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ERRATA
Page 83« Correction to the sentence commencing on second 
last line of page 83 and ending at top of page 84.

Replace sentence:
"We can now apply the extension of Abel’s theorem 

quoted previously (Chapter I, equation 3.5) to obtain

by the following:-
’’Since is a non-decreasing function of t so is

Q 0 <*0 . Then by Theorem 4.5 of Widder (1946),

Page 90. Add Footnote to last word on the page, "...normal
ized to unity*."
* "I am indebted to Dr. W.L. Smith for pointing out to me 
that the existence of these limits can be established in a 
relatively simple way by using his results on regenerative 
stochastic processes (Smith, 1958). In what follows we as
sume that (>, O  - eyiats, but we do not assume
that K O )  - I"

Page 108. Add the following sentence to end of the first 
paragraph:- "As stated on page 105 we assume that the ’pre
emptive resume’ rule holds."
Page 158. Add the following paragraph:-

"An arrival process with probabilities as in (2.5) has 
been considered by Pollaczek (1957), and called by him the 
Bernoulli distribution of arrival times. In the monograph 
referred to, Pollaczek obtained the distribution of waiting 
times for the single server queue with general renewal in
put and with input defined by (2.5). Pollaczek’s methods



are different from those used here and his results are ex
pressed in terms of contour integrals. I am indebted to 
Dr. D.G. Kendall for drawing my attention to this reference.
Page 170. Add the following references:
Pollaczek. F. (1957)*

Ppoblbmes stochastiques coses par le phenom^ne de forma
tion d'une queue d'attente a un guichet et oar des phen- 
omenes apparentes. Paris: G-authier-Villars.

Smith. W.L. (1958).
Renewal theory and its ramifications. J.R. Statist. Soc. 
(B) 20, 243-302.
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is not relevant to the theory of queues.

Many of the problems with which the thesis is con
cerned have been discussed by other writers on the sub
ject; however most of the results presented here are new. 
Previous work is acknowledged in the appropriate part of 
the text. The contents of Chapters II, III, and IV have 
been published or submitted for publication, and work is 
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in Biometrika, k6, (1959) written jointly by J.E. Moyal 
and myself and it is impossible to indicate which results 
are specifically my own. As a broad statement it seems 
fair to say that the basic ideas of that chapter were Mr 
Moyal1s and that my responsibility lay more with the cal
culations and the extension to the many server queue. The 
work on which the other chapters are based is my own al
though many of the more difficult problems were only dis
posed of satisfactorily after discussion with Mr. Moyal.
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SUMMARY
Chapter I describes briefly the main problems of 

queueing theory and the methods used to treat them. The 
two most important quantities associated with a queue are 
are its length at time t and the waiting time of a cus
tomer. Of these the first is the more fundamental since 
the distribution of waiting time can always be found if 
queue length is known so that in this thesis we are prim
arily interested in the distribution of queue length. 
Queueing systems are divided into two classes depending 
on whether or not the input process is of renewal type.
If the input (and the service process) are of this type 
we argue that of the standard Markovisation procedures 
available for the analysis of such systems the most use
ful is the inclusion of supplementary variables. Pro
cedures of this sort are difficult to apply to more gen- 
eral systems and we point out that the problem of find
ing the distribution of queue length is essentially a 
combinatorial one which is still unsolved. The arguments 
of the thesis are presented briefly in § k. It appeared 
advisable to summarise these arguments after stating the 
problem rather than to give such a summary here.
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Chapter II is concerned with queueing processes 

that are Markovian without modification, that is, m/m /1 
and M/m/N • A unified theory of these processes is 
given which includes cases in which side conditions are 
imposed on queue length. Fluctuation in queue length is 
represented by an imaginary particle describing a random 
walk on the non-negative integers. In § 3 we give the 
solution of the random walk problem with absorbing bar
riers at positions 0,N and in § k we consider the case 
when the barriers at these two positions are reflecting 
ones. These cases are of importance in the study of 
queueing systems in which the size of the waiting room is 
limited. The process considered in 9 5 incorporates side 
conditions that change the nature of the random walk at 
the interior point N • The solution of this problem 
enables us to give the Laplace transform of the probabil
ity generating function of the many server system m /m /N. 
Throughout this chapter we endeavour to give explicit ex
pressions for the temporal probabilities of queue length. 
In many cases these formulae are too complicated for im
mediate application but we do not consider approximation 
procedures. In §6 we show how the forward Kolmogorov 
equations can be used to analyse the N server queue, but 
the main purpose of this section is to serve as an intro
duction to the methods used in the next chapter.
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Chapter III» Amongst queueing systems whose in

put and service processes are independent and of renewal 
type, we assert that the only two of real interest are 
those in which the input process is (i) Poisson, (ii) 
deterministic. The purpose of this chapter is to study 
the temporal development of single server queues with 
these inputs and general service time distribution. The 
method of supplementary variables is used to obtain a 
generalisation of the Pollaczek-Khinchine formulae for 
the temporal process E, /g/i in wThich the renewal input 
is defined by an interarrival distribution of -A type. 
Results for the two processes of interest, m/g/i and 
d/g/ i , are obtained by specialising these formulae.
The existence of the asymptotic equilibrium distribution 
is established by applying an Abelian argument to the 
Laplace transform solution of the temporal problem. We 
show that the necessary and sufficient condition for a 
true equilibrium distribution to exist is that the proba
bility that a busy period end in finite time be unity 
and that its expected duration be finite. The approach 
used provides an alternative to the usual method of analys
ing such systems by means of the Markov chain imbedded 
in the queueing process.



Chapter IV is devoted to the study of a special
type of queueing system in which interruptions are allow
ed to the servicing of customers. Situations of this sort 
arise when allowance is made for breakdowns in the service 
mechanism or when the queue discipline is such that cer
tain customers have a preemptive priority right to service. 
The effect of such interruptions on the queue m/e^/i is 
considered in §^2-4, and tables of expected queue length 
in the equilibrium state are given when the service dis
tribution is (i) negative exponential, (ii) constant. In 

^ 5 and 6 the system is generalised so that the population 
of customers is divided into a hierarchy of R priority 
classes, although in this case we specialise all service 
distributions to negative exponential.

Chapter V . In §1 of this chapter we discuss the 
input process as a model for the arrival behaviour of cus
tomers. We advance arguments in favour of the assertion 
made earlier in the thesis that the only forms of renewal 
input of real interest are those which are Poisson or de
terministic. A new input model, known as general independ
ent arrivals (GIA) , is proposed in §2. This seems to 
describe in a more realistic wa,y than the description af
forded by the renewal model the behaviour of customers when
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the arrival times are not scheduled or controlled in any* 
way* To date we have not been able to analyse the pro
posed model very thoroughly and as a result only partial 
results are presented in ^§3 and k • The main function 
of this cha.pter is to draw attention to the need for new 
models of the input process and to point out that this 
is one of the most important current problems of queueing 
theory*



CHAPTER I

GENERAL REMARKS



1
1 • Preliminary Statement

The theory of queues is concerned with the stoch
astic processes that arise in the study of physical sys
tems of a special sort. These systems have as their dis
tinctive feature a sequential input of discrete units 
which suffer a delay in the system before being discharg
ed and lost. We refer to the incoming units technically 
as customers t although this term may not be strictly ap
propriate in any particular application. By the service 
mechanism or service facility we mean an agency which op
erates on customers to discharge them from the system.
The term queue denotes the ensemble of customers who have 
entered the system but have not been discharged.

The theory has developed out of attempts to formu
late mathematical models of situations in which service 
is provided to meet randomly arising demands. It may hap
pen that at certain times the service facility can only 
satisfy the demands made on it by arriving customers if 
the latter are prepared to wait. If customers are not pre 
pared to wait we have what is called a loss system, and a 
queue does not form. On the other hand if customers do 
wait (at least for a certain time) when they cannot be at
tended to immediately, the system is called a queueing or 
waiting system and a queue of waiting customers develops.
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The study of the attributes of this queue constitutes the 
subject matter of the theory of queues. We will be con
cerned with only certain aspects of the subject. No com
prehensive and brief account seems possible at the present 
time and in particular we will not discuss related ques
tions in the theory of storage, inventory control, and the 
like, although some of the results we obtain have applica
tions in these fields. This thesis is written from an ap
plied point of view. That is, for systems that are well- 
defined we seek explicit representations of the quantities 
of interest, and we do not investigate the general theor
etical questions related to the stochastic processes aris
ing in queueing theory.
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2• The Main Problems of Queueing Theory

A mathematical description of a queueing system 
requires knowledge of the following:

(i) The input» Successive customers arrive at

times tj* ̂ 2,^3,**#,^n,#** , t^ n=1,2,3 >•••>
which are the events of a stochastic process called the 
input process« It is often assumed that the input consti
tutes a renewal process so that the interarrival times

= t  ̂ - t are independently and identically dis
tributed. The input is discussed in more detail in § i 
of Chapter V.

(ii) The service facility, consists of one or more 
servers (or channels or counters) which operate on custom
ers to discharge them from the system. The duration of 
this operation, the service or holding time, is in general 
a random variable the distribution of which may not be the 
same for all customers or all servers. If the service time 
of all customers are independently and identically distri
buted and are independent of the input, we will say that 
the service process is an independent renewal process.

(iii) The queue discipline is the rule under which 
customers wait for service to commence when waiting is 
necessary. The most common queue discipline is known as 
first come, firfft served under which new arrivals await
their turn for service in order of arrival
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When (i) - (iii) and possibly additional side con
ditions are specified the main problem of queueing theory 
is to find the distribution of the following quantities 
associated with the queue:

(iv) The queue length at time t . This is de
noted by n(t) or n and is defined as the number of cus
tomers waiting or being seryed at t . Waiting line is 
the term used to denote the number waiting.

(v) The waiting time of a customer, which is the 
time between arrival and the instant service commences.
The virtual waiting time at time t is the duration a cus
tomer would have to wait if he arrived at t • We use 
the symbol W£(t) to denote the virtual waiting time.
The waiting time of the nth arriving customer is then
■'(bn-0.).

These two are the most important of the random 
functions associated with a queue. Of the other quantities 
we mention only the busy period which is defined as a time 
interval in which the service facility is continuously 
occupied. Figure 1 at the end of this chapter illustrates 
n(t) and ^(t) in the case of a service facility con
sisting of one server. The third function graphed, S } 
is the work load submitted to the server in the interval 
[0,t). The ordinate >̂(t) is the sum of the service
times of customers arriving before t
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We use  t h e  s h o r t h a n d  n o t a t i o n  i n t r o d u c e d  by Ken

d a l l  ( 1953)  t o  d e n o t e  a p a r t i c u l a r  q u e u e i n g  s y s t e m .  Thus 

G I / g/ n i n d i c a t e s  t h e  sy s tem i n  which

(a )  t h e  i n p u t  c o n s t i t u t e s  a r e n e w a l  p r o c e s s  w i t h  

a r b i t r a r y  d i s t r i b u t i o n  ( g e n e r a l  i n d e p e n d e n t  i n t e r a r r i v a l  

t i m e s ) ,

(b)  t he  s e r v i c e  p r o c e s s  i s  o f  i n d e p e n d e n t  r enewa l  

t y p e  w i t h  g e n e r a l  d i s t r i b u t i o n ,

( c )  t h e  s e r v i c e  f a c i l i t y  c o n s i s t s  o f  N s e r v e r s .

The symbol  G I / g/ n a l o n e  i s  an  i n c o m p l e t e  s p e c i f i c a t i o n  

and i t  i s  a l s o  n e c e s s a r y  t o  s t a t e  t h e  queue  d i s c i p l i n e  and 

t h e  s i d e  c o n d i t i o n s ,  i f  any .  I f  no s i d e  c o n d i t i o n s ,  su ch  

a s  p l a c i n g  an u p p e r  l i m i t  on p o s s i b l e  queue l e n g t h  o r  w a i t 

i n g  t i m e ,  a r e  impo se d ,  we sp eak  o f  t h e  u n r e s t r i c t e d  q u e u e . 

I f  t h e  n o t a t i o n  GI/G/N i s  u s e d  w i t h o u t  q u a l i f i c a t i o n  

t h e n  i t  i s  u n d e r s t o o d  t h a t  we a r e  r e f e r r i n g  t o  t h e  u n r e s 

t r i c t e d  queue w i t h  f i r s t  come, f i r s t  s e r v e d  queue d i s c i 

p l i n e .  Queues o f  t h i s  t yp e  w i l l  some t imes  be c a l l e d  r enew

a l  q u e u e i n g  s y s t e m s  o r  more s i m p l y ,  r e n e w a l  q u e u e s .

A q ue u e i n g  p r o c e s s  i s  t h e  s t o c h a s t i c  p r o c e s s  

£ n ( t )  , t  £. t J  whose r e a l i s a t i o n s  a r e  t h e  random f u n c t i o n s  

n ( t )  , t h e  queue l e n g t h  a t  t  , and i n  wh ich  t h e  i n d e x  

s e t  T i s  t h e  p o s i t i v e  r e a l  a x i s .  I t  i s  a d i s c r e t e  p r o 

c e s s  w i t h  c o n t i n u o u s  p a r a m e t e r  and r a n g e s  o v e r  t h e  s e t  o f  

n o n - n e g a t i v e  i n t e g e r s .  On t h e  o t h e r  hand t h e  w a i t i n g  t ime
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process (ait) , t e. t] is a continuous stochastic
process whose range is the non-negative real axis. When

n(t)}we refer to the process GI/g/n we mean the process ■ 
describing fluctuations in the length of the queue associ
ated with the system GI/g/n •

It is convenient to describe the arrival and de
parture of customers in the same way. We assume that the 
input process is a well defined stochastic process 
^a(t) , t 6 T*̂  in which a(t) represents the number of 
arrivals up to and including time t ♦ A realisation 
a(t) is a left-continuous, non-decreasing random step 
function with jumps of unit magnitude at the arrival epochs 

• We may similarly define the departure pro
cess ^(t) , t £ T j whose realisations g(t) are left- 
continuous, non-decreasing step functions, the unit jumps 
of which occur at the epochs when customers
leave the system. The departure process is not independ
ent of the input since each departure time is the sum of 
an arrival time and the period spent in the system,. From 
a knowledge of the arrival and service times one can in 
principle construct the departure process. An alternative 
formulation is to consider the point process composed of 
two input processes as defined above, but operating in
opposite directions. If î a/(t)|j and ĵ g/(t)| are two
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such processes with epochs of events t̂  , t9 ,... ;
n ' p '
ui ) üX)* ' ' J respectively we say that this compound pro
cess defines a queueing system provided we always have

t a — 6 it j . (2*1)
Any two stochastic processes of the type described above 
can give rise to a queueing problem provided the essenti
al condition (2.1) is fulfilled.

Let us consider a system in which the service fac
ility caters for a population of N customers whose arriv 
al and departure times are respectively ,t2>..,tN, and 

' ' j Qfsj * Let ^<i(t)j and be such that
for finite N all these epochs are almost certainly fi
nite. Then a knowledge of the input and departure process 
es enables us to write down the joint distribution func
tion

(2.2)
The sample space O L  is the subset of 2N dimensional 
Euclidean space defined by the inequalities

< t
IV

< e.
o i t, <

±  ■ ■ ■ -

A

t- & & c

(2.3)
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If the number of customers is infinite then SI- is a sub
set of Euclidean space with a countable number of dimen
sions* Queue length at time t,n(t) , is a functional 
on S2. since it is a mapping from this space into the set 
of non-negative integers Inf n=0,1,2, . . , N  ̂ * Similarly 
T^(t) is a mapping from STi. into the non-negative real 
axis. The central problem of the theory of queues is to 
find the distributions of n(t) and /£(t) from (2.2). 
Strictly speaking there are two problems; firstly, a pre
cise study and definition of the functionals n(t), ^(t) , 
and secondly, the devising of methods which will yield 
their distributions.

Of n(t) and )̂ (t) the former is the more funda
mental one. The reason for this is that, if queue length 
is known, then the waiting time of a customer is given by 
summing the service times of those already waiting and 
the balance of the service time of one of the customers 
currently in service. On the other hand queue length can
not be obtained from a knowledge of the waiting time, un
less of course the service time is a constant. Referring 
to Figure 1 at the end of this chapter we see that n(t) 
has discontinuities at both arrival and departure epochs, 
whereas the jumps of ?£(t) occur only at the instants
customers arrive. Because ^(t) is of simpler structure 
than n(t) it is often possible to find its distribution
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by methods which fail when applied to the study of 
queue length. In fact for a single server queue Benes 
(l960a) has shown that the function %(t) contains 
sufficient information to determine T̂ (t) uniquely. 
n(t) cannot be obtained in this way since ?b(t) con
tains no information relating to departure epochs. As 
a result more is known about the distribution of waiting 
times than of queue length, and even for fairly special 
systems little is known about the distribution of the lat
ter at arbitrary instants of time.

The above description is perfectly general since 
it involves no special assumptions about the queueing 
system. Essentially the problem is a combinatorial one 
since, for fixed t , n(t) is the excess of arrivals 
over departures in jj3,t) • Hence to find n(t) we 
have to count the number of these events that occurred in 
j_0,t) subject to (2.3)* We also note that it is a prob
lem in finite time. If N is infinite and the input and 
service processes are independent and of renewal type then 
under certain conditions the equilibrium distribution of 
n(t) exists when t—$>co , On the other hand it may not 
be sensible to talk of equilibrium distributions for other 
types of input and service processes.
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3• Methods of Queueing Theory

Except for systems in which both interarrival and 
service times have the negative exponential distribution 
queueing processes are not Markovian, and the most wide
ly used methods are those which restate the original 
problem in terms of a Markov process. Two standard ways 
of doing this are available when the input and service 
processes are independent and of renewal type. They are

(i) the method of the imbedded Markov chain,
(ii) the method of supplementary variables.

The first of these was introduced by Kendall (1951) 
and has since been applied to a wide variety of queueing 
problems (for example, Kendall, 1953; Wishart, 1956;
Gaver, 1959; Winsten, 1959; and Miller, i960). The 
queue is considered only at those epochs at which the 
Markov property holds, and the process is analysed in 
terms of the stochastic matrix governing transitions at 
these epochs. An equivalent approach due to Lindley 
(1952) and Smith (1953) considers the queue at arrival 
epochs only and leads to an integral equation of Wiener- 
Hopf type for the distribution of the waiting time of 
an arriving customer. The method of the imbedded Markov 
chain and the Lindley-Smith approach are particularly 
suited to studying distributions associated with the nth
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arriving (or departing) customer as n-~>oc • Results 
for finite time are difficult to obtain by these techniq
ues.

