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Abstract 

Anthropogenic climate change is predicted to be a major cause of extinctions. Therefore, a 

major aim of climate change ecology is to understand how species are being impacted and 

identify which species are most at risk. However, the ability to make these broad 

generalisations requires large-scale comparative analyses based on appropriate assumptions. 

This thesis investigates how European birds respond to changes in climate, the validity of 

several common assumptions, and identifies which species or populations are most at risk 

based on multiple long-term datasets.  

Our understanding of how different responses relate and how they affect population 

persistence is lacking. A conceptual hierarchical framework is introduced in chapter one to 

better understand and predict when climate-induced trait changes (phenology or physiology) 

impact demographic rates (survival or reproduction), and subsequently population dynamics. I 

synthesise the literature to find hypotheses about life-history and ecological characteristics 

that could predict when population dynamics will likely be affected. An example shows that, 

although earlier laying with warmer temperatures was associated with improved reproduction, 

this had no apparent effect on population trends in 35 British birds. Number of broods partly 

explains which species are most at risk of temperature-induced population declines.  

It is often assumed that populations within species respond similarly to climate change, and 

therefore a single value will reflect species-specific responses. Chapter two explores inter- and 

intra-specific variation in body condition responses to six climatic variables in 46 species over 

21 years and 80 sites. Body condition is sensitive to all six variables (primarily in a non-linear 

way), and declines with warmer temperatures. I find that species signals might not exist as 

populations of the same species are no more alike than populations of different species. 

Decreased body condition is typically assumed to have detrimental consequences on species’ 

vital rates and population dynamics, but this assumption has rarely been tested. Expanding on 

chapter two, chapter three shows that temperature-induced declines in body condition have 

no apparent consequences on demography and population dynamics. Instead, temperature 

has strong effects on reproductive success and population growth rates via unknown traits and 

demographic rates. 

Much of the literature investigating climatic impacts assumes that temporal trends accurately 

reflect responses to climate change, and therefore investigate trait changes over time. In 

chapter four, I use two long-term datasets to demonstrate that, for four different types of trait 
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responses, trait variation through time cannot be assumed to be due to warming. Non-

temperature causal agents are important in explaining temporal trends, often resulting in 

reinforced effects. Consequently, the roles of climatic and non-climatic effects need to be 

understood to better predict those species most at risk. 

This thesis lays the foundations for more holistic climate change research that encompasses 

relationships among multiple response types, species and populations. Such knowledge will be 

vital for future conservation efforts. 
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Introduction 

Anthropogenic greenhouse gas emissions have been increasing at a rapid rate since the pre-

industrial era and are now at higher levels than ever before. This has resulted in a range of 

impacts on our climate, including sustained increases in atmospheric and sea surface 

temperatures, reduced amounts of snow and ice, and rising sea levels (IPCC, 2014). Changes in 

the global climate are already affecting the natural world, with changes in biodiversity and 

shifting ecosystems, but also impacting human well-being and economic welfare (Williams et 

al., 2008). Even if policies were instituted globally to slow or prevent any further increases in 

CO2 emissions, surface temperatures are still projected to continue rising, extreme heat wave 

and precipitation events are expected to become more intense and frequent, and sea levels 

will continue to rise (IPCC, 2014). 

Climate change is already being found to have a range of effects on organisms (Walther et al., 

2002). Responses include changes in phenology (i.e. the timing of events; Parmesan & Yohe, 

2003), and physiology (e.g. body size or condition; Ozgul et al., 2010; Gardner et al., 2011; 

Goodman et al., 2012), shifts in distributions (Chen et al., 2011), behavioural patterns (e.g. 

behavioural thermoregulation; Glanville & Seebacher, 2006), life-history traits (e.g. length of 

gestation period; Clements et al., 2011), demographic rates such as survival and reproduction 

(e.g. adult survival; Leech & Crick, 2007), population growth rates (Stephens et al., 2016) and 

changes in communities and ecosystems (Gilman et al., 2010). From a conservation point of 

view, one of the most pressing concerns relates to predicted increases in extinction events in 

the near future as a result of anthropogenic climate change (Thomas et al., 2004). Up to one in 

six species are predicted to suffer an increase in risk of extinction as a result of future global 

temperature increases (Urban, 2015). Thomas et al. (2004) suggested that between 25-37% of 

latitudinally restricted species will likely be committed to extinction by 2050. Already, 

hundreds of species of plants and animals globally have experienced localised extinctions due 

to changes in the climate (Cahill et al., 2013). 

Understanding how organisms are responding to climate change, why species differ in their 

sensitivity, and predicting which species, habitats and ecosystems are most at risk are all 

fundamental aims of climate change ecology (Buckley & Kingsolver, 2012). Consequently, the 

identification of traits or characteristics that can help to predict which species or populations 

might be more at risk is of key importance (Williams et al., 2008; Diamond et al., 2011). The 

ability to generalise which species or populations are most at risk is particularly vital for 

species about which we have limited knowledge. Being able to generalise by extrapolating to 
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less well-studied species is crucial because for most species, the required data to make an 

independent assessment is lacking (Foden et al., 2013; Pearson et al., 2014). 

There are many difficulties currently surrounding our ability to describe broad-scale patterns in 

responses across populations and species, and to then reliably predict which groups are more 

at risk. For instance, in order to answer these questions, long-term biological datasets with 

different types of responses (including information on timing of events, physiology, survival 

and abundance) across multiple sites are often required. Comparative analyses are essential 

for generalising the impacts of climate change across regions and taxa. As the importance of 

long-term monitoring programs is increasingly recognised, large-scale datasets are increasingly 

common and accessible (Greenwood, 2007; Kluen et al., 2017). Moreover, a significant amount 

of work in the past decade reporting effects of  specific climate variables on phenotypic traits 

or demographic rates across a range of taxa, means that comparative analysis are now 

possible (Végvári et al., 2010; Buckley & Kingsolver, 2012).  

Another difficulty in our ability to identify broad-scale patterns and make reliable predictions is 

that many studies make a range of implicit assumptions that can amplify uncertainty and 

influence the reliability of observed trends or predictions (Wiens et al., 2009). For example, the 

vast majority of ecological climate change research focusing on the direct effects of climate on 

trait responses (such as phenology) typically assumes that climate-induced trait changes will 

have consequences for survival, reproduction and population dynamics. However, this 

assumption has only more recently begun to be explicitly tested (Wilson & Arcese, 2003). 

Studies also tend to make a number of assumptions regarding which climatic variables are 

important and over what timeframes, and whether climatic effects are linear or non-linear 

(van de Pol et al., 2016).  

In this thesis, I utilise several long-term monitoring datasets to investigate how common 

European bird species are responding to changes in the climate, and which species or 

populations are most at risk. I consider the validity of several common assumptions, such as 

whether changes in phenology or physiology have consequences on demographic or 

population dynamics, whether there is a species signal, or alternatively, whether populations 

of the same species respond as differently as populations of different species, and if trends 

over time accurately reflect climate change responses. 

Natural resource managers attempt to prioritise efforts based on how climate change will 

affect population size and persistence (Miller-Rushing et al., 2010). Rather than consider how 
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population dynamics are affected by climate, many studies focus on a variety of other types of 

trait responses, such as phenology, physiology or life-history responses. Many of these studies 

assume that these trait responses result in changes in demographic rates (e.g. survival or 

reproductive success) and ultimately lead to population-level responses (e.g. population 

growth rate, local extinction risk). In Chapter 1, I use a conceptual hierarchical framework to 

better understand and help predict the situations in which changes in phenotypic traits and 

demographic rates resulting from climate change will have the strongest consequences for 

population dynamics. Under this hierarchical framework, a change in the local climate can 

impact the trait level, which may in turn affect demographic rates, and subsequently 

population dynamics. I synthesise the literature to find testable hypotheses about life-history 

and ecological characteristics that could predict the situations in which climate-induced trait 

responses will likely affect population dynamics. Additionally, I examine a 48 year data set on 

35 bird species found in the United Kingdom, to provide a quantitative example of how such a 

priori hypotheses can be tested for the long-standing question: “when do climate-induced 

changes in timing of egg-laying affect reproduction and population growth?” 

It is generally assumed that different populations within a species will have similar responses 

to climate change. As a result, single values of sensitivity are typically used to reflect species-

specific responses. There is some evidence in the literature that suggests a strong species 

signal might exist for phenological changes (Rubolini et al., 2007; Thackeray et al., 2016), but 

we have no indication as to whether this might hold true more generally for other types of 

climate responses (Malyshev et al., 2016), particularly for key state variables such as body 

condition, growth or vital rates (reproduction, survival) that determine the population 

responses relevant for conservation. In Chapter 2, I examine an extensive 21-year data set on 

46 common passerine species from 80 constant effort sites in the Netherlands to investigate 

whether generalising climatic responses in body condition to a single value for a species is 

meaningful by comparing the relative amounts of within- to among-species variation. Body 

condition (mass corrected for size; i.e. amount of fat reserves) is a key state variable, yet the 

impacts of climate changes on body condition have been less well studied than responses in 

phenology and range shifts (Gardner et al., 2011). To date, there are no projections for how 

body condition is likely to change under future climate scenarios, and the time periods (e.g. 

winter, spring) during which climate has the strongest impact on body condition are rarely 

systematically tested and remain poorly understood (Gardner et al., 2014; van de Pol et al., 

2016). Finally, typically only linear responses have been considered, so it is unclear as to 
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whether body condition responses might be non-linear (but see Yom-Tov et al., 2006; Salewski 

et al., 2010). Using this extensive dataset, I address these questions. 

The majority of the literature investigating the consequences of changes in body condition is 

unrelated to climate (although see Gardner et al., 2016). In general, decreased body condition 

is considered to reduce survival and reproduction, as it is typically associated with poor 

foraging conditions (Bergan & Smith, 1993; Naef-Daenzer et al., 2001; Møller & Szép, 2002; 

Harding et al., 2011; Aubry et al., 2013; Krams et al., 2013; Paquette et al., 2014). However, 

there are some scenarios in which decreased body condition could be advantageous and lead 

to higher survival and reproduction, such as reduced energy expenditure, reduced predation 

and improved flight capabilities (Covas et al., 2002; Senar et al., 2002; Quillfeldt et al., 2006; 

Rogers, 2015). In Chapter 3, I use the framework developed in Chapter 1 to quantify the effects 

of temperature-induced changes in body condition on annual survival and reproductive 

success, and the subsequent impact on the population growth rate. Further, I examine inter- 

and intra-specific variation at each level of the hierarchy, and whether life history and 

ecological characteristics can explain these relationships.  

Another limitation in the field of climate change ecology is that much of the literature 

investigating the effects of climate change on organisms does not directly relate climate 

variables to changes in traits such as phenology. Instead, they assume that temporal trends 

accurately reflect responses to climate change, and therefore investigate trait changes over 

time. The decision to relate systematic variation in traits through time rather than directly to 

climate relies on three important assumptions: that other non-climatic causal agents are not 

changing over time, that climate affects the trait of interest, and that the climate experienced 

by the organism or system is changing over time. Non-climatic effects, such as habitat loss, 

modification or degradation, pollution, spread of invasive species, loss of keystone species, 

spread of diseases or overexploitation may also be changing over time (Edinger et al., 1998; 

Wilcove et al., 1998; Mora et al., 2007; Brook, 2008). We currently have little understanding of 

how strongly such non-climatic causal agents contribute to temporal trends and what their 

combined effects with climate might be, or how this might vary for different traits. In Chapter 

4, I explore whether changes in four commonly examined trait responses (lay date, body 

condition, fledglings per breeding attempt and proportion of juveniles) over time can be 

assumed to be driven by warming temperatures. It is important to know the contributions, 

magnitude and directions of both non-climatic and climatic causal agents, not only to improve 
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our predictive models, but to develop appropriate conservation management strategies 

(Parmesan & Yohe, 2003; Wright et al., 2009). 
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Abstract 

Species’ responses to climate change are variable and diverse, yet our understanding of how 

different responses (e.g. physiological, behavioural, demographic) relate and how they affect 

the parameters most relevant for conservation (e.g. population persistence) is lacking. Despite 

this, studies that observe changes in one type of response typically assume effects on 

population dynamics will occur, perhaps fallaciously. We use a hierarchical framework to 

explain and test when impacts of climate on traits (e.g. phenology) affect demographic rates 

(e.g. reproduction) and in turn population dynamics. Using this conceptual framework, we 

distinguish four mechanisms that can prevent lower-level responses from impacting 

population dynamics. Testable hypotheses were identified from the literature that suggest life-

history and ecological characteristics which could predict when these mechanisms are likely to 

be important. A quantitative example on birds illustrates how, even with limited data and 

without fully parameterised population models, new insights can be gained; differences among 

species in the impacts of climate-driven phenological changes on population growth were not 

explained by the number of broods or density-dependence. Our approach helps predict the 

types of species in which climate sensitivities of phenotypic traits have strong demographic 

and population consequences, which is crucial for conservation prioritisation of data-deficient 

species. 
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Introduction 

Anthropogenic climate change is predicted to be a major cause of extinctions in the near 

future (Thomas et al. 2004). Consequently, natural resource managers and policy makers are 

interested in how climate change will affect population size and persistence and which species 

will be most affected (Miller-Rushing et al. 2010). However, much of the research on responses 

to climate change actually does not consider how population size, population growth rate or 

extinction risk varies as a function of climate. Instead, most studies tend to focus on a variety 

of other types of responses, most notably phenology (e.g. timing of migration or reproduction; 

Cotton 2003; Sherry et al. 2007), physiology (e.g. body size; Ozgul et al. 2010), behaviour (e.g. 

behavioural thermoregulation;  Glanville & Seebacher 2006), life-history (e.g. length of 

gestation period; Clements et al. 2011) or demographic rates such as survival and reproduction 

(e.g. adult survival; Leech & Crick 2007). Understanding the climate sensitivities of these 

phenotypic traits and demographic rates is of interest in its own due to the insights into 

underlying processes, but will generally only be relevant for conservation if the effects of such 

changes are apparent at the level of population dynamics. This last step is typically assumed, 

but rarely explicitly tested. Consequently, the mechanisms causing climate-induced population 

changes are still poorly understood (e.g van de Pol et al. 2010). 

The few empirical studies to have quantified how phenological, physiological or life-history 

responses to climate affect demographic rates or population-level responses have reported 

contrasting outcomes (e.g. Chase et al. 2005; Ozgul et al. 2010; Pearce-Higgins et al. 2009; 

Plard et al. 2014; Wilson & Arcese 2003; Wright et al. 2009). For example, earlier breeding 

increased the development rate of a yellow-bellied marmot (Marmota flaviventris) population 

which increased reproductive output, leading to a rapid increase in population size (Ozgul et al. 

2010). Conversely, earlier breeding in song sparrows (Melospiza melodia) increased 

reproductive output, but had little effect on the population size (Wilson & Arcese 2003). It is 

now clear that climate-induced changes in phenotypic traits or demographic rates affect 

population dynamics in some species but not in others (Dunn & Møller 2014; Miller-Rushing et 

al. 2010; Reed et al. 2013a; Robinson et al. 2014); yet, for any given species, there remains 

little basis for predicting which of these outcomes is most likely.  

Progress can be made by studying the mechanisms that determine whether phenotypic traits 

or demographic rates impact population dynamics, and linking such mechanisms to species’ 

life-history and ecological characteristics (Miller-Rushing et al. 2010). For example, changes in 

adult survival tend to have stronger effects on the population dynamics of long-lived species 
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than of short-lived species, suggesting that longevity might be used to predict when climate 

effects on survival will translate to population growth (Jenouvrier et al. 2009; Sæther & Bakke 

2000; Sandvik et al. 2012). Such information is potentially of great value to biodiversity 

conservation, because practitioners could use species characteristics to prioritise conservation 

efforts towards those most likely to be at risk of climate change. Being able to generalise by 

extrapolating to less well-studied species is crucial, because for most species the required data 

to make an independent assessment is lacking (Foden et al. 2013; Pearson et al. 2014).  

Here, we use a hierarchical framework to better understand and help predict the situations, 

populations and species in which climate-driven changes in phenotypic traits and demographic 

rates will have the strongest consequences for population dynamics (Ådahl et al. 2006; 

Jongejans et al. 2010; Morrison & Hik 2007). Using this conceptual framework, we identify four 

mechanisms that could prevent changes in traits and demographic rates from affecting 

population dynamics. We then synthesise the literature to find testable hypotheses about life-

history and ecological characteristics that could either strengthen or weaken these 

mechanisms in different species or populations. Subsequently, we illustrate with a quantitative 

example on 35 British bird species how such a priori hypotheses can be tested for the long-

standing question, when do climate-induced changes in timing of egg-laying affect 

reproduction and population growth (Dunn & Møller 2014; Reed et al. 2013a ; Wilson & Arcese 

2003). Importantly, our approach can use existing empirical data to give key new insights into 

how changes in lower-level responses impact population responses in different species, even 

without knowledge about all factors and pathways affecting population dynamics and the 

need to construct population matrix models.  

Hierarchical framework 

The many types of responses to changes in climate mentioned in the Introduction can be 

categorised into hierarchical levels, from trait-level responses to demographic- and 

population-level responses (Fig. 1). Under this hierarchical framework, a change in the local 

climate can impact the trait-level, which in turn can affect demographic rates, and 

subsequently population dynamics. The decomposition of population responses into 

contributions from different underlying elements is a powerful quantitative and analytical tool 

to better understand how population dynamics respond to climatic variation (Ådahl et al. 

2006; Jongejans et al. 2010; Morrison & Hik 2007; Nichols & Hines 2002). Decomposition 

approaches are well established in theory on demographic population matrix and integral 

projection models (Easterling et al. 2000). We propose–and later illustrate with a quantitative 
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example–that even in cases where not all information is available to construct population 

models, this conceptual framework and decomposition approach (building on Nichols & Hines 

2002) can still be used to test key hypotheses (see Box 1 for limitations). Furthermore, the 

strength of each of the underlying relationships can be easily estimated from empirical data 

(Box 1). 

 

Figure 1 Hierarchical levels of responses to climate change. Changes at the trait-level can impact 

demographic rates, which can subsequently impact population dynamical parameters. 

The hierarchical framework and decomposition of pathways allows us to identify four types of 

mechanisms that could prevent a change in trait from impacting the population-level 

(although it should be noted that the conceptual framework could be extended to consider 

responses at other levels, such as genetic- or metapopulation-levels, as well as non-climatic 

environmental variables).  

Single pathway mechanisms 

We can begin by considering climate responses within a single pathway. In order for changes 

in climate to result in a population-level response (expressed as 𝑑𝑃/𝑑𝐶1 in equation 1; Fig. 2ai 

and 2aiii), three processes need to occur: (i) a change in climate (𝐶1) must impact the trait (𝑇1), 

(ii) the change in trait must impact the demographic rate (𝐷1), and (iii) the change in 

demographic rate must impact the population parameter (P; i.e. 𝑑𝑇1/𝑑𝐶1 ≠ 0, 𝑑𝐷1/𝑑𝑇1 ≠ 0 

and 𝑑𝑃/𝑑𝐷1 ≠ 0). When this occurs, there will be observable relationships between trait and 

climate; demography and climate; and population and climate (Fig. 2aii). 
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Figure 2 Hierarchical framework showing the relationships between the different hierarchical levels 

through which a climate variable (𝑪𝟏) can affect population dynamics; via a trait (T), a demographic rate 

(D) to a population parameter (P). Horizontal panel (a) shows strong relationships between each level, 

(b) shows a weak relationship between trait and demography, (c) shows a weak relationship between 

demography and population, and (d) shows multiple pathways each with strong relationships that 
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counteract (+/- signs) and thus result in no observable impact to population dynamics. The vertical 

panels show (i) the underlying relationship: thick arrows represent strong and dashed arrows weak 

relationships between levels (dashed grey lines show other possible connections between unobserved 

traits and demographic rates shown as circles), (ii) the observable relationships that would be detected 

between climate and each of the three response variables in the hierarchy (thick arrows show direct 

observable relationships and dashed arrows weak relationships)., and (iii) the decomposition of the 

relationships; the change in population from a small change in climate (
𝒅𝑷

𝒅𝑪𝟏
) is the product of each of the 

underlying relationships between climate, trait and demography. Please note that in Equation 1, the full 

derivative terms  
𝒅𝑷

𝒅𝑪𝟏
 and 

𝒅𝑻𝟏

𝒅𝑪𝟏
 represent the absolute change in population (P) and a trait (T1), 

respectively, associated with small changes in climate (C1). By contrast, in equation 2 we are interested 

in how multiple pathways are influenced by a change in climate and their overall effects on the 

population-level, and thus relationships reflect partial derivatives, e.g. 
𝝏𝑷

𝝏𝑫𝟏
 & 

𝝏𝑷

𝝏𝑫𝟐
 , where relationships 

are estimated in one pathway while accounting for effects of other pathways. 

Population responses cannot always be predicted based on the observed changes in traits or 

demographic rates alone. Assuming that climate has an effect on a trait, there are two non-

mutually exclusive mechanisms that could prevent a population response from occurring. 

Firstly, the change in trait has no, or little effect on the demographic rate (i.e. 𝑑𝐷1/𝑑𝑇1 ≈ 0; 

Fig. 2b). In this case, even if there was a strong relationship between demography and 

population growth, there would not be an observable relationship between climate and 

demography or climate and population (Fig. 2bii). Secondly, the change in demographic rate 

has no or little effect on population dynamics (i.e.  𝑑𝑃/𝑑𝐷1 ≈ 0; Fig. 2c). As a result, there 

would not be an observable relationship between climate and population growth (Fig. 2cii).  

Multiple Pathway Mechanisms 

Even when the relationships within a single pathway are exactly known, changes in climate 

variables might also affect other traits or demographic rates, causing the population response 

to a given climate variable to be stronger or weaker than expected (i.e. multiple pathways; Fig. 

2d). There are two non-mutually exclusive mechanisms that could either strengthen or weaken 

a population response. Firstly, a single climate variable could affect population dynamics via 

multiple traits and/or demographic rates, resulting in multiple pathways (Fig. 2di). Secondly, 

multiple climate variables could influence the same trait (Kruuk et al. 2015) or demographic 

rate (Rudolf & Singh 2013), or influence otherwise unaffected traits. Multiple pathways and 

climate variables can result in stronger, reinforced (Gibbs et al. 2012; Scherber et al. 2013), or 

weaker, counteracted responses than expected when the effects of a single climate variable 

are considered in isolation (Larsen et al. 2011; Leuzinger et al. 2011). Therefore, accounting for 
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their combined effects can be necessary to explain observed changes in population dynamics 

(Stopher et al. 2014). The climate sensitivity of population dynamics (𝑑𝑃/𝑑𝐶1) might therefore 

not be accurately predicted by considering a lower-level response (𝑑𝐷1/𝑑𝛥𝐶1 or 𝑑𝑇1/𝑑𝐶1) 

from a single pathway alone (Fig. 2diii).  

Hypotheses based on species characteristics  

Having established four mechanisms by which a climate-induced change in a trait may or may 

not affect population dynamics, the key challenge is now to understand whether species’ life-

history and ecological characteristics can predict when these mechanisms are likely to play an 

important role. Comparative methods are a valuable and widely-utilised approach for 

identifying species characteristics that help explain species declines or extinctions (Buckley & 

Kingsolver 2012; Cardillo et al. 2005; Fisher & Owens 2004). However, these approaches often 

rely on explanatory characteristics that have not always been derived a priori, that do not have 

clear underlying biological mechanisms or have expectations for the direction of their effects 

(but see e.g. Sandvik & Erikstad 2008). To this end, we identified testable hypotheses from the 

literature suggesting life-history and ecological characteristics that might explain when 

changes in traits or demographic rates are likely to have further consequences, and if their 

effects are likely to be reinforced or counteracted from multiple pathways or climate variables 

(Table 1; See Appendix 1 for methods). These hypotheses are applicable for a broad range of 

taxa and can be tested in future comparative analyses to determine whether or not they 

would make useful predictor characteristics.  

Some of the hypotheses identified had been thoroughly researched and were based on 

quantitative evidence, while other hypotheses were based on single-sentence suggestions or 

speculations, or patterns that we then translated into a potential hypothesis. Some hypotheses 

specifically concerned one species or group, yet we framed these hypotheses as general as 

possible. Our aim here was not to determine how well supported or likely these hypotheses 

were, but to overview the characteristics that might explain variation among species in 

population response for future comparative analyses.  
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Box 1 Quantifying pathways from data, limitations and alternative approaches 

A decomposition approach requires one to estimate the full and partial derivatives shown in Figure 2 
from data. These derivatives reflect the effect sizes of traits, demographic rates, and population 
growth rates to each other (e.g. how much reproductive success changes per lay date), and to climate 
(e.g. how much egg-laying date changes per degree Celsius). We assume that changes in the climate, 
traits and demographic rates are relatively small, such that we can characterise the relationships 
between these variables as being roughly linear. Structural equation models are a suitable tool as 
they allow one to estimate all these relationships (i.e. slopes) in a single model. They also allow for 
distinguishing indirect from direct effects; i.e. estimating the partial derivatives of the focal pathway 
using partial regression coefficients, while statistically controlling for the effect of climate via another 
direct pathway, and vice versa (see worked example section & Fig. 3; Pugesek et al. 2003). In some 
cases it could also be possible for changes in climate to directly impact the demographic-level (e.g. 
climate affecting annual survival). However, we generally consider that these effects occur indirectly 
through underlying changes in a (unknown) trait (e.g. body condition). 

Although our hierarchical framework is inspired by demographic theory on matrix population and 
integral projection modelling, we do not use population models to estimate the relationships 
between climate, demographic and population growth rates. A population modelling approach could 
have been possible and even more powerful, but it requires relatively complete data on all 
demographic rates, which is often unavailable for many species. Our statistical approach of 
calculating the dependency of annual realised population growth rate directly from the population 
size time series has the advantage that it can still produce new key insights into the importance of 
certain climate-trait-demography pathways for population dynamics, with fewer assumptions needed 
to be made (e.g. about the st(age)-dependency of the demographic rates determining the lifecycle 
structure). A drawback of this purely statistical approach is that it cannot easily deal with species with 
strongly st(age)-structured lifecycles, such as delayed reproduction and other sources of time lags 
that can cause short-term population-level responses to climate change being weak (Robinson et al. 
2004).  

Responses to changes in climate (or trait/demographic rate) are not only affected by changes in mean 
conditions, but also by (interannual) variation in conditions (Boyce et al. 2006). Climatic variability can 
potentially even alter the effects of changes in the mean climate (Lawson et al. 2015). The magnitude 
and direction of the impact of variation in climatic conditions depend directly on the curvature of the 
relationships (quantifiable by the second derivative; Ruel & Ayres 1999), and can also be predicted by 
species characteristics (Lawson et al. 2015). However, it is not straightforward to extend our 
hierarchical approach to include variability at the levels of vital rates and traits, as the effect of 
variability in the traits and vital rates affecting population growth rate not only depend on the second 
derivative of the relationship but also on the covariance patterns among traits and vital rates 
(Barraquand & Yoccoz 2013). Thus, it requires predicting both the means and variances of the 
variables at each level and the covariances between them (Barraquand & Yoccoz 2013; Lawson et al. 
2015). Additionally, the theory describing exactly how covariance patterns determine the impact of 
variability requires further theoretical development (Lawson et al. 2015).  

Nonetheless, we would like to emphasise that effects of climatic variability on responses are 
negligible as long as responses are roughly linear or there is little climatic variability, in which case 
solely focussing on changes in climatic means is sufficient. Although responses would be non-linear 
when populations are experimentally exposed to the full range of climate (e.g. populations cannot 
grow in extreme cold or heat), on a local scale in the wild, responses can often be treated as linear 
because populations exhibit much less curvature when only a small part of the climatic range is 
experienced. The validity of these assumptions regarding linearity and variability can be tested by re-
fitting each of the relationships in the hierarchy with flexible functional forms that allow for non-
linear effects (e.g. using generalised additive models, GAMs; Wood 2006), and then calculating how 
much the mean response is altered by the inclusion of variation in the explanatory variable. If the 
mean response differs substantially, this suggests that the effects of climate variability may need to 
be explicitly incorporated into predictions of the response to climate change. 
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Single pathway hypotheses 

We identified many explanatory characteristics from the literature that could explain 

interspecific variation in the strength of the relationship between trait- and demographic-level 

responses (Table 1a). Most explanatory characteristics were specific to certain types of traits, 

including phenology, body mass and sex ratio skews. For example, species may be more likely 

to experience strong demographic responses from phenological changes if they live in seasonal 

habitats, because changes in timing could result in mismatches with important resource peaks 

(Both et al. 2010). Species that reproduce only once a year are hypothesised to have stronger 

reproductive responses to phenological changes than species that breed multiple times 

throughout the year, because there is a higher risk that all of their offspring will be born during 

a period that lacks important resources (Jiguet et al. 2007). 

One hypothesis was broadly applicable to many types of trait changes. Specialist species that 

are dependent on single hosts or specific or seasonal resources are expected to have stronger 

relationships between traits and demographic rates because their resources are more 

constrained compared to generalists. For example, phenological shifts are likely to have 

stronger impacts on demography for specialist species that depend on a particular resource 

which is only available for a specific time, while generalists are more likely to be able to switch 

to other resources to meet their needs (Miller-Rushing et al. 2010). 

We also identified many explanatory characteristics that could explain species variation in the 

strength of the relationship between demographic- and population-level responses (Table 1b). 

Analyses of the varying contributions of demographic rates to population dynamics are 

common (Heppell 1998; Heppell et al. 2000; Sæther et al. 1996; Sæther & Bakke 2000; 

Silvertown et al. 1993). Species’ life-history characteristics are believed to strongly influence 

these relationships. Specifically, changes in adult survival have stronger impacts on population 

dynamics in species that are long-lived, experience late maturation or produce few offspring 

compared to species that are short-lived, experience early maturation or produce many 

offspring. By contrast, changes in reproductive success will tend to have much stronger effects 

on population dynamics in short-lived than in long-lived species (Sæther & Bakke 2000). 

 



 

 

Table 1 Hypotheses from the literature (with invoked life-history and ecological explanatory characteristics) to explain differences among species in (a) the strength of 

the relationship between trait- and demographic-level responses, (b) the strength of the relationship between demographic- and population-level responses, and (c) 

how likely a species is to have a single climate variable affect multiple traits or demographic parameters that reinforce or counteract higher-level effects. The first 

column differs slightly for each section, such that it specifies the trait (a), demographic rate (b), or whether the pathways are likely to strengthen (reinforce) or weaken 

(counteract) the higher-level response (c).  

(a) Trait Explanatory 
characteristic 

Hypotheses:  
A stronger relationship exists between trait- and demographic-level rates in species or populations that …   

Any trait Specialisation / Resource 
dependence 

are specialists, dependent on a single host species or a specific or seasonal resource, as they are limited by other 
species and/or resources, whereas generalists are not constrained to the same extent [1-5]. 

Phenology Habitat seasonality / 
Resource duration 

live or breed in strongly seasonal environments or rely on narrow food peaks for breeding, as an increased 
probability of mismatches between important events (e.g. reproduction) and important resources  can have strong 
repercussions [5, 6-10]. 

Phenology Breeding seasonality have temporally well-defined (non-opportunistic) breeding seasons, as changes resulting in timing outside of the 
season are likely to be costly (e.g. mismatches or unfavourable conditions) [11]. However, [11] also found that this 
relationship can potentially also be strong in year-round breeders. 

Phenology Annual number of 
reproductive events  

reproduce once a year, as there is a higher risk of mistiming their single breeding event [12]. However, species 
with multiple reproductive events could also benefit if the time between reproductive events is extended and this 
improves survival [5]. 

Phenology Degree of parental care have extensive parental care, as a change in reproductive timing can affect the period of parental effort and daily 
work rate (affecting parental survival) [13]. 

Phenology Income/capital breeder rely on resource intake during breeding rather than stored resources (e.g. fat, food source), as they are strongly 
constrained by the availability of high quality resources [14]. 

Body size Seasonally forced life-
history 

have a seasonally forced life-history (e.g. fixed size at age of maturity), as not being a certain size at a given time 
(e.g. life-stage transitions) may require a growth rate out of proportion to food availability, coming at a cost of 
sacrificing reserves or future reproductive success. By contrast, in non-seasonally forced environments, individual 
growth rates can vary proportionately with food availability leading to, for example, more flexible ages of 
maturation [15]. 
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References from Table 1 

1.Miller-Rushing, A.J., et al. (2010) The effects of phenological mismatches on demography. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 365, 3177-3186. 

Sex ratio skew Sperm storage  are unable to store sperm, as they are more dependent on encountering and mating with scarce males and are 
consequently more susceptible to reproductive isolation [16]. 

Sex ratio skew Reproductive strategy are unable to mate with multiple individuals [16], as some individuals of the more common sex will not be able to 
reproduce. 

Sex ratio skew Male aggression have high male aggression, as a male biased population exacerbates the occurrence of aggression, which may lead 
to social dominance, reproductive suppression, infanticide or sexual coercion [17]. 

(b) Demo-graphic 
rate 

Explanatory 
characteristic 

Hypotheses: 
A stronger relationship exists between demographic- and population-level rates in species or populations that … 

Survival  Longevity / age of 
maturation / fecundity 

are long-lived, late maturing or have low numbers of offspring [14, 18-23, but see 24, 25], as the population 
growth rate is more sensitive to changes in survival in such species. 

Reproduction Longevity / age of 
maturity / fecundity / 
semelparity 

have low survival rate, short generation times, early maturation, high numbers of offspring or only reproduce once 
in their lifetime [20-23, 25-27], as the population growth rate is more sensitive to changes in reproduction in such 
species. 

(c) Pathways’ 
interaction 

Explanatory 
characteristic 

Hypotheses:  
A higher likelihood of a single climate variable affecting multiple traits or demographic rates in species or 
populations that… 

Reinforced Intermittency of 
reproduction 

cannot skip or alter their reproductive strategy during unfavourable conditions, as such species are more likely to 
experience decreases in both survival and reproductive success, which will result in stronger population-level 
declines. By contrast, species that can skip reproduction will experience declines in reproductive success, but not 
in adult survival [4, 28-30]. 

Reinforced Reliance on susceptible 
habitat types 

rely on susceptible habitat types such as ice/snow or water bodies for multiple functions. For example, in some 
species, the loss of ice substrate or water bodies can impact multiple critical functions, such as resting, 
reproduction, molting, food availability, development, phenology, risk of desiccation and migration ability [31-36]. 

Reinforced/ 
Counteracted 

Ectothermy / 
poikilothermy 

are ectothermic/poikilothermic, as changes in temperature affect many processes such as  hearing, development, 
activity, immune responses [37-38]. 

Reinforced Food limitation are food limited, as this may lead to trade-offs between traits or demographic rates, such as between growth 
and reproduction or between fecundity and future survival [15,39-40]. 

Counteracted Strength of density-
dependence 

experience strong density-dependent regulation. For example, reduced annual fledgling production from 
changes in phenology can be counteracted by increased post-independence survival of offspring [10]. 
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Multiple pathways hypotheses 

Using single pathway characteristics alone will not always be enough to accurately predict how 

a climate-induced change in trait will affect population dynamics because the population 

response could also be affected by other pathways. Therefore, in addition to determining the 

strength of relationships within a single pathway, we also identified testable multiple pathway 

hypotheses from the literature suggesting life-history and ecological characteristics that might 

explain when changes in traits or demographic rates are likely to be reinforced or 

counteracted at higher levels. These multiple pathway effects are classified into two 

mechanisms: (i) those due to multiple traits and/or demographic rates being affected by a 

single climate variable (Table 1c), or (ii) due to multiple climate variables. 

One species characteristic that could explain when the effects of a change in trait or 

demographic rate are likely to be reinforced by another pathway is physiology. A change in 

climate could be more likely to affect multiple traits in species that are ectothermic or 

poikilothermic as many processes improve with temperature (e.g. development, digestion, 

activity). As a result, demographic-level effects may be stronger than would be expected when 

looking at a single trait. 

As another example, it has been proposed that species that do not skip reproduction during 

unfavourable conditions (which could induce trait changes such as decreased body mass) are 

more likely to experience declines in both survival and reproductive success, therefore 

reinforcing the effects of climate at the population-level. Species that can skip reproduction, 

on the other hand, may experience greater declines in reproductive success but reduced 

declines in adult survival (Jenouvrier et al. 2005).  

Another characteristic that could explain when the effects of a change in trait or demographic 

rate are likely to be counteracted by another pathway is the degree of density-dependence. 

Species in which density has a strong impact on population dynamics might have weaker 

population responses from changes in demographic rates than species with weak impacts of 

density. Although the above explanation may suggest density-dependence to be a single-

pathway hypothesis, typically at least two demographic rates are involved, with the effect of 

climate on one demographic rate having knock-on effects on a second demographic rate. For 

example, in some birds a change in egg-laying phenology reduces annual fledgling production, 

which then increases post-independence survival of offspring due to decreased competition, 

such that there are virtually no population consequences of the phenological change (Reed et 

al. 2013a). As a result, the population-level effects are weaker than expected from looking at a 
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single pathway alone. It should be noted that this hypothesis differs slightly from Fig. 2di, as 

the two counteracting vital rates are affected by each other, rather than both being 

independently effected by the change in the lower-level parameter. 

To our knowledge hypotheses that explain when multiple climate variables (e.g. rain, 

temperature, humidity) either reinforce or counteract trait- or demographic-level effects have 

not yet been developed. However, two general areas could be of interest for future 

development of hypotheses. First, species that are sensitive to climatic and environmental 

disturbances in general could be expected to have multiple climate variables either reinforce 

or (depending on the specific effects of each variable) counteract population responses. For 

instance, larval or juvenile stages are typically less resilient to multiple environmental variables 

(Doyle et al. 2009), suggesting that species with long juvenile stages are more likely to be 

affected by multiple pathways. Weedy species or co-tolerant species, on the other hand, might 

be less likely to experience strong effects from multiple climate variables (Darling et al. 2013). 

Secondly, habitat characteristics might be important. For example, species living in regions or 

habitats that are dominated by a single climate variable might be less likely to experience 

other climate variables strongly influencing their population responses compared to species in 

habitats with no dominant climate variable. For instance, the dominant variable in arid 

environments –rainfall– has often been found to be the most biologically important climate 

factor in arid zone species, with other climatic variables having little importance (Altwegg & 

Anderson 2009; Lloyd 1999; Sæther et al. 2004). Additionally, the effects of climate change 

might be buffered for species in sheltered habitats (e.g. caves, deep sea and forests) or 

constructed or natural shelters (e.g. beaver lodge, tree hollows and burrows; Williams et al. 

2008). These species are less likely to be impacted by multiple environmental variables 

because they are decoupled from prevailing climatic conditions and so the effects of those 

climate variables will be much weaker (Keppel et al. 2012). In comparison, species in exposed 

habitats could be affected by multiple climate variables that reinforce higher-level responses.  

