h a t  f r o m  ( 3 . 6 0 )  a n d  

( 3 . 6 1 )  t h e  e x p o n e n t i a l  s t a b i l i t y  o f  k i m p l i e s  t h e  

e x p o n e n t i a l  s t a b i l i t y  o f  k a n d  e .

(b) S i n c e  t h e  q u a n t i t i e s  <j>,0,x e t c .  a r e  r e l a t e d  

i n d i r e c t l y ,  t h r o u g h  s t a b l e ,  ( s t r i c t l y )  p r o p e r  t r a n s f e r  

f u n c t i o n s ,  t o  r ( t )  i t  f o l l o w s  t h a t  t h e y  t o o  m u s t  b e l o n g  

t o  t h e  s e t  f t ^ [ 0 , ° ° ) .

A l s o , f r o m

k =

( 3 . 5 9 ,  3 . 6 0 )  we h a v e  t h a t

Q-, $ ( $ Tkg  + e ( t )  )

(j)TQ<J) +

w h i c h ,  d u e  t o  t h e  b o u n d e d n e s s  o f  <J> Q<J> + Aq a n d  

t h e o r e m  3 . 1 ,  i s  e x p o n e n t i a l l y  a s y m p t o t i c a l l y  s t a b l e  i f  

t h e r e  e x i s t  p o s i t i v e  a ^ 4 , a i 3 a n d  l a r g e  e n o u g h  p o s i t i v e  

Ä s u c h  t h a t  :

f 0+ ̂ — t
a 1 3 I  < <J>4> d t  < a 1 4 I  ( 3 . E . 1 )

f o r  a l l  q e R+ .

(c)  We now show t h a t  ( 3 . 6 2 )  i m p l i e s  ( 3 . E . 1 )  .

As b e f o r e , t h e  e q u i v a l e n c e  o f  t h e  u p p e r b o u n d s  f o l l o w s  a s  a 

c o n s e q u e n c e  o f  t h e  b o u n d e d n e s s  o f  t h e  q u a n t i t i e s  i n  

q u e s t i o n .  C o n s i d e r  t h e n  t h e  v i o l a t i o n  o f  t h e  l o w e r  b o u n d  

i n  ( 3 . E . 1 ) .  T h e n ,  s i n c e  <j>e £^ [0 , ° ° )  , a r g u i n g  a s  i n

t h e  p r o o f  o f  t h e o r e m  3 . 2 ,  t h e r e  e x i s t s ,  f o r  a n y  a r b i t r a r y
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£ > 0, a unit vector y such that

|yT£| < e on [g,g+A]

Thus

T . -I tc (si-A) by I0 02n 0 I < e on [g+v ,g+A]

1 Tr„T qT,T 77 y [0 0 ]3 U y < £ on [g+v ,g+A]

where v is some positive number independent of G .
Thus as 0£p^[O,°°) and as has degree n* , we have,
by Lemma 3.A.1, that

|yT[0^ Ö^]T I < 0(£1^n ) on [G+v,G+Ä] .

Hence from (3.39) , (3.49) and (3.53) and the stability 
of T and det(sI-An) we have thatp 0

I Cy,
g a (s) P P Bp(s) yT] (sI-A ) 1b,

' y  o  (
0 (£1/n*)

Twhere y = [y T.y ] .u y
Now, aP and are coprime, has degree n and

Y^(sl-A0)-Ib0 and Y^(sl-A0) ^b^ have numerator polynomials
of degree at most n-1 . Thus

(Y,
a (s) PV s)Yy)<Sl-A0)_lb0 % 0
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as otherwise a /ß can be represented by a rationalP P
function of degree less than n .

Thus, as in the proof of theorem 3.2, a combination
of lemmas 3.A.1 and 3.A.2 leads us to infer the existence

A Tof a A' independent of o and a vector n = [tIq  ̂- •• 2n ^  

such that
2n-l _ .
E n.fs+ß)1 

i=0 1______
(s+i)2n-1 < 0 U 1/2n*) on [c+A1,c+A] (3.E.2)

where || n || is uniformly bounded away from zero.
If we denote the quantity within the modulus sign in 

(3.E.2) by w(s)u , then (3.E.2), (3.39), (3.49) and
(3.53) together with a trivial modification of lemma 3.A. 2, 
imply that there exists a A"> A' such that

|| w(s)I[B^ , 0^]T || < 0(e1^2n ) on [o+A",o+A] . w y

Moreover, we know from proposition 3.1 that
|| kT , kT || is bounded. Rewriting (3.50) as u y

u = kT e + kT e + (i/g )e u u y y rp r

a modification of Theorem 3.9 and the decaying of 
that for a large enough A'"

I w ( s) (u — ̂ ) I = I w(s) (k^eu+£^ey )| £ 0 ( e1 ̂ 2n*)

[c+A"', a+A]
P

whence

show

on

|w(s)0r | < 0(e1//2n ) .

Thus,if 0r = [0r , ... 0r/(s+ß)2n 1]T then
following the reasoning employed in proving the previous 
theorems, if there exist positive and A such that
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r g+A
“is1 < 0 0Tdt r r ( 3 . E . 3)

for all ö £R+ , then the lower bound of (3.E.1) must 
hold. Now as 0 is related to r by a stable transfer 
function having no more than n^ imaginary axis zeros, 
a direct application of theorem 3.7 shows that the lower 
bound of (3.62) implies (3.E.3) and hence the lower 
bound of (3.E.1) . Thus (3.62) must ensure the 
exponential stability of the scheme in question.

vvv
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v

Controller System

Figure 3.2 System with controller.

Controller System

Figure 3.3 An equivalent representation of 
fig. 3.2 with block A' possibly 
nonminimal.

A (s) (s + 3)
A, (s)i=l (s+ß)

Figure 3.C.I. Representation of equations (3.C.1 - 3.C.3)



(s+a)

A(s)(s+a)

A, (s)

(s+a)

Figure 3.C.2 Representations of equations (3.C.15-3.C.19)
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§ 4. EQUATION ERROR IDENTIFICATION
This chapter considers a class of equation error 

identification algorithms for systems whose unknown 
parameters have direct physical relevance. In the last 
two decades a large number of algorithms for identifying 
linear, time-invariant systems of known finite order have 
appeared in the literature [1-7]. The standard approach 
in these and many others algorithms is to presuppose a 
complete lack of knowledge about the unknown system (aside 
from the degree and relative degree) and to ignore all 
additional information available to the modeller. The 
algorithms thus estimate the numerator and denominator 
coefficients of the transfer function, having first 
assumed all of them to be unknown. In practice, however, 
a great deal of partial knowledge is often available, 
which if exploited should give rise to parametrisations 
involving fewer unknowns and better identification schemes.

Formulated here are identification algorithms which 
exploit a form of partial knowledge commonly encountered 
in practice. Of particular interest are situations where 
uncertainities in a system are restricted to specific 
parameter values (usually with physical significance) , 
eg. the value of a moment of inertia, a frictional 
coefficient or a capacitor, with the remainder of the 
system known a priori. As argued in chapter 2, for such 
systems, the tranfer function can be viewed as a ratio 
of two polynomials with the polynomial coefficients 
multilinear in the unknown parameters.

In section 4.1 are presented three identification
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algorithms which exploit the multilinearity mentioned 
above. Two of these involve two step procedures. The 
first step obtains an unconstrained estimate of the 
parameter vector by ignoring the inherent nonlinearity 
while the second step uses this latter knowledge to 
constrain the parameters on to the desired mainfold.
The third algorithm essentially combines these two steps 
into one by using penalty functions. Two of these 
algorithms require that the bounds on the magnitude of the 
parameters be known. Given that these parameters are 
directly related to physical element values, such a 
requirement is easy to satisfy. Section 4.1.3 gives an 
interpretation of two of the algorithms. Section 4.2 
presents persistence of excitation conditions on the 
system input which guarantee the uniform asymptotic 
stability (u.a.s.) of these algorithms. The analysis 
used draws heavily upon the tools developed in chapter 3. 
Section 4.3 considers in turn the convergence properties 
of the three algorithms while section 4.4 discusses 
certain ideas related to identifiability and 
implementability of one of the algorithms. Section 4.5 
presents simulation results. Most of the work contained 
in this chapter appears in [8] and [9].
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4.1. PARAMETER ADJUSTMENT LAWS 
4.1.1 The System and Some Notations

In this chapter, we consider the problem of identifying 
a stable, single input, single output, time invariant 
linear system with proper transfer function

W(s) = P(S,k) (4.1)
Q(s,k)

Here, k is an N-vector of the unknown parameters 
k^,...,kN which are to be identified and P(s,k) and 
Q(s,k) are polynomials in s . Specifically, we study 
the case where P and Q are multilinear in k^,...,k . 
Thus, with the set S defined as

S = {1,...,N} (4.2)

then

P(s,k) = ?0(s) + lr<=S
[ nier kJ Pr (s) (4.3)

Q(s,k) = q0 (s) + IrC s [ nier ki] qr (s) (4.4)

For each subset r of s , Pr<.) and q (.) (as well
as Pq (.) and q0 (.>) are known polynomials. In this
section, adaptive algorithms for identifying k from
the measurements of the input signal u and the output 
signal y and knowledge of the coefficient polynomials
p^(.) and qr(.) is presented. Each algorithm produces

~ a ~ Tat time t an estimate k(t) = [k-̂ (t), ... ,kN (t)]
of the unknown vector k . Define the parameter error 
x(t) by
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x (t) = k(t) - k (4.5)

~ (2N-1) and let K and K(t) be vectors in IR ' with
A

entries H k. and H k.(t) respectively for each 
ier 1 ier 1

r cs . The ordering of entries must be consistent and the 

singelton subsets {1}, {2},...,{n } are placed first.

We shall abuse notation by writing, for example, K^23 

for K| 2 3} ' being the r = {1,2,3} entry of K . Thus, 

for a three parameter system,

k = [k1,k2,k3]

= [kx (t) ,rk 2 (t),k3 (t> ]"
1—1 

< MII (t) -
/\

-k1 ,k2 (t) -k2 ,k3 (t)

tk l'k 2'k 3 ,k1k 2,k2k 3'k 3k l'k l
A

= [k.
A

, k 2
A A A

,k3,k1k2 /
A A A /N

k 2k 3'k 3k]

, define D(x,k) by

D (x, k) = K (t) -K (4.6)

and let d(x,k) be the r-entry of D(x,k) so that

d(x,k) = I! (k.+x.) - n k. (4.7)r . l l . lier ier
( 2 ^ — 1 ) x ( 2 ^ — 1 )Let the matrix A eR' ; be defined by

A = diag {A^IrcS} (4.8)

where X^,...,XN>0 and X^2,...,X^2 N>0 . The ordering
A

of A must be consistent with that of K,K and D.

One approach to identifying the system described by
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equation 4.1 is to rewrite it as
lv-/ ■ yW(s) p0 (s) +rcs KrP0 (s)

V s) +rcs Krqr(s)f
iio aisn
l b s i=0 is

i

(4.9)

(4.10)

where the a. and b. coefficients are affine functionsl l
of K , s . These coefficients and hence K can r r
then be identified by standard techniques [eg.1-7].
However, such an approach ignores several forms of 
a priori knowledge. First, several of the a^ and b^ , 
or linear combinations there of, are known. Second the 
coefficients K obey nonlinear relationships typified by

Kr = n k± (4.11)
ier

Further, since the unknown parameters k^, ieS often 
represent physical element values or coefficients in many 
cases there will be a priori bounds on their values or 
knowledge of their signs which can be usefully exploited 
in their identification. This a priori information is 
more difficult to use in the identification of the 
a^ and b_̂  coefficients in equation (4.10) .

In this section, three identification schemes for the 
system described by equation (4.1) are presented. The first 
two, referred to as the least squares two step algorithm 
and the generalized two step algorithm involve a two step 
procedure outlined as follows.

Step 1 : Ignoring the ä priori information expressed
in the nonlinear relationships between the
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parameters (equation 4.11), an unconstrained estimate, 
referred to as K , of K is produced

A

Step 2 : A constrained estimate K which is in some 
sense close to is produced so that it obeys the
nonlinear relations of equation (4.11).
Note that these two steps are performed simultaneously.

For example in a two parameter system with transfer 
function

P0 (s)+k1p1 (s)+k2P2 (s)+k1k2p12(s) 
qQ (s)+klqi (s)+k2q2 (s)+kxk2q12(s)

the first step generates = [ K^,K^2 ,K ^ 2 ] where

Ku12 nee<3 not equal k u iku2 * Tke secon(  ̂step generates
A A rp  A / \  A A y-|-|

a [k^,k2] such that ' ̂ 2 ' kik2 i s  in some sense
the closest to K . It is not true, however, that theu
first step does not utilize any a priori information 
whatsoever. The only information that it is ignoring is 
the nonlinear relationship between K ^2 an<̂  Kul an<̂
K^2 , for example. Thus, as compared to parameter 
update laws which estimate a^'s and b^'s in (4.10) , 
having assumed them all to be unknown, the number of 
estimated parameters in the first step is still smaller.

The third algorithm, referred to as the single step 
algorithm, combines these two steps into one by using a 
penalty function.

The remainder of this section contains detailed 
descriptions of these algorithms and their implementation. 
The last subsection is an heuristic justification of the 
approach taken in the design of these algorithms. These 
algorithms are designed on the premise of ideal system



behaviour; i.e. the system satisfies certain idealizing 
assumptions of no noise, no time variation and no 
modelling errors. In face of modest departures from 
ideality, we shall argue that these algorithms still 
behave in a more or less acceptable manner. What is 
more, simulation results in section 4.5 demonstrate, 
that in the two step algorithms outlined above the 
second step leads to substantial improvement over the 
first step, whenever the idealizing assumptions are
violated.
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4.1.2 Least Squares Two Step Algorithm 
Define for each rCg,

vr (s) = Pr (s)u(s) - qr(s)y(s) (4.12)

and
v (s)

h (s) = — -— - (4.13)
(s+y )

where y > 0 and n is the highest degree among the 
qr (i.e. the order of the system in (4.1)). We have 
thus introduced state variable filters in the fashion 
of [1], to avoid explicit differentiation of the 
measurements, in order to simplify presentation, the 
notation will be abused by writing, for example, h^(t) 
to denote the inverse Laplace transform of h^(s). Let 
for t > 0 , V (t) and H(t) be vectors with elements 
v (t) and h (t) , respectively, for all rCs. (The 
ordering of entries runs in the same manner as the 
ordering of entries of K.) Then the input-output 
relation in (4.1) can be rewritten through (4.13) as

hQ(t) + KTH(t) E 0 (4.14)

Let us now consider the vector r^t) and the 
matrix R(t) given by

r (t) = / Sa(t'T)h (T)H(T)dT (4.15)u o u
and

R(t) = / ea(t_T)H(T)HT (T)dT (4.16)
0

where a > 0. Under certain persistence of excitation 
conditions and certain restrictions on the polynomials
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p^(s) and q^(s) it will be shown in the next

section that for some t > t^ R(t) is nonsingular for all t > tg . 

Hence, for the remainder of this section, the following 

interim assumption is made. It can be removed after 

section 4.2.

Interim Assumption II

There exists tQ>0 such that R(t) is nonsingular 

for all t > tg. V V V

To state the least squares two step algorithm 

define the function L : RN *IRN-HR+ by

L(x,k) = ^ D(x,k)T A D(x,k) (4.17)

where D and A are defined in equations (4.6) and (4.8) 

respectively.

Then the proposed parameter update law is

K(t) p)L (x (t) , k)- Tb
T8K (t)

/\

3k(t)
A [K (t) -K]

(4.18)

(4.19)

Equation (4.18) can be implemented using the following 

result.

Proposition 4.1

Consider the parameter update law in equation (4.18) 

and suppose that interirrv assumption II holds. Then (4.18) 

can be implemented by the following equation

k (t) 

R(t)

- ■ ^ t)A [R (t) 1 r
3k u

-aR(t) + H (t) H (t) T

(t) + K (t) ] 

,R(0) = 0

(4.20)

(4.21)

for te[0,tg]
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^[R(t) 1] = a R (t) 1 - R (t) 1 H (t) H (t) TR (t) 1

(4.22)

for t > t,

rQ (t) = -a rQ (t) + hQ (t) H(t) (4.23)

where H(t) is the vector of hr (t) defined in

equation (4.13) and is defined in equation (4.8) and

K(t) is the vector with entries n
isr

ki (t).

V V V

Remarks

(4.1) Equations (4.21), (4.22) and (4.23) are on-line 

implementations for the variables R(t) (R(t) )̂ and 

r^(t) defined in equations (4.15) and (4.16).

(4.2) Starting with equation (4.14) and post-multiplying
— ctT Tby e H (t) yields that

e_at(hQ (t) H (t) T + KT H (t) H(t)T ) = 0,¥te[R+

By integrating this equation, it follows that

rQ (t) + R( t) K = 0  (4.24)

i . e .

K = -R (t) ~1 r(t) (4.25)

Thus equations (4.21), (4.22) and (4.23) form K. This

is step 1 of the algorithm referred to above. Equation 

(4.20) can be viewed as a steepest descent minimization 

of L which is the second step of the algorithm.

(4.3) The use of quantities R(t) and r(t) in
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identification is not new. For example, in [6] one
can find an identification algorithm using an error

/\

formed as r (t)+R(t)K(t) which can be verified to equal
A

R(t) [-K (t) +K (t) ] .
(4.4) Precision demands that (4.14) be rewitten as

hQ(t) + KTH(t) + e(t) = 0

where e^(t) consists of linear combinations of 
exponentially decaying signals, arising from initial 
conditions in the system and the state variable filters. In 
conjunction with the boundedness of H(t), this in turn 
requires (4.24) cind (4.25) to be rewritten as

r (t) + R(t) K + e2 (t) = 0

and

-R-1 (t) r (t) = K + R_1 (t) e2 (t)

respectively where i-s exPonentially decaying as
well. Since R 1(t)£2 (t) is exponentially decaying, we 
will henceforth ignore it in our convergence analysis.

(4.5) Even if we neglect the initial conditions,
(4.24) and (4.25) hold only under ideal circumstances, 
i.e. when there are no noise and unmodelled modes. In 
face of departures from these assumptions R ^(t)r(t)  ̂-K. 
As we shall argue in the next subsection the second step
is designed to improve upon the estimate generated through 
-R ^(t)r(t), a fact which is borne out by the simulation 
results of section 4.5.
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4.1.3 An Interpretation of the Least Squares Two Step
Algorithm

It could be argued that equation (4.20) in the least 
squares two step algorithm is unnecessary since the 
vector K can be formed by multiplying -R (̂t) with 
r^(t). The unknown parameters k are then the first 
N components of K . However, this ignores round-off 
errors, effects of initial conditions and spurious 
signals such as noise, all of which combine to make 
-R(t) r^(t) (as calculated) different from K . In
fact, -R(t) r^(t) (as calculated) will probably not
obey the nonlinear relations implied by equation (4.11) 
i.e. -R (̂t) rq (t) may not belong to the correct model 
set. Equation (4.20) can be viewed as an attempt to use 
these nonlinear relations to filter out the imperfections 
and to constrain the eventual estimate to lie in the 
correct model set.

To examine this problem in more detail by way of an 
anology, consider the problem of estimating a parameter 
vector $ given a sequence of scalar measurements y^ 
and vectors x. and modell

y^ = x^ $ + n^ (4.26)

where n^ is a noise sequence. A common estimate for $ 
is the least squares estimate which minimizes
|(Yi-xT$)2 i.e.