The method of supplementary variables consists in 
characterising the states of the system by vectors so that 
the Markov property is restored in a phase space of higher 
dimension. It has long been known as a means of analysing 
non-Markovian processes (Bartlett, 1956) but seems to have 
been first applied to a specifically queueing problem by 
Cox (1955)*- Strictly speaking Erlang*s differential-diff
erence equation approach is a case of this method although 
the term is usually applied to situations in which the 
supplementary variables considered are continuous. The 
application of this method in queueing theory is similar 
in many respects to techniques used in the study of stoch
astically developing populations with age-dependent birth 
and death rates. In the case of a service time with dis
tribution function H(x) , H(0+) = 0  , one defines the
first order conditional probability that a custom
er completes service in the interval (x,x+ix) , given 
that service has not been completed earlier. The formal 
relationship between /-c(x) and H(x) is

M 00 &

r
H (k +Sx.) — Hoonuxf + oWt) ,
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which on taking the limit as O  reduces to

Hence

(3.1)
and for the density function we have

dH-u) = UoA*. (3.2)

If the derivative of H(x) does not exist at a point x

and h(x) contain Dirac delta functions. We can also de

distribution in the same way, where y is the elapsed 

time since the last arrival. Then for example, the queue

ing process GI/g/ i is Markovian if the state of the sys

tem at time t is defined by the vector (n,x,y) , where 

x,y are as above and n denotes queue length, n=0,l,2,. 

0 4u x ; 0 •— y , Consideration of all possible events in 

the interval (t,t+£t) yields the forward Kolmogorov diff 

erential-difference equations satisfied by the transition 

probabilities of this Markov process. The boundary condi

tions when x or y are zero describe the process at 

arrival or departure epochs.

we formally by (3,l). In this

fine a probability related to the interarrival
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Erlang’s method (Brockmeyer, Halstrom, and Jensen,

19^8) consists of approximating to the interarrival and
Vl

service distributions by members of the ?C family with 
density

— /Vtr x W -  I
lE . f t )  -  e {̂ 2  ,  k --1,3,3  (3 .3)

k Ck-0!

Distributions of this type can be considered as the con
volution of k negative exponential distributions each 
with parameter , so that it is possible to use the de
vice of dividing an interarrival or service period into k 
fictitious phases, the time spent in each having the nega
tive exponential distribution. The joint specification 
with queue length of the phase of the customers arriving 
and being served defines the state of a Markov process 
with discrete phase space. Distributions defined by (3.3) 
are called Erlang distributions and are denoted by the 
symbol Ek • If k=l we have the negative exponential 
distribution and we write E^=M , the M standing for 
Markov. If all interarrival and service times have the 
negative exponential distribution the queueing process is 
Markovian without modification, and in this case we will 
speak of the Markov queue.

Since we are interested in the state of a queue at 
an arbitrary instant of time it is clear that the inclusion 
of supplementary variables is a preferable Markovisation



procedure than the method of the imbedded Markov chain. 
The differential-difference equations obtained by the 
former govern queue behaviour for all t , and we there
fore use this method for the analysis of systems in which 
the input and service processes are of independent renew
al type. As an aid to writing down these differential- 
difference equations it is often convenient to state the 
queueing problem as a hypothetical random walk. This is 
particularly useful in multidimensional problems (see 
Chapter IV), but even for the simple Markov queues dis
cussed in the next chapter it leads to a unified treat
ment of various queueing systems. Queue length at time 
t is represented by the position of a hypothetical par
ticle describing a random walk on the non-negative integ
ers. A new arrival increases n(t) by unity and a de
parture decreases n(t) by unity. The virtual waiting

this case wre actually have a diffusion process of a spec
ial sort, since the particle drifts towards the origin 
with unit velocity and jumps away from the origin at arriv
al epochs (see Figure l). The magnitude of each jump is 
the service time of an arriving customer. Restricting the 
random walk by barriers placed at the origin and perhaps 
also at other points, describes a queueing process under

time can also be described in these terms. In

various side conditions
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An important advantage in using differential-diff

erence equations to specify the queue length probabilities 
Pn(t) is that, provided Laplace transforms are used ex
tensively, solutions for finite time are essentially no 
more difficult to obtain than those in the equilibrium 
state. Let the asymptotic equilibrium probabilities be

^*0 “ fv > (3.4) 
and let the Laplace transforms of the temporal probabili
ties be

e iC ÄX ) ]<k s ^  0  .

Then if the system of interest contains only Erlang dis
tributions, the difference equations satisfied by the pn 
are almost identical to those satisfied by the transforms 
P (s) , n=0,l,2,... , and it is a simple matter to pass
from the solutions of one set to the solutions of the other. 
With some modifications this is also true of more general 
systems in which the transition probabilities depend on 
elapsed service or interarrival times.

For systems in which the input and service process
es are of independent renewal type the limit in (3*M ex
ists, but the asymptotic equilibrium distribution 
may not be normalised to unity. The conditions under which
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\pnj is a true Probability distribution have been estab
lished by many authors, the most general result being due 

to Kiefer and Wolfowitz (1955) for GI/g/n . If the trans
Vr

form solutions pn vs ) are known an alternative way of 

proving the existence of a true equilibrium distribution 

is by the use of Abelian or Tauberian arguments. In this 

case passage to the equilibrium state is most easily effect 

ed by using an extension of Abel’s Theorem (Widder, 1946, 

Chapter V) which yields

provided the limit on the right hand side exists. It is 

in fact sufficient for (3.5) to be true that the right 

hand side exists as a Cesaro limit.

discussed above may be difficult to apply when the input 

and service are not independent renewal processes. The 

only work in this direction is due to Winsten (1959) who 

showed that the method of the imbedded Markov chain can be 

extended to analyse some non-renewal queueing processes. 

Winsten’s model is discussed in Chapter V when we consider 

processes of this type. In § 2 of this chapter it was point 

ed out that the problem of finding the distribution of n(t) 

from the input and departure processes is essentially a 
combinatorial one. For the unrestricted Markov queue m /m /1

(3.5)

It is apparent that the Markovisation precedures
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Champernowne (1956) obtained the temporal distribution of 
queue length by a direct probability argument, but his 
method does not seem to generalise to more complicated 
systems * The main reason for this is that the argument 
depends on finding the distribution of the supremum of a 
stochastic process, a task which seems impossible for pro
cesses other than the Poisson, An alternative approach 
is to treat the problem as an occupancy one of a restrict
ed nature. Intervals between successive arrivals are des
ignated as ‘boxes’, the lengths of which are the interarriv
al times. The number of ’balls’ placed in a box denotes 
the number of services successfully completed in an inter
arrival period when occupancy is restricted by the inequal
ity (2,l), Gani (1958) has successfully used this method 
to study first emptiness problems in the theory of dams 
with Poisson input, but again the method does not seem 
strong enough to cope with more general systems. It is 
possible that the combinatorial results of Sparre Andersen 
and Feller (see Feller, 1959, for references) can be applied 
in queueing theory, but at the moment it is not clear how 
this can be done,

Benes (1960a, 1960b) has effectively solved the com
binatorial problem associated with the waiting time process. 
We have seen that specification of both arrival and depart-
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ure times is necessary to find n(t) but that sufficient 
information is contained in the arrival and service times 
only to determine 7?(t) * This enables Benes to replace
the joint distribution (2,2) of arrival and departure 
times by the distribution of the single random function 
5(t) * The latter can be written down immediately for
any given single server queueing process and Benes shows

major difficulty in applying this method to find the dis
tribution of queue length is that in this case there ap

is related to n(t) • This is parallel to the position 
for renewal queueing processes, where essentially only 
the non-Markovian nature of the input has to be removed 
to treat waiting time problems (see for example Takacs,

how to obtain the distribution of from this. The

pears to be no simple function analogous to >̂(t) that

1955).
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k» Summary

We have not been able to investigate success
fully the general problem stated in §2 and have accord
ingly classified queueing systems into two groups de
pending on the nature of the input* In the first group 
are those systems in which the input constitutes a renew
al process, and in the second are those for which this 
is not true# Most of the systems considered here belong 
to the first class and only in Chapter V do we consider 
more general systems# We assume throughout that the ser
vice times are independently and identically distributed 
and are independent of the input. Further, we will al
ways assume that the service facility consists of only 
a single server unless specifically stated to the con
trary# The argument of the thesis is briefly as follows

(i) Amongst those systems in which the input is 
a renewal process only two models are of real interest 
in the theory of queues, namely when the input is

(a) Poisson
(b) deterministic.

The argument in favour of this conclusion has been de
ferred until § 1 of Chapter V since it seemed preferable 
to present the material concerning input processes in the 
one chapter#
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(ii) Of the standard methods available for the 

analysis of queueing systems with recurrent input the 
most suitable is the inclusion of supplementary varia
bles* Judging by the literature this method has not 
been fully appreciated in the past and we hope to dem
onstrate that it yields many important results in a 
straightforward way* To this end the method is applied 
in Chapter III to the unrestricted process E^/G/l to 
obtain a generalisation of the Pollaczek-Khinchine form
ula. A more detailed analysis is given of the two systems 
of major interest, m/g/i and d/g/i .

(iii) An important problem in queueing theory is 
the examination of the effects on queue behaviour of 
side conditions imposed on a process* No comprehensive 
treatment of this problem appears possible at this stage 
and we consider two cases. In Chapter II a unified ac
count is given of the Markov queue with side conditions 
on queue length. In Chapter IV we examine the effect of
a queue discipline that permits interruptions to the serv
icing of customers.

(iv) Probably the main current problem of queueing 
theory is the analysis of systems with correlated input 
and the specification of models which describe practical 
situations in a more realistic way than in the past. An 
input process depending on broader independence assump-
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tions than those incorporated in the renewal model is 
put forward in Chapter V, and it is suggested that this 
model is applicable to a wide class of queues. To date 
we have not been able to analyse it very thoroughly, 
but the partial results obtained indicate that more in
formation can probably be obtained in the future.
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CHAPTER II

THE RANDOM WALK IN CONTINUOUS TIME 
AND ITS APPLICATION TO MARKOV QUEUES



2k

1. Introduction
A particle will be said to describe a random walk 

in continuous time if it has constant chances \ , jm per
unit time of taking one unit step respectively to the 
right or left on the real axis. For prescribed boundary 
conditions, such as absorbing or reflecting barriers at 
given positions, we ask for the distribution of the par
ticle^ position at time t after the start of the pro
cess. Specifically, we choose the origin on the real ax
is (as can be done without loss of generality) so that the 
initial position of the particle at t=0 is k , an in
teger, and for each of the processes studied we seek 
P (t) , the probability of a transition from k to n
in time t • We use the backward* equation (Bartlett, 
1956; Feller, 1957)

The probability generating function
then satisfies

1Qk(-V)= -tyAQjvO > (1.2)



25
where c<-X+yu * Clearly Gk(z,0) 
ducing the Laplace transform

Intro-

C j*Ü 2 .,sv) -  o t “  e  C j^ 'V D A tr  5 ^  s  ^  O 0

it follows from (1.2) that

= xqtol vC. + *-k- (1.3)

The range of k depends on the problem under considera
tion. Thus for the unrestricted random walk k=0±i,*2,...; 
whereas for a barrier at the origin k is restricted to 
the non-negative integers.

The system consisting of the backward equation, to
gether with the side conditions, has a unique ’honest* solu
tion (’honest1 in the sense that 2"PytO - I , or equiva-

X* _  Ilently G^(l,t)sl,G^(l,s)s s ); in fact ’honesty* im
plies uniqueness and conversely. This is well known to be 
the case for (l.l) without side conditions (cf. Bartlett, 
Feller, loc. cit.). With side conditions it can be proved 
to follow from the general theory of discontinuous Markov 
processes given in Moyal (1957) by transforming the system 
into an equivalent integral equation of the type considered 
in that paper; the explicit solution for the single absorb
ing boundary case is given as an example of the general 
theory in Moyal (i960). The method of obtaining explicit
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solutions developed here is however much less laborious, 
especially for the more complicated side conditions, but 
we still rely on the general theory for the fact that the 
fhonesty' of each solution thus obtained implies its unique
ness, The last remark applies also to the renewal type 
queueing processes considered in subsequent chapters.

The Markov queueing process m /m/1, in which the 
density functions of the interarrival and service distri
butions are respectively

am*) =
dt H it) = h e7At 3

can be described in terms of such a random walk. To do 
this it is necessary to impose a barrier at the origin 
so that the random walk takes place only on the non-nega
tive integers. Then the position of the particle at time 
t is the same as the number of customers in the queue at 
t and Pkn(t) , k, n=0,l,2,... , is the probability
that queue length changes from k to n in an interval 
of duration t • The nature of the barrier imposed at 
the origin depends on the particular quantity of interest. 
An absorbing barrier is appropriate if one sought the dis
tribution of first passage times through the origin, such 
as the duration of a busy period. Alternately this barrier 
must be reflecting if it is required to find the distribu-
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tion of queue length at an arbitrary instant of time,
A situation of interest in queueing theory is that in 
which the number of customers waiting at any instant is 
limited to some finite value due, for example, to a wait
ing room of fixed capacity. Then another barrier must be 
imposed at N , say, in addition to the one at the origin. 
Whether this second barrier is absorbing or reflecting de
pends again on the question at issue, the former being ap
propriate if one seeks the distribution of the time taken 
for the waiting room to become ful^and the latter if the 
distribution of queue length is of interest. If the wait
ing room is full new arrivals do not join the queue and 
the number of potential customers lost for this reason is 
clearly o»f importance to the economics of a queueing sys
tem and in the theory of loss systems.

Up to the present time no unified theory has been 
given for the simple queue with side conditions on queue 
length additional to the essential barrier at the origin.
By considering the general solution of the difference 
equation (l.3) we give such a unified theory which includes 
previous work on the subject as special cases and readily 
yields the solution for any other consistent form of bound
ary conditions. The solution of the random walk problem 
when there are absorbing barriers at 0 and N is given 
in §3» and in we derive the solution when the barriers
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at these two states are reflecting ones. In § 5
general process is considered in which the transition in

position in a bounded interval, and are constant outside 
that interval. The solution of this random walk problem 
gives the Laplace transform of the probability generating 
function to the N server queueing process m/m/N . This 
process has also been considered by Karlin and McGregor 
(1958) using a different method.

It is well-known that asymptotic equilibrium dis
tributions exist for this type of process. We obtain them 
directly from the transform solution of (l.2) by using the 
Abelian result (3.5) of Chapter I. We mention in passing 
that there is another type of asymptotic behaviour of the 
solutions which is of interest, namely, the passage to a 
’diffusion’ process. This passage is effected as follows: 
Let

ot- A-V/U. - cr"/^- y 5 - TU L   ̂ y - U L .

We assume that each step is of magnitude h , that 
and a are constants, and we look for the distribution 
of the displacement x conditional on y as h 0 .

tensities A depend linearly on the particle’s

Let
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Carrying out this limiting procedure in (l.i) one arrives 
formally at the backward diffusion equation with drift 
term

It has been shown by Heathcote and Moyal (1959) that 
passage to the limit in the solutions of the random walk 
problems yields the solutions of (1.4) with appropriate 
boundary conditions. This approach provides an alterna
tive to the well-known method of images (Bartlett, 1956).
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2• General Solution of the Random Walk Problem

To obtain the general solution of the difference 
equation (l.3) we need a particular solution and the 
solution of the homogeneous equation obtained by omitting

)cthe term z • Since the transition probabilities clear
ly remain invariant under translations of the origin it 
follows that G (z,t) = zkG (z,t) and henceK Ö

, k-o,  ±i ,±5, ... .
Substituting in (i.3) we have

Q*O,s0 - £ s + o < - 1 -

so that a particular solution of (1 • 3) is

• (2.1)
ir kSubstituting Gk = u in the homogeneous equation we ob

tain

U* (s+«-Xu.-yUuTl) - O ,  (2.2)
the two solutions of which are the zeros of <t>(z,s) ,
namely

a/\y'[s+*- ](_s+oo1-- a v ] 

u — i-ih) L^rc* + i(s+®<y1- — a y«. -i
and (2.3)
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The general solution of (l.2) is therefore

0 -  + HC’ZyV) U, (s) +  lSC&,s) ua (s) # (2.4)
Vr

We require that G^— >0 as s —^oo , so, since
U j— $> 0 and u0— >>oo as s — 2>co , A must he bounded, 
while B must tend to 0 with 1/s faster than uQ . 
For problems involving only one boundary we set B s. 0 so 
that (2.4) reduces to

where A is determined by the boundary condition. Bound
ary conditions at two points determine both A and B .

unrestricted random walk, the solution of which is (2.1).
The Laplace transforms of the probabilities P, (t) mayK, r
be readily obtained by expanding (2.1) in a Laurent series 
for values of z in an annulus centred on the origin, 
which contains the circle |z| = 1 for all s whose real 
part is positive. Clearly it is sufficient to do this for 
k=0 . We have then

(2.5)

If no boundary conditions are imposed we have the

(2.6)



t so that the solution isWe note that CĴ (l,s) - 

unique. The inverse Laplace transforms may be found dir

ectly from tables (Erdelyi, 195M to give for the proba

bilities

32.

