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PREFACE

The work for this thesis was carried out while I was a research
student at the Australian National University from January, 1961, to
September, 1963. Not all the work done during this period is reported
here, as some results were not relevant to the main research described
in the thesis; a joint paper with J. Gani (Gani and Yeo (1962)) arising
from a virus model is appended in support of ﬁhe thesis. B

Several of the problems described in the thesis have been discussed
to some extent by other writers; however, most of the results presented
here are new ahd previous work in the field is acknowledged in the
appropriate part of the text. DPart or whole of Chapters 1, 2, 3, 4, 6
and T have been published or submitted‘for publication under my own
name or jointiy with B. Weesakul.

In Chapter 1 the work on the infinite dam is primarily a review,
except for some miﬁor new results for the discrete time dam. Thé new
results for the finite~dam are part of a paper written jointly with
B. Weesakul (Weesakul andiYeo (1963)) which is to appear in the
Zeitschrift fur Wahrscheinlichkeitsfﬁeorie. Chapter 2 is substantially
the same as my article (Yeo‘(196]c)) in the Research Report of the First
Summer Research Institute of the Aﬁstralian Mathematical Society and is
entirely new. The major results of Chapter 3 have been published
(Yeo (1962)) in the Journal of the Australian Mathematical Society
and part of.Chapter 4 is to appear shortly (Yeo (1963a)) in the same

journal. Since the major part of the work for this last chapter was



carried out, Gaver (1962) has published a paper'which independently
obtains some similar results, and the sections on the preemptive
priority repeat different policy were added afterwards for completeness.

The problems of Chapters 5 and 6 arose out of discussions during
1961 with B. Weesakul, and the original model of independent major road
traffic in the discrete case and the basic model of one-way major road
traffic in the continuous case are due Jjointly to Weesakul and myself.
The remaining extensions and results of both chapters are my own work.
Part of Chapter 6 has been submitted to Applied Probability for
publication as a joint paper (Yeo and Weesakul (196%)). The results of
Chapter 7 are new, and the first two chapter sectioné are to appear
in Biometrika (Yeo (1963b)).

My deepest thanks areAdue to Dr J. Gani for his understanding
supervision throughout my course and for many stimulating discussions
and suggestiouns. ‘T wish to express my appreciation to Professor
P.A.P. Moran for his continual encouragement and assistance, particularl;
during Dr Gani's absence on leave; to Dr B. Weesakul, with whom I now
have a substantial and interesting correspondence; to Mr C.C. Heyde for
some helpful discussions; to the Australian National University and
IGeneral Motors Holdens' for their financial assistance; and last but
certainly not least to Mrs Beryl Cranston who has made such an
excellent job of typing the manuscript. o 4

4 1pe

Department of Statistics, G.F. Yeo
The Australian National University,

CANEERRA, 1963.
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SUMMARY

PART 1

DAMS

The first part of this thesis is concerned with some problems in

the theory of dams in both discrete and continuous time.

Chapter 1 contains a brief review of the existing work in the
theory of dams and some extensions of this theory. In §2 several discret
models are described. For an infinite dam with unit release, the
general time-dependent solution is discussed for non-homogeneous
inputs; an example of a discrete time queueing model is given, and‘the
known stationary distribution found by taking the limit as time tends
to infinity. When the maximum release may be greater than unity a
method 1s given for determining the stationary content distribution.

For the finite dam with inputs of a modified geometric type the time-
dependent solution is found by determinantal methods. In §3 a review
is given of time-dependent results for an infinite dam with possibly
non-homogeneous inputs.

In S4 a limiting procedure is described for passing from the discret
to the continuous models, so that there is an analogy between the two

cases. This enables us to obtain some results for a finite dam in
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continuous time with homogeneous Poisson inputs and a negative
exponential jump distribution, which cannot be obtained directly.

The method has also been applied in §2.5 and §5.5 to some other problems

Chapter 2 describes an infinite dam in discrete time fed by
ordered inputs, such that in successive unit time intervals these are
independent but their distribution in the time interval (2t, 2t+1)
may differ from that in (2t+1, 2t42). The content is considered |
separately at odd and even points of time, and the time-dependent
distribution of the content at these points is found by the method of
generating functions, which ﬁay be inverted to give the result
in terms of the probabilities of emptiness. These are obtained by
combinatorial methods‘from the probabilities of first emptiness, for
which a recurrence relation is given. The result is extended to the
case where there may be K(>2) independent, additive types of input
occurring cyclically. A methéd of solution for the stationary
distribution is described, and a numerical example of two geometric
input distributions is given. Under the limiting procedure described
in §1.4 the continuous analogue is of a form rather different from
that of the discrete problem, as the inputs no longer occur cyclically,

but independently.
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PART 2

SINGLE SERVER QUEUES

In Part 2 two models in the theory of queues with a single server
are considered; the first of these has a number of applications later
in the thesis. In contrast to Part 1 where we were concerned primarily
with time-dependent solutions the stationary properties of the processes

now considered in greater detail.

Chapter 3 considers an extension of the M/G/1 gueueing system
to the case where customers Jjoining an empty queue may have a service
time distribution different from those joiniﬁg a nonQempty queue.
For a general independent input distribution a necessary and sufficient
condition for the existence of a proper stationary distribution is
given in §5; subject to a minor additional restriction this is the same
as for the G/G/] systemn.

A partial solution is obtained in §4 for the time-dependent problem
but the probability of emptiness has not been found explicitly. In §5
two alternative methods for obtaining the stationary waiting time
distribution are described. The first considers only the points of
arrival of customers, which are regeneration points of the process,
while the second considers arbitrary points; the results in the two
cases are identical. The former is used to extend the result to an
Erlangian inter-arrival time distribution. The stationary queue
size distribution is found by a similar regeneration point method.

In §7 the joint distribution of the length of a busy period and of the
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number of customers served during the busy period is obtained. A
problen of server absenteeism, which may be reduced to a special case
of the main problem, is discussed in §8, and the case of bunch arrivals
is considered in §]O, while in §9 a comparison is made with the results

of a similar problem of Finch (1959).

Chapter L4 describes some problems in priority queueing, where
interruptions to the service of customers by higher priority customers
is allowed. Customers in each-class arrive independently in a Poisson
process, and independently of other classes of customers, and have a
general distribution of service time requirement. ZFach of the following
four priority policies are considered: preemptive priority repeat
identical, preemptive priority repeat different, preemptive priority
resume an@ head-of-the-line priority. In §2 and §3 the case of two
classes of customers is considered. The distribution of time which
customers spend at the counter, and also from the arrival of a non-
priority customer at a queue free of other non-priority customers to
their reaching tﬁe counter for the first time are obtained. These are
used to find the stationary waiting time and queue size distributions
- for each clasé of customer; and the busy period distributions for‘the
system and for individual classes. The results are extended in §

to any number K(2 2) of classes of customers.



PART 3

ROAD TRAFFIC THEORY

This part is devoted to the application of queueing theory
to problems in road traffic theory. Chapters 5 and 6 are concerned
with delay at intersections in discrete and continuous time respectively,

while delay on a long two-way rad is discussed in Chapter T.

Chapter 5 considers a discrete time model for the delay to vehicles
in a one-way minor road at an intersection with a two-way major road,
in which traffic has absolute right of way. The minor road vehicles
arrive at the intersection with a geometric inter-arrival time distributi
while in the major road there is a Markovian relation between successive
vehicles. After considering two special cases the service time
distribution for minor road vehicles obtained in §3, and used in §4 to
find the stationar& waiting time and delay distributions. The continuoué
analogue which results from allowing the units of meésurement to tend
to zero is considered in §5, and some further pfoblems are discussed in

the remaining two sections.

Chapter 6 describes a geﬁeral continuous time model for the delay to
traffic in a ohe-way minor road at ah intersection with a one-way major
road. A general description of the major road traffic is given in terms
of alternate bunches and gaps, while the minor road traffic is described
in a more restricted manner. There are variable gap acceptance times

for minor road vehicles waiting to enter the intersection, and several
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alternate manoeuvres to allow for different conditions are given. In

§2 the distribution of the time minor road vehicles spend at the head of
the minor road queue is obtained; in §3 this is applied to finding the
stationary waiting time, delay, queue size and busy period distributions
bj using formulae derived in Chapter 3. There is a discussion in §&

of the problem of drivers who accept shorter gaps if they have been
waiting a long time. A partial solution is given in §5 to the case

of a two-way major road, and some other problems are considered in §6.
In §7 the results of some numerical work are given and a comparison made
between the delay to minor road vehicles for variable and constant gap

acceptance times.

Chapter 7 considers a long, uninterrupted two-way road with one
lane in each direction. The description of traffic in each direction
in terms of alternate bunches and gaps is of a form similar to that
in the previous chapter. However, there is an additional vehicle
travelling in oﬁe direction at a speed faster than the constant speed
of the other vehicles moving in the same direction. Its average speed
over a long journey is obtained by consideriﬁg the distribution of £he
periods of its restricted and unrestricted travelling. In the final
sectibn a flow ofvfast vehicles is considered; this is a much more
difficult problém, and some approximate results are obtained only after

making several further simplifying assumptions.
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CHAPTER I

GENERAL PROBLEMS IN THE THEORY OF DAMS

1.1 Introduction

Since the formulation of the theory of dams by Moran (1954) a
considerable literature has accumulated on both discrete and continuous
dam processes. Descriptive details and bibliographies have been given
by Gani (1957), Moran (1959) and Yeo (1961b). In this chapter we shall
describe some of the basic models in both discrete and continuous time,
extend some of the known results, and discuss some of the analogies
between the discrete and continuous tiﬁe problems. In Chapter 2 we
shall consider some problems of a dam with ordered inputs.

We are concerned only with dams, subject to a random input, built
to fulfil some deterministic demand of water, for irrigation, say;
other uées, such as providing a head of water for power, or storage
in case of exceptioﬁal rainfall, or as one of a set of dams in series,v
are not considered.

In the theory of dams some of the important problems are (i)
the study of the storage process when it is in statistical equilibrium,
(i1) the aistribution of the time taken for the dam to dry up for the
first time, and (iii) the time-dependent distribution of the dam conteht.

In the next two chapters each of these problems is dealt with, although



most emphasis is attached to the last of them. In contrast the problems
concerned with stationary properties are dominant in Part 2, where some
problems in queueing theory are considered.

Among recent contributions to the theory of dams are works on
first emptiness in an infinite dam by Kendall (1957) and Gani (1958),
and in a finite dam by Prabhu (1958), Ghosal (1960) and Weesakul (196l1a).
Time-dependent solutions for the content of an infinite dam have been .
found by Gani and Prabhu (195%a,b), Yeo (1960, 196la) and Gani (1962a),
while Weesakul (1961b) has found the temporal solution for a finite dam

féd by geometric inputs.

1.2 Discrete time models

Iet us consider a dam of finite capacity k (a positive integer)

in discrete time, with content Zt =0,1,2,.... at time t =0,1,2,....,
fed by inputs X, = 0,1,2,.... in the time interval (t, t +1). If
Zt + Xt > k then an amount Zt + Xt - k overflows and is lost; there is

an integral release of size m (0 <m < k) Just before the end of each
unit time interval, unless the dam is empty. The content satisfies the
relation

Zi,, = min (Zt + X k) - min (Zt + X, m) . . (2.1)

Wé‘suppdse that the input in any unit time interval is

independent of that in any other unit time interval, and is a random

variable having the probabilities ET{Xt =i} = p:+]; Zt is then a

Markov chain. The assumption of the independence of (yearly) inputs



seems reasonable in many cases; for example Bhat and Gani (1959) in an
unpublished technical report have shown that the serial correlation of

annual inputs is not significant for several Australian rivers.

We define p/ (J = Pr {:}:IPT -3 r =i }-as the probability of

having i inputs in the interval (t-j, t), with the probability
(o]

p.(3) s* (ls] s1); we

. . t .
generating function (p.g.f.) A (S,J)-—}:l=o :

write q (J) _-Ejr_o D, (J) When the process is homogeneous in time, i.e.

pi(a) = p,(J), then 8%(s,3) = A(s,3) = {A(s,1)} = (A(s))Y, and the
pi(j) are the coefficients of s® in the expansion of {A(s)]j.

Iet us first consider the case m = 1. The cumulative probabilities
Qi(v,tlu,k) =Q, (v,t) = Pr(z, = ilzV =u>0; k) (i=0,1,2,...)
of the content of the dam with capacity k and integral content u at

time v(2 0) are readily shown to satisfy the difference equations

it] :
: t+1+v '
\y j:o
h 12k,

We define g(v,u,t|k) = Pr{z, = olzV =u>0; 2 >0, v<r<tk)
as the probability of first emptiness at time t (2 v) of the dam
with content u at time v. For an infinite dam the probabilities
g(v,u,t) of first emptineés satisfy the relations

ut+v (

o u) t=u

g(v,u,t+v) = &%

Vo (wglutv, ,t+v) t > u.
J':

(2.3)



This has not been solved explicitly in the general case, although a
solution may be obtained iteratively for any given values of u, v and t
from the recurrence relations (2.3). Defining the transform G(v,u,s)

[+0]
t .
=Zt=u.+v g(v,u,t) s° (|s|= 1) we obtain from (2.3)that

0]

G(v,u,s) = Z p?Jrv(u) G(utv,j,s).

j=o

In the time-homogeneous case Gani (1958) has shown that

g(0,u,t) =u 7] pt_u(t) otz (2.4)

The probability of emptiness, not necessarily for the first
time, is [Gani (1962a)]

5t
t+1+ .
Q (v, t4v) ={p v} Zv"g(-v,,],t+'l+v). (2.5)
C J=utl o
. _ i

We define P(v,s,t) = Qo(v,t) +Zi=1{Q’i(v‘-’t) - Q’i-'l (v,t)} s
(ls|s 1) as the p.g.f. of the dam content distribution. From (2.2) we
obtain for 0 < g =1

) t-u
-t .t -1 . t+1-3 .t .

P(0,s,t) = s¥7° A%(s,t) - (1-8 )Z QO(O,t—J) P, Joa (Vs,g-'l), - (2.6)
where Q,O(O,t) is determined from (2.5). This may be inverted as for
time-homogeneous inputs to give

t-u
4 t41-3 & . N .
0,0,8) =ab,, (6 - ) BBt () q(0,6-0) 1=12,.. (.1)

1 o ©
. t _ 9 _ o .
If lmﬁw pi_ = Pi exists, where Zi=o pi =1, and if p —Zi=.] ip, <1

then the content distribution tends with time to a proper stationary



distribution for which the stationary p.g.f. P(s) of the content has

been found by Moran (1956) as

p(s) = (Lzpl12),  (2.8)

As an example of the above theory we consider a discrete time
queueing model which is a generalisation of that due to Meisling (1958).
Customers are assumed to arrive independently at a coﬁnter with a
single server, who serves customers in the order of their arrival.
Customers arrive Just before the time points t = 0,1,2,..., i.e. at
t-0, such that there is a probability a(t) (0 = a(t) = 1) of one
customer arriving and a probability b(t) = 1 - a(t) of no customers
arriving. The service times of customers are independently and
identically distributed random variables with probabilities cy

oo
(i=1,2,...) and p.g.f. 7v(s) =§z

discrete analogue of the M/G/] queueing process; the waiting time is

i=1 4 st (|s|s 1). This is a
equivalent to the content of a dam, and the time-dependent solution
is obtained from (2.3), (2.5), (2.6) and (2.7) by substituting
B(6) + a(t) T(s) for A (s).

We now turn to the dam with finite capacity k and with m = 1.
When there are independent geometric inputs Weesakul (1961a,b) has
obtained the probability of first emptiness, with and without overflow
being allowed, and hence the time-dependent solution. This has been
extended by Weesakul and Yeo (1963) to the case where the input

distribution has the p.g.f. A(s) =b + a a(s), where 0 <a =1,



b =1 - a and where 0(s) = p(1 - qs)-] (0<p<1,q=1-p) is the
p.g.f.»of a geomeﬁric distribution. This has led to results for an
analogous continuous time process, which we describe in §1.4.

For this model it is known that the content Zt forms a Markov

chain with k states 0,1,..., k-1, whose transition matrix is

prase _ k-
btap apq apq2 . . . aqu 2 aq !
k- k-2
b ap apq . . . apq 5 aq
e} b ap . . . a,pq_k-u ao_Lk'-5
§ =
. b ap aq
. . . O b a .

Using determinantal methods it may be shown that the generating

0
function V(i,s|u,k) ==E:t=u Qi(O,tlu,k) g (0 = s <1) with respect
to time of the cumulative content probabilities at time t given a dam

capacity k and initial content u is given by

i+l i+1-3) i+2
as® Z =1 Cj (1-q g7y bs® y 3= Cj
\l’(i)slqu) = : ’

|z - s8]

where I is the identity matrix, C; is a deteminant similar to |1, -s8]|
except that the jth row is replaced by (0,...,0,b,ap,...,apq s
aqk_u-1) with b in the uth position. The determinants on the right

- hand side of (2.10) have the values

(2.9)

(2.10



-1 k k
|1 - s8] = (1-8) (Mg =2g) T LM = (11 0,7)
S bu-n+1 _— Gn-] n=1,2,...,u
C =
n n-u-1. _
Fu{(ap-bq)Ek_n+]+quk_n} n=u+l,...,k
_ -1 cam o N oo o n >
E = (x]-xe) {(1-sa xe)x] (1-sa x1)x2 ) nz1l
_ -1 - n_ _ n >
Fo= (0 2) 7 L =sb)r 7= (hy-sb)Ay ) Nz
_ -1 n-1 _ n-1 >
G = (x1-x2) {(1-x2)(x]-sb)x] (1 x])(x2 sb)x2 } n=z
+ 1
o2h. . =71 - (¥% - Lsbq}?
1,2
Y =1 -s(ap-ba),
where Eo = E__.I = Fo = Go = 1. Similar expressions may be obtained for

the probabilities of first emptiness and emptiness, with and without

emptiress being allowed. The stationary distribution may be obtained

by the method of Prabhu (1958),

solution.

All the results can readily be extended to the case in which units

of time and content are A (> 0)

use this in §1.4 and §2.5, where we then let A > O in a suitable manner

in order to obtain results for

or as the limit of the time-dependent

, where A is not necessarily unity. We

an analogous continuous time process.

We now briefly consider an infinite dam in discrete time with

time-homogeneous inputs where the maximum release m may be greater

than wnity. A stationary content distribution exists independently

]



of the initial distribution if and only if p <m, where p = p'(1) is

the mean of the input distribution. The stationary probabilities

P, = %im PT{Z = ilzo = u} satisfy the difference equations
m
PO = Z Pj(po+P'l+"'+Pm-j)
J=o
mtn
Pn= ZPJ pm+n-j n=1,2,...
Jj=o

N .
From (2.11) we find that the p.g.f. P(z) =Z. P. z' (|z]s 1)

1=0 1
J i3
Z J=0 JZ =) By

2"-p(z)

is given by

P(z) =

where P P1,... Em-l have still to be determined [c.f. Bailey (1954)1.

If p(e ) is analytic for 5(9) > -5 for some real & >0 and if p <m
then by an argument similar té that for Iemma 1 of.Ewens and Finch
(1962) [see §3.5] it may be shown that z - p(z) = O has m-1 roots in
|z|< 1, and one root at z = 1. Denote these roots by ZysZns a2y s
z = 1, and suppose they are distinct; if there are multiple roots
further differentiation enables us to obtain a total of m equations

in (2.13). At the zeros in |z|S$ 1 of the denominator of (2.12) there

must be zeros of the numerator so4that we have

m-1 ntq4j

Z P, Z (m-i-3) p; =m - p

Jj=o i=o

(2.11

(2.12
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m-1 m-1-j

o
P, (znm - znl J) p, =0 n=1,2,...,m-1. (2.13)

J=o i=o
We thus have m equations in m unknowns so that we can find PO,P yeees
Pm-]’ although this is very tedious if m is at all large, as in the
applications to traffic delays where m may be 20 or more.

The mean content P'(1) is given by

m-1 m-1-j

p"(1)-m(m-1 )+Zj___O Pj Zi=o {m(m-1)~(i+3) (i+3-1) }pi

P'(1) = (2.14)
2(m - p'(1))

1.3 Continuous time models

Tn a dam of finite capacity K(> O) in continuous time, we suppose
that there is an input X(T,T+T) in the time interval (T,T+T) whose
distribution is independent in non-overlapping time intervals. There
is a continuous release at unit rate per unit time unless the dam is
empty, and any input which would increase the content beyond K overflows
and is lost. The content Z(T) (2 0) of the dam at time T(Z 0)

satisfies the Markovian relation

Z(T+07) = min(z(7)+8X(0,T),K) - min (&1, (1-1)57), - (3.1)

where 13T is the time during the small interval (7,7+5T) in which the
dam is empty.-
We suppose that inputs occur in a Poisson process with parameter

M(T) at time T such that the size of each input is a random variable



11

with d.f. F(x) (0 = x < ») and Iaplace-Stieltjes transform (IST)
(o]
-0
a(9) =h/;_ e ¥aF(x) (6 2 0). The content process satisfies the

forward Kolmogorov equation [Gani and Prabhu (1959%a)]

an:,T)_ aw(g;T) = -X(T)W(Z,T?*X(T{/;=O W(z-v,T)dF(v)
0=z =K
W(Z)T) =1 z 2K, (3.2)

where W(z,T) = W(z,7|U,K) = Pr{Z(1) = z|2Z(0) = U;K}is the d.f. of

the content Z(T) at time T given an initial content U and dam capacity
K; W(z,T) =0 for all z < 0. W(z,T) is continuous for all z in T = U,
0 <3z =K, but has a discontinuity at z = 0, the concentration
W(O,T)'being the probability that the dam is empty at time T.

When K = « this process is equivalent to the M/c/1 single server
queueing system with a negative exponential inter-arrival time
distribution and a general service time distribution. The integro-
differential eguation (3.2) when K = » has been obtained by Takécs
(1955), who has shoﬁ that the IST #(6,T) =/;: e'ezdw(z,—r) (6 2 0) is

given by

.
H(e,r) = e(T-U)O—)»T('l—Ot(G))_?fw(o,q__v)ev(e—)»('l-OL(G)))dV, (5.3)
’ v=0

where W(0,T) requires to be determined. This may be inverted [c.f.

Gani (1962a)]; when F(x) is an absolutely continuous function
. .
W(z,t) = K(z+t-U,0,T) -b/\ W(0,T-v)k(z+v,T-v,T)dT, (3.4)

V=0
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where

K(x,v,7) =Z e (-0 (V)) (0 1) o (v) ) PF ™ (x) (n2) ],
n=o0

F™*(x) being the n-fold iterated convolution of F(x), FO*(x) =1

T
d R
for x 2 0, k(x,T) = = K(x,T) and p(T) =L/;=Ok(v)dv. Gani (1962a)

has also shown that
. T »
W(O:T) = e-p(T) +&/ﬁ g(O)V)T)dV; ' (3~5)
. V=U+

where the probability is dG(V,U,T) that first emptiness occurs in

the interval (T,T+dT) (T Z V) given content U at.time'V;

- (o (V1) -0 (V) .

aG(v,u,7+v) = : ,
g(V,U,T+V)dT T>U,

with a continuous probability for 7 > U, but a discrete concentration

at T = U. We have the relation
T-U
aG(v,u,t+V) =f 4G (V+U,v,T+V)dK(v,V,V+U) . (3.6)
V=0=- -

This has not been solved explicitly in the general case; however, for

time-homogeneous inputs Kendall (1957) has found that

0] T <U
ac(0,U,T) ={ _] .
ur  dK(T-U,T) TZU (3.7)
where dx(0,T) = e and
K(x,0,T) = K(x,T) ==§: M ()R Fn*(x)(nl)-i. (3.8)

n=o0



The stationary d.f. W(z) (0 £ z < ») of the dam content has been

found as the limit of the time-dependent solution W(z,T) as T > o

by Takdes (1955) and directly by Lindley (1952) and others. If

iiﬁ AMT) =AM exists, then the stationary distribution exists as a

proper distribution if and only if Ap < 1, where

(o) =ﬂ’° e %% ai(z) is

_ (1= )
We) = =t —arenTs -

1.4 Limiting processes

In §1.2 we considered dams discrete in both time and content,

and in $1.3 dams continuous in time and content.

former to the latter by letting the units of measurement for time and

content tend to zero in an appropriate manner.

model we consider only inputs that occur in a homogeneous Poisson
process; other types of input may be considered, but are not discussed

here as the only new solutions we obtain are for the special case of

homogeneous Poisson inputs.

The discrete time process may be defined in units of size A (>0)

instead of unity, so that time, content, input and release are all

p = -a'(0); the IST

We can pass from the

For the continuous time

measured in multiples of A. We shall use the substitution

1 -X

. A) =
(a) P_la” {M{A(m)—A((i—l )a)}

() i=x"1, t =18, k=AY, u =UAT,

i

i

0

1,2, 000

13

(3.9)

(4.1)
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where A(id) (i =1,2,...) are cumulative probabilities with

ifo‘; A(ilA) = 1, and such that in the limit as i > ©, A> 0 and 1A+ x
we have

lim .

A0 A(iA) = F(x) , 0 =x< o,
where F(x) is a 4.f. We suppose that x,7,U and K are real and non-

negative. When k = « the capacity of K of the dam in continuous fime is
also infinite. As Al* O the release becomes continuous at unit rate
per unit time unless the dam is empty, and inputs, whose d.f. is F(x),
occur in a Poisson process with parameter M.

Under the substitution (4.1) it is readily shown that equation
(2. 2) tends in the limit as A+ O to (3.2). Reich (1958,1959) has shown
for K = « that (3.2) has a unique d.f. solution, so that if we obtain
a solution of (3.2) with K = « by a limiting procedure from the analogous
discrete process, then we shail have a unique solution. When K < «
it does not appear to be known if there is a unique d.f. which is the
solution of (3.2), although it seems reasonable to expect that this is so;
in any case the result obtained from the analogous discrete process is
a solution of (5.2).'

Writing the n-fold convolution of A(iA) as A™ (iA) we have under

the substitution (4.1) that

i
8o 08 = 2B ) 5 ()
_ L
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t
= 2B ()5 R08)% 1a)

n=o
©

= ) MO ) )

n=o
= K(x,T). (L.2)

For an infinite dam the results (2.3), (2.5) and (2.7) tend under
the substitution (%.1) and the limit A+ 0 to (3.6), (3.5) and (3.4)
respectively; with K = » this gives the unique d.f. solution of (3.2),
as has been found directly.

Iet us now consider.the finite dam, which has been discussed by

Weesakul and Yeo (1963). We suppose that
A(1A) =1 - (1 - wa)t i=1,2,... (4.3)

is a cumulative geometric distribution, so that F(x) = 1-e "¥(0 = x < w)
is the d.f. of a negative exponential distribution. We wish to find the

time transform

=]

9(z,6|U,K) =‘/pe'eTW(z,T|U,K)dT

T=0

lim -6

of the 4d.f. W(z,TlU,K) of the content distribution for a dam with

- -1 =1 -1
A Y (zD e |UA SKA)
capacity K and initial content U by using the substitutions (&.1)
and (4.3). In (2.10) the terms as® Cj(T-q1+]_J)(|£;s§j)-] (Qs3si+1)

all tend to zero as A > 0, while the remaining terms yield



e-U(6+x)((n]-X)e-(K_U)ng-(ne-h)e_(K-U)n1} %

(M -1-6) :

e } .

e-Kﬂ])

-z (Mp-A-6) _

{x
"KTE
ve(n]e -1,

1A

N
1y

a

?(2,0|U,K) =
9(0,6|U,K) + ((orr-n,)e V- (gthn, )e "M} x

e K2 e KM
{ﬁe(”l Me (o7 (T2-0 JHU__Un ny (np-Me
9+X-n1 - e+x-n2

16

-1
(ez(n]-“)+“U-eun])}-{yG(nTe_ng—n2e-Kh1}- U=z =K, (L.5)

1
where V = { (Mp+6)3- An)2

and 21, , = 6+ ptv. This may be inverted

J
to give the time-dependent content distribution. The stationary d.f.
W(zIK) may be obtained by'using an extension of Abel's theorem [Widder

6¢(z,0|U,K). The result found in

(1946), Chapter 5] as F(z|K) = é+o ,

this way agrees with that determined directly, and is

Xez(x-u)-u

T K-p)
A KA u._

e B

F(z|x) =

Probabilities of first emptiness and emptiness, with and without
overflow being allowed, have been obtained in a similar manner by
Weesakul and Yeo (1963). The probability of first overflow before
emptiness has been found, and this has been applied to a problem in

insurance risk [Cramér (1955), Bartlett (1955)].

(4.6)
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CHAPTER 2

A DAM WITH ORDERED INPUTS

2.1 Introduction

In the discrete time models discussed in Chapter I the inputs were
of the same form for every unit time interval. In this chapter we are
concerned with a dam of infinite capacity in which inputs may vary
seasonally so that thelr distribution in the wet season, say, varies
from that in the dry season.

A continuous time model in which two types of ordered input
of fixed (different) size occur altérnately in a Poisson process has
been considered by Gani (1960); this model is rather more restricted
than the one we wish to consider, and needs to be solved step by step
from recurrence relations, while we éan employ generating functions to
obtain the time-dependent solution.

We have that equation (1 .2.1}) still holds (with k=x). We let
the inputs in successive time intervals bé independent, but such that
the distribution of the input X, in (2t,2t+1) differs from the
distribution of the input X, . in (2t+1, 2t+2). Howew'fer, both types
of input are additive and their distribution in unit time intervals

is denoted, respectively, by
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p, (1) = p; = Pr(X, =1}

4 (1) = a5 = PriXyy,y = 1)

i,t =0,1,2,.... ‘ (1.1)

We shall consider 6nly inputs homogeneous in time, although the results
may be extended to the more general case as in Chapter I.

The process Zt is no longer Markovian; however, {Zt,t} jointly
define a time-homogeneous Markov chain.