<? = R-1a (4.27)u
A T  Awhere R = 2 x^x^ and a = ^y^x^ . But now suppose that

2$ is constrained so that for some 0elR
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4> = [01,02,ei62]T (4.28)

We now seek an estimate $ = [0^,02,0-^021 minimizing 
T 2I (Yj_ ~ x̂ 4>) . If the measurements were noise free,

A

one could use the same $ as before. But in general this 
will not be possible, and the minimizing 0 will satisfy

/S /N

1 0
0 2

A

(a-R ' S i
0 2 ^

_ 0 1 e l J 1
CM

CDrH
CD ̂

(4.29)

T 2which is obtained by differentiating £(y. - x.$) with
i 1 1

respect to 0 . This equation could be very awkward to 
solve, and alternative approaches to parameter estimation 
with obvious intuitive appeal might prove more practical.
One such possible approach involves the following two step 
procedure.
(i) Find the value of $ , call it $ , which minimizesu

I (yi - 2 .
i

(ii) Find the value of $ , call it $ , which minimizes
|| $ -$ || 2  and such that 30 such that $ = ( 0̂  , © 2  , T.
The solution to step (i) is = R "̂a and the gradient

solution to step (ii) is

1
i o e2 " (R a- 1—

r—
1

CD <
1__

0.
/\

<CM> <

0 1 01 0192

(4.30)

Now let us relate these ideas to our identification 
algorithm. If there is some noise or other modelling 
error present, the quantity -R r̂̂  has to be interpreted 
as a least squares estimate, based on measurements up to 
time t , and with exponential discounting of old data.
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As such one cannot expect that -R will have the
correct constrained structure which K has. Accordingly, 
our identification algorithm attempts to implement the 
second step of the two-step procedure described above - it 
introduces a gradient descent algorithm to locate the 
value of K (satisfying the constraints) which is a best 
least squares match of -R ^r^ i.e. a gradient descent

A

algorithm for finding the k which minimizes 
L(x,k) = [K + R-1r0 ] TA [K + R-1^] .

Note that the gradient descent algorithm provides a 
practical procedure for solving the equivalent equation 
to (4.30). It may provide some opportunity to track 
time-varying parameters and offer the possibility of 
averaging out the fluctuations in -R (̂ t)r̂ ( t)„ which 
stem from noise. In fact simulation results to be 
presented in section 4.5 illustrate that this is 'ndeed the 
case and that the second step leads to a significant 
improvement in the accuracy of the parameter estimates.
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4.1.4 General Two Step Algorithm

The algorithm presented in this subsection is a 

generalization of the least squares two step algorithm.
— 1 / 9 ^ — 1 )The term -R(t) r (t) is replaced by K (t) eR 1 . It

0 ~
is assumed that K (t) is generated by a differential 

equation and that, in the absence of noise or modelling 

errors,

lim K (t) = K 
4- u

For example, Ku (.) might be the solution of

Ku (t) = - 3 H (t) [hQ (t) + H (t)T Ku (t)]

(4.31)

(4.32)

for some 3>0. The quantity within the brackets can be

verified to be [K (t)-K] H(t) and as such is obtainable

in an ideal (eg noiseless) case from measurements, even

when K is unknown. The implementation of this law is

then precisely equation(4.20)with R(t) 1rQ (t) replaced

by K (t) i.e. u

k(t)
 ̂m

3K (t)
A3k

A [ K(t) - Ku (t)] (4.33)
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4.1.5 Single Step Algorithm

The third algorithm studied in this chapter does not
A

produce an estimate k(t) of k . Instead, it produces

an estimate Kg (t) of K which tends in the limit to

obey the nonlinear relations of equation 44.11). To
N

achieve this, define the function L : IR̂ 2 x p>N ■> ^ by

Ls (Ks ,k) = I [ M K s-K)T (Ks-K) + |Xr (K -ig Ksi)2]rC s
(4.34)

where K is the r-th entry of K , K . is the sr —  u s si
{i}-th entry and X and X^ are positive constants. Recall 

that the first N entries of K are k and that the
rth entry is Kr = ^  . For example, if N=2,

Ls (Ks,k) = \  [A(K -k )2 + X(K ,-k )2 + X(Kcl,-k1k,)2

+ A12(Ksl2-KslKs2) ]

ksl2 1 2

(4.35)

Thus the first term in equation (4.34) is the square of the

Euclidean distance between K and K and the seconds
term is the measure of the amount by which K fails tos
obey the nonlinear relations implied by equation (4.11) . 

The single step algorithm is obtained by a steepest

descent type minimization of L

Ks (t) -S R(t)
3L (K (t) ,k)b bnr

That is, for some 3>0, 
T

(4.36)

where R(t) is defined in equation (4.16). Note that 

equation (4.36)is a differential equation with state
(2N -1)space R v .

Define, for K elR 
(2N-1>in IT L> to be

(2N-1) and res, the vector X (K )r s
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X (K ) r s
A

[ ~  (K L3 K srs
. nier

T
K si>] (4.37)

For example, for N=2 and r = {1,2}

X (K ) r s = t-K s2'-Ksl' 1]T

Then the single step algorithm of equation (4.36)can be 

implemented as

K (t) = -ß [ A R (t) K (t) + Ar (t) + R(t) £A
res

(K - . n K . ) X (K (t) ) ] (4.sr ler si r s J

This follows by differentiation of equation (4.34) and 

observing that

r0(t) = -R (t) K (4.39)
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4.2 PERSISTENCE OF EXCITATION

Section 4.1 showed that the implementation of the 

least squares two step parameter update law is conditional 

on the non-singularity of the matrix R(t) defined as

R(t) = J^e06̂  T (t ) HT (t ) dr

With this in mind we now state p.e. conditions - first 

on H (t) and subsequently on the input u(t) - which 

guarantee the nonsingularity of R(t) . Moreover, it will 

be shown in subsequent sections that the conditions on 

u(t) which guarantee the nonsingularity of R(t) are also 

conditions which are necessary for the uniform asymptotic 

convergence of the other two algorithms.

4.2.1 A PE Condition on H(t)
Theorem 4.1:
Consider a vector H(t)efi [0,°°) and a positive scalar

a. Define the function g : IR"*--* by

rx t > 0
g(x) = {

l0 t < 0

Suppose there exist some g ,̂ > 0 and some t^ such

that Vg>Gq and T<t^

/»ö TJ , _t )H(t )H (T)dx > a1I (4.40)

Then there also exists an > 0 , such that V o > o ^

R(g ) = / eft(ö"T)H(i)HT (i)di > a9I (4.41)
0 Z

Conversely, if (4.41) holds for all o>o , then there

exist a- and t~ such that 3 and T>tJ z 0 2

/g(a-T)H(T)HT(T)dT > a3I (4.42)
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Remark
(4.3) Equations (4.40) and (4.42) are usually 

involved in a definition of persistence of excitation.
The point of the theorem is that the finite interval in 
the p.e. definition is equivalent to an arbitrarily long 
interval with exponential forgetting applied to measurements 
in that interval. From another point of view, looking at 
measurements over a finite interval is equivalent to 
looking at measurements over an arbitrarily long interval 
with an infinite discounting factor on all but a finite 
subinterval, where there is no discounting. So the theorem 
is concerned with a form of equivalence of different 
discounting rates in defining p.e.

Proof
The violation of (4.41) implies that for arbitrary 

e>0 there exist a a > and a unit vector £ such that

Thus as H£^ä [0,°°) , by Lemma 3.A.1 and arguments similar
to those in the proof of theorem 3.2 we have that

t-a(a-x) e (CTH (T)}2dT < £ V-te [ 0 , a]
0

e-a (a-x) U TH(t) }2 « 0 ( Vte[0,a]

whence

V -te[0,a]

Thus for any finite T <t^

CTH(t) 2 « (He’5) Vte[g(o-T),a]

Thus the violation of (4.41) implies the same for (4.40).
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Hence (4.40) implies (4.41).

(ii) Note first of all that Hefi^fO,00) implies that 

there exists a K such that

I I H (t) I I < K on [O,00)

and that finite one sided limits for H(t) and H(t) 

exist at all points in [0,°°) . As before the violation

of (4.42) implies that for arbitrary e > 0 , there 

exist a a > oq 'T > t2 and a unit vector £ such that

|S H| < £
q(a-T)

on [g(c-T),a]

Thus I£TR(c)£ -a (a-g (a-T)) e~a (g(a-T) -T) u Th(t) }2dx

+ I e"a(a_T){STH(t )}2dx 
g(a-T)

0 ( £ 2 ) a - T < 0

e" (G g(G T)) K 2 + 0 (e2) a - T > 0

By definition, g(a-T) = a - T when a - T > 0 

whence a - g(a-T) = T > when a - T > 0

~ott
Thus |CT R(a)£| < e 2 + 0(e2) when a - T > 0

-at
So selecting t£ to force 2 2< e ensures

I STR(ö ) S I < 0 (£2)

Thus (4.41) is violated as well. In other words (4.41) 

implies (4.42).

Remark

(4.4) Conditions (4.40) and (4.42) in a sense indicate 

that the linear independence of the h^(t) and hence of
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the v (t), r f 0 is necessary for the algorithm in 

(4.20 - 4.23) to be implementable. In some cases the 

linear dependence of the v (t) may lead to a lack of 

identifiability of the k^. For example if there exist 

nonzero constants ci'C2 ' C 3 such that

C1V1 ^  + C2V2 ^  + C3V3^t  ̂ E 0 

one can readily verify by substituting into

vQ (t) + k1v1 (t) + k2v2 (t) + k1k2v3 (t)

that k^ and k^ cannot be distinguished from k^ + c^d

and ^2 + C2^ respectively, where

C3~klC2~k2ClQ
C1C2

There are instances, however, when this may not be the case. 
For example if any vr is identically zero, then the v^ 

are linearly dependent, though the system may well be 

identifiable. Thus if

vQ (t) + k1v1 (t) + k2v2 (t) = 0

then k^,k2 remain identifiable as long as v^ and v 

are linearly independent. Thus we have a situation where 

the unknown parameters are uniquely identifiable although 

the algorithm cannot be implemented. The question of 

possible remedies to this is discussed later in Section 

4.4.

4.2.2 A PE Condition on u(t)

The theorem below relates the p.e. condition on H(t) 

to one on u(t), subject to the following assumption on
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P 1 ' 'P 12 ... N and *1' ' q12 N

Assumption 4.1

If {0̂ .} are a collection of scalars such that

I 6 p (s) = I 6 q (s) = 0 
rCS rCS r r

Then 0 = 0  V^rcs.r

(4.43)

Remarks on Assumption 4.1.

(4.5) Should (4.43) hold for some nonzero 0 , then

the v would be linearly dependent irrespective of the 

input signal, and so R(t) would be singular for all 

input signals and times t . Again as argued in remark 

(4.4) this does not always mean a lack of identifiability 

in the system, e.g. for the example cited there, when 

q1 2 (s) 5 p (s) = 0.

(4.6) Let n denote the maximum degree of any of the 

polynomials p (s), q (s) . Rewrite (4.43) as

[91 ®2 012...N^ r o 1 n 0 1 n —
;P1 P-̂  • • • P-̂ ql ^1 ... q^

0 1 n 0 1 n
P2 P2 * * * P2 !2 q2 ---q2

*0 1 n *0 :1 *n
_P12. ..N P12...N P12...N qi2...N ql2...N q12...N

p a denotes the c o e f f i c i e n t r: iof S in Pj(s) .where 

Then if 2i',‘>2(n+l) ,N-1 > n + 1 , it is guaranteed

that there exist nontrivial 0^. So the number of 

parameters which can be identified by the algorithm 

presented to this point can never exceed a bound imposed 

by the complexity of the system.
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Consider an asymptotically stable nth 

order system having a proper transfer function of the form

y (s) = P(s, k) 
u (s) Q(s, k)

with kePN P (s , k) = Pn (s) + I ( . n k.)p (s) and
u res e 1

Q(s,k) = q Q (s) + I (igr ki)qr (s) . Assume that P(s,k)
rCS

and Q(s,k) are such that they are coprime, that the

transfer function P(s,k)/Q(s,k) is never identically

independent of any of the k^, in the sense that for no
9 pi do we have [ ^ ] = 0 for all s and all

a U
k, , k„ , ... , k._, that1 2  N

6 [q] = n > 6 [qr] VrC S

u (t) [ 0 ,°°) and that Assumption 4.1 holds. Define m

as the maximum degree among the polynomials

p q - q p— rr r ^r*r V r , r£ S, r^r

and

Prq0 - qrP0 ' VrCS

Define also

THA(t)
v, (t) *__
(s+y)

v 2 (t)

(s+y)n

vN (t) v12(t)

(s+y)n (s+y)n
V12...N(t) 

(s+y)n

and

UT (t) = [u (t) , U(t)(s+y) ' •••
I

Suppose aa4 ,6 >0 ; such that vceR+

a+6' T
a 4I < / U(t)U (t) dt

a

u  (t) 

(s+y)

(4.44)
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Then a a c>0 and 6>6 * such that VaeR, d +

» a+ 5 Ta 5I <  J 0 H(t)Hx (t) dt (4.45)

Proof

In the sequel, notation will be abused in the following

w a y :

c (t) = d(t)
b(s)

will refer to the solution of the differential equation 

b (p) c (t) = a (p) d (t)

p = d/'dt, with arbitrary finite initial conditions. In 

the definitions of H(t) and U(t) , as noted earlier 

all initial conditions are zero.

Suppose (4.45) is violated.

By Lemma 3.A. 3 we have that u (t) efî  [ 0 , °°) implies 

that both H (t) and U (t) eft̂  [ 0 ,°°) . Thus using lemma

3.A.1 and arguing as in the proof of theorem 3.2, we have that 

for an arbitrary e>0, there exists a unit vector 

0T= [ 9 ̂  , 0 2 / • • • Ö -^2 N ] such that

I 0TH (t) I < e on [ a , a+5 ]

Thus ga 5*, < 6 such that

V / P(s,k)
r£ s r qr Q(s,k) - p ) u < 0(e) on [o+$,,a+6]

(sty)

Thus by arguing as in theorem 3.2 g a ^  such that

, . v n„ , . v Q (q P(s,k) - p Q ( s , k ) )(s+v) Q (s , k) y 9 ~̂ r ’ ^rv u
f . — \ 2n (s+y) rCs (s +y ) Q(s,k)

<0(e)

on [a+6 2 , a+$ ]
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whence

(prQ(s,k) - P(s,k)qr) u 

rCs r (s+y)2n

Now I 0 (p Q -  qrP) t 0 
res

as otherwise either

< 0(e) (4.46)

y
u i l 0rPr (s) }/{ I e q (s) } 

res r rCS r

or I 6 p (s) = I 0 q (s) = 0 
rCs rCs

neither of which can hold by hypotheses (the first falls 

down by the coprimeness and <S[q0]>6[q^] assumptions and 

the second by Assumption 4.1.) Now, (4.46) can be rewritten 

as

p (qn+ yj.n k.)q ) - q (pn+ y (,n k.)p )y Q { r Q rcS ier l ^r ^r 0̂ rgs ler i ^r >
L r* —  ?n Jres (s+y )

< 0(e) (4.47)

_ T _Thus there exists a nonzero vector 0 = [0n , ..., 0L 0 m J
such that (4.47) is equivalent to

m _ .

i l , v £  » < «/ 2n(s+y )
< 0(e) on [a+62 ,a+6]

where m has been defined in the hypothesis. Thus by 

lemma 3.A.1 and arguments similar to those in theorem 3.2

~ 111
(s+y ) R m I 0•(s+y )1 

i=0 — , . — \ 2n(s+y )
< 0(e1/(2n_m+1))

on [a+62 ,o+6]

whence
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~ m 
, , —v 2n-m r(s+y) I

i=0
0i (sty) 1
, — v 2n(s+y)

0(el/(2n-m+l))

on [0+62,0+6]

}G + 6 TU (t) U (t) dt > a . I
o+62

is violated. Thus (4.44) implies (4.45)

Remarks

(4.7) A single sinusoid carries with it two pieces of 

information - namely, its magnitude and phase - and a 

linear combination of ^ sinusoids (1/2 a sinusoid is 

tantamount to a dc signal) should in general identify an 

N-parameter system. But for a system of the form

v q (t) + K V (t) E 0 (4.48)
N/2

the application of an input \ u. sinoj^t would result in
i=l

the generation of N equations of the form

and

a~ . + > a . IT k .Oi jt 0 n  . i rC S jer J
(4.49)

b0i +  ̂ bri .n kj u rCS r j er J
(4.50)

N/2
where vr = Y (a^^sinw.t + b^cosuKt) . In general, the 

nonlinearity in (4.49) and (4.50) means that they may not 

have a unique real point of intersection, and thus a 

linear combination of N/2 frequencies may not suffice to 

identify the parameter vector K. On the other hand a 

linear combination of (2N-l)/2 sinusoids will generate 

altogether (2N-1) equations in the k^, from which the
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LNelimination of the (2 -1-N) nonlinear terms is possible. 

This will leave N linearly independent linear equations. 

Thus an input with (2N-l)/2 different frequency components 

should suffice to uniquely identify (4.48). However, in 

actuality one may require more than this number as the 

transfer function may become independent of some of the 

unknowns at all of these frequencies. For example, in a 

3-parameter system all the may be the zeroes of the

polynomials P]_/P12/P123 'qi 'ql2 and q123 simultaneously, 
making the transfer function independent of k^ and the 

latter simply unidentifiable for this particular choice of 

restriction of input frequencies. Theorem 4.2, quantifies, 

we believe, the above argument, whenever, the linear 

dependence of the v^ coincides with the loss of 

identifiability of (4.48). As far as linear independence 

is concerned,if all the are simultaneously the zeroes

of both p^ and qr for any rCS , then the linear 

dependence of the {v } and hence the lack of 

implementability of the least squares two step algorithm 

is immediate. Thus u(t) must be sufficiently rich in 

frequencies to preclude such a possibility.

(4.8) It is worth noting that m < 2n - £ , where £ 

is the relative order of the system. Thus the required 

number of frequencies in the input signal will in general 

be smaller than that required for the algorithms in [1-7] 

(see Corollary 3.1).

(4.9) A reversal of the arguments in theorem 4.2 shows
■ I

that if there exist a r and 6 independent of a such thatb

a,I «  /
G + Ö

H (t) H (t) dt (4.51)
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for all aeR+ , then there also exist and a

suitably large 5 > 61' , independent of a such that

g+(5 t
a?I < J U (t) U (t) dt (4.52)

Furthermore, when Q is not Hurwitz analysis on lines 

similar to that presented in Theorem 3.7 reveals that 

while (4.44) still implies (4.45), in going from (4.51) 

to (4.52) one must replace U by U , where

-TU [u,
sty / , \m-v(s+y)

]
where v is the number of imaginary axis zeros of Q . 

Thus when the unknown system has jw-axis poles, the 

precise locations of which may not be known, some 

relaxation on the complexity of u may be permitted.
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4.3 Convergence Analysis

In this section the three parameter adjustment 

algorithms presented in section 4.1 are analys ed for 

convergence.

4.3.1 Convergence of Least Squares Two Step Algorithm

The error model of the least squares two step algorithm 

is given by

A

x (t) = k (t) = 8K(t)
3k(t)

(K(t)-K) (4.53)

8L(x(t) , k) 
8k (t)

(4.54)

with

L(x(t),k) = |(K(t)-K)T A (K(t)-K) = -̂DT (x , k) AD (x , k)

(4.55)

Recall that k is the N-dimensional parameter vector, 

k(t) its estimate, K and K are the 2 - 1  dimensional

vectors containing the multilinear combinations of the
~ a ~elements of k and k respectively, x(t) = k(t)-k ,

D = K (t)-K and A is a (2N ^x2N ^) dimensional diagonal 

matrix with diagonal elements X . The first N diagonal 

elements of A are positive while the rest are 

non-negative.

