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SUMMARY.

Whilst there are ergodic theorems and some results are on the wait

ing times of queues with stationary but not necessarily recurrent inputs, there 

have been almost no explicit results on the queue lengths in such systems.

Once inter-arrival intervals are no longer independently distributed, it be

comes unclear just how the input is to be classified and characterized in a 

mathematically convenient manner.

This thesis attempts to gain some explicit results on queue lengths 

in queueing systems with identically but not independently distributed inter

arrival intervals. We set up a moving average model for the input and examine 

its implications for single server queueing systems, for queues with batch 

arrivals, and for many server queues. Because of the mathematical complications 

we deal primarily with negative exponential and Erlang services. We deal more 

briefly with single server queues with Poisson inputs and moving average service 

processes. We also treat the queue with infinitely many servers for general 

recurrent services and a completely arbitrary input.

Using only a limited number of techniques widespread in queueing 

theory, we are able to investigate the systems that we consider in some detail, 

including a study of both their equilibrium behaviour and their transients.

The moving average input or service includes the standard general 

recurrent process as a special case, and we derive a number of results which 

are simple generalisations of the corresponding results for recurrent queues.
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CHAPTER ONE

1. Survey of the literature.

It is now sixty years since A. K. Erlang began the work from which 

queueing theory was to develop, and we are in a position to survey the growth 

of the subject. We presume the standard terms, postponing a definitive state

ment until section three.

Erlang dealt with the Danish telephone system, and considered Poisson 

inputs into one or more channels with negative exponential or constant holding 

tines. He was concerned with problems such as the probability of loss of a call 

or of a prescribed number of channels being occupied and, in systems in which a 

call may wait for a channel to become available, with the waiting times.

Negative exponential and constant holding time distributions are extreme 

in that the former is ’completely’ random and the latter ’completely’ determin

istic. In his later work Erlang made use of an intermediate family of distri

butions which now bear his name. A number of others have extended Erlang’s 

results. Pollaczek introduced the general recurrent service in 1930 and Palm 

the general recurrent input in 1943. The study of systems with arbitrary re

current input or service processes was, however, considerably hindered by the 

absence of the characteristic ’lack of memory' property of the negative exponen

tial distribution. Rapid advances followed only after the inception in the early 

1959's of three new and general methods:-

In 1951 D. G. Kendall introduced the concept of the 'imbedded Markov 

chain’. It was shown that whilst the complete behaviour in time of a queue might 

be extremely difficult to determine, much information could often readily be 

obtained for a special sequence of instants, the 'state' of the system at any one 

of vhich depended only on that at the previous such instant. The times of arrival
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form such a set of 'regenerative points' for the single server queue with 

general independent inter-arrival intervals and negative exponential service 

distributions. A corresponding set of regenerative points is provided for the 

single server queue with Poisson input by the departure instants.

Cox (1955) was able, at the cost of mathematical complexity, to consider 

the queue at an arbitrary instant of time (and thus lose no information) by in

troducing supplementary variables. The purpose of these variables was to 

augment the state space of the queueing process so that not only the queue size 

at a given instant was specified, but also sufficient additional information to 

make the future probabilistic behaviour of the system predictable purely from 

its present state. Cox's method thus essentially recovers the 'memory-less' 

Markovian property by incorporating some of the past history of the process in 

an augmented state space.

The other contribution was by L. Takäcs, also in 1955. Takdcs introduced 

as an explicit variable the virtual waiting time of a hypothetical arrival join

ing the queue (for which a 'first come, first serve' priority is preserved) at 

any instant of time. The virtual waiting time can be regarded more directly 

without the service priority restriction as the time until the server has dealt 

with all the customers at present in the queue. This work is restricted to 

the extent that it deals only with waiting times and these only for (inhomo

geneous) Poisson inputs, but has proved of considerable value in studies of the 

transient behaviour of queueing systems.

In 1952 Lindley determined under very mild conditions stability criteria 

for general recurrent input and service distributions by working in terms of 

the waiting time of the nth customer. His results have been extended to
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similar systems with a general number of servers by Kiefer and Wolfowitz 

(1955). Smith (1953) makes use of Lindley’s analysis to give a more detailed 

examination of the general recurrent single server queue. An apparently little 

known paper by Sahbazov (1952) generalises Lindley’s work to cover arrivals in 

batches whose size follows a general probability distribution

The waiting time process has, in general, proved much easier to investi

gate than the queueing process. Lindley established ergodicity in terms of 

waiting times,and these were also used in the above mentioned generalisations 

of his work. In fact Lindley derived an integral equation for the equilibrium 

distribution of waiting time. Kiefer and Wolfowitz (1955) have given what are 

essentially simultaneous integral equations for the equilibrium waiting time 

distributions in Gl/G/n. It was assumed that an arriving customer takes the 

vacant server with the lowest serial number if more than one is available,other

wise the first available server. Pollaczek ((1953) , (1954)) has simultaneous 

integral equations covering the transient behaviour of waiting time and queue 

length.

It was not until 1962, however, that a full treatment of queue length 

for the general recurrent single server queue was finally given by Keilson and 

Kooharian. The basis of their procedure using Cox’s technique, was to

adjoin to the state space the expended times since the last arrival and the 

commencement of the last service. Whilst they give the complete time behaviour 

of the general recurrent single server queueing system, the information contain

ed in the solution is partly locked in generating functions, integral transforms 

and contour integrals from which explicit probabilities for particular systems 

are often difficult to obtain. Many results on this and more specialised 

systems are supplied in simpler terms elsewhere in the literature, to some of 

which we shall make reference in the text. A bibliography by Alison Doig in
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1957 lists over sever hundred papers on queueing theory, and many papers have 

been written since. We do not attempt a complete discussion.

It is of interest to compare the difficulties in waiting time and queue 

length problems. Let us denote the random variables virtual waiting time and 

queue length at time t by n(t), n(t) respectively. Benes* (1960, 1960a) 

has shown that even for non-recurrent systems n(t) can be derived from K(t), 

the sum of the service times of all the arrivals in a system before time t, 

which is a readily found quantity. The problem of determining n(t) is thus 

in principle solved. No correspondingly simple analogue to K for the determ

ination of n(t) is apparent. Clearly n(t) cannot be derived from K(t), 

as this contains no information on departure epochs. On the other hand, ri(t) 

can be derived from n(t) as the sum of the unexpended portion of the service 

time of the customer in service and the service times of the remaining custom

ers waiting.

The difference between the queueing process and the waiting time process 

is clear with ordinary recurrent queueing systems. The process giving the 

waiting time of the nth customer in GI/G/1 is a simple Markov process,studied 

by Lindley in 1952. The time dependent queue length process, on the other hand, 

is a one dimensional projection of a three dimensional Markov process. The 

solution was provided by Keilson and Kooharian in 1962. It is therefore hardly 

surprising that the behaviour of queue length in all but the simplest queueing 

systems is neither intuitively clear nor mathematically simple.

The queueing process can be regarded as a combinatorial problem, and as 

such has been tackled using results from fluctuation theory. In particular, 

Prabhu and Narayan Bhat (1963) have treated the queue with recurrent services
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and general bulk Poisson arrivals and the queue with recurrent arrivals and 

general bulk negative exponential services. Narayan Bhat has extended these 

results to cover arrivals and services being simultaneously bulk. Finch (1961) 

has studied the busy period of GI/G/1.

No general treatment has yet been given for queue length probabilities 

in many server queueing systems of either a parallel or series type. In series 

queues the complexity of the queueing process is increased since the input 

process to the second and successive stages is not in general a renewal process. 

Finch (1959) has shown that the output of a single server first stage is 

Poisson if the input is Poisson and the service negative exponential, but that, 

under even slight generalisations to the system this ceases to be true. Several 

writers have derived explicit results for tandem queues with Poisson inputs 

and all the services negative exponential. In particular Finch (1959a) con

siders such a system with positive feedback, i.e., where there is a probability 

that a customer may on completing service at one service point return to join 

the queue at an earlier server. Renyi treats a system with a sequence of 

service points, each of which filters off a constant proportion of arrivals and 

transmits the remainder instantaneously after scaling up their density in time. 

He shows that for a general recurrent input of intensity X the resultant 

stream leaving the system has a Poisson distribution of intensity X as the 

number of servers tends to infinity provided that the sequence {p^ P2**Pn  ̂ °f 

partial products of fractions transmitted tends to zero. It is also of note 

that the output of a first stage with general recurrent input and general 

recurrent service time distribution but with infinitely many servers is of a 

not too complex form, since the effect of the first stage is simply to super

pose a general delay distribution for arrivals to the second stage.

Queue length distributions in series queues are, with a few exceptions,
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undetermined. In sharp contrast, very general ergodicity results have been 

established through the consideration of waiting times. Sacks establishes the 

existence of a unique limiting waiting time distribution for a general finite 

number of queues in tandem for a general recurrent input to the first under 

the restriction that the mean inter-arrival time exceeds the mean service time 

of each of the queues. In 1962 Loynes proved ergodicity results for the many 

server queue and for queues with several single server stages in series under 

very general conditions. The only restrictions made were that the traffic 

intensity was less than unity and that the input and services had stationary 

distributions. The treatment was completed by Loynes in 1964 in a second paper. 

Loynes also gives some techniques for solving for the equilibrium waiting time 

distributions (1962a). Belyaev has extended the results of Renyi mentioned 

above to a general stationary input.

Until recently, no explicit results existed on queue lengths for queues 

with stationary but non-recurrent inputs. This was partly because of the 

mathematical difficulties involved and partly because non-recurrent inputs do 

not seem to lend themselves to any natural classification or characterisation.

The restriction to recurrent inputs is quite severe. In many physical 

processes successive inter-arrival intervals will be correlated. A prime 

instance of this is the input to the second stage of a series queueing system 

whose first stage has a general recurrent input. This input is the output of 

the first stage of the system. When a departure from the first stage occurs 

after a comparatively long service there will be a corresponding long inter

arrival interval for the second stage, but there will also be a greater likeli

hood that the server in the first stage will not undergo an idle period but 

will have a further customer already waiting to commence service. The long 

inter-arrival period will thus have a corresponding greater probability of
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being followed by a short inter-arrival interval. A short inter-arrival 

interval will similarly tend to be followed by a long inter-arrival interval, 

manifesting a negative correlation between successive inter-arrival intervals. 

This argument holds regardless of the past history of the first queue. In 

particular, it is not invalidated by the fact that a very long service time for 

a customer is likely to produce a sutstantial queue at the service point,result

ing in an increased likelihood of a whole ensuing sequence of short inter

arrival periods for the second queue. It is clear that the output of the first 

stage of a queue will not, in general, give a sequence of identically and in

dependently distributed random variables.

That the restriction to recurrent inputs is infelicitous can be seen 

more generally:

If the input arises from independent arrivals from a non-interacting 

population, one might expect the probability of an arrival during any small 

element of time At to be expressible as

A(t) At + o(At),

i.e., for arrivals to form an inhomogeneous Poisson input. Stable equilibrium 

queue behaviour would hardly be expected from such an input unless A(t) was 

a constant. Hasofer has demonstrated that when \(t) varies sinusoidally this 

sinusoidal behaviour is reflected in the limiting behaviour of the system.

Suppose, on the other hand, that the input is provided or controlled by 

some unspecified mechanism. We can then regard the input as the output of some 

process, and we would expect the inter-arrival intervals to reflect the not too 

distant history of this process, probably with a heavier weighting on the most 

recent history. There will thus be a correlation between successive inter

arrival intervals. A simple model incorporating such a history dependence is 

provided by having the inter-arrival intervals moving averages of a sequence of
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identically and independently distributed random variables. The classical 

literature on queueing theory deals with the simplest case of a moving average 

of order 1, i.e., an ordinary renewal sequence. Yarovitsky (1962) has con

sidered an input process similar to a second order moving average. The nth 

inter-arrival interval is of the form
A

+  n »rt a n
where {£$} is a sequence of identically and independently distributed non-

n

negative random variables but n depends on q* Yarovitsky is concerned

with the loss in a system without waiting room.

Finch (1963) has given closed expressions (in terms of the inter-arrival 

intervals) of a determinantal form for the queue length as found by the nth 

arrival to a queue with Erlang service times and a completely arbitrary input. 

Finch showed for a stationary input, that, when the traffic intensity is less 

than unity, an equilibrium queue size distribution exists. In an attempt to 

determine the form of the equilibrium distribution he developed a heuristic 

symbolic method in which this distribution is expressed as a formal Taylor 

series. The symbolic method provides easy access to a whole new range of 

queueing problems, but seems difficult to justify. Finch made use of the 

symbolic method to deal with inputs which can be expressed as a second order 

moving average of independently and identically distributed random variables.

In this thesis we give rigorous treatment of queueing systems with 

general order moving average inputs and negative exponential services. We 

verify the form of the limiting queue length distribution obtained by Finch 

for the special case of a moving average of order two but find that the value 

of a constant characterizing the solution is incorrect.

Using a very limited number of techniques current in queueing theory we 

are able to make a fairly full investigation into queues with this very general 

class of inputs. Because of the mathematical difficulties involved we restrict
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ourselves to negative exponential and Erlang services. This is not as severe 

a restriction as it is for inputs, as most practical situations involve either 
negative exponential or deterministic services. We note that a deterministic 
probability distribution is approached as the limit of a kth order Erlang 
distribution as k -*».

In Chapter Three we shall consider the generality of moving average 

inputs and gain some idea of their limitations.
Since the equilibrium behaviour of a queueing system is time independent, 

it is usually easier to determine than the transient behaviour and most of the 
literature on queueing theory deals with this limiting behaviour only. On the 
other hand, a system may be very slow in approaching equilibrium in the time 

scale in which we are working, or, if the traffic intensity is greater than 
unity, may not reach it at all. In such circumstances we are interested in 
the transient behaviour of the system. This gives us full information about 
the system, and indeed suffices for a determination of the equilibrium behaviour 
when the latter exists. A knowledge of the transient behaviour of a queueing 
system is necessary for a full discussion of the stability of that system. The 
transient behaviour of the systems GI/M/1 and M/G/l which we are generalising 
is of particular importance for considering more complicated systems. That of 
M/G/l can be used for a study of priority queues with general recurrent services 
(as is done by Keilson (1962b) and Gaver (1962)), whilst the analytical treat
ment required for GI/M/1 can be made use of for a study of the system M/G/l 

with finite waiting room (Keilson, 1964). We have therefore given some 
attention to the transient behaviour of our moving average systems.

Treatments of the dependence of a system have largely sprung from the 
realization by Borel (1942) of the significance of the busy period. The busy 

period loses some of its importance in our work since for moving averages of



10.

order higher than one successive busy periods are not independently distributed 

as they are for a simple recurrent input, although they will still be identic

ally distributed. We are, however, able to make some use of busy periods in 

our treatment of the time dependence of queue sizes.

Although moving average services do not appear to arise as naturally as 

with inputs, they can still be given physical interpretations. An instance is 

the server whose serving efficiency exhibits good and bad periods which mani

fest themselves despite the fluctuations in the work load provided by a custom

er. Moving average services can also be regarded as reflecting some similarity 

between consecutive items in the input.

We deal also with a common class of queueing processes in which the 

service facility operates whether or not customers are available, such as in a 

public transport system. Such queues seem to have been largely neglected in 

the literature, although they have been considered by Bailey (1954), Downton 

(1955 and 1956), and more recently and in greater detail by Keilson (1962a).

We show that the basic general moving average problem can be solved through a 

knowledge of the corresponding standard system in which the service facility 

operates only when a customer is present. A fuller treatment could follow along 

the lines of the rest of our work.

Our study concludes with a brief look at moving average input queues 

with general recurrent service time distributions.

2, General outline of the thesis.

In the first section of this chapter we saw that one would naturally 

expect successive inter-arrival intervals in queueing systems to be correlated. 

Whilst ergodic theorems allow this possibility, under stationarity restrictions, 

explicit results on queue sizes in the literature have been for recurrent
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queueing systems exhibiting only zero correlations between successive inter

arrival intervals, and even in this case mathematical difficulties delayed a 

full treatment of the general recurrent single server queue until 1962.

The succeeding chapters investigate a moving average model for inter

arrival intervals which automatically incorporates both positive and negative 

correlations. The standard identically and independently inter-arrival 

intervals occur as the simplest case, and we generalise a number of known 

results. We deal with negative exponential and Erlang services.

In Chapter Two we use the method of supplementary variables to consider 

the basic question of the equilibrium behaviour of a queue with moving average 

input and negative exponential services. We find that the form of solution is 

a simple generalisation of a well known result. The complete explicit determ

ination of the solution seems difficult, and we give a (finite) recursive pro- 

ceedure which we illustrate with moving averages of orders two and three. We 

use the former to check a conjecture of Finch (1963). We look at the relation 

between our results and a paper of Loynes (1962a) on waiting times in queues 

with stationary but non-recurrent inputs. Finally we consider an alternative 

approach to our problem using techniques of Benesf, but find that these are 

somewhat less tractable.

In Chapter Three we review the scope of moving average inputs as a 

subclass of the class of stationary inputs. Using two families of distribution 

functions (Erlang and deterministic) from which a large class of distributions 

can be built up, we make a detailed investigation of limiting queue length



behaviour for second order moving average inputs. The equilibrium queue length 

distribution for GI/M/1 (as found by arrivals) is geometric with parameter T 

the inner root of the characteristic equation
oo

T = iKl-T) = J exp[-y(l-T) u] dU(u),
where y is the service time distribution parameter. The corresponding result 
for a (p+l)th order moving average input, apart from the first p probabilities, 

is geometric with the same parameter. As mentioned above, the limiting queue 
length distribution for arrivals to GI/M/1 is of the form

{(l-T)Tj , j > o}

so that
P = 1 - T ,o

where Pq is the equilibrium probability that an arrival finds the queue 
empty. We find that for our second order moving averages for which success
ive inter-arrival intervals are positively correlated, we have

p o > 1 - T>
whilst with negative correlations

P < 1 - T. o
This is a simple generalisation of the result for the standard uncorrelated 
case.

Using the family of Erlang distributions we are also able to show that 
a given limiting distribution {(1-T) T-'} can arise for arbitrarily small 
traffic intensities. This is perhaps a surprising result, since for

stationary inputs ergodic behaviour is controlled rigidly by the traffic in

tensity. Loynes (1962) has shown that there is stable limiting behaviour if 
and only if the traffic intensity is less than unity.

12 .

We show in Chapter Four that the transient behaviour of general moving
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average systems can be derived much as the equilibrium behaviour in Chapter 

Two» With only moderately more involved equations we are able to treat 

Erlang services and batch arrivals. With the more general Erlang services 

we take up again the question of Chapter Three on the variety of limiting 

distributions arising in systems with moving average inputs.

Chapter Five gives a fairly full study of the transient behaviour in 

queues with second order moving average inputs. We find that in the case of 

second order inputs there exist regenerative points which enable us to deal 

much more freely and readily with transients than we could have by the methods 

of Chapter Four.

Conolly (1960) derives for GI/E./l a simple relation between the 

limiting queue length distribution in continuous time and that on the imbedded 

Markov chain. For a general second order moving average the imbedded chain 

and the arrival instants of the queue no longer coincide. We find that 

Conolly's result still holds good for second order inputs if we deal with 

arrival instants. Denoting the continuous time and arrival instant equilibrium 

queue length distributions by (q^, j > o} and {p_. , j > o }, the result is

(ym) 1 (Pj_k+-•+Pj_1)» j > k.

(ym)"1 (pQ + **+Pj_1), o < j
1 - traffic intensity, j = o,

where y is the parameter of the (kth order) Erlang service and m the mean 

inter-arrival time.

Chapter Six, which deals with many server queues, consists of two parts. 

In the first of these we use the supplementary variables method of Chapter Two



and the imbedded Markov chain method of Chapter Five to extend our results to 

cover queues with a finite number of identical servers in parallel. In partic

ular, we find that Kendall’s (1953) result that the equilibrium queue length 

distribution is of a delayed geometric form holds good, though the delay in the 

distribution is greater than just the number of servers.

As well as treating the second order moving average in detail for the 

usual unrestricted waiting room, we give simple algebraic equations sufficient 

to find the equilibrium queue length distribution for a restricted waiting room.

We also find the equilibrium queue length distribution for a second 

order moving average for the case where the number of servers is infinite

The second part of Chapter Six is concerned with the transient behaviour 

of a queueing system with infinitely many servers and general recurrent batch 

services. Using simple probabilistic reasoning, we find for a completely un

restricted input the generating function, mean and variance distribution of the 

number of customers waiting at an arbitrary instant of time. We specialise to 

stochastic inputs, i.e., inputs for which the inter-arrival intervals have a 

joint probability distribution. In the case of general recurrent inputs we show 

our results reduce to those of Finch (1961).

Chapter Seven considers the single server queue with Poisson arrivals 

(parameter A) and moving average services, again using the techniques of supple

mentary variables. The solution for a general moving average seems somewhat 

involved, and we give only a(finite) recursive proceedure. This we illustrate 

with the case of moving averages of orders two and three. The generating 

function of the limiting queue length distribution for the former generalises 

a result of Kendall (1953). We find that Kendall’s result

P = 1 -A x mean inter-arrival time, o
where Pq refers to the probability of zero queue length as left by a departure, 

holds for moving average services of all orders.



A more detailed examination of the queue length and busy period is made

for moving averages of order two, using an imbedded Markov chain.

Chapter Eight, in two brief parts, goes on to further problems.
In Part I we show how the results obtained in Chapter Two can be 

employed to provide an easy solution to a queueing system with moving average 
inputs but a different type of service. The service facility operates whether 

or not customers are present, so that an arrival at an empty queue may have to 

wait before he can begin service.
In the second part we derive equations for the single server queue with 

general order moving average input and general recurrent services. We consider 
the possibility of solving these equations.

3, Basic Notions.

Queueing theory concerns itself with stochastic processes in which 
discrete units undergo a delay in a physical system before passing out and be
ing lost to that system. The most common interpretation is that the units 

are customers, who arrive for service at one or more counters, although the 
original context for the subject was the handling of telephone calls by an 
exchange. There is also a close association with storage and inventory 

theory. To prescribe a queueing system we need to specify the following:

(i)____The serving mechanism. There may be one or more servers (machines,

channels, counters) in parallel or in series stages. Servers in parallel are 

normally identical whereas this restriction is not usually made with servers in
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series. If an arrival to an arrangement in parallel finds a server idle he 

will begin service immediately. With a series arrangement a customer pro

ceeds to each stage only after completing service at the previous stage. 

Occasionally it is specified that an arrival at an idle server suffers a delay 

before commencing service.

When the service or holding times are identically distributed independ

ently of one another and of the input, the service process constitutes a 

renewal process. For convenience we shall abbreviate identically and independ

ently to I.I.D. in the text. Servicing may be of individuals or of groups 

(batch service).

(ii) The input. Customers (items, demands) arrive singly or in batches at 

the instants of a stochastic process termed the input process. When the 

inter-arrival intervals are I.I.D. the input process is a renewal process and 

is characterized by the probability distribution function of the inter-arrival 

intervals.

(iii) The queue disoipl'tneJ i.e., the selective procedure for determining in 

what order customers are to be served. Most of the literature on queueing is 

to do with a first come, first served discipline, i.e., customers finding all 

servers occupied on their arrival wait for service in the order of their arrival, 

although there has been work done on inputs consisting of more than one class 

of customer and an indexing of priority for service. Also, there may be 

limited waiting room, or customers may balk if the queue present on their 

arrival is beyond a certain size.
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The notation almost universally employed in queueing problems is an 

elaboration of that introduced by D. G. Kendall in 1953. A queueing system 

with n identical servers in parallel and renewal input and service processes 

characterized by probability distribution functions A(x), B(x) respectively 

is represented by A/B/n. The types of distribution A,B considered in the 

literature are of fairly well defined classes. A general distribution function 

is represented by G. Apart from G, the distribution functions are D, a 

distribution having all its probability concentrated in a single saltus, and t 

the family (E^ : k > l,k$ integral}" of Erlang distributions. The Erlang 

distribution of order k is

Ek(x) =

f 0 , x < 0,

k-1 i1 - exp(-yx) E (yx) /i!, x > 0, y > 0
i=o

We remark that GI (standing for general independent input) is frequently 

used in place of G when referring to inputs. M(Markov) is also used in place 

of E .

The above notation is readily extended to series (queues in tandem), 

which can be represented as

I Ai| Bilni • • I B2 ln2 * ' 5 etc*
This shorthand notation is not, of course, sufficient to specify any 

queueing system. It makes no statement about queue discipline, about batch 

sizes or about the possibility of a serviced customer returning to an earlier 

stage of a system to recommence service, for example. It is normal to presume 

unless stated to the contrary that arrivals and services are of individuals, 

that the queue discipline is first come, first served, and that there are no 

restrictions on waiting room.
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Once a system has been specified, queueing theory concerns itself with 

the determination of the temporal statistical behaviour of physical character

istics of that system. We may deal with characteristics of interest to the 

arriving customers or the servers. Of predominant interest are:

(i) The queue length (size). We adopt the convention that this includes the 

number of customers undergoing service as well as those waiting to be served. 

Because of the equivalence of servers at a given stage of a system, it suffices 

to give the number of customers at each stage of that system.

(ii) The waiting time of a customer, i.e. , the length of the period between 

the moment a customer arrives and the moment he commences service. We define 

n (t) as the probability that the nth arrival has to wait a time < t before 

commencing service. n.(*) is a mapping from the direct product (n:n > 0} 

x {t:t > 0} of a discrete and a continuous space into the non-negative half 

axis. It is often more convenient to work in terms of the virtual waiting 

time , n(t) , defined as the time a hypothetical customer would have to wait 

for service were he to arrive at time t, presuming a first come, first 

served, queue discipline. The virtual waiting time can, for a single server 

queue, be regarded without the service priority restriction as the occupation 

time of the server, i.e., the time until the server finishes serving the last 

of the customers in the queue at time t.

(iii) The busy period. A busy period is a period throughout which the service 

facility is continuously occupied and which is not a proper subset of another 

such period. The convention is adopted that if a customer arrives just as

a departure is about to deplete the queue, the busy period is deemed to be still 

on throughout the service of the new arrival. It is of interest to determine 

the joint probability that a busy period be of any given duration and involve 

any given number of customers.



CHAPTER TWO. 1 9.

The equilibrium behaviour of the queue with general order 
moving average input and negative exponential services.

1. Introduction.

In this chapter we follow up the observations of the introduction about 

the nature of queueing system inputs. We propose a new input model and investi

gate the equilibrium behaviour of the single server queue with negative 

exponential services. In section 7, Finch’s conjecture (1963) on the form 

of the equilibrium queue length distribution *for a moving average of order two 

is examined.

The standard assumption that individual arrivals are mutually independent 

can be prescribed by having the probability of an arrival during a small time 

element At about t given by

X(t) At + o(At) »
independently of the past history of arrivals to the system. Stable equilibrium 

behaviour would not be expected for a general function X(t), and a large part 

of queueing literature deals with the simplest case where X is a constant 

(the poisson input). Stable behaviour occurs for such a X and also for the 

other well studied case where X has its mass uniformly distributed between 

equi-spaced points, i.e. the deterministic input. Hasofer has shown that if 

X varies sinusoidally then this is reflected in the limiting probability that the 

server is idle and in the Laplace transform of the waiting time distribution.

The more usual definition of an input in terms of I.I.D. inter-arrival 

intervals removes the mutual independence of arrivals. The arrival 

probability density at any instant now depends on the past history of arrivals 

in that it involves a knowledge of when the last arrival occurred. Such a 

prescription suggests some mechanism regulating admission of arrivals or the 

existence of some other system whose output is the present input.
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As we saw in the last chapter with tandem queues, it will rarely happen 

that the output of such an earlier mechanism constitutes a recurrent process, 

so that the limitation of inputs to recurrent processes is quite severe. Inter

arrival intervals will be identically distributed but in general consecutive 

intervals will be (positively or negatively) correlated. One would expect 

closely consecutive inter-arrival intervals to be more highly correlated than 

more separated intervals.

We set up a model incorporating a positive correlation between consecu

tive and near consecutive intervals as follows:

Customers arrive singly at the instants 

0 = Aq<Aĵ< A2< ......
where the intervals separating Aĵ , Am+ -̂ are such that 

(1.1) ^m+1 ~ ^m ~ Ujn+p-1 + ,,,+ bp  ̂ o,
the b^,o < i < p, being non-negative constants and {ym } a sequence of I.I.D. 

non-negative random variables. For convenience we take

?  b p  = 1
i=o

We denote the common distribution function of the Um by 

U(x) = P(Um <x), m > o , x > o, 

and take the mean of U(x) to be finite.

We refer to

(1.2) {bo bm+D + bl W l  + " + Wm+p l m+p-
as a moving average of order p + 1. An ordinary I.I.D. sequence of random 

variables is thus a moving average of order one.

By writing G(p) for a p th order moving average process we can conven

iently extend Kendall’s notation for queueing systems. The standard G1 or G 

is identical to our G(l) and we can freely interchange these symbols.
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It is clear from (1.1) that if the are taken to be equal, the correl

ation between successive inter-arrival intervals can be made arbitrarily close 
to +1 by increasing p.

If Sm is the service time of the (m + l)th arrival, then (Sm} is to be a 

sequence of I.I.D. random variables, with
P (Sm < x) = 1 - exp (-yx), x i o, y>o.

It follows from the work of Finch (1963) and Loynes (1962) on queueing 

systems with stationary inputs, that if

, j > o, n £ o »:
denotes the probability that the arrival at finds exactly j customers
already in the system, then

P- = lim P ^  , j > o, 
ir*°° J

exists provided the traffic intensity is less than unity. Finch in fact 
derives explicit expressions for the Qj ,

Qj = “ Pi > 3 > o »
i=j+l

corresponding to a completely general stationary input and a negative 
exponential service time distribution. The expressions obtained were
(1.3) oo r » S i S +  l-iE L A . <J> s J

s=j
= ..= o c _ = 0 , ] ^ 0 ,

For convenience the parameter y of the service time distributions was taken 
as unity.

In (1.3), A  ̂ is a differential operator with an expansion in
terms of
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6 * = (r!) 1 8r/^j ,

6?: .... 6 .S-^]
1 «13

o 1

o o 6s-l

is given by

^3+ 1 (oc0 » 0Ci » * * 5 0Cs ) = E ^e x P ^ *O0S»O - ales ’l “s+l)®s s}]*
where

s,i A , , - A . s+1 s-i
o

(1.3) is so general that it could hardly be expected to provide the 

simplest expressions for the equilibrium queue length probabilities for any 

given form of input. We shall later examine the conjectured form of 

equilibrium queue length distribution that Finch's heuristic symbolic method 

suggested for the case of a moving average input of order two.

We find it more convenient to proceed ab initio than to try to simplify 

(1.3) for a moving average input.

Our starting point is the set of recurrence relations expressing the 

probabilities of the (n+l)th arrival finding a given number of customers 

already in the queue in terms of queue length as found by the preceding 

arrival. From these we obtain an equation relating the corresponding probabil

ity generating functions, but involving unwanted extra terms which we handle by 

a complex variable argument, working with Laplace-Stieltjes transforms of the 

quantities concerned. Having found the functional form of the limiting dis

tribution of queue length by these means, we consider the determination of a 

finite number of particular constants involved from the initial recurrence



relations. These constants do not seem to have a simple form and we do not 

obtain them explicitly in the general case, although equations are given 

sufficient to determine their values. The determining procedure is illustrated 

by a detailed treatment of G(3)/M/l.

2,____ Definitions and Preliminaries*

We shall employ the same notation in subsequent chapters. Capital

letters are used to denote random variables and the corresponding lower case

letters for particular values taken on by these variables. The (n+1)-tuple
(n)(u ,u ,..,u ) is represented by u and the corresponding vector randomo»~l

variable (U ,U_,...,U ) by U o 1 n J
(n)

P^(u(n+P , j>o, is the conditional probability, given t/n^=u^n\

that the arrival at finds exactly j customers already in the system.

EP_.(t/n+P "̂  ) is the (unconditional) probability that the (n+l)th arrival

finds j customers in the system.

The probability, k_. (x q ,x ^, . . ,x^), of j ~ departures from the queue

during an inter-arrival interval b x  + b.,x n+..+bx , given that at theo p 1 p-1 p o 0
beginning of the interval the queue length was at least j+1, is given by

k .(x ,x ,..,x ) = [{y(b x +bnx n+...+b x )}^/j Id x 3 o 1 p o p 1 p-1 p o

exp {—y(b x +bnx ,+...+b x )}, j > 0. 
r o p 1 p-1 p o J

Suppose now that the queue has length j > 0 at the beginning of an 

inter-arrival interval. If the number of departures during the interval is 

not 0, 1, ..., orj - 1, then there must be j departures.

Since

E
i=o

k.(x , l o X l 9

it follows that the probability K. (x q , x ^,..,x ) of j departures during such
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an interval b x + bnx n+...+b x must be o p  1 p-1 p o

00K.(x ,x ,..,x ) = E k.(x ,x_,..,x ).] ° 1 P i=j 1 o’ l9 p
It is customary to think of this event as decomposing into a countable

set of mutually exclusive events, each with j real departures, but with a

different number t = 0, 1, 2,... of virtual departures. The probability of j

real and t virtual departures is then k. (x ,xn,..,x ).r 3+t o 1 p

The generating function of the k^’s is

°° fk(x ,x ,..,x ;z) =.E k.(x ,x_,..,x )z
Q ' TV T —  Tv I Tv ' \ ' 'Tv

• JN. s \ A  k A1=0 1 O 1

= exp {-(l-z)u(b x +bnx _+...+b x )-}.o p 1 p-1 p o

denote the generating function of the P.(u^n+P ^ ), by

P(u(n+P-1);z) = f P (u(n+P-1))zi,
i=o

and its integral transform by

z I < 1,

P*(s(p);z;n) = E[P(U(n,p’1)iz) exP(- V n + p - l " V l Un+p-2"- 

IzI < 1, Re.s. > 0, i=l,..,p.
o 2. *~

/ \ ^

P|* (s F , , n) is defined as the coefficient of z in the power series of

P*(s(p);z;n).

We shall also need

(2.1) (u(n+p D)  _ 2 p.(u(-n+P 1^)k. . (u ,u ,..,u ), i>0,i 3 + 1+I n n+1 n+p3=0
and its integral transform

c$(s^P^;n) = E[c^.(U^n+P ^) exp (-

0, 1 < i < p.

. vw , exp (—s U ,-...-s U )],l P n+p-1 1 m
Re.si

We presume that the traffic intensity is less than one, i.e., that

(b+b-v + .. + b )  / o x d U ( x )  > 4o 1 p u

/°° x d U ( x ) >  4 o
-1(2.2)
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since the sum to unity. By Finch this ensures the existence of

P. = lim E[P. (U(n+P 1})], j > o :
n-Hx>

and that of

P(V V ..,wp ;z) = U m E [ P ( U o .U1.-..Un_1 ,un .uDfl...,un+p_1 sz)].|z| < 1,

where the particular valuescfu ,u ,.. ,u are w ,w ,..,wn n+1 ’ n+p-1 1_ * 2 s 5 p*

We write for its integral transform

(2.3) P*(s(p);z) = E[P(W(p);z) exp(-s W -s ..-s.W.)n,p p p-1 p-1 1 1 J
IzI < 1, Re. s^ > 0, 1< i < p,

where the W^, 1 < i < p, are identically and independently distributed random 

variables with common distribution function U (x). 

c$ (s^P ^), c(s^P ^;z), are defined by

cv (s(p)) = lim c*(s^P\n),l ln-x»

(2.4) c(s^P ^;z) =.E (1-z ^ c ’Ks^^), I z I < 1, Re. s. > 0, 1 < i < p.