We let P, (t) = Pr{Z,

Il

]2 =u} (1 =0,1,2,...) be the
probability distribution of the dam content at time t, given that
there is an integral-valued initial dam content u > O. The form of the

content distribution is different at odd and at even times; we can

construct the following set of difference equations for these distributions:

Po (2t+1) = (po+1o] )Po (Et)+poP] (2t)
i+ »

Pi(2t+'l) = ijiH _j(Qt) i=1,2,..., (1.2).
j=o

B, (2t+2) = (qo-+q1 )PO (2t+1 )+qu] (2t+1)

i+ ,
Pi(2t+2) = q_jPi+]_j(2t+'l) i=1,2,..., (1.3)
J=o
(oo} [ee]
subject toz Pi(2t+'l) =Z Pi(E'b) =1.
i=o i=o ‘
We define the p.g.f.'s
[oe]
, i
Qle,t) =) B, (6,
~ i=o
® © |s|§ 1

A(s) =Z pisi, B(s) =z 'qisi.

i=o i=o
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(o]

pi(t)s:L (|s|s 1) as the p.g.f. of the

If we write A(s,t) '=Zi=o

digtribution pi(t) of inputs in any t unit time intervals of the
form (2r, 2r+1), vhere r is an integer, we have (as in Chapter I)
that A(é,t) = (A(s)}t, so that pi(t) (i =0,1,2,...) is the coefficient
of &% in the expansion of fA(s)}t. Similarly B(s,t)==§::;o qi(t)si =
(B(s))". |

By multiplying the ith relation in k].E), and (1.3), by g

+1

and summing we obtain the difference equations

sQ(s,2t+1) A{é)Qfs,Et)'- (1-s)p_ B_(2t)

sQ(s,2t+2) = B(s)Q(s,2t+1) - (1-8) a4, Pb(2t+1).

By a simple combination of equations of this type we obtain
s%Q(s,2t+2)-A(s)B(s)a(s,2t) = -p_(1-8)B(s)P (2t)-q_(1-s)sP_(2t+1) (1.}

v 82Q (s,2t+3)-A(s)B(s)Q(s,2t41) = -qo(1-s)A(s)Eb(2t+1)-po(]-s)sPo(2t+2).
(1.5)
It can be seen that we must evaluate the probabilities PB(Et)
and P0(2t+1 ) of emptiness before we can £ind éxplicit solutions to
(1.4) and (1.5). To do this. we shall first discuss the probabilities
of first emptiness, and shall proceed from these to the probabilities

of emptiness.

2.2 Probabilities of emptiness

We define the probabilities
g(v,u,t) = Priz, = olzV =u>0; 2 >0,v<u<t)

that the dam with content u at timé v is empty for the first time at t
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(as in $1 ._?_) . Clearly emptiness cannot occur prior to the time u + v,
but it may happen at any instant t = utv+r (r = 0,1,2,...); for this
there must be exactly r inputs in such a way that there is no emptiness
before t = utv+tr. Until the dam becomes empty for the first time

= - - = . e % i 1
Z, =7 #8,-8 -t+v, where S, =X +X,+..+X, . (t 21) is the total input
up to time t; hence for first emptiness beyond utv we have

= .S > 0.
T T ©

_ i
We write ri(t,T) =Z

j=o P (t)qi_j(T) as the probability of having

i inputs distributed over t unit time intervals of the type (2r,2r+1)
and T of the type (2r+1,2r+2), for integral r.
We can now write out the following set of difference equations for

the probabilities of first emptiness:
t-u
g(0,2u,2t+1) =z rej(u,u)g(o,Ej,EtH -2u)
3= |
t-u

+ u)g(0,23+1,2t+1-2u)

To 341 (u,
J=o
t-u

g(0,2ut1 ,2t+1) Tp s (u+1,u)g(1,25,24+1-2u)

j:
t=u-1

+ To 541 (ut1,u)g(1 ,gj+1 ,2t+1-2u)
J=o '

t-u
g(0,2u,2t) = z To; (u,u)g(0,23,2t-2u)
J=1
t-u-1

+ u)g(0,23+1,2t-2u)

T2 341 (v,
§=o
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t-u
g(0,2u+1,2t+2)

Tos (u+1,u)eg(1,25,2t+2-2u)
J':
t-u

+ utl,u)g(1,2j+1 ,2t+2-2u)

T2 3+1 (
J=o '
t-u

E: rzj(u,u)g(1,2j,2t+]-2u)
j:

g(1,2u,2t+1)

t-u-1

Xp s +](u,u)g(l ,23+1,2¢+1 -2u)

g(1,2u 1,2t+1) Tp 5 (u,ut1)g(0,23,2t-1-2u)

t-u-1

+ Z Tp 341 (u,ut+1)g(0,25+1,2%-1-2u)
J=o
t-u-1

g(1,2u,2t) Tp 5 (u,u)g(1,23,2t-2u)

j:
t-u-1
+ z L5 541 (u,u)g(1 2J+1 ,2t=2u)
Jj=o

t-u

g(1,2u 1,2t+2) To; (u,u+1)g(0,2j,2t-2u)

3=
. t-uj'l

+ z 5341 (u,ut+1)g(0,25+1 ,2t-2u) (2.1)

j=o
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with
g(0,2u,2u) = ro(u,u) g(1,2u,2u+1) =.ro(u,u)

g(0,2u+1,2u+1) = ro(u+'l ,au)  g(1,2u+1,2ut2) = ro(u,u+1). (2.2)
As we have homogeneous inputs we can write, as we have done in
equation (2.1), that

g(@v,u,t) = g(0,u,t-2v) t 2 2v 4+ u.

g(@v+1,u,t) = g(1,u,t-2v).

We are actually ihterested only in the probabilities of emptiness
of the form g (O,u,t), but we need those of the form g(1,u,t) in order
to solve the equations in (2.1). The probabilities in (é.]) do not.
have a readily obtainable explicit solution, but they may be computed
iterativeiy for any particular values of u and t. Rather than obtaining
them in this way, it may be easier to formulate an occupancy problem
of which the probabilities are the solution, and use the method of
truncated polynomials as developed by Gani (1958,1961).

We can formulate the proﬁlem of fifst emptiness as an occupancy
prdblem in the following way. Iet us consider the probability
g(0,u,2t); there must be exactly r = 2t-u inputs such that there are

x_ inputs in (0,2u) , where x 21
x. inputs in (2u,2ﬁ+]), where x +x; Z 2

1

x__, inputs in (u+tr-2,utr-1), where X betx =T

X, inputs in (utr-1,utr), where x, = 0. (2.3)
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We can obtain similar relations when t is odd; we shall use these
combinatorial relations to obtain the probabilities of emptiness,
not necessarily for the first time.

Iet us now define the p.g.f.'s of the probabilities of first

emptiness as

o)

t
(P(V}u:e) =z g(v,u,t)@ |9|§ 1.
~t=utv

We can find from (2.1) and (2.2) a set of difference equations for the

P's as

@(O;eu;e)

2 .
C uz {(P(O)Ej)e)rgj (u,u)+cp(0,2j+] ’e)rgj+] (u,u)}
j=o

(\D(O)Qu"'] ,9) = Ggu-” z {o(1 :Ej)e)rgj (u+1 :U-)"'CP(] ,2J+1 ’6)r23+'l (u+1 :u) }
J=o

2u+] § . .
CP(] »2u,9) = 6% {o(1 ;23)9)1'23(11;11)4'@(] ’23"'])9)1'2:‘_” (u;u)}
j=o

9(1,2ut1,6) = 67 Z (0(0,25,0)7, (0, u+1)49(0,2541,0)7, ) (w,u+1)}  (2.4)

J=o
When the fwo input distributioﬁs are identical the problem reduces
to that considered in Chaptef I and has the solution given by (1.2.4).
We aow consider the probabilities of emptiness, not necessarily for the
first timne, of the dam. - Iet)us first consider emptiness at time 2t = utr

given content u at time zero. Since the dam may dry up before time
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utr, emptiness at utr may result with less than r inputs in (O,u+r),
but there cannot be more than r inputs in this interval.

As has been done by Yeo (196la) for simple additive inputs we
include the time interval (utr,utr+1) as an artificial measure in order
to formulate the problem in the same manner as that used for first
emptiness. In this interval we specify zero input; this has probability
po,.as it is in the time (2t,2t+1), and since what happens beyond u+tr
is independent of Po(u+r) we me t divide our final result by P,

We consider now the case where there must be exactly j(O = j = r)
inputs in (O,u+r); then for Zu+r = 0, and subject to zero input in
(utr,utr+1), there must be

x_ inputs in (0O,utr-j+1), where x 21

x, inputs in (u+r-j+1,u¥r—j+2); where x +x, 22

1

. . . . . . . . . . . . . . . .

Xj_1 inputs in'(u+r-1,u+r), where X PR Fetx, o= J

T J=1

Xy inputs in (utr,utr+l), where Xy = 0. (2.5)
This is precisely the same formulation as for the first emptiness

problem (2.3), with utr-j+1 substituted for u and u+tr+l for utr; now,

however, the number j of inputs may no longer be sufficient to prevent

emptiness from occurring prior to utr as well as at utr. We coﬁclude

that the probability of emptiness at time 2t = u+r, when there are j(é r)

inputs into the dam, subject to zero input in (utr,utr+l), is

Pr{Zz

2t=O|ZO=u; 2t=utr;

S =95 Xu+r=0]=g(0?u+r+]-j,u+r+]) (2.6)



If we remove the restrictive condition that there be zero input
in (utr,utr+l), and consider that the dam may become empty at time 2t

when there are any number of inputs j = 0,1,...,2t-u, it follows that

2t+1
-1 \. .
) = PO z 8(0:3)2t+1)
\\\ J=u+l '
o )

Similarly we have

P (2t

2441
-1

J=u+1
0

2.5 The time-dependent solution

To solve equations (1.4) and (1.5) we employ the method of

transforms. We let

a](s,e)

t=0
(o]

¥, (6)

t=0

be the transforms with respect to time of the Q's and the probabilities
of emptiness. Taking transforms in (1.4) and (1.5) we readily obtain

a. (s,0) = {s‘?']A(s)-poﬁ —s)s-]eﬂfg(e)—qo('l-s)s-EA‘(s)QQﬂr] (6)} x

-2t <

2t+1

2t+1 -

) @e,2tr)PHT, o (,0) = ) @(s,26)6%

z P_(2t+1)6°"", v (0) = Z P (2t)6°"

<u.

le< 1

25

@.7)

(2.8)
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o, (5,6) = ("5, (1-0)5™ B(6)6"4; (6) -, (1-0)5™ ¥, (6))

-{1 - éﬁiigii)eé}f].

These may be expanded, for suitably small values of 6, in powers

of 6 to give the p.g.f.'s of the content distribution as

u-2t=1

Q(s,2t+1) = s A(s,t+1)B(s,t) -

t

. . L -2t+23-1
- po(i-s)ZZ; P (2§)A(s,t-3)B(s,t-3)s J

J
t

-1 L\ =2t42)
- qo(l-s)z P, (25+1)A(s,t-3)B(s,t-1-3)s - ()
J=o

Q(s,2t) = s 2% (s,t)B(s,t)
' £
2, (1-8) ) ,(23)A(s,6-3)B(s,t-3)s
£ .
‘a(1-8) ) B, @3HA(e,0)))B(s,-1-3)s 2RI (5.2)
J=o

244231

These may be expanded for O < s < 1 in powers of s to determine

t-1
Py (2t+1) = r2t+1-u+i(t+1’t)'12>}:IB(QJ)Set-23+i+1(t'j’t’j)
J=o
t-]
- 3 . -. -o 3 2 - -
qoi{j PO(23+])s2t_2j+i(t Jst-3) i 2 u-2t-1 (3.3)

j=o
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=1

Pi(gt) = r2t-u+i(t,t)-POZ Po(gj)sgt'gj"‘i(t-] -cj)t-vj)
J=o
t-2 S
- (o s p1 s ——
qoz PO(23+'!)32t_2j+i,_.' (t-1-3,t-1-3) iz u-2t, (3.4)
J=o

where PO(2t+'l) and Po(Et) are given by (2.7) and (2.8) respectively,
" and where for simplicity we have put
5, (6,0) = z_(6,1), 5, (6,1) = r, (6,1) - x,_ (6,1 (1 21).
The validity of this last inve_rsion rests on proving that the
right hand sides of (3.3) and (3.4) vanish for i < max (0,u-2t-1)
and i < max (O,u-2t) respectively. Iet us; consider (3.4); the inversion
is obviously valid for 2t £ u, and for 2t > u 'we require.to show for

-i > 2t-u that

t-1-[3]
Togagoq (B28) = _POZ R NCHIENIY (t S1-3,%-3)
J=[llg—1] ‘
l.»t-l-[%l] |
T % Z Fo (204185 -25-1 p (£-1-3,8-1-3)
3=[5] '

+ 0, 5P )P (2t-1)

r‘(i— -1
i,2m o 02 5

121 . .
6:i.,2m+'l oro( 2 > ™o =) Po(2‘t-1), i=1,2,..,2t-u,

(3.5)
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where m is a non-negative integer, aij is the Kronecher delta, and [x]
is the greatest integer not exceeding x. We consider the process

Z, = Zo+St-t-]; {Z%,t} is a time homogeneous Markov chain. If we use

the same type of procedure as Yeo (l961a) we find that with ZO =

jsal
s[5
SE'tH-]-i-C(t)t) = Z Sgt+]-1(j’j)g(01§)2t-23)
'=[i‘.ﬂ_
LB
t-[¢/2]

+ 0 . Y - .
21‘ 23-1(3-1,3)g(1,¢,2t-23)
J=[§]+'I

i i
6i,2mro(§ -1, 5)g(1,§,2ti)

+8y r A1, Ihg(0,¢,2¢-141)

i,2m+t1"0 2 7 2 25, 1)

Now by summing { over the range (u+l, 2t-i) we obtain, after a few easy
steps, (3.5). Similarly we can show that P, (2t+1) = O for
i <-max (O,u-Et-D. We now have a valid expression for the content

probabilities in the form

£-1
Py (EH1) =y, -u+i(t+]’t)_poz Po(g‘j)s2t-23+i+1 (t-3,%-4)
Jj=o
£=1
) . s . otoo
qoz Po(aqﬂ) SEt-2j+i(t Jst-3) i >max (0,u-2t-2)
j=o

(3.6)
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£=1
P, (2t) = %at-ufi(t’t)'PojE: Py (@3)sp pypy (8-1-3,%-5)
Jj=o
£-2
-qt)Ej Eb(23+])32t_2j+i_1(t-]-j,t—1—j) i >max (0,u-2t-1.
J=° (5.7)

The probability distribution Pi(t) (i,t = 0,1,2,...) of the
contentvof the dam is given by (3.6) or (3.7) depending on whether
t is odd or even. When the two input distributions are identical
this reduces to (h.2.7).

The method used to obtain these results is equally applicable to the
case where there are K >2 independent additive types of input occurring

cyclically, although the results become rather unﬁiéldy; In this case

we obtain
Pi(Kt+n) = Pr{th+n =1i]|z =u>0)
= Tiprpegri (B2 00 oo bg)
K-1,t-1
- PK+n_‘| -V-,OPK+n-'I - (O) Kj+K+n-~1 -V) X
v=n j=o
SKt-Kﬁ-K}1+v+i(t'j]"’”t'jK)
n"] Hi t .
- Z z Pn_'l "V,OPn—] -v (O)KJ’l‘n-.l -'V') X
v=0 Jj=0
sKt_Kj+l+v+i(t-j1+1,...,t-jK¢1)
n-1
4—}2 ph-]-v,oPn-]—v(o’n']'v)SKt+1+v+i(t1’""tK)

i>0,t >0,n=0,1,...,K-1, - (3.8)
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where [po,.} ) {pK 1, } are the K input distributions occurring

in the time intervals (Kt,Kt+1),...,(Kt+K-1,Kt+K); ri(t],...,tK)

and si(t1"'°’tK) are the natural generalisations of ri(t1’t2) and

5. (t5tp); § 53, S 341, 5%, S+ (1515K), and the values

of the ji and ti can readily be determined from the difference equations
for the p.g.f;’s; the'first term needs to be slightly modified if
0<u<n; Z andz indicate that when v =n =0, and v = O,

the j sums range over (0,t-2) and (0,t-1) respectively; and the

last term of (3.8) is non-zero only if u = n-1. The probabilities of
emptiness are given by

Kt+n+1
P (Kt+n) = .| g(0,3,Kt+n+1) O=n =K1, (5.9)
o) n,o

v=nt+1
and we can find recurrence relations for the probabilities

g(0,u,Kt+n) of first emptiness of the dam.

2.4 Stationary distributions

The statlonary probabilities P (1) = P (2t+1) and

E, (1) = P (2t) exist, as the limits of (3 6) and (3 T); these

t—>00
are proper distributions if and only if the mean input is less than
unity i.e. —é—(p.l+p2) <1, vhere p, = A"(1) and p, = B'(1). The first
terms of (3.6) and (3.7) converge to zero as t > ®, and the remaining
terms give I
‘B, (1) = -p_E, (o) Z 2J+Hl(J,J) 1.5 (O)Z Sp341(329-1)
J=1 J=1

i>0 (k.1)
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B (1) = -B,5,(0) ) 5. (5:0)-a 8 (0) ) sy, (3,-1)
3= =1
i>0, (k.2)

(oo} e}
subject to;{: P](i) = }Z Pé(i) = 1. Determining the sums

.

i=o i=o
of the infinite series of (4.1) and (4.2) is likely to be very

difficult, unless the series happen to converge quite rapidly when
good approximations may be made; we shall concentrate on a more
direct method.

We can obtain the p.g.f.'s

Q) =) 2 W, aye) =) Bt o=
i=o i=o

of the stationary content distributions from a consideration of the
initial difference equations which are of the same form as (1.2) and (1.3);
after a few easy steps we obtain

p,(1-8)sE, (0)+q_(1-s)A(s)P, (0)

Q, (s) = ‘ (5.3)
A(s)B(8)-s%
p_(1-8)B(s)B,(0)+q (1-s)sP, (0) '
QQ(S) - (o] 2 O 1 P ()-I-.Ll-)
A(s)B(s)-s%
where for the presént P](O) and Pé(O) are unknown. However, we can
find them from (4.3) and (4. 4) (c.f. Bailey (1954) and §1.2).
As s> 1 = O we find that
p,E, (0)+q P, (0) = 2-p -0,. | (k.5)

We note that when the input distributions are identical (L4.5) reduces



to the relation P(0) = (1-p)po-] obtained by Moran (1956). The
denominator C(s) = A(s)B(s)-s® of (4.3) and (4.4) has one and only

one zero at s = 1, since p,+p, < 1. We have |A(-s)|SA(s) and
2

1
|B(-s) |SB(s) for s 2 0. Suppose A(s) and B(s) exist and are finite
for |s|<ﬂ+8 for some & > 0. For sufficiently small & > O we have

|s|2>|a(s)B(s)| on |s| = 143, as o +0,< 1. Hence by Rouché's

1
theorem C(s) = O has exactly two roots in |s|§ 1, namely s = 1 and
s = s, (Is]|< 1) which are distinct. For a proper p.g.f. Q](s) to
exist, Q](s) must be finite for |s|§ 1, so that there must be a zero

at 8 = s, of the numerator of (4.3) as well as a zero of the

1

denominator, and so
p.s,F,(0)+a A(s,)P, (0) = O.

The equations (4.5), (4.6) are consistent as the determinant

P 9%

pos1 qu(S])

= POQO(A(S])-S]) #0;

if A(s1) = 5. then B(s]) = s., which is not possible; for suppose

1

Py <1 (if not then certainly p, <1 and we consider B(s)-s), then
by Rouché's theorem A(s)-s has only the one root s = 1 in the region

|s|s 1. Solving (4.5), (4.6) we obtain

7 (0) =

A(sq) (2-p-p,)
20 = aE T

32

(4.6)

(&.7)
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We now have explicit expressions for the p.g.f.'s Q](s) and
QE(S) which we wish to expand to give the stationary probabilities.
In general this may be done by determining the remaining roots of
C(s), breaking up Q](s) and Qe(s) into partial fractions and expanding
(c.f. Prabhu (1958)).

Ags an example. we consider two geometric input distributions
A(s) = a(]-bs)-], B(s) = a(1ABs)-], of< a<l,0<a<1, b = 1-a,

-1 -1

B=1C,p, = ba ", 0, P 5 then

(s-1)(T-Bs){a(1-bs)sEé(O)+auP](O)}

Q, (s)

bBs?- (b+B)s3+s2-a0x .

QE(S) _ (s-])(1-bs){aafb(o)«a(1_gs)P](o)}

bBs %= (b+B) s3+82-a0 (4.8)
The denominator of Q](s) and Qe(s) has four roots s = T, 845 855 53
with only |s.l <1, say. From (4.7) we have
-s1(1-bs1)(2-ba"-sa‘])
?,(0) =
a{a-s](1-bs1)}
5 (o) = 2D & -pa’ | ‘ (k.9)
2 B a—s]z1-bs1) ) .
We break (4.8) up into partial fractions of the form
Q,(s) = aPé(O)-N](se)(s-se)'1+N1(55)(s-s5)'1
Qy(s) = aP, (0)-1, (s,) (s-5,) ™ 41, (s5) (s-55) ™, | (4.10)



N](s) = [{bB(s2+85)-(b+B-st1)}afé(o)s-a%6PH(0)
+{(1-bs,) (1-Bs, ) -bBs,85) JaB, (0) 1 (b (s5-5,))
Né(s) = [(bB(s2+s5)-(b+B-st1)}aP](O)s-aabfé(O)

+((1-bs; ) (1-Bs, ) -bBs, 55 J0P, (0)1 (0B (s5-5,)] 7" -

We can now readily expand (4.10) to give

-1 1

B (1) =1 (s,)8, 7" N, (s5)857

: » . i>0
B, (1) = Wy(sp)e, " My (s5)s570 "
As examples we put (1) a = 0.5, & = 0.6 (ii) @= 0.k, o = 0.8.

Then (i) Q;(1) = k3332, @3 (1) = k.0257, (ii) @} (1) =8.1528,

Q}(1) = 7.4540 and

P, (1) B()
i (1) (i1) (1) (i1)
0 0.2930  0.1891 0.3150 0.2467
1 0.1138 0.0815 0.1136 0.0797
2 - 0.0965 0.0732 0.0940 0.0678
3 Q.0809 0.0658 0.0782 0.0611
4 0.0679 0.05%2  0.0653  0.05k9

0.0567 0.0532 0.0546 0.048kL
0.2902 0.4780 0.2793 0.4k4ok

B8
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It would be useful if we could find some simple approximations
when, as is likely in practice, there are quite different wet and dry
seasons. We could consider an input p.g.f. A(s)B(s) with possible
releases of size two occurring only at the end of dry seasons i.e.
2%t-0; however, this is not any simpler to deal with than the model we
have used. A simpler model is one where there is an input p.g.f.
{A(s)B(s)}% with a possible unit release at the end of each interval.
Although this has been solved by Moran (1956), Yeo (1961a) it is not
very useful as the approximations have been found in the cases
considered to be poor; in the examples considered above the stationary
probabilities of emptiness are (i) 0.3043 and (ii) 0.2210, which are

not very useful.

2.5 A continuous analogue

We now consider a continuous analogue of our problem by allowing
the units of measurement to tend to zero in a similar manner to that
of Chapter 1. We suppose for the discrete problem that there are K
types of input occurring cyclically. There is a unit of A(> 0) so that

content, time, input and release are measured in multiples of &. We put
1-A.A ' i=o0

@) 2y, ® -1 n AR (18) -4, ((1-1)8)) i-1e,..

) i=x2", t=m"", u=1ur", (5.1)

where x, T, U are real and non-negative, Aj(i ) (1 53 sK) are

cumulativé probabilities with iim A(iA) =1, and such that in the
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limit as i > =, A> 0, iA> x we have 252 Aj(iA) = Cj(x) (0 = x < ),
where Cj(x) is a d.f.

Under the condition (5.1) the set of K equations of the type
(1.2) and (1.3) that we obtain for the discrete process tend as A > 0

to the integro-differential equation
X

lW(x—v,T)de(x)}, (5.2)

where W(x,T) (0 = x, T < ) is the d.f. of the content for the

K
%T'W(X)T) - %}E W(X:T) = - Z )\:j{W(X,T) -
J=1

v

continuous time process. We now have a process which is equivalent
to the single server queueing system with arrivais occurring in K
independent Poissbn proéesées with service time distributions having
a general form depending on the class of the customer. The inputs no
longer occur cyclically, but independently; this is thus different from
the problem of Gani and P&ke (1962) where inputs in a continuous time
process do occur éyclically. We have reduced a set of K equations for
the discrete problem to a single equation for the continuous analogue.
A solution of the equation (5.2) may be obtained from (3.8) by
using the substitution (5.1) and taking the limit A > 0, but it is
simpler to solve (5.2) directly. This is of the form (1,3.2) with

K

xiCi(x), and can be solved by the

capacity K = « and AM(T)F(x) =Zi=]

same method as used in Chapter 1. The time-dependent solution is
' . . K
given by (1.3.3) to (1.3.7) with X(T)F(x)==§:i=1 hiCi(x) and K(x,T)

is such that its IST is
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©

f e.eX d.K(x,'r) = e_Tg(e) R
X=0
where K -
50) =) 2, (1-£,)), 5,(0) = [ & Fac, () o = o.

i=1 o

When K =1 K(x,T) is given by (1.3.8) and when K = 2

A ?» T
K(x,7) —Z Z -(h) nhgd t.ch (x-y)acttI* ). (5.3)

n=o Jj=o y=0
w0
The IST MK(e) = fo e_edWK(x) (R1 6 2 0) of the stationary content
(or waiting time) -distribution, which exists forzli; Mpy <,
where p, = -Oti’ (0), is from (1.39)

MK(G)}{] - i )»ipi}/{] - 9'15(6)}; | (5.4)

i=1
The mean waiting time EK = -;HKZ (0) is

ZI:E—] i 1"(0)

h = = : (5.5)
2(1 -z:.—'l 1p1)

In the context of queueing theory discussed in Part 2, we can

also consider the distribution of the number of customers in the queue,

o .
1

including the one being served. The p.g.f. rK(z) =Zi=o r,z

(|z|= 1) of the stationary queue size distribution may be obtained as

K
(=) s py) (-2 (vev,e)
rK(Z) = . E(VK_VKZ? | ) ’
where Vi =Z. A;- The IST ./\K(G) =ﬁ eOx dGK(x) (R1 ‘6 = 0)

i=]

(5.6)
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of the distribution of the length of a busy period may be found
as for K =1 [Takdcs (1955)] as the unique solution in real 6 >0

.. lim _
with gy, 4(6) = 0 of

1

£ (6) = v §(VK+9-VKI\K(6??. (5.7)



PART 2

SINGLE SERVER QUEUES
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CHAPTER 3

QUEUES WITH MODIFIED SERVICE MECHANISMS

3.1 General remarks

The problems in the theory of dams described in Part I may be
considered as particular examples of queueing theory; however, it has
been found convenient to develop dam theory along slightly different
lines, particularly for dams with a finite capacity. In this Part
some problems of single server queueing systems are discussed, Which‘
have some similarity to the infinite dam problems of Part I, but
which will be considered separately.

Work in queueing theory, which has been applied to many branches
of science in the last half century, has been concerned mainly with
(i) the properties of the process when it has settled down to
statistical equilibrium, (ii) the busy period distribution and (iii) the
time-depsndent properﬁies of waiting time and queue size. We are
concerned in the next two chapters primarily with the first two
problems, in contrast to Part I where the time-dependent problem
for dams was studied in the most detail.

Queueing problems may be specified by the following three
propérties: (i) the inter-arriva.l time distribution, (ii) the service
mechanism and (iii) the queue discipline. We shall consider only

single server queues; in this chapter the queue discipline is first-
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come first-served, i.e. all customers are served strictly in the
order of their arrival, while in Chapter 4 we shall discuss problems
where some types of customer have precedence to service over other
types of customer.

Throughout we suppose that the time intervals between the
arrival of successive customers (or bunéhes of customers) are random
variables which are independently and identically distributed. This
distribution is in most cases taken to be negative exponential, so
that customers arrive independently in a Poisson process.

We suppose that the service time of a customer is a random
variable, whose distribution in the most general case may be
dependent on (a) the waiting time in the queue when the customer
arrives or (b) the queue size at this point. Although it is possible
to write down equations for the waiting time and the Jjoint waiting time-
" queue size distributions, it has not been found possible to obtain
important results for the general case; however, it is possible to
solve some special cases, one of which ‘we are concerned with in this
chapter. Here the service time of a customer may be different if he

arrives at an empty or a non-empty queue.

3.2 Introduction
Let us consider the following generalisation of the queueing
system GI/G/]. In a single server system customers arrive at a counter
i = - = =
at the instants T,,Ty,. -7 .- such that t =T Tn_](n 1), TS 0,

are independently distributed random variables with common d.f.'s A(x),



o0 o]
finite means a = E(tn)i/; xdA(x) and IST's a*(8) =k/;_ e_edi(x)

(RL 6 2 0). If the n-th customer joins a non-empty queue, let his
service time be 8,7 while if he joins an empty queue let it be ros

[sn} and {rn} (n 2 1) are sequences of independently and identically

distributed random variables, which are independent of tn’ with

common d.f.'s B(x) and D(x) (0 = x < w) respectively, finite but non-

]

. (o]
zero means b = E(sn) =&/; xdB(x) and d = E(rn) =b/; xdD(x), and IST's

¥ (0) =j:: e %%aB(x) and £(6) =foo_° e” ¥ap(x) (RL 6 2 0). ILet v be

the time the n-th arrival waits before commencing service; then

W+ u w +u >0, w >0
n n n n n
w1 S Sy c, > 0, W= 0
0 otherwise,
where u = -t ., endc =r -t .; {un} and {cn} are independently

distributed random variables with the d.f.'s

0

U(x) =f B(xty)dA(y), c(x) =f

O- ) o=
with means E(un) = b-a, E(cn) = d-a respectively (E(Iun|) < o,

E(le, ) < ).