(2.7)

where 3 - (ty/O and l y(x) is the modified Bessel 

function of the first kind. Throughout the rest of this 

chapter the argument of Bessel functions will be suppress

ed, it being understood that it is 3 - t • The mean 

and variance of the distribution (2.7) are easily found to 

be t and oct- respectively. Inverting (2.1)

we have the generating function

Q k0z,V} - [r A'Z-yU'i ')] (2.8)
which may be expanded to verify the results obtained above.
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3• The Random Walk with Absorbing Barriers 
If the states 0 and N , say, are absorbing 

barriers, the process stops whenever the particle reach
es either 0 or N so the boundary conditions are

<  = l/s 5 Q n* = - (3.1)
The values of the constants A and B appropriate to 
this process are found by substituting the general solu
tion (2.4) in (3.1); with these values of A and B (2.4) 
becomes

k
- / j v '=  tUj-S J s Oh  - *0  + ^  a-VL'(ur u>)] («2 - ST)

< -1
/ A-K <V-K\ / Nk-r 

*  (ua ~ u i /  K ua)

+ ZWs"'Cui-w,K)

A-1

'f-k-M
(3.3)

Inverting the Laplace transforms gives for the probabili' 
ties

.t
T c fa, (3.**)

t i  - i  - j
■ ~ f 0  J_ a t i « ) N - k * v  a i N + k - r  4 ( j * o w - k - r ~ a j N + k + T

(3.5)

1
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0'°
I +1. -I . -I.Atj+ON-t'k-Y ĵN-k-vr Ûh)M-k-r 2.4AJ tkfv (3.6)

p it) = pN K /■' T e**1 j[«j+>)N--k]l — Ua-jtOM+k)] Lr., .*kN r .£» J L "Uj.ow-k -Lt*j-.Otf+0 (3.7)
The absorption probabilities Q(t) and ^(t) are
symmetrical in A , a  and k, N-k as expected. The
expected value of the position r at time t conditional
on initial position k is

oCECrlk,t)= k + T'1 (±- t) e—  oc T

pMcatj+ON-kÜ -  (.a\N+k)I {l SjM + kJ

+ ? /LCaj+o^+ujI - L ( a j+o/y/-k] I ifaj+OM-k A (3.8)
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The generating function of the stationary distribution ob

tained using (3* 5) of Chapter I is

boundary value problem discussed above is the continuous 

time analogue of the classical gambler’s ruin’ problem, 

in which two gamblers with initial capital k and N-k 

respectively compete. As may be deduced from general ar

guments the asymptotic results we derive are identical with 

those of Feller (1957, chapter XIV). The probabilities of 

ultimate ruin are Tt̂  and respectively given by (3.9) •

Since -I ultimate absorption at either one of the

boundaries is certain, and the expected lapse of time be

> - M a ) i - O W (3.9)

I - V n + ^ k/N , ^= /*J

which yields for the expectation E(r\k, )

NO- ( H 1 1 -  (/UA)NJ ‘ )\ ;
(3.10)

L
Apart from applications to queueing theory, the

fore this occurs is
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r

E (t(k) - .cct PKU; + PKlvlt) j At

jk - Ait! - (a/aV;]1 l k_^ 
j I -  r / * ) ,v  ̂ '

->  ̂ ->

k(N-i<)Lnr' ,a =/4. (3.11)
The solution of the problem with a single absorb

ing barrier, say at the origin, may either be found from 
the above by letting or directly using (2.5).
Taking the limit as N — in (3*2) we have for the gen
erating function

q* - L*k- ^ ‘) <j> (3.12)
The last term in the right hand side of (3.2) tends to 0 
as N— since u^ ̂  j z j u0 and u^ 1, uQ > 1 for 
Re s >  0 . The probabilities in this case are

fCT -t
Jo

(3.13)

(3.1*0
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with expectation 

E(r|k,-t) - - (,A-/A)kjfK r'tt-rje j[ ckr . (3.15)

These three equations yield incidentally the relations 

2  A  L k_ L j  -A*  - ^ ^  , (3.16)

and , putting \ - /a ,

2  ̂ke*c, k-w—  (3-i7)
Asymptotic results are well known (see Feller, loc, cit.) 
and are

f
t H , \ f )

P too) —ko

-

\ •> ^ -/* >

(3.18)

- -
o *) Y “ \3 3,3j - ' * 3

(3.19)

f
t'O »

EMM-- k ■> x V*> (3.20)

1° , x V *  •
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Probability densities of first passage times through 

a barrier are given by differentiating the appropriate ab
sorption probability. For example, in the single barrier 
case, the probability density of the first passage time 
through the origin is, from (3,13),

- k p"k tf1 e'**X, if- (3.21)



39

4. (The Random Walk with Reflecting Barriers

We now take the barriers at 0 and N to be re

flecting ones, in which case the boundary conditions sat

isfied by (2.4) are

+  <  =  5  = / * Q n - I  + ! Z -N -

Solving for the constants A and B as in $ 3 we obtain 

the solution

<£= ^[(«"-**9XK + *k +(i-x-,)Vk3 > (4.2)

wherexk~ as-'L/û '-^- ku.xu -̂û )]cC-»ry\
(4.2) may be written as 

X-
Qk -̂L*u + 0 - O u Y W ']  X k[a N-  iz '̂ + a -O u ^ 'J

-— ■> <f> 0 - t r ' ) u 1k+l(i-ul) ' lJ  ~  IS,~'> 0 0 ‘ (z1>3)

(4.3) is thus the solution for a single reflecting barrier 

at the origin, a result which may be checked by direct

Expanding (4.2) and inverting the coefficient of rz
methods
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yields for the probabilities

pk,<« - Y-k - < * t Tp e l k-Y
Y-k —extt p &

>̂0

Zti + I
a tj+ i)C /V -d )4 k -Y  ^ j+ iX N + O -lc -v ']

H i  - y]. Lx / jj/ a |. ̂ 4*r t
si -c »*0 L A<-j+»)tA/+i)-l(-Y-5 a Cj*OCtf+»)-k--ir-\ ; 2C j+ i)U V + i)-k -Y

04 k+t4St- 2 p i  t p 1]
2 * äj(/v+i)4-k-K+i d r .

(4.4)’’ = 0,1,3,...,ft|.
In order to lighten the calculations, we give the expect

ed value for the special case k=0 only;
36

E ( x •f'lt-T)©”* ' <£c.it)c1t  ) (^.5)
s)-0 Jo

where

-  P- 3[ta-jN-ola .w t -  La-Cj+OM + | ] I

v  y j  a(j+0ivT -  i j f t i l ,  M \
' 1 acj+ON a j N  J

N + \

* p ("°fru^ oN+^ (aj,0N+r tC3j+0N-il - L .
Asymptotic results are obtained by applying ( 3.5) of 

Ok! to (4*2). Thus the generating function of the stationary 

distribution is
(XvQ t«*»1- , X*/,,

U~A i21t') - (4.6)

I ” *■ 1 X - M .
0-*) (.N+0



and hence
r (A - /a) (W xA

XLi- M Y 1"]
•> A

Xv»w P  it A — ' (4.7)
£N v O - \ A =yU .

The expeetation of r in the stationary distribution is

considered above is the single server queue problem with 

the restriction that the size of the queue is N , In 

this case new arrivals do not join the queue if there are 

already N-l customers waiting for service. We list be

low the Laplace transforms of some formulae of interest. 

Inversion of these results involves simple but tedious cal

culations which we do not carry out.

The expected length of the waiting line L at time 

t , conditional on initial length k-1 is

E (T ~ ̂
N/%

In the context of queueing theory the random walk

ECL|l<-i>fc) - E M M )  + P>,,£1('0 — 1
and has the Laplace transform

^ C u ̂ W(')
(4.9)
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and by (5*5)?of Chapter I

I- CL I - N-L|-wX)*.]Lt-.w>.r'! Cl- C
The distribution of the duration of a busy period, O) 
with k=l, is obtained by considering the random walk with 
an absorbing barrier at the origin; i.e. with the boundary 
conditions

*dc - $ ? Cs+/u ) Q a< 4- rzN ' (^.10)

Proceeding as before the solution of (2,4) with these bound
ary conditions is

q* = s-'Vk + </ Lc*N-*N«)Wk + *k-Vk]  , (4.ii)

where

" LuN a  («»-0 + **Nak0-“.)]tua (*»a~0 +
and

Wk = (uk-u k)Luk(ua- o + u ,n (i- u,)3 .

The probability that the particle will be absorbed at 
the origin before time t , conditional on initial state

library r
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k , is ^  [ V k /s] . Thus the probability density, f K C~t) 

of the duration of a busy period has the Laplace transform

f l f K W ]  '= V kts) . (4.12)

The formulae are simplified when N and we
have the familiar single server queue problem in which 
no limit is placed on queue length. The appropriate gen
erating function is given by (4.3), and the transition 
probabilities by

<-0,^2,...  U.13)
(4.13) is identical with the result given by Ledermann and 
Reuter (1954, p.366), obtained by the use of spectral theory. 
This result has also been obtained by the following authors: 
Bailey (1954), by solving the forward equations using a gen
erating function technique; Clarke (1956), by solving an 
integral equation of Volterra type; Champernowne (1956), 
by a direct probability argument; and Conolly (1958), by 
an argument similar to the one used here. The expected val-
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co r'*
=■ k + (»Y/Ot K l+j)(k+l+j) T^e"* 1 J_ dr. (4.14)

)~o 4
The probability density of the duration of a busy period, 
fv{\) , is given by differentiating (3.13), thus

/>Klfc)Jlt= kp~U fc“1 e-<*t I k It • (4.15)

An alternative way of writing the generating func
tion given by (4.3) is

(4.16)

the transform of the null probability being

PKe&) =  U'̂+' L/C tl-U,)] • (4.17)
Applying the Abelian result (3*5) of Chapter I to these 
expressions, we find for the equilibrium distribution

Jjuwv sT*. &) — "P (t) —fc—

I 1- *//* A *yU

o , x v

(4.18)

( (l-X/m) ( l- A*//*') 1 5 A </*y
f>->cv t (4.19)

, A >/<.0
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Hence all probabilities of the equilibrium distribution 
are zero if X ^ M  , and if X <yU we obtain the classical 
result of a geometric distribution independent of the
initial conditions
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5♦ Queues with N Servers 

The Markov queue with N servers (Feller, 1 9 5 7 , 

pg. 415) is defined in our notation by the equations

(s+A+ly*)^ = K*,, + k/A t'zk , W •-0,1, —  jN, (5.1)

- K L  + v C i  + 2 -k .... (5.2)

lhese equations also describe a random walk on the non

negative real axis in which the side conditions specify 

a change in the rules governing the process at the posi- 

tion N • rhis situation is not uncommon in queueing 
theory*. Another instance is the two server system in 

which arriving customers join the shorter of the two 

queues in front of the servers. In this case the random 

walk takes place on the positive quarter plane (n ,n2) 

and the side conditions are such that the nature of the
walk depends on whether n >  n0 or n <_ n- * - 2  1 2

Before giving the solution G*(z,s) of the system 

(5.1), (5.2) we also mention briefly the generalisation 

of (1.3) to the case where the coefficients of the differ
ence equation are linear functions of k ;

= ^ ai+fto)<iku + C k k_( ■t-i1*. (5.3)
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The homogeneous equation obtained from (5.3) is the well- 
known hypergeometric difference equation, and its solutions 
have been studied in detail by several authors (e.g, Batch- 
elder, 1927). In fact there are twenty-four such solutions 
corresponding to the twenty-four solutions of the hypergeo
metric differential equation (Batchelder, 1927, pg* 10l), 
and we may choose two of these appropriate to our problem, 
say fk(s) and h^(s) * ^ Particular solution of the
non-homogeneous equation may be found by taking the Laplace 
transform of the generating function Gk(z,t) of the ori
ginal birth and death process. &k(z,t) can be found read
ily by standard methods and has the convoluted binomial 
form

0 ^ 0  = x
a i~y J

l V ^ c- g  + aa.L-e^*] )A°/a, ^

(5.4)
The general solution of (5.3) is then

ĉ oz.s) - + tt-2.,s)lvK(.s), (5.5)
where ♦ As before A and B may be
chosen to satisfy given boundary conditions.



There are several interesting variants of (5#3). 
For example, a linear birth and death process with 
aQ= 0 « bQ and reflecting barriers at k=N^,N,,; J> , 
could be used as a linearized model to investigate the 
logistic process (Kendall, 1949)* The essential feature 
of Kendall’s logistic model is that the coefficients are 
quadratic in k , so that the states and NQ are
natural reflecting barriers. Explicit solutions can be 
obtained for the linear boundary value problem and could 
prove useful as an approximation to the quadratic case.

Since (5.l) and (3.2) are special cases of (5.3) 
their solutions are, respectively,

4 8 .

q^,s) + T U v ») V 4) > k (5.6)

+ ik-z,s)U,V), k--N,Af+l,... (5.7)
u^(s) and ^>(zfs) are the same as in previous paragraphs 
with substituted for ;

oocpjj- W/KH'~'z:Xf

-Afi--  e ^F; CVJ 1
j-t>

(5.8)
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vrKU) - .-A-/,- Jo-*'?* 'a

— B(k+l,sAi) , 1", (.k +1; U+\+ ŝm. 3 - tyju) )

(5.9)
where B(m,n) and 1F1(m;n;x) are the Beta and conflu
ent hypergeometric functions, respectively. The boundary 
at k=0 being a natural one, A and B are determined 
by the equation for G*(z,s) , yielding the solution

X  + ^ --»Nj

O v H
— u « âi-i

(5.io)

^  +  ulT  + c v % - r  ^ - i  X J n + i,iv+3,....
(rA,-U.‘V l

The Laplace transform of the expected number of customers 
in the system at time t , given k initially, is

-

k  +. * k - A  v T J - — - -  +  — ~  (-l~ u i ) ( ^ ~ V )  1 )
11S yUCSt-yK) ĵXyW.CWJ'O AtUj-O*3* S+-/V J

^  +£. 31 SCV^O~
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where

R r V  i %  - t W , T '

ri  k + l - N  r  ~ i  —  I

K - uv LSi - uiV iJ *
The equilibrium distribution, which exists for N/* 
may be found directly from (5.10) using (3*5) of Chapter 
I. The calculations involved in taking the limit are con
siderably simplified by using the following recurrence 
relation for confluent hypergeometric functions

Hr) (Ftf+l;x.') = (F,6*+i3 X-) - ,F (o<■ or;x) (5.12)
Using (5.12) repeatedly in the terms
and ur̂  - u( (  , and expanding as a power series, we have

-I

^  ^V-v) -

where

VLa y *
.Y-0

Yzr -t- z'
Y-M n ! N X-N

F‘ V +- 3 t ^ Y  (
La  <\ La nji ,y 1

u Y-rt * a<-o

(5.13)

(5.13) agrees with the result given by Feller (1957, p. 415).
The barrier at the origin of the system (3.1) and 

(5.2) is a natural reflecting one. By imposing an absorb-
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ing barrier at the origin

q! -  '/s (5.14)
and solving (5.1), (5.2), for k >  0, and (5.14) for 
k=0 , we can find the probability density f>K (t) , of 
the first passage time through the origin, i.e. the dens
ity of the duration of a busy period* Say this solution

‘A* > ris &k=G^(z,s), k ̂  1 * Then

The moments of the distribution C-t) may be found direct
ly from (5*15) using the following elementary properties

(5.15)

if and only if /V/i ̂  A

of the Laplace transform: If — Jt*) then

and

.Using (5.16) the expected value of tn condi
tional on is

(5.17)
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The solution of this absorbing barrier problem 

follows the same lines as before, with the modification 
that we require the general solution of (5.l), k >■ 0 ,
with two arbitrary constants. It is easily verified that 
a second solution of the homogeneous equation obtained 
from (5.1) is

- M A
J'-O

The general solution of (5.l), k=l,2,...,N

(5.18) 

is then

Q*(*>s) = +Tk.i,s)(rkU) +C(tt,s) W k(s), (5.19)
where ^  and are given by (5.8) and (5*9) respect
ively. C can be eliminated by substituting (5.19) in 
(5.1^) to give

^ V “ *0’»)“ 0' R • (5.20)
Elimination of the constants A and B from (5.20) and
(5.6) gives the solution G (z,s) We give the express-

-j*ion for the required quantity G^(0,s) for k ^  N only:
Suc Y m _ -  s wjfc )

l
-  (^C^„- )(ttw + s ) (

(5.21)
where the function appearing in (5.21) has been
evaluated at z=0
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Application of (5.17) to (5.21) yields the moments 
of the duration of a busy period for k ̂  N • Results 
for 1  ̂ k < N may of course be obtained by the same 
method*



6. The Forward Equations
54.

So far we have used the backward Kolmogorov equa
tions satisfied by the transition probabilities Pkn(t) • 
It is sometimes more convenient to use the forward equa
tions, particularly when considering more general process
es in which the transition intensities TSyLu are age-de
pendent, that is when they depend on elapsed interarrival 
or service times. To illustrate the use of the forward 
equations we consider again the N server Markov queue 
with the initial conditions

P (c) = £G r v .  O n  ' (6.1)
Writing P (t) for the transition probabilities of this 
process we see that the transforms pnvs/ satisfy the
equations

U+X)Pts) =
O / * ■

~P. (so + I (6.2)

_  X Pn_UJ +  (n-t-0/«]̂ (SJ (6-3)

..(6.4)
We separate the probability generating function into two 
parts, one generating the first N probabilities and the
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other generating the probabilities when all servers are 

occupied;
— *-
J

n-oL%Ä - 2 .
t\~N

From (6.2)-(6.4) the equations for these partial genera

ting functions are respectively

— * ~r*yU(t-i)̂ Jc*2(s) - C«̂ s) ~ Vi L» ~l> (6<5)

A C*-U|) Cu*-*)
(6.6)

u^(s), u^(s) are as in (2.3) with replaced by AJ
‘1C *)r

One of the unknowns P^-_i(s)> P^T(S) can eü m ina^e(i 
from (6.5) and (6.6) by the following argument. Since 

£*(z,s) is a generating function it converges for at 

least jzj ^  1 , so that zeros in z within the unit

circle of numerator and denominator of the right hand 

side of (6.6) coincide. The only zero of the denomina

tor within the unit circle is z = u^(s) . Hence equat

ing the numerator to zero when z has this valuü we
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find

Rewriting (6.5), (6.6) using this value of P̂ T(s) we 
have

y U O ^ j l I t V )  - tS+X-,Vz)Jo,<i) =  A^'V'Z-u.')?, (s) - I (6.7)
1) Z ' /̂ ~ l ’

| J W )  - ftN?*,W (6.8)

The Laplace transform of the probability generating func 
tion of the process is

Clf ~ 0 C'2-)̂) + L .
Solution of the differential equation (6.7) then yields 
G(z,s) in terms of the single unknown quantity ^n_i (s)



CHAPTER III
SINGLE SERVER QUEUES WITH RECURRENT INPUT
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1• Introduction

In Chapter I we distinguished between those queue
ing systems in which the input constitutes a renewal or 
recurrent process and those in which the interarrival 
times are not necessarily independent. We asserted that 
of the first class only two are of real interest, namely 
when the input process is

(i) Poisson
(ii) deterministic.