The function
00ip (°0 =/ exp (-p «u)d U(u) , Re.“ > o, 

o

plays as important a role in our study of G(p)/M/1 systems as it does in the 

standard GI/M/1 and M/G/l. We are similarly interested in the root of

(2.5) z = iJj(I-z )

inside the unit circle. That there exists such a root T and that it is 

unique follow from Rouche’s theorem by virtue of (2.2). The argument is 

identical to that used in the theory of recurrent queues as is given in 

Takcics’s book (1962). Since the complex conjugate of T will satisfy (2.5) if 

T does, T must be real. It is clear that T must also be positive.

We shall also require later the relation

(2.6) P*(s(p) ;1) = ip(Sp/y). .î (s1/y), Re. s^ > 0, l<i < p.
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This is a direct consequence of (2.3) since 

P(W(p);l) = 1.
We shall later refer to the following results:

7
Abel's theorem on the continuity of power series.

If the power series E z with radius of convergence unity converges
n=o

at z = lj then

oo oo
E a zn ■+ E a n n

n=o n=o
as z 1 along any path within the circle of convergence which does not touch 

that circle.

3. Fundamental Equations.

If the arrival at is to find j > 1 customers in the queue, the
previous arrival at must find j - 1 or more customers in the queue.
Suppose that the queue length at is j+i-1, i > o. Then the queue length
at A  ̂will be j if and only if there are i departures after the arrival
at A and before the arrival at A ,. Hence n n+1
(3.1) P.(u(n+p)) = E P (u(n+p-1>)k .(u ,..,u ), n > 0, j > 1.3 + 1-1 i n n+p ’ J] i=o

Similarly
P (u(n+p)) = E P.(u(n+P 1 )̂ K. (u ,u ,u ), n > 0.0 . i  l+l n* n+1* * n+p *1 = 0

We note from the definition of the c^(u^n+P )̂ (2.1)
(3.2) .? c.(u(n+p)) = P (u(n+p)).1 = 0 1 o

Forming the product of the power series k(u^,un+1, . . ;z), 
P(u(n+P ^;z) and using the equations above, we obtain

1. E.T.COPSON: An introduction to the theory of functions
of a complex variable3 Oxford Univ. Press (1948)3 p.100
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P(u(n+p);z) t E (l-z-i)c.(u(n+P)) + zP(u(n+P“1)Jz) x . 1  1 = 0

exp [-(1-z 1)u(b u +b u +...+b u )] o n+p 1 n+p-1 p n

2 7.

|z| <1, z t 0. Hence 

(3.3) P*(s(p);z;n+l) = E (l-z”1)c*(s(p);n+l)l1 = 0

+ zP*[(l-z 1)yb1+s^_1>...,(l-z 1)yb 1+s1,(l-z ^yb ;z;n] x

^[b ( 1-z 1) + s /y]o p
for z - 1 .< 1, z / 0, Re. > 0(i = 1,2,..,p), Re. [(1-z )yb_.+s^ _.] > 0

- 1 ,(0 < j < p), Re. [(1-z )yb ] - 0* These conditions are satisfied if z 
lies both in or on the unit circle and outside or on the circle with centre 
(%, 0) and radius with the origin deleted. We denote by R this domain of the 
the z-plane.

Letting n 00 in (3.3) gives us
(3.4) P* (s^P ĵz) = c(s^P^;z) + z ip[b (1-z '*") + s /y ] xo p

P*[(l-z 1)yb +s -!,...»(1—z 1)yb +s ,(l-z 1)yb ;z]1 p-1 p-1 1 p
zeR, Re. Sp > 0, 1< i < p.

4. Solution for P* jz)

Substitution of s, = (1-z 1)yb , s0 = (1-z 1)y(b ,+b ),..,1 P 2 p-1 p
s = (1-z 1)y(b1+..+b ) in (3.4) yields P 1 P
(4.1) P*[(l-z 1)y(b +..+b ) , (1—z 1)y(b +..+b ),..,(l-z X)yb ;z]P P P

= c*[(l-z 1)y(b +..+b ),..,(l-z 1)yb :z] [l-zip(l-z X)] 1,1 p p
zeR.

Also, if we replace s .s s, by (1-z ^)ybn+s5 F P p-1 1 J 1 p-1,
(1-z ^)yb0+s „,..,(1-z ^)yb respectively and substitute in (3.4), we obtain2 p-2 P



P*[(l-Z 1)yb +s ,..,(l-z 1)yb ;z]1 p-1 p

= c[(l-z 1)yb +S ,..,(l-z 1)yb ;z] + zip[(l-z 1)(b +b )+s /y] x1 p-1 p o 1 p-1
P*[(l-Z 1)y(b +b )+s ,..,(l-z 1)y(b +b ),(l-z 1)yb ; z] .1 2 p-2 p-1 p p

z£R, Re. s^ > 0, i= 1,2,.. ,p ,

By making substitutions in this equation analogous to those in (3.4),
and proceeding recursively in this manner, we find that

(4.2) P*(s^^;z) = c*(s^^;z) + zip[b (1-z )̂ +s /y] *o p

[c*{(1-z 1) yb + s ,.....,(1-z 1)yb +s , (1-z 1)yb :z}1 p-l p-1 1 p
+ z^{(l-z 1) (b +b )+s ,/y} *o 1 p-1

[c*{(l-z 1)y(b1+b2)+s^_2,... ,(l-z 1)y(b ^ b  ) ,(1-z "^yb ;z}

+ zip{(l-z ^(b + b +b ) +s _/y} xo 1 2  p-2

x [c*{(l-z 1)y(b +..+b ),..,(l-z 1)yb ;z} [l-z^(l-z 1)] 1]]..],1 p p
zeR, Re. s^ > 0, i= 1,2,..,p,

the last term arising from use of (4.1).

Consider the function F(s^^;z) defined by

F ( s ^  ;z)

,(p).

(l-Tz)P*(s;z),

.(p) .

< 1, Re. s. > 0, 1< i< p,

(l-Tz)D(s  ̂ ;z), IzI £ 1, Re. s^ > 0, 1< i< p

where D(s F ;z) denotes the right hand side of (4.2).

Since P*(s^^;z) is the generating function of a probability distribution 

P*(s ^;z), and therefore F(s^'\z) must be a regular function of z for 

IzI < 1, Re. si  > 0, i = 1,2,... ,p.

Also, as the only zero of l-z^(l-z) outside the unit circle is that of 

1-Tz, F(s^^;z) must be a regular function of z for |z| <1, Re. s-j_>0 ,i=l,2. .p.
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Hence, by analytic continuation, F(s^P^;z) is a regular function of z 

for all finite z for Re. s ^ > 0 ,  1 < i < p.

From (2.4) and (3.2) it follows by Abel’s theorem on the continuity of
( D ) 00power series that c(s F :z) converges to £ cv(s) as z-̂°° , so from

i=l 1
(4.2) lirn F(s P^;z)/zP exists, and is given by 

F( s ̂P ̂ • z)lim 9 = -T>(b +s /y)\j;(b +b +s /y)..ip(b +b +..+b +s /y) x---------- o p  o 1 p-1 o 1 p-2 2PZ-H» z

[ £ c*{y(b-+..+b .)+s.,...,yb }
i=l l 1 p-1 1

-iKb +b +..+b +s /y)[ £ c*{y(b +..+b ),..,yb }] o 1 p-1 1 i=1 i l p  p

W D ] " 1 ] ,

Re. s ^ > 0 ,  1 < i < p.

Since a function 0(z) which is analytic for all finite z and 

0(|z|k), k a non-negative integer, as z is a polynomial of degree at

most k I F(s^P^;z) must be of the form

F(s^P^;z) = F (s^P^zP+F (s^P^)zP +F (s^P )̂, Re. s. > 0, 1 < i < p,p p-1 o l ~ “
where the F^(s^P )̂ are functions of the s^ alone. Consequently

(p);z) = [F (s(p))zP+..+F (s(p))][1-Tz] 1, Re. s. > 0, |z| < 1,p o 1P*(s

or, more conveniently,

(4.3) P*(s(p);z) = B (s(p))zP_1+..+B (s(p))+B(s(p))(l-zT)_1,p-1 o
Re. s. >0, IzI <1.

l  i i -

When we substitute s = s = .. = s = 0, P*(s^P^:z) becomes thep p-1 1
00 igenerating function £ P.z of the limiting distribution of queue size
i=o J

and the functions B_.(ŝ P )̂ reduce to constants B_.. The generating function 

of the limiting queue length distribution is thus given by

(4.4)
i=o

P.z^ = B zP X+..+ B + B. (1-zT) 1, l p-1 o
1. E.C. TITCHMARSH: The theory of functions3 Oxford Univ.Press (1932),P.87
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This is a probability distribution which assumes a geometric form from

P onwards, the common ratio being T.P
Our result is a natural generalisation of the well known result (e.g.

D. G. Kendall (1954) ) for the recurrent queueing system GI/M/1, which has a 

purely geometric limiting distribution {(1— T) , j £ o}. For GI/M/1 also

T is the (unique) solution inside the unit circle of

z = ip (1— z)

5. Determination of the B . )--------------------------------------- ^ -------J---------------- j--------------

From (3.1)

P (U(n+p)) u Z Z (n+p-lK
i=o V V - ' V 0’!*“ ! j+1_1

k=0,1,.., exp(' bi V k )
(pbkUn+k )

i ik *
j * 1,

where the summation on the A, is over non-negative integers subject to theK
restriction PZ A 

k=o
i.

Hence

P*(s(p), ,n+l) Z (-y)' 
i = o i !

9 [P* . (ob +s ,ab +s ,..,ab +s ,ob >—j- ]+i-l 1 p-1 2 p-2 p-1 1 p

b[ ( o+s )/4] , Re. s. > 0.o p 0 = 4  ±

Letting n -* 00 and using (4.3), we see that for j > p+1

(5.1) B(s(p))Tj = .Z (-4)1 31 [B(ubn +s ,,ab0+s „,..,ab )Tj+1_1 xi=o -t-T— f  1 P"1 2 P-2 P
9a

iH(b o+s )/y}]o p  a = y
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= B{y(1—T)b +s ,y(1-Tb +s 0,..,y(l-T)b }Tj 11 p-1 2 p-2 p

wh ence 

(5.2)

ip {b (1-T) + s /y } , Re. s. > 0, o P l "

B(s(p))

T PiJ;{(l-T)b +s /y} ip {1—T) (b +b_ )+s . /y }ip{ (1-T) (b +b.+..+b J+s./y} *o p o r p-1 o 1 p-1 1

B{y(1-T)(b +..+b ) ,y (1-T) (b_+. .+b ),..,y(l-T)b }, Re. s. > 0.1 p 2 P P i
Working similar to the above for 1 < j < p yields

Bp_l( hhi+Sp_i ,yb2+sp_2 »♦ • *^bp_i+si ŝ bp ^ ( b0+Sp//p̂ = °’ Re • sp - °>

B ( s ^ )  = B (yb +s ,..,yb )ip(b +s /y)p-1 p-2 1 p-1 p o p

+ (-y) 3 [B (ob +s ,..,ob )\p{(ob +s )/y}]p-1 1 p-1 P o p o=y, Re.s^>0,

(p)B (s F ) = [B (ob +s ,..,ob )\p{(ob +s )/y} p-2 p-3 1 p-1 P o p

+ (-y)J_[Bp_2(abi+s ,.. ,ob^)^{(obo+s^)/y }]
2° 2

+ 2T ” 2 CBp.1(ob1+sp_1...>obp)1H(0botsp)/y}]]oiMRe.s.>O>

B (s^P ^) = [B (ob +s ,..,ob )ip{(ob +s )/y}1 p-1 o p

+ (-y)P 1 3P 1 [B (ob +s ,..,ob )ip{(ob +s )/y}]]p-1 1 p-1 p o p o=y(p-D: 9gp-i
Re. s . > 0l

The now familiar recursive substitution procedure when applied to the 

second of these equations provides an expression for B^ ^(s^P )̂ in terms 

of B^ 2 and its derivatives, evaluated at various arguments involving the s^, 

similar functions of ijj, and B^_^ evaluated at a constant argument. If 

B 0(s^P ^)is known this suffices for the determination of B ,(s^P )̂p-2 p-1
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Substituting for B ,(s^P )̂ (known in terms of B known functions,p-1 p-2
and a constant) in the third equation gives an expression for B^ ^(s^^in terms

of B _ and its derivatives, known functions, and a constant. P-3
,(P)Proceeding in this fashion expressions are provided for B^ ^(s F ),

B 0(s(p)),.., B (s^P )̂ in terms of B (s^P )̂ and its derivatives, known p-2 1 o
functions, and a set of constants. Use of these expressions, (5.2) and

(5.3) \p( s /u)ip( s /y)..i|j(s /y) = B.(s^P ^)+B(s^P )̂( 1-T) 1,P P_1 1 i=o 1
Re . s . £ 0 ,l

an equation which results directly from (4.3) and (2.6),leads to a solution 

for the B.(s^P )̂ and B(s^P )̂.l

Putting s^ = 0, i= l,2,..,p, in (4.3) then gives directly the limiting 

queue length distribution as found by customers entering the system. There 

does not seem to be a simple general form of solution, but it can be seen that 

the solution will normally involve the derivatives of ip as well as ip itself. 

We illustrate the solution procedure for G(3)/M/l.

6. Moving average of order three.

(2)In this case P*(s ;z) is of the form

P*(s(2);z) = BAs^^z+B (s( Z } )+B(s( 2}) (1-Tz) , Re. s. > 0,1 o 1
where T is the unique root within the unit circle of

T = iK 1-T) -

The equations determing the solution become

(6.1) B1(yb1+s^yb?) = 0,
(9) 3(6.2) B j (ŝ  ;)=^(bo+s2/y)[Bo(ab1+s1,ab2>t(-y)^—fiL(ab1+s1 ,öb2)]ö_^,

Re . s . > 0,l

(2 ) (2 ) (2 ) -1B l(s  ̂ )+Bq (s  ̂ ;)+B(s ^')(1-T) X = i|<(s2/y)i|;(s1/y), Re. Si > 0,(6.3)



( 6 . 4 ) ( 2 ) - 2B ( s V ; = T ZiJ ;{( l-T)bo+ s 2/ y } i p { ( l - T ) ( b o+b1 ) + s 1/ y } B { y ( l - T ) ( b 1+b2 ) , y ( l - T ) b 2}s

R e . s ̂  > 0.

From ( 6 . 3 )  and ( 6 . 4 ) ,

( 6 . 5 )  B1 ( s (' 2 ^) = i|>(s2/y  ) ip(s1 /y  ) -B q ( s  ̂2 ^ )

-  ( l - T ) " 1T~2^ { ( l - T ) b o+ s 2/y } i J ; { ( l -T ) ( b o+b1 )+ s 1/y}  x

B { y ( l - T ) ( b 1+b2 ) , y ( l - T ) b 2 }, Re. s .  > 0.

( 2 )R e c u r s i v e  s u b s t i t u t i o n  f o r  B^ i n  ( 6 . 2 )  shows us t h a t  B^(s  )

i s  o f  t h e  form 

( 2 )
( 6 . 6 )  B ^ s ' “ ) = i|;(bo+ s 2 / y ) [ B o ( y b 1+ s 1#y b 2 )+ai | ;(bo+b1+ s 1 / y ) ] ,

where a i s  a  c o n s t a n t .  S u b s t i t u t i n g  = y b 2 i n  ( 6 . 5 )  and making u se  o f

( 6 . 1 )  and ( 6 . 6 ) ,  we f i n d  t h a t

( 2)  - 1 - 9
( 6 . 7 )  B ( s K = i K s 0/ y W s , / y ) - ( l - T )  T ^ { ( l - T ) b  + s _ / y ( 1 - T ) (b + b . ) + s . / y }  xo 2 1  o 2 o i l

B { y ( l - T ) ( b 1+b2 ) , y ( l - T ) b 2 }-i| /(bo+ s 2/ y ) a ^ ( b Q+b1+ s 1 /y)

-  ^ ( b o+ s 2/ y ) [ ^ ( b 1+ s 1/y ) i p (b 2 ) - ( l - T ) " 1T " 2ip { ( l -T )b o+b1+ s 1/y}  x 

i|/<(l-T)(b +b )+b0 } B { y ( l - T ) ( b n+b2 ) , y ( l - T ) b 2 >],

( 6 . 8 )

Re. s ^ > 0 ,

( 2 )B ( s v J) -  iKb + s _ / y ) [ a ip ( b +b +s /y)+\p(b +s /y)<|j(b )
1 O 2 O i l  1 1  2

+ ( l - T ) " 1T_2y { ( l - T ) b o+b1+ s 1/ y } ^ { ( l - T ) ( b o+b1 )+b2 } B { y ( l - T ) ( b 1+b2 ) , y ( l - T ) b 2 } ] ,

Re . s . > 0 .
l  ”

A l i t t l e  a l g e b r a i c  m a n i p u l a t i o n  now e n a b l e s  us  t o  f i n d  t h e  two c o n s t a n t s  

a and B { y ( l - T ) ( b 2+b2 ) , y ( l - T ) b 2 } r e q u i r e d  f o r  ou r  s o l u t i o n s  ( 6 . 5 ) ,  ( 6 . 7 )  and

( 6 . 8 )  f o r  B ( s ^ ^ ) ,  Bq( s ^ ^ )  and B , ( s ^ ^ )  t o  be c o m p l e t e l y  i n  t e rm s  o f  known 

q u a n t i t i e s .  ( 6 . 8 )  and ( 6 . 1 )  y i e l d

( 6 . 9 )  a = - 0 ( 1 ) ]  1 [ ip(h1+b2 ) ^ ( b 2 )

+ ( l - T r 1T~2i H ( l - T ) b o+b1+b2 H { ( l - T ) ( b o+b1 )+b2 } B { y ( l - T ) ( b 1+b2 ) y ( l - T ) b 2 } ] ,  

and u s i n g  t h i s  e x p r e s s i o n  t o  s i m p l i f y  t h e  w o r k i n g ,  we d e r i v e  from ( 6 . 8 )  t h a t
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( - y ) [ | ^ B 1 ( ö b 1+ s 1 , a b 2 ) ] ö= = - b ^ C b ^ b ^ s ^ y ) [a^ '  ( 1 )

+ V  ( b 1+ b 2 ) ip(b2 )

+ ( 1-T  ) _1T_ 2 ^ ’ { ( 1-T )b + b + b ) t | j { ( l - T ) ( b  +b.  ) + b .} B { y (  1 - T )  (b .+  b_ )o l  2 o 1 2 1 2

y ( l - T ) b 2 > ] ,  Re.  S l  > 0 ,

From ( 6 . 6 )

a  = [ l + b 24#* ( 1 ) ]  1 ( - b 2 ) [ f ( b 1+b2 ) ^ ( b 2 )

+ ( 1 - T ) " 1T‘ 2^ ’ { ( l - T ) b  +b +b } i | ; { (1 - T ) (b  +b.  ) + b .} B { y (  1 - T ) ( b n + b _ ) , y ( l - T ) b _ } ]  ,o 1 Z o l l  1 1  1

a n d  s o  by  ( 6 . 9 )

( 6 . 1 0 )

a  = [ l + b ^ ' U )  -  b 2ip, { ( l - T ) b o + b 1+ b 2 } i J ; ( l ) ] " 1 x

[ - b 2^ ’ ( b 1+ b 2 ) ^ ( b 2 ) - ^ ’ { ( l - T ) b o+ b1+ b 2 }i|J( b 1+ b 2 ) lp ( b 2 ) ^ { ( l - T ) b o+b1+b2 } ] s

( 6 . 1 1 )  T " 2B { y ( l - T ) ( b 1+ b 2 ) , y ( l - T ) b 2 )

= ( l - T ) [ i J ; , { ( l - T ) b o +b1+b2 } i J ; { ( l - T ) ( b o+ b1 ) + b 2 } ] " 1 x

[ - ^ ’ ( b 1+ b 2 ) ^ ( b 2 ) - b 2 ' 1 { J - b 2 iJ;’ ( l ) }  x

{ l + b 2i|;’ ( l ) - b 2 ^ , { ( l - T ) b o +b1+ b 2 } i | ; ( l ) } " 1 x

{ - b 2^ , ( b 1+ b 2 ) ^ ( b 2 ) - ^ , { ( l - T ) b o + b 1+ b 2 ) ^ ( b 1+b2 ) ^ ( b 2 ) ^ { (  l - T ^ + b ^ b ^ } ]

The l i m i t i n g  q u e u e  d i s t r i b u t i o n  i s  t h u s

1  P . z 1 = 1 - ( 1 - T ) " % { b  ( 1 - T ) }^{ ( 1 - T ) (b  +b )}T_2B{y ( 1-T ) ( b + b )  , y(  1-T)b } 
1=0 1 o o l  1 2  2

- a i | ; ( l ) i K b o+b1 ) - 4 ; ( l ) [ i | ; ( b 1 ) ^ ( b 2 ) - ( l - T ) ‘ 1i | ; { ( l - T ) b o+b1 } x

^ { ( l - T ) ( b o+b1 ) + b 2 } T ' 2B { y ( l - T ) ( b 1+ b 2 ) , y ( l - T ) b 2 }]

+ z ^ ( l ) [ a i j ; ( b o+b1 )fi]j(b1 )i | ;(b2 ) t ( l - T ) " 1 i p { ( l - T ) b o+b1 } x

^ { ( l - T ) ( b o+b1 ) + b 2 }T_2B { y ( l - T ) ( b 1+ b 2 ) , y ( l - T ) b 2 }]

+ ( 1 - T z ) _ 1 ijj( 1 - T ) ^ { ( l - T ) ( b  +b.  )} T _2B { y ( l - T ) ( b 1+ b . ) , y ( l - T ) b 0 },o 1 1 2  2

I z I < 1 ,

_2
w h e re  t h e  c o n s t a n t s  a  and T B{y( 1 - T ) ( b ^ + b 2 ) , y ( 1 - T ) b 2 } a r e  g i v e n  by  ( 6 . 1 0 )

an d  ( 6 . 1 1 ) .



7. Comparison with Finch 's conjectured form 
of solution for G(2)/M/l.

As we noted before, Finch’s result (1.3) determining the equilibrium 

queue length distribution arising from a general stationary input is not a 

simple one from which to deduce the distribution corresponding to any particular 

input.

Finch developed his heuristic symbolic method in an effort to 

evaluate (1.3) for prescribed inputs. The symbolic method gives the Q.'s as 

formal Taylor series.

(7.1) Q. = d  + 1 (o, o,.., 1-T.), 

where the T_. are operators for which

(7.2) T.Q = Q , , j < k,
2 v r+1 * J *

and

(7.3) r +1 (« , a ,..,oc ) = E[exp{-<* 0 , -a 0 - ... - « e , }]o 1 m  ̂ c m o 1 m ’l m m ’m
For moving averages of orders one and two, the T_. appear as a simple

multiplier T satisfying

T = i|)( 1-T)

6.n our notation).

The method gives Kendall’s (1954) well known geometric limiting

distribution for GI/M/1. The solution for G(2)/M/l is

(7.4) Q = i/){b (1-T)} i|) {b (1-T)},o o 1
Q. = TJQ 3 o j > 1*

By making use of the relations

Qj .E . , P . 1 = 3 + 1  3

(7.4) can be expressed in terms of the P. as
. 3
( l-^{b_( 1-T) }ip{b_L( 1-T) } , j=o

(7.5) P. = 3
 ̂ Tj 1(l-T)i|;{bo(l-T)}iJ){b1(l-T)}, j>l



Thus the symbolic method suggests a limiting distribution which is

geometric apart from the first term, as we have shown to hold. The values of

Pq given by the two approaches are, however, as we shall see, different, so

that whilst the symbolic method gives the form of solution correctly, it 

predicts the constant Pq incorrectly.

The correct limiting queue length distribution of G(2)/M/l can be 

derived as follows:

For p = 1, the equations for the unknown functions B(s), B (s) 

reduce to

B(s) = T"%{bo(l-T)+s/y} B{yb (1-T)}, Re. s > 0,

iKs/y) = Bq (s ) + B (s) (1-T)"1, Re. s > 0,

B (yb )= 0♦ o 1

The solution for B(s), B (s) iso
B(s) = (1-T)i|;(b )i|;{(l-T)b +s/y} / (1-T)b + b }

Re. s > 0.
Bq (s ) = î Cs/y) -ip(b1)ip{(l-T)bo+s/y} / y {(l-Db^b^}

The equilibrium queue length distribution is now obtained on 

setting s = o.

f l-TiKbn W ( l - T )  b } / ip{ (1-T)b +b }, j = o 
(7.6) P. = / . ° °

: \ TD(l-T)i|;(b1)^{(l-T)bo } / ip {(l-T)bo+b1), j>o.

The expressions for Pq in (7.5), (7.6) are apparently different. That 

they are actually different can be verified by taking a particular case.

If

U(x) = l-exp(-Xx), x > 0, X > 0

we have

^(oc) = A/(A+<=y)
so that (2.5) yields immediately T = 1 or A /y, of which only the latter can 

lie within the unit circle. With T = A/y, (7.5), (7.6) yield respectively
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P = 1 -  A2 ( Ab +yb ) 1 (Ab +ybn ) 1 , o 1 o o 1

P = 1 -  A2 (Ab.+y)  [y(A+b y ) ( Ab +yb ) ] _1 • o  1 1 1 o

I t  i s  e a s i l y  s e e n  t h a t  t h e s e  two v a l u e s  o f  P d i f f e r  u n l e s s  e i t h e ro

one o f  b , b^  v a n i s h e s  o r  A=y. The f i r s t  p o s s i b i l i t y  c o r r e s p o n d s  t o  a

g e n e r a l  r e c u r r e n t  i n p u t .  A=y i s  i n a d m i s s i b l e  s i n c e  f o r  e r g o d i c i t y  t h e

t r a f f i c  i n t e n s i t y  A/y must  be l e s s  t h a n  one ( L o y n e s ,  1962) .

The i d e n t i f i c a t i o n  o f  t h e  T_. as  a s im p l e  s c a l a r  m u l t i p l i e r  T i s  n o t

a v a i l a b l e  t o  us  w i t h  h i g h e r  o r d e r  moving a v e r a g e s  s i n c e  ( 7 . 1 ) ,  ( 7 . 3 )  g i v e

H b  ( l - T . ) M b . ( l - T  ) ] . .  ip[b ( 1-T )]  , j  = o ,o O  l o  p o

i|;[bo ( l - T 1 ) ] ^ C ( b o+b1 ) ( l - T 1 ) ] ^ [ ( b 1+b2 ) ( l - T 1 ) ] .  .i|;D(bp _1+bp ) ( l - T 1 ) ]  x

^ [ b ^ l - ^ ) ]  , j=  1,

♦ [ b o ( l - T 2 )]i(»[(bo+b1 ) ( l - T 2] ^ [ ( b o+b1+b2 ) ( l - T 2] . . i ( >[b ( 1 - T 2 ) ] ,

j  = 2,

ip[b ( 1 - T . ) ] . . [ ^ (  1-T .)  ] ^ +1_P^[  (b +. .+b ) ( 1 - T . ) ] . . ^ [ b  ( 1 - T . ) ] ,
0 9  3 1 p 3 P J

j > p.
\

Such an i d e n t i f i c a t i o n  seems p l a u s i b l e  f o r  j  > p ,  and on c o m p a r i s o n  

o f  ( 7 . 7 )  w i t h  ( 7 . 2 )  we s e e  t h a t  t h e  s c a l a r  T would s a t i s f y

T = i K l - T ) .

From t h e  r e l a t i o n
oo

Q. = l  P.
3 i = j + l  3

we r e a d i l y  d e r i v e  t h a t  {P_.} would t h e n  have t h e  known u l t i m a t e l y  g e o m e t r i c  

form w i t h  common r a t i o  T t h e  s o l u t i o n  o f

T = iK l -T )

i n s i d e  t h e  c i r c l e .  Tha t  we must  choose  t h i s  s o l u t i o n  a r i s e s  f rom t h e  n e c e s s i t y  

f o r  c o n v e rg e n c e  o f  t h e  Q_..

I t  seems t h a t  any i n t e r p r e t a t i o n  f o r  Tq , . . , T would be r a t h e r  l e s s
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simple since, as we have seen in our discussion of the full solution of 

G(p+lVW/l,the probabilities Po,..,P  ̂will in general involve the
derivatives of ip as well as itself.

8. Waiting Time Distribution.

Loynes (1962a) has considered the possibility of determining the 

stationary waiting time distribution of single server queues in which inter

arrival intervals and service times are not necessarily independently distri

buted, and under mild restrictions found techniques applicable to a wide class 

of queueing systems.

In this section we deduce the form of the limiting waiting time distri

bution for the general moving average queue with negative exponential service 

and compare this with Loynes's results.

We denote by S , T , W^, respectively the service time of the arrival 

at A , the length of the interval (A^, Ar ), and the waiting time (excluding 

service) of the arrival at A .n
Loynes (1962) has shown that under the conditions that {S^ 

strictly stationary process and

T } is a n

(8.1) E(S - T ) <0,n n
the existence of a unique limiting distribution of waiting time is ensured. 

In the present problem this condition becomes (2.2), our condition for the 

existence of a unique limiting distribution of queue length, as one would 

intuitively expect.

The class of systems dealt with in Loynes (1962a) consists of queues 

for which :

\ There exists a sequence {z^} of random vectors defined in finite

dimensional Euclidean space with the following properties:
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(i) { z j Tn nm

(ii) s , Tn n

(Hi) W 3n zn

(One can regard the components of the z ’s as being of the nature of the 

additional variables introduced in a queueing problem to recover the Markovian 

property, as in D. G. Kendall (1954). )

We introduce

<|>(s z ) =, n exp (-sx)d pr(W n+1 < x| z ) ,

and similarly ip(siz^)i H(s,z^3z^ ^), G(s,zn ,zn corresponding to

W + S + T  - W  , S , T , respectively, n n n n+1 n n J

Loynes shows that the Laplace-Stieltjes integral form of the equation 

here corresponding to the ordinary stationary waiting time integral equation 

is

(8.2) 1 - ip( s,zn ) = <J>(s,z ) - E[<(>(s ,z ) H(s,z , z ) x

G(-s,z ,z ) Iz ]. n* n-1 ' n

This equation is set up only for s on the imaginary axis, but it is often 

possible to continue H and cj> analytically into the left half plane. 

Presuming H can be so continued to give a single valued function analytic 

everywhere in the left half plane, except for isolated singularities, the 

following theorem is derived:

If (8.2) has a solution $(s.z ) such that J 3 n

(i) $(s3z^) is3 for fixed z^3 the analytic continuation of $(s3z^)3

(ii) 3  a(z ) such that3 for fixed z 3 lim exp(as) $(s3z )/s exists with value
s-*30

zero (in the left half plane)3 

and

(Hi) for fixed z^3 the analytic function composed of $(s3z^) and S(s3z ) is 

regular everywhere except for poles3 then for x > a3 pr (W^^< x\z^)-\ is a



40 .

finite sum of terms of the form

(8.3) kl2 gr(zn) ccr exp (-bti9 
r=o

where -h is a pole of 3 of order k. 

any ease Re. b > 0.

These poles may depend on but in

It is readily verified that z = (u , u u ) suffices forJ n n+p n+p-1 n
^  to be satisfied.

With negative exponential service of parameter y and the above choice

of the z’s, H (s,z ,z n) becomes y(y+s) \  independent of z , zn n-1 r n n-1
A subsidiary result of Loynes (1962a) gives that the conditions (i) 

and (ii) of the main theorem are satisfied with a = 0 when H is a rational 

function of s and is independent of the z’s.

We now derive the form of the (unconditional) limiting waiting time 

distribution directly from (4.4).

If an arrival finds the queue empty, he begins service immediately.

If on arriving he finds j > 0 customers already in the queue, then

pr (waiting time £ x) = Pr (j services completed in the time < x)
j-1 i= 1 - exp(-yx) E (yx) /LI , x > 0. 
i=o

Hence using (4.4), the (unconditional) waiting time distribution for an 

arrival is
“ j-1 i(8.4) Pr(W < x) = P + £ P.[l - exp (-yx) E (yx) /iI]o . , 3]=1 1=0

p-2 p-1 1
= 1 - exp(-yx) E ( E B.)(yx)J/j! 

j=o i-j+1 1
-1- BT(l-T) exp {-yx(1-T) } , p > 2, x > 0.

This is the sort of expression that would arise from (8.3) on integrat

ing out z^ if 6(s,z^) were in fact analytic everywhere except for poles at 

-y, -y(l-T) or orders p-1 and 1 respectively, both independent of z^.
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That -y should be a pole seems natural from (8.2), since 

<j)(s,zn_1) = y(y+s) 1

has a pole at s = -y. The possibility is left as a hypothesis.

We observe that when p = 1, i.e.,when we have a general recurrent 

input, the terms in (8.4) involving the EL ’s do not appear, and the distri

bution becomes negative exponential together with a weight at the origin, a 

fact noted by Smith (1953).

9. Approach through waiting times.

We noted in the previous chapter that the queueing process is more 

complex than the waiting time process and cannot, in general, be deduced from 

it. Such a deduction can, however, be made when the service time distribution 

is negative exponential, thanks to the peculiar memory-less property with 

this distribution.

Suppose the limiting queue length distribution of a queueing system with 

negative exponential service to be {P , j > 0}. Equation (8.4) gives for the

waiting time distribution Pr (W < x).
oo j-1 ;

Pr(W < x) = P + I P. [1 - exp (-yx) I (yx) /i!] o . , 3 •3=1 J i=o
oo 00 .

= 1 - exp(-yx).Z (.Z P.)(yx)Vj!.3=0 1=3+1 3
Therefore
oo oo .
.Z (. I P .)(yx)J/j! = [1-Pr(W < x)] exp (yx).3=0 1=3+1 3 J

If Pr(W < x) is a known function, F(x) say, this relation will enable 

us to find the distribution {P.} . Cauchy’s theorem gives
j  J

^|j+1 P^ = 2^1—  y  ̂  ̂ z + [l-F(z)] exp (yz) dz , j > 0,

where the integration is performed around a small closed contour about the 

origin. Hence



4 2.
r i _ ^( 27Ti j (yzr1 [1—F(z)] exp (yz) dz , j = o,
) y(j-D! ^(yz) ^ [1--F(z)] exp (yz) dz

2 tt i

_e LL 3' (yz) ^ + 1'> [1-F (zU exp (yz) dz , j > 1
2 tt i

The determination of the stationary waiting time distribution F(x) 

could be carried out by the techniques of Bene^ shows that sufficient inform

ation to determine the waiting time distribution at time t is contained in 

K(t), the sum of the service times of all the arrivals to the system before t. 

He gives forms of solution which are integral equations in the functions

Pr(K(t)- ) and R(t,u,w), defined by w
R(t,u,w) = Pr[{K(t) -t} - {K(u) -u} < w |w(u) = o].

The handling of these functions seems substantially harder than the procedure 

we have adopted in this chapter, and we shall not pursue these possibilities 

further.

A  A  A
4\ rf* 4* 4\ 4*
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CHAPTER THREE.

Variety of equilibrium queue size 
distribution occurring in G(p]/M/1 

Sys terns.

In a paper reviewing the then current work in queueing theory, D. G. 

Kendall (1964) draws attention to the problem of identifying a queueing system 

from its output.

In chapter II we saw that for single-server queues with negative 

exponential services and individual arrivals it is possible to obtain limiting 

distributions of queue size which are not purely geometric.

It is thus natural to consider a problem similar to Kendall’s, namely: 

what is the range of equilibrium distributions that can arise in single

server queues with negative exponential services and individual arrivals? 

Because of the difficulty of deriving'the limiting distribution explicitly 

this question does not appear to admit of an easy solution. We are, however, 

able to gain some limited insight as to the answer.

1. The queue G/M/l.

We consider first the distributions arising from general recurrent 

inputs. We know that if

ym > 1 (m finite),

where m is the mean inter-arrival time, then the limiting queue length 

distribution as found by arrivals is given by

P_. = Pr (queue length = j) = (l-T)T^, j > 0.

