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PREFACE

The material covered in this thesis reports only part of the research with 
which I have been involved during my postgraduate studies. Although it would 

have been possible - at the expense of a considerable amount of work - to 
produce a magnum opus containing the whole body of research in one coherent 
work, I opt to present only this material which discusses the dynamics of 
adaptive control from the parameter space point of view. In doing so, I
believe I do both the reader and myself a service.

The research not presented in this thesis concerns:
1. The application and extension of averaging techniques and singular

perturbation methods to determine the stability properties of adaptive 
systems. This research is presented in detail in [1,2,3]. Some of these 
techniques are used in Chapter 2.

2. The characteristics of persistency of excitation and sufficiently rich inputs
for linear time invariant systems in the light of its necessity for
establishing exponential stability of adaptive systems, as well as a discussion
of the robustness of persistency of excitation with respect to time variations
in the dynamics of the plant. This research is reported in [1,2,4,5,6,7,8]. 
The notion of persistency of excitation is used throughout the thesis.

3. The study of modifications of basic adaptive algorithms and their effects
on the stability properties and our- perception of sufficiently rich input 
signals. This has been reported in [9,10,11].

4. An initial attempt to deal with the transient behaviour of adaptive

algorithms in a more general way. This is presented in [12].
The material treated in the thesis is an extension and/or a more detailed

presentation of research presented in [13-20].
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1. INTRODUCTION

In this introduction we discuss concisely what we understand by adaptive 
control, pointing out some of the generic forms in which adaptive control 
manifests itself. A brief review of the major results about the dynamics of 
adaptive systems is given, emphasising their importance and their weaknesses. 
Consequently, we present our approach to obtaining a better understanding of 

the dynamics of adaptive control. Finally, we outline the organisation of the 
material covered in this thesis and describe what we see as our contribution to 
the field of adaptive control.

1.1 Adaptive Control

Adaptive control is one approach to control imprecisely known systems. 
Methods developed to control uncertain systems can be distinguished on the 
basis of the a priori knowledge assumed about the plant. (In the absence of 
any information about the system to be controlled, any controller is a priori as 
good or as bad as an adaptive one.) In most nonadaptive methods, the plant is 
assumed to be one fixed member of some class P of causal, time invariant, 
linear systems. A stabilizing controller designed for one particular fully known 

system may stabilize a neighbourhood of this nominal system. The larger this 
class, the more "robust" the controller. Robust control design tries to optimize 
in some sense this neighbourhood around a nominal plant. Adaptive control has 
an underlying assumption that the plant at any instant in time belongs to some 
class P (generally much larger than just a "neighbourhood" of a nominal system), 
and can vary "slowly" throughout this class. The aim is then to find a 
universal controller which is able to stabilize any fixed member in the given 
class and can track the system. One approach consists of parametrizing the 
class P and a corresponding class C of stabilizing controllers (designed as if the 
system were known) and to control the system by identifying from the observed 

input output data which controller of C to use. If the identification procedure 
is a two-step method, first identifying the plant (i.e. the parameter 
corresponding to the plant) and then obtaining from this parameter the 
controller, one speaks of indirect adaptive control. In direct adaptive control, 

one tries to identify the controller immediately from the input, output data. If 
the adaptive algorithm is not based on a coupled parametrization of the classes
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P and C, one speaks of non parametric adaptive control.
This automation of the identify-then-control approach, characteristic of 

classical linear control, underlies most of the adaptive control algorithms. This 
methodology leads to an overall system consisting of three distinct subsystems:
(a) the plant to be controlled, which the control designer assumes to belong to

the model set, for future reference, represented as 

y ( t ) = [ H( p) u] ( t ) ;  p e P ( 1 . 1 . 1 )
where u is the (plant) input function, y the (plant) output, H(p) the model 
operator, parametrized by a vector p, belonging to the set P characterizing 

the model set under consideration. (The actual plant is not necessarily a 
member of the model set!)

(b) the control law - designed for plants belonging to the model set:
u ( t )  = [ G( 0( p) , d1) ( y , r ) ] ( t )  6 e 0; d, e D, ( 1 . 1 . 2)

G is the causal operator (depending on the parameter 0, which depend 
themselves on the parameter p, and d, is a vector of design variables), 
which from the output measurements of the actual plant output y, and the 
reference signal r (setpoints,....) generates the input to the plant.

(c) the identification mechanism (adapted to both the model set and the 
controller structure):

6( t )  = [ I ( d 2) ( u , y , r ) ] ( t ) ;  d 2 6 D2 ( 1 . 1 . 3 )
I is a causal, typically nonlinear operator with memory, producing the 
control parameters 0 on the basis of the available data, i.e. input u, output 
y and reference signal r up to time t. d 2 is a vector of design variables, 
(stepsize, gain, filter poles,...).
Classically one assumes both plant and model to be linear, time invariant 

and finite dimensional, designs G accordingly as a linear control law (pole 
placement, LQG, model matching, minimum variance, ....) and estimates 0 via 
an identification scheme suited to identifying a linear, time invariant system, 
using, for example, a least squares or a stochastic gradient approach. All the 
ingredients are inherited from linear control theory, and one might venture that 
the adaptively controlled closed loop system would behave basically in a linear 

way. This is however not the case: the adaptive closed loop system (plant
with control law defined in (1.1.2)-(1.1.3)) is fundamentally nonlinear. It is our 
aim to demonstrate this unequivocally and to unravel (at least as far as 

practical) these dynamics.
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1.2 Feasibility of Adaptive Control
The longstanding problem of demonstrating the existence of a universal 

controller (designed using the methodology outlined above) for the class P of 
causal, linear time invariant, single input single output (SISO) systems with 
known number of poles and zeros in a minimal representation, has only recently 
been solved, both for the parametric approach [1,2,3,4] and the nonparametric 

approach [5,6]. Most of the possible combinations of deterministic or stochastic 
and discrete or continuous time SISO systems have been covered. The case of 
multivariable systems has not yet been fully settled [1,2,7,8]. The generic form 
of the results is:

Cl: "All signals within the adaptive system are bounded, and asymptotically the 
control objective is achieved."

The hypotheses, under which this result can be established, involve typically:

HI: "The plant belongs to the model set P (as described above (1.1.1))."
H2: "The plant’s transfer function (combined with other transfer functions 

arising in the adaptive systems) satisfies a strict positive real condition."

This is quite a formidable result, as it is indeed amazing that the methodology
outlined above works. However, from a practical point of view and from a
dynamical systems point of view this result is unsatisfactory. Firstly, the results
say very little about transient response - what does "bounded signals" mean?, 
and the information about the asymptotic dynamics is weak - no uniform 
convergence. The nonuniformity of the dynamics implies that small changes in 
the representation of the dynamics may cause fundamental differences, e.g. loss 

of stability. The absence of the "uniform" qualifier in the result Cl is not due 
to a careless analysis, but is unfortunately a property of the adaptive system 
under the hypothesis HI and H2. Indeed small unmodelled bounded
disturbances - e.g. due to round off errors in a computer simulation, or 
measurement noise - may cause unacceptably large (but bounded) deviations 
(called bursting phenomena) from the desired response. The control objective 

cannot be fulfilled anymore [9]! This sensitivity to unmodelled bounded 
disturbances can be overcome by requiring that:
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H3: "The external signals are persistently exciting (PE) so as to guarantee 
uniform asymptotic identifiability of the control parameter 6 [10]."

Indeed, under the extra hypothesis H3, one can demonstrate that in addition to 
C l, the following conclusion holds:

C2: "The control objective is achieved uniformly asymptotically, and the model 

parameter/control parameter is uniformly asymptotically identified."

A more fundamental shortcoming is the crucial presence of the strict positive
real condition and the requirement to know the system’s order. These 
properties are sensitive to slight variations in the transfer function (in frequency 
response terms). Because it is very likely that the plant does not belong to the 
model set, the strict positive real condition is generally found not to be satisfied 
in practice. Moreover, the examples in [2,11] demonstrate that, even in the 
presence of PE signals, loss of the strict positive real condition can completely 
destabilize the adaptive closed loop.

These observations do not invalidate the methodology of adaptive control - 
witnessed by many successful applications of adaptive controllers - but do
demonstrate that these results Cl and C2 obtained under the hypotheses H l, H2 
and H3 (although of fundamental importance to establish the feasibility of
adaptive control), do not provide the necessary information in order to
understand the dynamics of adaptive control, nor to make adaptive control work 
under more realistic conditions.

1.3 Robustness and Adaptive Control
A "robust" or "structurally stable" system is a system which preserves some 

of its qualitative properties under (small) perturbations in its description. The 
preserved qualitative properties are called structurally stable or, concisely, robust. 
Our notion of robustness therefore depends on the properties we are interested 
in and on the perturbations we allow for, in particular on how we quantify

(small) perturbations.
In an adaptive control context it is realistic and relevant to consider

robustness with respect to the perturbation undermodelling: "the plant does not 
belong to the model set" (which requires the introduction of an appropriate
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notion of smallness). This corresponds to violating both hypotheses HI and H2. 
Considering perturbations which cause H3 to be violated, is less realistic, as 
under normal circumstances we always can enforce this hypothesis and because 
condition H3 is robust with respect to small signal deviations by construction.
The quantitative property of interest is the control performance: only small 
(asymptotic) deviations from the desired response are acceptable. It is desirable 
to include transient response considerations in our measure of the control
performances, and whenever this is amenable for analysis we will do so.

The property "belongs to the model set P (the class of causal, linear, 
time-invariant systems with m zeros and n poles) and satisfies a strict positive 
real condition" is not robust with respect to the most commonly used notion of 
"closely resembling systems". Indeed, in engineering terms, it is natural to 
regard (stable) systems as close whenever their Bode diagrams are close over the 
relevant frequency range. (A similar notion of closeness can be defined for
unstable systems, using matrix fraction description with stable factors [12].) But 
in this measure systems of arbitrary order can be arbitrarily close and strict
positive realness is completely out of the picture! In linear, classical robust 
control design (H^-theory) this is the relevant measure, as systems which are 
close in the above sense for open loop response will be close for the closed 
loop response [12,13]. Ideally, we would like our adaptive control algorithm to 
have this property (if the plants to be controlled are "close", then the adaptive 
response is "close"). As was pointed out in the previous section, this is not the 
case for the adaptive system (1.1.1-1.1.3) under the hypotheses H1-H3. 
Therefore we would like to specify a range of design variables, or specify extra 
information about the plant such as to guarantee this type of robustness. This 
is precisely where the "global" results Cl and C2 fall short, the role and the 
interrelation of the design parameters and external driving signals is largely 

neglected.
Very useful information about the role of the design variables and the 

excitation of the external signals or the stability and control performances of 
adaptive control can be obtained by considering only slow adaptation [14]. The 
assumption of slow adaptation enforces a time scale separation. The dynamics 
of the controlled plant (1.1.1-1.1.2) are fast compared with the slowly time 
varying 6 governed by (1.1.3). Therefore we can analyse the controlled plant 
(1.1.1-1.1.2) separately from the update law (1.1.1). On the time scale of the
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subsystem (1.1.1-1.1.2) we fix 6 and analyse the corresponding (by assumption 
and construction) linear loop, whilst we analyse the identification scheme by 
considering y and u in a regime for the particular 6 considered. The results 
yield meaningful design criteria (specifying filter poles, frequency content of 
external signals, adaptive gain) for good local performance of the adaptive 
closed loop. The local nature of the results is a direct consequence of the 
approach. In order to have a regime for u and y, 6 should at all times 
specify a stabilizing controller (1.1.2) and the time scale separation, (uniform in 
time) requires that the encountered regimes of u and y are close (in some 
sense) to the desired behaviour so as to make the driving forces in (1.1.3) small 
and therefore 6 slowly time varying. The theory demonstrates that the local 
dynamics of adaptive control are robust with respect to undermodelling, 
provided some intuitively appealing design criteria are met (design criteria which 
are insensitive with respect to modelling errors, of course).

As opposed to this local approach, there exists a tendency to develop global 
"robust" adaptive control results by redesigning the adaptive law. This approach 
is initiated in [15], where the effect of unmodelled fast dynamics in the plant 
on the adaptive response is investigated. The modifications introduced in the
adaptive mechanism usually only concern the identification mechanism (rather 
strange!) and appear as ad hoc "fixes", e.g. normalization, dead zones, 
exponential forgetting, data-windowing [16,17,18]. The theory is basically 
nonquantitative and concentrates on bounded input bounded state stability of the 
adaptive closed loop - often without quantifying the gain from input to state 
magnitudes. It is our opinion that this is not enough, and we will demonstrate 
that this coarse theory overlooks some rather remarkable, undesirable effects 
(such as extreme sensitivity to initial conditions) which can be present if one 
does not pay careful attention to the selection of the design parameters. This 
aspect of the adaptive control design has largely been neglected in the global 
approach.

It is natural that in the search for robustness we have to introduce more 
information about the plant and its environment and that we pursue a less 
ambitious control task. In both approaches, discussed above, the balance 
between the extra information (respectively in the form of design criteria and 

"fixes") and the relaxed control objective (small deviations from desired response 

(output property) and a bounded state response) is introduced on an ad hoc



1. Introduction 7

basis.

The apparent discrepancy (local global, good performance bounded 

errors, parameter selection 4-  ̂ fixes) clearly indicates a gap in our understanding 

of the dynamics of adaptive control. We aim to fill this gap at least partially 

in order to understand what extra information is necessary and how much we 

need to relax the control task. In doing so, we indicate how the local theory 

breaks down and what the coarser global theory overlooks, and demonstrate that 

the dynamical behaviour that adaptive control can exhibit is only limited by the 

imagination of the beholder.

1.4 Case Studies in the Dynamics of Adaptive Control

We propose to study the dynamics (and therefore the robustness properties) 

of adaptive control along the following lines. In designing the adaptive 

controller, we first decide upon a model set P and construct the controller G 

(1.1.2) and the identification scheme I (1.1.3) accordingly, and then analyse the 

closed loop when the actual plant does not belong to P, but to some other set 

P", not necessarily a superset of P. This corresponds to a real world scenario. 

The task is then to classify (on the basis of qualitative differences) the possible 

(global) dynamics over the whole parameter space P'xD - including both plant 
and design parameters. Formulated in such generality this is an immensely 

difficult task, unlikely to be ever resolved in any great detail. Therefore, and 

in the spirit of global analysis and bifurcation theory - mathematical disciplines 

concerned with the classification of the qualitative behaviour of dynamical 

systems - we present an inductive approach to the problem formulated above 

based on three fairly complete case studies.

These case studies are "simple" examples along the lines of the above 

scenario, allowing a detailed analysis. At all times we will be interested in 

structurally stable phenomena and in the mechanisms which cause them, enabling 

us to make more general statements.

In Chapter 2 we discuss the M.I.T.-Rule for adaptive feedforward control 

of a linear time invariant plant. This leads to a linear (in the state) overall 

system, which simplifies the analysis. In this situation the "local" theory 

described above provides global results and therefore this example serves to 

illustrate how the design parameters effect the dynamics. As the linearity 

restricts the possible dynamics severely, the main aim is to describe the
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stability-instability boundary in the parameter space. We identify the different 
mechanisms which cause instability (high gain, resonance and undermodelling 
effects) and indicate how to select the design variables to avoid these problems. 
Some comments are made about the robustness of the adaptively controlled 
system with respect to other non modelled effects such as exogeneous 
disturbances (measurement noise) and small nonlinearities in the plant.

Chapter 3 deals with a model reference adaptive control algorithm. The 
plant to be controlled belongs to the class P" of causal, linear, time invariant 
second order systems without finite zeros, whilst the controller is designed for 
systems belonging to the class of P of causal, linear, time invariant first order 
systems without finite zeros. The resulting nonlinear system exhibits a large 
variety of different dynamics for various parameters ranging from uniform 
asymptotic stability to strange attractors via a sequence of period doubling 
bifurcations initiated by a Hopf bifurcation. Special attention is paid to the 
implications these findings have on our understanding of adaptive control in 
general. Most importantly we argue that it is of crucial importance to select 
the design variables properly in order to avoid some of these complicated 
dynamics, more so than to modify the adaptive control law.

A modified version of the selftuning minimum variance regulator is 
analysed in Chapter 4. Special emphasis is placed on its robustness properties 
with respect to undermodelling by considering a second order plant controlled 
by an adaptive law designed for a first order system. A detailed analysis 
reveals that for a large class of second order plants output regulation is 
achieved, whilst some internal signals behave either periodically or chaotically 
depending on the parameters describing the plant. A discussion of the effects 
of time variations in the dynamics of the plant to be controlled as well as of 
other non-modelled disturbances is included. This is the only problem where 
we discuss transient behaviour in detail. As in the previous chapters the 
implications that this analysis has an adaptive control in general are pointed out.

1.5 Our Contribution: Nonlinear Theory for Adaptive Control

The present work is an attempt to understand the dynamics of adaptive 
control, and to come to grips with the fundamentally nonlinear mechanisms that 

govern its properties.
It is demonstrated that contrary to common belief, an adaptive controller
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(designed along the methodology outlined in section 1.2) only exhibits its linear 
heritage for slow adaptation, which requires both small adaptive gain and small 
deviations from desired behaviour. Therefore one should resist the temptation 
to view and to analyse adaptive control as a linear time-varying control. 
Specifically robust adaptive control is not just a combination of robust (linear) 
control and robust (linear) identification. The robustness mechanisms (in the 
large, not slow adaptation) are essentially nonlinear, and are reminiscent of the 
robustness properties of nonlinear oscillators, as for example, the Van der Pol 
oscillator.

The first case study, the M.I.T. rule, demonstrates the efficacy of the 
perturbation tools. In this instance, the local theory is globally valid.

The next two case studies indicate how the local theory may break down 
and demonstrate what the global theory appears to overlook. In particular we 
argue that it is not sufficient only to include boundedness considerations, and 
that it is an unsound idea to introduce fixes disconnected from the control 
objective. Global and local theories should therefore be combined - an attempt 
in this direction can be found in [19].

These case studies lead us to some profound questions into the nature of
adaptive control. To what extent is an adaptive controller different from any
robust nonlinear controller? Certainly the boundary between parametric, 
nonparametric and direct, indirect adaptive control, as seen from a dynamical 
system point of view appears to be extremely vague, and in our opinion serves 
only an historical purpose.

The two last case studies indicate that adaptive control can lead to 
extremely complex dynamical behaviour (chaotic dynamics). In our opinion, this 
is also the first instance where chaotic dynamics and their overpowering
structural stability serves a useful purpose - it makes these adaptive controllers

work!

1.6 Organisation of the Material
Each of the Chapters 2, 3 and 4, containing the bulk of the presented 

material, has its own introduction where the problem is set up, followed by the 
analysis and conclusions. An historical overview finishes each chapter. It 
describes the results, available in the literature, about the particular adaptive law 
(and its variants) considered in that chapter and situates our results. The
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references are located at the end of each chapter.
In each chapter, the important equations are numbered per section, separate 

from the lemmas and theorems and points of discussion. The latter are 
numbered as Lemma n.m, Theorem n.m an R.n.m, where n.m stands for the 
mth Lemma, Theorem or Remark in the nth Chapter.
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2. THE M.I.T. RULE FOR ADAPTIVE CONTROL

2.1 Introduction

The first case study is chosen to highlight both the influence the design 
parameters have on the dynamics of an adaptive control scheme and the 
nonlinear way in which they exert this influence. The M.I.T. rule for adaptive 
feedforward control is particularly well suited for this purpose as its overall 
description (e.g. equations 1.1.1-1.1.3) can be presented in the form of a linear, 
time varying system. The linearity of the dynamics (in state space) allows us
to concentrate on the property of asymptotic stability, which can be readily 
interpreted in terms of good control performance, and specially on how it 
depends on the design parameters. An equally well suited alternative to the 
M.I.T. rule is a model reference control algorithm for feedforward control. We 
discuss this approach only when its behaviour is significantly different from the 
M.I.T. rule. More details for the model reference approach can be found in [1, 
Chapter 3].

In Section 2 we introduce the M.I.T. rule using the original, heuristic
arguments [2], re-interpret them in the form of the methodology discussed in
Chapter 1, Section 1.2 and discuss some of its variants. Next we discuss
several instability mechanisms, high gain, resonance phenomena and modelling 
errors. Then, using the principle of "timescale separation", suggested by the
instability analysis, we derive design guidelines for good adaptive control 
performance. Finally we indicate how our results can be generalized and what 
they imply for adaptive control in general. An historical overview, in which
we situate our contributions, ends the chapter.

2.2 The M.I.T. Rule
We refer to Figure 2.1. The plant to be controlled consists of an unknown 

linear, time invariant plant with strictly stable transfer function Zp(s) and a 
positive, but further unknown, premultiplier/gain kp. The gain kp is the only 

parameter in the plant which possibly depends on time. Using a feedforward 

gain adjustment kc for the plant kpZp(s) the control objective is that the plant 
output yp(t) tracks the model output ym(t) prescribed by the parallel model 
with strictly stable transfer function Zm(s) driven by the bounded reference 
input r(t). Whitaker [2] suggested to select kc the precompensator gain so as to
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minimise the integral squared error:

T

I = lim in f  ^  f e 2( t , k c )d t 
TT» J,

( 2 . 2 . 1 )

where e(t,kc) is the output error (for fixed kc): 

e ( t , k c ) = y p ( t ) - y m ( t )

He proposes to update kc as follows:

( 2 . 2 . 2 )

: , d e 2( t , kc ) v

k c  00 { dkc }

which is equivalent to

( 2 . 2 . 3 )

k c  oc - e ( t  ,k c ) [Z p (s) (kp r ) ] ( t ) ( 2 . 2 . 4 )

Equation (2.2.4) cannot be implemented as the signal [Zp(s)(kpr)](t) is not 

available. However, assuming that Z m(s) is a good approximation for the plant’s

transfer function Zp(s) and treating kp as being constant, (2.2.4) 

can be approximately implemented as:

k c =  - g ( y P ( t ) - y m( t ) ) y n i ( t )

Where we used the approximation:

(2 .2 .5 )

[Zp ( s ) (kp r ) ] ( t ) s: [Zm(s )  ( r ) ]  ( t ) .kp — k p y m( t ) ( 2 . 2 . 6 )

Because kp is by assumption positive, g is a positive scalar constant scaling the 

adaptation speed. This is the M.I.T. rule for adaptive feedforward control (see 

Figure 2.2). To emphasize the dependence on kc of the right hand side of

(2.2.5) and for future analysis, we rewrite (2.5) in the following form: 

k c  = -g[Zm( s ) ( r ) ] ( t ) . [ Z p ( s ) ( k pkc r ) ] ( t )  

+g[Zm( s ) ( r ) ] 2 ( t ) ( 2 . 2 . 7 )

We denote by [G(s)(u)](t) the output at time t of a linear time invariant 
system with transfer function G(s) driven by the input function u(t) with 
zero initial state. Initial condition effects of the state of G(s) will be 
included only when necessary.
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Figure 2.1 The M.I.T. rule

( s )

Z ( s )

Remarks:
(R.2.1) In writing equation (2.2.7) we disregarded the effect of initial
conditions in plant and model. Because the plant and model are strictly stable 
these terms decay exponentially fast. Exponentially decaying terms cannot effect 
the stability properties nor the asymptotic behaviour of the M.I.T. rule [3, 
Chapter 2], therefore it is permitted to disregard them. □
(R.2.2) This setup can be reinterpreted in the following way (see Chapter 1, 
Section 1.2):

(1) The model set is the set of strictly stable transfer functions:

P = ( k p Z p (s )  I kp > 0;  Z p ( s ) = Zm( s )}

(2) The control objective is to track ym(t) = [Zm(s)(r)](t) which can be 

achieved exponentially fast for any plant belonging to the model set 

using a feedforward control:

up ( t )  = kc r ( t ) (kc = 1/ k p )

(3) The identification mechanism is

kc = -gym(t ) ( y p ( t )-ym(t ))-



2. The M.I.T. Rule for Adaptive Control 16

Figure 2.2 The M.I.T. rule

(R.2.3) In the sequel we demonstrate that conditions which ensure the 
approximation (2.2.6) are desirable for good adaptive control performance. 
Notice that the essence of (2.2.6) is to make the control objective well posed.□ 
(R.2.4) The right hand side of (2.2.7) is affine in kc and nonlinear in r.
This explains why it is easy to characterize the global dynamics in state space 
(kc), only stable or unstable behaviour has to be considered, and why it is
difficult to characterize the stability/instability boundary in parameter space (r).D 

It might appear rather strange to try to minimise the integral squared error 
(2.2.1) using an instantaneous gradient scheme (2.2.3). However, keeping in 
mind that kp may really be slowly time varying and that it is therefore
necessary to track it in order to achieve the control objective, might justify this
approach. This observation motivates us to consider the two following 

alternatives for the M.I.T. rule:

:c,W T \
e 2 ( r , k c )dr

t-T

oc ( 2 . 2 . 8 )
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t

kc E oc - I e-o'Ct-7) e 2 (r , kc )dr ,cr > 0 (2 . 2 . 9)
0

These update laws take some of the history of the output error into account to 

update kc. They are called respectively integral gradient with finite window
and integral gradient with exponential forgetting. Following the same heuristic 
argument used to derive the M.I.T. rule leads to the following implementations 
of respectively (2.2.8) and (2.2.9).

t

k c,W = - f  I  (yP (T ) -ym(T ) )ym(r )dr  ( 2 . 2 . 1 0 )
t - T

t

kc , E  = - g j  e -0' ( t -T )ym(r ) (yp (r  ) - y m(r ) )dr  ( 2 . 2 . 1 1 )

0

Having introduced the M.I.T. rule via the usual heuristic arguments the
pertinent questions are "What are the stability properties?", and "Does it come
anywhere near optimizing the integral squared error (2.2.1)?".
Remarks:
(R.2.5) For future comparison with the M.I.T. rule, we notice that the model 
reference adaptive control alternative uses as update law for the feedforward
gain [4]:

kc,M = - g r ( t ) ( y p ( t ) - y m( t ) )  ( 2 . 2 . 1 2 )

or, in full

kc,M = ■ g r ( t ) [ Z p ( s ) ( r k pkCjM) ] ( t )

+ g r ( t ) [ Z m( s ) ( r ) ] ( t )  ( 2 . 2 . 1 3 )

Notice in particular that (2.2.13) is affine in kcjy[ and nonlinear in r, but of a 

different type from (2.2.7). □
(R.2.6) We collect here the standing assumptions we make about the M.I.T. 

rule and its operating conditions:
HI: r(t) is a bounded, piecewise continuous function on R+-
H2: kp(t) the plant gain is a strictly positive, bounded, piecewise
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continuous function on R+-

0 < kp < k p ( t )  < kp < oo teR+

H3: Zp(s) and Zm(s) are causal, strictly stable transfer functions.

H4: Zp(0) = Zm(0) = 1
Assumptions HI and H2 are quite innocent and typical in the context of 
tracking a slowly time varying parameter. Hypothesis H3 is essential in order 

to make the feedforward control strategy meaningful. Assumption H4 excludes 
the model and the plant having d.c. gain of opposite sign. In view of the fact 
that Zm(s) is supposedly a good model for Zp(s), this is a very realistic 
assumption. With minor modifications, which become clear in the sequel, we 
can deal with the situation where this assumption does not hold. However, 
pursuing this does not add anything substantial to our understanding of the 
M.I.T. rule. Notice in particular that any nonzero, positive d.c. gain different 
from 1 can be absorbed in g or kp respectively for the model and the plant. □

2,3 Instability Mechanisms
In this section we illustrate three types of instability mechanisms: high

gain, resonance phenomena and modelling errors, i.e. when the plant does not 
belong to the model set.

2.3.1 High Gain Instability
The possibility of high gain instability can be most easily demonstrated 

with constant reference input r(t) = R. This corresponds to setpoint regulation, 
a very common situation in the control of industrial processes. For r(t) = R 
and kp constant, the M.I.T. rule (and its alternatives) becomes asymptotically (or 
modulo an exponentially decaying initial condition effect) a linear, time 
invariant system, which can be analyzed using the Nyquist criterion, or root 
locus method.

Lemma 2.1: Under the hypotheses H.3 and H.4 (of R.2.6) the M.I.T. rule
with r(t) and kp(t) constant (r(t) = R, kp(t) = kp) has infinite gain margin 

(i.e. for all positive g and R the adaptive law is stable, independent of the
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Proof: Neglecting the effect of initial conditions (R.2.1), the equation (2.2.7)

with r(t) = R, kp(t) = kp becomes in Laplace domain:

skc (s )  = -gR2kpZ p(s)kc (s )  + gR2i

It follows that the M.I.T. rule is stable iff the zeros of 
1 + gR2kpZ p (s ) /s

are in the left half plane. □
Remarks:
(R.2.7) The M.I.T. rule becomes unstable, i.e. the output and the adaptive 
gain kc(t) are unbounded, for sufficiently large g or r whenever Zp(s) contains 
non-minimum phase zeros and/or has at least two poles more than zeros (e.g. 
Zp(s) = l/(s+ l)2 yields unstable response whenever gR 2 > 2/kp, even if 
Zp(s) = Zm(s) ). This is a typical instance of high gain instability. To avoid
this kind of instability requires knowledge of the low pass characteristics of 
Zp(s) and an upperbound for the plant’s gain kp as well as information about 
the relative degree. □
(R.2.8) Condition (2.3.1) is satisfied by all strictly positive real transfer 
functions Zp(s). □
(R.2.9) For the model reference alternative (2.2.13), the same result holds. □ 
(R.2.10) The integral gradient alternatives (2.2.11) and (2.2.12) have even lesser 
gain margins. The condition (2.3.1), guaranteeing infinite gain margin for the 
M.I.T. rule, becomes:

7T Z p ( j a ) )  3-n-
ö < a rg  -K------  <

JOH-O" 2

for the integral gradient algorithm with exponential forgetting (cr) and

(2 .3 .2 )

- ^  < a rg Z (ju ) < £  + < S ^ L  ; u > o ( 2 .3 .3 )

for the integral gradient with finite window (T). Even strictly positive real 

transfer functions do not satisfy (2.3.2) or (2.3.3), hence the gain margin is 

always finite! □
(R.2.11) Whenever the M.I.T. rule (or any of the alternatives) is exponentially 

stable for r(t) = R and kp constant, the adaptive gain kc becomes

asymptotically optimal. Indeed, kc converges exponentially to l / k p which also 
minimizes the integral squared error I (2.2.1) which in this situation is given by
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I = (kckpR - R ) 2. □

2.3.2 Resonance Phenomena

The instability due to resonance phenomena is illustrated using an example. 

With kp = 1 and Zp(s) = Zm(s) = a/(s+a) (a>0) we avoid high gain instability 

and modelling error issues. Using as reference input r(t) = cosoot, the M.I.T.

rule now becomes:

kc = - g [ i ^5 (r ( kc - l ) ) ] ( t )  . ( i f L ( r ) ] ( t )  ( 2 . 3 . 5 )

which can be equivalently represented in state space form as:

V -a acos cot' V

x 2. .-gym(t ) 0 ■ X2.

where

x 2 = kc - 1 (= kc - kp ) ( 2 . 3 . 7 )

ym( t )  = — - —  c o s  (cot- a r c t a n  —)
a

and x,  is the state of the plant Zp(s). Initial conditions have been disregarded.

Defining at = r, x,(t) = x^ r/a ) = z ,( 7 ), g/a = g" and 00/a = to", (2.3.6) 

can be re-written in the normalised form:

z,  ( t  y - 1 COSOo ' t ' Z ! ( T  )

z 2(t ). -g'ymt’-) 0 .z 2(t )
( 2 . 3 . 7 )

ym(r) = --------- c o s (00̂ 7 - a r c ta n  o O
/oo"2 + l

(2.3.7) is a linear differential equation with periodic coefficients. Its stability 

properties are readily analysed using Floquet theory [3, Chapter 2] in 

conjunction with numerical integration. (In reference [5] an analogous example 

has been discussed, [5] also contains the equivalent of Figure 2.3.) The results 

are displayed in Figure 2.3, which shows the stability domain in the frequency 

(00/a) - gain (g/a) parameter plane. The stability-instability boundary is

extremely complex, due to the strong interaction between the system’s dynamics
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and the input excitation - resonance instability. The gain margin which is 
infinite at to = 0 is drastically reduced around the cut off frequency (o>/a = 1) 
of the plant.

