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Abstract

Understanding the physical dynamics underlying energy systems is essential in achieving sta-
ble operations, and reasoning about restoration and expansion planning. The mathematics
governing energy system dynamics are often described by high-order differential equations.
Optimizing over these equations can be a computationally challenging exercise. To overcome
these challenges, early studies focused on reduced / linearized models failing to capture system
dynamics accurately. This thesis considers generalizing and improving existing optimization
methods in energy systems to accurately represent these dynamics. We revisit three applica-
tions in power transmission and gas pipeline systems.

Our first application focuses on power system restoration planning. We examine transient
effects in power restoration and generalize the Restoration Ordering Problem formulation with
standing phase angle and voltage difference constraints to enhance transient stability. Our new
proposal can reduce rotor swings of synchronous generators by over 50% and have negligible
impacts on the blackout size, which is optimized holistically.

Our second application focuses on transmission line switching in power system operations.
We propose an automatic routine actively considering transient stability during optimization.
Our main contribution is a nonlinear optimization model using trapezoidal discretization over
the 2-axis generator model with an automatic voltage regulator (AVR). We show that con-
gestion can lead to rotor instability, and variables controlling set-points of automatic voltage
regulators are critical to ensure oscillation stability. Our results were validated against POW-
ERWORLD simulations and exhibit an average error in the order of 10−3 degrees for rotor
angles.

Our third contribution focuses on natural gas compressor optimization in natural gas pipeline
systems. We consider the Dynamic Optimal Gas Flow problem, which generalizes the Optimal
Gas Flow Problem to capture natural gas dynamics in a pipeline network. Our main contribu-
tion is a computationally efficient method to minimize gas compression costs under dynamic
conditions where deliveries to customers are described by time-dependent mass flows. The
scheme yields solutions that are feasible for the continuous problem and practical from an
operational standpoint. Scalability of the scheme is demonstrated using realistic benchmark
data.
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Chapter 1

Introduction

1.1 An Overview on Energy Systems

Energy transportation systems are critical for transferring and supplying energy resources to
support daily activities in our modern societies. These systems allow us to collect energy re-
sources from generation points and transport them to customers. Electricity transmitted by
power grids, natural gas flowing in gas pipelines, and water supply traveling through water
systems are common types of energy resources and corresponding transportation systems. En-
ergy sources are usually not geographically co-located with consumers. Apart from distributed
generation such as photovoltaic (PV) systems, most customers still solely rely on energy trans-
portation systems for satisfying their needs. A breakdown of such systems not only affects cus-
tomers, but could also lead to disastrous events. For instance, on July 30, 2004, a gas pipeline
was ruptured and later exploded in Belgium, killing 24 people and injuring over 120 [8]. On
August 14-15, 2003, a major power outage occurred in the north-eastern coast of the U.S. and
Canada. This event led to a situation where 50 million people were left without power [9].

The question on how to maintain an efficient, stable, and reliable transportation system is
thus a critical question. Maintaining the systems in stable operating conditions is a manda-
tory requirement. In the U.S., the Federal Energy Regulatory Commission (FERC) regulates
the power grid and issues new regulations/orders [10] to improve and enhance gird stability
and efficiency. This translates to different optimization and control problems. For instance, in
power (resp., natural gas) systems, the optimal power (resp., gas) flow problem is frequently
solved by engineers to find the least cost generation (resp., natural gas) dispatch satisfying cus-
tomer demands. To further account for stability and reliability, these energy systems will be
routinely checked to ensure a stable control profile exists (e.g., frequency/voltage controls in
power systems), bringing the system back to stable conditions when contingencies and faults
occur. If no feasible control profile exists, a control problem will then be formulated to find
the optimal/feasible control settings. Expansion planning problems are also useful in assisting
power/natural gas utilities to understand how to expand and improve their systems. To reduce
the computational complexity in solving these optimization and control problems, one pop-
ular practice is to ignore the transient dynamics during the optimization phase and consider
only steady-state operations. The ignored dynamics will then be later checked via simulation
software to ensure that the solutions are acceptable.

1
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1.2 Computational Challenges with System Dynamics

Managing energy systems to meet stability and operational conditions requires modeling the
physics underlying energy flows and constraints associated with transportation networks. In
power systems, the Alternating-Current (AC) power flow equations [5] accurately describe
power flows under steady state operations. To model transient dynamics, the classical genera-
tor “Swing” model [5] includes 2nd-order differential equations coupled with the non-convex
AC power flow equations. The overall formulation can become intractable for optimization.
In practice, higher-order differential models are needed to reason on detailed generator be-
haviours, resulting in higher-order differential equations for optimization. Similarly, for nat-
ural gas, the Euler equations describing the flow of natural gas along pipes are also nonlinear
and differential in nature [11].

To avoid computational intractability, early studies have resorted to using simplified mod-
els. In power systems, restoration planning tools usually adopt linearized power flow equations
(e.g., the DC power flow equations) with simplified network models and only consider steady-
state operations [12, 13, 14]. Detailed network behaviour and transient-states analysis is then
conducted by engineers using simulation tools [15, 16, 17]. This approach can lead to sub-
optimal plans since multiple iterations between optimization and simulation is needed before
converging to a transient-stable solution. Previous research tried to address these issues, e.g.,
reducing the standing phase angles [18, 19, 20] and directly reasoning on rotor shafts [21]. In
early research on transient dynamics, swing equations are modeled using a simplified genera-
tor model [5, 1, 22, 23]. Unfortunately, such models fail to capture modern equipments such
as automatic voltage and frequency controllers.

1.3 Our Contributions

The primary goal of this thesis is to study optimization and planning problems featuring dif-
ferential equations describing transient dynamics in energy systems. Three applications are
considered in this work. In each case, we demonstrate the issues related to ignoring sys-
tem dynamics, before embedding them into novel routines and models enhancing existing ap-
proaches. All formulations were validated using well-established simulators, and experimental
evaluations were performed on various well-known benchmarks.

1.3.1 Restoration planning for power systems

Our first application focuses on power system restoration planning. We consider the Restora-
tion Ordering Problem (ROP) [24] that jointly considers generator dispatch, load pickups, and
restoration prioritization to minimize the size of the blackout while satisfying the network op-
erational constraints. Prior work on the ROP restricts attention to determining an optimal
sequence of AC-feasible steady-states, and does not consider transition stability from one
steady-state to the others. We examine transient effects in power restoration and generalize
the ROP formulation with standing phase angle and voltage difference constraints to enhance
rotor angle stabilities. We show: 1) the DC power flow approximation is not appropriate, 2)
both the standing phase angle and voltage difference constraints can reduce rotor swings of
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synchronous generators by over 50%, and 3) by jointly considering both constraints with load
pickups and generation dispaches, improvements in rotor swings have negligible impacts on
the blackout size. Instead of using repair-based/local-search methods to find stable solutions
based on the result from the original optimization routine [24], our model focuses on optimiz-
ing all the decisions globally (i.e. holistic optimization).

1.3.2 Transmission line switching for power systems

Our second application focuses on transmission line switching in power system operations. We
consider the Optimal Transmission Switching (OTS) [25] problem that searches for the best se-
quence of lines to switch off in order to minimize generation costs. The formulation produces
an optimal sequence of steady states without guaranteeing transient stability. Our simulation
experiments on the IEEE-39 test case indicate the more congested the network is, the more dif-
ficult it becomes to ensure transient stability. We propose an automatic routine which actively
considers transient stability during optimization. Our key contribution is a nonlinear opti-
mization model for Transient-Stable Line Switching (TSLS), using trapezoidal discretization
over a 4th-order 2-axis generator model with an automatic voltage regulator (AVR) consisting
of an exciter and a stabilizer. The model features two types of control variables: generation
dispatches and stabilizer parameters, and its objective function minimizes the rotor angle ac-
celerations weighted by time in order to damp and stabilize the system. The key findings are
highlighted as follows: 1) the more congested the system is, the more difficult it is to ensure
rotor stability, 2) due to the lack of excitation controls in classical swing models, the classical
model cannot maintain rotor stability for congested scenarios, 3) the variables controlling the
set-points of the exciter and the stabilizer are critical to ensure rotor stability, in particular to
maintain (small-signal) oscillation stability, and 4) the TSLS optimization results were vali-
dated against POWERWORLD simulations, and exhibit an average error in the order of 10−3

degree for rotor angles.

1.3.3 Optimal compression controls for natural gas pipeline systems

Our third contribution focuses on natural gas compressor optimization in natural gas pipeline
systems. We consider the Dynamic Optimal Gas Flow (DOGF) problem, which generalizes
the Optimal Gas Flow problem to capture the natural gas dynamics of a gas pipeline network.
Early studies [26, 27, 28] focused on optimizing steady-state gas flows, for which the state
equations are algebraic relations. However, it is no longer appropriate to restrict attention to
steady-state approximations, which cannot adequately describe the physics of high volume
gas flows that may fluctuate significantly throughout the day according to gas-fired genera-
tor dispatch and commitment schedules [29, 30]. Our main contribution is a computationally
efficient method to minimize gas compression costs under dynamic conditions where deliver-
ies to customers are described by time-dependent mass flows. Our optimization method uses
a simplified representation of gas flow physics, provides a choice of discretization schemes
in time and space, and exploits a two-stage approach to minimize energy costs and ensure
smooth and physically meaningful solutions. The proposed scheme is validated using an adap-
tive time-stepping differential equation solver, and cross-compared with a different optimal
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control scheme. The validation process indicates that our optimization scheme produces so-
lutions with minimal pressure constraint violations and with physically meaningful mass flow
and pressure trajectories that match well with the corresponding simulations. Our method
provides a highly accurate solution to a 24-pipe gas benchmark in less than 30 seconds, and
demonstrates scalability to three pipeline networks.

1.4 Thesis outline

The rest of the chapters are organized as follows. Chapter 2 presents the background material
for this thesis, where fundamental equations, concepts, and notations are introduced. Chapter 3
presents our first application on power system restoration planning. Chapter 4 illustrates our
second application on power system line switching. Chapter 5 presents our third application
on natural gas compression optimization. We then conclude our thesis and discuss our future
work in Chapter 6.

1.5 Publication

Parts of this thesis were published in various journals/venues. Our work on power system
restoration planning was published in:

• [31] Terrence W.K. Mak, Carleton Coffrin, Pascal Van Hentenryck, Ian A. Hiskens,
David Hill: Power system restoration planning with standing phase angle and voltage
difference constraints. In: Proceedings of the 18th Power Systems Computation Confer-
ence (PSCC’14). Wroclaw, Poland (2014)

• [32] Hassan Hijazi, Terrence W. K. Mak, Pascal Van Hentenryck: Power system restora-
tion with transient stability.In: Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence (AAAI’15). Austin, Texas (2015)

Our work on power system line switching was published in:

• [33] Terrence W.K. Mak, Pascal Van Hentenryck, and Ian A. Hiskens: A Nonlinear
Optimization Model for Transient Stable Line Switching. In: Proceedings of the 2017
American Control Conference (ACC’17). Seattle, USA (2017)

Our work on natural gas compression optimization was published in:

• [34] Terrence W.K. Mak, Pascal Van Hentenryck, Anatoly Zlotnik, Hassan Hijazi, Rus-
sell Bent: Efficient dynamic compressor optimization in natural gas transmission sys-
tems. In: Proceedings of The 2016 American Control Conference (ACC’16). Boston,
USA (2016)

The extended journal version was published in :

• [35] Terrence W.K. Mak, Pascal Van Hentenryck, Anatoly Zlotnik, Russell Bent: Dy-
namic Compressor Optimization in Natural Gas Pipeline Systems. In: INFORMS Jour-
nal on Computing. (IJOC’2018). Runner-up for the 2016 INFORMS Computing Society
Student Paper Prize
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Chapter 2

Background and Related Work

This chapter provides necessary background material for the rest of the thesis. In the first
section, we will introduce notations and terminologies for electrical power systems. Power
flow equations and the Load/Power Flow Problem will be introduced. We will present the
fundamental Optimal Power Flow Problem (OPF), with discussion on two important variants:
the original AC-OPF problem, and the simplified DC-OPF problem. We will then describe two
important applications: power systems restoration and transmission line switching. Several
types of stabilities will be introduced. In particular, we will consider small-signal stability
and transient stability. In the second section, we will introduce notations and terminology for
describing the natural gas transmission systems. The gas flow equations and the steady-state
gas flow problem will then be discussed.

2.1 Electrical Power Systems

A traditional electrical power system [5] (also commonly called power grid) consists of three
main components: a) generation sources for power generation, b) power lines and/or trans-
formers for power transmission, and c) loads for power consumption.

Example 2.1.1. Figure 2.1 shows a small example of a power system. The example has two
generators for power generation, three transmission lines for power transmission, three buses
for power aggregation, and two loads for power consumption, which are commonly drawn as
circles, connecting lines, line bars, and arrows respectively. Transmission lines can transmit
electric power in any direction. We indicate them as dotted lines if they are opened (i.e., not
in service). In this example, if generator 1 is the only operating generator, then power will
flow in an anti-clockwise direction (i.e., from Bus 1 to Bus 3, and then from Bus 3 to Bus 2).
If generator 2 is the only generator in service, power will flow in a clock-wise direction (i.e.,
from Bus 2 to Bus 3).

7
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Figure 2.1: 3-bus power transmission system: 2 generators, 3 transmission lines, 3 buses, and
2 loads

Table 2.1: Nomenclature for power systems networks
Nomenclature for power network P = 〈N,L,G,O〉

N Set of buses in the power network
N(n) ⊆ N Subset of neighbouring buses which connect to bus n
L Set of transmission lines in the power network
G Set of generator machines
G(n) Generators connecting to bus n
O Set of demands/loads
O(n) ⊆ O Subset of demands connected to bus n
Ŝ,V̂ MVA and voltage base for the per unit (p.u.) normalization
Î, Ẑ,Ŷ Current, impedance, and admittance base for the per unit (p.u.) normalization
pn,qn (Net) Active and reactive power of bus n (p.u.)
S̃n = pn + iqn (Net) Complex power of bus n (p.u.)
pnm Active power flow from bus n to m (p.u.)
qnm Reactive power flow from bus n to m (p.u.)
S̃nm = pnm + iqnm AC/Complex power flow from bus n to m (p.u.)
rnm,xnm Resistance and reactance of power line (n,m) (p.u.)
znm = rnm + ixnm Impedance of power line (n,m) (p.u.)
gnm,bnm Conductance and susceptance of power line (n,m) (p.u.)
ynm = 1/znm = gnm + ibnm Admittance of power line (n,m) (p.u.)
gn

s Conductance of bus shunts at bus n (p.u.)
bn

s Susceptance of bus shunts at bus n (p.u.)
lnm
c Line charge of line (n,m) (p.u.)

Ṽ n, Ĩn Complex voltage and complex (net) current of bus n (p.u.)
Ṽ n = V n∠θ n Voltage magnitude & phase angle at bus n (p.u.)
Trnm Transformer off-nominal turns ratio (p.u.) from bus n to m
φ nm Transformer phase shift from bus n to m
pn

l ,qn
l Active and reactive power loads at bus n (p.u.)

pn
g,qn

g Active and reactive generation power at bus n (p.u.)
znm On-off line switching variable/parameter
Θnm Total phase difference for line (n,m)
v,v Upper limits and lower limits of a real/complex quantity/variable v
v∗ Complex conjugate of a complex quantity/variable v
∆ Discretization time constant (sec)

In practice, power systems split into three main classes: transmission, sub-transmission,
and distribution. A transmission system [5] connects generators to the sub-transmission level.
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Figure 2.2: The classical IEEE-39 bus transmission system [1, 2] ( c©1979 IEEE). The im-
proved figure ( c©2015 IEEE) is copied from the IEEE-PES technical report PES-TR18 (Figure

4.4) [3], which was first appeared from the 39 bus system MATLAB report [4].
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It usually forms the backbone of the overall system and operates at high voltage levels (e.g. 230
kV or above). The sub-transmission system [5] transmits power received from generators and
delivers to distribution systems. Large industrial customers are commonly supplied directly
at the sub-transmission level. In some networks, the sub-transmission level is merged with
the transmission system. The distribution system [5] transmits power to individual customers,
and operates at low voltage levels. The primary distribution feeders supply small industrial
customers at voltage levels of 4 kV to 35kV, and the secondary distribution feeders connects
residential/home customers at common voltages of 100V to 240V. Power systems usually op-
erate at a frequency of 50Hz or 60Hz. In terms of topology, distribution systems are mostly
radial, with a limited number of cycles in exceptional cases. Transmission systems, e.g., the
10-generator 39-bus IEEE benchmark system [1, 2, 4] shown in Figure 2.2, are commonly
found to be more meshed than distribution networks. A meshed network allows the system to
be more robust towards faults and loss of equipments, e.g., N−1 contingency.

2.1.1 Terminologies and notations

In this thesis, we define a power system network P consists of at least the following four
sets of equipments: a) a set of buses N, b) a set of transmission lines and transformers L, c)
a set of generators G, and d) a set of loads O. In power systems, symbols are often abused
to represent a quantity in different forms. For example, V may be used to represent complex
voltage of an equipment at a particular time point, the complex magnitude of an equipment,
or a voltage function of an equipment over a series of time points. To avoid confusion be-
tween a variable/quantity at a particular time point and its function series, we append ‘()’ to
all variables/quantities to represent its function series. In addition, to avoid confusion between
complex variables n from its complex magnitude |n|, we add a ‘̃ ’ to the top of n when variable
n must be represented in its complex form. We use S, p, and q to denote complex, active, and
reactive power respectively. Voltage and current are represented by V and I respectively. We
use z, r, and x to represent impedance, resistance, and reactance, and y, g, and b to represent
admittance, conductance, and susceptance respectively. Table 2.1 presents a detailed list of
notations for each equipment.

We assume power systems parameters and variables are normalized into the per-unit system
(p.u.) [5]. In particular, we assume voltages are normalized by the voltage base V̂ , and active,
reactive, complex power are all normalized by the MVA power base Ŝ. The impedance base Ẑ,
admittance base Ŷ , and current base Î are defined by the following formula:

Ẑ =
V̂ 2

Ŝ
, Ŷ =

Ŝ

V̂ 2
, Î =

Ŝ

V̂

For simplicity, we assume there is only one generator per bus. Therefore, G⊆ N and G(n) =
{n} if bus n has a generator, or otherwise, G(n) is an empty set. This is generally valid
for our work as: 1) we do not aim to study dynamics within generators of a power plant
(e.g. intra-plant dynamic performance), and 2) our techniques for modeling and optimizing
generator dynamics can easily extend to the general case. For ease of notation, we assume
there is at most one power transmission line per pair of buses. We represent the transmission
line connecting bus n to bus m by a pair (n,m) ∈ L : L ⊆ N ×N. If (n,m) ∈ L, then the
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reverse line (m,n) ∈ L (vice versa). If there are more than one transmission line (i.e., parallel
lines) between a pair of buses, we will use reduction/approximation techniques to compute an
equivalent line to replace the originals. We will keep the parallel lines when reducing to one
transmission line gives significant differences/errors (e.g., significantly different operational
requirements between the parallel lines). To differentiate these parallel lines, we add an extra
circuit index number c to the pair (n,m). Let cN be the maximum number of parallel lines in
the corresponding power systems. Transmission lines will be represented by a tuple (n,m,c) ∈
L : L⊆N×N×{1,2, . . . ,cN}. Variables and parameters pnm, qnm, Snm, rnm, xnm, Znm, gnm, bnm,
Y nm, lnm

c , Trnm, φ nm, znm, and Θnm will be generalized by replacing nm to nmc accordingly.

2.1.2 Power Flow Problem (PF)

One of the most important and fundamental problems in power systems research is the Power
Flow problem, also known as the Load Flow Problem. The Power Flow Problem (PF prob-
lem) [5] in the literature involves the calculation of network power flows (e.g. pnm and qnm of
transmission lines) and votages (V n and θ n of buses) of a transmission network subject to spe-
cific terminal/bus conditions or generator configurations. In this problem, all buses will have
four variables: the net active power (P), the net reactive power (Q) flowing through the bus,
voltage magnitude (V), and voltage angle (θ ). Buses will be classified into one of four differ-
ent types: voltage-controlled bus (PV bus), load bus (PQ bus), device bus, or the slack/swing
(V θ ) bus. PV buses are typically used to model equipments like generators, synchronous con-
densers, and static var compensators, where the active power (P) and voltages (V) are both
specified as input. PQ buses are typically used to model loads, where the active withdrawal
(P) and reactive withdrawal (Q) are specified. Device buses are typically used to model buses
with devices imposing special boundary conditions/configurations. Power losses in the system
are usually not known a priori before solving the PF problem. If we fix all the generators to
be PV buses and all the loads to be PQ buses, the system power flow cannot be balanced. In
the literature, one classic solution is to set one of the buses with generators to be the slack bus,
also known as the swing bus or the reference bus, to automatically balance the power flow. The
voltage magnitude (V) and phase angle (θ ) of this bus are fixed, and the active (P) and reactive
power (Q) are free. This allows the active and reactive power to automatically balance the
power flow during the search process to compensate for the unknown power losses. In the lit-
erature, the phase angle of the slack bus is usually set to 0. Three methods are typically used to
solve the Power Flow problem [5]: 1) Gauss-Seidel Method, 2) Newton-Raphson method, and
3) fast decoupled load flow method. These methods generally solve a set of node equations [5]
modeling the law of power flows.

Let |N| to be the number of buses in the system. The current flow node equation for solving
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the power flow problem is:
Ĩ1

Ĩ2

. . .

Ĩk

=


Y 11 Y 12 . . . Y 1k

Y 21 Y 22 . . . Y 2k

. . .

Y k1 Y k2 . . . Y kk




Ṽ 1

Ṽ 2

. . .

Ṽ k

 (I)

where Y nm =


0 if n 6= m, (n,m) 6∈ L

−ynm if n 6= m, (n,m) ∈ L

∑
l∈N:(n,l)∈L

ynl if n = m

Ĩn represents the complex current of bus n ∈ N and Ṽ n is the complex voltage.

This node equation implements the current law in matrix form. Each row n describes the
current flow balance of bus n:

Ĩn =
k

∑
l=1

Y nlṼ l = Y n1Ṽ 1 +Y n2Ṽ 2 + . . .+Y nkṼ k = ∑
l∈N:(n,l)∈L

[ynl(Ṽ n−Ṽ l)]

The complex matrix Y is called the admittance matrix and is extensively used in power systems
analysis [5]. Data is usually given in the form of real and reactive power. The current-based
equation (I) requires transforming power data/variables to current data/variables. Therefore,
the power-based formulation is a preferred alternative. To introduce the power-based formula-
tion, we start by introducing the general AC power law:

S̃n = pn + iqn = Ṽ nĨ∗n

After substituting with the current-based equations, we have:

pn + iqn = Ṽ n[
k

∑
l=1

Y nlṼ l ]∗

Let G and B be the real and imaginary parts of the admittance matrix Y (i.e. Y = G+ iB).

pn + iqn = Ṽ n[
k

∑
l=1

(GnlṼ l + iBnlṼ l)]∗ = Ṽ n
k

∑
l=1

([GnlṼ l ]∗+[iBnlṼ l ]∗)

= Ṽ n
k

∑
l=1

(GnlṼ ∗l− iBnlṼ ∗l) = Ṽ n
k

∑
l=1

(Gnl− iBnl)Ṽ ∗l
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We further expand the complex voltage into the polar form.

pn + iqn = V neiθ n
k

∑
l=1

(Gnl− iBnl)V le−iθ l

=
k

∑
l=1

(V nV lei(θ n−θ l)Gnl− iV nV lei(θ n−θ l)Bnl)

=
k

∑
l=1

V nV l([cos(θ n−θ
l)+ isin(θ n−θ

l)]Gnl− i[cos(θ n−θ
l)+ isin(θ n−θ

l)]Bnl)

=
k

∑
l=1

V nV l(Gnl cos(θ n−θ
l)+Bnl sin(θ n−θ

l)+ i[Gnl sin(θ n−θ
l)−Bnl cos(θ n−θ

l)])

We further separate the equations into real and imaginary parts.

pn =
k

∑
l=1

V nV l(Gnl cos(θ n−θ
l)+Bnl sin(θ n−θ

l)), and

qn =
k

∑
l=1

V nV l(Gnl sin(θ n−θ
l)−Bnl cos(θ n−θ

l))

for all n ∈ N. The above two equations are generally called the AC power flow equations [5].
We further expand the above two equations on a per-line basis (n,m)∈ L. By further expanding
the admittance matrix Y = G+ iB, we obtain [36]:

pn = ∑
m∈N:(n,m)∈L

pnm, where

pnm = gnm[V n]2−V nV m[gnm cos(θ n−θ
m)+ bnm sin(θ n−θ

m)], and

qn = ∑
m∈N:(n,m)∈L

qnm, where

qnm = −bnm[V n]2−V nV m[gnm sin(θ n−θ
m)−bnm cos(θ n−θ

m)]

The above equations do not model transformers and line charges. To further implement these
equipments, we replace the line equation for pnm and qnm [36, 37]:

pnm =
gnm[V n]2

T lnm − V nV m

Trnm [gnm cos(θ n−θ
m +φ

nm)+ bnm sin(θ n−θ
m +φ

nm)], and

qnm = −bnm + lnm
c /2

T lnm [V n]2− V nV m

Trnm [gnm sin(θ n−θ
m +φ

nm)−bnm cos(θ n−θ
m +φ

nm)]

where φ nm denotes the constant phase shifting angle from bus n to bus m if transmission line
(n,m) has a phase shifting transformer/device. If there are no phase shifting transformers, then
φ nm = φ mn = 0. Phase shifting is directional and φ nm = −φ mn. Trnm denotes the off-nominal
turns ratio of a transformer installed on line (n,m), with Trnm = Trmn. It is set to 1 if no
transformer exists. T lnm is a modeling parameter set to [Trnm]2 if bus n connects to the "from
end" of the transformer and bus m connects to the "to end" of the transformer; and set to 1
otherwise. Finally, we use the following two equations to link the net active/reactive power
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flow to generation power, loads, and bus shunts:

pn = pn
g− pn

l − [V n]2gn
s

qn = qn
g−qn

l +[V n]2bn
s

Solving the Power Flow problem allows us to quickly obtain the steady-state [5] of the network,
including power flow on transmission lines, voltage magnitudes and phase angles on buses,
with respect to the current generator dispatch and load demands.

2.1.3 Optimal Power Flow Problem (OPF)

In power systems, the cost of generator operations depends on a number of factors, e.g., fuel
types and generator scale, and varies from generator to generator. It would be natural for
operational engineers to seek for an optimal generation dispatch minimizes generation costs
while still satisfying the operational and safety constraints. The Optimal Power Flow Problem
(OPF) [38, 39, 40] (or sometimes called Economic Dispatch Problem (ED)) was formulated
to achieve this goal. Let pn

g and qn
g be the active power dispatch and reactive power dispatch

of generator n, and c(n, pg
n) be the cost function evaluating the cost of generator n at active

power pg
n. The AC Optimal Power Flow Problem (ACOPF), based on the AC power flow

equations, can be formulated as in Model 1. The goal of the problem is to search for a steady
state, including voltage solutions V n,θ n, generator dispatch set-points pn

g,qn
g, and power flows

pnm,qnm, such that the AC power flow equations are satisfied. We also incorporate the line
thermal/power limit constraints as it is a common operational requirement. Since the AC power
flow equations are nonlinear and non-convex, the problem is computationally challenging [41].

In the literature, many works [42, 25, 43, 44, 45, 24] use the linearized DC power flow
equation [46], simplifying the AC power flow equation by: 1) ignoring the reactive power
flow, 2) assuming voltages to be equal to 1 p.u., 3) ignoring resistance in the network, and
4) assuming the phase angle difference is small [36]. Ignoring reactive power flow allows to
remove reactive power flows and the corresponding balance equations. By further assuming
voltages equal to 1 p.u., we get:

pnm = gnm− [gnm cos(θ n−θ
m +φ

nm)+ bnm sin(θ n−θ
m +φ

nm)]

By further ignoring resistance assuming g << b, we obtain a more simplified equation.

pnm = −[bnm sin(θ n−θ
m +φ

nm)]

Finally, by assuming phase angles are usually small, we can ignore the sine function and all
phase shifting actions by transformers / phase shifter.

pnm = −bnm(θ n−θ
m)

Model 2 shows the linearized DC Optimal Power Flow problem. If the cost function c(n, pg
n)

is linear, the problem will be reduced to a linear program and can be solved by efficient linear
solvers. Many other DC power flow variants exist in the literature [47, 48, 49, 50].
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Model 1 AC Optimal Power Flow
Inputs:

P = 〈N,L,G,O〉 Power network input
Variables:

V n ∈ [V n,V n], ∀n ∈ N Voltage magnitude
θ n ∈ (−π ,π), ∀n ∈ N Voltage phase angle
pn

g ∈ [pn
g, pn

g] , ∀n ∈ G Active power dispatch
qn

g ∈ [qn
g,qn

g] , ∀n ∈ G Reactive power dispatch
pnm ∈ [pnm, pnm], ∀(n,m) ∈ L Active power flow
qnm ∈ [qnm,qnm], ∀(n,m) ∈ L Reactive power flow

Minimize
∑

n∈G
c(n, pn

g)

Subject to:
∑

m∈G(n)

pm
g − ∑

m∈O(n)

pm
l − [V n]2gn

s = ∑
m∈N(n):(n,m)∈L

pnm ∀n ∈ N

∑
m∈G(n)

qm
g − ∑

m∈O(n)

qm
l +[V n]2bn

s = ∑
m∈N(n):(n,m)∈L

qnm ∀n ∈ N

pnm = gnm[V n]2

T lnm − V nV m

Trnm [gnm cos(θ n−θ m +φ nm)+ bnm sin(θ n−θ m +φ nm)] ∀(n,m) ∈ L
qnm = − bnm+lnm

c /2
T lnm [V n]2− V nV m

Trnm [gnm sin(θ n−θ m +φ nm)−bnm cos(θ n−θ m +φ nm)] ∀(n,m) ∈ L

[pnm]2 +[qnm]2 ≤ |S̃nm|
2

∀(n,m) ∈ L

Model 2 DC Optimal Power Flow
Inputs:

P = 〈N,L,G,O〉 Power network input
Variables:

θ n ∈ (−π ,π), ∀n ∈ N Voltage phase angle
pn

g ∈ [pn
g, pn

g] , ∀n ∈ G Active power dispatch
pnm ∈ [pnm, pnm], ∀(n,m) ∈ L Active power flow

Minimize
∑

n∈G
c(n, pn

g)

Subject to:
∑

m∈G(n)

pm
g − ∑

m∈O(n)

pm
l = ∑

m∈N(n):(n,m)∈L

pnm ∀n ∈ N

pnm = −bnm(θ n−θ m) ∀(n,m) ∈ L
pnm ≤ pnm, pnm ≥−pnm ∀(n,m) ∈ L
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Since the DC model does not capture reactive power, it cannot be applied to problems re-
quiring reactive power to be modeled explicitly, e.g., capacitor placement problem [51] and
voltage stability analysis [5]. Moreover, the accuracy of the model is also an open point of dis-
cussion [42, 46, 52, 53, 54, 55]. The question on how to bridge the gap between linearized DC
power flow model and non-linear AC power flow models is also an opened path to study, lead-
ing to several interesting recent work: LPAC model [36], QC model [37], and SDP model [56].

2.1.4 Applications based on Optimal Power Flow (OPF)

This section further introduces two power systems applications based on the Power Flow and
the Optimal Power Flow problem.