This queueing system may arise in several ways, such as when a
machine is shut down when no items remain to be served, and the service
mechanism is different for the first item of a group. It will be used

in the priority queueing in Chapter 4, and in the traffic problems

of Part 3.

Finch (1959) has considered a process which differs from ours

only when the n-th arrival joins an empty queue; the customer then

D(x+y)dA(y), =- o <x < o,

Lo

(2.1)

(2.2)
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waits a time v, before commencing‘a service of length 8, instead of

. X
receiving an immediate service of r . If we put D(x) =h/; B(x-y)av(y),
where V(x) is the d.f. of the Vn , then we can compare the results

obtained for the two systems, as we do in §3.9.

3.3 'The stationarity condition

For the GI/G/] queuveing system it has been shown by Lindley

(1952) that a unique proper stationary waiting time distribution
exists if and only if E(u) = b-a < 0. Finch (1959) has shown that
this is the stationarity condition for his process, provided E(v) < o,
and we shall show that it is also a necessary and sufficient condition,
provided only 0 < d <, for the existence of a proper stationary
waiting time distribution for our prbcess. The condition is independent
of the service time distribution for a customer joining a non-empty
queue; we may intuitively expect this, for regardless of the (non-
zero) finite size of the service time for a customer finding the
qﬁeue empty on arrival, the waiting time must eventually reduce to
zero again with probability unity if E(u) < 0, and may build up
indefinitely if E(u) 2 0. We shall prove

Theorem 3.1. A sequence of non-negative random variables {Wh}

is defined by (2.1) for n =1,2,..., and w_ is a given non-negative

random variable with d.f. Wo(x)' (0 £ x < ), where {uh} and{cn}

are defined above in §2. Write Wﬁ(x) = ET{wh =x} (n=1,2,...),

lim

IT>°°
for all x 2 0; if E(u) < 0and 0 <d < » then W(x) is the d.f. of

then W(x) Wn(x) exists. If E(u) 2 0 and 4 > O then W(x) =0
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a non-negative random variable, W(x) is independent of W, and
is the unique d.f. solution of the integral equation
0 x<O0

W(x) = X
W(x-y)au(y) - w(0){u(x)-Cc(x)} x 2 0. (3.1)

-00

Proof. Since W z 0 we have Pr {wn S x}=0Tforx<0. ForxzoO

Pr{wn_._] s x} = Pr{wn+un s x, v o> 0} + Pr{wn =0,c = x}
= Pr{wn+url s x, w, = x} + Pr{wn = 0, c, = x}
- Pr{wn = 0, w s x}. (3.2)
Thus
0 x<O0
Wn+'l (x) =/ x 4
W (x-y) au(y) - w _(0) {U(x) - C(x)} =x zo0. (3.3)
From (3.2) by iteration we have
Wn+'l (x) = An(x) - Ln(x) (3.4)

where Ln(x) = Hn(x) -_Gn(x) and

A (x) = Priw +u +u.+...4+1 = X, 0.+e..+0 = X,...,U +1 = x,u =X
n() {001 n 7’ n ? ’"n-1""n ’“n J
n
H (x) = Priw, = O,u.+u. .+...+u =x,u, _+...+0 =X,...,U +u Sx,u =X
n() [l‘ e TR B n 2 i+ n 7 n-1 ’n}
i=
n
= Priw. = OjPr{u.+u. .+...+u =xX,u. .+...+u =x,..
Zil }{11+'I n i+l Un=%
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here we have

{ul’ Yipge

.,un} and (ci, uy

= =
E:ET{W' O}Pr[u]+u2+...+un+1_i-x,..
i=1 '
= = <
}:PT{Wi O,ci+ui+]+ ..+un_x,ui+]+...+un_x,..
3
< s
.,un_]+un_x,un_x}
n
= = . : <
ZE:Pr{wi O}Pr(ci+ui+]+...+un_x,ui+1+...+un_x,..
i=]
< <
..,uh_]+un_x,un_x}
0 ‘
- <
E:ET[W + O}ET{u]+ "+un-i+cn+1—i_x"'
=1
.,u]+u2§x,u1§x};

used the fact that Pr{wi =

n

RERRER }.

0} is independent of

By defining a sequence of random variables {Wh*} by

Cwith w* =w
(]

(1952), we see that A(x)

and if E(u)

Let us now comsider E(u) 2
E(u) = 0, which may be taken together if we make use of the results of

Lindley (1952), who employs the strOng law of large numbers for

2 0 then A(x)

w * +u w¥+1u >
n n

w¥4+u =
n n

o2 We obtain Pr{w* s x}

lxm

0]

n=1,2,...
0]

= A (x).

= e A (x) exists, is independent of W_ (x),
= 0 and if E(u) < O then A(x) is a d.f.

This includes both E(u) > O and

E(u) > O and a result of Chung and Fuchs (1951) for E(u) =

We distinguish two cases:

c(o) - u(o) > o.

(1) c(o)

In case (i) Ih(o)

- U(0) £ 0 and (ii)

2 0 and therefore Wh(o) <

< =
.,u]+u2_x,u]_x]

Following Lindley

L5

(3.5).

(3.6)
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lim

it follows from Lindley (1952) that oo W (0) = 0, and as a consequence

lim
100

Gn(O) > Hn(O). We write

Wn(x) =0 for all x (0 £ x < ). For case (ii) we have

n ,
o n ‘
= ’ = =
wh*](o) An(0}+§§-+}: Pr(wi O}[Pr{ui+...+un+]_i_0,.
i=1 i=n_+]
s = - =
..,u]+u2_0,u1-0} Pr(ui+...+un+cn+]_i_0,..
< = 7
..,u]+u2_0,u]-0}] (3.7)
for 1 < ho < n. By a suitable choice of n for n sufficiently large
lim lim _
we can show that oo W (O) O and hence o Wn(x) =0 (0sx<w),

The remainder of this section is concerned with the case E(u) <O

and 0 < & < ». Iet € be the event'{wh = 0}; € is an aperiodic certain

recurrent event [Lindley (1952), Feller (1957)]. The llm Pr{w = 0}

exists, and is greater than zero (and = 1), i.e. the mean recurrence
step number is finite. The mean recurrence step numbér of the event €
is not greater than the expectation of the number of steps ﬁo the first
zero of the sequence of random variables {w;} given by (3.6) with

LA being given in the following way: if r, < 5, choose wb* = 0, and if

these define Wb(x). Since E(u) < O and

r., 2 s, choose w*¥ =1r_ - s

1 1 o 1 77

E(r) < » the required result follows from the theorem of Iindley (1952).
We also have ?g i<n Pr{w = 0}> 0 for any finite value of n, so that
min

]Si<wPr{w. = 0}> 0. It follows from the expression for Ih(x) that

L(x) = n*w L (x) exists, is independent of w_ and is given by



L6 = (8 B, = 01)) (g, (0) - ()],

i=1
where
= + e .o = e =
hi(x) Pr{u.l 112+ +ui > x,u2+ +ui X, ,ui x}
= = s
gi(x) ].=tr'[c]+ug+...+u.:.L > Xyuyte.tu; S x50, S x}.

This last follows as

PT{u1+u2+...+ui S Xouyte.tuy S X000, S x)

il
1A

Pr{u2+...+ui £ x,...,ui x} - Pr{u]+u2+...+ui > x,u2+ ..

ety S X,...u, S x}

Pr{c]+u2+...-+ui S Xpupte. U S Xee.,u; S x}

+"I+ § L AN )
PT{u2 u, = x, ,ui_

lIA
™
(")
]
i
~
_.O
+
l\f
¥

+ui > x,u2+..

From (3.4) we have

. .
-1 = Ln(X) = z Priw ., 4 =0} {g;(x) - hi'(X)} 1.
: i=1

Now it may be shown [c.f. Finch (1959), p.319 with vy = 0] that

n 00 .
lim _ N
. z Pr{w . _; = OJh,(x) = z h, (x) < i
1= e

and as a result we can show that

n : ®

lim _ |

rr*“Z Pr{v_.;_; = Olg, (x) éz g; (x) <o
i=1 i=1

We have_shown that W(x) exists independently of w_ . The

existence of W(x) could also be deduced from the result of Finch (1959).



For whatever the value of (rn} there exists a non-negative random variable
v, with d.f. V(x) and mean v < « such that D(x) <j;XB(x-y)dV(y)
thus our process is bounded above by that of Finch, for which W(x)
exists, so W(x) exists for our process as well.
Iet us for the moment consider the problem in terms of a random
walk with an impenetrable barrier in which a particle starts at

the origin, so that w, = 0. Following Lindley (1952) let the next

jump which meets the origin be the n]th, giving W = 0, and put

]+1

v =w_+u , so that v is the amount that the particle would
ny+1 n; 1y nj .

have gone over the barrier if it had not been there, ILet the next

Ajump meeting the origin be the nEth, define v similarly, and so on.

ne+1
We have
n.l n,
%ﬁ]—%+21w.n,%+1=%+z u,,
i=2 i=n_ _+1
r-
so that
vn +]+vn2+1+"'+vn +1 c.l+02+...+cr Ur .Un n
1 - . + —=—L1+ L (3.8)
T r r n, T’

vhere U =) . .. Nowlv |s|u_ |, and hence v_ , which is a
n i=11 nr+] n n,

random variable, has a finite mean E(v). The left hand side of (3.8)
tends, by the strong law of large numbers, to E(v) - E(c) + E(u);
U, /nr tends to E(u) (< 0), and thus nr/ﬁ{E(v)'-E(c)+E(u) }E(u) .

r
By the comverse of the strong law of large numbers (nr-nr_]) is a



random variable with finite mean equal to {E(v) - E(c) + E(u)}/E(u);
this is the mean recurrence time. The theory of Feller (1957) shows
that the mean recurrence time is (W(0)}™', and thus W(0)> O.

We have shown that W(x) exists independently of WO; it remains

lim
>

are non-decreasing functions of x, it is easily shown that W(x) is

to show that W(x) is a d.f. Since W(x) = Wn(x) and the wn('x)

1lim

a non-decreasing function of x. We require to show that oo

The Jjoint occurrence of W'n+un = x and . £ x together imply Wn+1'§ X,

so that

= 2 = Y :
PT{wh+] x} Pr{wh+un x,e_ x};

without loss of generality let us take wé = 0, then by iteration

Priw _.=x} 2 Pr{w +u +u
o "o

+oeetl =X,C 0 Fe oo+ SX,...C U =X
n+1 n 2% n ’ -1"™n

1 n=-1

c =x
¢ sx)

PT{u]+...+u

0 ]+cn§x,...,u +c,5x,c,5x}

12 1

Pr(viéxauiinisién]

where Vo= ugtugtestuy ey (1=1,2,...).

The events Mh(x) = [Vi Sxalliinl S i s n)] are monotonic non-

increasing functions of n and hence by the property of probability
lim
>0
[Vi Sxalliz1i]. Thus

measure Pr{Mh(x)} = Pr{M(x)}, where M(x) is the limit everit

W(x) z Pr{M(x)}.

lim

In order to prove that _ W(x) =1, it is sufficient to show that

iiﬁ Pr{Mh(x)} = 1. This follows from the law of large numbers, since

wix) =1.

k9
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E(u)< 0 and -» < E(c) < w, by the same type of argument used by
Lindley (1952) in the corresponding part of his theorem. Thus W(x)
is a 4.7T.
The fact that W(x) is a solution to the integral equation (3.2)
follows from (3.4) by Iebesgue's dominated convergence theorem. If
W*(x) is another solution of (3.2) which is a d.f., take Wo(x) = Wk(x),
then from (3.4) we have that Wh(x) = W¥(x) for each n and hence W¥(x) = W(x).

This completes the proof.

3.4 The time-dependent problem

We now briefly consider the time-dependent queueing problem,
where the inter-arrival time distribution is assumed to be negative
exponential, i.e. customers arrive in a “homogeneous Poisson process so
that in a small interval of time 8t > O the probability of (i) no
arrivals is 1-Adt+o(dt), (ii) one arrival is Adt+o(dt) and (iii)
more than one arrival is o(dt). We define the d.f. W(u,x,t) = W(x,t)
as the probability that atvtime t the waiting time in the queue is
not greater than x, given that it was u at time zero. F6r x 2 0 we

have
X

W(x,t+5t) W(x-y,t)aB(y)

(1-§6t)w(x+at,t)+x5f/;=o
+k6tW(o,t){D(x)-B(x)}+o(6t). : (4.1)

We have W(x,t) = O for all x < 0; W(x,t) is continuous for all x > O,'

but has a discontinuity at x = 0, the concentration W(0,t) being the

probability that the server is idle at time t. ILet gz(x’t)

bé a



right derivative of W(x,t). From (4.1) by letting t>0 we obtain

x -
gz(x’t) - gz(x’t) =-XW(x,t)+XL/ﬁ W(x-y,t)dB(y)
y=°
+AW(o,t) (D(x)-B(x)} x 2 0.

If we assume more generally that the service time 4.f. B(x|y)
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(4.2)

is a function of the waiting time y at the point when a customer arrives

then we would obtain

. x
%tw(x,t) . %XW(X,’G) =->»w(x,t)4>»fw(x-y;t)d3(yIX'Y))
y=0

which has (4.2) as a special case. However, it has not been found
possible to solve (h.B) explicitly, and we shall concentrate on the
solution to (4.2). If B(x) = D(x) then (4.2) reduces to the integro-
differential equation of Tekdcs (1955) and has the solution (1.3.4).
Taking transforms in (4.2) we obtain a differential equation for
o :
the IST Q(6,t) =h/; e~ a(x,6) (RL 6 2 0) of the vaiting time d.f.

W(x,t) as
%tﬂ(e,t) = (0,t){6-M(1-¥(8)) }-W(o,t) {641 (¥ (8) -£(6))},

which has the solution

t,
(0,6) = PR VE)_ [100,1) (omn((0)-t(0))
| v

(6T (62 (1-4()) ]

(&.3)

(L.4)

(k.5)
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where for the moment W(0O,t) is unknown. This may be inverted in a

similar manner to that used by Gani and Prabhu (1959a). We write

(o]

K(x,t) =Z e ™M Ovt) PER*(x) (1) ] x

n=o

v
o

where B *(x) is the n-fold convolution of B(x) (BC*(x) = 1,x20; = 0,x<0).

d
When the derivative k(x,t) = T K(x,t) exists. we obtain

t
W(x,t) = K(x+t-u,t) -f w(o,t;T){k(x+T,1—)dT
x T=0
[ (B (xny) D (o) B (v, 7)) S (4.6)
y=-T

To complete the inversion of (4.5) it is necessary to show that the
right hand side of (4.6) vanishes for x < max (O,u-t); this I have been
unable to do, although from physical considerations this should be so.
©
Iet Q*(6,s) =]; e_StQ(e,t)dt (RL s > 0) and W¥(s) =
w
L e 5% W(0,t)dt (Rl s > 0) be the transforms of Q(6,t) and W(0,t)
respectively with respect to time. Then from (4.4) by taking transforms

we obtain

2%(6,s) _ (e, ozéys()%i%g;xw(e}_xg(e)} . o)
To find the unknown function Wx(s) we argue as Bene¥ (1957) has

done for the NVG/] system. There is a unique solution n(s) of

n(s) = sth-M(n(s)) o ' S (+.8)
in R1 (8) > 0 for R1 (s) > 0. 1In this region 0*¥(6,s) must converge so
that the'zeros of the denominator of (4.7) must coincide with zeros

of the numerator of (4.7). Thus
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’ 2(n) e
RO v ey mva e i T T (n)-RE(T) (4.9)
where u is the waiting time at time zero. When V¥(6) = £(6) this has

been inverted, and the probability of an empty queue at time t is

given by (1.3.5).

3.5 The stationary waiting time

We now return to the stationary properties of our process and
congider the stationary waiting time distribution; we assume throughout
the remainder of this chapter that the stationarity condition E(u) < O

and 0 < d < » holds. We prove the following

-hx(

Theorem 3.2. If A(x) = 1-e"X(0 = x < ®), then the IST Q(6) of the

stationary waiting time distribution is given by

o0 - Lsagrase) =

wheré the probability W(0) that a customer arrives to find the
server idle is
W(0) = (1-Mb) (1- pira) ™. . (5.2)
Proof (a). We shall prove this theorem by two slightly different
methods; the first is similar to Theorem 2 of Finch (1959). For this
it is'simpler to deal with characteristic functions (c.f.'s) rather
than IST's. We put s = -if, and thus wish to show

s) = W<°iiii'§$§§§*x@<s)} | o | (5.3)

where W(0) is given by (5.2).
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We require to find a solution to (3.1). Following Lindley

(1952) and Finch (1959) we define a function W (x) by
X

Wk (x) =L/“W(x-y)dU(y) —0 < x < oo, (5.4)

- ©

When x < O we have

X o
Wk (x) =L/ﬁ W(x-y)u/\ dB(y+z)he-XZdz

y:-oo - Z=o

= f f (g e ™ # V%) gyam(2)

y=0 z=0

where
o

¢ =w0) = [ W(yanty).

- oo

For x 2 O we have from (3.1) and (5.4) that

wk(x) = Ww(x) + w(0){Uu(x) - ¢(x)}, x 20,
sO that
Wk(0) = W(0){1+U(0) - ¢(0)} = W(O){(1+y(dr) - E(ir))

From the definitions (2.2) of U(x) and C(x) we have

f 8%y (x) = %-zl f 15%a0 (x) = x%i%)'

- o0
Using these and taking Fourier transforms in (3.1) and (5.4), and using

(5.5), we obtain

[ee] [52]

X
f TS qipk(x) = f % | aw(x-y) au(y)

- K==00 y==-0




25

A(+ie) " () a(s)

o ' ©

= f e qu* (x)+ f e15%aw(x) - W(0)
- O-
+ w(o)f 8% au(x)_w(o)f e5%qe (x)
o- o-

= M(M+1s) T W*(0)+0(s) W (0)

+ Mveis) TIW(0) (¥ (8) -6 () =¥ (M) +L (1) );
equation (5.3) followé from these felations and (5.2) is obtained from
(5.3) by the limiting process s + O.
Proof (b). We can brove (5.1) by several different ways, each of which
is related to the method due to Takdecs (1955). As t > o gf W(x,t) > O
and from (4.2) we have | »
x
W) _ ) o f W(x=y) aB(y)+Mi (0) {B(x) -D(x) ) xz20  (5.6)
Taking IST's in (5.6(; readily yields (5.1) and hence (5.2). Allowing

t to tend to infinity in (4.5) also gives the result, as does the

lim
s>0

Chapter 5].

s0*(0,s) by using an extension of Abel's theorem [Widder (1946)

The moments of the stationary waiting time distribution may be

found from (5.1) by differentiation; the mean is

AE (22 ) -A2DBE (r2 HEAE (7).

Blw) = -01(0) = =5 n5n (owna) - 67




The IST 4(8) of the stationary distribution of the delay, i.e.
the total time a customer spends waiting or being served, is the
convolution of the distributions of waiting time and service time,
so that

a(e) = e)w(o)t(e)+(1-w(o)v(e)}.

The mean delay d is |

a

E(w) + W(0)a + (1-W(0)b.

_ (1-20) (AB(22)+2a}+\23E(s3) .
- 2(1-Ab) (1-Ab+Ad) .

We may observe that proof (b) is simpler than proof (a) as it is
not necessary to introduce an artificial function such as W*(x).‘
However, each method is useful as we can use each procedure to find
some further results; we have seen in §4 that the second method is
used for the time-dependent case, while the first may be employed for

an Erlangian inter-arrival time distribution. In this case we have

k-1
Theorem 3.3. When A(x) =1 -}: >\.rxre-)"x(r!)-.I (k =1,2,...3

r=0
o .
0= x < ®) the c.f. Q(s)=h/;; e™**aW(x) of the statiomary waiting

time distribution is given by

k-2 :
_ . ‘s _ - k=T . \n
Q(s? = W(0) ;Z;-{lslh(min(ls 1sm)) ((M+is) (M+is) )Bé}

=1
+ i (i) S By () Fe (s) | |vas) 5By (s)|

where
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(5.8)

(5.9)

(5.10



o7

k-2
W(0) = M (k-wp) Z L T (-is ) - (k1) E 0 (b-a)
— mFn
k-1 .
+Z an)\.n-]} , (5.11)
n=1
and
k-2
x_ = W ((s )-t(s ))- Z ((vris )71 - (vris )™)p +is_(hris )<
m=0
s = (B (4P e
n n! an _ i
( k=1 k+'l k-1 e A
;= )k]' (d)» {(1)2(1)}25
L= (15)"] -
= is) Xn I (1sn-1sm)

ny;
. < . ok ok oy
sn(O = n = k-1) being the k roots of (A+is) -AV(s) = O in the upper
nalf plane I(s) = 0. For this theorem we also suppose V(s) and
€(s) are in the form of c.f.'s

Proof. As in Theorem 3.2 we write
X . : ' 1
w¥(x) =h/ﬂ W(x-y)dU(y) -o<x<w (5.12)
- 00 ' .

From (5.12) and the definition of U(x) we have for x < O that

o

kK MNX [ ;
P (x) ”kf”f W(y)e_xy.f e ™% (z-xy) ¥ aB(2)
y=0 z=0

k-1

e)\'xz cr(’-x)r,

r=0
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where
k

.= BT <k;])f f W(y)e ™V ()5 T an(a)
y=0 z=0

C

In particular

@)

c, = Ww*(0) =f W(-y)au(y).

- 0

For x 20 .

W (x) = W(x) + W(0){U(x) - C(x)], ' (5.13)
s0 that‘ | .

W (0) = W(0){(1+U(0) - ¢(0)} = W(0) (1™ ¥), (5.14)
where- -

[oo]

k :
Ay k-1
u(0) =f 1);—_” ™V 7 B(y)ay

o}

_ ka[j ):k-1 (%x)kJ {ﬂ%&)}
clo) = T @) @)

y =Mu(o) - c(o)}.
We also have k-1 '

f X (ay(e)ac () = () (H(e)-L(e)) =) (haia)®”

o : r=0

where
§ | k-1
RUCIRICSIN NS

r

-1 )I')\’I'
r!

Br=(

=0




Taking Fourier transforms in (5.12) yields

o X

U/\eisx aw* (x) =L7L eisxh/ﬁdw(x-y)dU(y)

- 00 - 0

k
= (2—) y(s)a(s)

A+is

o o0
= [t o+ [t ant-(0)
- © . O-

+W(0) f ¥ (qu(x)-dC (x) }
o

A, k=l ric_
= ms - lsz -_— )I‘+-l + Q(S) - W(O)
r=]

k

+ W(0) E“

(M+is)

k-1
l\:(T\Lf(s ?—C(s ?} - z ()»+is)r'k3r:| .

=0

From these relations we obtain

k-1
a(s) = [isz !¢ (A+is) T (0) (18 (i) Ay () 5 (s)

r=1
k-1

- ) (w10 T (veta) I I Ourte) <N (0)]-

r=0o

7 i

(5.15)
To eliminate the constants Cr(r =0,1,,..,k=1) we make use

of Iemma 1 of Ewens and Finch (1962) which states that if there exists

a ® > 0 such that the c.f. V¥(s) is analytic for I(s) > -3 and if

Ab < k then the equation (x+is)k = ka(s) has exactly k-1 roots in the

upper half plane I(s) > O; it also has a root s = 0 as ¥(0) = 1.
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By writing B = (k-1-r)! C _— (r = 0,1,...,k-1) equation

k-
(5.15) becomes

k-2
Q(s) = [isz Br(h+is)r+w(0){is()\.+is)k-.l -)\.ler(s)+)\.k§(s)
r=0
k-1 R
- z (Oris) - (Mris)TIp 1L OHis) Ay (s)] (5.16)
=0

Iet the k-1 roots of (Ais)-A%y(6) = 0 in I(s) > O be
sn(n =0,1,...,k-2) and put Z,j = >»+isj. Since |Q(s)| s 1 for

I(s) > O the s, must also be roots of the numerator of (5.16). Then

k-2 k-2 :
ro_ 1y, k=1 .k k-1 r
(2,4 ) B2t = WO (2, e KW )= ) (25 Tae,)
r=0 r=0

= W(O)Xj}
where \lfj = Ilf(sj), Cj = C(sj). For any z we have

k-2 ~k=2

Bz~ = H,L I (z-z )
r=0 J=o m;ég
where kD |
H =) BZ> 1 (z,-z.)"
J m J niéj
m=
= w(0o)X. -1
m— ]'[.(zj-z )
J
Thus

=0

- k=2 k-2 . | ‘
Z,Brzr - w(O)mZj {mliJ (z-zm)}(zj_x)'lxj{nij (Zj'zn)-]}‘ . (5.17)
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As 9(0) = 1 we also have

. k=1 k-2
1 (k-2b) = W)V AE (b-) - (k-1 )aE2 Z rarf” Z BT} (5.18)
: r=] r=0

By substituting (i) z = Mis and (ii) z = A in (5.17) we readily

obtain (5.10) and (5.11), which completes the proof.

3.6 The stationary queue size

Iet Qm(n) (m = 0,1,...) be the probability that the n-th
arrival finds m customers in the queue, and let Rm(n) (m=0,1,2,...)
be the probability that when he departs there are m customers in

the gqueue. We have

= < < =
Qo(n) Pr{wh_]+sn_] tn,wh_]>0}+PT{rn_1 W 0}

}z Qm(n) = PT{Wh-j+Sn-j>tn-j+1+tn-j+2+'"+tn’wh-j>0}

m=]

+Prir_ >t +t ...+t ,w . =0) 3z, (6.1)

n-j n-j+1 ‘n-j+2 n’ n-j
and
= = = =
Ro(n) Pr{wh+sn tn+1’wh>0}+PT{rn tn+1’wﬁ 0}
E:Rm(n) Pr{wh+sn>tn+1 +t 2+'°'+tn+j’wh>0}
m=j
= 0}. 21 6.2)
+ Pr{rn>tn+]+ +tn+j,wn 0} gz (6.2)
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If w .+

s >t ., +...4t andw O orr .>t +t
n-j n-j n-=jtl n n-j

R
n-j n-=j+1 n

and Vg T 0, then the (n-j)th customer has not departed when the
n-th customer arrives and the number of customers present on the
n-th arrival is not less than J; conversely, if this is true then

...+tn orw ,=0andr t>t .

either w .20 and w_ .+s 4.,
n=J. n-J - n=J n=-Jj+1

n-J n-,j>tn-j+1+

..+tn. From the existence of a limiting distribution for W, e have the

R ' e e . . . _ 1lim ..
existence of a limiting distribution Qm = e Qm(n), and similarly
_ 1lim . : :
R, = oo 3m(n) exists. From (6.1) and (6.2) we see that

Ro(n) = Qo(n+'l)

[ee] o]
) R =) a (),
so that Q =R (m=0,1,2,...).
Iet us now suppose that the inter-arrival time distribution is

. 0 n
negative exponential so that A(x) = 1-e7%; write k = f) e')“x()n“—’,‘-) dB(x),

kx= [ e 0 e, x(a) =)

n!

o]

n — -
o B2 = Y(A-rz),

k"‘(z)‘=zOo kn*zn =t(a-rz)  (lz] =1).

n=o
It is readily seen that the limiting probabilities Rn satisfy

the difference equations

Rn - Rn+'l 1

We multiply (6.3) by z", sum and obtain the p.g.f. r(z) =

* = !
k +R k +oo 4Rk 4R ko n=0,1,2,... (6.3) :

o]
E:n=o ann (|z] S 1) of the stationary queue size distribution as

_ (1AD) (¥ (hhe) -z (hhe))
') = (b e T - (6.4)




The mean number of customers in the stationary queue may be

obtained from (6.4) by differentiation as

(1) = A(1-Ab) (VNE(2®)+2a}+0\2aE (s2)
r = T 2(1-Ab) (1 -Ab+Ad)

= A\,

where d is the mean delay given by (5.9).

5.7 The busy period

A busy period is the time from the arrival of a customer at
an empty queue until the next point in time that the server again
becomes free. The queueing process consists of alternate busy
periods and idle periods when the server is unoccupied. We are
interested in the distribution of the length of busy periods and of
the number of customers served in these periods. We consider in this
section only homogeneous Poisson arrivals.

If there 1s a waiting time of x > O in the queue at time zero
then the d.f. F(x,t) to the time that the queue empties for the first

time has the IST ®(x,0) found by Kendall (1957) as

o(x,0) = e-xn(e)

(2]

-6x
=L/\e dxF(x,t)
o)

where 1(0) is the unique solution with 1(0) = O of the functional

equation [c.f. (4.8)]
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(6.5)

(7-1)
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n(8) = ame-ay(n(e)). . (7.2)
As a customer joining an empty queue has a service time with d.f.
D(x) we find that the IST v(6) of the d.f. G(x) of the length of a

busy period is
r(0) =] o(x,0)an(x) = t(n(6)). (7.3)

X=0

This result (7.3) may also be obtained by a generalisation of

the method of Takécs (1955); by a similar generalisation we can show
(o]

‘that the p.g.f. F(z) i=}: £.z7(|z| 1) of the probability £

i=o i

that j customers are served in a buéy period is

P(z) = 2t(&(2)) | (7.5)
where £(z) is the unique solution with (1) = O of the functional
equation

E(z) = M-Mzy(E(z)). : (7.5)

When £(6) = ¥(6) the results (7.3) and (T.A)Yreduce to (47)
and (67) of Takécg (1955). The moments of Y(0) and F(z) may be

obtained by differentiation, e.g.

r1(0) = d(1-Ab) !