Figure 2.3 Stability boundary in parameter space for the M.I.T rule

1 o -

u n s t a b l e

S L O W  A D A P T A T I O N
REGION I

Remarks:

(R.2.11) For parameters (co",g") on the stability/instability boundary the system 
(2.3.7) has bounded, nontrivial solutions (i.e. ^0) defined on R4". (The

characteristic multipliers are exp(-2ir/cO and 1 in modulus.) On the boundary 

the dynamics are structurally unstable, as the slightest change in the parameters 
can change the stability properties (Chapter 1, Section 1.3). □

(R.2.12) Although the adaptive feedforward control problem is described by a
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two dimensional set of first order, linear, periodically time varying, ordinary 
differential equations - how far do we want to simplify? - we are unable to 
give substantial analytic results without making extra assumptions. We have to 
resort to numerical methods. This should not surprise us too much. Compare 
Figure 2.3 with Figure 2.4, which displays the stability domain in parameter 
space for the Mathieu equation [6,7]:

y ( t )  + 0 y ( t)  + «dg( l+ e c o sw t)y ( t) = 0 (2 . 3 . 8)

0 ) 0 ,  e > 0,  oo > 0

Figure 2.4 Stability boundary in parameter space for the Mathieu equation

U N S T A B L E

S T A B  L E

1/2 2/3 1 2
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The relevant parameters, after time rescaling are e (parallels our gain) and co/co0 
(parallels our co/a). The solid curves delineate the stability/ instability boundary 
for 0 = 0, no damping, the dashed lines are for ß > 0 (the M.I.T. rule has 
damping (a>0)). The instability regions accumulate at the the co/coQ = 0 line. 
The similarity is striking! Although the Mathieu equation has been around
since 1868, and many analytic properties are known [6,7], basically the only way 

to obtain Figure 2.4 is numerical integration. This does not augur well for 
presenting a full analysis of (even) the linear M.I.T. feedforward adaptive 
control algorithm. □

(R.2.13) For the given plant, which is strictly positive real, the model 
reference adaptive control is uniformly asymptotically stable for all gains and 
frequencies. However, for plants which do not possess a strictly positive real 
transfer function, the model reference control and the M.I.T. rule have very 
similar properties. The fundamental difference between the M.I.T. rule and the 
model reference adaptive control algorithm for feedforward control is that the 
model Zm(s) does not affect the stability properties of the model reference 
control law but is instrumental for the M.I.T. rule. This implies that under the 
same circumstances (same model and plant) the M.I.T. rule and the model 
reference algorithm can behave quite differently. However, both adaptive 
algorithms exhibit the same phenomena (high gain instability, resonance and 
instability due to model errors) but for different plant model combinations. □

2.3.3 Model Errors

Normally the plant’s transfer function is not "exactly" known to the 
designer of the control loop, and it is therefore very likely that the plant does 
not belong to the model set. Modelling errors can drastically deteriorate the 
performance of the M.I.T. rule (cf. Lemma 1). If in the previous example 

Zm(s) = ae_s/(s+a), overestimating the delay in the plant, the stability domain is 
drastically reduced, as is displayed in Figure 2.5. Notice in particular that the 
algorithm becomes unstable for o> -  tt/2,  and that the gain margin is even 
further reduced compared to the previous exact matching situation.
Remark:

(R.2.14) Also in this example, the model reference controller is stable, though 
due to the plant-model mismatch the performance is unacceptable. On the 
other hand if Zp(s) = ae-s/(s+a) also, then the M.I.T. rule is stable, and has
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excellent performance, but the model reference controller becomes unstable for 
a) > tt/ 2. Figure 2.6 illustrates this point, comparing the response of the M.I.T. 
rule and the model reference control law, for r(t) = cos2t, 
Zp(s) = Zm(s) = e-s/(s + 1). □

These examples illustrate three different instability mechanisms active in the 
M.I.T. rule. This does not augur well for the adequate performance of the 
M.I.T. rule in many situations. A rudimentary analysis of these examples 
(especially Figures 2.3 and 2.5) indicates that good performance is possible for a 
wide class of input signals for slow adaptation and indicates that higher gains 
are acceptable if the inputs are slow. This idea of separate time scales

(respectively g «  u and o> «  g ) will be pursued in greater detail (to rescue 
the M.I.T. rule).

Figure 2.5 Stability boundary in parameter space (model errors)

U N S T A B L E

S T A B L E
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Figure 2.6 Comparing M.I.T rule with Model Reference Control

FIG. 2 . 6 . 1M.I.T-Rule

1 . 0 —I

0 .5 -

Output Error

- 0.5
40 60Time Index

FIG. 2.6.2 Model Reference Control

Output Error

- 5 -

10Time Index
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2.4 Stability Analysis via Averaging

Abiding by the warnings of the instability mechanisms of the previous 
section, we seek to consider the case of time-scale separation between the plant 
and the adaptation. This restriction allows us to use averaging and/or singular 
perturbation techniques to obtain some intuitively appealing sufficient 
requirements for good performance (necessary and sufficient conditions are too 
hard, cf. Mathieu equation and (R.2.12)). We consider two different types of 
timescale separation: (i) the adaptation is slow relative to the plant and
reference signals; and (ii) the reference input is slow relative to the plant and 
the adaptation. Both stability and instability results are presented.

2.4.1 Slow Adaptation
The algorithm is (cf.(2.2.7)):

kc = -g[Zm( s ) r ] ( t ) [ Z p (s ) (kpkc r ) ] ( t )

+g[Zm( s ) r ] 2 ( t )  ( 2 . 4 . 1 )

Assuming that g is small, i.e. kc is slowly time varying, it is reasonable to 
approximate (2.4.1) by

kc = -S[Zm( s ) r ] ( t ) [ Z p ( s ) ( k pr ) ] ( t ) k j ( t )

+g[Zm( s ) r  j 2 ( t ) ( 2 . 4 . 2 )

which is obtained from (2.4.1) by formally treating kc as a constant in the
right hand side of (2.4.1). For sufficiently small g (2.4.1) and (2.4.2) have
similar stability properties. In particular, exponential stability or instability of 
(2.4.2) implies the same for (2.4.1), provided g is sufficiently small. The 
following result is immediate.

Theorem 2.1:

Under the conditions:

Cl: r(t) is a bounded, piecewise continuous function on R+

kp(t) is a bounded, piecewise continuous function on IR+;
C2: Zp(s), Zm(s) are causal, strictly stable transfer functions allowing a

finite dimensional state space representation;

C3: the limits
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r+T

1im T f [zm(s ) r ] ( t ) [ Z p ( s ) kpr ] ( t ) d t  = ex ( 2 . 4 . 3 )
TToo J 

T

r+T

lim i  [ [Zm( s ) r ] 2 ( t ) d t  = ß ( 2 . 4 . 4 )
TToo J r

exist (uniformly in t eF^);
there exists a positive constant g*, such that for all ge(0,g*):
(i) if a  < 0, the M.I.T. rule (2.4.1), and its approximation (2.4.2) are

unstable;
(ii) if a  > 0, there exist positive monotonically increasing functions 5j(g)

(6j(0) = 0, 6j(g) > 0, ge(0,g*)) i= 1,2 such that the gain kc as adapted by 
the M.I.T. rule (2.4.1) converges exponentially fast to:

(exp)
kc ------- > £  + M S )  as tT~ ( 2 . 4 . 5 )

and a l s o

« (exP> b
kc ------- ■> + 62(g) as tToo ( 2 . 4 . 6 )

where kc* is the solution of (2.4.2). □

Proof: Provide a state space realization for (2.4.1) and apply Theorem A. 18 of
the appendix. □

Remarks:
(R.2.14) In the case that r(t) and kp(t) are finite sums of periodic signals, the 
limits (2.4.3) and (2.4.4) exist and the function 6(g) = 0(g). (See appendix, 
Lemma A.2, Remark A.2.3.) □

(R.2.15) The constant g* above, may be quantified in terms of a in (2.4.3) 
and further characteristics of r (g* is proportional to oi). Averaging theory
permits us only to look with surety up to g* and gives us no further
information about the properties of (2.4.1) in terms of (2.4.2). The boundary

may be conservative. (Higher order averaging, as opposed to first order
averaging used in the above, can however be appealed to to obtain stability
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information even when a = 0, cf. [6,7,9].) □
(R.2.16) The time invariance of kp has not been invoked. Given the usual 
rationale of adaptive systems of adjustment to slowly-varying parameter values 
kp, one can allow for kp time variations, provided at least that kp does not 
change sign (cf R.2.6, Hypothesis H.2). Using the same averaging principles in 
allowing kp to vary more slowly than the adaptation, it is possible to split the 
timescales into three different components and (2.4.3) can be replaced by:

t + T
iim =j= I  [Zm( s ) r ] ( t ) [ Z p ( s ) r ] ( t ) d t  = cT > 0 
tT oo 7

(2 . 4 . 6 )
□

(R.2.17) Conclusion (ii) of Theorem 2.1 indicates how the M.I.T. rule 
performs in terms of optimizing the integral squared error I (2.2.1).

Assuming that the limit

r+T

iim i  [ [Zp(s ) rkp ] 2( t ) d t  = y  ( 2 . 4 . 7 )
t t o o  J

exists, the integral squared error I (under the conditions of Theorem 2.1) is 
optimized by:

kcopt = a / 7  ( 2 . 4 . 8 )

From the Cauchy-Schwartz inequality we obtain that, for all r and TcF^:

r+T
[Zp(s ) r k p ] ( t ) [ Zm( s ) r ] ( t ) d t

T

7+T t+T

< I  [ Z p( s ) r k p ]2( t ) d t .  j [Zm( s ) r ] 2( t ) d t
T 7

hence

Oi/y < ß/a

which implies that the gain kc as updated by the M.I.T. rule is biased in 

general (equality holds for Zp*(s) = Zm(s) and kp constant). We have:
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- k ^ P *
(exp)

ß oi . ,  x

S • 7 + 6(8)
( 2 .4 . 9 )

for all g e(0,g*). □
Before proceeding to interpret (2.4.6), we demonstrate that kc* (2.4.2) is a 

good approximation for kc (2.4.1), without invoking the existence of the 
averages (2.4.3), (2.4.4), nor using the assumption that Zp(s) is finite
dimensional. The proof is specifically helpful in quantifying g*, however only 
stability (cf. conclusion (ii) in Theorem 2.1) is addressed. Firstly rewrite (2.4.1) 
in the following equivalent form:

t

kc ( t ) = -gym(t ) I  h ( t - r ) k p ( r ) r ( r ) k c ( r )dr  
0

+ gym2( t ) ;  kc (0) (2 .4 .10)

where ym(t) = [Zm(s)r](t) and h(t) is the impulse response (at time t for an 
impulse at 0) of the transfer function Zp(s). The effect of initial conditions of 
the plant is not taken into account (cf. (R.2.1)). Equation (2.4.10) is of the
form:

t

x ( t )  = g I  H ( t , r ) x ( r ) d r  + g B ( t ) ;  x ( 0 )  = x Q ( 2 . 4 . 1 1 )

0

(Comparing (2.4.11) with (2.4.10) H and B can be identified as respectively 

H(t,r) = -ym(t)h(t-r)kp(r)r(r) and B(t) = ym 2(t).)
We first demonstrate the following result.

Lemma 2.2: Assume that the following conditions hold:
Cl: B(t) is a continuous, bounded (matrix) function on R+;

C2: the kernel H(t,r) has the properties:

7

( i )  j H ( t , s ) d s  i s  p i e c e wi s e  c on t i nuous  in ( t , r )  on R+xR+
0

r

( i i )  | | H ( t , s ) d s |  < K2e - b ( t "T ) U t>r

0

( 2 . 4 . 1 2 )
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for some positive constants K 2 and b;
C3: <i>(t,7) the fundamental matrix of the linear, time varying equation

t

y ( t ) = g ( | H ( t , r ) d r ) y ( t )

0

satisfies

lÖ<t,r)ll < K T e -g ^ -7) Ut>7 (2.4.13)

for some positive constant a>0 and K , ) l .
Then there exists a positive constant g* such that for all ge(0,g*) the 
solution x(t,0,x0)t of (2.4.11) satisfies:

ltx(t,0,xo) - y(t,0,xQ) ll = 0(g) UteR* (2.4.14)

where y(t,Q,x0) is the solution of:

t

y ( t )  = g ( | H ( t , r ) d r ) y ( t )  + g B ( t )  ( 2 . 4 . 1 5 )

0

passing through x 0 at t = 0. □

Remarks:
(R.2.18) Notice that H(t,r) may contain an impulse function, i.e. Zp(s) is
allowed to have a direct throughput (cf. (2.4.10) and (2.4.11). □
(R.2.19) Although for the moment we need this, result only for scalar x, B
and H it is demonstrated for the general matrix case, anticipating forthcoming 
generalizations. □
Proof: Starting from (2.4.11), and integrating by parts we obtain:

x ( t )

t

g ( | H ( t , r ) d r ) x ( t )  

0

t  T

- g (

0 0
H ( t , s ) d s ) x ( r  )d7 + g B ( t )

tBy x(t,t0,x0) we denote this solution of an ordinary differential equation 
(x = f(x,t)) which passes through x 0 at time t 0. (e.g. z(t,t0,z0) = exp(a(t-t0))z0, 
for z = az with z(t0) = z0).
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which can be rewritten in operator form as

t

[ ( I + F ) x ] ( t ) = g | H ( t , r ) d T x ( t )  + g B ( t ) 

0

where F is a linear operator defined as

t T
(Fy) ( t ) = g I  ( j H ( t , s ) d s ) y ( s ) d s  .

0 0

( 2 . 4 . 1 5 )

( 2 . 4 . 1 6 )

F is defined on the Banach space of continuous, bounded functions, equipped 

with the supremum norm, its induced operator norm is [3,10]

llFli = gK2/ b ( 2 . 4 . 1 7 )

which follows from (2.4.16) upon using condition (4.13). Choosing

oo A OO = b / K 2, the operator I+F has an inverse, which can be written as:

( I +F ) " 1 = I - F + F 2 - F 3 + . . . ( 2 . 4 . 1 8 )

denoting

G = -F + F 2 - F 3 + . . . ( 2 . 4 . 19 )

we have

nGu < (g K2/ b ) / ( l - g K 2/ b ) ( 2 . 4 . 2 0 )

l l ( I+F)“ 1 II < l / ( l - g K 2/ b )  

and

t

x ( t )  = g j H ( t , r  ) d r x ( t )  + gB( t )

0

+ G ( g j H ( - , s ) d s x ( - ) ) ( t )  + G ( g B ( - ) ) ( t ) .  ( 2 . 4 . 2 2 )

0

Furthermore we obtain

t

x ( t )  = 4>( t , 0 )x(0)  + j 4>( t , s )gB(s )ds

0

t

+ f 4 ( t , s ) G ( g | ( H ( - , r ) d T x ( - ) ) ( s ) d s  

0 0
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t

+ I  4 > ( t , s ) G( g B ( - ) ) ( s ) d s  . ( 2 . 4 . 2 3 )

0

Define the operator N , on the Banach space of continuous bounded functions 
equipped with the supremum norm as

t

JY(y)(t) = 4>(t ,0)x(0)  + [ * ( t , s ) [ ( I + F ) - ' g B ( - ) ] ( s ) d s

0
t

+ I <t>( t , s )G(gjH(• , t )dTy ( • ) )  ( s ) ds  . 

0 0

We now show that A is a contraction operator for sufficiently small g, and 
therefore has a unique fixed point, solution of (2.4.23), and therefore of 
(2.4.11). Indeed N is well defined:

ll/Y(y) II < K- itx( 0 )  II + —  l l ( I + F ) " 1 ll • llBlla

+ —  • iiGll • g • K, • llyll < ooa g 2

and A is a contraction for

g < g = min 2K2 ’ 4K
ab I

J
s in c e

i ^ ( y ,  )-/V(y2 )n < —  • iiGii • g • K2 i i y , - y 2 n

K,K2 gK2/b
< a ' l -gK2/b llyi”y 2 "

2K, K2
<  ( — i b ~ )  ' §  • | | y i - y 2|1

< i I iy t - y 2 11

(2 .4 .24)

(2 .4 .25)

The solution of (2.4.23) or (2.4.11) can then be approximated up to first order 

in g as:
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t

l t x ( " t , 0 , x ( 0 ) ) - 4>( t , 0 ) x ( 0 )  - I  g $ ( t , s ) B ( s ) d s i l  = 0 ( g ) .

0

It suffices to notice that:

and

l lx( t  , 0 , x ( 0 ) ) - t f (0)l l

= l im n/Yk (0)  - t f ( 0 )n
ktoo

r2K.K
< lim E

ktoo ß = 1
g] UN(0)\\

g
O I /  1 /

1 - ^ - 2g] IW(0)II = 0 ( g )

t

lW(0) - 4 > ( t , 0 ) x ( 0 )  - I  g $ ( t , s ) B ( s ) d s i l  = 0 ( g )

0

because iG ii = 0(g) (see (2.4.20)). □
This lemma is readily applicable to the M.I.T. rule, or any of its discussed 

alternatives, it suffices to verify the conditions of the Lemma. The following 
Theorem is an immediate consequence of this Lemma, and complements 
Theorem 2.1.

Theorem 2.2:
Under the conditions that:
Cl: r(t), kp(t) are bounded, piecewise continuous functions on IR+;
C2: Zp(s), Zm(s) are causal, strictly stable transfer functions:

T

C 3: 1 im 
TToo

[Zm( s ) r ] ( t ) [ Z p ( s ) r k p ] ( t ) d t

there exists a positive constant g*, such that for 

rule (2.4.1) has the properties:

> a > 0  (2 .4 .26)

all ge(0,g*) the M.I.T.
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(i) there exists a unique solution to (2.4.1); kc(t,0,kco) starting at t = 0 
in kC0, bounded, well defined on R*", for any (finite) kCo.

(ii) the effect of the initial condition decays exponentially fast;
(iii) Ikc(t,0,kco) - k*(t,0,kco)| = 0(g) yuF* (2.4.27)

where kc(t,0,kCo) is the unique solution of (2.4.2) passing through 
kco at t = 0 □

Proof: Condition Cl of Theorem 2.2 implies Cl of Lemma 2.2; condition C2
of Lemma 2.2 follows from Cl and C2 of Theorem 2.2 and condition C3

implies C3 of Lemma 2.2. □

Remarks:
(R.2.20) Theorem 2.2 imposes much less restrictive conditions than Th rem
2.1, yet yields basically the same conclusion - apart from an instability :n.
At first glance the error estimation (2.4.27) might appear better than 
0(g)<-»6(g). However (2.4.27) does not involve any averaging, the f c

3|e :jc
compares kc with kc, not kc or kc with the response of the averaged e 
introducing averaging one obtains:

„ (exp)
kC’kc ------- * 0 / «  + 6 (S)

as before. □
(R.2.21) From (2.4.24) and (2.4.26) it follows that g* is roughly proportional 
to a, inversely proportional to lirliI 2 and also inversely proportional to the gain 
of Zp(s) and Zm(s). This implies in particular that g* is proportional to the
condition number of the excitation. It also follows that the "natural" adaptation 
gain of the algorithm is gltrll2, cf. Lemma 2.1. □
(R.2.22) As pointed out, Lemma 2.2 is also applicable to the M.I.T. rule’s 
alternatives, in particular, stability condition (2.4.26) becomes:

I

l im i n f  I  I [j e ‘ <7(t‘ T’ ) J [Z m( s ) r ]  ( r  2 ) [Zp ( s ) r k p ] (r  2 )dr  2dr , ] d t  )o>0

0 (2 .4.28)0 0

for the integral gradient scheme with exponential forgetting, or
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S+T t

1 im in f  
S T oo ^

[ =f [  [zm(s ) r 3 (T ) [ zp ( s ) rkp ] )( r  )d rd t ) a > 0

T t-T

(2 .4 .2 9 )

for the integral gradient with finite window. Clearly (2.4.28) and (2.4.29) are 
harder to meet than condition (2.4.26), confirming our earlier observation that 
these alternatives have a smaller stability margin than the M.I.T. rule. For the 
model reference control algorithm we have

1 im
t  Too

T

in f  i  I r ( t ) [ Z p (s )k pr ] ( t ) d t  

0

> a  >  0 (2 .4 .3 0 )

Replacing (2.4.26) in Theorem 2.2 by (2.4.28), (2.4.29) or (2.4.30) yields 
equivalent results for respectively the integral gradient and model reference 
control algorithms. □
(R.2.23) Loosely speaking, but in intuitively appealing terms, Theorem 2.1 and 
Theorem 2.2 assert that the M.I.T. rule, as far as the update mechanism is 
concerned, reacts as a first order system with cut off frequency of ag (for g 
sufficiently small). □

Finally, we interpret condition (2.4.26) or (2.4.3) in terms of the spectral 
properties of almost periodic inputs r(t) of the form:

+ 00  .  + 00

r ( t )  = e a j e JC°i ; a j = a . j  coj = -co.j; e |a^ | 2 < oo (2 .4 .31)
i = -o o  . i = -o o

We assume kp constant and Zp(0) = Zm(0) = 1. (2.4.26) or (2.4.3) then become

+ 00

I a 01 2 + 2 e I a j 1 2 Re(Zm(-jwj  )Zp (jo) j )) > a  > 0  ( 2 . 4 . 32)
i = l

(2.4.32) indicates that the M.I.T. rule is stable (provided g is sufficiently small) 

if Zm is close to Zp (at least in phase) on the spectral lines (wj) of the input 
r(t), (cf.[8]). In particular (2.4.32) is always satisfied if:

|argZm(jo )  - argZp (jw)|  < ^

which is the equivalent of the strictly positive real condition of the model
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reference approach for the M.I.T. rule. However, here this condition is not as 
powerful as the provision "g small" is necessary, whilst it is not for the model 
reference control law. If the left hand side of (2.4.32) is negative, then the 
M.I.T. rule is unstable, for g sufficiently small. Notice that this instability can 
only be due to model errors, as the small gain assumption avoids both resonance 
and high gain instability.

The stability properties asserted in Theorem 2.1 and Theorem 2.2 are robust 
- because of the exponential stability - with respect to other nonmodelled 
effects not taken into account. Small nonlinearities in the plant will not destroy 
stability [3], whilst bounded disturbances on plant input and/or output do not 
effect the stability, only add to the output error. Referring to Figure 2.7, in 

the situation of bounded disturbances, the M.I.T. rule can be described as:

kc = - g [Zm( s ) r ] ( t ) [ Z p ( s ) k pkc r ] ( t )

+ g y ^ ( t )  - gym( t )w( t ) - gym( t ) [ Z p ( s ) kPv ] ( t ) .

Figure 2.7 The M.I.T. rule with disturbances
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Clearly, the input noise v and the output noise w do not affect stability and as 
the M.I.T. rule has effectively a cut off frequency of the order of g (for small 
g, cf. (R.2.23)) the effect of the noise on kc is only felt if the noise has 
substantial power in an 0(g) neighbourhood of the spectral lines of the input 

r(t) - (ymw and ymv!).
The analysis so far has concentrated on time scale separation involving slow 

adaptation compared with plant dynamics and input signals. These results 
predict in particular the simulation outcome displayed in Figure 2.3, Region I 
(Slow Adaptation), indicating stable behaviour for small g and g«oo and predict 

instability for ir/2 < gj < 37r/2 and small gain as displayed in Figure 2.5.
Notice that in this case |argZp(jo>) - argZm(jw)| = o>!

2.4.2 Slowly Time Varying Inputs
The M.I.T. rule for adaptive feedforward control is described by

kc = - g [ Zm( s ) r ] ( t ) [ Z p ( s ) r k p k c ] ( t )  + g [ Zm( s ) r ] 2 ( t ) ( 2 . 4 . 1 )

assuming that r(t) and r(t)kp(t) are slowly time varying, we can attempt to
approximate kc by kc solution of (see (R.2.6))

k c = - g r 2 ( t ) k p ( t ) [ Z p (s)Icc ] ( t )  + g r 2 ( t ) ( 2 . 4 . 3 3 )

The stability properties of (2.4.33) may be derived simply as an extension of 
the root locus method, used in Section 2.3.1. From equation (2.4.33), provided 
we can demonstrate stability, it appears that after an exponentially decaying 
transient Fc(t) should track l /k p(t). This heuristic approach can be justified.
We have the result:

Theorem 2,3:

Under the hypotheses:
CO: Zp(s), Zm(s) are strictly stable, causal transfer functions, which have

a finite dimensional state space realization (Zm(0) = Zp(0) = 1).
Cl: the zeros of s+g7Zp(s) have real part less than -a, a>0, for all

7 e(7o>7i )> 0<7o<7i< “-
C2: r(t), kp(t) are bounded, continuous functions on R+ satisfying

( i )  r 2( t ) k p ( t ) e ( 7 o ,7 l ) UteR+
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( i i )  I r ( t 1 ) - r ( t 2 ) I < 6 | t 1- t 2 | U t 1 , t 2eR+

i k p C t J r C t J  - kp ( t 2 ) r ( t 2 ) |  < ö 111 - 1 2 | U t 1 , t 2eR+

Then for every ^e(0,cr) there exists a 5* such that for all 5e(0,5*) the 
solution kc(t,0,kco) of (2.4.1) starting in kCo at t=0 satisfies:

lkc ( t , 0 , k c o ) - k p ' ( t ) l  < Ke‘ (<r"/<) t C0 + 0(6)  ( 2 . 4 . 3 4 )

where K depends on /x and C 0 is the norm of the initial conditions of the 

plant and kCo. □
Proof: Provide a state space realization for (2.4.1) and apply Proposition 5 in

[11, Chapter 1, p.6] to obtain that the homogeneous equation is exponentially 
stable. Using the variation of constants formula and C2 yields the desired 

result. □

Remarks:
(R.2.24) With minor modifications, piecewise continuous functions can be 
treated. The same techniques handle the multivariable situation as well. □
(R.2.25) An alternative proof can be obtained from [10, ppl25-127]. □
(R.2.26) Theorem 2.3 explains the stability properties of the M.I.T. rule for 
slowly time varying inputs. In particular it predicts the stability in regions II 
in Figures 2.3 and 2.5. Notice that Theorem 2.3 is only concerned with high 
gain type of instability, as the assumption of slow inputs avoid the resonance 
phenomena, and model errors are irrelevant because Zm(0) = Zp(0) = 1, 
indicating good model-plant match at low frequencies. This theorem extends 
Lemma 2.1, which can be obtained as a special case from Theorem 2.3 with 
5=0 and pL=0. In this sense, the results of this section and the previous one 
complement each other, as they discuss different working conditions in the 
parameter space. □
(R.2.27) Under the conditions of Theorem 2.3, the M.I.T. rule is close to 

optimal behaviour, in the sense of minimizing the integral squared error, since 

1/kp is indeed optimal. □

2,5 Generalizations
Although the object of our discussion was a scalar parameter update law, 

all theorems and main lemmas (cf. Appendix and Lemma 2.2) have been



2. The M.I.T. Rule for Adaptive Control 39

presented for the multivariable situation. Instances where these results are
directly applicable are adaptive feedforward control schemes for multivariable 
plants, where kc is a matrix and adaptive equation error identification with
regressor and/or error filtering. In both cases, the overall system can be
represented as a linear in the state, multivariable time varying system. In 
general adaptive control leads to nonlinear systems in which situation, these
results can be used to describe their local properties (cf. [1] for more along
these lines).

2.6 Historical Overview of the M.I.T. Rule
The M.I.T. rule for adaptive control, here presented in its simplest form, 

was formulated in the late fifties and early sixties as a model reference 
adaptive control law for linear systems modelled as a cascade of a known stable 
plant and a single unknown gain (see Figure 2.1). The names generally 
associated with the formulation are Whitaker, Osburn and Kezer [2], The initial 
intended application was to optimize the performance of aircraft, where the 
single unknown gain was related to dynamic pressure.

In the history of adaptive control, or at least its folklore, the M.I.T. rule 
represents a watershed. The method was simply formulated, easily appreciated 
and was directly applicable. Consequently, this approach to self-optimizing 
systems was taken up by theorists and practitioners alike as a potential route to 
enhanced performance. In application trials with aircraft dynamics, however, 
the M.I.T. rule adaptive controller led to unpredicted instability with a 
considerable associated loss of face and confidence in ad hoc adaptive control.

Simulation studies provided some idea [5] of the rule’s stability properties 
and indicated the likely complexity of any analysis. Donalson and Leondes 
(1963) [12] indicated engineering guidelines, rules of thumb "guaranteeing" good 
performance, which are disturbingly close to currently emerging modern notions 

of suitable operating conditions for adaptive controllers. We quote Donalson and 
Leondes, transliterating into our framework:

"Assumption 1: kp varies slowly compared to the basic time constants of 

the physical process Zp(s) and the reference model Zm(s)"; 

and
"Assumption 2: kp varies slowly compared to the rate at which the

adjusting mechanism, to be designed, updates kc";
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and
"Assumption 3: the adjusting mechanism updates kc fast compared to the 

effect caused by the reference input on the output error"
(This corresponds to the slow input case.) Our contribution (see also [13,14,15]) 
provides a rigorous basis for the design guidelines derived earlier (cf. the above 
quotes from [12] and Theorem 2.3). Also we extend these guidelines in 
discussing a larger portion of the design-variables space, including slow 
adaptation compared to the effect of the input on the output error (opposite to 
Assumption 3 in [12]). Moreover, we explain why and how the M.I.T. rule can 
fail. The guiding principles for good performance emerging from our analysis 

are:
(a) the natural timescales present in the adaptive system should be well 

separated (plant, model/input/adaptive gain/time varying gain kp);
(b) model and plant need to be well matched over the frequency range where 

the input has its dominant power;
(c) input’s power should be concentrated outside the frequency range of 

significant noise power.
These conditions have also been recently espoused as good engineering sense in 
[1] with regard to a broad class of adaptive algorithms.

Concisely, we have revisited the M.I.T. rule demonstrating the reasons for
the loss of confidence in this rule and have suggested potential remedies
necessary to resuscitate it. We also indicated that it can out-perform the more 
fashionable model reference adaptive control designed via Lyapunov techniques 
[12], see Figure 2.5, as opposed to the M.I.T.’s criterion minimisation approach. 
(A discussion of more general adaptive control algorithms based on direct
criterion minimisation can be found in [16].)

In any event, the M.I.T. rule served our primary purpose of highlighting 
the dependence of the adaptive control performance on the design parameters. 
Especially in the (likely) situation of model-plant-mismatch a careful selection 

of the adaptation gain and the spectral properties of the reference input is

essential for guaranteeing good adaptive performance. Notice also the 
complexity of describing the asymptotic dynamics (stability/instability) in 
parameter space (Figures 2.3 and 2.5) ... a complete analytical description is 

beyond our capabilities, (as we have argued, hopefully convincingly!).
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2.7 APPENDIX: Averaging Theorems for linear timevarving systems.

Consider the piecewise continuous and bounded matrix function A(t) defined on

RL
A.l Definition [14,17]: The matrix function A(t) possesses a uniform average A 

if there exists a bounded decreasing, positive function c such that

s+T

sup ILÄ - 4= f A (t )d tn  < c ( T ) , TeR+ ( 2 . 7 . 1 )
SeR+ 1 J s

where c decreases monotonically to zero as T increases: 

c(T) i  0 as T T oo (c(T ,) < c(T2) > T 2).

c is called the convergence function. □

The first Lemma links the notions of integral smallness and uniform 

average:

A.2 Lemma: If the matrix A(t) possesses the uniform average A, then for any

positive constant h there exists a monotonically nondecreasing, positive 

function such that

5h : R+ R+  ̂ 5h (jt),  6h (0) = 0

5h(/xi ) < 5 ( ^ 2 ) < /*2

and

^ 2
| |  (A( i )  - A)dt |  « Sh ( t̂) ( 2 . 7 . 2 )

t,
for all 1 1 , - 1 2  I < h. □

Proof: By assumption A(t)-A is bounded, say iiA(t)-An < M for all t, hence

for all | t 2-t , I < 5(/*)/M we have

2

II j  ( A ( ^ )  -  A ) d t  II < ö ( /a) U/z e R + .

On the other hand, for <5(/x)/M < 112-t 1 | < h, we have
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 ̂2
II I ( A ( i )  - A)dtl l

t 2/M

t

ll/i J (A(t  ) -A)dt  II 

//*

< h  .