2.1.4.1 Power systems restoration

Power outage may occur when equipments of a power network, e.g., electric buses, transmis-
sion lines, transformers, or generators, are faulty / damaged. Users of the faulty power network
will usually face phenomena, ranging from a complete blackout, unstable electricity supply, to
a short-period power outage. Once power engineers discover that the network is faulty, the
restoration process starts immediately. For a severe power system breakdown (e.g., a large
electricity blackout), the processes are coarsely divided into three phases [16]:

1. Planning Phase: Devise plans to restart and reintegrate the power supply in the transmis-
sion network.

2. Degradation Phase: Perform actions to retain and restore critical sources of power.

3. Restoration Phase: After the system has been stabilized at the degraded state, restore the
system to its nominal state.

To successfully complete the above restoration phases, power engineers will usually need to
perform four generic tasks (based on Adibi and Fink’s restoration paradigm [15]) as shown in
Figure 2.3.

Figure 2.3: The four restoration steps

The first and second task aim to determine the system status and prepare power plants /
network for systematic restoration. The third task re-energizes the network, and the fourth task
rebuilds the system. Our contribution lies in globally optimizing a restoration plan to assist in
rebuilding the system (i.e., the fourth task).
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During the system rebuilding process, engineers may prefer to split the power network into
multiple parts/sections, with multiple islands, to speed up the restoration processes [15, 17].
A good restoration plan should be computed to guide the engineers to restore and maintain
stability of the system. For example, when we close a line breaker within a partially restored
network, we have to make sure the difference between the phase angles across the breaker is
small [15, 16]. If the angle is too large and the breaker is closed, stability problems may be
observed causing system damage during restorations. In addition, generator stability is also an
important topic during load restorations. Coordinating the restorations of the loads to ensure
stability is required, and the loading behaviour of generators are necessary to be observed [15,
16]. Connecting a load without enough generation capability will lead to generators tripping
off, causing delays to the whole restoration. Coordination between power plants and field
operators is required. These two issues were addressed by the first part of our thesis during the
optimization of the restoration plans.

Power systems restoration: written plans Devising a plan to efficiently restore a power
system is complex. The combinations of possible restoration actions are usually intractable
and finding the optimal restoration sequence is computationally hard. Traditionally, power
engineers use written restoration plans and procedures as a guidance to perform power systems
recovery. These plans and procedures are usually prepared and made based on postulated
conditions to give the most effective ways to restore a power system. However, since these
written plans are static in nature, they cannot immediately be changed if the actual real-world
conditions differ from the postulated conditions. In general, real-world constraints and limiting
conditions are hard to predict and it is usually infeasible to enumerate written plans for all
possible combinations of conditions. Once power engineers are unable to apply the plan, they
are forced to recover the system based on intuition and experience. One main disadvantage of
written restoration plans is they are usually written in text. Textual information is intended to
be read sequentially. It is hard for power engineers to understand all of the text immediately
and perform restorations, particularly under stress and tight time-constraint [17]. Another
disadvantage of written plans is that they may not be updated efficiently when the system is
changed or upgraded. In a review of 48 major disturbances list, reviewers showed that outdated
written plans was the second leading cause of restoration problems [17].

Power systems restoration planner: knowledge-based systems To overcome these
disadvantages, knowledge-based expert systems are developed, e.g., Restoration Assistant [57].
These systems usually have the capability to compute and give real-time restoration plans based
on actual limitations and conditions. Updating knowledge-based systems to reflect changes in
the power system is easier than updating written plans. Once the software is checked and
updated, downloading the software to the expert system machines requires far less time than
printing written plans.

Power systems restoration planner: optimization approach Apart from knowledge-
based expert systems, systems using mathematical programming approaches are also popular
to assist power engineers in performing power systems recovery, in particular, to obtain global
optimal plans minimizing restoration time. Traditionally, approaches finding global optimal
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Model 3 DC Restoration Model
Inputs:

P = 〈N,L,G,O〉 - Power network input
A = N∪L∪G∪O - The global set of equipments in power systems
D - Set of damaged items
R ⊆D - Set of damaged items considered by this algorithm

Variables: (Step r, 0≤ r ≤ |R|)
hn(r) ∈ {0,1}, ∀n ∈ A - Item n is going to be repaired (or not) at step r
kn(r) ∈ {0,1}, ∀n ∈ A - Item n is working/functioning (or not) at step r
θ n(r) ∈ (−π ,π), ∀n ∈ N - Bus phase angle of bus n at step r
pn

g(r) ∈ [0, pn
g(r)] , ∀n ∈ G - Active power by generator n at step r

pnm(r) ∈ [pnm(r), pnm(r)], ∀(n,m) ∈ L - Power flow on line (n,m) at step r
pn

l (r) ∈ [0, pn
l (r)], ∀n ∈ O - Power consumed by load n at time-step r

Maximize

∑
n∈O

|R|

∑
r=0

pn
l (r) (O1)

Subject to: (0≤ r ≤ |R|)
hn(r) = 1, ∀n ∈ A\D (C2.1)
hn(r) = 0, ∀n ∈D\R (C2.2)
∑

n∈D
hn(r) = r, (C2.3)

hn(r−1) ≤ hn(r), ∀n ∈D ,1≤ r ≤ |R| (C2.4)

kn(r) = hn(r), ∀n ∈ N (C3.1)
km(r) = hm(r)∧hn(r), ∀n ∈ N,∀m ∈ G(n)∪O(n) (C3.2)
kl(r) = hl(r)∧hn(r)∧hm(r), ∀(l : n,m) ∈ L (C3.3)

∑
m∈G(n)

pm
g (r)− ∑

m∈O(n)

pm
l (r) = ∑

m∈N(n):(n,m)∈L

pnm(r) ∀n ∈ N (C4.1)

¬kn(r)→ pn
g(r) = 0, ∀n ∈ G (C4.2)

¬kn(r)→ pn
l (r) = 0, ∀n ∈ O (C4.3)

¬kl(r)→ pnm(r) = 0, ∀(l : n,m) ∈ L (C4.4)
kl(r)→ pnm(r) = −bnm(θ n−θ m), ∀(l : n,m) ∈ L (C4.5)

plans are often criticized due to poor computational efficiency [57, 14]. With advances in
hardware performance and optimization algorithms, global approaches are gaining more pop-
ularity.

This thesis is based on the work of Coffrin et. al. [13], which uses the simplified DC
power flow equations to compute the power flow. We will briefly show and describe their
optimization model. Model 3 shows the restoration model [13] tackling the restoration order-
ing problem for restoring a power network. The goal of the problem is to find a restoration
sequence such that loads could be restored as soon as possible. In addition to finding the
restoration sequence, Model 3 also computes the required generation dispatch, load pickups,
and the amount of power flowing through each transmission line at each restoration step. The
problem is a mixed-integer linear program. The number of binary variables increases with the
number of equipments to be restored, leading to an exponential increase in the combinations
of possible restoration sequences (in O(2|R|)).
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We now explain the variables and constraints in Model 3. The model reasons on |R|+ 1
steady states with DC power flow approximations, and aims to find the best sequence of steady-
states restoring the maximum amount of loads by Objective O1. The model introduces two
new types of binary variables hn(r) and kn(r) (with |R|+ 1 copies) to indicate the status of
the equipments in the network. Variable hn(r) is set to 1 (resp. 0) if and only if item n in
step r is repaired (resp. is not repaired), and variable kn(r) is set to 1 (resp. 0) if and only
if item n in step r is functioning (resp. not functioning). We define A to be the union of all
buses, loads, and generators. For clarity reasons, we use (l : n,m). In C2.1, we assume all
undamaged items to be classified as repaired. In C2.2, we assume all damaged items that are
not going to be restored to be classified as not repaired. Constraint C2.3 ensures only one
item is being repaired per restoration step. Constraint C2.4 ensures an item being repaired at
a particular time-step will be set as repaired in all later time-steps. Constraint C3.1 enforces
all repaired buses are functioning immediately. Generators, transmission lines, and loads, all
have to be connected to functioning buses. C3.2 and C3.3 restrict these items to be functioning
if and only if the associated buses are restored. Constraint C4.1 implements the power flow
balance equation. Constraints C4.2, C4.3, and C4.4 ensure that no power is flowing through
non-functioning items. The last constraint C4.5 implements the DC power flow equation for
functioning lines. Some constraints in Model 3 are logic constraints, and we can linearize them
during implementation using the big-M approach [58].

2.1.4.2 Transmission line switching

Transmission line switching is an important control action in electrical power systems, and
has generated increasing attention in recent years. Opening and closing transmission lines
change the topology of the grid. It is a useful tool to redistribute power flows and change
the operational state of the system. Changing the topology could potentially save 10%, or
even up to 25% of the economic cost [59, 60, 25]. It also provides opportunities to eliminate
congestion and avoid violating operational constraints [61]. Line switching is also an important
tool in power systems restoration.

Significant research has been devoted to designing algorithms for Optimal Transmission
Switching (OTS) [25]. The goal in OTS is to find the best subset of lines to switch off in order
to minimize generation costs. This line of research almost exclusively focuses on analyzing
power flow under steady-state before and after the switching. From a mathematical standpoint,
the OTS problem is a non-convex Mixed-Integer Non-Linear Program (non-convex MINLP),
which is computationally challenging. For this reason, most OTS studies replace the non-
convex AC power flow equations by the linear DC power flow equations [25, 62, 63, 64, 65].
This reduces the computational complexity, as the DC-OTS problem can be modeled as a
Mixed-Integer Linear Program (MILP). The optimal solution, with integer variables fixed to
the optimal values, can be used as a starting solution point and fed into an ACOPF solver to
convert into an AC feasible solution. Unfortunately, there is no guarantee that the resulting
solution can be transformed into an AC-feasible solution [66, 67]. To overcome this limita-
tion, recent work has advocated the use of AC formulations (AC-OTS), or focusing on tighter
approximations and relaxations [59, 60, 68].

Example 2.1.2. Figure 2.4 shows a 3-bus example [59] to illustrate the concepts of line switch-
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ing. Without loss of generality, we assume the system is a transmission system with Ŝ base =
100 MVA and V̂ = 230kV. In this example, we have three buses, three transmission lines, and
only one load at bus 3 drawing 1 p.u. of active power (i.e. 100MW) and 0 p.u. reactive power.
The buses are assumed to be operating within the range of [0.9, 1.1] p.u. voltage magnitude.
Line (1,2) and line (2,3) both have negligible resistance and 0.05 p.u. reactance (i.e. z23 = z12

= 0 + i 0.05). Line (1,3) has a larger resistance and reactance of both 0.10 p.u. (i.e. z13 = 0.10
+ i 0.10). For simplicity, we neglect line charge lnm

c and bus shunts gn
s and bn

s . There are two
generators in the system: one cheap distant generator at bus 1 and one expensive generator at
bus 3 located directly on the bus with the load. The cheapest solution is to deliver as much
power as possible from generator 1 to avoid using generator 3. For simplicity, we assume the
cost function of both generator are linear: c(1, p1

g) = p1
g and c(3, p3

g) = 10p3
g. We first ignore

voltage bounds and line thermal/power limiting constraints. Closing line (2,3) will result in
cheaper generation costs of $101 comparing to opening line (2,3) with a cost of $110. Costs
in both cases are higher than $100 due to line losses. Adding lines to the network decreases
the aggregate network resistance, and therefore resulting in a cheaper generation costs to sup-
ply the load. We now consider two congestion cases: 1) imposing a tight thermal/power limit
of S̃nm = 1 p.u. (MVA) on line (2,3), and 2) reducing the voltage range to [0.98, 1.02] p.u..
Table 2.2 reports the OPF solution with various power flow equations [59]. With the origi-
nal AC power flow equations, opening line (2,3) reduces the generation costs by more than
80% for case 1, and increases the generation costs for case 2. The results are further matched
by two relaxation techniques: SDP relaxation and QC relaxation (with 5 deg phase bounds).
Since the linearized DC power flow model are a coarse approximation omitting reactive power
and voltages, the model is not capable to handle voltage congestions in case 2 with significant
errors.

Table 2.2: OPF solution: Two different congestion settings on four power flow models
Power Flow Con. case 1 Con. case 2

Model Line open Line close Line open Line close

AC-OPF 110 985 655 102
SDP-OPF 110 972 655 102

QC-OPF (5 deg) 110 772 655 102
DC-OPF 100 986 100 100
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Figure 2.4: 3-bus power transmission system: Line switching example

Transmission Line Switching Model Let Ls be the subset of transmission lines (n,m) ∈
L where n < m, and Lr be the subset of transmission lines in L where n > m. We now show the
general line-switching model in Model 4 for switching-off k transmission lines based on a pre-
vious formulation [59]. The model introduces extra binary variables znm for every transmission
line (n,m) ∈ Ls to indicate whether it should be switched-off (znm = 0) or not (znm = 1). The
objective (O1) and power flow balance constraints (C2.x) are the same as in Model 1. Major
modifications are on the AC power flow equations and thermal limit bounds (C3.2 - C3.7).
We add znm to these equations to enforce: case 1) no power flow if the line is switched-off
(i.e., znm = 0), or case 2) AC power flow within feasible bounds if the line is not going to be
switched-off (i.e., znm = 1). We avoid re-defining an extra set of line switching variables znm

for the reverse lines in Lr, by linking their power flows to the line switching variables of their
counterparts in (C3.5 - C3.7). C3.1 restricts the model to search for solutions switching only k
lines. We can remove C3.1 if we aim for solutions switching any number of lines.
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Model 4 AC Optimal Transmission Switching Model
Inputs:

P = 〈N,L,G,O〉 Power network input
k Number of lines to be switched off

Variables:
V n ∈ [V n,V n], ∀n ∈ N Voltage magnitude
θ n ∈ (−π ,π), ∀n ∈ N Voltage phase angle
pn

g ∈ [pn
g, pn

g] , ∀n ∈ G Active power dispatch
qn

g ∈ [qn
g,qn

g] , ∀n ∈ G Reactive power dispatch
pnm ∈ [pnm, pnm], ∀(n,m) ∈ L Active power flow
qnm ∈ [qnm,qnm], ∀(n,m) ∈ L Reactive power flow
znm ∈ {0,1}, ∀(n,m) ∈ Ls Line switching variable

Minimize
∑

n∈G
c(n, pn

g) (O1)

Subject to:
∑

m∈G(n)

pm
g − ∑

m∈O(n)

pm
l − [V n]2gn

s = ∑
m∈N(n):(n,m)∈L

pnm ∀n ∈ N (C2.1)

∑
m∈G(n)

qm
g − ∑

m∈O(n)

qm
l +[V n]2bn

s = ∑
m∈N(n):(n,m)∈L

qnm ∀n ∈ N (C2.2)

∑
(n,m)∈Ls

znm = |Ls|− k (C3.1)

∀(n,m) ∈ Ls :

pnm = znm×{ gnm[V n]2

T lnm − V nV m

Trnm [gnm cos(θ n−θ m +φ nm)+ bnm sin(θ n−θ m +φ nm)]} (C3.2)

qnm = znm×{− bnm+lnm
c /2

T lnm [V n]2− V nV m

Trnm [gnm sin(θ n−θ m +φ nm)−bnm cos(θ n−θ m +φ nm)]} (C3.3)

[pnm]2 +[qnm]2 ≤ |S̃nm|
2
× znm (C3.4)

∀(n,m) ∈ Lr :

pnm = zmn×{ gnm[V n]2

T lnm − V nV m

Trnm [gnm cos(θ n−θ m +φ nm)+ bnm sin(θ n−θ m +φ nm)]} (C3.5)

qnm = zmn×{− bnm+lnm
c /2

T lnm [V n]2− V nV m

Trnm [gnm sin(θ n−θ m +φ nm)−bnm cos(θ n−θ m +φ nm)]} (C3.6)

[pnm]2 +[qnm]2 ≤ |S̃nm|
2
× zmn (C3.7)

2.1.5 Power systems stability: Types and characteristics

Power System Stability is a term broadly defined as a property of a power system enabling it
to remain in a state of operating equilibrium under normal operating conditions, and to regain
an acceptable state of equilibrium after being subject to disturbances [5]. When disturbance
occurs (e.g., contingency situations), a stable system will reach an acceptable equilibrium,
possibly a degraded or non-optimal equilibrium state. To study power systems stability, it
is necessary to understand how a power system becomes unstable. In the literature, several
different classification systems are used to classify power systems stability. The thesis mainly
follows the classification of stability by their types [5]:
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1. Rotor angle stability, with a further sub-classification into:

• Transient stability or large disturbance angle stability and
• Small-signal stability;

2. Voltage stability, with a further sub-classification into:

• Large disturbance voltage stability and
• Small disturbance voltage stability.

In some cases, it is better to classify stability study based on time-range [5, 69]:

1. Short-term stability: seconds scale,

2. Mid-term stability: minutes scale,

3. Long-term stability: hours scale.

In addition, we can also classify stability by their respective control dynamics and processes [69]:

1. Electrical machine and system dynamics,

2. System governing and generation control, and

3. Prime-mover energy supply dynamics and control.

Since our contribution mainly lies on the area of rotor angle stability, we will introduce
rotor angle stability, including the two sub-classes: transient stability and small-signal stability,
in below subsections.

2.1.5.1 Rotor Angle Stability

Rotor angle stability study (sometimes called rotor angle study/rotor study) involves the inves-
tigation of electromechanical oscillations in power systems, primarily due to the rotor oscilla-
tions in synchronous generator machines [5]. These oscillations affect the ability of intercon-
nected synchronous machines to synchronize [5] with each other, and may lead to generator
being tripped, and in the worst case a major power system outage/blackout. Rotor angle study
are usually divided into small-signal stability and transient stability.

Small-signal Stability Small-signal stability [5] is the ability of the power systems to sta-
bilize when small disturbances occur. Typical small disturbances include small variations in
loads and generations during operations. Linearized system equations/analysis [5] are usually
sufficient for studying the system behaviour. How the system responds to these small dis-
turbances depends on a wide variety of factors, including the initial operating conditions, the
reliability of the transmission system, and the control equipments. Traditionally, if a generator
without an automatic voltage regulators (AVR) is connected to a power system, instabilities are
often caused by a lack of sufficient synchronizing torque [5]. With automatic voltage regulators
pre-installed providing synchronizing torque support, small-signal instability are often caused
by insufficient damping torque. Oscillation instability can be further sub-classified into four
sub-types [5]: local/machine-system modes, interarea modes, control modes, and torsional
modes.
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Transient Stability Transient Stability (TS) [5] is the ability of a power system to stabi-
lize subjected to severe disturbances, for example transmission equipment faults, a loss of a
generator unit, or a loss of a substation. When such disturbances occur, the steady-state of a
power system usually changes even if the system manages to stabilize. The system will be
operating in a degradation state, and may not be necessarily close to any of the previous states.
Analyses and simulations to test the transient stability of the system are important, especially
to cope with natural disasters capable to damage system equipments. Since large disturbances
involve large rotor angle swings, linearized equations are no longer accurate and nonlinear
relationships have to be considered.

Even if the system manages to reach a new steady state after the fault is cleared, ensuring
small-signal stability in the new steady state is also important. Otherwise, the system will soon
become unstable when small changes (e.g., load variations) occur. Equipments being tuned for
the nominal operational state may not guarantee to stabilize the system in a new steady state.
Finding a robust setting on machines and equipments for all possible contingency situations
to ensure stability is a challenging problem [22, 23, 70]. Some typical contingency cases are
one phase-to-ground faults, three-phase to ground faults, and transformer faults. Similar to
small-signal stability, instability can be caused by insufficient synchronizing torque, insuffi-
cient damping torque, or both at the same time.

In the literature [71, 72, 73, 74, 75, 76], first-swing stability is widely studied. Instabilities
of this sub-type are caused by rotor angles of generators increasing/decreasing steadily, due
to insufficient synchronizing torque. Rotor swings can hardly be observed in this type of
studies as the system quickly becomes unstable before the first/second swing is formed. In the
literature, various synchronous machine models are proposed for studying transient stability
problems, ranging from the 6th order Sauer-Pai model [69] / Anderson-Fouad model [77], the
4th order Two-Axis model [69], the 3rd order One-Axis Flux-Decay model [69], to the classic
2nd order “Swing” model [69, 5].

Our thesis investigate transient stability on two challenging optimization problems. We
first study stability issues, in particular first-swing stability, when we perform optimization in
power system restoration planning. We then focus on small-signal stability when we tackle
the Optimal Transmission Switching Problem (OTS). The classical 2nd order “Swing” model
is used in our first study, and we use the 4th order Two-Axis model in our second study. The
detailed equations for both models will be introduced in later chapters.

Synchronous machine mechanics To explain why rotor oscillations would lead to in-
stabilities, it is useful to introduce the common architecture and mechanics of a three-phase
synchronous generator. Figure 2.5 shows an abstract schematic diagram for a three phase gen-
erator machine [5]. The machine contains two different kinds of windings: field windings on
the rotor (in the middle of Figure 2.5) driven by the prime mover/turbine, and armature wind-
ings on the stator connected to the power transmission systems. The field windings are usually
excited by direct current, which is controllable through Automatic Voltage Regulators (AVR).
When the prime mover/turbine drives the rotor to rotate, the rotating magnetic field from the
field windings will induce alternating voltages in the armature windings, delivering electrical
energy to the power systems. With proper physical arrangement in a generator, the rotating
magnetic field in the stator rotates at the same speed as the rotor, and interacts with the mag-
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Figure 2.5: Schematic diagram of a synchronous generator from P. Kundur, Power System
Stability and Control [5] ( c©McGraw-Hill Education).

netic field in the rotor. This will produce an electromagnetic torque opposing the rotation of
the rotor. The force is balanced and energy is conserved in the machine. As a result, kinetic
energy from the prime movers/turbines will be converted to magnetic energy, and finally to
electrical energy for the power grid.

Based on this design, the frequency of the system hence depends on the speed of the ro-
tor, and keeping the speed of the rotor constant (via controlling the mechanical torque and its
energy sources) is important to maintain stability. If the mechanical torque and the electrical
torque are perfectly balanced, the rotor will be rotating at a constant speed. If the mechan-
ical torque is slightly higher (or lower) than the electrical torque, the rotor will be rotating
slightly faster (or slower), resulting in an rotor advance (or retard) to a new position relative
to the revolving stator magnetic field. This movement is usually measured in terms of angles
in degrees/radians and it is vital to keep the rotor angle stability. In practice, the electrical
torque/power are varied constantly from time to time, and advanced control methods are used
to control and stabilize the systems.

Synchronizing multiple generators In a power grid, we have more than one generator.
Coordinating and maintaining the frequency of all the machines are necessary to maintain sta-
bility. If one machine temporarily supplies a surplus of mechanical torque, the angular position
of its rotor relative to the other machines will advance, resulting in new angular differences be-
tween the other generators. This action usually implies transferring parts of the load from
other machines to the current machine. If there is a large enough counter-force to reduce the
speed difference and angular separation, the system would be able to stabilize and continue
to be operational. On the other hand, if the counter-force cannot stabilize the system (e.g.,
caused by a huge disturbance), we will have a machine running at a different frequency. This
process is called losing synchronism. Generators falling out of step with other generators (also
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called pole-slipped) are no longer useful. In practice, these machines will be automatically
tripped-off to avoid causing further damages.

In power systems, the rate of change in electrical torque ∆Te of a synchronous machine
following a perturbation can be coarsely split into two components [5]:

∆Te = Ts∆δ +TD∆ω

where the first term on the right-hand side denotes the synchronizing torque component and
the second term denotes the damping torque component. Ts, ∆δ , TD, and ∆ω are the synchro-
nizing torque coefficient, rotor angle perturbation, damping torque coefficient, and rotor speed
deviation respectively. Synchronizing torque prevents a steady increase/decrease in rotor an-
gles over time from the original position, while damping torque prevents rotor oscillations of
increasing amplitude.

Example scenario: Load variations In general, a disturbance in power system could po-
tentially lead to multiple stability issues, if not handled properly by the equipments/devices in
the power system. We now briefly discuss a load pickup example to illustrate the complex-
ity. Suppose now an industrial customer decides to start-up his/her industrial equipments and
draws a significant amount of electricity from the power grid. An increase in load consump-
tion leads to an increase in the electrical power drawn from generators, resulting in a larger
electrical torque generated in all of the generators. Apart from the rotor angle stability issues
discussed in previous paragraphs, if the mechanical torque driven by the prime movers/tur-
bines cannot match the electrical torque in a sufficiently small amount of time, the imbalance
in force will slow down the rotors of all generators, resulting in a decrease in frequency even
if the rotor angles manage to stay close to each other. A change in frequency may affect cus-
tomers, in particular to applications (e.g. consumer electronic, computer hardwares, and motor
drives) which are sensitive to frequency. With automatic control equipments mostly installed
in today’s network and generators, e.g. frequency sensors and droop control devices, frequency
will be maintained automatically via dynamically controlling the mechanical torque in a timely
fashion.

An increase in load consumption also leads to an increase in voltage difference in the
network. If the voltage controlling devices (e.g. synchronous generators/condensors) do not
adjust the voltage set-points and reactive power in time, certain areas in the grid may fall
below the minimum required voltage and creating a voltage stability problem. In the worse
case if the voltage difference is too large, a voltage collapse [5] may occur resulting in a
blackout and loss of loads. With excitation equipments mostly installed in today’s generators
and proper management of reactive generation reserves, voltages are maintained automatically
in nowaday’s power system network.

Suppose that the mechanical torque driven by the prime movers/turbines are now adjusted
to match the increased electrical torque to restore the speed of the rotors. A steam turbine-
generator rotor has a complex mechanical structure consisting of several predominant masses
connected by shafts of finite stiffness [5]. When a rotor rotates, torsional oscillations may occur
in between these different masses. These oscillations oscillate in the subsynchronous range [5]
and may affect the power transmission system, e.g. affecting the excitation control equipments
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and resulting in undesired subsynchronous resonance with transmission lines. Proper damping
of torsional oscillations are required to avoid this type of instability.

In practice, many types of disturbances are expected to occur other than picking up indus-
trial loads. These disturbances range from load/demand variations from the domestic/distribu-
tion grid, generator shutting down due to maintenance schedule, or dispatch changes driven by
the energy market. These disturbances can usually be forecasted and known before the event
occurs. In addition, power systems are also required to be reliable when unforeseeable events
occur. In general, we expect a system remains stable when one of the transmission equip-
ments is lost due to unforeseeable damage (N− 1 contingency). Power system utilities will
perform simulations for many of these scenarios to ensure the system is capable to handle the
disturbances and remains stable.

2.2 Natural Gas Transmission System

This section introduces the natural gas transmission system. Similar to power transmission
systems, we will introduce the terminologies and notations, and show the fundamental optimal
gas flow problem.

2.2.1 Terminologies and notations

Similar to power transmission systems, a natural gas transmission system consists of three main
parts: a) Natural gas sources/wells for natural gas supply, b) gas pipes and control components
(e.g. gas compressors / gas valves) for natural gas transmission and control, and c) natural gas
demands/loads for natural gas extraction.

To simplify our notations, we represent the natural gas transmission system as a directed
graph G = (J ,P), where J is a set of nodes representing gas junction points Ji ∈J , and
P is a set of gas pipes Pi j connecting gas junction points i ∈J and j ∈J . To further sim-
plify our notations, we implicitly model gas supplies, demands, and transporting hubs both as
junction points/nodes in the network with positive, negative, and zero (net) gas flow respec-
tively. The length of pipe Pi j is denoted by Li j, its diameter by Di j, and its cross-sectional area
by Ai j. The dynamic state on the pipe Pi j at a location xi j ∈ [0,Li j] and time t ∈ [0,T ] is given
by pressure pi j(t,x) and mass flow qi j(t,x) functions. Table 2.3 lists the notations we use in
this thesis for a natural gas network.

Example 2.2.1. Figure 2.6 shows the 24-pipe benchmark gas network system used by Zlotnik
et. al [6]. The benchmark network consists of 24 gas pipes and 25 junctions, with 1 source, 16
transportation nodes, and 8 demand points. There are 5 compressors installed in the network,
(marked as triangles) to boost the pressure of the system. Nodes, edges, and compressors are
numbered and colorized with blue, black, and red colors respectively. Sources, transportation,
and demand/consumer nodes are colored in red, blue, and green respectively. There are only
two types of pipes in this network: 36 inch pipes and 25 inch pipes, which are represented as
thick and thin lines. Since the benchmark is a tree network, gas naturally will be flowing from
the only source node to the demand nodes, hence the flow direction of the pipe is determined.
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Table 2.3: Nomenclature for natural gas system networks
Nomenclature for natural gas network G = (J ,P)

J Set of junctions in the gas network
P Set of gas pipes in the gas network
C ⊆P Subset of pipes in the network with compressors installed
Ji Natural gas junction of node i
Pi j Natural gas pipe of edge (i, j) connecting junction i and j
Di j,Ai j,Li j Diameter (m), cross-section area (m2), and length (m) of pipe Pi j

γ ,η Isentropic coefficient of gas and compressor efficiency factor
a,λ Sound speed (ms−1) and gas friction factor
pi Pressure variable (Pa) for junction Ji

pi j Pressure variable (Pa) for pipe Pi j

qi (Net ) Mass flux variable (kg/s) for junction Ji

qi j Mass flux variable (kg/s) for pipe Pi j

pN ,qN Pressure and flux dimensionless scaling constants for dimensionless normalization
Ri j,ci j Compressor ratio and compressor location of pipe Pi j

di Mass flux (kg/s) injections/consumptions at junction point Ji

si Boundary pressure (Pa) at junction point Ji

Si j Cost of the compressor at Pi j ∈ C
T Total time horizon (sec) considered in the problem
pi j, pi j Maximum/Minimum pressure limit (Pa)
Ri j,Ri j Maximum/Minimum compression limit
xi j ∈ [0..Li j] Space segment (in m or km) of pipe Pi j

t ∈ [0..T ] Time segment within the considered time horizon T

Figure 2.6: 24-pipe gas system test network used by Zlotnik et. al [6].

2.2.2 Isothermal gas flow equation

We are interested in the subsonic and isothermal regime where transients are sufficiently slow
so as not to excite shocks or waves, i.e., where the flow velocity through a pipe is less than the
speed of sound a in the gas, and temperature is assumed to be fairly constant.

We note that gas compression can be a major factor in changing the gas temperature in
practice. Since nowadays gas pipes are buried underground, gas temperature will eventually
be returned to the ground temperature within several kilometers after gas compression [78]. In
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addition, the ground temperature variations are usually small (in the order of a few percents)
and modern compressor stations may be further equipped with gas coolers. Therefore, we
assume no large temperature differences occur.

We adopt the modeling assumptions outlined in the work of Osiadacz [79], which was
validated and widely used by other studies on modeling gas pipeline networks for dynamic op-
timization [80, 11, 34]. Throughout the network, we omit higher order inertial terms, assume
gas pipes are horizontal and ignore gravity effects, assume gas compositions and temperatures
are uniform, and assume gas is compressible with a unique nominal gas compressibility factor.
These assumptions will imply a uniform and constant speed of sound a throughout the system.
Our primary focus is on the development and validation of dynamic optimization methodology
instead of researching on new detailed physical models. Therefore, we focus to capture only
the key physical phenomena of large-scale gas pipeline flows. We leave as future work for gen-
eralizations of our results to cases where temperature and gas composition are inhomogeneous,
or an equation of state is required to determine gas compressibility.

In the literature, various forms of equations [81, 82, 6, 11] exist to describe the flow of natu-
ral gas within this regime. Most of these equations eventually are re-formulations/variants with
various degrees of simplifications on the the homogenous compressible flow equations [81]
considering the conservation of mass, linear momentum, and energy. In this thesis, we choose
to use the isothermal flow equation from Herty et. al [11] to describe the flow dynamics on a
single pipe Pi j in this regime as:

∂ pi j

∂ t
+

a2

Ai j

∂qi j

∂x
= 0

1
Ai j

pi j
∂qi j

∂ t
+ pi j

∂ pi j

∂x
= − λa2

2Di jA2
i j

qi j|qi j|,

Herty et. al further proposed to simplify the equations by approximating ∂qi j
∂ t ≈ 0 [11]. This

gives the following partial differential equations (PDE) [11]:

∂ pi j

∂ t
+

a2

Ai j

∂qi j

∂x
= 0 (2.1)

2pi j
∂ pi j

∂x
+

λa2

Di jA2
i j

qi j|qi j|= 0 (2.2)

The second term in (2.2) approximates friction effects, which constitute the major phenomenon
that dissipates momentum of the gas flow [79].