Single server queues with inputs (i) and (ii) and general 
service distribution are denoted respectively by M/g/i 
and d/g/i . They are special cases of the system E^/g/i 
in which the recurrent input is defined by the Erlang-k 
interarrival distribution

lEktO = lJ±l ' Xcbr • (1.1)
Ck-0 L

A unified account of m/g/i and d/g/i is possible if 
we can first find the quantities of interest associated 
with E^/g/i * In fact the latter probably includes 
most single server recurrent input queues of practical 
importance•

The aim of this chapter is to find the distribu
tions in continuous time of queue length and virtual wait
ing time of E^/g/i . These results will then be spec
ialised to yield the required distributions for m/g/i
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and d/g/1 . The main result we obtain is a generalisa
tion of the classical Pollaczek-Khinchine formula for the 
generating function of the queue length probabilities 
(equation 3*11) and from this we derive an expression for 
the distribution of the virtual waiting time* It is shown 
in jj 5 for m/g/i and d/g/1 that the Laplace transform 
of the distribution of the duration of a busy period sat
isfies an equation similar to one of importance in the 
study of branching processes. In §6 we show by the simple 
Abelian argument outlined in Chapter I that the equilibrium 
distribution exists if and only if the probability that a 
busy period ends in finite time is unity and that its ex
pected duration is finite. The conditions for the exist
ence of the equilibrium distribution have been found by 
many authors but it is suggested that for the processes 
studied the approach used here has several advantages. The 
argument is a straightforward one and yields explicit form
ulae (which include much previous work as special cases) 
without difficulty. Furthermore the connection between 
queueing theory and the general theory of recurrent events 
seems more natural when use is made of first passage times 
and the roots of branching process type equations.
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' As stated in Chapter I we use the method of supple
mentary variables. Cox (1955) used this method to study 
m/g/i in the equilibrium state and many of the techniques 
used here are based on his work. In this paper Cox also 
showed how the inclusion of supplementary variables can be 
used to analyse many server queueing processes. Keilson 
and Kooharian (i960) used this method to obtain almost com
plete results for the temporal queue length probabilities 
of m/g/i . Other work on the temporal development of 
queueing systems with general service distribution has been 
confined to m/g/i ♦ For this system Takacs (1955), fol
lowed by several other writers, studied the distribution 
of virtual waiting time, and Gaver (1959) has considered 
problems in finite time using the method of the imbedded 
Markov chain. Equilibrium results for one or both of the 
systems of interest have been found by several authors, 
sometimes by specialising the service distribution to the 
form (l.l). We refer specifically to Kendall (1951, 1953), 
Lindley (1952), Smith (1953), and Wishart (1956).
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2. Equations for the Queue Length Probabilities

Let the distribution function of the service time 
be K(x) with H(0+)=0 , and assume that the expected
service time is finite,

k. <_ oO .

The letter x will be used to denote the elapsed service 
time of the customer currently in service, and we define 
the first order conditional probability x) of a
service completion occurring in by (3.l), (3*2)
of Chapter I.

Let the recurrent input be defined by the inter- 
arrival distribution (l.l). Then the queueing process 
E^/g/i is Markovian if the states of the system are de
fined by the vector (m,n,x) • The meaning of this is
as follows: (l.l) may be considered the convolution of
k negative exponential distributions each with parameter 
/\ o Then we use the device introduced by Erlang of 

assuming that customers pass through k fictitious arriv
al phases before being admitted to the queue, the transi
tion from phase m to phase m+1 having the Markov pro
perty. The letter m , m=l,2,..., k , will be used to 
denote the phase of an arriving customer, and customers 
pass through phases 1,2,...,k in that order. As a new 
arrival completes the kth phase and joins the queue the
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next customer automatically enters phase 1, If n de
notes the number in the queue then m and n must be 
specified jointly to remove the non-Markovian nature of 
the input. To account for the general service distribu
tion we have to supplement knowledge of m and n by 
also specifying x , the elapsed service time of the 
current customer. Then the process whose possible states 
at time t are (m,n,x) , m=l,2,...,k; n=0,l,2,... ;0 x, 
is a Markov process. Let the transition probabilities of 
this process be Pffin(t,x) • If P (t) denotes the prob
ability of n customers in the queue at time t , condi
tional on the initial number, then

P Ct.x) A X- . (2.1)part o
Writing down the differential-difference equations 

satisfied by Pmn(t,x) is facilitated by considering the 
following hypothetical random walk. A two-dimensional 
random walk takes place on the strip defined by the points 
(m,n), m=l,2,... , k; n=0,l,2,... • Corresponding to
the queueing process Ek/G/l only certain transitions are 
possihle. Transitions (m,n)— ?>(m+l,n) occur with intens
ity A , whereas the intensity for a unit decrease
in n is yulx.) • The only transition leading to an
increase in n is (k,n) — 2> (l ,n+l) , since all k arriv
al phases have to be completed before a new arrival joins

?» = tm-I



the queue. The probability of more than one event in the 
interval i t ) -fcr -rStr) is o(5t) . The forward Kolmogorov
equations are obtained by considering all possible trans
itions in (_ t j fc-t-5t). For example, if n ^ l  , m=2,...,k, 
then

P CttSt x + S t ) t f c , * )  t-X SbP  6t )c) -t- o^&tA•V\»v ' M n ,  r H - i  ( V  '  '

When n ̂  1 and m=l we find

63.

When n=0 the transition probabilities no longer depend 
on x since there is no current customer. The same argu
ment yields for n=0, m=2,..,k ,

- 0-Xfc)l̂Ct) +/\k̂ _te) t St +-o(Sc).
The last term on the right hand side is the first order 
probability that a service is completed in 't-t-ctr)
These considerations lead to the equations (valid for 
x > 0)

, ^ > 3 ,  (2‘5)

M  = - Lx tA w] pu ct,t), (2 •6)
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^  + _ ./UU)̂ vult)>(-'>̂lc ; "‘V - A )  ■*

L VIDW)- - A T > ) +- ^Oc) V Lt,x) c^x.
iAfc Jo

(2.8)

If the number of waiting customers is limited to some 
finite number N say, it is necessary to place an addi
tional reflecting barrier at n=N

The boundary conditions at x=0 are found by con
sidering the process at the instant a departure occurs.
We have

■ r
?mnM) -  *- -y 0.-53 ) •*> —IjÄj — > k5 (2.9)

f|, (t, O') - /U*.) +  A?kott) , (2.10)

] ft*-')
(2.11)

Finally the initial conditions when t=0 must be 
specified. In general the initial state will be (m0,n0,x0)

"P - & & S (x-x. ')ivttv ’ ' rvnrvt rin  >6 C

so that



where &. ■ is the Kronecker delta and Six.') is the Dirac 
delta function. For simplicity we assume that the system 
is empty at t=0 ,

^°)  - Ko • (2.12)
More specifically let

- s (2.13)
*ho " ' mi

An important consequence of (2.13) is that we always 
have x ̂  t so that the range of the integrals appearing 
In (2.7) - (2.12) is (0,t) .

We seek the generating function

Ffeye) = 2 » H l «rt-0
k

-  X ?' in
k °o

m-l ,tt) +1
n%-1 h-l

o k  .

(2.14)

It is convenient to take the dummy variable as z in
stead of the usual z
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3• Temporal Distribution of ’
Queue Length and Waiting Time 

Define the partial generating functions

00 x

A-l C

From (2.-4) - (2,6) the Gm(z,t,x) satisfy

4 1*51 't- X *2_k C, ̂ ; (3*])

15 m t- - “ XCj^ :> »M - -A'. (3 •2 )
H ) t r  " ' t )C

The cyclic nature of these equations suggests the substi
tution

=. t"" CJ.Cl.tr.H.’) ,
in which case (3.1), (3*2) reduce to the single equation

1̂<> 4- l̂ i - - (l-’i) C\, .
D-b

This is a partial differential equation of Lagrange type 
whose general solution is
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T h e r e f o r e

oo _ ^

£  x ^ P  ■= £ €xp$--XCt-'i>>L-J/iiK)Ju.J . ( 3 .3 )
n-i  0

The unknown  f u n c t i o n  d e p e n d s  o n  t h e  s i d e  c o n d i 

t i o n s .  We now d e r i v e  a  c o n n e c t i o n  b e t w e e n  <|> (. *2,^) a n d  

t h e  n u l l  p r o b a b i l i t y  — 2 P* tt)  • From ( 2 . 9 )  -
0 ov-l  c

( 2 . 1 l )  t h e  c o n d i t i o n s  on  Gm( x , t , x )  a t  x=0  a r e  

— r°°
Q( t ’z , t lo) — <|> (.* ,*) -  *  j Q .K v O d l U x )  +\<zk Qi?) ( 3 .4 )

, 0 0

P f ix  5

r°0

•= d  H£x)

00 0

k . ( 3 . 5 )

The e q u a t i o n s  f o r  t h e  n u l l  p r o b a b i l i t i e s  ( 2 . 8 ) ,  ( 2 . 9 )  c a n  

now be  r e w r i t t e n  u s i n g  t h e s e  l a s t  t h r e e  e q u a t i o n s ;

-=
£ix

+ *
-V( -Xlt-S^c ^  ^  ct H(x) 5 ( 3 . 6 )

P P  =  ~ ^ P )  +  $ £ * , * )
ck

■h*Z.
I— w—K -A t i- * )x ( 3 . 7 )

0



benote Laplace transforms by asterisks; thus for ex
68 .

ample?*(» - f
An exception will be made in the case of the Laplace- 
Stieltjes transform of the service time distribution, 
for which the symbol ¥^s) will be used:

fis) - -St J N t t ) .

Because of the initial conditions (2.12) assumed, the 
integrals on the right hand sides of (3*6) and (3*7) 
are actually convolution integrals since C *z., t—x) — Ö 
for x > t . For more general initial conditions 
^ is non-zero and account would have to be taken
of the age of the current customer when observation of 
the system commenced at t=0 • It follows from (3*6)
and (3*7) that for initial conditions (2.13), the La- 
place transforms PmQ(s) satisfy the difference equations

(3.8)

- ä PJ, Isj ,1»=»,.-,^ (3.9)
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where

fU i.s )  =■ L ' -  J *c * ,s ) .

The general solution of (3*9) is

pĵts) - C jjv/oHX)] - ’z! M TU*-,*) C s -t-A-AO
The constant C is determined by substituting in (3.8)

c = o + » M  L(s+^k- o ^ y ’.

The transform of the null probability is therefore

_  U->X)k- ,\K _  (|-yK) { _ ! - ■ £ * 1 <-^S)
C l- ’Z.'1)  Cs+A-Jt*.) (3.10)

From (3.10) and (3*3) we obtain finally the Laplace trans

form of the generating function F(z,t) defined in (2.14)

r* 0 * k) T y o  -  s ^ t e i O
r  C*z..s) =  ------------2— ——---------------— —  3I - <zkLtts+,\-Ky 1

where

*(V )  ̂  [ L ^ - > * ä - t i  !>+»*-ak]
s L c s - (Aok3

(3.11)
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Equation (3*11) is the basic formula we have been 

seeking. It is a generalisation, for initial conditions 
(2.12), of the classical Pollaczek-Khinchine formula, found 
originally for the equilibrium distribution of the process 
m/g/1 (see Kendall, 1951).

*  t \The unknown Po(s) can be found by the following
firargument. F(z,s) is a generating function so that at least 

for M * |  .jl̂ e s > 0  , it is an analytic function of z .
Then by Cauchy1» Theorem

F%-,S) ̂  * - 0 5
the contour C being the unit circle. Therefore, from 
(3.11),

where

■ ______________ 5

c its+jo*- ( [I - *kl*P(s+x-,\'2ir

I -’zk|ü'f,(s<-A-Az)J

The only singularities of these two integrands within the 
unit circle are the zeros in z: of the equation

VWA-Xi" ) - ^ 0 . (3.13)
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By Rouches Theorem (3.13) has exactly k zeros within the

,Ui

unit circle if Res ^0 . The evaluation of PQ(s) thus 
requires a knowledge of the residues of the two integrands 
at the k zeros of (3*13)«

Let q(t) denote the virtual waiting time of a cus
tomer arriving at time t , that is the time a customer 
has to wait if his arrival occurs at t • Queue disci
pline has so far been irrelevant but for what follows we 
assume that the ’first come, first served’ rule holds. Then, 
if W(t)X> ,

WU.X) =  fcCx)?0lt) <*0-, (3.14)
n-l J0 t -

U *(n-0
where H (x.) is the (n-l) fold convolution of the ser-
vice distribution H(x) , and £ Cx-3

tion S0
'I

if ■* < o

1 • *4 x > 0

(3.14) is obtained in the following way: if the system is
empty at t an arriving customer does not have to wait so
that there is a probability mass PQ(t) x=0 • On
the other hand suppose that at time t there are already
n 0 customers in the system, the elapsed service time
of the current customer being u . The probability density
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of the current customer finishing service at age u+v is 
[l-H(u)~] ^h(u+v) , and the waiting time is the sum of this
partial service time and the n-1 service times of those 
customers waiting at t .

Introducing the Laplace-Stieltjes transform
C O

o

we obtain from (3*1^)

W u * )  -  ?0i*) + ^  ft«) o<U

n - i  I M c ^ )

-ot'O'ol H(u-) .

DkWriting I — and using (3*3), we have
X

W ’w <-> + !)
du. 1 (! t-w) e --ctfvr

Since the integral on the right hand side is in the form 
a convolution, it is convenient to introduce the Laplace 
transform with respect to t ,

e ST W  it.

Of

0



Hence, using (3«10) and elementary properties of the La
place transform,

73.

| $ [ c s+ W k -  (,X$)k ]
p0(1 ts) (s+A~/\l (3.15)

(3*15) is the basic result concerning waiting times and 
holds for initial conditions (2.13).



4* Results for m /g/i and d/g/i 
Results for the two processes m/g/i and d/g/i 

are obtained from the preceding formulae by substituting 
k=l in the first case and making k — >oo in the second 
respectively* It is convenient at this stage to alter 
the nötation slightly in order to exhibit explicitly the 
value of k we are concerned with. In the case of a 
process E^/g/1 we write

74.

and, similarly, Wk(t,x) for the waiting time distribu
tion* For m/g/1 we have

p* _ (1-^yUo -  a 1}
I - >2 L'Ks+*-K>yl

w.Wo

■) (4.1)

Inverting the latter yields

D
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This expression for the Laplace-Stieltjes transform of

/the waiting time distribution was first obtained by Takacs 
(1955) using a different method, Takac's result is more 
general than (4.2) since it holds when \ varies with time. 
When k=l the expression for the transform of the null 
probability (3*12) simplifies to

00
r c»,b = Ls+x-x».wT - ^ a j (4.3)
°  vj ~0

where z=z q (s ) is the unique zero within the unit circle 
of (3.13) with k=l . If the service distribution is 
known, P (s,i) can be evaluated explicitly by the La
grange Inversion Formula (Whittaker and Watson, 1940, page 
132).

Consider the process d/g/i • Write z=l-w/k so

K  ts*)oO

00

ri=-C
— U

■00

-  I
—  UilfV Frtn-c

that
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If X is replaced by l>k in the interarrival density (l*l) 
then as k —: we have arrivals occurring regularly at 
the instants iTi) 2 ^  3 p”1,.... , Making these substitutions
in (3*ll) and proceeding to the limit we find the moment 
generating function

F*(WjV) _ O - e 10)?,,^) ~
— UJ— e- -! C4.4)

where

£t,(«,<o -
(i-esiu) LtYw«y'-11

$ [ ( _ <> (u>+S/u)l

—wWriting e =z yields the probability generating function. 
The result for the waiting time distribution is, from 

(3.15),

. .X*

si I -Me'*] '
js-cX-pLjV'kOj (^.5)

rr .The unknown P (s,o© ) can be found by essentially the same
argument as before, (w,s) converges for at J.east
Re w »  0, Re s >  0 so that zeros in w of numerator
and denominator coincide in this region. The zeros of the 
denominator are those of

6fW — V/( a + ww) = 0 , (4.6)
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and it is in fact sufficient to consider this equation for 
real w ,0 ^ w  . In the neighbourhood of the origin
£ ̂  >  ' f ' (s i-pui )  , and furthermore rCs+uw) is a con
vex function and •k** Y'c m v w ) — O . This implies thatic—

(4.6) has at most one root on the finite part of the posi
tive real axis. If Ĉs) is a meromorphic function then 
there is exactly one root since in that case there exists 
a w=w (s) such that

e "10 >  + fcv ^ ̂

and
e “w <  ^ ( s  + pw) fo r  w > e c ,

Then w()(s) is the required unique root. On the other
hand if no restriction is placed on Ws) other than that 
it be the Laplace-Stieltjes transform of a probability 
distribution, then it is easy to construct examples where
(4.6) has no positive root. An obvious (if trivial) in
stance is when the service time is also deterministic of 
duration /u”' say. Then

L-  (s  + v u ) ^  3
and the left hand side of (4.6) does not vanish unless 
/a >  V . It will be shown later that if the service dis
tribution is such that (4.6) has no positive toot for 
Re s >  0 then queue length increases indefinitely and the
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equilibrium distribution does not exist* For this reason 

we confine our attention to those service distributions 

for which equation (4.6) has exactly one positive root 

w * Included in this class are distributions

whose Laplace-Stieltjes transform is a meromorphic func

tion. Equating the numerator of the right hand side of 

(4.4) to zero when w - u)c(s> we find

1^,06) -  e-(W„+*/»>] ( *?)

Moments are obtained by differentiating the appro

priate generating function. For m /g/ i , d/g/ i denote 

expected queue length at time t , conditional on the 

null state initially, by E.J3i(t-)| cQ , E^[n(t)jcQ res

pectively, and similarly E t L I ö J > Eq0 Lv?^)|°3 
for the expected virtual waiting time. We find

£ [EM«}} = zilvh0-̂")] -  Hs)Ü - U '  ?*̂>]. (k'9)
The transforms of the expected waiting times can be in

verted to yield

(4.10)
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E W 'M  = - t  P(Too) Jr,
O  l / J

(4.11 )

where ut^*» is the step function

t') — rv  ̂fiv * h. t ̂  1^*0 ̂  j ft-—6); 1,̂ ,...