Testing hypotheses with data: a worked quantitative example 

We conducted a worked example using data on 35 common British bird species over 48 years 

(1966-2013; BTO 2015) to (i) decompose how climate-induced changes in traits affect 

demographic rates and population dynamics (Fig. 3), and to (ii) test two hypotheses from Table 

1. In many birds the timing of egg laying is under negative directional fecundity selection 

(‘earlier is better’; Brown & Brown 1999; Sheldon et al. 2003). Therefore, in our analysis we 

assessed the relationships within a single pathway, quantifying how temperature-induced 
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changes in egg laying dates (trait-level) impact reproductive success (demographic-level; 

fledglings per breeding attempt) and how reproductive success in turn impacts the annual 

population growth rate (population-level; rt=log(Nt+1/Nt)). For each species, we first separately 

determined the time of year during which mean temperature best explained variation in mean 

laying date (see Appendix 1), using the R package climwin (Bailey & van de Pol 2015) and the 

Central England Temperature dataset (Parker et al. 1992). Subsequently, we used structural 

equation models (SEMs) for each species to derive the path coefficients among hierarchical 

levels (presented in Fig. 3i; see Appendix 1 for details). SEMs can simultaneously quantify the 

strength of relationships (partial regression coefficients) within the focal lay date pathway 

(called indirect effects in SEMs), while accounting for the effects of other pathways of 

temperature (called direct effects here, as we have not measured any other traits or 

demographic rates that could have mediated the effects of other pathways). 

We tested whether the single pathway hypothesis, the ‘annual number of reproductive 

events’, explained whether temperature-driven phenology shifts affected demographic and 

population dynamics (Table 1a). We predicted that single-brooded species that exhibited a 

temperature-dependent change in egg-laying date would show a stronger response in terms of 

reproductive success than multi-brooded species, because there is a higher risk that all of their 

offspring will be born during a period that lacks important resources (Jiguet et al. 2007).  We 

also tested the multiple pathways “strength of density-dependence” hypothesis (Table 1c) to 

investigate whether a second pathway could potentially be counteracting any population-level 

effects from changes in temperature (see Appendix 1 for details). Here, the expectation was 

that a given change in reproduction would have a weaker effect on the population growth rate 

in species with stronger density-dependence compared to weakly regulated species. This is 

because post-independence survival of offspring may decrease in more strongly regulated 

species due to increased competition, such that the population consequences of changes in 

phenology and fledgling productivity are dampened (Reed et al., 2013a). 

Decomposing the pathway  

Of the 35 species studied, 27 laid their eggs earlier in warmer years. Each 1°C increase in mean 

temperature during spring (typically during March-May) was associated with individuals laying 

their eggs 3.8 days earlier on average (Fig. 3a; the remaining 8 species showed no clear 

relationship between lay date and temperature during any period and were excluded from 

further analyses; Appendix 1). Earlier egg-laying was associated with increased reproductive 

success in many species (Fig. 3b), such that those species that advanced their lay dates most in 
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response to warming also experienced the greatest increases in reproduction (Fig. 4a; r2=0.21; 

model 3 in Appendix 2 Table S1; removing the magpie from this analysis decreases the 

estimate from -0.032±0.011SE to -0.019±0.012SE (model 1 in Appendix 2 Table S3), suggesting 

that the magpie has a large influence but is not driving the entire relationship). Moreover, the 

total effects (see Fig. 3ii & 3iii) of temperature on reproductive success were well predicted by 

the (indirect) lay date pathway (Fig. 4b; r2=0.41; model 1 in Appendix 2 Table S1). However, 

there was also an important direct effect of temperature on reproduction (the blue pathway in 

Fig. 3i; r2=0.29). These results suggest that the effects of temperature on reproductive success 

are, for a substantial part, acting via the effects on the phenology of egg-laying (or via another 

correlated causal trait of which lay date is a proxy), but that another pathway mediated by an 

unmeasured trait(s) could also be important. 

Although the effects of spring temperature on lay dates predicted the effect of temperature on 

reproduction well, they poorly predicted how temperature affected population growth rate 

(Fig. 4c; r2=0.02, model 1 in Appendix 2 Table S2). Moreover, the total effects of temperature 

on the population growth rate were not explained by the (indirect) lay date and reproductive 

success pathway (Fig. 4d; r2=0.00; model 2 in Appendix 2 Table S2; the removal of the redstart 

did not change this, see Appendix 2 Table S5). These results suggest that the strong effects of 

temperature on phenology and subsequently on reproductive success are not carrying through 

to the population growth rate, possibly due to unmeasured multiple pathways. 



Chapter 1 ____________________________________________________________________  

38 

 

Figure 3 Decomposition of pathways by which climate-driven phenological change affects reproductive 

success and population growth rate in 27 bird species. Panel (i) “Underlying Relationships” displays the 

graphical model used in the structural equation analysis carried out on each species. The model includes 

the indirect effects of temperature on population growth rate via lay date and reproduction (the red, 

focal pathway), as well as the direct effects of temperature on reproductive success (
𝝏𝑹𝑺

𝝏𝑻𝒆𝒎𝒑
; blue path) 

and on population growth rate (
𝝏𝑷𝒐𝒑

𝝏𝑻𝒆𝒎𝒑
; orange path). Plots (a)-(h) show the regression estimates for each 

path, with each line representing a different species. The r2 values for each variable show the mean 

amount of variation explained by all pathways, and in parentheses the minimum and maximum r2 values 

across all species. The * (as well as the 𝝏 symbol) denotes those dependent variables that have partial 

coefficients, where the slope represents the effect once the influence of the other variable is controlled 

for. Panel (ii) “Observed Relationships” shows the total effect (indicated as full derivatives) of 

temperature on lay date, reproduction and population growth rate, based on all direct and indirect 

effects. The total effect of temperature on reproduction is calculated as 
𝒅𝑳𝒂𝒚

𝒅𝑻𝒆𝒎𝒑
∗

𝝏𝑹𝑺

𝝏𝑳𝒂𝒚
+  

𝝏𝑹𝑺

𝝏𝑻𝒆𝒎𝒑
. Panel (iii) 

“Decomposition” shows how the total effect of temperature on the population growth rate is 

calculated. The direct effects act via some other unmeasured trait and/or demographic rate. Note that 

temperature and lay date are mean centred in (a)-(h). 

Testing two hypotheses 

Consistent with the ‘annual number of reproductive events’ hypothesis, we found that 

changes in lay date were more strongly associated with per nest reproduction in single 
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brooders than in multi-brooders (difference of 0.03±0.01SE fledglings/day; r2=0.24; 5.9 𝐴𝐼𝐶𝑐 

better than the null model). Notwithstanding, the number of broods was of relatively little use 

for predicting in which species temperature effects on phenology would have the strongest 

impacts on reproduction (Fig. 4a; ΔAICc = -3.8 model 2 vs. 3 in Appendix 2 Table S1). Despite 

this, we unexpectedly found that warmer temperatures were generally associated with 

increased population growth rates in multi-brooders, but decreased population growth in 

single-brooders (Fig. 4c; ΔAICc =5.3 model 3 vs. 0 in Appendix 2 Table S2). This suggests that 

spring temperature could be impacting the population growth rate of single- and multi-

brooders via a pathway other than lay date and reproductive success. Thus, multi-broodedness 

may be a useful characteristic for predicting the impacts of global warming on population 

growth, but for reasons unrelated to the original hypothesis.  
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Figure 4 Comparative analysis of climate sensitivities of 27 bird species. Shown are the relationships 

between the total effects of temperature on (a) laying dates (
𝑑𝐿𝑎𝑦

𝑑𝑇𝑒𝑚𝑝
) and reproductive success (

𝑑𝑅𝑆

𝑑𝑇𝑒𝑚𝑝
), 

and (c) laying dates (
𝑑𝐿𝑎𝑦

𝑑𝑇𝑒𝑚𝑝
) and the population growth rate (

𝑑𝑃𝑜𝑝

𝑑𝑇𝑒𝑚𝑝
). While (b) shows the relationship 

between the multiplied regression slope estimates of temperature on lay date and lay date on 

reproductive success (
𝑑𝐿𝑎𝑦

𝑑𝑇𝑒𝑚𝑝
∗

𝜕𝑅𝑆

𝜕𝐿𝑎𝑦
; i.e. the indirect, focal pathway), with the total effect of temperature 

on reproductive success (
𝑑𝑅𝑆

𝑑𝑇𝑒𝑚𝑝
), (d) shows the relationship between the multiplied slope estimates of 

the entire indirect pathway (
𝑑𝐿𝑎𝑦

𝑑𝑇𝑒𝑚𝑝
∗

𝜕𝑅𝑆

𝜕𝐿𝑎𝑦
∗

𝜕𝑃𝑜𝑝

𝜕𝑅𝑆
), with the total effect of temperature on population 

growth (
𝑑𝑃𝑜𝑝

𝑑𝑇𝑒𝑚𝑝
). Note that if the effects of temperature on reproductive success (b) or the population 

growth rate (d) worked solely via the focal pathway, we would expect all values to fall on the dotted line 

Y=X. 
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We found no support for the density-dependence hypothesis, as the strength of density-

dependence in population size did not help to explain variation among species in the strength 

of the population response to temperature (Fig. 4d; ΔAICc = 7.4 model 4 vs. 0 in Appendix 2 

Table S2). Therefore, despite multiple pathways being a likely explanation for the strong 

effects of temperature on phenology and reproductive success not carrying through to the 

population growth rate in most species, density-dependence is unlikely to be the explanation 

behind that other pathway. 

Discussion 

We used a hierarchical framework to decompose and test when the impacts of climate on 

traits affected demographic rates and in turn population dynamics. This conceptual framework 

allowed us to distinguish four mechanisms that could prevent lower‐level responses from 

impacting population dynamics. We identified testable hypotheses from the literature 

suggesting life‐history and ecological characteristics that could predict when these 

mechanisms are likely to be important and in which species or taxa. We illustrated how 

empirical data could be used to (i) quantify the degree to which a strong climate sensitivity of a 

trait results in important demographic or population-level consequences, and (ii) test these 

hypotheses using a worked example on 35 bird species over 48 years in the United Kingdom. 

Future comparative analyses will be able to use the hypotheses and methods that we have 

presented to help improve our ability to predict which species or populations are most at risk 

from climate change.  

Decomposition 

Many studies assume that climate sensitivities of traits or demographic rates will have 

important population–and thus conservation—consequences. We discovered that although 

changes in laying dates from warmer temperatures are associated with improved reproductive 

success, this had no apparent effect on population trends. Furthermore, temperature effects 

on reproduction where mediated via laying date, but there was also an important direct effect 

of temperature on reproductive success that was mediated by an (unknown) trait other than 

laying date. This result emphasises that even if one finds that the climate sensitivity of a trait 

predicts the climate sensitivity at a higher level, this does not exclude the existence of multiple 

important pathways, and our framework allows decomposition of the contribution of different 

pathways even if not all relevant traits are measured.   

It could also be interesting to investigate these relationships taking the reverse approach: 

quantify the direct effects of climate on the population-level and then investigate which traits 



Chapter 1 ____________________________________________________________________  

42 

and demographic rates are affected by the same climate variable and how much variance in 

the population-level response they explain. This reverse top-down approach allows one to 

focus on identifying the pathway through which the climate signal most important for the 

population-level works (i.e. via which trait(s) and demographic rate(s)). The top-down and 

bottom-up approaches may identify different climate variables as being important and answer 

different questions (How important is a pathway? vs. What is the most important pathway?), 

but are also complementary in that they can both be used to test hypotheses on which species 

characteristics best explain interspecific variation in climate sensitivity.  

In studies in the wild, it is challenging to establish causality of a single pathway, and we cannot 

measure all pathways. Yet, if possible, it is important to consider multiple pathways and 

climate variables, as single pathway studies will over‐estimate population responses if multiple 

effects counteract one another, or under‐estimate if they reinforce climate effects (Larsen et 

al. 2011; Leuzinger et al. 2011). Patterns that can explain variation among species when 

including multiple pathways are also potentially the most relevant to real life scenarios. Of 

course, focusing on a single pathway or even relationships between two levels in the hierarchy 

will be useful to build our knowledge, as still very few studies have fully investigated single 

pathways from trait to population responses (but see Ozgul et al. 2010; Plard et al. 2014; 

Wilson & Arcese 2003). 

Hypothesis testing 

By utilising the framework, we found that analysing data from a single pathway can still 

provide information on multiple pathways. The associations between temperature on 

population growth were not well explained by the lay date to reproduction single pathway, 

suggesting that temperature may be impacting population growth via different traits or 

demographic rates. By testing the multiple pathway density-dependence hypothesis, it was 

possible to investigate whether another (unmeasured) demographic parameter was 

counteracting the effects of increased reproductive success from earlier egg laying on 

population growth. Strong density dependence has previously been found to prevent 

population-level responses from mismatches with breeding times and important food 

resources by reducing competition in one bird population (Reed et al. 2013a). However, the 

strength of density dependence was not effective in explaining variation in the effects of 

temperature on population growth. This suggest that either density dependence is not a 

general explanation for the absence of population responses to phenological changes among 
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British birds, or that methodological issues such as spatial scale have limited our ability to 

detect density‐dependence.  

Our framework can test in detail hypotheses about characteristics that can explain which 

species or populations are more likely to experience consequences of climate change at higher 

levels. Although the single pathway hypothesis that we tested (the annual number of 

reproductive events at species level) was only slightly useful for predicting responses in 

reproductive success based on changes in lay dates, we unexpectedly found it to be a useful 

species characteristic for predicting population responses to temperature. The population 

growth rate for multi‐brooders increased under warmer temperatures, while single‐brooders 

declined, a trend also found by both Dunn and Møller (2014) and Jiguet et al. (2007). Thus, the 

number of broods a species produces could be used to identify or predict which species are 

most at risk to be impacted by climate change due to changes in spring temperature. However, 

because we know that its predictive power did not stem from phenological effects on 

reproduction as hypothesised, there must be another reason. One reason could be that multi‐

brooding species are more likely to benefit from longer breeding seasons gained climate 

change (Dunn and Møller 2014). Despite its apparent effectiveness, we should be cautious 

about using the number of reproductive events to predict avian responses to temperature 

changes in other regions or species until future studies provide more insights into the 

mechanisms behind its effects. 

The enormous number of papers in the past decade reporting an effect of a specific climate 

variable on a phenotypic trait or demographic rate across a range of taxa means that 

comparative analysis is already possible, with the aim of improving our understanding of which 

species are most climate-sensitive and why (Buckley & Kingsolver 2012; Végvári et al. 2010). 

Other existing large datasets to focus on could include temperature dependent changes in 

growth dynamics in plants (Mielikäinen & Sennov 1996; Pretzsch et al. 2014), calcification 

rates in corals (Madin et al. 2012), changes in body size (Ozgul et al. 2009; Ozgul et al. 2010) or 

timing of reproduction in mammals (Plard et al. 2014) and temperature‐dependent sex‐

determination in reptiles (Schwanz & Janzen 2008). Even when studies do not have empirical 

data available on all three levels, analysis on only two levels can still be useful, as illustrated by 

our test of the multi‐broodedness hypothesis that showed that the effect of temperature‐

driven changes in laydate on reproductive success were slightly stronger in single brooded 

species. 
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Challenges 

Although many studies have suggested hypotheses for species characteristic that could explain 

differences in the links between demographic rates and population-level responses (Table 1b), 

hypotheses for the three other mechanisms were limited. In particular, there were very few 

hypotheses in the literature about which species are more likely to encounter reinforced or 

counteracted responses to changes in climate due to multiple pathways or climate variables. 

This suggests that when conducting comparative analyses it might be necessary to initially take 

an exploratory approach to find any characteristics that explain differences among species and 

then test these using independent data. For a characteristic to be effective, it would need to 

incorporate not only the likelihood of experiencing more than one pathway, but also that each 

of those pathways would have strong effects that flow up to higher hierarchical levels.  

Noise from other unmeasured environmental variables affecting population dynamics can 

reduce the explanatory power (r2) of the relationship between a change in the focal climate 

variable and the biological response. In such cases, the estimated strength of such 

relationships (as measured by the regression coefficient) should remain unbiased, but their 

associated uncertainty will increase (Hutcheon et al. 2010). However, measurement error in 

the explanatory variable – whether climate, trait, or demographic rate – can result in the 

strength of relationships being underestimated, such that they appear to be weaker than they 

truly are (regression dilution; Hutcheon et al. 2010). Detecting effects of traits on demographic 

rates can also be an issue of statistical power (Reed et al. 2013b), suggesting that it is more 

important to focus on effect size than statistical significance. 

Non-additive effects among responses can increase the complexity of the relationships within 

the hierarchical framework, making relationships even more difficult to detect. If different 

pathways interact with one another to cause synergistic non-additive effects at the 

population-level, then the results can potentially be much stronger than if they were additive 

(Bansal et al. 2013). Additional non-climatic stressors can also interact with climatic variables: 

for instance, the combination of air pollution and drought results in extremely high mortality 

for a number of woodland species in Central Europe (Alexieva et al. 2003). Finally, climatic 

variability can also influence or even interact with changes in climate means (see Box 1; 

Lawson et al. 2015).  Our dataset shows that it is feasible to decompose pathways and test 

hypotheses despite all these potential issues. This suggests that these problems are not 

insurmountable, and therefore, that clear biologically relevant conclusions are possible. 
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Conclusion 

Given that climate impacts on traits do not always result in changes to population dynamics, 

future research should seek to understand how and when climate-mediated changes in traits 

will have strong impacts at the demographic- and population-level. To help achieve this, we 

firstly recommend further development of hypotheses that might predict for which species 

changes in traits or demographic rates will impact population dynamics. In particular, 

hypotheses about multiple pathways and climate variables are needed. Comparative analyses 

can subsequently investigate how climate is impacting the different levels of responses across 

regions and taxa and test these hypotheses. Our worked example illustrates that currently-

available datasets, even those with incomplete demographic data (e.g. missing data on the 

adult survival pathway), are suitable for this purpose. Finding characteristics that can predict 

when climate-induced changes in traits or demographic rates are likely to have effects at the 

population-level will be important for the development of conservation strategies. This would 

be particularly effective for conservation of species in which we have limited knowledge (i.e. 

most species are data-deficient), as their climate sensitivity may be predicted based off their 

species characteristics, therefore helping to determine where to prioritise conservation efforts 

(Sæther et al. 1996).  
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Appendix 1 - Methods 

Literature Review 

We conducted a search of the literature using ISI Web of Science (www.isinet.com) and Google 

Scholar (www.scholar.google.com) to find and categorise hypothesised explanatory 

characteristics. The search terms included various combinations of: “climate, climate change, 

climate change impact, phenology, sex-skew, body size, body mass, migration, physiology, 

demography, survival, reproductive success, fecundity, population, population trend, elasticity, 

sensitivity, counteract, reinforce, multiple climate variables, multiple climate factors, 

multifactor climate experiment, multiple climate change drivers, life history, traits and 

characteristics”. Relevant articles were initially identified based on their titles and abstracts 

and relevant citations within papers were also checked. 

Worked Example 

Climate Windows 

The R package climwin (Bailey & van de Pol 2015) was used to find the time period during 

which mean temperature explained the most variation in mean lay dates (weighted by annual 

sample size) for each species. We looked at every possible combination of dates from a cut-off 

(37 days after the latest mean lay date across all years) back to 365 days ago.  

The best window was selected (as judged by the lowest AICc value) and those temperature 

values were used in the subsequent analyses. There were, however, a couple of cases where 

the best model appeared to be a false positive resulting from the large number of windows 

being tested, because the next best models all suggested a very different time period. In this 

case, this model was disregarded and the best model from the different time period was 

selected. If there was no clear temperature window (following Bailey & van de Pol 2015, this 

was defined as (1) AICc values less than 10-15 better than the null model, (2) the better 

models suggest a large, seemingly random range of periods, or (3) the best window spans less 

than 10 days) that species was removed from any further analyses as we were only interested 

in those species that showed a lay date response to temperature. 

Only 8 out of 35 species were not found to have temperature affect the date of laying, and 

were therefore excluded (Table S1). These species were often opportunistic species (e.g. doves 

and pigeons), or had small sample sizes. For the majority of species, mean spring temperature 

(roughly March-May) was the important climate factor for changes in lay date. Previous 

studies have identified similar windows using the same data but with different techniques 
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(Thackeray et al. submitted; Phillimore et al. submitted). Most temperature signals were as 

expected, with early breeders responding to earlier temperatures (e.g. robin) and long-

distance migrants responding to later temperatures (e.g. redstart).  

Table S1 The periods that mean temperature was calculated from for each species and whether they 

were included in any further analyses. 

 Species WindowOpen WindowClose Included 

1 Blackbird 11-Mar 9-Apr Yes 

2 Blackcap 8-Mar 8-May Yes 

3 Blue tit 22-Mar 1-May Yes 

4 Chaffinch 7-Mar 10-May Yes 

5 chiffchaff 6-Mar 6-May Yes 

6 Coal tit 19-Mar 3-May Yes 

7 Dunnock 27-Mar 1-Apr Yes 

8 Garden Warbler 22-Mar 9-May Yes 

9 Great spotted woodpecker 14-Mar 29-Apr Yes 

10 Great tit 13-Mar 5-May Yes 

11 Jackdaw 17-Mar 25-Apr Yes 

12 Little owl 15-Feb 28-Apr Yes 

13 Magpie 5-Mar 31-Jul Yes 

14 Marsh tit 18-Mar 1-May Yes 

15 Mistle thrush 11-Mar 30-Mar Yes 

16 Nuthatch 11-Feb 1-May Yes 

17 Pied Wagtail 25-Mar 10-May Yes 

18 Redstart 9-Apr 2-Jun Yes 

19 Reed bunting 16-Jan 22-May Yes 

20 Reed Warbler 26-Jan 16-Jul Yes 

21 Robin 9-Feb 20-Apr Yes 

22 Sedge Warbler 8-Jan 10-May Yes 

23 Song thrush 18-Mar 31-Mar Yes 

24 Spotted flycatcher 27-Apr 3-Jun Yes 

25 Treecreeper 8-Mar 12-Jun Yes 

26 Whitethroat 14-Apr 2-Jun Yes 

27 Wren 14-Mar 28-May Yes 

28 Bullfinch 20-Feb 24-Feb No 

29 Collared dove 25-Mar 25-Mar No 

30 Corn bunting 7-Feb 28-Jul No 

31 Tawny Owl 24-Mar 24-Mar No 

32 Turtle dove 19-May 28-May No 

33 
Woodpigeon 

8-Sep 
previous year 

15-Sep 
previous year No 

34 Yellow wagtail 15-Apr 9-May No 

35 
Yellowhammer 

30-Sep 
previous year 

30-Sep 
previous year No 
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Effect Size Calculations 

We analysed annual estimates of mean egg laying dates, mean number of fledglings produced 

per breeding attempt (FPBA) and an index of population size on birds throughout the United 

Kingdom between 1966 and 2013 provided by the British Trust for Ornithology’s Nest Record 

Scheme and the joint common bird census (CBC) and Breeding bird survey (BBS). The estimates 

of FPBA were not derived from direct observations, but rather as a function of maximum 

recorded brood size and egg and chick stage nest failure rates. As a consequence, these data 

do not take partial brood losses into account (Crick et al. 2003), so annual variation in breeding 

success may be under-estimated.  However, FPBA is the standard productivity parameter used 

by BTO to identify temporal trends in breeding success (Baillie et al. 2014) and to explore the 

relationship between breeding success and population trajectory (e.g. Siriwardena et al. 2000; 

Finch et al. 2014; Morrison et al. 2015). The population values were an index (relative to an 

arbitrary value of 100 assigned for the population values in 2011) of population size, so they 

did not provide actual estimates of the numbers of animals, but rather the difference in 

population size compared to those in 2011. This rescaling has no effect on the estimates of 

population growth rate. We calculated the annual population growth rate as rt = log (
𝑛𝑡+1

𝑛𝑡
), 

where n is the indexed annual population value. The corn bunting, great spotted woodpecker, 

marsh tit and little owl were all missing information for some of the 48 years. 

We constructed structural equation models (SEMs) for each species individually. Each species 

had the same model (Fig. 3i presents the model used for this analysis) that partitioned the net 

effects of temperature on the three response variables into direct and indirect effects. The 

indirect pathway was the focal pathway by which temperature impacted population growth 

via laying date and reproduction. The direct and indirect path coefficients and bootstrapped 

standard errors from each species were used in subsequent comparative analyses. The 

temperature values for each window were mean centred for these analyses. Lay dates, FPBA 

and the population growth rate were approximately normally distributed within species. All 

SEMs fitted the data well (poor model fit was determined if the RMSEA value was greater than 

0.06 and if CFI values were less than 0.95; Hu & Bentler 1999) with the exception of four 

species (the coal tit, dunnock, jackdaw and spotted flycatcher). We investigated these 4 

species using linear regressions and in all cases there was at least one pathway that had a 

negative R2 value because there was no clear trend (i.e. the fit was worse than fitting a 

horizontal line because the data were evenly spread). However, we decided to include these 

species in the comparative analysis because (1) their slope estimates could not be 
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distinguished from zero, (2) their slope estimates were not very different to the estimates 

produced by the well fitted models, and (3) the comparative analysis results did not change 

when these four species were excluded. 

To test the single pathway hypothesis, annual number of reproductive events, we used the 

information from Fergusson-Lees et al. (2011) on the number of broods of each species. Some 

single-brooded species are known to have replacement broods if their first attempt fails, but 

this was not taken into account in this analysis. To test the density-dependence multiple 

pathway hypothesis, we calculated the strength of density-dependence by linear regression of 

the population growth rate (rt) over the population size in year t. In the analysis, continuous 

density dependent values were used, however, in order to visually represent their pattern in 

Figure 4d we designated each species to be either weakly density-dependent if their slope 

values were less than -0.0001, or strongly density-dependent if they were greater than -

0.0001.   

Species Comparison 

The path estimates from the SEMs were used to compare the sensitivities across all of the 

species at each hierarchical level. Linear models weighted by the inverse of the estimated 

standard error of the regression coefficient were used to investigate patterns in sensitivities 

and the two a priori selected hypotheses, number of broods and density dependence (Table 1). 

We compared the linear models by using the second order Akaike’s Information Criteria (AICc) 

scores. Models within 2 AICc units of each other were considered equally well supported 

(Burnham and Anderson 2002). 
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Appendix 2 - Results 

Table S1 Models investigating the variables that best explain the total effect of temperature on 

reproductive success among species. 
𝒅𝑹𝑺

𝒅𝑻𝒆𝒎𝒑
  refers to the total effect of  temperature on reproductive 

success (all pathways are included), 
𝒅𝑳𝒂𝒚

𝒅𝑻𝒆𝒎𝒑
 refers to the effect of temperature on of lay date and the 

factor broods refers to whether species are single- or multi-brooders.  The variable 
𝒅𝑳𝒂𝒚

𝒅𝑻𝒆𝒎𝒑
*

𝝏𝑹𝑺

𝝏𝑳𝒂𝒚
 refers to 

the indirect pathway (i.e. the effect of temperature on reproductive success that is mediated by laying 

date) where 
𝝏𝑹𝑺

𝝏𝑳𝒂𝒚
 refers to the partial effect of lay date on reproductive success, holding temperature 

constant.  The value 1 refers to an intercept only (null) model. 

 Model 
Log-

likelihood 
AICc ΔAICc 

Weigh

t 

Estimate 

± SE 
R2 

2 
𝑑𝑅𝑆

𝑑𝑇𝑒𝑚𝑝
~(

𝑑𝐿𝑎𝑦

𝑑𝑇𝑒𝑚𝑝
∗

𝜕𝑅𝑆

𝜕𝐿𝑎𝑦
) 24.1 -41.2 0.0 0.98 0.77 ± 0.18 0.41 

1 
𝑑𝑅𝑆

𝑑𝑇𝑒𝑚𝑝
~ 

𝑑𝐿𝑎𝑦
𝑑𝑇𝑒𝑚𝑝

 20.1 -33.2 8.0 0.02 -0.03 ± 0.01 0.21 

3 
𝑑𝑅𝑆

𝑑𝑇𝑒𝑚𝑝
~ 

𝑑𝐿𝑎𝑦
𝑑𝑇𝑒𝑚𝑝

 * broods 21.1 -29.4 11.8 0.00 -0.03 ± 0.02 0.20 

0 
𝑑𝑅𝑆

𝑑𝑇𝑒𝑚𝑝
~ 1 16.4 -28.4 12.8 0.00 0.06 ± 0.02  

 

  



 ____________________________________________________________________ Chapter 1 

57 

Table S2 Models investigating the variables that best explain variation in the effect of temperature on 

population growth rates among species.  
𝒅𝑷𝒐𝒑

𝒅𝑻𝒆𝒎𝒑
 refers to the total effect of  temperature on the 

population growth rate (all pathways are included), 
𝒅𝑳𝒂𝒚

𝒅𝑻𝒆𝒎𝒑
 refers to the effect of temperature on of lay 

date, the factor broods refers to whether species are single- or multi-brooders and the factor density 

refers to the strength of density-dependence. The variable (
𝒅𝑳𝒂𝒚

𝒅𝑻𝒆𝒎𝒑
 ∗

𝝏𝑹𝑺

𝝏𝑳𝒂𝒚
 ∗

𝝏𝑷𝒐𝒑

𝝏𝑹𝑺
) refers to the indirect 

pathway (i.e. the effect of temperature on the population growth rate via laying date and reproductive 

success) where 
𝝏𝑹𝑺

𝝏𝑳𝒂𝒚
 refers to the partial effect of lay date on reproductive success, holding temperature 

constant and 
𝝏𝑷𝒐𝒑

𝝏𝑹𝑺
 refers to the partial effect of reproductive success on population growth, holding 

temperature constant. The value 1 refers to an intercept only (null) model. 

 Model Log-likelihood AICc ΔAICc Weight 
Estimate 

± SE 
R2 

3 
𝑑𝑃𝑜𝑝

𝑑𝑇𝑒𝑚𝑝
 ~ broods 105.0 -202.9 0.0 0.88 

-0.006 ± 
0.002 

0.22 

0 
𝑑𝑃𝑜𝑝

𝑑𝑇𝑒𝑚𝑝
 ~ 1 101.0 -197.6 5.3 0.06 

0.0005 ± 
0.001 

 

1 
𝑑𝑃𝑜𝑝

𝑑𝑇𝑒𝑚𝑝
 ~ 

𝑑𝐿𝑎𝑦
𝑑𝑇𝑒𝑚𝑝

 101.8 -196.6 6.3 0.04 
0.0007 ± 

0.0005 
0.02 

2 

𝑑𝑃𝑜𝑝
𝑑𝑇𝑒𝑚𝑝

 ~ (
𝑑𝐿𝑎𝑦

𝑑𝑇𝑒𝑚𝑝
 ∗

𝜕𝑅𝑆

𝜕𝐿𝑎𝑦
 ∗

𝜕𝑃𝑜𝑝

𝜕𝑅𝑆
) 

101.4 -195.7 7.2 0.02 0.15 ± 0.18 0.00 

4 

𝑑𝑃𝑜𝑝
𝑑𝑇𝑒𝑚𝑝

~  (
𝑑𝐿𝑎𝑦

𝑑𝑇𝑒𝑚𝑝
 ∗

𝜕𝑅𝑆

𝜕𝐿𝑎𝑦
 ∗

𝜕𝑃𝑜𝑝

𝜕𝑅𝑆
)* Density 

101.6 -190.3 12.6 0.00 
-224.0 ± 

521.1 
0.00 

 

Table S3 Models investigating the variables that best explain the total effect of temperature on 

reproductive success among species with the Magpie removed.  See Table S2 for details. 

 
Model Log-likelihood AICc ΔAICc Weight 

Estimate 
± SE 

R2 

2 
𝑑𝑅𝑆

𝑑𝑇𝑒𝑚𝑝
~(

𝑑𝐿𝑎𝑦

𝑑𝑇𝑒𝑚𝑝
∗

𝜕𝑅𝑆

𝜕𝐿𝑎𝑦
) 25.8 -44.6 0.0 0.98 0.63 ± 0.17 0.33 

0 
𝑑𝑅𝑆

𝑑𝑇𝑒𝑚𝑝
~ 1 20.0 -35.6 9.0 0.01 0.05 ± 0.02  

1 
𝑑𝑅𝑆

𝑑𝑇𝑒𝑚𝑝
~ 

𝑑𝐿𝑎𝑦
𝑑𝑇𝑒𝑚𝑝

 21.3 -35.5 9.1 0.01 -0.02 ± 0.01 0.05 

3 
𝑑𝑅𝑆

𝑑𝑇𝑒𝑚𝑝
~ 

𝑑𝐿𝑎𝑦
𝑑𝑇𝑒𝑚𝑝

 * 

broods 
21.7 -30.4 14.1 0.00 0.006 ± 0.03 0.00 
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Table S4 Models investigating the variables that best explain variation in the effect of temperature on 

population growth rates among species with the Magpie removed. See Table S3 for details. 

 
Model Log-likelihood AICc ΔAICc Weight 

Estimate 
± SE 

R2 

3 
𝑑𝑃𝑜𝑝

𝑑𝑇𝑒𝑚𝑝
 ~ broods 101.5 -195.9 0.0 0.80 

-0.005 ± 
0.002 

0.18 

0 
𝑑𝑃𝑜𝑝

𝑑𝑇𝑒𝑚𝑝
 ~ 1 98.3 -192.1 3.8 0.12 

0.001 ± 
0.001 

 

2 

𝑑𝑃𝑜𝑝
𝑑𝑇𝑒𝑚𝑝

 ~ (
𝑑𝐿𝑎𝑦

𝑑𝑇𝑒𝑚𝑝
 ∗

𝜕𝑅𝑆

𝜕𝐿𝑎𝑦
 ∗

𝜕𝑃𝑜𝑝

𝜕𝑅𝑆
) 

98.6 -190.1 5.8 0.04 0.13 ± 0.17 0.00 

1 
𝑑𝑃𝑜𝑝

𝑑𝑇𝑒𝑚𝑝
 ~ 

𝑑𝐿𝑎𝑦
𝑑𝑇𝑒𝑚𝑝

 98.3 -189.5 6.4 0.03 
0.00008 ± 

0.0007 
0.00 

4 

𝑑𝑃𝑜𝑝
𝑑𝑇𝑒𝑚𝑝

~  (
𝑑𝐿𝑎𝑦

𝑑𝑇𝑒𝑚𝑝
 ∗

𝜕𝑅𝑆

𝜕𝐿𝑎𝑦
 ∗

𝜕𝑃𝑜𝑝

𝜕𝑅𝑆
)*       

Density 

99.1 -185.2 10.7 0.00 
-349.9 ± 

503.4 
0.00 

 

Table S5 Models investigating the variables that best explain variation in the effect of temperature on 

population growth rates among species with the Redstart removed. See Table S3 for details. 

 
Model Log-likelihood AICc ΔAICc Weight 

Estimate 
± SE 

R2 

3 
𝑑𝑃𝑜𝑝

𝑑𝑇𝑒𝑚𝑝
 ~ broods 102.4 -197.8 0.0 0.96 

-0.007 ± 
0.002 

0.30 

0 
𝑑𝑃𝑜𝑝

𝑑𝑇𝑒𝑚𝑝
 ~ 1 97.3 -190.1 7.7 0.02 

0.0003 ± 
0.001 

 

1 
𝑑𝑃𝑜𝑝

𝑑𝑇𝑒𝑚𝑝
 ~ 

𝑑𝐿𝑎𝑦
𝑑𝑇𝑒𝑚𝑝

 98.3 -189.5 8.2 0.02 
0.0007 ± 
0.0005 

0.03 

2 

𝑑𝑃𝑜𝑝
𝑑𝑇𝑒𝑚𝑝

 ~ (
𝑑𝐿𝑎𝑦

𝑑𝑇𝑒𝑚𝑝
 ∗

𝜕𝑅𝑆

𝜕𝐿𝑎𝑦
 ∗

𝜕𝑃𝑜𝑝

𝜕𝑅𝑆
) 

97.4 -187.7 10.1 0.01 
-0.21 ± 

0.56 
0.00 

4 

𝑑𝑃𝑜𝑝
𝑑𝑇𝑒𝑚𝑝

~  (
𝑑𝐿𝑎𝑦

𝑑𝑇𝑒𝑚𝑝
 ∗

𝜕𝑅𝑆

𝜕𝐿𝑎𝑦
 ∗

𝜕𝑃𝑜𝑝

𝜕𝑅𝑆
)*       

Density 

98.1 -183.2 14.5 0.00 
-71.9 ± 
533.4 

0.00 
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Abstract 

It is generally assumed that populations of a species will have similar responses to climate 

change, and thereby that a single value of sensitivity will reflect species-specific responses. 

However, this assumption is rarely systematically tested. High intraspecific variation will have 

consequences for identifying species- or population-level traits that can predict differences in 

sensitivity, which in turn can affect the reliability of projections of future climate change 

impacts. We investigate avian body condition responses to changes in six climatic variables and 

how consistent and generalisable these responses are both across and within species, using 21 

years of data from 46 common passerines across 80 Dutch sites. We show that body condition 

decreases with warmer spring/early summer temperatures and increases with higher 

humidity, but other climate variables do not show consistent trends across species. In the 

future, body condition is projected to decrease by 2050, mainly driven by temperature effects. 

Strikingly, populations of the same species generally responded just as differently as 

populations of different species implying that a single species signal is not meaningful. 

Consequently, species-level traits did not explain interspecific differences in sensitivities, 

rather population-level traits were more important. The absence of a clear species signal in 

body condition responses implies that generalisation and identifying species for conservation 

prioritisation is problematic, which sharply contrasts conclusions of previous studies on the 

climate sensitivity of phenology.   
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Introduction 

A major aim of climate change ecology is to understand why species differ in their sensitivity to 

climate change and identify which species are most at risk [1]. To answer these questions, 

studies typically assume—sometimes explicitly, often implicitly—that climate responses from 

individual studies are representative for the species as a whole. For example, comparative 

meta-analyses often use values reported in local population studies to investigate interspecific 

variation in climate responses [e.g. 1–3], and the IUCN Red List uses evidence from studies on 

specific population(s) to argue that the species as a whole might be under threat from climate 

change [4]. Empirical studies on the effects of climate change rarely consider variability in 

responses among populations of the same species [5–7]. Typically a single value is used which 

is thought to adequately reflect species-specific responses to changing environments, 

essentially assuming that within-species variation is negligible [8–11].  

However, is the concept of a species’ climate response useful for generalisation and 

prediction? If responses to climate change vary substantially within species—which they often 

appear to do [12–19]—then generalising the response to a single species signal may not be 

accurate, nor meaningful. For instance, a single species signal would be unrepresentative if 

populations showed different climate-driven responses at their low-latitude range margin 

compared to their poleward range margins [11,20,21]. In such a situation it is important to 

properly account for this intra-specific variation when modelling environmental responses, as 

it can help us to understand the mechanisms underlying responses to environmental change, 

and to better predict their effects [8,10]. For instance, intraspecific variation can reduce the 

overall effects of climate change on the species because some populations may be less 

affected, essentially buffering the overall impacts [6,22,23]. This phenomenon is known as the 

portfolio effect, where spatial or genotypic diversity can dampen variation in total population 

abundance [24].  