< h . c(6( / t) / / tM)

Define 5^(n) as either the solution of 

5 - h c (5/^tM) = 0

if 5<h/M, where c is the convergence function of A(t), or ö^in) = hM. 5^ is 
uniquely defined, because c(T) > 0 and monotonically decreasing. This yields 
the desired result. □
A.3 Remark: The estimate for the function S^ji) derived in the Lemma is 
conservative. Indeed for A(t) periodic or a finite sum of periodic matrices, 
6h(/i) is of the order of /t (6(^)<hM) and the Lemma yields 6^(n) of the order 
of //1 because c(T) is of the order of 1/T. □
A.4 Remark: If condition (2.7.2) of the Lemma A.2 alone holds, then A(t) will 
possess a uniform average, which is A. □

In the sequel we provide a proof using the principle of integral smallness 
(condition 2 in Lemma A.2) [11] and "L-decomposition" technique (e.g. [1, 
Chapter 3]) for an extended version of the general averaging theorem for linear 
time varying differential equations. The extension consists of the fact that we 
can treat matrices A which have eigenvalues with zero real part.

We need the following Lemma [11, Chapter 1]:
A.5 Lemma: Let F(t), B(t) be bounded and piecewise continuous matrix

functions on R+", such that

IiFMqq < M, llBll  ̂ < M

suppose that the fundamental matrix X(t) of

x ( t )  = F ( t ) x ( t ) ( 2 .7 .3 )

satisfies

i iX(t)X"1 (s)II < Ke' a ( t ‘ s ) Ut > s (2 . 7 . 4 )

for some a(eR not Rf) and K) l .  If
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II I B ( t ) d t  II < 5 y | t ,  - t 2 | < h (2 .7 .5 )

for some positive constants 5 and h, then the fundamental matrix Y(t) of 
the perturbed equation

y ( t ) = (F( t )  + B ( t ) ) y ( t )  (2 . 7 . 6 )

satisfies the inequality

liY(t )Y"1 ( s ) II < (1 + 5 )K e -bCt - s )  Ut > s

where

b = + a - 3MK6 - ( l o g [ (1+5)K]) /h ( 2 . 7 . 7 )d

A.6 Remark: It follows from this Lemma that stability of (3) (i.e. a > 0) is 
preserved in (6) with b >a/2 > 0  if h > h* = max(4(logK)/a,l) and
3MK5 + log(l + 5)/h* < a/4, which always can be satisfied for 5 sufficiently 
small. □
A.7 Corollary: Let A(t) be a bounded and piecewise continuous matrix function 
with uniform average A. Assume that

IA ll < M and llA-A(t)ll < M

and that A is a stability matrix (i.e. ReXj(A)<0, Uj) such that 

neÄ(t-s)M  ̂ Ke-a(t_s) yt)s

for some positive constant a and K>1. Then there exists /** positive such that 

for all /xe(0 , n * )  the fundamental matrix X(t) of

x ( t )  = ^ A ( t ) x ( t )  (2 . 7 . 8 )

satisfies

llX(t )X"1 (s )  ll < (l + 6( /0)Ke-b ( / 0 ( t - s )

where

a ) b(^i) ) a /2

and 5(/x) is a monotonically increasing function of (6(0) = 0, 6(ji) > 0.) □

* 2
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P ro o f: Rew rite (2 .7 .8 )  as y ( r )  = [A +(A (-)-A ]y (r), w ith  y ( r ) = x ( - ) = x ( t ).
/X fl

Identify this equation as an equation of the form (2.7.6), with

F ( t )  = A.

By assumption we have: 3K)1 and a > 0:

ne^(t-r)| ,   ̂ Ke-a(t_T) Ut>r.

Select then h = max(41ogK/a,l) construct Sj /̂x) = 5(a0 as in Lemma A.2 (for
a|e

the matrix A(r//x)). /x is then defined as:

sup {/x)0, 3MK 6(/x) + log(l + 6(/x))/h < a/4) 

as suggested by Remark A.6. □

Integral smallness as expressed in Condition 2 in Lemma A.2 is preserved 
under multiplication with a signal having a "band limited" spectrum:
A.8 Lemma: Provided v(t) and v(t) are piecewise continuous and bounded

B( r )  = A( I )  - A
r

and

functions

'IV Moo =  V 0 a n d  l lv l ,oo =  V

and that B(t) is integral small:

^2
3h>0,  5>0: U | t 1- t 2 |<h ,  11fB( t :)dt l l  < 5 (2 .7 .9 )

t

B(t)v(t) is integral small:

t 2

B ( t ) v ( t ) d t l l  < (Y0+hY1 )ö □

Proof: Integrating by parts we have:
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t 2 t 2 t 2 t

llj B ( t ) v ( t  )d t II = llj B (t )d t . v ( t 2 ) - J ( | b (t )dr ). v ( t  )d t II 

t ,  t ,  t ,

< 5Y0 + 6Y1h □

Integral small signals are filtered out by "low" pass systems:

A.9 Lemma Provided A(t),B(t) be bounded and piecewise continuous functions 

on with lA ll00<M and lß ll00<M. Assume that the fundamental matrix 

X(t) of (2.7.3) satisfies (2.7.4) with a positive and that B(t) is integral 

small, satisfying (2.7.9) then the solution of

x ( t )  = A ( t ) x ( t ) + B ( t )  , x ( t 0), t ) t 0 (2.7.10)

satisfies

Itx ( t ) ll < Ke~a ( t ' to)  i i x ( t 0)li + C5 (2.7.11)

with

C = K ( l +M /a ) / (1-e"ah) □

Proof: Using the variation of constants formula, the solution of (2.7.10) can be
written as:

t
x ( t , t 0, x 0) = X ( t ) X " ’ ( t 0)x0 + j X ( t ) X " 1(s)B(s)ds (2.7.12)

Define

C( t ) =  j B(s)ds,  t ,  a rb it ra ry

Integrating by parts, we have that

^ 2
J- X ( t ) X ' 1 (s)B(s)ds X(t )X (s)C(s)

t 2
^ 2
I" A (s ) X( t ) X "1 (s)C(s)ds 

(2.7.13)

Using the integral smallness of B, we have
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if  X ( t ) X ( s ) - 'B ( s )d s |  < 5K(1 + (2 .7 .1 4 )
t

1

y 11, - t 2 1 < h, t t < t 2

Hence, for the last term in (2.7.12), we find using (2.7.13)

t  n-1 t o+ (k+1)h
I f x ( t )X"1( s ) B ( s ) d s I < e I [ X(t)X_1(s )B (s )ds i

i  k=0 , ,t 0 t 0+kh

t

+ I I  X (t)X"1(s )B (s )d s |  (2 .7 .1 5 )
10+nh

where n is such that t 0+nh < t < t 0+(n+l)h. Using the estimate (2.7.14) in 
(2.7.15) yields the desired result. □

The first main averaging theorem is:

A. 10 General Averaging Theorem I 
Consider

x ( t )  = /aA(t ) x ( t )  + B ( t ) ;  x ( t 0) = x 0, teR+ (2 .7 .1 6 )

where A(t) and B(t) are bounded, piecewise continuous matrix functions of 
t on R+ with uniform averages A and B respectively. Let

M = max(lAll, Ißll, sup {lA(t)-All, lß(t)-B+A“ 1 B(A(t)-A) II}).
t eR4"

Assume that A is a stability matrix:

ne - A( t - s ) | |   ̂ £e - a ( t - s )  Vt ) s

for some positive a and K>1, then there exist a positive constant /** and a 

monotonically increasing function 6(/a) (0 < 6(/a)< 6(/^*), 5(0)=0) such that for 

all ju e [0,/a*)
(i) the homogenous part of (2.7.16) is exponentially stable;

(ii) the solution of (2.7.16), x(t,t0,x0) satisfies:
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l t x ( t , t 0 , x 0 ) - A “1B11 < K(l + 5 ( jO)e ‘ ^b ( / 0 ( t - t o) l tx( t0 )ll

+ K ( l - 5 ( / 0 ) ( l + M / b ( / 0 ) / ( l - e - b (/*)h ) . 5 ( / 0  ( 2 . 7 . 1 7 )

with

h = max4(log K ) / a , l ) ,  a/2<b(/ i )<a □

Proof: Write (2.7.16) as:

y ( r )  = [Ä+(A(1) -Ä)]y(r)  + D( i )  ( 2 . 7 . 18 )fi n

where

y (r )  = x (J—) - A"1B = x ( t )  - A ' 1B
r

D(~) = (B(^)-B)  + Ä- 'B(A( i ) -X)

and apply Corollary A.7 to obtain the stability conclusion and then Lemma 
A.9 to obtain (ii). □

A.11 Remark: The term "general" refers to the fact that A(t) does not need to 

be periodic. In the case that A(t) and B(t) are periodic or a finite sum of 

periodic matrices then b(y) is of the order of n, and (2.7.17) reads as

lim sup u x ( t , t 0 , x 0) - A"1B11 = 0 (n)  □
tToo

In order to handle unstable A we need one more auxiliary result:

A. 12 Lemma: Provided that F(t), B,(t), B 2(t) are bounded and piecewise

continuous matrix functions on R1" with lFll00<M, iiB, li00<M and iß 2ll00<M. 

Assume that the fundamental matrix of (2.7.3) satisfies (2.7.4) with a 

positive and that B^t), B2(t) are integral small satisfying condition (2.7.9) 

then there exists a 6*>0 such that for all 5e[0,5*) there exists a unique 

solution on R*" to:

L ( t ) = F ( t ) L ( t ) + L ( t ) B , ( t ) L ( t )  + B2 ( t ),  L ( 0 ) = 0 ( 2 . 7 . 1 9 )

satisfying

llLll  ̂ < M liLll  ̂ < M + M2 + M3 ( 2 . 7 . 2 0 )

with L = 0 if 5 = 0. □

Proof: Consider in the Banach space of continuous matrix functions L defined
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on R+, equipped with the supremum norm (liLll^ the following class of 
functions:

B = {L I llL ll̂  < M }. 
Define the operator:

( T y ) ( t )

n - 1

e  X(t)X 
k=i

(s )y(s )Ck i ( s ) y ( s )
kh

+ X(t)X 
(k - l )h

(s )y(s )Cn ( s ) y ( s )
t

nh

n - 1

E
k=l

kh
I X ( t )X ' ' ( s )y ( s )C k ) ( s )y ( s )d s  

(k - l )h

kh

+ I X(t)X"1(s)y(s )Ck i ( s ) [F ( s )y ( s )+ y ( s ) B 1(s )y(s )+B2( s ) ]d s  
(k - l )h

kh

+ |  X(t)X"1(s ) [F ( s ) y ( s ) + y ( s ) B 1(s )y (s )+ B2(s)]Ck i ( s )y ( s )d s )  
(k - l )h

t

+ j X(t)X_1(s )B2(s)ds  
0

where n is such that nh < t < (n + l)h and Ck is defined by : 
s

Ck (s ) = j B, ( t )  dt s e [kh, (k+l)h)  
kh

Using the integral small property of B, it is not hard to verify that T is well 
defined on the class B and that it is a contraction on B for sufficiently small 
Ö. It follows that T has a unique fixed point. This fixed point is the solution 
of (2.7.19) satisfying (2.7.20) by construction. □

A. 13 General Averaging Theorem II 
Consider

x(t)  = /M(t)x; teR+ ( 2 . 7 . 20)
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assume that A(t) is a piecewise continuous and bounded matrix function on I R +  
with uniform average A, satisfying

IA ll < M, iiA-Al^, < M.

Then there exists a positive constant n* such that for all 0</*</**:

(i) (2.7.20) is strictly stable if A is a stability matrix (i.e. ReXj(A)<0);

(ii) (2.7.20) is unstable if at least one eigenvalue of A has positive real part. □

A. 14 Remark: This result extends a classical averaging result [9] because it does 

not require A to be hyperbolic, i.e. to have no eigenvalue with zero real part. 

In particular the instability result holds even when A has eigenvalues with zero 

real part. An extension of averaging treating general (bounded and regulated) 

matrix functions A(t) can be found in [18]. □

Proof of the General Averaging Theorem II:

Step 1: Time Scaling t = r

Define y(r) = x(^) = x(t), to write (2.7.20) as

y ( r )  = [Ä+(A(1) -Ä)]y(r)  ( 2 . 7 . 2 1 )
r

Step 2: Co-ordinate Transformation

Let T be a nonsingular matrix which satisfies:

TAT'1 = diag (AS,AU)
where

Re\(As) < 0 and ReX(Au) > 0.
Define z(r) = Ty(r), and also

T(A(-)-Ä)T-’ = B(—))

We have then

z(r) = (diag(As,Au) + B(^))z(r)

Step 3: Decouple Stable and Unstable

Introduce the transformation:
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z s I -L ( t ) ' w s

Z U. 0 I -WU.

where L is the unique, bounded solution of:

(2 .7 .22)

L — ASL - LAy + LByS (—)L + Bs u (—■), L (0 )  -  0
n r

where zs, zu and Bss, Bsu, Bus, Buu are partitionings of z and B respectively, 
conforming to diag(As,Au). Lemma A. 12 guarantees that L exists and is 

bounded. Because Re\(As)<0 and ReX(Au)<0, we have that the linear,
homogeneous equation:

M = ASM - MAy

is exponentially stable. Using this transformation, we obtain:

ws' As + L ( r  )BU S ( —) 0
r- ws

wu. ^ u s ( ^ )  Au - B y u ( - ) L ( r ) . wu.

(2 .7 .23)

Notice in particular that (2.7.23) has the same stability properties as (2.7.21) 
((2.7.22) is a Lyapunov transformation [19]). Because lld/drL(r) M is bounded, 
Lemma A.8 assures that L(t)Bus(t//-i) and Buu(t/^)L(t) are integral small for 
sufficiently small /z. From Lemma A.5 it follows then that the equation

wu -  (^ tr^ u u (^ )^ ( - )  )wu

is exponentially unstable. This proves the result. □
A. 15 Remark: It is possible to go one step further in the decomposition to 
obtain:

As + 
x 
x

w

where Re\(As)<0, ReX(Ac)=0, Re(Au)>0. The result then demonstrates that part 

of the state decays exponentially, part explodes exponentially and the states 
corresponding to Ac can be either stable or unstable, depending on higher order 
(/z2) effects. □

A. 16 Remark: We believe that this proof is novel and relatively straightforward, 

and self contained, in that it only uses very basic prinicples of functional
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analysis. We were unable to locate a theorem like A.13, except for [1, chapter 
3], which however is proven along totally different lines and discusses only the 
periodic case or complete instability. For alternative approaches to averaging, 
see [3,9]. [3] uses a co-ordinate transformation approach presenting both
stability and instability results, however, without details about estimating the 
errors. Reference [9] only discusses stability, and places more emphasis on 
finite time results. The Theorem 4.2.1 in [9, Chapter 4] discusses stability and 
is inadequate for our purpose, because of the (suspicious) lack of "uniform 
average". Both [3] and [9] discuss averaging for nonlinear systems.

A minor extension inlcudes matrices of the form A(t,/x), bounded and 
piecewise continuous with respect to t and Lipschitz continuous with respect to 
/x in a neighbourhood of the origin. If A is the uniform average of A(t,0) all 
the above results still apply, because the key Lemma A.2 is still valid.
A. 17 Lemma: Let the matrix A(t,/x) be bounded, piecewise continuous in t,

Lipschitz continuous in /x, with Lipschitz constant L:

I A(t,^)-A(t,0) I < Lpi U/x e [0,/x*] Ut

Assume that A(t,0) has a uniform average A. Under these conditions for 
any positive constant h, there exists a monotonically decreasing function 
5 h (pi), /xe[0,/x*] such that:

^ 2
I J ( A ( t , / x ) - A ) d t  < 5 h  (p.) ^ 1 1 , - 1 2 I <  h . □

t i

Proof: Using Lemma A.2, we obtain:

t 2

I J (A( t , / x ) - A) d t

t 2 t  2
< | j  ( A ( t , 0 )  - A) d t |  + | j  ( A ( t , ^ ) - A ( t , 0 ) ) d t |

< « h l »  + Lh/i = 5h ( / 0 . J n O » ]

where öf /̂x) is constructed in Lemma A.2. □
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In an adaptive control context we encounter systems of the following form:

X, ( t ) ' Ai i ( t )  A1 2 ( t  )' 'X, ( t ) '
J .

B, ( t )  '

x 2 ( t ) A 2 1 ( t A  22 ( "̂ ). x 2 ( t ) .^B2 ( t ) .

having multiple time scales. Averaging is not directly applicable, but under the 
conditions that A, ,(t) defines an exponentially stable system, one can reduce 
(2.7.24) to the standard form (2.7.16). We omit details, which can be found in 
[1, Chapter 3], First, one separates slow and fast variables, using a Lyapunov 
transformation:

V I - L ( t , ^ ) ' w /

X2. 0 I -W2.

where L(t,/*) is the unique bounded solution of

L= A11(t)L  - A12( t )  - /*LA 2 2 ( t ) + /iLA21(t)L  

which satisfies the boundary condition:

L ( t ,0)  = L0( t )

(2 .7 .25)

(2 .7 .26)

L0 ( t )  = A , 1 ( t ) L 0 ( t )  - A , 2 ( t ) (2 .7 .27)

L 0 being the unique bounded solution of (2.7.27) defined on R (analogous to a 
steady state solution). The transformation (2.7.25) brings (2.7.24) into the 
following block triangular form:

(ty A, ! ( t )+/ i L( t , / * )A 2 1  ( t )

M 2 1  ( t ) n ( A 22( t ) - A 2 , (t)L(t,/0)

rw2 ( t ) '

Lw2 ( t ) ,

+
B, ( t )+ /*L( t , / OB 2 ( t )' 

/iB2 ( t )
(2 .7 .28)

Stability of (2.7.24) can therefore be analysed, considering only a set of two 

decoupled equations:

Z , ( t )  = ( A, , ( t ) + / xL( t , ^) A 21  ( t ) ) Z ,  ( t ) (2 .7 .29)
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Z2( t )  = ji(A22( t ) - A 21( t ) L ( t , / 0 ) Z 2( t )  (2 .7 .30)

The system (2.7.29) can be ensured to be stable for sufficiently small /*, as 
A ^ (t)  defines a stable linear system, and (2.7.30) is in the standard form for 
averaging analysis. Using the General Averaging Theorem I, A.10, the
following result emerges.

A. 18 Theorem: Averaging in Multiple Timescale Case
Let the matrices Ajj(t),Bj(t) i,j = 1,2 be bounded, piecewise continuous
functions on R4", and let A ^ (t)  define a stable linear system. Assume that 
B2(t) and the matrix A 2 2(t)-A 21(t)L(t,0), (L(t,0) defined in (2.7.27)) have 
uniform averages B and A respectively. Then, there exists a positive
constant h* such that for all /*e(0,/x*):
(i) the system (2.7.24) is unstable if A has at least one eigenvalue with 

positive real part;
(ii) The system (2.7.24) is exponentially stable if A is a stability matrix,

and further more x 2(t,t0,x2( t0)) is close to A-1B; in the sense that
3K>1, a(/x)>0 and a monotonically increasing positive function 6(h) (5(0)=0) 
such that

ltx2( t ’ t o’x 2( t o)) " Ä ' 1BII

< K e _a(/0 ( t _ t o) l l x^ t o )  x 2( t 0)ll + 6(n)

In the case where the matrices Bj(t), Ajj(t), i,j,= l,2, are periodic or a 
finite sum of periodic signals then 6(/i)=0( t̂). □
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3. BIFURCATIONS IN ADAPTIVE MODEL REFERENCE CONTROL 

3.1 Introduction

The adaptive feedforward control problem, discussed in the previous 
chapter, could be represented as a linear, time varying system whose dynamics 
depended in a very nonlinear way on the design and plant parameters. 

However, the linearity simplified the analysis by restricting the possible 
structurally stable dynamics to being either asymptotically stable or unstable. 
Using averaging techniques, we characterized sets of parameters describing the 
system, yielding either good adaptive performance (asymptotic stability) or 
unstable behaviour. In general however an adaptively controlled system is 
nonlinear and the above analysis can only be invoked to obtain information 
about the local dynamics of the system - in the neighbourhood of equilibria [1].

The second case study is chosen to emphasise the effect undermodelling has 
on the (global) dynamics of a nonlinear adaptive scheme. We choose to study a 
simple adaptive model reference scheme exhibiting a wealth of nonlinear 
phenomena. The plant to be controlled is a second order, but not necessarily 
stable, linear system. The controller is designed on the assumption that the 
system is first order, and the control task is that the plant output should track 
the output of a first order model. This leads to a three dimensional system of 
nonlinear differential equations, whose dynamics we study as a function of the 
relevant parameters: the plant parameters; the model parameters; the adaptation
gain, and the parameters characterizing the reference input. This is the simplest 
example possible to exhibit a wide variety of nonlinear effects, which is still 
amenable to analysis such that we are able to recognise the fundamental 
mechanisms which cause these nonlinear, complex dynamics. Using perturbation 

techniques we then argue that the observed phenomena (Hopf bifurcation, 

homoclinic explosions) are not a product of this particular problem, but are 
rather generically present in adaptive control.

A complete analysis of the dynamical behaviour of a particular nonabstract 
nonlinear system as a function of the parameters describing it is a task far 
beyond purely analytical mathematical tools. Numerical techniques are 
indispensible tools in gaining a good understanding of the dynamics of a 
particular class of nonlinear systems of differential equations. Mathematicians 
of the 20th century have not only recognised but have also come (fatalistically)
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to live with this fact. However, it is not our goal to go into the complete
nitty-gritty details of the dynamics of the particular adaptive problem we are 
about the present. Such analysis is possible, but would lead us too far afield,
and probably would generate too great a volume of results, not all interesting
for the general adaptive control problem. (As a case in point, consider the
study of the Lorenz equations presented in [2], which are in many respects
much simpler than the particular adaptive control problem of the sequel, but 

required a 270 page book without fully exhausting their study!)
In Section 2 the problem is set up. Its basic and known features are

concisely discussed in Section 3. The bulk of the analysis then follows in 
Sections 5 and 6, after we have introduced some terminology from global 
analysis (Section 4). The analytical results of sections 5 and 6 are supported by 
numerical experiments (Section 7), and using a blend of analytical results and
numerical simulation evidence we extend our understanding of the global
dynamics as a function of the relevant plant and design variables. The 
attention is focussed on structurally stable dynamics and on the mechanisms that 
cause changes in these dynamics. In Section 7 we discuss our results from an 
adaptive control point of view. An historical overview pinpointing the major 
results in model reference control and situating our results ends the chapter.

3.2 Problem Description
We describe a simple adaptive control problem of the model output 

tracking type in the presence of undermodelling. The plant to be controlled is 
assumed to be a causal, linear and time invariant, continuous time system with 
a transfer function belonging to the class (cf. Section 1.2, Chapter 1):

{Zp ( s ) I Zp (s )  = s2+PiS| p i p 2. p , . p 2 '  R P ,*0) (3-2-1)

The plant can be represented in state space form as

X1 p
—

0 1 • X1 p
+

0  '

X 2 P .-P 2P1 -Pi. X 2 P -Pi.

x

X

ip

2p-
yp = (1 0)

(3 . 2 . 2 )



3.Bifurcations in Adaptive Model Reference Control 58

The control objective is to track the output (state) of the first order system:

xm — " axm + r  t ) ( 3 . 2 . 3 )

where a is a strictly positive constant and r(t) is a bounded piecewise 
continuous function of t - the reference input. The control designer assumes 
(mistakenly) that the plant can be adequately represented by a first order system 
with transfer function belonging to the model set:

P = <Zm( s ) |  Zm(s )  = ^  , ap e R) (3 .2 .4 )

and therefore implements the control law:

up ( t )  = - 0 ( t ) y p ( t )  + r ( t ) ( 3 . 2 . 5 )

where 0 is the parameter estimate generated by a normalized gradient 
identification algorithm:

eyp ( t ) ( y p ( t )  - xm( t ) )
0 ( t )  = -----------------------------------------  ( 3 . 2 . 6 )

(1 + M y p ( t )  - xm( t ) ) 2 )

e, ß  are positive constants; e is the adaptation gain and /* is the normalization 
constant. Some modified algorithms which have been recently introduced [3,4,5] 
are of the form:

0 = eyp ( t ) ( y p ( t )  - xm( t ) ) / ( l  + yp ( t )  - xm( t ) ) 2 )

- g ( y p ( t ) , x m( t ) , 0 )

where g is a "fix-it" function. Some typical examples of fixes are:

g = -7 (0 - 6 0 ) (3 .2 .7 )

algorithm with exponential forgetting, biased towards 0 O and

g = 707 (0 )cr2 (yp ( t:) - xm( t ) )  ( 3 . 2 . 8 . 1 )

with

0IICE>b* i f 1 0  - 0 0 1 < 0 !

= 0 - 0 0 - 0 , i f 0 - 0 o > 0 ,

= 0 - 0 0 + 0 , i f 0 - 0 0 « - 0

and
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a 2(e)  = e 2/ (1  + /x2e 2),  *t2 > 0 ( 3 . 2 . 8 . 3 )

which gives an error scaled exponential forgetting with dead zone of width 2 6 1 

centred at 6 0. Most of our analysis deals with the situation g=0, the original 

model reference control law, but we indicate (some of) the changes in our 

results due to the presence of a fix function.

Remarks:

(R.3.1) Notice that the modelset P is contained in the class of allowable 

plants in a singular way, i.e. by allowing p, = oo. In other words, for P t

large, l/s+ p 2 is a good low frequency approximation for p l / ( s2+pl s+p1p 2). □

(R.3.2) The modifications (3.2.7) and (3.2.8) seem rather artificial from the 

control objective point of view, exponential forgetting (3.2.7) makes it even 

impossible to achieve zero tracking error (unless 0O happens to be the correct 

parameter value for zero tracking). □

(R.3.3) Notice the slightly nonstandard normalization used in (3.2.9).

Normalizing by l+/i(yp - % (t))2 > 1 serves however the same purposes as the 

more classical normalization of the regressor (here the output yp) by 1 + ^yp 2. 

Because xm(t) is by assumption a bounded signal, we have that

1 + /*Yp2  ̂ ( ^) ll) (1 + M(yp “ xm)2)

and

1 + M y p ” xm ) 2  ̂ ^ 2 ( ^ ( ^ ) ^ ) (1 + ^ y P 2 )

Hence both forms of normalization are equivalent. Any form of normalization 

allows us to demonstrate that no finite escape time can exist. □

The adaptive closed loop system can be described by a three dimensional 

set of ordinary first order, time varying, coupled nonlinear differential 

equations:

x , = x 2 ( 3 . 2 . 9 . 1 )

x 2 = ”P1X 2 ■ P 2 P1X1 ■ P1X 3X1 + P i r ( t )  ( 3 . 2 . 9 . 2 )

X 3 =  ( x1-xm( t ) ) / ( l + / i ( x 1-xm( t ) ) 2 ) - g ( x 1 ,xm( t ) , x 3 ) ( 3 . 2 . 9 . 3 )

where we identified

X 1 =  X 1 P ’ X  2 =  X 2 P ’ X  3 =  ^
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and g is given by (3.2.7) or (3.2.8) and xm(t) is defined by (3.2.3). For any 
given initial condition and any starting time there exists a unique solution well 
defined in the future: there is no finite escape time.

Lemma 3.1:
Assume that the normalization constant n  is strictly positive. For any 
initial condition (x1 0,x 2 0,x3 0) and t 0 e R+, and bounded piecewise 
continuous function r(t), defined on ( t0,+oo) there exists a unique solution 
(x /M o ^ ,  0), x 2(t,t0,x 20), x 3(t,tQ?x3q)) starting at (x, 0,x2 0,x3 0) at t 0 to 
the adaptive systems equation (3.2.9) defined on ( t0,oo). □

Proof: Using the definition of xm(t) (3.2.3) and of g (3.2.7) or (3.2.8) it
follows that:

| x 3 | < 0 , 1X3! + C2

for some C ,, C 2 > 0, if ^  > 0. Hence, using (3.2.9)

|x , 1 < Ix21

| x 2 | < C3( t ) 1x , 1 + C4 | x 2 | + C5

for some exponentially overbounded function C 3(t), and some C4, C 5 > 0. □
In the subsequent sections we analyse the dynamics of the adaptive control 

problem (3.2.9) as a function of its relevant parameters: p ,, p 2 the plant 
parameters, where p, characterizes the undermodelling effect and p 2 determines 
the d.c. gain of the plant; e the adaptation gain, a the model transfer function’s 
pole and the different parameters necessary to characterize the reference input 
r(t). The other parameters (the normalization constant n , and the various 
parameters describing the fixes) play only a secondary role.

3.3 Basic Properties of the Adaptive Response
In this section we concisely review the classical analytic results available in 

the literature for this particular adaptive control problem. The techniques
involved are basically Lyapunov arguments and differ considerably from the 

methods used in the sequel (and so do the results).
The first result concerns the asymptotic zero tracking error 

(x,(t) - xm(t) = 0) property of the adaptively controlled system in the absence 
of modelling errors, using the unmodified algorithm (g = 0 cf. (3.2.9)). The 

closed loop can be represented as:
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x,  = - p 2x 1 - x 3x 1 + r ( t )  ( 3 . 3 . 1 . 1 )

x 3 = e ( x 1 - xm( t ) ) x 1/ ( l + / * ( x1 - xm( t ) ) 2 ) ( 3 . 3 . 1 . 2 )

which can be obtained from (3.2.9) by formally setting d/dt(x2) = 0 and solving 
for x 2. The system (3.3.1) has the nontrivial solution: x,(t) = xm(t),

x 3(t) = - p 2+a.

Theorem 3.1:
Assume that r(t) is a piecewise continuous bounded function defined on R+, 
and that the model (3.2.3) is strictly stable (a > 0). For any initial time 
t 0 e ft1', and any initial condition (x 10, x 30) the adaptive system (3.3.1) 
has a unique solution (x1(t,t0,x10), x 3(t,t0,x3 0)) uniformly bounded on

(t q ,co) which satisfies the asymptotic property:

-» Xm(t ) as tT«> ( 3 .3 . 2 )

If in addition r(t) is persistently exciting in the sense that there exists a 
positive constant r 0:

U t , , t 2 e R+, t 1 < t 2- l ,  3 t 3 , t 4 , t ,  < t 3 < t 4 < t 2

*4

I |  r ( t ) d t  | > r 0 ( 3 . 3 . 3 )

t 3

then x, converges uniformly to xm(t) and x 3 converges uniformly to - p 2+a 
as t increases. □

Proof: Define V(x1,x3,t) as:

Y

^ ( x i - x m( t ) ) 2 + I ( x 3+p2- a ) 2} i f  /a = 0

^ - J - l n ( l +^ ( x1-xm( t ) ) 2 ) + | ( x 3+p2- a ) 2} i f  /a > 0

Along the solutions of (3.3.1) the total derivative of V with respect to time is 

given by:

^ ( 3 . 3 . 1 )
e 2( t )

1 + / ie2 ( t )
< 0 ; e = x , ( t ) - x m( t ) ( 3 .3 . 4 )
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from which it follows that:
(i) x^t^QjX, 0), x 3(t,t0,x30) are uniformly bounded, and well defined on

( t 0 ’°°)

(ii) e(t) and d/dt(e(t)) are bounded and e(t) is square integrable, hence 
e(t) converges to zero.

The last claim of the Theorem follows at once from (3.3.4) if r(t) and xm(t) 
are periodic. For the general case it follows from the uniform identifiability of 
the feedback parameter - p 2+a due to the persistently exciting xm(t) - details 
can be found in [6,7]. □

As it stands the stability property expressed by Theorem 3.1 with the 
assumption of persistently exciting input signals is robust with respect to small 
nonlinearities or small modelling errors, e.g. singular perturbations, i.e. p , large 
compared with e, a ,,  | p 2| and |d/dt(r(t)) | . This robustness follows from a
total stability argument [8].