_ B(r®)-MbE(r?)+MdE(s®) (7.6)

Y"(O) (-l -)vb)d

Let us now turn to the joint distribution of the length of a
busy period and of the number of customers served in this period. In

order to find this we first consider the related problem of zero
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avoiding transition probabilities [c.f. Gaver (1959)]. Iet TO =0,
Tn (n=1,2,...) be the sequence of departure times of customers from
the system, and R(t) the number of customers in the system at time t,
inciuding the one being served; R(Tn+0) = R(Tn) is the number of
customers left in the system immediately after the departure of the

n-th customer. We define
Pj(n)(t) = Pr(R(T_) = J; T St; R(1)>0, O§T<Tn|R(O) =1)

as the probability that the number of customers in the system passes
from one at time zero to j >0 after the n-th departure, which occurs
prior to time t, without having been through the state zero. As

initial conditions we have

J
where H¥(x) is the unit step function.

p ™ (0.) = ow0), 2, () =5, w¥(w), (7.7)

We have that R(Th+]) =3 >0 if R(Tn) = j-i(> 0) and exactly

i+1 customers arrive in (Tn,T ), so that by enumeration

nt+i

Pj(])(t) = kj*(t)

C4 :
Pj(n+])(t) ==§t J/\ ngg_i (t-7)dk, (1) n=1,2,..0, (7.8)
i=o T=0
where
ak (t) = et (%%lé aB(t), dk *(t) = &M (ﬁﬁ%é an(t) .

We define the transforms
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oc(e z) _Z f z"e” dP (n)(t) R1(6) 2 0, |z| <1,
n=o t=o
p(6,2,x) =Z Otj(e,z)x |x| <1
. =

[1]

n(e? =fe_9td.kn(t), En*(e) =b/-e'94G dk * (t) RL () =
A ,

(o]

k(6,x) =Z En(e)xn = ¥ (M+6-Ax) x| <
n=o '

k*(0,x) =z En*(e)xn = t(M+6-Ax) |x| < 1.
n=o ' )

Taking transforms in (7.8) we find

aj(e,Z)-B]j = 22 (? z) & (9) + zH *(9) - zH (9), (7.9)
i=o
from which we obtain

x+z{k*(6,x)-k(6,x)}- 20, (6, z) E = (9)
P(6>Z:x) = 1-2£(0, X)/X . (7-]0)

We require to determine o, (6,2); it is known [Gaver (1959)]
that for R1 () > 0 and O < z = 1 that there exists a unique root
of the equation

x = zy (MO-Ax) . ' : (7.11)
Now p(€,2,x) must be bounded for all x in O £ x < 1; thus the zero

of the denominator must coincide with a zero of the numerator, so that

zd](e,z) Eg(e) = x+zk* (8,x) -2k (6,x) .




67

We now return to the problem of the busy period; if Tm.iS the
length of a busy period in which exactly m customers are served and
= =
F (t) = Pri{r =t]

then %

F_(t) =f P, (m-1) (t-7)ak_(7) m=1,2,... (7.13)

T=0

Teking transforms in (7.13) yields

Y (6,2) =i sz e 0t dFm(t)
=0

m="1 t

zJ](G,Z) Eg(e)

x+zk*(0,2) -2k (6,2)

zt (M+0-Ax), ‘ (7.1&)‘
where x is defined by (7.11). When 6 = O (7.14) reduces to (7.4) and
when z = 1 it reduces to (7.5).
By extending the direct argument of Prabhu (1960) we can
show that if Gn(t) is the d.f. of the length of & busy period in

which n customers are served then
1,n-2

t
n—
aG_(+) = e AL f xdB__ (t-x)aD(x) | (7.15)

X=0

When a busy period commences with n customers present the

transform Yn(e,z) of the busy period distribution, counting the number
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of customers served, is not equal to (v(6,z))%, as only the first
customer to be served has the service time d.f. D(x), which is

different from the other n-1 initial customers.

3.8 Cases of server absenteeism

We now consider another generalisation of the M/G/] queueing
system which for stationary distributions may be classed as a special
case of our previous problem. Whenever a departing customer leaves
the queue empty the server departs from the counter for a time which
is a random variable with d.f. G](x) (0 £ x < »), mean g, < ~and
IST E](G). When the server returns to find at ieast one custdmer
waiting he commences ser#ing immediately; when he returns to find the
counter still free he departs again for a time which is a random
variable with d.f. G, (x), mean g, < ~and IS8T §2 (6), and he continues to
come and go until he finds at leést éne customer waiting. The server's’
n-th successive absentee period is a random variable with 4.f. Gn(x),
mean g < © and IST §n(9). From the time the server is first occupied
customers have a service time d.f. B(x) with mean b < « and IST ¥(8).
If we were to consider service beginning only when the'server actually
commences to serve a customer then we would make use of the result
of Finch (1959) [ see Chapter L4]. However, we suppose a customer
commences 'service' immediately he reaches the head of the queue. This
is similar to the queueing problem used in Part 3 for road traffic

theory.
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We require to find the IST X(6) of the d.f. L(x) of the time
from the arrival of a customer at an empty queue to the return of the
server. When the process is in statistical equilibrium we can integrate
over the possible times of arrival of a customer after the departure
of the last customer of the previous busy period. Considering only
the first server absentee period we obtain the IST of the (improper)

distribution of the time to the return of the server as

[ee] ©o
X, (8) = f f e M0 (X'y)dG] (x)dy
X=0 y=0
A
= P {E"l (9)"&-]()")] (8.])
which has X](O) = ]-51(X) = T—g]*, g, * being the probability that no
customers arrive while the server is absent. For following server
absentee periods the problem is similar and we obtain
- n-1 i
xX(@©) =) (I g %X (6) (8.2)

=

_ A
Xn(e) =55 {En(e?-én(k?},
where gi*== §i(x) is the probability that no customers arrive during

the server's i-th successive absentee period. As special cases we

suppose (i) G (x) = G(x) (n 1,2,.3.) and (ii) G](x) = G(x),

n
Gn(x) =1 (xz0,n=2,3...). In the first case
: g AE (6)-E, (V)]
-1 ] 1
X(@? =Z (gi*)n ,X'I (8) = ~-6) (1 ‘-§_] ) : (8.3)
n=1 .

while in the second
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Mg, (0)-08, (1)
x(e) = X](6?+g?‘ =— — (8.4)

Once the server actually begins serving the time to completion
has the same distribution for all customers, although this may be

generalised as is done for .scme traffic models in Part 3; thus

t(e) = v(o)x(e) , (8.5)

may be taken as the service time IST for customers arriving at an
empty queue. The stationary waiting time and queue size distributions

ﬁay now be obtained from the results of the previous sections.

3.9 Comparison with Finch (1959)

| As a special case of our process we put D(x) =k/;XB(x-y)dV(y)
where V(x) is the d.f. of a non-negative random variable v. The
distribution of R (Qn) is identical to that in Finch (1959), but
the waiting time distribution differs, as Finch considers v as part
of the waiting time while we have taken it as part of a service time.'
However, the delay caused, i.e. waiting time plus service time, is
the same'in both cases.

P
The IST @(6) =L/; e'exdw(x) (R1 6 = 0) of the stationary

waiting time distribution, which exists for Ab < 1 and v < o, ig

given by

w(0){(6-1)3(8)+\} o ‘
oA N(8) | : | | (9-1)‘

o(0) =
where the probability W(0) that the server is idle is

W) = () (1), ' (9:2)




» o]
-0 —_
and 3(6) =J;-e Xqv(x) with v = -9'(0). The stationary queue size

and busy period distributions are given by (6.4) and (7.3) with
¢(e) = v(e)s(e).

=AX

As an example suppose A(x) = 1-e  , B(x) = 1-e™M¥

V(x) = 1-e”" (x) so that

D(x) = 1-(-v)"" (ne™*ve™) x 2 0.
We obtain by inverting (5.1) that

Au-2) -VX .

_ AV - (u-N)x
G =1 - o) © * R IvA) © x =0

with W(0) = wu™ ' (u-A)(v#A)~!, while Finch obtains
_ Y =(u-M)x o (p=M)(v-p) -vx
W(x) =1 - m) e T g i e' x 2 0.

3.10 Batch arrivals

In the traffic model of Chapter 6 we shall be concerned with
vehicles in a minor road arriving at an intersection in ‘bunches .
' Batch arrivals for the M/G/ 1 process have been discussed by Gaver
(1959) and Foster (1961), and we shall extend these results to our
generalised problem.

At instants T (n=1,2,...) a bunch of I customers arrives

at a counter with a single server; I is a random variable with

Il

probabilities Pr{I = i}

b* (z) =Z bizi (|z]

i=1

by (i =1,2,...), which has p.g.f.

1) and mean g =Z

oo

1A

. . ib. < ». The times
i=] i »




T2

t =T (n 21), T_= 0 between the arrival of bunches of
n 2" Tn-1 o

customers are identically distributed random variables with common
d.f.'s A(x) = 1-e-xx. If a bunch of customers‘arrives at a counter
when the server is busy'then the service times of the customers are
identically distributed random variables with d.f.'s B(x) (0 £ x < )
(as in §3.2). If the bunch of customers arrives to find the server
idle then the first customer of this bunch (the customers may be ordered
for service) to be served has a service time which is a random variable with
d.f. D(x) (0 = x < »), while the other customers of the bunch have
service times which‘are identically distributed random variables with
the d.f. B(x).

The arguments used for the particular case of all bunches being

of size one carry through for our more general case. The stationarity

condition is Abg < 1 provided 0 < d < ». The equation (%.2) becomes

© X
BWa(i{,t) aW(X;t) W (x, t).mZ b, f W(x-y,t)dBn* (y)
i=1 y=o

X ' j
+W(O,t){f p(m-10* (x-y)aD (y) -B (x)} . (10.11

. oo
The IST Q(0) =L/;-e-6XdW(x) (R1 6 2 0) of the stationary waiting

timedistribution may be found using the methods of §3.L as

v 0){ev(e)+r(¥(8)-t(6))rk(v(6))} )
a(e) = W(wze)Te iixbi(w(eg) 2 * 2 (10:2)




W) = (1-Mbg) (1-Abrd) ™5

its mean E(w) is
E(w) = AMy"(0) (g-1+rdg)+E" (0) (1-Mbg) -2b (b-d) (g-1) (1-Abg)

RPHET (1) (1-Abhd) 112 (1 -Abg) (1-3bnd) 17

and the mean delay is

d = [M"(0) (g-1+Mdg)+ (1-Mbg) (V" (0)+24)

 +b(1-Mb+Ad) {2 (1 -Abg) (g-1) -AbZb*" (1) ]
2(1-Mog) (1-Ab+Ad) :

The stationary p.g.f. ¥(z) of the queue size distribution

is given by

r(z) = W)y (M(1-2)-2E (M (1~ Z))}b*(W(X(1-z)))
‘ vA(1-2)) [(o*(y (M (1-2))) -2}

The IST y(6) of the length of a busy period is given by |
T(68) = t(n(6))vx(¥(n(8)))/v(n(e))

where 1(6) is the solution with 1n(0) = O of the functional equation

n(6) = Mo-AE*(¥(n(6))).

3

(10.3)

(10.4)
(10.5)

(10.6)
(10.7)

(10.8)
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CHAPTER L4

PRIORITY QUEUES

4.1 TIntroduction

We now turn to some queueing problems where certain classes of
customers have priority to service over other classes of customers.

We consider a priority queueing system where there are K classes 1,2,...,K
of customers arriving at a counter with a single server. Within each
class there is a first-come first-served queue discipline, but between
classes there is a relative priority of service such that a class i
customer is always served in preference to a class J customer whenever
i<y,

When a class j customer is being served and a class i(< j) customer
arrives there are four possibilities we may consider. The first three
of these are preemptive, i.e. the service of the class J customer ceases
immediately in favour of the clasé i customer, and it resumes only when
the queueing system is next cleared of all customers of all classes
1,2,...,J-1. When a preempted customer returns to aétual service there
are three different cases we may discuss. A preemptive priority resume
policy allows‘the custoﬁer to re-entér service at the point at which
it was preemptéd; thus the service may be carried out in sections. 1In

a preemptive priority repeat identical policy the class j customer
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has to begin service again with the same service time as that from
which it was preempted; with a preemptive priority repeat different
policy the customer commences service again from the beginning but
with a new service time which, however, has the same distribution as
that from which it was preempted (some of our results may be extended
to the case where the new service time requirement may have a distribution
different from that of the preempted one). 1In these two cases the
service is completed when a service time requirement is finished without
interruption; The fourth case is the head—of-the-line priority policy;
here the class j customer completes service without interrﬁption, but
the class i customer is placed ahead of all customefs of lower classes.
This case will not be discussed in detail, although some of the similarities
with the preemptive priority resume policy will be discuséed, since these two
policies yield several very similar results.
We assume that class i (1 £ i £ K) customers arrive independently
in a Poisson process with parameter Xi, and independently of customers
in other classes. Class 1 customers have a service time requirement
(total time for a head-of-the-line or preemptive resume policy and
uninterrupted time for a preemptive repeat policy), which is a random

00 .

variable with d.f. Fi(x) (0 £ x £ »), IST ai(e) =L/; e'exdFi(x)

[\

(R1 6 0) and finite mean ui = 4xi'(o) < w;'as a special case we take

F.(x) =1 for x 2 bi (z 0) and Fi(x) = 0 for x < b, . We write

O
i
>’
o
[
—
1N
[}
IIA

K).




76

If customers may arrive in batches rather than singly the results
of this chapter can be extended to this more general case as in $3.10.

When there are only two classes of customers, i.e. K = 2, then class
1 customers are called priority and class 2 non-priority.

For the head-of-the-line priority policy, results have been obtained
by Cobham (195L4), Holley (1954), Miller (1960), Jaiswal (1962) and
others. For K =2 the time-dependent joint distribution of the number
of customers in the'queue has been found by Jaiswal (1962) and as a
consequence the stationary distribution, which is different from that
obtained by Miller (1960) from an imbedded Markov chain. Thus the
stationary queue length probabilities for complex quéues obtained from
the imbedded Markov chéiﬁ method may not be the same as those obtained
from the limit of the time-dependent solution. Miller (1960) has found
the stationary waiting time distribution for the K-th priority class
and the busy period distribution for the system.

Preemptive priority queueing systems héve been discussed by Barry
(1956), .White and Christie (1958), Stephan (1958), Heathcote (1959,
1960), Miller (1960), Gaver (1962, 1963) and several others. For the
non-exponential queue these authors are priméfily'concerned with a
preemptive priority resume policy. Thé eafly papers consider the
equilibrium behaviour of the exponential queue for K = 2, while Heathcote
has determined the temporal queue size distribution. Miller (1960) has
obtained the waiting time distribution for class j (Jj = 1,2,...,K)

customers and the busy period distribution for the system, while Gaver
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(1962) has found the stationary queue size distribution for non-
priority customers when K = 2 for each of the four priority policies
discussed in this chapter. Before Gaver's work (1962) little was

known about preemptive repeat policies; most of the work of this chapter
was done at about the same time but independently of Gaver's.

We are primarily concerned with the stationary waiting time, queue

size, and busy period distributions for the various classes of customers.
We shall first consider the case K = 2 and then extend the results to

K 2 2. To do this we make use of several of the formulae derived in

the previous chapter.

4.2 Waiting time distributions for K = 2

We are here concerned with the waiting time distributions for
priority and for non-priority customers. For priority customers waiting
time‘is defined as the time from arrival in the queue tq reaching the
counter for the first time. For non-priority customers we distinguish
two possibilities: waiting time is the length of time a non-priority
customer spends from the time of arrival to the time (a) it reaches the
counter for;the first time and (b) it reaches the head of the non-
priority queue. Once a customer has commenced service for the first
time-it is no longer waiting, even if it has been preempted, but is
regarded as being 'in service'. A service time, which we call completion
time to disﬁinguish it from service times in isolation, is thé‘time

a customer spends from first reaching the head of the queue to its final
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departure from the system. This is slightly modified in one case for
a head-of-the~line priority policy.

For a preemptive policy the behaviour of priority customers is
indepéndent of the non-priority customers, and the priority system is
fully described by the M/G/] process, which has been discussed in
§1.3 and §2.5. The time-dependent waiting time distribution is given
by (1.3.4) with M(T) = X1, F(x) = F](x). The transformszﬂ](e), R](z)
and A(B) = ¢](9) of the stationary waiting time, stationary queue size
and the busy period distributions are for values p] = X]u1 <1,

assumed throughout this chapter,

H(0) = (1-p)(1-07"2, (1 (0))) 7 (2.1)
(1-p,) (1-2)a; (0 M, 2)

R](z) = a](h]-h]z)-z (2.2)

¢, (8) =a, (A +6-M 0, (0)), (2.3)

where éiﬁ wl(e) = 0. The moments of these distributions may be

obtained by differentiation; for example

- W Ao, " (0)
By = ,'(0) = 2(1-p,)

M (0)eee, (1p))
R '(1)= 2(1-p,)

%, = -9,'(0) = u, (1)

9,"(0) = a,"(0) (1-p,) 2.
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Before proceeding to the completion times for the various priority
policies, we'obtéin the following result which is common to all cases.
A non-priority customer may arrive to find the queue free of other non-
priority customers, but not of priority customers, so that it is kept
away from the server until the priority stream has cleared. This delay
is zero if there are no priority customers in the queue, and lasts until
the end of the priority busy period if there is at least one priority
customer in the queue when the ndn-priority customer arrives. This
depends on the length of time since the departure of the last non-
priority customer (or end of completion time), and is similar to the
problem of server absenteeism'diséussed in §3.8, its solution being
obtained by the same method. From the point of view of non-priority
customers the server appears to be alternately present, for a length
of time which has a negative exponential distribution with mean h]-],
and absent, for a length of time which has the busy period d.f.'G](x)
of priority customers. We suppose that £(0) of (3.8.3) is the busy
period IST of the priority customers so that E(Q) =9 (8); the probability
that a non-priority customer arrives while the server is ‘'present’
is XE(X]+XQ)-]; The LST 92(6) of the delay for a non-priority customer
to reach the counter for the first time, when it arrives at a queue free

of other non-priority customers, is using (3.8.3)

Moo M A (9, (8)-9. (A,)) A
_ % 1 2\ 1\ 1
oo = 2 3 - 20 ) -
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_ vx2{>»2-9+>»]cp] (e) -\, @, ()3 (o.14)
(-0) (V-2 0, (1)) ’ '

R . -1
= + . = -
where v2 X] XE The probability is &, X]VE w](xe) that a non
priority customer does not arrive during a server 'present-absent'

period. The first two moments of this distribution are

- , +e,) A
v, = -3,"(0) = v,0g) "X, (2.5)

Mo (0) 2005

- + ==
vy (1-8,) MV (1-g,) xg

We shall now obtain the completion time distributions for each of

9,"(0) = (2.6)

the four priority policies in turn; we begin with the preemptive repeat
policies as less has previously been discovered for these than for

the other two under consideration.

(i) The preemptive priority repeat identical policy
We suppose initially that a non-priority customer réquires

uninterrupted occupation of the server for a fixed time b-(> 0) before
being able to depart from the system; we later generalise this service
time requirement.

' Buppose a priority customer arrives at time zero at a counter free
of other priorify customers, but not necessarily free of non-priority

PSS

customers. The IST X, (6,b) ifX:o ‘¢ ~O% L, (x,b) (RL 6 2 0) of the
d.f. L, (x,b) (0 = x < ©) of the time until the first gap of at least b,

including b, appears in the priority stream is the continuous analogue




81

of a generalisation of the success run problem of Feller (1957, p.299);

it may be obtained by renewal theory methods or as follows:

[oe]

: - (A, +0)b-62 7 Ay >
X](G,b) =U/\ dG](z){% +\/P M€ iy]u/\ dG](z]-yT)

Z=0 y.l=0 Z.I_—'y]
-(X]+9)b-9(z+z]) é -X]yg .
{e +f Me dyef dG, (z,-y,)
2™ 222
.{ -(X]+6)b-6(z+z]+z2) }}}_
e e
-(x]+9)b

_ (h]+6)¢](6)e

—(A#6)b (2.7)
M. +6 —X]¢1(6)+X]@](6)e .

1
When a non-priority customer reaches the counter for the first
time it has a completion time of length b if no priority customers
arrive in this period; otherwise it is delayed until the server is first
free of priority customers for a least time b. Thé IsT wg(e,b) =
o
U/;,e-ex d%a(x,b) (RL & 2 0) of the d.f. B, (x,b) of the time a non-

priority customer spends from arrival at the counter to departure

from the system is

_(h1+9)b b M é -6z
wg(e,b) =e . +L/ﬁ M€ ¢yu/\ e dIﬁ(z-y,b)
| " y=o z=y

-(x1+e)b
-(X]+6)b XTX](G,b){1-e }

- © * k]+6
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o
O\._I+6)e 1
= myouT:) (2.8)

1
x]+e-x]¢1(e)+x]@](9)e

+9)b

The IST of the distribution of the time a non-priority customer actually
occupies the server is given by (2.8) with @1(9) - 1, i.e. the time
priority customers are being served is neglected.

For a non-priority customer Jjoining an empty non-priority queue
we have for definition (b) of the Waiting time that the LST

(eb) fx_o dD (x,b) (Rle 0) of the d.f. D, (xb) (0 = x <)

of the completion time is

6, (8,b) = ¥,(0,)3,(0), (2.9)
“while for definition (a) of the waiting time the IST of the completion
time distribution is ¥, (6,b) and the customer has a wait with the
ST 9,(0). -

From (2.8) and (2.9) the first two moments of the completion time
distributions are

k b
o' (0,0) =2 T (1T ) (e | 1)

¥, (b)
€, (v)

-6, (0,0) = ¥, (b)+v,

x b - _ D
¥,"(0,0) = @1"(0)(e -1+n (e ) (e T o-T)

o AMb
{(1+x1¢])e -x]¢]-x]b}-x1b]

Cg"(o,b) = wz"(o,b)+2w72 iFE (b)+32" (0). | (2.10)
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We now suppose that non-priority customers require an
unoj;nterrupted service with d.f. F, (x) having IST az(e) =
L/; 9% ng(x), which exists and is finite for all real 6 2 -R,,
where R, > 0; this is equivalent to the d.f.-Fé(x) having an analytic
characteriitic function. The IST's wg(e) =L/;°o eOx dﬁz(x) and
NE) =j; e~0% dD,(x) (R1 6 2 0) of the d.f. B,(x) and D (x) (0 = x < «)

respectivelyvof the completion times for non-priority customers are

given by
f ¥, (6,x)aF, (x) =ff e dB, (y,x)ar, (x)
x=0 ' X=0 y=0

o0 o]
- -6y |-
—L/\ e b/\ dB2(y,x)dF2(x)
y=0 x=0
[o0)

= f e"%az, (y)
y=o0

= v,(6)

(o]
t,©) = [ ty(6,0ar, ()
X=0
=, (6)3,(0), | (2.11)
where the inversion of the order of integration may be justified by

Fubini's theorem (see Imkdcs (1960)). Thus we have
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!
(A, +0)e
¥, (0) = 783 o (%) A (2.12)

]
X=0 x]+e-x]¢](e}{1-e %}

+0)x

6,(8) = v (6)3,(0); (2.13)

(2.12) has also been obtained as (4.18) of Gaver (1962).
Except in some special cases the integral in (2.12) cannot be

evaluated explicitly; however, its moments may be found. If R2 z A

we have

¥y = v, (0)

x]"(1+x1&H){a2 (-3;)-1) (2.14)

I
il

EE -CE'(O) IITE + ITI.Q)

and for R2 = 2%1
¥,"(0) = @, "(0) (0, (- -1 }1420, F (10,3 )L (144, )ty (20, )

-02(-x])}-x]&H{ab(-x])-1}+x]a2'(-x])]

£,"(0) = v, "(0)+ev v, +3,"(0) , | (2.15)

lim
1 = 1
where O, (-X]) 9+AX] a2>(9).
(ii) The preemptive priority repeat different policy
Suppose that the first time a non-priority customer occupies the
server, it requires uninterrupted service of time b]; if preempted before

this time elapses then it requires uninterrupted service of time b2

when it returns to actual service; after this it requires service times
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b3, bh"" ete '_U'.ntil there is a completed service, when it leaves

. [o0]
the system. The IST \Ire(e,’p],bE,. .) -/;{_O —Gde2 (x, b, 50,5 - - .)

(R1L & 2 0) of the d.f. Bg(x,b],b ..) of the time a non-priority

2’

customer spends from reaching the counter to completing service is

n n
NPSRCACH -(r,+0)b_,. n -(n 40D,
V. (0,0, ,0.5.00) = n e I (1-e -y (2.16)
2 1 (M. +0) .
— Jj=2
n=o
o) 1
h defi T iorit t h
wnere we erline j=2 = J=2 = . en nOn—PI‘lOI’l Yy cus omers ave a

general service time requirement, i.e. all the bi(i =1,2,...) are
random variables with identical d.f.'s F2 (x) (0 £ x < ®) and IST

o, (6) (R1 6 2z 0), then (2.16) reduces to
W (6) —f f "lfg(e:x-l 2 Xy e -)dFE (X])dFQ(Xe) .
R :

! (r.+0)a. (A +6)
| Ry 16 A : (;){1~a h.+0)} * : (2.17)
TR RS IS A e "N A |

For definition (b) of the waiting time the IST §2(e) of the
completion time distribution for a non-priority customer arriving at

a queue free of other non-priority customers is given by
The first two moments of \lr2 (6) and (_;2 (6) are

B (12,00 (10, (0))
ozg(x]) ’

[\).é_l
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1,"(0) = D5 (0 Joy "(0) 0105 (1142 (11,3 )01y (0 )
{1+x]&H_x]&Hoé(x]?]+2x](1+x]&%?0és(x]?][x]gaé(x1?2]-1

ce"(o} = We"(0)+2:7é-ﬂ72+32"(0) (2.19)

The two preemptive repeat policies may exhsbit some rather
different characteristics. For a repéat identical policy, long
service requirements tend to be interrupted often; however, if a repeat
different policy is operative then a long service requirement may be
replaced after preemption by a shorter one, thus reducing the completion
time. In fact Eé for a repeat identical policy is never less than for
“a repeat different policy with the same inter-arrival and service time
distributions. From inspection of Wé from (2.14) and (2.18) this is so
if ae(-X])Oé(h]) 2z 1, which can be proved from thefpropertiés of a
symmetricAdistribution on (—m,W). Further both of these policies yield
a completion time distributién ﬁhose mean is never less than for a fixed
service time requirement with the same mean; this is intuitively obvious
as a lohg service time requirement may delay several customers, while
a short service time requirement is not likely to save much tiﬁe for

other customers.

(iii) The preemptive priority resume policy
This problem is dealt with by the same method as for the previous
policies (i) and (ii); however the problem is now rather simpler, as

the inherent difficulties are not as great as before. If non-priority
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customers require actual segvice for a total time b then the IST.
We(e,b) of the distribution of the time a non-priority customer spends

in the system after reaching the counter for the first time is

b )
A +01\D Y =M, (b-y,)-6(z. -y.+b)
¥,(6,0) = M ? +L/h ne 1%dy]k/ﬁ a6, (2, -y, ) e 1 15

7 2,
b-y] o
, -\, ~ (A, +6) (b-y,-y,)-6(z+2,)
v e "Fay [ oac (z-y)le 177207 T
1 2 1\%79
yp=° 25"¥p

-(x]+e-x]¢](e?}b‘.

=e (2.20)
- From this we readily obtain for a general d.f. Fé(x) with IST
ae(e) of the time a ndn-priqrity occupies the server that
ya(e) = a2(x1+e-x1¢1(e?? (2.21) j

The IST we(e) has also been found by Miller (1960) and Gaver (1962).

The first two moments of the completion time distributions are
" - " ey 1"
¥, (o} = M 1,0, (o?+(1+x]¢]?a2 (o)

& = ¥ty

6,"(0) = ¥,"(0)+2v, ¥,+3,"(0). | (2.23)
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(iv) The head-of-the-line priority policy

Once a customer has reached the server there is no preemption so
that the actual time in service of priority and non-priority customers
has the IST's 01(6) and a2(9) respectively. However we are also interested
in the time from the commencement of service of one non-priority customer
to the point where the server is next available to serve another non-
priority customer. This completion time is identical with that for a
preemptive resume policy, so that its IST WE(G) is giﬁen by (2.21);
similarly for 22(9). These completion timés are the same for the two
policies, as the order of service is irrelevant to the total time that
the server is occupied; for this reason the busy period distributions
are identical.

The waiting time distribution for priority customers is no longer
independent of the non-priority customers as the latter may now delay
the service of the priority customers; this is not possible for a
preemptive priority policy.

Considering only the Markov chain imbedded at points of departure
of customers Miller (1960) has shown that the stationafy waiting time
distribution at these points has the ISTfH1 (6) given by

(l-p]p2)6+xé-x2a2(6) @.2)
e—k]+h]a](6) :

3:[] () =

and the p.g.f. R](z) of the stationary priority queue size distribution

at these points of departure may be found from (2.18) of Miller as
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(1 -0, -pe) (1 -z))».la.‘ (x] - z)+>»2061 '(,x] M z)-xgzoc2 (x] =2 z).
ve[a](h]-x1z?—z}

(2.25)

R, (2) =

The joint p.g.f. of the stationary number of priority and non-
priority customers at arbitrary times has been obtained as the limit .
of the time-dependent solution by Jaiswal (1962). After a slight correction
to his equation (41 ) we find that the p.g.f. R1(z) of the stationary

priority queue size distribution is

. _ o (M -My Z){(] z) (1-- 92) (]que(hl'x1z))}' n (2.26)

which is different from (2.25); this indicates that in this case the
result for an imbedded process is not sufficient to give the result
for arbitrary points in time.

We now find the stationary waiting time distribution for priority
customers by using the formula (3.9.1) due to Finch (1959). The
probability P, that the server is idle is P = 1-p,-p, and from (2.26)
the probability that there are no priority customers in the queue is

My
R](O) = 1-p,-P5% x (14& (x )).

If a priority customer arrives to find the queue free of other priority
customers it may not be able to obtain service immediately owing to the
presence of non-priority customers. 'If it arrives to find a non-priority
customer being served, its wait has the IST X (6) given by.