Identifying life-history and ecological traits that can explain and predict differences in 

sensitivities is currently of particular importance for making effective conservation and 

management decisions [1,25]. For most species, we lack the sufficient data to make reliable 

direct estimates of their climate sensitivities, and consequently nowadays conservation 

organisations often indirectly predict the climate sensitivities of data-deficient species based 

solely on their species traits [25]. However, when trying to make generalisations across 

species, few comparative studies consider variation among populations within species. When 

there is high intraspecific variation, species life-history traits (e.g. life-expectancy), which are 
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the main focus of most comparative studies, are likely to be of little predictive power. Instead, 

if a species is not responding consistently across different populations, it suggests that local, 

population-specific traits (e.g. habitat type) could be more important.  

In order to provide some yard-stick for what ‘a lot’ of intraspecific variation might be, and 

therefore when local rather than species traits might be more important, comparative 

analyses that include both intra- and inter-specific variation are needed. In such studies, it is 

possible to determine whether populations of the same species are more alike than 

populations of different species, suggesting a species signal exists [6,8]. Ample comparative 

studies exist that compare interspecific variation and quite some studies compare intraspecific 

variation of one or a few species [e.g. 12,13,16–18]. However, apparently there are so few 

species with sufficient intraspecific information [26] that intraspecific analyses of many species 

has seldom been achieved.  

As far as we are aware, only three studies have systematically investigated the amount of 

within- to among-species variation in responses to climate change. Rubolini et al. [5] and 

Thackeray et al. [7] both found strong species-signals, with about 50% of the variance in 

observed changes in phenology attributed to differences among species (although the latter 

study did not explicitly interpret this result in the context of species signals). In contrast, 

Malyshev et al. [6] found that only roughly 10% of the variance was due to among-species 

variation in plant growth responses to drought and winter frost. Thus, the little evidence 

available in the literature suggests a strong species signal for phenological changes, but we 

have no indication as to whether this might hold true more generally for other types of climate 

responses, particularly for key state variables (body mass, growth) and vital rates 

(reproduction, survival) that determine the population responses relevant for conservation.  

Body condition (mass corrected for size; i.e. amount of fat and protein reserves; [27]) is a key 

state variable that affects vital rates [28–31] and thereby is likely important for population 

dynamics [e.g. 32]. It is now becoming clear that body condition and mass of avian species 

around the world are changing substantially over time and with climate [28,29,31–39]. 

However, despite being identified as one of the three major responses to climate change, the 

impacts of climate on body condition (and body size) have been less well studied than 

responses in phenology and range shifts [40]. Of the few studies that investigate the 

relationship between temperature and body condition directly, warmer temperatures have 

often been found to result in decreased juvenile and adult body mass [28–30,34,41]. This can 

be either through indirect effects, as temperature can alter the amount of food resources 
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available [30], or through direct effects on energetics [29,34,42]. However, we still do not have 

a good understanding of the mechanisms underlying environmentally-driven changes in body 

condition [43].  

Despite the importance of body condition, our understanding of climatic effects on body 

condition is limited. The literature has mostly focused on temperature responses, but other 

climatic variables could also have important influences on body condition (see Box 1 for a 

description of other climate variables and potential underlying mechanisms). We also have 

little understanding of how the effect of climate on body condition varies among different 

populations. This is in part because the majority of research investigates changes over time, 

which makes general patterns difficult to interpret as the direction of changes will depend on 

the climate in the local region [43]. What’s more, the time periods (e.g. winter, spring) during 

which climate has the strongest impact on body condition are rarely systematically tested and 

so are still poorly understood [43–45]. Typically only linear responses have been considered, so 

it is unclear as to whether body condition responses might be non-linear [but see 38,39].  

As a result of this missing knowledge, there are currently no future projections for how body 

condition is likely to be impacted under future climate scenarios. Projecting the ecological 

responses of future climate changes using recent observed effects is now a major challenge in 

climate ecology [46]. As the climate is predicted to continue to change in the future, 

conservation plans and action will rely on our ability to accurately project impacts [47,48].  

Here we use an extensive 21-year data set from 80 Dutch constant effort sites to investigate 

(1) how avian body condition responds to changes in climate, and (2) how consistent these 

responses are both across and within 46 common passerine species. We also project how 

species and populations are likely to change under future climate scenarios. We first test how 

sensitive species and populations are to six climate variables that we hypothesise as having 

important effects on body condition (temperature, rainfall, humidity, sunshine, daily 

temperature range (DTR) and wind speed; see Box 1), and determine the time period (testing 

all options over a full year) in which the effect is most marked. Subsequently, we integrate the 

sensitivities of populations and projected changes in climate to predict body condition 

responses to future climatic conditions in 2050. Second, we ask whether there is a species 

signal, or instead if populations of the same species respond as differently as populations of 

different species, by comparing the relative amounts of within- to among-species variation. 

We investigate whether species and population traits can explain variability in responses 

among species and populations. We predict that if intra-specific variation is high, species traits 
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(e.g. life-expectancy) and phylogenetic distance (a proxy for unknown species traits) will be of 

less importance for predicting body condition responses to climate; rather population traits 

(e.g. habitat type) and geographic distance (closer sites are more similar) should be more 

appropriate. 

Materials and methods 

Body condition data for common Dutch bird species 

Approval of the work by an ethics committee is not required for catching and banding birds in 

the Netherlands. Under Dutch law, catching and banding birds requires a banding license 

which each of the banders have obtained from the bird banding scheme. The Dutch constant 

effort site project has run over a period of 21 years at 80 field sites across the Netherlands 

([49]; 1994-2014; see Fig S1 in Appendix 3 for map). The project followed a standardised 

protocol [50] where mist netting is carried out with a constant effort from the 12th April until 

the 14th August, 12 times per year. We focussed on 46 common passerine species of which in 

total 174,875 birds were caught. Not all sites collected observations over the 21 years of the 

study period (mean=10 years, range=1-21 years); 10 species were captured in less than 7 

different sites, and for this reason excluded from any intra-specific analyses. Captured birds 

are ringed and morphometric measurements taken, including body mass (grams), wing length 

(maximum chord measurement; [51]), sex and age-class (typically juvenile or adult; based on 

the plumage of the bird). We estimated body mass corrected for size by taking the residuals 

from the linear regression of body mass on wing length; this means that our measure of body 

condition is more of a measure of body fat [27,29,31]. When investigating the effects of 

climate on body size or condition, wing length is generally thought to be the best single linear 

predictor of structural size for passerines [29,52]. Although wing length has been found to be 

affected by climate [for example 53], we found no change in wing length over the length of the 

study, suggesting that our measure of body condition was not affected by any changes in wing 

length. 

Climatic data 

Our knowledge of which climate variables are important for body condition is limited, as 

previous studies have mostly focused on the effects of temperature or , less frequently, rainfall 

[for example 28,29,33,34,37]. We suggest a number of plausible weather signal hypotheses 

(see Box 1). Consequently, we look at the effects of six climatic variables: daily windspeed (in 

0.1 m/s), mean daily temperature (over 24 hours, °C), mean relative humidity (percent), 

longest possible daily sunshine duration (percent), daily sum precipitation (in 0.1 mm), and 
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daily temperature range (DTR, difference in minimum and maximum daily temperatures in °C). 

Daily records of each of the six variables over the study period were available from the Royal 

Netherlands Meteorological Institute (KNMI) for 37 weather stations across the Netherlands. 

The biological data from each site was matched with the closest weather station (mean 

distance 17 km; see Table S2 in Appendix 3).  

Climate projections were available for all climate variables except sunshine, based on a 

regional climate model from the Royal Netherlands Meteorological Institute (KNMI). We chose 

to use the most extreme of the four available climate scenarios (‘WH’), as the best case 

scenario is thought unlikely [54], but also because using a worst case scenario can be more 

useful for conservation decisions. The WH scenario assumes a high global temperature change 

(around 2°C by 2050) and strong changes in air stream patterns in the Netherlands [55]. Under 

this scenario, temperature and wind speeds are projected to increase across all seasons, while 

humidity is expected to decrease. Daily temperature ranges are projected to decrease in all 

seasons except summer where it increases.  Conversely, rainfall is projected to increase in all 

seasons except summer where it decreases. We assumed that there would be little geographic 

variation in projected exposure across the small spatial scale of the Netherlands and therefore 

use the same climate exposure for all populations (i.e. the furthest sites are only around 

250km apart, see Fig S1 & S3 in Appendix 3; [47]). For all climate variables except wind (for 

which only one annual estimate was available), we matched the projected exposure for each 

season (winter/ spring/ summer/ autumn) to the season when the climate window occurred 

(see later). In cases where the climate window spanned more than one season, we averaged 

those seasons’ projected exposures. 
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Species and site trait data 

We identified a number of hypotheses about species and population traits that could 

potentially explain differences in body condition responses to climate. We predict that if intra-

specific variation is high, population-level traits will likely explain most variation. However, 

species-level traits may still be important for explaining some variation. We tested four species 

Box 1 Potential effects of various climate variables on body condition 

A range of climate variables could impact body conditions of birds through both direct and 

indirect means. The bulk of the literature that investigates body condition responses to 

climate focuses on temperature, and to a lesser extent rainfall. Temperature could have 

direct effects on condition via a number of mechanisms. Temperature has a direct effect 

on their energetics [42]. Warmer temperatures can result in overheating or decreased 

foraging efficiency [28,76]. Birds might strategically down-regulate their body mass under 

warmer conditions (as they may not need as much body fat for warmth) which could 

reduce time spent feeding and improve flight performance [77,78]. Changes in rainfall can 

impact freshwater supplies, which can have consequences for hydration [28]. Changes in 

temperature and rainfall may have indirect effects on body mass through changes in food 

availability, perhaps through mismatches in peak food abundances [30,79] or by 

exacerbating parasites and diseases which impact on the health of birds [28]. 

However, other climatic variables could arguably also impact body condition. For instance, 

humidity can impact heat retention  and fuel composition which can, in turn, impact lean 

mass [76,80]. Birds rely primarily on evaporative cooling from cutaneous and respiratory 

surfaces for heat dissipation, which is much less effective in high humidity [76]. Wind 

speed can have multiple effects on birds that may impact their body condition. Wind speed 

affects bird energetics [81,82], body temperature [83], field metabolic rate [81,82], it 

reduces thermal resistance of the feathers such that they change their orientation [82,84], 

and it affects the movement of migratory land birds. Strong wind has been found to have a 

negative impact on the body condition of chicks [81,82]. Alternatively, high wind speeds 

may allow some birds to fly faster and reach foraging sites more easily, resulting in 

increased body condition [85]. 

The amount of sunshine (i.e. cloudiness) may impact foraging behaviour, movement and 

body temperature. Exposure to bright sunlight might make birds easier to detect by 

predators, and visual glare could reduce their ability to monitor the environment 

effectively [82]. In cold environments, heat gain from solar radiation can reduce the costs 

of foraging [82]. However, Konarzewski & Taylor [81] found that sunshine did not impact 

chick mass in Little Auks, nor were feeding rates affected by cloud cover in Guillemots [86]. 

The consequences of changes in daily temperature range in endotherms are mostly 

unknown, but are most likely associated with increased thermal stress [87]. Increased 

temperature range can impact mortality, egg size and cost of energy expenditure [87,88]. 
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level (body size, migratory strategy, habitat preference and life-expectancy) and two site level 

hypotheses (habitat and population density), see Box 2 for rationale.  

Furthermore, in the absence of other a priori hypotheses about explanatory traits, 

phylogenetic (or geographic) distances among species may be able to act as a proxy for 

predicting species’ (or site) responses [56]. Phenotypic differences between species and 

populations  are expected to rise over eco-evolutionary time, such that closely related species 

and proximate populations should respond more similarly to environmental change [1,57]. 

Similarly, geographic distance among sites could explain site-variation in body condition 

responses because closer populations are expected to have more similar environments, and 

thus geographical distance could be acting as a proxy for some unknown environmental 

variable [58]. We therefore examined whether phylogenetic (i.e. time of divergence in millions 

of years) and spatial (Euclidian in km) distance could predict the amount of dissimilarity in 

climate responses among species and sites.  

Body size estimates were calculated as the mean body mass across all individuals for each 

species. Species’ preferred habitat type was assigned into the categories urban (garden), 

woodland, wet (reed bed, wet scrub) and open (dry scrub) based on [59]. Life-span was adult 

life-expectancy, calculated as 1/adult annual survival. Population density was calculated as the 

number of individuals of the same species caught (per meter of net per day) for each site 

averaged across all years. Population habitat type needed to be grouped into wet (reed bed, 

wet scrub) or dry (dry scrub, garden, woodland) because some habitats were rare. To 

determine phylogenetic distance, we downloaded 1,000 different possible phylogenetic trees 

from a pseudoposterior distribution from birdtree.org [57,60] (Fig S7 in Appendix 3).  
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Box 2 Species and site level hypotheses to explain intra- and inter-specific variation in 
climate responses. 

Species level hypotheses 
1. Body mass responds differently to changes in climate in larger and smaller bird 

species. Body size affects a range of biological processes including water requirements, 

thermoregulation, energy and mass acquisition and utilisation rates [40]. Size plays an 

important role with climate, as smaller individuals are generally found at lower 

latitudes where climates are warmer (Bergmann’s rule; [40, 89]).  

2. Body mass responses differ among species with different migratory strategies 

(resident, short- and long-distant migrants).  Environmental conditions can have 

stronger effects on migrants because they have a higher chance of mismatches with 

important resources [90–93]. Migratory species are also influenced by conditions in 

other areas [94]. Additionally, migrant species may be less likely to increase their body 

mass as increased fat can have strong negative effects during migrations [95].  

3. A species’ preferred habitat type could alter their physiological response to climate. 

Food availability might change if forest phenology is advanced, affecting invertebrate 

timing and availability [72,90,92]. Marshes or reeds are more stable because they grow 

throughout spring and summer [72]. Also, some habitat types might interact with 

climate by providing more refugia [90]. Forests can buffer extreme weather (i.e. windy 

conditions, shade), whereas marshland areas provide standing water but can fluctuate 

strongly with precipitation and temperature [90].  

4. Species with different longevity may adopt different trade-offs when dealing with 

climatic impacts on body mass because life-expectancy can alter strategies under poor 

environmental conditions [96]. For instance, shorter lived species may require a 

growth rate out of proportion to food availability, as species that are under time 

pressure to attain a certain size at a given time will often sacrifice future fitness by 

growing out of proportion to resource availability [97]. Long-lived species might be 

more flexible as they do not need to put on the weight as quickly. 

Site level hypotheses 
1. Body mass responses may differ between habitat types (wet or dry) as changes in 

climate can affect freshwater supplies, making it difficult for birds to hydrate [28].  

2. Population density could act as a proxy for site quality, where populations in better 

quality sites may be more resilient to changes in climate [28].  
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Statistical analyses 

We explore avian body condition responses to changes in climate using species and site-

specific sensitivity values (how strongly body condition is affected by a change in specific 

climate variables) and future projections (projected change in percent body condition by 2050 

due to all climate variables combined) based on regional climate model projections [55].   

Climate windows and signals.  

The first step was to identify which climate variables impacted body condition, and over which 

periods. For each species and climate variable we performed a climate window analysis to 

identify the time period during which the variable explained the most variation in body 

condition, using the R package climwin (Fig 1 Step 2a; [61]). This allowed us to take an 

exploratory approach, as it considers all possible combinations of consecutive days for the 

whole year (i.e. the 365 days before the end of the sampling season on the 15th August) to 

identify the ‘best’ possible window (see Appendix 3 for details). As such, all time periods over 

all seasons (i.e. summer or winter etc.) were investigated. Randomisation techniques were 

used to assess the likelihood that the best time window is actually a spurious result of 

overfitting ([44]; see Appendix 3). We added the following predictor variables to these models 

(in addition to mean climate) to account for the confounding effects of age (juvenile or adult), 

sex (if identifiable for that species), day within the season, time of capture, and the random 

effect ‘Individual ID’ (some individuals were caught repeatedly). We investigated both linear 

and quadratic relationships between climate and body condition because we had no a priori 

reason to suspect the relationships would be linear. 

As the climwin analysis tests only a single climate variable at a time, we combined the best 

windows of each climate variable into one model in order to account for the effects of multiple 

climate variables. We next included all climatic variables (grand-mean centred; and linear or 

quadratic) that were found to have a climate signal plus the baseline variables (age, sex, day 

within season, time, individual ID) into a single model explaining variation in body condition. 

For example, if a species was affected by all six climate variables, the full model would be: 

𝐵𝑜𝑑𝑦 𝑀𝑎𝑠𝑠 = 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 𝑅𝑎𝑖𝑛 + 𝑊𝑖𝑛𝑑 + 𝐷𝑇𝑅 + 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 + 𝑆𝑢𝑛𝑠ℎ𝑖𝑛𝑒 + 𝐴𝑔𝑒

+ 𝑇𝑖𝑚𝑒 +  𝑇𝑖𝑚𝑒2 + 𝑆𝑒𝑎𝑠𝑜𝑛 +  𝑆𝑒𝑎𝑠𝑜𝑛2 + 𝑆𝑒𝑥 + (1|𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝐼𝐷) 

Model selection and averaging was used to determine which climate variables were important 

and to calculate parameter estimates after accounting for the other climate variables [62]. For 

species that were found to be affected by multiple climate variables, we compared models 

with every possible combination of those climate variables, while including the climate-
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unrelated explanatory variables (age class, observed sex, time, season and individual ID) in all 

models. We subsequently excluded climate variables if they were not present in any models 

within 2 delta AICc units of the best model [62], as this would suggest that their effects were of 

low biological relevance, or if they appeared to be uninformative (“hitchhiker”) variables 

(Appendix 3 for definition; [63]). To calculate the model-averaged slope estimates for each 

site, an interaction term between the site and the climate variable was included. 

Collinearity among climate variables (defined as r>0.6) was rare; collinear climate variables 

were always kept in the same models when testing the different combinations of variables (i.e. 

both always included or excluded from the same models). In this way, the effects of the two 

correlated climatic variables were always measured together, which yields unbiased 

parameter estimates ([64]; see Appendix 3 for details). We checked whether sensitivities to 

climate variables differed substantially between juveniles and adults, and between males and 

females, however there was no strong difference between groups, thus we only present 

results for adult females (see Appendix 3 for details). All models were fitted using the lmer 

function of the lme4 package in the R statistical package [65] and the MuMIn package was 

used for model averaging and selection [66]. 

Climate Sensitivities 

In order to compare linear and non-linear responses, we calculated a measure of “sensitivity” 

to each climate variable (Fig 1 Step 2a). Our measure of sensitivity was the tangent at the 

mean climate (i.e. the first derivative of the climate regression function or the local slope 

estimate at the mean value of the climate variable of interest; Fig S6 in Appendix 3; [67]). This 

gives the change in body condition (grams) per climate unit at the mean climate, or the climate 

sensitivity in average climatic conditions. By taking the slope at the mean climate we can 

investigate projections for the near future. The mean climate was calculated across all sites 

and years. We excluded any sites that were measured solely in years in which the climatic 

conditions were above or below the mean climatic conditions over the entire study period, as 

we did not want to extrapolate beyond the available data (10 sites on average across all 

species and climate variables, ranging from 0-58 sites). In order to compare climate 

sensitivities among species that differed in body size (i.e. a change of 1 gram would be quite 

different for larger or smaller birds), we used the percent change in body condition per climate 

unit. 
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Figure 1 Conceptual diagram summarising the three main steps of the analyses: (1) identifying the 

climate variables that affect each species and over which time periods (i.e. climate windows), (2) 

quantifying species and population responses to climate, and (3) investigate inter and intraspecific 

variation in climate responses. Step 3a investigates the relative amounts of intra- and inter-specific 

variation to ask how consistent responses are and whether there is a species signal. While in step 3b, 

comparative analysis is used to test for any species or site traits (e.g. phylogenetic relatedness or habitat 

type) that explain differences among species or sites sensitivities and future projections. Steps 1 and 2 

are carried out on each species individually, while in Step 3 all species are combined. 

Future Projections 

We projected the change in percent body condition (B) by 2050 by multiplying each species’ 

sensitivity (
𝜕𝐵

𝜕𝐶𝑖
; change in condition per climate unit) with their projected exposure based on 

climate scenarios for 2050 (
𝑑𝐶𝑖

𝑑𝑇
; predicted change in climate over time). The sum across all 

climate variables gives the overall future projection estimate (
𝑑𝐵

𝑑𝑇
; change in condition over 

time due to the combined effect of all climate variables) (Eq. 1). 

𝑑𝐵

𝑑𝑇
= ∑ (

𝜕𝐵

𝜕𝐶𝑖
∗

𝑑𝐶𝑖

𝑑𝑇
)

𝑖
                    𝑒𝑞𝑛 1 
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where B represents body condition; Ci the climate variable i, and T time. We calculated future 

projections to climate change for each site. For a single climate variable, their future projection 

could be small for several reasons. A species could be highly sensitive, but have only a small 

projected change in climate by 2050 (i.e. little exposure). Similarly, high exposure with low 

sensitivity will result in small future changes. When this occurs, the climate variable will have a 

low contribution to the overall future projection for the population or species. 

Species Signal 

To determine whether a species signal exists, we quantified the amount of among- and within-

species variation in sensitivity and future projections. We ran an intercept-only mixed  

‘variance component model’ model [68] with site-specific sensitivity estimates as the response 

variable (weighted by the inverse standard error of the sensitivities), and ‘species’ as a random 

intercept term. This was performed for each climate variable separately. To estimate the 

relative amount of variation in body condition response that was due to species differences, 

we compared the ratio of the among-species variation (estimate of the variance of the random 

effect ‘species’) to the total variation (the sum of the ‘species’ and residual ‘population’ 

variance estimate) [8,11]. This ratio can also be interpreted as the intra-class correlation 

coefficient (i.e. the similarity between the climate responses of populations of the same 

species; [68]). A value close to zero suggests that among-species variation is low, while 

population variation is high, indicating that a species signal might not be present (Fig 2). 

Alternatively, a value close to one suggests that the correlation between the climate sensitivity 

of two populations of the same species was much higher than the correlation between two 

populations of different species [8].  

This method unfortunately introduces sampling variance into the residual ‘population’ 

variance estimate because it is carried out in two steps (uses model-based climate sensitivity 

estimates with varying levels of error as the dependent variable in a second model). However, 

this was unavoidable given that this analysis could not be carried out on the raw body 

condition response data due to the different climate variables, and also included linear and 

non-linear responses for each species. We took two steps to address this issue. First, each 

observed climate response was weighted by its uncertainty (1/standard error of response 

estimate) to reduce the inflating effect of sampling variance on the residual (population) 

variance. Additionally, we investigated the impact of sampling variance on response estimates 

by assessing whether a relationship existed between the number of years a site was sampled 

and how different (absolute deviation) each population was from the species mean. We 
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conducted a quadratic regression on the absolute residuals over the number of years sampled 

and found no relationship between them (within 0.04 AICc units of the null model), suggesting 

that inflating effects of sampling variance on variance components were negligible.  

 

Figure 2 Illustration of hypothetical intra-specific and inter-specific variation in sensitivities to climate. 

Plot (a) shows an example where a species signal is present. Here, the correlation between the climate 

sensitivity of two populations of the same species is much higher than the correlation between two 

populations of different species. The percentage of among-species variation explained is 64%, which 

suggests that population variation is low compared to among-species variation. Plot (b) shows an 

example where a species signal is absent. Here, the correlation between the climate sensitivity of two 

populations of the same species is lower than the correlation between two populations of different 

species (i.e. population sensitivities within a single species vary just as much as much as population 

sensitivities among different species). As such, the percentage of among-species variation explained is a 

much smaller 3%. The sensitivity estimates for each species is shown by the red points, while the black 

boxplots show the distribution of population sensitivity estimates (intraspecific or among-site variation 

in climate sensitivity). The two red vertical lines show the minimum and maximum of the species’ 

sensitivity estimates (i.e. the range of the red points). 

Species and site traits 

To investigate whether species and population traits can explain variability in responses, we 

ran a mixed model for each hypothesis (Box 2), with either sensitivities or overall future 

projections as the response variables, trait as the explanatory variable, and species as the 
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random intercept term. All models were weighted by the inverse standard error of the 

sensitivities. We compared the AICc value of each to a null (intercept only) model. Pairwise 

phylogenetic and geographic distance were related to dissimilarity in climate sensitivity (the 

absolute difference in sensitivities between two species or sites), and phylogenetic distance 

was also related to whether species were impacted by the same climate variables (i.e. whether 

both species are affected by that climate variable, or if one species is affected by that climate 

variable, but the other is not) (see Appendix 3 for details). If the relationship between 

phylogenetic (or geographic) distance and dissimilarity is positive, more closely related 

(spatially proximate) species respond more similarly to climate variables.  

Results 

Climate sensitivities 

In most bird species (39 of the 46), body condition (corrected for size) responded to at least 

one climate variable, with 34 species affected by multiple climate variables. No particular 

climate variable was clearly more important overall: out of 46 species, 19 were affected by 

temperature, 26 by rainfall, 21 by sunshine, 24 by humidity, 25 by wind and 24 by DTR (Fig 3). 

Temperature was associated with body condition in most species from early May to mid-July 

(spring-early summer), while wind speed had an effect around early January to mid-April 

(winter; Fig 3). The time periods for all other climate variables showed much less consistency. 

The majority of species showed non-linear relationships between body condition and climate: 

50% of species showed quadratic responses to humidity, 57% to temperature, 71% to DTR, 

80% to wind, 81% to sun and 92% to rain (Fig 3). The average R2 value from the final model 

averaged across all species was 0.19 (1st quartile: 0.14, 3rd quartile: 0.24). 
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Figure 3 The time periods (or climate windows) over which climatic variables affected body condition. 

Windows can potentially start from the 15th of August back 365 days before. Red and black lines show 

whether the relationship is quadratic or linear, respectively. Specific species names can be seen in Table 

S2 in Appendix 4. 

The only climate variables that showed moderately consistent responses in sensitivities across 

all species were temperature and humidity (Fig 4). Increased temperature was associated with 

a decrease in body condition for 84% (N=19) of species (on average -0.4% body condition /°C 

[95% C.I.= -0.7%, -0.2%]). Increased humidity was associated with increased body condition in 

75% (N= 24) of species (on average 0.08% body condition /% humidity [95% C.I.= 0.003%, 

0.15%]). Species sensitivities to each climate variable were not strongly correlated, as species 

that were highly sensitive to one climate variable were not likely to be highly sensitive to any 

other variables (max.|r|=0.52; Fig S2 in Appendix 4).  

Sensitivities also varied substantially within species, with responses at different sites often 

ranging from positive to negative (Fig 4). Only a few species showed consistent responses 

among sites for specific climate variables. For instance, almost all sites of the European 

greenfinch Carduelis chloris, icterine warbler Hippolais icterina and short-toed treecreeper 

Certhia brachydactyla showed positive responses to humidity. 
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Figure 4 Interspecific and intraspecific variation in future projections (a) and sensitivity (b-g) of 29 bird 

species at 80 sites. The overall species’ sensitivity (or future projections) are shown by the red points 

and lines (with standard error bars). The two red vertical lines show the minimum and maximum of the 

species’ sensitivity estimates (i.e. the range of the red points).  For each species, the intraspecific 

(among-site) variation in climate sensitivity (or future projections) is described by the black boxplots. 

Sample sizes are shown in brackets along the left side of the figure, with the first number showing how 

many sites were present followed by the average number of individuals per site per year.  
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Future Projections 

We found that 62% (N= 39) of species are projected to decrease in body condition by 2050 due 

to the combined effect of all climate variables. Future projections ranged from 5% decreases 

to 1.3% increases in body condition by 2050 across all species. However, on average, total 

body condition is projected to decrease (0.4% ±0.2 SE). Although future projection estimates 

were made up of sensitivities and exposures to all climate variables, they were mainly driven 

by temperature (Fig 5), as overall projections were highly correlated to temperature 

projections (r=0.98). The projected changes in body condition due to other climate variables 

were all small, potentially due to smaller changes in these climate variables by 2050 compared 

to temperature. 

 

Figure 5 Boxplot of the projected change in percent body condition by 2050 (total future projections) 

and the contribution of each climate variable for all species for 39 passerine species. Total future 

projections is the sum of all climate projections. 

Species signal 

Intra-specific variation (for both sensitivity and future projections) was high, such that there 

was little evidence for any species signals in body condition responses to climate. Visually, 

population sensitivities within one species varied more than species sensitivities (Fig 4). The 

variance component models supported this, as the ratio of among-species variation to total 

variation was low for sensitivity (on average 0.3% across all climate variables, ranging between 

0-1.6%) and future projections (0.0%; Table S4 in Appendix 4). This suggests that among-
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population variation was much higher than among-species variation. Such low species variance 

components mean that the correlation between the climate sensitivity (or future projections) 

of populations of the same species was no higher than the correlation between populations of 

different species. Indeed, population sensitivities often differed in their sign, meaning that 

populations of the same species often showed opposite responses (Fig 4).  

Species and site traits 

While species traits did not explain variation in species’ sensitivities and future projections, 

some variation was explained by site-level traits. Variation among species in their climate 

sensitivity or future projection was not explained by the species traits average body size, 

migration strategy, preferred habitat type or lifespan (see Tables S4 & S5 in Appendix 4 for 

model selection tables), nor by our proxy for unknown species traits, phylogenetic distance 

between species (Fig 6). Additionally, species that were more closely related did not tend to be 

affected by the same climate variables (Fig S3 in Appendix 4).  

 

Figure 6 The effect of phylogenetic relatedness on the dissimilarity in future projections and sensitivity 

of avian body condition. The top figure illustrates what the slopes in the lower figure (the y-axis) 

represent. In the top figure, we specifically show the relationship between dissimilarity and 

phylogenetic distance for future projections (grey line), where the slope of 0 reflects that each species 

had the same projections. A positive slope would indicate that more closely related species have more 
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similar responses of body condition to climate. The bottom figure summarises the slopes obtained from 

the linear regressions (slope±SE) of phylogenetic relatedness on the dissimilarity in climate sensitivity to 

each of the six specific climate variables and to future projections (where the grey dot relates to the 

grey slope in the top figure). 

The site specific trait, habitat type (wet or dry), explained variation in sensitivities to 

temperature and rainfall among sites (Fig 7). Warmer temperatures in dry habitats resulted in 

far stronger decreases in body condition compared to populations in wet habitats (which make 

up 66% of sites; Fig 7). Populations in dry habitats showed comparatively larger increases in 

body condition per mm of rainfall compared to those in wet habitats (although this model was 

only slightly better than the null model; Table S7 in Appendix 4). Habitat type did not explain 

variation in future projections, nor did our proxy for habitat quality, population density, 

explain variation in future projections or sensitivity across sites for any climate variables except 

humidity.  

 

Figure 7 The relationships between site habitat characteristics and sensitivities (±SE) for each climate 

variable. The shaded bars indicate wet habitats and the clear bars represent dry habitats. Note that the 

units for each climate variable are not comparable as the units differ. 

In only a few species, spatial proximity of sites were able to predict dissimilarity in climate 

sensitivity, with 13% (14 out of 104 species and climate combinations) of species having more 

similar sensitivities in populations that were closer together (Fig 8; Table S8 in Appendix 4). 

However, future projections were more similar in populations that were closer together for 

24% (7 out of 29) of species (Fig 8). 
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Figure 8 The distribution across species of relationships between distance (km) and dissimilarity in sites 

sensitivities and future projections. The top figure illustrates how the slopes were estimated in the 

lower figure (the y-axis). In the top figure, we specifically show the relationship between dissimilarity 

and distance (km) for future projections, where each line represents a different species. A slope of 0 

would mean that projections did not differ with distance, while a positive slope would indicate that 

closer sites were more similar. The red slopes indicate when a slope was positive and their 95% CI did 

not cross zero. The bottom figure summarises the slope estimates for each species for future projections 

and climate sensitivity for each of the six specific climate variables. There were 7 species that showed a 

significant increase for future projections, 3 species were sensitive to rain, and 2 were sensitive to all 

other climate variables. 
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Discussion 

In this study, we aimed to determine how avian body condition responds to changes in climate 

and how consistent these responses are across, and within, species. The size-adjusted body 

condition of Dutch birds was sensitive to multiple climate variables, with each of the six 

climate variables affecting about half of the species, predominantly in a non-linear way. 

Warmer temperatures were associated with decreased body condition, and higher humidity 

with increased body condition. However, responses to other climate variables varied widely in 

direction and size among both species and populations. In the future, body condition was 

projected to decline in the majority of species, primarily due to temperature effects. We found 

that sensitivities and future projections among populations of the same species were just as 

variable as responses across species, suggesting that there was no species signal in climate 

responses of avian body condition. As a predicted consequence, species traits were unable to 

explain variation in responses across species, while the local population traits habitat type and 

geographic distance could explain some of the large amount of among-site variation in climate 

sensitivity. 

Species signal 

By comparing intra-specific variation in body condition sensitivity across 80 populations to 

inter-specific variation among 39 species, we were able to quantify what ‘a lot’ of intraspecific 

variation might be. We showed that populations of a given species were almost no more alike 

than populations of different species in their climate responses, suggesting that species signals 

in body condition responses likely do not exist here. As such, looking for responses to climate 

change at a species-specific resolution could be too coarse. Instead, more focus should be on 

explaining variation in responses within-species. In contrast to our result, Rubolini et al. [5] and 

Thackeray et al. [7] found that phenological responses over time varied much more across-

species than within-species. Yet a study on plant growth response to climate by Malyshev et al. 

[6], as well as other studies unrelated to climate, show that intraspecific variation can exceed 

interspecific variation (dispersal ability of butterflies, [8]; range of traits of freshwater fish, 

[11]). An important question therefore seems to be, why is there a species signal in some 

response types, such as phenology, but not in others? Only with more research into when such 

species signals occur for a range of different types of climate responses will we be better able 

to generate and test potential explanations.  
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Species and site traits 

Understanding more about how climate change responses vary across populations and species 

and which species and populations are most at risk is vital. This knowledge will not only help to 

identify the underlying mechanisms, but is also important for improving the accuracy of our 

predictions [6], such as those from climate change vulnerability assessments [25,69]. A weak 

species signal suggests that species-specific traits will be of little use in explaining responses to 

climate [5]. As such, species traits (including our proxy for unknown traits, phylogenetic 

distance) did not explain variation in body condition sensitivities to climate or future 

projections. The current focus in the literature on identifying species life history traits that can 

explain climatic responses [e.g. 1–3], is potentially misplaced if the amount of intra-specific 

variation has not been quantified (as is the situation most of the time) and the average species 

response is unrepresentative of most individual population responses [5]. 

The fact that responses varied among sites indicates that local external factors are important 

(e.g. micro-refugia, habitat quality, resource availability), or that populations themselves may 

differ in their responses (due to genetic, behavioural or plastic differences). For instance, there 

was no temperature effect on body condition in wet habitats, suggesting that the overall effect 

of temperature seems to have been driven by dry habitats. Wet habitats might lessen the 

direct effects of hot weather through hydration or the opportunity for bathing in available 

standing water, as populations in dry habitats showed much stronger declines in body 

condition in hot temperatures than those in wet habitats [70,71]. Alternatively, the effects 

could work indirectly through food availability. Food abundance fluctuates more strongly in 

woodland and scrub habitats with warmer temperatures (i.e. dry habitats), as they tend to be 

less stable than marshes (i.e. wet habitats) [72]. Aubry et al. [28] also found habitat type to be 

an important predictor of body condition sensitivity to temperature, suggesting that it may 

more generally have an important role in modulating body condition responses to climate.  

Substantial intra-specific variation in responses to environmental change could have important 

ecological effects [10]. If declining body condition has negative consequences for survival and 

population growth, for example, then in line with the portfolio effect, variation in body 

condition responses among populations could counteract the overall effects at higher levels. 

Indeed, species distribution models show much less severe projections when they take 

intraspecific variation into account [22]. Somero [73] suggested that populations could be 

locally adapted, with different genetically determined thermal optima and tolerance limits [see 

also 74]. If such population variation is heritable this could provide a potential buffer against 
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species extinction [23]. Consequently, the degree of intraspecific consistency has important 

implications for predicting future projections of species to climate change [5].  

Is temperature the main climatic driver? 

In line with previous studies [28–30,34,41], we have shown that warmer temperatures 

generally resulted in decreased body condition. Temperature was found to be affecting body 

condition during spring, suggesting that cold winters are not important for body condition 

during the breeding season for these species living in the temperate climate of the 

Netherlands. Additionally, we have shown that higher humidity generally resulted in higher 

body condition. However, as this has not been investigated previously, other studies are 

needed to establish whether this is a general pattern in birds. 

The majority of the literature—on climate change ecology generally, and on body size in 

particular—only investigates the effects of temperature, yet we found that all six climate 

variables were important.  However, with the exception of temperature and humidity, there 

were no clear trends across species and the time periods that were associated with the 

strongest changes in body condition differed substantially (with the exception of temperature 

and wind speed). Therefore, despite the fact that many species are sensitive to changes in 

these climate variables, their responses differ substantially. Even populations of the same 

species differ substantially. It is possible that these associations are not real. However, given 

how conservative our method to avoid false-positives was and the fact that so many species 

show associations we do not believe this is likely. Rather, it is possible that only once we have 

a better understanding of the underlying mechanisms will we be able to tease apart these 

different responses. In the same way that populations in dry habitats showed different 

responses to temperature, other unknown local factors could be further influencing these 

patterns.  

Despite all six climate variables being found to be important climatic drivers of body condition, 

from a future projections perspective to climate change, temperature was found to be the key 

variable. By combining the sensitivity estimates of species and populations with exposure (i.e. 

add the change in mass per climate unit with the projected change in climate) we were able to 

project for the first time how avian body condition might change in the near future. Most 

species were projected to decrease their body condition by 2050, driven mainly by 

temperature effects. All other climate variables were less important in determining species’ 

future projections either because they were less sensitive to these climate variables, or 

because these variables are projected to change less strongly than temperature. Overall, the 
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current focus in the literature on temperature may actually not be as problematic as first 

thought, despite the fact that body condition may be sensitive to other climate variables.  

Statistical issues 

We performed the first comparative study on body condition responses that investigated 

multiple climate variables and allowed different time periods to impact different species in 

linear or non-linear ways. This high level of detail introduces a level of complexity that restricts 

options for integrative analyses and also makes interpretation more difficult. However, it also 

includes biological realism that other studies might be missing. For instance, we found that the 

majority of responses to climate variables were non-linear, and different species were found to 

be impacted by different combinations of climate variables. The fact that body condition was 

affected by different climate variables and that different species exhibited different response 

curvatures meant that the analysis comparing the within- versus among-species variation was 

not able to be carried out in one single combined analysis based on the individual 

observations. Instead, we first estimated the climate sensitivity of each population for each 

species separately and subsequently analysed the climate sensitivity of all populations and 

species in a subsequent model. Such multi-step procedures (see Fig 1) are not ideal as they 

introduce issues with propagation of uncertainty (e.g. due to sampling variance among 

populations), which we tried to alleviate by weighting climate sensitivities by their standard 

errors and checking for dependencies of their variance on sample size.  

Although we took several steps to avoid false positives in our climate window selection, it is 

possible that some windows could still be identified as the best model by chance. Such false 

windows could disrupt the detection and explanation of among-species variation. This is 

inevitable in any study that compares multiple models and species, as all analyses that test a 

high number of models will face this problem. However, many studies do not even consider 

the possibility that there is no climate signal, nor do they account for multiple testing of the 

many potential windows tried [44].  