T is the (demonstrably unique and positive) root of

z = \p(l-z)

inside the unit circle, and ip the Laplace - Stieltjes transform of the
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inter-arrival interval probability distribution function.

The distribution {P.} will define the input uniquely only if the 

inner root T arises from but one inter-arrival interval distribution 

function. This is never the case, as we shall show. It will also appear that 

every geometric probability distribution

{(l-T)T3} , 0 < T < 1,

is the limiting distribution of queue length as found by arrivals for some 

general recurrent input.

We note that if {A^(x)} is a set of (proper) non-negative distribut

ion functions and {c^} a set of non-negative constants with sum unity, then 

^i °i also a non-negative distribution function. If itu are the

(finite) means of the A., the mean of E. c. A.(x) is E. c.m. which willl i l l  i l l

also be finite.

For y > 0 and T satisfying 0 < T < 1 given, define
oo

b^ = / exp [-y(l-T)x] d Â ,(x) .
o

Ec^A^(x) will be an inter-arrival interval distribution function giving rise

to the equilibrium distribution {(l-T)T^} provided both
-1(1.1)

and

Ec.m. > yl l

(1.2) Ec.b. = T.l l

It seems plausible that if {A^} contains many members and these 

exhibit a wide variety of distribution of mass, then (1.1), (1.2) can be 

simultaneously satisfied by some set of non-negative constants {c^} for which

(1.3) E c£ = 1.
i

In fact, it would seem that for a large and varied collection A_̂  the c’s 

could be chosen in many ways giving many different distributions E^ c^ A^(x).

Such a set {A^} is provided by the Erlang distributions of different 

orders associated with a given parameter y. The Erlang distribution of
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o r d e r  i  i s

A^(x)

0 , x < 0

i - 1
, i  ^ 1 »

1 -  Z exp [ - y x ] ( y x )  /£ !  
£ = o

and t h e  c o r r e s p o n d i n g  p r o b a b i l i t y  d e n s i t y ,

0 , x < 0

a ^ ( x )

exp [ - y x ] ( y x ) 1 1 / ( i - l ) !

i s  un imoda l  w i t h  a peak a t  ( i - l ) / y .  There  i s  t h u s  a peak a t  t h e  o r i g i n  

( f o r  i  = 1) and p e a k s  e x t e n d i n g  o u t  t o  i n f i n i t y  w i t h  i  i n c r e a s i n g .  For

t h i s  s e t  { A . }  we have
l

( 1 . 4 )

( 1 . 5 )

iik = i / y ,  

b .  = ( 2 - T ) - i

For  iik o f  t h i s  fo rm ,  i t  i s  e v i d e n t  t h a t  ( 2 . 1 )  w i l l  a u t o m a t i c a l l y  be 

s a t i s f i e d  i f  a t  l e a s t  one A. o t h e r  t h a n  An o c c u r s  i n  E. c . A . .
l  1  i l l

S i n c e  { ( 2 -T )  n } i s  s t r i c t l y  monotone  d e c r e a s i n g  and bounded be low 

by z e r o  f o r  0 < T < 1 ,  (2 -T )  n < T

f o r  a l l  s u f f i c i e n t l y  l a r g e  n ,  f o r  n > N, s a y .  A l s o ,  (2 -T )  1 > T

f o r  0 < T < 1 ,  by e l e m e n t a r y  a l g e b r a ,  so  t h e r e  i s  a lw ays  a t  l e a s t  one v a lu e

o f  n f o r  which

(2 -T)  n > T

I f

( 1 . 6 ) T - (2 -T ) - n

f o r  some n > 2 ,  t h e n  c l e a r l y  A s u f f i c e s  f o r  Ec. A. ,n l i

More g e n e r a l l y  we w i l l  have

(2 -T )  n > T

f o r  1 < n < N, and t h e  i n e q u a l i t y  i s  r e v e r s e d  f o r  n > N(n > N + 1) when ( 1 . 6 )
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can be satisfied).

Consider any ordered pair (i,j) of positive integers, 

i < N < j (j > N + 1 when (1.6) can be satisfied). By an elementary inter

mediate value theorem there is precisely one c, 0 < c < 1 for which

c(2-T)_1 + (1-c)( 2-T)~^ = T.

(1.2) is thus satisfied when we take

c A. + (1-c) A.1 D
as our distribution function. From the freedom of choice of i, j, it is 

clear that there is a countable infinity of distribution functions formed as 

a linear combination of the {A.} which suffice for (1.1) - (1.3) to bel

satisfied, i.e., which can give rise to the prescribed geometric probability 

distribution.

In any case we have open to us the possibility of augmenting our set 

{A^} with further distribution functions. We could, in particular, make use 

of sets of Erlang distributions with parameters other than y. Discussions 

of approximating general distributions by linear superposition of Erlang 

distributions are given by Jensen (1954) and others.

A salient characteristic of the distribution functions formed from 

Erlang distributions in this way is that their Laplace-Stieltjes transforms 

are the reciprocals of polynomials (meromorphic functions if we allow com

binations of infinitely many of our basic distributions) and have their zeros 

on the negative real axis of the complex s-plane. It is possible to generalise 

to the reciprocals of polynomials with pairs of complex conjugate pseudo

negative zeros (i.e.,zeros with negative real parts) if we allow complex 

probabilities. Such a possibility has been considered in some detail and 

validated by Cox (19^5) and (1955a). By virtue of the partial fraction 

expansion this in fact includes rational functions. The numerator of a 

fraction whose denominator is a polynomial of degree k cannot, however, be a
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polynomial of degree greater than k, since we would then have a Laplace 

transform which was unbounded on the positive real axis.

Necessary conditions for a rational function to be the Laplace transform 

of a random variable have been derived by Lukacs and Szasz in a number of 

papers (see Lukacs and Szasz (1952) and (1954) ).

2 The queue G(p)/M/1.

Suitable combinations Zc^A^ using more than two A's can also be 

formed, whereby Zc^A^ can be made to accommodate further conditions. In 

particular, by choosing sufficient A ’s we can make Zc^A^ as smooth as 

we please, and, although we shall not attempt 'a proof, it seems reasonable to 

suspect that we can approximate a distribution function lacking finite jumps 

with an arbitrarily 'close* fit in some sense.

That we should be able to so approximate is natural in that A , the 

negative exponential distribution, is 'completely random' or 'memory-less', 

while, as i -*30, A^ approaches a distribution function which is a delta-measure, 

i.e., a completely deterministic distribution function. The profiles of the 

functions A_̂  show a regular gradation between these extremes.

Observing in the discussion on G(p+1)/M/1 that the limiting distributions 

obtained depend on only a finite number of \p and its derivatives evaluated 

for particular arguments, we are inclined to believe that if a given limiting 

distribution which is geometric apart from the first few terms (we shall term 

this a 'delayed' geometric distribution) occurs it will arise from many differ

ent moving average inputs (of a particular order). On the other hand it will 

not, in general, be true that a delayed geometric distribution will necessarily 

arise from a moving average input. This we shall illustrate for the case of a 

moving average input of order two, where we see that some geometric distribut

ions delayed by one term do not arise from second order moving averages of
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A more complete discussion appears impracticable in view of the difficulty 

of an explicit determination of the limiting distribution arising from a general 

order moving average.

One would perhaps be surprised if there were not some restriction on the 

limiting distributions occurring in G(p)/M/1 systems. Clearly any queueing 

distribution can be approximated to as closely as desired by a sufficiently 

delayed geometric distribution, and it is hardly to be expected that any 

queueing distribution can be simulated by the limiting behaviour of a system 

with random services and non-negatively correlated inter-arrival intervals.

We shall return to this in section six of chapter four.

Our solution for the equilibrium distribution of G(2)/M/l was

(2.1) P.]
1 (l-T)tKb1 )ip{(l-T)b }/iH(l-T)b +b_}, 1 o o 1

l-TiKb1H{(l-T)bQ}/iJ.{:i-T)bo+b;L},

j 1 1 .
We find that for a given T, a moving average of functions £ c^A^

will give

(2.2) P > 1 - T.o
We begin with the following lemma.

Lemma: Suppose the quantities a^3 i = 1323Z3 satisfy

(2.3) 4
a! < a. ,l l

ai a2^a3 - aia2^a3‘
t

Then for any constants c3 a in (031) satisfying

c + o' = 1

we have

a^a^/a^ > (ca^+c'a^ )(ea fc'a'p/ica^c'a'̂ ).(2.4)



The result follows from elementary calculus by considering the variation of 

[c+(l-c)a^/a1][c+(l-c)a^/a2]/[c+(l-c)a^/a3] 

for c in (0,1).

Proof: The second order moving average (b ,b^) of the distribution

function A  ̂ has
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(2.5)

* (b 1)

ip{ (1-T )b }

^{(l-T)bo+b1)

= ( l t b 1 )
- £

= (l+(1-T )b ) o
- £

= (l+(1-T)b +b.)o 1
- £

Consider the moving average (bQ , t>̂ ) of any finitely compounded 

distribution function Zc^A^. This is the same as the sum of the moving 

averages (b^, b^) of the A^ each weighted by c^, so that for the moving

average (b , b ) of Zc^A^

iKb1 ) = Zc£(l+b1 ) £ ,

i|K(l-T)b } =Zc (l+(1-T)b )"*, o £ o
^ { (l-T)b0+bj_} = Zc^( l+( 1-T )b0+b1 )-^.

Suppose that for Zc^A^

F(Zc A ) e ^(b_)^{(1-T)b }/^{(1-T)b +b.}

is less than the corresponding function for A , where m is no greater than

the least index £ in Zc^A^. Since the terms of the right hand side of (2.5)

are all strictly monotone decreasing with £ increasing, the inequalities (2.3)

are satisfied when we take the b(bn) ,b{(1-T)b }, b{(l-T)b +b, } associated1 o o 1
with A^ as a^,a2 » respectively and the corresponding functions for

Zc^A^ as the a f,s. It follows from the result (2.4) of the lemma that (2.3) 

is also satisfied when we now take for the a ’’s the three ip's associated 

with

where

c A + c ’Zc.A. m  £ £
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c+c’ = 1, c , c ' > 0.

This provides the basis for an inductive proof that the function F

evaluated for any finite sum Zc£A£ is less than the corresponding value for

A , where m does not exceed the least index in Zc.A.. We use for the m 1 £
induction the fact that (from (2.5))

(2.5) F(A£) = [l+b4(l-T)bj[l+b^d-T)bo]_\

so that {F(A£)} is a strictly monotone decreasing sequence.

Hence F evaluated for any finitely compounded sum Zc£A£ (ĉ ’s

positive with sum unity) is less than F(A ).

By taking the supremum on n of F evaluated for sums involving n 

components A£, the maximality of F(A^) is established for denumerably in

finite sums Zc£A£.

Since

F(A1) < 1

(2.2) follows directly from (2.1).

The value obtained for A^ itself is extreme in that a moving average of 

A^ will not satisfy the stability criterion (1.1) for an equilibrium situation 

to exist.

The restriction that P lie in (1-TF(An) ,1) was obtained for a giveno 1 0
moving average (b^, We see from (2.6) that by allowing bQ to range

between 0 and 1 (keeping b^+b^ = 1 throughout) we can make only the 

weaker statement

P £ 1 - To
if we leave unprescribed the constants of the second order moving average. 

Consider again (b^, b^) fixed. We observe that 

F(A ) < 1

f (a £) = [F(Ai)]£ ,

and
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so that F(A^) 0 as £ ■> 00 . By continuity,

F[cA + (l-c)A ], £ i m,£ m

will, as c varies between 0 and 1, take on every value between F(A^) and

F(A ). It follows that F evaluated for sums Z c nA n of only two of the A„ m £ £ £
can take on every value in (0,F(A^)). It seems reasonable to expect that

analogously to the case of recurrent inputss we can, by taking

sufficiently many Aß's,construct a sum Zc^A^ with some second order moving

average (bQ,b^) , which can give rise to a given delayed geometric distribution

rl - TK, j = 0 , (0 < K < 1),
p . = . ,
: TD (l-T)K, j > 1.

V
The conditions we need to satisfy are the equilibrium condition (1.1) 

(which will be trivially satisfied as before if Zc^A^ contains at least one

A^ other than A ), and the conditions

(2.7) F(Ec*V = K,

(2.8) T = <Ki-T).

As before we expect many solutions for a given pair T, K. The lower

bound 1-T for P can arise 0 in an equilibrium distribution. The argument

above considered only distributions that are saltus-free. Consider a pro

cess whose successively realised values constitute a moving averse (bQ, ^ )  

of a sequence {Sr} of random variables, the mass of each of which is concen

trated at a single point. It is trivial that this process is the same as the 

renewal process {S }. The limiting distribution, when it exists, is then 

purely geometric, and if T is the common ratio, we have trivially that

P = 1 - T. o
For any prescribed T in (0, 1), let us take a deterministic input for 

which the common inter-arrival d is

d = y"1 (1-T)"1 log (T_1).

By an elementary inequality



5 2 .

( 1 - T ) 1 log  (T l ) > 1

f o r  0 < T < 1 ,  so t h a t  d > y 1 and an e q u i l i b r i u m  d i s t r i b u t i o n  e x i s t s .

S ince
00

T = exp [ - ( l - T ) d y ]  = /  exp [ - y ( l - T )  x ]  6 (d )  d x , 

t h e  l i m i t i n g  d i s t r i b u t i o n  i s ,  i n  f a c t ,  g e o m e t r i c  w i th  p a r a m e t e r  T.

We have  as  a c o r o l l a r y  t h a t  a l l  p u r e l y  g e o m e t r i c  d i s t r i b u t i o n s  as  

c o n s i d e r e d  e a r l i e r  can be p roduced  by c o m p l e t e l y  d e t e r m i n i s t i c  i n p u t s  c o n s i s t 

ing  o f  r e g u l a r l y  s pa ce d  a r r i v a l  i n s t a n t s .

We o b s e r v e  t h a t  a p r o c e s s  c o n s i s t i n g  o f  a moving a v e ra g e  ( b Q,b^)  o f  

i d e n t i c a l  d i s t r i b u t i o n  f u n c t i o n s  in  each  o f  which t h e  mass i s  d i s t r i b u t e d  

b e tw een  s e v e r a l  p o i n t s  d i f f e r s  f rom t h e  c o m p l e t e l y  d e t e r m i n i s t i c  c a se  i n  t h a t  

i t  i s  n o t  t h e  same as  t h e  c o r r e s p o n d i n g  r e n e w a l  p r o c e s s .  A s i m i l a r  argument  

h o l d s  good f o r  t h e  g e n e r a l  o r d e r  moving a v e r a g e  w i th  a d e t e r m i n i s t i c  i n p u t ,  

so  t h a t  t h e  v a l u e  1-T f o r  Pq can be r e a l i s e d  f o r  moving a v e r a g e  i n p u t s  o f  

e v e r y  o r d e r .

We e x t e n d  t h e  r e s u l t

P > 1-T o

t o  s y s te m s  whose i n p u t s  a r e  a moving a v e r a g e  ( b Q, b^)  o f  random v a r i a b l e s  

w i t h  d i s t r i b u t i o n  f u n c t i o n s  o f  t h e  form

c A + ( l - c ) D ,  0 < c < 1 ,

where A can be w r i t t e n  Ec^A^ and D i s  a d i s t r i b u t i o n  f u n c t i o n  a l l  o f

whose mass i s  a t  a ( n o t  n e c e s s a r i l y  f i n i t e )  number o f  d i s c r e t e  p o i n t s .  C l e a r l y

a l i n e a r  c o m b i n a t i o n  o f  such d i s t r i b u t i o n  f u n c t i o n s  i s  a n o t h e r  o f  t h e  same t y p e .

The r e s u l t  i s  s im p ly  e s t a b l i s h e d .  We d e a l  f i r s t  w i t h  i n p u t s  where c = 0

and D i n v o l v e s  on ly  a f i n i t e  number o f  p o i n t s .

D i s  i t s e l f  a com b in a t io n  o f  d i s t r i b u t i o n  f u n c t i o n s  each  w i t h  a l l  i t s  

mass a t  a s i n g l e  p o i n t .  We do n o t  s t i p u l a t e  t h a t  each such  component  must

n e c e s s a r i l y  g i v e  r i s e  t o  an e q u i l i b r i u m  d i s t r i b u t i o n ,  o r  i n d e e d  t h a t  t h i s  need
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happen for any component. This result follows purely from the mathematical 

properties of F.

Select out the component distribution function with the least inter

arrival time d. Then

<(>(b ) = exp [-yb d],

<f>{b (1-T)} = exp [-yb (l-T)d],o o
4>{(l-T)b +b }= exp [—y {(1-T)b +b.}d], o 1 o 1

so that F(D ) has the value unity. Much as before, it follows from the 

lemma by an easy induction that

F(D) s F(D1) = 1.

By considering the supremum of F(D) we can extend the result

F(D) s 1

to distributions D whose mass is distributed on an infinity of discrete

points (by a standard result in probability theory the number of discontinuity
Ipoints in D must be countable ).

A further simple application of the lemma finally gives the required 

result for the moving average (bQ ,b^) of c A + (l-c)D, as defined above.

The interpretation of this result is quite striking. Since the geometric 

distribution arising from a general recurrent input process and its moving 

average (b ,b^) are characterised by the same value of T, we see that in 

the moving average process, arrivals are in general more likely to find the queue 

empty than arrivals in the general recurrent process, and less likely to find 

any other given number of customers already in the queue. The probabilities 

coincide trivially for a deterministic input.

Since the waiting time distribution of an arrival finding j > 0 

customers already in the queue is simply the jth iterated convolution of the

1. M. Lobve: Probability Theory, Van Nostrand Co.,
New York, (1955), oh. 4
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negative exponential distribution, i.e., an Erlang distribution of order j, 

it also follows that the probability that an arrival has to wait as long as 

x(> 0) before commencing service is less for the (bQ ,b^) moving average process 

than for the corresponding uncorrelated input process. This is despite the 

fact that the traffic intensity, i.e., the ratio of the mean service time to 

the mean inter-arrival interval, is the same for both processes.

In calculating the ratio of mean waiting time to mean service time for 

the queues M/M/1, D/M/1 for various traffic intensities, Kendall (1953), 

found that much lower values were obtained from the deterministic input for a 

given traffic intensity. Since taking the moving average (bQ ,b^) introduces 

a positive correlation between lengths of successive inter-arrival intervals, 

one may think of the moving average as being in a sense closer to a determin

istic input. The reduction in the mean waiting time/ mean service time ratio 

is thus not altogether unexpected, and although the result cannot be readily 

demonstrated, we would expect similar behaviour with moving averages of higher 

order.

3. Traffic intensity and the equilibrium distribution.

We derive in this section, a somewhat surprising result that is readily 

demonstrated by our approach of constructing inputs from a superposition of 

Erlang distributions.

Theorem: A given geometric equilibrium queue-length distribution

{(l-T)T1} oan arise from recurrent inputs with arbitrarily large mean 

inter-arrival intervals.

Proof: We have shown that a prescribed limiting distribution {(l-T)T''}

can be produced by a recurrent input with an inter-arrival time distribution 

function

(3.1) c A + (l-c)A , 0 < c < 1. SL > 1 .
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We g i v e  an i t e r a t i v e  p r o c e d u r e  f o r  p r o d u c i n g  a  s e q u en c e  o f  d i s t r i b u t i o n  

f u n c t i o n s ,  a l l  a s s o c i a t e d  w i t h  t h e  same l i m i t i n g  d i s t r i b u t i o n  b u t  each w i t h  a 

^nean i n t e r - a r r i v a l  t im e  e x c e e d in g  t h a t  o f  t h e  p r e v i o u s  d i s t r i b u t i o n  by more 

t h a n  a  f i x e d  p o s i t i v e  amount .

The f i r s t  s t e p  i n v o l v e s  r e p l a c i n g  i n  ( 3 . 1 )  by

; 3 - T ) _1 A£-1 + ( 2 - T ) ( 3 - T ) _1 A£ + i .

I t  i s  immedia te  t h a t

( 1 - c )  ( 3-T ) _1 ( 2 - T ) _(£_1)  + ( l - c ) ( 2 - T ) ( 3 - T ) _1 ( 2 - T ) " (£,+ 1)

= ( 1 - c )  ( 2-T ) ” \

so t h a t  by ( 1 . 2 ) ,  ( 1 . 5 )  t h e  new d i s t r i b u t i o n  g i v e s  r i s e  t o  a l i m i t i n g  queue 

l e n g t h  d i s t r i b u t i o n  w i th  t h e  same v a lu e  o f  T as  t h e  o l d .

I t  i s  a l s o  immedia te  t h a t

U - D y " 1 ( 1 - c )  ( 3 - T ) _1 + U + D y " 1 ( 1 - c ) ( 2 - T ) ( 3 - T ) “ 1 

= £y_1 ( l - c ) + y _1( 1 - T ) ( 3 - T ) _1( l - c ) ,

so t h a t  t h e  mean i n t e r - a r r i v a l  i n t e r v a l  o f  t h e  new p r o c e s s  exceeds  t h a t  o f  t h e  

old by

y- 1 ( l - c ) ( l - T ) ( 3 - T ) _ i .

Suppose a s equence  o f  f u r t h e r  d i s t r i b u t i o n  f u n c t i o n s  i s  c o n s t r u c t e d  by 

a l i k e  c o n t i n u e d  s p l i t t i n g  a t  each  s t a g e  o f  each  A^ f o r  which i  > 1.  I f  

a t  any s t a g e  t h e  d i s t r i b u t i o n  f u n c t i o n

c n A, + Ec.A.1 1  l i

i s  s o  s p l i t ,  where Zc^A^ c o n t a i n s  o n ly  A 's  f o r  which i  > 1 ,  t h e  new 

i i s t r i b u t i o n  f u n c t i o n  w i l l  have a mean i n c r e a s e d  by

y " 1 £ c . ( 1 - T ) ( 3 - T ) _ 1 .

T i a t  £c_  ̂ i s  bounded below by a p o s i t i v e  c o n s t a n t ,  i . e . ,  t h a t  no t  a l l  

:he p r o b a b i l i t y  u l t i m a t e l y  p a s s e s  i n t o  A^ , can  be s e e n  as  f o l l o w s :

The s p l i t t i n g  p r o c e s s  i n  t h e  c o e f f i c i e n t s  c can be r e g a r d e d  a s  a 

random walk on t h e  p o s i t i v e  i n t e g e r s  i n  d i s c r e t e  t i m e .  There  i s  an a b s o r b i n g
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s t a t e  a t  one and th e  p r o b a b i l i t i e s  p ,  q o f  s t e p s  o f  one t o  t h e  r i g h t  and 

l e f t  a t  any i n t e g e r  a re  ( 2 - T ) ( 3 - T )  * i  2, (3 -T )  1 r e s p e c t i v e l y .  S in c e  0 < T < 1 ,  

t h e  p r o b a b i l i t y  o f  a s t e p  t o  t h e  r i g h t  i s  t h e  g r e a t e r ,  and i t  i s  a s t a n d a r d
O

r e s u l t  t h a t  f o r  such  a random walk b e g in n in g  a t  £ > 1 ,  o n ly  a f r a c t i o n  
£ _  1

( q / p )  o f  t h e  p r o b a b i l i t y  o r i g i n a l l y  a t  £ i s  u l t i m a t e l y  a b s o rb e d  a t  one .

- ( £ - 1 )S in c e  £c^ i s  bounded below by t h e  p o s i t i v e  c o n s t a n t  (2 -T )  , t h e

mean i n t e r - a r r i v a l  i n t e r v a l  i n c r e a s e s  by a t  l e a s t

y_1( 2 - T ) " (£_1)  ( 1 - T ) ( 3 - T ) _1

f o r  each  new d i s t r i b u t i o n  f u n c t i o n  o f  t h e  sequence  t h a t  we c o n s t r u c t .  The 

r e s u l t  f o l l o w s .

A c o r o l l a r y  i s  t h a t  even  w i th  a v e ry  l a r g e  mean i n t e r - a r r i v a l  i n t e r v a l  

i t  i s  p o s s i b l e  t h a t  t h e r e  i s  o n ly  a low p r o b a b i l i t y  t h a t  an a r r i v a l  f i n d s  t h e  

queue empty!

4. Moving averages with the b 's  not a l l  p o sitiv e .

I n  t h i s  s e c t i o n  we c o n s i d e r  t h e  p o s s i b i l i t y  o f  moving a v e ra g e s  i n v o l v 

ing  some n e g a t i v e  b ’s .  We f i n d  t h a t  t h i s  p o s s i b i l i t y  e n t a i l s  r e s t r i c t i o n s  

b o th  on t h e  b ’ s and on U ( • ) .
2

I t  i s  a w e l l  known r e s u l t  t h a t  a g e n e r a l  s t a t i o n a r y  sequence{  v } o f

random v a r i a b l e s  can be decomposed i n t o  a moving a v e ra g e  form
00

v = £ b .u . ,n . -j n - j- j  — — o o  J  J

1. E. J. Hannan: Time series ana lysis3 Methuen monograph3 Methuen
and Co. Ltd. 3 London (1960)3 Ch. 13 p.22.

2. W. F eller3 An introduction to probab ility  theory and 
i t s  applications3 Vol. 13 J. Wiley and Son3 New York 
(1957)3 ch. 14.
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w here th e  a r e  i d e n t i c a l l y  d i s t r i b u t e d .  I t  i s  n o t ,  how ever ,  t r u e  t h a t  t h e  

u n a r e  n e c e s s a r i l y  m u tu a l ly  i n d e p e n d e n t ;  n o r  t h a t  we can t a k e  a o n e - s id e d  

moving a v e ra g e
00

( 4 . 1 ) v = E b . un . -] n - j
J = 0

U n f o r t u n a t e l y ,  t h e r e  i s  no th e o r y  d e a l i n g  s p e c i f i c a l l y  w i th  random v a r i a b l e s  

w hich a r e  c o n s t r a i n e d  t o  be n o n - n e g a t i v e ,  and i t  i s  h a rd  t o  a s s e s s  t h e  g e n e r a l 

i t y  o f  t h e  o n e - s id e d  moving a v e ra g e  f o r  random v a r i a b l e s  o f  t h i s  t y p e .  We can 

g a in  some i d e a  o f  t h e  l i m i t a t i o n s  as  f o l l o w s :

Let us w r i t e  our  moving a v e ra g e  as

( 4 . 2 ) v = E b . u . -  E 3, u , ,n . i  n - i  . k n-kj J J k

where th e  v ' s ,  u ' s ,  b ' s  and ß ' s  a r e  a l l  n o n - n e g a t iv e  and t h e  u ' s  a r e  I . I .

D. We a d o p t  th e  c o n v e n t io n  o f  w r i t i n g  -ß^  f o r  any n e g a t i v e  b ^ . S in c e  v^

i s  non-- n e g a t i v e ,  we m ust have

( 4 . 3 ) E b .  i n f ( u  ) -  Z ß. s u p (u  ) ^ 0.
i  n , k r  n

: k

T h is  r e l a t i o n  i s  t r i v i a l l y  s a t i s f i e d  i f  I  ß̂ . i s  z e ro  o r  u^  i s  i d e n t i c a l l y

z e r o . U n less  one o f  t h e s e  c o n d i t i o n s  i s  f u l f i l l e d ,  we m ust have t h a t  b o th

and

i n f ( u  ) > 0n

sup (u  ) < °°.
c  n

u^ i s  t h u s  c o n s t r a i n e d  t o  l i e  i n  a f i n i t e  c lo s e d  i n t e r v a l  n o t  c o n t a i n i n g  th e  

o r i g i n .

T h e r e f o r e ,  u n l e s s  U( •)  i s  t r i v i a l l y  z e r o ,  e i t h e r  a l l  t h e  c o e f f i c i e n t s

b i n ( 4 . 1 )  m ust be n o n - n e g a t iv e  o r  v c o n s t r a i n e d  t o  l i e  in  a bounded

i n t e r v a l .

We o b se rv e  t h a t  when a l l  t h e  b ' s  o f  ( 4 . 1 )  a r e  n o n - n e g a t i v e ,  v^  and 

v ^ +1 w i l l ,  i n  g e n e r a l ,  have  p o s i t i v e  c o r r e l a t i o n ,  a l th o u g h  th e y  may have z e ro
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correlation.

Consider the equilibrium input to the second stage of a stable series 

queueing system with recurrent first stage There will be a negative or zero 

correlation between successive inter-arrival intervals. Also, the service times 

of the first stage will, in general, take all values between zero and infinity, 

so that this will also be true of inter-arrival intervals of the second stage.

It follows that the inter-arrival intervals for the second stage of a 

series queueing system cannot, in general, be expressed as a moving average 

(4.1). In fact, an ordinary renewal process with zero correlation between 

successive lifetimes would be expected to offer a better approximation.

Although the reasoning in this thesis is formulated with non-negative 

b ’s in mind, the boundedness of U(*) when one or more b ’s are negative will 

ensure the convergence of ip for negative arguments, and our working will 

still be valid in this extended case. Except where explicit comment is made 

to the contrary, as in Chapter Five, it is taken that the moving averages 

dealt with may be of either of the two forms.

5. Second order moving averages with b 
positivej bj negative.

We now make an analysis similar to that of section two for a moving 

average (bQ , b^ ) with b^ negative. In this case there will be a negative 

(or zero) correlation between the lengths of successive inter-arrival intervals.

We deal with distribution functions whose densities can be built up as 

a weighted sum of Dirac delta measures. These distributions are, of course, 

all step functions, but by having many component delta measures close together 

we can construct distributions which are reasonable approximations to a
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continuous distribution function. The advantage of using delta measures is 

that all the points of increase of the distribution functions can be confined 

to a finite domain.

We write for the distribution whose density has its mass concentrat

ed a distance d from the origin.

Theorem 1: Suppose a queueing system with negative exponential services

has an input which is a moving average (b o f  a finite

weighted sum U - U^ with positive weights c^ with sum

unity. If an equilibrium queue length distribution {P .}
C

existsj then

P < 1- T,o
where T is the (unique) root inside the unit circle of 

T = ip (1 - T).

As usual, the condition that the traffic intensity is less than unity:

/ udU(u) >
• c\

-1

suffices for the existence both of T and of { P_.}. 

Since Pq, when it exists, is given by

P = 1 - T F(U),

where

F(U) E v(-ß1)^((l-T)b }/^,{(i-T)b -ß.},1 o o 1
we need only show that

F(U) > 1

to establish the theorem. To do that, we shall use the following lemma. 

Lemma 1: Suppose the quantities a 3 a \ i = 1,2,3, satisfy

ai
(5.1)

a2 
< a*
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(5.2) a1a2/a3 < a| a^/a3 *
Then for any constants o, o' in (Oil) such that 

c + c' = 1

we have

(5.3) a1a2/a3< (ca1 + c’a^)(ca2 + c'a^)/(ca3 + c'a^).
Proof:

9 { [ca1t(l-c)a^][ca2+(l“c)a2]/[ca3+(l-c)a3] }
3c
= {c(a1-a|)(a2~a^)[c(a3-a^) + 2a^]

+a2a3(V  al)+a3al(a2 ' a2)‘aia2(a3*a3)}
* [Ca3 t (l-c)a']2

From (5.1), we see that both

- a|)(a2 - a2) [c(a3 - a^) + 2a^]

and
[ ca3 + (l-c)a^ ] 2

are strictly monotone decreasing functions of c over (0,1). Hence
9 {[ca1+(l-c)a^][ca2+(l-c)a2]/[ca3+(l-c)a^]}
9c

is strictly monotone decreasing for c in (0,1), and

[ca]L + (l-c)a|][ca2 +(l-c)a2]/[ca3 +(l-c)a^]

is concave downwards.

(5.2) establishes the lemma.

Lemma 2: Suppose that as an input to a queue with negative

exponential service3 the moving average (bQ*- 

of a finite sum

°lUl + 1 °dUd

gives rise to an equilibrium queue length

(5.4)
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and that £ < min (d).

If the moving average input corresponding to (5.4) is 

associated with a parameter T, then 

(1 - T)bQ - 3 2 > 0.
Alsothe moving average input associated with z c^ U^
gives rise to an equilibrium queue length distribution.

Proof: The second part is immediate, since the traffic intensity associated
with ECjUj is d d

M -1 (Zcd Ud)-1 ,
which is less than the corresponding intensity

y 1 [c £ + (1-c ) 1
associated with

° t u* + (W  Ecd ud •

The first part is also clear. Denote max(d) by p. Then by
(1.2)

i.e. ,
b £ -o 3X p >0

or

-t-oX) (1-b )p > 0,o ^

(5.5) p/(p-£).
The parameter T of the limiting distribution associated with (5.4) is

given by
(5.6) T = c^exp [-y (1-T)£] + (l-c^)£cd exp[-y(1-T)d], 
so that

exp[-y(1-T)p] < T < exp [-y(l-T)£].
Thus
(5.7) T = exp [-y(l-T) q ]
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for some q for which

£ < q < p. 

It must be the case that 

yq 2 1 ,

for if

yq < 1

we would have

i.e. ,

exp[-y(1-T)q] > exp (1-T)

> [l+d-D]"1

> 1 - (l-T) ,

T = exp [—y(1-T)q] > T.

We observe that, because of (5.7),

exp[-y(£/p)q] < exp[-£/p]

< (l+£/p)_1

< 1 - £/p,

i.e. ,

exp [-y{1-(l-£/p)}q] < l-£/p.

Since exp(•) is concave upwards, and (5.7) is satisfied by T and also when 

T is replaced by unity, we must have

T < l-£/p (<1).

Therefore, by (5.6),

Since

b T < 1. o

b o - ßl =
it follows that

(l-T)b - 3 > 0,o 1
thus establishing the first part of the lemma.
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We now proceed on to the proof of the theorem.

c, U,. As the sum involves d dConsider first a finite weighted sum Z
deD

only a finite number of U ’s, min(d) exists. Choose some Z ^ min(d).

Evaluating ip for the distribution function E c^U^, we have

iK-B-l) Zc^ exp(y 3^d) ,

^[(l-T)b ] = Zc exp[-y(1-T)b d] , o d o
ipC(1-T)b -ßn] = Zc, exp[-y{(l-T)b -ß }d] . o 1 d o 1

y31 is positive, whilst -y(l-T)bQ , -y{(l-T)bQ-ß^} are negative (the 

latter by the first part of lemma 2). Since exp (•) is concave upwards for

real arguments:
r

(5.9)

exp( y31&) > Ecdexp(y3 d),

exp[-y(l-T)b £] o < Zc exp[-y(1-T)b d], d o
exp[-y{(l-T)bo-31)£] < Zc exp[-y{(1-T)b -3 }d] d o 1

Suppose that

(5.10) [Ec^exp(y3-^d)][Ec^exp[-y( 1-T)bQd]/[Ec^expC-y{(1-T)b -3 }d]

F(Z
c £D cd V

> 1
for every set { c^: all deD } containing no zero element. 

Then since

(5.11) exp(y31^)exp[-y(l-T)bo£]/exp[-y{(l-T)bo-3i}il] = 1,

the three exponentials on the right and left hand sides of (5.9) suffice as 

the a j, a^ respectively, of lemma 1.

The result of lemma 1 then extends (5.10) to hold for D augmented by Z . 

The basis for this inductive procedure is supplied by the fact that

(5.11) still holds if Z is replaced by any real number, in particular, by

any one of the deD.
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Our induction establishes that for any finite weighted sum 

(with positive weights)

F(ZcdUd) > 1,

so that

P < 1 - T. o
It is clear from continuity that much as in section two, we can extend

our result to cover an infinite number of components Ud if we relax the

result of the theorem to

P < 1 - T. o
We shall not however, follow up this possibility.

Theorem 2: If associated with the moving average input (b ) of

c U + U^ (i z min(d) )3

we have an equilibrium distribution with parameter I3 

ihen the moving average input (b 3 °f

lad Ud

also gives rise to an equilibrium distribution.

If this has parameter T ' 3 then 

T' < I.