In this subsection we are interested in the behaviour 

of (4.53). Several results are derived.

First, it is shown to be locally exponentially stable 

about the true parameter values. With a restriction on 

the magnitude of the true parameter values, global 

uniform asymptotic stability is also established.
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Next, it is shown that regardless of the true parameter 

values the algorithm is uniformly convergent whenever
A

the initial guesses for the entries of k are either 

zero or have the correct signs. Though these stability 

results on (4.53) are apparently independent of any p.e. 

conditions, without p.e. (4.53) cannot be implemented so 

the p.e. requirement is after all present.

Finally, a modification of (4.53) involving time 

varying A is proposed and shown to be globally uniformly 

asymptotically convergent.

As the understanding of the structure of (4.53) is 

crucial to the understanding of the proofs we note that 

(4.53) can be written more explicitly as

x± (t) = - l a ( n k • (t)) ( n k. - n k.) (4.56)
res jer  ̂ jer  ̂ jer J
ier j^i

VieS

For example in the three parameter case this becomes

A

k = - X1 0 0 x - X12d12 k2 X23d23 0 X13d13
“A “
k3

0 X2 0
A

ki
A

k3 0

0 0 >• 0

1 
X
“ > 

l*° 1 
> 

Ü=
L_

where dr = ( II k . (t) ) - ( II k . (t) ) . 
jer jer

The arguments in this section all refer to the 

behaviour of the algorithm in the idealized case of no 

noise, time-invariance of parameters, no nonlinearity, etc. 

Later, we shall comment on what can happen given departures 

from the ideal, using our conclusions about behaviour in

the ideal case.
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4.3.1.1 Local and Semiglobal Stability
The theorem stated below establishes the local and, 

what we call, "semiglobal" uniform asymptotic convergence 
of the algorithm in (4.53). The seimglobal result states 
that global uniform asymptotic convergence can be claimed 
if the unknown parameters or some of the elements of the 
gain matrix A fall in a certain region of space (of 
nontrivial size). In the sequel we shall assume that

(4.57)

where

A1 = diag { ,  ... XN>

and

A2 = diag ^X12' *** X123...N^

where the elements of A^ are positive and those of A2
non-negative.

Theorem 4.3:
The parameter adjustment law

. _ _ 3L (x,k)
9x

is u.a.s. if any of the following hold
(i) The initial x(0) lies in a ball around the origin

of arbitrarily large radius R, and k lies in a 
ball around the origin of radius r(R,A).

(ii) The initial x(0) lies in a ball of arbitrarily
large radius R and the elements of • see
(4.57), lie in a ball around the origin of radius
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r*(R,k).
(iii) The initial x(0) lies in a ball around the 

origin of radius r''(k,A).

Proof
See Appendix 4.A

V V V

Remarks
(4.10) Stated simply the result claims the following: 
The algorithm will converge uniformly asymptotically 

to zero, regardless of how large x(0) is, provided that 
the actual parameter magnitude is "small enough" or if 
the elements of A2 are "small enough". It is also 
locally u.a.s. (condition (iii)) irrespective of 
k and A , though the extent of convergence will depend
on k and A .

However, the theorem fails to specify the exact extent of 
II k II and II Â  II for which, global (with respect to x) 
uniform asymptotic convergence can be claimed, i.e. the 
formula for the radii r and r' in (i) and (ii). By 
contrast, for the two parameter case, this region is 
exactly known. In fact theorem 4.4 given below shows that 
this region is defined by

T 8^1^2k* 1 A k < ^  2i a 12

and r and r' are seen to be independent of R . 
Whether this dependence extends to N > 2 parameters is 
unknown.

(4.11) Of the above (ii) is particularly interesting 
as it shows that the algorithm is exponentially stable if
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= 0 . This is because A^ = 0 implies 

x- = -A^X^

The question may well arise as to why A^ need be 

made non-zero at all if global stability can be claimed 

even otherwise. By making A z e r o  the multilinearities 

are no longer explicitly accounted for in our algorithm. 

(This notion is also consistent with our discussion of 

the rationale of the algorithm is section 4.1.3) Thus, 

intuitively, useful information is being discarded, with, 

one would conjecture, an accompanying degradation of 

performance.

Theorem 4.4:

Consider (4.53) when N , the number of unknown 

parameters,is two. Then (4.53) is u.a.s if

T ® ^1^2k1 A, k <
1 A12

with A^ defined in (4.57).

Proof

For N=2 , (4.53) becomes

k [I E (x,k) ] A I
(^x+k)TE

where

(4.58)

1

0

Taking L(x,k) (see (4.55) as a Lyapunov function from 
(4.53) one can see that (4.53) is u.a.s. if the right side
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for this is
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det [I E(x,k)] A

(^x+k) E

> 0

*= det A1 (l + X12 (^x+k) TEA1 1E(x+k)) > 0

*= 1 + Xf2 (%x+k)T (x+k) > 0 (4.58a.)

By minimizing the left hand side of (4.58a.) with^respect to 

x one can see that it is greater than

A12 T
1 ” 8AiA2 k A]k*

Thus (4.53) is u.a.s. if

A12 T
1 - 8 X ^  kV  > 0

whence the result follows. V V V

4.3.1.2. Assured uniform asymptotic convergence

In this subsection we demonstrate that initializing 

the parameter estimates with correct signs guarantees 

uniform asymptotic convergence. Indeed, in many real 

situations such sign knowledge will in fact be available 

as unknown parameter may be a moment of inertia, a 

frictional coefficient and so on. If, on the other hand,
A

such knowledge is not available, we show that k(0) = 0

will suffice. Our result is proved in two steps. We 

show first of all that all trajectories starting from the 

closed orthant of the k space, which contains k = k , 

remain in that orthant. We then show that this orthant is 

free from false equilibria, i.e. x in (4.53) is zero iff
A

x=0 (k = k).
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Lemma 4.1
/\

In k space, let 0

/\

denote the closed orthant

k i k .  > 0 , ^ i } (4.59)

Then all trajectories starting from any point in 0 

(including the origin) remain in 0 for all time.

Lemma 4.2

None of the equilibria of the parameter adjustment
A

law (4.53), except k = k , lie in the orthant 0 .

Both these lemmata are proven in appendix 4.B.

Theorem 4.5:

Suppose the initial estimate of the parameter vector
/\

k be such that

k.k. (0)l l > 0 ¥ieS

Then (4.53) is u.a.s.

(4.60)

Proof

If the initial estimates satisfy (4.60) we have, by 

lemma 4.1 that the parameter estimates remain in 0 . 

Taking L to be the Lyapunov function we have from 

(4.54) that
—  — 1rT —  -j-
3L(x,k) 3L(x,k)

3x 3x

which is negative everywhere except at points at which 

3L(x,k)
=  0

i.e. points of equilibrium of (4.53). Thus L is 

negative definite in a region free from false equilibria.



Lemma 4.2 thus ensures that L is negative definite in O. 
Thus whenever (4.60) satisfied the trajectories remain in 
a region where L is negative definite. The result is 
then immediate. V V V

Remarks
(4.12) In proving theorem 4.3 it can be shown that 

the local rates of convergence of (4.53) are exponential, 
in that if x(tß) Ü es in a ball of radius r''(k,A) 
around x=0 , then x(t) decays exponentially fast for

A

all t > tg . Furthermore, starting from k(0) = 0
A

(4.53) is u.a.s. and k(t) so generated is thus uniformly 
bounded so that one can always construct an exponentially 
decaying function which overbounds x(t) . This shows

A

that (4.53) is exponentially stable whenever k(0) is in 
the orthant O .

(4.13) It is a well known fact that adaptive 
algorithms with exponential rates of convergence are 
substantially immune to noise and a variety of modelling 
deficiencies. Thus our algorithm should, as long as the 
trajectories remain in Orthant 0 , be robust. If on the 
other hand, the presence of noise, of reasonable magnitudes, 
forces the trajectories to leave 0 , one may well ask if

A

convergence can still be expected. Observe that if k^ = 0

x . 3 - [ IrCS 
j cr

A ( n k k ) ]r a aaer
â j

and if k

x = - A-ĵ x
/s

It is easy to see from these that in the vicinity of k = 0
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and/or the hyperplanes bounding 0 , the trajectories still 

point towards the interior of 0 . Thus for sufficiently 

small excursions from 0 , they can be expected to reenter 

0 and eventually to converge to x=0.

(4.14) Of interest also is to see what happens if
/N

once K has converged to the correct value K , the latter 

undergoes a step change to K. Thus

R (t) K = - r Q (t) ¥t<t, (4.61)

and K(tg) = K (4.62)

Now, let K become K Vt> t Q * Thus the new system is 

given by

h Q (t) + KTH(t) = 0 (4.63)

By definition

R (t) ea(t T)H(T)HT (x)di

°ea(t T)H(T)HT (T)dx + e (t T) H (T) HT (T) dx

ea(t t0)R(t )̂ + ea (t T ̂ h (x)HT (x )dx
t0 (4.64)

Similarly,

r0 (t) = 5a(t-t0)r0 (t0) +
t

ea(t T)h (T)H(T)dt (4.64a.)

Equations (4.61 - 4.64a.) imply that Vt>t

R (t) K = ea(t t0) R(tQ) (K-K) + ea(t t0)R(tQ)K

-a(t-x)H h t (T )Kdx
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ft -a(t-T)e= ia(t-V'0'R(t0) (K-K) hQ (t) H (t) dx
0

= e-a(t-tA)0'R(tQ) (K-K) - rQ(t)

Thus

-R 1 (t)rq (t) = K O'R (t) R (tQ) (K-K)

Thus -R ^(t)rQ(t) approaches K exponentially. In

light of theorem 4.7 in section 4.3.2, this implies that

k converges uniformly asymptotically to k , k obviously 

defined, as long as k has the same sign as k . Since 

the parameters have physical significance signs of the 

elements of k are unlikely to change.

4.3.1.3 A modified least squares two step algorithm

In this subsection we propose a modification of the 

algorithm in (4.53) by requiring A to be time variant. 

Recall from the proof of theorem 4.5 that with L (see 

4.55) as a Lyapunov function L is negative semidefinite 

equalling zero at the stationary points of £4.53) . 

Unfortunately (4.53) in general has stationary points 

apart from x=0 and thus global u.a.s. of (4.53) cannot 

be claimed. In remark (4.16) we show, however, that all 

stationary points apart from x=0 are unstable with 

respect to changes in A2 and thus in principle one can 

find perturbations in A w h i c h  will induce the parameter 

estimates to drift away from these "false" points of 

equilibrium. One way of achieving this is to 

continuously alter the elements of A£ in a manner 

indicated by Theorem 4.6.
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Theorem 4.6:
With L and A2 defined as in (4.55) and (4.57)

respectively, the parameter update law
9L [ x (t) , A (t) ,k]

- (4.65)X  — 3x

and

A2(t) = diag {f (A2 (t) ,t) } cS (4.66)
1 r | >1

is u.a.s. if f are continuous, X (0)>0 ,¥Xr (0) ar r
diagonal element of A2(0) and -fr(A2,t) > *r(A2>
with d>r obeying

(i) <J> = 0 iffX = 0r r
( 4.67)

(ii) 4> > 0 VX > 0r r
Note Ir| = number of elements of r

Proof
See Appendix 4.C.

Remarks
£

(4.15) A possible fr (A2,t) is -ar^r T • ar > 0 •
More generally, the rth element of f must be negative
for all positive X . Thus in the limit X can be 

c r r
expected to converge to zero though this convergence can 
be made arbitrarily slow

(4.16) A heuristic interpretation of the above 
theorem is that by changing A2 we are continuously 
driving the false equilibria away from the trajectory.
To see why this is so observe that for a fixed A2
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x(xe ,A2) =-A1xe _ VLrc S 
I r I >1

3d
A dr r 3x

Suppose xg is an equilibrium point and xg ^ 0 . Then 

as x = 0 , the second term on the right hand side of the

above equation must be nonzero. Suppose we alter A2 

AA2 , such that A is charged by -A a, a>0 . Then

3d

by

x(xe,A2 + AA2) a lres
I r I >1

A dr r 3x

Thus by changing A2 we cause the trajectory to move 

from the false stationary point.

(4.17) It is evident, nonetheless, that in the limit 

we could drive

of the algorithm would then be the following:

(i) leave

(ii) then change A2 according to AA2 = -aA2 , until the 

convergence rate picks up again.

Then if the equilibrium point being approached is x = 0 

changing A2 will not alter matters. False equilibrium 

points on the other hand will be driven away.

A^ to zero. An attractive modification

A2 constant until x slows down;

4.3.2 Convergence of the generalized two step algorithm

This subsection analyses the convergence properties 

of the generalized two step algorithm. Exponential 

convergence is shown to be conditional on a p.e. condition 

and the knowledge of the magnitude of the parameters. The 

latter information we reiterate is in practice available 

as magnitude bounds on physical parameters are usually 

known.

Examined here is the parameter update law
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M t )
^  rn

9KTt) 
9k(t)

A [ K (t ) - K (t) ] (4.68)

where K^(t) is generated from a differential equation 

eg (4.32) and has the property that

lim K (t) = K
t-*o° U

In this subsection we put forward conditions on K (t)u
which will force (4.68) to retain the convergence 

characteristics of (4.53). In particular we shall 

require Ku (t) to approach K exponentially fast i.e.

-v t
HKu (t) - Kll < v IIK (0) - K He Z (4.69)

where v-̂  and x> ̂ > 0.

Theorem 4.7:

The parameter estimate update law (4.68) is u.a.s. if:
A

(i) the parameter estimate k(t) remains in a region 

where ||9L/9x || , with L defined in (4.55) , is 

positive definite i.e. it equals zero if x = 0 , and

(ii) The adaptive law generating K^(t) is such that 

(4.69) is satisfied (in the absence of noise, 

structural modelling error, etc).

Proof

See Appendix 4.D. V V V

Remarks

(4.18) One way of satisfying condition (i) is to
A

force k(t) to remain in O. See also remark (4.19) .

(4.19) It is evident from the foregoing that (4.68)

will be globally u.a.s. whenever = 0 and K^(t)



186

satisfies the condition of the above theorem. For 
nonzero A2 , however, K (t) needs to be so generated 
as to force each of its elements to either have the same 
sign as the corresponding element in K or else to 
equal zero. Then by arguing as in lemma 4.1 it can be

/N  /S

shown that k(t) remains in 0 as long as k(0) is in 
0 , whence subject to the satisfaction of (ii) in theorem 
4.7, uniform asymptotic convergence of (4.68) is immediate. 
We describe below such a scheme which can be implemented 
whenever the signs of the k^ and the bounds on them are 
known a priori, viz if

m . < k . < M . VieSi l l

Consider the scheme

Ku (t) = -3 H(t) [Kux (t)H(t) + hQ (t)] (4.70)

As the system is described by

K H (t) + hQ (t) E 0

(4.70) is equivalent to

Ku (t) = -3 H(t)Hx (t) (Ku (t) - K (t) ) (4.71)

Thus by theorem 3.1 (4.69) is satisfied as long as a
constants a^,a2/ 6 > 0 such that v<^£R+

ra+<5
axI < HH dt a2I (4.72)

For u(t) eß. [0,°») , theorem 4.2 gives the conditions on
u(t) for which (4.72) holds.

A

Conditions (i) of theorem 4.7 is satisfied if k(t)eo
for all teR+ . This can be achieved by adding a penalty
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function in the fashion of [12] to (4.68) viz
• w p

k(t) = - ^ (t) A [K (t) - K (t) ] - r . t ,  (it(t)) ,
9k (t) u 1

k ( 0) e 0

where I is a diagonal matrix and the ith element of

/v

¥u (k(t) ) A
i ki (t) - im when ki (5K m i

0
A

when nu < k ^ (t)<IVL
,k^ (t) - M i when k^ (t) >Mi

¥ is

In the above m is assumed positive, a fact that can be 

achieved by translating the parameters k^ . The weighting 

matrix F^ is chosen so that for every ieS and teR+

A ^

0<k.(t) < M.l l

when IVL are arbitrarily chosen constants, greated than M.. 

Analysis of equations of this form will be given in Chapter 

5. Another possibility is to add a penalty function of the 

above form to (4.70) so that all the elements of K (t)
A

are always positive. This in turn ensures that k_̂  (t) eOvt£R+ / 

a fact proved by a simple extension of the proof of lemma 

4.1. The choice of the weighting matrix here, however, 

requires the knowledge of magnitude bounds on H(t) . If 

these are not available a normalization of the form in [12], 

given below may need to be introduced

K (t) u
H (t) [K 1 (t)H(t)+h (t) ]-e —  T- - - - - -  -  - r2 4-2 (k (t) >

6 + HT (t) H (t)

where vrcs

*2r(Ku (t))

n m
ier

 ̂ 0

when K < II m .ur . l ier

elsewhere
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The choice of T^ and a comprehensive analysis can be 

found in Chapter 6.

4.3.3 Convergence of the single step law

Consider the differential equation (4.36). It can be 

rewritten as

K = -ß R (t) [ A (K (t) -K) + I X (K (t)
O  »D v—  -L u  irCS

n K . (t) )
ier sl

9 (K (t) -sr
8K (t) s

.nier (t) )

(4.73)

with ^1^2 >  ̂ *
Then the following theorem describes conditions for its 

uniform asymptotic stability.

Theorem 4.8:

The adaptive law in (4.73) is u.a.s. in the large if

(i) Ksi (t)ki > 0 VicS (4.74)

and

(ii) an 3d^> 0 such that for some tg and all

t>tQ R(t)>a1I (4.75)

Proof

Consider the Lyapunov function

~ [X(K -K)T (K -K) + X (K,z s s rC S r
I r I >1

n K n  
ier

(4.76)

where |r| denotes the number of elements in the set r .

Clearly, L is positive definite with respect to K -K.s s
Now (4.73) can be rewritten as
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Ks (t) -ß R(t)
3Ls (Ks (t),k) 

3Ks (t>

Then

- L s (t> =
r 9 L (K (t),k ) T r 3 L (K (t),k)s s R (t) s s

9K (t) 9K (t)s s

3 L g (Ks (t) ,k)fT ~9Ls (Ks (t),k)“---1

4JW<ro

---1 9 K s (t) (4.76a.)

Now 

t .

[3Ls (Ks (t) ,k)/8Ks (t) ] 

Thus (4.73) is u.a.s.