We investigated the local climatic conditions for all migratory and non-migratory species, 

which could potentially mean that windows were selected during times which migratory 

species may not be present. In such cases, local conditions could be correlated with their 

overwintering habitats, for instance if local weather reflects wide-spread conditions due to 

large-scale oceanic climate indices such as the North Atlantic Oscillation Index [75]. If this is 

not the case, it is more likely that species sensitivities are occurring via climate effects on 

habitat quality in the breeding areas. However, the migration strategy of the different species 
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did not explain any differences in sensitivities, suggesting that perhaps the underlying 

mechanisms acting on body condition do not differ drastically among migratory and non-

migratory species. 

Conclusions 

The fact that body condition sensitivities to climate varied so substantially among populations 

of the same species draws attention to the need for researchers to investigate variation within 

species, and not just to assume that a species-level response will be representative. Given that 

there are now two studies showing weak species signals in body condition, mass or growth ([6] 

and this study) and two studies showing strong species signals for phenological changes with 

climate [5,7], other comparative analyses are needed to better understand how frequently 

species signals are occurring and how this may vary among traits. This is particularly needed 

for other key traits such as physiology or offspring sex ratio, or vital rates such as survival and 

reproduction. The absence of a species signal in the climate sensitivity of vital rates 

determining population growth, for instance, would be problematic for conservation 

prioritisation. Climate change vulnerability assessments based solely on species traits would be 

inadequate, while intraspecific traits such as habitat type might be more useful. Accurate 

predictor variables need to be identified if we are to improve conservation management 

planning, especially given that almost all species were projected to decrease in body condition 

by 2050.  
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Appendix 3 - Methods 

Data 

 

Figure S1 Map of the Netherlands with all study sites (indicated by the red dots). 

Data selection 

For data selection we removed observations in which (i) measurements seemed highly likely to 

be mistakes, (ii) the bird had died, and (iii) crucial parameters were not recorded (i.e. missing 

body mass, wing length, date of capture, or age-class). Before conducting any of our analyses, 

we first removed any extreme values that we deemed as highly likely to be mistakes in the 

data (e.g. typos; it was not uncommon to find values orders of magnitude out from the main 

distribution). We used a two-step process to remove any suspicious data points in a 

standardised way. Firstly, for each species, we calculated where the inner 68.27% of the data 

lay from the median (approximately 1 standard deviation; i.e. 34.13% of the data on either 

side of the median) and then extrapolated in both directions to 3 standard deviations (99.7%). 

Any data points that were outside of this 99.7% region were considered extreme values and 

were removed. This method of identifying extreme values is preferable to using the mean and 

standard deviation, since it is unaffected by the extreme values or skews in the distribution. 

Secondly, we conducted a regression with body mass as the response variable and wing length 
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as the explanatory variable. Any residuals that were outside of 3 standard deviations 

(calculated in the same way as above) were removed. This step identified any potential 

mistakes that would not have been recognised independently, for instance, a bird with small 

wing length that is very heavy or large wing length that is extremely light. Although it is 

possible that we could have potentially removed real values, we decided that it was more 

important to be certain that those values that we do use in our analysis were real. Several 

species did not have any data collected in the year 2002. 

Table S1 Species removed due to low sample sizes. These species’ sample sizes were too small for the 

model to converge in the R package climwin. 

Common Name # Individuals Years 

Barn swallow  638 20 

Coal tit 120 14 

Common redpoll 53 7 

Eurasian penduline tit 105 15 

Great reed warbler 65 19 

Meadow pipit 151 17 

Sand martin 16 8 

Western yellow wagtail 35 9 
 

Climatic data 

Table S2. CES site and weather station coordinates and the distances between the two. 

CES Site 
Lat (CES) Long (CES) 

Weather 
Station 

Lat (Stn) Long (Stn) Distance (km) 

C01 52.61 5.90 273 52.70 5.89 10.1 

C02 52.45 5.82 269 52.46 5.53 20.3 

C03 52.34 4.52 240 52.30 4.77 17.7 

C04 52.54 6.47 278 52.44 6.26 18 

C05 53.21 5.44 270 53.23 5.76 21.2 

C06 53.11 4.79 235 52.92 4.79 20.3 

C07 53.20 6.80 280 53.13 6.59 16.8 

C08 52.33 5.16 265 52.13 5.27 23.7 

C09 52.91 5.83 273 52.70 5.89 23.9 

C10 51.85 5.12 356 51.86 5.15 1.9 

C11 52.61 5.64 269 52.46 5.53 18.2 

C12 51.57 4.90 350 51.57 4.93 2.1 

C13 53.04 5.40 267 52.90 5.38 15.8 

C14 52.54 4.83 249 52.64 4.98 15.6 

C15 53.26 4.95 251 53.39 5.35 30.9 

C16 51.69 4.47 344 51.96 4.44 29.8 

C17 52.23 6.61 283 52.07 6.65 17.3 
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C18 52.28 6.52 283 52.07 6.65 24.8 

C19 52.29 6.09 278 52.44 6.26 20.5 

C20 52.63 6.08 273 52.70 5.89 15.5 

C21 52.42 5.23 269 52.46 5.53 20.4 

C22 52.53 6.46 278 52.44 6.26 16.6 

C23 51.83 5.93 375 51.66 5.71 24.5 

C24 52.85 5.44 267 52.90 5.38 6.2 

C25 51.84 5.96 275 52.06 5.89 25.1 

C26 52.44 6.88 290 52.27 6.90 18.5 

C27 51.34 5.79 377 51.20 5.76 16.1 

C28 52.42 4.56 240 52.30 4.77 19.7 

C29 51.44 5.24 370 51.45 5.41 12.4 

C30 51.84 4.39 344 51.96 4.44 13.4 

C31 52.14 4.33 210 52.17 4.42 6.8 

C32 52.31 5.21 265 52.13 5.27 20.5 

C33 53.33 6.42 277 53.41 6.20 16.9 

C34 53.07 5.33 267 52.90 5.38 19.4 

C35 52.86 6.00 273 52.70 5.89 19.1 

C36 52.31 6.13 278 52.44 6.26 16.9 

C37 51.57 3.57 310 51.44 3.60 14.2 

C38 52.27 6.47 278 52.44 6.26 23.7 

C39 53.04 4.74 235 52.92 4.79 13.2 

C40 51.65 4.77 350 51.57 4.93 14.7 

C41 53.33 6.43 277 53.41 6.20 17.8 

C42 52.81 6.42 279 52.75 6.58 12.6 

C43 52.91 5.03 235 52.92 4.79 16.3 

C44 52.86 5.88 273 52.70 5.89 17.5 

C45 53.31 6.05 277 53.41 6.20 14.7 

C46 53.46 5.66 251 53.39 5.35 21.8 

C47 53.21 6.03 270 53.23 5.76 18.8 

C48 51.90 5.12 356 51.86 5.15 4.9 

C49 52.54 5.95 273 52.70 5.89 18.7 

C50 52.57 6.15 278 52.44 6.26 16.9 

C51 51.35 6.13 391 51.50 6.20 17.4 

C52 51.36 5.49 370 51.45 5.41 11.2 

C53 52.14 5.09 260 52.10 5.18 7.6 

C54 53.20 6.59 280 53.13 6.59 8 

C55 52.27 5.48 265 52.13 5.27 20.9 

C56 51.97 4.69 348 51.97 4.93 16.4 

C57 53.44 6.87 286 53.20 7.15 32.6 

C58 53.41 6.22 277 53.41 6.20 1.9 

C59 52.22 6.55 283 52.07 6.65 17.5 

C60 51.51 5.84 375 51.66 5.71 18.8 

C61 52.33 5.16 265 52.13 5.27 23.7 

C62 53.48 6.16 277 53.41 6.20 8.3 

C63 51.91 6.03 275 52.06 5.89 20 
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C64 51.87 6.08 275 52.06 5.89 25 

C65 51.96 5.74 275 52.06 5.89 15.4 

C66 52.52 4.91 249 52.64 4.98 14.8 

C67 52.53 6.15 278 52.44 6.26 12.7 

C69 52.42 5.23 269 52.46 5.53 20.3 

C70 52.29 5.53 269 52.46 5.53 18.3 

C71 53.28 6.00 270 53.23 5.76 17.4 

C72 51.82 5.94 375 51.66 5.71 24.2 

C73 53.17 6.70 280 53.13 6.59 9 

C74 52.37 5.58 269 52.46 5.53 10.4 

C75 52.81 4.69 235 52.92 4.79 14.3 

C76 53.04 6.04 270 53.23 5.76 28.6 

C77 53.31 6.89 286 53.20 7.15 21.5 

C78 52.57 6.14 278 52.44 6.26 16.8 

C79 52.16 6.26 275 52.06 5.89 27.6 

C81 51.55 5.03 350 51.57 4.93 7 

C82 53.48 6.18 277 53.41 6.20 8.4 

C83 52.63 6.47 279 52.75 6.58 14.7 

C84 53.44 6.87 286 53.20 7.15 32.6 

C85 52.31 5.20 265 52.13 5.27 20.6 

C86 52.17 6.10 275 52.06 5.89 18.9 

C87 51.98 5.66 275 52.06 5.89 18.2 

C88 53.10 5.39 267 52.90 5.38 22.7 

A small number of the daily measurements at some weather stations were missing; such 

potential windows were excluded in the climate window analysis. 
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Figure S2 Variation in mean spring temperature among the different weather stations. Here, we show 

annual mean spring temperatures for each weather station over the course of the study period. This 

shows that temporal variation within sites is larger than the spatial variation among sites.  

Species and site trait data 

Adult life-expectancy was calculated as 
1

1−𝑚𝑒𝑎𝑛 𝑎𝑛𝑛𝑢𝑎𝑙 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙
 for the span of the study. Each 

habitat category (Urban, Woodland, Wet, Open) was coded as a separate dummy variable (0 

or 1) because each species could potentially be found in multiple habitat types. Habitats were 

assigned to each species based on Mullarney et al. (2000), however we condensed the number 

of potential habitat types in the following way: 

 Urban: parks, gardens, farmland, human habitation and orchards 

 Woodland: woods, scrubby areas, open woodland, mixed woods, coniferous forest, 

bushy areas, open forest, deciduous woods and upland birch forest 

 Wet: reedbeds, lowland lakes, swampland, rivers and lakes, coastal heaths and wet 

ground 

 Open: heaths and commons 

Statistical analyses 

Climate windows and signals 

The R package climwin (Bailey & van de Pol 2015) was used to find the time period during 

which the mean of each of the six climatic variables explained the most variation in body 

condition for each species. Because we were most interested in identifying the periods over 

which these climatic variables affected body condition, we were looking for fixed windows (i.e. 

all individuals were assumed to be affected by climate over the same time period) rather than 

variable windows (time windows that are relative to the timing of expression or measurement 

of a trait for each individual) (van de Pol et al., 2016). The climwin analysis calculates the mean 

of the daily climate estimates for each site per year over the specific period being tested (e.g. 

mean of all days in May) and conducts a linear regression with this mean climate as the 

predictor variable and body condition as the response variable. The AIC model fit value is used 

to compare each regression model to a null model without climate (thereby providing an 

indication of how much better the model with those mean climate estimates is to one without 

climate at all). This is repeated until all possible combinations of consecutive days have been 

tested.  
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We first determined a baseline model structure without climate effects. The baseline model 

takes into account the age of individuals (juvenile or adult; where juveniles are first years and 

adults are older than 1 year), a quadratic effect of weighing time (minutes since midnight) and 

a quadratic effect of the time in the season (number of days since 1st April). Individual ID was 

included as a random effect to account for non-independence of those birds that were 

captured multiple times. Unfortunately, we could not include both Site ID and Individual ID as 

a random effect because most species did not have large enough sample sizes to deal with 

such a complex model. Individual ID was chosen to remain in the model (rather than Site ID) 

because it explained more variation. The baseline model was the same for all species with the 

exception that sex (male, female or unknown) was only included for those species that could 

be accurately sexed in the field. 

Table S3 The 12 models analysed for each species using the climwin function. 

 Model 

1 Body condition ~ mean temperature + baseline 

2 Body condition ~ mean rainfall + baseline 

3 Body condition ~ mean wind speed + baseline 

4 Body condition ~ mean humidity + baseline 

5 Body condition ~ mean % sunshine + baseline 

6 Body condition ~ mean DTR + baseline 

7 Body condition ~ mean temperature^2 + baseline 

8 Body condition ~ mean rainfall^2 + baseline 

9 Body condition ~ mean wind speed^2 + baseline 

10 Body condition ~ mean humidity^2 + baseline 

11 Body condition ~ mean % sunshine^2 + baseline 

12 Body condition ~ mean DTR^2 + baseline 
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Reducing False Positives 

When testing so many models, the chances of spurious results are high (van de Pol et al., 

2016). We took two steps to reduce the chances of getting false positives (type I errors). 

Firstly, we excluded short windows that we deemed unlikely to be biologically plausible. 

Windows that were shorter than 5 days were excluded, and windows less than 15 days for if 

they were further than 60 days before the sampling season starts (on the 12th April; i.e. long-

term windows). Such short windows are biologically less plausible and are often incorrectly 

selected as best windows by chance (van de Pol et al., 2016).  

Secondly, we performed a formal randomisation analysis to determine if climate windows 

were likely to be false positives. If the randomisation analysis suggested that the best fitted 

model was likely a true positive, this window was added into the baseline model and the 

climwin analysis was rerun to check whether any second climate signal window was present 

after accounting for the best window. If it suggested that the best model was likely only due to 

chance, that species was not considered to show a climate signal, meaning that body condition 

was not considered to be affected by that climate variable. The randomisation analysis 

determined a highly conservative cut-off AICc value (see below), above which time windows 

were considered to be false positives. To quantify the likelihood of obtaining strong model 

support by chance we randomised the data and analysed the distribution of ‘best’ AICc values. 

Rather than carrying out multiple randomisations for each species, due to constraints with 

computational time, we carried out three randomisations on a subset of 15 species (Table S4).  
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Table S4 Subset of species selected and their sample sizes (total number of individuals and total number 

of years captured) used in the randomisation analysis. 

 Common Name # Individuals Years 

1 Common blackbird 5817 20 

2 Common chaffinch 1511 19 

3 Common chiffchaff 15089 20 

4 Common grasshopper warbler 1182 20 

5 Common Kingfisher 177 13 

6 Common linnet 969 19 

7 Eurasian jay 232 18 

8 Eurasian nuthatch 127 17 

9 European crested tit 380 19 

10 European goldfinch 431 16 

11 European pied flycatcher 358 19 

12 Great tit 10720 20 

13 Lesser whitethroat 1594 20 

14 Marsh tit 299 18 

15 Marsh warbler 5197 21 

 

The same climwin analyses were carried out three times on the randomised data for each 

climate variable and for linear and quadratic responses (i.e. 6 climate variables x 2 responses 

types x 3 replications = 36 randomised analyses per species). The AICc values from the best 

model were recorded from each randomisation. These values were then used to determine 

what the AICc cut-off would be, whether this cut-off value should be different for each climate 

variable, for linear or quadratic responses and for different species (with different sample 

sizes). 

Should the AICc cut-off value differ between climate variables? 

Using the best model AICc values from the randomised analyses, we found a small difference 

between the best model AICc values among climate variables (Fig S3a). A linear model with 

climate variables as the explanatory variable and ‘best model AICc’ as the predictor variable 

was 6.3 AICc units better than the null model (intercept only model). However, the mean best-

model AICc only ranged from -7.5 to -5.3 AICc units across the different climate variables, 

suggesting that although the randomised AICc values did differ among climate variables, this 

difference was small. 
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Figure S3 Best model delta AICc values from the randomisation analysis. Here, we show an overview of 

how the best-model AICc values from randomised climwin analyses vary with (a) climatic variables, (b) 

linear or quadratic responses to climate variables, (c) differing numbers of total captures of individuals, 

and (d) differing numbers of years with observations.  

2. Should the AICc cut-off value differ between linear and quadratic responses in body 

condition? 

We found that there was no difference between the randomised best model AICc values 

among linear or quadratic response types (Fig S3b).  A linear model with curvature (linear or 

quadratic as categorical variables) as the explanatory variable and ‘best model AICc’ as the 

predictor variable was within 2 AICc units of the null model (intercept only model).  

3. Should the AICc cut-off value differ among species with different sample sizes? 

Overall sample size (total number of individuals caught; Fig S3c) and the number of years (Fig 

S3d) had no effect on the randomised best-model AICc values. Both models were within 2 AICc 

units of the null model. 

As we found little evidence suggesting that the best-model AICc values from the random data 

differed, we decided to use a single cut-off value for all climate variables, linear and quadratic 

responses, and species (even over a range of years and sample sizes). The majority of the 
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randomised best model AICc values fell between 0 and -10, with a mean AICc value of -6.6 (Fig 

S4). In order to keep our cut-off value conservative, we chose to assign a value of -14.5. This 

value was 2 standard deviations lower than the mean (standard deviation = 3.9). This 

conservative cut-off value also reduces any potential for differences in false positive rates 

among climate variables. If AICc values from the real analyses were higher than the cut-off 

value they were not considered a real window. This decision will mean that we will be rejecting 

some ‘real’ climate windows, but we felt that it was more important to be certain that those 

windows that we do accept as being correct are as likely as possible to be real (true positives). 

 

Figure S4 Frequency of the best model AICc values from the randomised data across all species and 

climate variables. 

When the best window’s AICc value was below the cut-off value, then the best model was 

added into the baseline model and the climwin analysis was run a second time to check 

whether any additional windows were present after accounting for the best window. If a 

second window was found, but the critical time period overlapped with the first window, then 

we discarded the second window and focused on the first window only. To determine whether 

the body condition response was linear or non-linear, the model with the best AICc value was 

selected. However, if the best AICc value was within 2 AICc units of one another then we 

selected the linear response.  

Model Selection and Averaging 

Model selection and averaging was used to determine which climate variables were important 

and to calculate parameter estimates after accounting for the other climate variables. We 

adopted an Information-Theoretic approach to quantify and rank the models based on the 

different climate variables (Burnham and Anderson, 2002). Climate variables were considered 

hitchhikers and were subsequently removed from the model set if they met two requirements, 
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(1) the addition of the climatic variable did not improve the model by > 2 AICc units (i.e. it does 

not occur in the best model but does occur in a model that is within 2 AICc units of the very 

best model) (Arnold, 2010), and (2) if their relative importance was less than 0.5 (w+) (K. 

Burnham and Anderson, 2002). We used the function ‘importance’ from the package 

AICcmodavg. 

Climate variables were rarely correlated, but when this did occur, collinear climate variables 

were always kept in the same models when testing the different combinations of variables (i.e. 

both always included or excluded from the same models)(Freckleton, 2010). This allows the 

effects of the two climate variables, which are essentially indistinguishable, to be measured 

together and contrasted with the other models. If one variable was to be removed from the 

model, we would run the risk of systematically over or under-estimating the remaining 

variable depending on the sign of the correlation between the predictors (Freckleton, 2010). 

For example if rainfall and temperature were negatively correlated (hot conditions associated 

with low rainfall) and low rainfall increased body condition while high temperatures decreased 

body condition, then removing, say rainfall, would result in an under-estimated slope value of 

the effect of temperature on body condition (Freckleton, 2010).  

Once the final climatic variables had been identified we calculated model-averaged slope 

estimates for each of the sites (or populations). By combining all of the important climate 

variables into the final model, we can account for their effects when calculating body condition 

responses. Model averaging uses the average of the parameter estimates from each candidate 

model, weighted by its Akaike weight (Freckleton, 2010). The reference categories used for the 

categorical variables were adult (as opposed to juvenile) and (if the species could be sexed) 

female (as opposed to male) (see Age and Sex Difference section below). Climate variables 

were all mean centred. Standardised model-averaged slope estimates were also calculated by 

dividing the mean centred climate variables by their standard deviation. To calculate the 

model-averaged slope estimates for each site, an interaction term between the site and the 

climate variable was included. This analysis was run for every site and climate variable 

separately to make sure that the number of parameters in the model remained low enough 

that the model could converge. In this way, sensitivity estimates along with their standard 

errors for all relevant climate variables were calculated for every site. 

Age and Sex Differences 

We investigated whether responses to each of the climate variables differed between adults 

and juveniles, and males and females. Only 40 of the 181 species by climate variable 
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combinations were found to have an interaction term between age and climate that improved 

the original model (when looking at the model-averaged slope estimates, not sensitivity 

values), and 13 of the 83 species by climate variable combinations were found to have an 

interaction term between sex and climate. This suggests that the majority of responses to 

climate are similar among sex and age groups. We also calculated the sensitivity estimates 

(rather than the slopes) of the adults and juveniles, and males and females (by including the 

interaction term between age or sex and climate). We compared these sensitivity estimates to 

the original sensitivity estimates (without the interaction) to see how well correlated they 

were. Adult sensitivities (from the interaction) were extremely strongly correlated to the 

original sensitivity values, suggesting that there was no overall difference between those 

values estimated with an interaction term and those without (Fig S5a). We also found 

moderate correlation between the adult and juvenile sensitivities (Fig S5b). This suggested that 

adults and juveniles have very similar responses (i.e. interactions were sometimes significant, 

but their effect size was weak). The sensitivity estimates of females also closely correlated to 

the original sensitivities (Fig S5c). The correlation between male and female sensitivities was 

very strong (Fig S5d), suggesting that males and females have very similar sensitivities to 

climate. 
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Figure S5 Correlation in sensitivities between groups. Shows the correlations between (a) the original 

sensitivities (i.e. sensitivities without an interaction between age and climate) and adult interaction 

sensitivities (i.e. sensitivity values for adults with an interaction between age and climate), (b) between 

juvenile interaction sensitivities and adult interaction sensitivities (i.e. sensitivity values for juvenile and 

adults, respectively, with an interaction between age and climate), (c) the original and female 

sensitivities and (d) female and male sensitivities. 

Climate Sensitivities 

Our measure of sensitivity was the tangent at the mean climate (i.e. the first derivative of the 

climate regression function or the local slope estimate at the mean value of the climate 

variable of interest; Fig. S5). 



 ____________________________________________________________________ Chapter 2 

105 

 

Figure S6 Illustration of how the sensitivity estimate is calculated for a non-linear response between 

body mass and temperature. The black slope shows the non-linear relationship for a species, and the 

red linear slope shows the sensitivity estimate, i.e. the tangent at the mean. The histogram shows the 

distribution of mean annual temperature values (i.e. the range of temperatures experienced over the 

study period) mean centred such that 0 is the mean temperature. 

Climate Vulnerabilities 

We calculated seasonal projections (Winter (December-February), Spring (March-May), 

Summer (June-August) and Autumn (September-November)) based on Royal Netherlands 

Meteorological Institute’s predictions. There currently are no predictions for how the levels of 

sunshine are expected to change in the future under climate change scenarios.  

Species and site traits 

We generated matrices of phylogenetic distances between species (distances are directly 

proportional to time [millions of years ago]) for each tree so that our results were independent 

of the tree used (Fig S7). Dissimilarity in climate sensitivity was calculated as the absolute 

difference in the climate response estimates between two species. We calculated pairwise 

dissimilarities and their standard errors by generating 1,000 data points centred on the 

sensitivity value with a distribution equal to its standard error (i.e. bootstrapping). We then 

calculated the differences between all 1,000 data points, with the final dissimilarity value 
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between two sites calculated as the mean, and the standard error derived from the standard 

deviation of the differences.  

 

 

Figure S7 Phylogenetic tree (from one of the 1000 trees) showing relatedness among species.  

For the analysis, the pairwise dissimilarities in sensitivity estimates among each of the species 

were squared to improve adherence to the assumption of a normal distribution and to stop 

the estimates from being negative numbers (the values of dissimilarity cannot fall below 0). 

We used the ‘lmer()’ function from the R-package ‘lme4’ (Bates et al., 2015). Both species 

identities in each pairwise dissimilarity value were included as a random effect in the model to 

account for the non-independence among values (i.e. as species 1 is compared to species 2 

and 3 etc. these values are non-independent).  

For the second analysis investigating whether more closely related species are impacted by the 

same climate variables, we carried out logistic regression using the ‘glmer’ function from the R 

package ‘lme4’. Dissimilarity in climate signal was scored by comparing whether two species 

were both affected (or both unaffected) by the same climate variable (same=0, different=1).  

The analysis for spatial distances was carried out similarly to the phylogenetic distances. The 

two site identities of the pairwise comparison were included as random effects and the 

dissimilarities were squared to improve adherence to the assumption of normality. We used 

the ‘lmer()’ function from the R-package ‘lme4’ (Bates et al., 2015). 
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Appendix 4 - Results 

Climate windows and signals 

No particular climate variable was clearly more important overall: 19 out of 46 species were 

affected by temperature, 26 by rainfall, 21 by sunshine, 24 by humidity, 25 by wind and 24 by 

DTR (Table S1). 

Table S1 Importance values, calculated as the sum of ‘Akaike weights’ over all models, for each climate 

variable in the final model for each species. Variables are represented by NA if they did not have any 

windows below the cut-off value or were subsequently removed as they appeared to be hitchhiker 

values. The sexed column shows which species were able to be accurately sexed, and therefore which 

species had sex differences included in the models. Temp is temperature, DTR is the climate variable 

daily temperature range. 

 Common name Species name 
Tem

p 
Rai
n 

Sun 
Hum

id 
Win

d 
DTR Sex 

1 Bearded reedling 
Panurus 
biarmicus 

0.55 0.57 NA 1.00 0.92 0.92 yes 

2 Bluethroat Luscinia svecica NA 1.00 0.92 0.64 0.98 1.00 yes 

3 Common blackbird Turdus merula 0.87 NA 0.57 0.61 1.00 1.00 yes 

4 Common chaffinch Fringilla coelebs 0.68 0.99 NA 0.65 NA NA yes 

5 
Common 
chiffchaff 

Phylloscopus 
collybita 

0.56 1.00 0.73 0.91 1.00 1.00 no 

6 

Common 
grasshopper 
warbler 

Locustella 
naevia 

NA NA 0.98 NA 0.96 0.84 no 

7 Common linnet 
Carduelis 
cannabina 

0.56 1.00 NA NA 1.00 0.46 yes 

8 Common redstart 
Phoenicurus 
phoenicurus 

0.81 NA 0.84 0.77 NA NA yes 

9 
Common reed 
bunting 

Emberiza 
schoeniclus 

1.00 0.97 0.98 1.00 1.00 0.51 yes 

1
0 

Common starling Sturnus vulgaris 0.94 0.99 1.00 0.93 0.92 NA yes 

1
1 

Common 
whitethroat 

Sylvia communis NA 0.81 0.97 0.99 NA 0.75 yes 

1
2 

Dunnock 
Prunella 
modularis 

0.85 0.94 NA 0.63 0.91 NA no 

1
3 

Eurasian blackcap Sylvia atricapilla 1.00 0.92 NA 0.89 0.89 NA yes 

1
4 

Eurasian blue tit 

Cyanistes 
caeruleus 
formerly Parus 
caeruleus 

NA 0.99 0.89 0.78 1.00 1.00 no 

1
5 

Eurasian bullfinch 
Pyrrhula 
pyrrhula 

1.00 NA NA 0.99 NA 0.63 yes 

1
6 

Eurasian jay 
Garrulus 
glandarius 

NA 0.98 NA 0.95 0.90 NA no 

1
7 

Eurasian reed 
warbler 

Acrocephalus 
scirpaceus 

1.00 0.99 1.00 1.00 NA 1.00 no 
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1
8 

Eurasian tree 
sparrow 

Passer 
montanus 

0.58 NA NA NA 0.53 0.90 no 

1
9 

Eurasian wren 
Troglodytes 
troglodytes 

0.53 0.99 0.84 NA 0.77 1.00 no 

2
0 

European crested 
tit 

Lophophanes 
cristatus, 
previously Parus 
cristatus 

NA 0.84 NA 0.87 0.99 0.92 no 

2
1 

European 
goldfinch 

Carduelis 
carduelis 

NA 1.00 NA 0.99 NA NA yes 

2
2 

European 
greenfinch 

Carduelis chloris NA 0.72 NA 0.94 NA 0.97 yes 

2
3 

European pied 
flycatcher 

Ficedula 
hypoleuca 

NA NA NA NA 0.80 0.99 yes 

2
4 

European robin 
Erithacus 
rubecula 

0.99 0.57 0.89 NA 1.00 NA no 

2
5 

European 
stonechat 

Saxicola 
torquata 
rubicola 

NA NA 0.51 0.79 0.71 0.82 yes 

2
6 

Garden warbler Sylvia borin NA NA NA NA NA 1.00 no 

2
7 

Great tit Parus major NA 1.00 0.89 0.69 1.00 0.57 yes 

2
8 

House sparrow 
Passer 
domesticus 

0.89 NA NA NA 0.92 0.96 yes 

2
9 

Icterine warbler 
Hippolais 
icterina 

NA NA NA 1.00 NA NA no 

3
0 

Long-tailed tit 
Aegithalos 
caudatus 

0.99 0.93 0.58 NA 1.00 NA no 

3
1 

Marsh tit Poecile palustris  NA NA 1.00 NA NA NA no 

3
2 

Marsh warbler 
Acrocephalus 
palustris 

NA NA 0.98 0.97 0.99 NA no 

3
3 

Sedge warbler 
Acrocephalus 
schoenobaenus 

NA 1.00 1.00 NA 0.89 1.00 no 

3
4 

Short-toed 
treecreeper 

Certhia 
brachydactyla 

0.98 1.00 0.74 0.55 NA NA no 

3
5 

Song thrush 
Turdus 
philomelos 

NA 0.98 0.78 NA NA 0.99 no 

3
6 

Spotted flycatcher 
Muscicapa 
striata 

NA 1.00 NA NA NA NA no 

3
7 

Tree pipit Anthus trivialis NA 0.97 NA NA 0.77 NA no 

3
8 

Willow tit Parus montanus NA NA NA NA NA 1.00 no 

3
9 

Willow warbler 
Phylloscopus 
trochilus 

1.00 1.00 0.64 0.78 1.00 1.00 no 

4
0 

Common 
nightingale 

Luscinia 
megarhynchos 

NA NA NA NA NA NA no 

4
1 

Eurasian nuthatch Sitta europaea NA NA NA NA NA NA yes 

4
2 

Goldcrest Regulus regulus NA NA NA NA NA NA yes 

4
3 

Great spotted 
woodpecker 

Dendrocopos 
major 

NA NA NA NA NA NA yes 

4
4 

Lesser whitethroat Sylvia curruca NA NA NA NA NA NA yes 
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4
5 

Savi's warbler 
Locustella 
luscinioides 

NA NA NA NA NA NA no 

4
6 

White wagtail Motacilla alba NA NA NA NA NA NA yes 

 

 

Figure S1 Model averaged slope estimates for the climate impacts on body mass. Each line shows the 

relationship between climate and body mass for a different species. The histogram shows the 

distribution of mean annual climate values (i.e. the range of climate experienced over the study period).  
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Table S2 Climate windows for all species. Blank spaces indicate where those climate variables had no 

effect on body condition. From and till indicate the earliest and latest dates of the windows, 

respectively. Italicised dates indicate secondary windows. Temp is temperature and CTR is daily 

temperature range. The I.D. refers to the Species I.D. in Fig 3. 

  Temp  Rain  Sun  Humid  DTR  Wind  

ID Species from till from till from till from till from till from till 

1 
Bearded 

reedling 
1-Sep 

17-

Oct 

23-

Jun 
1-Jul   20-

Nov 

13-

Feb 

6-

Aug 

11-

Aug 
2-Apr 

8-

Apr 

2 Bluethroat   2-
May 

7-
May 

6-
Nov 

14-
Dec 

15-Jan 
30-
Jan 

19-
May 

24-
May 

2-Apr 
7-
Apr 

3 
Common 

blackbird 

29-

May 

12-

Jul 
  24-

Jun 

18-

Jul 
27-Jun 

17-

Jul 
2-Jan 

30-

Jan 
20-Nov 

24-

Dec 

4 
Common 
chaffinch 

29-
May 

23-
Jul 

20-
Apr 

30-
Apr 

  27-Jun 
9-
Aug 

    

5 
Common 

chiffchaff 
25-Jul 

6-

Aug 

3-

Jun 

8-

Jun 

12-

May 

17-

May 
12-Mar 

10-

Aug 

5-Jul 

4-Feb 

2-

Aug 

17-
Feb 

8-Feb 
18-

Feb 

6 

Common 

grasshoppe
r warbler 

    30-

May 

9-

Jun 
  7-Apr 7-Jul 21-Sep 

11-

Oct 

7 
Common 

linnet 

29-

May 
9-Jul 

13-

Dec 

28-

Dec 
    23-

Mar 

29-

Apr 
18-Feb 

27-

Feb 

8 
Common 
redstart 

13-Jun 1-Jul   14-
Feb 

22-
Apr 

9-Jul 
14-
Jul 

    

9 

Common 

reed 
bunting 

29-

May 

15-

Jun 

20-

Apr 

25-

Apr 

27-

Dec 

20-

Jan 
30-Oct 

26-

Apr 

12-

Sep 
5-Jul 26-Aug 

21-

Nov 

10 
Common 

starling 
5-Mar 

12-

Mar 

4-

Dec 

27-

Dec 

14-

Jan 

14-

Mar 
4-Mar 

9-

Mar 
  24-Nov 

5-

Feb 

11 
Common 
whitethroat 

  10-
Feb 

17-
Feb 

2-
Feb 

22-
Feb 

9-May 
30-
Jun 

5-Jan 
25-
Jan 

  

12 Dunnock 
28-

May 
2-Jul 

11-

Sep 

14-

Oct 
  6-Apr 

22-

May 
  9-Feb 

25-

Feb 

13 
Eurasian 

blackcap 

12-

May 
9-Jul 

24-

Jun 
2-Jul   25-Jun 

2-

Jul 
  4-Apr 

9-

Apr 

14 
Eurasian 

blue tit 
  24-

Nov 

25-

Jun 
7-Jul 

19-

Jul 

19-Jun 

24-Dec 

3-

Aug 

21-
Jan 

10-

Jan 

26-

Jan 

12-Jun 

22-Jan 

20-

Jun 

20-
Feb 

15 
Eurasian 

bullfinch 
8-Jun 

29-

Jun 
    20-Jan 

4-

Feb 

4-

Dec 

19-

Dec 
  

16 
Eurasian 
jay 

  14-
Mar 

3-Jul   11-Sep 
28-
Sep 

  2-Mar 
7-
Mar 

17 

Eurasian 

reed 

warbler 

14-
May 

23-
May 

8-
Nov 

1-
Dec 

3-
Apr 

25-
May 

18-Jan 
13-
Feb 

21-

Jan 
16-

May 

6-

Feb 
21-

May 

  

18 
Eurasian 
tree 

sparrow 

22-Sep 
18-

May 
      1-Feb 

19-

Feb 
21-Feb 

27-

Feb 

19 
Eurasian 
wren 

28-
May 

8-Jul 

9-

Sep 
16-

Feb 

6-

Oct 
23-

Feb 

2-
Feb 

1-
Mar 

  11-
Apr 

21-
Apr 

11-Feb 
22-
Feb 

20 
European 
crested tit 

  8-
Feb 

17-
Feb 

  29-
Aug 

17-
Sep 

21-
Nov 

21-
Dec 

11-Mar 
2-
May 

21 
European 

goldfinch 
  30-

Apr 

12-

May 
  18-Dec 

2-

Jan 
    

22 
European 
greenfinch 

  17-
Sep 

28-
Nov 

  22-
Aug 

24-
Jul 

12-
Feb 

17-
Feb 

  

23 

European 

pied 

flycatcher 

        30-
May 

16-
Jun 

8-Mar 
27-
Mar 

24 
European 

robin 

28-

May 
8-Jul 

26-

Aug 

30-

Sep 

28-

Jan 

25-

Feb 
    27-Jan 

28-Mar 

7-

Mar 
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2-

Apr 

25 
European 
stonechat 

    18-
Nov 

12-
Dec 

6-Oct 
13-
Nov 

24-
Dec 

9-
Feb 

2-Sep 
28-
Sep 

26 
Garden 

warbler 
        8-Feb 

17-

Feb 
  

27 Great tit   7-
Dec 

17-
Apr 

5-
Jun 

17-
Jun 

27-Feb 
7-
Mar 

6-Jun 
17-
Jun 

16-Feb 
21-
Feb 

28 
House 
sparrow 

14-

May 
12-

Mar 

4-

Jun 
26-

Mar 

      22-
May 

31-
May 

11-Feb 
23-
Feb 

29 
Icterine 

warbler 
      15-Apr 

15-

Aug 
    

30 
Long-tailed 

tit 
9-Jun 

22-

Jun 

2-

Feb 

7-
Aug 

25-

Feb 

13-
Aug 

7-Jul 
14-

Jul 
    3-Apr 

11-

Apr 

31 Marsh tit     10-

May 

15-

Aug 
      

32 
Marsh 

warbler 
    17-

Aug 

19-

Jul 
20-Jun 

19-

Jul 
  5-May 

10-

May 

33 
Sedge 

warbler 
  27-

Aug 

18-

Oct 

16-

Aug 

7-

Mar 
  21-

Nov 

8-

Dec 

18-

May 

23-

May 

34 
Short-toed 
treecreeper 

27-Apr 
17-
May 

20-
May 

6-
Jun 

25-
Jul 

31-
Jul 

24-Jul 
12-
Aug 

    

35 
Song 

thrush 
  15-

Nov 

26-

Jan 

19-

Oct 

8-

Dec 
  2-

Mar 

7-

Mar 
  

36 
Spotted 
flycatcher 

  7-
Dec 

23-
Dec 

        

37 Tree pipit   28-

Aug 

15-

Sep 
      3-Feb 

24-

Feb 

38 Willow tit         18-
Nov 

18-
Feb 

  

39 
Willow 
warbler 

10-Jun 
27-
Jun 

28-

Aug 
11-

Nov 

12-

Sep 
11-

Dec 

25-
Jan 

11-
Mar 

17-Mar 
22-
Mar 

19-
May 

25-
May 

27-Aug 
20-May 

11-

Sep 
25-

May 
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Climate Sensitivities 

Table S3 The sensitivity estimates (as % change in total body mass per climate unit) for each species and 

climate variable. The % column gives the sensitivity, the SE column shows the standard error, and the 

Lin column describes whether the relationship between mass and each climate variable was linear (L), 

quadratic (Q), or no relationship was found (NA). 