Proof: The first part of the theorem is proved as the second part of lemma

2. That

T' < T

can be shown thus: 

From (5.6)

T > £cd exp [ - y(l-T)d], 

and we know that T' is given by

T' = Zcd exp [-y(l-T') d].

Since this latter equation is also satisfied when T* is replaced by unity, and 

exp (•) is concave upwards, the result follows.



65.
CHAPTER FOUR.

The time dependent behaviour of the queue 
G(p+1)/Er/1.

1. Introduction.

In his study of the single server queue with Erlang service time 

distribution and arbitrary (non-recurrent) input process, Finch (1963) derived 

determinantal expressions for the transient queue length distribution as found 

by the mth arrival and the probability that the first arrival begins a busy 

period of length m.

If, as before, { A^}, m > 0, is the sequence of arrival instants and

0 .= A - A ., 0 < j < m , m,] m+1 m-] * J *
Finch’s expression for the transient queue length distribution from initial 

emptiness when services are negative exponential with parameter unity is

prob (queue length > j+1 at A^+^),

Qm+1 = (-) D
m-D

1 CD 3 t_i
. e 2 .

^  5 j 5 • • • * S
(-0 .)m  ] -0 . m  , ] ,e m  , j

1! 2! ( m - j )!

1
-6 •m,] + l , . . (-0 -em  jj + 2 ,e m,

-L > 1! ( m - j - 1 )  !

0 1 ( -8 -6 . , m  ,] + 2 ,e m ,
( m - j - 2 ) !

0 0
-0 . , -0 m , ] - l  ^ m , m - l

1!
-0

0 0 m «m
• , 1 , e

,0 < j < m,

A similar expression can readily be derived by Finch's method for a 

queue where the negative exponential services are replaced by Erlang services.



The unconditional queue length distribution at arrival instants is 

given by the integration of Q™+1 under the joint distribution function of 

inter-arrival intervals, although this is not in general a simple procedure. 

Brockwell (1963) has carried out such an evaluation for GI/M/1, using an 

elegant inductive procedure depending on the independence of successive inter

arrival intervals. The expression he obtains for the unconditional value of 
m+1

66.

is

m+1
(j+1) Z 1 , n x (£a.)! n- Ea. (- ) i i • • n-j-1•. 1 77 Zi«. =n-j-1 Za. ---- r r  p p, l**p .■ ,n=]+l n i l Tr(â !) o T1 n-]-l 9

where £„. . , is a summation over all j-tuples (on,..,a.) of non-£iou=n-j-l j l5 j

negative integers such that Zion = j , and

♦v = /
k

•k = J0 ~ e "  dU(x) *

U(x) being the common inter-arrival interval distribution function.

For moving average inputs of order exceeding unity, it seems more 

convenient to adopt the approach of Chapter Two. In the next chapter we 

provide an alternative avenue for considering G(2)/M/l, which occurs here 

as a special case.

The Erlang distributions of orders exceeding one lack the memory-less 

property of the simple negative exponential distribution. We recover this 

property by imbedding G(p+1)/E /I in a more complex system. Imagine the 

rth order Erlang services to be replaced by negative exponential services 

and the arriving units by batches each of r individuals. Since the rth 

order Erlang distribution is the rth iterated convolution of a negative 

exponential distribution, the Erlang servicing of a unit can be thought of as 

possessing r negative exponential phases. The successive phases in the 

servicing of a unit then correspond to the negative exponential servicings of

of successive individuals in a batch. The queue length in the original
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System becomes the total number of batches (whether or not complete) present. 

The busy period distribution and virtual waiting time distribution will be 

the same in the two systems.

GI/E./l or the more general GI/M/1 with batch arrivals has been con-K

sidered by Takäcs (1961) (transient behaviour), Pollaczek (1957), Wishart 

(1956) and Foster (1961)(limiting queue size and waiting time distribution), 

and Conolly (1960) (the busy period).

Suppose that arrivals are in batches of size r and that the services 

are negative exponential.

For complete generality we assume that services begin at A q with a

queue length of i. We take the sequence t/n+P to have a realization

u n+P ^  * and denote by P..(u^n+P ^  the probability that the arrival at A finds 
j customers in the system. n

With the minor modification of the i the notation is as in the earlier

discussion of G(p+1)/M/1, and to obviate tedious repetition, we presume

the corresponding preliminaries.

We shall make use of the following generalised form of Abel’s theorem 

on the continuity of power series \

Theorem

If the sequence {â } has a finite limit a then

lim (1-w) l 
n-*» l=o

exists and has the value a.

2. The basic equations and the form of the solution.

The basic recurrence relations are

E P. (u^n+P (u ,u , . . ,u ), n > 0, j = 0,i£ £+r n 9 n + 1 9 5 n+p 9 9 J 9

(2.1) P..(u(n+p)) i] Z P. „(u(n+p-1)
l£ = o i£ )k „ . (u ,u , ,.. ,u£+r~ 3 n n+1 n+p ), n > 0 ,1<j<r-l,

Z P. . 0(u(n+P "*“̂ )k (u ,u ,. . ,u ), n > 0, j > r.£_o l,]-r+£ £ n ’ n + 1 5 9 n+p 9 9 J ~

1. E.W.HOBSON: The theory of functions of a real variable3 Comb.Univ.Press 
(1926) Vo 1.IIj ch.3.
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The reasoning is much as in section three of chapter Two. If the batch

arriving at A^+p finds j > r individuals in the system, the batch arriving 

at must have found at least j - r customers already present. If there

were j - r+s (s > o) customers present, there would need to be s departures 

in ( A^, A^+p) for the queue length at A^+p-0 to be j. A similar argument 

holds for j < r.

We form a generating function on j and integrate with respect to the 

u ’s, with the exception of un ,**,Un+ps °n we fa^e Laplace transforms
(2.2) P’>(s(p);z;n+1) = (l-z_1,)cJB(s(p) ;n+l)'ii

+ zrP*[(l-z 1)yb +s ,..,(l-z 1)yb +s ,(l-z 1)yb ;z;n]l 1 p-1 p-1 1 p

x b[(l-z 1)b +s /y], z z R, Re.s. > 0, n > 0,o p  l "
where R is as before the domain consisting of the intersection of the 

interior and perimeter of the unit circle with the exterior and perimeter of 

the circle with centre ( ̂ , 0) and radius with the origin deleted.

The dependence on n in this last relation is handled by taking 

generating functions on n, and we shall also take generating functions on 

i, i.e., we allow for a general probability distribution in the initial 

queue length.

We define

tt(s ^ ^  ;z;w,y) = E E Pv(s^^ ;z;n)wny^ , 
i=o n=o

and similarly

c ̂ s (p) ;w;y) E E cv^Cs F ;n)w y"
i=o n=l

£ > 0

for Re. sp > 0, z e  R, 1, y|
In terms of these functions, (2.2) becomes

- A )(d ) - l r  00 (d )7T(svp ;z,w,y) = (1-zy) ip(s /y) + E c (svp ;w;y)(l-z
+ wzrijj[(l-z 1)bQ+s^/y] 7T[(1-z )yb1+s^°1 ,. . ,(l-z ^y b  ;z,w,y],

z e R, Re.s. > 0, | y | < 1, < 1 .
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The expression

(1-zy) 1 $ \p(s /y)
£ = 1

arises from the queue length at A - 0.

We employ the same recursive substitution procedure as was used for 

G(p+1)/M/1. This provides the equation
p

(2.3) ttCs ^  ;z,w,y) = (1-zy) 1 II \p(s /y) + 1 c (s<'P \w,y)(l-z Ä)
l-l £=o

+ wz b[(l-z )b +s /y] x o p
p-1

(1-zy) %[(l-z X)b ] II ^[(1-z 1)b +s /y]P £ = 1 36 P X,
co — 1 — 1 — 0

+ E c {(1-z )yb +s ,..,(l-z )yb ;w,y} (1-z )
4 = 0 £ 1 P-1 P

+ wzr^[(l-z ^ K b  +b. ) + s ,/y] x o 1 p-l

x [(1-zy) 1 n i|>[(l-z 1)(b +..+b )]
£=1 P

oo — 1 — 1 — Q+ E c {(1-z )y(b +..+b ),..,(l-z )yb ;w,y}(l-z )] x
£=o 1 P P

[l-wz^U-z 1)]'1]]..]
= D(s^phz>w,y), say,

z e R, Re. s^ > 0, Iy| < 1, |w| <1.

In Chapter Two we were able to use the relation

? C.(u(n+p)) = P (u(n+p))1 o1 = 0

to supply the boundedness condition

I |c*(s^P^;n) I <1, n > l,Re.s^ > 0,
i=o

which played an important role in our argument. Here we make use of the analogous 
relation , ,

E |cj (s*P ;n)I <1, n > 1, Re.s^ £ 0,
£=o

which gives

(2.4) E I c(s('P') ;w,y) I < |w|(l-|w|) 1 (l-|y|) 1,
£=o

Re. s^ £ 0, |y| £ 1, |w < 1.



70.
By its construction, tt(s P̂  ̂;z ,w,y) is an analytic function of z

for IzI < 1, Re. s^ > 0 , | y | < 1,
TT(ŝ P\z,w,y) = D(s^ ;z,w,y),

i I <1, so that 

< 1, Re.si * 0, 1yI £ 1jIwI < 1,

by analytic continuation.
(2.4) enables a further analytic continuation of it defined by 

tt(s ^  ;z ,w,y) = D ( s ^  ;z,w,y)

for z j > 1  (Re.s^>0, < 1, J yI < 1). From (2.3) the only
-1singularities of tt so extended will be at z = y and at the zeros of 

}? “” 11 - wz i)j(1-z ) outside the unit circle.

Takacs (1961) shows that under the restriction
oo

(2.5) y / udU( u) > r ,
o

the equation

(2.6) zF - wip(l-z), j w I < 1,

has exactly r roots z = y^(w) 1 < i < r, inside the unit circle.

(2.5) is, of course, simply the intuitive condition for a limiting 

distribution to exist. Provided this is satisfied, the singularities of 

it are just y \  Cy^(w)] 1 (1 < i < r).

Also, by (2.3), (2.4),

(1-zy) II ( z-[y . (w) ] 1)tt(s ^P  ̂;z ,w,y) = 0(|zrp+1|) 
i=l 1

for Re. s^ > 0, j w| <1, |y| <1,
(1-zy) II ( z-[y^(w) ] 1) tt(s P̂  ̂;z ,w,y)

so that

-1

i=l
is a polynomial in z of degree not greater than rp +1. 

tt can thus be expressed as
(2.7) 'tt ( s ^  ;z,w,y) = E A (s ̂P ̂ ;w ,y) z^+ Z B .(s^P^;w,y)[1-zy.(w)]

l=o i=l 1 1

+ BQ(s^P^;w,y) [1 - zy] 1,

provided that no two of the y^(w) are coincident and that y is not per

mitted to take on any of the values y^(w). This proviso is presumed
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throughout the next section.

L. Takacs states in Takacs (1961) and elsewhere that the y^(w) must 

be distinct if (2.5) is satisfied. However, no proof seems to be given of 

this result. When dealing with queueing problems in which (2.6) occurs, some 

writers assume the roots y^(w) are distinct, others (e.g. Wishart (1956)) 

give alternative procedures to deal with coincidences. The possibility of 

coincidences would seem to still be an open question.

3. Determination of the functions B^

BQ( s ^ \ w , y )  can be found simply by multiplying throughout in (2.7)

and (2.3) (with the extended domain of validity) by 1- zy and considering

the limits as z -* y \  A simple comparison shows that 
(d ) p(3.1) B (s^p ;w,y) = II \jj(s /y) o „ n p1=1

+ (wy r )i[»[(1-y)b +s /y]ip[(l-y)b ] II ^[(l-y)b +s /y]
p-1

o p £=1 £ p-£

+ (wy r )2^[(l-y)b +s /y]^[(l-y)(b +b )+s /y] xo p  o 1 p-1
4>[(l-y)b ]4j[(l-y)(b +b )]PIt C3_-y)C + b  )+s /y]p-1 p ‘ £=2 £-1 £ p-£

+ (wy r )%[( l-y)b +s /y] . . (1-y) (b +..+b )+s /y] xo p  o p-1 1
P _r -i

( IT ip C (1-y) (b + . . +b ) ] ) [1-wy i^(l-y)] ,
36 P

Re. s^ > 0, IwI < 1, Iy| <1.

Under our proviso y / y^(w), for 1 < i < p , no singularities of B^ can

arise from the vanishing of 1 - w y  ip( 1—y ).

The resolution of the other functions A^, B^ to reveal the nature of

the dependence on s w, and y is more complicated. We make use of

(2.7) and the s ^ ^  transforms of the original equations (2.1), in which we

omit successively to take generating functions on z and n. The detail is 
heavy and we attempt only an outline.
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To treat the s dependence, we define the functions (s^P^;w,y)

by
tt ( s ^  ;z ,w,y) = Z tt£(s ^P  ̂;w ,y) z^ , 

£=o
In terms of the tt£'s (2.1) can be written

(3.2) tt .(s^P^;w,y) = y^ II i|j(s /y)
] l - l  P

z < 1.

00 i i+ Z (-y) 3 [a.,. (ob,+s n,..,ob )bC(cb +s )/y] ]_ ,i=Q---- ---T D + 1-r 1 p-1 P o p  a=y
i! 3a'

j > r , Re. s > 0, | w | , | y | <1.
Substitution for the a/s from (2.7) then gives, for j > rp,

(3.3) Z B (s<‘P\w,y)[y (w)]^ + B (s^P^;w,y) ŷ
1=1 °

= y3 + J 1[Y|l(w)]]“rBJl[M(l-Y)l(s))b1+sp_1>..u(l-YJl(w))bp;w)y]

X i(;[(1-y 0(w ) )b + s /y ]X, O p

+ B [y(l-y)b +s , .. ,y(1-y)b iWjyüy3 ^[(l-y0(w))b +s /y].O -L P “ J_ P X, o p

'SL

p-1' ' '■ ' " ' p' T “ ' 1 * £--- o p'
This equation is true for all j > rp, so that provided the y ^  (w) and y
are distinct we have the relations
(3.4) B^(s^p);w,y) = B£[ (l-y£(w))b+s ,.. ,y(l-y£(w))b • w,y]1 p-1 P’

Cy / w )] ip[(l-Y«(w))b +s /y], i = 1,2,..,r,
(3.5) B (s^P^;w,y) o J

o p

Z iKs./y) 
i = l

+ BQ[y(l-y)b1+s 1#. . ,y(l-y)b ;w,y]y i|;[( 1~y £(w ) )bQ+s^/y] .
It follows by a recursive sequence of substitutions that

(3.6) B£(s <'P') ;w,y) = Ey ^(w )] rpip[( 1~y £(w ) )bQ+s^/y ]iJj[ (l-y£(w)) (b^b-^+s ^/y] x

^[(1-Y„(w))(b +..+b )+s./y]B [y(l-Y0(w))(b +..+b ),.. ,y(l-y0(w))b ;JC o  p — 1  _L Je je, ± r> 3C n1 P' 
w,y],

1 < a  < r.
The functions B£(s^P^;w,y) are thus determined in terms of known functions 

and the B [y(1-y (w )(b +..+b ,..,y(1~y 0(w))b ;w,y], which are functions of only
Xs As L) Xj U
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two v a r i a b l e s .  We w r i t e

B^(w,y)  E B£[ y ( l - y ^ ( w ) ) ( b 1+ . . + b  ) , . . , y ( l - y £( w) )b  ;w,y]  , 1 < l  < r .

U t i l i z i n g  ( 3 . 4 ) ,  ( 3 . 5 ) ,  we f i n d  f o r  j  < r p  t h a t  c o r r e s p o n d i n g  t o

( 3 . 3 )

( 3 . 7 )

[A , . (ab +s , .  . , ab ;w,y) i f / [ (ab +s ) / y ] ]  = 0,r ( p - l )  1 p - 1  p J o p  o=y

[A , v ( ab  +s , , . . , ab ; w ; y ) ^ [ ( a b  +s ) / y ]  r ( p - l ) - l  1 p - 1  p J ° P

+ ( - y ) 3 {A i d o b  +s , , .  • , ab  ;w,y) i j / [ (ab t s  ) / y ] }] =0,—  r ( p - l )  1 p-1* p o p  a=y

CA / -i \ ( \ ( ab +s n , . . , a b  ;w,y) i | ; [ (ab t s  ) / y ]r ( p - l ) - ( r - l )  1 p - 1  p o p

+ ( - » i ) | _ ( A r( . . . , o b  ;w.y)4.[(obo+s ) / y ] }
oO

( > r - l  . r - 1  + ( - y )  9\  — —------------------(A , . d o b  t s  , . . , a b  ; w,y) ip[ (ab  +s ) / y ] } ]  = 0 ,
\  ( r - D !  r -1  r ( P -1) 1 P -1 P °  P 0=y

( 3 - 8 )  Ar ( p - l ) ( s < P ) ’W,y)

[A , . ( a b n+s , .  . , ab ;w,y) i / ; [ (ob +s ) / y ]r ( p - l ) - r  1 p - 1  p -7 ° P

+ . . +  ( - y ) r  3r

r !  9a r
{Ar(p-l)(abi+Sp-l’" ,0bp;W,y)'l'l:(ab°+Sp)/u]):la=y,

Ar ( s ( p ) ;w,y)

= [A (ab +s , .  . , ab ;w,y)i|jjj(ab +s ) / y ]  o 1 p-1 p r o p

( - v, ) r ( P - 1) ar ( p ~1 )

( r ( p - l ) )! 3(jr ( p - l ) { V ( p - i ) (aV s p - i ’ " ’obP ;w,y) x

ip[( ab +s ) / y ]  } ,o p  a=y

A ( s ^ ; w , y )  = [ ( - y )  —  (A ( ab  +s , .  . , ab ;w,y) ip[ (ob +s ) / y ] }  r - 1  ^  o 1 p - 1  p J ° P

+ . . +  ( - y ) r ( p _ 1 )  + 1 gr>( p _ 1 ) + 1
( r ( p - l )  + l )  ! i9ör ( p - l ) + l ^ Ar ( p - l ) (‘at)l +Sp - l 5 ' * ,at>p*w*̂ ^

* [ (o bo+s p ) / p ] } ] a=ii
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, r
-  [ J Z B. ( ob  +s , . . , a b  ; w , y ) [ y . ( w ) ]1 . , 1 1 p - 1  D 1

-1

li=l
-1-+Bo ( a b 1+s . . . , a b p ; w , y ) y  } b [ ( a b Q+ s p ) / y ] ] Q = p ,

A 0 ( s (' P ') ; w , y ) = [ ( - y ) 2 3 2 {A ( a b n+s l 9 . . , a b  ; w #y ) i p [ ( a b  +s ) / y ] }r - 2  — —— — -  o 1 p - 1 ’ P o p
3o

+ . . +  ( - y ) r("P 1 ') + 2 3r (“P 1 ') + 2 {A t nN( a b n+s , , .  . , a b  ; w , y )  x
(7 (F-~ )T 2 T r  3o-rT F i H 2 r ( P - x) 1 P - 1 P

Ip [ ( a b  +s ) / y ] } ]
o p  a=y

-2-  [ E B-j^obj+s _l S . . , a b  ; w , y ) [ y i (w)]  ( abQ+s ) / y ]
i = l

- 1+ ( -  y )_3  Bi ( o b 1+s _1 , . . #ab ; way ) [ y A w ) J  iJ;[(abo+s ) /  y] }
3a

-2+ B ( a b . + s  , . . j ö b  ; w, y ) y  ip[ ( db +s ) / y ]  o 1 p - 1  p T o p

r  - 1+ ( - y )  3__  { E b ( ab +s , .  . , ab ; w, y ) y  ^ [ ( a b  +s ) / y ] } ]  _ ,
3a i  = l

o 1 p - 1 o P a = y

p —1 r - 1
A1( s ( p ) ;w,y) = ( A ^ a b ^ s  , .  . ,abp ; w , y ) H ( ° b 0+Sp ) / y )  >

3 a

^ P - 1 {A( r p - 1 ) !  a r p - 1  r ( p - l )  1 p - 1
( ab_+s  , .  . , ab  ;w,y) ip[ (ab  +s ) / y ] } ]

-(r-1)
-  [ E B . ( a b  +s , . . , a b  ; w , y ) [ y . ( w ) ]  i|>[(ab +s ) / y ]i  p p - 1  p J l

i = l

p ' "  o p a=y

(ab
o P

+ . . +  ( - y ) r - 2  3r  E B . ( a b  +s , . . , a b  ; w , y ) [ y . ( w ) ]  1 xl  1 p - 1  p i
( r - 2 ) !  3a r - 2  i = l

ip [ ( a b  +s ) / y ]  }o p
_p

+ B ( a b . + s  . , . . , ab ;w9y ) y  ip[(ab +s ) / y ]  
o 1 p - 1  p ° P

+ ( - y ) r  2 3P 2 {B ( ab  +s , . .  , ab ; w, y ) y  % [ ( a b  +s ) / y ] } ]
~r---2—  — ^ 2  ° 1 P- 1 P ° P °=M3a

We o b s e r v e  t h a t  a l l  o f  t h e  above e q u a t i o n s  o c c u r  o n l y  f o r  p > 2. 

p = 1 we have r ( p - l )  = 0 and t h e r e  i s  on l y  one A, namely A . The

e q u a t i o n s  h e r e  become

For
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(3.9)

[A (ab ;w,y)ip[(ab +s)/y]] = 0,o 1 o a=y
(-y) 9_ [A (ab, ;w,y)ip[(yb +s)/y]]

9a ° ° 0 y
r _i _i= [ E B.(cb ;w,y)[y.(w)] + B (ab, ;w,y)y ]
i = l

(-y)r 1 3r 1 [A (ab, ;w,y)ij;(ab +s/y)]— -----  ---- o 1 J o a=y(r-1)! r-1

= [ E B i(ab1;w,y)[yi(w)] ^  ip[ (abQ+s)/y]
i=l

1?“  2 }?“  2
+ 3---0( £ B.(ab ;w,y)[y.(w)] %[(ab +s)/y]}r-2 . , l 1 J l o(r-2)! i=l

l
+ — ( y t------7T {B (ab ;w,y)y ip[ (ab +s)/y]}](r-2)! . r-2 o 1 J J o a=y

The procedure for solving the equations is similar to that for the 

functions B^ in our treatment of G(p+1)/M/1. (3.8) can be treated re

cursively to provide an expression for A ^  p^(s^^;w,y) in terms of A ’s 

with lower subscripts, known functions, and functions of w and y. Making use 

of the expression so obtained, we can treat A ^  ^_^(s^^;w,y) similarly, 

and ultimately obtain each A.(s^^;w,y), r(p-l) > i > 1, in terms of known

met
,(p)

functions, functions of A , and functions of w and y. The resolution witho v
respect to s is completed by using conservation of probability. Since

the system must be in some state at A^-0,

tt ( s ^  ;l,w,y) = (1-w) 1(l-y) 1 n iKs./y),
1=1

or, by (2.7),

(3.10) ? A0(s^P \w,y) + E B. ( s ^  ;w ,y) [l-y^(w) ] 1+B^( ŝ  P ') ;w ,y) (1-y) 1
l = o i=l

= (1-w) 1(l-y) 1
1=1

ipCŝ /u) ■

This relation enables us to make the s dependence carried in known 
(p)functions of the s The subsequent resolution with respect to w and y

will require the identities (3.7) in the s(p) and additional equations
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derived from (2.1) by taking s transforms. There do not seem to be any 

simple forms of solution.

The determination of the unconditional values of the

P..(u(n+P)) can then be effected from
13

00 00 00 / , \

it (0,0,. . ,0 ;z ,w ,y) = E E E  } y1z]w11, |z| < 1, |y| < 1,
i=o j=o n=l ^

|wI<1.

For p = 1 there is only one A and the complete solution can be 

determined without further recourse to (2.1).

We have already from (3.1), (3.5)

Bq (s ;w ,y )

= ip( s/y)+wy ri[i[( 1-y )bQ+s/y]iJ;[ (1-y )b^+s/y] [1-wy ^(l-y)] 1

B£(s;w,y)

= Cy £(w )] rip[(l-Y£(w) )bQ+s/y] B£[y(l-y^(w) )b1 ;w,y], 1 < l < r.

(3.10) becomes
r -1 -1A^(s;w,y) + 1 B .(s;w,y)[1-y •(w)] + B (s;w,y)(l-y )
i=l

= (1-w) 1 (1-y) 1 iKs/y) •

This last relation provides an expression for A Q(s;w,y) in terms of the known 

functions and the r unknowns B^[y(1-y ^(w ))b ;w,y], 1 < £< r. These unknowns 

are readily obtained from the r equations (3.9).

4. The limiting queue length distribution.

It can be shown by the methods of Finch (1963) that for a prescribed 

initial queue length the intuitive condition (2.5) for ergodic behaviour 

suffices for a limiting queue length distribution as found by arriving batches 

to exist. The intuitive result that the limiting distribution is independent 

of the initial queue length will be shown to follow from our equations.

By the extended form of Abel’s theorem on the continuity of power 

series, the joint generating function of the initial queue length and the
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limiting queue length distribution is given by

lim (l-w)ff(O,0,..,0;z,w,y). 
w+1

From (3.1) we see that

lim (1-w) B (0,..,0;w,y) = 0 o Jw+1

so that provided the limits 
r(p-l)

(4.1) lim (1-w) l A^(0,0,..,0;w,y) , lim (1-w) B^(0,..,0;w ,y) , 1 < l < r, 
w-*l H=o w-KL

exist, we have from (2.7) that for any given initial queue length, the equi

librium distribution of queue length will be a sum of r delayed geometric 

distributions with parameters y^(l) 1 < I < r. By (2.6), these parameters 

y^(l) are the zeros inside the unit circle of

Tr = iKl-T) •

This result can, however, be established without any problem about

the existence of limits. One need consider only equilibrium behaviour as in

Chapter Two without concern over transients.

That the limiting behaviour is independent of the initial queue size

distribution is easily established. For convenience we shall work from the

general equations presuming the limits (4.1) exist, although a precisely

similar argument holds good without such a presumption if we deal with the

corresponding equilibrium equations. We have seen that

lim (1-w) B (s^^; w,y) (1-zy) ^ = 0. ow+1

Referring to (2.7), we thus wish to show that

lim (1-w) { ? A ( s ^  ;w,y)z + l B ( s ^ ;  w,y)[l-zy (w)] 1}
w+1 £=o £=1

is independent of the initial queue size. Consider the equations from which 

this expression is to be determined. We observe that in (3.6), and in (3.7), 

(3.8), et seq., y occurs only implicitly and in functions A, B to be 

determined, and there not in combination with the other independent variables.
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For the determination of the limiting distribution, the form of (3.10) 

we would use is
r(p-l)

lim (l-w){ Z 
w-*l £=o

10

A (s(p);w,y) + Z B (s(P^;w ,y)[1-y (w )] 1) 
36 1 = 1 36 36 

-1 P= (1-y) n iKs /y) .
1=1

Whilst y does occur explicitly on the right hand side, the coefficient of

each power of y in the power series e:
P 00 • P

(1-y) n y(s /y) = Z yJ n•—1 II o? X/ j=o £=.

is the same.

For p>l, we shall need further :

can be written ( c (3.2) )

„ t (p) X “it. (s r ;w,y) - Z ( - o W r 'j 3*.+r-j
£=o (£+r-j )! 3ot+r-i

j p = yJ n T(s /y),
1=1 P

it (s(p) ;w,y) - y 
J 1=0

(-M)8, [ ITj + £-r£! 3a£
j p

= y3 n ^(s /y)
£=1 P

r V öbi+sp-i," ’abP)*C(aV sP)/p]]o=p’

p o p  a=y ,

j  ̂r.

On multiplying these equations by 1-w and letting w-*l one finds that the 

right hand side forms vanish, so that as before y occurs only implicitly in 

the unknown functions t t_. , and there uncombined with the other independent 

variables.

Since the known functions in our equations are independent of the 

initial queue size, it follows that the solutions for the unknown functions 

characterizing the equilibrium distribution must also display this independ

ence. This gives our result.

When p = 1 the equations for the equilibrium queue length distribution 

take on a simple form. Because of the similarity between the arguments in
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this chapter and those of Chapter Two, we can write down the equilibrium 

distribution equations directly from the corresponding time dependent 

equations by omitting B , w, y and making appropriate corresponding 

adjustments.

In the notation of Chapter Two, the Laplace-Stieltjes transform of the

generating function of the limiting distribution {P.} is
r 1

P*(s;z) = A (s) + Z B.(s) (1-T.z)"1 , o . , 9 9

and the limiting distribution

(4.2)

where

6. A + Z B.T.i 
° j=i 3 9 i > o ,

A = A (0), o o
B. = B . (0), 1 < j £ r9 9

The equations determining Aq(s ), B_.(s ), 1 < j < r, become

p.(s) = TTr B . [y(l-T. )b ] ip [ (1— T. )b +s/y] j 9 9 9 1 9 0
= g_.i|j[(l-T,)bo+s/y] , 1 < j < r,

iKs/y) = A (s) + Z B . (s) (1-T.) 1 
° 9=1 3 3

A (yb ) o 1 0 ,

[ Z B . (ab, )T . (-y) 8 A (ab,)]
9=1 1 j o 1 a=y

= 0
r ’ -2 r  -1 2 C.Z-, B.. (ab )T. + (-y) Z 8 B.(ab,)T. - (-y) A (ab,)]9=1 9 1 9 j=1 ~5ct 9 1 9 — -- o 1 0=4

= 0 .
21

[ Z B . (ab )T. (r 1}+..+(-y)r 2 
j=l 3 3 (r-2)!

r
Z 8
3=1 a

r-2
r-2

- (-y)r-1 „r-1
(r-1)! -- - A (ob )]r-1 o 1 a=y

B . (ab )T. 9 1 9

= 0.

-1

(4.2) thus becomes
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Pi =

1- E T.(l-T.)g. ip (b (1-T.)) ,j _1 3 3 3 o j

L'

E T.1 g. <Kb (1-T.)) ,
j=l D  ̂ ° ]

i " o,

i > 1,

where the g^ are easily found explicitly from

r
E
3=1 gj (1 --T.) 1 ih[b (1-T. 

3 o 3
) +b1] = ^(b^) ,

r
E

3=1 gj(T."3
' V b  (1-T . )+b ] o 3 1 + (-b )(1 -T.)_1^(1} 1 3

= -b1  ̂ (bx

r
E g •{ r ._2ipUb (1-T . )+b ] + (-b, )T."%(1)[b (1-'
3=1 3 ) o 3 1 1 3 o

o j r

2!
ip(2)[b (1-T . )+b ] } o : 1

- (-b )2 ip(2) (b ) ,
2!

E g.{ T. (r 1}ip[b (1-T. )+b ] +..+(-b1)r 1 . , 3 3  o 3 L ___1_
D (r-1)!

(1-T.)
3
-1 (r-1) [b (1-TO+b.]} o 3 i

= ( -vr-1 (r-1) . st (b-L)
(r-1)!

5. Erlang services with batch arrivals.

We now revert to our original problem involving unit arrivals to a 

queueing system with an Erlang service time distribution of order r. From 

our correspondence between the queue G(p+1)/E^/1 with unit arrivals and the 

queue G(p+1)/M/1 with batch arrivals of size r we see that queue lengths of 

o, p r + q ( p > o ,  l < q < r ) i n  the batch arrival system correspond to queue 

lengths of o, p H  in the unit arrivals system.

Accordingly, (2.7) and the results of section four reveal that the
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equilibrium queue length distribution for the queueing system G(p+1)/E /I 

(p > 1) with unit arrivals iss apart from Pq ,..,P  ̂,the sum of r

geometric distributions with parameters T_. satisfying

Tr = ip(l-T)

In the simplest case p = o, i.e.,a general recurrent input, the 

equilibrium distribution is the sum of r geometric distributions. This 

result has been derived by several workers, e.g. Foster (1961), Takacs (1961).

The device of studying G(p+1)/E /I via the more complex system 

G(p+1)/M/1 with batch arrivals can be extended to consider G(p+1)E /I with 

batch arrivals of size k, say. We now work in terms of G(p+1)/M/1 with batch 

arrivals of size rk. A negative exponential servicing of r arrivals, 

one at a time, then corresponds to an Erlang servicing of one of a batch of 

k customers. The limiting distribution of G(p+1)/E /I with batch 

arrivals of size k will be a sum of r geometric distributions from 

Pk(p + onwards (p > 1) , the common ratios being T where

Trk = i|> (1-T).

For p = o, the limiting distribution is a sum of r geometric 

distributions. This result does not appear to have previously been stated 

explicitly.

6. The variety of limiting distributions occurring 
in G(p+L)/E /I systems.

We are now able to extend our work of Chapter Three to include 

G(p+1)/E /I systems. We shall not consider the limiting distributions which 

can arise in such systems in detail. Instead, we follow up a question 

suggested by the form of the limiting distributions we have obtained.

The question is whether or not any discrete distribution can be
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expressed as the sum of a number (possibly infinite) of delayed geometric 

distributions.

If the delay is finite, i.e. ,we restrict ourselves to finite moving 

average inputs, it turns out that the answer is no. It suffices to show that 

there are distributions which cannot be built up from purely geometric con- 

ponents, for a delayed geometric distribution is a fortiori geometric from 

some fixed point onward. We wish to know whether there are proper (non

negative) integral valued random variables {P_.} not permitting of an 

expansion.
1 i(6.1) Pj = / (l-p)pJ dF(p),

where F(p) is a distribution function on (0,1).

This problem is treated by Widder, (1946). There are, in fact, quite 

stringent restrictions imposed on {P_.} if (6.1) is to be satisfied. Widder 

gives the necessary and sufficient condition that each mth difference has 

sign (-)m .

A discussion of the solution for F(p) when the expansion is possible 

is given by Daniels (1961).

A  »t, »t, *t4
44 44 44 44 44 44 44 44 44 44 44 44
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CHAPTER FIVE

The Time Dependent Behaviour of G(2)/M/l.

1. Introduction

In the previous chapter we saw how the time dependent behaviour of

G(p+1)/E /I at arrival instants could be determined. By the use of a further r
supplementary variable we could investigate the complete time dependent 

behaviour of this system; the treatment would, however, be cumbersome, and 

we shall not proceed in this direction.

Instead, we shall adopt a new approach which, although it is applicable 

only for second (and first) order moving average inputs, enables us to give 

with great facility a much more detailed account of the transient behaviour 
of the systems we are studying.

The method is an extension of the standard imbedded Markov chain 

technique that has proved fruitful for E /G/l and Gl/E /I systems. In dis

tinction to those of the usual E /G/l and Gl/E^/1, however ,the regenerative 

points we use do not coincide with natural discontinuity points of the system 

such as arrival or departure instants. They arise as follows:

Consider first the case where bQ , b^, are both non-negative, and 

b0 + b1 = 1.
since the interval (A , A , ) between the arrivals at A , A . has lengthm m+1 m m+1

A - A  = b U , +b\ U , , m > 0, m+1 m o m+1 1 m+1
the point occurring b U after A^ can be intuitively regarded as the

in s tant at which the effect of U ceases and that of U , commences. Wem m+1
1Hustrate this in figure one.

We note that there is a one-one correspondence between arrival instants 
(A and inter-regenerative point irtervals (R^, .Pm+^), \i+l segmen1:ing
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(R , R^+ _̂ ) i n_to p o r t i o n s  o f  l e n g t h s  ^m+p* The p o i n t s  A^, o c c u r

a l t e r n a t e l y  i n  t im e  i n  an i n t e r l a c i n g  f a s h i o n .

where

Suppose  now

b and 3, o 1

b^ i s  p o s i t i v e  and b^

A -A = b U - S, m+1 m o m+1 1

a r e  p o s i t i v e  and

n e g a t i v e ,  so  t h a t

U , m > 0,  m

b -  ß. = 1 .  o 1

As i s  shown i n  f i g u r e  two ,  t h e  c h a in  (R^ } i s  now more complex ,  a s  t h e r e  i s

some o v e r l a p p i n g  o f  t h e  e f f e c t s  o f  U ,, U _ i n  t h e  i n t e r v a l  (R , A , ) .