The gas dynamics on a pipeline segment are represented using (2.1)-(2.2) and possess a
unique solution [11] when any two of the boundary conditions pi j(t,0), qi j(t,0), pi j(t,Li j), or
qi j(t,Li j) are specified. For both computational and notational purposes, we apply a transfor-
mation to dimensionless variables [11] given by

p̃i j =
pi j

pN
, q̃i j =

qi j

qN
, x̃i j = x

λa2q2
N

Di jA2
i j p

2
N

, t̃i j = t
λa4q3

N

Di jA3
i j p

3
N

, (2.3)
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where pN and qN are scaling constants. This results in the dimensionless equations [11]

∂ p̃i j

∂ t̃i j
+

∂ q̃i j

∂ x̃i j
= 0, (2.4)

2 p̃i j
∂ p̃i j

∂ x̃i j
+ q̃i j|q̃i j|= 0, (2.5)

Note that the space and time variables x̃i j and t̃i j are now pipe-dependent.

2.2.3 Compressor mechanics

Due to momentum dissipation (friction term) in (2.2), the transport of natural gas comes with
pressure loss, proportional to the distance separating between the source and the destination. To
meet security requirements in large transmission systems, compressors must be used to boost
the pressure at some of the pipes/junctions. In this thesis, we assume the action of compressors
is modeled as a conservation of flow and an increase in pressure at a point ci j ∈ [0,Li j] by a
multiplicative ratio Ri j(t̃i j) ≥ 1 [6]. We have the following assumptions:

lim
x̃i j↘ci j

p̃i j(t̃i j, x̃i j) = Ri j(t̃i j) lim
x̃i j↗ci j

p̃i j(t̃i j, x̃i j),

lim
x̃i j↘ci j

q̃i j(t̃i j, x̃i j) = lim
x̃i j↗ci j

q̃i j(t̃i j, x̃i j).

The cost of compression Si j is proportional to the required power [83], and is approximated by

Si j(t̃i j) = η
−1|q̃i j(t̃i j,ci j)|(max{Ri j(t̃i j),1}2K−1)

over time t̃i j at spatial point ci j, with 0 < K = (γ−1)/γ < 1, where γ is the heat capacity ratio
and η is a compressor efficiency factor.

Modeling discussion A compression ratio with a value greater than 1, i.e., Ri j(t̃i j) ≥ 1,
corresponds to a compressor applying power in its defined working direction. A value of
Ri j(t̃i j) = 1 denotes a compressor that is bypassed by the flow, in either the working or the
reverse direction. For modeling flows in large-scale systems, we use theoretical compressors
that represent entire compressor stations as single objects. For transmission pipelines, flow to
all machinery in the station is accepted and discharged through common headers. The detailed
control mechanisms of individual compressors are abstracted, and individual compressors are
coordinated by the control system of the station to maintain operating setpoints corresponding
to the common headers. This abstract representation of actuators that boost pressure can also
be used to model pressure regulators that decrease the pressure where needed. However, large-
scale transmission pipelines typically include few such elements, because regulation is often
performed to lower pressure at city gates or large customers after custody is transferred from
the pipeline.

This study does not model regulators and imposes certain assumptions on the structure of
the system and the pressure bounds. We assume that the pipeline system was built in order to
admit feasible solutions in its usual operations. Specifically, since pressure cannot be actively
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decreased in our model (in accordance with the typical construction of transmission pipelines),
we assume that the maximum pressure bound throughout the network is uniform. While this
may appear to be a strong assumption, it is reasonable in practice as: 1) the intra-day operation
of high-pressure, large-scale transmission systems is separated from operation of lower pres-
sure distribution systems, and 2) transmission systems rarely experience changes in large-scale
flow directions.

This assumption guarantees that Ri j must be assigned to 1 (set to bypass mode) in the
optimal solution if gas is delivered in the reverse direction (from j to i) on a pipe Pi j with
compressor Ci j. Assume that Ri j is larger than 1 (i.e., set to regulator mode in the reverse flow
direction) in an optimal solution. Since the maximum pressure bound is uniform across the
network, it is possible to remove the decompression and obtain a feasible solution with a lower
cost based on our objective function, contradicting the optimality assumption.

Proof. We show the sketch of the proof by a contradicting example. Suppose the optimal
solution assigns any values larger than 1 to Ri j (i.e., set to regulator mode in the reverse flow
direction). In this situation, the compressor energy objective function Si j for that compressor
will be larger than 0 (for a certain period of time t̃i j). This implies the compressor is actively
decreasing pressure in the direction of flow (a reverse flow in this situation). If using the
compressor Ci j to decrease pressure in the reverse direction is a feasible solution, a solution
not using the compressor to decrease pressure (e.g. set to bypass with Ri j assigned to zero) is
also feasible, if our assumption that the maximum pressure bound is uniform throughout the
pipe/system holds. Assigning Ri j to zero will give a smaller objective value than Ri j > 0. This
contradicts the hypothesis of optimality for Ri j > 0.

The investigation of appropriate models and optimal control problems for systems with
more complex structure, such as multi-pressure systems that require intra-day control of regu-
lators, is a topic for future research.

2.2.4 Steady-state Gas Flow Equations (Steady GFP)

The dynamic gas equations ((2.4) - (2.5)) are partial differential equations, which are difficult
to directly incorporate into optimization problems. In the literature, a steady state equivalent is
common [26, 27, 84, 85, 82, 86, 87]. We will now introduce the steady state equations based
on Herty et.al [11]. For a system to be steady, we require the pressure at every spatial location
in the pipe remains constant over time for all spatial point x̃i j:

∂ p̃i j

∂ t̃i j
= 0

(2.4) will be reduced to:

∂ q̃i j

∂ x̃i j
= 0

Given an arbitrary time step t̃i j, the reduced equation implies the mass flux at every spatial
location within a single pipe should be the same. Therefore at every time step t̃i j, (2.5) can be
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simplified as:

2 p̃i j
∂ p̃i j

∂ x̃i j
= K

where K can be viewed as a function of q̃i j. By viewing p̃i j as a function of time t̃i j and space
x̃i j and using the chain rule, we can obtain:

2p̃i j
∂ p̃i j

∂ x̃i j
=

∂ ( p̃2
i j)

∂ x̃i j
= K = −q̃i j|q̃i j| (dimensionless form)

and similarly for the original equation:

2pi j
∂ pi j

∂x
=

∂ (p2
i j)

∂x
= K = − λa2

Di jA2
i j

qi j|qi j| (original form)

This implies the square of the pressure in the pipe changes uniformly across space subject to
a function of the flux q̃i j . For a steady system, if the flux is known, K can be determined. If
the boundary pressure of the pipe is given, we can then determine and compute the pressure
values for all the other spatial points. Suppose we now integrate the equation w.r.t. space x
from junction point i to point j:

∫ L̃i j

0

∂ ( p̃2
i j)

∂ x̃i j
dx̃i j =

∫ L̃i j

0
K dx̃i j

We will obtain the steady-state gas flow equation for the dimensionless form:

p̃2
i − p̃2

j = L̃i jq̃i j|q̃i j| (2.6)

and similarly the following for the original form:

p2
i − p2

j = Li j
λa2

Di jA2
i j

qi j|qi j| (2.7)

where pi/ p̃i and p j/ p̃ j are the pressure/dimensionless pressure at junction point i and j re-
spectively. The above equations eventually link the pressure (squared) difference at the two
ends of a pipe to the steady-state gas/flux flow as well as the pipe and gas characteristics. In
steady states, we can even further simplify and assume the compressor is installed in one end
of the pipe. Suppose the compressor is installed at node i, we will then have the following
generalized steady-state gas flow equation in original form:

R2
i j p

2
i − p2

j = Li j
λa2

Di jA2
i j

qi j|qi j| (2.8)

with the following simplified cost function

Si j = η
−1|qi j|(max{Ri j,1}2K−1) (2.9)
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Model 5 shows the Optimal Gas Flow Problem (OGFP) by using the steady-state equations
(original form). Our goal is to optimize the compression costs Si j, while still satisfying the gas
demands and the pressure/flux operational ranges. This model will find pressure values pi at
every pipe junctions, gas flows qi j for every pipes, gas dispatches qi,Ji ∈J S for gas suppliers,
compression ratios Ri j for compressors, and the optimized compression cost Si j to operate
the network. Objective (O1) models the steady state compression cost function. The flow
balance equation is implemented by (C2.1). Constraint (C2.2) ensures the net flow is zero for
transportation nodes. Constraint (C2.3) ensures the net flow is the same as the demand for
demand nodes. The steady-state gas flow equations are implemented in (C3.1)-(C3.2). Finally,
(C4.1) implements the cost functions.

Model 5 Optimal Gas Flow Problem: Compressor Optimization
Inputs:

G = (J ,P) Natural gas transmission system
J T ,J D,J S Subset of transport, demand, and supply nodes/junctions
C Subset of pipes with compressors

Variables:
pi ∈ (pi, pi), ∀Ji ∈J Pressure variables for Ji

qi ∈ (qi,qi), ∀Ji ∈J (Net) flux variables for Ji

qi j ∈ (qi j,qi j), ∀Pi j ∈P Flux variables for Pi j

Si j, ∀Pi j ∈ C Cost variables representing compression costs
Ri j, ∀Pi j ∈ C Compression ratio for the compressor at Pi j

Minimize
∑

Pi j∈C
Si j (O1)

Subject to:
∑

j∈J :Ji j∈P
qi j− ∑

j∈J :J ji∈P
q ji = qi ∀i ∈J (C2.1)

qi = 0 ∀Ji ∈J T (C2.2)
qi = di ∀Ji ∈J D (C2.3)

R2
i j p

2
i − p2

j = Li j
λa2

Di jA2
i j

qi j|qi j| ∀Pi j ∈ C (C3.1)

p2
i − p2

j = Li j
λa2

Di jA2
i j

qi j|qi j| ∀Pi j ∈P−C (C3.2)

Si j = η−1|qi j|(max{Ri j,1}2K−1) ∀Pi j ∈ C (C4.1)
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Chapter 3

An Indirect Stability Approach on
Power Systems Restoration

This chapter introduces our first contribution in maintaining system stability. In this chapter,
we consider the restoration of a power transmission system after a significant disruption such
as a natural disaster. The problem at hand is Restoration Ordering Problem (ROP) that jointly
considers generator dispatch, load pickups, and restoration prioritization to minimize the size
of the blackout while satisfying the network operational constraints. We examine transient
effects in power restoration and generalize the ROP formulation with standing phase angle and
voltage difference constraints. These constraints are generally classified as indirect approaches
to enhance rotor angle stabilities. We perform experiments on various benchmarks to show
the novel ROP-SPASVD formulation reduces rotor swings of synchronous generators by over
50%, while having a negligible impact in restoration delay, in terms of blackout size in less
than 1.5% increases, which is still optimized holistically.

3.1 Overview

Restoring a transmission system after a significant disruption, e.g., a cascading voltage collapse
or a natural disaster, is an important task with consequences on both human and economic wel-
fare. However, restoration plans are very challenging to design: Planners aim at minimizing
the blackout period but also must prioritize repairs (i.e., determine the order in which to ener-
gize lines), load pickups, and generator dispatch without violating static network constraints
(e.g., line thermal limits) and creating significant transient effects (e.g., large rotor swings).

This chapter is part of a long-term research project [88, 45, 24, 89] to develop holistic
power restoration algorithms for responding to significant network disruptions, such as those
stemming from natural disasters. Past research has isolated a key sub-problem in power sys-
tems restoration, the Restoration Ordering Problem (ROP) [24], which formalizes the process
of prioritizing network repairs, re-dispatching generations, and picking up new loads to mini-
mize the blackout period. The ROP determines the best sequence of steady states, each state
associated with a restoration action. It raises significant computational challenges: Since no
typical operating point is known for the damaged network, even determining a sequence of
steady states that satisfy the AC power flow equations is a non-trivial endeavor and the popular
DC power flow approximation cannot be used in this context [89]. To remedy this limita-
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Figure 3.1: The Two Phases of the Restoration Ordering Algorithm.

tion, prior and existing work introduced and use the LPAC model to obtain a more accurate
approximation to the AC power flow equations [90, 89].

3.2 Our Main Contribution

Prior work on the ROP problem restricts attention to determining an optimal sequence of AC-
feasible steady-states: It did not consider whether the power systems can transition from each
steady-state to the next. This is an important issue since, in a restoration context, the power net-
work is operating far from its original design specification and many topology changes are oc-
curring. This work is a first step in addressing transient effects during the computation of high-
quality restoration plans for the ROP problem. Inspired by field practices [16, 15, 20, 19, 18], it
proposes an enhanced formulation of the ROP to mitigate dynamic rotor swings (one of many
possible transient effects to consider) by imposing standing phase angle (SPA) and voltage
difference (SVD) constraints. The formulation splits each restoration action into two steps as
illustrated in Figure 3.1: A dispatch step where the generation dispatch and load pickups are ad-
justed to meet the SPA and SVD constraints and a closing step where the repaired component is
energized. The resulting formulation is called the ROP-SPASVD formulation. The benefits of
the ROP-SPASVD formulation are evaluated using the commercial transient simulator Power
World [7, 91] and five MatPower test systems [92]. The key findings can be summarized as fol-
lows: (1) The DC power flow approximation is not appropriate for solving the ROP-SPASVD,
while the LPAC model has the required accuracy. (2) SPA and SVD constraints can reduce
rotor swings of synchronous generators by over 50%. (3) By jointly considering SPA and SVD
constraints with load pickups and generation dispaches, improvements in rotor swings have
negligible impacts on the blackout size (i.e., ≤ 1.5% increase), which is optimized holistically.

Section 3.3 introduces our prior and related work on this problem. Section 3.4 shows the
dynamic models and configurations we used for simulations on the commercial PowerWorld
simulator. Section 3.5 introduces the 3-bus case study which illustrates the benefits of the SPA
and SVD constraints. Section 3.6 shows our novel ROP-SPASVD model. Section 3.7 gives
experimental evaluations on 5 MatPower benchmark systems.

3.3 Prior and Related Work

SPA constraints have been proposed before to improve rotor stability. Most of the work on
SPA constraints [20, 19, 18] focuses on methods and algorithms to minimize the standing
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phase angle for restoring one selected transmission line only. Ye and Liu [18] allow unserved
load to be picked up during the restoration as a control strategy to minimize the SPA, which
is natural in power restoration [24]. They also use the AC non-linear power flow equations.
In contrast, this research considers the restoration prioritization globally and imposes SPA
constraints for the damaged lines over the course of the restoration. The rotor swings are
analyzed globally over the entire restoration process. This research also uses the LPAC model
[90] to approximate the power flow equations, which allows the entire restoration process to
be expressed as a mixed-integer linear program, which is more tractable than a mixed integer
non-linear program. We also show that SPA constraints may not be sufficient in reducing rotor
swings for certain benchmarks, and further consider SVD constraints to remedy this limitation.

3.4 Transient Modeling on PowerWorld simulator

This work adopts the classical model of generator dynamics combined with the following
Swing equation [5] for evaluating the experimental results of our work:

2H
ω0

d2δ

dt2 = pm− pe−Dω

where H,δ , D, ω , and ω0 are the inertia constant, the rotor angle, the damping coefficient,
the current angular velocity, and the nominal angular velocity of a synchronous machine. On
the right hand side, pm and pe are the mechanical and electrical power acting on the rotor of
the generator. The circuit of the classical model of a generator is shown in Figure 3.2. E f d

Figure 3.2: Circuit diagram of classical generator model

represents the constant (field) voltage supplied by the generator, and V represents the terminal
voltage of generator (i.e., the voltage of the terminal bus). Ra and X

′
are the armature resistance

and the transient reactance of the generator. By using V , E f d , Ra, and X
′

following the circuit
diagram, we could compute pe. The paper also uses the PTI IEEE dynamic load model [93]
when performing simulations. The load model changes the active and reactive power of the
load depending on the voltage and frequencies shown in the following equation:

p′l = pl [a1(
Vl

V0
)n1 + a2(

Vl

V0
)n2 + a3(

Vl

V0
)n3 ][1+ a7∆ f ]

q′l = ql [a4(
Vl

V0
)n4 + a5(

Vl

V0
)n5 + a6(

Vl

V0
)n6 ][1+ a8∆ f ]
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Figure 3.3: Topology Change Example: Open State (left), Closed State (right).

Table 3.1: Line, Load, and Generator Model Parameters
Line r (p.u.) x (p.u.) b (p.u.)

1 to 2 0.01938 0.05917 0.00000
1 to 3 0.05403 0.22304 0.00000
2 to 3 0.05695 0.17388 0.00000

Load pl (MW) ql (MVar)

Bus 2 100.00 0.00
Bus 3 100.00 0.00

Generator H (MW/MVA · sec) D (p.u.) Ra (p.u.) X ′ (p.u.)

Gen 1 30.00 5.00 0.02 0.20
Gen 2 30.00 5.00 0.02 0.20

where pl and ql are the amount of active and reactive power served at steady state and p′l and
q′l are the resulting active and reactive power demand. Vl and V0 are the voltage of the bus the
load is currently connected to and the nominal voltage of the system. ∆ f is the change in fre-
quency of the power network. All variables ai (i ∈ {1..8}) and n j ( j ∈ {1..6}) are configurable
constants.

3.5 Topology Changes and Rotor Swings

To build the intuition behind the ROP-SPASVD model, consider the 3-bus network in Figure
3.3 and its parameters in Tables 3.1. This 3-bus example is in fact a sub-graph of the IEEE
14 standard test case. This section conducts two studies on this network: (1) a restoration
topology change (i.e., adding line 1–2); and (2) a congestion removing topology change (i.e.,
removing line 1–2). The effects of the topology change are evaluated on five scenarios, each
of which corresponds to a different generator dispatch that meets the load.

Table 3.2: Restoration Case: Settings
Case Bus 1 Bus 2 Bus 1 Bus 2 Gen 1 Pow. Gen 2 Pow. 1st Swing

Volt.(kV) Volt.(kV) Ang.(deg) Ang.(deg) (MW/MVar) (MW/MVar) (deg)

1 146.28 97.24 0.00 -47.58 221.12/143.46 20.00/18.00 44.229
2 146.28 146.28 0.00 -35.33 207.42/28.05 20.00/78.32 31.249
3 146.28 141.725 0.00 -12.14 102.59/10.66 102.59/10.66 10.385
4 146.28 123.84 0.00 0.00 61.05/48.08 143.85/-30.00 0.619
5 146.28 146.28 0.00 0.00 45.37/6.10 157.31/3.16 0.002
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Table 3.3: Removal Case: Settings
Case Bus 1 Bus 2 Bus 1 Bus 2 Gen 1 Power Gen 2 Power 1st Swing

Volt.(kV) Volt.(kV) Ang.(deg) Ang.(deg) (MW/MVar) (MW/MVar) (deg)

1 146.28 142.36 0.00 -4.23 206.27/20.88 0.00/0.63 >90(unstable)
2 146.28 146.28 0.00 -4.62 206.48/-36.62 0.00/58.70 >90(unstable)
3 146.28 145.22 0.00 -1.50 101.53/5.40 101.53/5.40 10.276
4 146.28 143.01 0.00 0.00 60.06/50.59 143.00/-40.00 0.137
5 146.28 146.28 0.00 0.00 45.28/6.13 157.40/3.13 0.016

Scenario 5 is a dispatch that produces the same bus phase angles and voltage magnitudes
for the generator buses. Scenario 2 (resp. 4) is a dispatch where the voltage magnitudes (resp.
the bus phase angles) are the same for the generator buses. Scenario 3 has the same dispatch
for both generator. Scenario 1 is a dispatch with no specific constraint. In this study, a swing
of more than 90 degrees is unacceptable and should lead to self-protection measures [5].

Figure 3.4: Restoration Case: Generator 1 Rotor Angle (deg)

Figure 3.5: Removal Case: Generator 1 Rotor Angle (deg)

In restoration, the network starts in the open state (Figure 3.3 - left) and, after 10 seconds,
the line breaker is closed (Figure 3.3 - right). The last column of Table 3.2 reports the magni-
tude/amplitude of the first rotor swing of generator 1 for each of the five scenario. The results
show that, as standing phase angle differences increase, so do the swings. Figure 3.4 depicts
the rotor angles of generator 1 for the scenarios. The figure clearly shows that the swing in-
creases drastically with large phase angle differences. Hence, it is obviously desirable to select
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generator dispatch with small angle differences in power restoration. In line switching/opening
scenarios, the network starts in the closed state (Figure 3.3 - right) and, after 10 seconds, the
line breaker is opened. Table 3.3 and Figure 3.5 present the results. The results are similar to
the restoration case but more extreme. In particular, the first two scenarios lead to instabilities
in the network, while smaller SPAs and SVDs reduce the rotor swing and achieve stability.

3.6 Power Restoration Ordering Problem with Standing Phase
Angle Constraints

Section 3.5 confirmed standard field practices [16, 15, 20, 19, 18], and suggests to enhance the
ROP formulation in [24] with SPA and SVD constraints in order to mitigate rotor swings. The
ROP-SPASVD includes two extensions. First, we extend the model to incorporate AC power
flow equations, primarily for accuracy reasons and the capability to handle reactive power and
voltage accurately (see also the reasons stated in [89]). Second, to incorporate the effects of
SPA constraints, each restoration step must be broken into two phases: A dispatch phase d and
a closing phase c. The goal of the dispatch phase is to re-dispatch the generators to satisfy the
SPA and SVD constraints for the repaired line. The closing phase adds the repaired line to the
network and ensures that all operational constraints are satisfied. The closing phase enforces
the generator dispatch selected in the dispatch phase.

A complete model for the AC-ROP-SPASVD is presented in Model 6. The model assumes
the components of the network will be energized one at a time and will remain energized for
the remainder of the restoration process. The restoration is modeled as 2|R| steady states,
with one dispatch phase and one closing phase for each of the |R| restoration actions. Note
that each measure (e.g., real power on a line (n,m)) is associated with 2|R| variables, one
for each restoration step r and phase p. As the input data and variables of the AC-ROP-SPA
are described in Model 6 in detail, only the constraints are discussed. The objective (O.1)
strives to reducing the size of the blackout and thus to serve as much active power as pos-
sible through the restoration process. Constraints (C.1.x) are concerned with the operational
state of the components in the network. Constraint (C.1.1) ensures all non-damaged compo-
nents are active, while Constraint (C.1.2) ensures components not selected for repair remain
inactive. Constraint (C.1.3) activates one component in each time step, and Constraint (C.1.4)
ensures components remain active in future time steps. Constraints (C.1.5)–(C.1.7) capture
the operational state of the components. A component is only operational after it and all of
its dependent parts are active. Constraints (C.2.x) model the AC power flow equations and
link them with the operational state of the network. Constraint (C.2.1) selects a slack bus.
Constraints (C.2.2)–(C.2.3) model Kirchhoff’s Current Law and Constraints (C.2.4)–(C.2.5)
capture the flow of power by Ohm’s Law. Constraint (C.2.6) captures the line thermal limits.
Constraints (C.2.7)–(C.2.9) link the operational state of the generators and loads to the power
flow variables. Finally, Constraints (C.3.x) model the constraints between simulation phases.
Constraints (C.3.1)–(C.3.2) fix the generator dispatch between the phases. Constrain (C.SPA)
implements a standing phase angle constraint of less then θ ∆ when a line is closed in step r,
while Constraint (C.SVD) implements a similar voltage difference constraint. The AC-ROP-
SPASVD jointly considers generator dispatch, load pickups, topology changes, restoration pri-
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Model 6 The ROP with SPA and SVD Constraints
Inputs:

P = 〈N,L,G,O〉 -Power network
A = N∪L∪G∪O -The global set of equipments
D ,R ⊆D -Damaged items, and items considered to be restored
s ∈ N -Slack bus
Variables: (Step (r, p): 0≤ r ≤ |R|, p ∈ {d,c})
hn(r) ∈ {0,1}, ∀n ∈ A - Item n is going to be repaired (or not) at step r
kn(r) ∈ {0,1}, ∀n ∈ A - Item n is operational (or not) at step r
θ n(r, p) ∈ (−π ,π), ∀n ∈ N - Bus phase angle at step (r, p) for bus n
V n(r, p) ∈ (V n,V n

), ∀n ∈ N - Bus voltage at step (r, p) for bus n
ln(r, p) ∈ (0,1), ∀n ∈ O - Load precent for load n at step (r, p)
pn

g(r, p) ∈ (0, pn
g), ∀n ∈ G - Active injection of generator n at step (r, p)

qn
g(r, p) ∈ (qn

g
,qn

g) , ∀n ∈ G - Reactive injection of generator n at step (r, p)
pnm(r, p) ∈ (−pnm, pnm), ∀(l : n,m) ∈ L - Active flow on line l : (n,m)
qnm(r, p) ∈ (−qnm,qnm), ∀(l : n,m) ∈ L - Reactive flow on line l : (n,m)

Maximize
|R|

∑
r=0

∑
p∈{d,c}

∑
n∈O

pn
l ln(r, p) (O.1)

Subject to: (Step (r, p): 0≤ r ≤ |R|, p ∈ {d,c})
hn(r) = 1, ∀n ∈ A\D (C.1.1)
hn(r) = 0, ∀n ∈D\R (C.1.2)
∑

n∈D
hn(r) = r, (C.1.3)

hn(r−1) ≤ hn(r), ∀n ∈D ,r 6= 0 (C.1.4)

kn(r) = hn(r), ∀n ∈ N (C.1.5)
km(r) = hm(r)∧hn(r), ∀n ∈ N,∀m ∈ G(n)∪D(n)(C.1.6)
kl(r) = hl(r)∧hn(r)∧hm(r), ∀(l : n,m) ∈ L (C.1.7)

θ s(r, p) = 0 (C.2.1)
∀n ∈ N :

∑
m∈G(n)

pm
g (r, p)− ∑

m∈O(n)

pm
l lm(r, p) = ∑

m∈N(n)

pnm(r, p) (C.2.2)

∑
m∈G(n)

qm
g (r, p)− ∑

m∈O(n)

qm
l lm(r, p) = ∑

m∈N(n)

qnm(r, p) (C.2.3)

∀(l : n,m) ∈ L :
pnm(r, p) = kl(r)(gnm[V n(r, p)]2−V n(r, p)V m(r, p)

(gnm cos(θ n(r, p)−θ m(r, p))−bnm sin(θ n(r, p)−θ m(r, p)))) (C2.4)
qnm(r, p) = kl(r)(−bnm[V n(r, p)]2−V n(r, p)V m(r, p)

(gnm sin(θ n(r, p)−θ m(r, p))−bnm cos(θ n(r, p)−θ m(r, p)))) (C2.5)
[pnm(r, p)]2 +[qnm(r, p)]2 ≤ Slkl(r) (C.2.6)

¬kn(r)→ pn
g(r, p) = 0, ∀n ∈ G (C.2.7)

¬kn(r)→ qn
g(r, p) = 0, ∀n ∈ G (C.2.8)

¬kn(r)→ ln(r, p) = 0, ∀n ∈ O (C.2.9)

pn
g(r,d) = pn

g((r−1),c), ∀n ∈ G,r 6= 0 (C.3.1)
qn

g(r,d) = qn
g((r−1),c), ∀n ∈ G,r 6= 0 (C.3.2)

kl(r)∧¬kl(r−1)→ |θ n(r,d)−θ m(r,d)| ≤ θ ∆, ∀(l : n,m) ∈ L,r 6= 0 (C.SPA)
kl(r)∧¬kl(r−1)→ |V n(r,d)−V m(r,d)| ≤V ∆, ∀〈l : n,m〉 ∈ L,r 6= 0 (C.SVD)
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Table 3.4: Blackout Size and Convergence Rate for the DC-ROP-SPA.
6 Bus (Complete Search) 14 Bus (2 hr Limited Search)

θ ∆ Deg Blackout (%) # Failed / Total Blackout (%) # Failed / Total
180 12.55 3 / 6 5.35 2 / 7

10 12.55 1 / 6 5.35 2 / 7
5 12.55 2 / 6 5.35 1 / 7

2.5 12.55 2 / 6 5.35 1 / 7
1.25 12.55 1 / 6 5.35 2 / 7

oritization and the network operation limits. It also uses SPA and SVD constraints to improve
transient stability in generator dynamics model.

The AC-ROP-SPA is a challenging mixed-integer non-linear non-convex program (non-
convex MINLP) which is outside the scope of modern global optimization tools. To address
its computational challenges of solving the AC-ROP-SPA globally, a natural avenue is to ap-
proximate the power flow equations. For instance, the AC-ROP was approximated with the
popular DC power flow model in [24], resulting in a mixed-integer program (MIP) formula-
tion which exploits mature industrial tools. Unfortunately, a DC-ROP-SPA approximation of
the AC-ROP-SPA produces restoration plans riddled with problems. First, the DC solutions
to the power flow equations could not be converted to AC solutions, verified by Power World
simulator. Second, even if the solution did converged to an AC solution in Power World, the
SPA constraints did not reduce rotor swings. Third, DC power flow approximation eliminate
voltages, and hence SVD constraints cannot be expressed in the DC model. These observa-
tions, which are consistent with prior work in power restoration [89, 18, 19], are illustrated
in Table 3.4. The table gives the SPA limit, the size of the blackout in percentage, and the
number of line closing during restorations a DC plan cannot be converted into an AC plan for
the 6 bus and the 14 bus case studies. Observe that the backout area does not change as the
SPA constraints become tighter, highlighting again that the DC model is not accurate enough
to reason on the bus phase angles in a restoration context.

To remedy these issues, our work use the LPAC model [90] to model the power flow equa-
tion as suggested in [89]. The LPAC model approximates the AC power flow with a linear
program, captures reactive and volatge magnitudes, and is derived from the following assump-
tions: (1) sin(θ n− θ m) ≈ θ n− θ m; (2) the voltage magnitude at each bus is expressed as a
deviation from a nominal operating voltage, i.e., |Ṽ | = |Ṽ t |+ φ ; (3) the non-convex cosine
function is replaced with a polyhedral relaxation denoted by ĉosnm; (4) the remaining non-
linear terms are factored and approximated with a first-order Taylor expansion. The LPAC
model (cold-start version) yield the following power flow equations:

pnm = gnm−gnmĉosnm−bnm(θ n−θ
m)

qnm = −bnm + bnmĉosnm−gnm(θ n−θ
m)−bnm(φ n−φ

m)

This work uses the warm-start LPAC model, a slightly more advanced formulation that ex-
ploits the target voltage magnitudes for more accuracy [90]. The resulting LPAC-ROP-SPA
formulation is also a MIP model which remedies the limitations of the DC power flow and is
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sufficiently accurate to study the AC-ROP-SPA. The LPAC-ROP-SPA formulation is still very
challenging computationally even for small networks (e.g., with more than 40 lines), since it
holistically sequences the repairs. Since the LPAC model is an approximation of the AC model,
power flow simulations are still required to validate the feasibility of the flow in practice, to
ensure the computed decisions will not violate any security/operational constraints.

A randomized adaptive decomposition (RAD) [94, 95] procedure was proposed in [96] for
solving similarly challenging ROP problems. The algorithm begins with an arbitrary restora-
tion prioritization as a starting point. It then inspects contiguous subsections of the restoration
steps randomly and replaces them with improved subsections. This process is repeated several
times until a fix-point is reached. This procedure lead to high quality restoration plans outside
the scope of existing MIP technology [96] and is used in this work for scaling the LPAC-ROP-
SPA to larger networks. The RAD method can be classified as a heuristic algorithm to quickly
extract sub-optimal solutions. However, heuristic methods in general do not guarantee global
optimality/infeasibility, and reaching the global optimal solution could be difficult.