 Temperature Humid Rain Wind DTR Sunshine 
Common 

name % SE Lin % SE Lin % SE Lin % SE Lin % SE Lin % SE Lin 

Bearded 
reedling 

0.5
59 

0.2
66 Q 

-
0.0
57 

0.1
03 Q 

-
0.0
13 

0.0
08 L 

-
0.0
19 

0.0
22 Q 

0.0
56 

0.0
69 Q NA NA 

N
A 

Blue-
throat NA NA NA 

-
0.0
57 

0.0
32 L 

-
0.0
38 

0.0
08 Q 

-
0.0
19 

0.0
11 Q 

-
0.1
05 

0.0
44 Q 

-
0.0
31 

0.0
23 Q 

Common 
blackbird 

-
0.3
08 

0.1
47 L 

0.0
38 

0.0
31 L NA NA NA 

-
0.0
20 

0.0
10 Q 

-
0.4
88 

0.1
58 Q 

-
0.0
13 

0.0
11 L 

Common 
chaffinch 

-
0.3
72 

0.2
54 L 

0.1
10 

0.0
78 L 

0.0
55 

0.0
20 Q NA NA NA NA NA NA NA NA 

N
A 

Common 
chiffchaff 

-
0.0
87 

0.0
56 L 

0.0
35 

0.0
12 Q 

0.0
14 

0.0
04 Q 

0.0
33 

0.0
08 Q 

-
0.1
80 

0.0
47 Q 

0.0
09 

0.0
07 Q 

Common 
grasshopp
er warbler NA NA NA NA NA NA NA NA NA 

0.0
49 

0.0
35 Q 

-
0.4
52 

0.2
07 Q 

-
0.0
37 

0.0
16 Q 

Common 
Linnet 

-
0.5
59 

0.3
50 L NA NA NA 

0.0
44 

0.0
21 Q 

0.0
61 

0.0
25 Q 

-
0.2
45 

0.1
47 L NA NA 

N
A 

Common 
redstart 

-
0.7
64 

0.3
32 L 

0.1
71 

0.0
77 L NA NA NA NA NA NA NA NA NA 

0.1
51 

0.0
56 Q 

Common 
reed 
bunting 

-
0.2
34 

0.0
60 Q 

0.1
74 

0.0
46 L 

-
0.0
13 

0.0
13 Q 

0.0
13 

0.0
21 Q 

-
0.1
67 

0.1
86 Q 

0.0
15 

0.0
13 Q 

Common 
starLg 

0.0
67 

0.1
34 Q 

0.0
35 

0.0
53 Q 

-
0.0
77 

0.0
23 L 

0.0
26 

0.0
27 Q NA NA NA 

-
0.0
54 

0.0
73 Q 

Common 
whitethro
at NA NA NA 

0.1
55 

0.0
49 Q 

0.0
07 

0.0
11 Q NA NA NA 

-
0.3
34 

0.1
66 L 

-
0.0
24 

0.0
13 Q 

Dunnock 

-
0.4
37 

0.1
82 L 

0.0
03 

0.0
42 Q 

0.0
34 

0.0
14 Q 

0.0
26 

0.0
10 L NA NA NA NA NA 

N
A 

Eurasian 
blackcap 

-
0.2
06 

0.1
08 Q 

0.0
57 

0.0
17 L 

0.0
13 

0.0
05 Q 

0.0
27 

0.0
07 Q NA NA NA NA NA 

N
A 

Eurasian 
blue tit NA NA NA 

0.0
92 

0.0
30 Q 

-
0.0
05 

0.0
21 Q 

-
0.0
15 

0.0
11 Q 

-
0.3
16 

0.0
95 Q 

-
0.0
04 

0.0
07 Q 

Eurasian 
bullfinch 

-
1.9
96 

0.4
35 Q 

0.0
24 

0.0
80 Q NA NA NA NA NA NA 

0.8
38 

0.4
32 Q NA NA 

N
A 

Eurasian 
jay NA NA NA 

0.4
49 

0.1
41 Q 

0.1
25 

0.0
90 Q 

-
0.1
23 

0.0
41 Q NA NA NA NA NA 

N
A 

Eurasian 
reed 
warbler 

0.0
53 

0.0
29 Q 

-
0.0
59 

0.0
14 L 

-
0.0
16 

0.0
05 Q NA NA NA 

0.2
39 

0.0
50 Q 

-
0.0
37 

0.0
08 Q 

Eurasian 
tree 
sparrow 

-
0.8
18 

0.2
67 Q NA NA NA NA NA NA 

-
0.0
47 

0.0
26 Q 

0.5
18 

0.2
37 Q NA NA 

N
A 
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Eurasian 
wren 

-
0.2
84 

0.2
06 L NA NA NA 

0.0
23 

0.0
09 Q 

0.0
20 

0.0
09 L 

-
0.2
50 

0.0
58 Q 

0.0
13 

0.0
11 Q 

European 
crested tit NA NA NA 

0.2
12 

0.1
10 Q 

-
0.0
15 

0.0
19 Q 

-
0.3
81 

0.0
85 Q 

-
1.3
02 

0.4
64 L NA NA 

N
A 

European 
goldfinch NA NA NA 

0.0
01 

0.1
04 Q 

-
0.0
20 

0.0
19 Q NA NA NA NA NA NA NA NA 

N
A 

European 
greenfinc
h NA NA NA 

0.4
55 

0.1
55 L 

-
0.0
12 

0.0
36 Q NA NA NA 

0.6
24 

0.1
78 L NA NA 

N
A 

European 
pied 
flycatcher NA NA NA NA NA NA NA NA NA 

0.0
45 

0.0
47 Q 

0.2
73 

0.2
45 Q NA NA 

N
A 

European 
robin 

-
0.9
01 

0.1
71 L NA NA NA 

0.0
10 

0.0
13 Q 

0.0
25 

0.0
13 Q NA NA NA 

0.0
25 

0.0
12 Q 

European 
stonechat NA NA NA 

-
0.4
20 

0.1
93 L NA NA NA 

0.1
14 

0.0
55 Q 

-
1.4
47 

0.7
28 L 

0.0
99 

0.0
66 Q 

Garden 
warbler NA NA NA NA NA NA NA NA NA NA NA NA 

0.1
89 

0.0
73 Q NA NA 

N
A 

Great tit NA NA NA 

-
0.0
14 

0.0
18 Q 

-
0.0
11 

0.0
14 Q 

0.0
36 

0.0
06 Q 

0.0
53 

0.0
40 Q 

-
0.0
13 

0.0
09 Q 

House 
sparrow 

-
0.7
09 

0.2
42 Q NA NA NA NA NA NA 

0.0
62 

0.0
20 L 

-
0.4
06 

0.1
36 L NA NA 

N
A 

Icterine 
warbler NA NA NA 

0.2
56 

0.0
85 Q NA NA NA NA NA NA NA NA NA NA NA 

N
A 

Long-
tailed tit 

-
0.2
80 

0.1
70 Q NA NA NA 

0.0
60 

0.0
24 Q 

0.0
59 

0.0
26 Q NA NA NA 

-
0.0
10 

0.0
16 Q 

Marsh tit NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

-
0.2
65 

0.0
68 Q 

Marsh 
warbler NA NA NA 

0.0
84 

0.0
26 L NA NA NA 

0.0
01 

0.0
09 Q NA NA NA 

-
0.1
62 

0.0
41 L 

Sedge 
warbler NA NA NA NA NA NA 

0.0
31 

0.0
07 Q 

-
0.0
16 

0.0
06 L 

0.4
23 

0.0
81 L 

0.0
33 

0.0
31 Q 

Short-
toed 
treecreep
er 

-
0.3
98 

0.1
54 Q 

0.1
40 

0.1
02 L 

-
0.0
17 

0.0
28 Q NA NA NA NA NA NA 

-
0.0
48 

0.0
27 L 

Song 
thrush NA NA NA NA NA NA 

-
0.0
35 

0.0
29 Q NA NA NA 

-
0.0
72 

0.0
91 Q 

0.0
79 

0.0
37 L 

Spotted 
flycatcher NA NA NA NA NA NA 

0.0
29 

0.0
40 Q NA NA NA NA NA NA NA NA 

N
A 

Tree pipit NA NA NA NA NA NA 
0.2
42 

0.0
50 Q 

0.1
64 

0.0
53 L NA NA NA NA NA 

N
A 

Willow tit NA NA NA NA NA NA NA NA NA NA NA NA 

-
0.4
30 

0.4
01 Q NA NA 

N
A 

Willow 
warbler 

-
0.3
42 

0.0
65 Q 

-
0.0
38 

0.0
18 L 

0.0
30 

0.0
05 Q 

0.0
08 

0.0
06 Q 

-
0.0
68 

0.0
26 Q 

0.0
11 

0.0
12 Q 
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Figure S2 Correlations between species sensitivities to climate variables. Temp is temperature and range 

is daily temperature range. 

Species Signal 

Table S4 The amount of variance explained by the random factor species (𝒖), the within-species 

variance (𝒗) (including sampling variance), and the % among-species variation. The % among-species 

variation is calculated as 𝑢 (𝑢 + 𝑣)⁄ . DTR is daily temperature range. 

Climate 
Variables 

u V 
% among-

species 
variation 

Temperature 0.03025 1.840 1.6 

Wind 0.00046 0.286 0.2 

Sun 0.00007 0.204 0.03 

Rain 0.00001 0.210 0.005 

Humid 0.00000 0.415 0.000 

DTR 0.00000 2.289 0.000 

Vulnerability 0.00000 2.722 0.000 
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Table S5 Model selection table for all combinations of species characteristics explaining variation in 

climate sensitivities. Shows the best to worst models for each of the six climate variables (ranked by 

AICc). Each model included either all or none of the habitat characteristics (including open, urban, wet 

and woodland habitats). The column Int. shows the intercept value, df the degrees of freedom and 

logLik the log-likelihood value. DTR is the daily temperature range. 

Clima
te 

variab
le 

Int. 
Body 
Mass 

Migra
-tion 

Life-
span 

Open Urban Wet 
Wood
-land 

R2 df logLik AICc 

Humi
d 

0.040 NA NA NA NA NA NA NA 0.000 2.000 16.436 
-
28.301 

Humi
d 

-0.122 NA NA 0.096 NA NA NA NA 0.080 3.000 17.437 
-
27.675 

Humi
d 

0.015 0.001 NA NA NA NA NA NA 0.078 3.000 17.414 
-
27.628 

Humi
d 

0.072 NA -0.028 NA NA NA NA NA 0.060 3.000 17.173 
-
27.146 

Humi
d 

-0.106 0.001 NA 0.075 NA NA NA NA 0.124 4.000 18.019 
-
25.934 

Humi
d 

-0.076 NA -0.023 0.084 NA NA NA NA 0.119 4.000 17.959 
-
25.812 

Humi
d 

0.042 0.001 -0.018 NA NA NA NA NA 0.100 4.000 17.701 
-
25.296 

Humi
d 

0.058 NA NA NA -0.115 0.031 -0.078 -0.005 0.263 6.000 20.098 
-
23.255 

Humi
d 

-0.077 0.001 -0.016 0.072 NA NA NA NA 0.141 5.000 18.260 
-
23.187 

Humi
d 

-0.106 NA NA 0.104 -0.113 0.023 -0.100 -0.009 0.352 7.000 21.642 
-
22.284 

Humi
d 

0.056 0.001 NA NA -0.116 0.018 -0.084 -0.011 0.286 7.000 20.472 
-
19.944 

Humi
d 

0.087 NA -0.013 NA -0.122 0.018 -0.086 -0.014 0.271 7.000 20.236 
-
19.472 

Humi
d 

-0.096 0.000 NA 0.097 -0.113 0.017 -0.101 -0.011 0.357 8.000 21.728 
-
17.856 

Humi
d 

-0.090 NA -0.005 0.101 -0.115 0.018 -0.102 -0.013 0.353 8.000 21.668 
-
17.735 

Humi
d 

0.075 0.001 -0.008 NA -0.120 0.010 -0.089 -0.016 0.289 8.000 20.531 
-
15.462 

Humi
d 

-0.085 0.000 -0.004 0.096 -0.115 0.014 -0.103 -0.014 0.357 9.000 21.740 
-
12.622 

Temp -0.247 NA NA NA NA NA NA NA 0.000 2.000 -9.851 24.452 

Temp -0.388 NA 0.136 NA NA NA NA NA 0.124 3.000 -8.598 24.796 

Temp 0.188 NA NA -0.262 NA NA NA NA 0.040 3.000 -9.465 26.529 

Temp -0.241 0.000 NA NA NA NA NA NA 0.000 3.000 -9.848 27.296 

Temp -0.069 NA 0.126 -0.186 NA NA NA NA 0.143 4.000 -8.385 27.627 

Temp -0.441 0.002 0.150 NA NA NA NA NA 0.135 4.000 -8.477 27.811 

Temp 0.285 -0.002 NA -0.302 NA NA NA NA 0.047 4.000 -9.390 29.636 

Temp -0.153 0.001 0.136 -0.154 NA NA NA NA 0.146 5.000 -8.354 31.324 

Temp -0.443 NA NA NA 0.079 -0.184 0.425 0.173 0.267 6.000 -6.897 32.794 

Temp 0.474 NA NA -0.533 -0.003 -0.193 0.457 0.114 0.410 7.000 -4.834 33.850 

Temp -0.607 NA 0.107 NA 0.055 -0.116 0.453 0.221 0.330 7.000 -6.045 36.272 

Temp -0.523 0.005 NA NA 0.132 -0.328 0.437 0.188 0.326 7.000 -6.106 36.393 

Temp 0.264 NA 0.068 -0.471 -0.009 -0.149 0.471 0.151 0.433 8.000 -4.452 39.305 

Temp 0.327 0.003 NA -0.471 0.033 -0.265 0.460 0.128 0.424 8.000 -4.615 39.631 

Temp -0.721 0.006 0.122 NA 0.112 -0.271 0.470 0.245 0.406 8.000 -4.908 40.216 
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Temp 0.002 0.004 0.086 -0.369 0.041 -0.239 0.478 0.181 0.458 9.000 -4.024 46.048 

DTR -0.047 NA NA NA NA NA NA NA 0.000 2.000 -9.162 22.895 

DTR -0.097 NA 0.046 NA NA NA NA NA 0.022 3.000 -8.892 24.985 

DTR -0.011 -0.002 NA NA NA NA NA NA 0.013 3.000 -9.008 25.215 

DTR -0.119 NA NA 0.043 NA NA NA NA 0.001 3.000 -9.152 25.503 

DTR -0.068 -0.001 0.038 NA NA NA NA NA 0.026 4.000 -8.850 27.806 

DTR -0.118 NA 0.045 0.013 NA NA NA NA 0.022 4.000 -8.891 27.888 

DTR -0.124 -0.002 NA 0.070 NA NA NA NA 0.015 4.000 -8.981 28.068 

DTR -0.121 -0.001 0.036 0.034 NA NA NA NA 0.026 5.000 -8.844 31.022 

DTR -0.196 NA NA NA 0.079 0.178 0.228 -0.010 0.094 6.000 -7.981 32.903 

DTR -0.167 -0.004 NA NA 0.087 0.252 0.249 0.004 0.135 7.000 -7.423 35.846 

DTR -0.220 NA 0.073 NA -0.041 0.209 0.155 -0.058 0.131 7.000 -7.472 35.944 

DTR 0.047 NA NA -0.178 0.115 0.218 0.280 0.018 0.105 7.000 -7.834 36.668 

DTR 0.180 NA 0.093 -0.299 -0.013 0.284 0.223 -0.023 0.160 8.000 -7.073 39.745 

DTR -0.191 -0.003 0.058 NA -0.009 0.262 0.187 -0.036 0.157 8.000 -7.117 39.833 

DTR 0.095 -0.004 NA -0.192 0.126 0.296 0.305 0.034 0.148 8.000 -7.244 40.088 

DTR 0.195 -0.003 0.077 -0.289 0.017 0.333 0.252 -0.003 0.183 9.000 -6.733 44.323 

Sun -0.007 NA NA NA NA NA NA NA 0.000 2.000 31.992 
-
59.318 

Sun 
0.071 NA NA -0.047 NA NA NA NA 0.041 3.000 32.429 

-
57.446 

Sun 
-0.005 NA -0.003 NA NA NA NA NA 0.003 3.000 32.024 

-
56.636 

Sun 
-0.009 0.000 NA NA NA NA NA NA 0.002 3.000 32.014 

-
56.616 

Sun 
0.082 NA -0.005 -0.051 NA NA NA NA 0.049 4.000 32.522 

-
54.544 

Sun 
0.069 0.000 NA -0.048 NA NA NA NA 0.044 4.000 32.460 

-
54.420 

Sun 
-0.007 0.000 -0.002 NA NA NA NA NA 0.004 4.000 32.033 

-
53.565 

Sun 
0.080 0.000 -0.004 -0.051 NA NA NA NA 0.050 5.000 32.529 

-
51.058 

Sun 
-0.043 NA NA NA 0.067 -0.020 0.019 0.048 0.133 6.000 33.490 

-
48.980 

Sun 
0.029 NA NA -0.049 0.076 -0.017 0.031 0.054 0.173 7.000 33.981 

-
45.347 

Sun 
-0.043 0.000 NA NA 0.064 -0.027 0.015 0.045 0.149 7.000 33.690 

-
44.765 

Sun 
-0.036 NA -0.006 NA 0.071 -0.023 0.021 0.047 0.143 7.000 33.611 

-
44.606 

Sun 
0.058 NA -0.010 -0.061 0.085 -0.021 0.038 0.053 0.200 8.000 34.330 

-
40.661 

Sun 
0.030 0.000 NA -0.050 0.074 -0.024 0.027 0.051 0.190 8.000 34.207 

-
40.414 

Sun 
-0.038 0.000 -0.004 NA 0.067 -0.028 0.017 0.044 0.155 8.000 33.760 

-
39.521 

Sun 0.055 0.000 -0.008 -0.060 0.082 -0.026 0.034 0.051 0.210 9.000 34.466 
-
34.569 

Wind 0.011 NA NA NA NA NA NA NA 0.000 2.000 37.841 
-
71.137 

Wind 0.021 -0.001 NA NA NA NA NA NA 0.074 3.000 38.797 
-
70.452 

Wind 0.057 NA NA -0.028 NA NA NA NA 0.035 3.000 38.291 
-
69.438 

Wind 0.008 NA 0.002 NA NA NA NA NA 0.002 3.000 37.871 
-
68.599 

Wind 0.041 0.000 NA -0.013 NA NA NA NA 0.079 4.000 38.874 
-
67.748 
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Wind 0.024 -0.001 -0.002 NA NA NA NA NA 0.075 4.000 38.820 
-
67.640 

Wind 0.055 NA 0.002 -0.028 NA NA NA NA 0.036 4.000 38.305 
-
66.609 

Wind 0.042 0.000 -0.002 -0.012 NA NA NA NA 0.081 5.000 38.892 
-
64.625 

Wind 0.021 NA NA NA 0.003 -0.002 -0.022 -0.007 0.032 6.000 38.243 
-
59.819 

Wind 0.025 -0.001 NA NA 0.001 0.009 -0.019 -0.002 0.120 7.000 39.442 
-
58.297 

Wind 0.062 NA NA -0.027 0.003 0.001 -0.019 -0.006 0.063 7.000 38.649 
-
56.711 

Wind 0.013 NA 0.005 NA 0.003 0.001 -0.021 -0.004 0.037 7.000 38.317 
-
56.046 

Wind 0.039 -0.001 NA -0.009 0.001 0.009 -0.018 -0.003 0.123 8.000 39.485 
-
53.971 

Wind 0.021 -0.001 0.002 NA 0.001 0.010 -0.019 -0.001 0.122 8.000 39.461 
-
53.921 

Wind 0.054 NA 0.004 -0.027 0.003 0.004 -0.019 -0.003 0.068 8.000 38.719 
-
52.438 

Wind 0.035 -0.001 0.002 -0.010 0.001 0.011 -0.018 -0.001 0.125 9.000 39.506 
-
49.012 

Rain 0.008 NA NA NA NA NA NA NA 0.000 2.000 46.508 
-
88.495 

Rain -0.031 NA NA 0.024 NA NA NA NA 0.029 3.000 46.895 
-
86.698 

Rain 0.012 0.000 NA NA NA NA NA NA 0.009 3.000 46.628 
-
86.165 

Rain 0.005 NA 0.003 NA NA NA NA NA 0.005 3.000 46.579 
-
86.067 

Rain -0.031 0.000 NA 0.027 NA NA NA NA 0.046 4.000 47.123 
-
84.342 

Rain -0.037 NA 0.004 0.025 NA NA NA NA 0.038 4.000 47.012 
-
84.120 

Rain 0.009 0.000 0.002 NA NA NA NA NA 0.012 4.000 46.662 
-
83.420 

Rain -0.036 0.000 0.003 0.028 NA NA NA NA 0.050 5.000 47.180 
-
81.361 

Rain 0.037 NA NA NA 0.001 -0.006 -0.038 -0.023 0.137 6.000 48.429 
-
80.438 

Rain -0.022 NA NA 0.041 0.001 -0.009 -0.047 -0.028 0.218 7.000 49.708 
-
79.194 

Rain 0.034 NA 0.003 NA 0.000 -0.005 -0.039 -0.023 0.142 7.000 48.497 
-
76.772 

Rain 0.039 0.000 NA NA 0.001 -0.004 -0.038 -0.023 0.141 7.000 48.477 
-
76.731 

Rain -0.023 0.000 NA 0.043 0.000 -0.006 -0.046 -0.028 0.228 8.000 49.867 
-
75.264 

Rain -0.029 NA 0.004 0.042 -0.001 -0.007 -0.048 -0.028 0.227 8.000 49.853 
-
75.236 

Rain 0.035 0.000 0.003 NA 0.000 -0.003 -0.038 -0.023 0.144 8.000 48.531 
-
72.591 

Rain -0.029 0.000 0.003 0.044 -0.001 -0.005 -0.047 -0.028 0.234 9.000 49.979 
-
70.709 
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Species and site traits 

 

Figure S3 The effect of phylogenetic relatedness on whether species are affected by the same climate 

variables. Displays the pairwise phylogenetic distance in relation to whether species are impacted by the 

same climate variables (i.e. whether both species are or are not affected by that climate variable, or if 
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one species is affected by that climate variable, but the other is not) with 95% confidence intervals. The 

boxplots show the distribution of the underlying data. 

Table S6 Model selection table for all combinations of species characteristics explaining variation in 

climate vulnerabilities.  Shows the best to worst models for each of the six climate variables (ranked by 

AICc). Each model included either all or none of the habitat characteristics (including open, urban, wet 

and woodland habitats).The column Int. shows the intercept value, df the degrees of freedom and logLik 

the log-likelihood value. DTR is the daily temperature range. 

Int. Body Mass Migration Survival Open Urban Wet 
Wood 
land R2 df logLik AICc 

-0.017 NA NA NA NA NA NA NA 0.000 2.000 -22.121 48.584 

-0.056 NA 0.026 NA NA NA NA NA 0.012 3.000 -21.894 50.495 

-0.013 0.000 NA NA NA NA NA NA 0.001 3.000 -22.100 50.907 

-0.009 NA NA -0.004 NA NA NA NA 0.000 3.000 -22.118 50.943 

-0.088 NA 0.029 0.014 NA NA NA NA 0.013 4.000 -21.872 52.957 

-0.067 0.000 0.030 NA NA NA NA NA 0.013 4.000 -21.877 52.967 

-0.054 -0.001 NA 0.027 NA NA NA NA 0.002 4.000 -22.078 53.369 

-0.086 0.000 0.029 0.013 NA NA NA NA 0.013 5.000 -21.872 55.619 

0.014 NA NA NA 
-
0.460 -0.022 -0.030 -0.012 0.031 6.000 -21.524 57.758 

-0.060 NA 0.029 NA 
-
0.434 -0.006 -0.019 0.012 0.042 7.000 -21.303 60.340 

0.014 0.000 NA NA 
-
0.459 -0.020 -0.029 -0.008 0.032 7.000 -21.507 60.748 

0.014 NA NA 0.000 
-
0.460 -0.022 -0.030 -0.012 0.031 7.000 -21.524 60.781 

-0.069 0.000 0.033 NA 
-
0.432 -0.006 -0.019 0.012 0.043 8.000 -21.292 63.551 

-0.076 NA 0.031 0.010 
-
0.435 -0.008 -0.021 0.010 0.043 8.000 -21.294 63.553 

-0.041 -0.001 NA 0.041 
-
0.467 -0.027 -0.035 -0.017 0.034 8.000 -21.462 63.890 

-0.071 0.000 0.032 0.002 
-
0.433 -0.007 -0.019 0.012 0.043 9.000 -21.292 67.013 
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Table S7 The delta AICc values for the two population-level predictor variables (habitat and density) 

tested for each climate variable. Here, the null model does not contain any predictors but does include 

the random effect of species (Sensitivity ~ 1 + (1|species)), the habitat model includes the explanatory 

variable habitat (wet or dry) and includes a random slope term across all species (Sensitivity ~ Habitat + 

(1|species) + (0 + Habitat|species)), null habitat model is the same as the habitat model but does not 

include a random slopes term (Sensitivity ~ Habitat + (1|species)) and the density model includes the 

explanatory variable with a random intercept term(Sensitivity ~ Density + (1|species)). A delta AICc value 

of 0 indicated that it was the best model. 

 Model delta AICc Values 

Climatic 
Variable 

Null Habitat Null Habitat Density 

Humid 6.9 10.6 8.5 0 

Rain 0.5 2.0 0 2.5 

Temperature 3.8 1.7 0 3.7 

Sunshine 0 3.8 1.7 1.5 

Wind 0 1.7 0.1 2.1 

DTR 0 3.7 1.6 0.4 

Vulnerability 0 4.0 1.9 2.0 

 

 In populations with higher densities (i.e. better habitats), birds experienced stronger declines 

in body mass per percent change in humidity compared with those in lower densities (slope 

of -1.03 change in sensitivity per birds/net metre/day; Fig S4). 

 

Figure S4 The relationship between body mass sensitivity to humidity (as a percent of total boy mass) 

and habitat density (slope = -1.03). 
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Nine species were found to have more similar sensitivities at sites that were closer together 

(Table S8). As we did not take into account the effects of multiple testing, some of these 

species would likely be significant due to chance. However, five species (the common 

chaffinch, garden warbler, short-toed treecreeper, sedge warbler and willow warbler) all had 

multiple positive relationships for different climate variables (or the only climate variable they 

were sensitive to), suggesting that these similarities are not due to chance. Overall 

vulnerabilities were more similar in populations that were closer together for 24% (7 out of 29) 

of species (Table S8). 

Table S8 Species with significant relationships between distance (km) and dissimilarity in sites 

sensitivities and vulnerabilities. Species that have population sensitivities which are more similar at 

closer distances for each climatic variable are marked with an X. The grey cells indicate that the species 

was not affected by those climate variables (i.e. they did not have a climate window for that climatic 

variable).  

Species Humid Temperature DTR Rain Wind Sun Vulnerability 

Willow warbler   X  X    X 

Common chaffinch X   X    

Common chiffchaff  X     X 

Bearded reedling  X     X 

Garden warbler   X    X  

Short-toed 

treecreeper 

X     X  

Sedge warbler    X X   

Eurasian tree sparrow     X   

European robin      X  

Eurasian blackcap       X 

Bluethroat       X 

Common grasshopper 

warbler 

      X 
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Abstract 

Climate change has been found to have strong effects on traits such as phenology, morphology 

and physiology. However, most studies typically assume that climate-induced trait changes will 

have consequences for population dynamics. This question has only more recently begun to be 

explicitly tested and it is now becoming clear that this is not always the case. Body condition is 

one trait that has been proposed as one of the universal responses to climate change. Body 

condition reflects energy storage and may thus directly affect how much can be invested in 

reproduction and survival. However, the causal pathway by which decreased body condition 

impacts species’ vital rates, and in turn population dynamics, has rarely been directly 

empirically quantified. Therefore, we currently have little understanding of what the 

consequences of changes in body condition are for variables more relevant for conservation, 

such as population size. Using structural equation modelling, we investigate how temperature-

induced changes in body condition affect reproductive success and survival, and the 

subsequent impact on population growth rates of 19 common bird species across 80 Dutch 

sites over a 21-year period. We show that warmer temperatures were associated with 

decreased body condition and increased reproductive success and population growth rates. 

However, our path analysis revealed that body condition was not associated with reproductive 

success or survival and that the effect of temperature on the population growth rates of 

species was instead due to underlying changes in reproduction and other unidentified traits. 

We found substantial inter-specific, but little intra-specific variation, in the temperature 

dependency of population growth rates. About half of the species are expected to increase 

under global warming, but this variation was not associated with any species characteristic. 

Our results suggest that body condition responses to global warming are common but have no 

apparent consequences on demography and population dynamics. Therefore, this common 

assumption made throughout the literature was not met. However, given that warming 

temperatures have strong effects on reproductive success and population growth rates, it is 

vital that the traits and demographic rates that are driving these impacts are identified. 

Understanding the pathways via which temperature impacts population dynamics will be 

absolutely crucial for our ability to predict climate change effects in the future and therefore, 

improve conservation efforts. 
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Introduction 

The vast majority of ecological climate change research has focused on the direct effects of 

climate on trait responses, such as phenology, morphology and physiology. These studies 

typically assume that climate-induced trait changes will have consequences for survival, 

reproduction and population dynamics, yet this idea has only more recently begun to be 

explicitly tested (Wilson & Arcese, 2003). It is now becoming clear that, although changes in 

physiology or phenology have been found to have significant demographic or population 

impacts in some species (Wilson & Arcese, 2003; Benton et al., 2006; Wright et al., 2009; Ozgul 

et al., 2010; Plard et al., 2014; Gardner et al., 2016; Youngflesh et al., 2017), this does not 

always occur (Reed et al., 2013; Dunn & Møller, 2014; Stopher et al., 2014). Additionally, trait 

changes can affect particular types of demographic or population variables, while other types 

remain unaffected (Wilson & Arcese, 2003; Reed et al., 2013; McLean et al., 2016). A general 

understanding of how frequently and in what situations and species trait responses have 

cascading consequences for populations, and the strength of these impacts, is lacking (Miller-

Rushing et al., 2010). As such, we have little ability to predict the outcomes of trait changes, 

and are unable to identify the particular species that are at most risk of population declines 

due to climate change (Fewster et al., 2000). Such information is particularly crucial for 

effective conservation management in light of a rapidly warming world (McDermott & 

DeGroote, 2016). 

The different types of responses to changes in climate can be categorised into hierarchical 

levels, from trait-level responses (phenology or physiology) to demographic- (survival or 

reproduction) and population- level responses (population size, growth rate or time to 

extinction) (Nichols & Hines, 2002; Jongejans et al., 2010; Miller-Rushing et al., 2010; McLean 

et al., 2016; van Benthem et al., 2017). Under this framework, changes in climate impact the 

most basal trait level, which in turn can affect demographic rates, and subsequently impact 

population dynamics. In order for changes in climate to result in an observable population-

level response, the effects of climate must flow up through the hierarchical levels (McLean et 

al., 2016). As climate change is expected to act as a major cause of species extinctions in the 

near future (Thomas et al., 2004), it is equally important to understand both when trait 

changes have an effect on population dynamics, and when they do not (van Benthem et al., 

2017). By decomposing population responses into relationships among different underlying 

pathways, we can better understand the mechanisms that drive population decline (Nichols & 

Hines, 2002; Ådahl et al., 2006; McLean et al., 2016). 
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Despite the majority of research assuming that climate-induced changes in traits have strong 

impacts on population dynamics, there are four feasible mechanisms by which this may not 

occur (McLean et al., 2016). There would be no change in population dynamics if: (1) the 

change in trait has little or no impact on any demographic rates, or (2) the change in trait does 

affect demographic rates but this has little or no impact on population dynamics, or (3) 

multiple pathways counteract one another and weaken any net population level effects (e.g. 

decreased survival is compensated for by increases reproduction), and finally (4) multiple 

climate variables have counteracting effects that weaken population level effects. These 

mechanisms have only been explicitly tested in a hand full of single species or theoretical 

studie (Wilson & Arcese, 2003; Ådahl et al., 2006; Ozgul et al., 2010), and large-scale 

comparative studies such as this are very rare (only McLean et al., 2016). This is in part 

because it can be difficult to integrate traditional modelling techniques to test for cascading 

effects, but also because very few studies have trait, demographic and population level data 

available on a large number of species. 

Understanding the degree of inter- and intra-specific variation can be important for predicting 

how likely species or populations are to encounter a climate-induced trait change that impacts 

their population dynamics. High inter-specific variation can indicate that certain species with 

particular characteristics might be more at risk than others. For example, changes in phenology 

are expected to have more severe consequences for specialist species compared to 

generalists, which are less constrained by the availability of particular resources (Gilman et al., 

2010; Miller-Rushing et al., 2010). Alternatively, if responses to trait changes differ 

substantially in different populations of the same species (i.e. high intra-specific variation in 

trait consequences), then species characteristics will not predict responses well. Rather, local 

characteristics such as habitat type will likely be more effective at predicting which populations 

are most at risk of changes in population sizes (Stevens et al., 2010; McLean et al., 2018). 

Broadly speaking, it is important to understand and incorporate both inter- and intra-specific 

variation when making predictions about global change impacts (Moran et al., 2015), as this 

informs us how well we can generalize both across population and species. 

Body size, mass or condition is a type of trait level response which, although being recognised 

as one of the major responses to climate across the globe (Gardner et al., 2011), is much less 

studied compared to phenological traits. Since body condition, mass or size reflect energy 

reserves, and thus directly affect how much can be invested in reproduction and survival, 

demographic responses can be expected (Gardner et al., 2011; Labocha & Hayes, 2012). For 
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example, decreased body condition reduces survival (Bergan & Smith, 1993; Møller & Szép, 

2002; Harding et al., 2011; Krams et al., 2013; Paquette et al., 2014; Gardner et al., 2016) and 

reproduction (Naef-Daenzer et al., 2001; Aubry et al., 2013; Paquette et al., 2014). 

Furthermore, body mass and size have been shown to be important early warning signals of 

population decline (Clements et al., 2018), suggesting that these traits are also affecting 

population dynamics. However, studies that specifically investigate the full pathway of 

whether climate-induced changes in body condition, mass or size affects demographic rates 

and whether this in turn results in population consequences have been limited to a couple of 

single species studies (Ozgul et al., 2010; van Benthem et al., 2017). Consequently, broader 

comparative studies are needed for improving understanding on this topic and to determine 

the generality of patterns across populations and species. 

Previous studies have generally found that hotter temperatures have been associated with 

decreased body condition in both juvenile and adult bird species (Garant et al., 2004; Van 

Buskirk et al., 2010; du Plessis et al., 2012; Aubry et al., 2013; Gardner et al., 2016; McLean et 

al., 2018).  However, very little is known about the consequences of climate-induced changes 

in body condition. Although it is often found that decreased body mass results in reduced 

survival and reproduction, perhaps as a consequence of foraging conditions (Harding et al., 

2011; Aubry et al., 2013; Paquette et al., 2014; Gardner et al., 2016), conversely, decreased 

body condition could potentially be beneficial. For instance, being heavier can increase energy 

expenditure (Covas et al., 2002; Quillfeldt et al., 2006), raise predation risk (through the need 

to feed more and also increased fat content; Covas et al., 2002; Rogers, 2015), and impact 

flight performance (Senar et al., 2002). Thus, lower body condition could be advantageous and 

actually lead to higher survival and reproduction. 

Here, we investigate the consequences of temperature-induced changes in body condition 

(mass corrected for size; i.e. amount of fat and protein reserves; Labocha & Hayes, 2012) on 

demography and population dynamics of 19 common small passerines using 21 years of field 

data collected from 80 sites across the Netherlands. We have previously shown that warming 

typically leads to reduced body condition in these species (McLean et al., 2018). Now, we 

directly quantify the effects that temperature-induced changes in body condition have on 

annual survival and reproductive success, and indirectly via their subsequent effects on the 

population growth rate, using structural equation modelling, a network-based technique that 

models cascading effects. We then determine inter- and intra-specific patterns, and how much 

intra- and inter-specific variation occurs at each level of the hierarchy to ask whether species 
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or local, site-specific characteristics would be expected to better explain variation in 

population responses. Finally, we attempt to identify any life history and ecological 

characteristics that can explain responses to temperature among species and sites. 

Methods 

Biological data for common Dutch bird species 

Body mass, survival and reproduction data were collected as part of the Dutch Constant Effort 

Site (CES) program, which covers 80 sites across the Netherlands, spanning 21 years (1994-

2014; see Appendix 5 Fig. S1 for map). The CES-project follows a standardised protocol 

(Robinson et al., 2009) where birds are captured using mist nets from the 12th April until the 

14th August every year. Most sites were sampled 12 times per year (ranging from 9-12 times). 

Captured birds are ringed and morphometric measurements taken, including body mass 

(grams) and wing length (maximum chord measurement; Svensson (1992)). The sex and age-

class (juvenile or adult) are also noted, typically based on the plumage of the bird. Birds are 

considered adults after their first year in all species. We conducted our analyses on 19 (out of 

46) passerine species that were previously found to have temperature effects on body 

condition (McLean et al., 2018). For each species there were data from 33 sites on average 

(range 7-50) and 18 years (range 9-20) with a total sample size of 3,106 site and year estimates 

across all species (Appendix 5 Table S1). 

Annual population growth rates were calculated using abundance count data from the Dutch 

Breeding Bird Monitoring Program (BMP) which has been running since 1984. It is based on 

territory mapping in fixed study plots (Van Turnhout et al., 2010). Although the recapture data 

from the CES scheme used to derive the demographic data also includes information about 

abundance, the population estimates would not be independent of the demographic estimates 

and therefore we prefer to use these independent estimates from an alternative data source. 

Van der Jeugd et al. (2007) have previously found close overlap in population measures for the 

BMP and CES programs for several species. 

Climatic data 

Daily temperature records over the study period were taken from 37 weather stations across 

the Netherlands (Royal Netherlands Meteorological Institute). Each CES-location was matched 

with the closest weather station (mean distance 17 km, range 1.9-32.6 km; see Appendix 5 

Table S2). In a previous paper (McLean et al., 2018), we performed climate window analyses 

for each species to find the time period during which mean temperature explained the most 
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variation in body condition (R package climwin; Bailey & van de Pol 2015). This time period was 

found to be from early May to mid-July (spring-early summer) for the majority of species 

(Appendix 5 Table S3). Because we are interested in how climate-induced changes in body 

condition affects demographic and population rates, rather than explaining which parameters 

contribute to climate-induced changes in population rates, we use the same spring 

temperature periods that were found to affect body condition to explain variation in 

reproductive success, survival and population growth rates (i.e. we do not change the time 

period based on when temperature best explains these higher level responses). 

Calculation of Response Variables 

Body Condition 

Body condition was calculated by correcting body mass for wing length (a measure of 

structural size), but also accounting for the confounding effects of age (adult or juvenile), sex 

(if identifiable for that species), time of day and date of capture (both non-linear) and the 

random intercept individual ID (to account for any non-independence due to recaptures of 

individuals) (see Appendix 5 for details on standard error calculation). Consequently, our 

measure of body condition is more of a measure of body fat (Balbontín et al., 2012; Labocha & 

Hayes, 2012; Gardner et al., 2016), or whether an individual’s weight is above or below 

average given their size and demographic characteristics. When investigating the effects of 

climate on body size or condition, wing length is generally thought to be the best single linear 

predictor of structural size for passerines (Gosler et al., 1998; Gardner et al., 2009). Although 

wing length has been found to be affected by climate (for example, Collins et al., 2017), we 

found no change in wing length over the length of the study, suggesting that our measure of 

body condition was not affected by any changes in wing length. The body mass residuals were 

centred such that a body condition of 0 means that an individual’s mass is exactly average 

given its demographic characteristics. To make changes in condition comparable across species 

we then converted body condition residuals to a percentage of the species’ mean weight. As 

all other response variables apart from body condition have annual estimates for each site, we 

calculated the mean and the standard error of the body condition residuals for each site and 

year per species to match the format of other variables. We present results for adult females 

because we previously found no difference among males and females (McLean et al., 2018). 
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Survival 

Adult survival estimates were calculated using capture-mark-recapture analysis implemented 

using Program MARK (White & Burnham, 1999) with the RMark interface (Laake & Rexstad, 

2010). Apparent adult survival was estimated for each year and site (with standard errors). The 

analysis took into account age (juveniles and adults), included a residency parameter (accounts 

for transient individuals that have zero probability of being in the population on sampling 

occasions subsequent to their initial capture by accounting for differences in survival as a 

function of time since marking; Saracco et al., 2010; Cooch & White, 2015) and an encounter 

probability parameter for both adults and juveniles (as not all individuals are guaranteed to be 

captured when sampling; White & G.C., 2015; Johnston et al., 2016). Annual adult survival 

estimates per site were not always estimable due to low sample sizes (see Appendix 5 Table S1 

for details). 

