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Abstract

This thesis is about the evaluation of feral pig control. The evaluation is divided 

into three parts; firstly surveying of populations of feral pigs or their sign, secondly 

modelling the processes occurring during control, and thirdly field evaluation of the 

effects of control on populations of feral pigs or their sign. The control methods 

evaluated were shooting from a helicopter, and poisoning with warfarin.

The evaluation of shooting from a helicopter occurred on the floodplains and

surrounding woodlands of the Mary and Adelaide Rivers in the Northern Territory. 

A method of helicopter aerial survey using randomly selected transects was 

developed and evaluated prior to its use in the evaluation. The accuracy and 

precision of one strip transect and eight line transect estimators were tested by 

surveying a known population of carcasses of feral pigs. Most of the estimators 

were accurate and of high precision. In an area of combined floodplain and 

woodland, the most accurate was the Fourier series estimator. The survey method 

was used to estimate an 80% kill of feral pigs by shooting. A functional response 

model was fitted to the kill data . The model estimated a 95% kill after 

0 .24h /km 2 of shooting compared to the actual duration of shooting of O .lSh/k irr .

The evaluation of the effects of poisoning with warfarin initially involved

developing and testing survey methods. The evaluation occurred in Namadgi 

National Park in the Australian Capital Territory in mixed forest, woodland and 

grassland. Methods for measuring the spatial extent and frequency of pig rooting 

and pig dung were developed and evaluated. Randomly selected, unmarked and 

marked plots were investigated, but the marked plots were measured most 

intensively. The methods for estimating the extent of pig rooting and counts of pig 

dung were repeatable, with no significant difference between replicate measurements. 

Poisoning with warfarin resulted in a 2% drop in the frequency of plots with 

rooting but an 87%, drop in the number of dung pellets counted on plots after one 

m onth. An independent estim ate of the kill was 94%) after 14 days, calculated from 

deaths of feral pigs marked previous!) with radio-transm itters. The effect on pig

abundance was also estimated (97% kill after one month) by a mathematical model 

of the poisoning. The model was derived from similar models used to study the

epidemiology of infectious diseases.
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Chapter 1 

Introduction

This thesis is about the evaluation of control of feral pigs (Sus scrofa) and their

impact; how control can be evaluaied and what control achieves. The thesis

concentrates on developing and evaluating methods of surveying feral pigs and feral 

pig sign. The methods are then used to evaluate field control. The field evaluations 

are compared to. or supplemented by. development and application of theoretical 

models of feral pig control. The central hypothesis to be tested is tha t  control of 

feral pigs does not affect population density of pigs or the extent of their sign.

The thesis is structured as follows. The development and evaluation of survey 

methods are described in Chapters 2 and 3. The most accurate, precise or

repeatable survey m ethods are then applied to the field evaluations of shooting 

from helicopters in C hapter 4 and poisoning in Chapter 5. The two methods are 

however not directly compared in the field as shooting from a helicopter was

evaluated in mostly open floodplain hab ita t  and poisoning in mixed forest, 

woodland and grassland. Included in each of Chapters 4 and 5 are mathematical 

models of each „method of control. The models are derived from first principles then 

applied to the field evaluation. An overall discussion of the results is given in 

Chapter 6. which also discusses the broader implications of the activities and draws 

parallels with results in other areas of wildlife management.

1.1. Why feral pigs are controlled

Pigs are not native to Australia. They were introduced with white settlement 

(Tisdell 1982). The ancestors of feral pigs are domestic pigs whose ancestors are 

wild boar which are native to Europe and Asia (Bratton 1977).

Feral pigs in Australia are of interest to science because of their adaptabili ty  and 

survival strategies and of interest to the wider community because of their 

economic and environmental impacts and their value as an economic resource.



1 .1 .1 . E con om ic im p a ct

The annual economic cost of feral pig damage to agriculture in Australia has

been estimated at $70 million (Tisdell 1982). The accuracy of this estimate is 

unknown.

Damage has been reported to pastures (Pullar 1950, Hone 1980), crops (Pullar 

1950. Giles 1976, Pavlov 1980, Tisdell 1982), forests and fences (Pullar 1950, 

Tisdell 1982). and predation of lambs (Rowley 1970. Giles 1976, P lan t et ab 1978,

Pavlov et ab 1981. Pavlov and Hone 1982). In an early review Fennessy (1966)

considered that the impact of feral pigs on lamb production was unknown. Feral 

pigs can be infected with pathogens th a t  cause endemic diseases such as

tuberculosis (Corner et_ ah 1981), leptospirosis (Keast et ah 1963), swine 

brucellosis (Norton and Thomas 1976), Murray Valley encephalitis and Ross River 

virus (Gard et_ ah 1976) and sparganosis (Giles 1980). Corner et ah (1981)

considered that feral pigs were probably a dead-end host for tuberculosis.