3.7 Experimental Evaluation: Case Studies

This section evaluates restoration plans produce by the ROP-SPA algorithm using the commer-
cial transient simulation software Power World. It considers five well-studied power networks:
the 6-bus, 9-bus, 14-bus, 30-bus, and the 50-bus1 networks from MatPower [92]. For simplic-
ity, it is assumed that the entire network has been destroyed and must be reconstructed from
scratch. The restoration plans are quite detailed: They include an ordered list of repairs each
with generation dispatch and load pickups. Since our primary goal is to study transient stabil-
ity/dynamics in restorations, many aspects of these plans in fact need not to be concerned and
could be ignored. We make the following assumptions for our study: (1) standard procedures
are used for connecting generators to the network; (2) large load pickups are brought up incre-
mentally within the spinning reserve of existing generating units; (3) there is sufficient time to
make significant re-dispatch of the generation units between topology changes (i.e. restoration
time >> re-dispatch time); (4) Connecting two isolated islands is accomplished with standard
procedures for matching the bus phases, voltages, and frequencies. Given these assumptions,
the key restoration step with respect to the dynamic simulation is the closing of a line within a
connected network, which is precisely the case described in Section 3.5. Hence our dynamic
simulation study focuses only on these restoration steps in the ROP plans and evaluate whether
our model could enhance transient stability in these steps.

Given these assumptions, the experimental evaluation proceeds as follows. The ROP algo-
rithm produces a restoration plan of |R| steps (as discussed in Section 3.6). These restoration
steps are filtered to the subset R ′ of line closings within connected networks. Each restoration
step r ∈ R ′ defines a dispatch and a closed steady-state power flow on a subnetwork. The
dispatch state is encoded into the POWER WORLD transient simulator with an appropriate line
closing event after 10 seconds. The system dynamics are simulated for 50 seconds and the
rotor swings δt are observed for each time t in the 10–40 second time range. To summarize
the rich simulation data, only the largest rotor swing maxt δt of a generator is reported. For

1A reduced version of the 57-bus benchmark due to Power World Licensing restrictions.
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simplicity, we further simplify our results to report the maximum/average swing values over
all generators, i.e., maxi∈G maxt δ i

t , and 1
|G| ∑i∈G maxt δ i

t . To be consistent with field practices,
this section first focuses on the effects of SPA constraints and then considers SVD constraints.

3.7.1 Swing Reduction on Fixed Restoration Order

This section first considers the case where the order of component restoration is fixed. This
simplifies the computational complexity significantly since the resulting optimization is a lin-
ear program. However, the resulting restoration algorithm still produces non-trivial restoration
plans since it must choose generation dispatch and load pick-ups that satisfy the SPA con-
straints. The key findings are: (1) even with a fixed restoration order, SPA constraints can
significantly reduce rotor swings; (2) The rotor swing benefits come with a relatively small
increase to the size of the blackout period. Table 3.5 summarizes the results for increasingly
stronger SPA constraints (i.e., θ ∆ = 180,10,5,2.5,1.25,0.625, and 0.3125 deg.). The case with
θ ∆ = 180 is a baseline with no binding phase angle constraints. The table reports three key
metrics: (1) the runtime of the linear program; (2) the blackout period percentage defined as:

1−
∑
|R|
r=1 ∑p∈{d,c}∑n∈O pn

l ln(r, p)

2|R|∑n∈O pn
l

and (3) the relative blackout change, i.e., the changes in blackout percentage compared to initial
value in the baseline. The runtimes are consistent for all SPA constraints. In absolute terms,
the SPA constraints produce very small increases in the size of the blackout (less than 1.5%)
in all cases. Even in relative terms (∆), the increases tend to be less than 2%, except for the
14-bus case. Figure 3.6 shows the maximum rotor swing of each generator for the restoration
plans of outlined in Table 3.5. The various generators in each scenario may have significantly
different swing sizes. However, as the SPA constraints become tighter, the swing sizes for all
generators decrease consistently by at least 50%.

3.7.2 Swing Reduction on Flexible Restoration Order

This section considers the full ROP program that jointly optimize the prioritization of restora-
tion, generator dispatch, and load pickups. It starts with the small networks that can be solved
optimally and then move to the larger networks that are solved using randomized adaptive
decomposition.
Complete Search on the 6-Bus and 9-Bus Cases: Table 3.6 and Figure 3.7 present the for
the LPAC-ROP-SPA. Table 3.6, when compared to Table 3.5, highlights the benefits of co-
optimizing the restoration prioritization, as the blackout percentage is reduced by 3% and 12%
in the 6-Bus and 9-Bus networks. Figure 3.7 shows also consistent monotonic reductions in
rotor swings. Note that, although Figures 3.7 and 3.6 show similar trends, their values cannot
be compared directly because the underlying restoration plans differ.
RAD on the 14-Bus, 30-Bus, and 50-Bus Cases: Consider now the larger benchmarks which
are solved with randomized adaptive decomposition. Since this algorithm is randomized, it
typically produces different results on each execution and provide no quality guarantees. This
section reports only one run of the LPAC-ROP-SPA algorithm and hence these results must be
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Table 3.5: Runtime & Blackout on a Fixed Restoration Order for Decreasing SPA Values
6 Bus 9 Bus

θ ∆ Deg Runtime (sec) Blackout (%) ∆ (%) Runtime (sec) Blackout (%) ∆ (%)
180 0.65 32.9574 0.0000 0.42 75.4754 0.0000

10 0.40 32.9574 0.0000 0.35 75.4754 0.0000
5 0.40 32.9574 0.0000 0.36 75.4754 0.0000

2.5 0.40 32.9984 0.1244 0.34 75.4754 0.0000
1.25 0.39 33.2189 0.7935 0.35 75.6439 0.2232

0.625 0.39 33.3974 1.3351 0.34 75.8203 0.4569
0.3125 0.39 33.5618 1.8338 0.35 75.9084 0.5738

14 Bus 30 Bus

θ ∆ Deg Runtime (sec) Blackout (%) ∆ (%) Runtime (sec) Blackout (%) ∆ (%)
180 1.40 7.0319 0.0000 7.71 21.6491 0.0000

10 1.41 7.0319 0.0000 7.84 21.6491 0.0000
5 1.42 7.3180 4.0683 7.13 21.6542 0.0234

2.5 1.52 7.8373 11.4537 6.94 21.7393 0.4165
1.25 1.38 8.1258 15.5559 6.90 21.8318 0.8438

0.625 1.79 8.2787 17.7307 7.84 21.8817 1.0745
0.3125 1.63 8.3573 18.8483 8.83 21.9124 1.2162

50 Bus

θ ∆ Deg Runtime (sec) Blackout (%) ∆ (%)
180 29.43 15.2453 0.0000
10 29.69 15.2454 0.0000

5 29.94 15.2556 0.0675
2.5 29.35 15.2679 0.1481

1.25 30.26 15.2765 0.2041
0.625 30.00 15.2828 0.2457

0.3125 29.69 15.2866 0.2704

Table 3.6: Runtime & Blackout on Optimal Restoration Orderings for Decreasing SPA Values
6 Bus 9 Bus

θ ∆ Deg Runtime (sec) Blackout (%) ∆ (%) Runtime (sec) Blackout (%) ∆ (%)
180 1456.62 29.1442 0.0000 558.88 62.8310 0.0000

10 1233.94 29.1442 0.0000 565.12 62.8310 0.0000
5 1414.19 29.1442 0.0000 493.25 62.8310 0.0000

2.5 608.19 30.2073 3.6478 557.07 62.8310 0.0000
1.25 1206.01 30.2668 3.8518 631.55 62.8310 0.0000

0.625 1129.35 30.3040 3.9795 615.68 63.0012 0.2709
0.3125 1675.22 30.4274 4.4028 753.10 63.1087 0.4420

seen as general trends on not precise values. Table 3.7 summarizes both the restoration plans
and the rotor swings for the following step sizes: θ ∆ = 180,5,0.625. The results show the
same trend as the smaller benchmarks: As the SPA constraints are tightened, the maximum
rotor swings become smaller. However, the results also indicate that the SPA-constraints help
in producing smaller blackout sizes. This result is due to the limits on computation times and
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Figure 3.6: Maximum Rotor Swing on a Fixed Restoration Order

Figure 3.7: Maximum Rotor Swing with Optimal Restoration Orderings

highlights that SPA-constraints can in fact drive the search towards high-quality restoration
plans early, while the unconstrained algorithm may explore regions of the search space that
may prove infeasible in later steps. Additional experiments are needed to confirm these obser-
vations generally but it is important to emphasize that LPAC-ROP-SPA has produced the best
restoration plans on these case studies.

3.7.3 The Impact of SVD Constraints

This section considers SVD constraints motivated by the 39-Bus network which is unique for
several reasons. First, it has 10 generators, significantly more than other benchmarks. Voltage
bounds must be tightened from ±0.06 V p.u. to ±0.03 V p.u. to ensure convergence of
LPAC-ROP-SPA plans to AC-feasible power flows. Finally, even with tight SPA constraints,
the restoration plans produce significant rotor swings. After a detailed investigation, it appears
that these swings are caused by significant differences between the voltages on the buses. This
was the key motivation in introducing the LPAC-ROP-SPASVD formulation. Table 3.8 and
Figure 3.8 present the restoration plan results for a fixed ordering on the 39-bus case with
and without a standing voltage difference of V ∆ = 0.005 p.u.. In other words, the restoration
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Table 3.7: Runtime, Blackout, & Rotor Swings on RAD for Decreasing SPA Values
14 Bus (Limit: 2 hours)

θ ∆ Deg Runtime(sec) Blackout(%) Gen 1 Gen 2 Gen 3 Gen 4 Gen 5
180 5427.43 7.0319 0.0326 2.5931 6.0216 7.9865 3.1483

5 7200.06 6.9732 0.0662 4.9771 3.6925 3.2947 4.5103
0.625 7200.18 6.7901 0.0167 1.1987 0.9181 0.8384 1.0966

30 Bus (Limit: 2 hours)

θ ∆ Deg Runtime(sec) Blackout(%) Gen 1 Gen 2 Gen 3 Gen 4 Gen 5 Gen 6
180 7204.10 21.6491 0.1246 3.1934 3.8476 2.5767 4.1693 3.3256

5 7205.79 19.7539 0.2405 6.3994 3.9005 4.4040 4.2817 3.6690
0.625 7214.51 18.0415 0.2221 0.1504 1.5442 1.4733 0.6440 0.8368

50 Bus (Limit: 4 hours)

θ ∆ Deg Runtime(sec) Blackout(%) Gen 1 Gen 2 Gen 3 Gen 4 Gen 5 Gen 6 Gen 7
180 14478.96 14.6031 0.0434 0.6521 3.8454 4.6441 5.7794 6.2289 7.6763

5 14403.39 12.8734 0.0288 0.2012 0.6263 1.9467 2.9263 2.9146 3.3718
0.625 14439.81 11.9223 0.0429 0.8242 2.4939 1.9590 1.8267 1.4765 1.6270

plans are evaluated with just SPA constraints (replicating the experiment from Section 3.7.1)
and with both the SPA and SVD constraint. We only show four representative generators with
significant swings in Figure 3.8.

With SPA constraints only, generators 6 and 7 behave just like the previous experiments
but generators 2 and 4 are unique in that their rotor swings do not decrease with tighter SPA
constraints. With SVD constraints, the SPA constraints control rotor swings more effectively.
Interestingly, setting the SVD limit below 0.005 makes the LPAC-ROP-SPA infeasible. This
is not surprising as voltages may not be effectively controlled by generator dispatch and load
pickups, especially during restoration stage where equipments are not fully restored. Local
reactive power compensation is likely required for the feasibility of small SVD constraints.
These results suggest that SPA constraints alone are not enough to ensure small rotor swings:
It is advantageous to add SVD constraints to the ROP model and possibly to couple them with
local reactive support.

Table 3.8: The 39-Bus New England Test System
SPA Constraints SPA and SVD Constraints

θ ∆ Deg Runtime (sec) Blackout (%) ∆ (%) Runtime (sec) Blackout (%) ∆ (%)
180 7.48 39.6525 0.0000 10.50 39.7927 0.0000

10 7.60 39.6525 0.0000 9.83 39.7927 0.0000
5 8.25 39.6535 0.0025 8.00 39.7937 0.0025

2.5 7.63 39.6778 0.0636 8.91 39.8184 0.0645
1.25 7.78 39.7399 0.2203 9.12 39.8816 0.2234

0.625 7.64 39.7782 0.3170 10.55 39.9183 0.3157
0.3125 7.40 39.7999 0.3716 10.17 39.9385 0.3664
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Figure 3.8: Maximum Rotor Swing on 39 Bus: SPA Constraints (top), SPA and SVD Con-
straints (below)



Chapter 4

A Direct Stability Approach on
Transmission Line Switching

The previous chapter presents our work to maintain transient stability by using static con-
straints. We demonstrate this technique through the implementation of standing phase angle
constraints and voltage difference constraints in the power systems restoration planning prob-
lem. Static constraints are easy to implement, by just adding extra constraints (on steady states)
to existing algorithms/software implementations. In general, this is an indirect method to main-
tain transient stability as it cannot directly reason on the dynamic behaviours of a system at
the required time scale, hence can be inaccurate when determining the stability of a system.
It relies on components being modeled in steady-states, and indirectly improve stability via
adding extra constraints on these components.

For example, in our line closing routine proposed in previous chapter, we rely on a known
fact that the rotor angle separations/swings could be minimized if the standing phase angles
are minimized. We use generation dispatch as variables. While this generally works well for
many benchmarks, we did not achieve expected result for the 39-bus benchmark. To guarantee
transient stability in a more accurate manner, this chapter proposes a direct method to reason
directly on the rotor swings of generators. We demonstrate how to incorporate this technique
on another important power systems application: transmission line switchings, our second
contribution in the thesis for maintaining system stability. While direct approaches allow us to
directly extract stable solutions with high accuracy, these methods are usually computationally
costly. In addition, they can also drastically increase the modeling complexity and hard to be
implemented in computational problem which are already complex (e.g. our work in previous
chapter).

4.1 Overview

Transmission line switching is a control action in electrical power systems that has generated
increasing attention in recent years. Opening and closing transmission lines change the topol-
ogy of the grid, redistribute power flows and change the operational state of the system. The
control action has been proposed to address voltage issues in the grid, reduce generation costs
[59, 60, 25], eliminate congestions, and avoid violating operational constraints [61].

Significant research has devoted to designing algorithms for Optimal Transmission Switch-
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ing (OTS) [25]. The goal in OTS is to find the best (sequence of) lines to switch off in order to
minimize generation costs. This line of research almost exclusively focuses on analyzing the
power flow in the steady-states before and after the switchings. From a mathematical stand-
point, the OTS problem for finding the optimal line(s) for single/multiple line switching(s)
is a non-convex Mixed-Integer Non-Linear Program (non-convex MINLP), which is compu-
tationally challenging. For this reason, most OTS studies replace the non-convex AC power
flow equations by the linear DC power flow equations [25, 62, 63, 64, 65]. This reduces the
computational complexity, as the DC-OTS problem can be modeled as a Mixed-Integer Lin-
ear Program (MILP). Unfortunately, there is no guarantee that the resulting solution can be
transformed into an AC-feasible solution [66]. To overcome this limitation, recent work has
advocated the use of AC formulations (AC-OTS) or the use of tighter approximations and
relaxations [59, 60, 68].

AC-OTS formulations produce an optimal AC-feasible steady state after switchings, but do
not guarantee transient stability when the congestion level goes beyond traditional n-1 reliabil-
ity analysis. Our simulation experiments on the IEEE-39 test case indicate the more congested
the network is, the more difficult it becomes to ensure transient stability of OTS. Figure 4.1
depicts simulation results when line (2,25) is open for a congested case of the IEEE 39-bus
test system [1, 2] with congested load data taken from NESTA [97]. In the first few seconds,
the system seems to maintain stability. However, the system is insufficiently damped, causing
oscillatory instability, and later a slipping of generator poles. A loss of generator synchronism
(the top left rotor angle plot) can be seen after the fifth second, caused by insufficient damping
of generator voltage control (seen from the top right terminal voltage and the bottom excitation
control plots).

Power utilities routinely check system stability under peak loads, via simulations on var-
ious faulty scenarios (e.g. single line / three phase faults). However, these routines are not
exhaustive and mainly served for instability prevention during faults. With growing penetra-
tion of renewable energy, transmission switching is often presented as a flexible control action
and it becomes important to have automatic routines and controllers that jointly co-optimize
operational decisions and control settings.

4.2 Our Main Contribution

This chapter is a step in remedying this situation. We propose an automatic routine which
actively considered transient stability during optimization. Its key contribution is a nonlinear
optimization model for Transient-Stable Line Switching (TSLS) whose role is to comple-
ment an AC-OTS model: For each contemplated line switching, the TSLS model determines
set-points for its control variables in order to ensure transient stability or determine transient
instability, in which case the switching is rejected. The TSLS optimization model uses a trape-
zoidal discretization of the differential algebraic equations for the 4th order 2-axis generator
model with an automatic voltage regulator (AVR), consisting of an exciter and a stabilizer. The
TSLS model features two types of control variables: generation dispatches and stabilizer pa-
rameters, and its objective function minimizes the rotor angle accelerations weighted by time
in order to damp and stabilize the system. The TSLS model was evaluated primarily on the
classical IEEE 10-machine 39-bus system [1, 2] with different congestion scenarios from the
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Figure 4.1: NESTA nesta_case39_epri__api: Rotor angles (deg, top left), terminal
voltage (p.u., top right), and field excitation voltage (p.u., bottom) with 88% congestion level

for all generators. Each line represents a generator.

NESTA benchmark [97] to capture peaks in demand, and further extended to the Simplified
14-Generator Model of the South East Australian Power System [98] for scalability studies.
We also perform comparisons against the implementation on the classical 2nd order swing
equation model. The key findings from the experiments can be summarized as follows:

1. The more congested the system is, the more difficult it is to ensure rotor stability.

2. Due to the lack of excitation controls in classical swing models, the classical model
cannot maintain rotor stability for congested scenarios.

3. The variables controlling the set-points of the exciter and the stabilizer are critical to
ensure rotor stability, in particular to maintain (small-signal) oscillation stability. With
fixed constants for these parameters, stability cannot be obtained for the most congested
case.

4. The longer horizon our algorithm considered for optimization, the more stable control
solution we could obtain at the expense of computation runtime.

5. The TSLS optimization results were validated against POWERWORLD simulations and
exhibits an average error in the order of 10−3 degree for rotor angles.

6. The TSLS optimization model is solved with one minute for the coarser, but highly
accurate discretization on the IEEE-39 bus test system, and scale well to the larger South
East Australian Power System.
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Section 4.3 shows our related work in the literature. Section 4.4 introduces the background
models and equations we used to derive our model. Section 4.5 introduces the trapezoidal
discretization methods, followed by showing the equations and constraints we use to formalize
our optimization model. Section 4.6 shows the resulting optimization model, and a high-level
line switching routine to guarantee transient stability. Section 4.7 shows the computational
case studies and results.

4.3 Related Work

Our work is closely related to the transient-stable optimal power flow problem, first proposed
by Gan et al. [22]. The problem was later extended to multi-contingency settings [23] and
power systems restorations [32]. All of the above approaches utilize the classical 2nd or-
der swing equation model to reason on transient stability. Our work extends these works by
further considering the more complex 4th order 2-Axis Model with automatic voltage regu-
lation (AVR): including an exciter and a stabilizer (PSS) during optimization. Our work is
also related to techniques improving stability during transmission loop closures in normal op-
erating conditions, e.g., techniques on reducing rotor shaft impacts and standing phase angles
[21, 18, 19, 20].

4.4 Background

The dynamic response of a power system after a disturbance can be abstractly written and
described by [5, 23]:

ẋ = f (x,y), 0 = g(x,y)

where f (•) represents a set of first-order differential equations describing the power system
dynamics, and g(•) represents a set of algebraic equations describing the passive equipments.
Vector x captures the short-term dynamic variables and y is a vector of algebraic state vari-
ables. Given an initial condition for variables x and y, we then compute the transient states
of the network over time. In this chapter, we mainly focus on generator electro-mechanical
dynamics and phenomenon within a time horizon from a few seconds up to half of a minute.
The remaining equipments in the power transmission network, including transmission lines,
circuit breakers, and loads are modeled as passive equipments. We now describe the technical
details of the generator dynamics in our model. Table 4.1 lists the notations and symbols we
used to describe generator models and dynamics.

4.4.1 Generator Model: Swing Equation

This chapter captures the rotor dynamics by using the following two classical swing equa-
tions [5, 69]:

dδ i

dt
= ω

i−ω
0,

2H i

ω0
dω i

dt
= pi

m− pi
e−Di

ω
i
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Table 4.1: Nomenclature for generator models and dynamics
Nomenclature for generator dynamics

δ Rotor angle (rad)
ω Rotor speed (rad/sec)
a Rotor acceleration (rad/sec2)
H Inertia constant (MW · sec/MVA)
pm, pe Active mechanical power & electrical power (p.u.)
qe Reactive electrical power (p.u.)
D Damping coefficient (p.u.)
Ed ,Eq d-axis and q-axis generator stator emfs (p.u.)
X ′ Transient reactance [Classical swing model] (p.u.)
X ′d ,X ′q d-axis and q-axis transient reactance [Two-axis model] (p.u.)
Xd ,Xq d-axis and q-axis synchronous reactance [Two-axis model] (p.u.)
E f d Excitation field voltage (p.u.)
T ′do,T ′qo open circuit d- and q-axis time constants (sec)
Id , Iq d- anx q-axis stator currents (p.u.)
Vw,Ks,Tw Washout output, gain, and time constant (sec) [PSS]
T1 to T4 Lead-lag time constants (sec) [PSS]
Vll1,Vll2 Lead-Lag output [PSS]
Vs,Vre f ,Es PSS output, volt. reference, and excitor input
TA,TB Lead-lag time constants (sec) [Excitor]
∆ Discretization time constant (sec)
Ka,Tf d Gain amplifying and time constants [Excitor]

where H i,δ i, Di, ω i, and ω0 denote the inertia constant, rotor angle, the damping coefficient,
the angular velocity, and the nominal angular velocity of a generator i. The nominal angular
velocity is assumed constant for all generators at either 50Hz or 60Hz (i.e., ω0 = 2π50 or
ω0 = 2π60). pi

m and pi
e represent the mechanical and electrical powers acting on the rotor

of generator i. δ i and ω i are short-term dynamic variables, and pi
m and pi

e are algebraic state
variables. In steady states, the mechanical power is assumed to be equal to the electrical power
and the rotor angles of all generators remain constant (i.e., dω i

dt = 0,∀i ∈ G). The angular
velocity ω i is traditionally defined as an offset with respect to the nominal angular velocity ω0,
which allows us to drop the ω0 term (first equation). Traditionally, D is an implicit constant
used to approximate damping effects on windings and stabilizers. In cases when there are
explicit models on damping controls, e.g. an automatic voltage regulator with stabilizers, the
term Diwi in the second equation can be ignored, or set Di equals to zero.

4.4.2 Generator Model: Classical Swing Model

Due to its simplicity, transient studies throughout the literature often use the classical generator
machine model [5, 69] to model generator machine, represented by a constant voltage source
behind a fixed transient reactance. The active power pi

e and reactive power qi
e of a generator i
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can then be easily characterized by the following two equations:

pi
e =

E i
f dV i

X ′i
sin(δ i−θ

i)

qi
e =−

(V i)2

X ′i
+

E i
f dV i

X ′i
cos(δ i−θ

i)

where E i
f d , V i, X

′i, δ i, θ i are the (constant) excitation field voltage, terminal bus voltage in
magnitude, transient reactance, rotor angle, and the bus phase angle respectively.

4.4.3 Generator Model: 2-Axis Model

Our work use the more complex two-axis model [69] to account for excitation phenomenon,
driven by automatic voltage regulators which are widely installed in nowadays power systems.
In the two-axis model, the active (pi

e) and reactive (qi
e) power of generator i will be described

directly in terms of the generator stator emfs, leading to rotor flux components in two axes: the
direct axis (d-axis, E i

d) and the quadrature axis (q-axis, E i
q):

pi
e =

E i
qV i sin(δ i−θ i)

X ′id
+

E i
dV i cos(δ i−θ i)

X ′iq
+

(V i)2(X
′i
d −X

′i
q ) sin(2δ i−2θ i)

2X ′id X ′iq

qi
e =−

(V i)2

X ′id
+

E i
qV i cos(δ i−θ i)

X ′id
−

E i
dV i sin(δ i−θ i)

X ′iq
+

(V i)2(E
′i
d −E

′i
q )(cos(2δ i−2θ i)−1)

2X ′id X ′iq

where E i
q, E i

d , V i, θ i, X
′i
d , and X

′i
q are the q-axis stator emf, d-axis stator emf, terminal bus

voltage (magnitude), the bus phase angle, d-axis transient reactance, and q-axis transient reac-
tance of generator i respectively. The dynamics of the two stator emfs E i

q and E i
d are further

described by:

T
′i

do
dE i

q

dt
=E i

f d−E i
q +(X i

d−X
′i
d )I

i
d ,

T
′i

qo
dE i

d
dt

=−E i
d +(X i

q−X
′i
q )I

i
q

where E i
f d is the excitation field voltage controlled by the automatic voltage regulators (AVRs)

and power systems stabilizers (PSS), T
′i

do and T
′i

qo are the open circuit d- and q-axis time con-
stants, X i

d and X i
q are the d- and q-axis synchronous reactance, and Ii

d and Ii
q are the d- and

q-axis stator currents for generator i respectively. Finally, we have the following equations to
link the stator currents to the terminal voltage and the stator emfs:

Ii
d =

V i cos(δ i−θ i)−E i
q

X ′id
, Ii

q =
V i sin(δ i−θ i)+E i

d
X ′iq

When combining with the swing equations, the two-axis model will give four ordinary differ-
ential equations (aka the 4th-order model), while the classical model will still have only two
(aka the 2nd order classical model).
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Figure 4.2: The control block diagram of our automatic voltage regulator (AVR), with one
exciter: SEXS_PTI [7] and one stabilizer: STAB1 [7]

4.4.4 Automatic Voltage Regulation Model (AVR)

Our generator model implements a simplified excitation system model SEXS_PTI [7] com-
bined with a speed-sensitive stabilizing model STAB1 [7]. Figure 4.2 shows the combined
block diagram for all of the transfer functions in Laplace form. The circuit requires three ex-
ternal inputs: the terminal voltage V , the steady-state terminal voltage reference Vre f , and the
angular velocity/speed of the rotor angle ω . The excitation circuit consists of three time con-
stants: TA and TB in the lead-lag block and Tf d in the amplification block, one amplification
gain parameter Ka and two limits E f d and E f d to avoid over-excitation. The speed-sensitive
stabilizing circuit consists of 5 time constants: Tw in the wash out block and T1 to T4 in the
two lead-lag block, one wash out gain constant Ks, and again two limits Vs and Vs to limit the
stabilizing signal Vs.

4.5 Finite Difference Method: Trapezoidal Discretization

To optimize the generator model with the AVR containing ordinary differential equations, one
method is to use direct time discretization method to convert the continuous optimization prob-
lem into a finite-time discretized nonlinear program. We follow previous work [22] and per-
form an implicit trapezoidal discretization to discretize the equations over a discrete horizon
(1≤ t ≤ T ). This approach discretizes the first-order differential equation

d f (t)
dt

= k(t)

over a finite discrete time horizon 1≤ t ≤ T with uniform time step ∆ by converting it into its
integral form ∫ t+∆

t

d f (t)
dt

dt = f (t +∆)− f (t) =
∫ t+∆

t
k(t)dt

and using the Trapezoidal rule as follows:∫ t+∆

t
k(t)dt ≈ ∆

2
[k(t)+ k(t +∆)]

The same approximation is repeated to cover the required horizon and gives

f (t +∆)− f (t) ≈∆
2
[k(t)+ k(t +∆)],1≤ t ≤ T
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We now show the discretized formulations for building our optimization model. To simplify
our notation, we normalize and define our set of discretized time steps t to be the set of positive
integers {1,2, . . . ,T}. Each adjacent pair of steps will be separate by the desired uniform time
step ∆. We append t within brackets to variables to denote the values of the variables at time
step t. We also use t|t=n to explicitly refer to a specific time step n (1≤ n≤ T ).

4.5.1 Generator Dynamics: Swing equations

The Swing equations then become

δ
i(t + 1)−δ

i(t)− ∆
2
(ω i(t + 1)+ω

i(t)) = 0 (4.1)

ω
i(t + 1)−ω

i(t)− ∆
2
(ai(t + 1)+ ai(t)) = 0 (4.2)

ai(t)− ω0

2H i (pi
m− pi

e(t)−Di
ω

i(t)) = 0 (4.3)

for all generator i ∈G and all time steps t ∈ [1..T −1]. We set Di to zero if an explicit damping
model is implemented, e.g. if a power system stabilizer (PSS) is modeled explicitly. The initial
boundary conditions at t = 1 is given by

ω
i(t|t=1) = 0,ai(t|t=1) = 0, ∀i ∈ G. (4.4)

by assuming steady state holds in the first time step (i.e. at t = 1). For mechanical power,
we assume the (supplying) power is in perfect balance with respect to the electrical (drawing)
power in steady state (i.e. at t = 1), and remains constant throughout the transient period:

pi
m = pi

e(t|t=1) ∀i ∈ G. (4.5)

Since this study primarily focus on short-term transient effects with AVR controllers, the effect
of most frequency/droop controllers acting on mechanical power are relatively small and in-
significant, as these controllers respond and react in a comparatively slower time scale. There-
fore, it is reasonable to assume mechanical power to be constant. Droop and frequency controls
are known to be important on mid-term to long-term stability. Further extending our work to
incorporate droop/frequency controllers will be left as future work.
To ensure rotor stability, one acceptable criteria [22] is to ensure that the rotor angles are not
too far from each others before and after the disturbance period. One typical approach is to
define a reference angle δ r(t) representing the angle for the center of inertia (COI):

δ
r(t) =

∑i∈G H iδ i(t)
∑i∈G H i , 1≤ t ≤ T . (4.6)

and to enforce constraints to ensure rotor angles are not too far from the angle for the COI. For
all generators i ∈ G, the stability constraints will then be:

−δ ≤ δ
i(t)−δ

r(t) ≤ δ , {1}∪{t : Tk ≤ t ≤ T} (4.7)
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where Tk is an adjustable time constant representing the earliest time that the constraint has
to be enforced (after switchings), and δ is an adjustable parameter representing the maximum
rotor angle separation. In the literature, δ is usually set to π/2 (in radian).

4.5.2 Generator Dynamics: Generator Power

The generation active and reactive power can be easily extended to the discretized space by
repeating the equations to all time steps t. For the classical swing model, we have the following
two equations. For all i ∈ G, t ∈ [1..T ]:

pi
e(t) =

E i
f d(t)V

i(t)

X ′i
sin(δ i(t)−θ

i(t)) (4.8)

qi
e(t) =−

(V i(t))2

X ′i
+

E i
f d(t)V

i(t)

X ′i
cos(δ i(t)−θ

i(t)) (4.9)

For the two-axis model, we have the following:

pi
e(t) =

E i
q(t)V

i(t) sin[δ i(t)−θ i(t)]

X ′id
+

E i
d(t)V

i(t)cos[δ i(t)−θ i(t)]
X ′iq

+

[V i(t)]2(X
′i
d −X

′i
q ) sin[2δ i(t)−2θ i(t)]

2X ′id X ′iq
(4.10)

qi
e(t) =−

[V i(t)]2

X ′id
+

E i
q(t)V

i(t)cos[δ i(t)−θ i(t)]

X ′id
−

E i
d(t)V

i(t) sin[δ i(t)−θ i(t)]
X ′iq

(4.11)

+
[V i(t)]2[E

′i
d (t)−E

′i
q (t)]{cos[2δ i(t)−2θ i(t)]−1}

2X ′id X ′iq

for all i ∈ G, t ∈ [1..T ].