->~ 1 -6 (x-y)

X (e) —f f '1_.0427—)' ddeE(x)

X=0 y=0
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_ Mlap(0)0, ()
000, ()T

Thus the IST 3](9) of the wait of a priority customer arriving at a

queue free of other priority customers is

1-p, -p, 0, (01, (8) 1 (x )}y - 0) (10, (1))
5. (6) = —1 22 Al A 2.27)
1-p1 PN, (1-04 *;))

Substitution in (3.9.1) shows the IST @1(6) of the stationary waiting
time distribution to be identical with Zbl] (6) given by (2.24). The
stationarity condition shows that a stationary distribution exists

whenever O = p_ +

=1 . -
1t e - XQX] (1 - ae(h])) <1, i.e. ° <1 and v, <,

1
It is seen below that a proper stationary distribution exists for non-
. . -1
priority customers when p, + 0, < 1. When Py + Py - Xeh] 1 - Qé(h]))‘

<1=p, + Py @ proper stationary distribution exists for priority

]
customers but not for non-priority customers.

A slightly more general model 1s obtained by supposing that
instead of there being priority customers there are interruptions of a
general type to the service of non-priofity customers. We suppose
that the interruptions have a general distribufion, which is not
restricted to being that of a busy period, and the time between the
end of one interruption and the commencement of the next has a negative
exponential distribution. This problem may be dealt with by exactly the

same method used for the priority non-priority queueing model, and we

may consider each of the four types of priority policy discussed above;
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the IST WE(G) of the completion time distribution is given by (2.12),
(2.17), (2.21) depending on the priority policy required, where m](e)
is the IST of the interruption time distribution. The IST 92(9) of
the distribution of delay up to the commencement of service when a
customer arrives at a queue free of other customers is given by (2.4).

If interruptions, or breakdowns tp the server, can occur only when
a customer is present, the problem is similér to the above except that
now & busy period can begin only with the arrival of a customer and not
with the start of an interruption; thus.ﬁe(e) =1,

We now make use of the formulae of Chapter 3, and the completion
time distributions found above to obtain the stationary waiting time and
queue size distributions for non-priority cﬁstémers. The four priority
policies may here be discussed together if we take ¢2(9) and §2(9)
appropriately, i.e. wz(e) is given by (2.12) for a freemptive priority
repeat identical policy, by (2.17) for a preemptive priority repeat
different policy and by (2.21) for the remaining two policies. Then for
definitions (a) and (b) of the waiting time the IST's @2(9) and Qa(e)
respectively of the stationary waiting time distributions, which exist as
ﬁroper distributions when hé$2 <1, are given by

(1-20,5) (M- (0,-6)3, () )

(1+X2v2){6-h2+h2y2(6)}
T-M V) (641 ¥, (6) (1-3,(6))}
'92(9)=( 2¥e) 0¥ ) 012 (2.29)

(1+x2§é}{e-x2+x2¢2(e}}




- For the three preemptive policies the p.g.f. r2(z) of the

stationary queue size distribution is given by (3.6.4) as

(1-xéﬁe)yE(xg-xez)(1-zae(xe-xgz)}

rz(z) = (2.30)

(1+x2v2){w2(x2-x2z)-z}
This last result is invalid for a head-of-the-line policy as a non-
priority customer may depart from the system before its completion time
is concluded. The p.g.f. re(z) has been found by Gaver (1962) as
B (1—X2w2)a2(he-h2z){l-zSQ(XE-XQZ)}

(1T, (4, (hy-h ) -2)

re(Z) (2.31)

Some of these results have been obtained by other authors. Miller
(1960, (3.23) and (3.11)) has found @2(6) for a preemptive resume and a
head-of-the-line priority policy. Heathcote (1959) has obtained r2(z)
for the exponential queue where a](e) = p,]b(u]+6)"‘l and ag(e) = ug(ué+6)'1,
while recently Gaver (1962) has found r2(z) for all four priority policies.

For priority policiés (iii) and (iv) we may also consider the
total service time in the system at a particular instant, i.e. we neglect
the effect of all later arrivals, which may upset the order of service
of customers. We have already noted that for these policies the order
of service is irrelevant to the total service time in the system; thus
this is identical for these two policies. We use the results of Takdcs
(1955) in the form (2.5.4) with K = 2; the IST:HQ(G) of the distribution
of the total service time in the system, including that of the customer

being served, is given by
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(1-p]-p2)e

B0 = 9=V N 0 (6)+h 0, (8) (2.32)

2

which has also been obtained by Miller (1960, (3.18) and (3.24)).

4.3 Busy period distributions for K = 2

We begin by considering the busy period distribution of the priority
non-priority system for a preemptive priority resume and a head-of-the-
line priority policy. The length of a busy period has an identical
distribution in both cases, as we have noted previously. The following
method is not applicable to a preemptive repeat policy as the time a
non-priority customer occupies the.server now depends on later arrivals
of priority customers.

o

The IST 9, (0) =L/;« e~0% de, (x) (R1 6 2 0) of the d.f G, (x)

(0 = x < ®) of the length of a busy period may be determined from (2.5.7)

with K =2 as

¢2(e) =‘x]ve']a](v2+e-v2¢2(e))+x2v2'1aé(v2+6—v2¢2(6)). (3.1)
This has been obtained by Miller (1960) and by Heathcote (1959) for
negativeexponential :service time distributions and a resume policy.
The mean length of a busy period is
P,
' (0) =v7——; fp]_%) : - | (3.2)
We now provide a method where the busy period distributions for all

four priority policies may be considered together, if we take the completion
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time distributions appropriately from §4.2. A busy period may commence
with either a priority or a non-priority customer, and we separate the
’ ()
two cases. In the latter case the IST o..(6) = e %%4q (x)
22 o 22
(RL 6 = 0) of the d.f. Gop (x) (0 £ x < w) of the length of a busy

period is the solution with 1im (8) = 0 of

o> P00

e f Z _/ Aoy (hey) -9 (y+x) a5, (36,7 (x)

y—0 n=o X=0
= Vo (g t0-250,5(0)), | (3.3)

which has been obtained independently by Gaver (1962, (9.1)). The
o :
-0 ;
IST ¢,,(6) = fo e™ * dG,,(x) (RL @ 2 0) of a busy period distribution
starting with a priority customer is similarly found as

ey)

-\ 6(A+x) |
P10 (0) f Z f o & dG1(y)dGeerfk(x)

y=0 n=o x=0

= ¢, ()»2+9—)»2cp22(9v. (3.4)
The IST wé(e)qf the busy period distribution for the priority non-

priority system is thus given by
- -1 -1 |
which is equivalent to (3.1) for a preemptive priority resume and a

head-of-the~-line priority policy. The mean length of a busy period

is from (3.5)
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_ ' P+, (1-0, ¥, ,
CPE = —CPE (O) = Vg““’] )(]—XQWQ) . (3.6)

The above properties of the busy period distributions are sufficient
to extend our results to K(2 2) classes; however, for non-priority
customers let us consider the more general problem of the joint d.f.
Gé(n,t) of the length t of a busy period and the number n of non-
priority customers served in this period. Here a busy period starts

with the arrival of a non-priority customer at a counter free of other

non-priority customers. The transform @2(9,2) ==§:t=©zne~eth2(n,t)
(0=z =1, RLO z20) is given by (3.7.14) as
Qg(@,z) = 232(X2+9-XEX)W2(X2+9-k2x), " (3.7)

where x is the unique solution in 0 <z =1, R1 6 >0, of

X =2z WE(X2+6-X2x).

L.4 The general case K Z 2

In this section we generalise the results of §4.2 and §4.3 to the
case where there are K 2 2 priority classes of customers. From the point
of view of class J customers (2 = j=K, with J =K only for a head-of-
the-line priority policy), the server appears to be alternately present for
a time which has a negative exponential distribution with mean Vj-]-]5
and absent for a time which is the busy period distribution for the first
J-1 classes of customers. Thus the problem is similar to that for just

two classes of customers; we employ the same methods as before, but do

not give as many details as previously.
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The IST GK(O) of the distribution of the time from the arrival of
a class K customer in the queue when it is free of other class K
customers (and after the end of the last class K completion time) to

its reaching the server for the first time is

K-1 :
o) i Mle @) 001

where @ij(e) (1 =1i=j=K) is the IST of a busy period distribution

d,(6) = (k1)

for the first J priority classes in isolation given that it commences

with a class i customer, and are obtained below, and

K-1

g1 = vK’] o ().

- : 1 K-
i=1
This has mean
(1+v, .o, ) '

- =1 K-1"K-1

v, = =3_'(0) = + . : (k.2)

K~ 7K K " V(g

[oe]
We now proceed to the IST's WK(O) =b/; e-eXdBK(x) and
oo-e . _
CK(G) =L/; e XdDK(x) (RL & 2 0) of the completion time distributions
. for class K customers for each of the four priority policies. In all

cases we have

6x(0) = 3(0dy(e)

(1) The preemptive priority repeat identical policy
Suppose initially that class K require uninterrupted service of
time b (> 0), while the first K-1 classes have general service time

d.f.'s Fi(x) (1 £=1i=K-1, 0= x<oo), Then the ILST \IIK(G,b) of the
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distribution of the time from a class K customer reaching the server for

the first time to his departure from the system is

K=1 oo [

- +9)b
¥ (6,p) = +Z fxle dyf AG, 4 (x)
i=1 y=o X=0
-(v,, . +0)b-6x & S v, Ly S
e K1 +Z>»fe K—]]dyfdG (x, -y )
i 1 iK-1""1 91
i=] y.]=o X, =Y,

{e- (VK_.I+9)b-6(x+x.l )+ ..... } }

~(v.,, <o) B, +6)b - '
= K1 ‘}-Z —i—FCPlK_ (9){ -e O }} (k.3)

i=1

If class K customers require an uninterrupted service which has a
[o0]
a.f. FK(x) (0 = x < w) with IST aK(e) =fo e 0% d_FK(x) (R1L 6 =z 0), then

the completion time distribution has IST wK(G) given by

Too(v., 49)x S ~(v.. .+6) -1
Vg(®) =fe ! ["Z v; +0 ‘PlKl(e){ - X}] 4y (x)

X=0 i=1
(b.k)
| The first two moments are for RK z VK-‘I and RK z QvK_]‘ respectively
— . -1 — : .
= - ! = - -
Vg = Vg (0) = Vg (v @ g ) O (hy) 1)) (+.5)

1" — " -2 =
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[ (1+v Yo (-2v )= (v 1) 3+v

o '
K-17K-1 k1% (V1)

Ve (v )10 (h.5)

The same method may be used for the other priority policies; we simply

quote the following results.

(ii) The preemptive priority repeat different policy

a (v, +8) (v, .+6)
K\ VK-1 K-1
1IJ'K(e) = K-1 ’ (4.7)
VK-‘I+9-Zi=1 2P (O) 010 (v 40))
: (14, Ppe_q ) (10 (v 1)) h.8)
K Ve OV
" —_ 2 . " | : . —
V" (0) = [V g "o (Ve ) Joye"(0) (1-ap (v ;0)42 vy 9 )
(10 (Vi3 D) (14vge 3Py Vi1 Py 1% (Vg )
2
Vg (153 @ g Doy (vge DI Tvy g0 (v )1 (.9)
(iii) - (iv) The preemptive priority resume policy and the head-of-
the-line priority policy
| K-1 ~ :
ORI S) A, ) (.10)
= -
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n _ 1" py "
V" (0) = vy @ " (0)+(1+vy o o (0) (k.12)
Substitution of ¥, (8) and £ (6) in (3.9.1) and (3.5.1) now gives
the stationary waiting time distributions (for definitions (a) and (b)
respectively) for class K customers as
(1-x ) o= (M ~6)2,(6) ]

(19, (01 (0))

QK(Q) (4.13)

(1-a 3 ) {e+n v (6)(1-3_(6))}
a(6) = —EX s — K | (h.11)
(1+LKVK){e-xK¢;KyK(e?]

For priority policies (iii) and (iv) @K(e) has been found by Miller
(1960). These are proper distributions for hKﬁk < 1. The p.g.f.
rg(z) of the stationary queue size distribution for class K customers
for preemptive and head-of-the-line priority policies are respectively
(1-XKWK)WK(XK-XKZ){1-zSK(hK-sz)}

r. (z) = ——— _ (4.15)
(1+xKyK)y K(xK-xK;)-z}

(1-» E‘)a (x oY z){]-z@ (A -sz)]

re(z) (4.16)

(1+x K){w (hK LKZ) z }

We have used the busy period distributions for the first K-1
classes in isolation to find the completion time distributions for class
K customers; we now obtain the busy period distributions for the system

of K classes.

As in §4.3 we may use (2.5.7) to find the IST wK(G) for the busy

period distribution for priority policies (iii) and (iv) of the system
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o lim _
as the solution with i wK(Q) = 0 of

K
cpK(e) = VK-] z hiai(vK+6-chpK(e)‘). (k.17)

i=]
In general a busy period may commence with a customer from any
[ee]
-6x
i £ i = K). = 2
class i (1 1‘ K). The IST @KK(G) L/; e dGKK(x) (R1 & =z 0)

of a busy period distribution starting with a class K customer is

TE O ag 0
Py (6) = f Z f e ¥ -nﬁ e‘e(y+X)demn’f<x)dBK(y)

y=O0 n=0 X=0

= qu(xK+e-chpm(e)) | (4.18)
For a busy period beginning with a class K-1 customer the IST

P (6) of its duration is

K-1K

Pg1x®) =f z f - Ef'g e-e(y+X)dGK-1 K-1 (Y)dGmcn*(x)

y=0 n=0 X=0.

= Py goq Pgt0-2Pp(0))

and in general we obtain
K
- - - £ isK-1. .
cpiK(e) cpii(vK v,+6 Z xjcij(e)) 1 S4is K- (4.19)
- J=i+1
Thus the IST @K(e) of the busy period distribution for the system of K

classes is given by

K .
P (6) = vK'] ZcpiK(e) s (4.20)

i=1
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which is equivalent to (4%.17) for a preemptive priority resume and a

head-of-the-line priority policy. The mean duration of a busy period is

K -

() ={vK b (1->»i$i)}] -1. (k.21)

i=1

We see that from the solutions obtained for the completion time
and busy period distributions, we can find the completion time distributions
for the j-th priority class in terms of the busy period distributions for
the (j-1)th class in isolation. We may then obtain the busy period
distributions for thé J-th class from the completion time distributions
for the j-th class. Thus the completion time distributions, and hence
the waiting time, and busy period distributions can be constructed by

iteration from one class to the next.
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ROAD TRAFFIC THEORY
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CHAPTER 5
DELAY AT AN INTERSECTION: DISCRETE TIME

5.1 General remarks

Mathematical problems related to road traffic theory have recently
been recelving a large amount of attention; this is hardly surprising
as road transport now plays an important part in the structure of any
mechanised economy. For example, Tanner (196la) points out that in
Britain it absorbs 10 to 15 percent of the total national expenditure;
further, it is estimated that in 1956 over foﬁr hundred million
vehicle hours were lost in delays arising from road and traffic
conditions, and this is increasing rapidly every year.

Several types of traffic problems, such as the formation of
traffic on roads and delays at junctions and in networks, have been
considered by a number of different methods: kinematics, hydrodynamics,
network theory, percolatioﬁ processes and queueing theory, each having
been applied to some extent. The Operations Research bibliography on
road traffic theory (1961) gives a detailed bibliography of all phases
of mathematical applications to road traffic up to 1960.

In this Part 3 of the thesis we are concerned only with the
application of qu;ueing theory to problems of delay at Jjunctions

and on long, uninterrupted roads. Early work on the delay at an
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interséction; with and without traffic lights, was carried out by
Adams (1936) aﬁd Garwood (1940), and has been continued by Tanner (1951,
1953, 196la,b, 1962), Raff (1951), Newell (1955) , Winsten (1956) and
others. In the earlier works it was usually assumed that vehicles on
both‘roads acted indeﬁendently of each other and that the time between
any two successive vehicles had a negative exponential distribution,

so that the passage of vehicles past a point formed of homogeneous
Poisson process. This has been found to be a reasonable approximation
for low densities of vehicles, but is unsatisfactory for medium or high
densities when the interaction between vehicles tends to be greater.
For the latter case some more complicated formations of traffic, where
bunching may take place, have been used; for example Tanner (1953,
1961a, 1962) has made use of the Borel-Tanner distribution, and the
random queues model of A. Miller (1961, 1962a) is of a similar form.
Winsten (1956) has described a discrete time model for intersection
delay.

In the next two chapters we discuss two problems, one in discrete
and the other in continuous time, which represent two different ways
of looking at intersection problems. The first discrete time model
considers a comparatively simple construction of traffic flow, which
may be épplied to-quite a wide range of conditions, such as a two-way
major road; the second, which gives a more highly sophisticated
formation of traffic, may be applied to 6nly a comparatively narrow

range of practical situations. In most practical cases there are
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several lanes of traffic, each of which may have considerable internal
interaction, and it is necessaryito make a decision as to which aspect
is the more important. We do not discuss the comparative importance
of these two appréaches, but will restrict ourselves to describing

an example of each.

5.2 Introduction

We suppose a one~lane one?way minor road intersects with either
a one-way one-lane or a two-way one-lane major road;‘the traffic in
the major road has absolute right of way over that in the minor road.
Except in §5.6 there are no traffic lights or policemen controlling
the junction, but there may be a stop sign in the minor road; the gap
acceptance time distributions described below dépend on the presence
or absence of sﬁch'a sign, but we do not explicitly differentiate
between them. Arrivals of vehicles at the junction in both major and
minor roads occur at discrete points of time t = 0,1,2,... (in an
arbitrary ﬁnit). In the minor road, vehicles arrive at the‘junction
with a geometric inter-arrival time distribution, such times having
the probabilities baS™' (0 <b <1, d =1-b; j =1,2,...).

In the major rocad it is desirable»to allow some degree of dependence
between vehicles close to each other; an account of this dependence
is given in Chapter 6. For a one-way major road we can find the
stationary waiting time distribution for a quite geheral formation of

road traffic; however, it has not been found possible to extend this
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to a two-way major road in any general form, and we consider only
some special cases. In a simple case where dependence»between
successive vehicles is allowed, we may suppose there is a Markov
chain relation between them. We call a time point in a major road
lane green (G) if there is not a vehicle there, and red (R) if there
is. ILet us consider the first major road stream encountered by minor
road vehicles, this being the only stream for a one-way major road.
We suppose that the presence or absence of vehicles at successive
time points in this lane is governed by a Markov chain relation with

the transition matrix

y G R
G a d
A =R o ' T s (2.1)

where 0 <a <1, ¢ =-1-a, 0<a<1, v =1-0; thus the probability
that a green point is followed by another green point is a, and.so on.
When there is a two-way major road we define the traffic in the second
major road stream in a similar manner; the transition matrix B
governing this second stream is

| G R

x

(2.2)

1t

Il

o o]
™

where 0 £ x =1, y=1-x, 0B =1, 8 =1-B. In the special case
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where vehicles in each stream are independent of each other we have
a=0Cand x =8 .

A minor road vehicle may arrive at the intersection to find that
there is a queue of minor road vehicles waiting to enter the intersection,
or that there are no other minor road vehicles waiting so that it
proceeds iﬁmediately to the head of the 'queue'. We formulate slightly
different rules for each of these two cases. If a minor road vehicle
arrives at an empty queue it waits until a critical gap of at least w
green time points appears in the major road (or roads if there is
two-way traffic), where w is a random variable with probabilities

o0

Priw =1} = Ei (i=1,2,...), and p.g.f. £(s) ==§: Eisi(|s|§ 1),

i=1
the mean & = £'(1) being finite; it enters the junction at the w-th

time point of this gap. A vehicle joining a non-empty queue waits

until all the vehicles ahead of it have departed. If there are at

least v more green points, where v is a random variable with probabilities

o
Priv =1} =X, (1=1,2,...), p.g.f. X(s) =Zi=1 Xisi (ls|s 1) and
finite mean X, then it enters the junction at the v-th of thesé time
points. However, if these v time points are not all green, then it
waits until the first gap of at least w appears and enters the junction
at the w-th of these. .

We wish to obtain the stationary waiting time and delay distributions.
Winéteﬁ (1956) has éonsidered a général model for major road traffic

when there is one-way traffic and rules for entering the intersection

“which are rather more restricted than ours; however, it has not been
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possible to extend Winsten's results to a two-way major road, except
in the special case of independent traffic with a geometric distribution

between successive vehicles.

5.3 The service time

Throughout this Part 3 we make use of the queueing terminology
employed in Part 2. Waiting time is defined as the time a vehicle
spends from joining the minor road queue to reaching the head of the
queue while the service time lasts from this instant until the vehicle
enters the junction. The delay is the total time a vehicle spends at
the Jjunction, which is just the sum of the walting and service times.
The service time distributions depend on whether a vehicle arrives at
an empty or a non-empty queue, so that formulae of the type discussed
in Chapter 3 are appropriate.

We begin by considering a one-way major road. As an indication
of the inhcrease in difficulty which follows when there is dependence
between vehicles, we consider the simple case where major road
vehicles are independent, i.e.vg =Q, ¢ =7, and then extend our
argument to the more general case. We suppose initially that a minor
road vehicle requires critical gap acceptance times of w and v, and |
later generalise'this case.

If a minor road vehicle arrives at the Jjunction when there are no
other minor road vehicles waiting, its service timé distribution is

identical with the distribution of the recurrence time for a success




run of length w in a sequence of Bernoulli trials, each having the
[e¢]

probability of success a. The p.g.f. g(s,w)==§:i=] gi(w)s1 (Is|s 1)
of the probabilities gi(w) (i =1,2,...) of this distribution has been

obtained by Feller (1957, p.299) as

a"s"(1-as)

w w+1
1-s+ca

g(s,w) =

A vehicle joining a non-empty queue has a service time v if there
are v further green points when it reaches the head of the queue;
otherwise it waits for a gap of size w. The p.g.f. £(s,v,w) of the

gservice time distribution in this case is thus

4-53 ad }: 8; (w)sl J

f(S)V:W) =
J= i=1
vV
— o'V 4 (1-a's") gls,w)
1 - as
_ (1-s)évs " cawsw+1
W w+1

1 -85 + ca
When the gap acceptance times are random variables we obtain

from (3.1) and (3.2) that

[o¢]

g(s) ‘Z g(s,i) & z a‘s—(]'as-Lé

i i+1 i
1-s+ca”s
i=1

[ee] (o] [oo] [ve] .l
_ \ . _ {(1 s)a +calsl }
f(s) —Z Z f(S,J,l)gin _Z z T gixj

i=1 §=1 i=1 j=1
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(3.1)

(3.2)

(3.3)

(3.4)
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Except for some special cases 1t is not possible to evaluate these
summations explicitly; however, moments of the service time distributions
may be found by differentiation. This is similar to a discrete analogue
of the completion tine distributions for a preemptive priority repeat
identical system discussed in the previous chapter. We suppose E(s)
has a radius of convergence S Z 1. Iniour.case the means of the service
time distributions are finite if a--l £ S and the second moments are
?finite if a2 5 5. We obtain from (3.3) and (3.4) that

g (1) =c ' {E(@™)-1)

£1(1) =™ £ )(1-%(a)) (3.5)

g"(1) = 2c-2[§(a-2)—(2-a)§(a-])+ac§'(a-])+c]

£7(1) = 2¢ 211X (a) }{E(aB)-ct (™ )ract (a7 J-acX' ()t (@™ )].  (5.6)

Iet us now extend the above example to the case where the major
road vehicles are no longer independent of each other, but are related
by the Markov chain relation (2.1). We must modify our previous
argument, as the service time distribution for a minor road vehicle
arriving at an empty queue depends on the length of time since the
deparfure of the last minor road vehicle. Iet us consider the
probabilities

Gop (1) = Pritime point i is G|time point O is G}

Gy (1) = Pr{time point i is R|time point O is G}.

Obviously G22(1)+G2](i) = i,'G22(O) =1, G21(0) = 0, and the following

relations hold:
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G22(1+1) = aG22(1)+aG2](i)
Gyq (1+1) = cGyy (1)41G,; (1), : (3.7)
from which we obtain the generating functions

5]

. i 1 -
Gpp* (s) =Z G (1)s” = T

i=o

oo

Opq* (=) =Z 6y (1)8” = 10 -Ts) - (5.8)

i=o

PSS
We wish to determine the p.g.f. I-%(s,w) = H(s,w) =Zi=] I-Ii(w)si
(|]s|= 1) of the distribution H (w) (1 =w,wl,...) of the time from a
red point at zero to the first gap of at least w green pointsv in the
major road traffic; we call this a w»block. The method of Winsten
(1956, p.38) for the special case a =, ¢ = Y, may be géneralised
to find this distribution. If a given time point is red the probability
that it is the last red point of the w block is Otaw-] = L, and the
probability ’P/j that the block continues with the arrival of a vehicle

within the next w time points is

Y J=1
(1-1)2, ={ o ‘
J a cad J=2,3,.00.,W, (3.9)
which has the p.g.f.
- ¥ 2wl w-1q [ |
_ _ des=(1-a" 8" ') ‘
L(s,w) —2 %J,sj -{ vs + —— 1-L) . (5.10):

1=1
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The probability that a block has i vehicles in it is L(1-1)*!

(i=1,2,...), so that with (3.10) we obtain .

o

H(s,w) =Z L1 -L)i-.I L(s,w) 1-1 v

i=1

LsW
1-(1-L)L(s,w)

w-1 w
_(1-as) a' s’ (3.11)

1-(a+y)s+(ar-ac) 624007 sWH

As in (3.2) the p.g.f. f£(s,v,w) for a vehicle joining a non-

empty queue is

v v
£(s,v,w) =a's’ + -CS%%—S—) H(s,w). (3.12)

If a véhicle joins an empty queue we average over the time

since the departure of the last minor road vehicle to obtain

[oe]

glew) =) 00t (G (e ww) + Gy ((e, )

i=1

_ (1-yd-be)f(s,w,w)+cH(s,w) '
= Tordred = (3.13)

Thus we obtain for general gap acceptance time distributions that

(5]

8e) =) &ls, 0% - (5.14)
1=1

£(s) =Z Z f(s,j,i)&ixj, | (3.15)
i=1 =1

from which we derive by differentiation




£ - G 1) A s

£1(1) = 2D ¢ 0Ny (1 x(a))

" _ 2(c+x)3a® -2 2aZ (ctat), , , -1 2{co+a (1-yd-be)}
g (]) - agcg §(8. ) + _ac—g (a ) + CXC('I -Td.+cd)

2a{((c+a)2a«uc)(1-Yd-bc)aac(zc«a)}g( -1y
a? 2(]—Yd+cd)

£1(1) = 22 [{1-x(a)}{a(a+c)2g(a’2)-acg(a")
- (ae)? : : : :

+a(a+c)ac§’(a-lﬂ-(a+c)aacX'(a)g(a-])]

We now turn to a two-way major road with the minor road vehicles
requiring to croés both major road streams. We suppose that a minor
road vehicle requires gaps of at least w(and v) in both major road
streams before being able to enter the intersection. A time point
in the major road may be red in both streams, red in the first and
green in the second, green in the first and red in the second, or
green in both; we denote these respectively by RR, RG, GR, GG or
1,2,3,4. These are the four states of a Markov chain with the
transition matrix C = (cij)

1 -2 3 4

T
1 L) B ad aB1
2 Yy X Qy ox
c =3 cd cB ad ap
L cy cx bay ax
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(3.16)

(3.17)

(3.18)
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We define
Gij(k) = Pr{time point k is j|time point O is i} 1,J =1,2,3,L

and o

* = .
633 (s? E Gij(k?s ls|= 1,
k=0

with G(s) as the (4 X h) matrix whose elements are GlJ*(s) Forming
difference equations for the G (k) and summing we obtain
6le) =I+Cs als)
=(z-ce),

from which we obtain

¢, #(8) = I, (o)
I

'T__J_ETEI (3.19)

where Kﬁj(S) is similar to the matrix (I - Cg) with the j-th column
replaced by the i-th column of I; evaluation of the determinants in

(3.19) ylelds the solutions for G, *(s) N
We wish to determine the p.g. f H, (s W)-—}Zj h. (J,W)S

(lslé 1; 1i=1 2,5) of the distribution of the time from a type i time
point to the flrst instant at which there are w consecutive time points
which are green in both streams. Any type of time point other than
green in both streams is regarded by a minor road vehicle as a red point,
80 a w block ends when there are w successive GG points. The p.g.f.

H(s,w) of a block is readily seen to be

by '
H(s,w) =§i H, (s,w). (3.20)
: =Ch) : | :




If a time point is of type i (i =1 2,5) a block ends w points later
with probablllty P = cyy chh w-1 and continues with another vehicle

arriving at point k(1 S k S w) with probability

4 = U T
k =
. . -
+d - cill-c)-lll-k cLl-j k = 2,5,-..,W,
with
L, (s w) -—Z«", (k
k=1
c.ycy.s2(1-c W-]SW-])
_ 14%Y Il
= c,.S +
i 1—c4us

We write H' = (H (s, w) He(s W) HB(S w)), P! (P By Py ) and
E(s) (L (s w)) then we can extend the argument used for (3. 11)
to ébtaln |
E=ps" + L(s)E
= (1-sN BT,
so that - |
e, 8" i i+
Hi(s,w? =TT 10| cjh(°1? JLij*
- 5=
where L‘j* is the determinant of the cofactor of (6.j - L_,(s)) in
(1 - L(s)) I - L(s)| is a (3 X 3) determinant and the L * are
(2 x 2) determlnants, so that (3 22) is easily evaluated. H(s,w) is

found from (3.20) and (3. 22)

1154

(3.21)

(3.22)
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If a minor road vehicle joins a non-empty gueue there are green
points'in both major road streams when it reaches the head of the
minor road queue. If there are a further v green (G@) points the
" vehicle has a service time of v; otherwise there is a-delay un;cil a
gap of size w appears for the first time. The p.g.f. f(s,v,w) of the
servicé time distribution for a vehicle joining a non-empty qu:eue is

vy, 0-e’s")

f(S,V,W? =cy, s t -T_—E:ZZIE—*(]-CL‘_LI_? H(S)W?' (5'25)

If a vehicle arrives at an empty queue the service time

distribution has the p.g.f.

o]

als,w) = Z pat {iGhj(i-)Hj(s’w) + G)_m(i)f(s,w,w)} . (3.24)
. J=1 ’ ’ ’ ’ i

i=1
We finally obtain the service time p.g.f.'s for general gap

acceptance time distributions as

o]

sa)= ) slen)e, s
o= ‘ '

and
£(s) = Z Z f(s,J,l) E X . (3.26)
S i=1 =1 '

5.4 The stationary waiting time distribution

This problem is a special case of a discrete time queueing (or dam)_
model where aistomers arrive independently in a binomial process with

parameter b, and the service time distribution depends on whether or not




there are any other customers in the queue when a customer arrives.