Specifically, using the exponential forgetting modification (3.2.7) it is 
possible to show that bounded disturbances and singular perturbations of the 
plant do not destroy (local) stability, provided |d/dt(r(t))| is bounded [3]. More 
importantly, one can quantify a large region in state space for which the 
response is bounded and converges to a small residual set, of irremovable errors. 
Notice that with the exponential forgetting (3.2.7) it is impossible to match 
exactly the model output (e(t) = 0) (unless 0 O = - p 2+a) even when no 
modelling errors are present, as the exponential forgetting pulls the parameter 
estimate towards 6 0. The modification (3.2.8) which scales the exponential 
forgetting factor according to the error e(t) = x 1(t)-xm(t) retains the property
of exact matching in the absence of modelling errors and can achieve exact 
matching starting from any initial condition provided the excitation is 
sufficiently large as compared to the exponential forgetting. This scheme is 
discussed in detail in [5]. Using the techniques of [3] it is not hard to show 
that this algorithm is also robust with respect to singular perturbations (p 1
large) in the sense that for a large set of initial conditions the adaptive
response is bounded and the error (deviation from desired response)

(e(t) = x 1(t)-xm(t),x2(t),x3(t)-p2+a) converges to a small residual set of 
irremovable errors. It is possible to roughly quantify the set of initial 
conditions as well as the residual set in terms of the undermodelling parameter 
(pt ). For p t Too the former tends to the whole state space, the latter collapses
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to zero. (The analysis, we are about to present, justifies most of the claims 

made in the above.)
Observe that these results discuss the robustness of model reference control 

with respect to undermodelling of singular perturbation type, i.e. p 1 large 
compared to e the gain of the adaptive scheme, the model pole and | p 2| 
which characterizes the low frequency behaviour of the plant and |d/dt(r(t)) | . 
In this situation the plant has two real poles, one close to - p 2, - p 2+ 0(l/p1) 
which can be adequately modelled, the other stable and large 0(p1) which is 
neglected. The requirement that |d/dt(r(t))| be small compared with p 1 ensures 
that the natural time scale separation of the plant is preserved under adaptive 
feedback, hence the robustness result. In the subsequent analysis the assumption 
p, is large is not made. The analysis focuses on the behaviour of the system 
dynamics as a function of its parameters, and a priori no parts of the 
parameter space are excluded.

3.4 Some Notions from Global Analysis [9,10]
Consider the nonlinear system of differential equations:

x = f ( x , p ) ,  x ( 0 ) = x 0 c R n , p e Rm (3 . 4 . 1 )

f is called a vector field, with parameter p. Assume that f is differentiable 
with respect to x and p.

The flow of (3.4.1) is a mapping from Rn to Rn, parametrized by time as 
y9t(x0) = x(t,x0), where x(t,x0) is the solution of (3.4.1) starting in x 0 (because 
the system is time invariant the initial time is irrelevant).

A fixed point x*(p) is a solution of f(x,p) = 0. A fixed point x*(p) is 
called hyperbolic if the Jacobian

Df(x,p) ( x , p )I = (Df ( x , p ) ( j  j ) )

evaluated at x*(0) has no eigenvalues with zero real part. If a fixed point is 
hyperbolic then the flow ^t(x0) in a neighbourhood of x*(p) is well 
approximated by exp(tDf(x*(p),p)) (Hartman-Grobman Theorem, see [9,p.l3]). 

The fixed point x* is a saddle if it is hyperbolic and if the Jacobian Df(x*,p) 

has both eigenvalues with positive and negative real part. A stable (unstable) 
node is a fixed point x* for which the Jacobian Df(x*,p) has all eigenvalues 

with negative (positive) real part.



3.Bifurcations in Adaptive Model Reference Control 64

In the sequel we need a slightly stricter definition of structural stability 
than the one we have given in Chapter 1, Section 1.3. However, apart from its 

use in the forthcoming bifurcation analysis, we use the definition in Section 1.3 

as the stricter definition cannot handle singular perturbations. Firstly we need 
the notion of equivalent vector fields. Two vector fields f and g are
topologically equivalent if there exists a homeomorphism h which maps the flow 
of f (v?/) into the flow of g not necessarily preserving parametrization by
time, i.e. for any x, and t , , there is a t 2 such that:

h ( ^ ( x )) = n f ( h (x ))

An e-perturbation of the vector field f is a (differentiable) vector field 
f^(x,p), x e Rn, p e Rm which satisfies:

sup ( | f (■,p)  - f " ( - , p ) | ) < e Mp
x e K

and

sup  ( l f * f ( ' * p )  ‘ f ^ f " ( ' > P ) l )  < ex e K

for some compact set K c Rn, and which equals f outside K.
Finally, a vector field is called structurally stable in the strict sense if all

e-perturbations of f are topologically equivalent to f. (Notice that this 
definition has all the ingredients of the definition in Section 1.3, only is less 
versatile.)

A value p* e Rm for which the flow of (3.4.1) is not strictly structurally 
stable is a bifurcation value of p. p is the bifurcation parameter. For
example, p* is a bifurcation value if Df(x*(p),p) becomes singular for p = p*, 
or has an eigenvalue with zero real part for p = p*, and does not have this
property for p * p* in a neighbourhood of p*. A Hopf Bifurcation occurs

when for a parameter value p 0 and equilibrium point x*(p 0) the Jacobian 

Df(x*(p0),p0) has a simple pair of pure imaginary eigenvalues and no other 

eigenvalues with zero real part. A bifurcation set is a locus in parameter space 
for which a particular bifurcation phenomenon (e.g. Hopf Bifurcation) occurs in 

the flow.
A bifurcation diagram is a locus in the combined state x parameter space 

indicating the change of the asymptotic dynamics, e.g. a locus of the family of
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limit cycles generated by the Hopf Bifurcation.

An hyperbolic fixed point x*(p) has associated with it a stable manifold, 
the set of all points converging to x*(p) in forward time, locally defined as

w foc(x*) = {x e U c R n |y7t ( x )  x* as t t o o ,

P t(x )  « U, Ut > 0}

and globally extended as

( 3 . 4 . 2 )

wS(x*) = u n ( wfo c (x*))
b  ^  V

and an unstable manifold, the set of points converging to x*(p) in reverse time, 

locally defined by

W1|o c (x+) = {x e UcRn |^ t (x) x* as  t i - o o ,

<pt ( x )  € U Ut < 0} ( 3 . 4 . 3 )

and globally extended as

Wu (x*) = U (W]qC(s*)). 
t ) 0

For an hyperbolic fixed point x the local stable manifold has the same
dimension as (and is tangent to) the eigenspace of the linearized system 
(d/dt(£) = Df(x*,p)£} corresponding to the eigenvalues with strictly negative real 
part of Df(x*,p) mutatis mutandis for the unstable local manifold.

A trajectory connecting different fixed points is a heteroclinic orbit, a
trajectory connecting a fixed point to itself (in a loop) is a homoclinic orbit. 
Heteroclinic and homoclinic orbits are structurally unstable phenomena in the 
flow of a nonlinear system which have an enormous impact on the flow. The 
bifurcation associated with a homoclinic orbit is called homoclinic explosion.

For the nonautonomous nonlinear differential equation

x = f ( t , x , p )  x ( t 0) = x 0 t , t 0 e R x e Rn p e Rm ( 3 . 4 . 4 )

a surface Sp in (t,x) space is an integral manifold of (3.4.4) if for any point B 
in Sp the solution x(t) of (3.4.4) passing through B is such that (t,x(t)) remains

in Sp for all t in the domain of definition of the solution x(t) [8].
The ordinary differential equation is called globally stable or Lagrange 

stable if for any bounded initial condition x 0 and initial time t 0 the solution
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x(t,t0,x0) is well defined and bounded in the future:
U |x 0 | < C U t0 3K (C ,t0) : | x ( t , t 0, x 0)|  < K Ut > t 0 (3 . 4 . 5 )

and uniformly globally stable if K is independent of t 0.
The idea behind bifurcation theory is to classify in topological terms the 

underlying mechanism that causes a certain change in the structure of the flow 
of a vector field. For instance, if the change of a parameter alters the flow of 
a vector field such that a stable node becomes unstable and instead a unique 
stable limit cycle appears (a Hopf-Bifurcation), then bifurcation theory says that 
the observed phenomenon is essentially equivalent to the bifurcation at the 
origin for \i = 0 of the planar vector field described by:

X' d/X GtH-C fl' X'
4.

( x 2+ y 2 ) (a x + b y )'

.y -oo-c/x d/x .y.
T

( x 2+ y 2 ) (b x + a y )

It is this concept that makes bifurcation theory an excellent tool to understand 
the complex dynamics of adaptive control.

For the reader unfamiliar with these concepts we include a simple example 
illustrating the different ideas [9]. Consider the scalar differential equation:

x = /xx - x 2 = (/x - x )x .

For /x < 0, the origin is a stable node and x = /x is an unstable node. At
/x = 0, an exchange in stability properties occurs, the so called transcritical 
bifurcation. For fx > 0, the origin is unstable and the fixed point x = /i is a
stable node. The bifurcation set is {/x = 0), the bifurcation diagram is depicted
in Figure 3.1.

Finally we discuss briefly the notions of Poincar£ map and integral 
manifold associated with a periodic orbit of the differential equation (3.4.1). A 
periodic orbit is a solution x(t,x0) of (3.4.1) such that for some T > 0 
x(t+T,x0) = x(t,x0). The smallest such T is the period of the periodic orbit. 
An integral manifold associated with this periodic orbit is a cylinder in R x Rn:

Sp = R X Cp = R X {x e Rn I x = Up(p) <p e (0,Tp )}.

Where we introduced the subscript p to emphasize that the periodic orbit and
its period Tp depend on the particular value of the parameter p. Cp describes 

the locus in state space of the points on the periodic orbit up(^), e (0,Tp) is 
a parametrization for it. Consider a local cross section e (the return plane), i.e.
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a subset of a hyperplane of dimension n-1, transversally intersected by C in a 

unique point x* and such that locally the flow of (3.4.1) intersects e 

transversally. (cf. Figure 3.2.)

Figure 3.1 Bifurcation Diagram for a Transcritical Bifurcation

stable - ■» direction of attractionunstable

The Poincar^ mao, or the first return map associates with each point q of 

e the point <£>T(q) where r = r(q) is the (shortest) time taken by the flow to 

return to e when started in q.
• a|c

The point x is obviously a fixed point for the Poincar£ map. The 

eigenvalues of the Jacobian of the Poincard map evaluated at x correspond to
• sje

n-1 eigenvalues of exp{Df(x ,p)Tp} after deleting one eigenvalue which equals 1. 

(The existence of such an eigenvalue follows from the identity
£  ;|c ?|C

x = exp{Df(x ,p)Tp}x .) The Poincar^ map reduces the study of a periodic 

orbit to the study of a fixed point (for a discrete map). In this way one can 

define hyperbolic periodic orbits, manifolds... by using the analogous concept for 

the fixed point of the Poincard map.



3.Bifurcations in Adaptive Model Reference Control 68

Figure 3.2 First Return Map or Poincard- Mao

3.5 Adaptive System Dynamics for Constant Reference Input

Restricting the input r(t) to be constant simplifies the analysis considerably 

- the adaptive system (3.2.9) becomes an autonomous system - yet allows us to 

gain signficant insight into the dynamics of the adaptive control problem, 

valuable even when the inputs are not constant. General reference inputs are 

dealt with in the next section.

For r(t) = r, the adaptive control system (3.2.9) reduces to:

x 1 = x 2 ( 3 . 5 . 1 . 1 )

x 2 = - Pi x 2 • Pl P2X1 + P i r • Pl X3X1 ( 3 . 5 . 1 . 2 )

x 3 = 6Xt ( x , - r / a ) / (1 + fx(x^ - r / a ) 2 ) - g ( x 1 , r / a , x 3 ) ( 3 . 5 . 1 . 3 )

where we have set xm(t) = r/a. For all nonzero r, a and e the system (3.5.1) 

has a unique fixed point (r/a ,0 ,-p2+a) = x*, (if g = 0), its local stability
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properties are discussed in the following Lemma.
Lemma 3.2:
The fixed point x* = (r/a,0,a-p2) of the adaptive system (3.5.1) with g = 0 
is locally uniformly asymptotically stable iff:
( i )  a > 0, p 1 > 0, e > 0 (3 .5 .2 )
( i i ) e r2 < p ,a 3 (3 .5 .3 )

□

Proof: The result follows directly from linearizing the system (3.5.1) around the
fixed point. The Jacobian, evaluated at x*, is given by:

(3 .5 .4 )

The characteristic equation is given by:

d e t(s l - A) = s 3 + p. ( s 2 + as + c— ) (3 .5 .5 )
a 2

The Routh-Hurwitz test for stability of (3.5.5) - verifying that the polynomial 
(3.5.5) has only zeros with negative real part - yields the desired result.
Remarks:
(R.3.4) The fixed point is only unique when r ^ 0. This condition is a
persistency of excitation condition for the model reference control scheme. The 
equilibrium x* = (r/a,0,a-p2) corresponds to the desired response; the control 
objective is achieved because the plant output (x, = r/a) tracks the model 
output (xm(t) = r/a). The parameter (x3 = a-p2) is such that the d.c. gain of 
the controlled plant matches the d.c. gain of the model (1/a). □
(R.3.5) Conditions (3.5.2) and (3.5.3) of Lemma 3.2 are independent of p 2, 
the d.c. gain of the plant. Not only are the local dynamics independent of p 2, 
but actually the complete adaptive behaviour is independent of p 2. This can be 
seen from the following description of the system (3.5.1) with g = 0, in 
function of X = x - x* = (x^x*, x2, x3-x3):

x 1 (3 .5 .6 .1 )

x 2 ■ P iax1 p ^ 2 - p ,r/aX 3 - p 15$1̂ 3 (3 .5 .6 .2 )



3.Bifurcations in Adaptive Model Reference Control 70

x 3 = e (x 1 + r / a ) x 1/ ( l  + ^x2) ( 3 . 5 . 6 .3)

Of course, although the dynamics are independent of p 2, the actual adaptive 
signals do depend on p 2 (cf. x*). □
(R.3.6) For the adaptive law using the estimation scheme with exponential
forgetting g = t(x3 - 0O), the fixed points are given by

xe = (xf ,0 , -p 2 + r  * 0 (3 . 5 . 7 )
x i

where x® is a solution of

xf (x, - | )  + 2  ( T  + (p 2 + 90 ) x , ) ( l  + (i(x, - | ) * )  = 0 ( 3 .5 . 8 )

and the characteristic equation of the associated Jacobian is:

X3 + (p 1+7 )X2 + p ,( 7 +£e )x + P 1{xf(2x® - ” ) + ) =° (3 . 5 . 9 )
/ \  ^ Q  A

A root locus argument shows that for (p2 + 0O) > 0 there is only one 
equilibrium point xe with x® belonging to the interval with endpoints r/a  and
r/(p 20o). This point is a stable node provided:

p 1 > 0, a < 0, e > 0, 7 > 0, /i ) 0 (3 . 5 . 10 . 1 )

ex f (2x^ - r / a )  < p 2 ^  + p ^ 2 + y 2 ( 3 . 5 . 10 . 2 )

Clearly for y  decreasing to zero, everything reduces to the situation discussed in 
the above. For 7 > e, x® is heavily biased towards p 2 + 0O 3.5.8), which 
indicates large tracking errors. Worse still, for p 2 + 0O < 0, there are three 
different equilibria for small 7 (0 < 7 < 7*) which can be stable or unstable, 
depending on the roots of the characteristic equation (3.5.9). The advantage of 
this scheme is that it can handle r = 0, or insufficient excitation. In this 
situation the fixed point is xe = (0, 0, 0O), which is stable provided 
p 2 + 0O > 0. This advantage is therefore rather dubious, as one has to know 
a stabilizing control parameter in order to implement the adaptive control law in 
the absence of sufficient excitation! In the event of persistently exciting input 

r ^ 0, the local behaviour, which characterizes the performance of the adaptive 
scheme, is inferior to that of the unmodified algorithm. It can only be

acceptable for 7 «  e and p 2 + 0o >O!  □
(R.3.7) The adaptive control using the error scaled exponential forgetting
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modification (3.2.3) preserves the fixed point x* of the unmodified scheme, but 
may introduce two other equilibria. For g = 'y{x3- 0 o)(x1- r /a )2/(l+^(x1- r /a )2), 

(no dead zone), the equilibria are given by

xe = (x f , 0, -p 2 + r/x®) 

where x® is a solution of:

( x i
P2  + 0, ) (P 2 + *„) 0

Again for p 2 + 0O > 0 (7 ,e,a > 0) the only equilibrium is x, = r/a, provided 
7 is small, for p 2 + 0O < 0 and 7 small there are two extra equilibria, besides 
x*, one is stable, one is unstable. The fixed point x* is always present, and 
has the same local stability properites as for the unmodified scheme. This
scheme has the same (dubious) advantage of being able to cope with r = 0 as 
the exponential forgetting modified scheme, but is able to perform as well as 
the unmodified algorithm when r(t) is persistently exciting. □

The conditions (3.5.2) in Lemma 3.2 are not only necessary for local 
stability, they are also necessary for global stability (cf. (3.4.5)) as we now will 
argue. It is clear that a needs to be positive otherwise the model would be 
unstable (this would also invalidate the replacement of xm(t) by r/a). The plant 
parameter p, needs to be strictly positive, else the global response is unstable. 

Lemma 3.3:
Assume that p , is negative. The adaptive system (3.5.6) (or (3.2.9) with
g=0) is globally unstable in the sense that under the flow of the adaptive 
system any (nontrivial) volume of initial conditions is strictly expanding. □ 

Proof: It suffices to notice that the trace of the Jacobian of the vector field
defined by (3.5.6) (or (3.2.9 with g = 0 )  is - p 1? independent of the state of the 
system. □
Remarks:
(R.3.8) The condition p 1 > 0 implies that a plant belonging to P ^(3.2.1)

(with P t>0) can be stabilized by constant output feedback. This implies that 
for the particular situation of undermodelling described in Section (3.2), the 
unmodified model reference control law can stabilize any plant in P^ which 
could be stabilized with constant output feedback, were the parameters known. 

In other words, the adaptive control problem is well posed. □
(R.3.9) Lemma 3.3 does not hold for the modified schemes, because the trace
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of the Jacobian becomes - p , -(ag /öx3). This indicates however that these 
modified algorithms cannot stabilize a plant for which p 1 < -7 for the 
exponential forgetting scheme and p, < -y/fi  for the error scaled exponential 
forgetting modification. □

Also e, the adaptation gain, should be positive, otherwise the parameter 
estimate x 3 may remain negative, which leads to instability. More precisely, 
the following result holds.

Lemma 3.4:

Suppose that e < 0, n > 0, p, > 0, a > 0. For parameter values 
satisfying these conditions, the adaptive system (3.5.6) is not Lagrange 
stable, in the sense that for all inital conditions rx^O) > 0, rx 2(0) > 0, 
and 5T3(0) < -a the solutions of (3.5.6) are unbounded. □

Proof: The proof is given for the case r > 0, r < 0 can be dealt with along
the same lines.

We demonstrate that trajectories starting from £,(0) = x 10 > 0, 
x 2(0) = x 20-> 0 and £ 3(0) = x 30 < -a satisfy x n(t) > x 1 0/2 and £ 2(t) > 0 and
£ 3(t) <  -a, yt )  0, which enables us to conclude that £ 3(t) tends to -00  and
that jT1(t)5T2(t) tends to +00. The proof is by contradiction.

Assume that t^ = inf(t>0, ^ ( t )  < x 10/2) < 00. Notice that by continuity
t, > 0. Because x,(t) > x 1 0/2 Ut e [t,t,) we have from equation (3.5.6.3) that:

x 3( t )  < -c 1 some c , > 0 Mt e [0 , ^ ) ,

hence

x 3( t )  < -c ^ t + x 30 < -a y t  e [ Oj t , ) .

Computing the derivative of x n(t)x2(t) along the trajectories of (3.5.6) we find:

^ i ( t ) x 2 ( t )  = x 2 ( t ) - p , ( a + x 3 ( t ) ) x 2 ( t )

- P1>̂1( t ) x 2( t )  - P 1̂ x 3( t ) x 1 ( t )

Because

* l ( t )  - p , (a+x3( t ) ) x 2( t )  - p 1̂ x 3( t ) x 1( t )  > c 2 + c 3t  > 0

for some c 2>0, c 3>0 and all t e [0, t t ) it follows that

X1( t ) X2( t )  > c 4 + c 5t  > 0 Ut e [0 , t , )
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for some c 4 and c 5>0. As all solutions are defined on [0,+oo), it follows that 
x 2(t) > 0  Wt f [0,1,) and hence, using (3.5.6.1) x,(t) > x 10 Ut e [0,t,)
contradicting the definition of t , . Consequently x,(t) > x 10/2,
x 3(t) < -c , t  + x30 and x ,(t)£ 2(t) > c4 + c5t Ut>0. □

Having convinced ourselves that condition (3.5.2) is necessary for both local 
and global stability, we now consider the situation where the local stability 
condition (3.5.3) fails; assuming that (3.5.2) holds. In this case a soft loss of
stability occurs, i.e. the equilibrium ceases to be stable and instead an
asymptotically stable limit cycle appears.

Theorem 3.2: Hopf Bifurcation

Assume that a>0, e>0, p,>0 and /4)0. Consider b = (e,r,p,,a) as
bifurcation parameter. A hopf bifurcation occurs for any bifurcation 
parameter b on the bifurcation locus H described by:

H = {b : e r2 = p ,a 3} (3 .5 .1 1 .1 )

There exists a neighbourhood U of H:

U c {b : e r 2 > p , a 3} ( 3 . 5 . 11 . 2)

such that to any bifurcation parameter b in U there corresponds a unique 
limit cycle for the unmodified adaptive system (3.5.1) which is locally
uniformly asymptotically stable. The limit cycle is at a distance 0(d(b,H)2) 
of x* and has a period 2*■/ J ( ap,) + 0(d(b,H)i), where d(b,H) denotes the 
distance between b and H, i.e. d(b,H) = inf{ Iib-b 11 ; b e H}. □

Remark:
(R.3.10) In terms of the adaptive control problem this means that when the
parameters of the system are such that condition (3.5.1) e r2 = p , a 3 is (slightly) 
violated ( > ), the control objective cannot be realised. (Recall that the input
r(t) is constant r(t) = r.) Instead an asymptotically periodic non-zero tracking
error remains, whilst also the adaptive control parameter is oscillating. The

period of the oscillation is (at the onset of limit cycle behaviour) completely
determined by the model pole and p ,, the amplitude depends on how much

(3.5.11) is violated. □
(R.3.11) Except for the asymptotic stability conclusion in Theorem 3.2, the
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Theorem is also valid for the scheme modified with error scaled exponential 
forgetting, as this scheme has the same fixed point with the same Jacobian as 
the unmodified scheme. (For the adaptive algorithm with exponential forgetting, 
in the situation that p 2+0o > a Hopf Bifurcation occurs when (3.5.10.2) is 
violated, cf. Remark 3.6.) In principle we could verify the asymptotic stability 
in these situations also, but the algebraic manipulations involved are too tedious 
to be worth the effort. Simulations confirm that the limit cycle generated by 
the Hopf bifurcation in the latter case is uniformly asymptotically stable. □

Proof of Theorem 3.2:

Step 1: Continuity Properties
The application of the Hopf-Bifurcation Theorem [9,11,12,13] requires that the 
vector field defined by (3.5.1) is C 4 in both parameter and state. Here the 
vector field is C00 in both parameter and state.
Step 2: Eigenvalues at Bifurcation Value
The Jacobian of (3.5.1) (g = 0) evaluated at x* = (r/a ,0 ,-p2 + a) has two 
complex conjugate, purely imaginary eigenvalues and one real negative 
eigenvalue if er2 = p ,a 3. Indeed, under this condition, one can factorize the 
characteristic equation (3.5.5) as (s2 + p.,a)(s + p.,).
Step 3: Nondegenerate Hopf Bifurcation
The Hopf Bifurcation is nondegenerate when the complex conjugate eigenvalues 
cross the imaginary axis transversally at criticality. This step guarantees the 
existence of a unique limit cycle corresponding to each F in U. Denote by 
X(b) that eigenvalue of the Jacobian which equals i 7(ap,) for b e H. We have 
that for all b e H:

äX r 2 . ReöX 0 ( 3 . 5 . 1 2 . 1 )be b 2 a 3- 2 i a 2 7 ( a p 1 ) ’ ä € b

er r> X̂r  R0 0 ( 3 . 5 . 1 2 . 2 )d r b a J - i a * J (ap, ) ’ d r b

i a 0 ( 3 . 5 . 1 2 . 3 )ÖP, b 2 7 ( a p , ) - 2 p , i ’ dp. b

£X - 2 p , + i 7(ap, ). ReaX 0 ( 3 . 5 . 1 2 . 4 )
da b 2 a - 2 i 7 ( a p 1r “ da b
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Step 4: Asymptotic Stability
Establishing the uniform asymptotic stability of the limit cycles generated by a 
Hopf Bifurcation requires the computation of the so called curvature 
coefficients. This is a rather tedious, computationally-involved task. The result 
is:

Re^ 3 a________ a 3p 1 r p, /p^a+p, +2a+l
^4 (a + p, ) 2 r 2(a + p 1 p, + 4a (3 .5 .1 5 )

with

e r2 = p ,a 3; a > 0, p, > 0, c > 0

valid for all b e S. In all circumstances, Re^ < 0 which together with (3.5.12) 
implies asymptotic stability. (^ is calculated according to the formula given by 
Poore [12], see also [11], which we found in these circumstances the easiest to 
use. Details can be obtained from the author on serious request. □
Remarks:
(R.3.12) This Theorem 3.2 establishes existence, uniqueness and the local 
uniform stability for a family of limit cycles, for bifurcation parameters b in a 
neighbourhood of the bifurcation locus. Simulation experiments show that these 
limit cycles persist in a large region of the parameter space and further more 
are not only locally but appear to be globally uniformly asymptotically stable 
(see Section 3.7). □
(R.3.13) The condition er2<p1a 3 (3.5.3) can be interpreted as delineating the 
region of "slow" adaptation, it is only when this condition is violated that the 
typical nonlinear effects (here limit cycles) manifest themselves. The condition 
is best interpreted as follows:

r
e ( - ) 2 < p ,a  (3 . 5 . 3 )

a

The effective adaptive gain (product of the algorithm gain e and the excitation 

level (r /a )2 e x 2m must be strictly less than the bandwidth of the model 

(which in ideal circumstances would be the bandwidth of the controlled plant as 

well) scaled by the degree of undermodelling, (p, = oo corresponds to the ideal 

situation, p , < 0  violates the necessary condition (3.5.2)). This is completely
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analogous to the high gain instability mechanism of the M.I.T. rule (see R.2.7, 
section 2.3.1). □

3.6 Adaptive System Response for General Reference Input
In the previous section we analysed the adaptive control problem introduced 

in Section 3.2 for constant inputs and obtained results about the dynamics of 
the adaptive system as a function of the parameters describing it. Are our
findings a miraculous product of the simplifications we introduced, or do the 
bifurcation phenomena persist, at least qualitatively, when the input is not a 
constant, or when small nonlinearities are present in the plant or if the plant is 
not second order but higher order? In other words, is this bifurcation effect 
structurally stable? Because of the local uniform asymptotic stabilty of the
fixed point or the limit cycles this question can be answered in the affirmative.

We first focus our attention on inputs r(t) = coscot for which it is still
possible to achieve the control objective. Then we exploit the structural
stability of our previous result to demonstrate that, although we analysed a 
specific problem, our results are relevant for a large class of adaptive control 
problems.

3.6.1 Reference input r(t) = coscot
Although only a scalar feedback law (3.2.5) is implemented, the model 

reference control algorithm (3.2.9) can achieve model output tracking even if 
r(t) = coscot. Indeed, it is not hard to verify that the trajectory 

(x1*(t),x2*(t),x3*(t)) defined as

xm( t )  = (co2+a2 )"£ co s(co t-tan "1 (co/a))x * ( t )

x 2 * ( t )

( 3 . 6 . 1 . 1 )

( 3 . 6 . 1 . 2 )

( 3 . 6 . 1 . 3 )

= xm( t )  = -co(co2 +a 2 )" i s  in (cot - tan " 1 (co/a))

x 3* ( t ) = - p 2 + a + co2 /p ,

is a solution of the adaptive system (3.2.9) (g=0).

Remark:
(R.3.12) This is a quite remarkable feature of the model reference control 
algorithm which is a result of the particular structure of undermodelling 

discussed here. Notice that the constant feedback gain (3.6.1.3) is such that the 
second order plant reacts as a first order plant at the frequency co.
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(Zp(s)/(Zp(s)x3* + 1) = Zm(s) for s = joo). Similar behaviour is possible in
more complicated situations. □

Linearizing the adaptive system in a neighbourhood of the trajectory
a|e 3fc s|e

(x, (t),x2 (t),x3 (t)), denoting the deviations as yj(t) = Xj(t) - x̂  (t), i=l,2,3, we 
obtain:

y,  ( t ) - 0 1 0 y! ( t ) '

y 2 ( t ) = - P , ( a + ^ - )  -P,  - P ^ m f t )
‘-'l y 2 ( t )

y 3 ( t ). cxm( ^ ) 0 0 . y 3 ( t ).

where xm(t) = (a)2+a2)'^cos(wt-tan_ 1(co/a)) (cf. (3.6.1.1)). The following local 
stability result is immediate.

Lemma 3.5: Assume p^O , a>0, /OO, e>0. The trajectory (x n (t),x2*(t),
* #

x 3 (t)) defined by (3.6.1) is locally uniformly asymptotically stable for all w 
and e sufficiently small, e e (0, e*(oo,a)). □

Proof: Using the averaging results of Chapter 2, Theorem 2.1, there exists an
e*(oo,a) > 0 such that (3.6.2) is uniformly asymptotically stable for all e e 

(0,e ) provided that

a 1 im
t  Too IXr( t ) [ Z ( s ) x m] ( t ) d t  > 0

where

Z ( s )  = p, /  ( s 2+p1 s+p,a+oo2 )

After some algebra, we obtain

a = a /[2 (a)2+a2 ) 2 ] > 0 Mw eR, UaeR+

( 3 . 6 . 3 )

Hence the result. □
Remarks:

(R.3.13) From (R.2.21) we recall that e*(co,a) is roughly proportional to a, 
hence the stability gain margin (e*) reduces quickly with increasing frequency.□ 

(R.3.14) The complete stability analysis of (3.6.2) can only be achieved via 
numerical integration using Floquet Theory, (cf. Figures 2.3, 2.4 and 2.5 in 
Chapter 2). In this situation only the high gain instability - discussed in the
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previous section - and the resonance phenomena are possible, because the 
adaptive controller eliminates the model error at the frequency oo of the input. 
For non sinusoidal inputs instability due to model errors is possible. □
(R.3.15) In Figure 3.3 we display the instability/stability boundary in the 
parameter plane (e, o>) for the linearized system described by equation (3.6.2).
3.3 Stabilitv/Instabilitv Boundary In Parameter ( e .o j )  Plane

s t a b l e

The Figure 3.3 is obtained in the same way Figures 2.3, 2.4 and 2.5 in Chapter 
2 were obtained. (The Figure is incomplete in the sense that it does not 
display the stability/instability boundary in the small frequency region co < 0.2, 
due to the extreme sensitivity of the stability properties with respect to small 
changes in the frequency in this region, (cf. Figure 2.4 in Chapter 2.) On part 

of the stability/instability boundary displayed in Figure 3.3 the dynamics 
undergo a Hopf type bifurcation. In this context this means that the origin 
becomes locally unstable in the sense that two of the characteristic multipliers 

(Floquet Theory [8, pp.117-121]) are complex conjugate and cross the unit 

circle, whilst the other characteristic multiplier is ±e“P i^ , T = 2x/o). This 
bifurcation phenomenon is extremely complex, and in some sense similar to the
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Hopf Bifurcation encountered when r(t) = r, only, the stability analysis

including the nonlinear effects of the adaptive system in the neighbourhood of 

this bifurcation is prohibitive, and the new dynamics which emerge are difficult 

to describe (see [9, pp. 162-163]). Notice in particular that one has earlier 

observed [1, Chapter 3, Figure 3.8, section 3.7.4] that in the situation where the 

averaging theory predicts local instability that the adaptive response was globally 

stable. The Hopf Bifurcation Theorem 3.2 (together with these observations) is 

a possible explanation for this phenomenon. □

(R.3.16) The same type of analysis can be carried out for the modified 

schemes, again the exponential forgetting modification (3.2.8) is more difficult to 

analyse, and appears not to perform as well as the error scaled exponential 

forgetting modification (3.2.9). For the latter the above analysis holds 

unchanged. □

3.6.2 General Reference Inputs

For general inputs (not simply sinusoidal) it becomes impossible to match 

the plant output with the model output. As it is difficult to identify, or

establish the existence of nontrivial bounded solutions, we limit ourselves to 

input signals r(t) which in some sense can be regarded as a perturbation of a 

constant signal r, or of a purely sinusoidal signal.

We develop the results only in detail for r(t) close to a constant signal, 
indicating how it can be generalised to the sinusoidal case.