4.5.3 Generator Dynamics: Stator EMF Dynamics

Similarly, the d- and q-axis stator emf dynamics will be discretized to:

T
′i

doE
′i
q (t) = E i

f d(t)−E i
q(t)+ (X i

d−X
′i
d )I

i
d(t) (4.12)

T
′i

qoE
′i
d (t) = −E i

d(t)+ (X i
q−X

′i
q )I

i
q(t) (4.13)

Ii
d(t) =

V i(t)cos[δ i(t)−θ i(t)]−V i
q(t)

X ′id
(4.14)

Ii
q(t) =

V i(t) sin[δ i(t)−θ i(t)]+V i
d(t)

X ′iq
(4.15)
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for all i ∈ G, t ∈ [1..T ], with the following trapezoidal rule to approximate the rate of the emf
dynamics:

E i
q(t + 1)−E i

q(t)−
∆
2
[E
′i
q (t + 1)+E

′i
q (t)] = 0 (4.16)

E i
d(t + 1)−E i

d(t)−
∆
2
[E
′i
d (t + 1)+E

′i
d (t)] = 0 (4.17)

for all i ∈ G, t ∈ [1..T − 1]. Similarly, we have the following initial boundary conditions at
t = 1:

E
′i
d (t|t=1) = 0,E

′i
q (t|t=1) = 0, ∀i ∈ G. (4.18)

by assuming steady state in the first time step.

4.5.4 Automatic Voltage Regulator: Exciter

We now show how we transform the transfer functions (in Laplace domain) in our AVR into
time-domain differential equations for optimization. Let O(s)/O(t) and I(s)/I(t) be the out-
put function and input function in the Laplace (s) / time (t) domain. We assume the transfer
functions are given with the zero initial condition (i.e. O(0) and I(0) in Laplace domain are
zero), which is a common property in power systems control. All of the transfer functions
appearing in Figure 4.2 can be written in abstract form as:

Km + sTm

Kn + sTn
=

O(s)
I(s)

⇐⇒ I(s)(Km + sTm) = O(s)(Kn + sTn)

⇐⇒ s(I(s)Tm−O(s)Tn) = O(s)Kn− I(s)Km

⇐⇒ d
dt
(I(t)Tm−O(t)Tn) = O(t)Kn− I(t)Km

⇐⇒ dX(t)
dt

= O(t)Kn− I(t)Km,

where X(t) is defined as I(t)Tm−O(t)Tn. For lead-lag blocks, we have Km = Kn = 1. These
dynamic equations reduce to:

dX(t)
dt

= O(t)− I(t)

For washout blocks, we have Kn = 1,Km = 0. These dynamic equations similarly reduce to:

dX(t)
dt

= O(t)

For excitation amplification blocks, we have Kn = 1,Tm = 0, and therefore we have:

dX(t)
dt

= O(t)−KmI(t), s.t. X(t) = −TnO(t)
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By using the above three transformation rule, we have the following equations describing the
excitation circuits:

T
′i
f dE

′i
f d(t) = −E i

f d(t)+Ki
aE i

ll(t) (Gain) (4.19)

X
′i
ll (t) = E i

s(t)−E i
ll(t) (Lead-Lag) (4.20)

X i
ll(t) = T i

BE i
ll(t)−T i

AE i
s(t) (Lead-Lag) (4.21)

E i
s(t) = V i

re f −V i(t)+V i
s (t) (Summation) (4.22)

for all i ∈ G, t ∈ [1..T ], with the following trapezoidal rule to approximate the dynamics:

E i
f d(t + 1)−E i

f d(t)−
∆
2
[E
′i
f d(t + 1)+E

′i
f d(t)] = 0 (4.23)

X i
ll(t + 1)−X i

ll(t)−
∆
2
[X
′i
ll (t + 1)+X

′i
ll (t)] = 0 (4.24)

for all i ∈ G, t ∈ [1..T −1]. Again, we have the following initial boundary conditions at t = 1:

E
′i
f d(t|t=1) = 0,X

′i
ll (t|t=1) = 0 (4.25)

for all i ∈ G. The only equipment we remain to convert to the time domain is the non-windup
limiters on the gain block. The limiters will change and set the differential dE f d

dt and the
state E f d when the state goes lower/higher than the lower/upper bounds (called saturation be-
haviours), as follows:

dE f d

dt
= 0∧E f d = E f d , if E f d ≥ E f d ∧

dE f d

dt
≥ 0

dE f d

dt
= 0∧E f d = E f d , if E f d ≤ E f d ∧

dE f d

dt
≤ 0

To implement the limiter (in time-domain) for optimization, binary/integer variables would
need to be used, introducing significant computational complexity and making the approach
intractable. One alternative proposal is to enforce stricter bounds:

E i
f d ≤ E i

f d(t) ≤ E i
f d , ∀i ∈ G,1≤ t ≤ T . (4.26)

One possible outcome is that we will not be able to look for stable solutions utilizing saturation
behaviours of limiters (i.e. allowing excitation controls E f d to go lower/higher than the bounds
and use limiters to rectify the controls). While enforcing a stricter bounds would indeed result
in a more conservative optimization, due to the requirement for solvers to look for control
settings that satisfy the tightened bounds without saturation behaviours, this approach would
still guarantee stability if a solution is being found.

One future research direction is to perform optimization on the relaxation of the constraints
by enforce looser bounds. One way is to add slackness variables to E i

f d and E i
f d and mini-

mize the overall magnitude of the slackness variables. Note that this approach is a relaxation
approach which could allow originally infeasible or unstable solutions to be included in the
solution set.
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4.5.5 Automatic Voltage Regulator: Stabilizer

By using similar transformation technique, we will have the following equations to describe
our stabilizer (PSS):

X
′i
w(t) = V i

w(t) (Wash out) (4.27)

X i
w(t) = Ki

sω
i(t)−T i

wV i
w(t) (Wash out) (4.28)

X
′i
ll1(t) = V i

w(t)−V i
ll1(t) (Lead-Lag 1) (4.29)

X i
ll1(t) = T i

3V i
ll1(t)−T i

1V i
w(t) (Lead-Lag 1) (4.30)

X
′i
ll2(t) = V i

ll1(t)−V i
ll2(t) (Lead-Lag 2) (4.31)

X i
ll2(t) = T i

4V i
ll2(t)−T i

2V i
ll1(t) (Lead-Lag 2) (4.32)

for all i ∈ G, t ∈ [1..T ], with the following trapezoidal rule:

X i
w(t + 1)−X i

w(t)−
∆
2
[X
′i
w(t + 1)+X

′i
w(t)] = 0 (4.33)

X i
ll1(t + 1)−X i

ll1(t)−
∆
2
[X
′i
ll1(t + 1)+X

′i
ll1(t)] = 0 (4.34)

X i
ll2(t + 1)−X i

ll2(t)−
∆
2
[X
′i
ll2(t + 1)+X

′i
ll2(t)] = 0 (4.35)

for all i ∈ G, t ∈ [1..T −1], with similar initial conditions:

X
′i
w(t|t=1) = 0,X

′i
ll1(t|t=1) = 0,X

′i
ll2(t|t=1) = 0 (4.36)

for all i ∈ G. We now remain to show how to handle the limiters in the stabilizers for our
optimization formulation. These limiters are windup limiters (also called saturation limiters)
for filtering and modifying signal Vs before inputing to the exciters. The limiters will change
and set the state Vs when the input state Vll2 goes lower/higher than the lower/upper bounds, as
follows:

Vs = Vs, if Vll2 ≥Vs

Vs = Vs, if Vll2 ≤Vs

Vs = Vll2, otherwise

To implement this limiter for optimization and avoid integer variables with similar reasonings
from previous sections, we choose to enforce the stricter bounds:

V i
ll2(t) = V i

s (t),V
i
s ≤V i

s (t) ≤V i
s , ∀i ∈ G,1≤ t ≤ T . (4.37)
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4.5.6 Power Network: AC Power Flow

It remains to link the AC power flow equations to the generator dynamics. The model states
the active and reactive flow balance equations

∑
m∈G(n)

pm
e (t)− ∑

m∈O(n)

pm
l − [V n(t)]2gn

s = ∑
m∈N(n)

pnm(t)

∑
m∈G(n)

qm
e (t)− ∑

m∈O(n)

qm
l +[V n(t)]2bn

s = ∑
m∈N(n)

qnm(t) (4.38)

for all bus n ∈ N, where pm
e (t) and qm

e (t) are the active and reactive power of generator m, pm
l

and qm
l are the active and reactive demands of load m, [V n(t)]2gn

s and [V n(t)]2bn
s describe the

active and reactive power drawn by the bus shunt (gn
s + ibn

s ) at bus n, and pnm(t) and qnm(t)
are the active and reactive power flow from n to m (i.e. bus injections). We use G(n),O(n),
and N(n) to denote the set of generators, loads, and neighboring buses of bus n. In this work,
we simplify our experiments and use constant active and reactive power loads to demonstrate
our techniques. Note that we can easily extend our model with: impedance, current, or even
dynamic loads (based on voltage/frequency) by adjusting and replacing the two terms: pm

l and
qm

l . We reuse the AC power flow equations introduced in Chapter 2.1.2 for describing the
power flow of a transmission line:

pnm(t) = znm(t){ gnm

T lnm [V
n(t)]2− V n(t)V m(t)

Trnm [gnm cos(Θnm(t))+ bnm sin(Θnm(t))]}

qnm(t) = znm(t){−bnm +(lnm
c )/2

T lnm [V n(t)]2−

V n(t)V m(t)
Trnm [gnm sin(Θnm(t))−bnm cos(Θnm(t))]}

s.t. Θnm(t) = θ
n(t)−θ

m(t)+φ
nm (4.39)

where gnm + ibnm is the line admittance, lnm
c is the line charge, and znm(t) is an on-off variable

to determine whether line (n,m) is opened or closed at the current time period t. We assume
znm(t) = zmn(t) for every time step t. During implementation, they will be implemented as
the same variable. Recall φ nm denotes the constant phase shift angle from bus n to bus m if
transmission line (n,m) has a phase shifting transformer/device, Trnm denotes the off-nominal
turns ratio of a transformer on line (n,m) with Trnm = Trmn, and T lnm is a modeling parameter
setting to [Trnm]2 if bus n connects to the from end of the transformer and bus m connects to
the to end of the transformer.
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Figure 4.3: Transient Stable Line Switching Algorithm

4.5.7 Power Network: Operational Limits

The active and reactive generation and line thermal/power limits for the initial steady state are
given by

pi
e ≤ pi

e(t|t=1) ≤pi
e ∀i ∈ G (4.40)

qi
e ≤ qi

e(t|t=1) ≤qi
e ∀i ∈ G (4.41)

[pnm(t|t=1)]
2 +[qnm(t|t=1)]

2 ≤[Snm]2 ∀(n,m) ∈ L (4.42)

where Snm denotes the maximum apparent power. We also enforce the following limits across
all time steps t:

V n ≤V n(t) ≤V n, ∀n ∈ N (4.43)

−θ ≤ δ
n(t)−θ

n(t) ≤θ , ∀n ∈ G (4.44)

−θ ≤ θ
n(t)−θ

m(t) ≤θ , ∀(n,m) ∈ L (4.45)

4.6 Transient Stable Line Switching

This section presents our optimization model for transient-stable transmission line switching.
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4.6.1 Line switching routine with transient stability

Figure 4.3 shows an automatic routine utilizing our proposed model to find the best trans-
mission line to switch without causing transient instability. The routine itself can be seen as
introducing a stability checker on top of the AC Optimal Transmission Switching Model (AC-
OTS). If the AC-OTS model returns the global optimal solution, the overall routine would still
be globally optimal. The main focus of our routine is to answer whether extra control actions
are necessary to ensure stability for the switching proposed by AC-OTS.

1. The routine executes AC Optimal Power Flow algorithm (AC-OPF) to determine the
current system state.

2. Based on the computed steady state, it finds the best line to switch (e.g., based on cost-
s/congestions), e.g., by using the AC Optimal Transmission Switching Model in Chap-
ter 2.1.4.2.

3. It checks whether the switched line reduces generation costs.

4. It then executes our model to search for a feasible optimal control solution to ensure
finite-time transient stability when switching the proposed line.

5. It checks if the solution is transient stable and operationally acceptable.

6. If no feasible solution is found, the line will be discarded.

4.6.2 Transient optimization model

We now present the optimization model for implementing Step 4. TSLS-C uses the 2nd order
classical swing equation model to model generator machines, while TSLS-T uses the 4th order
2-axis machine model to further consider excitation controls.

Transient Stable Line Switching with Classical Generator Model (TSLS-C)

min ∑
n∈G

∑
t∈[1,T ]

[t(an(t))]2 (O1)

s.t. Swing equations & stability: (4.1)− (4.7)
Generator power: (4.8)− (4.9)
AC network power flow: (4.38)− (4.39)
Operational limits: (4.40)− (4.45)
Active power flexible region: |pi

e(t|t=1)− pi
T | ≤ rpi

T
Reactive power flexible region: |qi

e(t|t=1)−qi
T | ≤ rqi

T
Re-dispatch cost constraint: c≤ (1+ γ)cT
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Transient Stable Line Switching with Two-Axis Generator Model (TSLS-T)

min ∑
n∈G

∑
t∈[1,T ]

[t(an(t))]2 (O1)

s.t. Swing equations & stability: (4.1)− (4.7)
Generator power: (4.10)− (4.11)
Stator EMF dynamics: (4.12)− (4.18)
Excitation dynamics: (4.19)− (4.26)
PSS dynamics: (4.27)− (4.37)
AC network power flow: (4.38)− (4.39)
Operational limits: (4.40)− (4.45)
Active power flexible region: |pi

e(t|t=1)− pi
T | ≤ rpi

T
Reactive power flexible region: |qi

e(t|t=1)−qi
T | ≤ rqi

T
Re-dispatch cost constraint: c≤ (1+ γ)cT

where pi
T and qi

T are the active and reactive power of generator i in step 1, c and cT are total
generation costs of the current optimization problem and the generation costs in step 1. r
and γ are adjustable parameters governing the maximum generator resources and maximum
increase in generation costs allowed to achieve transient stability. Since our model could only
guarantee stability within the computed horizon, solutions obtained from the model may not
guarantee to be (oscillation) stable at any future time steps. One way to consider the stability
continuity is to restrict our attention to solutions that provide enough damping and reduce the
magnitude/amplitude of transient swings over time. The objective function (O1) minimizes
the sum of time-weighted rotor angle accelerations, where the time-weights ensure that the
solutions have smaller swings (in terms of amplitude) as time increases.

4.7 Computational Case Study

This section evaluates the TSLS optimization models on the classical IEEE 10-machine 39-bus
systems [1, 2] with the network data from Matpower [99]. The dynamics data (i.e., generator
machine and AVR parameter) are obtained from a recent release (November 2013) of the IEEE
PES Task Force on benchmark systems for stability controls [4]. To increase the difficulty
of the test case, the computational results consider size congested scenarios from the NESTA
test systems [97] (case nesta_case39_epri__api) which scales the load by 50%, 70%,
80%, 85%, 88%, and 90% of the maximum peak load of the system. To ease comparisons
between different settings, the experiments assume that the proposed line switching occurs at
time 0.002s. The TSLS models then consider a 4 second horizon, with stability parameters:
Tk = 3s and δ = π

2 . The switching routine in Figure 4.3 is implemented in AMPL [100] and
uses BONMIN 1.8.4 [101] with default MA27 [102] linear solver for steps 1 and 2. The
TSLS optimization models in step 4 use IPOPT 3.12.6 [103] compiled with an advanced linear
solver HSL_MA77, designed for large scale systems by using an out-of-core multi-frontal
method [102]. By default, the solver converges to local sub-optimal solutions.

The computational studies evaluates TSLS-C model by using generator dispatches as con-
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trol variables. For TSLS-T, we further explore two versions of the model: TSLS-G and TSLS-
PSS. The TSLS-G model uses generator dispatches as its only control variables, while TSLS-
PSS further allows to use PSS controls (in the AVR circuit) apart from generator dispatch.
Since time constants T1 to T4 (in PSS) are adjustable [104], the major difference between the
TSLS-G and TSLS-PSS models is the fact that T1 to T4 are constants in TSLS-G and control
variables in TSLS-PSS. In the experiments, T1 and T2 take their values within [2,5], and T3 and
T4 within [0.02,0.08] unless specified otherwise.

Table 4.2: Results for the TSLS-C Model: Dispatch distance (MW/MVAR), Cost Difference
($), and Runtime (sec.).

Congestion Di = 10,r = 1%,γ = 0.2% Di = 10,r = 5%,γ = 0.2%
(%) Line Dispatch dist. Cost diff. Runtime Line Dispatch dist. Cost diff. Runtime

50 (4,14) 6.48/5.82 0.65 (0.02%) 96.97 (4,14) 32.10/29.00 3.23 (0.12%) 100.99
70 (15,16)2 14.05/7.57 4.72 (0.11%) 321.89 (16,17) 45.66/37.09 8.58 (0.20%) 124.42
80 (2,25)2 9.16/4.86 0.23 (0.00%) 198.49 (2,25)2 28.93/36.63 10.33 (0.20%) 177.98
85 No SW3 Converge Err. - - No SW3 Converge Err. - -
88 No SW4 Converge Err. - - No SW4 Converge Err. - -
90 No SW4 Converge Err. - - No SW4 Converge Err. - -

Congestion Di = 20,r = 1%,γ = 0.2% Di = 20,r = 5%,γ = 0.2%
(%) Line Dispatch dist. Cost diff. Runtime Line Dispatch dist. Cost diff. Runtime

50 (4,14) 6.48/5.82 0.65 (0.02%) 87.59 (4,14) 32.10/29.00 3.23 (0.12%) 99.37
70 (15,16)2 14.05/7.57 4.72 (0.11%) 274.34 (16,17) 45.47/37.49 8.58 (0.20%) 117.00
80 (2,25)2 9.16/4.86 0.23 (0.00%) 253.83 (2,25)2 25.55/36.29 10.33 (0.20%) 134.24
85 No SW3 Converge Err. - - No SW3 Converge Err. - -
88 No SW4 Converge Err. - - No SW4 Converge Err. - -
90 No SW4 Converge Err. - - No SW4 Converge Err. - -

Table 4.3: Results for the TSLS-G Model: Dispatch distance (MW/MVAR), Cost Difference
($), and Runtime (sec.).

Congestion r = 1%,γ = 0.2% r = 5%,γ = 0.2%
(%) Line Dispatch dist. Cost diff. Runtime Line Dispatch dist. Cost diff. Runtime

50 (4,14) 6.48/4.64 0.67 (0.02%) 81.10 (4, 14) 32.24/23.10 3.37 (0.12%) 68.66
70 (16,17) 13.98/7.59 1.84 (0.04%) 198.73 (16,17) 52.52/28.89 8.58 (0.20%) 199.33
80 (16,17) 21.03/6.04 7.93 (0.15%) 96.83 (16,17) 39.24/32.07 10.33 (0.20%) 91.14
85 (2,25) 7.96/5.58 0.70 (0.01%) 79.07 (2,25) 39.94/27.79 3.58 (0.06%) 74.62
88 (16,17)2 10.96/5.69 3.76 (0.06%) 294.01 (16,17)2 34.33/28.07 11.93 (0.20%) 249.78
90 No SW4 Converge Err. - - No SW4 Converge Err. - -

Evaluation of the TSLS-C Model We first evaluate the TSLS-C model, which uses the
simplified classical model for generator. We approximate the transient reactance X

′i for the
classical generator by taking the average of the d-axis and q-axis transient reactance, i.e. set to
(X

′i
d +X

′i
q )/2. Since the classical model assume constant excitation (i.e. E i

f d is constant) and
does not involve explicit modeling on damping, we test our routine with two damping parame-
ters: Di = 10 and Di = 20, and report our results for r = 1%,γ = 0.2% and r = 5%,γ = 0.2%
respectively. Table 4.2 presents the computational results for the TSLS-C model, including
the proposed line for switching, the total CPU runtime, and two metrics to measure how much
generation resource the model is using to achieve transient stability. The first metric is the
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generation differences (in L2 norm, MW/MVAR) with respect to the original steady state:

Active power (MW):
√

∑
n∈G

(pi
e(t|t=1)− pi

T )
2

Reactive power (MVAR):
√

∑
n∈G

(qi
e(t|t=1)−qi

T )
2

The second metric is the increased cost (in dollars and percentage) due to the change in dis-
patch.

When the first line proposed for switching (by Step 2 in Figure 4.3) is not transient sta-
ble (i.e. no feasible solution is found), the table indicates the number of lines further being
checked, in superscripts after the line results. If none of the lines being proposed are transient
stable (i.e. all lines give infeasible solutions), we report ‘No SW’ and indicate the number of
lines being checked in superscripts. If the first line being proposed gives transient stable result
(i.e. the first line result in a locally optimal solution), we report the line and skip the number
indicating the number of lines being checked.

For 50% congestion settings, the TSLS-C model verifies that the system with small changes
to the generator dispatch (with costs ≤ 0.2%) ensures that the system is not unstable over the
finite horizon considered after the line switching. When the congestion reaches 70%, the
TSLS-C model with r = 1% could not find any stable generation dispatch for the 1st pro-
posed transmission line (16,17). Therefore, the switching routine recommended the second
best transmission line (15,16) to perform switching. With r = 5%, the routine successfully
find a stable dispatch for line (16,17) to maintain stability. When congestion level increases to
85%, the TSLS-C models could not find any transient-stable dispatches. Since TSLS-C does
not consider excitation control circuits (e.g. AVR), the model could fail to find stable solution
when congestion level increases and excitation controls become necessary.

Evaluation of the TSLS-G Model Table 4.3 presents the computational results for the
TSLS-G model, again with r = 1%,γ = 0.2% and r = 5%,γ = 0.2%. With excitation control
circuits implemented in TSLS-G, the model manages to find transient stable solutions up to
85% congestion, indicating excitation control could become necessary for congested network.
When the congestion reaches 88%, the TSLS-G model could not find any stable generation dis-
patch within the 1%/5% generation limit, and therefore, the switching routine recommended
the second best transmission line (16,17) to perform switching. When congestion level in-
creases to 90%, the TSLS-G model could not find any transient-stable dispatches.

Solutions of the TSLS-G model are only stable in the fixed finite-time horizon (i.e. short
term transient stable) and may become unstable in later time periods (e.g. oscillation unstable).
To verify the long-term stability of the TSLS-G solutions, a transient simulation on Power-
World simulator (ver. 17) [7] (at 10−3 sec. step size) was run on the 85% and 88% congestion
case. We initialize the dispatch of the optimization model on opening line (2,25) and (16,17)
respectively for these two cases. Figure 4.4 and 4.5 present the results. Figure 4.4 indicates
an increasing magnitude in rotor angle oscillations, due to undamped excitation controls. For
Figure 4.5, we observe the system eventually becomes unstable at about 11 seconds. Clearly,
using only generator dispatch as control variables are insufficient to ensure long-term stability.
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Figure 4.4: TSLS-G Model: Rotor angles (deg), and terminal voltage (p.u.), and excitation
field voltage (p.u.) for 85% congestion level (r = 1%,γ = 0.2%) on opening line (2,25). Each

line represents a generator.
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Figure 4.5: TSLS-G Model: Rotor angles (deg), and terminal voltage (p.u.), and excitation
field voltage (p.u.) for 88% congestion level (r = 1%,γ = 0.2%) on opening line (16,17).

Each line represents a generator.
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This leads us to focus on the TSLS-PSS model.

Table 4.4: Results for the TSLS-PSS Model: Dispatch distance (MW/MVAR), Cost Difference
($), and Runtime (sec.).

Congestion No dispatch change: r = 0%,γ = 0.2% r = 1%,γ = 0.2%
(%) Line Dispatch dist. Cost diff. Runtime Line Dispatch dist. Cost diff. Runtime

50 (4,14) 0.00/0.00 0.00 (0.00%) 1206.84 (4,14) 6.67/6.65 0.82 (0.03%) 493.14
70 (16,17) 0.00/0.00 0.00 (0.00%) 496.97 (16,17) 14.15/7.53 1.89 (0.04%) 1206.73
80 (16,17) 0.00/0.00 0.01(0.00%) 511.07 (16,17) 20.21/7.89 7.52 (0.15%) 185.18
85 (2,25) 0.00/0.00 0.00 (0.00%) 239.08 (2,25) 7.95/5.56 0.70 (0.01%) 102.82
88 (2,25) 0.00/0.00 0.00 (0.00%) 417.57 (2,25) 2.64/7.59 0.77 (0.01%) 289.64
90 No SW4 Converge Err. - - No SW4 Converge Err. - -

Congestion No dispatch change: r = 5%,γ = 0.2%
(%) Line Dispatch dist. Cost diff. Runtime

50 (4,14) 33.23/29.12 4.34 (0.16%) 195.98
70 (16,17) 52.51/28.89 8.58 (0.20%) 689.44
80 (16,17) 39.17/33.57 10.33 (0.20%) 195.87
85 (2,25) 37.70/27.76 3.48 (0.06%) 186.46
88 (2,25) 12.01/39.60 3.64 (0.06%) 191.51
90 No SW4 Converge Err. - -

Evaluation of the TSLS-PSS Model Table 4.4 presents the results of the TSLS-PSS
model, with r = 0% (i.e. no dispatch change), r = 1%, and r = 5%, and with γ = 0.2%.
During implementation, a direct implementation of r = 0, e.g. by adding equality constraints
to enforce pi

e(t|t=1) = pi
T , may lead of convergence issues in IPOPT. To avoid numerical

convergence issues, we alternatively implement:

|pi
e(t|t=1)− pi

T | ≤ ε|pi
T |

|qi
e(t|t=1)−qi

T | ≤ ε|qi
T |

where ε is a small enough tolerance. In our model, we set ε to 10−5.
Once again, the change in generator dispatch is minimal and the optimization model en-

sures the network is stable over the finite horizon for the recommended line switching and
all congestion levels, except 90%. The simulation results, initialized with the AVR damping
control, are shown in Figures 4.6 for congestion levels at 85% and 88% at r = 0%, i.e. with-
out any generation dispatch changes. The figure shows an improved damping of rotor angles
and stable voltage magnitudes, demonstrating the benefits of the model. Controlling the ex-
citer/stabilizer settings is thus critical in using transmission line switching in highly congested
situations, in particular in maintaining small-signal stability, and is a promising avenue for
managing congestion.

Time horizon: 4 seconds vs 12 seconds One challenging parameter to tune in the TSLS
models is the required time horizon T for optimization. A longer time T would allow the
model to reason on the swing dynamics longer, resulting in: a) better optimization quality in
damping for oscillation stability, and b) could guarantee transient stability for a longer time
period. On the other hand, a longer time horizon eventually also increases the model size
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Figure 4.6: TSLS-PSS Model: Rotor angles (deg), terminal voltage (p.u.), and excitation field
voltage (p.u.) with no dispatch change (i.e. r = 0%) for opening line (2,25). Left: congestion

level 85%, right: congestion level 88%. Each line represents a generator.

and computational runtime. Table 4.5 presents the results of the TSLS-PSS model with again
r = 0%,1%, and 5%, but now optimized on a time horizon T of 12 seconds. For all of the
cases, the model runs drastically slower than the model with a 4 seconds of horizon. For 50%
and 70% congestion cases with tight dispatch limit (r = 0% or r = 1%), the model even fails
to converge to a stable solution within a time limit of 1 hour for the first/second proposed
transmission line. For r = 0%, the routine barely manages to find a transient stable solution
for the third proposed line.

Figure 4.7 shows the simulated results for congestion levels at 88% with r = 1% on the
TSLS-PSS model (with excitation controls). Plots on the left are optimized with a horizon of
T = 4 seconds, while plots on the right are optimized with T = 12 seconds. Both cases are
simulated in PowerWorld for up to 12 seconds of simulation time. For T = 4 seconds, we
notice two unexpected phenomenon.

First, high-frequency oscillations appear in the excitation control voltage plot. Since Pow-
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Table 4.5: Results for the TSLS-PSS Model with T = 12 seconds: Dispatch distance (MW/M-
VAR), Cost Difference ($), and Runtime (sec.).

Congestion No dispatch change: r = 0%,γ = 0.2% r = 1%,γ = 0.2%
(%) Line Dispatch dist. Cost diff. Runtime Line Dispatch dist. Cost diff. Runtime

50 (16,17)3 0.00/0.00 0.00 (0.00%) 16893.53 No SW3 Time Limit - -
70 (7,8)3 0.00/0.00 0.00 (0.00%) 19497.61 No SW3 Time Limit - -
80 (16,17) 0.00/0.00 0.00 (0.00%) 2923.28 (16,17) 18.15/7.97 6.72 (0.13%) 2457.50
85 (2,25) 0.00/0.00 0.00 (0.00%) 777.26 (2,25) 7.95/5.56 0.70 (0.01%) 734.02
88 (2,25) 0.00/0.00 0.00 (0.00%) 2493.72 (2,25) 2.06/6.73 0.81 (0.01%) 2605.59
90 No SW4 Time Limit - - No SW4 Time Limit - -

Congestion No dispatch change: r = 5%,γ = 0.2%
(%) Line Dispatch dist. Cost diff. Runtime

50 (4,14) 33.11/28.52 3.97 (0.14%) 1105.76
70 (16,17) 52.51/28.89 8.58 (0.20%) 4545.76
80 (16,17) 39.15/30.39 10.33 (0.20%) 3374.95
85 (2,25) 39.31/27.75 3.56 (0.06%) 815.53
88 (2,25) 10.15/29.42 3.82 (0.06%) 3125.51
90 No SW4 Time Limit - -

erWorld is known to have potential numerical issues (often exhibits as high frequency oscilla-
tions) when time constant parameters are too small or gain parameters are too large [105, 106],
we further decrease the integration step size of the simulation routine from 10−3s to 10−4s and
re-run the simulation. We observe the fast-oscillations in the excitation voltage control signals
disappear (Figure 4.8), suggesting numerical stability issues from the simulator PowerWorld.
Note that these difficulties were also encountered in our case studies when the lead-lag ratios
T1/T3 or T2/T4 were large.

Second, one excitation control signal appears to have increasing oscillations in amplitude
(see right plot of Figure 4.8), suggesting potential oscillation stability issues in the correspond-
ing generator. Note that this issue does not happen at r = 0%. Since the optimization routine
only optimizes for 4 seconds, one possible reason is that the rotor angles with r = 1% are in
fact damping better in terms of rotor angle than r = 0%, when considered with only 4 seconds
horizon, by co-optimizing the generator dispatch and PSS together. However, as the generator
is a heavier generator (with larger inertia value) comparing to the other generators, optimizing
with 4 seconds could only barely reason the rotor/excitation control swings with less than 2
cycles/periods. Optimizing at a longer horizon (e.g. 12 seconds) allows more swing cycles to
be considered, and remove the issue.

Optimization Versus Simulation It is interesting to compare the results of the TSLS-PSS
model with a PowerWorld [7] simulation on the same case studies, as the TSLS-PSS uses a
conservative approximation of the limiters and employs a trapezoidal discretization with fixed
steps. We validate the TSLS-PSS model on coarser and fine discretization steps ranging from
0.160s to 0.040s with a 4 seconds of horizon. Transient simulations in PowerWorld are run with
the second order Runge-Kutta integration method (RK) with 10−3 second step size. To avoid
the risks of validating against erroneous simulation results on PowerWorld (e.g. numerical
errors with high frequency oscillating swings), we added a constraint in the model to restrict
the max ratio to 60 for this validation study. Table 4.6 updates Table 4.4 with the additional
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Figure 4.7: TSLS-PSS Model: Rotor angles (deg), terminal voltage (p.u.), and excitation field
voltage (p.u.) with 1% dispatch change (i.e. r = 1%) on 88% congestion case for opening line
(2,25). Left: 4 seconds horizon, right: 12 seconds horizon. Each line represents a generator.

restriction and the results are similar in nature when comparing to the earlier studies.