The a n a l y s i s  we c a r r y  o u t  i n  t h i s  c h a p t e r  f o r  t h e  s i m p l e r  c a s e

c o u l d  be p e r f o r m e d  w i th  a d d i t i o n a l  a l g e b r a i c  c o m p l e x i t y  f o r  b^ p o s i t i v e ,

b^ n e g a t i v e ,  b u t ,  i n  view o f  t h e  r e s t r i c t e d  n a t u r e  o f  moving a v e r a g e s  w i t h

t h e  l a t t e r  p r o p e r t y , we s h a l l  c o n c e r n  o u r s e l v e s  on ly  w i t h  t h e  more g e n e r a l

p r o b l e m .

A number o f  o u r  r e s u l t s  have been  d e r i v e d  by Takacs  (1960)  i n  t h e

s p e c i a l  c a s e  o f  a moving a v e ra g e  o f  o r d e r  one .

We d e f i n e

j +1 00
( 1 . 1 )  P . = E /  e xp [ -pu ] (v ib  u ) ] + 1 ( j+ l- JL )i  ] 1 dU(u)  , j  > - 1 ,

] l = o  o o
as  a b a s i c  s e t  o f  q u a n t i t i e s  i n  t e rm s  o f  which  t o  e x p r e s s  u n c o n d i t i o n a l  queue 

l e n g t h  t r a n s i t i o n  p r o b a b i l i t i e s  f o r  t h e  i n t e r v a l s  be tw een  s u c c e s s i v e  r e g e n e r 

a t i v e  p o i n t s .

C o n s i d e r  a t y p i c a l  such i n t e r v a l  (R^ ,  R ) .  I f  t h e  queue l e n g t h  i s

r  > 0 a t  R , t h e n  s i n c e  t h e  on ly  a r r i v a l  i n  (R , R , )  i s  t h a t  a t  A , , m* 7 m’ m+1 m+1’

t h e  queue l e n g t h  a t  ^m+j_ must  assume one o f  t h e  v a l u e s  0 ,  1 , . . ,  r+1 .

Suppose t h e  queue l e n g t h s  a t  t h e  p o i n t s  R^, R^+^ a r e  r ,  s r e s p e c t 

i v e l y .  We f i r s t  t a k e  t h e  c a s e  s > 2 . The r e a l i z a t i o n s  o f  t h e  p r o c e s s  

g i v i n g  r i s e  t o  t h e  p r e s c r i b e d  p a i r  r ,  s a r e  t h o s e  w i t h  £ d e p a r t u r e s  from

t h e  queue i n  (R , A , ) ,  r > r - £ > s - l ,  an a r r i v a l  a t  A , and a f u r t h e r^ m m+1 -  ~ m

( r - s ) + l - £  d e p a r t u r e s  i n  (A , R , ) .  S i n c e  t h e  l e n g t h s  o f  (R , A , ) ,  r  m+1’ m+1 m* m+1 ’
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(A^+ ,̂ are b^u^, b^u^ respectively in any particular realization and

the service is negative exponential, the unconditional probability of such an

event for a given £ is 
00

I exp[-yb u](yb u)^(£!) 1 exp[-yb u](yb u)r 5+1 ^[( r-s+l-£)!] ^dUCu). J 0 o o 1 1
Summing over all permissible values of £, we obtain that the unconditional

probability of the transition r -->■ s is s •

The corresponding results for transitions involving queue lengths of

zero or unity can be most readily obtained through potential departures. If

r > 1, the probability of fewer than r departures from the system in

(R , A ) is m m+1

r_1 *,£ exp[-yb u ](yb u ) /£!,„ o m o m£=o
and so the probability of the system being found empty by the arrival at

A is thus m+1 r-1 °°
1 - £ exp[-yb u ](yb u )^/£! = £ exp[-yb u ](yb u )^/£! .n o m  o m  „ r o m  o m£=o £=r

By making use of virtual departures it is immediately found that the

unconditional transition probabilities 0 -> 1, 0 -* 0 are
00 00

/o exp[-yb^u]dU(u) , 1 - { exp[-yb^u]dU( u), and that r > 1, r -* 0, r 1, are 

associated with the probabilities
r— 1 oo oo

1 - £ P - £ / exp[-yu](yb u)^/£! dU(u)
£=-l  ̂ £=r ° °

r—1 oo r-1 00

= 1- £ P^ — /Qexp[-yb1u]dU(u) + £ /^exp[-yu](yb^u) /£!dUu),
£=-l £=o

oo r —1 °°
P , + / exp[-yb u]dU(u) £ j exp[-yu](yb u)^/£! dU(u).r — * n I * n1 £=o

and
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2. Transient behaviour of queue length on {/?̂ }

If we define
(m )P.k = probability of the transition i -* k over an interval

(R., R. ),] ]+m
ik

.CD
ik

then
,(111+ 1)

ik Z
j=o

p p(m)ij jk
so that by the results of the last section

(2,1) P ^ +1) = P P^m) + P P(.m^ +..+ P. P ^ik -1 l+l,k o l,k i-2 2 ,k
i-1 (m)+ [P. + / exp[-yb u]dU(u) - Z J exp[-yu](yb u) /£! dU(u)]pl-l J o 1 „ * o o l,k£=o

i-1 i-1
+ [1- Z P - / exp[-yb u]dU(u)+ Z f exp[-yu](yb u)K/Z!dU(u)]p^m? , 

£=-l £ ° 1 £=o ° ° ° >k

i > 1»

(2.2) p (m+1) fo exp[-yb^u]dU(u) pj™'* + [1-/q exp[-yb1u]dU(u)] p|

These relations can be expressed collectively by means of the generating 

function
OO

D(m) , s. _ v (m) i i i  ̂ ,p >k (z) = }  Pik z , |z| < 1,
i=o

(m)
;ok

^(m+1), s „ i „(m) , s r „ „ in (m) , n ,-lzP k (z) = Z Pi_1 z P k (z) + [z- Z pi_1z ]pQk (1-z)
i=o * i=o

( (m)
- zp-i(pik

(m) 
5 ok )

uu
+ z(l-z) 1(p|k ') - p^k ^) /Qexp[-yb1u]dU(u)

- z2(l-z)(p^k ')-p^k ')) /oexp[-yu(l-bQz)]dU(u) , |z| < 1.
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I f  we f u r t h e r  d e f i n e

P ( z ,w )  I P U ) (z)wms I z I < 1 ,  Iw I < 1,.k  m=o .k

t h e n  u s i n g

P , ( z )  = z.k

we f i n d  d i r e c t l y  t h a t
00 oo

( 2 . 3 )  P k ( z j w ) = [ z k+1+w{(z-(  I P.  - . Z1 ) )  E wm( l - z ) _1
i=o i - 1 m=o ok

00 00 

+ z E ( P l k ^ P ^ o k  1 / ^ e x p [ - y b nu]dU(u)
m=o

u u  w

-  z ( l - z )  1 / o e x p [ - y u (  l - b Qz ) ] d U ( u )  -  p ^ ] } ]  [z-w E p ^ ^ z ^ ]  1 ,
i=o

j w  <  1 .

From ( 1 . 1 ) ,

and from ( 2 . 2 )

uu  uu

E P^_1z = / Qe x p [ - y u ( l - z ) ] d U ( u ) , | z |  < 1 ,
i=o

u u  uu  uu

( 2 . 4 )  w E ( p ^  - p « ) w m / Qe x p [ - y b 1u]dU(u)  = E p ^ )wm( l - w ) - p ^ } , |w| < 1.
m=o m=o ok

S u b s t i t u t i n g  t h e s e  e x p r e s s i o n s  i n  ( 2 . 3 )  g i v e s
oo oo

( 2 . 5 )  P ( z ,w )  = [ z k+1+ E p ^ f \ l - z )  ^ (z -w  /  e x p [ - y u ( l - z ) ] d U ( u ) ) . k ^ok J o

-  w z ^ ( l - z )  e x p [ - y u ( l - b  z ) ] d U ( u ) - z ( l - z )  ± 6J o o o ,k
00 00 

- z p _ 1[ J ^ e x p [ - y b 1 u ] d U ( u ) ] 1 [ ( l - w )  E P ^ w ™ - ^  ^ ] ]

00 m=o

- 1 ‘ m=o ok

[z-w /  e x p [ - y u ( l - z ) ] d U ( u ) ]  1 , | z | , < 1.

For  each  w such  t h a t  |w| <1, z-w J Qe x P C - y u ( 1 -z ) ]d U (u )  has  a 

u n ique  z e r o  z = g(w) w i t h i n  t h e  u n i t  c i r c l e ,  by Rouchd’s t h eo re m .  S ince

P ( z ,w )  i s  an a n a l y t i c  f u n c t i o n  o f  z f o r  | z |  < 1 ,  z = g(w) must  a l s o  be 

a z e r o  o f  t h e  n u m e r a to r  o f  t h e  r i g h t  hand  s i c e  o f  ( 2 . 5 ) .  T h e r e f o r e
00 OO

- l r „ r r , s r C  r x , ~ l( 2 . 6 )  E p w = (1-w)  [6 . +  /  e xp[ - yb  u ] dU( u ) { /  e x p [ - y u ] d U ( u ) } xok o ,k J 0  1 J om=o
OO

-1[ g ( u ) ]  -  wg(w) { l -g ( w )  } / o e x p [ - y u ( l - b Qg(w))]dU(u)

-  ( l - g ( w ) )  16 } ] ,  IwIo , k < 1 .
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Making use of (2.6), we can express (2.5) as
CO CO

(2.7) E E z^wm = (1-z) 1(l-w) 1[(5q b ̂ ) {ip( 1) } 1 x
m=o i=o 5

{[g(w)]k - wg(w) {l-g(w) } 1ip( 1-b g(w)) - (1-z) 16 }]O O , K

+ [z-w^(l-z)] ^[z^^-wz^ 1-z) %(l-b z) - z(l-z) ^6o o,k
- z(Cg(w)]k-wg(w){l-g(w)} %(l-bQg(w))-(l-g(w)) 16q k>],

IZ[, IWI <1.

When a power series expansion of g(w) about the origin is derived for 

the determination of particular constants, we can make use of Lagrange's 

Theorem, which gives

00

g(w) - Wy)}q W <1.
y=y

(2.7) gives information about the queue length at regenerative points 

, whereas one is more usually interested in the queue length as found by 

incoming customers. This is easy to deduce from the above results when we

know the unconditional queue length transition probabilities between and 

A^^-o and the queue length distribution at Rq.

The unconditional queue length transition probabilities between R^ and

A -0 are m+1

P(r -* s)

r
/ exp[-yb j](yb u)r S/(r-s)! dU(u), 

r-1 i
j [1- exp[-yb ] E (yb u) /£!]dU(u), J o o  n o£=o
1

0

0 < s < r, 

s = 0, r> 0 

s = 0 = r, 

s > r .

If the queue size just after the commencement of the first service at

Aq is £ > 1, the queue size distribution {r£°^} at R is o
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R(0)*k

J exp[-yb u](yb u)^ ^/(£-k)!dU(u), £ > k > 0,1 J " 1

£-1
Jo Cl- expC-yb^u] Z (yb^u)1- (i!) * 1]dU(u), k = 0, 

i=o
0 , k > £.

V

3. Transient behaviour of queue length at an

arbitrary instant of time.

A form of argument similar to that used in the last section gives the 

queue length probabilities at an arbitrary instant of time.

For convenience we take as our origin of time a regenerative point and 

label this Rq. We suppose that the initial queue length is i, and we 

write

Pik(t) = probability that queue size is k at time t, given that 

initial queue size is i, t > 0,

{j Ii;u}= probability that the queue size changes from i to j in an 

interval of length u without arrivals.

We have that

^ exp[-yu](yu)X ^/(i—j)!» 0 < j < i,

i”1 £1- exp[-yu] Z (yu) /£!, 
{jIi:u} = J  £=o

1
j = 0 < i, 

j = 0 = i 

j > i-

If R̂ , the next regenerative point after Rq, occurs at a time 

x < t, then by the theorem of total probability

pik(t)
i r+1
Z Z {r|i; b^xHs |r+l;b̂ x} PcV (t-x). 

r=o s=o sk

If t < x < t/b , there is an arrival at b x < t and so o ’ o “
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P ik ("t) = £ (r|i; (k|r+l;t-b^x} ,
r=o

and similarly for x > t/b there is no arrival in (0,t) ando

Pik(t) =
The unconditional value of P., (t) is thereforeikl r+1 t

(3.1) P (t) = Z Z / {r|i;b u} (s|r+l;b u} P (t-u)dU(u)
r=o s=o

i t/b
+ Z / °{r|i;b u} {k|r+l;t-b u}dU(u)
r=o t

+ {k I i ;t} (l-U(t/b )), t > 0.

Similarly to the last section we find it convenient to work in terms of 

families of basic quantities defined as follows:

Pj(u) = Z exp[-yu] (y b ^ u ) y b ^ u ) Ä[£!(j+l-£)!] 1, u > 0, j > -1,
£=o

q^(u) = exp [-yu](ybQu)^/j! , u > 0, j > 0.

(3.1) can be rewritten as
r i-1 t

j=-l fo Pj(u) Pi-j,k(t~u) dU(u)
+ J t [exp[-ybnu] - Z q.(u)] Piv(t-u) dU(u),

(3.2) Pik(t) = J

1 “ 'H * lk'o l=o
t i-1+ j Cl- y. p.(u)-(exp[-yb1u]- Z q^(u)) ]PQk( t-u)dU(u)

£=o 1o j=-l
^"i-k+l t/b .

Z / °exp[-yt](yb u) {y(t-b u)}1 +
t ° °\

/

£=o -1U!(l-£+l-k)! } ^dU(u), i+1 > k > 0,
i

[1-{1- y exp[-yb u](yb u)^(£!) P}exp[-y(t-b u)]
i=o

1 nZ exp[-yt](yt) /£!]dU(u),
£ = o

0,

i+1 < k ,

,exp[-yt](yt)1 k{(i-k)!} 1[1-U(t/bQ)], i > k,

V. o, i < k , 
for i > 1,
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and

P k(t) = fn exp[-yb1u] P 1v(t-u)dU(u)1 lk

+ / (l-exp[-yb u])P (t-u)dU(u)
s- 0 -L OK
f t/b

° exp[-y(t-bmu)]dU(u), k = 1,

/-

0,

t
t/b

{l-exp[-y( -bQu)]}dU(u), k = 0, 

k > 1,

+ 6 , (1-U(t/b )).o sk o

These relations can be solved for the P >k(t), i = 0,1,.. through the 

Laplace transforms
oo

P*R(s) = Jo exp(-st)P^^(t)dt, Re.s > 0 ,  i = 0,1,..,

and the generating function

I z I < 1 ,  R e . s > 0 .P*k(s,z) = Z P‘|k(s)z1 , 12
i=o

The solution for P*k(s,z) is, however, extremely comp'licated and we content 

ourselves with sketching the method.

Forming the generating function P*k(s,z) from the right hand side of

(3.2) gives

(3.3) zP*k(s,z) = P*k(s,z)/o Z z£p_^(t) exp(-st)dU(t),
i=o

-z p*k(s)/0 P_1(t ) exp(-st)dU(t)
OO

+ z(l-z) ^[P* (s)-P* (s)] f exp(-st)exp(-ybnt)dU(t) lk ok ' o 1
OO

+ z(l-z) 1P* (s) / exp(-st)dU(t) ok J o r
OO 00

- z(l-z) 1[P*k (s) - P*k(s)]/Q £?0 q^( t )exp( -st )dU( t)
OO

+ z[P*k(s)-P*k (s)]/ qQ(t)exp(-st)dU(t)
_ (l-z)_1P*v (s)/“ Z z£P£_x(t)dU(t)

£=o
/•UU+ P* (s)zJ P (t)exp(-st)dU(t)ok

+* Jo exp(-st )K( t ,z )dt, z I < 1, Re. s > 0 ,
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where K(t,z) is an expression in terms only of known functions of t and 

z, namely,

K(t,z) = (1-6 ) zkexp{-yt(l-z)} {U(t/b )—U(t) }o,k o

+ 6 [z(l-z) 1{U(t/b )-U(t)}0 ,k o
- l  t//b- z(l-z) f °exp{-y(t-b u)}dU(u)J t  ̂ o

- 1  t//b+ z(l-z) f °exp{-yb u(1-z)}exp{-y(t-b u)}dU(u)J t o o
- 1  t / b n- z(l-z) / exp{-yt(1-z)}dU(u)

t/b
- z / ° {exp(-yb u) exp(-yt)}dU(u)]J t o

+ zk+1 exp[-yt(1-z)] [1-U(t b )]o

+ z 6 (1-U(t/b ))(l-exp(-yt))o ,k o
t/bo

+ z 6 / exp {-y(t-b u)}iU(u), |z| <1, t > 0.IK t O
(3.3) is simply solved for P* (s,z) once P* (s) and P* (s) are known.• K OK _LK
One of these can be readily eliminated in terms of the other, since forming 

Laplace transforms in the second equation of (3.2) provides the relation
oo

^ok^S  ̂ = Pik(s) /0exp(-yt)1t)exp(-st)dU(t)
OO

+ P* (s) / [1- exp(-yb^t)] exp(-st)dU(t) ok ; o 1
OO

+ 6 . / exp(-st)[ / t/bo exp{-y(t-b u)}dU(u)ldt1 ,k ■* o o

00 t/b
- 6 / exp(-st)[ /. ° exp{-y(t-b u)} dU(u)]dto,k Jo t c o
+ 6Qk /"exp(-st)[l-U(t)]dt, t Z 0, Re. s > 0.

After such an elimination has been performed, (3.3) can be written as
OO oo

(3.4) P* (s,z)[z-/ Z P (t)exp(-st)dU(t)] = D, |z|< 1, Re. s > 0,. K O n jo — x36 = 0
where D is a combination of known functions of s and z with one of
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P* (s), P* (s). From the definition of the p (t), ok Ik *
00 00

z - / £ z^p (t) exp(-st)dU(t)
0  X/—O X/“  _L

oo

= z - / exp [-yu(l-z)] exp(-st)dU( t),J o

and by Rouche’s theorem this expression has, for each s such that Re. s > 0,

a unique zero T(s) inside |z| = 1 if

00

/ t dU(t) > 1
y

This last inequality is just the intuitive condition for a stable equilibrium 

queue length distribution to exist.

The vanishing of the left hand side of (3.4) for z = T(s) implies 

that of the right hand side. This provides a relation whereby the remaining 

one of P*k(s), P*k(s) can be eliminated from (3.4), which is then directly 

solvable for P*k(s,z) in terms of known functions of s and z.

4. The busy period.

We wish to determine the probability that an arrival finding the queue

empty starts a busy period of n services. The probability that an arrival at

initiates a busy period depends on the queue length distribution at R^ ^

(the last point of the sequence {R.} before A ) and in the length b u ofj m o m
the interval (R^ ^jA^) in which this queue is to dissipate. The probability 

that a busy period commencing at A^ persists to n services is also condition

ed by b u , since the first service must certainly outlast the arrival-less o m
period (A , R ) of length b_,u if the busy period is to involve more than a r m m ö l m  J r

single service.

The behaviour of a busy period is thus in two ways dependent on the 

value of m, where A^ is the instant of the arrival initiating the period.
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This contrasts sharply with the usual situation with independently and identi

cally distributed inter-arrival intervals, where the busy periods all have 

probabilistically equivalent structures.

Conditional on the initial interval (A^, R ) having a prescribed 

length kqum-|-]_> however, a busy period has a determined probabilistic 

structure independent of m .

With probability
f°°(4.1) 1- exp(-yb u ) + exp(-yb u ) J [1- exp(-yb u)]dU(u)r 1 m+1 r 1 m+1 ; o o

00

= 1 - exp(-ybnu n) [ exp(-yb u)dU(u)r 1 m+1 J o o
the queue will be found empty by the next arrival (at i.e., the busy

period will contain only one service.

The corresponding probability for a busy period of two services is

(4.2) exp( -yb u ^ )  [ /^expC-yb^u] (1-exp [-yb^u] (yb^u))iU( uXl
OO 00

+ { exp[-yb u] exp[-ybnu](yb.u)dU(u)f (l-exp[-yb u]HU(u) J 0 o 1 1 J 0 o

1
+ / exp[-yu]dU(u) J (l-exp[-yb u] Z (yb u) )dU(u) J 0 J 0 o o1 = 0

OO

exp(-yb u )[^(b ){1- /exp[-yu]yb udU(u)}1 m+1 1
+ iKl)f (l-exp[-yb u] 1 (yb u) )dU(u).J o o o1 = 0

If the busy period involves more than two services , it will contain 

at least one interval (Rm+^>Rm+q+p)> i > 0. Further analysis is convenient

ly done with working similar to that of section two in a system where we do not 

allow the queue to vanish at any instant.

We define

p(m)
ik probability of the transition i k over an interval

(R_., R ^), conditional on the queue never vanishing, m > 1,
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Analogously to section two, we have

(4.3) ,(m+l)
ik = P-1

pCm)
ill ,k + P, •+Pi-1

p(m)
l,k

- J^expE-yu](yb^u)^(i!) 1dU(u), k,i > 1,

where the p's are as defined by (1.1).

The subtracted term arises as follows:

If the queue length at some point R exceeds j+1, then p. is the

probability that at the queue length is j fewer. p_. is a sum of the

probabilities for the different ways the loss can be distributed between the

subintervals (R . n ), (A^ R n). One possibility is that i + 1t t+1 t+1 t+1

departures can be sustained by (R̂ _, A ), and that there are no further 

departures after the arrival at If this possibility is removed, the

modified p_.'s are the appropriate transition probabilities between queue 

lengths j+1, 1 at successive R's when the queue is not permitted to become 

void.

Forming the generating function on i from (4.3):
oo oo oo

(m+1) i , iv „ D (m) iz E P ., z = ( E p. ,z E P .. z . , ik . *i-l . n ik1 = 1  1 = 0  1 = 1
00

- P . ^  / exp[-yu(l-b z)]dU(u), k > 1, ik J o o
We now form the generating function on m

<  1 ,

p, (z,w) I ( P
(m)

m=o i=l ^ik i)
where we define

We substitute

6ik *

E p. . z = / exp[-yu(1-z)]dU(u), l-l J o1 = 0

z I < 1, IwI < 1,

z < 1.
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OO 00

(4.4) pv (z,w) = [zk+1 - l wITlpik^ /exp[-yu(l-b^z)]dU(u)]
m=o

[z - w/ exp[-pu(l-z)]dU(u)] 1 , k > 1, |z|, < 1.

As noted in section two, for each w for which |w| < 1,
OO

z - w j exp[-yu(l-z)]dU(u) has a unique zero z = g(w) within the unit 

circle. p^(z,w) is an analytic function of z for |z| < 1 ,  so that 

z = g(w) must be a zero of the numerator of the expression for p^(z,w) in

(4.4). Therefore

m=o
w E wm P ^  = [g(w)]K+±[ / exp[-yu( 1-b g(w))]dU(u)] ± ,_LK n °

,k+l -1 < 1.

Thus (4.4) can be written
k+1p (z,w) = [z -i|;(l-b z) [b( w) ]J "‘"[iK l~b g(w))] J‘][z-wi|;(l-z)] ",K O O

Iz[, jwI < 1 ,  k > 1.

P^(z,w) is an analytic function in z,w for |z|, |w| < 1, so the

probability of the transition 1 -* k over an interval (R , R .), i > 0, r J m m+j J -
can be determined as the coefficient of zw~̂  in p (z,w) by, say, a repeated

contour integration. Denote this probability by .

We write r ^ m  ̂ for the probability that, at R^m \  the queue

length is £ , considered in section two.

We can now finally give an expression for the probability of a busy

period of length n beginning at the arrival A^.

If the queue is not empty at q> it has become so by A . It then

remains non-empty until A ., and becomes empty some time between AF J m+n-1 F J m+n-1
and Am+n

For n = 1,2, (4.1), (4.2) give

probability of a busy period of length one beginning at Â

= r^m ^  (1 - ip(b )\p(b )) o 1 o
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+ E r / {1- E exp[-yb u](yb u) (1!) } xn n i J 0 . r o o£ =1 1=0

{1 - exp[-yb^u]^(bQ)}dU(u) ,

probability of a busy period of length two beginning at A^
CO OO i— 1

= [r(m'1h ( b 1) + Z r . 1 ’ / U  - exp [- b u] E (yb u / U ! ) ' 1} x O 1 . n 1 J o o „ o1=1 £=o

expC-yb^uldUCu)] x

[ijj(b̂ ) {1 - J^exp[-yu]yb^udU( u) }
1

+ ip(l) / (l-exp[-yb u] E (yb u) )dU(u)]J 0 o o1 = 0

When a busy period of length n > 2 occurs the queue has size one

between A and R and is non-empty throughout (R , R .). The queuem m r J 0 m m+n-2 ^
again becomes empty either during (A ., R .) or during (R .,A ) 0 r J m+n-1 m+n-1 m+n-1 m+n
Compounding the probabilities of these events, we see that

prcbability of a busy period of length n g 2 beginning at A^

00 00 i —1
= [r^m ^^(b ) + E r^m ^  f {L- exp[-yb u] E (yb u)^(£!) ■*"} xo 1 . l ' o o .  oi=l £=o

exp[-yb^u]dU(u)] x

n— ]_ oo ]c_i
[ E q^n exp[-yb u] E (yb u)^{l-exp[-yb u] x
k = l k ° ° £=o ° 1

E (ybJLu)j(j!) 1}(£!) 1dU(u) 
j=o

n 00 k—1
t E qj.n 1'>/ { 1 - exp[-yb u] E (yb u)^(j!) 1}dU(u)].. ^k J o o ok=l 3=0

We note that only more involved algebra is required to give a similar

treatment to that of sections 1-4 for a queue in which the simple negative 

exponential services are replaced by general bulk negative exponential services,



99 .

i.e., services in batches whose sizes follow a probability distribution

prob (batch size = r) = C_̂ , r = 0,1,2,..,

where

Z C = 1. rr=o

The generalisation to even batch arrivals of fixed size is, however,

non-trivial.

The result for batch arrivals of size d corresponding to (2.1) is

(m+1)
ik

(m) (m) (m)
T  P-dPi+d,k + p-(d-l)pi+d-l,k + ’,+ pi-(d+l)pd+l,k

s = l
+ E p^™^ s J^exp[-yu](yb^u)X'(yb1u)

i-s+d 00 i-£+d-s
£=i

-1[£!(i-£+d-s)!] dU(u)
i-1

+ / (l-exp[-yb u] E (yb u) [£!] } xo oo £=o

exp [-yb u](yb u)d S/(d-s)!dU(u)]
i-1 oo 1 1 i_i

+ p m?. [1- E p - / (1-exp [-yb u] E (yb u)£[£!] 1} x o,k o j * ° ° n_ o£=-d £=o

d-1
expC-yb^u] E (yb^u)S/s! dU(u) 

s=o
i+d-1 00 i+d-£ i+d-£-s

+ E / exp[-yu](yb u) [£!] E (yb u)
o • 0 ° ., 1£=i i=l

[(i+d-£-s)!]_1 dU(u)], i > 0,

£ p^mv [/ exp[-yb u](yb u) S/(d-s)! dU(u)] 
s=l ,k o 1 1

+ p [1- / exp[-yb u] E (yb u) /£! dU(u)], o ,k J o 1 1£=o

d-1

i = o.
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For d > 1 we lack further simple results like (2.4) which we need to 

eliminate the unknowns p^m? 0 < s < d, from the generating function formedS , K “

We remark that when the inter-arrival intervals are independently and 

identically distributed}fluctuation theory makes available a full treatment 

with both general batch arrivals and general bulk services (Narayan Bhat (1964).

5. Equilibrium behaviour of G(2)/E^/l

As in chapter four we deal with the richer system G(2)/M/l with batch 

arrivals of size k. Use of the regenerative points R considered in our dis

cussion of G(2)/M/l enables us to avoid the Laplace transforms that made our 

treatment of the general moving average cumbersome, and we obtain a fairly full 

picture of the equilibrium behaviour of our system.

We define p|in^(s) to be the limiting probability density that on the 

the system contains j individuals when a time s has elapsed since the 

last regenerative point. As before we denote our moving average by (b ,b^).

It is convenient to determine first the distribution {pJjn\o)} of queue 

size at the regenerative points. We have for j > k + 1

(5.1) p(n+l) (o) _ £ p̂ .n?, (0) E / exp( -yb u)
] r=o 3 ‘ k + r  l=o n °

r co 
o

(ybQu ) (yb1u)r-l
exp(-Mbiu)TnT)7

dU(u) .

This follows from a consideration of the possible departures from the queue 

between a consecutive pair of regenerative points. Since there are k arrivals 

between these points, the queue size at the earlier must be at least j-k.

There will, in general, be departures from the queue both before and after the 

arrival of the batch. If there are r departures altogether, we sum the
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probabilities corresponding to I < r of these occurring before the arrival 

instant and the remaining r - l being between the arrival instant and the 

second regenerative point.

The relations corresponding for 0 < j < k + 1 are
oo « (yb_u)£
E p n (0)r£ J exp(-yb u)(5.2 p'n+1)(0)

r=l £=o a'

(pb
eXP(-yblu) (r+k-VjT !---- dU(u)

s 00 00, x - (yb u)
+ E P ^ ;(0) E /oexp(-ybQu) ---x

r=o i=r

(yb^u)k-j
expC-yb^) --  dU(u), j > 0,

r-1 (yb u)
E pr (0) E exp(-ybQu) ■

r=l l=o

00 (yb u)
exp(-yb u) E ----- —  dU(u)

s=r+k-£

(ybQu)(n)E P 1 rrr=o

i—1

(1 - E
i=o

l=r

(yb^u)

The matrix P of transition probabilities will clearly be irreducible, 

since every state can be reached from every other, and aperiodic, since the 

diagonal elements are positive. Under these conditions it has been shown by 

Feller (1950), that a proper limiting distribution of queue length exists if 

we can construct a non-zero row vector x for which

sp = s-
When normalised, x will have as its components the limiting queue length
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probabilities.

We wish to find an x = {x.} for which 
oo r oo 3 (yb u)

(5.3) x. = E x .  E / exp( - yb u)--- —n n-k+r . Jo r o £!J r=o J £=o

£ , , Nr-£(yb^u)
expC-yb^) (r -- dU(u),

j > k + 1,

(5.4) x . = 3
oo r-1 oo (yb u)
E x 1 / exp(-pb u) ---~

1 („b
i r 0 ' 0r=l £=o eXP(-,jblu) (rtW-j)l dU(U>

oo oo oo (yb u )
+ E x E / exp(-yb u) ---77-m  * x r\ U ’

* (pb u)*'!
r " 0r=o £=r

exp(-yb1u) )~j--  dU(u),

0 < j < k + 1,

00 r-1 00 (yb u)
E x E J exp(-yb u) --- — —  exp(-ybnu) E. r . 0 -L jc .r=l £=o

(yb^u)‘
1 . „ s !s=r+k-£

dU(u)

+ E x E exp(-yb u) r r or=o £=r

(yb 11) k-1 (yb u)1
---2__ (i-exp(-yb1u) E --- -r-]-- )dU(u),j

i=o

By direct substitution we can verify that (5.3) is satisfied by any 

linear combination
k

xj = l / i  Tk> j i 1*J i=l

where T., i = l,..,k, are the (presumed distinct) roots of

= / exp(-yu(1-T)) dU(u)'0
inside the unit circle.

If we now put
k

x = E y . + A , s ay, o 11 o ’ Ji=l

(5.4) provides k simultaneous inhomogeneous linear equations (1 < j < k) for 

the unknowns y^/Aq. The equation for j = 0 will be consistent with the



103.

solution obtained since the elements of each row of the matrix P sum to 

unity.

The distribution

{ p.(0) } = lim ( p ^  (0)}
 ̂ n-x» ^

thus exists, and, since
00

1 p .(o) = 1,33=0

is of the form
k k

{p.(0)} = { E g.T? + 6 .[1- E 6.(1-T. r 1]}, j > 0.hi i=i 11 i=x 1 1

The queue length distribution as found by an arriving batch readily 

follows. Suppose that a batch arrives at time b^u after the last recurrence 

point R. Then the distribution (p_.(bQu)} at this arrival instant I is

P .(b u) 3 o

00 00 (yb u)1
Z Pr(0) Z exp( ybQu) i, , j

r=o i=r

00 (yb u)r ^
Z pr(0) 

>r= j
exp(-ybou) (r_j); . 3

so that using the known form of (pr(0)} we find that

k
p.(b u) = Z 3.T-] exp(-y( 1-T. )b u) , j > 0. *30  . , i i  r i o , JJ i = l

Since

we have also that

Z p .(b u) = 1 = Z p.(0), 3 o - 33=0 J 3=0

-1p (b u) = 1 - Z ß.T .(1-T.) exp(-y(1-T.)b u) rO O  . , 1 1  1 l o1=1

-1Z 3. exp(-y(1-T.)b u)+l- Z 3.(1-T.) exp(-y(1-T . )b u) . , i  i o  . , i  i i oi = l  i = l
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The unconditional queue size distribution {p_. } as found by an 

arbitrary arriving batch is thus

k k
(5.5) p. = E g.T^ ij/(b (1-T.) ) + 6 .[1- E ß.(l-T.)_1 ijj(b (1-T.))].. . 1 1 O 1 Ol . n 1 1 O 11=1 1=1

Consider an instant I occurring at time t after the last arrival 
instant A. Suppose A lies in an inter-regenerative point interval of length 
u. If t < b^u, I also lies in this interval. If t > b^u, a regenerative 

point R’ divides internally the interval AI. We denote the next arrival 
instant by A’.

Since the queue size increases by k at A^ the queue length 

distribution {q^(t)} at I is

r ( t)*£ P (b u) exp(-yt) E , j = 0 ,
r=o £=r+k

(5.6) q (t) < (yt)r+k-jl Pr(bou) exp(-yt) (r+g_jjY • 0 < j S k
r=o
00 , xr+k-j

. Pr< V )exP(~|lt) (r+k-j ) I\  r=]-k
j > k.

The limiting queue size distribution {qj} taken at an
expressed as

00 00

q. = / dU(u) / dU(v) j J 0 J 0
j ° q.(t)dt/ / dU(u) J 0 j J 0

arbitrary time can be

°° b u+b v
f dU(v) / ° dtJ 0 J 0

00 00 b u+b v
= m / dU(u) / dU(v) / ° q.(t)dt, j•'o ' 0 J 0 3u " U O J

where m is the mean of U.

Theorem: The limiting queue size distribution \q.} is J
I (ym) 1(Pj_k +.-+Pj_1), j > k

«j- ’
/ _q(yrn) (p +. . +p . ) ,0 D-1 0 c j <

1 - k/ym , j = 0

1 0,

given by

k



Proof: We have determined the mean of q_.(t) by first letting t vary over 

every moment in (AR') and (R'A') and then integrating over u and 

v (the length of the subsequent inter-regenerative point interval).

Substituting for q.(t) gives

q. = m 1 Z 3iT^ k [y(l-T.)] % ( ( l -T^b^C l-i|>( 1-Ti) ] 
 ̂ i=l 1 1

= (ym) 1 Z & 'll k iKb (1-T . ) ) (1+T.+..+Tk“1). n 1 1 O 1 1 1i = l

= (ym) 1 (Pj_k+*•+Pj_1)s j > k.

Similarly, for j < k,

q. = m 1f dU(u) J Z ß.T. (k j)[y(l-T.)] ^expC-yl-T.)b u] x J J ̂ 11 1 c 1 oi = l

[l-exp(-y(1-T.)(b u+b v)] l 1 o

Z 3.T.(k ^ y  1 exp[-y( 1-T. )b u] x . - 1 1  r l o1 = 1

[(l+T. + ..+Tk  ̂ ~*~)-exp(-y(b.,u+b v)) x l l r 1 o
{(1+T.+..+Tk“^_1)l l

+ (y(b u+b v)) (T.+..+Tk"^_1)1 o 1 1
+ .