9L (K (t) , k)
— --------------------  =  09K (t) " us

has no explicit dependence on 

if

(4.77)

Kg (t) = K (4.78)

Now, for all r not a sigleton the rth element of
9L (K (t) ,k) s s______

3Kg (t) is given by

A K - II k . + A K - n K .sr l r sr siier ier

Thus (4.77)

A . n k . + A . II k ler l____ r ler siA + A VrCg,IrI>1

(4.79)

Now the ith element of 9L (K (t) ,k)/9K (t) , VieS , iss s s

A(Ksi-ki> + L  Ar (.n Ksi) ( .n Ksi-Ksr> rcb -j£r j e r
ier j^i

Thus by (4.79), (4.77) =*

M K  -k ) + l a ( n K )( n K . - a n k + a n k )
rCs jer jer ier______i e r __
ier j*L X + A

r
= 0 
Vies
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=> X(Ksi-ki) + l
res
ier

, xrx ( n k .) ( n K . - n k . ) = o
X+X jer S1 jsr S1 jer * 1 

r V-ieS
(4.80)

If we substitute k^ by K  ̂ Vies in the proof of 

lemma 4.2, given in appendix 4.B, then we find that (4.80) 

holds iff

Ksi = k± VieS (4.81)

as (4.74) holds and X^ and X̂ _>0 . Substituting (4.81) 

in (4.79) we find

Thus (4.77) (4.78), whence the result follows.
V V V

Remark
(4.20) Theorems 4.1 and 4.2 state conditions under 

which (4.75) is satisifed. To ensure that the first N 

elements of always have the same signs as the

corresponding elements of k we introduce a linear 

translation in the k.'s . Let us illustrate with a twol
parameter example.

Consider figure 4.0. Suppose the true parameters

k^ and k^ are known to lie in the region

m^ < k^ <

m2 < k2 < M2

depicted by region A . Suppose m^ < m 2 and the extents 

of the region in the X and y directions are A1 and A2,



respectively. Now suppose, the true parameters are both 

translated by a positive number A , so that their

translated values k .l lie in region B . Obviously the

extents of region B in the x and y directions are

unchanged. One obvious constraint on A is that m^ 

and m 2 are both positive.

Suppose

(t) = A[(Ksl(t) - + (Ks2(t) - k 2 ) Z + (l<s12(t)

+ h 2 (Ksl2(t) ' Ksl(t)Ks2(t))

Now, (4.76a.) =*■

L (t) < L (0) VttUO b '

Select K s (0) so that it belongs to region B and

K s 12(0) " K sl(0)Ks2(0> •
Then

Ls (0) < A[AX2 + a 2 
Ä 2

+ (m1m 2

= M A X2 + A 2 
A2 + (mlÄ2

= M A X2 + A 2 
A 2 + [ (Ax

---a 2-,- m 1m 2) ]

+ n\2A1 + A-lA2) 2]

+ A2) m^+(m2~m1)A1+A ia2]2]
(4.82)

Suppose Ksl(t1) for some t^>0 . Then

Ls (tl} ^ Xkl + X(Ks 12 kik2} + X12Ks 12
XX12 + X12X^ Ak +

Akx +

(X+X12^
XX12 ~  2~  2 

-r-- r---  k n k nA+A12 1 2

(A+X^2) k ik 2'

(4.83)

Now, the highest power of A in equation (4.83) is four
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while that in (4.82) is two. Thus for suitable large A 

Ls(tl> " Ls(0)

Thus if we translate the parameters by a suitable extent 
then

Ksi(t) > 0 VteR+

This procedure can be easily extended to N>2.
We remark that one could also conceivably use a 

penalty function term, of the form used in the gradient 
descent algorithm, to restrict the to be positive.
The stability analysis, however, becomes too awkward to 
handle.
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4.4 SOME NOTIONS RELATED TO P.E. AND PARAMETER
IDENTIFIABILITY

As noted earlier, the linear independence of the v (t) , 

rC{i, ... n } is necessary for

R(t) (t-i) H (x)HT (t )dx (4.84)
J 0

to be nonsingular. If R(t) is singular the least squares

algorithm defined via (4.20 - 4.23) is not implementable.

Recall from section 4.2 that the singularity of (4.84)

is itself a consequence of the linear dependence of the

v (t) as r

H (t) =
v1 ( t) 

(s+y)n
v2 (t) 
(s+y ) n '

V12-N 
(s+y)n

(t) T

However, the linear dependence of the v^(t)'s need not 

always make the system

vQ (t) + KTV(t) = 0 (4.85)

unidentifiable. In this section we consider modifications 

to the least squares two step algorithm to cope with 

situations where R(t) is singular, yet the unknown 

parameters k^ are uniquely identifiable.

One form of lack of persistence of excitation arises 

when some of the v^(t) = 0 . Below, we consider this 

situation in a greater depth.

Consider the error signal

e (t) = v Q (t) + KT (t) V(t) (4.86)

where K(t) is a constrained estimate of K , defined in 
section 4.1. By subtracting (4.85) from (4.86) we have
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that

e (t) = DT (t) V (t) (4.87)

where

D (t) = [d̂  (t) , ... , dN (t), d12(t), ... , d123(t)N ] T

and

d (t) = n ki (t) - n k. VrC 5.
isr ier 1

Now clearly if for any r , vr(t) = 0 , then the
corresponding dr is not reflected in e(t) . If too
many of these dr are not reflected in e(t) then
error signals like e(t) will not identify the parameters 

uniquely. For example for a two parameter system

vQ (t) + k-̂ v̂  (t) + k2v2(t) + k1k2v12(t) = 0 ,

suppose v2(t) and v1 2 ^  are koth identically zero.
Then only d^ is reflected in e(t) and k2 cannot 
be identified. The following definitions are meant to 
capture this situation.

Definition 4.1
For the system defined by (4.85) , the error term d^ (.) , 

rC s, is observable if vr (.) is not identically zero 
with time.

Definition 4.2
The system in (4.85) is fundamentally identifiable 

under the following conditions: all the observable d̂.
/N

equal zero if and only if k = k .
Recall that the step II of the original least squares

twp step algorithm
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x  (t) 3K^t)
3k(t)

A D (t ) (4.88)

with

x (t) [k(t)-k]

Then an obvious modification

x = - a5
3k(t)

where D is the same as 

set equal to zero. The implementation of (4.89) is

(4.89)

D with the unobservable d 'sr

straight forward. With H0bs ̂  vector °f all

h^(t) which are not identically zero, we define

o b s (T)Ho b s (T)dtR  , (t)obs = rV (t-T)H
0

and f t
r u (t) obs = 5 “(t- T)h 

o "

Here h (t) = 1—  V ( t)r / . \ n r(s +y )
Then D (t) is obtained by
A

K , obs is obviously defined.

As far as the uniform a

obs (i)dx .

: , + R J (t)r , (t)obs obs obs where

is concerned an obvious pre-requisite is that the system 

be fundamentally identifiable as only then will D(t) have 

enough elements to ensure identifiability. But that by

itself is not enough. One must also ensure that the
/\

closed orthant 0 of the k space, which contains the
A

true parameter value, has no points other than k=k for 

which x=0 in (4.89). Condition (ii) of theorem 4.9, below, 

guarantees this situation and is explained at a greater 

length in remark (4.21)
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Theorem 4.4:

For the system defined in (4.89) let the following 

conditions hold:

(i)
observable

(ii) for every ieS there exists at least one observable

the gain element Ar is positive whenever d^ is

such that ier.cs and for all other jeri '
is observable; (note that r^ may equal i whenever 

d^ is observable).

Then for a fundamentally identifiable system (4.85), (4.89)

is u.a.s. whenever

( 0) k^ > 0 , ¥ieS (4.90)

Proof

See Appendix 4.E. V V V

Remarks

(4.21) Condition (ii) in the statement of theorem 

4.9 implies that at least one among d^ ... d is
A

observable. Should this be violated then k = 0 will be 

a stationary point of (4.89) making k(0) = 0 insufficient 

to guarantee convergence. For example when N=3 , let 

d^, . . . d^ be unobservable, but let ^ 12 ' ^1 2 3' ^23 anĉ  
d̂ -̂  be observable. Then it can be checked that the 

system in question is fundamentally identifiable.

, the parameter law (4.89) becomes

k i = "X12k2d12
A

A13k3dl3
A A

"A123k2k3d123
A

k2
/s

"A12kld12 A23k3d23
✓\ A

_A123klk3d123

x 
>

u> II

/\

”A13kld13
A

A23k2d23
/\ A

~A123k2kld123
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Clearly, when k^ = = k^ = 0 , k = 0 . Thus the origin
A

of the k space is a stationary point.
More generally, even if some of the cL , ieS , are 

observable, the nonsatisfaction of (ii) would cause some 
of the hyperplanes bounding 0 to be stationary with 
respect to (4.89). For example if in a 3-parameter system 

only d^, d^^ and d-^3 are °kservakle' the trajectories
/N

will never leave the plane k^ = 0 . Thus, unless k^ = 0 ,
✓ s

k(0) = 0  will not lead to convergence. On the other hand 
if (4.90) can be replaced by

ki(0)k± > 0 Vies (4.91)

which is possible if signs of the k^ are known a priori ,
then as long as for every isS there exists at least one
observable dr with ier^cs , (4.89) would be uniformly

i
convergent. To understand this observe that if any k^ = 0, 
the parameter estimate update law becomes

X. = - y X ( n k k ) x .l r a a lres
ier

aer
a^i

where X = 0  for all unobservable d„ ; whence it is r r
easy to see that in the interior of the orthant O , all

A

trajectories point away from k = 0 and the boundaries
/s
k^ = 0 . Thus the satisfaction of (4.91) guarantees that 
all trajectories remain confined to a region of negative 
definite L as long as the system is fundamentally 
identifiable.

(4.22) Lack of p.e. could arise as a consequence of
deficient inputs i.e. those not satisfying (4.44), or due 
to a fundamental property of the system, namely the



violation of assumption 4.1. As far as the modification 
in (4.89) is concerned, it works for both cases as long as
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the nonzero v (t) are linearly independent. When some of 
the nonzero v (t) are dependent due to the violation 
of assumption 4.1, it is sometimes possible to find an 
affine transformation in k. which makes all nonzerol
transformed v (t) linearly independent, whence one can 
apply (4.89); e.g. for N=2, v^ and v ^  linearly 
dependent and

V2 + avi2(t) E 0 (4.92)

 ̂ -1let k = (k̂  -a)a for some nonzero a. Then observe 
that

/\ A

vQ + (aki + + k ?v 2 + (ak1+a)k2v12 E 0

whence

(Vq + av^) + akivi + aklk2V12 E  ̂ *

Thus theorem 4.9 is applicable whenever k^ ^ a . If 
however k^ = a and (4.92) holds, it is easily checked 
that the system is fundamentally unidentifiable, in the 
sense that it is impossible to identify k^. If linear 
dependence such as (4.92) arises due to insufficiently 
frequency-rich inputs, then the required affine 
transformation cannot be determined a priori, as the value 
of a would in this instance depend on the unknown k^ . 
Moreover, in some situations a convenient affine 
transformation cannot be obtained e.g. when N=2 , and v^ 
and v^ are linearly dependent. Whether an appropriate 
modification to (4.89) exists in these two cases, remains an 
open question.



4.5 SIMULATION RESULTS

In this section we present simulation results for the 

two step least squares adaptive identifier, The 

primary goal is to demonstrate that inclusion of the 

second step does indeed improve performance in the face of 

a whole range of deviations from ideality. The system 

considered has transfer function

T (s) P
(s+2)(s+3) 

(s+l)(s+4)(s+5) (4.93)

parameterized as

T (s) P
s +k1s+k2

(s3+fis:?-s-io) + 2k1s2-k2s2+k1k2 (s+i)
(4.94)

with k^ = 5 and k2 = 6 .

By applying theorem 4.2 it is clear that p.e. is 

guaranteed whenever the input has two distinct frequencies 
This requirement is satisfied in all the simulations. All 

the A^'s are unity, unless otherwise specified.

Throughout this section -R ^(t) rQ (t) will be 

denoted by K^(t) and t îe second step will be treated as

k = - 3K -(t) A [K (t) -K (t) ] (4.95)
9k (t)

Ideally, of course Ku (t) = K .

4.5.1 Sinusoidal drift in the parameters

In this subsection we introduce simusoidal drift 

in the parameters. Thus k^ = 5 + .5 sin .Olt and 

k2 = 6 + .5 sin .Olt. The time t^ in (4.22) is 5. Figs
/s.

4.1 and 4.2, show the tracking abilities of k^, k  ̂ and
A

K2' Ku 2 respectively. The curve marked 1, in each plot
A

represents k^ while the curve 2 represents k. or
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K i , as the case maybe. The first plot in each figure
/s.

is an exploded view of k^, k_̂ vst and the second is k. ,
A

Ku vst. It is evident that the k 2 tracks k^ much better 
than ku 2 ' while the performance of k^ and K  ̂ are

A

comparable. The third plot in each figure show k^ ,k̂  vst 
on the parameter axis scale 0-6. It is evident that 
tracking is almost perfect. Thus the second step has 
indeed improved matters.

4.5.2 Step change in the parameters
In this subsection we consider step changes in the 

parameters after the identifier has estimated the old 
parameter values. The values of k^ and k^ are

f 5 t< 50
6 t>50

/

6 t< 50
7 t>501

Figures (4.3) and (4.4) show the values of and k^
respectively; Fig (4.5) has both plots superimposed on
one another. It is clear that convergence to the second

/\

value is smoother for k^ than it is for K This is
because the second step also acts as a low pass filter.

A

Similar results were obtained for k0 and K Thus2 u2
here again the second step leads to improvement.

4.5.3 Identification when system has high frequency 
unmodelled modes:

Here we consider the case where the system has 
unmodelled modes at -100 ± 14i. Thus it has a transfer
function
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T_(s) 10196 (s+2) (s+3)pu 2
(s+1 )(s+4)(s+5)(s +200s+10196)

although the identifier is designed for (4.93). The
A

first and second plots on figure (4.6) are k^ vst and

K , vst, ul respectively. Similarly, figure (4.7) gives

K 0 vst. u2 The respective steady state values are

k i  = 4.956 K , = 4.5029 ul

llCM
< M 5.2582 K ~ = 4.8594 u2

Clearly, both the k . track the valuesl of 5 and 6 closer

than do K andul
A

K _ . Also, the k.u2 l are far less bumpy

than their K  ̂counterparts.

In the next two subsections we dispense with the first

step, but run (4.33) after introducing deliberate errors

in K . u

4.5.4 Sinusoidal disturbance in the unconstrained estimate
A

The two plots in fig (4.8) give K 2 and k^ vst when

the unconstrained estimate K- has a sinusoidal disturbance.u
Thus K (t) is u

K^T (t) = [5 + .05 sin.Olt, 6 + .05 sin.Olt, 30 + 05 sin 

• 01t]
/\

It is clear that the effect of the disturbances on k^ is

much less marked than on K ~. Similar results wereu2
obtained for kn and K n.1 ul

4.5.5 Biased noise in the unconstrained parameter estimate',,

In this section we introduce noise in the unconstrained

estimate K . Both the bias and the standard diviation u
will be varied as will be the parameter A ^  • The
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nominal parameter values will be 5 and 6.
A

Figure (4.9) gives k^ and K .. vst when ul
[5,6,30]T + n(t) where

e (ni(t)) = .5 i=l,2,3

a(ni (t)) = l i=l,2,3

Also 1^2 = 1*
Figure (4.10) gives the corresponding plots for

and K The following features are of interest.u2
(i) There is a significant smoothing effect due to the 

second step.
A /\

(ii) The approximate bias for k^ and k^ are -.0249 
-.0047 respectively. Thus there is a significant 
reduction in bias as well.

A

Figure (4.11) gives k^ and K  ̂vst when

E(ni(t)) = .1 i=l,2,3

and a(n^(t)) = .1 i=l,2,3 .

There is again a perceptible filtering effect. The
A A

resulting biases on k-̂ and k^ are -. 0001 and .0083 
respectively.

Figures 4.12 and 4.13 represent cases when

E[K ] = [4.5, 6.5, 29.5]T. But, in the former,
noise of standard deviation .1 is present in each element 
of while, the latter has no noise.

The following observations can be made
A A

(i) The steady state values of k^ and k^ in fig 4.12 
are 4.5222 and 6.5059, respectively. Though the

A

bias in k^ is apparently bigger than .5, the
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A A /-\

distance (k -5) + (k9~6)z is smaller than (4.5-4; +
1 *

(6.5-5) 2.
A A

(ii) The steady state values of k^ and k^ in fig 
(4.13) are 4.9812 and 5.9059.

(iii) Apparently there are more than one combination
A A A A

of (k^,k2,k^k ) which are equally close to
A A

(4.5,6.5,29.5). Two such are given by (k^,k2) = 
(4.5222, 6.5059) and (4.9812, 5.9059). It appears 
that in such situations external factors such as 
absence or presence of noise determine which 
parameter set is selected.

Thus the second step has two effects on noise in 
-R_1(t) rQ(t) :
(i) it has a low pass filtering effect and
(ii) it results in significant reduction in bias.

The effect of A12 is interesting. Figure (4.14)
a m

gives k^ vst when E{K^} = [4.4, 5.5, 29.9] and
a(r]̂ (t)) = 1 V i, for the cases where A^2=  ̂ an<̂  ® *
The respective biases were (.0073, .0016) and (-.6023,
-.4041). Thus though the low pass filtering effect is
retained, with = 0/ bias reduction is almost absent
and convergence is substantially slower.

Finally, figs 4.15 and 4.16 deal with the case when
the bias in K is [-.6, -.5, .1] and the a. are .1. u i
The values of A^2 were 1 and 3 respectively. The

A A

resultant biases in [k^,k2] were [.0003, .009] and
[.0035, .0065] respectively. Bearing in mind that we have
reached the limits of accuracy for the routine employed, 
it is nonetheless clear, that no significant improvement in 
bias is obtained beyond A = l .
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In conclusion one notes that the second step of the 
two step least squares algorithm improves upon the estimate 
-R ^(t) rq (t) on several counts. It thus leads to a 
better response in tracking unmodelled modes, tracks step changes 
more smoothly, has a better ability to track sinusoidal 
drift in the unknown parameters, leads to the reduction of 
noise in terms of both bias and standard deviation and 
reduces sinusoidal disturbances in -R (̂t) r^t) .
However, although its response speed is high, it is 
nonetheless constrained to be slower than the estimate 
generated in the first step, i.e. -R (̂t) r^(t)' for 
obvious reasons.
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APPENDIX 4.A : PROOF OF THEOREM 4.3.

Subject to the condition that all diagonal elements 

of A are strictly positive and those of A 9 are 

nonnegative we see immediately that the Lyapunov function 

L(x,k ,A 2) defined in (4.55) is positive definite in x . 

Also

L (x , k ,A 2)
3L (x,k,A 2) T *3L (x,k ,A 2 )

3x 3x
(4.A.1)

is negative semidefinite, having zeros at the stationary 

points of (4.53) , and is continuous with respect to

x, k and A 2 . To prove (i) and (ii) we need simply 

prove then that L(x,0,A2) and L(x,k,0) are both negative 

definite in x . Then by continuity there exists a k-ball 

and a A 2~ball such that for any k and A 2 lying, respectively, 

in them, the algorithm is u.a.s. Now, for k=0 from 

(4.56) we have that

i x [ n x ] [ n x ] 
r C s r aer 3er 
ier a^i

= - [ s Ar ( 11 xa)2]xi r C S aer
ier a^i

which has no stationary point apart from x=0 . This 

proves (i).
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For A 2 = 0 (4.53) becomes

x = -A iX

which too has only one stationary point x = 0 . This 
proves (ii) .

To prove (iii) observe that

x
9K 11)

3k(t)
A D (x, k)

Now D (0 , k ) = 0 . Thus (see [10, p 71, eqn (10)])

D (x , k )
l

o

3D
— 7r(vx,k) dv 
3k

x

Thus

where
x =

A(x,k) =

-A (x, k) x

A m
3K r1 3D
— 7T A — Tr (vx,k)dv

- . o 3k

Now L xTAT (x,k)A(x,k)x .