We are now in a position to compare the TSLS-PSS model and the simulation results
seeded with the generator dispatch and AVR values found by the optimization model. The
results are given in Table 4.7 which, for each time step, reports the number of variables in
the optimization, the CPU runtime (sec.), the cost difference (in %), and a metric to measure
the accuracy of the optimization results with respect to the simulation outcomes. Since the
rotor angles solutions obtained by optimization are on a coarser time-grid when comparing to
simulation, we use linear interpolation method to transform the rotor angle time series (of all
generators) to the same time scale used by PowerWorld simulation for comparison purposes.
The accuracy metric is then expressed in terms of δ n

s (t) and δ n
o (t), which denote the rotor

angle obtained by the simulation and the interpolated rotor angle obtained by optimization for
generator n at the simulated time t ∈ T s respectively. It computes the average errors (L2 norm)
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Figure 4.8: TSLS-PSS Model: terminal voltage (p.u.) and excitation field voltage (p.u.) with
1% dispatch change for opening line (2,25) at congestion level 88%. Increased simulation time

step to 10−4. Each line represents a generator.

Table 4.6: Results for the Range-Restricted TSLS-PSS Model: Dispatch distance (MW/M-
VAR), Cost Difference ($), and Runtime (sec.).

Congestion No dispatch change: r = 0%,γ = 0.2% r = 1%,γ = 0.2%
(%) Line Dispatch dist. Cost diff. Runtime Line Dispatch dist. Cost diff. Runtime

50 (4,14) 0.00/0.00 0.00 (0.00%) 712.41 (4,14) 6.52/7.03 0.78 (0.03%) 205.96
70 (16,17) 0.00/0.00 0.00 (0.00%) 169.03 (16,17) 14.15/7.53 1.89 (0.04%) 553.96
80 (16,17) 0.00/0.00 0.01 (0.00%) 350.82 (16,17) 20.21/7.89 7.52 (0.15%) 115.63
85 (2,25) 0.00/0.00 0.00 (0.00%) 117.08 (2,25) 7.95/5.56 0.70 (0.01%) 142.74
88 (2,25) 0.00/0.00 0.00 (0.00%) 616.84 (2,25) 2.77/8.39 0.63 (0.01%) 151.33
90 No SW4 Converge Err. - - No SW4 Time Limit - -

Congestion No dispatch change: r = 5%,γ = 0.2%
(%) Line Dispatch dist. Cost diff. Runtime

50 (4,14) 32.57/26.68 3.63 (0.13%) 127.08
70 (16,17) 52.51/28.89 8.58 (0.20%) 347.14
80 (16,17) 39.17/33.57 10.33 (0.20%) 123.67
85 (2,25) 34.97/27.80 3.36 (0.06%) 161.65
88 (2,25) 11.81/39.90 3.52 (0.06%) 189.75
90 No SW4 Time Limit - -

on the rotor angles (deg) by the following equation:

1
|G||T s| ∑n∈G

√
∑

t∈T s
[δ n

s (t)−δ n
o (t)]2

This accuracy metric represents the average errors of rotor angles in degrees, per generator ma-
chine and time point. Figure 4.9 further shows the error plots reporting the difference between
optimization and simulation on rotor angles (deg.), generator terminal voltage (p.u.), and exci-
tation control field voltage (p.u.) for the 88% cases, ranging from coarse discretization to fine
discretization.

Table 4.7 and Figure 4.9 show the TSLS-PSS model has high accuracy with respect to sim-
ulation, with an average error in the scale of 10−3 deg. The finer discretization step we used for
trapezoidal discretization, the smaller error we obtained at the cost of increasing computational
runtime. The error functions further show finer discretization decreases the worst-case error to
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Table 4.7: Runtime (sec.), Generation cost difference (%), and average errors (deg)
Dispatch Distance: r = 5%, Cost distance: γ = 0.2%

Time step Model 70% 80% 85% 88%
(sec.) var. num. Error Cost diff. Runtime Error Cost diff. Runtime Error Cost diff. Runtime Error Cost diff. Runtime

0.160 14,470 0.005 0.2% 195.30 0.006 0.2% 70.61 0.003 0.06% 46.00 0.008 0.06% 56.18
0.125 18,243 0.003 0.2% 216.82 0.003 0.2% 94.90 0.002 0.06% 114.46 0.004 0.06% 90.82
0.080 27,945 0.001 0.2% 347.14 0.001 0.2% 123.67 0.001 0.06% 161.65 0.001 0.06% 189.75
0.040 54,895 0.001 0.2% 1248.46 0.001 0.2% 1047.25 0.001 0.06% 508.72 0.002 0.06% 587.56

Dispatch Distance: r = 1%, Cost distance: γ = 0.2%

Time step Model 70% 80% 85% 88%
(sec.) var. num. Error Cost diff. Runtime Error Cost diff. Runtime Error Cost diff. Runtime Error Cost diff. Runtime

0.160 14,470 0.005 0.04% 167.52 0.006 0.15% 43.23 0.003 0.01% 61.71 0.009 0.01% 42.06
0.125 18,243 0.003 0.04% 217.29 0.003 0.15% 66.08 0.002 0.01% 72.75 0.005 0.01% 60.74
0.080 27,945 0.001 0.04% 553.96 0.001 0.15% 115.63 0.001 0.01% 142.74 0.002 0.01% 151.33
0.040 54,895 0.001 0.04% 1668.45 0.001 0.15% 1079.93 0.001 0.01% 275.79 0.003 0.01% 432.34

Dispatch Distance: r = 0%, Cost distance: γ = 0.2%

Time step Model 70% 80% 85% 88%
(sec.) var. num. Error Cost diff. Runtime Error Cost diff. Runtime Error Cost diff. Runtime Error Cost diff. Runtime

0.160 14,470 0.005 0.00% 108.83 0.006 0.00% 55.80 0.003 0.00% 64.27 0.009 0.00% 106.95
0.125 18,243 0.003 0.00% 810.23 0.003 0.00% 126.79 0.002 0.00% 59.04 0.005 0.00% 389.87
0.080 27,945 0.001 0.00% 169.03 0.001 0.00% 350.82 0.001 0.00% 117.08 0.002 0.00% 616.84
0.040 54,895 0.001 0.00% 1113.11 0.001 0.00% 1540.50 0.001 0.00% 203.10 0.003 0.00% 4979.84

2 deg in a 4 seconds horizon.
One notable phenomenon for finite difference discretization is that the error accumulates

when time horizon increases, with more error accumulated at later time steps. This phe-
nomenon could be observed from the rotor angle plots in Figure 4.9, with larger errors at
the end of the time horizon. One question at hand is how large the error would accumulate
when the time horizon increases for optimization. We present the simulation result on the sim-
ulation study with a 12 seconds horizon in Table 4.8, for 80%, 85%, and 88% congestion cases
with r = 0%,1%, and 5% and a fixed discretization step size of 0.080 seconds. Figure 4.10
further shows the error plots for the three congestion cases with r = 0%. The results show we
still manage to control the average errors in the scale of 10−3 deg, with the worst-case errors
in less than 2 deg in a 12 seconds horizon.

Table 4.8: Runtime (sec.), Generation cost difference (%), and average errors (deg) for 12
seconds horizon optimization at 0.080 seconds time step discretization

Dispatch Distance: r = 0%,1%,5%, Cost distance: γ = 0.2%

Dispatch dist. Model 80% 85% 88%
% var. num. Error Cost diff. Runtime Error Cost diff. Runtime Error Cost diff. Runtime

5% 81,848 0.001 0.20% 3374.95 0.000 0.06% 815.53 0.001 0.06% 3125.51
1% 81,848 0.001 0.13% 2457.50 0.000 0.01% 734.02 0.001 0.01% 2605.59
0% 81,848 0.001 0.00% 2923.28 0.000 0.00% 777.26 0.001 0.00% 2493.72

Extension to other benchmark systems This section further demonstrates how we read-
ily apply our techniques on transient-stable line switching to other larger benchmark systems.
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Figure 4.9: Error functions on rotor angles (deg), terminal voltage (p.u.), and excitation con-
trols (p.u.) for 88% congestion, with r = 0% and γ = 0.2%. Discretization steps size (top to

bottom): 0.160s, 0.125s, 0.080s, and 0.040s. Each line represents a generator.

We use the Simplified 14-Generator Model of the South East Australian Power System [98]
from the IEEE PES Task Force on Benchmark Systems for Stability Controls as an example.

The benchmark is a 50Hz system consists of: 14 aggregated generators, 59 buses, 5 Static
VAR Compensators (SVC), and 9 switched shunt capacitor/reactor banks. The benchmark also
contains detailed dynamic models and data for transient stability studies. One main character-
istics of the network is that it consists of many parallel identical transmission lines and parallel
identical transformers. Since this work primarily focus on transmission line switchings only,
we decide to keep all parallel lines as separate lines (without reduction/aggregation). On the
other hand, we aggregate all parallel transformers in the network for simplicity, by reducing to
equivalent transformers according to the benchmark data. We use the peak load and generation
data from the benchmark report, i.e. case 3 in the report, to evaluate our model/algorithms
in congested scenarios. Similar to the IEEE 39-bus system, we vary the loads by 70%, 90%,
100%, 110%, and 115% from the peak load data. We model the SVC as flexible reactive power
sources, with reactive power bounded by the maximum and minimum values indicated in the
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Figure 4.10: Error functions on rotor angles (deg), terminal voltage (p.u.), and excitation con-
trols (p.u.) for (top to bottom) 80%, 85%, and 88% congestion, with r = 0% and γ = 0.2%,
discretization steps size of 0.080s, and a time horizon of 12 seconds. Each line represents a

generator.

data report. In other words, SVC are also adjustable resources in our model for maintaining
stability. For switched shunt capacitor/reactor banks settings and transformer tap/turn ratios
settings, we again use the data in the report corresponding to the peak load situation, i.e. case
3 in the report. Note that these two parameters are not flexible resources in our experimental
settings, but should be straightforward to generalize them to be flexible. To implement SVC
and switched shunt capacitor/reactor banks, there are two approaches. One approach is to treat
these devices as generators with only reactive power capabilities, and set the active power pe to
zero and ignore the generator model (i.e. Two-axis model/swing model) on these generators.
Another approach we implemented is to directly extended our model to handle these devices.
We first extend (4.38) to:

∑
m∈G(n)

pm
e (t)− ∑

m∈O(n)

pm
l − [V n(t)]2gn

s = ∑
m∈N(n)

pnm(t)

∑
m∈G(n)

qm
e (t)− ∑

m∈O(n)

qm
l +[V n(t)]2bn

s + ∑
m∈S(n)

qm
s + ∑

m∈C(n)

qm
c = ∑

m∈N(n)

qnm(t)

where S(n) and C(n) denote the set of SVC devices and switched shunt capacitor/reactor
banks, and qm

s and qm
c denote the reactive power generated/absorbed by the corresponding

SVC device and capacitor/reactor bank. Since SVC devices are flexible, we need to add proper
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maximum/minimum bounds:

qm
s ≤ qm

s ≤ qm
s

and the flexible region constraints:

|qm
s −qm

sT | ≤ r|qm
sT |

where qm
sT denotes the reactive power set-points of SVC devices in the steady-state solution

(i.e. Step 1 of our transient stable routine in Figure 4.3), and r is the tolerance parameter we
had introduced and used in previous sections.

The benchmark report mainly uses the 6th order generator model (except two generator
machines with the 5th order model) for modeling transient dynamics, together with two differ-
ent excitation systems (ST1A and AC1A) and four different PSS stabilizing system circuits.
Since our generator model is a 4th order model and our excitation and PSS stabilizing system
are more simplified (lower order) than the benchmark data, we only use parts of the data, by
mainly ignoring higher-order parameters, in order to fit into our transient model for evaluation.
On cases where the lower-order parameters are missing, we approximate these parameters by
using higher-order data. Table 4.9, 4.10, and 4.11 report the parameters for our 4th order
two-axis synchronous generator model, the excitation system (SEXS_PTI), and the stabilizing
system (STAB1) respectively. Since the benchmark report does not provide generator costs
data/function parameters, we assume the generation costs of all generators follow the common
generator function c(),

c(n, pn
g) = cn

2[p
n
g]

2 + cn
1 pn

g + cn
0, n ∈ G

where pn
g denotes the active power generated by generator n and cn

2,cn
1, and cn

0 denotes the cost
coefficient for generator n. For simplicity, we assume cn

2 and cn
0 are both 0 and reduce c(n, pn

g)
to linear. Table 4.12 shows the cost parameters for our experimental study.

Table 4.9: Two-axis synchronous generator machine model parameters for the 14-Generator
Model benchmark (in system 100 MVA base)

Gen. Machine H X
′
d X

′
q Xd Xq T

′
do T

′
qo

101 143.986 0.006 0.010 0.028 0.016 8.50 1.50
201 128.006 0.007 0.017 0.045 0.044 8.50 0.30
202 77.784 0.011 0.018 0.079 0.076 4.50 1.50
204 128.006 0.007 0.017 0.045 0.044 8.50 0.30
203 57.782 0.013 0.018 0.103 0.076 5.00 2.00
301 149.341 0.006 0.016 0.051 0.028 7.50 0.85
302 62.216 0.014 0.045 0.113 0.101 7.50 1.50
402 29.997 0.030 0.055 0.190 0.180 6.50 1.40
404 79.992 0.016 0.038 0.110 0.070 9.00 1.40
403 46.218 0.017 0.023 0.129 0.096 5.00 2.00
401 46.218 0.017 0.023 0.129 0.096 5.00 2.00
501 23.331 0.045 0.120 0.330 0.255 7.50 1.50
502 40.000 0.030 0.080 0.200 0.150 7.50 3.00
503 75.015 0.025 0.035 0.230 0.200 5.00 1.00

Table 4.13 presents the results of the TSLS-PSS model on the 14-Generator benchmark,
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Table 4.10: Excitation parameters for the 14-Generator Model benchmark
Gen. Machine Ka Tf d TA TB E f d E f d

101 200 0.100 2.500 13.250 5.5 -5.5
201 400 0.020 0.500 1.120 5.5 -5.5
202 400 0.020 0.000 0.000 5.5 -5.5
204 400 0.020 0.500 1.120 5.5 -5.5
203 300 0.010 0.350 0.700 5.5 -5.5
301 400 0.050 1.140 6.420 5.5 -5.5
302 200 0.050 0.000 0.000 5.5 -5.5
402 300 0.050 1.520 9.800 5.5 -5.5
404 250 0.200 0.136 0.023 5.5 -5.5
403 300 0.010 0.350 0.700 5.5 -5.5
401 300 0.100 4.000 40.000 5.5 -5.5
501 1000 0.040 0.000 0.000 5.5 -5.5
502 400 0.500 1.400 16.000 5.5 -5.5
503 300 0.010 0.200 0.800 5.5 -5.5

Table 4.11: Power Systems Stabilizer (PSS) parameters for the 14-Generator Model bench-
mark

Gen. Machine Ks Tw T1 T3 T2 T4 Vs Vs

101 2.884 7.5 0.373 0.007 0.038 0.007 1 -1
201 1.042 7.5 0.128 0.007 0.006 0.007 1 -1
202 1.258 7.5 0.286 0.007 0.111 0.007 1 -1
204 1.249 7.5 0.010 0.007 0.000 0.000 1 -1
203 1.930 7.5 0.071 0.007 0.029 0.007 1 -1
301 1.758 7.5 0.168 0.007 0.012 0.007 1 -1
302 2.515 7.5 0.050 0.007 0.000 0.000 1 -1
402 3.525 7.5 0.278 0.007 0.100 0.007 1 -1
404 2.273 7.5 0.115 0.007 0.006 0.007 1 -1
403 2.667 7.5 0.091 0.007 0.002 0.007 1 -1
401 3.012 7.5 0.208 0.007 0.208 0.007 1 -1
501 4.388 7.5 0.033 0.007 0.000 0.000 1 -1
502 4.410 7.5 0.500 0.007 0.059 0.007 1 -1
503 2.669 7.5 0.200 0.350 0.187 0.067 1 -1

with r = 0% (i.e. no dispatch change, subject to ε tolerance), r = 1%, r = 5%, and r =
10%, and with γ = 0.2%. Once again, the change in generator dispatch is minimal and the
optimization model ensures the network is transient stable over the 4 seconds finite horizon
for switching the 1st recommended line at all congestion levels with a slightly longer runtime,
except 70% cases. Since the excitation and PSS parameters are specifically tuned (by the
benchmark report) for peak loads, switching a line may not be transient stable when loads are
deviated from the target settings. With a slightly larger dispatch tolerance, TSLS-PSS manages
to find transient stable solutions. Figure 4.11 further shows the optimization results for the
TSLS-G model (top row) and the TSLS-PSS mode (bottom row), on the 115% congestion
cases, with r = 10% and γ = 0.2%. Similar to the IEEE 39-bus test system, TSLS-G model
again fails to maintain oscillation stability (as seen from the excitation control plot), while
TSLS-PSS further maintain oscillation stability by adjusting PSS controls.
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Figure 4.11: Optimization solutions on rotor angles (deg), terminal voltage (p.u.), and excita-
tion controls (p.u.) for the 115% congestion case, with r = 10% and γ = 0.2%, discretization
steps size of 0.080s, and a time horizon of 4 seconds. Top: TSLS-G model, Bottom: TSLS-PSS

model. Each line represents a generator.

Table 4.12: Generation cost parameters for the 14-Generator Model benchmark
Gen. Machine c0 c1 c2

101 0 0.294 0
201 0 0.942 0
202 0 0.947 0
204 0 0.551 0
203 0 0.635 0
301 0 1.165 0
302 0 0.294 0
402 0 0.735 0
404 0 0.867 0
403 0 1.572 0
401 0 0.942 0
501 0 0.735 0
502 0 0.867 0
503 0 0.735 0

Table 4.13: Results for TSLS-PSS Model on the 14-Generator Model: Dispatch distance
(MW/MVAR), Cost Difference ($), and Runtime (sec.).

Congestion No dispatch change: r = 0%,γ = 0.2% r = 1%,γ = 0.2%
(%) Line Dispatch dist. Cost diff. Runtime Line Dispatch dist. Cost diff. Runtime

70 (307,308)2 0.02/0.00 0.02 (0.00%) 5197.02 (307,308)2 27.03/8.76 21.62 (0.19%) 3885.45
90 (408,410) 0.03/0.00 0.01 (0.00%) 176.26 (408,410) 36.59/8.48 10.75 (0.07%) 448.11
100 (411,412) 0.05/0.01 0.02 (0.00%) 1041.86 (411,412) 44.98/10.09 12.29 (0.06%) 273.96
110 (405,408) 0.03/0.02 0.01 (0.00%) 192.84 (405,408) 30.27/15.91 9.46 (0.04%) 331.32
115 (405,408) 0.03/0.02 0.01 (0.00%) 203.14 (405,408) 31.17/18.98 10.88 (0.05%) 2137.22

Congestion r = 5%,γ = 0.2% r = 10%,γ = 0.2%
(%) Line Dispatch dist. Cost diff. Runtime Line Dispatch dist. Cost diff. Runtime

70 (507,508) 95.63/47.58 11.80 (0.10%) 784.51 (507,508) 179.62/88.69 22.02 (0.20%) 314.10
90 (408,410) 156.88/44.19 32.95 (0.20%) 373.97 (408,410) 218.52/101.25 32.95 (0.20%) 348.24
100 (411,412) 169.75/65.72 38.57 (0.17%) 394.00 (411,412) 174.32/133.19 38.57 (0.20%) 266.77
110 (405,408) 121.51/54.27 44.54 (0.20%) 419.80 (405,408) 87.49/64.74 44.54 (0.20%) 296.32
115 (405,408) 104.50/62.72 47.63 (0.20%) 528.44 (405,408) 103.38/97.65 47.63 (0.20%) 2643.55



Chapter 5

Dynamic Compressor Optimization in
Natural Gas Pipeline Systems

The growing dependence of electric power systems on gas-fired generators to balance fluc-
tuating and intermittent production by renewable energy sources has increased the variation
and volume of flows withdrawn from natural gas transmission pipelines. Adapting pipeline
operations to maintain efficiency and security under these dynamic conditions requires opti-
mization methods accounting for substantial intra-day transients. Efficient methods in practice
are required to respond to potential rapid change in generation dispatch.

Our third piece of work to maintain system stability will be on the natural gas pipeline sys-
tem, now being coupled and influenced drastically by the electric power systems. This chapter
presents a computationally efficient method for minimizing gas compression costs under dy-
namic conditions where deliveries to customers, including natural gas generators, are described
by time-dependent mass flows. The optimization method uses a simplified representation of
gas flow physics, provides a choice of discretization schemes in time and space, and exploits
a two-stage approach to minimize energy costs and ensure smooth and physically meaning-
ful solutions. The resulting large-scale nonlinear programs are solved using an interior-point
method. The optimization scheme is validated by comparing the solutions with an integration
of the dynamic equations using an adaptive time-stepping differential equation solver, as well
as a different, recently proposed optimal control scheme. The comparison shows that solutions
to the discretized problem are feasible for the continuous problem and also practical from an
operational standpoint. The results also indicate that our scheme produces at least an order of
magnitude reduction in computation time relative to the state-of-the-art and scales to large gas
transmission networks with more than 6000 kilometers of total pipeline.

5.1 Overview

In recent decades, the increasing penetration of renewable energy sources into electric power
grids and the growth in availability of natural gas have driven installation of gas-fired electric
power plants. These plants were installed to meet most of the demand for new generating
capacity and reserves [107, 108, 109]. Gas-fired generators often go online and shut down
several times a day, and are able to rapidly adjust their production. This capability allows them
to be attractive resources for balancing the fluctuation of renewable energy sources such as

79
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wind and solar [110, 111, 80].
Historically, withdrawals from natural gas transmission systems came from utilities and

industrial consumers. Their usages are predictable and exhibit low variation in demand [80].
These withdrawals are traded using day-ahead contracts for fixed deliveries and implicitly
assume that injections and withdrawals remain nearly constant [112]. As a result, optimiza-
tion approaches for natural gas transmission systems have traditionally restricted attention to
steady-state models [113, 114].

However, the growing use of gas-fired power plants for electricity generation [109, 115] has
prompted concerns in both industry sectors [111]. The integration of electric and gas systems
may result in gas-fired generator dispatch and commitment schedules that create substantial
intra-day fluctuations in high-volume gas flows. The physics underlying these fuctuations can-
not be adequately captured by steady-state models [29, 30], raising challenges highlighted in
recent studies [116]. To enable natural gas systems to inter-operate with electric power sys-
tems on the time-scale of generator dispatch, the Optimal Gas Flow problem (OGF) must take
into account transient flow conditions and new optimization models are required to capture
the gas dynamics in pipeline networks [117]. In particular, an automatic control methodology
for optimally managing transient intra-day flows in gas transmission systems necessitates sta-
ble, accurate, physics-based, and efficient optimization algorithms for computing model-based
compressor control protocols.

5.2 Prior and Related Work

Early studies [26, 27] focused on optimizing steady-state gas flows, for which the state equa-
tions are algebraic relations. Recent efforts have scaled and improved optimization techniques
for similar problems [84, 85, 82, 86, 87]. In short-term operations, the operating set-points for
gas compressor stations can be readily changed, and compressor optimization for steady-state
flows has been solved in the form of an Optimal Gas Flow problem (OGF) [82].

Recent studies [79, 11] focusing on transient flow dynamics use Euler equations for com-
pressible gas flow in one-dimension. These equations are significantly simplified as the sys-
tem under considerations do not experience waves or shocks in the corresponding appropriate
spatial and temporal scales. These partial differential equations (PDEs), even after simplifica-
tions, are still highly nonlinear and are challenging to simulate [118], in particular for networks
coupling hundreds of equations over different domains [119]. The vast majority of previous
studies on gas pipeline transients were focused on physical modeling and simulation of initial
value problems (IVPs) [120, 121, 122]. Thorley et al. [118] gave an excellent survey on the
early literature. These traditional approaches to solve the PDEs usually yield fine space-time
discretization schemes, which are not tractable when transformed to optimization problems.

The nonlinearity and complexity of gas pipeline network dynamics is an obstacle to the
tractable optimization of these flows under transient conditions. Several studies [123, 124, 125,
6] have proposed optimization schemes for gas networks on the time-scale of daily operations
and the issues of computation time and scalability have been noted repeatedly. These dynamic
optimization methods aim to provide time-dependent schedules for compressor discharge pres-
sures satisfying pipeline constraints and meeting time-varying loads. These computations are
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typically intensive and often too slow for real-time decision-making. This motivates the need
for new optimization tools.

Existing approaches for dynamic optimization in gas pipelines typically fall into one of two
categories: a simulation-based approach or a discretize-then-optimize approach. Simulation-
based methods in general optimize controllable parameters and rely on repeated executions of
high-fidelity simulations to ensure that operational constraints (e.g., pressure limits in a natu-
ral gas system) are satisfied [123, 126]. By solving initial value problem (IVP) based on fine
and detailed physical-engineering models to evaluate dynamic constraints, this method pro-
vides strong guarantees that all operational constraints are satisfied, hence the solution will
be feasible. These methods are usually augmented with adjoint-based gradient [127] meth-
ods, exploiting sparsity of matrices and allowing parallelization to speed up the computational
time. However, higher order derivatives and Jacobians of active constraints for accelerating
convergence and improving robustness are in general computationally costly.

Alternatively, the discretize-then-optimize approach allows rapid evaluations on the Jaco-
bians (constraint) for the entire optimization period [124]. This method starts with an optimal
control formulation including a cost objective and constraints on state variables. Differential-
algebraic approximations of the PDE dynamic constraints are then imposed within the opti-
mization problem, instead of being enforced by independent simulations. The entire problem
is discretized using approximations of the functions evaluated at time- / space- collocation
points, by local difference schemes [125] or spectral approximation schemes [6]. This results
in a nonlinear program (NLP), or a mixed-integer nonlinear program (MINLP) if binary/in-
teger variables exist, with algebraic objective and constraint functions. One drawback of this
method is that the resulting NLP/MINLP formulation can be huge and require efficient tech-
niques to solve, e.g. by taking advantage of the special structure of the problem or by recently
developed general optimization tools exploiting sparse constraint matrix [34].

Recent approaches in building a reduced order representation of PDE dynamics on graphs
[128] and their extensions to control system modeling [6, 34], have enabled tractable repre-
sentations of gas pipeline system dynamics. These models can be used to express constraints
in dynamic optimization problems and allow the constraints over the entire optimization time
interval to be represented by a coarse discretization scheme. Our work follows the discretize-
then-optimize approach. Even though our proposed framework will be discretized on a coarser
grid with lower accuracy when comparing to simulation-based approaches for computational
tractability, our results show the induced error remains local and the solutions are acceptable.

5.3 Our Main Contribution

Our work examine the Dynamic Optimal Gas Flow problem (DOGF), which generalizes the
OGF to capture the dynamics of a gas pipeline network subject to time-dependent intra-day
consumptions. The objective of the DOGF is to minimize the cost of gas compression subject
to system pressure constraints and time-dependent flow withdrawals. Our main contribution is
an efficient optimization scheme for the DOGF, that is validated with an accurate simulation
method for gas pipeline networks with dynamic flows and compressor operations. The DOGF
is formulated for optimizing intra-day flow schedules. We further simplify our work by not
considering valves as controllable variables, as major topological changes for re-routing flows
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by changing valve positions are typically made on a weekly or monthly basis. Generalizing
the problem to include valves will significantly increase the model complexity with potentially
a large number of binary variables, and beyond the scope of our work. By fixing the system
topology, we formulate the DOGF as a continuous-time and continuous-state optimal control
problem, which can be discretized as a nonlinear program.

The key aspects of our optimization scheme can be summarized as follows. The hydrody-
namic relations describing gas flows are discretized in time and space using first-order approx-
imations [6]. Several approximations of the nonlinear constraints are proposed: The spatial
discretization is performed by either the trapezoidal rule or a lumped element approximation,
while the temporal discretization employs either a trapezoidal rule or a pseudospectral approx-
imation. While trapezoidal, lumped element, and similar space-discretization schemes have
been used in simulation studies [118, 128], pseudospectral schemes are often used for time
discretization in computational optimal control [129]. For various combinations of discretiza-
tion schemes in time and space, we investigate the trade-offs between computational efficiency
of the optimization and feasibility of the physical model, and further verified by a fine-grained
simulation. While a significant theory exists on the convergence of computational optimal con-
trol methods based on pseudospectral approximation [130, 131], such schemes will result in
a dense matrix to solve due to its discretization nature. Simpler local discretization rules, on
the other hand, result in a sparse matrix allowing state-of-the-art NLP solvers to exploit sparse
matrix computations yielding a faster runtime and potentially more accurate solutions. We find
that for the DOGF problem, the combination of lumped elements in space and trapezoidal rule
in time yields the most advantageous discretization.

We acknowledge that, in general, time and space discretizations for PDEs cannot be chosen
independently. In this study, we focus on practical algorithmic aspects of dynamic optimiza-
tion of pipeline transients, rather than the theoretical justifications of particular discretization
schemes for parabolic PDE systems. We support the resulting optimization approach by em-
pirically comparing the solution of the dynamic constraints (pressures and flows) to solutions
using a validated high-fidelity simulation of the same constraints. This approach is inspired
by the simulation methodology for solving initial value problems [6, 128], where the uniform
lumped element space discretization yields a differential algebraic equation (DAE) system on
a fixed space grid. Starting from the initial conditions, the equations are integrated forward in
time using adaptive stepping, thus falling into the class of method of lines (MOL) approaches
[132]. We apply time-discretization to the dynamic constraints after they have been discretized
in space, and examine the quality of solutions empirically based on several case studies.

Moreover, to compensate for potential inaccuracies and model operational constraints on
compressors, our work proposes a two-stage optimization approach. In the first stage, the
scheme optimizes the compression cost (the original objective). In order to obtain a solution
that appropriately represents smooth fluid flow physics and operational considerations, the
second stage minimizes the second-order time derivative of the compressor boost ratios while
ensuring that the overall compression costs remain close to the value found in the first stage.

The resulting large-scale, nonlinear optimization problems (with up to 130,000 decision
variables) are solved using the IPOPT 3.12.2, ASL routine (version 2015) nonlinear optimiza-
tion system [103]. The solutions produced by our optimization scheme are compared to a
validated dynamic simulation method for gas pipeline networks with transient compression
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[133, 134], which is parametrized by the compressor ratios from our optimized solutions. The
validation process indicates our optimization scheme produces solutions with no pressure con-
straint violations and with physically meaningful mass flow and pressure trajectories, match-
ing close to the corresponding simulations. The compressor ratios from our four discretization
variants exhibit negligible differences and converge to the same solution. The main benefit of
our optimization scheme is its computational efficiency. It provides a highly accurate solu-
tion to a previously investigated 24-pipe gas network case study in less than 30 seconds, and
demonstrates scalability to three pipeline networks with 25, 40, and 135 nodes, 24, 45, and 170
pipes, and with total pipeline lengths of 477, 1118, and 6964 kilometers respectively.

The rest of the chapter is organized as follows. Section 5.4 contains a summary of phys-
ical modeling of gas pipeline networks, and formulates the DOGF. Section 5.5 describes the
discretization schemes that we examine. Section 5.6 motivates and presents our two-stage op-
timization approach to enforce smooth, physically accurate solutions. Section 5.7 describes
computational and validation results for three case studies on systems of increasing scale and
complexity. Section 5.8 presents an extended formulation to showcase how to model other
related/similar problems.