Reproductive success 

The proportion of juveniles (and the binomial standard error) caught at each site per year was 

used as a relative measure of breeding productivity (Du Feu & McMeeking, 1991; Peach et al., 

1996; Nur et al., 2000). This measure can be thought of as an index of per capita reproduction.  

Population growth rate  

We first calculated the weighted mean abundance for each CES site by averaging the 5 closest 

BMP sites within 15km that had the same habitat type (or if there were less than 5 sites within 

15km, the 5 closest sites within 30km). Mean abundance values were weighted by the inverse 

of the spatial distance (closer sites had a higher influence on the mean abundance value). We 

then calculated the population growth rate (r) at a given site (s) and year (t) from the change in 

abundance (n) between years : 

rs,t = log (
𝑛𝑠,𝑡+1 + 𝑐

𝑛𝑠,𝑡 + 𝑐
) 

The constant c reflects a small term that was included in the formula in order to account for 

situations when no territories were found at a site in a given year, and was set to the mean 

number of territories at that site across all years multiplied by 0.01. The standard error of rt 

was also calculated (see Appendix 5 for details). 
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Statistical Analyses 

Structural Equation Models 

Structural equation modelling is a regression-based approach to evaluating causal linkages 

among variables in a single multivariate network. It is ideal for our analysis as variables can 

function as both predictors and responses within a single model, and therefore is useful in 

identifying indirect effects. We constructed a single structural equation model (SEM) using the 

R-package piecewiseSEM (Lefcheck, 2016). Piecewise SEMs translate a path diagram (i.e., box-

and-arrow diagram indicating directed linkages) into a set of linear equations that are 

evaluated independently (Lefcheck, 2016). As such, they are able to include response variables 

that are not normally distributed, as well as random effects that account for non-

independence in the data.  

Following from McLean et al. (2016), our SEM has two focal (or indirect) pathways which flow 

up from temperature to body condition and on to either reproductive success or survival, then 

onto the population growth rate (see Appendix 6, Fig S4i for full path diagram). Temperature 

has a direct pathway to all four response variables, which allows us to evaluate whether any 

temperature related changes are due to changes in the focal, or instead, some other unknown 

trait response.  

We included all species in one model so that we could determine the overall relationships and 

compare intra- versus inter-specific variability. The model was implemented with the following 

equations for each response variable (See Appendix 5 for R code): 

1. Population growth rate ~ Reproduction + Survival + Temperature +  (1:Reproduction 

|Species/Site) + (1:Survival |Species/Site) + (1:Temperature |Species/Site) 

2. Survival ~ Body Condition + Temperature +  (1:Body Condition |Species/Site) + 

(1:Temperature |Species/Site) 

3. Reproduction ~ Body Condition + Temperature +  (1:Body Condition |Species/Site) + 

(1:Temperature |Species/Site) 

4. Body Condition ~ Temperature +  (1:Temperature | Species/Site) 

Each of the four equations included random intercept and slope terms with a hierarchical 

structure of sites nested within species to address both non-independence of observations 

made on different sites of the same species. The response variables body condition and 

survival were both weighted by the inverse of their standard errors such that estimates with 

larger standard errors contributed less, upweighting samples with higher precision. Likewise, 
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population growth and the proportion of juveniles (reproductive success) were weighted by 

sample size, as estimates based on fewer individuals are more uncertain. The sample size for 

population growth was calculated as the difference between consecutive years. We can be 

confident that a change in abundance from 30 and 0 in two consecutive years would be a real 

and strong change, whereas a change in growth rate would be less certain if it only varied by a 

few individuals (e.g. 3 and 0) as some individuals could have been missed during sampling. 

Equations 1 and 4 both have Gaussian distributions, while equations 2 and 3 have binomial 

error distributions and logit link functions. Specific species or site estimates were extracted 

from the random slopes from the mixed SEM. 

The total change in population from a small change in temperature is the product of each of 

the underlying relationships between climate, trait and demography (McLean et al., 2018).  

𝑑𝑃𝑜𝑝

𝑑𝑇𝑒𝑚𝑝
=

𝑑𝑀𝑎𝑠𝑠

𝑑𝑇𝑒𝑚𝑝
∗

∂𝑅𝑒𝑝𝑟𝑜

∂Mass
∗

∂Pop

∂Repro
   eq. 1 

+ 
∂𝑅𝑒𝑝𝑟𝑜

∂Temp
∗

∂Pop

∂Repro
 

+ 
∂Pop

∂Temp
 

Where, we use ‘∂′ and ‘d’ to distinguish partial and full regression coefficients, respectively. 

The top line of equation 1 gives the indirect effect via the focal pathway (i.e. via body condition 

and reproduction), while the second line shows the indirect effect via reproduction alone, and 

the third line the direct effects via other unknown traits or demographic rates. Similarly, the 

total effect of temperature on reproductive success is calculated as: 

dRepro

dTemp
= (

dCond

dTemp
∗

∂Repro

∂Cond
)    eq. 2 

+
∂Repro

∂Temp
 

Here, the top line of equation 2 gives the indirect effect of temperature via body condition, 

while the second line gives the direct effect unrelated to condition. 

Because piecewise SEMs do not solve equations simultaneously, we needed to account for any 

potential uncertainty across levels. Instead of taking each data point to be a single point 

estimate (e.g. mean body condition), we used a bootstrapping technique and ran the SEM 

4000 times (each time with the data points being chosen randomly from a normal distribution 

centred at the mean value with variance equal to the standard error of the point estimate). In 
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this way, points that are more accurate have a smaller standard error and therefore the values 

will remain roughly the same in each of the runs, while a value with large error will move over 

a larger distribution for subsequent runs. To summarize the results from the 4000 SEM results, 

we took the median as the overall partial regression estimate and the 0.025% and 0.975% 

quantiles as the 95% confidence intervals. The same procedure was carried out to determine 

model fit statistics, R2 values and estimates of the variance of the random effects ‘site’ and 

‘species’. Additionally, because the slope estimates with reproductive success as the response 

variable were on the logit scale (i.e. nonlinear), we calculated a linear approximation on the 

absolute (back-transformed) scale to be able to calculate the combined pathways. To do this, 

we calculated the tangent at each site’s or species’ mean x-value (i.e. the linear slope around 

temperature or body mass mean-0.0001 and +0.0001).  

Intra- and inter-specific analysis 

We used the amount of intra- versus inter-specific variation in relationships as a measure to 

determine whether there was relatively higher intra-specific variation (Blanck & Lamouroux, 

2006; Rubolini et al., 2007; Stevens et al., 2010). We compared the ratio of the among-species 

variance (𝑢; variance component for the random effect ‘species’ in the above models) to the 

independent variation at the level of site (the sum of the species and within-species variance, 

an estimate of the variance of the random effect ‘site’) for each pathway (see Appendix 5 for 

details). A value closer to one would indicate there would be relatively more among-species 

variation compared to within-species variation, suggesting that intra-specific responses are 

fairly consistent. We would expect this value to be closer to zero if there is a lot of within-

species variance relative to among-species variance. This ratio can also be interpreted as the 

intra-class correlation coefficient (i.e. the similarity between the climate responses of 

populations of the same species; Snijders, 2011; Nakagawa et al., 2017).  

We also investigate all pathways at the site scale in order to determine whether intra-specific 

variation could potentially mask or buffer species responses. Understanding how intra-specific 

variation effects the overall species responses (for instance, by potentially counteracting or 

averaging out a species response if some populations have positive responses while others 

have negative) can elucidate important trends that otherwise might be unidentified. Site 

estimates were extracted as the random slopes from the mixed SEM. 
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Results 

Species scale effects 

Based on initial exploration, we found that there was no effect of body condition on survival 

(β= -0.007 [95%CI: -0.042, 0.025]), and in turn, survival did not affect the population growth 

rate (β= 0.173 [-0.148, 0.524]) (full model results are presented in Appendix 6). Although 

temperature did have a positive association with survival (β= 0.038 [0.006, 0.074]), we decided 

to exclude survival from the final SEM (Fig. 1). When survival was removed in the final SEM, all 

other path estimates remained the same as in the original model, suggesting that survival did 

not play a substantial role in explaining relationships among variables in this system. The 

removal of the survival pathway from the model had the added benefit of strongly increasing 

the sample size (from 625 to 3106 site-years and 14 to 19 species; many survival estimates 

were not estimable in the capture-mark-recapture model) and thereby statistical power for 

other pathways. 

 

Figure 1 Decomposition of pathways in the structural equation model by which temperature-driven 

changes in body condition affect reproductive success and population growth rate in 19 bird species 

(n=3,106). Panel (i) ‘Underlying Relationships’ displays the graphical model used in the structural 

equation analysis carried out on all species. The model includes the indirect effects of temperature on 

population growth rate via body condition and reproduction (the focal pathway), as well as the direct 
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effects of temperature on reproductive success (
𝛛𝐑𝐞𝐩𝐫𝐨

𝛛𝐓𝐞𝐦𝐩
) and on population growth rate (

𝛛𝐏𝐨𝐩

𝛛𝐓𝐞𝐦𝐩
). The red 

and blue solid arrows indicate significant negative and positive relationships (determined by whether 

the 95% confidence intervals cross zero), respectively, while the grey broken arrows indicate that there 

was no significant trend. The r2 values for each variable show the mean amount of variation explained 

by all pathways. ICC gives the ratio of the among-species variance or the intra-class correlation 

coefficient for each pathway. Panel (ii) ‘Total Relationships’ shows the total effect of temperature on 

body condition, reproduction and population growth rate, based on the combined direct and indirect 

effects. Note: Here, we show the β estimates on the logit scale for those individual pathways where 

reproduction is the response variable, but use the linearised β estimates to calculate the total pathways. 

The linearized estimates for the pathways on the absolute scale are 
∂Repro

∂Temp
= 0.008 and 

∂Repro

∂Cond
=

 −0.001. 

In the final (reduced) SEM, an increase of 1°C in mean temperature was associated with a 

decrease of 0.23% (95%CI: -0.252,-0.207) of total body condition, averaged across all species 

and sites (Fig. 1). There was not, however, a statistically significant effect of body condition on 

reproductive success (β= -0.004 [-0.017,0.008] productivity per % body condition on the logit 

scale). However, there was an important direct effect of temperature on reproduction, such 

that warmer temperatures increased reproductive success (β= 0.036 [0.022,0.049] productivity 

per °C on the logit scale). These results suggest that the effects of temperature on 

reproductive success are not acting via the effects on body condition, but that another 

pathway mediated by an unmeasured trait(s) is important. Increased reproduction was 

associated with increased population growth rates (β= 0.167 [0.084, 0.255]), but growth rate 

had no direct association with temperature on average (β= 0.014 [-0.005, 0.032] productivity 

per °C). Overall, these results suggest that warmer temperatures indirectly enhance population 

growth by increasing reproduction, but this effect is not mediated by changes in body 

condition. We tested the model fit of the SEM by the test of directional separation (Lefcheck, 

2016) and found that the model represents the data well and no important paths are missing 

(P=0.28, Fisher C=2.55, df=2). 

The total effect of temperature on the population growth rate (i.e. all pathways combined) 

showed that population growth rates increased on average by 0.015 per °C across all species. 

However, the response of population growth rate to temperature differed among species, 

such that roughly half of the species increased population growth rates with warmer 

temperatures, while the other half decreased or showed no change (Fig. 2).  
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Figure 2 Species and site trends for the total effects of temperature on population growth rate (where 

the observed slope is 
𝐝𝐏𝐨𝐩

𝐝𝐓𝐞𝐦𝐩
= (

𝐝𝐌𝐚𝐬𝐬

𝐝𝐓𝐞𝐦𝐩
∗

𝛛𝐑𝐞𝐩𝐫𝐨

𝛛𝐌𝐚𝐬𝐬
∗

𝛛𝐏𝐨𝐩

𝛛𝐑𝐞𝐩𝐫𝐨
) + (

𝛛𝐑𝐞𝐩𝐫𝐨

𝛛𝐓𝐞𝐦𝐩
∗

𝛛𝐏𝐨𝐩

𝛛𝐑𝐞𝐩𝐫𝐨
) +

𝛛𝐏𝐨𝐩

𝛛𝐓𝐞𝐦𝐩
)).  

Intra- and inter-specific variation in path estimates 

We compared intra- to inter-specific variation in responses across 80 sites and 19 species in 

order to provide a baseline for quantifying what ‘a high level’ of intra-specific variation might 

be. We found high among species variation for the direct effects of temperature on body 

condition (ICC = 40% [95% CI: 37%-44%]; Fig. 3a) and on reproductive success (ICC = 18% [95% 

CI: 14%-23%]), suggesting that intra-specific responses to these pathways were fairly similar. 

The effects of changes in body condition on reproductive success, and reproductive success on 

the population growth rate, were highly variable among sites, such that within-species 

variation was substantially higher than the among-species variation (both ICC <0.01%; Fig. 3b 

& 3c).  

There was little variation in responses among sites within species, for both the direct and total 

pathways from temperature to population growth rate, suggesting that there is a clear species 

signal in population responses to temperature (Fig. 2). For the direct pathway, 13 species 

showed clear increases in population growth rate and 10 clear decreases with very little 

variation among sites (ICC = 64% but precision of this intra-class correlation coefficient was low 

95%CI: 0.001, 0.999]; see Appendix 6 Fig. S2). On average across all species, there was no 

direct effect of temperature on population growth rate, but individual species showed strong 

relationships, with half have negative or positive effects, essentially cancelling out any overall 

effect.  
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Figure 3 Intra- and inter-specific variation in the focal path estimates, where (a) shows the slope 

estimates for body condition responses to temperature, (b) shows the slope estimates for reproductive 

success responses to body condition, and (c) shows the slope estimates for population growth estimates 

to reproductive success. The boxplots show the distribution (minus any extreme values) of estimates 

across the sites. The red points show the species estimate, and the black solid line shows the overall 

slope estimate derived from the SEM. The dotted horizontal line shows where the slope is zero. All 

species and site estimates were extracted from the SEM as random slope coefficients. As such, because 

there was such little variation among species for (b) and (c) the slope estimates only vary by tiny 

amounts. 
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Site scale effects 

We next investigated pathways at the site scale. The sign and direction of the body condition 

to reproduction relationship varied widely, yet averaged out to be approximately zero (Fig. 3b 

& Fig. 4b). There was also substantial intra-specific variation in population growth rate 

responses to reproductive success, however these were on average positive associations (Fig. 

3c & Fig. 4c). In contrast, responses of body condition to temperature among sites were more 

consistently negative (Fig. 4a). 

 

Figure 4 Species and site slope responses for the example species Eurasian Wren.  Each black slope 

shows the path estimate for a different site, while the red slope shows the overall species estimate. (a) 

shows the responses of body condition to temperature, (b) reproductive success to body condition, and 

(c) population growth rate to reproductive success. The slopes are the random intercept and slope 

terms from the final SEM. 
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There was no relationship between the slope of body condition on reproduction with the total 

change in population with temperature (Slope= -0.07 ± 0.07,  r2= 0.00; Fig. 5a), such that sites 

which showed stronger changes in reproduction from body condition fluctuations did not have 

stronger changes in population growth rate from temperature. This suggests that the effects of 

temperature on population growth rates are independent of body condition (even though 

body condition is strongly affected by temperature). Instead, the total effects of temperature 

on the population growth rate were almost perfectly predicted by the non-focal pathway (i.e. 

the direct effect of temperature on population, and the indirect effect via reproduction only; 

Slope= 1.003, r2= 0.99; Fig. 5b). This suggests that the effects of temperature on population 

growth rates are working via reproductive success and the direct pathway, which is mediated 

by an unmeasured trait (or traits).  

 

Figure 5 Relationships underlying the total effect of temperature on the population growth rate (i.e. 

𝐝𝐏𝐨𝐩

𝐝𝐓𝐞𝐦𝐩
). Shown are the relationships between the total effects of temperature on the population growth 

rate with (a) the body condition to reproduction pathway (the partial regression coefficient; 
𝛛𝐑𝐒

𝛛𝐌𝐚𝐬𝐬
), and 

(b) the temperature to population pathway with the body condition pathway excluded (i.e. the effect of 

temperature via the reproduction pathway and the direct pathway to population; (
𝛛𝐑𝐞𝐩𝐫𝐨

𝛛𝐓𝐞𝐦𝐩
∗

𝛛𝐏𝐨𝐩

𝛛𝐑𝐞𝐩𝐫𝐨
) +

𝛛𝐏𝐨𝐩

𝛛𝐓𝐞𝐦𝐩
). The thick black slope in (a) is the overall relationship across all sites and species with 95% 

confidence intervals shaded in grey. Sites with stronger changes in reproduction from body mass do not 

show stronger changes in population growth rate with temperature. The thin black slopes show trends 

across sites for each species individually. 
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Explaining species and site differences 

We adopted an exploratory approach and examined whether any species- or site-specific 

characteristics could explain variation in the total temperature to population growth pathway 

and the reproduction to population pathway. Two species characteristics (body mass and life-

expectancy) and five site characteristics (average mean and minimum spring temperatures, 

habitat type, wet/dry site and predation pressure) were investigated. We also investigated the 

strength of density dependence, population density (a proxy for habitat quality), mean body 

condition and mean temperature from species-specific temperature windows for each species 

and site. We ran model selection to determine if any combinations of site- and species-specific 

characteristics were able to indicate any potential mechanisms (see Appendix 5 for details and 

Appendix 6 Table S1 for model selection table). No characteristics were able to explain the 

variation in either the total population growth on temperature pathway or the population on 

reproduction pathway (Appendix 6 Table S1 & S2).  

Discussion 

We have found that temperature-induced changes in adult body condition do not have further 

consequences on demography and population dynamics in 19 common passerines in the 

Netherlands. In general, warmer temperatures were associated with decreased body condition 

and increased reproductive success and population growth rates. At first glance these 

associations may suggest that climate induced change in body condition have population 

consequence. However, our path analysis approach revealed that body condition was not 

associated with reproductive success or survival and that the effect of temperature on the 

population growth rates of species was not due to body condition, but instead due partly to 

underlying changes in reproduction and other unidentified traits or demographic rates. We 

found strong species-signals in population growth rate responses to temperature, with roughly 

half of the 19 species increasing their population growth rates with warmer temperatures, and 

the other half either decreasing or showing no changes but were unable to identify species or 

site characteristics that could explain these trends. 

Temperature-induced declines in body condition have no consequences 

Our results suggest that body condition responses to global warming are common, but have no 

apparent consequences on demography and population dynamics. Declining body condition in 

adults was not associated with a change in reproductive success, and temperature-induced 

changes in population growth rates were independent of these effects. Consequently, the 

common assumption that climate-induced changes in body condition will have strong impacts 
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on population dynamics has not been met. Specifically, the mechanism blocking such flow-on 

effects from occurring was that the change in trait did not affect demographic rates. This is 

one of only a few studies to have explicitly tested the mechanism by which trait changes may 

not have population consequences, and is the first looking at body condition in birds (but see 

Wilson & Arcese, 2003; Ozgul et al., 2010; McLean et al., 2016). Indeed, the decomposition 

approach used here is important for answering such questions as these patterns could have 

easily been misinterpreted using standard multiple regression techniques, as all response 

variables are correlated to temperature. 

The fact that temperature-induced changes in body condition have no consequences on 

demographic and population dynamics, does provide some insights into the possible 

mechanisms underlying condition fluctuations. Firstly, it would suggest that decreasing body 

condition under warmer conditions is not an adaptation. If it was an adaptation to ‘keep up’ 

with the climate, you would expect to see negative consequences in those populations which 

had no change or increased body condition (Croll et al., 1991; Chevin et al., 2010). Similarly, if 

decreased body condition provided some advantage, for example, through lowered energy 

expenditure (Covas et al., 2002; Quillfeldt et al., 2006), reduced predation risks (Rogers, 2015) 

or improved flight performance (Senar et al., 2002) a positive relationship between body 

condition and reproduction or population growth would be expected. Secondly, if decreased 

body condition was a direct negative effect from poorer foraging conditions in warmer 

weather, for example, then species or populations with the strongest declines would be 

expected to have negative consequences on reproduction or population dynamics (Harding et 

al., 2011). None of these options appear to be the case. Perhaps, the changes in body 

condition are not yet strong enough and as the climate continues to become more extreme in 

the future, consequences will become evident. 

Associations between body condition and reproductive success have been previously found in 

a range of taxa (Chastel et al., 1995; Naef-Daenzer et al., 2001; Masello & Quillfeldt, 2003; 

Quillfeldt et al., 2006; Ozgul et al., 2010; Aubry et al., 2013; Paquette et al., 2014), although 

most are are not explored in the context of climate. There could be a number of reasons why 

we might not have found a similar trend. We were unable to account for several factors in our 

model that could provide further insight into trends. For example, we could not distinguish 

between potential differences in male and female responses (which has previously been found 

to affect relationships in some cases (Chastel et al., 1995; Møller & Szép, 2002; Paquette et al., 

2014; Gardner et al., 2016)), or among birds of different ages (e.g. effects of senescence; 
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Rebke et al., 2010). Additionally, our measure of reproductive success was fairly coarse. For 

instance, the effects of body condition on reproduction might actually change over the 

breeding season, a scale at which we were unable to focus on. Quillfeldt et al. (2006) found 

that only high adult body mass before egg laying was important for reproduction. After egg 

laying, adults tend to lose mass because they do not need to be buffered against unpredictable 

food supply (as food is usually plentiful at the time that chicks hatch).  

Unknown pathways affecting reproduction and population growth 

By using a structural equation modelling framework, we were able to decompose the 

contributions of different pathways and identify missing and major pathways. For instance, 

temperature-induced changes in body condition did not have any consequences for 

reproduction or survival, but there were important direct effects of temperature which were 

most likely mediated by an (unknown) trait other than body condition. We previously found 

the timing of egg laying to be strongly impacted by spring temperature (similar time periods to 

those used here based on body condition), and that it had a positive effect on reproductive 

success in common bird species in the United Kingdom (McLean et al., 2016). Therefore, the 

effect of temperature on reproduction could be mediated by the timing of breeding or some 

other unknown trait correlated with temperature. Although part of the temperature-induced 

changes in population growth were due to reproductive success, the direct pathway was also 

important for individual species. This also suggests that these effects are mediated by some 

unknown traits (e.g.phenology) and demographic rates (e.g. juvenile survival). The 

decomposition of effects into direct and indirect pathways is critical for determining such 

patterns and would not have been possible to distinguish using traditional regression 

techniques. Moreover, the existence of multiple important pathways could be identified even 

though not all relevant traits were measured. 

Consistent effects of temperature across populations 

We found strong species signals (i.e. all sites tended to have similar responses) in responses to 

temperature at all hierarchical levels. This has two key implications: that certain species with 

particular characteristics might be more at risk from global warming than others, and that 

population- or location-specific features have no influence on these relationships. Low intra-

specific variation suggests that local site-specific characteristics are unlikely to be good 

predictors, but that species-specific characteristics will be more important. However, we were 

unable to identify any species or site characteristics (e.g. size, life expectancy, migration 

strategy, habitat types) that explained population growth responses to temperature. Little 
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intra-specific variation also suggests that neither site-specific features (e.g. presence of climate 

refuges, habitat type or quality, predation pressures) nor local adaptations and traits among 

populations influence the effect of temperature on responses. Intra-specific variation has been 

suggested to reduce the effects of climate change on species by buffering, or stabilising, the 

overall impact (termed portfolio effects; Abbott et al., 2017; Gamfeldt et al., 2005; Malyshev et 

al., 2016; Oney, Reineking, O’Neill, & Kreyling, 2013). Therefore, given the low intra-specific 

variation, there is little evidence that portfolio effects are important here.  

Methodological issues with large scale hierarchical models 

There are considerable challenges involved with ‘matching up’ so many response variables that 

are sampled and calculated in differing ways. Our measure of annual apparent survival 

included a residency parameter to account for transient individuals (i.e. those individuals that 

are not residents in the population but are passing through). This parameter was not taken 

into account for any of the other response variables, and could add noise to the data by 

increasing the number of adults in our reproductive success measure (transients are 

presumably adults). It could potentially be a problem if these individuals have a different body 

condition, or if their abundance changes in different years. Furthermore, survival estimates 

were unable to distinguish between mortality and emigration, whereas the population growth 

rate data from the BMP scheme does make this distinction. In order to make sure that our 

population growth estimates were independent of our survival and reproductive success 

estimates, we used abundance count data from BMP scheme and matched these sites as best 

as possible (based on distance and habitat type) to the Dutch CES locations. Some abundance 

estimates might not have been as representative of the CES sites as others (for instance if 

there is large population variation at very small spatial scales), therefore potentially weakening 

any potential relationships between population growth rate and any of the predictor variables. 

However, the fact that every trait-, demographic- and population-level response was found to 

be affected by at least one other variable, and in particular that there was a positive 

relationship between reproduction and population growth rate, does suggest that our 

measures are meaningful and that we have sufficient statistical power.  

We investigated species and site level responses which meant that for the less common 

species sample sizes can become small, which can reduce the accuracy of their estimates. 

Extracting the random slope estimates for either species or sites can be difficult to interpret at 

times as the estimates based from smaller sample sizes will generally be ‘shrunk’ substantially 

towards the mean. Annual survival was not estimable for many sites and years due to the 
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demanding nature of parameter estimation in capture-recapture analysis, meaning that our 

sample sizes were often too low. As such, the pathways for survival and rarer species should 

be interpreted with care. In general, we believe that our statistical power to detect effects was 

strong. The final SEM did include many parameters (k=26), yet we still had 113 observations 

per parameter, which is generally considered an appropriate number for accurate estimates 

even with a high number of random groups. 

Implications 

The majority of climate change research assumes that a change in a trait will have further 

consequences on demography and population dynamics. However, we did not find this pattern 

in 19 Dutch bird species over 21 years. Given that temperature was associated with 

reproduction and population growth, but body condition was not the underlying mechanism, it 

is vital that we identify the causal traits and demographic rates that are driving these changes. 

Once these unknown pathways are identified, we will not only have a better understanding of 

exactly how the effects of climate change flow up to impact population dynamics in species, 

but will also be better able to predict species responses in the future under climate change. 

Finally, because species showed strong species-specific responses in population dynamics to 

temperature that ranged from positive to negative, it is now vital to identify life-history 

characteristics that can predict those species which are more sensitive to warmer 

temperatures. This will potentially be of great value to biodiversity conservation because 

practitioners could use species characteristics to prioritize conservation efforts to those more 

at risk of declining population sizes, something of particular importance for species lacking in 

data.  
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Appendix 5 - Methods 

Data 

 

Figure S1. Map of the Netherlands with all study sites (indicated by the red dots). 
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Table S1 The percentage of sites and years in which annual adult survival was estimable. The sites and 

years columns show the sample sizes for each species included in the SEM model with survival excluded 

(i.e. the largest sample size). The last column shows the percentage of sites per year where adult 

survival could be successfully estimated. The low estimation rate is due to small sample sizes. 

 

Species 
Sites Years 

% of sites/years with 

survival estimated 

1 Bearded reedling 15 19 10 

2 Common blackbird 48 19 34 

3 Common chaffinch 41 17 10 

4 Common chiffchaff 50 19 27 

5 Common linnet 23 18 1 

6 Common redstart 26 18 8 

7 Common reed bunting 39 20 41 

8 Common starling 21 17 0 

9 Dunnock 47 18 20 

10 Eurasian blackcap 48 19 16 

11 Eurasian bullfinch 14 13 9 

12 Eurasian reed warbler 41 20 85 

13 Eurasian Tree Sparrow 11 14 13 

14 Eurasian wren 50 20 18 

15 European robin 44 19 2 

16 House sparrow 7 9 4 

17 Long-tailed tit 32 18 5 

18 Short-toed treecreeper 31 18 1 

19 Willow warbler 47 20 69 
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Table S2 CES site and weather station coordinates and the distances between the two. 

CES Site Lat (CES) Long (CES) 
Weather 
Station 

Lat (Stn) Long (Stn) Distance (km) 

C01 52.61 5.90 273 52.70 5.89 10.1 

C02 52.45 5.82 269 52.46 5.53 20.3 

C03 52.34 4.52 240 52.30 4.77 17.7 

C04 52.54 6.47 278 52.44 6.26 18 

C05 53.21 5.44 270 53.23 5.76 21.2 

C06 53.11 4.79 235 52.92 4.79 20.3 

C07 53.20 6.80 280 53.13 6.59 16.8 

C08 52.33 5.16 265 52.13 5.27 23.7 

C09 52.91 5.83 273 52.70 5.89 23.9 

C10 51.85 5.12 356 51.86 5.15 1.9 

C11 52.61 5.64 269 52.46 5.53 18.2 

C12 51.57 4.90 350 51.57 4.93 2.1 

C13 53.04 5.40 267 52.90 5.38 15.8 

C14 52.54 4.83 249 52.64 4.98 15.6 

C15 53.26 4.95 251 53.39 5.35 30.9 

C16 51.69 4.47 344 51.96 4.44 29.8 

C17 52.23 6.61 283 52.07 6.65 17.3 

C18 52.28 6.52 283 52.07 6.65 24.8 

C19 52.29 6.09 278 52.44 6.26 20.5 

C20 52.63 6.08 273 52.70 5.89 15.5 

C21 52.42 5.23 269 52.46 5.53 20.4 

C22 52.53 6.46 278 52.44 6.26 16.6 

C23 51.83 5.93 375 51.66 5.71 24.5 

C24 52.85 5.44 267 52.90 5.38 6.2 

C25 51.84 5.96 275 52.06 5.89 25.1 

C26 52.44 6.88 290 52.27 6.90 18.5 

C27 51.34 5.79 377 51.20 5.76 16.1 

C28 52.42 4.56 240 52.30 4.77 19.7 

C29 51.44 5.24 370 51.45 5.41 12.4 

C30 51.84 4.39 344 51.96 4.44 13.4 

C31 52.14 4.33 210 52.17 4.42 6.8 

C32 52.31 5.21 265 52.13 5.27 20.5 

C33 53.33 6.42 277 53.41 6.20 16.9 

C34 53.07 5.33 267 52.90 5.38 19.4 

C35 52.86 6.00 273 52.70 5.89 19.1 

C36 52.31 6.13 278 52.44 6.26 16.9 

C37 51.57 3.57 310 51.44 3.60 14.2 

C38 52.27 6.47 278 52.44 6.26 23.7 

C39 53.04 4.74 235 52.92 4.79 13.2 

C40 51.65 4.77 350 51.57 4.93 14.7 

C41 53.33 6.43 277 53.41 6.20 17.8 

C42 52.81 6.42 279 52.75 6.58 12.6 

C43 52.91 5.03 235 52.92 4.79 16.3 
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C44 52.86 5.88 273 52.70 5.89 17.5 

C45 53.31 6.05 277 53.41 6.20 14.7 

C46 53.46 5.66 251 53.39 5.35 21.8 

C47 53.21 6.03 270 53.23 5.76 18.8 

C48 51.90 5.12 356 51.86 5.15 4.9 

C49 52.54 5.95 273 52.70 5.89 18.7 

C50 52.57 6.15 278 52.44 6.26 16.9 

C51 51.35 6.13 391 51.50 6.20 17.4 

C52 51.36 5.49 370 51.45 5.41 11.2 

C53 52.14 5.09 260 52.10 5.18 7.6 

C54 53.20 6.59 280 53.13 6.59 8 

C55 52.27 5.48 265 52.13 5.27 20.9 

C56 51.97 4.69 348 51.97 4.93 16.4 

C57 53.44 6.87 286 53.20 7.15 32.6 

C58 53.41 6.22 277 53.41 6.20 1.9 

C59 52.22 6.55 283 52.07 6.65 17.5 

C60 51.51 5.84 375 51.66 5.71 18.8 

C61 52.33 5.16 265 52.13 5.27 23.7 

C62 53.48 6.16 277 53.41 6.20 8.3 

C63 51.91 6.03 275 52.06 5.89 20 

C64 51.87 6.08 275 52.06 5.89 25 

C65 51.96 5.74 275 52.06 5.89 15.4 

C66 52.52 4.91 249 52.64 4.98 14.8 

C67 52.53 6.15 278 52.44 6.26 12.7 

C69 52.42 5.23 269 52.46 5.53 20.3 

C70 52.29 5.53 269 52.46 5.53 18.3 

C71 53.28 6.00 270 53.23 5.76 17.4 

C72 51.82 5.94 375 51.66 5.71 24.2 

C73 53.17 6.70 280 53.13 6.59 9 

C74 52.37 5.58 269 52.46 5.53 10.4 

C75 52.81 4.69 235 52.92 4.79 14.3 

C76 53.04 6.04 270 53.23 5.76 28.6 

C77 53.31 6.89 286 53.20 7.15 21.5 

C78 52.57 6.14 278 52.44 6.26 16.8 

C79 52.16 6.26 275 52.06 5.89 27.6 

C81 51.55 5.03 350 51.57 4.93 7 

C82 53.48 6.18 277 53.41 6.20 8.4 

C83 52.63 6.47 279 52.75 6.58 14.7 

C84 53.44 6.87 286 53.20 7.15 32.6 

C85 52.31 5.20 265 52.13 5.27 20.6 

C86 52.17 6.10 275 52.06 5.89 18.9 

C87 51.98 5.66 275 52.06 5.89 18.2 

C88 53.10 5.39 267 52.90 5.38 22.7 
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Table S3 Climate windows for all species. Blank spaces indicate where those climate variables had no 

effect on body condition, and those species were excluded from the SEM analysis. Start and finish 

indicate the earliest and latest dates of the windows, respectively. 

Species Start Finish 

Bearded reedling 1-Sep 17-Oct 

Bluethroat 
  

Common blackbird 29-May 12-Jul 

Common chaffinch 29-May 23-Jul 

Common chiffchaff 25-Jul 6-Aug 

Common grasshopper warbler 
  

Common linnet 29-May 9-Jul 

Common redstart 13-Jun 1-Jul 

Common reed bunting 29-May 15-Jun 

Common starling 5-Mar 12-Mar 

Common whitethroat 
  

Dunnock 28-May 2-Jul 

Eurasian blackcap 12-May 9-Jul 

Eurasian blue tit 
  

Eurasian bullfinch 8-Jun 29-Jun 

Eurasian jay 
  

Eurasian reed warbler 14-May 23-May 

Eurasian tree sparrow 22-Sep 18-May 

Eurasian wren 28-May 8-Jul 

European crested tit 
  

European goldfinch 
  

European greenfinch 
  

European pied flycatcher 
  

European robin 28-May 8-Jul 

European stonechat 
  

Garden warbler 
  

Great tit 
  

House sparrow 14-May 4-Jun 

Icterine warbler 
  

Long-tailed tit 9-Jun 22-Jun 

Marsh tit 
  

Marsh warbler 
  

Sedge warbler 
  

Short-toed treecreeper 27-Apr 17-May 

Song thrush 
  

Spotted flycatcher 
  

Tree pipit 
  

Willow tit 
  

Willow warbler 10-Jun 27-Jun 
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Calculation of Estimates 

Body Condition 

Body condition residuals were taken from the model, 

Body Condition ~ Wing length + Age class + Time + Time2 + Season + Season2 +  

Sex + (1|Individual ID)) 

where individual ID is included as a random intercept term, and time of day and day within the 

season are included as quadratic terms. The standard error was calculated as sqrt(variance/n). 

However, in the case where there was a sample size of 1, we assigned the standard error to be 

the maximum standard error value that was calculated. As these error values are only used to 

help with weighting in the structural equation model, we felt that as long as they were noted 

to have high errors, this would be adequate. 

Population growth rate 

We used the following function in R to calculate the standard error of the population growth 

rate. 

 

Here, Ncurrent is the mean abundance of the current year, Nnext is the mean abundance in 

the following year. The SmallTermAdded was included in the formula in order to account for 

Function to calculate standard error of population growth rate: 

se_growthrate <- function(Ncurrent, Nnext, SmallTermAdded,  

  replicates) { 

  Ncurrent_SmallTermAdded_bootstrap <- 

rpois(replicates, Ncurrent) + SmallTermAdded 

  Nnext_SmallTermAdded_bootstrap <- 

rpois(replicates, Nnext) + SmallTermAdded 

  growthrate <- log((Nnext + SmallTermAdded) / 

 (Ncurrent + SmallTermAdded)) 

  growthrate_bootstrap <- 

log(Nnext_SmallTermAdded_bootstrap / 

Ncurrent_SmallTermAdded_bootstrap) 

  # For a normal distribution this percentile would reflect 

  # 1 standard deviation  

  upper_se_growthrate_bootstrap <- 

quantile(growthrate_bootstrap, 0.841) - growthrate 

  # For a normal distribution this percentile would reflect  

  # 1 standard deviation 

  lower_se_growthrate_bootstrap <- 

growthrate - quantile(growthrate_bootstrap, 0.159) 

  se_growthrate_bootstrap <- 

mean(c(upper_se_growthrate_bootstrap,  

 lower_se_growthrate_bootstrap)) 

  return (se_growthrate_bootstrap)   

}   
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situations when no territories were found at a site in a given year. The SmallTermAdded was 

set to the mean number of territories at that site across all years multiplied by a small constant 

(0.01). Weights were calculated as the absolute difference between the consecutive years (nt 

and nt+1). For instance, if nt = 30 and nt+1 = 0 between two consecutive years the population 

growth rate between these years would be weighted more heavily in the SEM than if nt = 3 

and nt+1 = 0. This is because we can be more confident that the difference in abundance 

between 30 and 0 in two consecutive years is a real and strong change, whereas the sign of the 

change in growth rate is less certain if it only varies by a couple of individuals, as some 

individuals could have been missed, and therefore change the sign of rt. 

Intra- and inter-specific analysis 

Using the amount of among species variance (𝑢) and the within-species variance (𝑣) for each 

pathway (random slopes) in our SEM model, we calculated the total amount of variation 

explained by species as: 

% 𝑎𝑚𝑜𝑛𝑔 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =  
𝑢

𝑢 + 𝑣
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Details of the SEM Analysis 

We used the following code in R to calculate the structural equation modelling analysis, where 

the model was calculated 4000 times using new bootstrapped data each time. 