(4.A.2)

(4.A.3)

Thus if A(0,k) is nonsingular for all k , then by 
continuity of A with respect to both its arguments, L 
is negative definite in the vicinity of x = 0 , whence 
(4.A.2) is locally u.a.s. But by (4.A.3)



207

A(0,k)
x=0

3k ;
/\Ok x=0

[IN ÄT] A N

Ä

for some matrix A . Now the first N diagonal elements 

of A are positive and the rest are non-negative. Thus 

A(0,k) is clearly positive definite.
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APPENDIX 4.B ; PROOF OF LEMMAS 4.1 and 4.2 
Proof of Lemma 4.1
Recall

X. = - £ x [ n k ][ n k. - n k 1 (4.B.1)
r C s aer 3er 8er  ̂
ier a^i

Now, consider a point on one of the hyperplanes, e.g.
A

kj = 0 , bounding the orthant 0 defined in (4.59). 
Then

x. = - [ E X ( II k k ) ] x . (4.B.2a)
1 r  o r a a iJ r c S aer J

jer

where the quantity in square brackets is by hypothesis
positive,being underbounded by X . . Thus x . 

J J
always

points towards the interior of oII
< M4-1HO then

x . = - X .x . Vj eS 
J J J

(4.B.2b)

This completes the proof.

Proof of Lemma 4.2

We shall show that x = 0 iff all X d = 0 .r r
Thus since X^,... X^ are positive this can happen iff 
x = 0 . The "if" part of the proof is trivial. For the 
"only if" part consider the following cases«

Case I
A

Suppose k^k^ > 0 for all i . Consider
A
V"T T  ̂ N in = 4> diag{ki)i=1 , where «Jk = £n • Then (4.B.1)
i

implies (see also (4.56)) that
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nTx = - E X ( n k )d (j)Te ^ r a r rr c s aer

where e is a vector whose ith element is 1 if ier r

hence x does not equal zero.

( n k ) d e a r raer aer a r

aer a r ier

ier

•
X  = T •0 then n x =

all A d  = 0 , nTx r r

A

k .
E £n ~

ier iC . 1

n A

k )) -
j er J

n k .) ) }
j er J

(4.B.3)

Now

ar

( n k ) d > 0 a r <aer

< = >

( n k )[ n k .a . i aer jer J
n k ] ?

jer J

<=> (using the case I assumption)

< n ka)( n k ) 
aer ier - l < o
( n k )( n k .)a . i aer jer J

< = >

£n[ ( n k ) ( n k .) ] 
aer a jer -1

£n[ ( n ka) ( n k )] > 0 
aer jer J
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Thus is always positive unless d̂ _ = 0 . Thus

nT* = 0 iff A d  = 0 V r C S . r r

Case II

Suppose k _ ^ k > 0 , with the equality holding for
A

one or more icS . Suppose further that k.k. = 0
A  A

and k . / k . for at least one j . If k . = 0 , the 
3 3 3

calculation of x^ in the proof of Lemma 401 gives 

Xj ^ 0 and so x i- 0 . If k^ = 0 , a very similar 

calculation again yields x . ^ 0 . Finally suppose that
A  /S

whenever k.k. = 0 , k. = k. = 0 . If there are £
3 3 3 3

such kj , then without loss of generality assume these

to be kT ,... kN . Then since xN_^+1 to xN willkN-£+l
be zero one need consider only the parameters

k- , , . o . k_, „ , which have not been identified. Then 1 N-£
using the analysis of case I on the reduced system one 

can show that x = 0 implies

A d  = 0 V r C{S-{N-£+l,...,N}} . Thus asr r
djsi-£+1 = 0 ' th:*-s implies that A^d^ = 0 , V r C S

VVV
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APPENDIX 4.C : PROOF OF THEOREM 4.6

Notice that the conditions on f (•,•) and 

non-negative Â _ (0) ensure that A (t ) > 0 Vt. Consider 

the Lyapunov function

L(x(t) ,k,A(t) ) = L(x(t) ,k,X(t) ) +-|AT (t)A(t)

with L as in (4.55) and A a vector having the diagonal

elements of A^ as its elements. Thus, for the region of

space considered L is positive definite with respect to 
T T[x (t),A (t)] and is also decrescent and radially 

unbounded. Now, using (4.A.1) one can see that

3d 3d
L [A x + Z A d — — ]T [A - x + 

1 r C S r r 3x 1
I r I > 1

r
Z A d  --- ]

r C S  r r 3x 
r I > 1

- Z f (A)d 2 r- o r r r C s
I r I >1

- Z f (A) A r rr C S 
I r I > 1

[A 1x + Z
r C

> 1
A d r r

r T
-- ] [A , x
3x 1

+ Z
r C s 
r I > 1

A d r r

+ Z <J> (A) d2 
r - o r r r C S

I r I > 1

+ Z cf> (A) A =r rr C S
I r I > 1

P(x,A) .
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P(x,A) is independent of t and depends on x and A. 

Clearly P(0,0) = 0 . If A^ > 0 for any r then 

P ( x , A ) > 0  by (4.67). If A = 0 ,  P(x,A) = x^A ̂ x . 

Thus P(x,A) is positive definite in [xT (t),AT (t)]T 

and hence the combined system of equations (4 0 6 5) and 

(4.66) is u .a.s o
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APPENDIX 4. D: PROOF OF THEOREM 4.7

We shall prove theorem 4.7 by showing that all 
trajectories [xT (t),K^(t) - K^] ̂  converge uniformly 

asymptotically to zero.
Observe first of all that,denoting the elements of

K by K , V r C  S , one can rewrite (4.6 8) as u 2 ur

r C S 
ier

V n
aer
a^i

k ] [(a 8 er
k ) - K ] 8 u r J

A

Thus if k^ becomes large

/\ T\

X. s: - { Z A [ n kZ] }k. l „ r a lr C S aer
ier a=̂ i

A

whence if k^ becomes large the adaptive law acts to
A

reduce its magnitude. Thus it is clear that K remains 
bounded. Furthermore, by assumption (ii) is also

bounded.
Now, the exponential asymptotic stability of the 

adaptive law which generates K (t) ensures the existence 

of a Lyapunov function such that

cjl K u (t) - KII2 < h 1 < c 2 II Ku (t) - K ||2 (4.D.1)

and

Ll 1 -c3 1| K u (t) - K ||2

where c^, and c^ > 0 (see [11, p 86]).

(4.D.2)
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Moreover as k(t) is bounded so is ; viz
9k(t)

I | 4 ^ v||<m
9k(t)

Then consider the Lyapunov function with
3 = 1 + M2/2c  ̂ / and L defined as in (4.55)

if. + BL = -II —  II 2 + [—  (K (t) - K) ]
3x 3x 3k(t)

+ ßL1

- " 11 I T  l|2 + M II II !|Ku (-t) -K|| -3o 3|| Ku (t) - K jj 2

= - \ \ \ - ^ \ \ 2 -k [\2 - (7 2 ”H  "

- /cJTFT) ||Ku (t) - K ||)2

£ - V2I| f£ I! 2 -c3 || Ku (t) - K || 2
which is negative definite in [xT,K^(t) -KT]T by 
condition (i) of the theorem,, This completes the proof.

vvv
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APPENDIX 4.E : PROOF OF THEOREM 4.9

We shall show first of all that the result of 
Lemma 4.1 applies for every fundamentally identifiable 
system. To do so we consider in turn the following two 
cases.

ACase I Let k^ = 0 and d^ be observable. Clearly by
(4.B.2a) , the trajectory points in towards 0 .

/NCase II Let = 0 and d^ be unobservable. Then by
(ii) and (4.B.2a) we have that

x. = -{X ( IT k k ) + a(k)}x. (4.E.1)i i o  • ot a ll aer.
a^i1

A Awhere a(k) > 0 , X̂. _ > 0  and all k^ in the first term,
by Case I , must eventually become nonzero with the same 
sign as k . Moreover, there must be at least one r. 
for which k^ ^ 0 for every aer^ and a ^ i , as 
otherwise k^ will not be uniquely identifiable. Thus 
the right hand side of (4.E.1) has the opposite sign to 

and the trajectory points in towards 0 .
Thus lemma 4.1 applies. Furthermore, considerations 

similar to those in lemma 4.2, together with (i), reveal 
that x = 0 if and only if all observable d^ equal zero. 
Thus fundamental identifiability of (4.14) and arguments 
similar to those presented in proving theorem 4.5 show 
that L is negative definite everywhere in 0 . This 
completes the proof.
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Region B

in <m.
Region A

M_ -m M_ -m

- mM^-m,

m -m m  - m ,

Figure 4.0 Illustration of the parameter translation

scheme.
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§5 Output Error Identification

In this chapter we formulate output error algorithms

for the identification of systems described in Chapters 2 and 4.

The difference between output and equation error identification

is illustrated in figure 1.1. In equation error the system

output y, enters the adjustable model twice, directly and

through the output error, Ay. Consequently, terms like 
2y (t) appear in the error model. Thus unbiased measurement 

noise could yet result in biased parameter estimates. In 

output error this difficulty is avoided by allowing the 

output to enter the adjustable model via Ay only.

Exponential convergence of output error algorithms, 

however, require that a certain transfer function be strictly 

positive real. Unfortunately, this transfer function depends 

on the unknown system parameters, and the condition cannot 

always be checked. A detailed exposition on output error 

identification can be found in [1].

The two output error algorithms presented here 

conform to the two step structure outlined in Chapter 4. Thus 

while the first steps in the two algorithms are different 

lone is gradient descent and the other recursive least 

squares) the second step is still given by equation (4.68).

The convergence proofs of this chapter require a key lemma, 

given in the appendix, which extends a result by Boyd and 

Sastry [2], to theunbounded signal case. All our results 

require that magnitude bounds on the parameters be known, 

a requirement which, as emphasized before, is easy to satisfy 

given the parametrisations under consideration.

Sections 5.1 and 5.2 give the two output error 

algorithms together with their convergence proofs. The
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5.1 A gradient descent output error algorithm

Let the asymptotically stable unknown system be 
described by

Q (s , k) y (t) = P (s ,k) u (t) (5.1)

where k is the N dimensional unknown parameter vector, 
m = 6[Q(s,k)] > 6[P(s,k)] and

Q(s,k) = qo (s) + I ( n k±) qr (s)
ier

P (s,k) =p^(s) + I ( n k^) pr (s)
res ier

S A {1,2, ... N}; 6 [qQ (s)] > 6[ q (s)] VrcS and

Pr (s), q (s) known.
As before we snail abuse notation by referring to 

y(s) as the Laplace transform of y(t). Likewise,

yi (t) = s1y(t)/ (s+a)n

will denote the solution of the differential equation

(p+a)n Yi (t) = p1y(t)

with p 4 d/dt, and with arbitrary finite initial conditions. 
When referring to vectors of the form

WT A [u (t) , -i-r u (t) . . . 1
(s+3)n

u(t) ]

however, the initial conditions will be assumed to be non
zero .

Let K be a vector containing the multilinear
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combinations of the k. and K an unconstrained estimate of1 u
K. Let 3(s) be a polynomial of degree n Hurwitz in s.

Then for the following adjustable model:

q0 (s)
3 (s)

l

res
Kur (t) qr (S)l 

ß (s) >
y (t) p 0 (s)

3 (s)
y k  (t)
L ur 

rcS

pr (s)| 
3 (s) J

u (t)

(5.2)

the lemma below relates the output error Ay(t) = y(t) - y(t)

to the parameter error AK (t) = K (t) - K. Note K (t)^ u u ur
are elements of K^(t)•

Lemma 5.1

Define V(t) as the vector whose elements are

P (s) q (s)
— ---  u^t) - — ---  u(t) . VrcS. Then
3 (s) 3(s)

3 (s) „T
Ay(t) = ------  (V(t)AK (t) } (5.3)

Q(s,k) U

Proof:

Equation C3.1) can be re-expressed as

qo (s) 
 ̂ ß(s)

+ l
res

( n k )
icr

qr (s)] 
e (s) >

y (tj

Pq (s)
ß (s)

l
rcS

( n k .)
ier

pr (s)| 
3(s) J

u (t) (5.4)

Subtracting (5.4) from (5.2) we get
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q0 (s>-2---  Ay (t)
e (s) + I iv(t)

res

qr (s) 
3 (s)

y (t)
q„(s)

( n k ) ---  y (t) )
ier S(s)

= y (k  (t)L ur 
res

P Is)n k ) ---  u(t)
ier 3 (s)

o  Q  _( s ' ft). A y ^ t )  

3 is) l (KL ur 
res

n
a £r

k
3 (s)

u (t)
qr (s) 
3 (s)

= VT (t) AKu (t)
vvv

Remarks:
(5.1) The adjustable system can be implemented by 

re-writing (5.2) as

3(s)-q (s) Ä rp (s) q (s) „
y (t) = ------ 2--- y(t) + i k (t) |-£---  u ( t ) ------- y (t)

ß (s) rcS ur >■ e (s) ß (s)

Of the following assumptions 5.1 will be in force throughout 
this chapter while 5.2 will hold for this section.

Assumption 5.1:

The bounds on the magnitude of the unknown parameters,

m. < k . < M. , VieSl l l

are known a priori, with itu > 0.

Assumption 5.2
The transfer function ß(s)/Q(s,k) is strictly
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positive real (SPR).

Remarks

(5.2) The positiveness of nr can be ensured by a 

suitable translation of the . The rank-1 property (see 

chapter 2) is, of course, independent of such a translation. 

The problem of selecting a ß(s), which ensures that 

Assumption 5.2 is satisfied for all k belonging to the 

prescribed region, remains an open question. However, as 

opposed to the situation with the more conventional 

parametrizations, determination of B(s) may well be easier 

here as a great deal is known about Q(s,k).

The proposed two step algorithm, then, is

K (t) =—V (t)Ay(t); n m. ^ K (0) < n M., VrCS
u icr 1 ur ier 1

(5.5)

A (K(t)-K (t)) - T V  (k(t)), (5.6)

nr < ki (0) < M ± ; VieS

Here K is a constrained estimate of K (.see Section 4.1.1) 

k is the corresponding estimate of k, while A is a diagonal 

matrix whose first N diagonal elements are positive while 

the rest are non-negative. The term r ¥ (k(t)) is introduced 

to prevent the k^(t) from becoming negative. In particular 

the i-th element of Y(k(t)) is given by

3K (t)
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k . - M.l l when k . (t) > M .l l

Yi (k(t)) = 0 when m. < k . (t) < M.l l l (5.6a)

k . - m. 
1 1

when nu < k^ (t)

To understand the choice of the diagnonal weighting

matrix r~ assume, for the moment, that IIK (t) II „ is bounded  ̂ u z
by a known number M. Later, we shall show, through theorem 

5.1 how, M can be determined irrespective of the choice of r. 

Select a set of numbers M. such that for each ieS, M. < M..l l i
Our choice of r will be such that

0 < k± (t) < M± VteR+ , ieS (5.6b)

Due to the initial conditions in (5.6) , the inequalities in 

(5.6b) are satisfied at t = 0. Consider the case when at
A A

any instant for some jeS kj(t) = 0, with all other k^(t) 
satisfying the condition (5.6b)

+ l \r ( n (t)) Kur(t) + Yj mj 
r<=S ier
jer i/j

where r A diag {y^,...,YN >.

Since all k. (t) are less than M. and IIK (t) II < M, we have 1 1 u
that

kj(t) =

- M
rcS
jer

( n
ier

Mi)kj(t) > Yj m.
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Thus if

M rY • > —  ) X ( n M. )j m . L r l
-1 rcS ier

jer ij*j

A A

Then (t) > 0 whenever (t) = 0. Similarly if any 
equals Mj then

kj(t) = I Xr ( n Jci (t) ) I n < t) ) - Ku r (t)j -
rcS ier ier
jer i^j

I Xr ( n M i )
rcS ier
jer i^j

( n m .) + m , 1  Jier
\ . Y .M .

3 3

Thus if

Yj " m7J 3

max
rcS

1 x r ( n ]
reS ier
jer

< 0 whenever

Xr ( n M i )
ier

( n M i) + M 
ier

 ̂ res ier 
jer i^j

( n M i) +
ier

will ensure that (5.6b) is satisfied

We now prove the uniform asymptotic convergence of k

k . 
3

.M. 
3 3

as the

(5.6c)

to k
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in two steps. Theorem 5.1 states that even without
persistence of excitation. II AK II = IIK — KII is bounded and theu u2output error is in £ . We then show via theorem 5.2 that 
under persistence of excitation, k converges to k, uniformly 
asymptotically.

Theorem 5.1

Consider the unknown system (5.1), adjustable 
system (5.2) and the adjustment law (5.5). Suppose (5.1) 
is asymptotically stable u(t) e fi [0,» ] and Q(s,k)/3(s) 
is S .P .R.. Then

(i) Ku (t) is bounded Vt > 0 (5.7)

(ii) Ay (t) dt <

(iii)
oo

o

2
II V (t) -V (t) II dt < 00 

2

(5.8)

(5.9)

V(t)
■p1 (s) u(t) -q1 (s) y (t) p2 (s) u(t) -q2 (s)y (t)

3(s) 3 (s)

Proof

Note first of all that equation (5.3) needs 
adjustment:

Ay (t) 3 (s )
Q(s,k)

jV(t) AKu (t) + £ l (t) (5.10)

Where e-̂ (t) arises due to initial condition effects and 
decays exponentially to zero due to the stability of Q(s,k).
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However, its exponentially decaying nature implies that 
e^(t) can be ignored.
Since B(s)/Q(s,k) is SPR x(t), A, b, c, d, L and a such 

that [6]

„T
x(t) = A x (t) + b (V(t)AK (t))

Ay(t) = cTx + d (V(t)AKu (t))

(5.11)

where

m m
A+A = - LL - 2g I 

b = c - /2d L
(5.12)

and {A,b,c,d} is time invariant.

Thus with z(t) = [x(t) , K (t)l we have that

(t)

.T
bV (t)

„T
-V(t)c - d V (t)V(t)

z (t ) (5.13)

Selecting the Lyapunov function

L^(t) — 2 (t)z (t)

we observe that

L1 (t)
T
z(t)

A + A' b V (t ) - cV(t)

V(t)bT-V(t)cT -2dV(t)V(t)
(t)

T
z (t)

LLT+2aI

/2d V (t) L'

/2d L V (t )

2dV(t)V(t)
z (t )
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[x (t ) , Ku (t) ] / T ö  I /2ä I

/2d V(t)
a T

/2d V(t)

T T T 2
= - 2ax(t)x(t) - (x(t)L + /2d AKu (t)V(t))

< 0

Thus

T T
z (t) z (t) < z (0) z (0 )

AKT (t)AK (t) < AKT (0)AK (0) + xT (0)x (0) u u u u

whence (i) follows. Then ̂  and ^2 such that
00 T _

x(t)x(t)dt <
o

and

Thus

(x(t)L + /2d AK^(t)VCt))2dt < M
U.

o

00 00r 2 2
[ 2d(AKT (t)V(t))2dt < M 9 u * •

+ 1 II
J

x (t) II dt II LII 
2 2

0 0

2
< + K II LII2 1 2

Thus

I (AK^(t) V(t))2dt < M 3 
o

X (t)

AKu (t)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)
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From (5.11)

Ay^ (t) dt < II cII
o

2
2

llxll
2
dt + d2

2
2dt

< < 00 (5.19)

Thus (5.8) is proved. Equation (5.9) is proved by noting
/V

that V(t) - V(t) = G(s)Ay(t)

where G(s) is an asymptotically stable, proper transfer 

function.

vvv

Remark:

(5.3) From (5.15) we see that 

T
(Ku (t) - K} {Ku (t) - K} < AK^(0)AKu (0) + xT (0)xT (0)

(5.19a)

Suppose, a bound on the magnitude of the initial state 

vector in any minimal realization of (5.1) is known. Then 

an a priori bound, , on the magnitude of x(0) will also 

be available. Now if the initial conditions in (5.5) are 

satisfied then

II K u (t) II < II Kll 2 + I 
rCS

{ n
ier

M 2 —II m. } + M ri 5ler

< l
rcS

{( n
ier

M i )2 { n m .
ier 1

n im }^> + M 
ier

(5.19b)

Thus the M in (5.6c) should equal the square root of the
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right hand side of (5.19b). Thus with r and M chosen as 
in (5.6c) and (5.19b) respectively k^(t) is always 
non-negative.