5.4 The Dynamic Optimal Gas Flow Problem (DOGF)

We now introduce the equations to formalize the DOGF. Terminologies and notations for the
natural gas transmission systems have been introduced in Chapter 2.2, and readers are advised
to refer to Table 2.3 for referencing purposes.

The DOGF uses directly the two main dimensionless equations introduced in Chapter 2.2
to reason on the natural gas dynamics:

∂ p̃i j

∂ t̃i j
+

∂ q̃i j

∂ x̃i j
= 0, (5.1)

2p̃i j
∂ p̃i j

∂ x̃i j
+ q̃i j|q̃i j|= 0, (5.2)

Since design limits and regulations for pipeline systems require pressure to remain within spec-
ified bounds, we have the following constraints on pressure to bound values within [ p̃

i j
, p̃i j]:

p̃
i j
≤ p̃i j(t̃i j, x̃i j) ≤ p̃i j. (5.3)

To model the action of compressors (introduced in Chapter 2.2), we have the following two
equations:

lim
x̃i j↘ci j

p̃i j(t̃i j, x̃i j) = Ri j(t̃i j) lim
x̃i j↗ci j

p̃i j(t̃i j, x̃i j), (5.4)

lim
x̃i j↘ci j

q̃i j(t̃i j, x̃i j) = lim
x̃i j↗ci j

q̃i j(t̃i j, x̃i j). (5.5)
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with the cost of compression Si j proportional to the required power, and is approximated by

Si j(t̃i j) = η
−1|q̃i j(t̃i j,ci j)|(max{Ri j(t̃i j),1}2K−1) (5.6)

In this study we do not consider pressure regulation (decompression), so the compressor ratio
for a given station must remain bounded within a feasible operating region

max{Ri j,1} ≤ Ri j ≤ Ri j. (5.7)

A compression ratio with a value greater than 1, i.e., Ri j(t̃i j)≥ 1, corresponds to a compressor
applying power in its defined working direction. A value of Ri j(t̃i j) = 1 denotes a compressor
which is bypassed by the flow, in either the working or the reverse direction.

In addition to the dynamic equations (5.1)-(5.2) and continuity conditions for compressors
(5.4)-(5.5) that characterize the system behavior on each pipe Pi j ∈P , we specify balance
conditions for each junction Ji ∈J . We first define variables for the unique nodal pressure
pi(t) at each junction, as well as mass injections fi(t) from outside the system (negative for
withdrawals/consumption). Each junction J j ∈J then has a flow balance condition

∑
Jk∈J :Pjk∈P

q̃ jk(t̃i j,0)− ∑
Ji∈J :Pi j∈P

q̃i j(t̃i j,Li j) = f j(t), (5.8)

as well as a pressure continuity condition

p̃i j(t̃i j,L) = p j(t) = p jk(t̃i j,0), (5.9)

∀Ji,Jk ∈J s.t. Pi j,Pjk ∈P

where t̃i j is the pipe-dependent dimensionless time transformed from the time t in nominal unit.
A subset of the junctions S ⊂J may be treated as “slack” nodes, which reasonably represent
large sources in a transmission system, such as significant storages or interconnections. For
these junctions, the mass inflow fi(t) is a free variable and the nodal pressure is defined at a
supply pressure boundary parameter si(t) (in dimensionless pressure unit). For the remaining
junctions, which reasonably represent consumers or small suppliers, the nodal pressure pi(t̃i j)
is free and the mass inflow is initialized with an injection/withdrawal boundary parameter di(t)
(in dimensionless flux unit). These boundary conditions are given by

pi(t) = si(t), fi(t) = di(t). (5.10)

The injections and withdrawals of the pipeline network are expressed in terms of mass flow in
our formulations. While the contracts and daily nominations of natural gas are given in units
of energy, e.g., kWh or mmBtu, the assumption of uniform system-wide composition allows us
to use the mass flow units. In practice, the mass flow nominated depends on the calorific value,
which is normally assumed to be known at the sources. Our focus is on large-scale transmission
pipelines receiving gas from processing plants, which supply gas with composition of less than
2% variability. Preliminary validation using real data of transmission pipeline modeling with
density and mass flow models has recently shown to be an acceptable approach in an industrial
setting [135].
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The optimization problem that we solve involves a gas pipeline network for which the con-
ditions at each junction are parameterized by an injection/withdrawal di(t) or supply pressure
si(t). The design goal is for the system to deliver all of the required flows di(t) while main-
taining feasible system pressure given the physics-based dynamic constraints, and minimizing
the cost of compression over a time interval [0,T ]. Let T̃i j = T λa4q3

N
Di jA3

i j p3
N

to be the dimensionless

time horizon of Pi j. This cost objective is given by

C = ∑
Pi j∈C

∫ T̃i j

0
Si j(t̃i j)dt̃i j (5.11)

In this study, we consider time-periodic boundary conditions on the system state and controls,
i.e.,

p̃i j(0, x̃i j) = p̃i j(T̃i j, x̃i j), q̃i j(0, x̃i j) = q̃i j(T̃i j, x̃i j), ∀Pi j ∈P (5.12)

Ri j(0) = Ri j(T̃i j), ∀Pi j ∈ C (5.13)

and therefore feasible parameter functions also must satisfy di(0) = di(T ) and si(0) = si(T ).
The complete formulation is

min C in (5.11)
s.t. pipe dynamics: (5.1), (5.2)

compressor continuity: (5.4), (5.5)
junction conditions: (5.8), (5.9)
density & compression constraints: (5.3), (5.7)
periodicity constraints: (5.12), (5.13)
boundary parameters: (5.10)
compressor power: (5.6)

(5.14)

This problem is a continuous problem. In the next section, we describe a spatial and temporal
discretization scheme, and conditions that facilitate efficient solution of this PDE-constrained
optimization problem using standard nonlinear programming tools.

5.5 Discretization to a Nonlinear Program

We now introduce several discretization schemes to tackle the continuous optimal control prob-
lem. With different discretization schemes, the sparsity of the constraints to enforce the non-
linear spatiotemporal dynamics will be different, and could affect the speed of NLP solvers ex-
ploiting sparse matrix algebra. In all of our schemes, we have the following common notions.
For each pipe Pi j, we have: 1) a set of M+1 time points t̃ i j

m , and 2) a set of Ni j +1 space points
x̃i j

n . Normalization and rescaling is performed after choosing the collocation points throughout
the network in order to maintain consistency of the time/space discretization. We use a uniform
grid for trapezoidal scheme for simplicity. For pseudospectral methods, the collocation points
are chosen according to the polynomial approximation scheme.
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5.5.1 Trapezoidal Quadrature Rule Approximation

For trapezoidal discretization, we discretize t̃ i j
m and x̃i j

n uniformly:

t̃ i j
m = m∆t

i j, m = 0,1, . . . ,M, (5.15)

x̃i j
n = n∆x

i j, m = 0,1, . . . ,Ni j, (5.16)

∆t
i j =

T̃i j

M
, ∆x

i j =
L̃i j

Ni j
. (5.17)

∆t
i j and ∆x

i j are (dimensionless) time and space discretization steps, and T̃i j is the dimensionless
time horizon for pipe Pi j obtained from T according to (2.3). We omit the subscripts {i j} on
Ni j when they are clear from the context. For each of the (M + 1)× (Ni j + 1) discrete points
in the time-space grid {(t̃ i j

m , x̃i j
n ) : 0≤ m≤M,0≤ n≤ Ni j} within the (dimensionless) domain

[0, T̃i j]× [0, L̃i j] for the flow dynamics on a pipe Pi j, we define

p̃mn
i j

∆
= p̃i j(t̃ i j

m , x̃i j
n ), q̃mn

i j
∆
= q̃i j(t̃ i j

m , x̃i j
n ) (5.18)

to be the pressure and mass flow variables at time t̃ i j
m and location x̃i j

n . In this discretization, we
define temporal and spatial derivative variables at time t̃ i j

m and location x̃i j
n by

p̃tmn
i j

∆
=

∂ p̃i j

∂ t̃i j
(t̃ i j

m , x̃i j
n ), p̃xmn

i j
∆
=

∂ p̃i j

∂ x̃i j
(t̃ i j

m , x̃i j
n ), (5.19)

q̃xmn
i j

∆
=

∂ q̃i j

∂ x̃i j
(t̃ i j

m , x̃i j
n ). (5.20)

A constraint that relates the discretized variables (5.18) to their derivatives (5.19)-(5.20) is
created by approximating the integral over a time or space step by the trapezoid rule. This
yields

∀Pi j ∈P−C ,0≤ m≤M−1,0≤ n≤ N : p̃m+1,n
i j − p̃mn

i j ≈
∆t

i j

2
( p̃tm+1,n

i j + p̃tmn
i j ) (5.21)

∀Pi j ∈P−C ,0≤ m≤M,0≤ n≤ N−1 :

p̃m,n+1
i j − p̃mn

i j ≈
∆x

i j

2
( p̃xm,n+1

i j + p̃xmn
i j ), q̃m,n+1

i j − q̃mn
i j ≈

∆x
i j

2
(q̃xm,n+1

i j + q̃xmn
i j )

(5.22)

5.5.2 Non-dimensional Dynamic Equation with Compressors

The non-dimensional dynamic equations (5.1)-(5.2) are then discretized in the above variables
by

∀Pi j ∈P−C ,0≤ m≤M,0≤ n≤ N : p̃tmn
i j + q̃xmn

i j = 0, 2 p̃mn
i j p̃xmn

i j + q̃mn
i j |q̃mn

i j |= 0
(5.23)

For each pipe with compressors Pi j ∈ C , we define the discrete compression variables Rm
i j for

m = 0,1, . . . ,M, and assume that the compressor is located at ci j = xk for some 0 ≤ k ≤ N,
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where the dependence of k on the pipe Pi j in question is clear from the context. The pipe is
then divided into two pipes Pi ju and Pi jl , with non-dimensional lengths Li ju and Li jl , and for
which we define the discretized variables

p̃mn
i ju

∆
= p̃i j(t̃ i j

m , x̃i j
n ), q̃mn

i ju
∆
= q̃i j(t̃ i j

m , x̃i j
n ), 0≤ n≤ k (5.24)

p̃mn
i jl

∆
= p̃i j(t̃ i j

m , x̃i j
n ), q̃mn

i jl
∆
= q̃i j(t̃ i j

m , x̃i j
n ), k ≤ n≤ N (5.25)

and corresponding spatial derivative variables p̃tmn
i ju, p̃xmn

i ju, and q̃xmn
i ju for 0 ≤ n ≤ k and p̃tmn

i jl ,
p̃xmn

i jl , and q̃xmn
i jl for k ≤ n≤ N. These state and derivative variables satisfy

p̃m+1,n
i ju − p̃mn

i ju ≈
∆t

i j

2
( p̃tm+1,n

i ju + p̃tmn
i ju), 0≤ n≤ k, (5.26)

p̃m+1,n
i jl − p̃mn

i jl ≈
∆t

i j

2
( p̃tm+1,n

i jl + p̃tmn
i jl ), k ≤ n≤ N (5.27)

for Pi j ∈ C and 0≤ m≤M−1, and

p̃m,n+1
i ju − p̃mn

i ju ≈
∆x

i j

2
( p̃xm,n+1

i ju + p̃xmn
i ju), 0≤ n < k, (5.28)

p̃m,n+1
i jl − p̃mn

i jl ≈
∆x

i j

2
( p̃xm,n+1

i jl + p̃xmn
i jl ), k ≤ n≤ N, (5.29)

q̃m,n+1
i ju − q̃mn

i ju ≈
∆x

i j

2
(q̃xm,n+1

i ju + q̃xmn
i ju), 0≤ n < k, (5.30)

q̃m,n+1
i jl − q̃mn

i jl ≈
∆x

i j

2
(q̃xm,n+1

i jl + q̃xmn
i jl ), k ≤ n≤ N (5.31)

for Pi j ∈ C and 0 ≤ m ≤M. In addition, we require continuity constraints at the compressor
location to connect pipes Pi ju and Pi jl for all Pi j ∈ C and 0≤ m≤M, which take the form

Rm
i j =

p̃mk
i jl

p̃mk
i ju

, q̃mk
i jl = q̃mk

i ju. (5.32)

The equations (5.1)-(5.2) on either side of the compressor are discretized for Pi j ∈ C by

p̃tmn
i ju + q̃xmn

i ju = 0, 0≤ n≤ k, (5.33)

2 p̃mn
i ju p̃xmn

i ju + q̃mn
i ju|q̃mn

i ju|= 0, 0≤ n≤ k, (5.34)

p̃tmn
i jl + q̃xmn

i jl = 0, k ≤ n≤ N (5.35)

2 p̃mn
i jl p̃xmn

i jl + q̃mn
i jl |q̃mn

i jl |= 0, k ≤ n≤ N (5.36)

for all Pi j ∈ C and 0 ≤ m ≤ M. The equations (5.21)-(5.23) and (5.26)-(5.36) discretize the
dynamic equations (5.1)-(5.2) and continuity conditions for compressors (5.4)-(5.5).
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5.5.3 Pseudospectral Approximation

Another approach to time discretization is a pseudospectral approximation, which is a global
approximation scheme that is endowed with the desirable properties of spectral accuracy [130].
We use the Legendre-Gauss-Lobatto (LGL) pseudospectral collocation scheme for time dis-
cretization [136, 137, 138]. Suppose we want to discretize a function into M + 1 time points
(τ0, . . . ,τM). The scheme employs a Legendre polynomial of order M (LM(τ)) as the inter-
polant, and the appropriate time collocation points for the discretization are given as the zeros
of the derivative of LM (i.e., the zeros of ∂LM(τ)

∂τ
). These points lie within the interval [−1,1],

and rescaling (via affine transformation) is required to rescale the time points t̃ i j
m ∈ [0, T̃i j] to

dimensionless ones of the form τm ∈ [−1,1]. This yields

τm =
2t̃ i j

m − T̃i j

T̃i j
, (5.37)

and also induces a re-scaled function f T on τm ∈ [−1,1], of form

f T (τm) = f (t̃ i j
m ) where t̃ i j

m =
T̃i j(τm + 1)

2
. (5.38)

The scheme is based on the Mth degree interpolating polynomial f M(τ), constructed as fol-
lows:

f M(τ) =
M

∑
m=0

f T (τm)φm(τ), where φm(τ) =
1

M(M+ 1)LM(τm)

(τ2−1) ∂LM(τ)
∂τ

τ− τm
. (5.39)

Because φm is constructed such that φm(τ j) will be 1 if m = j and 0 otherwise, f M will be
equal to f T on all discretized re-scaled points (τ0, . . . ,τM). By restricting our attention to f M

and only at the discretized points, we have the following approximation for differentiation:

∂ f (t̃ i j
m )

∂ t̃i j
=

∂ f T (τm)

∂τ

∂τ

∂ t̃i j
≈ 2

T̃i j

∂ f M(τm)

∂τ
=

M

∑
j=0

Dm j f T (τ j) =
M

∑
j=0

Dm j f (t̃ i j
j ), ∀0≤ m≤M

(5.40)

where Dm j is the time differentiation coefficient on the jth Legendre polynomial at time τ j:

Dm j =
2

T̃i j



LM(τm)
LM(τ j)

1
τm−τ j

, m 6= j

−M(M+1)
4 , m = j = 0

M(M+1)
4 , m = j = M

0, otherwise

(5.41)
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We also obtain an expression for integration in t̃i j from ta to tb given by

∫ tb

ta
f (t̃i j)dt̃i j =

∫
τb

τa

f T (τ)
∂ t̃i j

∂τ
dτ ≈

T̃i j

2

∫
τb

τa

f M(τ)dτ

=
T̃i j(τb− τa)

2

M

∑
j=0

[ f T (τ j)w j] = (tb− ta)
M

∑
j=0

[ f (t̃ i j
j )w j]

(5.42)

where w j is the weighting coefficient with respect to the Lagrange polynomial φ j:

w j =
1

M(M+ 1)
1

(LM(τ j))2 (5.43)

To change from trapezoidal time discretization to LGL pseudospectral discretization, we re-
place (5.21), (5.26), and (5.27) by

p̃tmn
i j ≈

M

∑
g=0

Dmg p̃gn
i j (5.44)

for all Pi j ∈P−C , 0≤ m≤M, and 0≤ n≤ N, and

p̃tmn
i ju ≈

M

∑
g=0

Dmg p̃gn
i ju, 0≤ n≤ k, (5.45)

p̃tmn
i jl ≈

M

∑
g=0

Dmg p̃gn
i jl , k ≤ n≤ N (5.46)

for Pi j ∈ C and 0 ≤ m ≤M, where T̃i j is the pipe-dependent dimensionless time horizon, and
k is the compressor location of pipe Pi j.

5.5.4 Lumped Element Approximation

We have approximated equations (5.1)-(5.2) by spatial discretization for both the pressure and
flux variables and a time discretization for the pressure variables. One way to further decrease
the computational complexity is to simplify the space discretization by using a lumped ele-
ment approximation, where spatial derivative variables are removed. Instead of approximating
spatial derivatives by (5.22) and (5.28)-(5.31), a lumped-element approximation is applied to
the non-dimensional dynamic equations (5.1)-(5.2) by integrating along each pipe segment
in space, either explicitly or by the trapezoid quadrature rule. This approximation yields the
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relations: ∫ x̃i j
n+1

x̃i j
n

∂ p̃i j

∂ t̃i j
dx̃i j ≈

∆x
i j

2
( p̃tmn

i j + p̃tm,n+1
i j ), (5.47)

∫ x̃i j
n+1

x̃i j
n

∂ q̃i j

∂ x̃i j
dx̃i j = q̃m,n+1

i j − q̃mn
i j , (5.48)

∫ x̃i j
n+1

x̃i j
n

2 p̃i j
∂ p̃i j

∂ x̃i j
dx̃i j =

∫ x̃i j
n+1

x̃i j
n

∂ ( p̃i j)2

∂ x̃i j
dx̃i j = ( p̃m,n+1

i j )2− ( p̃mn
i j )

2, (5.49)

∫ x̃i j
n+1

x̃i j
n

q̃i j|q̃i j|dx̃i j ≈
∆x

i j

2
(q̃mn

i j |q̃mn
i j |+ q̃m,n+1

i j |q̃m,n+1
i j |) (5.50)

Substituting back into (5.1)-(5.2) yields

∆x
i j

2
( p̃tmn

i j + p̃tm,n+1
i j )+ q̃m,n+1

i j − q̃mn
i j = 0, (5.51)

( p̃m,n+1
i j )2− ( p̃mn

i j )
2 +

∆x
i j

2
(q̃mn

i j |q̃mn
i j |+ q̃m,n+1

i j |q̃m,n+1
i j |) = 0, (5.52)

for all Pi j ∈P −C , 0 ≤ m ≤ M, and 0 ≤ n ≤ N − 1. By similar reasoning on pipes with
compressors, we obtain (5.53)-(5.56) replacing (5.28)-(5.31):

∆x
i j

2
( p̃tmn

i ju + p̃tm,n+1
i ju )+ q̃m,n+1

i ju − q̃mn
i ju = 0, 0≤ n≤ k−1, (5.53)

( p̃m,n+1
i ju )2− ( p̃mn

i ju)
2 +

∆x
i j

2
(q̃mn

i ju|q̃mn
i ju|+ q̃m,n+1

i ju |q̃m,n+1
i ju |) = 0, 0≤ n≤ k−1, (5.54)

∆x
i j

2
( p̃tmn

i jl + p̃tm,n+1
i jl )+ q̃m,n+1

i jl − q̃mn
i jl = 0, k ≤ n≤ N−1, (5.55)

( p̃m,n+1
i jl )2− ( p̃mn

i jl )
2 +

∆x
i j

2
(q̃mn

i jl |q̃mn
i jl |+ q̃m,n+1

i jl |q̃m,n+1
i jl |) = 0, k ≤ n≤ N−1 (5.56)

for all Pi j ∈ C and 0 ≤ m ≤ M. Overall, lumped element approximation can be seen as a
simplified trapezoidal rule discretization in space, where (5.22) and (5.28)-(5.31) are omitted
and (5.23), (5.33)-(5.36) are replaced with (5.51)-(5.52) and (5.53)-(5.56).

5.5.5 Constraints and Objective

We now show how to express the problem constraints and objective. The pressure variables
must lie within the operational/safety bounds, as given in (5.3). In discretized form, we have
for all 0≤ m≤M that

p̃
i j
≤ p̃nm

i j ≤ p̃i j, Pi j ∈ P−C, 0≤ n≤ N, (5.57)

p̃
i j
≤ p̃nm

i ju ≤ p̃i j, Pi j ∈C, 0≤ n≤ k, (5.58)

p̃
i j
≤ p̃nm

i jl ≤ p̃i j, Pi j ∈C, k ≤ n≤ N (5.59)
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In addition, the compression ratio must lie within operational requirements and satisfy

max{Ri j,1} ≤ Rm
i j ≤ Ri j. (5.60)

for all Pi j ∈ C and 0≤ m≤M. The cost of compression is then expressed by a constraint

Sm
i j = η

−1 ˜qmm
i j((R

m
i j)

2K−1) (5.61)

for all Pi j ∈ C and 0≤ m≤M, where ˜qmm
i j is an auxiliary variable with the constraints

˜qmm
i j ≥ q̃mk

i ju, ˜qmm
i j ≥−q̃mk

i ju, (5.62)

so that minimizing ˜qmm
i j will minimize |q̃mk

i ju| (when Rm
i j > 1). Compressor cost is also con-

strained to be positive, i.e.,

Sm
i j ≥ 0. (5.63)

The balance conditions at junctions are enforced as follows. For all 0≤ m≤M and J j ∈J ,

∑
Jk∈J :Pjk∈P

q̃m0
jk − ∑

Ji∈J :Pi j∈P
q̃mN

i j + ∑
Jk∈J :Pjk∈P

q̃m0
jku− ∑

Ji∈J :Pi j∈P
q̃mN

i jl = f m
j , and (5.64)

For all Ji,Jk ∈J s.t. Pi j,Pjk ∈P ,

p̃mN
i j = p̃m

j = p̃m0
jk . (5.65)

Parametrization of these balance conditions for 0≤ m≤M is given by

f m
i = d̃i(tm), Ji ∈J −S , (5.66)

pm
i = s̃i(tm), Ji ∈S , (5.67)

where d̃i(t) and s̃i(t) are given flow injection/withdrawal or supply pressure functions (in di-
mensionless form). The time-periodic boundary conditions on the states and controls are given
for 0≤ m≤M by

−ε ≤ p̃0n
i j − p̃Mn

i j ≤ ε , ∀Pi j ∈P−C , 0≤ n≤ N (5.68)

−ε ≤ p̃0n
i ju− p̃Mn

i ju ≤ ε , ∀Pi j ∈ C , 0≤ n≤ k (5.69)

−ε ≤ p̃0n
i jl− p̃Mn

i jl ≤ ε , ∀Pi j ∈ C , k ≤ n≤ N (5.70)

−ε ≤ R0
i j−RM

i j ≤ ε , ∀Pi j ∈ C . (5.71)

where ε is a sufficiently small tolerance. The integral in the objective of problem (5.14) is
approximated by a Riemann sum (normalized by Um) of the form

C1 ≈ ∑
Pi j∈C

M

∑
m=0

UmSm
i j. (5.72)
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Figure 5.1: A non-smooth solution with trapezoidal time and space discretization. Left to right:
Compression ratios; Pressure trajectories (optimization); Pressure trajectories (simulation)

where Um denotes weights for the compression energy at time point m. We set Um to 2/(M +
1) for trapezoidal time discretization and to 2×wm for pseudospectral time discretization to
allow comparisons on the objective values for both discretization on the same scale (i.e. the
dimensionless time interval re-scaled to [−1,1]).

5.6 The Two-Stage Optimization Model

A direct encoding of the optimization problem over the discretized constraints and objectives
may result in solutions where the pressure, flow, and compression ratio solutions may not be
smooth. Figure 5.1 exhibits such a behavior on one of our test cases. The left and middle sub-
figures depict the compressor ratios and the pressures obtained by such a direct encoding. The
right figure shows the results of a dynamic adaptive simulation using the optimal compressor
ratios. The rapidly changing compression ratios in the optimal solution are undesirable from
an operational standpoint: The application of such non-smooth controls would result in fast
changes in pressure and flux (as seen in the right subfigure in Figure 5.1) which may cause
severe damage to turbomachinery or piping. Moreover, the jitters in the pressure trajectories
(in the middle subfigure) indicates that the physics is not represented accurately. Finally, the
simulated pressures for these compressor ratios also violate their bounds and raises potential
safety issues in practice.

The main problem with our model is that none of our constraints/objective consider smooth-
ness to be an essential operational requirement. Therefore, the optimization solver would even-
tually consider non-smooth solutions that are infeasible to implement in practice. Indeed, If
the compression ratio can be suddenly decreased and then increased later to compensate for
the pressure losses on the discretized time intervals, the objective values can be further mini-
mized. One suggestion is to further add constraints to limit the maximum deviation of control
variables for each time step. However, our experimental results show that this method cannot
fully tackle the problem, and the solver will still optimize for non-smooth solutions. These
solutions minimize costs by maximizing the deviation of control variables, but stay within the
maximum deviation limit.

To remedy these limitations, we add a second objective function that aims at producing
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smooth compressor ratios. This second objective minimizes

C2 = ∑
Pi j∈C

M

∑
m=0

[
∂ 2Rm

i j

∂ t̃2
i j

]2

(5.73)

i.e., the sum of the second derivatives of the compressor ratios over time. For the trapezoidal
time discretization, the second derivatives can be approximated by

∂ 2Rm
i j

∂ t̃2
i j
≈ (Rm+1

i j −Rm
i j)− (Rm

i j−Rm−1
i j ) = Rm+1

i j +Rm−1
i j −2Rm

i j

where we map R−1
i j to RM−1

i j and RM+1
i j to R1

i j for the boundary cases. For the pseudospectral
time discretization, we use

∂ 2Rm
i j

∂ t̃2
i j
≈

M

∑
g=0

2
T̃i j

D2
mgRg

i j

where D2 is equal to the matrix product of the differential matrix D with itself (i.e., D2 =D ·D).

To integrate the two objectives, we employ a lexicographic strategy in our implementation,
known as the two-stage method/decomposition [139]. We first solve the original nonlinear
program with the first objective (5.72), and then solve the nonlinear program with the second
objective (5.73), while imposing the additional constraint

C1 ≤ (1+ r) f , where 0≤ r ≤ 1 (5.74)

where f is the objective value obtained from the first step. Intuitively, the tolerance r is a
user-adjustable parameter that quantifies the factor of increase in compression energy that can
be traded for a smoother solution. In our implementation, the second stage is initialized with
the first-stage solution. This two-stage approach had the desirable property that smoothness
can be controlled effectively, which was not the case when using a weighted sum of the two
objectives with a penalty on C2 or when imposing a smoothness-enforcing constraint directly
in a one-stage optimization model. Two-stage methods are widely used in robust optimiza-
tion [139]. Our approach is also similar to regularization method [140], which is often use in
machine learning algorithms. We now summarize our formulation. The first-stage optimiza-
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Figure 5.2: 24-pipe gas system test network used in the benchmark case study. Numbers
indicate nodes (blue), edges (black), and compressors (red). Thick and thin lines indicate 36

and 25 inch pipes. Nodes are source (red), transit (blue), and consumers (green).

tion is specified by

min C1 : (5.72)

s.t. time dynamics, either:

{
trapezoidal: (5.21), (5.26)− (5.27), or

pseudospectral: (5.44), (5.45)− (5.46)

space dynamics, either:

{
trapezoidal: (5.22), (5.23), (5.28)− (5.31), (5.33)− (5.36), or

lumped element: (5.51)− (5.56)
pressure & compression safety constraints: (5.57)− (5.60)
compressor power: (5.61)− (5.63)
junction conditions: (5.32), (5.64)− (5.65)
boundary parameters: (5.66)− (5.67)
periodicity constraints: (5.68)− (5.71)

(5.75)
while the second-stage optimization is given by

min C2 : (5.73)
s.t. 1st stage problem constraints: (5.75)

solution tolerance: (5.74)
(5.76)

5.7 Case Studies

The large-scale nonlinear programs for our DOGF are modeled with AMPL (version 2014)
[100, 141] and solved with the nonlinear solver IPOPT 3.12.2, ASL routine (version 2015)
[103] with AMPL pre-solve. The implementation is run on a Dell PowerEdge R415 with AMD
Opteron 4226 and 64 GB of ram. We present the computational results on three case studies
that include a validation of the approach, as well as results about solution quality, efficiency,
and scalability.
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Table 5.1: Aggregated Pressure Bound Violations (vp, psi-days): 24 Pipe. (simulation: 10km
space discretization)

Trapezoidal time - trapezoidal space Trapezoidal time - lumped element space

Bounds Tightened Regular Tightened Regular

Time pt. 5% 10% 5% 10% 5% 10% 5% 10%

25tp 0.000 0.000 0.913 0.899 0.000 0.000 0.939 0.876
50tp 0.000 0.000 0.076 0.058 0.000 0.000 0.116 0.090

100tp 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000
200tp 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000

Pseudospectral time - trapezoidal space Pseudospectral time - lumped element space

Bounds Tightened Regular Tightened Regular

Time pt. 5% 10% 5% 10% 5% 10% 5% 10%

25tp 0.000 0.000 0.451 0.205 0.000 0.000 0.186 0.059
50tp 0.000 Time Limit 0.026 0.026 0.000 0.000 0.000 0.021

5.7.1 Validation

The solution obtained using our implementation was validated on the 24-pipe benchmark gas
network used in prior work [6], and illustrated in Figure 5.2. The pressures at supply sources
were fixed at 500psi (≈ 3.45× 106 Pa), the dimensionless constants for the dimensionless
equation transformation were set to pN = 250psi (≈ 1.72×106 Pa) and qN = 100 kg/s, physical
parameters a = 377.968 m/s, γ = 2.5, and λ = 0.01 were used, and a time horizon T = 24
hrs (86400s) was considered. Parameters Di j,Ai j,Li j,Ri j, and Ri j were set according to the
benchmark case study, as well as time-dependent profiles of gas injections/withdrawals di(t).
For the trapezoidal space approximation, each pipe Pi j is discretized uniformly according to its
length Li j into dLi j/Ee+1 segments, where E is set to 10km by default. The test case is a tree
network and hence the flow direction on each pipe is known. The compressors are placed on
the first segment of the ith end of every pipe Pi j ∈ C .

The admissible pressure range is 500 to 800 psi throughout the network. A feasible solution
to the discretized problem that satisfies the pressure constraints may cause these constraints to
be violated in a high-accuracy simulation of the dynamics for the continuous problem. To ad-
dress this issue, one version of our implementation tightens the pressure bounds conservatively
by 4% or less, i.e., in the range [520,780] psi for this particular benchmark. We refer to this
as “tightened” problem, while optimizing over the nominal constraints of 500 to 800 psi is
referred to as the “regular” problem.