Firstly, we rewrite the adaptive system’s equations (3.2.9) with g = 0 (no 

fixes) in the following equivalent form, more suitable for the subsequent 

analysis:

x , • x 2 0

*2 " P i(ax1 + x 2 + + X , x 3 ) + - Pt( r ( t ) - r )

* 1 + r / a )
X  3 1 + f i x2 e - ( x 1, xm( t ) )

( 3 . 6 . 4 . 1 )

where  ̂ is defined as:

+ £  ■ xm( t ) ) )
-------- -------------------- p -------------- (xm(t) - £)
(1 + JlX2 ) ( 1 + ^(X, + -  - Xm( t ) ) 2 )

A( * i , x m( t ) )
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where (£ ,, £ 2, x 3) = (x ^ x ,* , x2-x 2*, x 3-x 3*) and x* = (x,*, x2*, x3*) = 
(r/a, 0, a -p 2), which is the fixed point for r(t) = r. Obviously (3.6.4) is of
the form:

k  = f ( x )  + F ( t , x ) , ( 3 . 6 . 5 )

which we consider as a perturbation of the system

£ = f ( x )  (3 . 6 . 6 )

corresponding to the constant input situation discussed in Section 3.5. The 
following two results are direct consequences of "classical" small parameter 
Theorems:

Theorem 3.3:

Assume that e > 0 ,  p, > 0, a > 0  and er2 < p , a 3, and that r(t) is a 
bounded, piecewise continuous function on ft4", which satisfies the integral 
small condition:

^ 2

I I  ( r ( t ) - r ) d t |  < 5 Ut15t 2 e R+: | t 1- t 2 | < h (3 . 6 . 7 )

for some 6 and h positive. Under these conditions there exists a positive 
constant 5, such that for all 5 e (0,5,) the unmodified adaptive system 
(3.2.9) (or (3.6.4)) has a unique and locally uniformly asymptotically stable 
solution x*(t,5) (or x*(t,5)) in a neighbourhood of x* (or 0). This solution 
depends continuously on 5 and satisfies x*(t,0) = x* (or x*(t,0) = 0). □

Proof: Under the given assumtpions the unperturbed system (3.6.5) has a locally
uniformly asymptotically stable fixed point (0) by virtue of Lemma 3.2. The 
result then follows via total stability [8] upon noting that the perturbation F(t,x) 
satisfies:

^ 2

|j F ( t , x ) d t |  < C , .5 U t , , t 2 e R+ , | t , - t 2 | < h (3 . 6 . 8 )

t i

uniformly in x e R3, for some C, C,(e,^,a). □
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Remarks:
(R.3.17) This result is a statement about the dynamics of the adaptive system 
as a function of its parameters, local in state space, non local in parameter 
space. (Here local stands for in the neighbourhood of the nominal response.) 
The result is easily extended to incorporate other nonlinearities as long as 

condition (3.6.8) is satisfied. □
(R.3.18) This result establishes the existence of nontrivial solutions for the 
adaptive system in the situation that exact matching is impossible due to a 
nonsinusoidal reference input. It indicates therefore a constructive way for 
finding the so-called tuned solution [1] based on finding an input function close 
to the actual reference for which exact matching is possible (here a sinusoidal 
input) and obtaining the parameter setting for the controller from this input 
function. In the present case study this yields a unique parameter x 3 or 0, but 
in general for multidimensional parameter in the controller this is not the case. 
Also in the multidimensional situation it becomes a nontrivial issue to select the 
approximation function such that a stabilizing controller emerges. □
(R.3.19) Notice that the class of input functions (3.6.7) contains a subclass of 
fast time varying reference signals with mean r (cf. [14, Ch.l], and Lemma A.l 
in the Appendix of Chapter 2). □

Completely similar results can be derived for the situations where the
parameter values are such that the unperturbed system has a (locally)
asymptotically stable limit cycle (Hopf Bifurcation Theorem 3.2). For clarity we 
recall the notation established in Theorem 3.2. The bifurcation parameter is 
b = (e, r, p lt a). The Hopf Bifurcation locus H is characterized by
er2 = p ^ 3, and the neighbourhood of H for which asymptotically stable 
periodic orbits appear in the flow of the unperturbed system (3.6.6) is denoted 
by U (cf. (3.5.6.2)). One cannot expect that the perturbed system (3.6.5) will
possess a stable limit cycle (even for the smallest of non stationary
perturbations). The best one can hope for is that it possesses a locally 

uniformly asymptotically stable integral manifold in the neighbourhood of the 
integral manifold (cylinder) of the unpertured system. In control terms this 
means that although the control objective cannot be achieved due to both too 

large an adaptive gain and nonconstant inputs, the response remains bounded
and close to the nominal periodic response. This fact is expressed in the next 
two theorems. We denote the integral manifold associated with the limit cycle
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in the unperturbed system by (for all b e U):

sb,o = R x c b = R x (x e R3 : x = ubM  Tb)l (3.6.9)

Cb is the locus in state space of the limit cycle, which is parametrized by the 
function ub ; Tb is the period of the periodic orbit. The subscript b 
emphasizes that the limit cycle (and its period) depend on the particular value 
of the bifurcation parameter b e U. The following results hold:

Theorem 3.4:

Denote b = (£,r,p1sa), assume b e U as in Theorem 3.2 (3.5.7.2). The
unperturbed system (3.6.6) has a uniformly asymptotically stable limit cycle 
with corresponding integral manifold (3.6.9).
Assume that the reference input is a piecewise continuous function defined 
on R and satisfies

| r ( t )  - rI < 5  Ut € R ( 3 . 6 . 1 0 )

Under these conditions there exist a positive constant 5, and a
neighbourhood Nb of Cb such that the perturbed system (3.6.5) has for all 
6 e [0 , 6 ,) an integral manifold Sb 5 defined on R x Nb, parametrized as:

sb ,5 = ( ( t »x ) c R x : x = ub (y>) + vb ( t , ^ , 5 )

(¥>,t) e [0 ,Tb ] x R} (3 .6 .11)

which reduces to Sb>o f° r 5 = 0, (vb(t,y>,0) = 0). v(t,</>,6) is almost
periodic (T-periodic) in t if r(t) is almost periodic (T-periodic) in t. 
is locally uniformly asymptotically stable. □

Proof: Follows from the Hopf Bifurcation Theorem 3.2 and Theorem 7.1 in [8,
pp. 244]. □

Theorem 3.5:

Under the assumptions of Theorem 3.4, but with a continuous almost 

periodic reference input r(t) with mean r, i.e.

T

1im ^ [ r ( t ) d t  = r

i t "  0



3.Bifurcations in Adaptive Model Reference Control 83

there exists a positive constant co, and a neighbourhood of such that 

the perturbed system (3.6.5) with input r(ut), has an integral

manifold Sb?a) defined on R x P^, parametrized as:

sb ,u  “ { ( t . x ) f R x Pb : x = u(y>) + vb (ut,y>,^)

e R+ X [0 ,T b ]} ( 3 . 6 . 1 3 )

which is uniformly asymptotically stable and reduces to = R x as

wToo. The function v^(o;t,y3,l/a)) has the properties that v^(o>t,^,l/w)->0 as 

cotoo and v^ is almost periodic in t. □

Proof: Follows from the Hopf Bifurcation Theorem 3.2 and Theorem 7.2 in [8,

pp. 245]. □
Remarks:

(R.3.20) Theorems analogous to Theorems 3.3 and 3.4 can be established for

r(t) close to a sinusoidal signal, on the basis of Lemma 3.3. This extends our 

knowledge about the dynamics in parameter space considerably (small e, but 

extra parameter: frequency of sinusoidal reference signal). □

(R.3.21) Theorems 3.4 and 3.5 can be amended to include unmodelled 

nonlinear terms in the plant, as long as they are small in. the neighbourhood of 
the desired response. □

(R.3.22) Theorems 3.3, 3.4 and 3.5 are readily adapted to see that the model 

reference control algorithm is robust with respect to small input noise and 

output noise. If input and output of the plant are corrupted by noise as:

up ( t )  = - x 3( t ) x 1( t ) +  r ( t ) + w( t )  

yp ( t )  = X ! ( t )  + v ( t )

It follows, after some algebraic manipulations, that for sufficiently small 5 the 

model reference control algorithm is stable if:

t ,  + 1

I I w ( t ) d t  I < 5,

t ,  + 1

I I v ( t ) d t I  < 5 y t  e R+

1 1 +1

I v 2 ( t ) d t  < <5,

t ,  +1

I I (xm( t ) - r / a ) v ( t ) d t  | < 5 Ut 6 R+

*i □
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3.6.3 Robustness of the Bifurcation Phenomena

Using "classical" singular perturbation techniques one can establish that Hopf 

Bifurcations are persistent under singular perturbations [15,8]. We use this fact 
to establish that the results obtained previously are not a (miraculous) 
consequence of the particular control problem we have set up in Section 3.2. 

Consider the following class of plants:

P" = (Zp (s )I  Zp(s) = Z1(s )Z 2(/is); pL € R+; Z, ( s )  6 P '

and Z , (0) = 1, Z2 is  s t r i c t l y  s ta b le  and p ro p er) (3 .6 .1 4 )

The plant Zp(s) is basically second order, with some extra fast (if is small) 
decaying modes. Using the methodology of Section 3.2 we arrive at a closed
loop system which can be represented as:

/tz= Az + B r( t)

x , = -p 1p 2x 1 - p 1x 2 + p ,(C Tz + d r ( t ))

(3 .6 .1 5 .1 )

(3 .6 .1 5 .2 )

(3 .6 .1 5 .3 )

(3 .6 .1 5 .4 )x 3 = t (x ,  - xm( t ) ) x 1/ ( l  + |i(x , - ^ ( t ) ) 2) 

where (A,b,c,d) is a minimal realization for Z 2:

Z2(/iS) = Ct (/is I -A )-1B + d.

Thus A is a stability matrix and -CT(A)_1B + d = 1 by assumption. The 
system (3.6.15) is in the standard form for the application of the main results 

in [15] about singularly perturbed Hopf Bifurcations. The following result holds 

for constant input r(t) = r and xm(t) = r/a.

Theorem 3.6:

Assume that e > 0, a > 0, p,> 0, n  ) 0, r(t) = r, and that A is a 

stability matrix. Denote b = (e,r,p,,a) e H (cf. Theorem 3.2) if 

cr2 = p ,a 3. Denote x* = (-A_1Br ,r/a, 0, - p 2+a), x = (r,x 15x 2,x 3).

Under these assumptions, there exists a /x0 positive, such that for all 

^ f [0,/z0] the full system (3.6.15) undergoes a Hopf Bifurcation at an 
equilibrium x* near x* for a bifurcation value near b. Moreover, there
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exists a neighbourhood U^ of the bifurcation locus Ĥ t such that for every

b/x € the limit cycle is locally uniformly asymptotically stable. □

Proof: Verify hypotheses H1-H4 of [15] and apply Theorems 3 and 4 of [15].□

Remarks:

(R.3.23) More complicated singular perturbations can be accommodated, but 

yield little extra insight. The above result describes just one class of adaptive 

problems where a Hopf Bifurcation occurs. We are not claiming that Hopf

Bifurcations may be present in a generic adaptively controlled system, but that 

it is indicative of possible behaviour. □

(R.3.24) In a very similar way the integral manifold results of Theorems 3.4 

and 3.5 can be amended to cope with singular perturbations as in (3.6.15). 

(Chapter VII in [8]) □

3.7 Numerical Experiments

The analytical results concerning the dynamics of the adaptive control 

problem (3.2.9) discussed in the previous sections deal with:

(1) The ideal situation, where the plant belongs to the model set

(p, = o o ,  formally). (See Section 3.3.)
(2) The case where the plant can be well approximated by a first order 

system in the low frequency range; the fast mode is being neglected 

in the control design. (See Sections 3.3 and 3.6.)

(3) The general undermodelling situation, the plant is second order and

possibly cannot be adequately modelled by a first order system. (See 

Sections 3.5 and 3.6.)

Concisely, the information obtained about the dynamics is respectively:

(1) The adaptive system is globally stable and the control is

asymptotically optimal. The results indicate little information about 

the robustness of these properties.

(2) For a large region of initial conditions the adaptive system’s response 

is bounded with residual (small) errors. The results are valid for a 

region in parameter space characterized by p 1 large compared to a, 

e, I p 2 1 and |d/dt(r(t)) | . Little or no information is available about 

the performance (local dynamics, residual errors).

(3) The local dynamics are precisely characterized over large regions of
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the parameter space, providing detailed information about the 

performance and robustness of the local dynamics. However, little 

information is obtained about the global dynamics.

Clearly the above results complement each other, but there are some hiatuses. 

In this section, besides illustrating the above results, we fill in these gaps. 

Firstly, we argue using a blend of numerical and analytical results that the local 

dynamics discussed previously are the asymptotic dynamics for a large region of 

initial conditions (closing the gap between local and global results). Secondly, 

and more importantly, we explore further the possible dynamics over the 

parameter space discovering new bifurcation phenomena.

3.7.1 Local Dynamics?

Before presenting simulation evidence indicating that the local dynamics 

discussed in Sections 3.5 and 3.6 are indeed the asymptotic dynamics for a large 

set of initial conditions in the state space of the adaptive system (3.2.9), we 

make the following important observation about the global dynamics in general: 

Lemma 3.6: Assuming that p, > 0, the flow of the adaptive system (3.2.9)

is volume contracting. □

Proof: It suffices to observe that the trace of the Jacobian of the vector field

defined in (3.2.9) is uniformly in state space less than or equal to -p , < 0.

(This is the case for both the unmodified and modified control schemes.) □ 

One says that the global dynamics are uniformly hyperbolic. In particular 

Lemma 3.6 implies that any asymptotic dynamical behaviour is restricted to, at 

most, a two-dimensional subset of the state space.

Figure 3.4 illustrates that the local dynamics are the asymptotic dynamics 

for a large set of initial conditions. For these simulations the system

parameters were set as follows:
3

c — 1, r — pi — Q. — 2, P2 -  ~ 2 *  — 1

which corresponds to the situation of a second order plant with poles at s = -1

and s = 3, where the neglected pole has the same order of magnitude as the

pole of the model (s = -a = -1). The control objective was to track the

constant model output r/a = 1. Notice that for the above parameter settings 

the desired response is locally uniformly asymptotically stable (er2 < p , a 3). 

Figure 3.4 displays the decay of the logarithm of the norm (£TxT)£ as a
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function of time, X = (x ,- r /a , x 2, x 3+p2-a) for nine initial conditions:

x 0 = (5 l f  52, 53), 5j = +10, -10; i = 1,2,3.

Figure 3.4 demonstrates that the transient behaviour can be quite 

unacceptable! Completely analogous results are obtained for sinusoidal inputs.

Figure 3.4 Global Response (Transient response)

Local  D y n a m i c s ?

In itia l condition x (0) = -10
T< 5 “

In itia l condition x (0) = 10

200 30C
Time index

Remarks:

(R.3.25) Although it is easy to find in itia l conditions for which the 

simulations yield numerical overflow errors (on a Vax 11/780, working in 

quadruple precision), it is necessary in order to see this phenomenon to 

introduce errors in the in itia l conditions by selecting a destabilizing feedback 

parameter setting x 30. For large negative values of x 30, (such that 

a + X30 = - p 2 + x 30 < 0 ) the in itia l response ( x 15 5t2, X3) blows up very 

fast, which drives X3 to positive values (possibly yielding overflow x 30 < -100). 

Then, once the feedback gain is "stabilizing" (£ 3 > a), X, and %2 the plant 

states decay quickly (in an oscillatory way), approximately converging to:
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x, = ------------
5T3 + a

which implies (cf. (3.2.9)) that £ 3 decays. Once £ 3 becomes small the local
dynamics take over, for er2 < p ,a 3 this implies convergence to the desired
settings. For er2 > p ,a 3 the above cycle repeats itself as the local dynamics
are unstable yielding increasingly complex behaviour the more the parameters 
deviate from er2 = p ^ 3. □
(R.3.26) Exhaustive simulations indicate that in all cases where the local
dynamics are uniformly asymptotically stable, the adaptive controller gave good 
performance (including the transient behaviour) for initial errors up to 100% 
(relative to the desired response). □

3.7.2 Illustrating the Local Results
When the adaptive gain is too large (e.g. er2 > p ,a 3 for r(t) s  r) and/or

the input is not a purely sinusoidal signal the control objective cannot be 
achieved anymore, but the response remains bounded. The following figures 
illustrate this point, focussing our attention especially on the performance
deterioration, in the asymptotic response.

Figures 3.5.1 and 3.5.2, display the asymptotic output tracking error

(Yp(t)-xm(t)) as a function of time for r,(t) = l+0.1cost and
r 2(t) = 1 -  1.41cos20t for the system described by the parameters
p i = p 2 = 0.5, a = 1 and e = 0.25. In this situation exact tracking is 
achieved for r(t) = 1. These figures illustrate Theorem 3.3. Notice that both

inputs r,( t) and r 2(t) satisfy the condition:

^ 2
I I  (xm , i ( t ) " 1) d t |  < 0.15 y t 1, t 2 : I t , - t 2 | < 1

(cf. (3.6.7)). Notice that the output error magnitude is about 10% of the 

desired response.
Figure 3.6.1 displays the output error, as a function of time for the inputs 

r 0(t) = 1 and r,(t) = 1+0. Icos0.lt for the same system as above, but with 
increased adaptive gain e = 1.0. In this case (er2 > p , a 3) the control objective 
cannot be achieved even for r 0(t) s i ,  a periodic error remains. The extra
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sinusoidal component in r n (t) modulates this response. Figure 3.6.2 illustrates 
the same response in the state space, projected into the plane of output-error
and feedback gain. Notice in particular how the integral manifold (for the 

r,(t) response) wraps around the periodic orbit (response for r 0(t)). These 
pictures illustrate the Hopf Bifurcation Theorem 3.2 and the integral manifold 
Theorem 3.4.

A typical response for the system described by the parameters
p 1 = p 2 = a =  / z = e = l  and with sinusoidal input r(t) = cos 0.5 t is 
displayed in Figure 3.7.1 and for e = 4.5 in Figure 3.7.2. For 6 = 1 ,  the
control objective is achieved, e = 4.5 proves to be too large, a tracking error
remains, (cf. Figure 3.3). These figures illustrate Lemma 3.5 and Remark 
(R.3.14).

In Figures 3.6 and 3.7.2 one can easily identify the dominant frequencies 
in the tracking error, the fast oscillation is due to the Hopf Bifurcation, the 
slow modulation is due to the input excitation.
Remarks:
(R.3.27) These pictures illustrate the robustness of the model reference
controller very well. Indeed the first order model Zm(s) = 1/s+l is really a 
very bad model for the plant Zp(s) = 0.5/s 2+0.5s+0.25, which has an. oscillatory 
impulse response! This demonstrates that the original model reference scheme 
can have excellent robustness properties with respect to undermodelling provided 
a modest control task is imposed: the plant output should only be required to 
track a predominantly slowly time varying model output, as outlined in 

Theorems 3.3 and 3.4 and Lemma 3.5. □
(R.3.28) An intuitively appealing interpretation for the limit cycling 
phenomenon (as outlined in the Hopf Bifurcation Theorem) is that it reminds us 
of hunting. Due to the high adaptation gain, the adaptive controller wants to 
achieve too much too quickly and therefore keeps on hunting after the good 
setting, pumping energy into the plant, causing oscillations. □
(R.3.29) The same simulations have been repeated for the modified schemes, 

with very similar responses. □
(R.3.30) From our simulation studies and analytical results we conjecture that 
the model reference control algorithm as described by (3.2.9) driven by constant 

input r(t) has a bounded response for any initial condition and any parameter 

settings p, > 0 , e > 0, a > 0 and r. □
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Figure 3.5 Output Tracking Error Caused bv Nonsinusoidal Input

F i g u r e  3 . 5 . 1

Input  p (t) = 1 + O . l co s ( t )

0 . 1 -

- 0 . 1 -

40 60Time Index

F i g u r e  3 . 5 . 2

Input  rg (t) = 1 -  1 .41cos(20t )

o . i -

- o . i -

Time Index
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Figure 3.6 Output Tracking Error Caused bv Large Adaptive Gain:

Figure 3.6.1

1 + 0 . lCOS (0 . I t )

0 . 4  -

0 . 2 -

- 0 . 2  -

- 0 . 4
140 16C
Time Index

Figure 3.6.2 State Space Representation
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Figure 3.7 Tracking Error Caused bv Large Adaptive Gain:

Figure 3.7.1

r (t) —cos (0.5t) ,

0 .2 -

- 0 . 2
20  30Time Index

Figure 3.7.2

COS (0.5t) £

0 . 5 -

1 n 'v,

- 0 . 5
100Time Index
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3.7.3 Exploring Further the Parameter Space

We analyse in greater detail the dynamics of the adaptive control problem 
set up in section 3.2 for constant inputs r(t) = r. We focus our attention on 
the asymptotic dynamics.

Figure 3.8 displays in part the bifurcation diagram of the adaptive system 
(3.2.9) for the bifurcation parameter e, the adaptation gain (horizontal axis). 
The vertical axis represents a measure of the amplitude of the limit cycle or 
periodic orbit:

3
r  = e max | x j ( t , ) - x j ( t 2) |

•  i

1_ 0 < t ,  , t 2 < T(e)

where T(e) is the period of the limit cycle. The other parameters describing 
the adaptive system are set as: reference input r = 1; plant: transfer function
parameter p, = 1; model pole a = 1; and the normalization constant \i = 1.

Remarks:

(R.3.31) The other plant parameter in the plant’s transfer function, p 2 which 
determines the d.c. gain and the stability of the plant, is irrelevant. Figure 3.8 
is the bifurcation diagram for all p 2. The parameter p 2 only affects the actual 
location in state space (x, ,  x 2, x 3) of the limit cycle or asymptotic invariant

if.

set, (x3 = a - p 2 !) (see also remark (R.3.5)). □

The bifurcation diagram is obtained by locating the periodic orbits as fixed 
points of the Poincar£ map (cf. Section 3.3) using a Newton Raphson procedure 
(cf. [2, Appendix E]). The local stability of the periodic orbit is then
determined by integrating the first variational equations along the periodic orbit. 
(Stable periodic orbits are indicated by full lines, unstable periodic orbits are 
indicated by dashed lines in Figure 3.8.) Using Floquet Theory we obtain then 
the eigenvalues of the Jacobian of the Poincar£ map evaluated at the fixed 

point corresponding to the periodic orbit. In this way new bifurcations can be 
detected, if they exist. The method can locate both stable and unstable 

periodic orbits, it suffices to have a good estimate of the period, and a
reasonable estimate of its location. The Hopf Bifurcation Theorem 3.2 provides 

us with such estimates. Once we determine one periodic orbit, we can lock in
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on it, and follow it through state space over the whole bifurcation parameter 
value range. In this way we can generate Figure 3.8, starting from the Hopf 
Bifurcation (e = 1), and increasing e whilst tracking this orbit. If a new
bifurcation phenomenom occurs, we identify its nature and if it generates a new 
periodic orbit, we follow that orbit as well. As return plane (cf. Figure 3.2, e 

is the return plane) we found = - 0.05 adequate for the parameter range 
e e (1,10) which we studied most carefully, and = 4 for the parameter
range e > 10.

Before explaining what Figure 3.8 implies we describe concisely the two 
bifurcations which were encountered besides the Hopf Bifurcation, in our 
numerical experiment. The Saddle-Node (SN) bifurcation is a phenomenon in
which a stable and an unstable orbit annihilate themselves. (The stable orbit 
corresponds to a node in the Poincar£ map, whilst, the unstable orbit (because 
the flow in our example is volume contracting) is a saddle in the Poincar£
map, hence the name.) If the bifurcation value is e*, then on one side of e*,

s |c  a|e
say e < e , the orbits both exist, and for e > e they do not exist. As e
tends to e (from below) the periods and the locations of the orbits tend to a
common limit. This bifurcation can in our example be recognised from the
eigenvalues of the Jacobian of the Poincar£ map, at criticality e = e* these are 
+1 and e"PiT, where T is the (common) period. The Period-Doubling (PD)
bifurcation is a phenomenom in which a stable (unstable) periodic orbit becomes 
unstable (stable) generating at the same time a stable (unstable) periodic orbit of 
about twice the period. At criticality both orbits coincide. This bifurcation
(also called flip) can be easily recognised from the linearized Poincar£ map, as 
one of the eigenvalues passes through -1 at criticality. In our example, at
criticality, the eigenvalues are -1 and -e "P i^  whenever a period-doubling 
bifurcation occurs.

We now describe the Figure 3.8 Bifurcation Diagram (I). For e < 1 the
origin is locallly uniformly asymptotically stable (Lemma 3.2); (it appears to be 
globally uniformly asymptotically stable). At t ,  = 1, a Hopf Bifurcation takes 
place, giving rise to a limit cycle of approximately period T 1 ^2x. This limit 
cycle persists, decreasing in period, increasing in amplitude until e reaches the 

value e2 ~ 1-956, where a period doubling bifurcation occurs. The orbit 
becomes unstable, and a new stable periodic orbit of period T 2 11.96 

emerges.
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Figure 3.8 Bifurcation Diagram
SN Saddle-Node bifurcation, PDD Period-Doubling Destablizing and PDS 
Period-Doubling Stabilizing bifurcation

A d a p t a t i o n  gain

2 5 -

A d a p t a t i o n  Gain
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These period doubling bifurcations follow each other very quickly,
accumulating toward e3 -  2.55, giving rise to periodic orbits, of increasingly 
larger amplitudes and increasing periods (x2!). Tracking further the periodic 
orbit generated by the Hopf Bifurcation, we notice that it becomes again locally 
uniformly asymptotically stable at -  6.260, by a stabilizing period doubling 
bifurcation. An unstable periodic orbit of double period 2T3 collapses at e4 
with the unstable periodic orbit of period T 3 -  5.770 stabilizing this orbit. 
Finally at e5 -  6.611, this limit cycle undergoes a saddle node bifucation 
followed by a second saddle node at eB -  4.878, a further destabilizing period 
doubling bifurcation at e7 -  5.420 and a final stabilizing period doubling 
bifurcation at e8 -  9.87.

Remarks:
(R.3.32) We found that this sequence of a first period doubling, destabilizing 
(PDD) bifurcation, followed by a second stabilizing period doubling (PDS) 
bifurcation and a saddle node (SN) bifurcation is typical for all periodic orbits 
in this interval e e (1, 10). The following table illustrates this (only the first 
occurence of the different bifurcations is indicated):

Table 3.1: Some bifurcation values of e

P eriod PDD PDS SN

T (-6 ) 1.956 6.260 6.611

2T 2.360 2.833 2.934

4T 2.507 2.604 2.930

8T 2.538 - -

(R.3.33) Observing the ratio (en_., - en) /  ( en “ en+i)’ where en value
of the nta period doubling destabilizing bifurcation we observed that its value 

tend to approximately 4.7 form below. It has been shown that the limit of this 

ratio as n to o  is a universal constant of an (infinite) sequence of period doubling 
bifurcations [2, 9], through numerical experiments and analysis one estimates this
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limit by 4.6692016... (the so called Feigenbaum’s conjecture [9]. □
(R.3.34) This covers only partly what happens in this interval of the
bifurcation parameter e e (1, 10). For example, the saddle-node bifurcation at 
e G implies the existence of an unstable limit cycle which merges at e 6 with the 
periodic orbit generated by the Hopf Bifurcation. This orbit could be followed 
further as a function of e and more saddle-node and period doubling
bifurcations will be encountered (e 7, e8). As this applies for all orbits
generated by period doubling bifurcations (in this interval of the bifurcation
parameter), we realise that our numerical experiment can go on indefinitely... 
without yielding new information, and therefore we do not pursue this. □

It follows from these observations that the asymptotic dynamics of the 
adaptive control problem (especially for e e(l, 10)) are extremely complex, as
they are characterized by competing sequences of period doubling and
saddle-node bifurcations. This is witnessed by the asymptotic behaviour of a 
generic trajectory for the adaptive system with e = 4.5, displayed in Figure 3.9. 
It appears as if the trajectory never settles down to a periodic orbit, and fills 
in a two dimensional set, a strange atractor?

Increasing e beyond the value e 8 one stable periodic orbit emerges, which 
increases in amplitude with e (Figure 3.8 Bifurcation Diagram (II)). In 
Figure 3.10, this orbit is displayed (projection in (x1s x 2)- plane and (x15 x 3)- 
plane) for e = 25, 50. Three phases can be observed in this orbit. In phase 
(A), x 3 is large and positive, causing an oscillatory decay of 5T1 and X 2 towards 

= -(r/a )£3/(£ 3 + a) and % 2 ^  0. Then, decreases, but very slowly as
X ! -  -(r/a)x3/(^3 + a) implies that d/dt(X3) < 0 but small (phase B). Because
e is large jf3 decreases, overshooting zero in a negative direction and therefore 
destabilizes the plant, X 3 and % 2 increase quickly, therefore bringing back to
a large positive value (phase C). The larger e the larger jT3 becomes, both in 
negative and positive values, this can be recognised in both projections. In the 
(x ^  x3) projection (output, feedback gain) this is obvious, in the (x1? x 2) plane 

(output, derivative of output) this is reflected by the larger values taken by x, 
and x 2 and by the increasing number of cycles in the spiral. Notice in 
particular that this asymptotic behaviour for large adaptation gain is qualitatively 
identical to the transient response for large initial conditions discussed in remark 

R.3.25! (This remarkable feature reappears in the next case study, where we pay 
more attention to it.)
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Figure 3.9 Complicated Asymptotic Dynamics f e = 4.5^
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Figure 3,10 Asymptotic Dynamics for Large Adaptation Gain ( e = 25. 50")
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These observations indicate, (do not prove however) the existence of a 

homoclinic orbit(s) in the flow of the adaptive system for some values of

the bifurcation parameter e. Because the only fixed point is a saddle with

eigenvalues a ± iß and X, (0 < a < -X for all e > 1) these homoclinic orbits 

would explain the presence of the complicated dynamics (period-doubling 

sequences ...) observed in the above (Silnikov’s Theorem cf. [9, pp.318-325]).

Another pointer in this direction is that the global dynamics are hyperbolic 

which is consistent with the strange invariant sets (see e.g. Figure 3.9) implied 

by the existence of this type of homoclinic orbit. Also supporting this point is 

the bifurcation which takes place at p, = 0. This bifurcation is not well

understood, but it is known that in its unfolding Hopf Bifurcations and 

homoclinic orbits are present. [9, pp. 364-376].

We have repeated the same analysis with p, for the bifurcation parameter, 

ranging from p, = er2/a 3 to 0, with qualitatively identical results.

Collecting these facts together we conjecture that the bifurcation diagram,

with the adaptation gain as bifurcation parameter has the following generic 

form:

(1) 0 < e < p, a3/ r 2

The fixed point (origin) is uniformly asymptotically stable (in the 
large).

a3
(2) eH = Pi —

r 2

A Hopf Bifurcation takes place; an asymptotically stable lim it cycle 

of period around 27r/yap, emerges.

(3) 6hl > e > p, a3/ r 2

A first sequence of (destabilizing) period doubling bifurcations.

(4) e = eh l(p15 a> r>
A homoclinic orbit appears in the flow, in the neighbourhood of 

the bifurcation value, the flow contains strange attracting sets, 

(homoclinic explosion, Silnikov Theorem)

(5) cj > e > chi
A last sequence of (stabilizing) period doubling bifurcations,
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connected to a sequence of saddle-node bifurcations eliminates all 
periodic orbits but one.

(6) e > £j(p i , a, r)
Only one periodic orbit remains, which is asymptotically stable 
and grows in amplitude as e increases.

Remarks:
(R.3.35) It is possible (and very likely) that there are many, different 
homoclinic explosions and sequences of period doubling bifurcations in the 
interval (ejj, ej). □
(R.3.36) A qualitatively identical bifurcation diagram is obtained for the 
unnormalized model reference control algorithm, p  0 or the algorithm with 
the more classical normalization (cf. (R.3.3)). □

It transpires from the above that local and global analyses complement each 
other. Specifically a global stability result is of little or no value without a 
guarantee for good local performance. Both local and global issues are 
nontrivial problems, and the boundary between the two becomes rather fuzzy in 
the presence of chaotic dynamics. In order to obtain an adaptive controller 
which performs well it is an absolute necessity to deal with the local issues.