The last two formulae permit the following interpretation 
(c.f. Benes, 1960b). The first term on the right hand 
sides is a temporal analogue of the traffic intensity 
p k and is a measure of the rate at which arriv
ing customers are serviced. The virtual waiting time is
reduced by the server at a uniform rate and the term 

/• c
t — J T̂ CTjO cIt is just that part of the interval 

jjl,t) for which the server is occupied. Informally speak
ing we may then write the right hand sides of (4.10),
(4tll) as
 ̂Expected service time of customers arriving in £o,t)J 

-■^Expected busy time of server in [_0,1: •
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5• Busy Period Distributions

A busy period is a period of time in which the 
server is continuously occupied. The distribution of 
this period can be found by solving the systrem (2.4) - 
(2.13) modified by assuming (i) the initial condition 
that the first customer has just commenced service, and 
(ii) an absorbing barrier at n=0 • The required cumu
lative distribution function of a busy period is the null 
probability of this modified system. To avoid confusion 
re-label the transition probabilities of this process 
as * so that the null probability we seek is
Qo(t) • The modifications are the following: (2.7), 
(2.8) are replaced by the single equation

Boundary conditions (2.9), (2.1l) still hold but (2.10) 
is replaced by

By the same procedure as before we find, instead of (3.10),

(5.1)

Q„ Ct.o') — /uv» Jx.
0

4  t>o
(5.2)

Q„ to.o) -  I .

(5.3)
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and, instead of (3.1l)>

F  ^  Qn.ts>
n-c

_  I X z k C l - v >  -  L s ( l - i k) +  A(i-*FliP(s + A-Xfcb]Q*<:s) + ' X ik D ~  W s + A - A * ) ]
Cs+A-A*)L ̂  - lP(s+A-A'i)J

(5.4)

When k — ^00 , (4.4) is replaced hy 

Fj^tWjS) =

i*»e"w-tuu+s(i-e“)3'Pcs+vu)]Qo(sJ«>) + « . (5.5 ) 
ls+yw) [_ e_U}—  f'cs+yw)]

i*, v ,  vThe required transforms Qo (s,l) , Q0 (s,oo ) , obtain

ed by the same argument as in §4 and with the same res

triction when the input is deterministic, are

Q c c s ,0 =  s' 2cCs) ^
x ~i -VAS)

Q d LSj°o) = s‘e ‘ ;
(5.6)

where z (s), w0 (s ) are the unique zeros of (3 .13) with 
k=l and (4.6) respectively. The probability density 

functions of the duration of a busy period are then res

pectively

dX

A0.M= f'Le-"'1"]
<Ar

(5.7)
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3

j

The connection between the null probability of the queue
ing process and the duration of a busy period through the 
zeros zQ(s), w q (s ) , is clearly shown by substituting 
the appropriate member of (5*6) in (4.3), (2i • 7) • An
interpretation of the null probability P (t,*) is that 
it is the distribution function of the time taken for the 
process to be in the null state after completing j busy 
periods, irrespective of j . (4.3) and (4.7) aire then
instances of the formulae for the passage times of renew
al processes (Bartlett, 1956, ^3#3).

The probability that a busy period will end in 
finite time is similar to the probability of ultimate 
extinction of a stochastically developing population.
The equations determining z (s), w q (s ) are essentially 
the same as the branching process equation, the smallest 
root of which is the probability of ultimate extinction 
(see Feller, 1957, Ch. XII; Harris, 1948). The parallel 
situation here is that we are concerned with the behav
iour as t— co of Q0(t,*) , or equivalently as
s~>0+ of z q (s ) and wQ(s) • Consider first d/g/i , 
and again assume that the service distribution is such 
that (4.6) has exactly one positive root w=wo(s) . As
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s decreases along the real axis Yts+pu;) increases so 
that w q (s ) decreases. Thus the limit

1a,w\ u)c (.*>3 ~

exists and, by continuity, is the largest non-negative 
root of the equation

e-w _ - o .

Since ^Cs) is the Laplace-Stieltjes transform of a proba
bility distribution, (5.8) has at least one non-negative 
root, since the left hand side always vanishes when w=0. 
If w q (o ) > 0 the convexity of implies

-i —  t>L > ' - j  e tt‘
-  eta U>-0 —  mi

and conversely. On the other hand, if V t\ — i then

£ ^ ^ (5.9)
for all w 0 , with equality only holding when ^  *
This corresponds to a deterministic service of the same 
duration as the interarrival interval. If this trivial 
case is excluded, then the inequality in (5.9) is strict, 
and for uk ~ I we have w q (o )=0 . We can now apply the
extension of Abel*s theorem quoted previously (Chapter I,
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equation 3.5) to obtain

( \ * + V>k ^ I ;

We have proved the following:

Theorem 1: If the service distribution is such that the
equation (^.6) has a non-negative root, the probability 
that a busy period of the process d/g/i ends in finite 
time is

where w q (o ) is the largest non-negative root of (5.8).
If f' -vk then — I s and if f>> ! then ^ <1.

ity. When it is easy to show that the expected dura
tion of a busy period is infinite, although normalisation 
of its distribution is to unity. To see this observe that 
if f  ~\ (5.8) has a multiple root at the origin so that th<
expected duration

(5.10)

The quantity is known as the traffic intens-
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does not exist. When f><| this expectation is

Elt}= kO-f)''. (5.11)
This result may be stated as a corollary to Theorem 1:

Corollary: If f><l the expected duration of a busy per
iod is given by (5*11 )* If f - I the expected duration 
is infinite.

We now consider the other process of interest,
M/g/i , In this case additional information on busy per
iods can be obtained by exploiting further the analogy
with population extinction problems, Kendall (1951, page
168) has previously noted that not only does the duration
of a busy period correspond to the time to extinction of
a population with a single ancestor, but also that the
number of customers served in this duration corresponds
to the cumulated population total. By the same sort of
argument used in branching process theory (see Harris,
19^8; Otter, 19^9) we now derive an expression for the
joint probability B .(x) that j customers are served

J
in a busy period and that its duration is £=.x, j=l,2,3,«* 
0 4=. x o Denote the two marginal probabilities by

B, - f = "fV [ .j customers served in busy periodr
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and

oo

J-t J
The queue discipline is irrelevant to the development of 
a busy period so that the number of new arrivals occurring 
in a service period is analogous to the number of off
spring produced by a single individual of a stochastically 
developing population. If a service period is of duration 
y , the probability that n customers arrive whilst this 
service is in progress is, for M/g/i ,

since the joint probability B^x) is the probability that 
no new arrivals occur during the service period of the 
initial customer which is of duration ^ x . By direct 
enumeration we find the further terms

Then

ß bO - 0.ctsf) J H(y)
1 j 'o

o
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/* A. r ^

B>> = Bu-yWv^cY) +
H Jo 3 Jo L u X*-y)

+-| IB^oc-y) <Vv) U MCy>?
nwhere O* C">0 is the n fold convolution of B.(x) and j .I
. 1B j Si>c) is the convolution of EL (x) and

B.(x) •» The expressions for B.(x) are simplified onJ J
using the Laplace-Stieltjes transforms

-

B- CM -Nj

— S)ca a (x>
0
s°0 -sx

A H(x)

A~\^;(x) .

We obtain

U*<V) - °<cCs>)

" B >  -  Z«»ta) 2 B/Sj .... *&*(s) , j. 3,3,...

Hence the generating function

Q u ,  s> - Z  B . c m>
J - '

(5.12)
satisfied the functional equation

CjL.s) -  *2. L (M^'2.s>]
rv-o

- *  Y ' O + X - X q V a ] .

(5.13)
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In the notation used previously

= s Q 0*h»o = ■
The probability that a busy period ends in finite time is

L» q*c»,s) -  i2ccs) —  ̂co • (5-14)
«i^ct S-=>0+ ,c

Corresponding to Theorem 1 we now have

Theorem 2: If, for the process M/g/i , G (z.s) is the
generating function defined by (5.12) then u=G (z,s),

 ̂ *
u q=G (z ,0),u ;L=G (l,s) are respectively the unique zeros
within the unit circle of the equations

'zV'[s + \~\u) —  U. =  O   ̂l?e s (5.15)

A-Au,') -  -  °  > 1 * 1 * 1 ,  (5.16)

^Cs+A-Au,)-U, - 0 , Re s > 0  , (5.17)
Furthermore, the probability qQ(l) defined by (5.1*0 is 
the smallest positive root of the equation

- %-O. (5.18)
If p = ^ k  "> I then qQ(l) < 1 , and if f £ I then qQ(l) = l
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Proof of the theorem follows directly by the use 
of Rouches Theorem and well-known results from the theory 
of branching processes, and indeed Takacs (i960) has stat
ed and proved a very similar theorem in his study of the 
dual process GI/m /i . (5.15) has also been found by
Gaver (1959) using the method of the imbedded Markov chain, 
and some of the other results embodied in the theorem have 
been obtained by several authors, of whom we mention only 
Takacs (1955). When p  = \ the situation is the same as 
for d/g/i and the root at qQ = l °f (5.18) is a multiple 
one. The corollary to Theorem 1 applies also to Theorem 
2, and in fact the expected number of customers served in 
a busy period is

E C o )  - 0-f)- ' .

In the terminology of the theory of recurrent events the 
null state is certain but has infinite mean recurrence 
time when p - \ ,
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, ?

6•  E q u i l i b r i u m  R e s u l t s

D e n o t e  t h e  q u e u e  l e n g t h  p r o b a b i l i t i e s  o f  t h e  e q u i 

l i b r i u m  d i s t r i b u t i o n  by

k ' )  -  >
tr—■>*<; a

w i t h  g e n e r a t i n g  f u n c t i o n

\- ( * )  -  Z  ,2-k '1 .
K n-o 1

I n  ^ 5  we p r o v e d  t h a t  i f  ^ < 1  , r e t u r n  t o  t h e  o r i g i n  i n

f i n i t e  e x p e c t e d  t i m e  i s  a n  e v e n t  w i t h  p r o b a b i l i t y  o n e .

We now show t h a t  t h i s  c o n d i t i o n  i s  n e c e s s a r y  a n d  s u f f i c i 

e n t  f o r  t h e  e x i s t e n c e  o f  t h e  e q u i l i b r i u m  d i s t r i b u t i o n  o f  

q u e u e  l e n g t h *  A p p l y i n g  t h e  A b e l i a n  r e s u l t  u s e d  b e f o r e  

t o  ( 4 . 1 )  a n d  ( 4 . 4 )  we h a v e

s  V" c 'z .jS ^  — 0 - 4 )  M O---------- !------- — -5
I -  «i/Y'ft-X'O

( 6 . 1 )

l x ~  S K , "
tr~=?°0

0 - e w )  M 00)

I -  e " ~  /Vivu)
( 6 . 2 )

The l i m i t s  on  t h e  r i g h t  h a n d  s i d e  e x i s t  b u t  t h e  d i s t r i 

b u t i o n s  d e f i n e d  b y  t h e m  may n o t  be  n o r m a l i s e d  t o  u n i t y .

/$ * * -K'*
L IB R A R Y  £ - \
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Theorem 3 « The equilibrium distribution defined by (6*1)', 

(6,2) are normalised to unity and are independent of the 

initial conditions if and only if /'<-! • If p ^  \ the

probabilities Pn (*) are identically zero* If the equili

brium distribution exists the necessary and sufficient con

dition for the existence of its rth moment, r=l,2f... ,

is that the (r+l)th moment of the service time distribu

tion exist*

Proof: Consider first d/ g/ i . Application of Theorem 1

and its corollary to (^.7) yields

tuw sT Cs,«*)) 
«,-̂ >0+ 0

Therefore

Xxw\ (t-e-*'*’) s Q 0 Cs,oo)

1 -  e T s l v s Q*CVo)

s ° ■( r 9 1  >

r «■f f c  i .

f
£

s hot“,*) =■ y . “) —

0

0 - e “ ) Q-p) 

1 -

/>> I 3

'{ r <l ■

•{
(6.3)
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The non-zero member of the right hand side is easily found 

to be normalised to unity, and conversely if F (o) — I

then \ • The initial conditions are contained in the

term of ( ^ * M  and

independently of the value of p  . To prove the second 

half of the theorem we obtain a formula connecting the 

first r moments of the queue length distribution with 

the first (r+l) moments of the service distribution. 

Let the moments of the two distributions be respectively

Differentiating the generating function r+l times we 

find

ui - c

(7+OCt-f)
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The proof follows by induction on r

The same argument holds for m / g/ i by the appli

cation of Theorem 2 to (4,1). Corresponding to (6.4),

is-------------------------- L r j  - '

rU

the formula for the rth factorial moment m- (1)-----------------  Cr] v '

m CYl
(O

Cy + 0( i-p)
0 . (6 >5 )

The above theorem is our equivalent to Theorem 4 

of Kendall (1951, pg. l6l) in which the equilibrium be

haviour of the ĉ ucu<a is classified in terms of the ergodic 

properties of the imbedded Markov chain.

It was stated in £4 that when the input is deter

ministic we consider only the class of service distribu

tions for which equation (4.6) has exactly one positive 

root. The reason for this restriction is now apparent.
is defined only for l?e u! ^  -  v 1 Re S 

Then as s — 0+ the non-existence of a positive root 

wQ (s) implies

- J. Vt»*) - a >
J - w  —  <a  e- - lO-G
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Thus return to the origin is not certain and the equili
brium distribution does not exist.

The distributions of virtual waiting time in the 
equilibrium state clearly exist under the conditions of 
Theorem 3. From (4.2), (4.3) the Laplace-Stieltjes trans
form of the two distributions are respectively

W,V>= ,

(,m [ I +(.,Vo<)lfr3tb6<>| .
All the formulae derived here apply to the state of 

the process observed at an arbitrary instant of time. For 
m/g/1 these results are asymptotically the same as those 
obtained by considering the queue only at arrival epochs 
(Takacs, 1955), and in fact (6.1), (6.6) are the original 
Pollaczek-Khinchine formulae. This is not the case for the 
process d/g/i and we refer to the papers previously cited 
of Kendall, Lindley, Smith, and Wishart, for the results 
relating to the nth customer as n-^^o .

Smith (1953) has shown that the service distribution 
plays an important role in determining the analytical char
acter of the waiting time distribution. This point is 
borne out for the process E^/g/i by the formulae derived

(6.6)

(6.7)
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?in this chapter. It is apparent that the influence of 
the service distribution is exerted through the zeros of 
the branching process type equation (3.13) since these 
zeros essentially determine the stochastic properties of 
the queue. In the case of finite time, both the generat
ing function of the queue length probabilities and the 
distribution of virtual waiting time are expressed in 
terms of the null probability which is itself given by 
(3.12) and so depends on the zeros of (3*13). For m/g/i 
and d/g/i we have just seen that it is the asymptotic 
behaviour of the smallest zero of (3.13) with k=l and 
(^.6) respectively that determines the existence of the 
equilibrium distribution.
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The simplest example is when the service distribu
tion is negative exponential,

dlKv) - (7.1)
so that

- yutsy.y'.

With this value of Y ( s ) formulae (4.1), (4.3) reduce to
^4.16), (4.17) of Chapter II respectively for the process 
m/m/1 with initial state k=0 ;

a a~*)F0 c-m ) -'2----- -— ----------- ,
\<2. - ’e G + A ^ )  + U

(7.2)

P0 (V) - t̂  + X-XVsX\ - (>*“/«>)'! (7-3)
The second expression for the right hand side follows by 
noting that z0(s) is identical to the root u^(s) de
fined in (2.3) of Chapter II, and then by using the rela
tionships

S4-,\+/u =  A(U,-*Uay
y U  -  ^IA,Ua •

The Laplace transform of the distribution of virtual wait
ing time is from (4.2)
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Wj - &—t, o<
rü

) (7>4)

i

For the busy period of m/m /1 we find from Theorem 2,

^  - /A e
—u(Ay*)

o-\

-  (JÄtj iL*^ J ̂ (ax. JtyÄ) J»-,
(7.5)

where ]_ be) is the modified Bessel function of the firsti
kind. The marginal distributions of the duration of a 
busy period and the number of customers served are res
pectively

^ WÄ(l?)€xtA+A>I«cax' ^  (7,6)

_ taj-fli VV • . a.
J oUj-O! I^T-' 50 A  ,""

(7.6) is identical to (%.15) of Chapter II with

(7.7)

k=l .
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From the Laplace transform of the moment

generating function of d/m / 1 is

m U 0-e S/u)
^  - (s+^ fpu) e - U i (7.8)

The difficulty in this case lies in specifying Pq (s ,oö ) . 

We require the largest non-negative root w q (s ) of the

transcendental equation (c.f. ^.7) 

e 10-  f> io —  \ -v $ f f \ . (7.9)
Although w (s) cannot be found in closed form some of 

the general points made earlier in the chapter may be ill

ustrated in the following way. Let the Taylor expansion 

of w (s) about s=0 be

<^c+  a tS +  *+ + ----

Differentiating (7*9) we find for the first few terms

S__  -  ■ ^ea» +  sV 1- (a.eac -if) _

where a satisfies o
an ] e. — \ + / > s  .