The optimization results were validated by using the optimized compression ratio solution
as a time-varying parameter in a validated dynamic simulation method [133, 134]. The tra-
jectories computed using the simulation are used to validate the optimization solution in two
ways. First, we quantify how much the constraints on pressure are exceeded by evaluating the
L2-norm of the violations. The violation measure aggregates violations over the 24-hour period
by integrating the square of the pressure violations (psi) of the bounds at every junction. It is



96 Dynamic Compressor Optimization in Natural Gas Pipeline Systems

0 5 10 15 20
1

1.2

1.4

1.6

1.8

Compression Ratios
25tp,TZ time,TZ space,5%,TI

r
a
t
io

hr

 

 

1

2

3

4

5

0 5 10 15 20

500

600

700

800

Pressure Sim (psi)
25tp,TZ time,TZ space,5%,TI

p
s
i

hr

0 5 10 15 20
−50

0

50

100

150

200

Flux Sim (kg/s)
25tp,TZ time,TZ space,5%,TI

k
g
/s

hr

0 5 10 15 20
−4

−2

0

2

4

Sim v. Opt Relative Pressure (%)
25tp,TZ time,TZ space,5%,TI

%

hr

0 5 10 15 20
1

1.2

1.4

1.6

1.8

Compression Ratios
200tp,TZ time,TZ space,5%,RE

r
a
t
io

hr

 

 

1

2

3

4

5

0 5 10 15 20

500

600

700

800

Pressure Sim (psi)
200tp,TZ time,TZ space,5%,RE

p
s
i

hr

0 5 10 15 20
−50

0

50

100

150

200

Flux Sim (kg/s)
200tp,TZ time,TZ space,5%,RE

k
g
/s

hr

0 5 10 15 20
−4

−2

0

2

4

Sim v. Opt Relative Pressure (%)
200tp,TZ time,TZ space,5%,RE

%

hr

0 5 10 15 20
1

1.2

1.4

1.6

1.8

Compression Ratios
25tp,TZ time,LU space,5%,TI

r
a
t
io

hr

 

 

1

2

3

4

5

0 5 10 15 20

500

600

700

800

Pressure Sim (psi)
25tp,TZ time,LU space,5%,TI

p
s
i

hr

0 5 10 15 20
−50

0

50

100

150

200

Flux Sim (kg/s)
25tp,TZ time,LU space,5%,TI

k
g
/s

hr

0 5 10 15 20
−4

−2

0

2

4

Sim v. Opt Relative Pressure (%)
25tp,TZ time,LU space,5%,TI

%

hr

0 5 10 15 20
1

1.2

1.4

1.6

1.8

Compression Ratios
200tp,TZ time,LU space,5%,RE

r
a
t
io

hr

 

 

1

2

3

4

5

0 5 10 15 20

500

600

700

800

Pressure Sim (psi)
200tp,TZ time,LU space,5%,RE

p
s
i

hr

0 5 10 15 20
−50

0

50

100

150

200

Flux Sim (kg/s)
200tp,TZ time,LU space,5%,RE

k
g
/s

hr

0 5 10 15 20
−4

−2

0

2

4

Sim v. Opt Relative Pressure (%)
200tp,TZ time,LU space,5%,RE

%

hr

0 5 10 15 20
1

1.2

1.4

1.6

1.8

Compression Ratios
25tp,PS time,TZ space,5%,TI

r
a
t
io

hr

 

 

1

2

3

4

5

0 5 10 15 20

500

600

700

800

Pressure Sim (psi)
25tp,PS time,TZ space,5%,TI

p
s
i

hr

0 5 10 15 20
−50

0

50

100

150

200

Flux Sim (kg/s)
25tp,PS time,TZ space,5%,TI

k
g
/s

hr

0 5 10 15 20
−4

−2

0

2

4

Sim v. Opt Relative Pressure (%)
25tp,PS time,TZ space,5%,TI

%

hr

0 5 10 15 20
1

1.2

1.4

1.6

1.8

Compression Ratios
50tp,PS time,LU space,5%,RE

r
a
t
io

hr

 

 

1

2

3

4

5

0 5 10 15 20

500

600

700

800

Pressure Sim (psi)
50tp,PS time,LU space,5%,RE

p
s
i

hr

0 5 10 15 20
−50

0

50

100

150

200

Flux Sim (kg/s)
50tp,PS time,LU space,5%,RE

k
g
/s

hr

0 5 10 15 20
−4

−2

0

2

4

Sim v. Opt Relative Pressure (%)
50tp,PS time,LU space,5%,RE

%

hr

Figure 5.3: From top to bottom (24-System): Various discretization schemes: with different
time points (tp), trapezoidal(TZ) / pseudospectral(PS) time scheme, trapezoidal(TZ) / lumped
element(LU) space scheme, 5% re-optimization tolerance, and tightened(TI) / regular(RE) con-
straints. From left to right: Optimal compressor ratios; Pressure trajectories from simulation
using the controls; Flux trajectories from the same simulation; Relative difference between

pressure solution from optimization and pressure trajectories from simulation.
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Table 5.2: Aggregated Pressure Bound Violations (vp, psi-days): 24 Pipe. (simulation: 3km
space discretization)

Trapezoidal time - trapezoidal space Trapezoidal time - lumped element space

Bounds Tightened Regular Tightened Regular

Time pt. 5% 10% 5% 10% 5% 10% 5% 10%

25tp 0.000 0.000 0.951 0.916 0.000 0.000 0.994 0.896
50tp 0.000 0.000 0.100 0.071 0.000 0.000 0.146 0.109

100tp 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000
200tp 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Pseudospectral time - trapezoidal space Pseudospectral time - lumped element space

Bounds Tightened Regular Tightened Regular

Time pt. 5% 10% 5% 10% 5% 10% 5% 10%

25tp 0.000 0.000 0.404 0.175 0.000 0.000 0.162 0.037
50tp 0.000 Time Limit 0.020 0.019 0.000 0.000 0.000 0.035

defined by

vp =

√
∑

Pi j∈P
[
∫ T

0
(pi j(t,0)− pmax)+dt +

∫ T

0
(pmin− pi j(t,Li j))+dt]2 (5.77)

where (x)+ = x if x ≥ 0 and (x)+ ≡ 0 if x < 0. The unit of the metric is psi-days. Tables
5.1 and 5.2 list solution values found using various time discretizations, smoothing parameter
r, the tightened vs. regular problems, and using 3km and 10km space discretization settings.
With tightened bounds, the optimization solution has no, or negligible, violations in the studied
configurations.

Figure 5.3 depicts the optimal compressor ratio functions for 25 and 200 trapezoidal time
discretization, 25 and 50 pseudospectral time discretization, with tightened and regular con-
straints, respectively, and with E = 10 km spatial trapezoidal discretization and lumped el-
ement approximation. The second-stage tolerance r is set to 5%. The results show that the
compressor ratios over time are smooth, producing meaningful physical solutions and control
profiles that can be implemented by operators. This is true even for coarse time discretiza-
tions. The only exception is the pseudo-spectral discretization (25tp, PS time, TZ space, 5%,
tightened).

The last column of Figure 5.3 describes validation results that compare the optimization
solutions with simulations. The simulation results were found by providing the optimal control
solutions as input to a dynamic simulation of a differential algebraic equation (DAE) model
of the network [6] and the adaptive time-stepping solver ode15i in MATLAB. Figure 5.3
reports the relative difference between the optimized pressure profiles pm

j (re-scaled from di-
mensionless to nominal unit) for every junction in the network with the pressure trajectories
pm?

j obtained from simulations over time. Table 5.3 and Table 5.4 give the maximum rela-
tive error (in %) across all the pipe junctions and all the time steps for our four discretization
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Table 5.3: Maximum relative difference (%) in pressure between simulation and optimization:
24 Pipe (simulation: 10km space discretization)

Trapezoidal time - trapezoidal space Trapezoidal time - lumped element space

Bounds Tightened Regular Tightened Regular

Time pt. 5% 10% 5% 10% 5% 10% 5% 10%

25tp 3.560 2.974 3.642 3.408 3.410 5.756 5.641 3.413
50tp 1.935 2.668 1.503 2.767 2.721 3.350 3.302 2.431

100tp 2.062 2.480 2.126 1.723 1.883 3.500 2.137 2.923
200tp 1.412 1.335 1.248 1.314 1.291 1.499 1.267 1.399

Pseudospectral time - trapezoidal space Pseudospectral time - lumped element space

Bounds Tightened Regular Tightened Regular

Time pt. 5% 10% 5% 10% 5% 10% 5% 10%

25tp 3.936 4.777 4.107 4.785 3.861 4.767 4.001 4.694
50tp 0.922 Time Limit 1.004 0.950 0.734 0.795 0.806 0.756

schemes with the formula:

max
0≤m≤M

[max
J j∈J

(|
pm

j − pm?
j

pm
j
|)]×100% (5.78)

We tested the test cases with both regular and tightened constraints, with a 5% and 10% re-
optimization tolerance, and with both 3km and 10km space discretization settings in simula-
tions.

With only 25 time points, the (time and space) trapezoidal methods gave smooth control
profiles with less than 4% of error when compared with simulations. This error disappears
almost entirely with 200 time points. In general, the lumped element method with a trapezoidal
discretization for time gives slighly less accurate results. Because the sources of the compared
pressure profiles are qualitatively very different, i.e., optimization of algebraic equations that
discretize PDEs over a fixed grid compared with adaptive time-stepping solution of an ODE
system, these results are a powerful cross-validation of both models.

5.7.2 Solution Quality and Efficiency

Table 5.5 reports the objective value C1, computation time, and the number of variables of the
proposed method for: a) trapezoidal time, trapezoidal space discretization, b) trapezoidal time,
lumped element space discretization, c) pseudospectral time, trapezoidal space discretization,
and d) pseudospectral time, lumped element space discretization, with smoothness parameters
r equals to 5% and 10%. We vary time points from 25pt up to 300pt/50tp for trapezoidal/pseu-
dospectral time discretization respectively. The table gives the value of the C1 objective after
the first stage, and also in the second stage for r = 5% and 10%. CPU times in seconds re-
ported by IPOPT for the first and second stages are also given. First, observe that enforcing
the smoothness of the solution does not fundamentally decrease the quality of the C1 objec-
tive, which is important from an operational standpoint. Second, as expected, refining the time
discretization increases the objective value in the various trapezoidal schemes (since more con-
straints are added). Third, for the trapezoidal time discretization, the convergence rate is fast
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Table 5.4: Maximum relative difference (%) in pressure between simulation and optimization:
24 Pipe (simulation: 3km space discretization)

Trapezoidal time - trapezoidal space Trapezoidal time - lumped element space

Bounds Tightened Regular Tightened Regular

Time pt. 5% 10% 5% 10% 5% 10% 5% 10%

25tp 3.584 3.014 3.732 3.443 3.420 5.744 5.625 3.451
50tp 1.937 2.591 1.537 2.697 2.658 3.285 3.330 2.340

100tp 2.047 2.391 2.037 1.618 1.833 3.377 2.167 2.906
200tp 1.357 1.225 1.222 1.268 1.251 1.391 1.274 1.365

Pseudospectral time - trapezoidal space Pseudospectral time - lumped element space

Bounds Tightened Regular Tightened Regular

Time pt. 5% 10% 5% 10% 5% 10% 5% 10%

25tp 3.928 4.765 4.049 4.716 3.807 4.772 3.990 4.584
50tp 0.957 Time Limit 0.996 0.951 0.743 0.738 0.776 0.761

and the solutions obtained with a coarse discretization are already of high quality, as illustrated
in Figure 5.3. The lumped element approximation further reduces the model size by more than
50% and increases computational efficiency by factors from 4 to 25 depending on the accu-
racy of the discretization. As a result, the method exhibits excellent performance. Consider
the time granularities with 25 and 50 points: For r = 10%, the method requires less than 10
seconds, which indicates that it can be used during real-time operations. On the other hand, the
pseudospectral time discretizations are orders of magnitude slower than trapezoidal scheme.
Pseudospectral methods link every pressure/flux differential variable to pressure/flux variables
at every time step [136, 138], producing a dense constraint matrix. Since the iteration counts
of IPOPT for both types of discretization are similar in scale, the increased matrix density in
the pseudospectral discretization is responsible for the observed loss in efficiency.

5.7.3 Scalability

To study the scalability of the proposed method, two additional instances are considered:
Gaslib-40 and Gaslib-135 from the GasLib library [142]. The pressure ranges are set to 500
to 800 psi and 500 to 1000 psi for Gaslib-40 and Gaslib-135 respectively, and the source pres-
sures are set to 600 psi. Tables 5.6 and 5.8 present the results on solution quality and efficiency.
We omit results for pseudospectral time method since it does not converge or scales poorly on
both benchmarks.

The trapezoidal time methods scale well on Gaslib-40 and they exhibit similar behavior as
in the 24-pipe network. In particular, it can be solved in less than two minutes. The Gaslib-
135 network is much more challenging and consists of more than 6000km of pipes. Hence,
we only consider the lumped element method and relax the acceptable tolerances (termination
condition) of IPOPT from 10−6 to 10−4 given the size of the test case. The cases that satisfy the
acceptable tolerance but fail to reach the optimality region (IPOPT default: 10−8) are marked
with ‘∗′ in the objective column. The results show that the lumped element method finds
high-quality solutions in reasonable time, solving a 25pt discretization in about an hour. The
objective function does not necessarily increase monotonically due to the difficulty in reaching
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Table 5.5: Objective Value (C1) and runtimes on 24 Pipe Network.
Trapezoidal time - trapezoidal space discretization

Var. no. Objective Value CPU Time (secs)
1st Stage 2nd Stage 1st Stage 2nd Stage

r = 5% 10% r = 5% 10%

25tp 11441 2.012 2.112 2.213 12 22 8
40tp 18041 2.088 2.193 2.297 35 78 22
50tp 22441 2.073 2.176 2.280 32 75 28
60tp 26841 2.091 2.195 2.300 43 164 42
80tp 35641 2.106 2.211 2.316 45 208 55

100tp 44441 2.126 2.233 2.339 131 230 73
150tp 66441 2.105 2.210 2.316 266 800 280
200tp 88441 2.136 2.243 2.350 545 582 447
300tp 132441 2.136 2.243 2.349 32169 2028 639

Trapezoidal time - lumped element space discretization

Var. no. Objective Value CPU Time (secs)
1st Stage 2nd Stage 1st Stage 2nd Stage

r = 5% 10% r = 5% 10%

25tp 4785 2.003 2.103 2.203 3 5 3
40tp 7545 2.068 2.172 2.275 6 12 6
50tp 9385 2.069 2.172 2.276 9 21 10
60tp 11225 2.088 2.192 2.297 25 29 10
80tp 14905 2.096 2.201 2.306 22 49 23

100tp 18585 2.100 2.205 2.310 65 80 32
150tp 27785 2.105 2.210 2.315 163 335 86
200tp 36985 2.114 2.220 2.325 320 299 145
300tp 55385 2.115 2.221 2.327 1212 309 345

Pseudospectral time - trapezoidal space discretization

Var. no. Objective Value CPU Time (secs)
1st Stage 2nd Stage 1st Stage 2nd Stage

r = 5% 10% r = 5% 10%

25tp 11389 2.168 2.276 2.384 337 572 435
50tp 22339 2.114 2.219 2.325 17160 31882 46687

Pseudospectral time - lumped element space discretization

Var. no. Objective Value CPU Time (secs)
1st Stage 2nd Stage 1st Stage 2nd Stage

r = 5% 10% r = 5% 10%

25tp 4759 2.161 2.270 2.378 72 185 126
50tp 9334 2.147 2.255 2.362 14309 30535 29836

the feasibility region. Still these results are promising and demonstrate the method’s ability to
find high-quality solutions to large networks.

We also report results on the validation of the solutions for Gaslib-40. Figure 5.4 presents
the pressure and flow profiles resulting from simulations. The figure shows the differences
in percentage for each junction over time between optimization and simulation on pressure
trajectories. Table 5.7 again shows the maximum relative error across all the pipe junctions. In
this larger benchmark, the method produces smooth control profiles with less than 2% of error
using 50 trapezoidal time points. Figure 5.5 further shows two compression solutions on the
Gaslib-135 benchmark.
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Figure 5.4: From top to bottom (Gaslib-40):: Various discretization schemes with: 30 and 150
time points (tp), trapezoidal(TZ) time scheme, trapezoidal(TZ) and lumped element(LU) space
scheme, and 10% re-optimization tolerance. From left to right: Optimal control solution; Pres-
sure trajectories from simulation using the controls; Flux trajectories from the same simulation;
Relative difference between pressure solution from optimization and pressure trajectories from

simulation.

The results in Figures 5.3–5.4 also show the benefits and justify our two-stage approach.
The figures demonstrate that the largest errors occur when there are fast changes in the demands
and are not due to compressor ratios.

5.8 Extensions & Variants

We now present a related optimization problem to showcase the generality of our proposed
dynamic gas pipeline flow model. With the growing number of gas-fired generators, it becomes
important in planning and signing contracts to understand how much gas could be supplied,
packed into the system, and delivered to potential customers at any time. It is also important
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Table 5.6: Objective Value (C1) and runtimes on Gaslib-40 Pipe Network.
Trapezoidal time - trapezoidal space discretization

Var. no. Objective Value CPU Time (secs)
1st Stage 2nd Stage 1st Stage 2nd Stage

r = 5% 10% r = 5% 10%

20tp 20707 0.260 0.273 0.286 191 28 24
30tp 30567 0.294 0.309 0.323 541 54 268
40tp 40427 0.297 0.312 0.327 1143 164 444
50tp 50287 0.311 0.326 0.342 1316 213 1513
100tp 99587 0.321 0.337 0.353 9395 2666 1953
150tp 148887 0.323 0.339 0.355 15171 9363 8003

Trapezoidal time - lumped element space discretization

Var. no. Objective Value CPU Time (secs)
1st Stage 2nd Stage 1st Stage 2nd Stage

r = 5% 10% r = 5% 10%

20tp 6910 0.254 0.267 0.279 51 4 4
30tp 10200 0.297 0.312 0.326 45 40 39
40tp 13490 0.310 0.326 0.341 142 61 90
50tp 16780 0.311 0.326 0.342 148 84 153
100tp 33230 0.322 0.339 0.355 2566 648 575
150tp 49680 0.325 0.342 0.358 5139 3309 2605

Table 5.7: Maximum relative difference (%) in pressure between simulation and optimization:
Gaslib-40

Trapezoidal time & Trapezoidal time &
trapezoidal space lumped element space

Time pt. 5% 10% 5% 10%

20tp 6.198 Sim. Error 5.705 4.086
50tp 1.835 1.773 2.119 2.068

100tp 3.915 3.878 3.832 3.864
150tp 3.381 3.422 3.362 3.403

Table 5.8: Objective Value (C1) and runtimes on Gaslib-135 Pipe Network.
Trapezoidal time - lumped element space discretization

Var. no. Objective Value CPU Time (secs)
1st Stage 2nd Stage 1st Stage 2nd Stage

r = 5% 10% r = 5% 10%

15tp 18769 2.027* 2.128 2.229 598 112 117
20tp 24634 2.492* 2.617 2.741* 713 314 445
25tp 30499 2.203* 2.313 2.423 1788 330 236

to understand the bottlenecks of transmission networks when planning for future upgrades.

In this section, we modify our optimization problem for the 24-pipe system to maximize the
outflows for a set of important demand points D ⊆J , while keeping the flow profiles for the
other demands J \D fixed. In other words, equation (5.66) will be relaxed for demands in D .
To align our experiments with industry practice, we seek the maximal outflows that are steady
(i.e., constant over time). Thus, we create decision variables f j (negative for withdrawal) for
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Figure 5.5: Compression ratio solutions for Gaslib-135 case studies, with 22 trapezoidal (TZ)
time points, lumped element (LU) space, and re-optimization tolerance of r = 5%.

functions J j ∈D and change (5.64) for these junctions to

∑
Jk∈J :Pjk∈P

q̃m0
jk − ∑

Ji∈J :Pi j∈P
q̃mN

i j + ∑
Jk∈J :Pjk∈P

q̃m0
jku− ∑

Ji∈J :Pi j∈P
q̃mN

i jl = f j, f j <= 0 (5.79)

where f j is now steady. We then replace (5.72) by

max M1 = − ∑
J j∈D

c j f j (5.80)

where c j is the node-dependent costs. We further add penalty terms in (5.73) to smooth the
source flux S which act as the slack variable in our formulation. This gives

C2 = ∑
Pi j∈C

M

∑
m=0

[
∂ 2Rm

i j

∂ t̃2
i j

]2

+wp ∑
J j∈S

M

∑
m=0

[
∂ 2 f m

j

∂ t2

]2

(5.81)

where wp is the weight of the new penalty and f m
j are the flux variables of the source. We

use the same method as in (5.73) to approximate the second derivatives of f m
j for both the

trapezoidal and pseudospectral discretizations. Since we switch from minimization to maxi-
mization, we flip the inequality in (5.74) to obtain:

M1 ≥ (1− r)v, where 0≤ r ≤ 1, (5.82)

and where v is the objective value obtained in the first step.
We report experimental results on on the 24 pipe system with three different cases:

1. Maximizing the outflow integral of 5 nodes with equal costs: c j = 1 and D = {6,8,12,13,19},

2. Maximizing outflow of only node 19: c j = 1 and D = {19}, and

3. Case 1 with different weights/preferences c j as shown in Table 5.9 (first two columns).

5.8.1 Case 1.

Table 5.10 shows the model size, objective values M1, and computational runtimes for our
4 different discretization schemes on case 1 with varying number of time points and with
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Table 5.9: Gas price ($ per 10 kg mass) and optimized demand (kg/s).
Trapezoidal time, lumped space, 50 time point, r = 7%

Node number Gas price Demand (case 1) Demand (case 3)

6 1.0 21.582 0.000
8 1.5 16.498 36.067

12 2.0 87.537 38.836
13 2.0 0.057 0.025
19 3.0 0.000 46.364

Table 5.10: Objective Value (M1) and runtimes on the maximum contractable throughput
model: case 1

Trapezoidal time - trapezoidal space discretization

Var. no. Objective Value CPU Time (secs)
1st Stage 2nd Stage 1st Stage 2nd Stage

r = 3% 7% r = 3% 7%

25tp 11576 1.366 1.325 1.271 5 7 4
50tp 22701 1.356 1.315 1.261 25 17 36

100tp 44951 1.349 1.309 1.255 118 202 86
200tp 89451 1.348 1.308 1.254 1735 196 323

Trapezoidal time - lumped element space discretization

Var. no. Objective Value CPU Time (secs)
1st Stage 2nd Stage 1st Stage 2nd Stage

r = 3% 7% r = 3% 7%

25tp 4920 1.362 1.322 1.267 3 1 1
50tp 9645 1.351 1.311 1.257 12 5 7

100tp 19095 1.345 1.304 1.251 88 21 26
200tp 37995 1.345 1.304 1.251 1017 143 248

Pseudospectral time - trapezoidal space discretization

Var. no. Objective Value CPU Time (secs)
1st Stage 2nd Stage 1st Stage 2nd Stage

r = 3% 7% r = 3% 7%

25tp 11524 1.341 1.301 1.247 297 162 215
50tp 22599 1.352 1.312 1.258 33446 20305 17780

Pseudospectral time - lumped element space discretization

Var. no. Objective Value CPU Time (secs)
1st Stage 2nd Stage 1st Stage 2nd Stage

r = 3% 7% r = 3% 7%

25tp 4894 1.350 1.309 1.255 112 141 186
50tp 9594 1.348 1.308 1.254 8262 13710 11775

two re-optimization tolerances: r = 3% and 7%. The smoothness weighting wp is set to 50.
Figures 5.6 and 5.7 present the optimized maximum demands, compression ratios, the pressure
and the flux at each junction point, and the relative errors (in %) between simulation and
optimization on 50 trapezoidal time points with lumped element discretization in space, and
with r = 3% and r = 7%. We obtain similar results to those of Sections 5.7.2–5.7.3. At the
coarser discretization, the error between optimization and simulation is approximately 2%. The
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convergence rate is fast for the trapezoidal time discretization and the solutions obtained with
a coarse discretization are already of high quality. The lumped element approximation once
again decreases the size of the model and improves the computational efficiency significantly.
The pseudospectral time discretization is still orders of magnitude slower than the trapezoidal
schemes.

Observe that the solution tends to allocate more flux for node 12 (refer to Figure 5.6/Table 5.9),
located in the top-left portion of the 24-pipe network (see Figure 5.2), when compared to the
other regions (e.g. the top-right and bottom-left regions). The path between the source at node
1 to node 11 consists of: a) a total of 165 km of three 36" diameter pipes, and b) one 5 km long
25" diameter pipe. If we roughly estimate resistance based on distance divided by diameter
(in the unit of km/m), this will give a resistance metric of 188 (km/m). The path between the
source at node 1 to node 5 consists of: a) one 100 km long 36" diameter pipe, and b) a total
of 50km of three 25" diameter pipes. This will also give a resistance metric of 188 (km/m).
However, the pipe length of pipe 11 (or 12) is slightly shorter than pipe 5 (or the combined
length of pipe 6 and 7). This results in a lower resistance for allocating flux to the top-left
region than the top-right region. Since we aim at minimizing compression energy for all of
the compressors, the optimization model naturally chooses to optimize the path of least resis-
tance (for compressor 2). Allocating flux to the path with more resistance would incur more
compression energy (on compressor 3).
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Figure 5.6: Optimized demands(kg/s). From left to right: case 1: r = 3% and 7%, and case 3:
r = 3% and 7%.

5.8.2 Cases 2 and 3.

Case 2 is essentially a simplification of case 1, with the goal of finding the maximum con-
tractable throughput for a specific demand point in the presence of the remaining known load
profiles. Case 3 further considers price weights among different demands, with the goal to find
the optimal contractable throughput based on maximum revenue to the pipeline operator. The
optimal solution will then represent the maximum contractable revenue that the gas transmis-
sion system can obtain by optimizing allocation of supplies to flexible customers with different
offer bids. We repeat the computational studies as done in previous sections on both cases with
the trapezoidal time discretization and the lumped element space approximation. Table 5.11
shows the model size, objective values M1, and computational runtimes. Figure 5.6 and Ta-
ble 5.9 present one of the solutions for case 3 and compare it with case 1. Figures 5.7 and
5.8 also show the compression ratio, the pressure, and the flux at each junction point, and the
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Figure 5.7: From top to bottom: Case 1 with 3% and 7% re-optimization tolerance, and case 2
with 3% and 7% re-optimization tolerance. Both with 50 trapezoidal time point, and lumped

space approximation.

relative error (in %) between simulation and optimization for 50 time points. Once again, the
results are consistent with the earlier case studies. The errors could be further reduced by in-
creasing the discretization to 200 time points (Figure 5.8). Overall, these results show that the
proposed method produces consistent results across a number of case studies and objectives.
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Table 5.11: Objective Value (M1) and runtimes: case 2 and 3
Case 2

Var. no. Objective Value CPU Time (secs)
1st Stage 2nd Stage 1st Stage 2nd Stage

r = 3% 7% r = 3% 7%

25tp 4812 0.727 0.705 0.676 3 1 1
50tp 9437 0.704 0.683 0.654 7 4 5

100tp 18687 0.695 0.674 0.647 51 22 13
200tp 37187 0.696 0.675 0.647 500 178 330

Case 3

Var. no. Objective Value CPU Time (secs)
1st Stage 2nd Stage 1st Stage 2nd Stage

r = 3% 7% r = 3% 7%

25tp 4920 2.955 2.867 2.748 3 2 1
50tp 9645 2.913 2.826 2.709 12 4 5

100tp 19095 2.892 2.805 2.689 59 24 24
200tp 37995 2.893 2.807 2.691 359 89 180
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Figure 5.8: From top to bottom: Case 3 with 3% and 7% re-optimization, 50 trapezoidal
time point, and lumped space approximation; Case 3 with 3% and 7% re-optimization, 200

trapezoidal time point, and lumped space approximation.



Chapter 6

Conclusion and Future Work

In this thesis, we have introduced optimization techniques improving stability and control in
three energy system applications.

6.1 Power System Restoration

Our first application focuses on the Restoration Ordering Problem (ROP) with transient sta-
bility and determines whether it is possible to transition between steady states produced by
the ROP. We propose a new generalization of the ROP, the AC-ROP-SPASVD problem, that
splits restoration steps into dispatching and closing steps. The formulation uses standing phase
angle (SPA) constraints and voltage difference (VD) constraints as a surrogate for rotor swing
reductions, which are being classified as indirect approaches in maintaining rotor angle sta-
bility. We show that using the DC power flow approximation can lead to infeasible solutions
and adding SPA constraints on the DC power flow model does not reduce rotor swings. By
utilizing the LPAC model, case studies indicate that the novel formulation reduces rotor swings
of synchronous generators by over 50%, while having a negligible impact on the blackout size
(i.e.,≤ 1.5% increase), which is still optimized holistically. We further illustrate on the 39-Bus
benchmark that reducing standing phase angles is not a sufficient condition for reducing rotor
swings. To address this limitation, we further introduce VD constraints, which are effective in
further reducing rotor swings.

Our contribution represent a first step in incorporating transient stability with power sys-
tem restoration planning using indirect methods. Exploring a tighter integration of transient
dynamics and optimization algorithms is an interesting direction for future work. Considering
other important dynamics and known problems [16, 15], e.g. voltage and frequency dynamics,
sustained over-voltage problems, and switching surges are also important future directions.

6.2 Transmission Line Switching

Our second application focuses on the Optimal Transmission Line Switching (OTS) problem
with transient stability. We propose an automatic control and optimization routine to address
transient stability during transmission line switching in congested situations. The optimization
model uses a trapezoidal discretization of the differential algebraic equations for the 4th or-
der two-axis generator model with an automatic voltage regulator (AVR), featuring two types

109
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of control variables: generation dispatch and stabilizer parameters. We adopt an objective
function minimizing the sum of the time-weighted rotor angle accelerations, to ensure increas-
ingly smaller swings as time increases. Experimental results show that: 1) congestion leads to
difficulties in ensuring rotor stability, 2) due to the lack of excitation controls, classical swing
models cannot maintain rotor stability under congested conditions, 3) variables controlling set-
points of exciters and stabilizers are critical to ensure rotor stability, in particular to maintain
(small-signal) oscillation stability, 4) with longer optimization horizons our algorithm is able
to find more stable control solutions at the expense of computation runtime, 5) the optimiza-
tion results validated against POWERWORLD simulations exhibit an average error in the order
of 10−3 degrees for rotor angles, and 6) the optimization model is solved within minutes of
computation time for the 0.16 sec discretization on the IEEE-39 bus test system, and scale well
to the larger South East Australian Power System.

Our contribution can be viewed as an attempt to incorporate generator dynamic models
into optimization. Future research directions include other higher order generator models and
voltage/frequency dependent load models. Our work currently assumes that generator con-
trols are the primary resources used for maintaining stability. With more flexible resources,
e.g. battery resources, FACTs devices, and other digital controllers in smart grids, expected to
be installed in the near future, incorporating these dynamics also represents venues for future
work. The primary focus of our work is on transient stability and short-term oscillation sta-
bility. Extending this work to mid-term stability with frequency control is another opportunity
for future work.

6.3 Dynamic Compressor Optimization

Our third contribution investigates the Dynamic Optimal Gas Flow (DOGF) problem in pipeline
flow management. The problem is on minimizing operating costs of gas compressors while
maintaining pressure constraints under dynamic intra-day conditions. The offtakes/demands
by customers are described using time-dependent mass flow functions. This study was mo-
tivated by the growing reliance of electric power systems on gas-fired generators, which was
driven by the need to balance intermittent sources of renewable energy and low gas prices. We
present an efficient scheme for the DOGF that relies on a compact yet appropriately accurate
representation of gas flow physics. We study and present two time discretization methods and
two space discretization methods for our nonlinear optimization model. A two-stage approach
is applied to minimize energy costs and maximize smoothness of compressor ratios. The result-
ing large-scale nonlinear programs are solved using an efficient general interior-point method,
and the results are validated against an accurate simulation of the dynamic equations. The
novel optimization scheme yields solutions that are feasible for the continuous problem and
practical from an operational standpoint. Scalability of the scheme was demonstrated using
three networks with 25, 40, and 135 nodes, 24, 45, and 170 pipes, and total pipeline lengths
of 477, 1118, and 6964 kilometers respectively. We further extended the formulation to tackle
the maximum throughput problem, demonstrating the flexibility of our model.

Our work extends the OGF problem with transient slow dynamics. One immediate ex-
tension to our work consists in applying this framework to other energy systems with similar
dynamics/equations, e.g. water pipeline systems with fluid dynamic equations. Extending this
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framework to other applications with gas dynamics would also be interesting, e.g. optimal
control policies with other natural gas devices, expansion planning problems [143, 87], and
reliability/security analysis [144, 115].
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