(y(b u+b v)) 1 o
(k-j-1)!

k

k-j-1
Tk_j 1 } ]

-1 -1+ [1- Z ß.U-Th) exp[-y(l-T.)b^u)] x
i=l i o

k-j (y(b u+b v))
[ - exp(-y(b u+b v)) Z ----—------ ] dU(v)1 ° . II

, l = o
oo 00 K

m /QdU(u)/o Z 3^T^^k -^[y(l-Tb)]  ̂exp[-y( 1-Th )b u] x 
i=l
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[l-exp(-y(1-T^)(b u+b v)]

Z ßiTi(k ^[y(l-T.)] 1 exp[-y(l-T.)b^u]
i=l i o

[{l-exp(-y(b..u+b v)) Z 1 ° n£=o

k-j-1 (yT.(b u+b v))„ l 1 o
£!

, . k-j-1 (y(b u+b v))
- T -'{l-exp(-y(b u+b v)) Z --1 ° 0£=o il } ]

k -1 -1 + [1- Z ß.(1-T.) exp(-y(l-T.)b u)]y x . n 1 1 1 oi = l

k-j (y(b u+b v)) Ä
[ 1-exp(-y(b u+b v Z -----ry—  ̂--- ] dU(v)

1 ° £=o **
00 oo k  , . s

= m"1 / dU(u) / ß.TT(k_j}[y(l-T.)]_1 exp[-y(1-T.)b u] x
1 0 J 0. , 1 1 1 l O1=1
[l-exp(-y(1-T.) (b u+b v)]1 1 o

- Z ßiTi(k ^Cy(l-T.)] 1 exp[-y(l-T^ )b^u] x
i=l i o

k-j (yT.(b u+b v))
{l-exp( - y(b u+b v)) Z ------- ry-^--- }1 ° n H

£=° £1 k-j (y(b u+b v))
+ y [l-exp(-y(b u+b v)) Z ------ - °--- ] dU( v)

1 ° £=o

(ym) 1 / dU(u) / exp(-y(b u+b v)) Z 
j 0  ■'o ' 0

(y(b u+b v)) 1 o
1 o „“ . . £!£ =k-]+l

-1Z Z ß.T. (1-T.) exp(-yb (l-T.)u) exp(-y(bnu+b v)) . , n 1 1  1 0 1  l oi=l r=l

(y(b u+b v))k ^+r 1 o
, r! dU( v)

(ym) 1J dU(u)J (1- Z ß.T.(1-T.) 1 exp(-y(1-T.)b u))exp(-y(b u+b v))0 " o '  . , i i ii=l i o 1 o
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+

00
E

£=k-j+1
oo ]<;

E E 3 • T'T

(y(b u+b v))^ o o
V.

exp(-y(1-T.)b u) exp(-y(bnu+b v)) r l o 1 o

00 (y(b u+b v))^
E ---- --------  dU(u)
£=k-j+r+1

from

= (ym) 1(pQ+.•+Pj_1)» 0 < j < k + 1.

The equilibrium probability q^ that the queue is empty is now found

1 -

as

= ( E p .)k/ym 
i=o 1

q = 1 - k/ym o
= 1 - traffic intensity.

qQ is thus independent of the functional form of U.

This establishes the theorem.

The same results hold in the special case of GI/M/1 with bulk

arrivals, and can be readily deduced from equations of Conolly (1960), although

his results were not expressed in this simple form.

For GI/M/1 the regenerative points and the arrival instants coincide

and we have b = 1, b, = 0.o 1
Conolly derived the unconditional queue length probabilities {q^} 

by integration over an inter-arrival interval;

qn
bF(1) „ a  ^i'
a “ (l-5i)F*(5.) ’ n > 1.

The E,. are the inner roots of the characteristic equation, c is the size
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o f  t h e  a r r i v i n g  b a t c h e s ,  c o r r e s p o n d in g  t o  o u r  k , and b i s  t h e  mean s e r v i c e  

t i m e ,  c o r r e s p o n d in g  to  o u r  y

q ^ ( 0) i s  t h e  e q u i l i b r i u m  p r o b a b i l i t y  d e n s i t y  t h a t  t h e  queue l e n g th  i s  

n and t h a t  an a r r i v a l  h a s  j u s t  o c c u r r e d .

n - l
_ F (1) r H

qn (0 )  ‘  a E F T T )  ’
n > 0 .

q ^ (0 )  i s ,  o f  c o u r s e ,  z e ro  f o r  0 £ n < c - 1 .  q^CO) th u s  c o r r e s p o n d s  t o  ou r

p , n > k .  r n -k

In  C o n o l l y ' s  n o t a t i o n ,  t h e  r e s u l t  f o r  GI/M/1 can  be e x p r e s s e d  as 

qn = b ( q n ( 0 ) + . . +qn+c_1( 0 ) ) ,  n > 1 .

T here  i s  no f a c t o r  a c o r r e s p o n d in g  t o  o u r  m a p p e a r in g  s i n c e  C o n o l ly ’s
00

q (0 )  i s  a j o i n t  p r o b a b i l i t y  d e n s i t y  w i th  £ q ( 0 )  n o r m a l i s e d  t o  a
n=o

Our (p n (0 )}  i s  a c o n d i t i o n a l  p r o b a b i l i t y  d e n s i t y  n o r m a l i s e d  t o  u n i t y .

The v a lu e  f o r  q f o r  t h e  sy s tem  GI/M /1 w i th  b a t c h  a r r i v a l s  i s  as

f o r  G ( 2 ) /M / l ,  and i s  g iv e n  by C o n o l ly .

6. Waiting Times.

C o n s id e r  f i r s t  t h e  w a i t i n g  t im e  d i s t r i b u t i o n  o f  t h e  f i r s t  member o f  an 

a r r i v i n g  b a t c h .  There  i s  a p r o b a b i l i t y  p Q t h a t  such  an a r r i v a l  w i l l  n o t  

have  t o  w a i t .  I f  t h e  a r r i v i n g  b a tc h  f i n d s  r  > 0 c u s to m e rs  a l r e a d y  w a i t i n g  

o r  u n d e rg o in g  s e r v i c e , t h e n  by t h e  l a c k  o f  memory p r o p e r t y  o f  th e  n e g a t i v e  

e x p o n e n t i a l  d i s t r i b u t i o n ,  t h e  w a i t i n g  t im e  o f  t h e  f i r s t  o f  t h e  b a t c h  w i l l  be 

t h e  i t e r a t e d  c o n v o lu t io n  o f  r  s e r v i c e  t i m e s .  Thus

P r  ( f i r s t  o f  b a tc h  w a i t s  a t im e  < x)



109 .

= 1

+

= 1

k
£

i=l 
00 ]<
E E 

r=li=l

k
- E 3 
i=l

3.(1-Ti) 1^(bo(l-Ti)) 

3iTi 'Kbo(l-T.))[l-

. T.(l-T.)_1b(b (1-T.)) 1 1  1 o 1

exp(-yx)
r-1 
E • 
£=o

( yx) £ 
£! -]

exp(-yx(l-T\ )) .

Similarly the sth members of the batch, 1 < s < k has as his waiting 

time the iterated convolution of s + r - 1 service times if the batch finds 

r individuals already in the queue, so that

Pr(sth individual in batch waits a time < x)
k s-2 . . £

= [1- E 3iTi(l-T.) 1ij;(bo(l-Ti))](l-exp(-yx) E }
i=l ° 1 £=o

k « r+s-2 , J
+ E E ß.T^iKb (l-T.)Kl-exp(-yx) E ) , 1< s < r.

1=1 r=o £=o

,t4
4\ 4\ 4\ 4\ 4% 4\ 4% 4\ 4% 4\ 4*
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CHAPTER SIX

Many Server Queues.

In this chapter we extend our work to include queueing systems with two 

or more servers in parallel.

As we noted in Chapter One, no complete discussion of the queueing pro

cess in GI/G/k exists. The simple properties of the negative exponential 

distribution have, however, made Gl/M/k mathematically accessible and an 

elegant imbedded Markov chain treatment has been given for the limiting queue 

length behaviour by Kendall (1953). The time dependent behaviour of Gl/M/k 

was determined by Wu (1961).

This chapter consist of two parts. In part one, section one, we make 

use of the regenerative point technique of the last chapter to deal with the 

limiting behaviour of G(2)/M/k. We find the form of the solution and 

derive recurrence relations for the first few probabilities. These are solved 

for in section two. In section three we derive simple recurrence relations 

for the queueing system with limited waiting room. In section four we go on 

to consider G(p+l)/M/k and in section six treat G(2)/M/i.

In part two we examine a queueing system with infinitely many servers, 

general recurrent services, and arrivals at completely arbitrary points of 

time. We specialise to stochastic inputs. In the case of a general recurrent 

input and a deterministic service time we obtain results agreeing with those 

of an inventory paper of Finch (1961).
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PART 1.

1. The Queueing Process in G(2)/M/k.

As before, we make use of the regenerative points {R^}, which we take 

as the points of the sequence {A^+b^ U^}, m > 0. With the proviso that 

arrivals are never multiple, the sequences are disjoint and interlace, as in 

Chapter live.

We define

P̂ _. = probability that queue length (i.e., number of individuals

waiting or being served) at a regenerative point is j, 

conditional on the queue length at the previous regenerative 

point being i, i, j > 0,

P = the matrix with elements p .., the rows and columns of Pi]
being labelled 0,1,2,... instead of 1,2,..,

{jIi;u} = probability that the queue length is initially i and

finally j in an interval of length u during which there 

are no arrivals.

From the theory of the simple death process or by considering virtual 

departures, we have

(1.1) {jIi;u} - (j)(l - expC-yu])^  ̂ exp [-jyu], j < i < k.

If k 5 j 5 is no server will be free during the interval u, so that

{jIi;u} will be the probability that i-j services will be completed in u 

for a negative exponential service of mean service time ky , i.e.,

(1.2) {j I i; u} = exp [-kyuKkyu)^ ^/(i-j)I , k < j < i.

If j < k, i < k, suppose that the last of the waiting customers

commences service after a time 0 <u. Then by use of the last two results
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and integration, the unconditional probability {j |i;u } is readily seen to be
i-k-1

(1.3) {j Ii; u} = Jo exp [-ky0] ) t * {j|k;u-0} d0, i > k, j < k.

Since we are taking u to be an interval during which there are no

arrivals to the queue, it is immediate that

(1.4) (j |i;u} = 0, j > i.

( 11) - (1.4) define {j | i; u } completely for all i, j > 0 if u is

an interval of the type postulated.

As the only arrival to the queue between the regenerative instants

R , R n is at A ., the subintervals (R , A _), (A , R ) of lengths m m+1 m+1 nr m+1 m+1 m+1
b U , b U are of the type considered above, and we obtain directly the o m* 1 m
transition probabilities p_̂_. as

i-k

/ oo i-j + i
Z {i-£|i;b u}{j|i-£+l;b^u}dU(u),

(1.5) p..

0 < j  ̂ i + 1,
£=o

/ Z {i-£ Ii;b u}{0|i-£+l;b u}dU(u), j = 0,
£=o

0 , j > i + 1,

Having determined P, we establish ergodicity under the restriction 

(1.6) ka > y \

where a is the mean of U(*), by use of Feller's treatment of Markov chains 

(1950). The state i of the embedded Markov chain corresponds to a queue 

length i.

From (1.5), the transitions i 0, i i+1 have positive probability 

for each i, so that the embedded chain is irreducible, as a transition be

tween any two states can occur in a finite number of steps. As the transition 

probabilities p ^  are all positive, all the states are aperiodic.

From Feller, we have that, unless p̂ _. , the probability of a transition
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f rom s t a t e  i  t o  s t a t e  j i n  n s t e p s ,

p^ . 0 as  n , a l l  i , j  > 0 ,

t h e n  e v e r y  s t a t e  i s  e r g o d i c  and

p?_. as  n -*», a l l  i , j  > 0 ,

where t h e  tt̂ ’ s a r e  p o s i t i v e  and

s a t i s f i e s

E
j=o

7T .
:

l .

I f  t h e r e  e x i s t s  a n o n - z e r o  row v e c t o r  x 

a b s o l u t e l y  c o n v e rg e n t  s e r i e s  and f o r  which x P 

p?_. -+ 0 ,  a l l  i , j  > 0 ,  as  n -*»,

00

X .
j

E x 
i=o

0 a l l  j  , a s  n -*»,

whose components  form an 

= x ,  t h e n ,  a s  x = xPn , t h e  

i m p l i e s

whereas

x . 
J

P -»■ ^  » a l l  i , j > 0,

E x . p . . - >  ( E x . )
1 ID • _  i1=0  1=0

as  n->- 00, i m p l i e s

7T. as  n^°° , a l l  j .

The e x i s t e n c e  o f  such a v e c t o r  x t h u s  i m p l i e s  t h e  e r g o d i c i t y  o f  t h e  s t a t e s , 

and when t h e  sum o f  t h e  components  of  x i s  n o r m a l i z e d  t o  u n i t y ,  x becomes t h e  

l i m i t i n g  queue l e n g t h  d i s t r i b u t i o n .

To e s t a b l i s h  e r g o d i c i t y  i t  t h u s  c e r t a i n l y  s u f f i c e s  t o  f i n d  a v e c t o r  o f  

t h e  form

2
x = {xo , x 1 , . .  ,xk _1 , 1 ,  T,  T , . . }

such t h a t
00

( 1 . 7 )  x = E x i  p , j  > 0 ,
J i=o  J

and w i t h  |T|  < 1 .

By ( 1 . 2 ) ,  ( 1 . 5 )  we have t h a t  ( 1 . 7 )  r e d u c e s  t o
OO

T = /  exp [ - ( 1 - T )  yu]  dU(u)

f o r  j > k+1,  and by v i r t u e  o f  ( 1 . 6 )  Rouche’s theo rem  y i e l d s  t h a t  t h i s
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equation has a unique solution inside the unit circle. As before, this 

solution will be real and positive.

(1.5) gives p̂ _. = 0 for i < j-1, so that, as p_._̂ ,_. f 0, j > 1 

the equations

(1.8) x = l xi p , j = 1,2,--- ,k,
J i=o

now suffice for the successive determination of x, ., x, _,..,x . Thatk-1 k-2’ ooo
x = S x .p.O . 1*101 = 0

is not inconsistent with the values so obtained follows from the fact that 

each row of P sums to unity.

This establishes that there is a limiting queue length distribution as 

measured at regenerative points, and that this is of the form

(1.9) prob (queue length = j)
0 < j < k

j 1
T is the solution inside the unit circle of

00

T = / exp[-(1-T)pu] dU(u),

and the above working provides a (finite) recursive procedure for the determin

ation of the tt.’s , i < i < k.: “
The instants chosen as regenerative points have significance only in 

the process providing the arrivals, and it is of somewhat more interest in the 

queueing system to know the behaviour of queue length at arrival instants. For 

a moving average of order one, the two, of course, coincide.

The first arrival after a regenerative point is at A , and the

length bQ of the interval ( ,Am+-̂) is independent of any of the 

previous history of the queue. As the number of departures from the queue 

during (R^, ^m+ )̂ depends only on the queue length at R^ and on the time 

bQ U , the queue length as found by an arrival must possess a limiting dis-



tribution, since each consecutive pair of arrivals are separated by a 

regenerative point. In fact, if we write

P_. = limiting probability of an arrival finding a queue of length

115

j > 0,

then

P. = / 2 7T -^„{jlj + ̂ jb u} dU( u) , j > 0.3 J o £=0 3 + * 1 o
For j > k . P_. has a simple form ,since

_3+£-k7T . . = TJ IT,] + £ k j > k,

and

{j I j + 5, ;bQU } = exp [-kybQu](kybou) /£!, j > k,

and thus

P. = TD / TT. T k exp[-(l-T)kyb u] dU(u) , j > k. ] ' 0 K o

The corresponding form of P^ for j < k is easily found to be

00 k-j
P = Jo Z TT £ {j|j + Ä;bQu} dU(u) 
J l-o J

+ J ir^TykC J exp[-(1-T)ky0]{j |k;u-0}d0]dU(u) , 0 < j < k

2. Solution for tt£J 0 < £ < k-1,

The recursive relations (1.8) for tt ,. . ,tt,o k-1
in simple terms if we make use of known forms of the p 

We introduce the generating function

can be solved explicitly

ij*

k-1
I

j=o
TT . Z3

3tt( z )
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By ( 1 . 9 ) ,  ( 1 . 8 ) ,  we have
°° k -1  i  k -1

( 2 . 1 )  7 T (  z)  = /  Z I T .  Z Z' C 1
-o Z=o  j=o

°° k k -1
+  /  i t .  Z Z o k Z=o  ]=o

+ / 0 Z
m=l

{ i - £ | i ; b Qu} { j | i -£ + l ;b ^ u } z ^  dU(u)

( k - £ |k ;b u } { j j k - £+1;b^u}z^ dU(u) 

k+m k-1
Z Z {k+m-Z I k+m;b u} x 

Z-o j=o

{j |k+m-£+l;b u}z^dU(u)

= f [ l + (  z - l ) e x p ( - y b . .  u )  ] tt[ 1+ e x p ( - y b  u)  ( z - 1 )  e x p ( - y b 1u ) ]' o 1 o 1

tt̂ _ 1 e x p [ - ( k - l ) y b  u ]  e x p C - k y b ^ u ]  dU(u)

OO

r k+ J [ 1+ ( z —1) e x p ( - y b ,  u )  ] tt, (1+ e x p ( - y b  u )  ( z - 1 )  e x p ( - y b 1u ) ]
*  0  1  K  O  1

k + 1
-  e x p ( - k y b Qu)  [ l + ( z - l )  e x p ( - y b ^ u ) ]  

b l U+ e x p ( - k y b ^ u )  e x p ( - k y 0 ) y k  x

{ [ l + ( z - l )  e x p { - y ( b 1u - 0 )  } ]b - z  e x p ( - k y ( b ^ u - 0 ) ) }d0 dU(u)

00 °o b u
+ TTT ,  /  Z  I  °  exp(  -k y  0 ) 0m 1 ( Tyk )m[ l + (  z - 1  ) e x p (  - y b , u )  ] x

°m=l  ° ( m - 1 ) !

[ { l + ( e x p ( - y ( b  u - 0 ) ) ) ( z - l ) e x p ( - y b  u ) } k

-  { e x p ( - y k ( b QU - 0 ) )} ( l + ( z - l )  e x p ( - y b  u ) } k ]d0

00 b u m — 1
-  Z [ °  e x p ( - k y 0 )  ( T y k ) m x 

m=l

k { l -  e x p ( - y ( b QU - 0 ) )} e x p ( - ( k - l ) y ( b  u - 0 ) ) d 0  x

z^ exp ( - k y b ^ u )  dU(u)  

oo oo m
+ 7t, f  Z Z ( e x p ( - k y b  u ) ) ( k y b  u ) m 1/ ( m - i )  ! x k J o , . o om=l  i = o



{[1-Kl-z) exp(-y (b u-0 )) ]k -z^ exp(-ky(b^u-0))} d0 dU(u), 

making use of (1.1)-(1.4).

We now define

1 djq. = -7-7—  [ r TT(z)] , 0 < j < k-1.
3 3 I dz3 Z=1

By iterated differentiation of (2.1) we find

°° kq_. = /o q_. exp(-jyu)+q^_1exp(-yb^u)exp(-( j-l)yu)-( j7Tk_1exp(-yu(k-bo)) dU(u)

00

rk /q( j )exp( "jyu)+j(k k-1t 7r, J ( . )exp(-jyu) + j( )exp(-yb u)exp(-(j-l)yu)

blU k+ exp(-kybQu) yk exp(-ky0)( )[exp(-jyCb^u-0))

- exp(-kyCb^u-0))]d0 dU(u)

°° b u
+ 7Tk J f ° exp( -ky 0( 1-T)) x

{[(k )exp( -yj (u-0))+j ( k )exp( -yb u) exp(-y( j-1) (u-0)) ]
3 j-i

l/- _i_ "j
- exp(-yk(b u-0))( . )exp(-ybnu)}d0o j 1
b u ,f Q ° exp(-ky0(1-T)) k( ){exp(-y(k-1)(b^u-0))exp(-yb^u)

- exp(-ky(u-0))}d0 dU(u)
°° blU k+ TT / Tyk / exp(-ky0(l-T))( . )[exp(-yj(b u-0) )-exp(-yk(b u-0) ))]d0 k - ' o ' o  j 1 1

dU(u) , j > 0.

This is a linear first order difference equation for the quantities 

q.. It is more naturally written in terms of
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q^ = q . /  n ^ ( j - i + b  ) ( i - i K j ) )
J J i = i

. \ \ “ l

( 2 . 2 ) q*. = q'. , + f.iT 1 »J 3 -1  ] k ’
j > 0  j

w here f  i s  a known f u n c t i o n  o f  j and we ta k e
j

q ’ = q . o o

The te rm  in  tt, has  been  e x p re s s e d  as  a p r o d u c t  o f  tt, w ith  a known K“ K

f u n c t i o n  which h as  been  i n c o r p o r a t e d  i n  f .  The a p p r o p r i a t e  form f o r  tt 

r e a d i l y  f o l lo w s  from ( 1 . 9 ) , ( 1 . 8 ) :
00

_ mm
\ = \ - i  P k - i , k + 1 \  t Pk+m,k>m=o

on s u b s t i t u t i o n  f o r  t h e  t r a n s i t i o n  p r o b a b i l i t i e s .

By ad d in g  ( 2 . 2 )  f o r  j = i + l , . . , k - l  we s e e  t h a t

k -1

( 2 . 3 )  q |
k - 1

g - Z  f .  tt v » 0 < i <  k- 2
j = i  +  l

j  " k

i  = k - 1 ,

where

k -1 -1g = 7Tk _ L II i^ ( i - l+ b ^ )  ( 1 —ip( i ))
i = l

S ince
k _ l  °°

tt (1 )  = Z tt. = 1 -  Z tt T
j=o  J j - k

j - k

we have

q  = 1 -  tt, (1-T)  o k
-1

and

q' = 1 -  tt, ( 1-T) 1 . ^o k

T h is  r e l a t i o n  s u f f i c e s  f o r  th e  e l i m i n a t i o n  o f  t h e  unknown tt. f r o m  k

( 2 . 3 ) .



119.
k-1

- 1 .TT, = (g-l)/( E f. + ( 1-T) )K .3 = 1

The probabilities tto ,..,tt̂  iS can now be determined from

71 j ip- [ — tt(z )]
3! dẑ

where

k-1 .
= E (-)1_D(^) q. , 

i = j 3

k-1 k-1
E f.(g-l)/( E f . + (1-T) "), i = 0,

j=l 3 j-1 3
k-1 k-1
E f.(g-l)/( E f.t(l-T) X)] x

- 1 .

j=i+l 3 3=1

i -1n ip( j-l+b ) (1-Tp( j )) , 1 < i < k-2 ,
j=l
n iK j-l+b )(l-iK j)) , i = k-1.
j=l

_3._____ Finite waiting room.

Suppose that the maximum number of customers that can wait (including 

the k in service) is restricted to some finite number m > k , and that any 

arrivals finding m customers in the system are lost.

Then equations (1.1)-(1.4) are still valid, but (1.5) must be modified 

to
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r
/ Z {i-Ä|i;b u}{0|i-£+l;bu}dU(u), j = 0, i t

£=o

oo- i-j+1
/ Z {i — £ Ii;b u}{j |i-£+l;b u}dU(u) , 0 < j < i + l,i#n,
J r \ O -L

pij

£=o 
0 ,
oo m

j > i + 1,

/ Z {m-£ |m;b u}{0 |m-£+l;b u}dU(u)
£=1

+ J {m|m;b u}{0|m;b u}dU(u), i = m, j = 0,

m-]
/ Z {m- £ |m ;b u}{j |m-£+l;b u}dU(u)

£=1
+ J {m|m;b u}{j |m;b u}dU(u) , i = m, 0 < j < m,

OO

/ {m|m;b u}{m|m;b u}dU(u) , i = j = m.J o o 1 1
The establishing of ergodicity follows as in section one. A non-zero row 

vector x = (x q ,x ^,..,x } is required satisfying

(3.1) x . 3
m

= Z x . 
i=o 1

Ppj» 0 < j < m.

As before p̂ _. = 0 for i < j-1. j > 2, so that (3.1)

(3.2) x .3
m

= Z 
i = j-l

x i P i y  1 < 3 <

(3.3) Xo
m

= Z 
i=o

x . p . .
1 rio

Since P j i j   ̂ ^ » 1 < j < m, if we assign to xm an arbitrary non-zero

real value, the equations (3.2) provide successively solutions for xm_2_>

x ^,..,x . That the values thus obtained satisfy (3.3) also follows as m-2 o
before. Since the limiting probability distribution must also satisf y( 3.1), 

this limiting distribution is obtained by normalisation of the constructed

ve ct or x .
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4. General moving average.

The simple method used in the above sections does not readily generalise 

for moving averages of higher order, for which we shall work directly in terms 

of the more natural arrival instants using Laplace-Stieltjes transforms and 

complex variable theory as in Chapter T+o. This method is, of course, avail

able for the special case of G(2)/M/k, but is less convenient for an explicit 

determination of the P_.'s for a particular U(.).

We give the argument in outline only.

The queue length transition probabilities {j | i;u } for intervals with

out arrivals still possess the forms given by (1.1)-(1.4), so that, using (1.1), 

we have,, from comparing the queue lengths at - 0, - 0 , that

r

(4.1) P.(u(m+P))

Z P.(u(m+P 1)){0|i+l;b

<
• MVIX.JL,!, u +..+b u }, j = 0,£_0 1 1 o m+p p m  J 5

00

E P. . ~^){j|j+i;b u + ..+b u }, 0 < j < k,^_o j+i-l J,J o m+p p m ’ J

.Z P. . (u(m+P ^ )exp[-ky(b u +..+b u )] x 1=0 3+1-I ^ M o m+p p m

k [ky(b u +..+b u )]1/i!,\ o m+p p m

Forming the generating function
' m+ri ̂ "i I .

Z < 1,

j > k.

P(u(m+p);z) Z P.(u(m+p))zh 
j=o 3

from these relations leads to

(4.2) P(u^m+P^;z) = zP(i/m+P 1\z)exp[-( 1-z 1)ky(b u +..+b u )]
r o m+p p m

- z j. p ^Gn+p-U j B(m+p) (z)
3 max (0,3-k+2;3=0

+ .Z P . ( ) {oIi+l; b u +..+b u } l-o l ' o m+p p m



1 2 2 ,

k - 1
+ E -z? E P . . , ( u (m+P ^ " ^ ) { j l j + i ; b  u , .  . ,b u },- i + l - l  J 1 J 5 n  m + n  5 5 n  m 9

j = l  i=o o m+p p m '

f o r  k > 2 ,  z < 1,  z  ̂ 0,

where we d e f i n e

B^m+P ) ( z )  = £ e x p [ - k y ( b  u + . . + b  u ) ] ( k y z  ^[b  u + . . + b  u t f / l l ,l  . o m+p p m  o m+p p m

i  > 0 ,  IzI < 1 ,  z t  0.

On t a k i n g  L a p l a c e - S t i e l t j e s  t r a n s f o r m s ,  we n o t e  t h a t  t h e  t r a n s f o r m  of  t h e  sum 

o f  t h e  s e c o n d ,  t h i r d  and f o u r t h  e x p r e s s i o n s  on t h e  r i g h t  hand s i d e  o f  ( 4 . 2 ) can 

be  w r i t t e n  i n  t h e  form

00

E c . ( s ^ P  ̂ ;m)zk 1  ̂ , ( p )  s. j  ’ = c ( s  r  ; m ; z ) .
3 - 0

We o b t a i n

( 4 . 3 )  P * ( s ( p ) ;z ;m + l )

= z P * { ( l - z  1 )kpb1+sp _1 , ( l - z  2 ) k y b 2+sp _ 2 , . .  , ( l - z  1 ) k y b ^ _ I + s 1 , ( 1 - z  1 ) x

kyb :z :m)
P

x i|;{ ( 1 - z  ^ k b ^ + s  /y  } + c ( s ^ P  ̂ ;m ;z )  , zeR,  Re. s^  > 0 ,  1 < i  < p ,  

where R i s  t h e  s u b s e t  o f  | z | <  1 d e f i n e d  i n  c h a p t e r  two.

As i n  t h e  c a s e  o f  a s i n g l e  s e r v e r ,
00

( 4 . 4 )  /  udU(u)  > (yk )

s u f f i c e s  f o r  a p r o p e r  queue l e n g t h  l i m i t i n g  d i s t r i b u t i o n  t o  e x i s t  ( f rom Loynes 

( 1 9 6 2 ) ) .  We w r i t e

P .  = l im  E [ P . ( U (m + p - 1 ) >], j > 0 ,
 ̂ m-*»

and we can j u s t i f y  t h e  d e f i n i t i o n

P(w1 ,w2 , . . , w  ;z )  = l im E[P(Ü U 0 u u . >u^  . z ) ] i  | ,  | < 1,
c  m - * »  9 *
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taking the expectation with respect to 

are the particular values u^, u 

transform by

U , ..,U , , and where w^w»,o m-1 1 2 *
,u n. We denote its integral 5 m+p-1 6

(4.5) P*(s^^;z) = E[P(W^^ ;z)exp(-s W -s W -..-s.W )], | z [ < l,Re.s.^0,p p p-1 p-1 1 1  l

where the are identically and independently distributed random variables

with common distribution function U(* ). c*(s^\z) is defined by

c*(s^^;z) = lim c(s^^;m;z), |z| < 1, Re. s^ > 0.
m->oo

Letting m -> 00 in (4.3) and making recursive substitutions gives

(4.6) P*(s^^;z) = c*(s^^;z) + zip{(l-z ^)kb +s /y} xo p
[c*{(l-z 'L)ykb1+s . . ,(l-z 1)ykb^_1+s1,(l-z 1)ykb^:z}

+ zb{(1-z 1)k(b +b )+s , /y} xo 1 p-1
[c*{(l-z 1)yk(b1+b2)+s^_2,..,(1-z 1)yk(b j+b ),(1-z i)ykb^;z}

+ zip{(1—z 1)k(b +b +b )+s 0/y} xo 1 2 p-2

x [c*{(l-z 1)yk(b1+..+b ),..,(l-z 1)ykb^;z) x

[l—zip{(1—z 1) k(b tb +. . +b )}] 1]]..], o 1 p
zeR, Re. s^ 2 0.

Denote the expression on the right hand side of (4.6) by D(s^^;z). 

Since P*(s^^;z) is the generating function of a probability distribution, 

D(s^^;z) must be a regular function of z for |z| < 1, Re. s^ 2 0, 

by analytic continuation.

It can be shown that D(s^^;z) is a regular function of z for

I z I > 1, Re. s^ > 0, except where [l-zip{(l-z ^)k}] vanishes, i.e., where

z = T 1, when it has a simple pole.

Also D(s^^;z) = 0( [z|^+^ )̂ for |z|° -> °°.

Hence P*(s ^;z) is of the form
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(4.7) P*(s(p);z) = ?Z B (s(p))z£ + B(s(P})(1-Tz) L, Re. s. > 0, |z| < 1,
SL=o

where the B^(s^P )̂ and B(s^P )̂ are functions of the s's alone.

When s^ = 0, 1 < i < p, P*(s^P^;z) becomes the generating function
00

Z P^z of the limiting distribution of queue size as found by arrivals and 
i=o
the B's to constants, B and B_. , 0 < j < p+k-2. The limiting distribution 

is thus geometric from P^+^ p onwards, with common ratio T. This result was 

established by D.G.Kendall (1953) in the special case p = o, i.e., a general 

recurrent input. The B ’s can be determined much as in Chapter Two.

5. Limiting distribution of waiting times.

If an arrival finds k-1 or fewer customers already in the system, he 

does not have to wait to commence service. If he finds j > k customers 

already present, he has to wait until j+l-k of these have been served before 

his service commences. As the probability of precisely j+l-k such services 

being completed in a time x is

exp (-kyx) (kyx)^+1 k/(j+l-k)!, 

the waiting time for arrivals can readily be determined.
J

We write pr(w < x) for the limiting cumulative probability of an

arrival having to wait a time < x before beginning service. Then 
k-1 <» j-k

pr(w< x) = Z P. + Z P.(l- Z exp(-kyx)(kyx)1/i!)
j=o  ̂ j=k  ̂ i=o

p-2 p-2 .
= 1 - Z ( Z Bp+ .) exp(-kyx)(kyx) /iI 

i=o j =i -1

- Tk(l-T)_1 B exp {-kyx(1-T)}, x > 0, p > 2.
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When p = 1, i.e., when the input is of general recurrent form, it is 

readily verified that the terms involving the B^+j,s do no't appear in the 

result, so that the waiting time distribution reduces to a weight at the 

origin combined with a negative exponential distribution. This result was 

first noted by D. G. Kendall (1953).

6. Infinitely many servers.

The equilibrium queue length distribution of G(2)/M/|£' can be obtained 

much as ^  * 5 \  q section "two, working in terms of the regenerative

points? {R ).n »
Suppose that the equilibrium queue length distribution on the {R^}

has the probability generating function
00

P(z) = Z P.z1 , Iz I < 1.
i=o 1

The transition probabilities p̂ _. for the queue lengths at consecutive 

regenerative points R, R* have simpler expressions than before, since the 

fourfold form (1.1)-(1.4) simplifies to

{j|i;u} f (j)((-exp(-yu))^ i exp(-jyu),

1°

0 < j < i. 

j > i.

The p .. maintain the form ID
/°° i-j+1

Z {i-£Ii;b u} {j|i-Ä+l;b u} dU(u), 0 < j < i+1,
£=o

P. . =
13

Z {i—Ä I i ;b u} {j|i-£+l;b u} dU(u), j = 0,
£=o

0 , j > i+1.

(2.1) becomes
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(6.1) P(z) = {^[l+Cz-l)exp(-ybQu)]P[l+(z-l)exp(-ybou)exp(-yb^u)] dU(u).

P(z) is no longer a polynomial and it is not immediate that the 

quantities

^  pc* > W
still exist. We shall presume that they do, our a posteriori justification 

residing in the fact that our solution gives finite values for the q_.. 

Differentiation of (6.1) gives
CO 0 0

qj = qj + qj-i /0 exp(-yu( j-b1)) du(u), j > l,
that is

qj = qj-l 3 ^
whence

q.= q n ] o .J i = l

We note that since

[ij>( i-b1 )/(l-4»( i ))] .

\p(a) ■+ 0 as a -> 00 ,
00

i/j( j-b^)/(l-^( j )) is ultimately less than 1/2, so that £ q. is actually
j=o 3

a convergent series. Our assumption is clearly justified.

Since

qQ = p(D = 1»
we have

q. = II [ip(i-b ) / (1—ip( i )) ] , j > 0,
3 i=l

where we take the empty product as unity.

The probabilities { P . } can now be determined from
-J - A m

Ip- [— 7- I q.Cz-l)1]
^  dz3 i=o 1 z=o

= l (-)1 k b  q..
i=3 ] 1



1 2 7 .

The e q u i l i b r i u m  d i s t r i b u t i o n  {Q_.} of  t h e  number o f  c u s to m e rs  i n  t h e

sy s te m  as  found  by a r r i v a l s  can now be found .