This is a discrete analogue of the problem discussed in Chapter 3.

In the discrete case the waiting time Z, (=0,1,2,...5 t =0,1,2,...)

is subject to a discrete jump when a customer (vehicle) arrives, this
being the service time for the customer, and decreases uniformly with
time unless the queue is empty. When a customer arrives at an empty
queue its service time distribution is g, (1 =1,2,...) with p.g.f.

w .
g(s)==§{ji=] gisl (ls|§ 1) and mean g'(1) < » while if the customer

joins a non-empty queue its service time distribution is fi (i = 1,2,...

00

is a

with p.g.f. £(s) =Z N

Markov chain with a countable infinity of states.

i :isl (ls]= 1) and mean £'(1) < w. Z

lim
>

time, which constitute a proper distribution only if pf'(1) <1 and

The stationary probabilities P, = Pr{Zt = i} of the waiting

g'(1) < », satisfy the difference equations

P = (d+bg] )PO+dP]

i
= + .
! Z 541555 P8 T P
5=

By multiplying the i-th relation of (k.1) by sl+] and summing both

) .
. iy _ i)l

gides we obtain the p.g.f. P(s? E:i=o P,s (|s] 1? as

P_((s-1)a+bg(s)-bf(s))

s-d-bf(s) ’

p(s) =

The probability P_ that the queue is empty is found from (h.2) by

using the condition P(1) =1 so that
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(4.1)

(4.2)
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_1-be' (1)
Fo = d+bg'(1)-p£'(1)° (u'j?

The moments of the stationary waiting time distribution may be
obtained from (4.3) by differentiation; the mean is
1" + - "
o Pg"(1) +p(1-P )£"(1)

- p(1) = _ (L.4)
2{1-p£' (1)} -

The distribution of delay may be found from that of the waiting
time by convoluting the waiting and the service time distributions.

The mean delay d is

d

P'(1) + Pog'(1) + (1-Po)f'(1)

_ (oper (1)) (g (1) + 2g7(1) - 2" (1)} + blg'(1) - 1}£"(1) (h.5)
T 2{1-bg' (1) a+bg' (1)-p£' (1)) : ' .

The stationary distributions of waiting time and delay for our
traffic models are obtained by substituting the appropriate formulae

of §5.3 in those of this section.

5.5 The continuous analogue

As in Chapter 1 we may pass from the discrete time model to one
in continuous time by taking our unitkof measurement as A (> 0) and
letting A+> 0 in an appropriate manner. As‘we take this limitgthe
dependence between vehicles in the discrete case is lost, for as
A > 0, the dependence is allowed only‘over an infinitesimal time.
For a one-way majbr road we put

a =M +0(8), b =pd+ 0(8)
W/a, v =v/a, (5.1)

w
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in such a way that as w> o, v > o, A> 0, wA> W, vA > V; we have

w =V :

1imzj=] EJ.A = F(w}, _limzj=] X = G(V? (0svVv, W< go?, where F(W?

and G(V) are d.f.'s'on (O,W). As A > O the duration between arrivals at
the intersection in both major and minor roads has a negative exponential
distribution with mean u~' and A~ respectively; thus vehicles in both :

streams arrive at the intersection in Poisson processes.
(o]

o

The IST's ¢(6) =ﬁ -6x dD(x) and \p(e) _/o e %*aB(x) (R1 6 2 0)
of the service time distributions of vehlcles Jjoining empt& and nbn- F
empty queues respectively are determined from those in discrete time
using (5.1) and the limit A+ O as

0

t(6) = 55 (™) = [ Moy art (5.2)

q;(e) = A*o I p(e798) f f { (?»+9)y + 2“—%;;—} dG(y)aF(x)
(5.3)
In the special case where G(x—w)lis the unit step function, |
C(G)eew has been obtainéd by Taﬁner (1951) for the delay to pedestriané
wisﬁing to cross a road. .
The stationary waiting time distribution may be obtained by
substituting (5.2) and (5.3) in (3.5.1) or by the limiting process

above from the discrete result (L4.2).

5.6 Traffic lights

Winsten (1956) has considered the delay to a stream of traffic

at a set of fixed interval traffic lights. Iet us suppose that vehicles
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arrive af a traffic light intersection independently in a binomial
process with parameter b (0 < b < 1). There are alternate red periods
of integral time R(= 1), when vehicles cannot cross the intersection,
and green periods of integral time a(z 1) when vehicles can enter the
intersection. The periods R and G are arranged so that at most G
vehicles can enter the intersection in a red and green period; -G may
nét represent the actual green period,vsince there may be vehicles which
are waiting at the end of a red period taking time to accelerate. For
this model Winsten (1956) has shown that the expected delay to vehicles

is given by

q= ﬁgl(*-f_ﬁ) ((R+7 % + 28, (61)

where E is the expected delay at the end of a green period; the times ti
are regeneration poipts of the prodess. Congidering only these times ti
the process is identical with that for an infinite dam in discrete

time with maximum release G and with input distribution

p, = (R;G)bl_dR+G-l

4 i=0,1,...,R+G (6.2)
which has been discussed in $1.2. We must have p = (R+G)b < G for
a stationary distribution to exist. The probabilities Pi represent
the number of vehicles in the queue at the end of a green period; the
mean number of vehicles P'(1) is given by (1.2.14) with
_ R+G _. _ ' ' = ' . e
p(z) = (bz+d)" -~ and G = m. The mean delay g at these points is given

! P'(1) as vehicles must depart at the same rate as they arrive.

by o~
The G roots of ZG - p(z) =0 in |z|§ 1 may be obtained, and thus also

P, Pye..,By 5 and P'(1), so that we can obtain d.
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A similar expression may be found for the delay in the other
stream, where vehicles arrive independently in a binomial process with
parameter b. The red and green interva;s now.last R] and G] respectively.
R1 and G1 may be different from G and R due to the period taken up by
the amber light and the possibly artificial definition of G and G.I to
allow for the acceleration times of vehicles having to stop at the
intersection. We have R] + G] =R + G. The traffic lights should
normally bevset to minimise the total delay to traffic at the intersection.
For an uncontrolleﬁ intersection, delay is caused only in the
minor road. It is useful to compare the mean delay in this case with
the total mean delay for an optimum setting of traffic lights. For
low traffic densities it is to be expected that there ﬁill be less
delay at an uncontrolled intersection than at one using traffic lights;
for high traffic densities the delay will be greater. A comparison

of the delays in the two cases would allow an estimate to be made as

to when traffic lights should be installed.

5.7 Further problems

Fbr a two-way major road some minor road vehicles may wish to turn
into the first major'road traffic stream, and-so require gaps in only
one stream. In this case the gap acceptance'timgs'are likely to be léss
than for the crossing of both streams; we can readily define these
gap accéptance times for each‘case. The main difficulty in this
broblem is when we cdnsider.a vehicle wishing to cross both streams

after a vehicle has'turned into the first stream; here we do not have
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a. starting point for determining whether a point in the second stream
is red or green, but we may make some approximations. If the dependence
between vehicles is not very great in the second major road stream

we may reasonably take the point where a minor road vehicle reaches the
head of the queue from behind a left turning vehiéle as red or green
according to the stationary probabilities independent of the initial
condition. We can then find the service time distributions, and hence
the stationary delay. In some cases it may be reasonable to suppose
thet the vehicles in the second major road stream are independent of
each other; here there is a light density of traffic in the second
sfream, which is possible on a main road leading to 6r from a city
cerntre.

When we consider more complei Junctions, such as a two-way minor
road and several lénes in the major road streams, we can obtain results
only by making more restrictive assumptions about the interaction of the
various streams of traffic. If we assume that there is a negligible
degree of interference between the streams in a two-way minor road
(e‘g. virtually no right turning),we can extend our previous results to
cover this case. When there is ﬁore than one lane in a major road

stream we may approximate by lumping these lanes into a single one.
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CHAPTER 6
DEIAY AT AN INTERSECTION: CONTINUOUS TIME

6.1 Introduction

In the previous chapter we described some discrete time traffic
modeis in which there was limited or no interaction'betweep vehicles in
the major road. In the continuous analogue, the vehicles in all streams
travelled past a point in a homogeneous Poisson process. This assumption
is reasonable only for low densities of traffic, and breaks down when
the traffic densities become at all heavy; we would then expect an
increasing degree of interaction between vehicles. The traffic density
in the major road is likely to.be greater than that in the minor, so
that the description of traffic in the major road should be of a more
general form than that in the wminor road.

We consider two one-way one lane roads, where traffic in the minor
road yields absolute right of way to that in the major road; some other
cases are discussed in §6.4-§6.6. There are no traffic lights but there
may be a stop sign on the minor road; it is possible to adapt our model
to a case where a stoﬁ sign is either present or absent. Vehicles
in the minor road wish to cross the major road; they must wait for
sufficiently large gaps in the major road traffic before they are able

to do so.



b,
_/; 2e%%3b(x) (R1L 6 2 0) and finite mean B
1
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Our rules for minor road vehicles entering the intersection
are of a form similar to, but more general than for the discrete
model in Chapter 5. A minor roéd vehicle may arrive at the inter-
seciion to find that there are or there are not other minor road
vehicles in a queue waiting to enter the intersection. In the former

case the vehicle waits until all those ahead of it have departed. If

~there is then a further free period of at least B (the first gap

acceptance time) in the major road stream, then the vehicle enters the -

intersection a time B after the previous minor road vehicle; B is a

IA

rancom variable with d.f. b(x) (0 = b.= x

: by), IST (o) =

-8'(0) < =, If the
period B is not free then a major road vehicle must arrive at the
Junction in this time. The minor road vehicle thén waits until a first
period of at least O (tﬁe second gap acceptance time) free of vehicles
appears in the major road tfaffic, where O is a random variable with

a
d.f. a(x) (0 =a, =x = ae), IST a(0) =L/; 2e-exda(x) (R1L 6 2 0) and

.
finite mean @ = -Q'(0) < ®; the minor road1vehicle enters the inter-
section at time @ after the commencement of this last free period.

‘When a minor road vehicle arrives at the intersecfion to find no
other minor road vehicles waiting, we distinguish three different sets
of rules for the entrance of the minor road vehicle into the intersection.
(i) If at the moment the vehiclé arrives there is a free period of at

least ¥ in the méjor road traffic, then the vehicle enters the inter-

section after a delay of time 7v; v is a random variable with d.f. é(x)
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C
(O = c, Sx cE), IST v(6) =j; 2e'exdc(x) (R1 6 2 0) and finite mean

:
¥ = x'(0) <w, If this period v is not free, the vehicle waits until

the rext éime there is a free time at at least @, defined as above,

amd enters the intersection & after the beginning of this last free
periol. (ii) We may simplify the problem by taking ¥ = &. This seems
reasoable when there is a stop sign in the minor road. (iii) We
suppose a minor road vehicle has first and second gap acceptance times
B and & defined as above. This vehicle cannot enter the intersection
within a time B of the previous minor road vehicle or within @ of a
major road vehicle passing the intersection. Subject to these two
restrictions a minor road vehicle is delayed by a time v, as above,

if there is a free time of at least v in the major road traffic just
when the minor road vehicle arrives at the junction. Otherwise it
waits for the first free time of at least &. As a special case of this
we may take ¥ = O, and use this last model to compare our results with
Tanner's (1961b, 1962), where the major road traffic has a Borel-Tanmer
distribution and there are fixed gap acceptance times.

The process of minor road vehicles' entering the intersection is
reminiscent of the service of non-priority customers under a preemptive
priérity repeat identical policy; the priority busy period distribution
is replaced by the distribution Qf a bunch of'vehicles(described below)
less than time c apart, where ¢ = min (a],c1) is the smaller of &5 Cq5
for rule (i) and ¢ = 8, for.rules (ii) and (iii). We have assumed

that there may be variation in gap acceptance times between vehicles,
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but that the second gab acceptance time @ for a particular vehicle
does not alter every time a decision entering the intersection is made.
An alternative formulation, analogous to a preemptive priority repeat
different policy, assumes that each time there is a decision on
entering the'intersection,>it is made with the same distribution,
independently of the particular vehicle making the decision. We
suppose that a minor road vehicle has in the first instance a second
gap acceptance time a]; if this is larger than the first free time
greater than ¢ in the major road, the gap acceptance time is replaced
by aé, then a3’ ah"" until there is a‘gap sufficiently large for the
minor road vehicle to'enter the intersection. A1l the ai have the
same d.f. Pr{ai = x} =a(x) (a] =x = aE). The further problem of the
impatience of drivers, who may accept smaller gaps after a long wait,
is discussed in §6.L4.

Iét us now consider the formation of traffic in the major road;
this description is similar to that in the next chapter. We would
expect some interaction .between vehicles or groups of vehicles which are
relatively close together, and we wish to allow for this in a general
manner. We suppose that the major road traffic passes the intérsection
in alternate bunches and gaps. 'The gaps have a negative exponential
distribution with mean u-], 80 that the time from the rear of one bunch
to thé front of thé next follows‘this distribution. The time length
of a bunch is a random variable with the d.f. Fa(x) (a £ x < ), IST

© } .
£, (0) =/; o0 aF_(x) (R1 6 2 0) and finite mean f = -£_ '(0) < =.
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A bunch is measufed from the front of the first vehicle to time a
behind the reariof the last vehicle of the bunch, so that the terminal
time a of a bunch is actually free of vehicles. Thus the time from
the rear of the last vehicle of a bunch to the commencement of the next
bunch is a + X where X follows a negative exponential distribution. We
may give a practical interpretation of the major road traffic model in
the following way. A bunch consists of a group of one or more vehicles
less than time a apart, the last vehicle in the bunch being that
followed by a time-gap greater than a to the next vehicle in the stream.
Vehicleslless than time a apart may be dependent on each other; this
dependence decreases as successive vehicles become further apart and
ceases altogether when they are separated by a time-gap larger than a.
It‘would be desirable to determine a entirely from the conditions in
the major road; however, it must also satisfy certain conditions for
the minor road traffic. For example, we must not allow a minor road
vehicle to enter the intersection during a major road bunch.

The shortest time between two major road vehicles allowing a minor
road vehicle to enter the intersection is ¢ = ﬁin (a1, c]) for rule (i)

and ¢ = a. for rules (ii) and (iii). We might therefore define a bunch

1
in the major road as a group of one or more vehicles less than c apart,
and we have a = ¢. On two lane roads interaction appears to cease for
a free period of about 6-8 seconds (Miller (1961)), although it is

quite small in the last few seconds of this interval. From data

collected by the School of Traffic Engineering at the University of
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Jew South Wales it has been found at several junctions that (second)
gap acceptance times at the end of bunches are of the order of L4-5
seconds on average but vary over a much wider range. Thus ¢ may be as
low as 2-3 seconds; major road vehicles are likely to travel at about
15-20 yards per second so that the amount of interference allowed in
this formulation is rather less than may actually occur in practice.
Wz have not made any estimate of the errors caused by reducing the
interaction between major road vehicles in the above manner, but our
model still Seemg more general than anyApreviously formulated for

similar problems.

We may describe the occurrence of bunches and gaps in terms of the

minor road vehicles if we are considering a repeat identical type

policy; such a formulation is inapplicable for a repeat different

policy. It is intrinsically undesirable to introduce factors external

to the major road stream in defining the bunches and gaps, but it does

in some cases allow of a greater degree of interaction between tﬁe
major road vehicles. From the poiﬁt of view of a minor road vehicle
with gap acceptance times'a, B and Y waiting to enter the intersection,
the major foad traffic appears to consist of alternate gaps and blocks,

where the blocks have a connotation differing slightly from the bunches

* we have already described. A y block (y 2 c) is defined as the time

from the front of>a bunch until £he first appearance of a free time of
at least y; the block-ends a period vy after the rear of the last vehicle

of the block. If the vehicle arrives at an empty queue there needs to
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be 2 free time of at least ¥ before it can enter the intersection;
if it joins a non-empty queue or has to wait while some major road
vehicles pass the junction then there must be a free time of at least
o between two major road vehicles. For rules (ii) and (iii) the free
time must be at least @, and our present formulation is most readily
applied to these two examples. Here we may consider a block to be made
up of a group of vehicles less than @ apart, and ending & after the
lasi vehicle of the block. This is a formulation more general than
that for the bunches discussed above, and allows a greater amount of
interference between major road vehicles, e.g. O varies from L-5
seconds and possibly over a wider range of perhaps 3-10 seconds. In
case (i) we must consider vehicles less than vy apart (if y < a) if
a minor road vehicle joins an empty queue.

Although the previous two formulations of major road traffic
are physically different, they may be considered together mathematically.
Given the first formulation, the time from the beginning of a bunch
to the first free time of at least y(Z c¢) is given by the same
argument as for (4.2.1); the IST &y (0) =L/; -Gx dF (x) (Rl 0 2 0)
of‘ this disﬁribution is

—(u+9)(y40) :
£ () - (nr0) (0) e (1.1)

¥y u.+9—|J.§ (9 ){1-e (u+9)(y—0)}

A block concludlng with a free time of y(z c) may be physically
considered as arising from either of the two major road traffic

formulations we have described.
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We must finally describe the process of arrival of minor road
vehicles at the intersection. We should like to have a general process
similar to that for the majér road traffic, but we are here restricted
by the mathematical techniques at our disposal. Iet us suppose that
vehicles travel towardé the intersection in bunches with gaps, these
having a negative exponential distribution with mean v-]. We define
a bunch as consisfing of a group of vehicles less thén
h(0 £ h £ min (a], b c])) apart when measured front to front; a
bunch length (in time) is a random variable with d.f. h(x) (h £ x < ),

00 ,
18T H(0) =h/; e-exdh(x) (RL & 2 0) and mean h < w. We choose
h £ min (a1, b], c]) as we do not wish to allow fhe possibility of a
vehicle's following behind another vehicle at a gap larger than the
minimum gap acceptance time (although this may be generalised as in
the second formulation of major road traffic).

Unfortunately the generality of this model makes its solution
difficult, and it becomes necessary to provide some further simplifying
assumptions. We know that the time between the front of two successive
bunches is the length of the first bunch plus a time with a negative
exponential distribution; we would like this total time to have a
negafive exponential distribution, so we must ﬁodify the formation of
the ﬁunches. We suppose that the number of vehicles in a bunch is a
1,2,404), Dog.f.

discrete random variable with probabilities g, (1 =
[o0] 00
_ E _ i < - = _ § s
g(s) i=1 gis (Isl— 1) and finite mean g i=]lgi < », and the
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actual mean (time) length of a bunch is h. We assume that bunches of
vehicles, of size i with probability g5 arrive at the intersection
ia a time homogeneous Poisson process with parameter A = (V-]+H)-1;
thus bunches are considered mathematically to be of zero length, and
tle time between any two successive bunches now has a negative exponential
distribution. We have chosen A independently of the number of vehicles
in a particular bunch, but if this were not so, we should not have an
independent inter-arrival time distribution. A special case of this
formulation is that for which vehicles arrive singly, i.e. g = 1, in a
Poisson process; this has been used by Tanner (1962) and others.

It has been shown by Miller (1961) that the Borél—Tanner
distfibution gives a good fit to some traffic ﬁodels. If we assume
the minor road traffic to be of this type we have

-ir

1,0 \i=1,, =1 ,
g, = e (1r])l (i) i=1,2,...,

' wheré ry = {ﬁV, {ﬁ(é h) being the_effective time length of a veﬁicle.
A bunch has mean size g = (]-3)-] (g < 1) and mean length h =‘&(1-q)-],
so that A7 = vT1+(] "i)-] .

With rule (iii) for minor road vehicles entering the intersection
our model is a generalisation of Tanner's (1962), who considers Poisson
minor road'traffic, a Borel-Tanner distribution in the major‘road and
constant gap acceptance times. Tanner obtains the mean delay to minor

road vehicles using a regeneration point method; our method is more

general in that we obtain the transforms of the stationary waiting time
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distribution, and from it that of the delay, so that their higher
moments may be found.

Herman and Weiss (1961) and Weiss and Maradudin (1962) have
considered-an alternative formulation of the major road traffic in
terms of headway distributions. Here the time between the front of
two successive vehicles is a random variabie with a general distribution,
so that the position of a vehicle is affected only by the nearest
vehicle in front of it. In our model we do not make this restriction
but we assume that the distribution of time from one vehicle to the
next has a negative exponential taii. The delay to a single minor-
road vehicle arriving at random at the intersection is discussed in the-
last two papers; however, this formulation of major road traffic makes
it very difficult to consider the delay for a flow of minor road vehicles.
When a vehicle reaches the head of the queue, the distribution of time
to the end of the major road gaﬁ is dependent on the previous minor
road vehicles‘which have entered the intersection during the same gap,
so that the service time distribution for vehicles joining a nbn-empty
queue is not identical for all vehicles. Consequently little progress
has been made using this model.

Our problem is a special case of that described in §3.10; ﬁhe service
time distribution depends on whether‘a vehicle joins an empty or a non-
empty queuve. Thus, ﬁé have to find fhé service time distriﬁuﬁioné for
each of these two poséibilities; if a bunch arrives at an empty queue

all vehicles of the bunch except the first are regarded as joining a
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non-empty queue. Once we have found the service time distributions,
we can substitute these in the formulae of §3.10 to obtain stationary

results for our process.

6.2 The service time

We wish to find the service time distributions for minor road
vehicles, namely the time taken from their reaching the head of the
queuve to entering the intersection. This is very similar to finding
the completion time distributions for a preemptive priority repeat
identical queueing system, although there are now additional difficulties
.for a vehicle joining an empty queue. Particular values &, B and vy of
the gap acceptance times are considered, and appropriate integration
yields the results for the general case.

When a minor road vehicle joins a non-empty queue there must still
be a gap in progress on its reaching the head of the queue, otherwise
the previous vehicle could not have entered the intersection. If there
is a further gap of at least B its service time is B; otherwise Serviéé
continues until the first free time of at least @ appears in the major
road traffic: Thus the d.f. BaB(x) (0 £ x < ®) of this service time
distribution is

min (x,B) :

Byg(x) = eMPu(xp) + [ pe™F_(x-y)ay,

y=o
where H(x) is the unit step function. This has LST
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\Ifaﬁ(e? =j;=o e'ef‘ dBaB(x) R16 20
pe (0)
_ o-(uto)p T?re—‘ {1-e'(“+6?5}. .1)

Integration Over the distribution of @ and B yields

oo

(e) _ff Was(e?da(a?db(ﬁ? =f e 0% dB(x)

B—b a=a, X=0
= B(u+6) + “ﬁig? {1—B(u+9)}, (2.2)
where | aé
o) = [ ¢ (e)aaly). | @.3)
=

Differentiation of (2.2) yields the first two moments of the service

time distribution:

¥ =40 (0) = u! (4up) (1-8(n)) (2.4)
¥"(0) = ®(1-B(n)) + 2(1—2@ {1-B(k)+up" ()} | - (2.5)
where p = —§'(O), L= E"(O) and B' (u) é;ﬁ 3B B(G) Comparison with

(4.2.14) and (4.2.15) shows that p < ® if o(-p) < @ and o© < « if
o (-2p) < o,
Wé now turn to the service time distribution for the first vehicle
of a bunch which arrives at the intersection when there are no other vehicle
waiting. The problem is similar to those described in §3.8 and §4.2,

where we integrated out over the time since the departure of the
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previous customer. We consider in turn each of the three rules for
vehicles entering the intersection after arriving at an empty queue,
in the first instance for particular values & B and v of the gap
acceptance times.

(i) A minor road vehicle m joining an empty queue is delayed by a
time v if there is a free time of at least v in major road traffic

at the moment of m's arrival. Otherwise m waits for the next freé time
of at least & in the major road traffic. We split up the major road
traffic into parts, one part being the time from the end of one bunch
to the end of the next. We can énumerate the possible pointsvof arrival
of any m during a single part, and thé service time distribution is
obtained by combining all the parts. During:the first part we may have
(a) m arrives before the gap is completed and the gap continues at
least a further v, (b) the gap lasts less than v and m arrives at least
¢ before the end of the bunch, (c) the gap lasts more than vy and m
'arrives between thé gap time less ¥, and gap plus block time less c,
(d) m arrives in the last ¢ of the bunch, and (e) m does not arrive
during the part. Enumerating the possibilities we have that the IST

¢

(6) of the (improper) service time distribution for the first part is

bior®) = 5% '(“*e”{f ST

y=0 Z=y X=0 Y=Y 2=y X=y-Y

oy

[uxe-uydy 0 (2oy)e M50 (2%) (o (1440) (a-c)
C
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g-c
+f f ue MY <:1.‘t7‘04(v-u)e-eV du}:l
u=o v=u
© o gz
-Fd/‘ d/\ u/\ Aue —Hy dde (z-y)e” -Ax-6 (z-x)
y=0 Z=y X=z-C
Y-z+x

{%-(u+6?(¥-z+x? +b/\ b/jue—uu—ev dudﬂa(v—u{}

u=0o v=u

M (6) XG—(u+9)Y _{ uéa(e):}
1-

(X—G)(u+6) AL CuAE
Mg (V) | ug (0) e (8)  ~(uro)or(Mtn)e
vy vt B gvar-p ) eyev:) A e g "0

 m (2.6)

o~ (140)r  (M+)e
(e - 1) }_}

where t]aY(o) =1 - pgc(x)/(u+x), go(c) = ugc(x)/(u+x) being the
probability that no minor road vehicles arrive during the first part.
The gervice time distribution is identical for m arriving during later
parts, so that the IST er(e) of the service time distribution for any

m with gap acceptance times v and &, arriving at an empty queue is

er(e? ]ar(e? (1+g (c)+g (e ) e}

SOV <c>

= (X—G)(u+6) A+ u+0

Mg, (6) re— (M0 ne (0) y
Ae {]_a_}
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(Mu)e
Xg (e)e / né,, (9) ~(ut+e)y _-(p+o)a
e -g5te)) '{ - }"{ TR — }" (2'7?

When the gap acceptance times Y and @ have d.f.'s c(x) and a(x)
respectively with IST's v(6) and (@) the LST £(6) of the service

time distribution for any m joining an empty queue is

10 f fc (6)dc(y)aalx)

x=a, y=c,
_ ME(6) + Ar(p+6) 1 - ne(o)
= (W-0)(u+0) Mo - u+6 -

. Xgo(c)e(x+u?c -{ v(p+6) (1 _ gé&g))

(1-g_(c)) L een- o -
a(u+6) uA(e) :
- (1. w) 1, | (2.8)
where a,
8(0) = grloy [ e 097 aa ). (2.9)

1
(ii) When v =« the IST ga(e) of the service time distribution for

any m with second gap acceptance time Q, arriving at an empty queue is

given by (2.2) with v = &. In the general case we then obtain

Mk (6 A (p+0 )
g(e? - T§%572u+6) ui; at "E%£5?

(u Ae |
Mg (cle Ca(u+6) : : A (0)
i ($-go(c)) "{ uth A0 }“{ - 40 }-- (2.10?
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(iii) Unless a minor road vehicle m with gap acceptance times a, B
and v arriving at an empty queue enters the intersection during the
same gap as the previous minor road vehicle the minimum free time
required for m to enter the intersection is ®. As in (i) ﬁe break up
the major road traffic into parts. Instead of considering one part as
the time of a gap and a bunch we could take a part as the time from the
commencement of a gap (or end of an @ block) to the end of the next O
block; this gives us an alternative way of looking at the major road
traffic in terms of the minor road vehicles.

The service time distribution depends on whether v is greater than
or less than B; we first coﬁsider the case v < B, and also suppose
Y < which is quite rea;bnable. From the time of departure of the
last minor road vehicle until the end of the next & block a minor road
vehicle until the end of the next @ block a minor road vehicle m will
be confronted with one of the following possibilities: (a) m arrives
before B-v has elapsed and the gap continues at least B, (b) m arrives
after B-v has elapsed and the gap continues for at least this time and
also a further v, (c) the gap continues less than B and m arrives before
the gap plus block time less Y has eiapsed, (d) the gap continues at
least B and m arrives in the interval betweén gap time less vy and gap
plus block time less Y, (e) m arrives in the last y of the gap plus
block time, (f) no vehicles arrive during this first part.

From the firét five of these cases we can find the'IST 1§

opr(®)

of the (improper) service time distribution of a minor road vehicle m
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with gap acceptance times @, B and Yy, which arrive during the first
gap and block period since the departure of the previous minor road

vehicle as

B-y -
b (©) _f Mx-up-6(p- X)d_x +f xe-hy-u(y+v)—erdy
¥=0 y=B-T

AL ST f T T Mmoo

y=o0 z=y Xx=0 y=P z=y x=y-¥

e-)\,x-e ( z-x?dX }

o0 © 7z
+f f f eV ddea(z-y)e-hx-e(z-x)

y=0 z=y X=z-Y

Y-z+X

{ (u+9)(Y—Z+X) f f”e due v ar (v-u)}

u=0

re (14018 N ( A L) e—(u+>»}6+(>»—9 )r . Mit,(0)

) ML A0 A-6
1-e'(“+9)‘3 e—(u+>»)ﬁ+(>»—9)v kuéa(k)
+ : - . ryr<Bp
{ u+6 LA (un)(A-0) . ?

(2.11)
whefe Om(o) =1 - Hga(x)/(uﬂ), go(a) = }J.E,a(}\.)/(p.+)\,) being the
probability that no minor road vehicles arrive during a gap and an O
block. When ¥ 2 B and @ 2 v the IST (6) of the service time

distribution may be obtained in a similar manner as above:
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¢ (0] = re~ (H+0)Y , Mtéa(e? {]_e-(me)y o)y }
2Py M A-8 W0 ey
M&a()»)
~ () (h-0) Y zB8, (2.12)

with 2CaBY(O) =1 - goﬂd). Except during the first part, the service
time distribution for the minor road vehicle is of the form (2.12) as
it is not possiblé to follow directly behind another minor road vehicle
so that 0 =B = v.