(5.4) Equation (5.8) does not ensure that lim Ay(t) = 0 as
A* t->“
y(t) may not be bounded.
We now prove our main result using a key Lemma given in 
the Appendix.

Theorem 5.2

For the equation (5.1)(5.2), (5.5-6) let
Kur >  0 VrcS. Assume that (5.1) is asymptotically stable, 
assumption 5.2 holds and there exist no 0, such that 
il 0II = 1  and

I 9rpr (s) E I  erqr (s) E 0, (5.20)
r^S res

T T T .T T
Then [x(t), K (t)-K , k(t)-k ] converges uniform asymptotically 
to zero if > 0 such that VoeR+

a I <
o+6

W(t)WT (t)dt < a2I 
a

(5.21)

Here

W(t)T fi [u(t) , -i- u(t), ... , ---i—  u (t ) ]
Y (S+y)

for any y < 0 and m the highest degree among the polynomials

poqr " qoPr VrCS and prq r " qrP r V r ' ?cS and r ? r. Also 
u ( t ) [0,«) .
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Proof

From theorem 4.2 we know that (5.21) and the 
asymptotic stability of (5.1) implies 3 0 , 63 > 0
such that VaeR+

3
a + 6 2

V(t) VT (t)dt
I
G

®4J (5.22)

P (s) q (s)
where V has the elements -----  u(t) - -----  y(t) Vrcs.

3(s) 3(s)

Then by (5.9) and Lemma 5.A.1 3 $5 * Bg, 
VaeR+

e5X
Ö + 63

V(t)VT (t) dt
a

63 > 0 such that

(5.23)

and
a + 63 „ 2

tlV(t)U dt < £( 
2

From (5.13)

z (t)
bV(t)

/v r p  ^  ^  m

-V(t)c -dV(t )V(t)
z (t)

(5.24)

(5.25)

T T
with z (t) = [x(t), AK^(t)] , x(t) defined in (5.11) and
d+cT (sI-A)_1b = 0(s)/Q(s,k). Then by a result in [6] (5.23-24)
imply that (5.25) is exponentially, asymptotically stable
if 3 > 0 /  <$„ > 0  such that V 6eR-* 6 4 +

a + 6
Be1 < L2d V(t)V(t) + b b V(t)dt

\T 'r 
V (t)dt dt

(5.26)



Clearly as 6 [$(s)] = 6 [Q(s,k)] = n, d > 0. Thus (5.22)
implies (5.26). Thus (5.25) is exponentially stable.
Thus by a result in [4,p86] there exists a Lyapunov 
function such that for some y^, y I J 3 > 0

y 1 II AK^(t) II ̂  + ŷ  II x (t) II ̂  ̂  y 2 U (t) — KII ̂ + y2 H x(t) II ̂ 

and

L- (t) < -p, UK {t) -Kll 2 - p, U x (t) U 2 .1 3 u 3

Consider also the Lyapunov function

248

L2 (t) = j (K (t) -K)T A (K(t)-K) + I 'FT (k (t) ) r Y (k(t))

Then
,T

3L (t) 9K(t)
— 7T—---  = — ---  A (K(t)-K) + T H» (k (t) )
9k(t) 9k(t)

By the definition of T (k: (t) ) it follows that since (5.6b) 
is true

£n f*i(t))k-Ttj-j 'fi (k(t)) > o

Thus as in the proof of Lemma 4.2 we find

3L (t)
— 4---  = 0 iff k(t) = k.
9k(t)

Thus a simple modification of theorem 4.7 shows that the 
result is true

vvv
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Remark:

(5.5) Consider a non-minimal representation of (5.2)

^1 (t) = A1 (Ku (t)) x1 (t) + b1 (Ku (t)) u (t) 

y(t) = c1 (K^(t)) x1 (t) + d^ (Ku (t) ) u(t)
(5.27)

Then as K^(t) -* K exponentially and A(K^(t)) is asymptotically 
stable, a result in [5] shows that

A1 (Ku (t)) Xl

is exponentially stable. Thus y is bounded. Also by 
arguing as in remark (4.12) one can show that k(t)-k 
decays exponentially to zero.
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5.2 A recursive least squares formulation

Consider the unknown system and the adjustable model
defined by (5.1) and (5.2) respectively and the update scheme

R(t) = - aR(t) + V(t)VT (t) , Vt >0 ; R(0) =0 (5.28)

X(t) = aX (t) - X(t)V(t)VT (t)X(t) , X (t o) = R” 1 (t o)
Vt — t o (5.29)

Ku = - X(t) V (t) Ay (t) Vt >t0 (5.30)
• A ̂ I *

k(t) = - 3K  ̂(t) A [K (t) - K (t)] - r4< (ic (t) ) , Vt a to (5.31)
3k(t) u

mi < k i (t °) <
Vi £ S

Awhere to is the first time instant at which R(t) becomes 
well conditioned, and V and T are defined in (5.6a,c). The 
choice of the bound M on K^(t) will be explained at a later 
stage, but assume for the time being that M is such that (5.6b) 
is always satisfied.

One should note that (5.30) is an unconstrained least 
squares output error algorithm [1].

The following result shows that the infinite memory 
associated with (5.28) and (5.29) ensures that X(t) is the 
inverse of R(t)Vt>t0. Its proof is omitted as it is trivial.

Lemma 5.2
Suppose R(t) and X(t) are as defined in (5.28) and (5.29) 

and that a t0>0 such that R_1(t0) exists. Then

R (t) X (t) = X (t) R (t) = I Vt — t0 (5.32)

V V V
The convergence analysis proceeds on similar lines to the 
previous section. The SPR condition, however, needs adjustment.
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We require here that 3(s)/Q(s,k) - J be SPR. Then theorem 

5.3 shows that the output error is in L as long as R(t0) 
is invertible for some t 0 >0.

Theorem 5.3

For the unknown system (5.1), adjustable system (5.2) 

and adaptive law (5.30), the following are true as long as 

3(s)/Q(s,k) - i  is SPR, u(t) eß [O,00) and 3 t 0 >0 such that

R (t o)  ̂a  1 I .

(i) AKu T (t)R(t)AK^(t) is bounded (5.33)

(ii)

(iii)

(iv)

CO

Ay 2 (t) dt < 00 
J o
( 00

II V (t) -V(t) II 2dt <«> 
; o

R (t) < a 2 l for some finite ot2 and all t >0.

(5.34)

(5.35)

(5.36)

Proof:

By lemma 5.1 and the SPR nature of 3(s)/Q(s,k) we 

have that 3 x(t),A,b,c,d,L,a such that

x(t) = Ax (t) +b(V(t)TAKu (t) )

Ay (t) = cTx(t) +d(VT (t)AK (t) )

T TA + A = - LL - 2cl

b = c - /2d -1 L

(5.37)

(5.38)

Thus with
T T Tz = [x* 1 (t)»AK^ (t)]
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we find

Ut)

/s rpA b V 1 (t)

-X(t) V(t)cT -dX(t) V(t) VT (t)
z (t) (5.39)

Choose a Lyapunov like function

L 2 = z (t)
I 0 

0 R(t)
z (t)

Then

L 2= - z (t)
A + A (b-c)V (t)

V(t) (b-c) T -2dV(t) VT(t)̂
Z (t) + zA (t)

R(t)
z (t)

Tz1 (t)
~-2g I-LL' -/2d-l LV (t)

-JldPL V(t)LT -2dV(t)VT (t)
z(t) + z (t)

0 0
0 -aR(t)

z (t)

T+ Z (t) A A 'V(t)V" (t)
z (t) (5.40)

T£ Z (t)
-2al -LL' - /2d-l LV (t)

-JldPL V(t)LT - (2d-l) V (t) VT (t)
z (t)

Tz1 (t) ~/2o I L /2a I 0
0 /2d-l V(t) Lt /2d-l VT (t)_

Z (t)

< 0 . 

Thus

AK T (t)R(t)AKu (t) < AKuT (t0)R(t0) AKu (t0)

T (i. . T ,. .+ X (t0 ) X ( to) (5.40



Moreover, equations (5.34 and 35) follow from arguments in 
theorem 5.1. Let Mi be such that
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II V (t) - V(t) II 2dt < M i
o

As (5.1) is a.s. and u(t) eft̂ [0,°°)

e T ̂ || V (t ) II 2dx < M 2 < 00 Vt e R
' 0

Thus

r ft
0

! “ ( t  t ) IIv (t )II 2dx
-ft

0
e a(t T) IIV(t ) - v (T) II 2dx

+ e a(t T) IIV(t ) II 2dx h

V mi + V m 2

2—1whence for any unit vector 0 e R ,
tT ̂0 R(t)0 -a (t-T) rnT(0 V(t )) dT
0

e - a ( t - T) | |vl l2dx
0

< (Vm 1 + Vm2)
Thus (5.36) is proved.

Remark:

v v v

(5.6). The condition under which the nonsingularity
of R(t0) at some time t0/ can be guaranteed is identical to 
the input conditions given in Theorem 5.2. This is because,



up to t = t 0/ the adjustable system is constant. Thus by 

considerations similar to theorems 3.7 and 4.2, it can be 

shown that 3 a 3, 6 >0 such that Vo < t 0 -6
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a 3 1
ro+6 /\ / \  rp

V(t) V (t) dt
a

(5.41)

Moreover, as the following extension of theorem 4.1 shows, 

this is enough to ensure the nonsingularity of R(t0). It 

should be noted V(t) need not be bounded, whereas Theorem 4.1 

did require it to be bounded.

Theorem 5.4

Suppose 3 a 3,1 1 >0 such that Vo and some T<ti

V(t ) VT (t ) dx ^ 063!

g(a-T)

where

(5.42)

g (t )
T > 0

elsewhere

Then 3 a 2 >0 such that Vo > 0 0  and some Go

R(o) e a(ü T) V(x)VT (x)dx > a 2I (5.43)

Proof

Suppose (5.43) is violated. Then for arbitrary e>0

3 a unit 0 such that for some 0
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0T R(g )0 < e2
=>

e-a(G-t) {0Tv(t) }2dt <£.
J 0

Thus

e-a(a-t){eT v(t)}2dt <e
g (a-ti)

whence by the definition of g(o-ti)

(eTH(t)}2dt < eeatl
g(a-ti)

=► (5.42) is violated. Thus (5.42) =*(5.43).

v v v
Theorem 5.5, below, shows that AK^ -> 0 exponentially fast

Awhenever u(t) is p.e. This in turn implies that k converges 
uniformly asymptotically to k as long as the K 1 s are all 
positive. In proving this theorem we need to appeal to the 
notion of uniform complete observability (u.c.o.) used in [6] 
and defined below.

Definition 5.1:
n x n nxrLet F ( . ) : R+ -> R and H (• ) : R+ R be regulated

(i.e. one-sided limits exist for all teR+). Let $(.,.) be 
the transition matrix associated with F(*). Then [F,H] is 
uniformly completely observable if the following three 
conditions hold (any two implying the third [7]) for some 
positive Bi -$4 and 6 and Vs,teR+
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$il < N(s,s+6) < 3 2 I

33I  ̂ $T (s , s+6 ) N (s , s+6 ) $ (s , s+6 ) < ß 4I 

II $ (t, s) II < ag ( I t-s I )

where

N(s,s+6) (t,s)H(t)HT (t )$(t ,s)dt
s

and ot5 (-) is bounded for bounded arguments.

Theorem 5.5

For the equations (5.1 -2) and (5.29 -31) suppose 
assumption 4.1 holds, (5.1) is asymptotically stable and

$(s)/Q(s,k) - h  is SPR. Then AK (t) converges exponentially 

to zero if 3 (*1 ,012,0 >0 such that

r 0+6 ,p
aiI < W(t)W (t)dt < a 2I (5.44)

a

VaeR+ . Here W (t) = [u (t) , u (t) , ... , j ^ - y m u ( t ) ] T

for any positive y and m = h i g h e s t  degree among the polynomials
p q  - q p  V r c S  and p q_ - q p- Vr ,r c S,r , u(t) £ ft. [O,00) . o r o r ^r r r r A

<t) -i?]

converges uniformly asymptotically to zero.

Moreover, if K >0 Vr cS then [j?(t) -k^xT(t),KT ur u

Proof
As in theorem 5.2. Assumption 4.1, (5.44), (5.35) and

Lemma 5.A.1 imply the existence of 6 ,0 3 , 0 4  >0 such that

' 0 + 6  ^
II V (t) II 2dt <(*4 (5.45)

a
and
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g+6 A A '
V(t)V (t)dt > a 3I

Va £ R+ .

Thus by theorem 5.4 3 as >0 such that

R(t) >asl Vt >ti, some ti >0 .

Thus L 2 given by

L2 = z (t)
I 0

0 R (t )
z (t)

with z(t) defined by (5.39), is a Lyapunov function 

Suppose

F(t)
A bVT (t)

-X(t)V(t)cT -dX (t) V (t) VT (t)

H (t)
/2Ö I L

0 /2d^I V(t)

Then let H(t) be defined by

" o  0

^ rp

II i-3
ft

"i 0
/\

+

'i 0
A

0 aR (t ) - V(t) V (t) .0 R (t) j _0 R(t)_
F(t)

- H (t) H (t) -

<=> H(t)HT (t)

0 0
✓s /s'

0 V(t)V (t)
+ H(t)HT (t) (by 5.38)

0 0
0 aR(t)

+ H (t ) H (t)

R (t) + H (t ) H (t)

(5.46)

(5.47)

+ H (t) HT (t

(5.47a)



Thus by [6], (5.39) is exponentially asymptotically stable
(e.a.s.) if [F,H] is u.c.o. We now show that 
[F,H]u.c.o. =* [F,H]u.c.o. With N defined as in definition 
5.1 and N similarly defined, we have to show that if 
3 Bi — 34 and 6' such that V o,t eR+

311 < N (a,a+6 ') < 32I (5.48)
and

33I  ̂ $T (a, a+6) N (a, a+6) $ (a, a+6)  ̂ ß4l (5.49)

then 3 ßi,...,ß4 and 6" such that Va,t eR+

311  ̂ N(a,a+6") < 3zl (5.50)
and

331 < $T (a,a+6") N(a,a+6")$ (a,a+6") < ß4l (5.51)

258

We shall show that (5.48) implies (5.50), the proof 
of the other implication being similar. Let the lower bound 
of (5.50) be violated. Then for arbitrary e>0 a a unit 0 and
a ceR+ such that

a+6
0T $T (t,c) H (t) HT (t) $(t, a) 6dt <e

a+6 T T0 $ (t,a)
0 0

0 aR(t)
$ (t ,a) 0 dt

+
c+6

0T $T (t,a) H(t)HT (t)$(t,o) Bdt < e

As R is positive definite
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ö+ö
$T (t,g ) H(t)HT (t)$ (t,ö) 0 dt < £

whence lower bound of (5.48) is violated. Thus lower bound

of (5.48) implies the lower bound of (5.50). Also with R 
defined as in (5.47a)

T T - -T0 $ (t,G) H(t)H (t)$(t,a) 0 dt

a+6
0T $T (t ,a ) H (t) HT (t) 4> (t,a) 0 dt

a+6
0T $T (t,a) R(t)$(t,a) 0 dt

whence by (5.33) the upperbound of (5.50) follows. Thus 

z is e.a.s. if [F,H] is u.c.o. Using arguments similar to 

[6] it can be shown that (5.45) and (5.46) imply that [F,H] is 

u.c.o. Thus z is e.a.s. and by arguments similar to theorem
îp ip ip rp ip

5.2 we have that [k -k , K , - K,x ] converges u.a. to zero.

vvv

Remarks

(5.7). Suppose 3 a lfa2 >0 such that ail <R(t) Vt 

and R(t0) ^ a 2I. Thus (5.40a) =»

AKT (t)AKT (t) < AKT (t0)AK(t0) + —

- twhere M is the bound on x (0)x(0). As aj >0 one can choose 

a sufficiently large u(t) to ensure that on >1, i.e.

Also
AKT (t)AK(t) < a2 AKT (t0)AK(t0) + M

1_ maxll V (t) II 2 
a t e [0,t o] M 3 .
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Thus for high enough u(t)

AKT (t)AK(t) < M + M 3 .

It is reasonable to expect that conservative estimates of

both maxl|V(t)ll2 and M would be known. Thus this can be 
t £ [0,to ]

used to employ the shift technique explained earlier so 

that K (t) >0 Vt >0.

(5.8). As in remark (5.5) it is possible to show that 

Ay(t) is bounded and that k(t) approaches k exponentially

fast.
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Lemma 5.A.1 is an extension of a result in [2] to unbounded 
signals. All norms considered are two norms.

Lemma 5.A.1

Consider V:R+ ->Rn and V:R+ ->Rn . Suppose 

3 M i fa 1/a 2,6>0 such that VoeR+

( CO

II V -Vll 2 dt < Mi 
o

a, 11 <
rO+6 TW  dt
a

(5.A.1)

(5.A . 2)

and
(0 + 6

II Vll 2dt < a 2 . (5.A . 3)
G

Then a a3,a4 ,6>0 such that VoeR+

and

a 31 ^
o+6

V V dt

(0+6
II Vll 2 dt < a 4 

o

Vo eR+ .

(5.A . 4)

(5.A . 5)

Moreover, if (5.A.3) does not hold, then (5.A.4) still holds 

as long as V and V do not have finite escape times.

Proof

(i) We first show that (5.A.1) and (5.A . 3) imply 

(5.A . 5). Equation (5.A.1) shows

' o+6 ^
II V -Vll 2 dt <Mi Vo, 6 e R+ .

0
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Thus (5.A.3) and the Minkowskii's inequality shows

g+6
llvll2 dt> < /m 7 +

g+6
II Vll2 dt < /Mi + /pa2 + a2

where p = Integer part of 6/6. This proves (5.A.5).

(ii) Consider any arbitrary vector 0 of unit magnitude 
Then (5.A.2) =>

Ö+6
(0T V) 2 dt > ai Vo eR

(G+6p
(0T v) 2dt > ai p Vo eR and p e Z .+ + (5.A.6)

Suppose 6 =6p. If V and V do not have finite escape times 
or since (5.A.5) holds, Minkowskii's inequality is applicable. 
Thus (5.A.1) and (5.A.2) =►

0+0 f T 2 ) **(0 V) dt > G + (̂ r T ~ T T >> 2 ) ̂(0 V-0 V + 0 V) dt>

G+6
(0TV)2dt h g+6 r i  ̂ T 2 (0 V- 0 Vj dt h

>/a i p - < 

>/cTTp - /m T .

g+6  ̂ o ) h
II V - Vll 2dt>

Thus if p >Mi/ai and 6 >p6, (5.A.4) holds
VVV
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§6 Adaptive Control

This chapter considers the indirect adaptive control 
of partially known systems described in Chapter 2. The 
indirect approach involves the estimation of the plant 
parameters, based on which the controller parameters are 
adjusted. As opposed to this in direct adaptive control 
the controller parameters are directly evaluated.