An a r r i v a l  w i l l  f i n d  j cu s to m e rs  i n  t h e  sys tem  i f  and on ly  i f  t h e r e

were j+m (m > 0) c u s to m e rs  i n  t h e  sys tem  a t  t h e  l a s t  r e g e n e r a t i v e  p o i n t  and

t h e r e  have  s u b s e q u e n t l y  been  m d e p a r t u r e s .  Thus 
00 00

Q. = I P .  /  ( 1 +m) ( l - e x p ( - y b  u ) ) m e x p ( - j y b  u) dU( u) ,  j  > 0.
1 1 +m J o i r o r  o J -J m=o J J
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PART 2

A queueing system with non-vecurrent 
input and general batch servicing.

In this part we consider a system with an arbitrary input and general 

recurrent batch services. The number of servers is infinite. Section one 

gives the generating function and mean and variance of the queue length 

distribution at an arbitrary instant of time. In sections two and three

we specialise to stochastic inputs, i.e., inputs for which the inter-arrival 

intervals possess a joint probability distribution. We verify that our

results reduce to those of Finch (1961) in the special cases of a general 

recurrent input and a general recurrent input with constant service times.

Suppose that arrivals occur at times t , n = 1,2,.., and that after 

every kth arrival a servicing of k arrivals is begun. We assume that the 

number of servers is infinite. Initially, at t = 0, the system is empty

and the arrival process {t^} is about to start. The batch service times 

are I.I.D. with distribution function L(x), x £ 0. No assumption is made 

about the process {t }. We define q ( t ; t ^ ,..) to be the queue length,

i.e., the number of individuals awaiting service or being served at time t.

The system can be regarded as a generalisation to bulk service of a 

telephone traffic problem considered by Finch (1963a) or as a generalisation 

of an inventory problem of Finch (1961). In the telephone traffic problem, 

calls arrive at prescribed times at a telephone exchange with infinitely 

many channels. The holding times of the calls are non-negative random 

variables distributed independently of one another, the channels concerned,

and the arrival times.
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F i n c h ' s  i n v e n t o r y  m odel i s  t h e  i n f i n i t e  b i n  sys tem  o f  i n v e n t o r y  

c o n t r o l .  Demands f o r  an i te m  o c c u r  a t  t im e s  t  , n = 1 , 2 , . . ,  s e p a r a t e d  by 

I . I . D .  i n t e r v a l s ,  and a f t e r  e v e ry  k th  demand an o r d e r  f o r  a r e p la c e m e n t  o f  k 

i te m s  i s  made. I n i t i a l l y ,  a t  t Q = 0 ,  t h e  b i n  i s  f u l l  o f  i te m s  h e ld  in  

s to c k  and th e  demand p r o c e s s  { t^}  i s  a b o u t  t o  s t a r t .  The b in  i s  t a k e n

t o  have  i n f i n i t e  c a p a c i t y  and th e  l e a d  t im e s  o f  t h e  o r d e r s ,  i . e . ,  t h e  t im e  

i n t e r v a l s  be tw een  t h e  p l a c i n g  o f  th e  demands and t h e  c o r r e s p o n d in g  d e l i v e r i e s ,  

a r e  I . I . D .

Here we g e n e r a l i s e  F inch  (1961) to  n o n - r e c u r r e n t  demand t i m e s .  The 

c o r r e s p o n d e n c e  i s  o b t a i n e d  by r e p l a c i n g  a r r i v a l s  by demands and o r d e r s  by 

s e r v i c e s  ( t h e  i n s t a n t s  o f  a r r i v a l  o f  d e l i v e r i e s  c o r r e s p o n d in g  t o  t h e  i n s t a n t s  

o f  c o m p le t io n  o f  c a l l s ) .

In  ( 1 9 6 3 a ) ,  F in ch  o b t a i n s  th e  l i m i t i n g  v a lu e  o f  th e  v a r i a n c e  o f

( t h e  number o f  c a l l s  i n  t h e  sy s tem  a t  t im e  t  - 0 )  f o r  a h o ld in g  t im em

d i s t r i b u t i o n  B(x)  g iv e n  by

r , -x  l - e  ,
<

oA
 1

X

o
V .

x < 0

when th e  i n t e r - a r r i v a l  i n t e r v a l s ,  t  - t  , a r e  g iv e n  bym+1 m 0 J

t  - t  = u +bu , , m+1 m m m-1

b b e in g  p o s i t i v e  and t h e  u^ I . I . D .  n o n - n e g a t iv e  random v a r i a b l e s .  T h is  i s

e s s e n t i a l l y  o u r  se co n d  o r d e r  moving a v e r a g e .

We n o te  t h a t  t h e  v a lu e  g iv e n  f o r  l im  Var (n ., ) ,m+1
n-*°°

l im  V ar(nm+1) = i | / ( l ) i | ; ( b ) [ l - ip ( l ) i j / ( b ) ]  [ l - ^ (  1+b) ]  1
n+°°

+ 2ip( 2)ip(b)ip(l+  2 b ) [ 1—\p( 1 + b ) ] _1[ 1 - ^ ( 2 + 2 b ) ] _ 1 ,

where

ip(s) = E [ e x p ( - s u  )]  , m
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is incorrect and should read

lim Var(n .,) = ip( l)ip(b)[l— l)ih(b) - ip(l+b)] [l-ip(l+b)] m+ln-*»
+ 2^(2)b(b)b(l+2b)[l-^(l+b)]”1 [l-b(2+2b)]“ 1.

1, Transient behaviour of r\(t; t̂  * t ^  . .)

After the batch beginning service at t^ has completed its service, 

the queue length is the same as if the arrivals at t^jt^,..,!^ and the 

servicing at t, had all not occurred, i.e. , the queue length is the same as 

if the first arrival had been at tk and that after that' the process had 

proceeded as before.

When the servicing commencing at t, has begun but not been completed,K
the queue length is precisely k greater than if the arrival service pro

cess had begun with a first arrival at t^+  ̂ and first service at t^.

Hence if h is the duration of the service beginning at t^, we have,

for t V r+

f n(titk+l,tk+2,*‘} if h - t"tk(l.l)n(t;t1,t2,.)= <
n(t;tk+l’tk t 2 > " ) if h > t-t, k

Define P(z ,t;t] ,t2 ,. .) by
00

(1.2) P(z,t;t t ,..) = E P (t;t ,t ,..)zl | z | < 1,

where

\ r !i O t_ t r

(1.3) Pj(t;t1 ,t2#..) = Pr [n(t;t1,t2 ,..) = 3 | t x ,t2,..].

On multiplication of (1.3) by 7? and summing, we obtain, from (1.1), (1.2),

that for t > t, k
P(z,t;t1,t2,..) = [L(t-tk)+zk {l-L(t-tk )}]P(z,t;tk+1,tk+2,..), |z| < 1,

where, as given in the previous section, L(x) is the service time distribution

function.
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Since a similar argument can be applied to P(z,t;t^+1 ,t^+2,..), 

we can make use of induction to express P(z ,t:t^ ,t2 ,..) in the form

(1.4) P(z,t;tl9t2,..) = z [L(t-tsk)+z {1—L(t-toV)}], IzI < 1,
s=l sk'

where r is the greatest non-negative integer for which t-t^ > 0

(we take the right hand side of (1.4) to be zU if r = 0), and u is the

number of values of v for which t , < t < t.rk v The term z arises from

the arrivals in (t ^,t], which must still be present in the system as their 

service has not commenced.

From the generating function P(z ,t ;t ,t2 ,..) given by (1.4), we 

obtain in the usual way the following expressions for the mean and variance 

of the distribution of r\ (t;t ,t2>..) at a given time t:

u+k E [l-L(t-t ĵ )], 
s=l

E[n(t;tlSt2,..)] =

r > 0

r = 0

Var[p(t i't1>t2*.. )3 =

E [{l-L(t-tsk)}L(t-t )], r > 0 
s=l

r = 0

2. Transient behaviour : stochastic arrival times.

Define

0 . = t , - t 0 < j < m ,  t = 0,m , j m+1 m-j ~ J o

and suppose that the arrival times form a stochastic process, with the non

negative random variables 0 . having ioint distribution functionm,D
P (x ,x.,.. ,x ) = Pr(0 . < x., 0 < j < m).m o ’ 1 ’ m m ] J -

If denotes the unconditional probability that the (mtl)th arrival
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finds j individuals in the system, j = 0,1,.., m , then by writing r as 

[m/k], and u as m-[m/k]k, substituting t for t in (1.4), and integrat

ing , we obtain

/P(m+1)(z)
r /v11 [m/k] ,

zm'Cm/ ]K " CL(h,m-sk)+Z {1'L(4 ,m-sk)}dHm,k( ̂  ’ S = 1

Z I £ 1 ,

where is the joint probability distribution function

H (4>) = Pr( 0 .,<<|> , j = 1,2,.. , [m/k]),m,k Y m,m-]k Ym,m-]k’ J
and

p(m+1)(z) Z P(m+1)zj.
j=o 3

The mean value, E(n jL)» of the queue length as found in the system by the 

(mtl)th arrival can be directly deduced to be
oo

E(n ,) = k / [l-L(z)]dG _(x) + m - [m/k]k, m+1 J o- m+1
and the corresponding variance, Var (nm+-̂ )> to be

oo oo oo
Var(n ) = k2 / / (l-L(x)} {l-L(y)}dG (x,y)-k2[ / {l-L(x)}dG (x)]2,m+1 i o - J o- m+1 J o- m+1
where

G (x) m+1
[m/k]
E F (x),i m ,s s=l
[m/k]

G (x,y) = £ F . (x,y),m+1 J m,s,t

F (x) m ,s Pr(0 < x),m,m-sk

F .(x,y) = Pr(0 < x, < y) , s / t.m,s,t J m,m-sk m,m-tk

These results are extensions to bulk service of the corresponding results

given in Finch (1963a).
From (1.4) also follow immediately expressions for the corresponding



generating function (which we denote by P(z,t)), mean and variance for n(t) 

(the unconditional queue length at time t), i.e., results analogous to the 

above for times no longer restricted to occur at the instant of a particular

arrival. We express t^» s = l»..»[m/k] as 0^ m“6m m_s]<*

00 _ r  / v i v  vp(z,t) =  z f  m  n [L(t-e +e t,)+z {d-L(t-e te )}]dHJ z m,m m,m-sk m ,m m,m-sk m,k,m=o s=l 5 5  5

|z| <; 1,
00 [m/k]

E[n(t)] = Z / [k E {l-L(t-0 +0 , ) }fm-[m/k]dH (0),, m,m m,m-sk m,k,om=o s=l 5

Var[n(t)] =  Z J [(.m-[m/k]k)2+{k2+2k(m-[m/k]k)} Z {l-L(t-0 +0
[m/k]

m=o
[m/k]

s=l m ,m m,m-sk )}

+ k s q—q {1 L(t em,m+0m,m-sk) } 9m ,m+9m,m-qk}}]dHm,k,o(9)
s/q

- (E[n(t)])2,

where in each expression the integration is carried out for

9 -9 , < t, p = 1,2,.., [m/k] and 8 -8 < ti 8 > t,m,m m,m-pk r * * * m,m m,o * m,m “ *

and where

H (<J>) = Pr{0 <tj) ,0 < 4> ,0 ., < 4> . i , j = 1,2,.. ,[m/k]}m,k,o m,o m,o m,m m,m m,m-jk ~ un,m-]k J * ’ ’

3. Transient behaviour : number of busy servers.

Denote by £(t;t^ »••) the number of servers occupied at time

and by U(z,t;t^,t^,..) the corresponding generating function. Working

similar to that used in considering n ( t , t 2,..) yields
r

(3.1) U(z;t;t ,t ,..) = n 
s—1 [L(t"tsk)+z{1"L(t“tsk)}]’ z| i 1,

t
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(3.2)

(3.3)

E[C(t;t1,t2,..)]•
r
Z

= 1 
0

Var[C(t;t1>t2#..)]

[l-L(t-tck)], ■ r > 0

, r = 0 *

[l-L(t-tsk)]L(t-tsk), r > 0

where r is the greatest non-negative integer for which t-t k > 0 

(we take the right hand side of (3.1) to be zero if r = 0).

(3.1), (3.2), (3.3) agree with the results obtained by Finch (1961) for 

the system D(G)k. In this notation the first letter refers to the demand pro

cess distribution, the second to the lead time distribution, and the third 

gives the re-order quantity. D denotes a deterministic distribution of a 

random variable which is constant with probability 1, G to a general distrib

ution .
,(m+l)

t - -0m+1
[m/k]Z
j=o

there are
(m+1) j U . zJ .

denote the unconditional probability that at time 

j busy servers, j = 0,1,..,m, and let t/m+^(z) = 

Then, analogously to the results in section 3, we obtain

(m+1), ,U (z) =
[m/k]
f S h  CL(em ,m -sk) + z{1-L(0m ,ra-sk)}]dHm ,k(9)>

E(W  -
00
/ [l-L(x)]dG (x) ,J o- m+1

Var(W  =
OO
/ [l-L(x)]L(x)dG .(x) ,J o- m+1

where

£ is £(t;t,,t0..) evaluated at t = t • - 0.m+1 1 2  m+1

We have obtained generally as (3.4) the distribution for £ whichm+1
is not derived by Finch. Finch gives E(£^+ )̂ for the case G(G)k and
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finds the distribution of £ , for G(D)k, i.e., when the lead time is

constant. We verify below that in these cases (3.4), (3.5) simplify to yield 

the same results.

When the intervals between successive demands are identically and 

independently distributed with distribution function A(x), say, ^(x) 

becomes sk^(x), where we write A^V \x) for the rth-fold iterated

convolution of A(x), r a positive integer, and

[m/k] «00E(£ , ) = l [1-L(x)]d[Am+1 .. Jo-s=l
(m+l-sk) (x)]

[m/k] , v
= Z r A(m+1-sk)(K)dL(K),

s=l

agreeing with the result b^_(w) obtained by Finch, where

b (w) = / a  ̂"tk+w"1 ̂  (x)dL(x) and m = tk+w,t = [m/k], w = 0,l,..,k-l, t o
Suppose further that the lead times have constant length l .

If for some s, 1 < s < [m/k], 0 . < 5, , thenm,m-sk
9 ., < l for s < t < [m/k].m,m-tk - -

L(0 . ) + z{l-L(6 , )} -m,m-sk m,m-sk

z , 6 , < Am,m-sk

1 , 0  . £ £^  m ,m-sk

Hence

,(m+l)
[m/k]-s / [l-A(k)(£-x)]d[A(rn+i_i+1 k)(x)]' o-

A(m+l-s+rk)u ) _A(m+l-sk)u)> s = 1>2

and similarly 

rT(m+.l) = 1 - A (m+1-[m/k]k)(£),

.(m+1)
[m/k] = A(m+lk)U),



which are the same results as those obtained by Finch.

If we denote by £(t) and U(z,t) the random variable giving the 
unconditional number of outstanding orders at time t and its generating 
function, then, reasoning as in section 2, we find that

U(z,t) = E
m=o

[m/k]n
S=1

[i-L(t-e +0 . )+z{i-L(t-e +0 .)}]m,m m,m-sk m,m m,m-sk

[m/k]
dH ( 0) , I z I s 1, m,k,o • 1 1

E[£(t)] = E / n {1-L( t- 0 +0 ,)} dH , (0),J m ,m m,m-sk m,k,om=o s=l

00 [m/k]
Var[£(t)] = E / E {l-L(t-0 +0 ,)} L(t-0 +0 .)1 m.m m,m-sk m,m m,m-skm=o s=l ’
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CHAPTER SEVEN

Queues with moving average service times.

1. Introduction.

In the preceding chapters, we observed that the usual assumption that 
successive inter-arrival intervals for a queue are identically and independent

ly distributed is very restrictive, in that, where the input is provided by 

another process, one might well expect some time dependence on the history of 
that process. We have followed up the consequences of postulating a simple 
model incorporating such a time dependence, namely, an input whose inter
arrival intervals form a moving average of an I.I.D. sequence of non-negative 

random variables.
In this chapter we give our attention to the possibility of moving 

average service times, i.e., service times which are moving averages of an 
I.I.D. sequence of non-negative random variables.

A situation for which moving average services might provide a better 
approximation to reality than the general recurrent service is where the 
server is a human operator. The operator’s efficiency could well be expected 
to change only gradually with time, and this would be reflected in a positive 
correlation between the times taken for him to handle consecutive and similar 
tasks, whether handled immediately the one after the other or with a break 

between.
We deal with a single server only, since the interpretation for a single 

moving average is dubious when several customers are being served simultaneous
ly, and there are mathematical complications concerning the non-equivalence 

of different servers when several distinct moving averages are involved.
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In fact, even with only a single server the complete solution for the 

limiting queue size distribution appears to be difficult, and we derive it 

explicitly only for moving averages of order two and three. The difficulty 

in the general case is perhaps not too surprising in view of the awkwardness 

involved in the extraction of the individual probabilities from their gener

ating function for a moving average of order one, i.e., the standard situation 

of the general recurrent service time. The generating function we obtain for 

the second order moving average is closely related to that for general recurr

ent services as derived by D.G. Kendall (1951).

The limiting probability that a departing customer leaves the queue 

empty is identical for first and second order moving averages, and we find 

that this result can be conveniently obtained for the general order also.

Consider, then, a single server queue for which 

(i) arrivals occur individually in a Poisson stream with parameter A, 

and (ii) the service time S of the nth arrival has a distribution

Sn b U A o n+p + b,U , + . .+ b 1 n+o-1 i n > 0 ,

where

Zb. = 1,

and (U } is an I.I.D. sequence of non-negative random variables with dis

tribution function U( • ). As in chapters two and four, the b̂ . need not be 

non-negative, although both they and U(.) are strongly constrained if they are 

not. Also, the working of sections five and six in which regenerative points 

are used will need to be modified in this case, as mentioned in Chapter Five. 

We shall adopt the intuitive condition
— I 00

A > / udU(u)
o

for the existence of a unique limiting distribution of queue length. The 

sufficiency of this condition follows from Loynes (1952).

The basic notation is that of Ciapter T^o, except that here P.(u^n+^ ^  )
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on com-

represents the probability that, in the particular realization of the process 

in which (u^n+p takes on the value (u^n+p ^ ) , the nth customer 

pleting his service leaves j customers in the queue.

We define the associated generating function P(u^n+P ^  ;z) by

lzI 51,P(U( W P-1);2) = ! |z
i—o / \

and its integral transform P*(svp ;z;n) by

P * ( s ^ ; z ; n )  = E[P(t/n+P 1 \z)exp(-s U -s U -..-s U )],r p n+p-1 p-1 n+p-2 1 n
IzI < 1 ,  Re. s ^ 2 0 , l < i < p .

Associated with the limiting distribution we have

P(w — ,w ;z) = lim E[P(U ...,U u ,u ...,u JZ)].
r n-x» r

where w., ,. . ,w , are the particular values assumed by u ,..,u ,,1 9 p ’ ^ J n ’ ’ n+p-1*
and the corresponding integral transform

P*(s(p);z) = E[P(W(p);z) exp(-s W -..-s_W_)],
P P 1 1 < 1, Re . s . > 0 ,

where the Wq are identically and independently distributed with common 

distribution function U(*).

2. The limiting probability that a departing customer 

leave the queue empty.

Since the input stream is Poisson, the queue length distributions at 

successive departure instants in any particular realization of the process are 

related by the particularly simple relations

p.(u(n+p)) = P. ,(u(n+p~1)) exp [-AS ,]
j + 1 n+1'

+ P.(u(n+P-1)) exp [-AS ](AS .)
1 n+1 n+1

+ ..+ P 2(u(n+p‘1)) exp[-ASn + 1](ASn+1);l‘1/( j-1)!

+ [P (u(n+p'1))+P (u (n+p~1 ) )] exp [-AS ](AS P/j!1 o r n+1 n+1 J

n > 1, j > 0.
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These relations can be collectively represented in terms of generating 

functions as
zP(u*~ n+P  ̂;z) =.P(u^n+P 1^;z) e x p 1 - z )]

- (l-z)P (u(n+P ^)  exp[-AS (1-z)], n > 1, |z| < 1.o c n+1 ’ ll

If we take integral transforms and let n̂-°° we find that

zP*(s^;z) = [P*{ (l-z)b +s ,. . , (1-z) Ab +s ,(l-z)Ab ;z}1 p-1 p-1 1 p
- (l-z)P*{(l-z) >b +s ,..,(l-z)Ab +s ,(l-z)Ab }]o 1 p-1 p-1 1 p

(l-z)b +s /A} , IzI < 1, Re. s. > 0.' o p 1
By a recursive substituting of the arguments of P* on the right hand side of

this equation into the left hand side we derive
zPP*(s^P^;z) = i[/{(l-z)b +s /A}^{(1-z)(b +b )+s ,/A}o p  o 1 p-1

. .i|>{(l-z)(b +..+b )+ s /A} x0 p-1 1
P*{(1-z)A(b +..+b ) ,(l-z)A(b +.,+b ),..,(1-z)Ab ;z}1 p 2 p p
-zP 1( 1-z) ip{ (l-z)b +s /A}P*{(l-z)Ab +s ,..,(l-z)Ab } o p ° 1 p-1 p

- (l-z)ip{ (l-z)b +s /A }ip{ (1-z) (b +b )+s ,/A}o p  o 1 p-1
x..x ip{(1-z)(b +..+b n)+s /A x o p-1 1
P* (1-z)A(bn+.,+b ),..,(l-z)Ab } , IzI < 1, Re.s. > 0. o 1 p P i

The P* generating function on the right hand side can now be eliminated 
through the substitutions

s = (1-z)Ab , s = (l-z)A(b +b s = (1-z)A(b +.,+b ),1 p 2 p-1 p p 1 p
giving
(2.1) zPP*(s(p);z) = -[z-i|;(l-z)]"1P*{(l-z)A(b +. .+b ),..,(l-z)Ab } xo l p p

(l-z)ip{l-z}^{(l-z)b +s /A} . .̂ { (1-z) (b +..+b )+s /A}o p  o p-1 1
-zp_1(l-z)ijj{(l-z)b +s /A}P* (1-z)Ab +s . ,..,(l-z)Ab }O p O 1 p-1 p

-(l-z)ip{ (l-z)b +s /A}. . ip { (1—z) (b + ..+b )+s./A} xo p  o p-1 1
P*{(l-z)A(b +.,+b ),..,(l-z)Ab } IzI < 1, Re. s. > 0. o 1 p p 5 1 1 1
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(We note that by virtue of the condition

A 1 > / udU(u),o
Rouche's theorem ensures that z~4>(l-z) has no zeros inside the unit circle .) 

Since

P U ^ P h l )  = l,

it follows that
(d ) PP*(svp ;1) = E[ n exp (-s.V^)] 

i=l

= fl ^(s^/y), Re. s^ > 0.
i=l

Using this result and L'Hopital’s rule, it follows immediately from letting 

z -+ 1 in ( 2.1) that

P* (0,0,..,0) = 1 - ip (1-z)] .o dz z—1
00= 1 - A / udU(u). o

As P* (0,..,0) is simply the limiting probability Pq that a departure leaves 

the queue empty, we have
OOP = 1 - A / udU(u). o o

This result was obtained by D. G. Kendall (1951) for a general recurrent 

service time distribution.

3. Limiting distribution for a moving average 

of order two.

For p = 1, (2.1) becomes

(3.1) zP*(s ;z) = -[z-ip( 1-z) ]_1P*{ (1-z) Ab }(l-z)ij;{l-z}ip{(l-z)b +sn/A} 1 o 1 o 1
- (1— z)ip{(l-z)b +s /A}P*{(l-z)Ab } o 1 o 1
= -z( l-z)^{ (l-z)b +s /A}P*{(l-z)Ab } [z -i|j( 1-z) ] 1 , o 1 o 1

IzI < 1 ,  Re. s. >0.1 1 l
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'By d i v i d i n g  by z and l e t t i n g  z -+ 0 i n  t h i s  e q u a t i o n  we o b t a i n

P * ( s . )  = »Kb t s . / X ) P * ( X b .  ) [ 4 ' ( 1 ) ] “ 1 , Re. s .  > 0 ,  o l  o l o l  1

o r
— 1 oo

P * ( s . )  = iKb +s / A ) [ ^ ( b  )]  [1-X /  u d U ( u ) ] ,  R e . s .  > 0 ,o l  o l o  0  1 “

from t h e  r e s u l t  o f  t h e  l a s t  s e c t i o n .  T h i s  e q u a t i o n  e n a b l e s  us t o  f i n a l l y

e l i m i n a t e  t h e  unknown P * { ( l - z ) A b . } from ( 3 . 1 ) .o 1

P * ( s  ; z )  = ( J —z)ii>{( l - z ) b  +s / X } ^ ( l - b  z )[ ip(b  ) ]  1 x 1 o l  i  o

 ̂ 00 v — 1 I .
(1-X /  udU(u)  )[ip( 1 - z )  ] , z < 1 ,  R e . s n > 0.o 1 1 1

The g e n e r a t i n g  f u n c t i o n  P ( z )  o f  t h e  s t a t i o n a r y  queue l e n g t h  d i s t r i b u t i o n  i s

found  by s e t t i n g  s ^  = 0.

P ( z )  = ( l - z ) i H ( l - z ) b  } ^ ( l - b  z ) [ ip( b ) ]  1 xo l o

[1-X /  udU(u) ]  [ ^ ( l - z ) - z ]  , IzI < 1.

For  b^ = 1 ,  b^  = 0 ,  i . e . ,  t h e  g e n e r a l  r e c u r r e n t  s e r v i c e  t im e  d i s t r i b u t i o n ,  t h i s  

r e d u c e s  t o

P ( z )  = ( l - z ) i K l - z ) [ l - A  /u d U ( u ) ]  [ i p ( l - z ) - z ]  , I z I < 1 ,

a r e s u l t  o b t a i n e d  p r e v i o u s l y  by D. G. K e n d a l l  ( 1 9 5 1 ) .

4. L im itin g  d is tr ib u t io n  fo r  a moving average o f  order th ree .

Our s t a r t i n g  p o i n t  i s  e q u a t i o n  ( 2 . 1 ) ,  which f o r  p = 2 becomes

( 4 . 1 )  P * ( s ( 2 ) ; z )  = - z “ 2( l - z ) [ { z - i J ; ( l - z ) } " 1P * { ( l - z ) X ( b 1+b2 ) , ( l - z ) X b 2 > x

zij>{(l-z)b +s /X}ip{( 1 —z ) (b +b )+s /X} o 2 o i l

+ z P * { ( l - z ) A b  +s ( l - z ) A b  } ip{ ( l - z ) b  +s /A } ] ,  o 1 1  2 o 2
( 2 )P«(s  ; z )  i s  a n a l y t i c  a t  z = 0 w h i l s t  t h e  e x p r e s s i o n  on t h e  r i g h t  

hand s i d e  would a p p e a r  t o  have a p o l e .  We s h a l ) ,  use  t h e  known a n a l y t i c i t y  o f  

t h e  r i g h t  hand  s i d e  t o  f u r n i s h  us w i t h  r e l a t i o n s  be tw een  v a l u e s  o f  P* e v a l u -  

a t e d  f o r  d i f f e r e n t  a rg u m e n ts .  Th is  w i l l  l e a d  t o  an e x p r e s s i o n  f o r  P* (s  ) i n  

t e rm s  o f  known f u n c t i o n s .  ( 4 . 1 )  w i l l  g i v e  f i n a l l y  t h e  l i m i t i n g  queue s i z e
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d i s t r i b u t i o n .

We o b t a i n  a t  once from ( 4 . 1 )  t h a t  as  z 0 ,

( 2 )  - 1
z P * ( s k ; z )  -►iKb + s 2/X ) [{ i | ; ( l )}  P g U t b j + b ^  ,Ab2 > ^ ( b ^ b ^ s ^ A )

-  p ; ( x b 1+s l t xb2 ) ] .

( 2 )Because  o f  t h e  c o n t i n u i t y  o f  P * ( s  ; z )  a t  t h e  o r i g i n ,  i t  f o l l o w s  t h a t  

P * U b 1+ s 1 ,Ab2 ) = { i p ( l ) } _ 1 ^ ( b o+ b 1+ s 1 / A ) P * ( A ( b 1+ b 2 ) , A b 2 },

and t h u s

( 4 . 2 )  P * { ( l - z ) A b  +s Ab } = ijj{b +b ( l - z ) + s  /A}[i|Kb +(b  +b ) ( 1 - z ) }] o 1 1 2  o l  1 o 1 2

P * { ( l - z ) A ( b 1+b2 ) ,  Ab2 >.

We now i n t r o d u c e  t h e  n o t a t i o n

PS 2 ( a »b> = PS( S 1 ,S 2 )]  S l =a,  s 2=b.

From ( 4 . 1 ) ,  we f i n d  t h a t  f o r  z s m a l l ,

P * ( s ( 2 ) ; z )  = - z _ 1 ( l - z ) 4 ; { ( l - z ) b o+ s 2/A }[ -{ i J ; ( l )}_1{ l + z [ l + i J ; ( l ) ] [ ^ ( l ) ] ' i } x

{P*{ (1 -z )A (b  +b ) , Ab }-Azb P* { ( l - z ) A ( b + b ) , Ab }} x 
O 1 2 2  2 02 1  2 2

{i|/(b +b +s / A ) - ( b  +b )zip ' (b  +b +s , / A) }  o i l  o l  o i l

+ { P * { ( l - z ) A ( b 1+b2 ) ,A b0 } -  Ab zP* { ( l - z ) A ( b L+b2 ) ,A b 2 } x 

{ ip( 1 ) }  P{ iKb^+b^+s ̂ /A ) - z b ^ ' (b^tb^+s^/A ) } x 

{ l + z ( b 1+b2 )ip' ( l ) [ i p ( l ) ]  1 } t  o ( z 2 ) ] ,

where we have made use  o f  t h e  f i r s t  two t e rm s  o f  T a y l o r  e x p a n s i o n s  a bou t  t h e

o r i g i n  f o r  t h e  f u n c t i o n s  c o n c e rn e d  and u t i l i s e d  ( 4 . 2 ) .

L e t t i n g  z -> 0 ,  we f i n d  t h a t

( 4 . 3 )  P * ( s ( 2 ) ) = ip(bo+ s 2/ A ) [ i J ; ( l ) ] " 1P*{A(b1+b2 ) ,Ab2 ) x

[ { l + b o i | ; ' ( l ) } { ^ ( l ) } " 1^ ( b o+b1+ s 1/ A ) - b oil;' (b +b +s /A ] .

The d e t e r m i n a t i o n  o f  t h e  unknown c o n s t a n t  P*{A(b^+b2 ) , Ab2 } i s  e f f e c t e d  by use

o f  ( 2 . 2 ) ,  which can be e x p r e s s e d  as

P * ( 0 , 0 )  = 1 + i p ' ( o ) .  o

We o b t a i n
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P * ( s ( 2 ) ) = b +s / X ) [ { l + b  i | d ( l ) }  {ip( l )}  b +b +s / A ) -b  ip1 ( b +b +s / A ) ]*  o o 2 o o i l  o o l l

[ l+ip’ ( 0 ) ]  [ ^ ( b  ) ]  1 [{ l+ b  ip’ ( l ) }  {^ (1 )}  % ( b  +b ) - b  ijd (b +b ) ] 2 ‘ o o o l o o l

R e v e r t i n g  t o  ( 4 . 1 ) ,  we f i n d  on s u b s t i t u t i n g  f o r  t h e  a rg um en ts  o f  t h e  P* t e rm s  

t h a t

P * ( s (2 )  ; z )  = - z  1 ( l -z) ip{ ( l - z ) b o+ s 2/ X } [ l + ^ '  ( 0 ) ]  [ ^ ( b Q)]  1 x

[ { ( 1+b l j j ' d ) }  {ih( 1) } % ( b  +b ) - b  i|>'(b +b ) ]  1 x o o l o o l

[ {z —\jj( 1 ~ z ) } % { ( 1 - z )  (b t b ^ + s  /A}ip{b +(l-z)  ( b 1+b2 ) }

+ ip{ b + ( l - z ) b  +s / A } ] ,  o 1 1

The g e n e r a t i n g  f u n c t i o n  P ( z )  = P * ( 0 , 0 ; z )  o f  t h e  l i m i t i n g  queue l e n g t h  

d i s t r i b u t i o n  i s  t h e r e f o r e  g i v e n  by

P ( z ) = - z  1 ( l - z ) ip{  ( l - z ) b Q} [ 1 +Li p ' ( l ) ]  C^(bQ)]  1

[{1+b i p ^ l ) }  ( ip ( l )}  % ( b  +b ) - b  i | / ' (b +b )]  1 x o o l o o l

[ {z-\p( 1 - z ) } % { ( l - z ) ( b  +b )}ip{b + ( l - z ) ( b  +b )}o l  o 1 2

+ i|i{b + ( l - z ) b  }] , I z I < 1.o 1 1 1

B e g inn ing  w i t h  ( 2 . 1 ) ,  a s i m i l a r  p r o c e d u r e  making use  o f  T a y l o r  e x p a n s i o n s  

can be employed f o r  moving a v e r a g e s  o f  h i g h e r  o r d e r s .  The r i g h t  hand  s i d e  o f  

( 2 . 1 )  h a s  an a p p a r e n t  p o l e  o f  o r d e r  p - 1 .  The f a c t  t h a t  t h i s  p o l e  c a n n o t  o c c u r  

( b e c a u s e  o f  t h e  a n a l y t i c i t y  o f  P * ( s ^  ; z ) )  g i v e s  us a s e quenc e  o f  r e l a t i o n s  

be tw een  v a l u e s  o f  P* w i t h  d i f f e r e n t  a rgum e n ts  i n v o l v i n g  t h e  v a r i a b l e s  s^.

We s im p ly  c o n s i d e r  t h e  c o e f f i c i e n t s  o f  l i k e  p o w e rs o f  z a r i s i n g  from 

{z - b ( 1 - z )}  ̂ and T a y l o r  e x p a n s i o n s  i n  z .  The on ly  d i f f i c u l t y  t h a t  can a r i s e  

i s  i n  t h e  p o s s i b l e  n o n - c a n c e l l i n g  o f  t e r m s  i n v o l v i n g  d e r i v a t i v e s  o f  Pq i n  

t h e  work ing  l e a d i n g  t o  an e q u a t i o n  c o r r e s p o n d i n g  t o  ( 4 . 3 ) .  Such d e r i v a t i v e s  

can be e v a l u a t e d  by a  r e c u r s i v e  p r o c e d u r e  by d i f f e r e n t i a t i n g  t h e  P* ( s ^ ^ )  i n  

t h e  l e f t  hand s i d e  o f  such  an e q u a t i o n .  The c o r r e s p o n d i n g  d i f f e r e n t i a t i o n  o f  

t h e  l e f t  hand s i d e  w i l l  be o f  known f u n c t i o n s  i n v o l v i n g  ip o r  o f  a  P* te rm  

i n  which th e  c o r r e s p o n d i n g  s^  o c c u p ie d  a p o s i t i o n  f u r t h e r  t o  t h e  l e f t  i n  t h e  

s e quenc e  o f  a rg um en ts  o f  P*. A f i n i t e  p r o c e d u r e  would t h u s  l e a d  t o  t h e



evaluation of such a differentiated P* term by substitution.o
Judicious utilisation of the condition obtained from each order in z 

can abbreviate the working considerably. We note in the example just consider

ed that the immediate deduction (4.2) from the first order result enabled us to 

obviate a Taylor expansion about the first argument of P*.

5. Transient behaviour of queue length for second

order moving average.