) (7.10)

(7.11)
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Figure 2 illustrates the nature of the solution a ofo
(7*ll) • If f' ">1 then a0 >̂ 9 and the probability that
a busy period ends in finite time is less than unity, name
ly e r° • If f  ̂ I the only non-negative root of (7.11) 
is a0=9 so that e"~,l° = 1 * However, if | all other 
coefficients in the right hand side of (7.10) are infinite, 
implying that no moments of the busy period distribution 
exist. If f> < l , (7*10) reduces to

Atl- f f (7.12)

Figure 2. See text for explanation
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CHAPTER IV

PREEMPTIVE PRIORITY QUEUEING
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1 * Statement of the Problem 

The point has been made before that most of the 
literature of queueing theory is concerned with models 
of only limited applicability. In the preceding chap
ter we discussed a system which is one of the most gen
eral for which an explicit solution can be constructed by 
elementary methods, at least at the present time. We 
were concerned with the standard problem of finding the 
distributions of queue length and waiting time for the 
unrestricted queue without side conditions. Queue behav
iour is often difficult to study if the model of inter
est includes special features, such as a particular queue 
discipline, and in this case it may be necessary to limit 
the scope of the model by specialising the input and ser
vice processes. In this chapter we are interested in dis
covering to what extent interruptions to the servicing of 
customers affect the distribution of queue length. We con 
sider a system in which the servicing of a customer is sub 
ject to interference due to (i) breakdowns in the service 
mechanism, or (ii) a queue discipline which assigns prior
ity rights of a preemptive nature to a certain group of 
customers. To date we have not been able to find the dis
tribution of queue length for such systems if the in
put and service processes are arbitrary and
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we impose the following two restrictions;

(i) all input processes are Poisson
(ii) service times follow the Erlang-k distribu

tion (sometimes with k = l)

(i.l)

Throughout we assume that the service facility consists 
of a single server.

arrival or service distributions can be expressed in 
terms of phases although the calculations are very lengthy 
for distributions more general than (l.l). We treat the 
problem as a multidimensional random walk of a restricted 
nature and as pointed out in Chapter 1, Erlang!s method 
of differential-difference equations is well suited to 
problems stated in this way. It is worth pointing out 
that results for a wide class of interarrival and service 
distributions can be found without much effort if we are 
content to accept formulae expressed in terms of phases. 
For example, Luchak (1958) has obtained many interesting 
results for queueing systems (without service interrup
tions) in which the service distribution can be written

The method used here applies whenever the inter

in the form



103
However, the results of Luchak are in terms of service 
phases and not customer numbers, and can therefore be 
misinterpreted to give a very misleading picture of 
queue behaviour. In general, there appears to be no sim
ple transformation from the generating function of the 
distribution of phases to that of the distribution of the 
queue length of customers. Since it is the latter that is 
of interest we restrict the generality of the models con
sidered here to those for which meaningful results can be 
obtained without too involved a calculation.

Queueing systems in which service interruptions are 
a distinguishing feature are called Preemptive Priority 
systems in distinction to the priority discipline in which 
a priority customer proceeds to the head of the waiting 
line on arrival, but waits until the service of the cur
rent customer has ended. The latter is known as ’head of 
the line' priority queueing. The effect of interruptions 
to the servicing of customers is of interest in the prac
tical application of queueing theory. An example of a 
preemptive priority system is a communications agency in 
which messages classified as urgent are dispatched immedi
ately on receipt by the service facility irrespective of 
the state of the queue of routine messages. The question 
could arise as to whether or not it is preferable or more



economical to introduce additional servers to cope with 
urgent work rather than retain a queue discipline that in
creases the usual delay of non-priority items. From the 
point of view of the customer being served a breakdown in 
the service mechanism is equivalent to the arrival of a 
priority customer so that, with some modifications, the 
same mathematical model can be used to describe both break
downs and preemptive queueing.

The formal description of a preemptive priority 
model is as follows. A service facility caters for a popu
lation of customers divided into R priority classes,
R = 2,3»••• , (R = 1 corresponds to no priorities),
which are labelled serially in order of precedence 1,2,.. 
,,R. On arrival, a customer of class i commences ser
vice immediately provided no members of classes l,2,..,i 
are present. If customers belonging to any of these class
es are present the new arrival joins the queue of members 
of the same priority class. The servicing of the class i 
queue does not commence until the system is empty of cus
tomers of classes l,2,...,i-l. Further, a rule must be 
given governing the manner in which the service of an in
terrupted customer is resumed. If service starts from the 
beginning every time a customer re-enters the service mech
anism we say that the ’preemptive mepeatl ’ rule holds. An 
alternative procedure is that whereby service is recommenc
ed at the point re^hed when the interruption occurred, and
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this is known as the 'preemptive resume’ rule. We make 
the additional assumption that the queue discipline with-
1 I
in each class is ’first come, first served’. If R=2 we 
speak of the priority class and the non-priority class.

If all service times follow the negative exponen
tial distribution the distinction between the ’preemptive 
repeat’ and 'preemptive resume' rules is not relevant, 
since the service process is Markovian, When the service 
distributions do not have this simple form we assume for 
simplicity that the 'preemptive resume' rule holds. Break
downs in the service mechanism are included in this model 
if such an event is formally interpreted as the arrival 
of a priority customer with precedence over all others.
This implies that times between the occurrence of break
downs and their repair times are equivalent to interarriv
al and service times respectively.

This queueing process is conveniently described in 
terms of a hypothetical particle describing a random walk 
of a restricted nature in R dimensional Euclidean space. 
Let ni(t) = ni be the number of customers of the ith 
class in the system at time t , n^= 0,1,2,... •, i = 1,
2,..., R. The position of the particle at t ,
(n1,n2,•..>nR), describes the number of customers of the 
various classes in the system. The arrival or departure 
of a class i customer increases or decreases n^ by
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unity respectively. Since all ru ^  O , reflecting 
barriers must be imposed along each axis, although these 
must be modified to include an absorbing barrier if first 
passage times are of interest. The random walk is further 
restricted by the fact that if > C> queues of classes 
j + 1, j + 2, j + 3,•••, R can only increase, and n.J
can only decrease if n^= n9 = ••• = nj_^ = 0  • It is
this special feature of the problem that permits a solu
tion by the standard use of generating functions. The 
only component unaffected by these restrictions is n^ 
since class 1 enjoys priority over all others. The 
breakdown model discussed in $3 is a case where, in addi
tion to the above, other restrictions are also imposed.

Preemptive priority queueing was apparently first 
considered by Barry (1956) and in more detail by White and 
Christie (1958) and Stephan (1958). These authors dis
cussed the equilibrium behaviour of the negative exponen
tial queue when R = 2 • The present writer subsequent
ly extended their results (Heathcote, 1959, 1960a, 1960b) 
and this Chapter is essentially an account of the work 
contained in these papers. In passing we mention that a 
thorough study of the alternative ’head of the line’ prior
ity system has been carried out by Kesten and Runnenberg 
(1937) and Miller (i960). These authors have obtained 
more general results than we have been able to find for 
preemptive queueing, but the application of their methods
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to our problem does not appear to be feasible. In the 
paper cited Miller points out that there seems to be no 
natural way of applying the method of the imbedded Mar
kov chain to systems involving interruptions to service,
although he does obtain some results for preemptive

)queues. We refer to this paper of Millers and to Stephan 
(1958) for a discussion of the distribution of waiting 
times.
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2• Two Priority Classes

We consider first preemptive priority queueing 
with two priority classes in which the service distribu
tion of the non-priority customers is defined by (l.l) 
with parameters a and k . Let A, , AÄ be the rates 
of the Poisson input of the priority and non-priority cus
tomers respectively, and assume further that the service 
distribution associated with the priority class is nega
tive exponential with parameter /M [ • Using ErlangTs de
vice of considering a service time with distribution given 
by (l.l) as composed of k negative exponential phases, 
we see that fluctuations in queue length constitute a Mar
kov process provided the service phase of the current non
priority customer is specified.

Let Prmn(t) be the probability of r priority 
and n non-priority customers in the system at time t , 
the current non-priority customer being in phase 
m ; r=0,1,2,••• ; n=0,l,2,... ; m=k,k-l,..,2,1. The phas
es are nuinbered in reverse order, a customer passing first 
through phase k , then phase k-1 , and finally phase 1 
before leaving the system. The suffix m appears only 
when o- > O and pro(t) denotes the probability of r 
priority and zero non-priority customers* The forward 
differential-difference equations satisfied by
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are obtained by considering all possible transitions from 
the point (r,m,n) in the interval (tjtr-e&t:) • In fact 
Morse (1958, page 72) has given the difference equations 
satisfied by the equilibrium probabilities of M/E^/i ,
and these can easily be extended to incorporate the effect 
of the priority discipline. We again use Laplace trans
forms ;

it is apparent that the pure difference equations satis
fy /  \fied by P (s) are almost identical with those satis- rmn

fied by the equilibrium probabilities. The only equation 
substantially changed is that for the initial state. Hence 
it is no more difficult to solve the equations for the 
temporal process than it is to find the equilibrium proba
bilities, We assume that initially the system is empty;

The method used carries over directly for more general ini
tial conditions. Writing o< - S the equations

o

Since

c a. i)

satisfied by P* (s) under initial conditions (2.1) are
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v , t  a: = - l , ca .s

• * - - ' ,V " > i>  ^ . :

V1̂ 1 + A ^ a
- 0 , (3.-

"■U r ^ Wft. +  ' \ J L  „ - ,  + A ^ ,  .m v  + /*n  ?  m tl * - 0 , ) o .
m -  l,3>*

+ /* ,P K|V t / . aPol(l+( = 0 , n -2 ;3 ; . . . . . . . ?

- ^ W P v o  A ^ o - 0 , * -  1,5, • • - - > (3.

- ^ C a C . v . iC h =  0 , (a/s

- ^ P * ,  +  / \ C ,  +hK v X ki - 0 , y--!^,.. . ,  (a.c

-(Xty*,) l rinn +■ \  mrt, f m n V 1 *+• m n ~  ^ ) ( 2 ,
^
^  - i>2, — , k .
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We seek the joint generating function

F * O j  x jY)2) = 2 * ? ^  + (2 .11

where
Y-Ü Y-0

k °o
J *(.S; y,*') -  2  t  •

>m-i a-»
The first sum on the right hand side of (2.1l) can be eval 

uated immediately* From (2*7)
* T)*" V

?  Cs) -  I n U ) u,(s) ,1 Y/i ' OC v > (2.12)
where

,00 -  (.SyU,)“ ' I_ «. +/ U,~ Jc«+/U,')i -  ^ l/t |  1  .

Then

* "D^z - 'f>  *  pjoD- « , « r .
Y-c (2.13)

Multiplying (2*3)-(2.6) , (2.8)-(2.10) by the appropriate 

power of ymzn , summing, and using (2.12), we find that 

the Jr (s;y,z) satisfy the difference equations

/*»J**t ~ C^/q-Xa*)3r 0 ..:> (2.1k)

—  x- k -i >*
o»rv/‘.J,*- (-=<+/wa-\,2-/<!l>',)Jt, - /**('-Yk|z'') Jj 12 ^

t y 7̂ tu»)̂ oo * (2 .15)
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The general solution of (2,14) is

T r* •=- R uR tl!) - Yk u.1 ?oc ,
where A, B are constants and w.,wn are the roots of ' 19 2
the characteristic equation, namely,

=  (2/u,)' [ex +/*“ R *  + /(*-.- / i . - h * ? - 4<y J .
(2.16)

Since there is only one boundary condition, (2.15), the 
constant B may be set identically zero. Then the value 
of A appropriate to (2.15) is

-  y^Lo-v'VJ^csj -h ]
O-wl) — /*•*

The unknown sum ^ 1̂ (s) , a function of s and z only,n~i
is found by choosing a value of y which makes the denom
inator, and hence the numerator, vanish, namely

-\y - L 1 +
Hence

»O  f
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Writing O,*-') - [_ “  *1/1, -I

the required generating function is found to be

F c\ . Xi>12) _  * yW' < - 0  U V <-*-yk) K - Q - / * 3y V )o l> O i-p )K- 0 1
U_xu0[*0tp)k-Q[./»1y(w.l-0 -/U-iCl-y)]

(2.17)\ -XU.,
The joint generating function of the numbers of priority 
and non-priority customers, irrespective of the phase of 
the current customer, is

i-12 Li-
/«, CI-XUS,) (toj-l) [_|- 2 (l+p)kJ

(2 . 18)

As a check, we note that the marginal distribution of the 
number of priority customers is the classical result

P*(_V X. I 0 ^  _____ .

The generating function of particular interest, 
the non-priority customers, is

(2.19) 

that of

. (2.20)
(s+^-Xa<l)ll- 2(I + P)K3

The solution is now complete except for the un- 
*known PQo(s) . We find P0Q(s) by applying the regu-
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larity condition to the generating function in the same

)trway as in Chapter III. F (s,l,l,z) converges for at 
least Ul £ I , and by Rouches Theorem the only zero with
in the unit circle of the denominator is the unique one of 
the equation

t -  5: L \ + K -  C .

If this zero is z = zQ(s), then

= >i‘ L a < A A « )  -  ll . (2.21)
The Lagrange Inversion Formula (Whittaker and Watson, 19^0, 
page 132) can be used to evaluate Poo(s).

When the service time is constant we write S^k
and take the limit as k . Then

U + p c v *)3 • (2.22)
The preceding formulae hold also for constant service time 
on using (2.22).

The Laplace transform of the expected number of non
priority customers at time t , conditional on 0 ini
tially, is

ife (n-« jo)] - + I-a
Li+pi*.»3kJ

(2.23)
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3* Model for Breakdowns

The preceding model is now modified to describe 
in a more realistic manner the way in which breakdowns 
occur. The essential difference between a breakdown and 
a priority arrival is that breakdowns can occur only when 
a customer is in service, and also a queue of breakdowns 
cannot form. If r denotes the number of breakdowns, 
then r can take only the values 0 and 1 , The ran
dom walk in the r,n plane takes place only on the lines 
r=0 and r=l , excluding the point (l,0). If r=0, 
the three permissible transitions from the point (0,n) , 
n=i, 2, , are to the points (0,n-l), (0,n+l), and
(l,n) , If r=l only two transitions are allowable, to 
(l, n+l) and (0,n) . From the point (0,0) the only 
transition possible is to ,(0,l) ,

If Q (s) denotes the Laplace transform of the rmn
transition probability Qrmn(t) of this process, and

S4/\,+ Xa t then for an empty system initially, the
*• / \difference equations satisfied by QrmnVsJ are
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- ( s +,\a )Q *  V ' A ' i
(3.1)

— Q0 +yUj Qim( "f“ M a Q  o mi j =  0>
(3.U

-  t* y O C o k | ^ a ^ o o  ^ i ^ l k i  V ^ o u - 0 , (3.3

■X" ^  )( ^
-  (°^ * j)  ^  o m ^ ^ a^ c «  n-i'̂ /u i^ i« rw (''a ^Ctnn n - 0 , (3  a

im -1 ) >̂ ’"jk— 1 j

-  («VOO*«,+'^  A u - f / * «  ^ .L ^ a ^ c m v , * 0 » va - 3j3; - j ( I f

-(S+A1+/>,)C), ni( +  ' \ Q 0M| - - D , (3.1

- ( .S f A ^ ,)  Q(̂ n +  A, Q 0ma'+ A5 Q, m„_, * 0 , n= 3 j i j . " - ) a r
m = 1 ,2 ,,- ., k .
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Proceeding as before we find the joint generating 

function

- 0OĈ > t (s)y-c hi,

- Q*<>) - gt*V>.*Ma»A*)b-(l+e)kj [fci VAa1*) QoV) - l] n  8)
/«a (>*/«,+)̂ a-A»*')Ll-»0+ey<3 6

where

0 9 (5/z) — A,tÂ -A3»z.) (,s+̂ iT Aa1*)
/«a U+Z'i+Â -Aa'z)

Then the generating function defining the distribution 
of customer numbers is

q*Cvî _ o-a)Q0tsj t Vi-cite) j
l-*0+e}k (3.9)

Qo^(s) can be found by the same argument as before. Ex
pected queue length at time t in this case has the La
place transform

-3 , I '  S Qr^lS +
s [ i -  [ N  86,03k]itEC-»)|o)] -  >. (3.10)
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k • Comparison w&th the Unrestricted Queue

Let Rn (t), n=0,l,2,.. , denote the transition
probabilities of the unrestricted process M/E^/l , 
with generating function

Jt'z./tO - £  R j*).
it-c

If the interarrival and service parameters of this pro
cess are respectively  ̂ , and the system is ini
tially empty, then the Laplace transform of j(z,t) is 
given by equation (4« I ) of Chapter III with

Thus

— f Ô VR̂ ) — £ C V —■ 0 Aa*2-)0 Oz,s) -  ------ ---- r— - 5 (4.1)i->zr
where

The Laplace transform of expected queue length at time 
t is

(4.2)
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The comparable results for the preemptive priority model 
are (2.20), (2.23), and for the breakdown model (3.9),
(3*10) respectively.

The equilibrium distributions of queue length for 
the preemptive and breakdown models are found by the same 
arguments as before, and we denote their generating func
tions by F(z) and G(z) respectively. The conditions 
for the existence of these distributions are found to be

(i) preemptive model, I *> +  f>.x >

(4.3)
(ii) breakdown modfel, I ^

where /*| “ o recaH  that the
condition for the existence of the equilibrium distribution 
of M/Ek/l without interruption is

l >  fa • (4.4)
Let the generating function of this equilibrium distribu
tion be

0 C*2rt) -= v) .
t:->cO

Assuming that (4.3), (4.4) hold, the three equilibrium 
generating functions are then respectively
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J (a) - O Q C I - f * )
I -  *L i+o-*)\a/,;']k (4.5)

K o >  = ,-ti, o-^.> j\-f,- fa)
L)~ u),C0,'i)]sll - rz.[_t +pto,>2.)]k'{ (4.6)

q  (*) -- 0 - 0  Ofa-fifa)
i -  <z Li+e(o)t ) ]K

(4.7)

(4.5) - (4.7) hold for k=l,2,... • If the service time
is of constant duration we have, by replacing /a  ̂ by
u(l< and taking the limit as k-̂ > =*o 3

JCfey*) - (l-OO-PiO (4.8)

Fc-..)= r— y t H r ^ 7 , )— sit > <*•»>

q(v°)- (1-12.) ( I  -  fa - f . fO

* Z  e ^ c p  f  g ) F / < i't' A1i - A a , f a O (4.10)
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Let the expected values 

distributions for parameter k 
Then

of the three equilibrium 

be respectively  ̂> lo .