3.8 Discussion
We have presented a fairly complete analysis of the asymptotic dynamics of 

the adaptive control problem set up in section 3.2 under the condition that the 
input is purely sinusoidal. Only for purely sinusoidal signals can the control 
objective be achieved, i.e. the plant output can indeed match the model output. 
Through a pertubation analysis we then demonstrated that this situation yields 
relevant information even in the case where the input was not purely sinusoidal 
and/or where the undermodelling was more severe than the one degree 

mismatch between plant and model as it was set up in section 3.2.
Very concisely, we can extract the following general observations:

(1) The local dynamics - in the neighbourhood of the desired response - 
can be analysed, with good control performance in mind, over the 
complete parameter space. Whenever the local dynamics indicate 
instability, the nonlinearity of the adaptive algorithm stabilizes (that is 

if the adaptive algorithm is properly designed with a positive 
adaptation gain and stable model, sufficient excitation cf.(3.5.2)). The
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typical mechanism underlying this soft loss of stability is a Hopf-type 

Bifurcation.
(2) The performance of the adaptive system deteriorates quickly, once the 

parameters of the system indicate unstable local dynamics in the 
neighbourhood of the desired response. Although the global response 

is stable, the tracking error increases the more the local dynamics are 
unstable. The asymptotic dynamics can become extremely complex, 
characterized by chaotic dynamics and deviate substantially from the 
desired (zero output tracking error) response.

(3) The available "global" results are either restricted to a small subset of
the parameter space, only discussing singular perturbation type 

undermodelling error, and/or restricted in the set of initial conditions 
that can be dealt with. They only discuss stability (bounded input, 
bounded state response) and neglect largely the influence the design 
parameters have on the actual asymptotic dynamics. Global stability
results are basically established using a Lyapunov function approach. 
This goes a long way in explaining the shortcomings of the global 
results we pointed out in the above, as it is very difficult to guess 
the right form of a Lyapunov function as a function of both the 
state variables and the parameters of the system. Any Lyapunov
argument should be complemented by a characterization of the 
asymptotic dynamics.

(4) The transient behaviour is not well understood, very few results are 
available. In view of the presence of chaotic dynamics this is not 
really surprising. Also, in view of the simulations (see e.g. Figure 
3.4) stating that the transients are bounded is not very- useful; unless 
this bound can be expressed as a function of the parameters and the 
initial conditions.

It transpires from the above that one has to be very cautious and 

pessimistic when interpreting global stability (bounded input, bounded state) 
results. This fact is strengthened by the observations made by F.M.A. Salam 
and Shi Bai in [16]. They discuss the existence of chaotic dynamics in the 

transient behaviour of a simple adaptive control problem (first order system, 
first order model, adaptive model reference control algorithm) generated by a 
bounded disturbance. Their results differ from the present ones in that here



3.Bifurcations in Adaptive Model Reference Control 102

chaos is generated by the undermodelling error and is therefore present 
regardless of the input disturbances. Also in [16] the model reference control 
algorithm with exponential forgetting was considered, whilst here we focussed 
our attention primarily on the unmodified model reference control algorithm.
As a final difference the chaos established in [16] is of the horse shoe type,
which is transient chaos, whilst here the chaos determines the asymptotic 
dynamics.

One big gap in our understanding of adaptive control dynamics remains:
transient behaviour. This statement has to be qualified because the transient 
response of adaptive algorithms with small adaptation gain and initialised close 

to the desired response is well understood (local analysis); for a detailed analysis 
see [1]. From the above it is all too clear that this is a hard problem if other 
than local results are aimed for. The realistic problem of specifying guidelines 
for the design of an adaptive controller such that its response will remain 
within pre-specified limits from the desired behaviour and will converge to this 
behaviour within a certain error margin within a pre-specified settling time is 
wide open. (In the next chapter we deal with the transient behaviour of an
adaptive pole placement law indicating that also the transient can be governed 
by chaotic dynamics.)

3.9 Historical Overview
The model reference control algorithm in its discussed form was a redesign 

by P.C. Parks [17] of the M.I.T. rule approach to model reference control. 
This redesign was motivated by the lack of conditions for global stability of the 
M.I.T. rule and the presence of examples of unstable behaviour of the M.I.T. 
rule. Using a Lyapunov argument (cf. Section 3.3, Theorem 3.1) P.C. Parks 
redesigned the adaptive algorithm such that for any plant described by a strictly 
positive real transfer function the new algorithm was asymptotically stable. 

(Parks’ original algorithm did not include any normalization.)
This early algorithm was amended to cope with the general model output 

tracking control problem by Monopoli et al. [18]. The first global stability

results were available in the late seventies to early eighties, [19,20]. The lack 
of robustness of these results was succinctly demonstrated by Bo Egardt [21], 
and C. Rohrs et al. [22]. This spurred a major effort into the analysis of the 
robustness properties of the model reference control scheme, in order to restore
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its damaged reputation. New algorithms were proposed, mainly ad hoc 
variations of the same theme (normalization [4], exponential forgetting [3], dead 
zone [23], projection algorithm [4], error scaled exponential forgetting [5], 
multiple adaptive laws [24]). The aim is to obtain global and robust stability 
results. A different approach can be found in [1], where the emphasis is on 
local properties, in search for guidelines to ensure good performance.

Our contribution consists of describing some of the basic mechanisms that 
govern the dynamics of adaptive model reference control algorithms. Our 
approach demonstrates the importance of the different design parameters and the 
way in which they fundamentally change the local and global dynamics 
(e(r/a)2 < p ,a  is a key expression). The core of our results indicates how the 
local theory can break down (soft loss of stability, Hopf Bifurcation), and what 
the global theory overlooks (limit cycles, chaos...). In particular it follows that 
changing the adaptive law is no substitute for engineering design. The modified 
schemes display the same characteristics for different parameter settings. A 
combination of both appproaches is essential in gaining a complete understanding 
of adaptive control, but it appears that the importance of the local results 
should not be underestimated.

We are not the first to report the existence of chaotic dynamics in model 
reference adaptive control. F.M.A. Salam and Shi Bai [16] demonstrated the 
presence of chaos due to periodic disturbances, in a model reference control 
algorithm with exponential forgetting (Melnikov-type chaos), which is of a 
transient nature, and Rubio et al. reported chaos in the adaptive control of a 
nonlinear plant (containing hysteresis in the actuator) [25]. (In [25] a self 
tuning regulator (indirect adaptive control) was discussed.) We do believe 
however that we are the first to analyse an adaptive problem where chaotic 
dynamics are generated by the adaptive mechanism itself. In the presence of 
undermodelling, the classical adaptive model reference control scheme exhibits 
for certain parameter settings chaotic dynamics which determine the asymptotic 
behaviour of the complete adaptively controlled system!.
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4. STABILIZING NONLINEAR DYNAMICS IN ADAPTIVE CONTROL

4.1 Introduction
In the previous case studies, we have analysed the dynamics of adaptive 

control in ideal and nonideal situations highlighting how these are affected by 
the design variables. Both the local (e.g. in the neighbourhood of a desired 
response) and global behaviour of an adaptively controlled system changes in a 
highly nonlinear and nontrivial way with the design variables (adaptation speed, 
input characteristics...). Though the complete characterization of the (local) 

dynamics in even the simplest of the problems considered is beyond all
available analytical tools, the local response can be effectively and efficiently 
analysed using linearization techniques combined with the time scale separation 
principle. As has been illustrated in the previous chapters these methods yield 
valuable and precise information giving clues as to how- one can design an
adaptive algorithm that will meet given design criteria. However, adaptively 
controlled systems are nonlinear in general, which implies that the behaviour in 
the large may be quite different from the local behaviour. In the previous 
chapter we exemplified this by demonstrating that the nonlinear dynamics could 
be globally stabilizing even when the local dynamics in the neighbourhood of 
the desired response were unstable. Using techniques from bifurcation theory 
and global analysis we have shown that the larger the adaptation gain becomes 
the more vividly the adaptive system response displays typical nonlinear 
phenomena, and the less relevant the local results become. In this last case 
study we want to expose more clearly these nonlinear dynamics and their 
potentially stabilizing properties, demonstrating that the complicated nonlinear 
dynamics of adaptive control indeed have a redeeming feature: amongst other 

things they make adaptive control work!
Our last adaptive control problem is set up in discrete time. As in the

previous chapter, we assume that the plant to be controlled is a second order 

system, whilst the control law is designed on the basis of a first order model. 
The control objective is to regulate the plant output to zero. Using the
certainty equivalence approach outlined in Chapter 1, Section 1.1, the adaptive 
controller is constructed on the basis of a very fast (deadbeat) adaptive 
parameter estimator coupled with a deadbeat feedback control law. The 
problem is constructed in such a way that the adaptively controlled system
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cannot be linearized around its desired trajectory. Hence, the closed loop 
dynamics are entirely dictated by nonlinear effects, and therefore this example 
serves its primary purpose of exposing the nonlinear dynamical phenomena more 
fully. However, the implications of our analysis are more farreaching in that 
we demonstrate that the particular dynamics associated with this nonlinearizable 
set up describe the transient behaviour of very standard linearizable adaptive 
control schemes with large initial conditions.

The analysis is simplified as compared to the previous case study by 
considering regulation only (r=0) and by using a combination of a deadbeat 
control with a deadbeat identifier (= fixed adaptation gain). The only free 

parameter on which the dynamics depend is the parameter describing the 
undermodelling (cf. p 1 in the previous chapter). Because of this simplification 
we are able to give a complete analysis of the nonlinear dynamics (including 
transient behaviour) over the whole parameter range. As a consequence we are 
able to describe precisely the robustness properties of the adaptive controller 
considered with respect to this type of undermodelling. In particular we 
characterize the set of second order systems which can be stabilized by this 
adaptive control algorithm.

The chapter is organised as follows. Section 3 is devoted to the explicit 
formulation of the adaptive control problem studied, where we state the class of 
plants considered and parametrized models used, the identifier structure and the 
linear certainty equivalence control strategy. We derive in this section an 
explicitly nonlinear difference equation which describes the complete closed loop 
adaptive system. The dynamics of this difference equation fall into three distinct 
categories depending upon a single parameter (b) characteristic of the 
unmodelled dynamics and the next three sections concentrate on describing the 
closed loop behaviour for each of these classes. Section 4 briefly describes the 
properties of the adaptive scheme when no modelling errors are present, i.e. 
b=0. In Section 5 we consider negative values for the parameter b and prove 

that the feedback gain is asymptotically periodic. For a range of values of 
negative b this periodic gain stabilizes the plant. In Section 6 we consider 

positive b and show that the feedback gain is chaotic, again stabilizing the plant 

for a range of values of b. Section 7 deals more fully with the effects on the 
closed loop stability of the plant due to these different feedback gains and 
considers questions of performance and robustness of the adaptive control
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scheme. In Sections 8 and 9 we conclude and draw together the threads of the 
previous sections to discuss the implications of the results of this case study for 
adaptive control.

4.2 Conventions and Notations
We briefly introduce some of the terminology from dynamical system 

analysis for difference equations [1].
A homeomorphism is a continuous function with a continuous inverse.

Let f: Rn Rn be a homeomorphism.
Consider the difference equation x^+1 = f(xk), x 0. f is called the state 

transition map.

A trajectory (orbit) is : (f^(x0), keZ) a sequence of iterations passing 
through x 0 at k = 0. (Slightly abusing this formal definition, we use trajectory 
also to denote any sequence (finite or infinite) of consecutive points x^ in state 
space through which an orbit passes.)

A fixed point is a solution of x = f(x).
A periodic orbit of period p is an orbit (f^(x), keZ} such that fp(x) = x, 

and f^(x) * x for fl = l,...,p -l, p > 1 (a finite orbit).
The stable manifold of a fixed point x (periodic orbit) is the collection of 

all points converging to x (periodic orbit) under the forward iteration of f.
The unstable manifold of a fixed point x (periodic orbit) is the collection 

of all points converging to x (periodic orbit) under the iteration of f- 1.
An invariant set is ScRn : f(S)CS; f |S  denotes f restricted to S.
An invariant attractor is an invariant set A for which there exists a 

superset D, (D3A) of positive Lebesgue measure such that lim f n (D) c A
n t o o

An indecomposable invariant set is an invariant set such that for any two
points x,y in this set and for any n  > 0, there exist an integer n and a
sequence of points x=x0, x 1}...,xn=y in this set and time indices t 15...,tn eN such 

that | f ti(xi_ ,) - Xj| < ^ y  i=l,...,n. (Intuitively, any two points can be linked 
arbitrarily closely by a certain trajectory, completely in the set!)

A hyperbolic invariant set S, is an invariant set which has a continuous 

invariant direct sum decomposition on its tangent space such that for any x e S 

the tangent space Tx is the direct sum of a stable eigenspace Esx and unstable
eigenspace Eux. There exist constants C > 0 and 0 < X < 1 (independent of
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x e S for uniform hyperbolicity) such that for any v e Esx 
I Df-n(x)v I < C \n |v |;  and for any w e Eux |D fn(x)| < CXn |v |.  Esx and Eux 
can be given bases which change in a continuous way with x (For more 
details see Definition 5.2.6. in [1]).

A Cantor set is a closed set, such that the largest connected subset is a 
point, and every point in the set is a limit point.

The study of the dynamics of the difference equation xk+1 = f(xk), is 
concerned with the topology of the space of trajectories: {{fn(x),n eZ},x eRn}.

Two state transition maps f, g are topologically equivalent if there exists a 
homeomorphism h that takes orbits of f to orbits of g: h o f = g o h. As far 
as dynamical behaviour is concerned we do not distinguish between topologically 
equivalent state transition maps.

In the sequel we will be mainly concerned with state transition maps 
defined in R2. In order to be able to illustrate the complete state space we 
"compactify" R2 using the homeomorphism H:

H: R2 ->(-1 ,1  ) x ( - 1 ,1 ) (x ,y )  " *  ( 1+TxT’ T+fy7  ̂<4 -2 - ' )

In the future, although we state a result for f: R2-»R2, the illustrations are for 
the topologically equivalent map g: g = H o f o H "1.

The open first to fourth quadrants of R2 are denoted by Q 1 to Q 4. The 
closure of a subset S in R2 is denoted as Sc*, the complement of S in R2 is Sc, 
the boundary is represented as 5(S), its interior by int(S).

4.3 Problem Description
In this section we sketch the adaptive control problem which we want to 

study. After setting up the problem, we then distinguish the topologically 

different types of dynamical behaviour exhibited by this equation.
Suppose that the system to be controlled is given by:

The P l a n t :

yk = aVk-i + bVk- 2  + uk - 1 i k e a , b , u k ,yk e R ( 4 . 3 . 1)

Here a,b are the unknown, but fixed, parameters of the plant. The designer 
believes that the system can be adequately represented by a first order model:
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The Designer’s Model:

Vk = %k- i  + uk - 1 i k e N; a e R ( 4 . 3 . 2 )

In order to achieve regulation of the plant output to zero, we use a deadbeat 

identification scheme coupled with a deadbeat control law, based on the current 

parameter estimate.

The Deadbeat Parameter Estimator:

ak+i = ak (Yk+i " akyk ” uk ) i yk  ̂ ^;k e N ( 4 . 3 . 3 . 1 )
yk

^k+i “ yk = 0;k t  N ( 4 . 3 . 3 . 2 )

The Deadbeat Control Law:

iii □

^kyki k e N ( 4 . 3 . 4 )

Combining equations (4.3.1)-(4.3.4) we obtain the closed loop description:

Vk = 1*k-1 yk-1 + byk-2 ( 4 . 3 . 5 )

a - ak

, yk- 2
yk-1  ̂ 0 ( 4 . 3 . 6 )*k = -b -------

yk-1

. *k- l Vk-i = 0

Eliminating the parameter error, ä"k = a - £k, the closed loop can be described 

as a function of the plant output yk only:

y k  -  -5
yk = - b 7^—  yk- i  + byk-2yk- 2

( 4 . 3 . 7 )

Introducing the ratio rk = yk/yk--n ° f  successive plant outputs, (4.3.5)-(4.3.6) 

can alternatively be represented as:

Alternative Description of Closed Loop:
1 1rk = b

r k -  1 r k -  2 

Link equations  

y k  = r k y k - T ;

k 6 N; b c R

&k = a + b 1
rk- i  ’

k e N 

k e N; a , b  e R

( 4 . 3 . 8 )

( 4 . 3 . 9 )

( 4 . 3 . 1 0 )
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This alternative description only makes sense if the event "division by zero" 
does not occur. In this situation every trajectory of (4.3.5)-(4.3.6) defines a 
unique trajectory of (4.3.8) via equation (4.3.9); conversely every trajectory of 
(4.3.8) defines a one parameter family of trajectories of (4.3.5), (4.3.6) via
equations (4.3.9) and (4.3.10). Indeed, given r 0,r 15 the trajectory ( r ^ r ^ r , ) ,  k e 

N} (r0(r0,r ,) = r 0, r ^ r ^ r , )  = r ,)  is uniquely defined, but {yk,k e N} is
only specified up to a scaling factor: 

k
yk = n r ß ( r 0, r , ) . y _ , ; k e N.

11=0
This simply reflects that the original system (4.3.5)-(4.3.6) has a state vector in 
R3; but because of the system’s specific structure it is sufficient to study (4.3.8) 
(with a state in R2) in order to capture the generic dynamics of the adaptive
system. It is not too difficult to analyse the behaviour of the trajectories for
which a "division by zero" could occur - however this does not add anything
fundamental to our knowledge of the system, and moreover this only gives us 
information about a two dimensional manifold of initial conditions in the state 
space of the original system. Therefore we do not pursue this here [2],
Remarks:
(R.4.1) The parameter estimator (4.3.3) can be seen as the limit of a
normalized least mean square algorithm or recursive least square algorithm with 
forgetting factor [3]:

Yk
^k+i = ^k + c+y£ (Vk+i ■ % yk ’ uk) ( 4 . 3. 11)

The parameter c (>0) is the inverse of the stepsize of the least mean square
algorithm. The deadbeat parameter estimate follows from (4.3.11) by letting the 
stepsize c~1 tend to infinity, or c to zero. □
(R.4.2) Notice that the design followed strictly the classical route of adaptive 
control algorithm design based on the certainty equivalence principle as outlined 

in Chapter 1, Section 1.2. Notice also that the implemented control algorithm is 

the much celebrated minimum variance controller. □
(R.4.3) The nonlinear dynamics of the complete closed loop system for this
particular adaptive control problem are made explicit in terms of the output of 
the plant only in equation (4.3.7) or equivalently in (4.3.8)-(4.3.9). Notice in

particular that it is impossible to linearize the adaptive response around
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{yk = 0,k e N} which is the desired trajectory. □
(R.4.4) The closed loop dynamics (4.3.7)-(4.3.8) are independent of the plant 
parameter a - the sum of the values of the open loop poles of the plant’s
transfer function. This is characteristic of the adaptive nature of the control 
algorithm. An adaptive algorithm eliminates the influence of part of the plant 
characteristics on the closed loop dynamics (cf. Remark (3.28)). In the previous 
chapter it was l / p 2 the d.c. gain of the plant which was irrelevant for the
closed loop dynamics. In terms of robustness this feature looks most promising, 
i.e. if the adaptive algorithm works, it works for both stable and unstable plants 
depending only on the parameter b. Although the closed loop dynamics are
independent of the parameter a, the signals within the loop, the parameter

estimate (£k) and the control signal (uk+1 = _^kyk)> do depend on it. Both 
feedback gain/parameter estimate and control action adapt to different values 
for different plants, i.e. the control scheme is really an adaptive control scheme 
and not merely a robust nonlinear controller. □
(R.4.5) Observe that provided the plant parameters are known, the plant can be 
stabilized by constant output feedback (4.3.4) iff |b | < 1. □

In the following sections we study the equation (4.3.8) in detail. By way of 
preliminary analysis we note that as a function of the parameter b we can at 
most distinguish three topologically different types of dynamical behaviour for 
equation (4.3.8). Indeed, rescaling as

v k rk / / 7 b 7 ; b * 0 (4 .3 .1 2 )

l e a d s  to

vk s i g n ( b ) J _
v k ■ i

___ 1_______'  .

Vk - 2J ’
k e N (4 .3 .1 3 )

So it is possible to consider three situations b < 0, b = 0, b > 0. That the 
topology for these three cases is indeed different follows from the observation 
that for b < 0 equation (4.3.14) has two periodic orbits of period two 
{72,-72,...} or {-72,72,...}, whilst for b = 0, the orbits are of the form 

{vQ,0,0...} and for b>0, there does not exist a two periodic solution, as can be 

easily verified.
In the sequel we discuss all three types of dynamical behaviour.
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4,4 The Closed Loop Dynamics I: b = 0

In this ideal situation, the dynamics are quite obvious, as one could expect 

from  the combination of a deadbeat identifier and deadbeat control law.

The closed loop reduces to:

P l a n t : y k  = a v k - i  + ; y - i Uk e N

I d e n t i f i e r : ^k = a; ( y - i * o) ; Uk > 0

C o n t r o l  law: Uk - T  = - a V k - i ; Uk > 1

H e n c e : y k  = o; Uk > 1

In the situation that y_1 = 0 ,  the identifier does not identify anything useful, 

but there is also no need to identify anything, as in this case y k = 0 Uk e N 

and £k s  a_, Uk e N ; hence the control objective is met.

In this situation the equation (4.3.8) governing the ratio of successive 

outputs is redundant, except to highlight a definitional problem with the 

deadbeat identifier when the deadbeat controller actually works. (Notice 

however, that it still captures the generic dynamics.)

Rem arks:

(R.4.6) The adaptive scheme has excellent robustness properties with respect 

to m ultiplicative noise and lesser robustness with respect to additive noise. We 

comment on these aspects in greater detail in Section 4.8. □

(R.4.7) We illustrate the tracking capabilities of this algorithm with the 

following example. Assume that the plant is a time varying, first order system 

which can be described as:

P l a n t : yk = a kyk _., + uk . 1 a k 6 R, k e N

The closed loop responds as:

I d e n t i f i e r : ä k = a k ( y . 1 * 0)  Uk > 0

C o n tro l Law: uk = - a k yk Uk > 0

C lo se d  Loop: yk = (a k - a k _1 )yk _} Uk > 0

Hence, exponentially fast regulation is obtained if iak -a k _ 1 i < 1 Uk! □
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4.5 The Closed Loop Dynamics II. b < 0 
In this section we study the equation

v* ■  ■  k , N

which describes the evolution of the normalized ratio of successive plant outputs 
in the case b < 0 (4.3.12)-(4.3.13). We demonstrate the existence of a "globally" 
attractive periodic orbit of period two, and investigate the consequence of this 
periodic behaviour for the closed adaptive loop via equations (4.3.9), (4.3.10) 
and (4.3.12).

Firstly, we introduce a simple time dependent scaling transformation, which 

maps the periodic orbits into two fixed points:

wk = ( - i ) k  k e N ( 4 . 5 . 2 )
n

The equation governing wk becomes:

1
wk = 2

1 1 + k 6 N
Wk-! Wk-2

Introduce the following state space representation; define the state as: 

wk

(4 . 5 . 3 )

wk-
k e N ( 4 .5 . 4 )

define the state transition map F as:

l r l  l

F
Vi ’

= 2 .Vi + y 2J

. y 2 . . y i
( 4 .5 . 5 )

the difference equation (4.5.3) can then be represented as

xk+i = F(xk ); x 0; k e N ( 4 .5 . 6 )

x 0 is the initial condition. This recursion is properly defined on the domain:

0 I y
( 4 .5 . 7 )

y 0 "
Dp = R2 \  U F"n

n>0

In precise terms we are interested in the dynamics of the continuously 

differentiable map F restricted to the domain Dp (F |Dp).
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The inverse map is given by:

' ' y 2 '

. y 2 . - y 2
! - 2 y , y 2 J

(4 .5 .8 )

In order to obtain a precise characterization of the dynamics of the state 
transition map F and therefore, via the link equations (4.3.9)-(4.3.10), of the 
adaptive control problem in the situation that b<0, it is necessary to describe 
Dp in detail. This requires us to study the inverse map F -1 more closely. 

Concisely we demonstrate that F-1 leaves the union of the second and fourth 
closed quadrants invariant. The origin is an attractor in this set; under the 
action of F~1 all trajectories converge to the origin. These properties allow us 
to describe Dp and to establish that under the action of F all trajectories, 
starting in Dp remain in the open second and fourth quadrant only for a finite 
number of interations, after which they remain in the open first and third 
quadrant. Using a Lyapunov argument we then demonstrate that all trajectories 
starting in the open first (third) quadrant converge to (1,1) (respectively 
(-1,-1)), which establishes the claim we made earlier, that all trajectories of 
(4.5.1) become asymptotically periodic.

4.5.1 Describing Dp
Dp is most easily characterized by investigating some basic properties of 

the family of curves {Cn, n e N):

cn = F 'n [{ ( y ] . ( o l  : y f R }] : n e N ( 4 -5 -9)

which has to be deleted from the phase plane to obtain Dp. Notice firstly that
it is easy to give [ Cn, n e N] the structure of a one dimensional manifold in
R2; and that it (therefore) has Lebesgue measure zero. The following result 

holds:
Lemma 4.1:
(i) the curves Cn are a subset of Q^UQCl.
(ii) the curves Cn shrink towards the origin as n increases:

c n -> { [q]} as  n t*

(iii) the curves Cn, n)3 are the boundaries of a sequence of compact sets,
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denoted by Sn, containing in their interior Cn+1. □

The proof of this Lemma relies on the following result which investigates the 
dynamics of F-1 on Q^UQ^l;

Lemma 4.2:

The union of the closed second and fourth quadrants (Q^UQ^l) is invariant 

under F_1, and is contained in the domain of attraction of the origin, i.e.

F ' n ( x )  0 as nToo Mx e Q^UQCl □

Proof of Lemma 4.2: From the definition of F“ 1, (4.5.10), it follows that F_1

is well defined on Q^UQ^l and that

F'MQCiuQS1) c qcI uqcI .  (4.5.10)

Defining on Q^UQCl, the following Lyapunov function:

V( x )  = Iy-I I + I y 21; x = (y, y 2)T

and evaluating V along an orbit {F~n(x)=xn; n e N} for an initial condition x 
in Q^UQCl, we obtain that

Y( F - ( n + i ) (x ))  - Y(F‘ n ( x ))

= I y 1 In+i + i y 2ln+i - I Vi In '  IV2ln

= - ^ i Y i y 2In- i  2 i y i y | I n  
1+2i y 1y 2i n - 1 ' 1+2i y i y 2in 

< 0 .

Equality can hold i f f

i Y i y 2 i n - i  = 0 and I y i y | I n  = 0

but as this implies that x^ = 0 kk ) n+1, we conclude that the origin is the 

unique fixed point of F-1 with a domain of attraction containing Q^UQ^l. □ 

Proof of Lemma 4.1: Parts (i) and (ii) are direct consequences of the Lemma

4.2. Part (iii) follows readily from the observation that

C2 = { ( " y l +2y2l T ’ y e R}

C3 = { [  l+ 2 y 2 l+ 4y 2 ] T ’ y e R}

C3 n C3 = { [ 8 ] }
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C 3 encloses a compact set in Q^UQCl (denoted by S3). Because F_1 is a 

homeomorphism on Q^UQCl, it follows the CnHCn+1 = £(0 0)T ] ^  f N and 

because F_1 contracts Q^UQ^l to the origin, Cn+1 must be contained in the 

compact set enclosed by Cn denoted by Sn (6(Sn)=Cn, Sn XTn+1). □

The previous lemmata allow us to partition the domain Dp as follows:

Do = Q3uQi

D> -  { ( y ; ) : y-y*  

D, = { [ £ ] :  y ,y 2

°3 = [ l l ' X -  y>y2

< o ,  | y 2 1 - \ y , \  > °}

(N

>>oV

- \ y , \  < 0 ,
<N

oV IVi I 
2y2 + l < 0

I Vi I a! 
ly 2 ‘ ' 2 y ,2+l > °]

} \  s 3

Dn+1 — in t (S n\S n+1); n ) 3.

By construction, Dp = U Dn, the boundaries of these sets being
n)0

Ö(D0 ) = C0
5(Dn ) = CnUCn_, n > 1 ( 4 . 5 . 11 )

One can easily verify that:
F(DnnQ2 ) = Dn . , HQ4

F(Dnn Q J  = Dn . , n Q 2 ( 4 . 5 . 1 2 )

F(Dn ) = Dn _!
F(D0) c D0

Summarising the expressions (4.5.12) we have:

Lemma 4,3:

For (Lebesgue) almost all initial conditions - excluding initial conditions 

on Dpc = UCn - the orbits are well defined. Initial conditions in D n will 

travel through the sets D^ 0<k<n, alternating between Q 2 and Q4, finally 

reaching D 0 = C^UQg and remain there. □

This lemma is illustrated in Figure 4.1, which displays some of the curves Cn 

(C0-C 4) regions Dn ( D 0- D 4) and an orbit starting in D 3flQ2, travelling through 

D 2nQ4, D 1flQ2, finally arriving in D onQ . (Notice that we have first applied 

H, cf. Section 4.2, (4.2.1)).
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Figure 4.1 Domain of Definition of F

0 .5 -

- 0 .5 -

- 1.0
- 0 . 5- 1. 0

Having established that the asymptotic dynamics are restricted to the first 
and third open quadrants in R2, we now turn to the analysis of F restricted to 
these open quadrant.

4.5.2 The Dynamics of F Restricted to Q, or Q3

Because of the symmetry, we limit ourselves to F restricted to Q r  
Clearly, F(Q1) c Q 1 and also F((l 1)T) = (1 1)T. The local stability properties 

of the fixed point (1 1)T are summarized in 
Lemma 4.4:
The fixed point (1 1)T is locally exponentially stable in the sense of
Lyapunov. □
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Proof: Directly from linearization of F in the neighbourhood of (1 1)^:

r i n#
- i roH

i 1 0
(4 .5 .13)

which is a stability matrix (its eigenvalues are less than one in modulus) with 
eigenvalues:

x -1 ± i l i
X1 , 2 ------------ 4 (4 .5 .14)

1̂ 1 , 2 I < 1 (4 .5 .15)
□

The global stability properties of the fixed point (1 1)^ are stated in:
Lemma 4.5:
For any initial condition x e Q 1? the orbit £Fn(x),neN] tends to (1 1)T. □ 

In the proof we make use of the following lemma:
Lemma 4.6:
For all strictly positive numbers cx,ß e R*", we have that:

max „ 1 1 
a ' ß ' u ' ß > max cx+ß 1 2o:ß'| 

a ’ 2Q'(3’a:’o:+/3j 1

min < min 2Cxß 1 cx+ß)
“ ’ä+jS’ä ’IäjsJ < 1

(4 .5 .16)

□

Proof of Lemma 4.6: Because of symmetry it is sufficient to look at the

situations a: > ß  > 1 and ß ~ 1 ) a  ) 1 and cT1 ) ß  > 1. In the first case

O' max p i n CX+ß 1 2 C xß ]
* ß ' a ' ß '

=  max a ’ 2 C x ß ’ CX* CX+ß'
1

-  =  min a = min 2 c x ß  1 c x + ß 1 
c x + ß ’ e x ’ 2a/3J

in the second case

1 r „ i n > max a+0 1 2 c x ß ]
ß  = max

a ' ß ' a ' ß . 01 '  2 c x ß ’>c x ' c x + ß

* 1 1 
a ' ß , cx’ ß < min 2 a ß  1 ot+ß 

a ’ cx+ ß’ ex’ 2cxß 1ß  =  min
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in the last case

1
a

a

max

min

a , ^ ’ a ’ ß .
= max cn-ß  1 2a ß ' |  

2a ' ß , a , Q,+ßJ

“ ’ ^ ’ ä ’ ß
= min 2 a ß  1 a + ß ’j

r ’ c H -ß ’ cx’ 2a ß J

> 1 

< 1

From this the lemma follows. □

Observe also that equality (in 4.5.16) can hold iff 

m ax(a ,^ )  = m a x ( a ,^ ,0 , ^ )

m in (a ,^ )  = min(of,^,|3,  ̂ )

Proof of Lemma 4.5: In the domain Q 15 we define the following "Lyapunov"

function

V(x) = m a x ( y , , y 2 , i -  — ) - l
y i y 2

x = (y,  y 2 )T € Q,

This function is positive definite:

V(x) > 0; x t Q, V((1 1 )T) = 0 

and radially unbounded:

1 im Y(x) = +oo

x^öCQ,)

Evaluated along an orbit (Fn(x) = xn , n e N}, x e Q, 

we obtain: (denote xk = (ylk  y 2k)T )

Y(xk+i )  " Y(xk) = max(yik+i  >V2k+i ’TTT- )yik+i y 2k+i

- max (y l k , y 2k, 1
y i k ’

i
y 2k

)

, y i k +y 2k 2y l k y 2k 1
= max (--------------, ------------ , y l k , ------

2y i k y 2k y i k + y 2k y i k

l
y i k ’

l
y 2k

)- max (y l k , y 2k>
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Hence, from the previous lemma we obtain: 

v (xk + i) - V(xk ) < 0 

with equality only holding if

raax(y,k , y2k, — , -± - )  = max (y ,k , — )
y 1k y 2 k y 1k

Consequently V(x^+1) - V(x^) = 0  iff y 2̂  = y ,k  = 1, this proves the result. □ 
Remark:

(R.4.8) It is possible to obtain good estimates for local (but not e-small) 
regions containing (1 1)T wherein F is a contraction in some norm. Because this 

does not add substantially to our knowledge about the dynamics of F, we do 
not pursue this result in the sequel, local exponentially stability will prove to be 
sufficient. □

We have now obtained all the necessary information to describe the global 
dynamics of the state transition map F and to characterize the adaptive response 
for the situation b < 0.