By simply enumerating the possible points of arrival we find that
the IST QaBY(G) of the service time distribution for a minor road vehicle,

with gap acceptance times &, B and 7, joiriing an empty queue is

Oﬂﬁ‘f(e) = ag«f(e) + g, (04) CO@Y(G? + g, (06)2 (6) + oees

aBY
aﬁy(e? + 8 (04) obap (9)/(1-go(a)) Y<B
 Lotape0) (g (@) | Y 28, (2.13)
so0 that |
A —( ] _( A (A-0 urg_(6)
Copr(®) = 55 e 0P (u+)» ) TG‘) RO * e

1-o—(H+0)B e—(u+>»)6+(>»—9)r g, ()
{ u+0 * HAA ?0‘)

1 A A— e NHE (6) :
{(W'm) (-0 (ﬁoﬁm) r<Bp (2.14)

and
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opy(6) = ._>"__ e-(|.L+6)Y . M-lga(e) {.l _e-(H+6)Y . e_(u+9)Y 1

A+ - A-6 u+6 LA
Mg, (a)(u+9) nE, (9) —(u+9 ]
+ W {-I - }{ ML ~ -0 } Y=B. (2']5)

From (1.1) we have that

g, @) u&c(x)e'(“+x?(a-0)
1-g (@) = pr-pE(R)

(h+\)c

_ go(c)e e-(u+h)a

G (2.16)

The IST {(6) of the service time distribution for a vehicle jdining
an empty queue is given from (2.14) and (2.15) by integrating over the

range of values of @, B and v, so that

10 -ff f (o (0) Ge()an(y)ant). 2.17)

x—a y*b z—c

In general this is difficult to integrate explicitly, but may be done

in some speciallcaseé. It seems reasonablé to suppose that y is small
compared with @ so that we can neglect the parts of v where v > a]. Also
we might expect that v is a function of B for if one gap acceptance time

is large then the other should also be: comparatively large, and vice-versa.

We thus put v = f(B), if v = 4,8 +d, <P then we obtain from (2.14) and

(2.17) that
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(r-0)
C(e) xsiu;e? + (Mu xﬁe) e “ B(u+%—hd1—6d1)

, BAE(O) {1 p(w6) | e* 02 na,-6a7) }
A-0 p+0

AN
(bt )e
Mu+0)g (c)e (h-6)a, o
- (g OpmEa RS {% B(Ad,-6d,) - Eﬁéa? , (2.18)
where
5 =m)f -(u+>»)x§ (0)da () (2.19)

x=a]

When ¥ = O then (2.18) reduces to

_ AB(u+6) A ME(6) [1-8(ur0) | B(ush)
te) =55 (x+u T X e) Blumh) + 5257 10 TSy

(u+r)e
A 0
g, (c)e € (u+0) a(“+k)_{ uE(8)

(1—g (c))(u+k)(h o) nte (2.20)

The first two moments of the serv1ce time distribution in this'lastr

case (¥ = 0) are found by differentiating (2.20):

T=-t (O) = - /x + (1+up) 1 B(“? Bﬁﬁ;x? +~9%&$%%D : (2.21)
£"(0) = u+x {B(p+r)o® + DE"(0))
+ 211159)'{(& - %}(1—é(u?? + B‘(u? - %%&%%%?

+ Xfﬁgi)(] + uE), ‘ _ . (2.22)
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where
go(C)e(u+k)c u&c(k)e(“+k?ca(u+h)
e © B e T oY
ae »
F=m0 =-/ ™Mt (0)aa@/ o)
x=a.]
%
27(0) = [ &M% 1(0) aa () faun)
> .

]
Before completing this section let us consider the service time
distributions when the equivalent of a preemptive priority repeat
different policy operates. By the same type of arguments as used in
§L4.2 we can show that the IST ¥*(6) of the service time distribution for

a customer joining a non-empty queue is

1(0) = pluso) + EEXO) (1 _ p(use)), (2.23)
where

(u+9)§c(6)a(u+9)e(“+e)c N

§*(9? = p+e-ugc(e){1-a(u+e)e(“+e?c} . (2.2 ?

When a vehicle arrives at an empty queue we take as an example
rule (iii) with ¥ = O; other cases may be dealt with in a similar manner.

In place of E(6) we have
. a, a

> %
=) = iy |/
ey 7

e-(u+k?xda(x) E*y(e)da(y)

£x(8).
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We obtain the IST ¢*(6) of the service time distribution of a minor road

vehicle joining at empty queue as

A8(u+0) | A MEx(0)[1-p(u+0) , plu+h)
tx(0) = 355 e - 5 Ble) + S5 pie S
(pt+r)e
Mg ()™ (o) £x(9)
- (1-g_(c))(ptr)(2-0) oz(u+>») - uu+9 :

Finally, differentiation of (2.23) and (2.25) yields

T = <1 (0) = ™ (1410%) (1-B(1))

¥x"(0) = o*2(1-B(n)) + 2“———“‘? U—B(u)ﬂlﬁ’(u)}

o)
T = -c*'<o§ -~ 1. (1+up*}{ 1Bl 5ﬁi§x? » Dluor)
¢"(0) = u+x (p(w)4D) + _T——_) (14p%) + E(TJup*?
‘{(— - —)(1 B(u)) + B! (u) E%&%%§) ,
where -

(14ug e
p¥ = -tx'(0) = —M;ﬂc-r— /l-l

£ "(0)e™ 2(1m E )% 2(1iE e
+

E*H(O) a(”) ' u2a(p)® nZa(u)?

-{ ot () - a(u)(l+u§é—u0)}--

J

(2.25,

(2.26]

(2.27;

(2.28°
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6.3 The stationary distributions

We are now in a position to find the.stationary distributions for
the waifing time, delay, queue size and busy period. We substitute
v(8) from (2.3) and the required version of £(8) ((2.17), (2.18) or
(2.éo) in the formulse (3.10.2), (3.10.3) and (3.10.&) to obtain the
IST 9(9) of the stationary waiting time-distribution‘and its mean,
while tﬁe mean delay is given by (3.10.5). As an example let us take
rule (iii) with ¥ = 0, so that £(6) is given by (2.20), and g = 1
so that minor road vehicles arrive»in a Poisson proceés; then the mean

delay is
= [uscz{B(u+h?+D} + kugD(1+up?(1—6(u}?(E"(0?—02}
+ 2k(1+up?{1-5(u?+u6'(u?]{(1+up?6(u+h? + (1+u§)D}]
[Eu{u—h(1+up)(1-5(u}?}f(1+uo?6(u+h)+(1+uﬁ?D}];T. ' (3;1)

The stationary queue size distribution is given by (3.10.6) and the
mean queue size by A a E. In the special case where the gap acceptance
times O and B are constanf, i.e. a(6) = e—ae, B(e) = e—se, (3.1)

reduces to

7 = 1% + A (1+p)2(1-plu) + up' (b)) (3.2)
T en(Tme ) A () -8 T o

which is of the same form as Tanner's (1962) equation (17) for a

Borel-Tanner distribution of major road traffic; we see that his
result holds for general major road traffic conditions and constant gap

acceptance times.
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A sufficient condition that (5.]) should reduce to the form (5.2)
is that E = p and E"(0) = ¢®. In genéral this is not true, although |
it does of course hold-for constant gap acceptance times.

Under the alternative formulation of gap acceptance times,
analogous to a preemptive priority repeat different policy, and with
rule (iii) with ¥ = O we find that the mean delay d* is

3¢ = 820%2 + 2hg(1+up*) (1-B(u)tup ' (1))

~ 2p(+pe*) (-Ag(T+ue*) (T-B(1))7

+ [M(1+e%) (1-8(k) )B () {2(g-1) (1-A9%g)-A*2g" (1))
-2 (rn ) (1) (1-M*g) (1-B (1 )+ (1) 11 (262 (1-A¥*g)

(B(u+r) + D317, | (3.3)

where p* and 0*% are given by (2.28). When g = 1 this reduces to

=y = B20%2n (4% ) (1-8(n )+us ' (1)}
= SR et ) WA THe®) (1-B(H)) T 2 (3.4)

which is also of the form (B.é) simiiér to Tanner's (1962) result.
We see that this result may be directly generalised for a-repeat
different policy but not for a repeat identical policy.

The IST 7(0) of the busy period distribution for minor road vehicles
(a busy period ié in prégress whenever there is at least one vehicle in
the queue at the intersection) is given by substitution'bf the
appropriate values of ¥(6) and £(6) (or ¥v*(6) and t*(6)) in (3.10.7);
this distribution is pfopér if and.only.if A ?ék 1 (or X$*§< 1). Thé

mean length of a busy period is
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o2 |

v =1'(0) = E__ , (3.5)
1-Ag ¥ .

and the mean number of vehicles in a busy period is

(1-AJ+n E
-\ g

). (5.6)

I":.

6.4 Driver impatience

In the next three sections we describe some extensions of our
traffic model. If a vehicle has been waitiﬁg to enter the intersection
for a long time it isg likely that the driver will become impatient,
and tend to accept smaller gaps in the major road traffic.

There are several ways of taking account of driver impatience. One
is to suppose that the rate of éervice, i.e. the rate of decrease of
waiting time, increases with the waiting time in the queue; this has
been partially dealt with by Miller and Gaver (1961). However, this is
difficult to apply, and also needs to be extended té the case where g
customer joining an empty queve may have a service time distribution
different from one Joining a non-empty queue. We might suppose that a
vehicle joining a long queue has shorter gap acceptance times than if it
Jjoined a short queue, so that the impatience ig transferred back along
the queue; however, this concept ig also very difficult to apply.

One useful method of measurihg impatience is to suppose that‘
for a minor road vehicle the second gap acceptance time reduces every

time a gap appears in the major road traffic until finally a gap is
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accepted. We suppose that in the first instance a minor road vehicle
has a second gap acceptance time a]; if the first gap is less than a]-c then
the gap acceptance time is replaced by Oé( z ¢), then Clgs Oy e until

a gap is finally accepted. The IST §(9|a], a,

2,...) of the distribution

of the time from the commencement of a bunch to the first time an

acceptable gap appears in the major road traffic (c.f. (L4.2.16)) is

given by
S ~(u+0)(a, -c)
_ —GZ'] 1
§(6]a], 2,...? —k/; ch(z1}{e |
vz]=o
' ‘“'yE_eZ
f f pe dar (22'Y2
=0 z,7y,
—(u+6)(a -c) -Hy,-62
{ f f“e ’ BdF(ZB'YB
= 7373
-(u+9)(a -c)
{e S }}}
® e)(a -c) n-1 -(u+6)(a,-c)
-1¢ ()" (et
= lJ. ( ) .H ('l-e . J ’ ) 2
= o a ()
o : .
where we define jE] = 1. For these fixed values of {ai} the IST's
W(6|a], ae; ...) and C(Gla], ae;...) of the service time distributions

may readily be found as before. We now wish to integrate §(6|a], aé"")

over the distributions of the {ai} (i=1,2, ...). When a; =aand
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a,

o=

Pr {qié x} = a(x) then £(6) =L/ﬂ E(Gla] Qs ..)da(a) is given by
_ / / : _ _

(1.1) and (2.3), and when the @, are independently and identically
distributed §(9) is given by (2.24). If we take account of driver

1mpat1ence we would expect that a +1 is dependent on an in some manner

and thus on Q. ; we put aJ fJa = f3a1’ where O < f = fJ =1, foa z ¢

]J

(in practice the fj would be non-increasing functions of j) and

pria = x} = a(x)(a £ x = a,, fa z c). From (L.1) we obfain
£(6) =f g(elav aa(e)
= n-1 T (w6)(of -c) n-1  -(w0)(af,-e)
=Z (“_tg gc(e)nfe" . n g (1-e I gala)
n=1 a=o J=

(k.2)
which is not in a very useful form. We consider one simple case

where we put fj =1 for j £ N are fj =f(0<f =1) for j >N so that

o JEN
«\ -]

J fo 3§ >
In.this case

o N
%2 -(u+9)(X-C) “E‘ () f(]_e-(u+9)(x-c)) da(x)
g(ev ) = gc(e)f { IJ«+9 ) } .-

x=a, . uii; ) (1oe~(148) (x=0),
’ o )N-]g (e)NL/? e-(u+6 ) (£x- c)(] -(u+6)(x-c )) da(x)
+ (=
T e nE(8)  _(L40)(rxe
X7, ]_—p.—-l-?—(]-e H ] x )

(4.3)
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Moments of this distribution, and hence of the service time distributions,
may be found explicitly by differentiating (M.B), although this becomes

very complicated if N is large (e.g. N = 5).

6.5 A two way major road

Consider a two way maJjor road with one lane in each direction. The
minor road vehicles have to pass through‘both streams of traffic in order
to cross the intersection; we suppose that the gap acceptance times
for minor road vehicles aré as above, except that now free times must
exist in both streams before a vehicle can accgpt a gap. We assume that
the traffic in th first major road stream encéuntered by minor road
vehicles consists of alternate Bunches and gaps exactly as for a one
way major road. In the second major road stream we also assume that the
traffic consists of alternate bunches and gapé; each gap has a negative
exponential distribution with mean v-](< »), and each bunch is made upv
of a group of vehicles notvgreater than c(é min (a], c]) for rule (i) and
= a, for rules (ii) and (iii))gpart. A bunch is measuréd from the f£ont
of the first xvehiéle to ¢ béhind the rear of the last vehicle, and its
length is a random variable with d.f. 6 (x) (05 x <), 15T X (6)

m .
=U/\» e_exdG (x) (R1 6 2 0) and mean X = -X!' (0) < ©». The two major
x=0 c c e’

road streams flow independently of each other.
From the point of view of minor road vehicles the major road traffic

may be condensed into a single lane of traffic consisting of alternate
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gaps and bunches; there is a gap when there are gaps in both major
road streams and a bungh everywhere else. As the two gap distributions
are independent negative exponentials the gap distribution of the
(whv)™ . If

U/;“;;QXdHc(x?

(RLO =2 O), of the combined bunch distribution then we could derive

combined process is negative exponential with mean n_]

we could find the d.f H (x)(O x < m), with IST © (e

the service time and hence the stationary delay distribution for minor
road vehicles. However, this 1s a difficult problem and has previously
been solved only in the special ;ase of homogeneous Poisson traffic in
both streams; in this case all vehicles are of zero length and
independent of each other, QO(G) = 1 and an @ block has the IST

(n+6 )

o (9 (n+9)e(n+e)a ) (5.1?

o+

In order to obtain the mean delay to minor road vehicles it is
sufficient to determine the first two moments, 5; = -¢'¢(o) and ®"C(O),
of the combined bunch distribution. We can find the mean 3; by a simﬁle
averaging argument, which unfortunately cannot be applied for higher
moments. The probabilities that at a random instant of time there are

gaps in progress in the first and second major road streams are

Pr{gap in first stream} = =

Pr{gap in second stream} =
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As the two streams are independent the probability of a joint gap is

]

P__ = Pr{gap in both streams} = — — ,
(1+u§c)(]+vXc)

gg

and the probability that at a random instant there is a bunch in the

-

combined streams is 1 - ng. The mean length of a gap is (u+v)_] so

that
1-P (1+E ) (1+vX )1
T —_—=88 1 __ c c” (5.2)
c ng p+V R+V ’

An alternative method is necessary to obtain @c"(o). Each major
road stream and the combinéd stream consists of an altefnative sequence
" of gaps and bunches, for which the end or beginning of bunches
are regeneration points of the particular process. In each-stream the
times between successive regeneration points are independently and
identically distributed random variables Xn, Yn and Zn (n=1,2,...),
where Xn, Yn and Zn are the sum of a gap and a bunch time in the fifst,
second and combined streams respectively. The IST's of these

distributions are given by

00

ox B ug ()
a*(e? =L/ﬁ e a Pr{Xn s x} = e
X=0
$ vX _(8)
B*(Q? =b/\ e'éx a Pr(Y =x} = vi@
X=0
y*(e? =f e a Pr{z = x} = é%g- 0.(6). (5.3)

X=0
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Over a long period L we have approximately that
= = = = =
L=X+. 4K =Y+ 4+ =Z+..42 (02 m,? =z m).

We write pﬁ(as the érobability that given n regenefation points in the
first stream in time L there are m(= n) regeneration points in the
combined stream; this probability isvaiso a function of the second minor
- road stream. Over the period L we can approximately equate the'IST's

of the distribution in the various streams, so that

_ n
(@(@)) ) Fr(e))® = p (r(0)), (5.1
L mel ' o -
n
where Pn(9?==§z Iﬁ?m (l9|§1?- If we could find pﬁ (or iii pﬁ? we
m=1

could obtain v*(6), and hence @c(e), from (5.4). However, it has not

been found possible to determine pﬁ, although some approximations

may be mede. If mn tends to & Limit such that Lym pi° =1,
1i m
n-)lﬁ pn=0,m%qn (O<q_<'l)then
ax(6) = r*(6)%, (5.5)

and using (5.2) we have

B4V

u(1+vxc?
The approximations for ®c"(0) in this case are not always very useful,
even in a few simple cases which have been computed (c.f.(5.1)). If we

suppose that as n > » ﬁﬁ tends to a more general distribﬁtion, such as
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a normal or a Gamma(for which we have to estimate a second parameter),
then some useful results may be obtained, although these have not beén
checked against practical data.

We now consider our problem in terms of renewal and queueing theory.
The gaps in a stream are equivalent to the idie periods and the bunches
‘are similar (but not identical) to the busy period in a single server

gueueing system with Poisson arrivals. We suppose that Zt (i = 1,2,3)

is the time to the end of the current bunch and Zt = O during a gap;
we define
' i i .
Wi(x,y,t) = ET{Zt < y|ZO = x} (i = ],2?

1 2
W(x,y,2,t) = Pr{zz = leO =, Z_

=y)

as the 4.f. of the time to the end of a bunch at time t for first and
second major road streams, and the combined stream resfectively. The
probability that there is.a gap in the i-th (i = 1,2,3) stream at time t
is Wi(x,O,t) (1= 1,2) and W(x,y,O,t);.we have by defiﬁition that
Wi(x,O,t) =.Wi(0,0,t-§) (t = x; i=1,2) (Wi(x,O,t) =0 for t < x).

We also define

V(x,y,t) = PT{ZE = 0 for some T < t; Zz >0, 0<v< TIZl =x,Z2_ =1y}

as the probability thaf a bunch in the combined stream ends by time t
given that at time zero, x and y remain of bunches in the first and
second streams respectively. We have by analogy with emptiness in a

queueing system that
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w(x, y,0,t) =f 1(0,0,0,t-7)4_V(x,y,T)

T=0
We define the IST's

oo

— -6
= (x,6) =L/We t dtWi(x,O,t)

R16 =20
t=o0 -

oo

— - -0t
=(x,y,60) =L/\e dtW(x,y,O t)

, RL 6 2 O
t=0 '

00

-6
8(x,,6) =f ™" 4, V(x,y,t)

Rl 6 =z Q.
t=0 '
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(5.6)

1,2

It may be shown from equations similar to (5.6) for the two major

road streams in 1solation, or by renewal theory, that
6
+9 hE @ )

(x 9)

% (y,0) = Tev—x‘(‘) ,

and by inverting these that

W, (x,0 t)__iz Jf -u(t-x-u)(u(t-x-u an*(u)

n=o u=0 A
Wé(y,o,t) ==§: J/Y e-V(t-y-u? (V(t;¥-u??n dGn*(u)
" n=o u=0

Teking transforms in (5.6) yields

@(x,y,@) =‘fx%f%fgg .

(5.7)

(5.8)

(5.9)
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As the two major road streams are independent and there is a gap
in the combined stream only if there is a gap in both streams it follows

that
W(x,y,0,t) = W, (x,0,4)W,(y,0,t). (5.10)

As a bunch in the combined stream may commence with a bunch in either

single major road stream we have from (5.9)and (5.10) that

(utv)o (o) = uf@(x,o,e)ch(x)wf 6(0,y,6)dG ()
- X=0 ’ ) y=0 A ‘

1l

[ et
{uf fe dt[w](O,O,t-x?WE(O,O,t?]ch(x?

x=0 t=x

+ VU/T b/je-et dt[wj(O;O;t)Wé(o;oit'Y)]dGc(Yi}
y=o t=y ' ‘ '

0 o -1 i
{f e dt[W.‘ (o,o,t)we(o,o,t)]} . (5.11)
. : . . i

This gives a formal‘solutiOn to our problem; however, I have been unable
to evaluate the integrals in (5.]1), and have not found any useful
expression for ¢c"(0). If the expgessions on the right hand side of
(5.8) converge fairl& rapidly a reasonable approximation for @c"(O)
may fossibly be obtained by numerical methods. A

If some minor road vehicles.wish to turn left into the first major

road stream, then for a vehicle wishing to cross both streams after a
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vehicle has turned left we do not know if there is a gap in progress
in the second major rocad stream. Some further simplifications or

approximations must thus be made, as was necessary in $5.6

6.6 Some other problems

The methods used in the previous sections may be extended to some
more Ccomplex road situations. If the major road has more than one lane,
its traffic may still be viewed from the minor road as an alternate
sequence of blocks and gaps, although the block distribution may be
more complicated than for a single lane. However, when there is more
than one lane of traffic in the major road, it becomes possible to
pass slow vehicles and the traffic may not tend to bunch up so heavily.

If some minor road vehicles wish to turn left and others wish to
cross a one lane major road then these two groups of vehicles may fequire
gap acceptance times with different distributibns. Knowing the probability
of a vehicle turning left and the gap acceptance times for this
manoeuvre, we can readlily extend our formulae to cover this situation.

If the major road has more than one lane and vehicles turning left
require a gap in only the left lane of the major road, then the problem
is complicated by our not being able to consider the major road as
condensed into one lane (as with a two way méjor réad); also there may
be a block in the second major road lane immediately ;fter a vehicle has
turned left into the major road. Some further assumptions have to be

made in this case, but it is possible to use approximations.
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It would be useful if we could find the total mean delay to
vehicles in both major and minor roads if the intersection were
controlled by fixed interval traffic lights, given the previous
formulation of the major and minor road traffic streams. We could
then compare the mean delay for the two systems and, subject to some
other economic considerations, an estimate could be made as to when
traffic lights should be installed at the intersection. However, the
problem is much more complex when there are traffic lights, and it has
not been found possible to obtain an expression for the delay for the.
general arrival time distributions considered in the previous sections.
An estimate of delay may be made by Monte Carlo methods; several values
of the length of the 'red"and 'green' intervals would then need to
be taken to obtain the mean delay for an optimum setting of the lights.

For one stream the intersection is alternately clear and blocked
for fixed intervals. This is similar to a preemptive repeat identical
queueing system where priority customers have a constant inter-arrival
time, thus being the>length of a red plus a green interval, and a
constant service time which is the length of a red interval. For an
uncontrolled intersection the time between the end of one bunch and the
commencement of the next has a negative exponential distribution. The
latter case>is easier to handle éé-all vehicles which have to queue up
before entering the intersection have the same service time distributioq;
this is not true when there are traffic lights, as the service time of a

vehicle Joining a non-empty queue depends on the number of vehicles which
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have been served in the green period during which the vehicle reaches
the head of the queue.

If we consider the end of green periods as regeneration points,
it is possible to write down a set of difference equations for the
distribution of thé number of vehicles waiting in a stream. In general,
however, it has not been found possible to solve these equations, except
for some simple cases; under quite restrictive conditions the problem
may be reduced to that of an infinite dam in discrete time with maximum

release m(> 1) (c.f. §1.2 and §5.6).

6.7 Numerical results

A series of calculations have been carried out on the Australian
National Uﬁiversity's I.B.M. 1620 computer. The main purpose of these
"has been to compare results for variable gap acceptance times with
those of Tanner (1961b) for constant gap acceptance times. We assume
that (a) the one way méjor road traffic forms a Borel-Tanner distribution

with ¢ = O and the distribution of bunches has the IST

(g (6)-1)r-6t
£.(6) =¢ (6) =e - ’ (7.1)

where 4 is the effective length of a major road vehicle and r = d < 1;
(b) rule (iii) holds for minor road vehicles entering the intersection
with ¥ = 0 and E = 1; and (c) the gap acceptance times have truncated

Erlangian distributions with
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-(x-b.)/v
e x 1 ‘/(X—b] )Il’l-] ax
ab(x) = — ( /b ( )~ b] £ x = b,
m | ~(by=1,)/b (by-b,
b (m-?}- {1 -ZFOG et } (7.2)
-(x-a,)
. x a1‘/a<x_a])m_] e
dalx) = 3 M EXER
21 (ay-a)/a (ag-a, )" ’
a(m-1)! {] 'z'r=o © . L }
/ r. (7.3)

where b and a'(different from that in §6.1) are so chosen as to make
'b .

8 ; 2 ,
the mean gap acceptance times G =L/; x da(x)and H =L/ﬂ x db(x) close
1 .

b
1
to the @ and B of Tanner (1961b). Blunden, Clissold and Fisher (1962)

have shown thaf in several practical examples the Erlangian distribution
gives a géod fit for the gap acceptance times, so that (7.2) and (7.3)
should fit many practical cases. Ipitially we take a, = b2>= ;3 this.
considerably simplifies the calculations and readilyvenables ué to set
G =C and H = B; in this case

G-=ma+a]=ot

H=mb+b]=B
so that we chose a and b as

a = (a - a])/m, b=(p - b])/m.' (7.4)

The first two moments of the bunches of the Borel-Tanner distribution

(7.1) are
Eo = ’E('l -.r?-]

g "(0) = (1 - r)7? (7.5)
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From (7.5), (2.3) and (1.1) we obtain

_ Ot(—u)e_“% /
i g
)
2 = 2e le™ a(-en) + p(i-r)a’ (<)
ue(l—r)g : : :

{(1-r> - E “‘2”} o) 1 . . (7.6)

A necessary and sufficient condition for the existence of a
stationary distribution is that A ¥ = u_]a(-u)e-“{fl-B(p))/(]—r) <1.
When G = and H = B saturation point is reacﬁed sooner fer variable
gap acceptance times than for constant gap acceptance times as
al-p) = M.

AWhen ay =‘b2 = o the mean delay d given by (3.1) has been computed
) = (1,0,0), (3,0,0), (1,1,1), (3,1,1), (7,0,0), (7,1,1),

for (m a1,b1
(7,52) «&_012 G = 4,6,8,10, H = ,357,)»-002(004)050
and 1 = 0.10 (0. 10) 1.00 or until A ¥ < 1 is no longer satlsfled.
Only a selection of the results are presented here, bﬁt these are
sUfficientlto indicate the trends involved; Tanner's results are included
for comparison.

As one would expect intuitively, the mean delay is always greater
for variable gap acceptence times; a vehicle w;fh a large gap acceptance
time may delay not only itself but several other vehicles as well,

whereas one small gap acceptance time is unlikely to save other vehicles

much time. We wish to find how much larger the delay is for variable
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gap accepténce times. When m = 1, so that gap acceptance times have

a truncéted negative exponential distribution, the mean delay is
considerably larger for variable gap acceptance times, even for quite

low densities of traffic. TFor the more realistic case of m = 7 with

(a (1 ]) and (3,2) the mean delay is only slightly greater for
low den51t1es, but is con51derably larger for high densities, partlcularly
so near saturation level. TFor medium values of the mean delay, e.g

10-25 seconds, a decision on whether the mean delay is significantly
larger for variable gap acceptance times depends on the importance
attached to marginal extra delays (e.g. 5-20%).

If we choose a, < =, b2 < = then

(a -a -(a2-31)/

a (m-]).{ }: -(ae-a]?/a (ae_i]?%}

G=ma + a, -

. rla
-(b,-b, )/b
H=mb + b, - N ) -1 -(bg-b1)/b (bg-b])r
b (m-])!{} - ) e : E— :}
. =0 1.7
. r'b

and it becomes more difficult to choose a and b soAthat G=0a, H=B;
however, the choice of a and b as in (7.4) gives reasonable approximations
for G and H to @ and B. It has beenlfound for m = 3 and m = T that
making 2 and‘b2 finite produces very little difference in the mean delay

as compared with ay = b2 = o, while it involves a much lengthier

computational procedure. The mean delay d has been computed'for
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(m,a],ag,b],be) = (3,1,12,1,10), (7,1,12,1,10), (7,3,20,2,16) and
(7,5,12,2,10);‘for the last two cases the mean delay agrees with

that for &y = b2 = o to four significant figures and it has consequently
not been thought worfhwhile to include these calculations.

In conclusion, it would seem that for low ‘traffic densities it is
reasonable to take fixed gap accepfance times; this becomes less true
as the traffic density increases, and is quite unreasonable for high
densities.

We have formulated the problem in more general terms than that
for which we have computed results, and it may be found that major road
traffic distfibutions other than the Borel-Tanner; and other gap

acceptance time distributions, are more applicable in differant

circumstances.
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CHAPTER 7
DELAYS ON A TWO-IANE ROAD

7.1 Introduction

In a Royal Statistical Society symposium (and its following
discussion) on traffic theory Tanner (1961a) and A. Miller (1961) have
described éome statistical problems in the formation of and dela& to
traffic on a long two-way road. Miller's formulation of traffic as
consisting of alternate gaps having a negative exponential distribution,
and of bunches, is similar to that described below and in‘the previous
chapter. Tanner has used the special case of traffic forming a Borel-
Tanner distribution to obtain the mean delay to a single extra fast
vehicle. Another model of the flow and delay to vehicles on a two way
road has been described by A. Miller (1962). Here vehicle velocities may ha
a probability distribution, and the procesé of catching up and overtaking
in one lane of traffic is considered for very simple 6vertaking rules.