<xk
O lx -  0 - k -)p ]

a. c i-M
(4.11)

rt /'■tL*Q-/,. * f . '% 0  "   ̂ (4.12)
X Cl-fiiCl-f.-f'a)

t — r di cjwl = - u-nrĵ .j .
k ^  Jm  a c i - /v - p ^ )

The expected length of the priority queue is of course

r, = fiO-fiV". (4.14)
Two other expected values of interest are those of the 1 
‘head of the line’ priority model. These are available 

only when all service times are negative exponential. De

noting the expected queue lengths of the priority and non

priority customers for this system by E(r) , E(n) res

pectively, we quote from Miller (i960, equations (2.7 ), 
(2.8));

ECO = f , t i +  ft'V/OCi-p.)"1,

-  0.1.1-f, tA mVa, -  p,Ct-p,-pp]
O - f . M ' - C . - f a )

= * , -  f  Ö  •



122
The expectations 7l(Jla and are tabula

ted for different values of p( and ^  in Tables 1 and 2 
respectively. Expected waiting times are obtained from 
the tabulated quantities on division by the input parame
ter Xa • The column under — 0*0 is the expected 
queue length when there are no service interruptions. Com
paring this column with the figures when p<> 0  we see that 
if the traffic intensity is moderate or large, expect
ed queue length is considerably increased even for small 
values of the traffic intensity p i • Also, if is
small, there is no marked difference between the figures 
for the preemptive and breakdown models, although this 
difference becomes more apparent as f>{ increases.
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5* R Rrlority Classes

Let the number of priority classes be R , an 
arbitrary positive integer. Difficulties not present in 
the two dimensional cases just considered are incurred 
when R is arbitrary, and in this section we impose the 
further restriction that all service times follow the 
negative exponential distribution. Our method holds for 
more general distributions but we consider only this spec
ial case to keep the calculations brief. Let the parame
ters of the interarrival and service distributions of the 
ith priority class be ,^uc respectively, i=l,2,..,R.
We seek the joint probability P(t; n^,n2,...,nR ) that 
at time t there are n^ customers of class i in the 
system, conditional on given initial conditions, 
n_j =0,1,2, • • • ; i=l,2,...,R . In what follows the argu
ment t of this probability will be suppressed. The equi\ 
alent probability in the equilibrium state is denoted by 
p(n^füg»•••,n^) • It has been shown by White and Christi«
(1958) that the condition for the existence of the equili
brium distribution is ^

I >  Xfi ,
where f t - K f hl ■

The forward differential-difference equations are 
obtained in the usual way. For all nk=0, k=l,2,..,j; 
n̂  + 1 >* 0 ; n̂  + i^ 0, i=2,3,...,R-j ; where j is fixed,
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1 ^  j ^ R-l , we have

+/‘»P(®)>,°)- ^°Ai-tn,-3lllR)+ • •• +  /*j P(°r"JCM > lVj-n:> '"J^r )

+" ̂ j+J*(0r --,05a'j,',13 n'jta5"

) ° 3 a jl-0 njta''>,tJ 3 3 > '" ’ 'l R .)+ ' "  +  A R P  (ö l - 3 ^ W ) ' " ) l l i i - | ) l'R  ' )  

— i (&)••’)&) î J+i >••'.> •

To rationalise the notation, write for the coefficient 

of yUl ) i - lt>3, *--?4 )

P(p* ~  ̂ ^ c o rLj'r̂ ‘

This indicates that the first j components are all 
zero except the ith which is unity, and that components 
from the (j+l)th on are not necessarily zero. Similarly 
for the coefficient of \j*\, * c® j ••• j "R~4 >

R
We also write - Z-,̂ k •K K -1

The equations of the system are then
R

Lpi* So')Pc*vl)»«-)hpr) t / '|P 6 'i+ * jT ia>. - ; hj^) r ^ / V j P ( t , j ^ t + i  -o *HO

- - )UR) n,>o,aK>o , k- a/V-jR,df (5.1)

- t /S + S y ) 'P (o ,> 'V )  + /M ,T>( S 1,rva)  + / ua.? ( ü 5n1H,oi) . . ,a R) +-^At? ( 0 , , a - ' l )  

~ ^ ^ Oi-3a0   ̂n'a> 0 -)n,U ^ ^ ^  - (5.2)
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•j

~ W i+ S r ') V ti * . K 0 j>,L4-M+ '’V x . - - ) a R)
+. i  ^ K o i , H - 0  =■ 4 z ^ ( - ° ^ H n )  j
c-3+' ^

fuJYV 3* 0 ^0^ k = 3^,...jR-j j (5.3)

’‘ ( /kRtSp<)?C oR.pfl.R>) i- ^  + / * R P ^ 0 R  ̂n.R+ l)
t-l

+ XRf(0R_),n-R-1) _ A^ >̂ R-i’n'R̂  ? |Ur><-);’ (5.4)

-SRPC°0 ^ - ! a^ c) - i ?(0«4 (5.5)
The difference equations satisfied by the equilib

rium probabilities p(n^,n2>.•,nR ) , independent of t , 

are obtained from (5»l)-(5«5) by writing all time deriva

tives as zero. We have noted before the similarity between 

the equations in the Laplace transforms P (s ;n^,n2,••,nR ) 

and those satisfied by p(n^,n2,•.,n^) . Hence if the

solution of the latter set can be found it is a simple mat- -
* , Vter to derive from this the transforms P (s ;n̂, ,n2,. • ,n^) •

We consider then the equations satisfied by the equilibrium 

probabilities, and assume that the condition for the exist

ence of the equilibrium distribution holds. In fact White



128.
and Christie (1958, page 81) have shown that the null 
probability, denoted by pQ , is

W ~  ̂~ P I 3 (5*6)i/“t
We seek the joint generating function

^  ^  â • ' P Ln\jnxi *"■?̂ r ) . (5*7)
A,-0 naT° ftR-C 1

It is convenient to introduce the partial generating 
functions

OÜ OO 90

F(s ,v -> j;*;„> w ~ ,* < 0JJJF Z£---\R pK,"aJ.~^R)
an R

oO

—  ^  ‘Zjtl I" *2^ •
rv -o4+1

j ■ ) * - -) R~ i. (5.8)

These generating functions are obtained from (5.l)-(5.5) 

by multiplying each equation by the appropriate powers of

Z1,Z2***,ZR and summing. We write down only the equations 
satisfied by F(nt;z2,...,zR ) = F ^ )  which will be re
quired later;

R _ _ _
” CyUi + •=- 0 ? (5.9)

’ l'=1 a, *1,21,3,---,

R

- I S R -  H o )  + - / . F C O
R-l

=/4R̂ RL0|>«+jL»il*i!-o F(p l}sUtj (5.io)
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where, in accordance with the notation previously de
fined,

(5*11) expresses the Rth dimensional generating 

function F(z^,z ^*•.,zR ) in terms of the (R-i)th di

mensional functions F(0̂ ,z.j. + i) • If a recurrence rela

tion between F(0^,z^+i) and F ^°i+1*zi+°^ * i=l,2,..,R-2 
can be found which will give these functions in terms of 

Po , then the problem is solved* The first step towards 

obtaining such a recurrence relation is in fact given by 

solving the difference equations (5*9), (5.10) in F(n^). 

The characteristic equation of (5.9) is

F ( 0 ^ , z ) = 1 ( 0 , 0 , . . , ° ’zi+l,zi+2’*‘,zR^*

We find for the joint generating function

1 +/'rC^rl0 pc
o-l_______________________  ______________________-— ----

-  .2 \\ (5.11)

/Wicr‘1-  o' + '\ -  0  3

with roots
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I f   ̂ ft) and , t h e n  |o-t | < |  4 | u - a \*

( 5 o l 2 ) ,  ( 5 . 1 3 )  a r e  a g e n e r a l i s e d  form o f  w ^ ( s , z ) , wQ( s , z ) 

g i v e n  by ( 2 . 1 6 )  • S i n c e  n^ i s  n o t  bounded above and t h e  

o n l y  bo un d a ry  c o n d i t i o n ,  ( 5 « 1 0 ) ^ i s  a t  n^=0 , we may

d i s c a r d  t h e  r o o t  g r e a t e r  t h a n  u n i t y ,  vjä f and t a k e  as  t he  

g e n e r a l  s o l u t i o n

F ( 0 )  i s  f oun d  by s u b s t i t u t i n g  t h i s  s o l u t i o n  i n  ( 5 . 1 0 ) .  

Us in g  t h e  r e l a t i o n

T h i s  i s  t he  f i r s t  o f  t h e  r e c u r r e n c e  r e l a t i o n s  we s e e k  and 

g i v e s  F ( 0 1 >z 2 ) i n  t e rms  o f  F ( ° i * z i +i )> i = 2 >3 , • • • , R - 1 •

n u m e r a t o r  and d e n o m i n a t o r  i n  t h i s  r e g i o n  c o i n c i d e .  I n

R

we have

j- (o) - Ir — r(.0,)Zâ
Ri  + /> R ^ R L |)f> . ( 5 . 1 4 )

z :  t .  - %  --------------------------------------------------------------------------------------------------------------  --------------------------------------------------------------------------------*

/ * a ( * ; ' - 0  Cl-vr^

) L*v")

Sin c e  F ( 0 1 , z 9 ) i s  a g e n e r a t i n g  f u n c t i o n  i t  must  

c o n v e r g e  ev e r y wh e re  w i t h i n  t h e  u n i t  s p h e r e  I I ^  I 

i-  a,3j  . .  • . • Th i s  i m p l i e s  t h a t  z e r o s  i n  o f
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particular, this is true of z0 irrespective of the val
ues of . By Rouches Theorem the denominat
or has only one zero in z^ within the unit circle. If 
this zero is

1Ẑ L —  ̂ ) *'' > ̂  r )

then the numerator also vanishes when ,
Therefore

1=1
and hence

_ 2 0] \~(0L̂ uî) p̂ Ĉ R '') Pc
F O W ^  —

(5.15)
Repeating the same argument we find for i=3,̂ .a.,R-2,

1" (Ao*u,) -

R-l _ ^X L ^ k « - 0 J  Rok)0  v̂ ä̂'-O po
k-C-H_______ ________________________________________________________

(5.16)
o(*t is the zero in z^ within the unit 

circle of the denominator of F(CK ^,z^) The result
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for- FtO^.Zjj) is

(5.17)/̂rÎ R ~ 0 " /*'(H (-̂ R-~0
Starting from (5.17) it is now simply a matter of

substituting back to find F(0.,z. . ) in terms of p :1 1 + 1  o

f.*0J ’ <*•»>0-L+l

i=2,3, . .R-l , and where o( ̂  —  \ . 
We also have

Ko,,*») - /**» ̂ a. 2i) r(Oaj1Z-5)
v,23.o-0-̂)3 (5.19)

and

I" |)2J,-. j z r ) ~ 2a>2j>-''2r) ~  ̂  C’2|°‘|̂ I to|;ex)
n,=o

-  F (Aj’O  0 -^ ,)  .
(5.20)

Combining these results we have the final solution

R
I p \ <* t-t 0-*L ) *1 0 - ^ ]

(5.21)
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For conciseness we have written o ( ( - U"̂  and c< ̂  ~=- j 
in (5.21)• The study of this process is continued in the 
next section.



134.
6. Explicit Solutions when Service Rates are equal«

To complete the solution of the R dimensional pre
emptive priority problem of $5 it is necessary to find ex
plicit expressions for the quantities i * • •} ■>

. . r } R-l • We recall from (3.14) that s(x is the
smallest zero in of

~ ̂  ) (6.1)
which on expansion is

^ L  ̂  ~~ ( t S R  - J s  J
^tyv>0 “A» ~ <-*1) t* ^  ’

(6.2)
It is apparent that to find we require
the solution of a series of equations similar to (6.2).
These can be found directly or by the Lagrange Inversion 
Formula, but the calculations are lengthy. Since the meth
od is clear we simplify the problem by assuming that all 
service rates are equal to the same value yU • The
effect of this assumption is to reduce (6.2) and all sub
sequent equations for the oCL to quadratics. In particular, 
if j*j -yUg, =. yU , (6.2) becomes

 ̂i
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Then

(6.3)
We find for j=293,•••»R-i

.'i

M C*j„,• -,2r) " ̂  \ĥ fX V^0l-J* IM«

(6.4)
The formula for the joint generating function, (5«2l), 
in this case has the simple form

Ft*■1 \>c*\

I -

R

I--a
(6.5)

where the o<t are now given by (6.4)«
We list below some formulae of interest:
The joint distribution of the lengths of queues of 

classes 1 and R is given by

where
>~u - \ iz*»-■ y _ k
I-Vi z r /

(6.6)

'T .O A -.'j
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The covariance is

a,,.,)-- «fao -T.il O-fO’ !T._, (I-T.V) ] ""7>
where J. =  ̂

K - iid of course the classical result
FOiM" >0 ~ .

The marginal distribution of

The marginal distribution of np has generating function

(6.8)
R

and its expected value is

V  rk[.-i«rti-1,r.T. (6.9)

The distribution of n^ conditional on n^ang55* • ^=0
is given by

F(*R| t>,6,...;0) =  2  H " - r |o,6,...jO)
n Rf°

!- i|> (’<' ) (6.10)

- 1 U J  ■~ Li

The distribution of the total number of customers in the 

system irrespective of class is found by substituting 

zl~z2~ ••• ~z\l~z *n (6*5) to yield

f«) - L1 - |>a! L i - . (6.11)
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Thus if n^+nn+..+n^=n , then

The Laplace transform of the generating function 
of the queue length distribution in finite time is easily 
derived from these results* Let F (s;z^,z0, . •,z^) be 
this generating function, and denote the transform of the 
null probability by

?*c a  - ( P (*-,£>,«v ••■>&) 1*.
We assume that the initial state is (m,0,0,..,0) ,
m=0,i,2,... , so that

T  i a *'* ’ (6*10)
Then F (s; , zR) is given by the formulae for 
F(z^,z2,••,zR) provided the following two alterations are 
made

sr by(i) replace
m-t-i ,

(ii) replace (.l~*2R)f>0 0~ **) ’ o /*~R .
We consider in detail only the case when all - m
To avoid confusion relabel the roots Of; by ß- (A •
respectively;

J* zi *j) ~ 4/* J j
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u.ls; «.,».,*0 - M/J' V A

ir (s;z2,..,zR) is the conjugate of Wj(s;zol..,zR ). Then,

B-l

I R; '------ -
I-A

Pl~ *i 
Pi-r 21

) (6.11)

-iwhere p(=toa • Corresponding to (6.6) we find for
the Eth priority class

0 - I (6.12)F k u - ,i ,* Ry= .
C^+Ar*“Ar̂ r) ( Pr-,~*r )

The transform of the null probability PQ(s) is obtained 
by application of the regularity condition used before to 
the right hand side of (6.12). For Ra S > O the only 
zero of the denominator within the unit circle is that of

pB(siV )~ *R * 0
namely,

pRii)-- (aSj'l_sy*+SR- • (6*13)

?üo = prtA^-p^i'"A'.2 pR •W 1 * ' 4-IÛIJ - tVitl

Hence
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Then by d i r e c t  i n v e r s i o n  f rom t a b l e s  ( E r d e l y i  e t  a l , 195^)>

= A ' i  i± t ( M  Sr )  I . ( a t ^ R)  j (6.14)
4-m i *b

where  I . ( x )  i s  t h e  m o d i f i e d  B e s s e l  f u n c t i o n  o f  t h e  
J

f i r s t  k i n d .  The e x p e c t e d  queue o f  c l a s s  R c u s t o m e r s ,  

f o r  i n i t i a l  c o n d i t i o n s  ( 6 . 1 0 ) ,  i s

E  (n.Rlt)|<v\) =  rn + ( Ar - / 0  t  j  ? 0 tT ) d r

+ P *  j  V e"T^ ^  I  J r  .
° (6. 15)

The two comparab l e  f o r m u la e  f o r  t h e  p r o c e s s  m/ m/ 1 w i t h 

o u t  s e r v i c e  i n t e r r u p t i o n s  a r e ,  f rom C h a p t e r  I I ,  r e s p e c t 

i v e l y

? W0w  = r - ' l
^ - K t \

b  (r |rv \)tr') =  *  +  ( A - / - ) t  t / <  J .
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7• Duration of Busy Periods

To end this chapter we investigate the duration 
of a busy period for the simplified preemptive model 
when R=2 and both service times follow the negative 
exponential distribution* We are particularly interest
ed in the case when the service rates are not equal. Let 
the service distributions of the priority and non-priority 
customers be respectively

cJ (t) - e y4‘ < &>
d

and denote the number of customers of each class present 
in the system by r,n respectively* We seek the distri
bution of the first passage time from the point (0,m) 
to (0,0) , so that there is an absorbing barrier at the
origin* The space in which the hypothetical random walk 
takes place is then the quarter plane bounded by reflect
ing barriers along the lines r=0 and n=l , and the 
point (0,0) .

Let B (t) be the transition probabilities of rn
this process with initial conditions

B Co) — S S (7.1)



The forward equations satisfied by the Laplace transforms 

Brn(s) are ^hen

V ' X  n + °> Y"'j V " ’ <7-2>n“ ,̂1,.-..,

-f \ ß — on 1 * x-\ \ (7.3)

- O t^ v VA^) +/»|B,a + * X M  W £ m T ” Sm » ■,(7.4)

~c^i^^+Af+iV^ R>0( +■/*i ̂i,vAt ^im ) (7.5)

- sK o  v » ’K - 0 . (7.6)
By the same method as before we find for the joint gener
ating function

Q*(s; ?<-,*) * Bĉs) t- ^  2 x r^rv B (M 

the expression

r 1 ^  ̂  I .«• I

^  - g (i- xio,') (7>?)
/*x- «(/‘̂-/'iV'i'V)
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where w^(s,z) is defined hy (2.16), namely

Applying the same regularity condition|to the right hand 

side of (7*7), we find that the denominator has exactly 

one zero inside the unit circle if Re s . If this

zero is z =z q (s ) , then equating the numerator to zero

when z has this value we have
* , vnBe*) - s •c c

The probability density function of the first passage time 

we require is

Atje) = t L*.%] . (7.8)

z q (s ) is the root of smallest absolute value of an equa

tion similar to (6.1) which can be expanded as

-tyuaL^^i+Ai+Aa-iC^r/*a\l + (7.9)
We do not solve (7.9) for z0 (s ) but instead find the mo

ments of the distribution function BQQ(t) by means of 

the following property of the Laplace transform :

EC-ti**) ~ et; = l - l f
Jo L. Js^o <
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Assuming a series expansion for z q (s ) of the form

zQ(s) = aQ+a;jLs + a2s~ + .. , (7.10)
the coefficients ai can be found by equating like powers 
of s to zero after substituting (7.10) in (7.9). The 
first three ai are given by the following equations:

^0 t Ĉc /*l) j ^ acL/V M  +

—  (ao~OLai ^ r /Â > +<xoM»0*fc7*i+Xl)-/w*] —  0 ,  (7.11)

~ aoO*r/0 ~ ao/a “ 0 ) (7.12)

4 < v V ^ , )  +/4a(/*i-̂ lr5i|“Â')|
4* Â Cyur/̂ O + - (-Ar/̂ O

— C/S“V*0 ~ a»yua —  ^ * (7.13)
Examination of these equations shows that the form

of z0(s) depends on the range of p, + p<x ~ ^«/A‘ ^ 
in a manner analogous to that of the unrestricted single 
server problem. Thus normalisation is to unity, i.e. 
zQ(0) = aQ = 1 if and only if f t+fa ^  I . When equal 
ity holds we have a confluent case and (7.1l) factorises
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(7.14)
The other , i=l,2,.. , become infinite so no moments
exist* When f - > ( + f > x  | , moments of all orders exist;
in particular, since aQ = l

E (t| m) = -ma^ ,
2 1 2E(i |m) = m(m-l)a^ + 2ma9 0

(7.15)
(7.16)

where m is the initial number of non-priority customers * 
The mean and variance of the distribution B (t) are then 
respectively

E(t|m') - ^ L/**•>.Of,-f>a\] (7.17)

, ,, , s mLi + r*-f, L{- 
V W ") _  M l  O-f.-f,)’

(7.18)

Writing m=l yields results for the distribution of the 
duration of a busy period*

If » the explicit expression for
zQ(s) is

ZXO- -L-atAi+Xi') s + ^ + A i+ A j  ( s + ^ t - A  i+ A j ) —  kp- ( A , + A a ) (7.19)
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In this case the probability density of the first passage 
time is, from (7.8),

(7o20) is a simple generalisation of equation ( 4« IS ) of 
Chapter II for the unrestricted process m/m/1.