4.5.3 Global Dynamics - Consequences for the Adaptive System
Linking the previous lemmata, we obtain the following picture for the 

global dynamics of F on Dp.
Theorem 4.1:
(i) For any initial condition x 0 in Dp (= for Lebesgue almost all initial 

conditions in R2) the orbit (Fk(x0), k e N} (see equations (4.5.5), 
(4.5.6)) is well defined: there exist positive numbers m, M depending 
on x 0, such that

0 < m < | F^ ( x0)|  < M < oo, Mk e N

(ii) Any orbit converges to either (1 1)T or (-1 - 1 )T The domain of 

attraction A, of the fixed point (1 1)T is:

A, = (D0 n QJ U {(D2n_1 n Q4) U (D2n n Q2)} (4.5.17)
n> 1

The domain of attraction A_, of the fixed point (-1 -1)T is:
A., = (D0 n q3) U {(D2n_1 n Q2) U (D2n n QJ) (4.5.18)

n> 1

(iii) Locally at the fixed points the convergence is exponential. □
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This result has immediate consequences for the adaptive closed loop system. 
Recall that, the parameter estimate/feedback gain is given by (cf. equations 
(4.5.2), (4.5.1), (4.3.12), and the link equations (4.3.9), (4.3.10)) :

% a + Ib11i ( - l ) k - i
2 J wk-i

(4 .5.19)

and that the output of the plant yk is given by:

yk = ( - 1 )k 7 2 1bI wkyk _, (4 .5 .20)

From these expressions and the previous theorem we obtain:

Theorem 4,2:

For almost all initial conditions, except for a set of Lebesgue measure zero, 
and for all parameter values a, b < 0 the adaptive closed-loop system 
described by (4.3.8)-(4.3.10) produces a bounded parameter estimate 
feedback gain, which exponentially becomes periodic with period two:

8k a  ± ( -1 )k Ib 11 i
2 as  k T oo □

Proof: Follows directly from Theorem 4.1 and equation (4.5.19). □

Theorem 4,3:
For Lebesgue almost all initial conditions, and for all parameter values a, 
the adaptive closed loop system is stable for all b : 0 ) b > -£, in the 
sense that the state vector is bounded. Moreover for 0 > b > the output 
is regulated exponentially to zero:

yk ^  0 as  k t  oo 0 > b > -£

For b < the adaptive system is unstable, and yk diverges

exponentially. □

Proof: Because,

yk = ( - l ) k J2 |b |  wkyk _, (4 .5 .20)

and because |wk | converges exponentially to 1, we have that, for almost all 

initial conditions y 0,y_1,y_2:
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lYkl < , y . 2 ) (7 T |b T ) k (4 .5 .21)

where C is a positive constant, depending on the initial conditions, but 
bounded. From (4.5.21), the result is obvious. □
Remark:

(R.4.9) It is possible to give an explicit estimate for the rate of exponential 
convergence, and to prove that the convergence is more than "asymptotical" (see 

(R.4.8)). □
(R.4.10) Notice that it is possible to obtain both plant parameters a,b from
the observation of the sequence! Indeed, using the conclusion of Theorem 
4.2 it follows that:

i Nlira e Sij = a (4 .5 .22)
NToo k=l 

i N
lim i  e (fik - a ) 2 = b/2  (4 .5 .23)
NToo k=l

(The estimates converge to their limiting values as 1/N.) □
These results and their counterparts of the next section which treat the 

case b > 0, are commented upon in Section 7, because we prefer to discuss the 
implications of our findings when we have a more complete picture of the 
closed loop dynamics, described over the whole parameter range.

4.6 The Closed Loop Dynamics III: b > 0

In this section we present both analytical and numerical evidence for the 
presence of chaos in the equation:

_ J______ 1 
vk-i  vk-2

k e N (4 . 6 . 1 )

which describes the dynamics of the normalized ratios of the successive plant 

outputs (v^ = Yk/(b^yk-i)) situation b > 0, (see (4.3.12)-(4.3.13)) and
investigate what this implies for the closed loop adaptive system.

We use the following state space representation. Define the state vector as:

vk- i
(4 . 6 . 2 )
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and the state transition map as:

' y i  '
V i  ’  y 2

. y 2 . . y i

(4 .6 .3 )

the difference equation (4.6.1) can then be represented as

xk+i = G(xk ); x 0 k e N 

The recursion (4.6.4) is well defined on:

C M  " ’ ll
the recursion (4.6.4) can be inverted:

xk = G' ’ (><k+,) 

where G-1 is defined by:

Z 1 z 2
G '1 = z 2

z 2 [ l - z , z 2J

the backward recursion is well defined on the set 

D = R2\  U Gn [
z ' 
I , z eFt }

n>0 . [ z J J

(4 .6 .4 )

( 4 .6 .5 )

(4 .6 .6 )

We will describe the dynamics of (4.6.4) on the set D = D ^..nG 1 G
In precise terms we are interested in the dynamics on the two dimensional open 
set D of the map G : D -» D. On D, G is a diffeomorphism.

Remarks:

(R.4.11) The complement of D in R2, is a set of measure zero, because it is 
the union of a countable number of curves in R2. Dc is partly illustrated in 
Figure 4.2: Domain of Definition. The figure shows the collection of the first 
three curves G-n({(0 y)T» (y 0)T ; y e R }) n=0,l,2 which have to be deleted 

from R2. (We remind the reader about the compactification of R2 by the 
homeomorphism H (4.2.1)). □
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Figure 4.2 Domain of Definition

- 0 . 5

- 1 . 0
- 0 . 5- 1 . 0

In the sequel we demonstrate that the difference equation (4.6.1) displays 
chaos. These complicated dynamics are exhibited in Figures 4.3 and 4.4.
Figure 4.3 gives the time portrait of the v^-sequence, while Figure 4.4 contains 
the corresponding state space portrait. (Figure 4.3 contains only the first 500 
samples, while Figure 4.4 contains 40,000 samples.) (Notice the distortion of
the scale due to the application of the homeomorphism H (4.2.1).)
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Figure 4.3 Time Series {v ;̂ kcN}

Figure 4.4 Gumleaf Attractor {x^ = (v^ keN)
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Before proceeding, we list here one of the possible definitions of chaotic 
dynamics. We refer to [1,4] for more information.
Definition 4.1:

The difference equation (4.6.4) is chaotic if there exists an invariant set S 
c R2 (G(S) c S) containing sets P, A, and A 2 with the properties:

(i) (4.6.4) has a countably infinite number of periodic solutions with all
periods above a certain integer; P is the collection of all the points 
visited by these trajectories

(ii) (4.6.4) has an uncountably infinite number of aperiodic solutions
which never become asymptotically periodic; A 1 is the collection of
all the points visited by these trajectories
Mu0eP, tty^A , : lim sup llGk (u 0) - Gk (y 0)ll > 0 

kToo

( i i i )  3e>0 : u 0*y0 : lim sup llGk (u Q ) -Gk (y0 ) I I  >  e
kToo

(all aperiodic orbits separate)
(iv) A, contains an uncountable subset A 2 such that 

Uu0,y 0eA2 : lim in f  llGk (u0) - Gk (y0)ll = 0
kToo

Remarks:
(R.4.12) Observe that the definition of chaos is rather academic. Any finite 
wordlength implementation of a difference equation - even if this difference 
equation is chaotic - has a finite state space and hence cannot be chaotic in 
the sense of Definition 4.1. The practical importance however is that whenever 
an algorithm has chaos according to Definition 4.1, its output from any 
reasonable implementation will demonstrate an effective unpredictability of 
future behaviour without infinite precision knowledge of the present state. In 
this way it may closely resemble a random process. □

Properties (iii) and (iv) express an extreme sensitivity of the trajectories of 
(4.6.4) to changes in initial conditions. Trajectories (belonging to A 2) merge and 
separate consecutively and continuously in time; coming closer to each other but 
then being forced to separate to at least a distance e from each other. The 

phenomenon is easily understood when the only finite orbits of the difference 
equation are of saddle type - i.e. have one dimensional stable and unstable 
manifolds, and when their manifolds form a dense web. Close to stable 

manifolds trajectories are attracted to each other, whilst along the unstable
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manifolds they are separated. This observation is really the key to an intuitive 
understanding of the complete dynamical behaviour of the present closed loop 
adaptive system. We will expand upon this idea, but first we demonstrate the 
presence of chaos.

The approach is standard for the analysis of any particular dynamical 
system. First we search for fixed points and periodic orbits and investigate 
their local stability properties. Having convinced ourselves that there are 
apparently a countably infinite number of periodic orbits, we look for the 
presence of a homoclinic orbit which would explain their presence. A 
transversal homoclinic orbit also indicates the presence of chaotic dynamics as 
defined above. Finally we try to understand in intuitively appealing terms what 
chaos means in this context and discuss some of its implications for the 
underlying adaptive control problem.

4.6.1 Fixed Points, Periodic Orbits, Local Stability Properties
The first result lists some of the more elementary properties of the 

trajectory {v^, k e N} as generated by (4.6.1).
Lemma 4.7:
For any initial condition (v0,v ,) the trajectory of (4.6.1) {v^(v0,v A), k e N)

(v o(v o’v i) = vo anci v i(v o’v i) = v i) has the properties:

(i) vk(-vo>-v i) = ~vk(vcPv i)
(ii) alternating sign patterns cannot occur; precisely if vj<>0 and v^+1<0 

then v^+2<0, or if v^cO and v^+1>0, then vjc+2>0.
(iii) the sequence either terminates (i.e. 3k*: v^* = 0) or has indefinitely

many sign changes. □

Proof: (i) and (ii) are immediately clear form (4.6.1). For (iii) suppose that
s|e 3|e j|c 3|e

for the initial condition (v 0,v ,) along the trajectory v^(v 0,v ,) > 0 ^k. 
Using (4.6.1) it follows that vjc(v*0,v*1) is a strictly decreasing sequence 

bounded below by zero, hence converges. But it is clear from (4.6.1) that there 
does not exist a fixed point. Hence the assumption was invalid, which 

demonstrates the result. □
Searching for fixed points and periodic orbits requires solving G^(x) = x, 

p e N0, or alternatively solving a set of algebraic equations (derived from 

(4.6.1)):
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1 1
V1 -

VP VP

1 1
V 2 V1 VP

vk =
1

Vk-1 vk-
3,  . . . ,p

( 4 . 6 . 7 . 1  )

( 4 . 6 . 7 . 2 )

( 4 . 6 . 7 . 3 )

From a careful examination of sign patterns of potential fixed points and

Lemma 4.7 it follows that 

There is a unique orbit of 

solving (4.6.7) with p = 4:

G^(x) = x has no 

period four, which

real solutions for 0 < p < 4. 

can be found analytically by

X 11

to
"

+ K>1

, X 2 =
- I 2 -  n '

, x 3 =
- 1 2 + n  •

1 kP
"

1 hoi - l i  +  n h - n
Ji - n  i 

h +  n
( 4 . 6 . 8 )

Xj i=l,...,4 are the fixed points of G 4. Numerically, we verified the existence of 
periodic orbits for periods up to 55, by solving the set of algebraic equations 

(4.6.7). Despite the apparent symmetry, we were not able to prove analytically 

that there indeed exist periodic orbits of all periods greater than four.

Through linearization, we analysed the local stability properties of these 

periodic orbits. We verified numerically that all periodic orbits we established 

(up to period 55) are of saddle type, i.e. they possess a one dimensional stable 

and a one dimensional unstable manifold. In particular, for the periodic orbit of 

period four; we have that the Jacobian of G 4 at x , (which determines the local 

stability properties) is given by

DG4(X l )
2

2 -  12

3 + i n  1 
2

2 + 12
( 4 . 6 . 9 )

5 + fYT
> 1Xu (DG4 (X i )) 4

( 4 . 6 . 1 0 . 1 )
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Xs (DG«(X l)) 5 - m  r  < i

Locally, at x , , the stable manifold is tangent to:

£ s
-0.043115 ’ 

-0.999070

(4 .6 .1 0 .2 )

the eigenvector of DG4(x1) corresponding to Xs; and the unstable manifold is 
tangent to:

0.758652 ' 

-0.651497

the eigenvector of G 4(x1) corresponding to Xu.

4.6.2 A Horseshoe in an Iteration of G

The global stable and global unstable manifold are defined respectively as 
the union of all backward iterations of the local stable manifold and as the 
union of all forward iterations of the local unstable manifold [1] (see also
Chapter 3, Section 3.3). Because the stable manifold is attractive under the
inverse map, and the unstable manifold is attractive under the forward map, 
these manifolds can be computed in a numerically stable way, using the
definition to construct them.

In this way we constructed partially the stable and unstable manifolds of 
the fixed point x, of G 4. (This is also part of the stable and unstable manifold 
of the periodic orbit of period 4 of G.) We iterated backwards, under G “ 4, 
three neighbourhoods S_1t S0, S,; intervals on three parallel straight lines
oriented along the stable eigenvector £s, S0 centred on x ,,  S_, and S, centred

respectively on x, - ^s, x, + ^s. Analogously, we iterated forwards, under G 4,
three neighbourhoods L L p U ^ U ,, intervals on three straight lines oriented along 
the unstable eigenvector £u, U 0 centred on x 1 and U_ lt U,  centred 
respectively on x 1 - ^u, x 1 + ^u. (See Figure 4.5.1 for the precise 
configuration. Figure 4.5.1 displays a neighbourhood of the fixed point x, 

enclosed by S_,, S+1, U_, and U+1). We find that the curves

GSj = G ' ^ S f S i )  i = -1 ,0 ,1
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GUj = G4nU(Uj)  j = -1 ,0 ,1

intersect each other, for ns and nu sufficiently large, transversally in "new" 
points, called homoclinic points. (See Figure 4.5.2 for precise configuration, the 
transversal intersections are denoted by HP. Notice in particular that the 
separate curves GSj are indistinguishable as are the curves GUj. This illustrates 
the fact that the described method for constructing the manifolds is 
(numerically) stable. In view of this fact, and in view of the continuity 
properties of G and because "transversal intersection" is a property which 

persists under slight perturbations, i.e. is structurally stable, we conclude that 
the stable and unstable manifolds of the periodic orbit of period four intersect 
transversally in a homoclinic point. With the existence of a homoclinic point 
established, the Smale-Birkhoff Homoclinic Theorem (Guckenheimer and Holmes, 
section 5.3, [1]) asserts that:

Theorem 4.4:
There exists a zero dimensional hyperbolic invariant set on which an 
iteration of G 4 is topologically equivalent to a subshift of finite type.

□

Remarks:
(R.4.13) Decoded, this Theorem states that the difference equation

zk+i = G^(zk) chaotic in the sense of Definition 4.1, where 11 is a multiple 
of 4. The chaotic dynamics established by the Smale-Birkhoff Homoclinic 
Theorem are of the horseshoe-type. (The Smale horseshoe is the prototype 
example for chaotic dynamics, for a discussion see e.g. [1] section 5.1. The 
horseshoe map was originally defined by Smale in terms of stretching and 
bending of an area in R2 [5]). ) Notice that at best {v^, keN) is a collection 

of 11 interleaved chaotic processes. □
(R.4.14) It is clear from the presence of the asymptotic lines in the manifolds, 
Figure 4.5.2 that arbitrarily close to the fixed point x 1 there are points 
belonging to Dc, i.e. for which not all iterations of G or its inverse are 

defined.
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Figure 4.5.1 Neighbourhood of the Fixed Point x , : Local Manifolds
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More precisely, for any given e-neighbourhood of x ,, there exist points 
x e Dc, belonging to this neighbourhood for which there exist positive integers 
n 1# n 2 depending on e:

x , - n .
0- y 1 1

* , y  € R

. y . 0 .
.

□

(R.4.15) In the construction of the horseshoe, using the Smale-Birkhoff 
Homoclinic Theorem, it is clear that the local area around the fixed point is 
stretched to infinity under the action of G before it is bent over itself. Hence 
the divergence (convergence) along the unstable manifold under the action of G 
(of G -1) or along the stable manifold under the action of G " 1 (of G) must be 
faster than exponential. Only "locally" at x ,, do points separate (converge) 
exponentially. The phenomenon is of course due to the highly nonlinear 
features of the map G, and its peculiar behaviour at infinity. □
(R.4.16) In a similar manner, we can proceed for the other periodic orbits 
(period > 4). The results are the same, yielding more horseshoes for different 
iterations of G. Such a procedure cannot convince us of the chaotic nature (in 
the sense of Definition 4.1) of G itself as there is no stopping rule. Therefore 
it seems pointless to pursue this. □

4.6.3 A Period Doubling Route to Chaos in G
Having established the existence of chaotic behaviour in some iterations of 

G, and noting the symmetry of the problem and the importance of the 
behaviour at infinity, it is not hard to believe that G itself must be chaotic (cf. 
(R.4.13). In this section we strengthen this by looking at the bifurcation diagram 
(cf. Chapter 3, Setions 3.3 and 3.7) for the one parameter family of maps:

yi y2yi _ c + y ,2 c+y2 2

. y2 . yi
c > 0 (4 .6 .11)

On D, Gc converges pointwise to G as c approaches zero from above:
G = lim Gc ID (4 .6 .12)

ciO
Some easily established results are:

(i) The origin is a fixed point kfe > 0, which is globally attractive
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(H)

fore > 1 and a locally unstable node for all c < 1. 
For c < 1 there is an orbit of period six

( 4 . 6 . 1 3 )

a- =  n -  c

which locally is exponentially stable for all c: 0.40775 < c < 1, and 
is unstable for all c:0 < c < 0.40774. (The correct boundary value is 
the zero of:

(iii)

(6c2- 7c+3) + ( 8 c 2-1 l c +4 ) + 1
c c 2

For c < 0.25 there is a four periodic orbit,

° ]

a '

ß.

- ß} -or

-ß.
( 4 . 6 . 14)

- a

which is initially, c close to 0.25, locally exponentially stable; then 
bifurcates into a saddle periodic orbit, forming two asymmetric stable 
periodic orbits of period four. This (symmetric) orbit converges to the 
periodic orbit of period four of G.

Figure 4.6 gives the numerically established bifurcation diagram. 
Horizontally, the bifurcation parameter c is represented and vertically the 
oMirnit set of stable periodic orbits is represented by the first co-ordinate of 
the state (e.g. the six periodic orbit is represented as {a, 0, -a,  -a , 0, a}). This 
bifurcation diagram indicates the period doubling route to chaos (cf. section 6.8 

in [1]).
Notice that a symmetric periodic orbit first bifurcates into two stable 

asymmetric periodic orbits of the same period (symmetry breaking bifurcation), 
then for a smaller value of the parameter these asymmetric periodic orbits 
undergo a period doubling bifurcation. For small c values, after a series of 

period doubling bifurcations, finally chaos emerges. (This information is not 
obtainable from the picture in Figure 4.6, due to the projection of the state 

onto its first co-ordinate; but is apparent from the way these bifurcations have 

to operate [1] and from the simulations.)
The diagram is obtained by running the difference equation for consecutive
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values of c, detecting periodic behaviour and then plotting out the o>-limit set 
for that value of the parameter. This is repeated for different initial conditions 
in order to obtain the two copies of every asymmetrical periodic orbit. (Because 
of the symmetry of the equation it suffices to take an initial condition out of 
the first and third quadrant in order to obtain the whole picture.) (Notice that 
the vertical axis is transformed into the interval (-1,1) as in the other figures.)

The diagram in Figure 4.6.1 contains the information for 1000 c-values. the 
only easily recognisable bifurcations are the bifurcations involving the orbits of 
period six and four. If we used a finer resolution in c, and magnified the scale 
of both axes, the now dark patches would show similar bifurcations (symmetry 

breaking followed by period doubling) of periodic orbits of periods five, seven, 
eleven ... (e.g. Figure 4.6.2).
Remarks:
(R.4.17) Although the family Gc does not depend continuously on c at c=0, 
(which can best be seen from the fact that the symmetric six periodic orbit 
cannot exist for c=0, at least not with finite amplitude) we believe that this 
period doubling sequence indeed indicates that G is chaotic. It does provide 
substantial evidence for the earlier observation that all periodic orbits are 
unstable! □

Figure 4.6.1 Bifurcation Diagram

PD period doubl i ng ,  SB symmetry breaking  
HB Hopf b i f u r c a t i o n

i  

0 

0

A o 
m
P 0 
1
i « 
t
u "c 
d

1 'o.o 0.1 o . a  u .J  «•** ----

S t e p s i z e  (c)



4. Stabilizing Nonlinear Dynamics in Adaptive Control 137

Figure 4.6.2 Bifurcation Diagram

4.6.4 "Cycle Slipping"

Analysing the time sequence {vk, k 6 N} (as defined by 4.6.1) one observes 
that it consists of certain segments of apparent almost periodic behaviour, 
separated by a short transition characterized by large deviations. (See Figure
4.3, which displays a sample of the time sequence of {vk, k e N}.)

Assuming that all periodic orbits are either of saddle type (or completely 
unstable), of which we are strongly convinced in the light of the previous 
observations, this phenomenon becomes easy to understand. Orbits "close" to a 
stable manifold belonging to a certain periodic orbit approach this periodic 
orbit, hence approach the unstable manifold of this periodic orbit and are 
consequently repelled away from it, to be captured by a stable manifold 
belonging to another periodic orbit. This whole cycle keeps repeating itself.

This intuitive picture, "cycle slipping", gives us the impression that the 
union of all the unstable manifolds of the periodic orbits of saddle type might 
be a one dimensional strange attractor.
Remark:

(R.4.18) In principle it would be possible that there are strictly stable periodic
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orbits, with such a small basin of attraction that they are unobservable from a 
computer simulation. However, we have never established such orbits, and also 
the period doubling sequence seems to exclude this possibility - although, this is
not analytically established. In any practical situation, the effect such orbits
could have on the control objective is nil. □

4.6.5 The "Gumleaf Attractor"
So far we have established chaos (in the sense of Definition 4.1) using the 

Smale-Birkhoff Homoclinic Theorem. This Theorem leads to chaos of the
horseshoe type. The invariant set established by this Theorem is typically a 
Cantor set x Cantor set; which need not be attractive. Its domain of attraction 

(due to the hyperbolicity of the unstable periodic orbits contained in the
invariant set) is typically a Cantor set x curve, and therefore this type of chaos 
is called transient - it essentially dies out. In order to address the stability 
question for the underlying adaptive problem we need to characterize the 
asymptotic dynamics, because it is precisely the asymptotic behaviour (of a 
generic orbit) which determines the stability properties of the adaptive control 
problem. What kind of dynamics govern the asymptotic behaviour of (4.6.1) or 
(4.6.4)? In view of the above facts, especially that all periodic orbits are 
unstable, we are convinced that chaos is generically present and governs both 
the transient and the asymptotic dynamics. (In the absense of any stable 
(attracting) periodic orbit, it is quite obvious that almost all trajectories are 
doomed to wander aperiodically around in the state space for ever.)

The Figure 4.4 represents the orbit for a "typical" initial condition in the 

phase plane. It consists of 40 000 iterations. Comparing the "curves" traced by 
this orbit with the unstable manifold of the periodic orbit of period four, we
find that they are virtually identical. Therefore combining, all previous

observations, we conjecture:

Conjecture 4.1:
The union of all unstable manifolds of the periodic orbits of saddle type

form a one dimensional hyperbolic strange attractor, denoted by S. □

Discussion:
It is clear that the union of all the unstable manifolds of the periodic
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orbits of saddle type is a one dimensional set, which is attracting. Moreover, if 
it is an attractor it is a strange attractor because it contains several transversal 
homoclinic orbits - and the corresponding horseshoes. The conjecture would be 
proven if all periodic orbits were of saddle type having transversally intersecting 
stable and unstable manifolds. The closure of the stable manifolds of the 
periodic orbits would then form the basin of attraction for this attractor, as 

well as the foliation of stable manifolds of this attractor. All numerical, and 
previous analytical evidence points this way. (An important fact to note is that 
it appears as if the unstable manifold of the periodic orbit of period four is 
dense in this attractor. This is a property of an hyperbolic, connected attractor.)
It even appears as if the whole of D, the open manifold on which G is 
defined, forms the basin of attraction of this attractor. □

Asymptotically the trajectories are in the strange attractor. It is therefore 
necessary to be able to describe the behaviour on this invariant set in some 
manner in order to discuss the stability of the underlying adaptive control 
problem. (We remind the reader that the plant output is related to the product 
of the vk’s, via (4.3.9) and (4.3.12)). The "averaged behaviour" on the invariant 
set can be characterized using concepts familiar from stochastic process theory.

A Theorem of Sinai-Bowen-Ruelle [1,6,7] states that for a diffeomorphism 
F defined on a compact manifold possessing a hyperbolic strange attractor S 
there exists a measure /*, invariant with respect to the diffeomorphism, 
supported on the hyperbolic attractor, such that for all initial conditions x in 
the basin of attraction of the attractor, and for all real valued continuous 
functions g the c£saro-mean evaluated along the orbit generated by x exists and 
converges to the ensemble average of g over the attractor:

lim i  E g(Fk (x )) = /  gd \i (4 .6 .15)
NT«. N k = i s

In other terms F is ergodic. We conjecture that this result also holds in the 

present situation.

Conjecture 4.2:

G is ergodic. □

The technical difficulties - apart from those encountered for the previous
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conjecture, stem from the fact that it is not clear whether G can be extended 
to a diffeomorphism G 1 defined on a compact manifold D 1 containing D as a 
sub-manifold. If this were possible, then this conjecture follows from the 
previous one by the quoted theorem of Sinai, Bowen and Ruelle. A direct
proof, using the definition of G, could be envisaged, but was beyond our 
capabilities (so far it escapes us).

Notice that the "cycle slipping" idea, strongly suggests that the c^saro-mean 
of continuous functions evaluated along typical orbits should exist and be 

independent of the particular orbit. Indeed trajectories spend most of their time 
in the neighbourhood of periodic orbits. Clearly, on the periodic orbits the 
c£saro-mean is well defined. The invariant measure would then simply attribute 
different weights to different periodic orbits according to the relative amount of 
time spent by a typical orbit in their neighbourhood.

4.6.6 Implications for the closed loop adaptive system

Firstly, because of (4.3.10), (4.3.11) it is clear that the parameter estimate 
feedback gain behaves chaotically. What does a chaotic feedback gain imply for 
the stability of the closed loop?

Recall that

yk = Tb vk yk _, (4 .6 .16)

(see equations (4.3.9) and (4.3.10)). Hence, we are interested in the products of 
"chaotic" signals:

k
yk = ( n v ö) ( ^b)ky 0 (4 .6 .17)

fl=l

Using the ergodicity property, we can immediately investigate the c^saro-mean 

of the logarithm of the absolute values of the vk’s; evaluating this numerically 
we obtain:

1 N 1lim j-j ü log |vk | ^  -  log 2 (4 .6 .18)
NToo k=l

Remark:

(R.4.19) We have exhaustively evaluated (4.6.18) for different initial conditions 
and for different sample sizes. For sufficiently large N, N > 10,000 appears
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adequate, the same value (log 2)/2 was obtained in a "statistically" consistent 
way. This observation strongly supports the ergodicity property. □
(R.4.20) The result (4.6.18) yields yet another confirmation of the fact that
the dynamics of the difference equation (4.6.1) are hyperbolic. Notice that

N

DGn (x ) = n DG(xk ) 
k = l

where x, = x, xk = G^_1(x), k = 1,...,N. By definition of the state and the 

state transition map (cf. (4.6.2) and (4.6.3)), we have that 

detDG(xk ) = (1/v k _ t) 2

with

xk = (vk vk-1 )T (4.6.2)

Hence, from (4.6.18) we obtain that

lim d e t (DGn (x ))2 n = 1.
NToo

This demonstrates that the map G is on average area contracting, and therefore 
the asymptotic dynamics are restricted to, at most, a one dimensional set. It 
follows also that almost any orbit is either locally completely stable or is of 
saddle type. (Cf. [8] for more details about the implications of this type of 
result for the map G.) □
Consequently, from (4.6.18)

lim ^  log |y N| s: ^  log 2b (4 .6 .19)
NToo

We conclude therefore that yk converges exponentially to zero for all 
b : 0 < b < £, in the sense that, for (Lebesgue) almost all initial conditions, 

there exists a constant a  > 1, independent of the initial conditions such that:

^ l Y k l  0 as  k to o  (4 .6 .20)

and diverges exponentially for all b > £, in the sense that there exists a 

constant ß < 1, such that for almost all initial conditions:

ßk \ y k \ -> +oo a s  kToo
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a, ß only depend on b;

1 < of < —------ ; 0 < b < £
(2b) i

(4 .6 .2 1 )
- ! -----  < (3 < 1; i  < b
(2b) i

Remarks:

(R.4.21) The present definition of exponential convergence is different from 
the classical definition, however it is frequently used in the context of 

stochastic processes [9]. Notice in particular that (4.6.20) does not imply the 
existence of a (uniform in the initial conditions) exponentially decaying 
overbound for |yk |. □
(R.4.22) The adaptive feedback gain £k given by

ak = a + (4 .6 .2 2 )
vk

(see equations (4.3.10) and (4.3.12)) behaves in a chaotic fashion because vk 
does, hence does not yield directly any information about the system’s 
parameters. However, observing that:

N I ak - a I
lim j-j e log (----------- ) = 0 (4 .6 .2 3 )
NToo k=l (b /2 ) i

(which follows from (4.6.21) and (4.6.18)) one could envisage a statistical test to 
extract both plant parameters a and b from the observed vk or £k sequences. 
Using the assumption that G is ergodic, this would lead to estimates for a and 
b as obtained in the periodic case (cf. (4.5.22), (4.5.23)). □

4.7 The Adaptive Control Problem: Discussion

In this section we return to the adaptive closed loop, described in Section 
4.3 and state the main robustness results, summarising the previous sections 4.4, 

4.5 and 4.6. The obtained results are discussed and interpreted in the light of 

the available theories for establishing robustness of adaptive schemes. In 

particular we argue that chaotic parameter estimates are not necessarily a bad 
thing to have. We illustrate our discussion at the end of this section with some
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simulation examples.
We collect first our main observations about the dynamics of this particular 

adaptive control problem in the following two Corollaries. The first result 
describes the behaviour of the parameter estimate:

Corollary 4.1:

For all initial conditions, except possibly for a set of Lebesgue measure zero, 
the parameter estimate ak, k  e N, defined in (4.3.3)-(4.3.10) has the properties:

(i) if b<0, the parameter estimate is bounded, and exponentially becomes 
periodic with period 2:

ak a + ( ± ) ( - l ) k ( i ^ i ) i  as  k to o  ( 4 . 7 . 1 )

(ii) if b=0, then a k^a Mk>2

(iii) (subject to the veracity of the Conjectures 4.1 and 4.2): if b>0, a k
behaves chaotically, and along almost all trajectories the cesaro-mean 
of the logarithm of <fk = a-ak is defined and is given by:

. N
lim ^ E log IagI = ?  lo g i^ i ,  b * 0 ( 4 . 7 . 2 )
NToo C =  1 z  □

Notice that these results are valid independent of the size of b. Observe
also that in the case that £k behaves chaotically, one does not have a
boundedness result, on the contrary, almost certainly ak will exceed any given
bound (!), however, as we shall argue, this is not dramatic, not even bad since
the control signal and the plant output are bounded.