We consider a generalisation of Tanner's model to a more general
description of the traffic flow. This description is similar to that
for the major road'traffic in the previous chapter; hoﬁever, it now
becomes more convenient to describe the flow in units of distance rather
than time. These are in fact equivalent as we assume that all vehicles,

except one, have a constant speed.
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We suppose there is a long, straight two-way road having one
lane in each direction, with vehicles travelling at a constant speed
v in one direction and a constant speed V in the other direction. From
a fixed point on the road the streams in both lanes may be considered
as passing the point in alternate 'bunches' of vehicles and of gaps
free of vehicles. The lengths of the gaps are independently and
identically distributed random variables having negative exponential
distributions with means g-] and G-] in the v- and V- streéms respectively.
We suppose the length of a bunch in the v- stream is a random variable
with the d.f. Fe(x) (o S x, € < »), where the first interval € of the
total distance judged to be occupied by a bunch is actually free of
vehicles, so thut a 'v-bunch' commences € before the front of the first

o

vehicle in it; Fe(x) has IST Ee(e) = £(6) =L/; e_exdFe(x) with finite

mean Ee =& = —5'6(0) < o, The IST ge(e) is assumed to exist and be

 finite for all real 6 2 ;S where S is a positive constant; this is
equivalent to the condition that the d.f. Fe(x) have an analytic
characteristic function. In the V-stream we sﬁppose the length of a
bunch is a random variable with the d.f. Gn(x) (0sx, 1< w),,where
the last interval 1 of a bunch is free of vehicles, IST i

oo
Xn(e) =ﬁ e—eXdGn(x) (R1 6 2 0) and finite mean X = >‘<n < w. The
distances € and 71, wﬁich may be-chosen arbitrarily subject‘to the
practical restrictions discussed below, are included at the beginning

and the end, respectively, of the bunches as for these, unlike for the



172

gaps, the distribution of the distance to the next vehicle may not
be negative exponential. The formation of gaps and blocks is
illustrated in Figure 7.

We are concerned with the speed of a single additional vehicle
travelling in the v direction. When uninterrupted»it travels at speed
u(>'v), and when it catches up to a bunch and wishes to overtake, it
behavés in the following way similar to that described by Tanner (1961a).
Bunches of v-vehicles are overtaken in a single manoeuvre. Consider A
the moment when the u-vehicle reaches a v-bunch of length y. If there
is a free distance in the opposing stream of at least T = ¢y + d, where
¢-= (u+ V)/(u-v) and 4 is a constant which‘is a safety margin for
the u-vehiéle, theﬁ it overtakes without slowing down. Otherwise it
reduces speed immediately to v and waits for a free distance of at
least D=7+ t =T + (v + V)t in the opposing stream, waits a further
time t, where this is a positive constant, accelerates instantaneously
to speed u and overtakes. The last distance 1 of a V~bunch is free of
vehicles and is included in T and D.

The practical interpretation of the formation of buﬁches is
similar to that‘in the previous chapter. As before we must restrict
the maximum distance between two successive vehicles if they are to be
included in the same bunch.. In the v-stream vehicles forming a bunch
must be sufficiently close together so that another vehicle travelling
in the same direction and overtaking cannot fit between two vehicles

of the bunch, but must overtake in one manoeuvre. Thus we suppose that
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is

the vehicles of a v-bunch must be less than e(s e]) apart, where e]

the effective minimum space an overtaking vehicle requires to fit
between two v-vehicles.
The minimum distance that the u-vehicle ever requires in order to

pass a v-bunch is n] = Qrqt d, where v, is the shortest possible length

1
of a v-bunch which includes just one vehicle, i.e. the effective length

‘'of a v-vehicle plus € If two successive vehicles of a V-bunch were

1
allowed to be more than n] apart then it would be possible for the u-
vehicle to pass a v-bunch during a V-bunch in the opposing stream,

which we do wish to permit. Thus we suppose that a V-bunch consists

of a group of vehicles in which successive vehicles are less than

n(0 =1 =7 ) apart.

As we have seen, a 'bunch' may actually end or begin with a space
free of vehicles, but until there is a distance n(or ¢ as the case may be)
free of vehicles the distribution of the distance to the next vehicle is
not necessarily negative exponential. We thus allow interaction between
successive vehicles which are less than n(or €) apart, but this interaction
decreases as the distance between vehicles becémes greater and cease
when 1t reaches n(or €). In practice m should be of the order of 100
yards or more, so that'we may allow a reasonable degree of interference
between V-vehicles. Now E] is considerably less than n], so that less
interference is allowed in the v- than the V-stream. However, we can

improve the formulation in the v-stream and still find the mean speed of

the u-vehicle. Instead of the gap distribution in the v-stream having
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a negative exponential distribution, we suppose it has a d.f. A(x)

© .
(0 = x <), with IST a(8) =L/; e_eXdA(x) (R1 @ 2 0) and finite mean
a = ~a'(0)>< o, This comﬁines the advanﬁageé of boﬁh our model and of
the headwﬁy distribution model of Weiss and Maridudin (1962) and
Buckley (1962). Once there is a free distance of at least é in the
v-stream the distribution of the distance to the next vehicle is
independent of the characteristics of a bunch, but need not be of the
simple negative exponential form.

The u-vehicle travels alternately for free runs at speea u and
waits, possibly for time zero, at speed v. One of the runs at speed u
lasts for the length of a v-bunch plus the length of a gap, so that

©
if y(6) =L e %%ac(x) (R1 6 2 0) is the IST of the d.f. C(x) of this

time, we have
7(8) = a(8/(u-v)) &(6/(u-v)), (1.1)

the mean of the distribution being

= - ! = — . . L]
X = -7 (o} o (1 2?
Iet w be the mean of the distribution of delay to the u-vehicle

at a v-bunch and u the mean speed travelled by the u-vehicle. If the

u-vehicle travels for a time x at speed u and a time w at speed v then

its speed over x + w is u, = (ux + vw)/(x + w). Over the time taken to

1

travel N times at speed u and N times at speed v (for times X, and LA

N
(1 =1 =0N)), the speed of the u-vehicle is uy Ezszﬂ(uxi + vwi) /

'N‘ .
}:i=1(xi + wi); this converges in probability to the average speed
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u=

sl
=3

+
I, (1.3)
over a long journey. Thus to obtain this it is sufficient to find the

mean w of the distribution of waiting times at a v-bunch, as we shall

do in the next sectionm.

7.2 The mean speed

The distance the u-vehicle travels from tﬁe front of one v-bunch
to the rear of the next, relative to the V-stream, is X/@ where X is
a random variable with the d f. A(x). When the u-vehicle completes the
passing of one v-bunch, there is a further gap of at least 4 in the
opposing stream  The relative distance V to the next v-bunch may be
less than or greater than d; we consider the two cases separately.

We require the distribution of the distance from the beginning of
a V-bunch up to the first free distance (including the last 7 of the
bunches) of at least T(or D) in the V-stream; this is similar to

P

(6.1.1). The IST xy(e) =j; ~6x dG (x) (RL 6 2 0) of the 4.f. Gy(x)
(y = ﬂ; 0 = x < ®)of tﬁe distance from the commenéement of a V—buncﬁ
to the first poin£‘where there is a distance of at least y (including

y) free of v-vehicles is

(+0) X, (8)e” (6+6)(y-n)

o - OX, (e)u —e TG )(y'”) )

xy(e) = (2.1?

When v < 4 there is no delay if there is a further free distance

of at least v + T = d in the V-stream; otherwise the vehicle waits at
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speed v until the first break of at least D appears in the V-stream,
waits a further distance €, accelerates to speed u and passes. The

IsT W](G, v, Y) of the distribution of the distance for this wait is

V+17-d

\If-|(9;v;Y) - —G(V+T d f f Gy—@(z T+d- V)d dG ( _y)
' y=o z=y
X (8)
_ G(ver-a) | D _{ee(v+-r—d)_e—G(v+'r-d)} . (2.2)
. C+0 . : /
Integrating (2.2) over the distribution of v Eetween 0 and d, we
obtain that
d
W](G,Y) =L/P W](G,X,Y\dA(x/¢\
- x=o
ox(6)
- a(cp,a/p)e ™), XD { ™2u(e 9,4/9)
- (o8} (2.3)
where a
o(6,a) =f\ e au(y).
S )
When a(e = g/(g+9), then (2.3) reduces to
acx.(8) e(T-dj oT-Cd -GT-Cd _-G(7-d)
\If (G;T) - XD ) {e -e + e - }
G+6 c-6 G+C
-G(7-4)
. Ce — _{] e (G—I-C?d} ’ (2.4?

where C = g/@.
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" When v > d the problem is more complicatedbas we have to consider
what has happened in the opposing traffic further than the distance
d from the front of the last v-ﬁunch. We use the same method as in
§3.8, §4.2 and §6.2. We consider the V-stream in terms of gaps and
T blocks, where a block is defined as in $6.1. Enumerating all the
possible points of arrival of the u-vehicle at a v-bunch we derive the

IST WQ(O;Y) of the distribution of the distance of this wait (v >d) as

oo o]

WQ(Q’Y) =Z f efG(yﬂ-?

n=o |_y=o

f f f cTe'G(WJ'T e ac_(z- W)

wW=0 Z=W y=2z-T
T © Z— © o w zZ-T

LTI S
a=v w=T z—w —ov—oa—v

W=0 Zz=W y=O
z

T

3 i\‘“

© © -7

: ~ -G(w+v ) -6 (z+0-y-1)
S f T [ o

W=0 zZ=W y=2z-T V=0

awdG,_ (z-w) dvdBD(oc-v )}

f f f Ge ‘G(W’LQ'Q(Z'V'”E)ddeT(z-w)

w=o z=w y=max(o, W—T)

dyhn(Y)T)y+d?) (2'5?
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where

. (<) o
n 2. 4. . .+2_4y+d )
— -Gwy{ - 1 n
dyhn(Y) ij+d) = 1II f f Ge dGT(Zi Wi )dyA( (P )

hﬁ(T’T’d) being. the probability that the u-vehicle does not reach the
next v-bunch during the first n gaps and T blocks in the opposing stream.
When the v-stream gaps have a negative exponential distribution with
a(6) = g/(g+6), then (2.5) simplifies to

' ' ’ 2 -(G+6)¢

G ch(e)xT(e)U-e >)

(G+0) 2

. GCX,_ (e)e } { G+Cr}. . gﬁ—;ETJ

(v,7) [chb(e) Gt Cr-(e+0)t _er ¢
+ Tt o * T e ‘c-e'G+cT}

CecT-(G+e)§ CeCT_Ce-GT:l
)

Cd\l’g(e)r) = (1-5(Y)T))-] [{

T~ T ¢-o t TG

(2.6)

where _
g(r,) = G(mc)"x ().
The IST 3(6,?) of the distribution of the dlstance which the u-vehicle
spends waiting at a v-bunch of length y is.
9(9,‘() =¥, (6,7) + \lfe(e,r), @.7)
and the IST @(e Y) =/; -0x dW(x,Y) (RL 6 2 0) of the d.f. W(x,y) '

(0 £ x < @) of the time the u-vehlcle waits at a v-bunch of length y is
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2(0,7) = 8(=%,1), | | (2.8)

as one stream is travelling at a relative speed of v + V comparedi
with the other stream.

We wish to obtain the IST &(6) =Lwe-eXdW(x) (RL 6 2 0)
of the d.f. W(x) (0 = x< oo) of the ‘wait for the u-vehicle &t a

v-bunch. From Iukdcs (1960 ) (c.f.(k.2. 11)) we have

f 2(0,y)aF (y) —f f de(x,y)dF(y?

y=o y=0 X=0

-/ f ey )er )

X=0 y=0

,co

=.f e P an(x) = o(0).

o | (2.9)
For the remainder of this chapter we consider the special case '

of gaps in the v-stream having a negative‘exponential distribution with

a(e) = g/(g+0), although the meén speed u may be found explicitly for

somé other caées. Substituting (2.2) and (2.6) into (2.8) and

differentiating, we find that

(1467 )80 o
-0t (0,7) = ) {e - m} i ("q%_v)

= 1.C(n-4)
. Xn(C)('l—kGXn)e N . c_eG_§
(G+C-GXn(fC))(v+_V) T GC

(2.10)
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We now oﬁtain the mean w of the distribution of the wait of the
[o0]
u-vehicle at a v-bunch as w = -0'(0) = 1/;=0 @'(O,x)dF(x), where a
sufficient condition for this to be finite is that S = Go, i.e. ge(e) A

exists and is finite for all real 6 2 -G¢. From (2.]0) we obtain

_ (1+G7fn)eG(d+C n) (@& )
VS TG t(-co) G+c}' '
% () (146, ) €1 d) Gc

(G+C GX. (c) (v+v7 (2-11)

Substitution of (2 11) and (1 2) into (1 3) yields the mean
speed of the u-vehicle over a long stretch of road which we can write

in the form

g(1+6X )

W gy (G(arten) {g(_G@)._ £
u-v G(1+gE) .
oX, (c)ec<” d) 08t
G+C X, L (2.12)

The mean wait w at a v-bunch becomes infinite when §(-G¢) becomes
infinife, i.e. at the point where G reaches S. Thus over an infinitely
long jéurney the mean speed u approaches v asymptotically, although
over a short period u is greater than v as there is a non-zero
probability of part of the journey being made at speed ﬁ.

If the v- and V-streams form Borel-Tanner distributions with

effective vehicle lengths b and B respectively then
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r(g_(6)-1)-6v

e

£(0)

R(Xb(e)-1)—6B
e - . »

xo(e?
where r = bg, R = BG. The results (20) and (21) of Tanner (1961a)
follow from (2.11) and (2.12) with € =An =0, 5;(-G¢) =N, A
Xn(C) = XO(C) = K. We have fhus generalised Tanner‘é result to a
widef class éf bunching distributions. The practical interpretations
given for his model by Tanner may in general be applied to the above

more general case.

7.3 A flow of fast vehicles

Iet us now consider a flow of fast vehicles, whose desired speed
is u >V, travelling in the same direction as the &-vehicles and fittiﬁg
in the gaps between the bunches of v-vehicles. If the u-vehicles were
originally placed at random in the gaps, they would eventually form
buhches and gaps (not necessarily negative exponential) due to the
interference of the v-bunches. We wish to f£ind the meén speed of the
u-vehicles; however, this is very difficult in general as thé u-vehicles
do not behave independently of each other. The process of arrivals of
u-vehicles at a v-bunch is depehdent on the output from the previous
v-bunch and this is not in general of a Poisson type. The model is
most readily applicable when there is only.a light flow of v-vehicles,
and particularly when there are just a few v-vehicles spaced at random

with a large mean distance between them; this may be applicable to the
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delay caused by semi-trailers and heavy transports on an inter-city
run. In the further special case of just a single v-vehicle the
problem is similar to that discussed in Chapter 6 for delay at an
intersection.

We assume that in a stationary state bunches of u-vehicles
arrive at a v-bunch in a Poisson process with parameter v; the size
of a bunch is a random vvariable with probabilities bi (i =1,2,...),

m 3
p.g.f. B(s) =Zi=1 bis? (|s|s 1) and finite mean b = B' (1)< ». A

reasonable assumption might be that these are bunches of a Borel-Tanner

distribution, so that

5(e) = so(Ble)-T)r

2

where r =LV, L being the effective length of a u-vehicle.

We make a further simplifying assumption, namely that there is
always sufficient room between two v-bunches for any numbéerf u-vehicles
to fit into this gap; this seems reasonable if there is only a light
flow of v-vehicles.

It is also assumed that the v-bunches are sufficiently far apart
for the wait at two successive v-bunches to be considered independently,
i.e. the V-stream moves so far along while a u-vehicle is travelling
between bunches that the effect of a particular gap or block in the
V-stream cannot be connected with the wait at successive v-bunches.

If a u-velicle arrives at a v-bunch where there are no other

u-vehicles waiting, then we suppose that for overtaking the v-bunch it
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behaves exactly as for the single u-vehicle above, If it arrives to
find other u-vehicles waiting then it queues up behind these vehicles;
when it reaches the head of the u-queue there is a gap in the V-stream.
If this gap lasts a further distance h, where h is a random variable with
a.f. H(x) (0 s x < w) and IST:E(G) _l/; dH(x) (R1 6 2 O) and mean
h = Qﬂ'(d) < », then it waits for this distance h, accelerates ins-
tantaneously to speed u and overtakes; otherwise it remains at speed
v until the first free distance of at least D appears in the opposing
stream and behaves as for a single u-vehicle.

At a single v-bunch the distribution of the wait for u-vehicles
is similar to that described in the previous chapter and is an application
of the results of §3.10. We require only to find the service time
distributions for u-vehicles reaching an empty and a non-empty queue
of u-vehicles. In the latter case the IST v*(e,r) of the service time

distribution for a v-bunch of length vy is given by

v(0,7) = H(os0) + gl () e‘fu-ﬂ(me)} (3.1)

Relative to theAV-stream, u-vehicles arrive (in bunches) at a
v-bunch in a Poisson process with parameter A = V/¢ Iet us eoneider
a u-vehicle.arriving at a v-bunch with no other u-vehicles waiting.
We break up the V-stream into parts, one part consisting of a gap
and a block. The first gap must last at least a distance T as this

distance is free when the previous u-vehicle overtakes the bunch.

Enumerating  the poésible points of arrival of the u-vehicle at a



v-bunch of length ¥ with no other u-vehicles waiting we find that the

IST C*(G,Y) of the distance a u-vehicle spends at the v-bunch is

g, (Y)
g (G;Y) = {; (Q,Y) + (T) CQ( )Y) (5-2?
where

e -(MD)7T XGXD(G)

& or) =5 ()»+6)(G+6) (1-7 90T

A GXD(Q)' ~(MG
g U - ) (- ( )T)

ax,(e) GXD(G) g (MG)T
{ B+ -2 ) [‘(ﬁﬂm)

{XT(G) - XT(?\,)}_'_ ;TGG XT( (e “(n- G)T _ e-(x.,.gh):

o
%_(\) '
} ;:,_4.(}(] ) e-()»+G?'r )}:I
. xGe’“xT(x) x,(0)(eM-eT), ¢ ax (8)\f M -Cr
MG 1 (v-0)(G+0) Y- G+0 ( MG )}

(3.3)
ax (6) X () T ‘
€, (6,7) ={-X’; + (1 &p o) ) e-(G+6?§} I:me

G+0 ) ™-0) (x+¢)

' X _(6) '
{XT(G?'XTO“?}* o 1 (© ~0)r =) )



186

aax_(n) 6 (6) st or () . g
* KIG 1-9)(g+0) ‘¢ ~° )+ (0 - G+0 ) e_;;:__g_: }; (3-’*?
ax_(1)e™™T
g,(r) =1 - £ (0,7) = —55—
G&Jx)

g1(r? =1 - £(0,7) = wTemet

Integration of (3.1) and (3.2) over the distribution of the
length of a v-bunch yieldé the IST’% y*(6) and §*(9) of the distributions
of the distance a u-vehicle spends wariting. at a v-bﬁnch. The IST's
¥(6) and ¢(6) of the distributions of the lengths of time of these
wait.s are giw;’en by

¥(8) = w(6/(v+v))
ex(6/ (v+7)) . o (3.5)

¢(e)
Substitut;ion of (3. 5)AJ'-.ntc13 (5.10.2) yields the stationary waiting
time distribution fo:c-' u-=vehicles a't; a v-bunch; the mean delay is given _
by (3.10.5). Finally substitution of fhis last result and of (1.3)

with a(6) = u/(u+6) into (1.2) yields the mean speed of u-vehicles.
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1. Consider a system of n elements whose ranked initial ages
at time {=Ty=0 are 0=u,<z,<...<w, At certain instants of
time T1=Tl, T2=TI+72, o . ey Tm=Tl+. . .+Tm, o o oey where the
intervals 7;>0 (¢=1, 2,. . .), one element in the system is replaced
at random by another element of age zero. We are concerned with
the age distributions of the n ranked elements after m>1 replace-
ments. This problem arises in a biological model of phage repro-
duction, where from time to time one of the phages in the reproductive
pool of fixed size » leaves the pool on receiving its protein envelope,
and is replaced by a new phage. It could equally well be considered
as a model for the replacement of parts in a system of machines.

Let us suppose that at each instant of change (or regeneration
point) there is a probability p,(1<i<n,p,+p,+. . .+p,=1) that
the #** ranked element is replaced. The distribution of the {t;} may
in general take quite a complicated form ; we shall, however, consider
only the case where the r; are independently and identically dis-
tributed, and further the special case where this distribution is negative

" exponential.

2. Let us define
F(»,T;)=Pr{i* ranked element has age<w at t=T;40}

as the distribution function (d.f.) of the 4*» ranked element after the j
regeneration point, and

¢i(e’Tj)=fz=o_ e=%d I (x,T;) RI(0)>0

ag its Laplace transform. It will readily be seen that F(»,1;), and
thus ¢;(6,T;), is a function not only of T;, but also Ty,7,...,T; ;.
Let us further denote by F(,T;) and (0,7;) the column vectors
with elements {¥',(»,T;)} and {{(0,T;)}, and write ¢;=p, +p,+. . . +p;.
From a consideration of the possible changes at cach regeneration
point we readily obtain for the d.f.’s that

By, T 14) =Fy(#,T;) =1
Fz(‘?yTju) =0 F 5@ =740, T;) + (1 — ) Fy (@ —7;41,T)

: &>
) Fi(f?aTjﬂ) =¢; 1 F(@—7;,,T;)+1 — ;) F; (@ —7;,1,T))

B (0,7 12) =4u s Fol® =140, T)) + (L =0 ) P (0 =510, T))
where it is understood that F(x,T;)=0 for # <0 for all 4,j.

0,

1 Manuscript received February 17, 1962.
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The set of equations (1) may be written in the matrix form
() F@,T;.,) =AF(@—1;,13,T;) +;44 ’
where f;,, is the column vector with first element

Fy(@,T;41) —Fy (@ —7;,0,T5)
and all other elements zero, and A=(a;;) is the matrix
1
1—q 4

(3) A= 16 &

L. 1 —Gr1 /= .

with zero elements in all positions not along the diagonal or lower
off-diagonal. Taking Laplace transforms in (2) we obtain

(4) $(0,T;,1) =AY(0,T;)e—% +1+L; (),

where the transpose of L;,,(0) is given by the row vector
Lit1(0)=(1—e-%%+1, 0,. . ., 0) §>0.

On repeating the above process, we obtain for the time ¢=1,,-0

m

(5) $(6,T,,) =‘Z ¢~ 0Ty, TP Am—iL (0)
=0
where
Lo(6)=¢’(0,0)=(1, e=073, . . ., 6=0).
The matrix A may be written in canonical form as
A=BAC

where A is the diagonal matrix of roots 1,q,,. . .,q,_; of A, and B=(b;;)
and CG=(c;)=B-! are lower triangular matrices. Their elements
are found to be

3 (1 —Giyj—s) .
ik = Y R 0
et (@i —Gitj—k) 1=
J 1— .
Copgi= (1—givji) j>0,

o k=1 (Qirjo1—ivj1-8)
where by defining kl;[1=1’ we have that the diagonal elements are
unity. The elements of Am=(a§:}”)) are clearly
ag")= 1,-2: jbikcqu;cn—l i>]
0 i1<j and i>j, 1—j>m.
From equation (5) the elements of ¢(6,7,) may be written as

m
() $,(0,T,) = Z @, m—De—0r; 1+ o H7p)(1 —e—07;)
=1

n
+Z om0t Ao g 1<r<n.
i= -
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3. We are now in a position to deduce some of the properties of
the process. Let us first consider the age distribution function
F,.(x), of the r» ranked element at the m!» regeneration point, regard-
less of the time taken for these m changes. We suppose that the
{r;} are independently and identically distributed with d.f. G(w).
The Laplace transform ¢,,,(0) of ¥, (x) is then obtained by integrating
$,(6,T,,) over all possible lengths of time required for m changes to
occur, so that

$rm(6)
=J.w * e 'fw q)r(e’Tm)dG(‘rl)‘ .. dG(Tm)

71=0

Tm=

0 0
= a(""_')". R f =0 1+ H ) (L —e—0%)dG (Ty). . . dG(7,,)
1'1“

t=1 =0

(7
0 [-«]
+i=2r]1a$?)e‘°”iffl=0. . J’ e~ 0+ A dG () . . L dG{(T,,)

T =0
r
a‘?cp(eml —(0)+ X aiPe=5g(O)n.

~'where ¢(0) is the Laplace transform of G(x).

The result (7) is readily inverted to give
(8) F, (@)= “’{Gt‘ ) —GE+D (@)} + 3 aPem* (0 —a,),
i=1

where G™*(x) is the m-fold convolution of G(x), and G™*(x)=0 for
2<0. As an example, when the {r,} have a negative exponential
distribution, . then F, (#) is a linear combination of gamma and
truncated gamma-type distributions.

4. Let us now consider the problem of the age distribution of
the 7 ranked element if the m change occurs in the time interval
(tt+de). If ¢,,(0,8) is the Laplace transform of the d.f. F,,(,t),
then

tq)rm e t
t—1'1 —Tp—2
f f . f 40,1 ,,)dG(7y) « - « AG(Tpy)AG(E—T my).
11=0J 12=0 Tm-—-1=0
Substituting for ¢,(,7,,) from (6), and simplifying, this yields

[t
Ain(0) = £ aﬁ'{'-"f £~ 0—9(d,Gm~" (1 —5)dAG* )
=1

§=0—

(10) —d,Gm—i+1 (¢ —g)dGG-1*(s)}
+ z (m)e‘et"e’idGm‘(t).
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As an example suppose G(t;)=1—e—¥%(1;>0); then (10)
reduces to

nim—1g— (p.+0)tdt (m_'){ﬁ
(m 1)! mn—z

) m(0,8) =2
-_pi—ls m—i+1( - et)} +i§1a§'?)3 —ez‘] ’

T(a+b)
I‘(a) (®)J z=0

is the Laplace transform of the Beta distribution

['(a+b) ;3 I'a+k)(—1)%6%
Ia) r=0 D(a+b+k)k!"
5. Let us finally consider the stationary age distribution
F ()(1<r<m) of the r* ranked element directly after a regeneration
point, where we assume for the moment that it exists. For any

particular length © of time between regeneration points, it will satisfy
the matrix equation

(12) F(z)=AF (@ —1)+W,;,,,

where W;,, is a column vector with one non-zero element
By )—Fl(m 1) in the first position, and F(x) is the column vector -
with elements F,(»). Let t have a distribution function G(r) with
Laplace transform ¢(0), then the Laplace transform «(6) of elements
{,(0)} may be obtained from (12) as
(13) (0)=[T—Aq(8)]-*W(0)
where W(0) =(1—¢(0), 0,. . ., 0). ‘
To obtain (0) we require only the first column of
[I—Aq(0)]-1=(d;); this is given by
dy=1—o¢(0))?
d (1—g)o(6)

Ba.b(e) =

e~ rga—1(1 —x)b—1dy

Banb(e) =

o=l T oy <D
so that
‘1’1(6):1
(14) - 1 (1 —g)o(B) -1
R R

Equation (14) may be reduced to the sum of »—1 partial fractions ;
when all p;>0(1<i<n) we obtain

da(8)=1
$,(0) ={'ilz (1—g,.)}'§':1 2Oy a<r<n.

=1 (1—g,p(0)) T (1—g,/q,)
i=1
JFEi

(15)
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This may be inverted, for max |gq;¢(0)| <1, in the form of an
1<ig<r—-1
infinite series with rapidly decreasing terms (see §6):

Fy(z)=1
1

g r=l) =1 ] k . |
Fyo)=) 0 A—q)5 % JL(A—g;lq) 2 dGEt ) 2<r<n,
j71

When ¢(0)=u(n+0)"%, then F (») is in the form of a finite linear
sum of gamma-type distributions :

1
r—1 r =T | [b,(1 —e—ut-ge
Fr("")={ I (1 _Qk)}.z rH (1 —ai/q:) [_O(—e—_)
k=1 Ji=1|p=1

w1 —q;)
k£
R .

with F,(z)=1, where the b, are constants obtained from partial
fractioning of (15)

We now obtain this stationary distribution as the limit of F', (%)
as m—oo. By applying the theorem of Zygmund (1951) concerning
the limit of characteristic functions, we have that a necessary and
sufficient condition for the existence of a complete stationary age
distribution is that —¢’(0)<co and p,,>0 Taking the limit of (8)
as m—>oo we find that

¢1(0)= r—
5 Hl(l 7:)(1 —(0))
(6)=p(0y-1{1+ 2 ———
$(8) =o(0) 71 1 g0(0)}(1 —¢; l)iI}l(l_Qi/qj)
i 2<r<n,

which, when all p,;>0(1<i<n), is in fact equal to (15).

The moments of the stationary distribution may be found from
(14) by differentiation ; for example the mean is

r—1
an —¢;(0)=p{r—1 +i§1q,~(1—q,)-1}

where p=—¢'(0) is the mean time between regeneration points.

6. The following numerical examples will illustrate some of
the points previously made. If there are four elements with prob-
abilities p,=0-1, p,=0-2, p3=0-3, p,=0-4 of replacement at any
regeneration point, we obtain for A% and A8 :

i1 0 0 0 1 0 0 0
Ad| "9999 -0001 0 0 1 0 0 0

.9891 -0280 0081 0 | A°=| .9997 -0002 -0001 0
| -6880 -2044 -1620 -1206 | | -9299 -0310 -0223 -0168 |
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of which only the first columns are relevant to the approach to the
stationary distribution. For a process with eight elements having
probabilities p,=0:02, p,=0:03, p,=0-05, p,=0:08, p,=0-12,
Pe=0-17, p,=0-23, pg=0-30 of replacement the first column of A3
and A are given respectively by .

1,1, 1, 1, 0-9995, 0-9763, 0-7457, 0-4318)
(1,1,1,1, 1 , 0-9998, 0-9845, 0-9458).

For these examples, and for others of a similar type which might be

found in practice, it is seen that the coefficients a%§ =0 for r<i—1 we

have that a% reaches 0-99 within approximately n steps, so that the
stationary age distribution may be determined accurately from the
limit of (8) by taking approximately n terms of the first summation
of (8). T

We are indebted to the referee for his suggestion which led to a
great improvement in Section 4.
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