 

Explaining variation among sites 

To investigate differences in pathways among species and sites, we ran multiple models 

testing all combinations of site and species characteristics to see whether they could explain 

variation in the slopes of total population growth on temperature, and population growth on 

reproduction. We used two species’ characteristics, body condition and life-expectancy, which 

could act as proxies for ecologically similar species. Body size was calculated as the average 

body condition across all individuals across all years. Life-expectancy was calculated as 1/(1- 

annual survival rate) of the species over the entire period. Five site-specific characteristics 

were investigated; average spring temperature at each site (unrelated to species’ temperature 

windows), average minimum spring temperature at each site, wet or dry habitat types (where 

wet habitats were composed of reed bed and wet scrub, and dry habitat types as dry scrub, 

garden and woodland), habitat type (reed bed, wet scrub, dry scrub, garden, woodland) and 

The r code used to calculate the structural equation model is as follows: 

modelList = psem( 

      ### Population 

      lme(bootPop ~ bootRS + Tempcnt,  

          random = list(Species = pdDiag(~ Tempcnt + bootRS),  

                        Site = pdDiag(~ Tempcnt +bootRS)),  

          na.action = na.exclude, 

          weights = varFixed(~ 1/(sqrt(PopWt))), 

          data = data), 

      ### Survival 

      glmer(Svl ~ BMpcnt + Tempcnt + (1|Species/Site) +  

                  (0+BMpcnt|Species/Site) +  

(0+Tempcnt|Species/Site),  

            family = binomial(link = "logit"), 

            weight = 1/SvlSE, 

            data = total2), 

      ### Reproduction 

      glmer(bootRS ~ bootBMpcnt + Tempcnt + (1|Species/Site) +  

                     (0 + bootBMpcnt|Species/Site) +  

                     (0 + Tempcnt|Species/Site),  

            family = binomial(link = "logit"), 

            weight = N, 

            data = data), 

      ### Body mass 

      lme(bootBMpcnt ~ Tempcnt,  

          random = list(Species = pdDiag(~ Tempcnt),  

                        Site = pdDiag(~ Tempcnt)),  

          na.action = na.exclude,  

          weights = varFixed(~ BMresSE), 

          data = data) 

)#End List 
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predation pressure (the density of sparrowhawks and other goshawks at each site averaged 

across all years). 

We also investigated four characteristics that were site- and species-dependent: the strength 

of density dependence, population density (a proxy for habitat quality), mean body condition 

(for each species and site) and mean temperature from species-specific temperature windows. 

The three site- and species-dependent characteristics were simply added as fixed effects only. 

To test density-dependence, we calculated the strength of density-dependence by linear 

regression of the population growth rate (rt) over the population size in year t. Population 

density was calculated as the number of individuals of the same species caught (per meter of 

net per day) for each site averaged across all years. Site mean temperature (based on each 

species-specific temperature window) was calculated by averaging mean temperatures at each 

site over all years.  

The AICc from each of the models was compared to a null model that was a simple intercept 

only model, and a model with both fixed effects without the interaction term (the R package 

“AICcmodavg” was used). In addition to the previous characteristics, species and site were also 

included as factors in these models to investigate whether any characteristics explained 

variation in responses among sites or species. 
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Appendix 6 - Results 

Normality of random intercept and slope terms for the SEM 

All intercepts and slopes showed adequately normal distributions. 

 

Figure S1 Distribution of random intercept and slope values for each of the three response variables (top two rows 

show the population growth rate, middle two rows show reproductive success and the bottom two rows show body 
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condition). The first column shows the distribution of intercept values for each response variable. The middle 

column shows the distributions of path estimates (or partial slope estimates) for the explanatory variable 

temperature. The right column shows the  distributions of path estimates for the explanatory variables 

reproduction (for the top two plots) and body condition (the lower two plots). The distributions of species’ and site 

estimates are both shown and indicated by the text in the plots. 

 

Figure S2 Distribution of the percent among-species variation for the temperature to population 

pathway across all 4000 bootstrapped models. 

The random slopes for species when looking at the effect of temperatures on population 

growth rate was highly variable (Fig. S2). It appears that for different bootstrapped simulations 

the model found it hard to distinguish between among- and within-species variance. 
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Additional results from the SEM output 

 

Figure S3 Graphical representation of the relationships for each pathway in the structural equation 

model with the underlying data. Each black point shows the estimate for all years and sites including all 
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populations from all species. The slopes are red if the 95% confidence intervals do not cross zero. Note 

that each point is weighted based its accuracy. 

Intra-specific Patterns 

Table S1 AICc results for all combinations of models tested to explain variation in the total temperature to 
population growth pathway. Int is the intercept value, DD is strength of density dependence, life exp. Is life 
expectancy, +/- is whether the association between body condition and reproduction is positive or negative for that 
site/species, Site ave temp is the mean temperature at that site across all years while site temp var. is the variance. 
Size is average wing length of the species. Wgt is the weight of the model. 

Int DD 
Habi
tat 

Life 
exp. 

Ave 
con 

Migr
atio
n +/- 

Site 
ave 
tem
p 

Site 
tem
p 
var. Size R^2 df 

Log-
Lik AICc Delta wgt 

0.02 NA NA NA NA NA NA NA NA NA 
0.9

5 3 
180

2.26 

-
3598

.49 0.00 0.92 

-
0.04 NA NA 0.03 NA NA NA NA NA NA 

0.9
5 4 

180
0.35 

-
3592

.64 5.85 0.05 

0.02 NA NA NA NA NA NA NA NA NA 
0.9

5 4 
179

9.17 

-
3590

.26 8.22 0.02 

0.02 NA NA NA NA NA + NA NA NA 
0.9

5 4 
179

8.44 

-
3588

.82 9.67 0.01 

0.02 0.00 NA NA NA NA NA NA NA NA 
0.9

5 4 
179

7.66 

-
3587

.24 
11.2

4 0.00 

0.02 NA NA NA 0.00 NA NA NA NA NA 
0.9

5 4 
179

7.58 

-
3587

.09 
11.4

0 0.00 

0.03 NA NA NA NA + NA NA NA NA 
0.9

5 5 
179

7.46 

-
3584

.82 
13.6

6 0.00 

0.02 NA NA NA NA NA NA 0.00 NA NA 
0.9

5 4 
179

6.35 

-
3584

.64 
13.8

5 0.00 

-
0.04 NA NA 0.03 NA NA NA NA NA NA 

0.9
5 5 

179
7.26 

-
3584

.41 
14.0

8 0.00 

0.02 NA + NA NA NA NA NA NA NA 
0.9

5 4 
179

6.21 

-
3584

.35 
14.1

3 0.00 

0.02 NA NA NA NA NA NA NA NA 0.00 
0.9

5 4 
179

5.77 

-
3583

.47 
15.0

2 0.00 

-
0.04 NA NA 0.03 NA NA + NA NA NA 

0.9
5 5 

179
6.54 

-
3582

.97 
15.5

1 0.00 

-
0.04 0.00 NA 0.03 NA NA NA NA NA NA 

0.9
5 5 

179
5.84 

-
3581

.57 
16.9

2 0.00 

-
0.04 NA NA 0.03 0.00 NA NA NA NA NA 

0.9
5 5 

179
5.67 

-
3581

.24 
17.2

5 0.00 

0.02 NA NA NA NA NA + NA NA NA 
0.9

5 5 
179

5.33 

-
3580

.55 
17.9

4 0.00 

0.02 NA NA NA NA NA NA NA 0.00 NA 
0.9

5 4 
179

3.64 

-
3579

.21 
19.2

7 0.00 

-
0.03 NA NA 0.03 NA + NA NA NA NA 

0.9
5 6 

179
5.61 

-
3579

.08 
19.4

0 0.00 
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0.02 0.00 NA NA NA NA NA NA NA NA 
0.9

5 5 
179

4.56 

-
3579

.01 
19.4

7 0.00 

0.02 NA NA NA 0.00 NA NA NA NA NA 
0.9

5 5 
179

4.48 

-
3578

.85 
19.6

4 0.00 

-
0.04 NA NA 0.03 NA NA NA 0.00 NA NA 

0.9
5 5 

179
4.44 

-
3578

.78 
19.7

0 0.00 

-
0.04 NA + 0.03 NA NA NA NA NA NA 

0.9
5 5 

179
4.30 

-
3578

.50 
19.9

9 0.00 

-
0.04 NA NA 0.03 NA NA NA NA NA 0.00 

0.9
5 5 

179
3.89 

-
3577

.67 
20.8

1 0.00 

0.02 0.00 NA NA NA NA + NA NA NA 
0.9

5 5 
179

3.84 

-
3577

.57 
20.9

2 0.00 

0.03 NA NA NA NA + NA NA NA NA 
0.9

5 6 
179

4.37 

-
3576

.59 
21.9

0 0.00 

0.02 NA NA NA 0.00 NA + NA NA NA 
0.9

5 5 
179

3.29 

-
3576

.48 
22.0

1 0.00 

0.02 NA NA NA NA NA NA 0.00 NA NA 
0.9

5 5 
179

3.26 

-
3576

.42 
22.0

7 0.00 

0.02 NA + NA NA NA NA NA NA NA 
0.9

5 5 
179

3.11 

-
3576

.12 
22.3

7 0.00 

0.02 0.00 NA NA 0.00 NA NA NA NA NA 
0.9

5 5 
179

2.97 

-
3575

.84 
22.6

5 0.00 

0.02 NA NA NA NA NA NA NA NA 0.00 
0.9

5 5 
179

2.67 

-
3575

.24 
23.2

5 0.00 

0.03 NA NA NA NA + + NA NA NA 
0.9

5 6 
179

3.64 

-
3575

.14 
23.3

5 0.00 

0.02 NA NA NA NA NA + 0.00 NA NA 
0.9

5 5 
179

2.53 

-
3574

.95 
23.5

4 0.00 

-
0.04 NA NA 0.03 NA NA + NA NA NA 

0.9
5 6 

179
3.42 

-
3574

.69 
23.7

9 0.00 

0.02 NA + NA NA NA + NA NA NA 
0.9

5 5 
179

2.37 

-
3574

.64 
23.8

4 0.00 

0.03 0.00 NA NA NA + NA NA NA NA 
0.9

5 6 
179

2.99 

-
3573

.83 
24.6

6 0.00 

0.02 NA NA NA NA NA + NA NA 0.00 
0.9

5 5 
179

1.95 

-
3573

.79 
24.6

9 0.00 

0.03 NA NA NA 0.00 + NA NA NA NA 
0.9

5 6 
179

2.78 

-
3573

.41 
25.0

8 0.00 

0.02 0.00 NA NA NA NA NA 0.00 NA NA 
0.9

5 5 
179

1.75 

-
3573

.39 
25.1

0 0.00 

-
0.04 NA NA 0.03 NA NA NA NA 0.00 NA 

0.9
5 5 

179
1.73 

-
3573

.36 
25.1

3 0.00 

-
0.04 0.00 NA 0.03 NA NA NA NA NA NA 

0.9
5 6 

179
2.74 

-
3573

.33 
25.1

6 0.00 

0.01 NA NA NA 0.00 NA NA 0.00 NA NA 
0.9

5 5 
179

1.70 

-
3573

.29 
25.2

0 0.00 
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0.02 0.00 + NA NA NA NA NA NA NA 
0.9

5 5 
179

1.60 

-
3573

.10 
25.3

8 0.00 

0.02 NA + NA 0.00 NA NA NA NA NA 
0.9

5 5 
179

1.55 

-
3573

.00 
25.4

8 0.00 

-
0.04 NA NA 0.03 0.00 NA NA NA NA NA 

0.9
5 6 

179
2.57 

-
3572

.99 
25.5

0 0.00 

0.02 0.00 NA NA NA NA NA NA NA 0.00 
0.9

5 5 
179

1.20 

-
3572

.30 
26.1

9 0.00 

0.02 NA NA NA 0.00 NA NA NA NA 0.00 
0.9

5 5 
179

1.08 

-
3572

.06 
26.4

2 0.00 

-
0.04 0.00 NA 0.04 NA NA + NA NA NA 

0.9
5 6 

179
2.02 

-
3571

.89 
26.5

9 0.00 

0.02 NA NA NA NA NA NA NA 0.00 NA 
0.9

5 5 
179

0.54 

-
3570

.98 
27.5

0 0.00 

0.03 NA NA NA NA + NA 0.00 NA NA 
0.9

5 6 
179

1.55 

-
3570

.96 
27.5

3 0.00 

-
0.03 NA NA 0.03 NA + NA NA NA NA 

0.9
5 7 

179
2.52 

-
3570

.84 
27.6

5 0.00 

0.03 NA + NA NA + NA NA NA NA 
0.9

5 6 
179

1.41 

-
3570

.68 
27.8

1 0.00 

 

Table S2 AICc results for all combinations of models tested to explain variation in the reproduction to population 
growth pathway. Int is the intercept value, DD is strength of density dependence, life exp. Is life expectancy, +/- is 
whether the association between body condition and reproduction is positive or negative for that site/species, Site 
ave temp is the mean temperature at that site across all years while site temp var. is the variance. Size is average 
wing length of the species. Wgt is the weight of the model. 

Int DD 
Habi
tat 

Life 
exp. 

Ave 
con 

Migr
atio
n +/- 

Site 
ave 
tem
p 

Site 
tem
p 
var. Size R^2 df 

Log-
Lik AICc 

Delt
a wgt 

0.17 NA NA NA NA NA NA NA NA NA 0.00 3 

-
14.5

6 
35.1

5 0.00 0.43 

0.17 NA NA NA NA NA NA NA NA NA 0.00 4 

-
13.6

8 
35.4

3 0.28 0.38 

0.24 NA NA 
-

0.04 NA NA NA NA NA NA 0.00 4 

-
16.2

9 
40.6

4 5.49 0.03 

0.25 NA NA 
-

0.05 NA NA NA NA NA NA 0.00 5 

-
15.3

1 
40.7

2 5.57 0.03 

0.16 0.01 NA NA NA NA NA NA NA NA 0.01 4 

-
16.7

2 
41.5

0 6.35 0.02 

0.17 0.01 NA NA NA NA NA NA NA NA 0.01 5 

-
15.9

9 
42.0

9 6.94 0.01 

0.21 NA NA NA NA NA NA 0.00 NA NA 0.00 4 

-
17.2

5 
42.5

6 7.41 0.01 

0.17 NA NA NA 0.01 NA NA NA NA NA 0.00 4 

-
17.2

7 
42.6

2 7.47 0.01 
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0.17 NA NA NA NA NA NA 0.00 NA NA 0.00 5 

-
16.3

7 
42.8

5 7.70 0.01 

0.17 NA NA NA 0.01 NA NA NA NA NA 0.00 5 

-
16.4

0 
42.8

9 7.74 0.01 

0.16 NA + NA NA NA NA NA NA NA 0.00 4 

-
17.4

4 
42.9

6 7.80 0.01 

0.17 NA NA NA NA NA + NA NA NA 0.00 4 

-
17.5

2 
43.1

1 7.96 0.01 

0.17 NA + NA NA NA NA NA NA NA 0.00 5 

-
16.5

1 
43.1

3 7.98 0.01 

0.17 NA NA NA NA NA + NA NA NA 0.00 5 

-
16.6

4 
43.3

9 8.24 0.01 

0.34 0.01 NA 
-

0.10 NA NA NA NA NA NA 0.02 5 

-
16.7

2 
43.5

5 8.40 0.01 

0.35 0.01 NA 
-

0.11 NA NA NA NA NA NA 0.02 6 

-
15.8

5 
43.8

5 8.70 0.01 

0.13 NA NA NA NA + NA NA NA NA 0.01 5 

-
17.9

1 
45.9

3 
10.7

8 0.00 

0.14 NA NA NA NA + NA NA NA NA 0.01 6 

-
17.6

5 
47.4

4 
12.2

9 0.00 

0.19 NA NA NA NA NA NA NA 0.00 NA 0.00 4 

-
19.8

5 
47.7

7 
12.6

2 0.00 

0.26 NA NA 
-

0.04 NA NA NA 0.00 NA NA 0.00 5 

-
18.9

8 
48.0

7 
12.9

2 0.00 

0.19 NA NA NA NA NA NA NA 0.00 NA 0.00 5 

-
18.9

8 
48.0

7 
12.9

2 0.00 

0.24 NA NA 
-

0.04 0.01 NA NA NA NA NA 0.00 5 

-
19.0

1 
48.1

3 
12.9

8 0.00 

0.23 NA NA 
-

0.05 NA NA NA 0.00 NA NA 0.00 6 

-
18.0

0 
48.1

5 
13.0

0 0.00 

0.25 NA NA 
-

0.05 0.01 NA NA NA NA NA 0.01 6 

-
18.0

3 
48.2

1 
13.0

6 0.00 

0.25 NA + 
-

0.05 NA NA NA NA NA NA 0.01 6 

-
18.1

5 
48.4

5 
13.3

0 0.00 

0.23 NA + 
-

0.04 NA NA NA NA NA NA 0.00 5 

-
19.1

8 
48.4

7 
13.3

1 0.00 

0.24 NA NA 
-

0.04 NA NA + NA NA NA 0.00 5 

-
19.2

5 
48.6

1 
13.4

6 0.00 

0.25 NA NA 
-

0.05 NA NA + NA NA NA 0.00 6 

-
18.2

8 
48.7

0 
13.5

4 0.00 

0.21 0.01 NA NA NA NA NA 0.00 NA NA 0.01 5 

-
19.4

1 
48.9

3 
13.7

7 0.00 

0.16 0.01 NA NA 0.01 NA NA NA NA NA 0.01 5 

-
19.4

5 
49.0

0 
13.8

4 0.00 

0.18 NA NA NA NA NA NA NA NA 0.00 0.01 5 

-
19.5

0 
49.1

1 
13.9

5 0.00 
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0.18 NA NA NA NA NA NA NA NA 0.00 0.00 4 

-
20.5

6 
49.1

9 
14.0

4 0.00 

0.16 0.01 + NA NA NA NA NA NA NA 0.01 5 

-
19.6

2 
49.3

5 
14.1

9 0.00 

0.16 0.01 NA NA NA NA + NA NA NA 0.01 5 

-
19.6

9 
49.4

8 
14.3

2 0.00 

0.18 0.01 NA NA NA NA NA 0.00 NA NA 0.01 6 

-
18.6

9 
49.5

3 
14.3

8 0.00 

0.17 0.01 NA NA 0.01 NA NA NA NA NA 0.01 6 

-
18.7

2 
49.5

9 
14.4

3 0.00 

0.25 NA NA 
-

0.08 NA + NA NA NA NA 0.01 6 

-
18.7

8 
49.7

1 
14.5

5 0.00 

0.16 0.01 + NA NA NA NA NA NA NA 0.01 6 

-
18.8

6 
49.8

6 
14.7

0 0.00 

0.18 NA NA NA 0.01 NA NA 0.00 NA NA 0.00 5 

-
19.9

6 
50.0

2 
14.8

6 0.00 

0.17 0.01 NA NA NA NA + NA NA NA 0.01 6 

-
18.9

6 
50.0

7 
14.9

2 0.00 

0.14 NA NA NA 0.01 NA NA 0.00 NA NA 0.00 6 

-
19.0

7 
50.2

9 
15.1

4 0.00 

0.18 NA + NA NA NA NA 0.00 NA NA 0.00 5 

-
20.1

2 
50.3

4 
15.1

8 0.00 

0.16 NA + NA 0.01 NA NA NA NA NA 0.00 5 

-
20.1

6 
50.4

3 
15.2

8 0.00 

0.13 NA + NA NA NA NA 0.00 NA NA 0.00 6 

-
19.1

8 
50.5

0 
15.3

5 0.00 

0.21 NA NA NA NA NA + 0.00 NA NA 0.00 5 

-
20.2

1 
50.5

3 
15.3

7 0.00 

0.17 NA NA NA 0.01 NA + NA NA NA 0.00 5 

-
20.2

3 
50.5

6 
15.4

1 0.00 

0.17 NA + NA 0.01 NA NA NA NA NA 0.00 6 

-
19.2

3 
50.6

1 
15.4

6 0.00 

0.17 NA NA NA NA NA + 0.00 NA NA 0.00 6 

-
19.3

4 
50.8

2 
15.6

7 0.00 

0.17 NA NA NA 0.01 NA + NA NA NA 0.00 6 

-
19.3

4 
50.8

4 
15.6

8 0.00 

0.16 NA + NA NA NA + NA NA NA 0.00 5 

-
20.4

1 
50.9

2 
15.7

7 0.00 
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Survival Results 

These results utilised the smaller dataset, including only the sites and years with enough data 

to calculate adult survival estimates. We tested the model fit by the test of directional 

separation and found that the model represents the data well and no paths are missing 

(P=0.20; Lefcheck, 2016). 

 

Figure S4 Decomposition of pathways in the structural equation model by which temperature-driven 

changes in body condition affect reproductive success, survival and population growth rate in 17 bird 

species (n=625). Panel (i) ‘Underlying Relationships’ displays the graphical model used in the structural 

equation analysis carried out on all species. The model includes the direct effects of temperature on 

reproductive success (
𝛛𝐑𝐞𝐩𝐫𝐨

𝛛𝐓𝐞𝐦𝐩
), on survival (

𝛛𝐒𝐯𝐥

𝛛𝐓𝐞𝐦𝐩
) and on population growth rate (

𝛛𝐏𝐨𝐩

𝛛𝐓𝐞𝐦𝐩
). It also includes 

the indirect effects of temperature on population growth rate via body condition and reproduction, as 

well as via body condition and survival. The red and blue solid arrows indicate significant negative and 

positive relationships (determined by whether the 95% confidence intervals cross zero), respectively, 

while the grey broken arrows indicate that there was no significant effect. Logistic models are used to 

describe the proportion of juveniles and annual survival rates (between 0 and 1). The r2 values for each 

variable show the mean amount of variation explained by all pathways. ICC gives the ratio of the among-

species variance or the intra-class correlation coefficient for each pathway. Panel (ii) ‘Total 

Relationships’ shows the total effect (indicated as full derivatives) of temperature on body condition, 

reproduction, survival and population growth rate, based on all direct and indirect effects. 
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There is no change in trends for the other pathways when survival is removed from the SEM, 

but the same smaller dataset is used. This means that survival is not having a strong impact on 

the other pathways. 

 

Figure S5 When survival is removed from the structural equation model, the trends in the remaining 

pathways remain the same (n=625). 

Contradiction with previous findings about whether a species signal exists between 

temperature and body condition 

In our previous work we found that the percentage of among-species variation in the 

temperature to body condition pathway was much smaller than we did here (McLean et al., 

2018). This difference can be attributed to several key differences in the two analyses. Firstly, 

in McLean et al. (2018) the climate sensitivities of body condition to temperature are 

calculated on individual-level data, whereas, here we have averaged body condition estimates 

per site/year +-SE because all other estimates (survival, reproduction and population growth) 

are not possible to investigate on individual-level data. This analysis has site nested within 

species, does not account for any other climate variables, and only looks at linear effects, 

factors that all differ from the previous study. 
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Abstract 

Much of the ecological climate change literature investigates trends over time. Such studies 

assume that temporal trends accurately reflect changes due to climate change, rather than 

changes due to other non-climatic stressors. However, we currently have little understanding 

of how valid this assumption is, whether it differs among species, among populations within 

species or among the types of response being considered. Here, we use two large long-term 

datasets from the United Kingdom and the Netherlands on 60 bird species to quantify the 

contributions of temperature to changes over time in four key life history traits: laying date, 

body condition and two measures of reproductive success. We used structural equation 

models to distinguish between changes over time due to temperature versus those due to 

non-temperature effects. Non-temperature effects could include a range of effects such as 

habitat loss, modification or degradation, pollution, spread of invasive species but are not 

specifically distinguished here (i.e. non-temperature effects could be any other driver except 

for temperature). On average, temperature explained 47% of trends over time, with only a 

small amount of variation among the different traits. The contribution of temperature to long-

term trends differed substantially among species, with more temperature-sensitive species 

showing stronger trait changes over time. Despite this, in general, non-temperature effects 

actually explained long-term trends far better than temperature, suggesting that temporal 

trends are less influenced by thermal sensitivity and depend more on the non-temperature 

conditions affecting species. The majority of species experienced reinforced effects from the 

temperature and non-temperature pathways, such that the total changes in traits over time 

were stronger than the change due to temperature alone. Consequently, our results indicate 

that non-temperature causal agents may be just as important as temperature in explaining 

temporal trends (if not more). As such, the assumption that long-term trends in wild animal 

populations are due to temperature was not met. We need to better understand the roles of 

both climatic and non-climatic effects on long-term trends if we are to better predict future 

impacts and therefore conserve those species most at risk. 
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Introduction 

With anthropogenic climate change already impacting species around the world, and with dire 

predictions for species extinctions in the future (Thomas et al., 2004; Urban, 2015), a key aim 

of much ecological research is to identify and predict species’ responses to climate change. 

Investigating the responses of traits to changes in particular climatic variables (e.g. mean 

temperature, North Atlantic Oscillation, sea-surface temperature, days >35°C) arguably 

provides the most direct means of understanding the sensitivities of species to climate 

(Salewski et al., 2010; van de Pol et al., 2016). However, much of the literature investigating 

the effects of climate change on organisms does not directly relate climate variables to 

changes in traits such as phenology, physiology, survival or reproductive success. Instead, 

studies frequently assume that temporal trends accurately reflect responses to climate 

change, and therefore investigate trait changes over time. The decision to relate systematic 

variation in traits through time rather than directly to climate relies on three important 

assumptions: that other non-climatic causal agents are not changing over time, that climate 

affects the trait of interest, and that the climate experienced by the organism or system is 

changing over time. These three assumptions have each been tested independently by 

biological and climatological studies, but the relative contribution of each of these three 

pathways to trait change is never assessed simultaneously, let alone in a systematic study on a 

large scale across multiple traits, species and populations. 

Non-climatic effects can often also be changing over time. Such non-climatic effects could 

include changes in population density, habitat loss, modification or degradation, pollution, 

spread of invasive species, loss of keystone species, spread of diseases carried by invasive 

species or overexploitation (Edinger et al., 1998; Wilcove et al., 1998; Mora et al., 2007; Brook 

et al., 2008). Chronic stressors (as opposed to short-term acute threats) alter the physical or 

biological environment on a long term basis, causing long term damage (Edinger et al., 1998). 

Indeed as the human population continues to grow over time, it is expected that the frequency 

of threats and effects associated with urbanisation (e.g. infrastructure development, land 

development, water development and land conversion) will also increase over time (Mantyka-

pringle et al., 2012; Cunningham et al., 2016). This can mean that changes in, for example, 

phenology over long periods of time will likely not be solely due to climate change. 

Although the combined effects of climatic and non-climatic threats are becoming more 

commonly considered in studies on population and biodiversity dynamics (Mora et al., 2007; 

Brook et al., 2008; Kampichler et al., 2012; Mantyka-pringle et al., 2012; Duffy et al., 2016), the 



Chapter 4 ____________________________________________________________________  

172 

idea that such combined  effects could underlie responses in phenology, physiology or 

demography has been far less considered. Changes in climate have been found to have strong 

influences on the timing of reproduction across many taxa (Parmesan & Yohe, 2003; 

Parmesan, 2006; Dunn & Winkler, 2010; Poloczanska et al., 2013). Yet, large-scale changes in 

land use or expansion into urban areas, for example, can also impact timing of reproduction 

for some species (Crick & Sparks, 1999). Additionally, the timing of breeding can be 

determined by  nutritional state as determined by food availability which can be linked to 

habitat degradation (Drent & Daan, 2002; Low et al., 2015). Body condition is similarly 

impacted by changes in climate (Garant et al., 2004; Van Buskirk et al., 2010; du Plessis et al., 

2012; Aubry et al., 2013; Kruuk et al., 2015; Gardner et al., 2016), but can also be affected by 

changes in diet (unrelated to climate), predation, selective harvesting or habitat degradation 

(Lima, 1986; Garel et al., 2007; Salewski et al., 2010). Despite these non-climatic effects being 

known to be important, we currently have little understanding of how strongly such non-

climatic causal agents contribute to temporal trends or how this might vary for different traits. 

There are now many comparative studies that aim to explain interspecific variation in 

responses to climate (reviewed by Buckley & Kingsolver 2012). As many of these comparative 

studies use temporal trends to indicate climate change responses, they could encounter 

problems if the importance of temperature in explaining temporal trends differs among 

species. Some species can be highly sensitive to climate, while others can be climate 

insensitive (Thackeray et al., 2016). Furthermore, different species can be affected by different 

climate variables, and the direction and magnitude of the response can often differ among 

populations within species (McLean et al., 2018). In addition, different species will likely be 

affected by different non-climatic factors to varying degrees. For example, urban development 

will have a much stronger impact on some species compared to others (Cunningham et al., 

2016). As such, the amount of variation in temporal trends that is due to climate will likely 

differ among species.   

Understanding how climatic and non-climatic effects each contribute to temporal trends will 

also be important if the two effects potentially reinforce one another and strengthen the 

overall response (reinforced effects), or act in opposing ways and dampen or buffer the overall 

change (Mora et al., 2007; Radinger et al., 2016a). Consequently, determining the magnitude 

and direction of both non-climatic and climatic causal agents will be essential not only to 

improve our predictive models, but also to develop appropriate conservation management 
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strategies (Parmesan & Yohe, 2003; Wright et al., 2009). However, there have been few 

studies that isolate individual and combined effects (Mora et al., 2007).  

The assumption that the climate will be changing over time is, in the majority of cases, likely to 

be met. Warming of the climate system is unequivocal, and since the 1950s, the atmosphere 

and ocean have warmed, the amounts of snow and ice have diminished, and sea level has risen 

(IPCC, 2014). However, the magnitude of changes in climate can vary substantially among 

locations and seasons (Buckley & Kingsolver, 2012). For example, the breeding times in the 

ring ouzels Turdus torquatus in Britain advanced with spring precipitation but there was no 

significant change in precipitation over the time at the study site, and therefore no change in 

laying date over time (Beale et al., 2006). Similarly, finding a change in phenology with warmer 

temperature does not always mean that there will be any clear phenotypic change over the 

study period if there is high inter-annual variability which may obscure a systematic trend 

(Wright et al., 2009; Kruuk et al., 2015). Finally, identifying general patterns in changes over 

time across populations or species is troublesome as the direction and magnitude of change 

will depend on the climate in the local region (Gardner et al., 2014). 

Using two large long-term datasets on common bird species from the United Kingdom and the 

Netherlands on four important life history traits (lay date, body condition, fledglings per 

breeding attempt and proportion of juveniles), we ask here whether changes over time can be 

assumed to be due to warming temperatures. To answer this question, we use structural 

equation models to decompose long-term trends in traits into those due to temperature (i.e. 

changes over time due to the effects of temperature, termed the temperature pathway) 

versus those due to non-temperature effects (i.e. changes over time not due to the effects of 

temperature, termed the non-temperature pathway). We quantify what proportion of the 

changes over time are due to each effect and determine whether this varies among different 

types of traits, species and populations within species. Furthermore, we test whether the 

effects of temperature and non-temperature factors generally either counteract or reinforce 

one another, making the overall change over time due to their combined effects either weaker 

or stronger.  

Methods 

Biological Data 

We used one long-term dataset on common bird species from the United Kingdom (UK) and 

another from the Netherlands (NL). The UK dataset included national averages for multiple 
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species, while the NL dataset included data from multiple species and sites. With the UK 

dataset, we investigated two traits: timing of egg laying, and the number of fledglings 

produced per breeding attempt/brood (FPBA; a standard measure of breeding success Baillie 

et al., 2014), using records of 35 common British bird species over 48 years (1966–2013; BTO 

2015). We analysed annual estimates of mean egg laying dates and the mean number of FPBA 

per species recorded by the British Trust for Ornithology’s Nest Record Scheme. FPBA 

estimates were derived as a function of maximum recorded brood size and egg and chick stage 

nest failure rates in each year. Therefore partial brood losses are not taken into account (Crick 

et al., 2003), and so breeding success could be under-estimated. However, we have no reason 

to assume that this underestimation is dependent on the climate in any given year or that it 

has changed over time.  

In the Netherlands, we investigated two traits: body condition and the proportion of juveniles 

in the population, for 47 species recorded as part of the Dutch Constant Effort Site (CES) 

program over 21 years (1994-2014). This dataset also allowed us to quantify intra-specific 

variation as it included data from over 80 sites, with each species recorded at multiple sites 

(see Appendix 7 Fig S1 for map; McLean et al., 2018). Site-level estimates were not 

investigated for the UK data because the data consisted of national averages. On average, each 

species had data from 57 sites (range 39-68; see Table S1 for site details). We estimated 

standardised body condition by correcting body mass for a number of factors by taking the 

residuals from the linear regression on wing length, age (adult or juvenile; birds are considered 

adults after their first year in all species), sex (if determinable based on plumage), time of day 

and date of capture in the year (both non-linear) and the random intercept individual ID. 

Therefore we effectively adjust mass for size, age, sex, capture timing and recaptures of 

individuals. The residuals are centred such that a body condition of 0 means that it is exactly 

average given its conditions. We looked at the change in body condition as a percentage of the 

species’ mean mass to make this value comparable across species of different sizes. The 

proportion of juveniles (with binomial standard error) caught at each site per year was used as 

a relative measure of breeding productivity (Du Feu & McMeeking, 1991; Peach et al., 1996; 

Nur et al., 2000). This measure can be thought of as per capita reproduction. The mean and 

the standard error of body condition residuals and the proportion of juveniles were calculated 

for each site and year per species to match the measures of proportion of juveniles (i.e. a 

single measure per species per site). 
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Climate Data 

We used daily records of mean temperatures from the Central England Temperature dataset 

(Parker et al. 1992) and from the Royal Netherlands Meteorological Institute (KNMI). Because 

we used only single estimates for populations across the United Kingdom (rather than site-

level estimates) we used a single measure of climate taken from the Central England 

Temperature dataset. Dutch temperature data was used from 37 weather stations across the 

Netherlands, with biological data from each Dutch CES site matched with the closest weather 

station (mean distance 17 km; see Appendix 7 Table S1). 

Statistical Analysis 

Climate Windows 

We performed climate window analyses to identify the time period during which a linear effect 

of mean temperature explained the most variation in the trait measures for each species and 

trait (laying date, body condition, FPBA, and proportion of juveniles), using the R package 

climwin (Bailey & van de Pol, 2016). This allowed us to take a systematic exploratory approach, 

as we considered all possible combinations of consecutive weeks for the previous two years to 

identify the ‘best’ possible window. This meant that potential climate windows could 

potentially differ in their periods across species, for instance from recent spring temperatures 

to conditions from the previous year. All analyses assumed Gaussian distributions, with the 

exception of the proportion of juveniles which had a binomial error distribution and logit link 

function. For all four response variables, the climwin analysis was weighted by the uncertainty 

of the estimates, such that estimates with larger standard errors (laying date, FPBA and body 

condition) or smaller sample sizes (proportion of juveniles) contributed less (respectively, using 

the inverse standard error or the square root of the sample size as weight). We selected the 

best model based on Akaike’s Information Criterion modified for small samples (AICc; Burnham 

& Anderson, 2002). 

When testing so many climate window models, the chances of spurious results are high (van 

de Pol et al., 2016). Randomisation techniques were therefore used to assess the likelihood 

that the best time window might occur by chance, with fifty randomisations carried out for 

each species (Bailey & van de Pol, 2016). We considered there to be a temperature signal 

present if the best window had more than a 50% chance that it was real.  

Structural Equation Modelling 

After identifying the climate windows for which temperature explained most variation in our 

respective traits, we used structural equation models (SEMs) to decompose trends over time 
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into those components due to temperature versus those due to non-temperature effects. 

Models were conducted only on those species for which we had identified temperature 

windows with sufficient statistical support. In our SEM, the association between year and trait 

was decomposed into an indirect effect on the trait via temperature (i.e. changes over time 

due to the effects of temperature, termed the temperature pathway) and a direct effect on 

the trait (i.e. changes over time not due to the effects of temperature, termed the non-

temperature pathway) (see Fig 2 for graphical representation of the SEM). The direct, or non-

temperature, pathway captures the change in trait over time not due to the temperature 

window and so is likely composed of many unknown drivers. To calculate the temperature 

pathway, the effect of year on temperature can be multiplied with the effect of temperature 

on the trait to describe the temporal change due to temperature (Fig 2, column (ii); Grace, 

2006). The total change in trait over time is then calculated as the sum of the temperature and 

non-temperature pathways (Fig 2, col (iii)). If the total changes in trait over time are 

predominantly due to warming temperatures, then there are two patterns that would be 

expected. First, the direct, non-temperature path estimate would be expected to be weak 

relative to the temperature path estimate. Second, temperature would increase over time, and 

traits would be associated with changes in temperature. By allowing temperature to serve as 

both a response variable and a predictor variable, we can quantify indirect or cascading effects 

that would be unrecognised in alternate single models (Lefcheck, 2016).  

We constructed a structural equation model for each species in either the UK or the 

Netherlands using the R-package piecewiseSEM (Duffy et al., 2016; Lefcheck, 2016). 

Temperature was mean centred and the start year was set as zero. Similarly to the previous 

climwin analysis, all regression equations in the SEM had Gaussian distributions, with the 

exception of the proportion of juveniles which had a binomial error distribution and logit link 

function, and were weighted by the inverse of the standard error (or the square root of the 

sample size in the case of the proportion of juveniles). Because the slope estimates with 

reproductive success as the response variable were on the logit scale (i.e. nonlinear), we 

calculated a linear approximation to be able to calculate the combined pathways (described 

above). To do this, we calculated the tangent at the mean (i.e. the linear slope around mean-

0.0001, and mean+0.0001). To investigate intra-specific variation, site was included as a 

random intercept and slope term in the analysis of the NL dataset. Species/site-specific 

estimates of changes with respect to temperature and time were extracted as random slope 

coefficients from the model.  
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We accounted for propagation of uncertainty when calculating the temperature pathway that 

is determined by the product of the underlying pathways (which each have their own 

imprecision).  We applied a bootstrapping technique by randomly generating 10,000 data 

points from a normal distribution centred at the path estimate value with variance equal to 

the standard error and multiplied each of the newly generated estimates. To summarise the 

bootstrap results from the 10,000 temperature path estimates, we took the median as the 

temperature path estimate and the 0.025% and 0.975% quantiles as the 95% confidence 

intervals. In this way, estimates that are more accurate have a smaller standard error and 

therefore the values will remain roughly the same in each of the runs, while estimates with 

large error will move over a larger distribution for subsequent runs. The same bootstrapping 

technique was used to calculate the total pathway, where the temperature pathway is 

summed with the non-temperature pathway. 

Our model was saturated as all path estimates were needed to answer our specific questions. 

This meant that the normal model fit statistics could not be calculated. In order to check that 

the estimates from our SEMs were likely to be reasonable, we checked the fits of each of the 

individual path estimates and made sure the residuals were normally distributed, the standard 

errors appeared reasonable (not extremely large or close to zero) and the random intercept 

and slope terms were normally distributed (for the site-level analysis). All models satisfied 

these assumptions (see Appendix 7). 