The robustness result, which gives a sharp stability-instability boundary in
the (a,b) parameter plane is:

Corollary 4.2:
For all initial conditions, except for a set of Lebesgue measure zero, and
conditioned on the veracity of the Conjectures 4.1 and 4.2, the plant output yk

defined in (4.3.1)—(4.3.3) or (4.3.4) is:
(i) bounded and regulated to zero if | b|<£

(ii) the rate of convergence is exponential, in the sense that

fo r  b < 0 | yk | < C ( 2 | b | ) k / 2 (some C > 0)
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for  b > 0 --------- ------- > C as k t o o  (some C > 0)
(2b)k/ 2

fo r  b = 0 = 0 y  k ) 2

(iii) unbounded and diverges exponentially if |b |>£ . □
Remarks:

(R.4.23) Observe that this algorithm achieves exponentially fast regulation (in 
an appropriate sense) of the output in the presence of model-errors, without 
using - obviously - an external input. This demonstrates that there are 
alternatives to obtain robust adaptive schemes, other than forcing exponentially 
fast identification by the use of an external sufficiently exciting input. □
(R.4.24) Here we have another example of an adaptive scheme which regulates 

the plant output to zero - i.e. achieves its desired purpose - whilst the 
parameter error does not converge. Actually, because of the undermodelling it 
would be rather surprising if the parameter error did converge to zero. Notice 
however that this "non-convergence" limits the robustness margin of the adaptive 
loop. Indeed, if it were possible to estimate a correctly, then the proposed 
controller would regulate the output to zero for all | b | <1. □
(R.4.25) Notice that the model by no means needs to be a good approximation 
for the real plant. Even in the situation b^O, a=0, where the first order model 
does not make any sense at all, good control action is obtained. This is clearly 
an advantage of the fast adaptive loop, which slow adaptation never can 
obtain. □
(R.4.26) Averaging techniques in adaptive control are able to handle slow 
adaptation and fast parasitic plant states for model errors. Simplified, the 
theory states that as long as the adaptive algorithm together with the dominant 

slow part of the plant is slow compared to the parasitic states - even after 
closing the adaptive loop, all is well provided that the parameter estimates in 
the adaptive loop are close to the real parameters. The theory is conditioned 
on the assumption that the controller indeed can stabilize the closed loop system 
(including the parasitic part) for parameters belonging to some set containing the 
real parameter (cf.[ 10]). These ideas don’t work in this environment - as the 
adaptive observer and control law have deadbeat response in the ideal 
circumstances. But, averaging can still teach us something. Indeed, assuming 

that the time-average of the parameter estimate a^ exists i.e.
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N+fi-1
( 4 . 7 . 3 )

it is possible to obtain an "averaged" equation which has the same stability 
properties as the original system:

As indicated in section 6, the assumption "the time average exists" is a non 
trivial one, which we have been able to remove in our analysis.

In order to be able to answer the stability question of the non-linear loop 
through analysis of (4.7.4) it is necessary to require that b is small. It is
possible to obtain estimates for how small b has to be, typically |b | «  1, 
which has to be compared with the correct robustness margin of |b | < £. The 
philosophy behind this kind of averaging is precisely the opposite of the one 
discussed in Chapters 2 and 3, (cf. also [10,11,12,13]); it is not the state of the 
fast part of the plant which is averaged out, but the fast adaptive estimate 
which is averaged by the plant! Why these results no not available in the
literature is precisely due to the difficulties encountered in establishing the
existence of time averages for the parameter estimate - caused by the complex 
dynamics of these estimates. O

(R.4.27) It is impossible by using a constant output or state feedback to
stabilize the class of "uncertain" systems:

yk = ayk-, + byk-2 + uk->

with constant parameters a and b, which are unknown, but satisfy the following 
bounds:

Ia-a, I  < a 0 , a 0 > \ , a 1 a rb i tra r y

I b | < i

(a0, a, are given constants). Notice that for a control input defined by 

uk - .  = f iyk-i  + f 2Yk-2

where f 1s f 2 are the gains of the contoller, there is not a single gain setting 
which can stabilize all systems in the above class. This demonstrates that the 
adaptive controller is, in a sense, superior to a more complicated controller 

based on fixed gain design for uncertain systems. □

yk = <äk> yk _, + byk _ 2 ( 4 . 7 . 4 )
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(R.4.28) For b<0, the periodic feedback gain situation, the stability is in the 
sense of Lyapunov, however for b>0, chaotic feedback gain, this is not the 
case! The present technique (via ergodicity and cesaro-mean convergence) is 
closely related to techniques used to establish asymptotic properties of products 
of sequences of (ergodic) stochastic matrices [8,14]. Nothing too surprising, as 
deterministic chaos seems to have a lot in common with random processes 
[ 1,6 ,7 ,8]. □

(R.4.29) The problem of a possible division by zero in the parameter estimator 
does not cause any great difficulty. The only trace of this problem in the 
Theorem statements is the qualifier "except for a set of Lebesgue measure zero". 
Hence our analysis captures the generic properties of the adaptive scheme. Note 
that this is common practice in the discussion of the adaptive system in a 
stochastic context, where results are only almost surely (at their best) valid. See 
for example [3,15] - and the references mentioned therein where the event of a 
division by zero is treated and disposed of by noting that it is an event of zero 
probability - much in the same style as our analysis. Moreover, the qualifier 
’for Lebesgue almost all initial conditions’ appears to be a product of our 
methods. Our analyis does not deal with those initial conditions for which a 
division-by-zero events occurs. From a further analysis we suspect that the 
control algorithm as introduced in section 4.3 regulates the output to zero for 
all initial conditions provided that |b | < 0.5. □
(R.4.30) In both cases b>0 and b<0, the adaptive response is extremely 
sensitive to small changes in the initial conditions (at least for part of R3). 

This fact is accentuated here due to the discontinuity in the equation (4.3.8) 
describing the evolution of the ratio of two successive outputs. In the chaotic 
case b>0, this is obvious and the sensitivity is uniform over the state space, i.e. 
for any initial condition ( y 0,y_1,y_2) there is an initial condition arbitrarily 
close which has a completely different (transient) response. Also in the periodic 
case this phenomenon can be observed, but only for initial conditions 

(y0, y - i , y - 2) which yield a trajectory {y^, k e N} which terminates, i.e. y^ = 0 
for some k. (Cf. the discusison of the transient behaviour of trajectories {w^, 
k e N} in Lemma 4.3.) This implies that the transient analysis is extremely 
difficult in the presence of undermodelling errors, and although effectively 

completed in our analysis, there seems litle hope that we will be able to repeat 

this analysis in more general situations. □
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Some Examples:
Figures 4.7, 4.8 and 4.9 illustrate the adaptive loop’s response. 

Figure 4.7 Periodic Stabilization a = 2, b = -0.3333 
Figure 4.7.1 Output and Control Input

20 30Time Index

Figure 4,7.2 Feedback Gain/Parameter Estimate

o 2  —

20 30Time Index
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Figure 4.8 Chaotic Stabilization a = 2. b = 0.3333 
Figure 4.8.1 Output and Control Input
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Time Index

Figure 4.8.2 Feedback Gain/Parameter Estimate
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Figure 4.9 Unstable Response a = 0. b = -0.8 
Figure 4.9.1 Output and Control Input
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Time Index

Figure 4.9.2 Feedback Gain/Parameter Estimate
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Figures 4.7.1 and 4.7.2 contain respectively the trajectories of the plant 
output y^, the control action u^ = -a^y^, and the parameter estimate/feedback 
gain a^ for the open loop unstable plant with parameters a = 2, b = -.3333. 
The plant output is quickly regulated to zero, whilst the controller gain behaves 
asymptotically periodically. Figures 4.8.1 and 4.8.2 display respectively the same 
trajectories for the open loop unstable plant with parameters a = 2 and 
b = +.3333. Again the output is regulated to zero, and also the control action 
disappears quickly, but the controller gain behaves quite erratically. (For both 
simulations the initial conditions were y_2 = 1.5, y_, = -.5, a 0 = 0.) Figure 
4.9 illustrates an unstable response. The plant parameters are a = 0, b = -0.8, 
which characterizes an open loop stable plant. The plant parameter 
estimate/feedback gain is periodic (Figure 4.9.2) but input and output diverge 
exponentially. Notice the different time scales on the horizontal axes in Figures 
4.8 and 4.9. The feedback gain/parameter estimate is displayed over a longer 
period of time than plant output and input are.

4.8 Complements
Before presenting the final conclusions, we briefly point out some further 

features without going into details, mainly referring to simulation experience.
The comments and claims of this section follow exhaustive simulation 

experiments. Given the simplicity of the problem formulation (discrete time, 
low dimension, rational calculations) and the inherent scepticism of the readers 
of the adaptive control literature, these statements are more convincingly 
checked by the readers themselves. Because, the modifications we discuss in 
this section lead to much more complicated analyses without promising more 

insight, we feel justified in not exploring these avenues too closely.
In the simulations the influences of the various disturbances are easily 

identified in the "periodic case b < 0" whilst in the "chaotic case b > 0", the 
chaos tends to obscure any regularity. In this situation the effects are best 
identified by altering the initial conditions slightly and comparing the different 

trajectories.

4.8.1 Higher order problem, time-varying parameters
The observed dynamical features are not miraculously due to the
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combination o f a second order plant with a first order model e.g. i f  the plant 

is of third order:

yk = ayk - 1  + byk - 2  + cyk - 3  + Uk - 1  ( 4 . 8 . 1 )

we obtain qualitatively the same results. Moreover, it appears as i f  the size of c

is immaterial. (It is not d ifficu lt to demonstrate that for -£<b<0, the periodic 

orbit of period two for the feedback gain, indeed is independent of c, and is 

asymptotically stabilizing!)

The adaptive control scheme, because of its ultra fast identification law,

promises good tracking properties in the case the plant is time-varying.

Supposing, that the plant can be represented by:

The plant:

Vk = ak - , V k - i  + bVk-2 + ( 4 . 8 . 2 )

and using the same adaptive scheme as outlined in section 2, we obtain 

The closed loop:

r k = b 1
r k - i r ^ . 2 j + (ak - i  ak -2 ) ( 4 .8 .3 )

yk = r kyk - ! ( 4 .8 .4 )

A b ( 4 .8 .5 )ak = ak -1 + r k-1

From these equations and from the previous discussion of the homogeneous part 

of equation (4.8.3) it transpires that small time-variations pose no threat to this 

controller. Simulations with a^ being periodic, or stationary random or even 

being a random walk process or a ramp function can be conducted without 

experiencing difficulties.

4.8.2 Effects o f additive noise, rounding errors and clipping

The proposed adaptive scheme is sensitive to measurement errors, though 

not as sensitive as one would suspect. Assume that the plant can be 

represented by:

yk = ay k - i  + byk-2 + uk - i  + vk ( 4 . 8 .6 )

where v^ is additive measurement noise. In this situation the parameter
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estimate is governed by:

ak = a + b VkTT + VkTT  ̂ <4 -8 -7 )
If the signal to noise ratio is negligible, a^ jumps crazily, driving y^ to large
values, but therefore restoring the signal to noise ratio to acceptable levels, and
hence bringing the adaptive scheme back to good behaviour, driving the output
to zero and so on. The resulting "cycle" gives acceptable control performance.

In the case b>0, the feedback parameter is chaotic and occasionally the
feedback parameter can take on astronomical values, as can the control input;
the more so if b is closer to £, because then the stabilization requires more
time and those "rare" events become more visible. Therefore it is natural to
introduce clipping in the parameter estimator to limit its possible range. Done
with care and conditioned on the "return" strategy this does not alter the nature
of the dynamics of the closed loop. More precisely, the true parameter should
be within the allowed parameter range, and this range should be large enough
to accommodate for (most) of the periodic points of the adaptive algorithm. If
these obvious criteria, which are easy to meet, are indeed met, clipping has a
beneficial effect on the dynamics of the algorithm, certainly for values of |b |
close to 1/ 2, without upsetting the earlier picture of the dynamics.

Multiplicative noise does not cause any difficulties, this is a consequence of
the adaptive system’s good tracking properties. Assume that the plant is of the
form

yk = (a+7k)yk-i  + (b+^k)yk - 2  + 0 + P k )uk- i  ( 4 . 8 . 8 )

where 7^, ^  and p^ are disturbances, (e.g. due to rounding errors). For small 
7 , /*, p all of the above conclusions remain qualitatively valid. The presence of 

tends to decrease the robustness margin. The noise source 7  makes the
adaptive deadbeat control exponentially decaying instead of deadbeat. The noise 
source p introduces a small offset (£ -  (a/(l+pf)) (but such as to effect the 
deadbeat control law) and slows down the estimation speed of the algorithm, 

instead of having deadbeat response it converges exponentially.

4.8.3 Transient response of more standard algorithms
An important facet of our analysis is that it appears to capture the 

transient behaviour of the adaptive scheme with a finite step size estimator (c>0
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in 2.5):

A A Y|^ - 1 A

a k = a k - i  + ------------  (yk • a k - , y k - ,  - uk - . ) ( 4 . 8 . 9 )
c + y 2k - i

For c small compared to y 2^ - , ,  our analysis is valid. In this "transient region" 
of the state space, all the above discussed dynamical properties are present. In 
particular, for |b |< l/2 , our theory predicts convergence of y^ to zero, hence, 
after a transient period, y 2k_! becomes of the order of magnitude of c and 
then the dynamics become essentially linear, driving y^ further towards zero and 

a^ towards some constant, depending on b. (Note that for the specified range 
of b the linearized equation predicts asymptotic stability.) On the other hand if 
the initial conditions (for y) were large (compared to c) and the parameter b is 
larger than 1/2 in modulus the algorithm behaves unstably, despite the fact that 
the linearized system could well be stable. Figure 4.10 illustrates this point. 
The initial condition were y 0=10, y_.,=-0.34 and a 0=0, the stepsize was chosen 
as c=0.0001, the other parameters were set as a = 5, b = -0.4 for Figure 4.10.1
and c=0.001, a = 0, b = -0.6 for Figure 4.10.2. One can clearly recognize the
"transient periodicity" in the parameter estimate. As chaos obscures any
regularity we do not present any figures for b>0, but the readers may convince 
themselves that the transient behaviour does contain the features of "chaos" - 
which become especially clear when one alters the initial conditions slightly and 
tries to compare trajectories! It is possible to trade smaller 1/c against larger 
initial conditions.

This observation indicates that our analysis describes possible transient
phenomena for the more standard algorithm (with the estimator (4.8.9)) in the 
presence of this particular type of undermodelling. For c > 0, we have locally 

exponential stability if |b | < 1, but the large scale behaviour is unstable for 
Ib I > £ and exponentially stable for |b | < £.
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Figure 4.10 Finite Steosize Adaptive Algorithm
Figure 4.10.1 Stable Response ibi<0.5 (a = 5. b = -0.4. c = 0.0001)
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Figure 4.10.2 Unstable Response ibi>0.5 (a = 0. b = -0.6. c = 0.000
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4,9 Conclusions
We have presented a detailed analysis for a particular adaptive control 

problem in the presence of a restricted form of undermodelling. The minimum 
variance controller for a first order system connected to a variant of the least 
mean square estimation algorithm on the basis of the certainty equivalence 
principle can adaptively stabilize any second order system with transfer function 
z~VO -  az- 1 -  bz-2 ) with |b | < The example highlights the complexity of 
the nonlinear behaviour in both transient and asymptotic response.

In particular we point out that whenever chaotic dynamics are present in 
the transient response (as here is the case for b > 0), a Lyapunov function 
approach to the stability/convergence question is bound to fail, as along the
solutions the difference ^V/V itself behaves chaotically. It is part of the
folklore of adaptive control to design and redesign [16,17] adaptive algorithms 
on the basis of a Lyapunov function, both in the exact modelling situation or 
in the presence of bounded disturbances. In the light of the present case study 
it is clear that such an approach, although helpful to obtain a reasonable 
algorithm, may break down in the presence of undermodelling.

Although we do neither promote nor advocate the present ultra-fast
adaptive controller, we do stress that the algorithm has very good robustness 
properties, both with respect to undermodelling and to time variations in the 
plant parameters (and multiplicative noise) without losing its control objective. 
Hence it deserves further analysis, not in the least in the direction of extending 
the present results to higher order models and controllers. Although this
promises to be a particularly hard problem, we do believe it is possible.

"It is hard to adapt to chaos, but it can be done.
I am living proof of that: It can be done."

Kurt Vonnegut Jr,

Breakfast of Champions

(Chl9, p210)
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5. GENERAL DISCUSSION

5.1 Introduction
Having presented three rather detailed case studies into the dynamics of 

adaptive control, it is time to draw the threads together in order to get a
broader picture. What have we learned about adaptive control?

In view of our examples the perplexing question ’What makes adaptive
control "adaptive"?’ arises. From a dynamical systems point of view there is no 
test on a controller for "adaptivity". The same nonlinear controller and 
nonlinear behaviour could have been reached by a number of routes, one of 

which is adaptive. Consequently it makes little sense to speak of "the adaptive
control problem", or to search for a universal or monolithic adaptive control
theory. It is just not so well defined. It is our opinion that adaptive control 
describes a design methodology. This point of view has been introduced in 
Chapter 1, where we considered adaptive control as an automation of the 
identify-then-control procedure (cf. Section 1.1, equations (1.1.1-1.1.3)), and its 
validity is confirmed by our examples. In section 5.2 we address this question 
in more detail.

In the search for the robust control algorithm, regardless of what this may 
precisely stand for, two schools have emerged. There is the global approach 
(cf. [1,2,3]) in which global stability is pursued through algorithm
modifications. While asymptotic results and boundedness are addressed, little or 
no attention is paid to actual control performance, especially its transient aspect 
is neglected. In the local (cf. [4]) approach the emphasis is on the control 
performance, at the expense of disregarding large deviations from the desired 
(ideal) behaviour. In this current work the no man’s land between the local 
and global theories is explored. Some mechanisms for the local theory to stop 
being valid and for global stability to occur in conjunction with unacceptable 
transient and/or asymptotic behaviour are identified. This local versus global 
issue is concisely discussed in section 5.3. We arrive at the disappointing

conclusion that it is hard to guarantee good performance without local 
restrictions. Suitable (global) performance is not only unlikely but is also very 
hard to establish due to the presence of nonlinear effects exemplified by chaotic 

dynamics.
The transient behaviour, even when the plant to be controlled is exactly
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matched, is not at all well understood. The transient behaviour may be chaotic 
and sensitive to changes in the initial conditions. Some observations about 
transient behaviour and analysis based on our case studies are discussed in 
section 5.4.

We end this chapter on general discussion with some remarks about 
sufficient information to construct a reasonably performing adaptive control 
algorithm.

5.2 What Makes Adaptive Control Adaptive?
Is it because an adaptive controller can stabilize any member in a large 

class of systems and track a changing plant whilst maintaining its control
objective? No doubt, this quality is the ultimate aim of any adaptive control
design and is its raison d’etre. However, only very few analytic results
discussing the tracking capabilities of adaptive algorithms are available [5,6]. 
Usually, one exploits the exponential convergence of the identification scheme to 
conclude that sufficiently slow time variations can be followed, without too 
great a loss in the control performance. Most explicit results of this type,
which do quantify the amount of time variations that can be tracked and which 
characterize the resulting loss in control performance, use the condition of slow 
adaptation. These results are of the same nature as the tracking result obtained 
for the M.I.T. rule in Chapter 2. The only tracking result (known to us) which 
allows for "fast" time variations, without loss of control performance concerns
the deadbeat control deadbeat identification adaptive controller discussed in 
Chapter 4. Although this result demonstrates that fast tracking can be achieved 
by adaptive controllers designed using the classical approach (identification + 
certainty equivalence + linear control...), there is not enough information
available to conclude that adaptive controllers can be distinguished on the basis

of their tracking capabilities.
This observation can be strengthened by noticing that an adaptive control

algorithm is just one nonlinear controller which can stabilize a large class of 

linear systems. Many nonlinear control schemes have this property and have 

the advantage of being very insensitive with respect to parameter fluctuations in 
the description of the systems. For example compare the periodic feedback law 

obtained by the fast adaptive regulator of Chapter 4 (the case b < 0) with a

vibrational control law [7], the similarity is striking. Is vibrational control
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adaptive? We give two further illustrations. Consider the first order plant:

x = -ax + gu, a,geR g>0 (5 .2 .1 )

It is easy to show that with the nonlinear control law

u = -bx3, b>0 (5 .2 .2 )

the system (5.2.1) is stabilized for any a,geR g>0 fixed, and for any bounded 
function a(t). If regulation is the control objective then one can adjust the 
control error by increasing b, as the remaining error is less than ( | a | /gb) 2 in 
magnitude. An alternative to (5.2.2) is the nonlinear control law

u = -x 2u - bx5, b>0. (5 .2 .3 )

A Lyapunov argument quickly reveals that for any bounded function a(t) the 
closed loop system (5.2.1)-(5.2.3) is stabilized (see [8] Chapter II). Also it is
not hard to demonstrate that both (5.2.2) and (5.2.3) are able to stabilize the
second order system :

x + a ,x  + a 2x = u, a 15a 2eR a ,> 0 . (5 .2 .4 )

(See examples 1.9 and 2.8 in [8, Chapter II] for suitable Lyapunov functions
respectively for the control law (5.2.2) and (5.2.3).) It is instructive to compare 
(5.2.3) with the model reference control algorithm discussed in Chapter 3. On 
the basis of simulation results of both control algorithms only it would be hard 
to tell which one is adaptive.

It appears that adaptive control should be regarded as a methodology to
control: automating the identify-then-control procedure of classical (linear)
control theory and practice (Cf. Chapter 1, Section 1.1). The resulting
algorithm should produce a different nominal control law for different plants, 
eliminating in part the plant’s influence on the dynamics. In our case studies 

this property appeared in the following form:
(PI) For the M.I.T. Rule (Chapter 2): The plant kpZp(s) influences the

dynamics through the time average of [Zm(s)r](t)[Zp(s)r](t). In the 
exact modelling case Zm = Zp, its influence disappears. The nominal 

control law is kc = l /k p, which changes with the plant.
(P2) Adaptive Model Reference Control (Chapter 3): The plant

Zp(s) = p 1/(s2+p1s+p1p 2) only influenced the dynamics via p ,; its 
effect disappeared for p 1 = +00, which corresponds to the exact
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modelling situation. The nominal (constant, linear, output) feedback 
law is Up = -(p2-a)yp which depends on the particular plant.

(P3) For the Deadbeat Adaptive Regulator (Chapter 4): The plant
Zp(z_1) = z" V (l-az"1 -bz” 2) had only an impact on the dynamics via 

b, b ^ 0 (b = 0 corresponds to exact modelling). The nominal 
control law is u^ = -ay^ (which is however never achieved); both the 
nominal and the actual control change with changing plant.

Although the plant only affects the dynamics whenever model errors are 
present, the impact of these model errors is enormous: from uniform asymptotic 
stability in the large to chaos. This implies that the actual control action can 
differ completely from the nominal one. Also the response of the adaptively 
controlled system might well be indistinghuishable from the system controlled by 
a "nonadaptive" algorithm.

By these observations, we believe to be justified in stating that the name 
tag "adaptive" mainly serves an historical purpose. It identifies an approach to 
control rather than a property of tracking of or adapting to the environment.

5.3 Dynamics of Adaptive Control: Global Versus Local Analyses
The examples presented by Rohrs et.al. [9] spurred a major research effort 

to re-establish the damaged reputation of adaptive control theory. In the style 
of the first "global" convergence results [10,11,12], valid for ideally modelled
plants and challenged by the examples in [9], new results were developed for 
(modified) adaptive algorithms applied to an incorrectly modelled plant [1,2,3]. 
In the presence of model errors emphasis is placed on global stability and 
ultimate boundedness as opposed to asymptotic optimality or achieving exactly 

the control objective characteristic of the earlier results. Typical for this class
of results is the use of a Lyapunov function tailored to some form of model
errors in order to design a modified algorithm with enhanced stability 
properties. As opposed to this global approach a local theory [4] has been
developed discussing the stability properties of adaptive algorithms (modified or 

not) locally at a desired or nominal response. Under the condition of slow 
adaptation, by using averaging techniques this theory yields design guidelines for 

good (local) control performance.
Here we have explored the no man’s land between these approaches by 

focussing attention on dynamical behaviour rather than on stability properties
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only. The discrepancy between these theories necessitates such an analysis.
Because our examples demonstrate that both local and global response of an 

adaptively controlled plant may be governed by chaotic dynamics, we believe 
that it is insufficient to establish only a global stability result. Also it follows 
(especially from the second case study (Chapter 3)) that modifying the adaptive 
algorithm cannot eliminate engineering intuition in designing a well performing 
contoller. A careful selection of the main design variables (adaptation gain, 

input spectrum, control objective) is essential to obtain an adaptive algorithm 
with a performance which is robust with respect to its design assumptions. The 
local theory yields useful design guidelines. However guaranteeing good local 
performance does not exclude the possibility of chaotic and unacceptably large 
transients for large initial deviations from the desired response. (The last two 
case studies indicate that large initial conditions may induce all the complicated 
dynamical phenomena characteristic of large adaptation gains.)

The local theory relies on the slow adaptation condition. This is not an 
essential prerequisite for a good adaptive response in the presence of model 
errors, as our deadbeat adaptive regulator demonstrates (Chapter 4). However 
the "slow adaptation" qualifier is important to ensure that the local results are 
significant. For the deadbeat adaptive regulator the local results were absent 
because the adaptive gain was effectively infinite. But in both the M.I.T. rule 
and the adaptive model reference examples this condition was essential as it 
avoids (local) instabilities due to high gain or resonance. The important lesson 
from these examples is that the "slowness" is quantified in terms of the model 
errors. The more important the model errors the smaller the adaptation gain 

shoud be for the local results to be significant.

Remark:
(R.5.1) This property, although expected, could not be revealed by the 
averaging theory [4,11], but is very clearly expressed in the adaptive model 

reference example by: 
r

c(—) 2 < P tS. (3 . 5 . 3 )
a

Which can be interpreted as: the effective adaptive gain e(r/a)2 (product of 
algorithm gain e and excitation level (r/a )2) must be smaller than a constant
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scaled by the amount of modelling errors (p, = oo, no model errors). □

It transpires that the local theory is conservative in estimating the domain in 
state space and in quantifying the magnitude of the adaptive gain for which the 
adaptive system performs well.

Clearly conditions guaranteeing good global control performance for 
adaptively controlled systems will not be easily established.

5.4 Towards a Transient Analysis for Adaptive Control
It is a well known feature of nonlinear dynamic systems that their 

behaviour may depend in a very fundamental way on the initial conditions. It 
comes therefore as no surprise that the response, both transient and asymptotic 
behaviour, of an adaptive system depends crucially on the initial conditions.

This is nicely illustrated in our case studies. For the model reference 
control scheme of Chapter 3, good transient response is obtained for parameter 
settings which initially stabilized the plant and extremely large transients are 
observed for parameter settings which destabilize (Figure 3.4). Moreover, for 
certain parameter settings (adaptive gain e, undermodelling parameter p 1? model 
pole a, reference input r) the asymptotic dynamics are extremely complex, and 
very sensitive to changes in the initial conditions (Section 3.7.3). In our last 
case study we demonstrated that the transient response, in the presence of 
undermodelling (Sections 4.5 and 4.6) was extremely sensitive to small changes 
in the initial conditions due to the presence of chaotic dynamics (cf. R.4.28).

In view of the presence of these complicated dynamics caused by modelling 
errors it is very unlikely that we could obtain general analytic results about the 
transient response of an adaptive system in the presence of undermodelling; 

except for the not very useful, but highly nontrivial, result that the transient 
response might be bounded. In Chapter 4 we were able to solve the transient 
problem for the deadbeat adaptive algorithm. We were indeed able to describe 
completely the behaviour of all trajectories of the adaptive system, but only in 

part analytically. In the chaotic situation (section 4.6) we had to rely on a 
(well motivated) conjecture and numerically obtained results (cf. R.4.28 and 

section 4.8). It looks indeed almost impossible to repeat the detailed analysis of 

Chapter 4 in a more complicated situation.
Even in the case of exact modelling very little is known about the actual
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transient behaviour and the effect of the initial conditions. A first attempt to 
try to answer the questions: "How can we specify sets of initial conditions in 
state space such that the transient response will be bounded by a given constant 
and such that the control objective is achieved within a certain allowable error 
margin in a given time?", and "How do design parameters influence these sets?" 
is presented in [14]. The methods are based on nonlinear averaging over spatial 

variables in order to obtain approximations for the transient response over short 

time intervals.

5.5 Necessary Conditions for Adaptive Control?
Märtensson, in his paper "The order of a stabilizing regulator is sufficient 

a priori knowledge for adaptive stabilization" [15], demonstrates that the 
knowledge of the degree of a stabilizing (time invariant) controller is sufficient 
information to build an adaptive control system to regulate a linear, time 

invariant (finite dimensional) causal plant. In essence, the controller discussed 
in [15] is based on a classical linear control law, coupled to an algorithm which 
performs an exhaustive search through the parameter space of the control law
(using an everywhere dense trajectory) cunningly exploiting the exponential 
decaying or diverging response of a linear system. The search algorithm is the 
equivalent of the estimator in the parametric approach to adaptive control 
discussed in this thesis. This type of adaptive control belongs (ironically) to the 
class of nonparametric adaptive control algorithms (Cf. Chapter 1). Märtensson 
concludes his paper with the remark that this nonparametric approach is not
practical due to the possibly catastrophic transient response and because the
search algorithm continues indefinitely in the presence of disturbances, which 
implies unstable (unbounded) response.

In all three case studies presented here the knowledge that the controller 
structure chosen by the designer can indeed stabilize the plant if its parameters 
were known, is a necessary prerequisite for the success of the algorithm.
However, this is not a sufficient condition for good (stable) adaptive response. 
This necessary condition is expressed in the following form:

(Nl) For the M.I.T. Rule (Chapter 2): The sign of the plant’s gain k p
must be known, and kp must be bounded below and above in 

magnitude.
(N2) For the model reference algorithm (Chapter 3): The second order
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plant with transfer function Zp(s) = p 1/(s2+p1s+p1p 2) must be 
stablizable by constant output feedback, i.e. p^O . (cf. (R.3.8))

(N3) For the dead beat adaptive regulator (Chapter 4): The second order
plant with transfer function Zp(z-1 ) = z~ V(1 -az~1 -b z"2) must be 
stabilizable by constant output feedback, i.e. |b |< l.

That this condition is not sufficient comes about in the following way:
(51) For the M.I.T. Rule (Chapter 2): In order to obtain good adaptive

control performance, the input spectrum and the adaptive algorithm 
gain have to be restricted.

(52) For the model reference algorithm (Chapter 3): Good local

performance is guaranteed under the same conditions as above (SI).
(53) For the dead beat adaptive regulator (Chapter 4): In this case we

were able to find a necessary and sufficient condition for globally 
stabilizing and optimal adaptive performance |b | < £, as opposed to
the necessary condition |b | < 1.

We conclude that our case studies indicate that the knowledge that the 
chosen control structure indeed can stabilize the plant if its parameters were 
known, may be a necessary but is in general not a sufficient condition for the 
success of the parametric adaptive control approach. This is in sharp contrast
to the nonparametric adaptive control methodology.

5.6 Some final observations

The dynamics of adaptive control algorithms, in particular in the presence 
of modelling errors but also in the situation that the plant is correctly modelled, 
are complicated and difficult to characterize. In view of our case studies this 
is an understatement. This is not surprising; an adaptive system is a highly 
nonlinear system whose dynamics depend in a very nonlinear fashion on the 
design parameters and the input characteristics.

Although we have demonstrated a wide variety of possible dynamical 
phenomena in adaptively controlled linear systems, we did not exhaust the
possibilities. Glancing over simulation results readily available in the literature 
we quickly realize that there is a wealth of different nonlinear phenomena with 
a disturbing frequency of occurrence [16]. In particular we did not discuss any 
of the effects of insufficient (external) excitation, linked to drift instabilities
and bursting phenomena [17,18].
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This should however not frustrate us or discourage the use of adaptive 
control algorithms. The overwhelming volume of literature on chaotic behaviour 
in "real" world problems is simply another indicator of the insufficiency of our 
mathematics to describe the "real" world in detail; a fact engineers have always 
been able to live with. Our observations however urge us to be cautious when 
using classical tools such as Lyapunov stability theory in the adaptive control 
context and when interpreting any stability conclusions arrived at in this way. 
It also follows from our analysis that the results and techniques of the 
geometric theory and global analysis of nonlinear dynamical systems can yield 
valuable (indispensable) information about the performance of an adaptive 
algorithm which complements the more classical Lyapunov type results (global 
results) and the local results obtained for slow adaptation via linearization 
and/or averaging. If the reader is convinced and aware of these facts we have 
attained what we set out to do.
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