A major attraction of the indirect approach is that 
the control and identification phases can be decoupled and 
to an extent analysed independent of each other. In [1] 
Egardt and Samson put forward an approach involving a 
specific control algorithm and a general identifier 
satisfying certain assumptions. Kreisselmeier [2] on the 
other hand considers a general controller which is coupled 
with a specific identifier. In this chapter the latter 
approach is adopted. Two algorithms are formulated, each 
having the same general contoller, but differing in the 
nature of the identifier. In the first a two step 
modified constrained least squares algorithm is used, 
while the second employs a two step gradient descent 
algorithm. Both parallel closely the corresponding 
identification algorithms presented in Chapter 4.

Although global stability of several direct adaptive 
controllers has been shown [3-6] , very few such results
exist for indirect adaptive control. Kreisselmeier [2] ,
has proved global stability for his control algorithm 
under the assumption that the extent of a convex region 
containing the true parameter values is known. This
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region has the added property that when the plant 
parameter values lie in it the plant can be well controlled 
in the sense of being both stabilizable and detectable.
For the first algorithm of this chapter global stability is 
proved by assuming that the plant is completely controllable 
and completely observable at the true parameter values only. 
For the second algorithm global stability is proved under 
the same assumptions as those made in [2] . As we have
remarked earlier the assumption of known magnitude bounds 
for the unknown parameters is reasonable, given their 
direct physical significance. As in [2] , the convergence
analysis for the second algorithm includes the derivation 
of a link between the identification error and the 
stability of the closed loop system.

Furthermore, under the assumption of a completely 
controllable and completely observable plant, persistence 
of excitation conditions on the reference inputs are 
presented. These conditions guarantee the global uniform 
asymptotic stability of the parameter estimates, a property 
which, as has been argued in Chapter 3 and [7,8] , ensures
the robust behaviour of the adaptive controllers.

Section 6.1 and 6.2 respectively present and analyse 
the two algorithms proposed while Section 6.3 presents 
simulation results. The contents of this chapter will 
appear in [9] .

6.1 Adaptive control using modified least squares 
identifier :

Let the plant be described by the strictly proper
transfer function
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Tp (s)
P (s ) + z ( n
° r c S i e

q (s ) + z ( n
° r C S i 6

k±)Pr(s)
:----------- ; S
k±)qr (s)

{1/2 . . .N}

(6 .1)

P (s,k) 
Q (s /k)

with 6 [Q (s ,k) ] = 6[qQ (s)]=n > 6]qr (s)] VrC s , k t  RN

the unknown parameter vector and the p^(s), q^(s) ,

known a priori. Suppose K is a vector containing the

multilinear combinations of the k. and K anl u
unconstrained estimate of K . Assume P(s,k) and Q(s,k) 

are coprime in the sense that they have no non-trivial 

common factors which are polynomials in s . Then there 

exists the following minimal state variable realization 

of (6.1) :

(F + g1 (K)e1 )x + g2 (K)

(6 .2)
Te- x 1 P

where f(s) = det (si - F) is Hurwitz, e^ = [1,0 ...,0]

g i (K) = G-K + g 10

g_(K) = G_K + g.

(6.3)

(6.4)

- f .

-f>- n

(6.5)

0
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and G-jy 910 / ^  and g20 are defined as follows : 

If

G 1 = [gll'‘* *'g1123..N]

and

G2 = [g21'’* *'g2123..N1

then the a., and q are defined by d r  ^2r

f ( s) - [sn"\...,l]g10 = qQ ( s) (6.6)

[sn 1,...fl]g20 = PQ (s) (6.7)

[s11-1,... ,i]glr = qr (s) (6.8)

[s11 1,--,Hg2r = (6.9)

Let the controller be

xc = C1 (k)xc + C 2 (k)y + c 3 (k)r 

u = C^(k)xc + c 5 (k)y + c 6 (k)r
(6 .10)

~ Nwhere k € R is an estimate of k and
2N-1K G R is a constrained estimate of K

in the sense discussed in Chapter 4; e.g. for N = 2 
K = [k^,k2,£-^2-1T' the ^1 t>ei-n9 the elements of £ .
We now make the following assumptions on the plant and 
the controller.



Assumption 6.1
When k = k the closed loop system is stable, with 

no unstable pole-zero cancellations.

Assumption 6.2
The functions ,Ĉ  (•) are piecewise

continuous and finite for finite k . Moreover, j an
A> 0 such that they are Lipschitz whenever || k - k|| < 

Assumption 6.3
There exists an m^ > 0 such that

II C3(k) II ||C2(k) II II C4(k) II + |C5(k) I |C6(k) I > m1 .

A¥k , except on sets of measure zero. The inequality must
Aalso hold at k = 0 .

Remark: (6.1) Assumptions 6.1 and 6.2 ensure the
Aexistence of a neighbourhood of k = k , of non-trivial 

but unknown extent for which the closed loop system (6.2), 
(6.10) is stable.

(6.2) Our formulation excludes the possibility 
of unstable pole-zero cancellation in the frozen closed 
loop system at k= k and therefore in a non-trivial 
neighbourhood of it. It does allow stable pole-zero 
cancellation in the frozen closed loop system everywhere,

A

including k = k . The coprimeness condition of course 
precludes stable pole-zero cancellation in the plant 
itself.

(6.3) Assumption 6.3 ensures that the frozen 
transfer functions from r(t) and y(t) to u(t) are
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not zero for almost all values of k . The requirement

/\that this be true at k = 0 arises because, in the
Aidentifier to be proposed, k(0) = 0 .

Identifier.
Consider the following identifier :

*1 = F xi + eiy (6.11)

•
X =2

TF x2 + e^u (6.12)

ho (t)
T T

g20 X2 gl0 X1 (6.13)

H (t) = G^ x2(t) - G^ x1(t) (6.14)

(Ĝ  and G2 defined as in (6.3) and (6.4))

R(t) = -aR(t) + H (t) HT (t) , R(0) = 0 , t < t (6.15)

■^lR"1 (t)] = aR~1 (t) - R_1 (t)H(t)HT (t)R"1 (t)

t > tO (6.16)

ro (t) = -arQ (t) + hQ (t)H(t) (6.17)

A l 0 t < t0
k (t) = 1

 ̂m (6.18)(-h ! a
3k

[R-1(t)r (t) + K] t > t0 0
k (0) = 0

where t is the first time instant at which R(t) o
becomes well conditioned, a > 0 , and 

A d l ag [ A ̂ , X 2  / • • • ]̂_23  ̂̂ * * * *  ̂  ̂ /

X^2 ,..• ^123 N > 0. Note that beyond t = tQ only 
(6.16) as opposed to (6.15) need be implemented and
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that k(t) is constant for all t < t . Equations
(6.15 - 6.18) represent the two step least squares identifier
formulated in Chapter 4.

In Theorem 6.1 below we show that the existence of t , 
for which R(tQ) is nonsingular, is enough to assure 
parameter convergence and signal boundedness for the closed 
loop system defined by (6.2 - 6.18) . Theorem 6.2 gives
a p.e. condition on the reference input r(t) which 
ensures that R(t) does indeed become positive definite

Awhile k(t) is constant. Theorems 6.3 and 6.4 in a 
sense show that this same condition on r(t) ensures 
that the overall scheme is robust, as R(t) is uniformly 
positive definite even beyond t = t . A further 
discussion on this robustness property is postponed until 
after Theorem 6.4.

Theorem 6.1
If 1 a t G R. such that R(t ) is invertible then o + o

for the system defined by (6.2 - 6.18) and with 
r (•) G £^[0,»)

A(i) k(t) converges exponentially to k .
(ii) 3 an M such that

0 CO

II k (t) - k |L dt < M11 k ( 0) - k II (6.19)

and
(iii) the state [xT,xT]T and hence all signalsp c

appearing in the system are bounded.
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Proof;
(i) Some algebraic manipulation shows that

h (t) + KTH(t) = 0 V t > 0 (6.20)o  -

and
R_1(t0)ro(t0) = - K (6.21)

Now consider

-4pR-1 (t) r (t) ] = R-1 (t) r (t) + -^{R-1 (t) }r (t) dt o o dt o

= R ^(t)[-ar (t) + h (t)H(t)] o o

+ [aR'1(t) " R'1(t)H(t)HT (t)R_1(t)]ro (t)

= R-1 (t) H(t) (hQ(t) - HT (t)R-1(t)ro(t)]

= R_1(t)H(t) v(t) (6.22)

where v(t) = ho(t> - HT(t)R 1(t)rQ(t) .

From (6.20) and (6.21) it is clear that
Thus

A [R-1(t)ro (t)] = 0 V t > to

whence
R_1(t)ro (t) = R_1(t0)ro (t0) = - K

V t > t (6.23)

Thus by Theorem 4.5 of section 4.3.1.2. and the remarks
A

following it one can see that k(t) converges to k



exponentially.

27 2

(ii) Follows as a consequence of (i).

(iii) Equations (6.2) and (6.10) combine to give

F+g1<k)e1+g2 (k)C5 (ß)e^ g 2 <k)C^ (k)
TC2 (k)e1 C1 (k)

+
g 2 (k) C 6 (k)

C 3 (k)
r (t) (6.23)

F+g1 (k)e^+g2 (k) C 5 (k)e^ g 2 (k)C^(k)

C2(k)ê C x (k)

+

g 2 (k) {C^ (k) - C 5 (k)}e1

{c2 (k) “ C 2 (k)} e^

g 2 (k)(C^(k) - C*(k)}

C : (k) - C 1 (k)

g2 (k) C 6 (k)

c3 (k)
r (t) (6.24)

Thus (6.24) can be written as

xc
L. J.

[A(k) + AA(k) ] + b(k)r(t) (6.25)
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with A(k), AA(k) and b(k) obviously defined. By 
assumption 6.1, A(k) has eigenvalues in the open left 
half plane only. Moreover, by assumption 6.2 and (i)

/s
it follows that AA(k) tends to zero exponentially and

Athat b(k) is bounded. Thus

x = [A(k) + AA(k)]x

is exponentially stable whence 
r(t) is bounded.

We now present a p.e. condition under which R(t) is
invertible for some t = t . By Theorem 6.1 this iso
enough to guarantee the stability of the adaptive law.
This result relies on the fact that for t < t theo
closed loop system is time invariant.

Theorem 6.2:
Consider the closed loop system (6.2) and (6.10)

/s

with k constant. Suppose that assumptions 4.1 and 
6.3 hold, r(t) G P^[0,°°) and 3  ai'a2'  ̂ > 0 such 
that V ö G R+

r T T. T Ix^^x^J P C is bounded as

vvv

a I < n (2n+m)(t)n (2n+m)(t) dt < a I
' G

(6.26)

where n is the dimension of (6.2), m is the 
highest degree among the polynomials pQ - qQ Pr Vr c S 
and pr q- - qr p- Vr,r C S .
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(2n+m) ... n (t)
A
= [ r (t) r (t) 

' s+8
r(t) •] ; 3 > 0

(s+8) 2n+m-l

Then 3 a 3 > 0 such that R(t) defined in (6.15) 
obeys

R (t ) > a 3I (6.27)

for some t = t > 0 .

Proof.
A

For t < t , k = 0 , and the closed loop system 

is time invariant.
From (6.15)

R(t) -a (t-x) TT , . ttT . . - e H (t )H (i)dT

Thus by Theorem 5.4 one can see that 
satisfied if 3 / 6-̂  > 0 such that

‘G + . ̂  i  tH(t)H (t )dt > a 4I .
c

(6.27) is 
V a G R+ ,

The overall system is representable as in Fig. 3.3 with 
the block A' (relating r(t) to u(t)) being strictly 

proper, time invariant non-minimal and with degree 2n , 
n being the degree of the plant. Then combining 

technique used in the proofs of Theorems 3.6 - 3.8 and 

Theorem 4.2, the result can be proved.
vvv
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Remarks.
(6.4) When r(t) is a linear combination of sinusoids, 
(6.26) demands that (2n+m-l)/2 different frequencies
be present. As argued in Chapter 4, the regression vector 
H (t) is p.e. if u (t) has frequency components.
Moreover the non-minimal system relating u(t) to r(t) 
may have as many as 2n-l zeros on the imaginary axis 
every two of which may cancel out one frequency component. 
This accounts for the number (2n+m-l)/2.

(6.5) Assumption 6.3 ensures that the transfer function 
from r to u is not zero. We have shown that a reference 
input satisfying (6.26) guarantees the global stability
of the proposed adaptive controller. Theorem 6.3 shows
that this condition also ensures the uniform positive
definiteness of R(t) beyond t = t as long as (6.19)

2holds; i.e. the parameter error is in L . Theorem 6.4 
presents a stronger result by showing that even if (6.19) 
is not satisfied, but the parameter variations are small 
over all intervals of a fixed length, then R(t) will 
still be uniformly positive definite. As discussed in 
Chapter 4, such a positive definiteness will impart to the 
algorithm the form of robustness we have mentioned.

Theorem 6.3:
Consider the closed loop system defined by (6.2) and 

(6.10) with r(t) E fî [0,°°) . Suppose that assumptions
(4.1) and (6.3) hold, conditions (6.19) is satisfied, 
all signals are bounded and 3 > 0 such that
V a g R+
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a ^ I  <
•g+6 (2n+m)

n(t)
'0

(2n+m)
n (t) dt < CL I (6.28)

(.)
n (.) defined in Theorem 6.2.

Then 3  t > 0  such that ¥ t > t3 o o

R (t ) > a 3I (6.29)

Proof:
By Theorem 5.4 , the existence of

that V a G R+

•0 + 6 ^

J G
H(t)HT (t)dt > a 4I

'4' 61 > 0 such

(6.30)

guarantees (6.29) . As shown in Theorem 6.1 the closed

loop system can be represented as

x = [A(k) +AA(k)]x + [B(k) + AB (k ) ] r (t )
(6.31)

where, by (6.19)

and II AB(k)||dt

and assumption 

are finite.
o

Let x* be defined by

6.2 || AA (k)|| dt
'0

x* = A ( k )x* + B(k)r(t) (6.32)

with H* , y* and u* obviously defined. Then by 

(6.19) 3 and T > 0 such that || k(t) — k||2 < '

defined in assumption 6.2 . Thus 3 M^< 00

l|x - x *||2 dt < M 1 (6.33)
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As A(k) has eigenvalues in the open left hand plane 
(Assumption 6.1)

rT
|| x - x* || dt < M0 A A

for some finite .

Thus _j M-. > 0 such that 3
.C O

I! x - x*||2 < m 3
J0

Hence
.C O

II H - H* ][ 2 < M4 (6.34)
J o

Since H* is the output of a time-invariant system, 
arguments similar to those used in Theorem 6.2 show 
that (6.28) implies the existence of , 6̂  > 0

•0+ & 2
H* (t)H*T(t)dt > a_I .

J 0 D

Thus by Lemma 5.A.1 the result follows. VVV

Remark;
(6.6) The hypotheses of Theorem 6.3, in particular
the satisfaction of (6.19) and the boundedness of system 
signals, follow from Theorem 6.1, whenever the idealizing 
assumptions, of no noise, no modelling error, no 
time variation, apply. The case where departures occur 
from these assumptions is dealt with after Theorem 6.4.
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Theorem 6.4
For the closed loop system (6.2) and (6.10) ,

with r(t) £ [ 0 /■00) let the following be true :

(i) assumptions (4.1), (6.1), (602) and (6.3) hold;

(ii) for some T > 0  J M^.,6 > 0 such that
¥ i=l,... 6 and t > T

(iii)

(iv)

|| C i (k(t+6)) - C i (k(t)) ||2 < M 5 ; (6.35)

2 M > 0 such that the closed loop system

state [xT ,xT] obeys p c J

II (Xp(t) ,x^(t)]T || < Mg V t € R+ (6.36)

d  a 5'a 6 , 6' > 0 , a , depending on m 5 , m 6

and 3 (defined in Theorem 6.2) such that
V G > T

rG+(  ̂ (2n+m) (2n+mJT
f(m 5,m 6) V 1

H
L

D

ÖV n(t) n(t)
-'a

dt < a-1- b

(6.37)

The function 
of M- and

D

The vector 

Then 3 a-j

f(M^,Mg) is a non-decreasing function
M , which is zero when M equals zero. 
(?) b 

n (.) is defined in Theorem 6.2.

> 0 and T^ > T such that

R (t) > a I (6.38)

1 °
for all t > T vvv
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Proof:
By arguing as in Theorem 5.4 one can see that (6.38)

V a > T . Then the result can be proved by arguing as

Remarks:

(6.7) The quantity is a measure of the extent of
time variation in the system. The nonsinguiarity of 
R(t) demands that be "large enough" to overcome
this time variation. For time-invariant systems, clearly,

can be any positive constant. In the ideal case 
(6.19) guarantees the existence of T defined in (6.35).

(6.8) Theorems 6.1 and 6.2 show that if r(t) is 
"sufficiently rich", viz. has at least 2n+m-l 
frequencies, with m defined in the theorem statement, 
then R(tQ) will become nonsingular, as for t < t
we have in effect a time invariant albeit possibly unstable 
system. Thus under ideal circumstances this condition on 
r(t) guarantees the exponential convergence of the 
parameter estimates. To assess the robustness of the 
algorithm consider first the properties of adaptive 
control algorithms which exist in the literature. These 
turn out to give bounded signals under ideal settings.
But in them tracking error convergence is not exponential 
and while parameter variation does die down, the parameter

is satisfied whenever ^  afi , T, 6 > 0 for which

H (t)dt > a IT (6.39)

in Theorems 3.9 and 3.6 vvv
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estimates do not converge to their true values. However, 
given that the signals are bounded under ideal conditions, 
one can show, that in some of these schemes once 
parameter variations fall below a certain value, 
"sufficiently rich" inputs guarantee exponential parameter 
convergence.

As opposed to this, Theorems 6.1 and 6.2 show, that 
our algorithm is exponentially convergent given 
"sufficiently rich" r(t) and ideal conditions. Also 
Theorem 6.3 shows that non-singularity of R(t) follows 
for all t > t and the overall algorithm is thus equipped 
with the robustness characteristics mentioned in Chapter 4.

Further, in face of modest departures from ideality 
the following mechanisms will guarantee robustness :

A

(1) For "small" errors while k may not converge to
k , it will in a finite time, reach that neighbourhood of 
k , mentioned in remark 6.1 , where the closed loop
system is stable. Thus even with small departures from 
ideality the system signals will retain boundedness.

(2) More importantly Theorem 6.4 shows that this very 
same r(t) guarantees non-singularity of R(t) once the 
time variations fall below a certain value. Thus while

Alarge k immediately after t may destroy persistence
/\of excitation, within a finite time || k || will fall 

below this required value and R(t) will once again 
become non-singular thereby imparting a further measure 
of robustness.

Simulations presented in Section 6.3 demonstrate the 
robustness of this algorithm. They also demonstrate one
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other important characteristic. Observe that in the ideal
case R '''(t)r (t) = -K V t > t . Thus ideally one could o - o
well dispense with (6.18) and use R ^(t)r (t) directly 
to obtain k . The simulation results demonstrate, however, 
that the second step (6.18) of the identification part of 
the algorithm results in substantial improvements in the
A

k . .l

6.2 Adaptive Control Using a Gradient Descent 
Identifier:

This section considers an adaptive controller using a 
two step gradient descent algorithm mentioned in Chapter 4 .
Consider the plant described by (6.1 - 6.9). Let the 
controller be

xc = C1(K)xc + C2(K)y + C3(K)r (6.40)

u = C^(K)xc + C5(K)y + Cg (K) r

where K is an unconstrained estimate of K , selected 
in a manner described later. For the remainder of this 
section the following definitions and assumptions will 
hold.