The approach developed here with SEMs is similar to year-detrending undertaken by other 

studies (Iler et al., 2017). The detrending approach detangles the potentially confounding 

effects of year on climate-trait relationships by carrying out a two-step approach where the 

residuals from two separate regressions with the trait over time, and climate over time are 

extracted, with the subsequent analysis carried out on the detrended climate and trait 

variables. Alternatively, year (as a fixed continuous linear effect) and climate can be included 

as predictors in a multiple regression with trait as the response variable (Iler et al., 2017). The 

SEM approach used here has several benefits over detrending: it does not require multiple 

steps and can be done all in one model, it looks at partial effects and so accounts for the 

effects of the other variables, but most importantly, it is able to determine the trend over time 

due to climate (i.e. the temperature pathway) by distinguishing between the effect of year on 

climate, and the sensitivity of the trait to climate unrelated to year. By investigating these 

individual and total or combined pathways you can gain much greater insight into the trends. 
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Percentage of change over time explained by temperature 

We calculated the percentage of change over time due to the temperature pathway as 

(1 −
𝑎𝑏𝑠(𝛽𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑡ℎ𝑤𝑎𝑦 − 𝛽𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑝𝑎𝑡ℎ𝑤𝑎𝑦)

𝑎𝑏𝑠(𝛽𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑡ℎ𝑤𝑎𝑦 − 𝛽𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑝𝑎𝑡ℎ𝑤𝑎𝑦) +  𝑎𝑏𝑠(𝛽𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑡ℎ𝑤𝑎𝑦 − 𝛽𝑁𝑜𝑛−𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑝𝑎𝑡ℎ𝑤𝑎𝑦)
)

∗ 100 

To account for the error surrounding each of these individual path estimates within the 

equation, we used the same bootstrapping technique as described above. By including the 

absolute difference between unstandardised pathway coefficients, the percentage explained is 

not affected by the sign of the relationship. 

Results 

Identifying temperature sensitive species 

Not all species and traits were equally sensitive to temperature. We found significant effects of 

temperature on laying dates and body condition in most species (27/35=77% of species for 

laying dates and 22/47=47% of species for body condition), while significant temperature 

sensitivities in reproductive parameters were less common (12/35=34% for FBPA and 

13/47=28% for proportion of juveniles; Appendix 7 Table S3). There was a significant 

difference in the changes in laying date over time for temperature sensitive and insensitive 

species, where temperature sensitive species advanced their laying dates by 0.20±0.07SE days 

per year on average while insensitive species delayed their laying dates by 0.05±0.06SE days 

per year on average over time (Fig 1; linear regression p=0.008). However, there were no 

significant differences in changes over time between temperature-sensitive and -insensitive 

species for the three other response variables.  
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Figure 1 Distribution of slope estimates for changes in response (laying date, FPBA, body condition and 

proportion of juveniles) over time among species. 

The direction of temperature and non-temperature pathways 

Mean temperature was increasing over time across both countries. Over both time and 

temperature, laying date advanced (Fig 2a, Fig S3), body condition decreased (Fig 2c, Fig S4) 

and the proportion of juveniles increased on average (Fig 2d, Fig S6). For both body condition 

and laying date, the change over time due to temperature and non-temperature effects were 

roughly equal (birds laid eggs 0.09 or 0.07 days earlier per year due to temperature or non-

temperature effects, respectively; body condition decreased by 0.012 or 0.016% grams per 
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year respectively due to temperature or non-temperature effects). The change in the 

proportion of juveniles per year was larger for non-temperature effects (0.002±0.001 

compared to 0.0005±0.0004 increase in the proportion of juveniles per year). However, FPBA 

increased over time due to non-temperature effects (Fig 2c), but the temperature pathway 

was not systematically negative or positive when averaged across all species. 

For all traits, the temperature and non-temperature pathways reinforced each other for the 

majority of species (85% for laying date, 77% for body condition, 75% for FPBA and 54% for 

proportion of juveniles). As such, in the majority of cases, the total change in traits over time 

were greater than the change due to temperature alone. 
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Figure 2 Graphical representations of the structural equation models used for each species and each of 

the four traits (a-d). Here, the path estimates are the averaged (± standard error) values across all 

species. The first column (i) shows the full SEM and the individual path estimates for each. The 

temperature pathway (in column ii) shows the change in trait over time due to temperature and is 
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calculated as the year to temperature pathway multiplied with the temperature to trait pathway. The 

total pathway (in column iii) shows the total change in trait over time due to all variables, and is 

calculated as the temperature pathway summed with the non-temperature pathway. Solid arrows 

indicate the SE did not cross zero, while the dashed arrows indicate the SE did cross zero. 

Change over time due to temperature 

By determining how much the temperature pathway contributed to the total temporal 

responses we were able to quantify the percentage of change in response due to the indirect 

effect of temperature.  On average across all traits, 47% of changes in traits were due to the 

temperature windows identified in our climwin analysis. There was some variation among the 

traits, but mostly the percentage explained was around 50% (50% for lay date, 40% for body 

condition, 56% for FPBA and 41% for the proportion of juveniles). However, there were large 

differences in the percentage explained among species, with laying date showing the least 

interspecific variation (Fig 3). 

 

Figure 3 Percentage of the trend over time that is due to temperature (± 95% confidence intervals) for 

each of the four response types across all species. The separate value for each response type listed as All 

Species is the average value across all species for that trait.Interspecific variation 
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Interspecific variation 

Comparing responses across species, the temperature and non-temperature pathway 

estimates were correlated. Species that showed stronger associations with temperature also 

showed stronger changes due to other effects (Fig 4a-d; Correlation coefficient for laying date 

= 0.64, for body condition = 0.13, for FPBA = 0.72 and for proportion of juveniles = -0.29). The 

correlation was negative for proportion of juveniles. 

Species that were more sensitive to temperature or non-temperature effects had stronger 

total changes in traits (Fig 4e-h). For all traits, the non-temperature pathway better explained 

variation in the total change in trait over time among species (Fig 4e-h). Temporal changes in 

response types due to temperature were always more precisely estimated than those due to 

non-temperature effects (i.e. lower standard deviation; grey bars in Fig 4a-d). As such, 

although temperature explained on average about 50% of the total trend within a species (Fig 

3), variation in the total temporal change (due to both temperature and non-temperature 

effects) among species appears to be mainly due to the varying effects of the non-temperature 

pathway.  
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Figure 4 The left panel (a-d) shows the relationship between the temperature and the non-temperature 

pathway for all temperature-sensitive species, where each point represents a species and the error bars 

show the standard error. The solid black line shows the correlation between the two pathways. The dark 

shaded areas indicate when species are experiencing reinforced effects from temperature and non-
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temperature effects (i.e. each pathway causes the trait to increase over time, or conversely both cause 

decreases over time). The unshaded areas indicate when species experience counteracting effects. The 

grey lines and points adjacent to the x-axis and y-axis show the mean effect across all species ± one 

standard deviation. The right panel (e-h) shows the relationships between the total change in trait over 

time (calculated as the temperature pathway summed with the non-temperature pathway) compared 

to the change over time due to temperature (orange; calculated as the year to temperature pathway 

multiplied with the temperature to trait pathway) and non-temperature (blue; i.e. the direct pathway 

between year and trait). Each point represents a species ± standard error. The x-axis is the estimate for 

the partial regression slope of trait over time accounting for either the temperature effect or the non-

temperature effect. The plots (a and e) in the top row show values for laying date, the second row (b 

and f) for body condition, the third row (c and g) for FPBA and the bottom row (d and h) for the 

proportion of juveniles. 

Intra-specific Variation 

Considering just the NL data, for which we had observations on multiple sites per species, the 

percentage of the trend over time that was due to temperature differed substantially among 

populations when looking at responses in body condition (average standard deviation across 

all species was 11.3). However, there was very little intra-specific variation when looking at 

responses in the proportion of juveniles (standard deviation of only 2.2). 

Discussion 

The assumption that systematic variation in traits through time reflects responses to warming 

relies on three assumptions holding true: that the trait is sensitive to climate, that the climate 

experienced by the organism or system is changing over time and that other non-temperature 

causal agents are not changing over time. By using two long-term datasets from the United 

Kingdom and the Netherlands on multiple common bird species, we demonstrate that, even 

for four different types of trait responses, trait variation through time cannot be assumed to 

be solely due to warming. In both countries, temperature was warming over time. However, 

we show that non-temperature causal agents are important in explaining temporal trends, 

often reinforcing the effects of temperature. This suggests that non-temperature causal agents 

have an important contribution to trends over time. 

Our results suggest that interpreting trends over time as being solely due to warming appears 

to be incorrect. Temporal trends were not predominantly due to temperature. In fact, not all 

species were found to have sensitivities to temperature, so any changes in traits over time in 

these species were not due to temperature at all. Less than 50% of species were sensitive to 

temperature for the three traits other than laying date. For those species that were sensitive 
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to changes in temperature, only 40-50% of changes over time could be attributed to 

temperature. Even within one type of trait response, the percentage of changes over time due 

to warming temperatures varied extensively among species, and often even among 

populations within species. Parmesan & Yohe (2003) argue that, although competing 

explanations in the form of non-climatic causal agents (such as land-use change) could have 

impacts, it is unlikely that such factors would produce a consistent pattern of impact over 

space and time. Yet these results, and that of Crick & Sparks (1999) who found that only 37% 

of temporal trends could be statistically accounted for by changes in temperature and rainfall, 

suggest that trends over time can be quite strongly attributed to non-temperature effects. 

Non-temperature causal agents make important contributions to trends over time. Variation in 

changes over time among species (i.e. the total pathway) were better explained by the effects 

of the other, non-temperature factors (non-temperature pathway) than temperature. 

Although species that were more sensitive to temperature also had larger changes over time, 

species’ sensitivities to other factors varied considerably more, suggesting that overall 

temporal trends might not reflect thermal sensitivity, but instead depend more on what non-

temperature conditions species are experiencing. Part of this high interspecific variability 

might be due to the non-temperature pathway being comprised of multiple different potential 

non-temperature parameters (such as habitat degradation or invasive species). Different 

parameters might be acting upon different species depending on their sensitivities. For 

example, both warmer temperatures and increased urbanisation might cause earlier egg laying 

in some species such as the magpie (Crick & Sparks, 1999) making the overall change over time 

stronger. However, in other species, urbanisation might have no effect on lay date 

whatsoever. Although changes in lay date over time due to temperature could be equal among 

species, the overall change over time would differ substantially. Given that the non-

temperature pathway is potentially comprised of multiple variables while the temperature 

pathway was only one single parameter which explained about 50% of the temporal trends 

suggests that temperature is potentially one of the most important single factors influencing 

overall changes over time. 

The idea of the world undergoing a ‘deadly anthropogenic cocktail’ of climate change and 

other effects such as habitat destruction is not new (Travis, 2003; Brook et al., 2008; Mantyka-

pringle et al., 2012). Indeed, we identified two ways in which the combined effects of multiple 

stressors could result in stronger changes over time. Firstly, the effects of temperature and 

other non-temperature parameters reinforced overall effects on all four traits for the majority 
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of species. This meant that the overall trend over time was frequently made more extreme by 

the combined climatic and non-climatic factors. Other studies looking at population dynamics 

and biodiversity have found similar results, where non-climatic and climatic effects increase 

the overall species declines (Mora et al., 2007; Mantyka-pringle et al., 2012). On the other 

hand, counteracted effects were not uncommon, where the total change over time was 

dampened or buffered by the opposing effects of temperature and other non-temperature 

parameters. Reinforcing effects are important to recognise because if changes over time are 

assumed to reflect the effects of warming, they would actually be overestimated, whereas for 

species that experience counteracting effects the importance of temperature would be 

underestimated. 

Secondly, the combined effects of multiple stressors could result in stronger changes over time 

for some species than for others. Species that were more sensitive to temperature were also 

more sensitive to other non-temperature effects, suggesting that there may be some 

disturbance-sensitive taxa. This was the case for all four traits. If a species’ tolerance to non-

climatic disturbances is correlated with its tolerance to climatic impacts and this results in 

changes in population dynamics, it can influence the abundance of more and less tolerant 

species within a community (Côté & Darling, 2010). The synergy of threats is regarded as one 

of the most important challenges to biodiversity and in the construction of future projections 

on biodiversity change (Mora et al., 2007; Brook et al., 2008). 

Our estimate of global warming is not representative of the full and total changes that 

organisms would be experiencing. Indeed, changes in mean temperature, the measure that we 

focus on we here, is only one aspect of the climate. We only look at a single period of 

temperature, where other periods could also be important. Other climate variables such as 

rainfall or humidity would likely also be important (van de Pol et al., 2016), as well as other 

potential measures of temperature, such as temperature fluctuations (Briga et al., 2015) or 

thresholds (e.g. days above 35°C; Gardner et al., 2016). The choice of weather variables could 

have different impacts for different taxa, where other variables (e.g. precipitation, soil 

temperature, humidity) might be more appropriate for some species (Crick & Sparks, 1999). As 

such, our temperature measure as a proxy for changes in ‘climate’ is actually just a minimum 

estimate. By expanding the model to include other climatic changes, the non-temperature 

pathway effect would likely decrease. Similarly, our measure of other, non-temperature 

effects would likely be made up of many different factors which would be informative to 

identify and separate out. Although we did not investigate interacting effects between 
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temperature and non-temperature effects, this would also be of interest as this is commonly 

thought to be important in the context of population effects (Mantyka-pringle et al., 2012; 

Radinger et al., 2016b). 

Here, we made the decision to compare all temperature windows that were identified as the 

most important. This meant that we were sometimes comparing species with windows from 

the current year against species with windows from the previous year. Such different windows 

would likely be due to different underlying mechanisms. However, even with the particularly 

well-studied climate change response, laying date, the underlying mechanisms are still in 

question. Temperature could act as a cue for reproduction or work via changes in food 

availability (Phillimore et al., 2016). This lack of knowledge on the underlying mechanisms 

makes it particularly difficult to hypothesise how such different lags from the important 

temperature window up until the trait occurrence might be working. Here, we were not 

primarily interested in the mechanisms, but instead focused on identifying correlations. 

Implications 

It is clear that the assumption that changes in common responses, such as phenology, body 

condition or reproduction, over time are due solely to the effects of warming temperatures is 

incorrect. Therefore, it is important that we understand the contributions of climatic and non-

climatic effects to temporal trends (Both et al., 2004; Wright et al., 2009). Understanding more 

about the different causal agents behind changes in common responses is not only vital if we 

are to properly account for these differing effects in predictive statistical models (Grenouillet & 

Comte, 2014; Cunningham et al., 2016), but also to develop appropriate and effective 

conservation strategies. For instance, if the effects of climate and other environmental 

changes are reinforced, stronger overall changes over time will need to be taken into account 

(Travis, 2003; Radinger et al., 2016a). An important next step might be to tease apart exactly 

what is making up the non-temperature component of these trends. Decomposing changes 

over time due to other climate variables such as rain and humidity, but also specific non-

climatic effects such as habitat quality, pollution or habitat fragmentation, would improve our 

understanding of exactly how these different effects contribute to temporal change 

substantially. Additionally, identifying species characteristics (such as migration strategy or 

other life-history characteristics) that might be able to predict which species are more or less 

strongly affected by climate or non-climatic effects would be invaluable for conservation 

management. If, for instance resident species are more strongly impacted by climate, then 

limited resources can be focused to those species at most risk. Finally, given that non-
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temperature factors can have strong contributions to trends over time, we caution whether 

studies should be considering trends over time to be due to global warming. Instead, we 

suggest that relating systematic variation in traits directly to climate is a more precise way to 

address such questions. 
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Appendix 7 

 

Figure S1 Map of the Netherlands with all study sites (indicated by the red dots). 

Climatic data 

Table S1 CES site and weather station coordinates and the distances between the two. 

CES Site Lat (CES) Long (CES) 
Weather 
Station Lat (Stn) Long (Stn) Distance (km) 

C01 52.61 5.90 273 52.70 5.89 10.1 

C02 52.45 5.82 269 52.46 5.53 20.3 

C03 52.34 4.52 240 52.30 4.77 17.7 

C04 52.54 6.47 278 52.44 6.26 18 

C05 53.21 5.44 270 53.23 5.76 21.2 

C06 53.11 4.79 235 52.92 4.79 20.3 

C07 53.20 6.80 280 53.13 6.59 16.8 

C08 52.33 5.16 265 52.13 5.27 23.7 

C09 52.91 5.83 273 52.70 5.89 23.9 

C10 51.85 5.12 356 51.86 5.15 1.9 

C11 52.61 5.64 269 52.46 5.53 18.2 

C12 51.57 4.90 350 51.57 4.93 2.1 
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C13 53.04 5.40 267 52.90 5.38 15.8 

C14 52.54 4.83 249 52.64 4.98 15.6 

C15 53.26 4.95 251 53.39 5.35 30.9 

C16 51.69 4.47 344 51.96 4.44 29.8 

C17 52.23 6.61 283 52.07 6.65 17.3 

C18 52.28 6.52 283 52.07 6.65 24.8 

C19 52.29 6.09 278 52.44 6.26 20.5 

C20 52.63 6.08 273 52.70 5.89 15.5 

C21 52.42 5.23 269 52.46 5.53 20.4 

C22 52.53 6.46 278 52.44 6.26 16.6 

C23 51.83 5.93 375 51.66 5.71 24.5 

C24 52.85 5.44 267 52.90 5.38 6.2 

C25 51.84 5.96 275 52.06 5.89 25.1 

C26 52.44 6.88 290 52.27 6.90 18.5 

C27 51.34 5.79 377 51.20 5.76 16.1 

C28 52.42 4.56 240 52.30 4.77 19.7 

C29 51.44 5.24 370 51.45 5.41 12.4 

C30 51.84 4.39 344 51.96 4.44 13.4 

C31 52.14 4.33 210 52.17 4.42 6.8 

C32 52.31 5.21 265 52.13 5.27 20.5 

C33 53.33 6.42 277 53.41 6.20 16.9 

C34 53.07 5.33 267 52.90 5.38 19.4 

C35 52.86 6.00 273 52.70 5.89 19.1 

C36 52.31 6.13 278 52.44 6.26 16.9 

C37 51.57 3.57 310 51.44 3.60 14.2 

C38 52.27 6.47 278 52.44 6.26 23.7 

C39 53.04 4.74 235 52.92 4.79 13.2 

C40 51.65 4.77 350 51.57 4.93 14.7 

C41 53.33 6.43 277 53.41 6.20 17.8 

C42 52.81 6.42 279 52.75 6.58 12.6 

C43 52.91 5.03 235 52.92 4.79 16.3 

C44 52.86 5.88 273 52.70 5.89 17.5 

C45 53.31 6.05 277 53.41 6.20 14.7 

C46 53.46 5.66 251 53.39 5.35 21.8 

C47 53.21 6.03 270 53.23 5.76 18.8 

C48 51.90 5.12 356 51.86 5.15 4.9 

C49 52.54 5.95 273 52.70 5.89 18.7 

C50 52.57 6.15 278 52.44 6.26 16.9 

C51 51.35 6.13 391 51.50 6.20 17.4 

C52 51.36 5.49 370 51.45 5.41 11.2 

C53 52.14 5.09 260 52.10 5.18 7.6 

C54 53.20 6.59 280 53.13 6.59 8 

C55 52.27 5.48 265 52.13 5.27 20.9 

C56 51.97 4.69 348 51.97 4.93 16.4 

C57 53.44 6.87 286 53.20 7.15 32.6 

C58 53.41 6.22 277 53.41 6.20 1.9 
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C59 52.22 6.55 283 52.07 6.65 17.5 

C60 51.51 5.84 375 51.66 5.71 18.8 

C61 52.33 5.16 265 52.13 5.27 23.7 

C62 53.48 6.16 277 53.41 6.20 8.3 

C63 51.91 6.03 275 52.06 5.89 20 

C64 51.87 6.08 275 52.06 5.89 25 

C65 51.96 5.74 275 52.06 5.89 15.4 

C66 52.52 4.91 249 52.64 4.98 14.8 

C67 52.53 6.15 278 52.44 6.26 12.7 

C69 52.42 5.23 269 52.46 5.53 20.3 

C70 52.29 5.53 269 52.46 5.53 18.3 

C71 53.28 6.00 270 53.23 5.76 17.4 

C72 51.82 5.94 375 51.66 5.71 24.2 

C73 53.17 6.70 280 53.13 6.59 9 

C74 52.37 5.58 269 52.46 5.53 10.4 

C75 52.81 4.69 235 52.92 4.79 14.3 

C76 53.04 6.04 270 53.23 5.76 28.6 

C77 53.31 6.89 286 53.20 7.15 21.5 

C78 52.57 6.14 278 52.44 6.26 16.8 

C79 52.16 6.26 275 52.06 5.89 27.6 

C81 51.55 5.03 350 51.57 4.93 7 

C82 53.48 6.18 277 53.41 6.20 8.4 

C83 52.63 6.47 279 52.75 6.58 14.7 

C84 53.44 6.87 286 53.20 7.15 32.6 

C85 52.31 5.20 265 52.13 5.27 20.6 

C86 52.17 6.10 275 52.06 5.89 18.9 

C87 51.98 5.66 275 52.06 5.89 18.2 

C88 53.10 5.39 267 52.90 5.38 22.7 
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Check Assumptions of the Structural Equation Model  

Normal distribution of residuals 

Most species had clear normal distributions, while a few had outlier sections. However, these 

small increased densities of residuals in the outer regions of the normal distribution curve 

were not overly large and we decided to accept these models as fitting appropriately. 

 

Figure S2 Distribution of residuals of traits (left column) and temperatures (right column), where each 

line is a different species. 
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Estimates and standard error 

The plots below show all of the path estimates and their standard errors calculated in the 

SEMs for each species. 

 

Figure S3 Pathway estimates for laying date (UK). (a) is the direct year to trait pathway (i.e. the non-

temperature pathway) and the slopes show the change in lay date per year. (b) is the temperature to 

trait pathway (changes in lay date per degree Celsius) and (c) is the year to temperature pathway 

(change in temperature per year) that are multiplied to calculate the temperature pathway. The solid 

horizontal line shows the overall path estimate across all species ± standard error. 
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Figure S4 Pathway estimates for Body Mass. (a) is the direct year to trait pathway (i.e. the non-

temperature pathway) and the slopes show the change in % body mass per year. (b) is the 

temperature to trait pathway (changes in body mass per degree Celsius) and (c) is the year to 

temperature pathway (change in temperature per year) that are multiplied to calculate the 

temperature pathway. The solid horizontal line shows the overall path estimate across all 

species ± standard error. 
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Figure S5 Pathway estimates for FPBA (fledglings produced per breeding attempt; UK). (a) is the direct 

year to trait pathway (i.e. the non-temperature pathway) and the slopes show the change in fledglings 

per year. (b) is the temperature to trait pathway (changes in fledglings per degree Celsius) and (c) is the 

year to temperature pathway (change in temperature per year) that are multiplied to calculate the 

temperature pathway. The solid horizontal line shows the overall path estimate across all species ± 

standard error. 
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Figure S6 Pathway estimates for the proportion of juveniles (NL). (a) is the direct year to trait pathway 

(i.e. the non-temperature pathway) and the slopes show the change in proportion of juveniles per year. 

(b) is the temperature to trait pathway (changes in proportion per degree Celsius) and (c) is the year to 

temperature pathway (change in temperature per year) that are multiplied to calculate the temperature 

pathway. The solid horizontal line shows the overall path estimate across all species ± standard error. 
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Distribution of random intercept and slope terms  

We were unable to plot all species on the same figure as the axes varied among species such 

that most species density curves could not be seen. Due to the high number of species and 

intercept and slope terms we have not published the figures here. All species appeared to be 

mostly normally distributed, with no species standing out as not meeting this assumption. 

Temperature Windows 

Table S2 Species from the United Kingdom where laying date or FPBA are either sensitive or 

insensitive to temperature and the p-value from the climwin analysis. Here, p-values less than 

0.5 are considered to be real, and thus those species are considered sensitive to temperature. 

 Species 
Laying date 

p-value 
Laying date 

Window 
FPBA 

p-value 
FPBA 

Window 

1 Blackbird 0.723067 Insensitive 0.924515 Insensitive 

2 Blackcap 8.38E-06 Sensitive 0.039492 Sensitive 

3 Blue tit 4.01E-05 Sensitive 0.65349 Insensitive 

4 Bullfinch 0.92441 Insensitive 0.843804 Insensitive 

5 Chaffinch 6.56E-06 Sensitive 0.001587 Sensitive 

6 Chiffchaff 6.77E-06 Sensitive 0.624452 Insensitive 

7 Coal tit 6.62E-06 Sensitive 0.002334 Sensitive 

8 Collared dove 0.768718 Insensitive 0.992527 Insensitive 

9 Corn Bunting 0.000172 Sensitive 0.860345 Insensitive 

10 Dunnock 0.005261 Sensitive 0.975413 Insensitive 

11 Garden warbler 9.42E-06 Sensitive 0.389847 Sensitive 

12 
Great spotted 
woodpecker 

0.162519 Sensitive 0.989374 Insensitive 

13 Great tit 1.44E-05 Sensitive 0.003986 Sensitive 

14 Jackdaw 1.08E-05 Sensitive 0.829469 Insensitive 

15 Little owl 7.66E-06 Sensitive 0.318695 Sensitive 

16 Magpie 3.84E-05 Sensitive 0.041115 Sensitive 

17 Marsh tit 6.73E-06 Sensitive 0.721564 Insensitive 

18 Mistle thrush 0.000727 Sensitive 0.746145 Insensitive 

19 Nuthatch 6.90E-06 Sensitive 0.819935 Insensitive 

20 Pied wagtail 0.009844 Sensitive 0.042802 Sensitive 

21 Redstart 9.21E-06 Sensitive 6.86E-06 Sensitive 

22 Reed bunting 9.52E-06 Sensitive 0.489953 Sensitive 

23 Reed warbler 1.30E-05 Sensitive 0.979256 Insensitive 

24 Robin 7.66E-06 Sensitive 0.615268 Insensitive 

25 Sedge warbler 0.000378 Sensitive 0.965738 Insensitive 

26 Song thrush 0.682729 Insensitive 0.927407 Insensitive 

27 Spotted flycatcher 0.919559 Insensitive 0.420912 Sensitive 

28 Tawny owl 0.93247 Insensitive 0.016499 Sensitive 

29 Treecreeper 1.67E-05 Sensitive 0.86677 Insensitive 

30 Turtle dove 0.967052 Insensitive 0.953662 Insensitive 
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31 Whitethroat 0.001433 Sensitive 0.967667 Insensitive 

32 Wood pigeon 0.025219 Sensitive 0.960302 Insensitive 

33 Wren 1.40E-05 Sensitive 0.944545 Insensitive 

34 Yellow wagtail 0.906465 Insensitive 0.92501 Insensitive 

35 Yellowhammer 0.007466 Sensitive 0.967573 Insensitive 

 

Table S3 Species from the Netherlands where body mass or the proportion of juveniles (Prop. Juv.)  are 

either sensitive or insensitive to temperature and the p-value from the climwin analysis. Here, p-values 

less than 0.5 are considered to be real, and thus those species are considered sensitive to temperature. 

 Species 
Mass 

p-value 
Mass 

Window 
Prop. Juv. 

p-value 
Prop. Juv. 
Window 

1 Bearded reedling 0.974274 Insensitive 0.992021 Insensitive 

2 Bluethroat 0.033642 Sensitive 0.95378 Insensitive 

3 Common blackbird 0.000103 Sensitive 0.027648 Sensitive 

4 Common chaffinch 0.036375 Sensitive 0.951273 Insensitive 

5 Common chiffchaff 4.27E-05 Sensitive 1.11E-05 Sensitive 

6 
Common grasshopper 
warbler 

0.007161 Sensitive 0.525908 Insensitive 

7 Common Kingfisher 0.964986 Insensitive 0.972807 Insensitive 

8 Common linnet 0.009873 Sensitive 0.573736 Insensitive 

9 Common nightingale 0.9732 Insensitive 0.925036 Insensitive 

10 Common redstart 0.650429 Insensitive 0.970452 Insensitive 

11 Common reed bunting 0.07584 Sensitive 0.968133 Insensitive 

12 Common starling 0.958907 Insensitive 0.000107 Sensitive 

13 Common whitethroat 0.633896 Insensitive 0.108371 Sensitive 

14 Dunnock 0.216536 Sensitive 0.950149 Insensitive 

15 Eurasian blackcap 0.107361 Sensitive 0.000282 Sensitive 

16 Eurasian blue tit 0.772692 Insensitive 2.25E-05 Sensitive 

17 Eurasian bullfinch 0.000115 Sensitive 0.93104 Insensitive 

18 Eurasian jay 0.01813 Sensitive 0.000168 Sensitive 

19 Eurasian nuthatch 0.923356 Insensitive 0.941814 Insensitive 

20 Eurasian reed warbler 0.400956 Sensitive 0.939811 Insensitive 

21 Eurasian Tree Sparrow 0.062817 Sensitive 0.951963 Insensitive 

22 Eurasian wren 0.165995 Sensitive 0.972886 Insensitive 

23 European crested tit 0.010937 Sensitive 0.974085 Insensitive 

24 European goldfinch 0.972886 Insensitive 0.903129 Insensitive 

25 European greenfinch 0.957159 Insensitive 0.926376 Insensitive 

26 European pied flycatcher 0.290141 Sensitive 8.58E-05 Sensitive 

27 European robin 0.940149 Insensitive 0.968638 Insensitive 

28 European stonechat 0.719451 Insensitive 0.705012 Insensitive 

29 Garden warbler 0.960244 Insensitive 0.934142 Insensitive 

30 Goldcrest 0.949 Insensitive 0.902998 Insensitive 

31 Great spotted woodpecker 0.969845 Insensitive 1.18E-05 Sensitive 

32 Great tit 0.002687 Sensitive 0.990604 Insensitive 
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33 House sparrow 0.010446 Sensitive 0.753179 Insensitive 

34 Icterine warbler 0.950854 Insensitive 0.877465 Insensitive 

35 Lesser whitethroat 0.83758 Insensitive 0.000569 Sensitive 

36 Long-tailed tit 0.966956 Insensitive 0.961262 Insensitive 

37 Marsh tit 0.971174 Insensitive 0.004392 Sensitive 

38 Marsh warbler 0.635981 Insensitive 0.967954 Insensitive 

39 Savi's warbler 0.924619 Insensitive 0.949145 Insensitive 

40 Sedge warbler 0.801783 Insensitive 0.21679 Sensitive 

41 Short-toed treecreeper 0.954955 Insensitive 0.958312 Insensitive 

42 Song thrush 0.158258 Sensitive 0.830104 Insensitive 

43 Spotted flycatcher 0.490702 Sensitive 0.89298 Insensitive 

44 Tree pipit 0.044876 Sensitive 0.91023 Insensitive 

45 White wagtail 0.974085 Insensitive 0.992358 Insensitive 

46 Willow tit 0.7075 Insensitive 0.955596 Insensitive 

47 Willow warbler 0.006405 Sensitive 0.349019 Sensitive 
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Figure S7 Temperature windows for laying date (a), body mass (b), fledglings per breeding mass (FPBA; 

c) and the proportion of juveniles (d) of bird species in the United Kingdom (UK) and the Netherlands 

(NL). For laying date, the 0 date differs among species, where it is 30 days after the maximum mean 

laying date for all years (early July on average across species). For FPBA, date 0 is the 1st July as this is 

around the end of the sampling season. For body mass and the proportion of juveniles, the date 0 is the 

15th August as sampling took place from 12 April - 14 August each year. Some species names have been 

shortened, where C. stands for common, Grt. spd. stands for Great spotted, and Eur. stands for 

European. 





 

 
 

Synthesis 

The climate is changing at a rapid rate, which is already having observable effects on animals 

and plants around the world (Parmesan & Yohe, 2003; IPCC, 2013). As the climate continues to 

change in the future, the risk of extinctions is predicted to drastically rise, with one in six 

species likely to be committed to extinction (Thomas et al., 2004; Urban, 2015). Consequently, 

it is important that we not only understand how changes in climate are affecting organisms, 

but also are able to make reliable predictions of which species, populations or communities 

are most at risk. Yet, the ability to make broad generalisations about climate impacts and 

identify those populations most at risk requires large scale comparative analyses based on 

correct assumptions. This thesis takes some steps towards addressing our knowledge gaps, 

focusing on how common European bird species are responding to changes in the climate, and 

identifying which species or populations are most at risk. I investigated the validity of several 

common assumptions that are frequently made throughout the climate change literature.  

It is now becoming clear that changes in traits such as phenology and physiology do not always 

result in population level changes (Reed et al., 2013; Dunn & Møller, 2014; Stopher et al., 

2014). For common passerine species in the Netherlands and the UK, I found that changes in 

laying dates or body condition did not influence population dynamics, and thus there was no 

change to species’ extinction risks resulting from changes in climate (Chapters 1 & 3). Although 

understanding the effects of climate on traits is of interest for determining the underlying 

mechanisms of climate change, trait sensitivities will not always reflect species’ sensitivities to 

population-level impacts. Consequently, trait sensitivities to climate may be of little use as 

indicators for population changes. Given that natural resource managers and policy makers are 

mainly interested in how climate change will affect population size and persistence (Miller-

Rushing et al. 2010), one main challenge will now be to understand which traits are more likely 

to result in population-level effects, and which species or populations are most at risk.  

Although trait changes do not appear to be impacting population-level responses currently, as 

the climate continues to change and reach new extremes outside of the historical data, it is 

uncertain whether trait changes might become more important in the future (Petchey et al., 

2015). Atmospheric temperatures are expected to rise by 0.3°C – 0.7°C from 2016-2035 and 

will likely exceed 1.5°C by 2100, while changes in precipitation will not be uniform but higher 

latitudes are likely to experience increased precipitation (IPCC, 2014). As temperatures 

continue to warm, there will likely be a threshold or tipping point where the effects that are 
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currently observed change (Gardner et al., 2014). For instance, I found that laying earlier 

currently improves reproductive success, but there will likely be a point at which laying any 

earlier will be detrimental (Chapter 1). As a result, predictions that are extrapolated beyond 

current conditions from correlative models will not be as reliable (Buckley et al., 2010), and 

our ability to understand such responses in the distant future, or under novel conditions, is 

limited (Petchey et al., 2015). Given that trait responses are often non-linear, responses could 

potentially change substantially as conditions continue to change (Chapter 2). Our 

decomposition approach estimates full and partial derivatives which reflect the effect sizes of 

traits, demographic rates or population growth rates on each other (e.g. how much 

reproductive success changes per lay date), and to climate (e.g. how much egg-laying date 

changes per degree Celsius). We assume that changes in the climate, traits and demographic 

rates are relatively small, such that we can characterize the relationships between these 

variables as being roughly linear around the mean current climatic conditions(Chapter 1). 

Consequently, the trends described in this thesis are likely to be accurate for the near future, 

but will likely shift as the climate continues to warm. 

Empirical studies in the climate ecology literature often fail to consider variability in responses 

among populations of the same species, and thus assume that one population is 

representative of a species response (Rubolini et al., 2007; Malyshev et al., 2016; Thackeray et 

al., 2016). Yet, populations can differ in their genetic structures (Phillimore et al., 2010; 

Somero, 2010; Acker et al., 2014; Abbott et al., 2017), life history traits (Moran et al., 2015), 

predation rates, parasites and presence of refuges (Aubry et al., 2013; Schindler et al., 2015), 

all of which could influence how changes in climate affect different populations. Indeed, not 

only did populations within species frequently differ in their responses to climate (Chapter 2), 

and to changes in population growth from reproduction (Chapter 3), but the contributions of 

non-temperature effects to trends over time also differed among sites (Chapter 4). Populations 

within species often varied in their responses to climate variables to such an extent that 

populations of the same species were often no more alike than populations of different 

species (Chapter 2). In such cases, a single species response value will not be meaningful 

(Stevens et al., 2010; Malyshev et al., 2016).  

The ability to make generalisations about which species are more at risk from global changes 

based on species or population characteristics is vital for our future conservation efforts 

(Buckley & Kingsolver, 2012; Jenouvrier, 2013). Life history or habitat characteristics that can 

predict differential climate change responses are of particular importance for species about 
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which we have limited knowledge (especially given that most species are data deficient). Such 

characteristics will help to determine where to prioritize conservation efforts (Sæther et al. 

1996). We found that under warmer temperatures the population growth rate increased for 

species that have multiple broods over a season, while single-brooders showed declines 

(Chapter 1). Apart from this species characteristic, we were unable to identify any clear ‘types’ 

of species that were more at risk (e.g. larger, long-lived species). However, given that intra-

specific variation was often high, this was perhaps not surprising.  If a species does not 

respond consistently across populations, it suggests that other, more local factors are of more 

importance and that site-specific traits (e.g. habitat type) are likely having a stronger influence 

on population sensitivities (Moran et al., 2015). Indeed, we found that populations in dry 

habitats had much stronger decreases in body condition with warmer temperatures and 

increased body condition with increased rainfall (Chapter 2).  

By decomposing population responses into relationships among different underlying 

pathways, we can better understand the mechanisms that drive population decline (Nichols & 

Hines, 2002; Ådahl et al., 2006; McLean et al., 2016). For instance, the main effects of 

temperature on the population growth rate were not driven by changes in body condition, but 

instead by reproductive success and other unknown traits (Chapter 3). However, the 

phenomenological (or associative) approach taken here means that, although we know that 

there are important relationships between hierarchical levels (e.g. warmer temperature is 

associated with decreased body condition), we do not yet understand how or why these 

effects occur (e.g. how changes in temperature affect body condition). Because of this, 

extrapolating the trends and life-history and site characteristics identified here as important to 

other taxa or geographical regions could be problematic (Buckley et al., 2010). Associative 

trends can often predict responses just as well, if not better, than detailed mechanistic models 

because they do not rely on accurate understanding of the underlying relationships that often 

differ among species (Buckley et al., 2010; Peterson et al., 2015). However, extrapolation to 

other situations will only work if, (1) the explanatory variables correspond to the underlying 

process that is resulting in change (i.e. temperature is the direct cause of changes in body 

condition or is a good proxy for the causal mechanism, perhaps changes in food), and (2) other 

environmental effects do not influence the relationship or the reliability of the proxy, and thus 

the magnitude and direction of the relationship does not depend on whether they are present 

or absent in other situations (e.g. the effect of reproduction on population growth changed 

depending on site-and species-specific differences in Chapter 3) (Buckley et al., 2010; van de 

Pol et al., 2016). Consequently, our approach generated many hypotheses about how 
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passerine species are responding to climate, and the characteristics that make species or 

populations more sensitive, but these hypotheses now need to be tested on new species and 

geographic locations. 

Although our knowledge of the impacts of climate on organisms grows every day, there are 

many assumptions made throughout the literature that are rarely tested. For instance, 

changes in traits over time are commonly assumed to be due to changes in the climate. Yet, 

we found that non-temperature effects contributed about 50% to temporal trends. 

Furthermore, body condition responses to a range of climate variables were typically non-

linear, and many climate variables can also be important for trait responses (Chapter 2). We 

therefore suggest that many of the common assumptions made when studying climate change 

responses need to be investigated or at least acknowledged.  

This thesis has expanded our knowledge and understanding of how climate change is 

impacting organisms. It highlights the importance of understanding the consequences of trait 

changes and the contributions of different non-climatic factors to changes over time in order 

to get a more holistic understanding of the impacts of climate change. Indeed, responses to 

climate are complex, often not only varying among species, but also among populations within 

species. This body of work will lay the foundations for broader, more holistic future climate 

change research that encompasses relationships among multiple types of responses, across 

species and populations within species. Such knowledge will be absolutely vital for future 

conservation efforts. 
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