M/G(2)/l, like its input counterpart G(2)/M/l, possesses a set of

regenerative points that we can use to facilitate the investigation of transient

behaviour. They are the points dividing the service times internally in the

ratio b :bn. The point in the service time of the nth customer we denote by o 1
R .n

An arrival finding the queue empty enters immediately into service, so

only arrivals occurring during a service time contribute to the probability

distribution of queue size at departure instants. We therefore work in terms

of an associated system consisting of a renewal process with lifetimes {S^},

the nth lifetime ending at . We again introduce points R^+^ intercepting

the corresponding intervals (A^, A^+^) in the ratio bQ :b^. As the length of

(A , A ) has a distribution given by n n+1 & j-
A 1 - A = b U , + bnU n+1 n o n+1 1 n n > 0,

the points {Rr} constitute a regenerative sequence, and (R , has

n+1
Departures occur at the points {A^}, and arrivals are Poisson. Should 

a departure leave this associated system void, there is also an arrival at this 

precise instant.
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It turns out that the results for Poisson arrivals can be extended to 

general bulk Poisson arrivals, i.e., an input where the arrival instants are 

Poisson but the arrivals are in batches whose size follows a general probability 

distribution. Suppose that the probability that an arriving batch be of size 

j £ 0 is c_. , so that the probability of i >0 arrivals to the queue in an 

interval of length t is

Z exp[-At](At)^[£!] 1 c / ^  , i > 0,
£=o 1

(l)where {c. } is the £th iterated convolution of {c .}. Then, in thel l

associated system, should a departure leave the queue void, there is also a 

batch arrival at this instant with size distribution

» j  = °>

probability (batch size = j)
C.d-C ) 1, j > 0. ] o

The corresponding expression for i = o is
oo

U )£ exp[-At] c exp[-At] (1-c )-1

Denote by P(i -+ j) the unconditional probability that the queue lengths 

at R , R  ̂ are i, j respectively. Then

f  oo & _  i  ( ' n i ' )
/ I [ E exp[-Ab u](Abu) (mj) c ] *
o o  o  ££=o m=o

j+l-i-£
[  ̂ exp[-Ab u](Ab u)n(n! ) ĉ*'.11̂

P(i-j) =

n=o 
j £

j+l-i-£ ] dU(u), j+l>i>l,

/ E [ E exp[-Ab u](Ab u)m(m!) 1 ĉ ™'*] *o o £o £=1 m=o

-1

j-£
[ z exp [-Ab ](Abu)n(n!) 1 1n=o

OO
+  z

( V ) J
exp [-Ab u] c Z c (1-o o , mk=o m =1

j-m
Z exp[-Ab^u](Ab^u)n(n!) 1 c^n^

n=o j-mn _ _
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We note that for j + 1 > i > 1, P(i j) depends only on the differ

ence j - i, and we re-express P(i j) in terms of the constants

(5.1) k- 00 3+l Ä _ 1 , s
f Z [ Z exp[-Ab u](Ab u)m (m!) c„ ] *„ O  1  36o 36=o m=o

P. =3

j+l-J6 -1 ( )
[ Z exp[-Ab^u](Ab^u)n(n!) dU(u), j > -1,
n=o J

oo j
/- Ü c (1-c )  ̂ Z exp [-Au](Ab u)n(n!) ^c.nn m o  1 1 -mo m=l n=o

+ Z exp[-Au]( Ab^u)n(n! ) ■*'ĉn  ̂ dU(u) , j > 1, 
n=o 5

P(i + j) =

, j+1 > i > 1,

i=l, j _>1,

0 , otherwise

Our aim is to find the queue length distribution at departure points in 

terms of known quantities. To this end we make the following definitions.

k ^  = coefficient of z^ in the power series expansion of the nth
oo £

power of the power series ^£_Q ^£ j_z (absolutely convergent 

for I z I < 1), n = 0,1,2,..,

a .(z) =Z k^? zn,i+3 n=1 n+3-1 z| < 1, j > -1

a .(z) "3
E k(n+j+l) zn+j+l 

n-1n=o
z < 1, j > 0,

K.(z)
3

00 n+n
v n  / vZ z ( Z

n=o 36=o
P k̂  n ̂ )n+l+j -36 36— 1y s

in)

j > 1, j zI <1.

Denote by Q_. the unconditional probability that at the queue

length is j. Then

Q<n+1) = Q(.n! k 1+Q(n) k + ..+Qln) k. ,+Ql(n)k. ,-Q<n)P., j > 1.3 y: + l -1 o y2 ]-2 V1 3 - 1 1  3 -
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Multiplication of the equation for Q^n+^  by z^+  ̂ and summation over j 

gives

00 OO 00

Z Q^n+1)zj = ( Z Q^n)zj)( Z k z V
A/ “ O sC _L

j=i j=i
zQ^n  ̂ Z p.z^, n > 1, I z I < 1 

1 j=l

so that by iteration,
OO 00 00

(5.2) Z n + 1  £ Q(n+1) zj = z( E QU ) zj)( J kCn) z%
3 = 1  ] j=l 3 1 = 0

OO . n
- z p zD Z

i_
j. ii i-1 3 HII6

!(m )zm( s k(n-m) ^  
1-0

n > 1, I z j < 1,

Equating coefficients of zn+1+3 in (5.2):

(n+i) = (1) k(n) _ " (m) n^ - m p
i m n+n-m-1 .. 1 . n+l+j-m-jü, £-1J m=l J m=l i=o

j > 1, n > 1.

The generating function of Q*jn  ̂ on n can now be formed:

OO 00 OO(n) n-1 _(1) _(1) ( . v _(n) n-1 , . i i ,Z Q. z = Q. + Z Q a. n(z)-z Z Q, z K.(z), i > 1, z <1, 1 ] ] , n 3-n+l , 1  j 1 1n=l J J n=l n=l
or, writing

(n) n-1
Q.(z) = Z Q. Z 
3 n=l ^

j > 1, |z| < 1,

(5.3) Q.(z) = Q(.X) + Z Q(1)a. ,(z) - zK.(z)Q_(z), j > 1, |z| < 1.i n n i-n+1 i 1 J “ 11J J n=l
Substituting j = 1 gives

00
(5.4) Q (z) = [Q̂  + Z Q(1)a0 (z)][1+zK (z)]_1,1 1 , n 2-n 1n=l

z <1.

(5.3), (5.4) together implicitly express the unconditional queue length at each

R in terms of known functions and the queue length distribution at R . The 

probability Q\ that the queue length is j at R^ is thus

— c-n~l> - Q(n] k *Q(.n) k■j+i -i u 1 j*a



149.

(5.5) Q(.n)D 1 f z n[Q0 )  + Z Q^' . (z)-- 7 ] m=l m j-m+1
, (1)

-zK.(z){Q + Z Q a (z)} {1+zK (z)} ]dz,i 1 n m 2-m 1J m=l
where the integration is carried out around a small loop surrounding the origin.

Since the functions concerned all have known power series expansions about the
( n )origin, the value of Q_. can be written down from (5.3), (5.4) just by 

picking out the coefficients of z11 \  However, the expression obtained in

volves clumsy infinite series, and we do not write it down explicitly.

The queue length as left by the departure at , i.e., the departure at 

the completion of the service associated with , is therefore known in terms 

of the queue length distribution at R^, since

(5.6) prob (queue length = j at A )
i (n) °° jtl-i i+l-i -1 (k)= Z Q. / exp[-Ab u] Z (Ab u)-1 [(j + l-i)!] c. . dU(u). n i o ^ o  o J 1+1-1i=l k=o

(n ) 00 — 1+Q. n / exp[-Ab u](l-c ) dU(u), j > 0, n > 1.]+l 0 ^ 0  O -

The procedure of determining the queue length as left by a departing

customer is completed by finding the distribution { Q^"^} . Since the first

customer does not have to wait for service, the queue extant at R^ consists

simply of those arrivals which occurred during the first fraction bQ of the

first service plus the first customer himself, whence

(5.7) Q(1)
/ exp [-Ab u ](l-c ) 1dU(u), j = 1,o r 1 o J 5

oo ^ ^ o - 1 ( a )
f Z exp[-Ab.,u](Ab u) (£!) c. dU(u) , j > 1. o „ 1  1 i-l JZ=o J

A complete knowledge of the transient behaviour of queue length at 

departure points, as is provided jointly by (5.5), (5.6), (5.7), is, as one 

would expect, sufficient for "determining the limiting queue length on depart

ures, when it exists. In principle such a determination could be made through

the use of Abel’s theorem. If we denote by P(n) the probability that the
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queue length is j at A , then

(5.8) P. = lim P(.n) = lim {(l-z)P . (z) }.
n-*30  ̂ z-̂ 1 ^

In practice, however, the calculations are quite difficult and Finch 

(1959) in a study of M/G/l, i.e., a queue with simple Poisson arrivals and un

correlated service times, was unable to obtain the complete limiting solution 

through use of (5.8), although P_. was found for j > 1 in terms of P^.

With only heavier algebra it is possible to generalise the above work

ing to bulk services, of size k, say. Two natural service mechanisms are

(i) If the queue length at some epoch is less than the bulk the 

server can handle, the latter waits until further arrivals make up the 

deficit before he commences serving.

(ii) The server operates if there is even one customer available.

A third natural service mechanism, servicing even with an empty queue 

(a public bus system provides an instance of this type), we have excluded 

already because of its removing the correlation between successive 'genuine* 

services.

(i) and (ii) clearly have the same distribution of queue size at de

parture instants, since only arrivals during services contribute to the queue 

size left on a departure.

In the working above, an extra arrival was superposed on the Poisson 

stream in the associated system for points {A^} at which the departure left 

the queue void. For (ii) we similarly superpose k arrivals whenever the 

completion of a service leaves fewer than k individuals in the queue.

The reason for the artificial superposing of the k arrivals is, of course,

just to cause the number of departures at each A^+^ to depend only on the 
queue length at that instant and not also on that at the previous departure 
point An .

In (i) we superpose sufficient additional arrivals to ensure that the
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queue length in the associated system just after a departure point is always 

at least k. The end results for queue lengths after departures always 
correspond to those in the original system, but only in (i) do the queue 
lengths at points of the sequen< e {R^} correspond to the queue size in the 

original system the appropriate fraction of the way through a service.
in the case of general independent service times, it is possible to

deal with a general bulk service simultaneously (see U. Narayan Bhat (1964),

but the device we have employed to remove dependence between behaviour in
successive intervals ( R , R  n),(R , R does not suffice for such an 5 n+1 n+1’ n+2
general situation. The problem does not, of course, arise with independent 
service times because the departure instants then coincide with the end points 
of such intervals.

E. Sparre Andersen((1953), (1954)), has made use of combinatorial 
techniques in the study of sums of random variables. Subsequent simplifica
tions by Spitzer (1956) and Feller (1959), have made possible investigations 
into very general queueing systems, and as noted Narayan Bhat (1964) has been 
able to obtain information on transition probabilities and the busy period in 
the case of independent services even for general batch Poisson arrivals and 
general bulk services. The difficulties of handling the additional customers 
superposed on the Poisson stream and non-independence between successive 
service periods make a similar treatment impracticable here even when we 
restrict ourselves to individual arrivals and single servicings.

In the next section we shall obtain information about the busy period 
by the same methods as we have used to investigate transient queue lengths.

6. The busy period.

We consider the busy periods for the same queueing system as we dealt 

with in the last sectbn, with general batch Poisson arrivals and individual
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services. We again make use of the associated system.

The algebra involved is now simpler, because there must be no arrivals 

superposed on the Poisson stream for any interval (R^, R + -̂) included in the 

busy period, as this would imply that the queue became empty in the correspond

ing interval in the original system. The queue length must be maintained 

strictly positive without the support of such arrivals.

We investigate the probabilities of transitions between points 

R^, ^n+1 w^en such arrivals are excluded and the queue never becomes empty.

Denote by P̂ _. the probability that the queue lengths at R^, R^+^ are 

i^ j respectively, and that the queue does not become empty at A^. Then

ij

foo  ̂+  ̂  ̂ m - 1  (m)/ Z [ Z exp[-Ab u](Ab u) (m!) c„ '] x 
o „ o o £i=o m=o

j+l-i-£ , \
[ Z exp[-Ab^u](Ab^u)n(n!) c^ 1_i_£]dU(u), j+l> i > 1,
n=o

00 j 5/
/ Z [ Z exp[-Ab u](Ab )m(m!) ^c m ]̂ x ° o o ££=1 m=o

j-£
[n^Qexp[-Ab^u]( Ab^u)n(n! ) 1c^^] dU(u), i = 1, j > 1,

<0 , otherwise, 

or, more conveniently,

P. . =

k . . , j+1 > i > 1
U-i

kj - r rj ’ i =
o , otherwise,

where the k's are as defined by (5.1) and

r. = / exp[-Au] Z (Abnu)n(n!) "*"ĉ.n ^dU(u) , j > 1.D o 1 3 -j —

nün) (n)Analogously to Q_. , we write R_. to denote the unconditional

probability that at R^ the queue length is j. We have



R<n+1) = k V n)k. -k<n) r.. j > 1. n > 1.3 3 + 1 -1 1 3-1 1 3 s J - 5
The working clearly follows that of section 5 closely and we omit the detail.
We derive

00

R.(z) = R. + £ R(1)a. Az) - zL. (z)Rn(z), j > 1, I z I < 1,3 3 n n 3-n+l i 1 J “ 11j j n=l j j
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R,(z) = [R^1}+ £ R(1)a0 (z)][l+zL.(z)] 11 1 n 2-n L 1n=l
< 1 ,

where
D ( \ v D(n) n-1 R.(z) = £ R. z

n=l
n+j

L. (z) = £ z ( £  r

j > 1,

, (n)

z < 1,

n=o £ = o
n+l+j-£ £-1 ) , j > 1» z < !•

As for , R^n  ̂ can be written down explicitly by the picking out of
coefficients, or compactly expressed as a contour integral

(z)(6.1) R(.n)3 1
27T1 I

- zL.(z) {R 3

CO

[R(.1} + £ R(1)

t—1II£

r~>i m

00
a) ♦ z r ( 1)1—1 II 6

—1 m

3 - m + 1

a (z)} (l+zL (z)} 1]dz, 2-m 1
where the integration is performed on a suitably small loop round the origin.

By suitable labelling, a busy period consisting of n services occurs
when an arrival occurs at to find the queue empty; the queue then remains
full until A , when a departure leaves it empty. As departures occur only
at the points {A_.}, when the queue length at A^, the last point of the
sequence (R_. } before A^ must be unity. (6.1) with j = 1 gives (in terms
of the queue length distribution at R ) the probability that the queue has

length 1 at R^ after a busy period extending from R^, the first point of
{R.} after A .3 o

Since the arrival at Aq finds the queue empty, the distribution
{R^^} is given by m J



1 5 4 .

^ expC-Xb^uK 1-cq) 1d U ( u ) ,  m = 1 #

oo n  — 1
,  J -1  0 - 1 ( 0 )
/  E e x p [-Ab u](Ab u) ( £ ! )  c .  d U ( u ) ,  m >1.

0 £=o 1 1 3 - 1

For  a queue l e n g t h  o f  u n i t y  a t  R , t h e  p r o b a b i l i t y  t h a t  t h e  d e p a r t u r e  

a t  A l e a v e s  t h e  queue empty i s
OO

/  e x p [ -  b u ] ( l - c  ) dU(u) .J o o0

The u n c o n d i t i o n a l  p r o b a b i l i t y  o f  a busy  p e r i o d  o f  e x a c t l y  n cu s to m e rs  

i s  t h e r e f o r e

00 . . °°
/  exp[-Ab u ] ( l - c  ) ^dU(u) 1 I  z n [R ^ + E a 0 ( z ) ] [ l + z L n ( z ) ]  ^dz ,J r  o o ------:— 7 1 2 -n  10 2 TT1 n = l

where t h e  i n t e g r a t i o n  i s  a ro u n d  a  s u i t a b l y  s m a l l  loop  e n c l o s i n g  t h e  o r i g i n

and t h e  R̂  a r e  g i v e n  by ( 6 . 2 ) .  
n

As i n  s e c t i o n  5,  t h e  work ing  can  r e a d i l y  be e x t e n d e d  t o  b u l k  s e r v i c e s

, t 4 Jt* Jim
4\  4\  4* 4* 4\  4\  4\  4»

o f  f i x e d  s i z e .
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CHAPTER EIGHT.

PART I .

Queueing systems with transport service processes

We deal briefly with queueing systems in which the service facility 

operates regardless of whether or not customers are present. An instance of 

such a queueing system is provided by a bus service which operates even if 

there are no passengers available. A consequence of such a service mechanism 

is that a customer arriving at an empty queue will not in general be able to 

commence service immediately.

This service mechanism was considered by Bailey in 1954, who dealt with 

the equilibrium queue length behaviour in a system with Poisson arrivals and 

bulk service with a general recurrent service time distribution. The wait

ing time of this system was investigated by Downton in 1955. Downton has made 

a further study (1956) on the limiting behaviour of this system with increas

ing size of service capacity. Keilson (1962a) has given a very general 

treatment of this system, with both arrivals and services being in batches 

whose sizes have general probability distributions.

A comparable problem has been treated by Finch (1959) and extended by 

Ewens and Finch (1962). A queueing system is considered in which if the nth 

arrival finds the server idle he does not commence service until a time v  ̂

after arriving. {y^} is a sequence of I.I.D. variables. Finch deals with 

the waiting time distribution for arbitrary I.I.D. service and inter-arrival 

time distributions and generalises a result of Pollaczek in the case of 

Poisson inputs. Ewens and Finch extend Finch’s results to Erlang inputs.

We shall consider the equilibrium distributions produced by negative
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exponential services and general moving average inputs.

An arrival finding no other customer waiting for service must wait 

until the end of the current service before his own service can commence. This 

is true whether or not the service facility is actually occupied with a custom

er. We thus find it convenient to take the queue length as the number of 

customers waiting rather than the number waiting or being served. In view of 

the absence of true idle periods for the server we need not concern ourselves 

with whether or not the service facility is occupied at a given moment. This 

enables us to work with a structurally simpler system involving "lumped" states. 

We shall then split the lumped states and regain full information on queue 

lengths.

1. Negative exponential services.

Consider first the case of a general recurrent input. The character

istic lack of memory property of the negative exponential distribution enables 

us to handle the imbedded Markov chain formed on arrival instants with great 

ease.

We denote by the probability that the nth arrival finds j

customers waiting in the queue. Then a consideration of the changes possible

in the queue between the nth and (n+l)th arrivals instants gives

(1.1)
3
(n+1)

J o
p(n)
1 * W

<_i. ii o

oo

J o
P (.n ? k .  ,3+1-1 l* j > 1»

where k^ is the probability that i services terminate between the nth and 

(n+l)th arrival instants and
oo

K. = Zk, , i > 1.l • • 1
D = i
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(1.1) is the same expression as arises for the queueing system 
/ \

ordinary services and denotes the probability that the nth arrival finds

j customers already in the queue, including the customer, if any, actually 

being served. This equivalence can, in fact, be shown to be good for the 

complete time dependent behaviour of the system. In particular, the limiting 

distribution of the number of customers waiting as found by an arrival will be 

the geometric distribution

{(l-T)T J, j > 0}

where T is the unique root inside the unit circle of

T = \p (1-T),

and the symbols have their customary meanings.

It is similarly shown that the usual delayed geometric distribution arises 

from a moving average input.

In the event of a very long service period, it is possible that many 

arrivals can occur and that the queue waiting can become quite long, even 

though the server is not dealing with a customer. If we wish to know the 

queue length probabilities including a possible customer in service or the 

probability that the server is or is not occupied when an arrival finds a 

given number of customers are waiting, we can find these through use of our 

known forms of limiting distribution.

We consider a(p+l)th order general moving average and without further 

comment make use of the notation introduced earlier.

We define Q_.(u^n+^ "^) analogously to P_.(u^n+^ ^ ) , corresponding 

to the nth arrival finding j customers waiting and a further customer in 

service. Corresponding to j waiting customers but no customer in service 

is the probability

p.(u(n+p-1)) - Q . d ^ p - 1!.: d
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We can write down equations for the Q's similar to (1.1)

l P.(u(n+p-1))k.+1(un ,..,u ), j = 0,
1=0

Q.(u(n+p))
3

Z P. . 1(u(n+P X)) k.(u ,u ) 3+1-1 l n n+pi=o

j 1 1»

that is,

(1.2) Q.(u(n+p))
1

0*0

Z P.(u(n+P 1'))k. (u ,..,u ),l l+l n5 n+p1 = 0
j =

p.(u(n+p)) - CPj.1(u(n+P'1))-Qj.1(u(n+p-1))]ko(un,.,un+p)>

j > 1.

Taking Laplace-Stieltjes transforms and letting n -*» provides

(1.3) Q*(s(p)) 3

Z (-y)1 81
i=l i! ■. [P* (ab +s ,..,ab +s ,ab )1 1-1 1 p-1 p-1 1 p

Pv(s(p))

x i|){ (ab +s )/y}] _ , o p o-y

p-i ±' p

j = o,

-[pj-i (pV sp-i’'' ,ybp)'Qj-i(v,bi+sp-i’• • ’ybP)]

x i|)(b +s /y) ,o p j  ̂1»

for Re. s . i 0.l

The expression for Q* can be simplified by making use of the relation

P*(s^P^;z) = B (s^P^)zP ^+..+B (s^P^)+B(s^P^)(1-zT) \  Re. s. > 0.p-1 o 1

We find that
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Q*(s(p))
i=l iL“T _ CBi-l(abl % - l * ” » ° V * {(aV si>)/'*13o P o-y

w • •

+ Z (T-y)- ---r [B(ab.+s ,..,ob )4>{(ab +s )/y}T1_1]i=l 1! l 1 p-1 P o p a=y
r ^ ^

= .1 -11---2 _  [b . (ob +s , ,.. , ab )t|j{(ab ts )/y}]1=1 l! l l-l 1 p-1 P o p M o=ioQ

+ T_1[B{y(l-T)b1+Sp_1,..,y(l-T)bp}^{(l-T)bo+Sp/y}
-B(yb1+Sp_1,. . ,ybp)i|;(bo+Sp/y)]

E (-yk 31
i=l i! T  CBi-l(abl+Sp-l> * * ,ab )M(abo+s )/y }]a=a=y

+ B(s^P )̂ - B(yTb +s ,yTb +s ,..,yTb ts ).o p 1 p-1 p-1 1

Q*(s^P )̂ is thus determined since B is known and B ,.. ,B .. can be found o o p-1
in a finite number of steps. The (unconditional) equilibrium value Qq of

the probability that an arrival finds the system empty apart from a single

customer in service is then given by

Qo = Q*(0,0,.. ,0).

The other unconditional values

Q. = Q*(0,0,..,0)] :
can now be found recursively from (1.3) using the known form of P. If we 

define

R.(s(p)) = P* (s(p)) - Q*(s(p)), Re. s.  ̂ 0, j > 0,3 3 3 i
then the second part of (1.2) can be expressed as

Rj(s^) = ^(bQ+Sp/y )R_._1(ybl+Sp_1,. . ,ybp) , j > 1.

This set of relations admits of a neat treatment by use of generating functions. 

With an obvious notation

R(s^P  ̂;z) = R (s(p)) + z^(b +s /y)R(yb +s lS..syb ;z) IzI< 1, o o p  1 p-1 P
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a form to which we can apply our standard recursive sequence of substitutions 

in the arguments of R.

R(s^P \z) = R (s(p)) + z\\)(b +s /y)R (yb +s ,..,yb ) o o p  o l p-1 p

+ z2^(^0+sp/u)^(bo+b1+Sp_2/y)Ro{y(b1+b2)+Sp_2,..,ybp }

+ ............

+ zP 1iJ;(bo+s^/y). . ̂ (bQ+. .+b^_2+s2/y) x

RQ{y(b1+..+b 1)+S1,..syb }
+ zP^(b +s /y)..ip(b +..+b +s /y)o p o p-1 1

Ro{y(b1+..+bp ),..,ybp } [l-z^(1)] 1 .

We have, therefore, the simple results

(1.4) Q =

^*P^-ip(bo). . ̂ (bQ+. .+b_._1)RQ{y(b1+. .+b_. ) ,. . ,ybp} , 1 < j < p-1

. .^(bQ+. .+bp_1)RQ{y(bi+. .+bp) ,. . ,ybp}[ijj(l)]̂  P, j^p

{Q_.} is thus the difference of two delayed geometric distributions, the two 

ratios being T = ip(l-T), vp( 1).

(1.4) enables us to give the equilibrium queue length distribution in 

the normal sense, i.e., where we include in the queue length the customer, if 

any, in service at an arrival instant. If we denote this distribution by

{p _.} then, as the probabilities of a queue length j with or without a 

customer in service are Q_. p, P_. - Q_. respectively, j > 1,
rR (0,0,.. ,0), j = 0

Po-Ro(0,0,..,0) + iKbo)Ro(yb1,..,yb ), j = 1,
P. -iKb )..iKb + • • +b. 0)[R {y(b +..+b. ),..,yb }]-l o o j-2 o 1 3-I p

-^(bQ+. .+b_._1)RQ{y(b1+. ,+b_.) ,. . ,ybp}] , 2 < j
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j P. -^(b ). . ip(b +. . +b )R {y (b + ..+b ),..,yb } x j-1 o o p-1 o 1 p p

v  j>P+i.

(1.4) does not include the two simplest moving averages, of orders one and 

two.
The moving average of order one requires no supplementary variables s^, 

and the relations corresponding to (1.3) are obtained directly from (1.2) by 
integration and letting n -* 00:

}  Pih+1 ’ j ' ° ’ 1 = 0

P. - (P._1 - Q pn-d), j > 1,
where V

<K = / (yx)i (i!) 1 exp(-yx) dU(x),i J o i > 0.
By virtue of the purely geometric form {(l-T)T^) of {P_.}, 
written as

Qo = (1—T) T~1 [ ip( 1-T )-i|j( 1) ]
= (1-T)[l-T_1i];(l)].

Q can be o

It follows readily as above that

Qj = Pj - CiKl)]j R0, j > 1.
Thus

P .  = T_1(l-T)(Tj - C^(l)]^[1-^(1)]), j > 0.
The explicit solution for p = 1 is obtained equally readily. We

have

R (s) = P*(s) - Q*(s) o o o
+ B(s) + B (s) - { -y-|— [B (ab )T{(ab +s)/y}]o <3a o 1 o a=y

+ B(s) - B(yTb +s)} o
= iKs/y )-ip(b1)\p{(l-Tbo+s/y}/!/;{(1-T )bQ+b}



+ b 1U , ( b 1 ) -<Kb1 H ' { ( l - T ) b  +b } / \ \ )  { ( l - T ) b  + b . } ] i Kb  + s / y )1 1 1 o 1 o l o

+ ( l - T ) i K b 1 ) iKboW y ) / i H ( l - T ) b o+b1 } 9

making u s e  of  ou r  s o l u t i o n  t o  G ( 2 ) / M / l .  {P.} i s  now g i v e n  i n  t e r ms  o f

Ro by

p.
]

R ( 0 ) , j = o,

1-TiKb,  ) i p{( l -T)b  } / ^ { ( l - T ) b  +b }-R (0)+i|>(b )R ( y b n ) ,  j 1 o o l o  o o l

Tj _ 1 ( l - T ) ^ ( b 1 ) i | , {( l -T)b } / ^ { ( l - T ) b  +b }1 o o 1

- 1K b o )Ro ( y b 1 ) [ * ( l ) ] j ' 1 [ * ( l ) - l ] > j  > 2.



163.

PART 2 .

2. Moving average inputs and general recurrent 

service times.

We now go on to consider queueing systems with moving average inputs and 

general recurrent service times. It is hardly to be expected that the 

equilibrium queue length distributions in such systems will have simple forms, 

since, indeed^even GI/C /ldoes not exhibit such simplicity. In view of the 

mathematical complexity of G(p + D/G/l and its dubious utility, we shall not 

dwell on it in any detail.

The simplest case of GI/G/lwas given a complete time dependent treatment 

by Keilson and Kooharian in 1962. By making use of the method of supplementary 

variables they were able to reduce the problem to one of solving a Hilbert 

problem. The method of supplementary variables is also the most natural to 

apply to the more general problem of G(p+1)/G/1, and, whilst the equations are 

much more complex than those for GI/G/1, it seems that the best chance of 

solution may again lie in attempting a reduction to a Hilbert problem.

We introduce the supplementary variables as follows. We denote by

Pj ( u ^ .,u ,x,y ,t) j > 1,

the joint probability and probility density that at time t there are j 

customers waiting together with an additional customer in service, that the 

times that have elapsed since the beginning of the current service and the 

occurrence of the last arrival are x,y respectively, and that the last p 

values of the process {u} have been u^,.., u^.

We distinguish between two classes of state when a single customer is in 

service and no other customers waiting:
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We write

F(ul ,‘* » up ’x »t)
when the customer in service arrived to find the queue empty and so began

service immediately. We are able to drop the variable y since under these

circumstances x and y must be equal.

P (un,..,u , x,y,t) o 1 P
is employed when the customer being served began his service on the departure 

of the previous customer.

We finally denote by

E(u1#..,u ,y,t)

the probability densities of the set of ’vacuous' states of the system.

The justification for presuming such densities exist is, as in Keilson 

and Kooharian’s treatment of GI/G/1, best left to reside in the demonstration, 

through a constructive proceedure, that initial distributions give rise

to unique solutions. Initial distributions with saltuses can be accom

modated by extending our densities to include generalised functions.

For convenience we use lower case notation, e(i^P^y, t), etc., to refer 

to the states corresponding to the joint probabilities and probability densit

ies defined above.

We denote by A(y), y(x) the hazard functions of U(y) and the service 

time distribution D(x), so that
, yU '(y) = A(y)exp(-/ A(u)du),
x

D'(x) = y(x)exp(-/ y(u)du).

Consider how a state density

(2.1) Pj(u1#..,u , x + A, y + A , t + A ) ,

x, y, t > 0, A a small positive increment, can occur. As x, y > 0, there 

cannot have been either an arrival or departure during the time interval
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(t, t +A) , or either x or y would be of order A . Hence the state density 

(2.1) can only arise from a state density

Pj(u1#..,u , x, y , t)

at time t.

During interval (t, t +A ), there are to be no departures or 

arrivals. The probability that there are no departures is simply

(l-y(x)A) + o(A).

Since the time between the last and the subsequent arrival is

b u n+b,u +.,+b u_ , o p+1 1 p pi*
of which by t an amount y has elapsed, the probability that there are no

arrivals during (t, t + A) is

(1-A[(y-b u -..-b u )/b ]A/b ) + o(A) .1 p p i  o o
Thus

P.(u,,..,u ,x + A,y+A, t+A) n i p
= P_. (u^ . . ,û  , x, y, t)(l-A[(y-b1u^-..-b^u1)/bo]A/bo)

x (l-y(x)A) + o (A) ,

On dividing by A and letting A -+ o we find

j > 0.

(2.2) ) P. + (A[(y-b u -..-b u )/b ]b 1 + y(x)}P. = 0, j > 0ox dy 9t ] J 1 p p l o o  3
Similarly

(1-  ̂3x + If) F +
With e(ul’* * 5 up ’

-1
1 P -> u. J / JJJp i  o o

While

e(u1,...,u , y +AS t+ A)

cannot arise from e(u u , y t) if there is an arrival in (t, t+A), itP >
can arise from y, t) or pQ(u'P\  x, y, t) (x arbitrary) from a

departure, e thus has a different form of equation from either p_. or f.
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(2-4) (y + i t )E +x [(y-1i V ’' - V i )/1>olio’1 E

= y(y)F(u^P \ y  ,t) + Jq Po(ukp; ,x ,y ,t) y(x)dx.

To the basic equations (2.2) - (2.4) we need to add suitable initial and 

boundary conditions to complete the specification of the behaviour of the 

system.

Most simply we could adopt as initial conditions

P(u^P \ x ,  y , o)

(P)

= O, ] > o, 
p

F(uv*",x, y, o) = 5(x-o) n (u.-«.), 
( S i-1 1 1,(p)

,(p)(2.5)

E(uvp/,y, o) = o,

where <*VF/ ls a set of positive constants. These conditions have the merit 

of giving (2.2) a particularly simple form of general solution, as we shall see. 

By adding an extra term to the general solution we derive, we can easily 

accommodate more general initial conditions.

We obtain boundary conditions by considering the system of arrival and 

departure instants.

First, take arrival instants. The system can enter p_.(u^\ x, o, t), 

j > 1 ,  only from a Pj_j_ state. As there is a simple ’shift* in the u ’s at 

an arrival, that with lowest subscript being lost and a new u with highest 

subscript appearing, the set of u ’s just before such an arrival must have 

been of the form

v, u 1 # . ., Up_q.

The corresponding inter-arrival interval will be

b u +.. +b , u + b v . o p p-1 1 p
We readily derive the boundary condition

(2.6) J
= / P. , (v , u.,. . , u ,x ,b u +..+b v ,t) A( u )b 1dU(v) , j > 1, 

J o 3-I l p-1 o p  P p o * J *

P. ( u ^  , x, o, t) D

on integrating to allow for all possible v ’s.
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We similarly derive the further boundary conditions 
^ P 1 (u^P\x, o, t)

= / P (v,u.,..,u n.x,b u + ..+b v , t) X( u )b PdU(v)J 0 o 1 p-1’ o p  p p o
+ F[(x-b u -b u -b u n-..-b un)/b ,u ,..,u , ,x,t]o p  o p-1 1 p-2 p-1 1 p 1 p-1

<
(2.7)

X(u )b P °
-1

P (u F , X , o, t) = o o

F(u(P},o,t)
=f E[(y-b u -b u -b u -..-b u )/b ,u ,..,u ,y,t]x 1 o o p o p-1 1 p-2 p-1 1 p i  p-1 J
A(u )b 1d U[y-b u -b u -b u -. .-b ..u..], p o y J o p o p-1 1 p-2 p-1 1

* \  E ( u ^  ,o, t) =0.
The departure instants give an additional relation

°o

(2.8) P_.(û P\o,y ,t) = fo Pj + 1(u P ,x sy ,t)y(x)dx , j 2 0.
We now give some idea as to the connection between our equations (2.2)-

(2.8) and Hilbert problems.
Suppose that L is the union of a set of smooth non-intersecting

contours (of which one encloses all the others) bounding a connected region.
1The basic non-homogeneous Hilbert problem is;

To find a sectionally holomorphic function $ (z), having 
finite degree at infinity and satisfying on L the boundary 

condition

(2.9) = G(t)$ (t) + g(t),

where G, g are functions given on L satisfying the Holder condition 

and G(t) ^ o everywhere on L.

The suffices +, - refer to the half line decomposition

1. MUSKHELISHVILI: Sinqular Inteqral Equations, P. Noordhoff, Groningen,
Holland (1953), Ch. 5.
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t > 0
t < 0

t > 0 

t < 0

(2.10) $ (t) = $r(t) + <T(t)
When we say a function f(t) satisfies the Holder condition on L, we

me an

There exist -positive constants A,\x, such that, for any two points tj, t^ of 

L

\f(t2) - f(t2)I S A \t2 " ti ̂  *

* (t) =
$ (t), 
.0

$ (t) = -
J> (t),

We observe that

The basic Hilbert problem admits of a simple solution in terms of 

Cauchy integrals.

(2.9) may seem remote from our fundamental equations but a decomposition

(2.10) in fact arises in a very natural way from (2.2).
If we make the substitution 

Q.(u(p),x, y, t)
J y x

= exp[b f A[(u-bnu -. .-b u, )/b ]du+ f y(u)du] o J o l p  p i  o ■'o
x P.(u(p) ,x, y, t) , j > o,

(2.2) becomes

(|—  + )Q• = 0 , j > 0.9x dy 3t 3 J
Following Keilson and Kooharian (1962), the general solutions to these

equations with the initial conditions (2.5), i.e.,

Qj(u^P^,x,y, o) = o, j > o,

are

(2.11) Q_.(u^p),x, y, t) = Q (u^P \  x-y,t-y) +Q^ ̂  u*'P ̂ ,x-y ,t-x) ,
> o, j > o,



where Q_.̂  vanishes for either x < y or t < y and Q_. ̂ for either x > y or

t < x.

In the case of GI/G/1, (2.6), (2.8) have a particularly simple Wiener-

Hopf form when we take generating functions on j , thanks to the decomposition 

(2.11). This enabled Keilson and Kooharian to reduce the equations to a 

Hilbert problem, using integral transforms. It seems possible that a similar 

though more involved treatment might succeed with the present equations.
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