Definition 6.1
The convex regions and J2 are defined as follows:

0 < z . < M . V i e sl - ll
(6.41)

0 < z < n M. V r C S“  IT • ,—  1 1i G r
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j nt < z^ < M^2 V i e  S

(ii) z E J2 = > j (6.42)
f n m . < z < n M . V r c s  \ . _ l - r - . i2'i E r l E r

where 0 < m .  < M._ < M.- . VVVl i2 ii

Note that J 2 C 

Assumption 6.4

Suppose the plant is denoted by P(K) and the 
controller by C(K) . Then the closed loop system 
[P(K),C(K)] is asymptotically stable, with no unstable pole 
zero cancellation whenever K E .

Remark
(6.9) Assumption 6.4 can always be -satisfied by a linear 
translation on the k. .l

Assumption 6.5
The parameter vector K E J ̂ •

Assumption 6.6
The functions C n (*) ... Cc (•) are bounded and1 6

piecewise continuous. Moreover, in some neighbourhood of 
and in itself they are Lipschitz as well.

Assumption 6.7
There exists a m > 0 such that

II C 3 (K) II II C 2 (K) II II C4 (K) II + |C5 (K) I |Cg(K) I > m
(6.43)
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¥ K except on a set of measure zero. This inequality holds 

when K G .

Identifier

The following two step identifier is used with H(t) 

defined in (6.11) - (6.14) .

K (t) u
H (t) (h (t)+KuH(t) )
-------2— ------------ T ¥ (K (t) ) (6.44)

ts2 + H1 (t)H(t)
32 > 0 , Ku r (0) e j

*rl(Ku (t))

Kur i
n m .
S r 1

when K < ur - i
n
e r

•H
e

Kur n m  e r l2 when K > ur - . n
& r M i2

elsewhere

(6.45)

k(t) = - 2% A [K-K ] - T V (k(t)), K (0) E J (6.46) 
3k U

^12(k(t))
k.(t) - M._ when k > M.nl i2 i i2

0 elsewhere (6 o 4 7)

I T_

Here A is as defined in (6.18) , is the r

element of K , = d i a g /Y 2 '••• ^123

with

y >  Z ( n M.,)2 (6.48)
r r C s i£ r 11

min {II m . , T M . - - IT M . 0 }. 1 . ll . ̂  i21 G r 1 C  r 1C  r

and
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r2 = diag(Y1, ... YN }

with

> - - 1 ;■ £ V  " Mal11 " M(U] (6-49)M . - - M . _ r C s a E r ß E rll i2 , c • I1 E r l =f a

Remarks
(6.11) The role of V ̂ is to ensure that all elements 
of K (t) lie in J, , and as will be shown later. K (t) 
enters J ̂ asymptotically. The function ¥ by the

A

same token ensures "'hat K(t) is always confined to the
region .

Selecting the controller parameter
Equation (6.50) defines the way in which K(t) , 

used in the controller (6.40) , is selected. Define

£ =

K =

where m 
numbers.

H | and let m < M E R+

A

K when £ < m

M-£
A

K £-m _ _ -+ K _____ m < £ < M (6.50)
M-m M-m

K £ > Mu

M are arbitrary preselected positive

Remarks:
(6.12) Equation (6.50) shows that the parameter 
estimate, K , used in the controller is selected as
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A

K , the constrained estimate, only when K is in some 
sense close to K . Elsewhere either a convex combination
of K and or itself are used. The parameters
m and M are design parameters which determine the
extent to which one choice of K is preferred over the 
others.

Theorem 6.5 given below is an analysis of the identifier 
only,independent of controller characteristics and of any 
p.e. conditions. Theorem 6.6 uses this theorem to establish 
the boundedness of system signals.

Theorem 6.5
For the system described by (6.1 - 6.9), (6.11 - 6.14),

r(t) £ ^ [ O , 00) and the identifier (6.44 - 6.49) the 
following hold :

(i) K (t) , e j V t > 0

u

(ii) lim V ^ (t ) = 0 (6.51)
t^°°

(iii) K (t) e j v t > T

(iv)
{h t (k - K) }2 u 0 (6.52)

(v) lim K (t) = 0 , u (6.53)

(vi) 1 im k (t) = 0 (6.54)
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Proof

(i) By (6.20) and (6.44) one has

K (t) u
H (t)H (t)[Ku (t)-K] 

ts2+ HT (t)H(t)
(6.55)

Initially K^ft) and K(t) G . Let any K equal
zero or IT M_^ . Then one can show that the

i G r
corresponding derivative in (6.55) is positive or negative 
respectively. Thus Ku (t) G J1 . Thus by analysis similar

A

to lemma 4.2 all elements of K(t) are positive. Moreover,
^ A

if the ith element of k equals then k^< 0 .
A

Thus K (t) G .

(ii ) (iii) and (iv)

Let
L- = i[K - K]T [K -K] 1 2 u u

then [K -K]THHT [K -K] u u
62+ HTH - [Ku-K] ri V V

(6.56)

which by -the definition of is negative semi-definite
Integration of (6.56) on [t ,°°) , V t > 0 yields

°o { (K -K) H}
t B0+ HTHo 2

dt + (KU _K) r i W dt (6.57)

L. (t ) - L (») < 1 o 1 oo
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It can be shown that the derivative of the integrands in 
(6.57) are bounded and that both integrands are non-negative. 
Thus, both integrands converge to zero whence (ii), (iii) 
and (iv) follow.

(v) It follows from (iii) and (iv) that
lim K (t) = 0 ., ut->°°

(vi) Consider the non-negative function

L2 (t) = |[K(t) - Ku (t)]TA [K (t) - Ku( t) ]

+ -  vhk) r_ (ß) (6.58)2  ̂ Z Z

As r2 is diagonal

\ -2-{v2(io r2 f 2(ß))= r 2v2(ic)
3 k

Thus

L,(t) = - [-*4] [-* ] + [K-K ]K
Z 3k 3k

<  -  I I  k (t) I! 2 + (t)

where lim a2(t) = 0 , as K “ Ku is bounded and K -► 0 
t^°°

Thus for arbitrary e2 > 0 3  T3 such that a2(t) < e2

V t > T3 . Thus V t > T3
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L 2 (t) < - || k(t) || 2 + e2

Since is non-negative, for arbitrary e 3 > e2 a
such that

II k(t) II 2 < e3 V t > T 3 .

Thus
lim II k(t) II 2 = 0
t -*00

whence (vi) follows. VVV

Remark
(6.13) We have thus shown that K is always in

, that its variations decay asymptotically 
to zero and that converges to J ^ . Then the
following result shows that all system signals are bounded.

Theorem 6.6
For the closed loop system (6.1 - 6.9), (6.11 - 6.14)

and (6.44 - 6.50) all signals are bounded, whenever 
r(t) E £^[0,°°) and assumptions (6.4 - 6.6) hold.

Proof
From (6.2 - 6.9) and (6.11 - 6.14) one can see

that
y (t) = g^(K)x2 - g^(K)x1

g^(K)x2 - g^(K)x1 - (K - K)TH (6.59)
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Thus the plant can be re-expressed as

T TF x1 + e^y

x 2 = , TF x2 + e^u

y g2 (K)x2 - g^(K)x1 - (K - K)TH

T T T Twith x = [x^,X2 ,xc] we have the closed loop system 

expressible as

x(t) = A(K)x(t) - Ab(K) (K - K)TH(t) +r'(K,t) (6.60)

where

T T —F - e1g 1 (K) elg 2 (K> 0

A(K) = -a.g^(K)C5 (K) FT+eig2 (K)C5 (K) elC 4 (̂ > (6.61)

- C 2(K)g^(K) C 2 (K)g2 (K) C 1 (K)

Ab (K) e1C4 (K)

C 2 (K)

(6.62)

r'(K,t) e. C.(K)r(t) J- 6

C 3 (K) r (t)

(6.63)

By assumption (6.4) A(K) is asymptotically stable when
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K e j .
Also by (6.50) 0 < a 3(t) < 1 such that

(K-K)TH(t) = a 3 (t) (K(t)-K)TH(t) + (l-a3 (t) ) (Ku (t)-K)TH(t)

= a 3 (t) (K (t) - Ku (t) )TH(t) + (Ku (t)-K (t) )TH(t)

where a nonzero a 3(t) implies that 

(K(t) - Ku (t) )TH(t) < M .

Thus
(K - K)TH(t) = a4 (t) + (Ku (t) - K(t))TH(t)

where
|a4(t)| < M ¥ t > 0 .

Thus (6.60) can be re-expressed as

x(t) = A (K, x, t) x + r(K,x,t) (6.64)

where

* _ _ (K -K)TH(t) /ß2+x^xc+HTH _
A(K,x,t) = A (K) - ■ ----------  Ab(K)x

/ m m  m/32+ x^x^+H H 2̂+ x x

and

(Ku-K) TH (t) /32+HTH + x \ c )(î b (K)
r(K,x,t) =  r* (K,t) ^ rp" ■ ------- -----------

/ f ^ + x ^ + H  H +x x

- a4(t) Ab(K)
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It is possible to show that

T T3 + x x  + H H ____ c c_____
T3 + x x

is bounded. Also, by (iii) of Theorem 6.5

and

lim
t-*-00

HT(K -K)
-------U _ . ---- = 0

rn rn p
(3+x x +H H) 2 c c

lim K (t) = K* , K* E J
t-*oo

~  ~  —  ___*
Thus r is bounded, and lim A(K,x,t) = A(K ) .

t->°°

Thus by a result in [2] x is bounded, whence, u, xc , y

are bounded. Thus in (6.2) as F is asymptotically

stable, x is bounded. VVVP

Remark

(6.14) From (6.60) one can see that the closed loop
— Tsystem is driven by the output error (K-K) H . The 

exploitation of this feature can also be found in [2] .

We have thus established that as long as the reference 

input, r(t) , is bounded the closed loop system will be 

stable, under ideal settings. But, for the algorithm to 

be robust we need more. We need to show that K converges 

to K at a rate which is exponential. Theorem 6.7, 

stated below, shows that this is guaranteed if 3  T > 0
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such that the gramian

r 0+ 6
H(t)HT (t)dt , ( 6 o 6 5)

Jo

is uniformly positive definite for all c > T and if 

H(*) is bounded. By Theorem 6.5, K(t) converges to 

zero asymptotically. Thus there exists a T > 0 such 

that || K (t) || becomes small for all t > T . Thus 

considerations similar to the arguments in the proofs of 

Theorems 3.9 and 6.4 show that the satisfaction of 

(6.26) ensures that (6.65) is uniformly positive definite 

for all t > T .

Theorem 6.7

Consider the differential equations (6.44) and (6.46). 

Suppose there exist T, 6, a 6, a 7 > 0 such that V o > T

rO+6
ot6 I < H (t)H (t)dt < a 71 (6.66)

Then K (t) converges to K at an exponential rate.

Proof.

Consider the Lyapunov function

L3 = |[K(t) - K]T A [K (t) -K] + f h k ) r 21'2(k)

Recall also the Lypaunov function

L- = (K (t) - K)T (K (t) - K)1 u u

defined in Theorem 6.5.

Now,
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OL
A m

3K (t)

9k(t) 3k(t)
A (K (t) - K) + T 2 V 2 (k)

By the definition of ¥ 2 (k) it follows that since
A

K(t) e j
/\ /\

E7 <E7} T 2i<*> > 0 1 1

Thus as in the proof of lemma 4.2 we have that

3L3
---  = 0 iff k = k , as long as
3k(t)

By (6.44) , (6.45) , (6.56) and the boundedness of

t 1 < -ß (Ku (t) - K)T HHT (K (t) -K  

for some (3 ̂  > 0 .

Whence by an extension of a result in [10] ,

K E j . 

H (t )

Ku <t) - K || < ß 3 || K u (T) - K || e B,,<t T) Vt > T

and some ß 3, > 0 . As K (t) is hounded, there

exists an M such that || K (T) “ K ll < M .

Thus by a result in [ll,p86] there exists a Lyapunov 
function such that for some yi, y 2/ y 3 > 0

Pi II Ku (t) - K || 2 < L 4 < y 2 || Ku (t> - K |1 2

and

- L 4 < y 3 II Ku (t) - K II 2

/\ _
¥ t > T . Moreover, as k(t) is bounded M such
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that /N m

3K^(t)
A < M <

9k (t)

Define

L — ~2 Li + 3 5 L 4

where
1 +

— 2 M
2y 3

^ T T T T TClearly L is positive definite in [k -k ,K^ - K J .

Also
3L 3 (t) 3K (t)

L(t) = - A (K(t) - K) +
/N m

3KX (t)
3k(t) 3k(t) 3k (t)

A (K - Ku (t) )

+ r2 V2 (k) } - (is U 3 II Ku (t) - K

<  -
9L 3 (t) 
9k( t)

+ M
9L 3 (t)
/N

9k(t)
K (t) - K

- Bs y 3 II Ku (t) - K

-  2

1 9L  3 (t ) 2

9k(t)
- y 3 II Ku (t) - K

which is negative definite in [kT (t) - kT , - KT ] T
9L 3

as ---  has no explicit dependence on t . Thus as in

the proofs of Theorem 4.5 and 6.1 , k(t) converges 

to k exponentially. Thus K(t) converges to K 

exponentially. VVV



295

6.3 Simulation Results

In this section we present simulation results using 
adaptive controllers typified by our first algorithm. The 
plant being considered has transfer function

s+1
T (s) = ----------
p (s+3 (s-1)

so modelled as to ensure that = 3 and = -2 .
The object is to place the closed loop poles at -3 and 
-4 . A standard pole placement algorithm is used, with 
controller parameters being computed as a function of the
parameter estimates k^,k2 . The controller parameters
are held constant over the region where the Sylvester
determinant [12, pl42] has magnitude less than .1 .
The state variable filters used have transfer function 

1
(s+5) (s+6) The identifier (6.18) has t

Figure 6.1 gives the results in the absence of 
modelling inadequacies. In the first plot the lines 1

A Aand 2 refer to k^(t) and k 2 (t) , which converge
rapdily to 3 and -2 , respectively. The second plot 
depicts the output, which after t = 3  , is quickly 
stabilized.

Next consider the presence of an unmodelled mode 
at s = -60.

Figure 6.2 lists the output y , which is stabilized 
despite the unmodelled mode. The first and second plots

Aof figure 6.3 depict the constrained estimate k^ and
the first two elements of the unconstrained estimate K ,u
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respectively. The steady state values are

/\kx = 3.1074 K . = 3.4637 ul

k2 = -1.8653 K _ = -2.4614 u2

AClearly track the respective k^ values more closely.
AAlso the k^ convergence is significantly smoother.

AAnother feature to note is that at t=3, as k(t) starts 
to be updated the unmodelled mode is excited and this causes 
the orthant condition to be violated, significantly. Yet, 
the algorithm is robust enough to withstand this violation

Aand to force the k. to return to the correct orthant.l
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Figure 6.3 Behaviour of constrained and unconstrained 
estimates in adaptive control with
unmodelled modes.
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§7 Conclusion

This thesis considers the adaptive identification 
and control of single input - single output, continuous 
time systems whose unknown parameters are directly related 
to physical parameter values.

At the outset it is shown that in many cases such a 
parametrisation leads to state variable realizations which 
have a rank-1 dependence on the unknown parameters. This 
in turn results in minimal transfer function descriptions, 
whose denominator and numerator polynomials are 
multilinear in the unknown parameters. The adaptive 
algorithms formulated here exploit this multilinearity.

General tools for deriving persistence of excitation 
conditions on the inputs of the unknown system, are 
developed. The results derived include those involving 
unstable systems with bounded or unbounded inputs and 
time varying systems with bounded time variations and 
system signals. These tools are subsequently applied, in 
specialized forms, to derive p.e. conditions which 
guarantee the convergence of the algorithms formulated 
here.

Both equation and output error identification are 
considered. Of the three equation error algorithms, 
the first two, respectively called the two step least 
squares and generalized gradient descent algorithm, 
involve a two step procedure. The first step generates 
an unconstrained parameter estimate by ignoring the 
intrinsic multilinearity. The second obtains a
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constrained estimate which is in some sense, the 
"nearest" to this unconstrained estimate. The least 
squares two step algorithm uses a least squares approach 
in generating the unconstrained estimate; the generalized 
gradient descent one uses any gradient descent algorithm 
for the first step. The second step for both is the 
same, being a steepest descent algorithm minimizing a 
quadratic of the difference between the constrained and 
unconstrained estimates.

The least squares algorithm is implementable only when 
the input satisfies a p.e. condition. Once implementable, 
it is uniformly asymptotically convergent as long as the 
parameter estimates are initialized to zero. The other 
two are u.a.s. as long as the input is p.e. and the 
parameter estimates never leave the orthant containing 
the true parameter value. Several ways of ensuring the 
latter are presented and involve the knowledge of 
parameter magnitude bounds. Given the physical significance 
of the unknown parameters such bounds can be easily 
ascertained.

Simulation results are presented, primarily to show 
that the second step in the aforementioned two step 
approach, serves to improve the accuracy of the parameter 
estimates.

Two output error algorithsm are formulated, both 
involving the two step structure outlined above. They are 
shown to be uniformly asymptotically stable whenever 
the input is p.e., a certain transfer function involving 
the unknown parameters is strictly positive real (SPR)
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and the parameter magnitude bounds are known. The convergence 
proof utilizes a lemma which extends a result derived by 
Boyd and Sastry [1] , to the unbounded signal case.

Two indirect adaptive controllers are formulated.
Both involve a general controller, satisfying certain 
assumptions, but differ in the identifiers employed.
The first is shown to be stable under the assumption of a 
stabilizable and detectable plant. In the second the 
knowledge of a convex region containing the true parameter 
value is assumed. This region has the following added 
property. Suppose the plant is described by P(k) and 
the controller by C(k) , k being the parameter estimate.
Then the closed loop system is asymptotically stable 
whenever k lies in this region. In both the algorithms 
uniform asymptotic convergence of parameter estimates is 
established under the assumption of p.e. reference inputs.

7.1 Areas of further work

Several open questions remain.

(i) We have not established the multivariable 
extension of the result which states that SISO systems 
with a rank-1 dependence on the system parameters have 
minimal transfer function descriptions, whose numerator 
and denominator polynomials are multilinear in the
parameters.



304

(ii) For systems having more than one parameter, the 
problem of relating transfer functions with the multilinear 
property, to rank-1 state variable realizations has not 
been addressed.

(iii) In the two step algorithms, simulation results 
show a marked improvement in the parameter estimates as a 
result of the second step. A comprehensive theoretical 
explanation of this improvement has not been given.

(iv) The least squares two step algorithm is implement- 
able only when the input satisfies a p.e. condition. 
Non-satisfaction of this condition, however, is not always 
tantamount to lack of system identifiability. Thus 
modifications of this algorithm to cope with such a 
situation is desirable. Here, we have only considered 
modifications for a restricted subclass of these situations.

(v) Output error convergence requires that a polynomial 
3(s) be known such that ft(s)/Q(s,k) is SPR , with 
Q(s,k) the denominator polynomial of the system transfer 
function. The determination of a B(s) which satisfies 
this for all k belonging to a known convex region is a 
worthwhile problem to solve.
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