Table 3 exhibits the mean and variance defined by 
(7-17) and (7*18) when m=l and — 1 . The tab
ulated values are for a fixed P^ — D-\ and varying in
terruption rate p i • For values of — 0*1 4- o
where & - *2, • •.♦ ̂ , the appropriate values of the
table commence /ö & entries down from the top. As may
be expected the effect on the variance of service interrup
tions is far more marked than their effect on mean dura
tion.

A  [ v(t/i )__ E(t/1)
0.0 1.509 1.111 
0.1 2.344 1.250 
0.2 3.790 1.429 
0.3 6.481 1.666 
0.4 12.000 2.000 
0.5 25.000 2.500 
0.6 62.963 3.333 
0.7 225.000 5.000 
0.8 1900.000 10.000

Table 3» Variance and mean of duration of 
a busy period for fixed sO*/.
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CHAPTER V
QUEUES WITH CORRELATED

INTERARRIVAL TIMES
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1. The Input Process

The queueing systems considered so far in this 
thesis have been distinguished by the fact that their 
input processes were of the renewal or recurrent type.
In Chapter I we asserted that the only systems of this 
sort that are of real interest are those in which the 
input is Poisson or deterministic. It is now necessary 
to justify this assertion and to discuss input processes 
of other types. We retain the assumption that the ser
vice times of customers are independently and identically 
distributed and are independent of the input.

If in fact the input is a renewal process then 
the interarrival times T A - t ■- ? rv ̂  ... >
are independently and identically distributed. Another
way of stating #his is that each arrival time t is then
sum of n-1 independent random variables, each with the 
aame distribution, in addition to the interval between 
t=0 and the first arrival time (which may also follow 
this distribution). This implies that customers arrive 
only in a way which ensures the independence of interarriv
al times. An arrival pattern of this sort may occur in 
certain circumstances but clearly does not hold in gener
al, even when the interarrival distribution is arbitrary. 
The major objection to a renewal input is that the inde
pendence assumptions it incorporates do not make for a
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reasonable model of many queueing situations. For a 
mathematical model to be valid it must reflect the essen
tial features of the reality it purports to represent. 
Since the input process is the idealisation of the arrival 
behaviour of customers it is first necessary to classify 
under broad headings what appear to be the most important 
ways in which customers do in fact arrive. Three such 
headings are

(i) completely random arrivals,
(ii) scheduled arrivals (including the possibility 

of a customer being late or early),
(iii) general independent arrivals.

The third of these, denoted by the symbol GIA , will be 
explained later. To avoid confusion we recall that some 
authors have used the term ’general independent arrivals1 
to describe the GI input in which the interarrival times 
are independently and arbitrarily distributed. A more 
appropriate term for the latter is renewal input, denoted 
by the letter R . Arrival patterns classified under (i) 
and (ii) lead to input processes which are Poisson and de
terministic, respectively, or variants of these.

This classification is by no means exhaustive, but 
is useful not only because it includes many cases of in
terest, but also because models based on (i)-(iii) are
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amenable to mathematical treatment. We do not include 
patterns accurately described by a general renewal pro
cess amongst the more important types of arrival behaviour. 
Situations in which interarrival times are independently 
and identically distributed appear to be of a very special 
kind, for example when two service facilities are in ser
ies so that the arrival times at the second facility are 
the departure times from the first. Care is needed in 
the definition of interarrival times in models of this 
sort since Finch (1959) has shown that, except in very 
special cases, successive interdeparture intervals of a 
single server renewal queue are not independently distri
buted.

The limited value of queueing models with recurrent 
input has long, been recognised (see Winsten, 1959, and the 
discussion to the paper). It seems fair to say that the 
attention paid to models of this sort in which the input 
is neither Poisson nor deterministic has been justified 
in the past by the hope that they approximate in some way 
to more general behaviour. The usefulness of a renewal 
input is that the mathematical difficulties due to the pre
sence of dependent random variables are avoided, but whe-
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ther or not the approximation is a good one depends very 
much on the particular case. The mathematical problem is 
to devise new methods, probably of a combinatorial nature, 
which do not rely on the special independence properties 
of the input* It was stated in § 3 of Chapter I that 
Winsten (1959) and Benes (1960a, 1960b) have obtained re
sults in this direction and it is possible that more at
tention to the basic combinatorial problem will yield the 
required new methods* In these circumstances it seems 
hardly worthwhile retaining the GI input as an approxi
mation procedure.

The importance of input processes which are Poisson 
or deterministic is that they do provide reasonable models 
of the arrival behaviour of customers in given situations. 
The fact that these twp processes are of renewal type fol
lows from their special properties and not from independ
ence assumptions about arrival patterns* The Poisson pro
cess (sometimes with time-dependent parameter ) has long 
been used by telephone engineers and others and has ap$>ar-- 
ently proved a satisfactory model. A deterministic input 
arises when customers are scheduled to arrive at constant 
intervals and has application in the study and design of 
appointment systems and the like in which the arrival of 
customers is organised in some way. Winsten (1959) analy
sed the single server queue with deterministic input essen-
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tially by the method of the imbedded Markov chain and 
showed how this approach can be used to study the case 
when scheduled customers are allowed to be late. The 
time a customer can be late follows a lateness distribu
tion L(x) which is the same for all customers. Then 
instead of - av"1 , y a positive constant, the
actual arrival times are t + e . where Pv\e £ xt= L(xV 
and the interarrival times are thus correlated. By assum
ing different forms for L(x) it is clear that a wide 
variety of arrival behaviour can be described by this model. 
The only difficulty is that calculations are very lengthy 
if the distributions involved are not simple (Mercer, i960).

Winsten’s model is pertinent to systems in which 
the arrival of customers is planned in advance, or at least 
subject to some control. In the next section we introduce 
a model which appears to describe more accurately the case 
in which the arrival pattern of customers is not organised 
in any way. Before doing so we make two points. Firstly,

Ythat it does not seem possible at the present time to analAse 
in detail general models not incorporating the assumption 
of independent service times. Relaxing this assumption 
is a more serious matter than doing the same with the in
put, since the service process is conditional in the sense 
that it only operates when at least one customer is pre-
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sent* Furthermore assuming independent service times 
seems a reasonable first approximation to reality* Only 
partial results are available for simple models incorpor
ating service times dependent on queue length (see Saaty, 
1959, pg# 354) ♦ The second point refers to the work of 
Benes previously mentioned in Chapter I, We recall that 
Benes makes no assumptions about the input (or the service 
process) and for the single server queue he has obtained 
an integro-differential equation giving the distribution 
of virtual waiting time in terms of the distribution
of the fwork load* I (t) . Thus for a given input process
the waiting time distribution is obtained by solving the 
integro-differential equation of Benes. However as pre
viously noted it is not possible to find the distribution 
of queue length by this method.
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2 • The Input GIA

The queueing model we now describe is designed to 
apply to situations in which the arrival behaviour of 
customers is not subject to control. We consider a sys
tem in which a single server caters for a population of 
customers ^  . If one takes as the independence assump
tion of the input that the arrival time t^ of customer 
C €. is chosen without knowledge of the arrival times
of all other members of €  , then observing the behaviour
of customers A,B,C,... one has the arrival times 
t tv,, tc, • • • • Provided there has been no collusion be
tween customers these observed values are all independent. 
If these observations are ordered

then it is sensible to speak of the nth arriving customer. 
Knowledge of the input process is thus contained in the 
ordering of independent observations and in general the 
nth ordered arrival time will not be the sum of independ
ently and identically distributed random variables. If 
it is further assumed that
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then the set of ordered arrival times Jt.? constituteL 1 J
a sample of ordered independent observations from the 
parent distribution A(t) . In this case we call A(t) 
the arrival distribution«

We will denote a single server queueing system with 
this input and service process of independent renewal type 
by the notation GIA/g/ i . The letters GIA stand for 
general independent arrivals, the word general denoting 
that the arrival distribution is arbitrary* The assump
tions specific to this model can be stated concisely as 
follows;

(i) the arrival time of a customer follows an 
arrival distribution A(t) which is the same for all 
customers,

(ii) this arrival time is selected independently to 
that of all other customers*

An example in which independence assumptions of this 
nature appear to be particularly appropriate is the passage 
of traffic through a toll station* Consider such a system 
over the finite interval of time [o,Tj , say midnight 
to midnight of consecutive days. Then a plausible arrival 
distribution is one with a bimodal density function, the 
modes appearing at peak hours* It seems more reasonable 
to postulate the independent arrival of vehicles at the
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toll station than to assume a renewal input or the late
ness model of Winsten. The assumption that the arrival 
distribution is the same for all customers would seldom 
if at all hold in practice but seems a reasonable first 
approximation* The form of the arrival distribution can 
be estimated by observing the actual arrival times of cus
tomers* It is interesting to note in this connection that 
if a renewal model is adopted a priori then the quantities 
to be observed are the interarrival intervals* For Win- 
sten!s model it is necessary to measure the deviations of 
arrival times from preassigned values in order to estimate 
the lateness distribution* A matter of some importance 
(which is not discussed here) is, to discover to what ex
tent predictions of queue behaviour based on each of three 
models differ from each other.

A mathematical description of the GIA input is as 
follows: Let A(t), 0^: t , be an absolutely continuous
distribution function with density

JiUt) =
If the population & of customers consists of N members, 
the probability density of the arrival time tr of the
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rth arriving customer is

./V-r
=- ft-1 W w ]  C‘-ftfe'>]fcwJt)fx»,a).-,A(. (2.1) 

(r-OUtf-Ol

The times between the arrival of customers are the dis
tances between order statistics

Y< -  t x -  , Y~ V I > • • .>

with t =0 The probability density of y^ is
oilrI ^ /l/1 i r Y-i /V-r
ItW'd [ i - l U x t - y i ] (2.2)

(l-l)1. (*-<)! Ic
The probability that r arrivals occur in the interval 
[o,t) is

Cio* —  UwlC)-ftw] .
i  ; y ! ( n-xV.

/V-r
(2.3)

In the case of a renewal input process the probabilitjr 
on the right hand side of (2.3) is the r fold convolution 
of the interarrival distribution.

In the model we are now considering completely 
random arrivals are described by a uniform arrival dis
tribution

. ° 6 t s T >
i .  T ‘- t .

(2.4)



We use the symbol UIA to denote the input which has
157.

this arrival distribution. In this case

= iZskö! t h f  (1- ♦ / t f W ^ r ) , (2.5)

am (2.6)

and the distribution of y is independent of r * If 
T and N are allowed to tend to infinity together we
find that (2.5), (2.6) approach the appropriate distribu-

_tions of the Poisson input. Writing l=NA we have

JLm £.(t)JU- = (AtV'Alt, 

t*" —  A c A * .
iV->oo 1 1

Thus for large N and T it is possible to approximate 
to the UIA input by a Poisson process, the error involved 
being the same as the exponential approximation to the 
binomial. Simple approximations of this sort by renewal 
processes do not in general exist for other types of GIA 
input. It is also important to note that we are essenti
ally concerned with a queue problem in finite time since
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it may not always be sensible to talk about an equili
brium state for this model. If N is finite then with 
probability one all customers are served and discharged 
from the system in finite time.
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3• The system GIA/m /1

We have indicated previously that methods are not 

yet available for the analysis of queueing processes such 

as GIA/g/ i • It seems impossible to apply either of 

the standard Markovisation procedures to such a general 

process and we consider only GIA/m / 1 . This latter is 

given a quasi-Markovian character by specialising the ser

vice distribution to negative exponential. Let the nega

tive exponential service distribution be

A consequence of this is that if there are r customers 

in the queue at the beginning of a time interval of 

length t , the probability that m of them complete 

service in this interval is

The probability that all r complete service before 

time t is

JUktr) ’ . (3.1)

c^lt) - e /kt

L(t)- [ (£2T4~ -- I" 1  c-Ct) .
A I . 0

We assume the consists of N members and that the

arrival distribution is A(t)
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The main difference between the present system and 

renewal queues as far as the writing down of equations for 
the queue length probabilities is concerned is that we 
now have to distinguish between different interarrival 
periods. As in the method of the imbedded Markov chain 
we first consider the queue only at arrival epochs. Let 
q . (t) &t be the probability density of the joint event 
that the jth customer arrives in (t- £t,t) to yield a 
queue length of n,n=l,2,..,j ; j=l,2,...,N . Then the
qnj(t) satisfy the following recurrence relations

< (̂*3 = At-tr), (3.2)

j-i

V5 ■ 1 ~̂ ’ ■ > (3*3)o

4-'

o  -  a,3,■
g.(y) is the density function of the jth distance de- j
fined in (2.2). (3.2) is the probability density of the
arrival time of the first customer, and on this arrival 
occurring queue length must be unity. The other equations 
are obtained by considering the number of departures that 
can occur between the arrival of the (j-l)th and jth cus
tomers. If this interarrival time is y (with density

S-s(y)) and there were m customers in the queue at time



t-y when the (j-l)th arrival occurred, then m-n+1 
departures must take place in time y to have a queue 
length of n on the arrival of the jth customer at time 
t • The possible values of m are n-1,n,n+1,.•,j-l , 
and m must be summed over this range. Starting from 
q11(t) » the other qnj(t) can bo found recursively 
from (3*3) and (3.4),

As a check on the derivation of these formulae we 
note that the probability that the jth arrival occurs
in (tr 6t > t) is-given from (3.3), (3.M by summing over
n » Thusj f C JH

2  “  I 3/Y) 1  ^-v) <h-n -t J0 m'-i mj'‘
For j=2 we have

161 •

L̂y) N[l-

-  Ml.. L ftw] [i- ftf.t')] * i t t ). 
i! (m -jV.

Induction on j yields
J-l -JKj

Li-1'1! (n -V>!
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The probability that the jth arriving customer 

finds a queue of length n ahead of him on arrival is
X)r

(3.5)

For completeness we derive expressions for tiie 
probabilities Pn(t) °f n customers in the queue at 
the arbitrary time t . Assume that the last arrival 
before time t is the jth and that it occurred at time 
t-u . If this arrival yielded queue length in then for 
n customers at t , m-n departures must occur in the 
interval u and the (j+l)th customer must arrive later 
than t • The probability density associated with this 
joint event is

where - Jc > J- b V -
and —  O . When n=0 it ia also necessary to
take into the account the possibility of no arrivals occur
ring in time t • Hence

(3.6)

w j rIt (3-7)
tv tH-h40
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S
-*0Cct^ ciu . (3.8)

Unfortunately it is difficult to simplify these express- 
ions ,



4. The Distribution of Waiting Time
To conclude this thesis we indicate briefly how 

the general methods developed by Benes can be applied to 
the system GIA/g/i to find the distribution of the vir
tual waiting time irjlt') . We have stated previously that 
Benes obtained a representation of

Wtt.x.) = < x ]

in terms of the distribution of the !work load1 S(t)
(see Figure 1 at the end of Chapter i). The Benes equa
tions (Benes, 1960b, pg.140) for an empty system initially 
are

- ̂ xjPv[^)-f^)-t+u£x|n(u)--c]W(u)o)A)
(4.1).

,C tJ (*)-<>] - J d u .  (4.2)

The first step is to solve (4.2) for W(t,0) , the proba
bility that a customer arriving at t does not have to 
wait. Once this is known the continuous component of the 
distribution is given by substitution in (4.1). The term
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^0~ - t-u i ̂ (u) = is probability that

the sum of the service times of the customers arriving 
in the interval [u,t) is less than or equal to t-u , 
conditional on an empty queue at time u . It is the 
compound probability

*Hu) = o] — ̂ R j r ) - |  (4.3)
Y-0

*ir)where H (x; is the r fold convolution of the service
*(o)distribution and H (x) = 1»

Let A(t) be the arrival distribution of the sys
tem GIa/g/i . If the population of customers consists 
of N individuals we have from (4.3)

N

f-c
and

[lit) a] = £ (J)M [i-R(o ] y H
f -c

U ) .

Equation (4.2) for the null ptobability W(t,0) of 
GIA/g/i is then

<V f ' )-̂i- BgJ|u
(k.k)

0 .
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The continuous part of the waiting time distribution is 
from ('t.l)

(^•5) is similar to the results of Chapter III for re
newal queues in which the waiting time distribution is 
expressed in terms of the null probability* Corresponding 
to the branching process type equation whose roots deter
mine the null probability we now have (^.4), a Volterra 
equation of the first kind. The solution to this equation 
is not easy to obtain even for simple arrival and service 
distributions, and we do not investigate the problem fur
ther here.

It is apparent that explicit results are not easy 
to find for queueing systems with GIA input. In con
clusion we point out again that the justification for in
troducing the model lies in the fact that it seems a 
reasonable approximation to a wide class of actual queueing 
situations. Furthermore the mathematics involved are not 
so formidable as to make the problem hopeless and it is 
possible that a more detailed analysis will result from
further work
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