In a potentially useful model for describing what influences the extent of damage 

by a pest, Cherret. et ah (1971) suggested tha t  the extent of damage was a 

function of five variables; the destructive potential per pest, the duration of 

exposure, the resistance of the host or object being attacked, the number of pests 

and the value of each item damaged. Norton (1976) suggested a simpler

classification which combined the destructive potential and the resistance into one 

term , the actual damage per pest. No a ttem pt has yet been made to apply that 

classification to the economic impact of feral pigs.

Feral pigs may have a role as a reservoir of infection of exotic livestock diseases

such as foot and m outh disease, rabies, swine fever and African swine fever (Gee

and W hittem  1973, Geering 1981, Hone and Bryant 1981, Meischke and Geering 

1983).

Overseas there has been more research published on the economic effects of wild 

boar and feral pigs. Past.ure damage has been reported in the USA (Barrett 1971). 

Crop damage has been reported in Poland (Mackin 1970, Andrzejewski and

Jezierski 1978. Gorynska 1981). Malaya (Diong 1973) and the USA (Wood and

Barrett  1979). Gorynska (1981) reported significant correlations between the area

of crop damage and numbers of wild boar (r=0.55. df=21, P<0.01) and the value 

of compensation for damage and the square of wild boar numbers (r=0.61. df=21, 

PcO.Ol). In contrast. Mackin (1970) and Andrzejewski and Jezierski (1978)

reported no significant correlation between the extent of crop damage arid

abundance of wild boar. In a discussion of pests generally, Woods (1974)
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considered there was rarely a linear relationship between the number of pests and 

the extent of damage.

1 .1 .2 . E n v iro n m en ta l im p act

Feral pigs commonly root up the ground to feed on plant roots and soil 

invertebrates. Rooting is the disturbance of the soil by use of the snout. Studies 

on rooting in forests and other habita ts  have concentrated on where rooting occurs 

(Bratton 1974, 1975, Jezierski and Myrcha 1975, Bratton et ah 1982), when it 

occurs (Jezierski and Myrcha 1975, Howe and Bratton 1976, B arre tt  1978, Wood 

and Roark 1980. Genov 1981. Bratton et ah 1982. Alexiou 1983), its spatial extent 

(Jezierski and Myrcha 1975, Singer 1981, Cooray and Mueller-Dombois 1981, 

Bratton et ah 1982. Ralph and Maxwell 1984) and its influence on plants (Barrett, 

1971. Bratton 1974. 1975, Spatz and Mueller-Dombois 1975, Wood and Brenneman 

1977. Hone 1980, Howe et ah 1981, Alexiou 1983, Stone 1985) and animals (Singer 

et ah 1984).

Environmental effects of feral pigs in Australia have not been studied intensively. 

Alexiou (1983) reported changes in plant species composition in sub-alpine 

woodland. Frith (1973) broadly discussed possible impacts. Tisdell (1982) noted 

that there had been little research on the environmental effects of feral pigs in 

Australia, including the  effects on native forests and woodlands, though many 

foresters considered feral pigs were pests.

The effect of feral pigs/wild boar on mountain forests and other vegetation types 

has been studied most intensively in Great Smoky Mountains National Park 

(GSM NP), Tennessee. The pigs reduced the cover of herbs and the number of 

plant species in gray beech forest (Bratton 1975). Exclosure studies showed that 

the effect on ground flora was related to the time since colonisation by pigs, and 

exclusion of pigs resulted in significant increases in plant biomass (Bratton et ah 

1982, Singer ey ah 1984). Lacki and Lancia (1983) reported increased soil organic 

m atter , cation exchange capacity and acidity in areas of wild pig rooting. Lacki 

and Lancia (1986) reported increases in shoot elongation in areas of heavy pig 

rooting. The effect was considered to be associated with enhanced nutrient 

mobilisation in soil rooted by pigs. Reductions in leaf litter and in the abundance 

of red- backed voles (Clethrionomys gapperi) and the northern short-tailed shrew 

(Blarina brevicauda). along with accelerated leaching of phosphorus, calcium and 

magnesium from leaf l itter were reported by Singer et ah (1984). However they 

reported no significant effect of feral pig rooting on sediment yield.
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Lucas (1977) reported that feral pigs in forests in the USA had many detrimental 

effects, and Wood and Barrett  (1979) recorded adverse effects of feral pigs in 

longleaf pine (Pinus palustris) forests in the USA.

The effects of feral pigs on native vegetation in Hawaii have been described by 

Spatz and Mueller-Dombois (1975), Stone (1985) and reviewed by Loope and 

Scowcroft (1985). Foraging on tree ferns (Cibotium glaucum) depressed the fern 

density and a native grass (Deschampsia australis) was replaced by an exotic grass 

(Holcus lanatus) in areas of rooting. Spatz and Mueller-Dombois (1975) partly 

investigated the effect of pig rooting by simulating the process through artificial 

digging of the soil. Challies (1975) reported the deleterious effects of feral pigs on 

the vegetation of Auckland Island, New Zealand, and how' impacts appear to be 

related to the time since introduction of pigs.

Damage to forest seedlings and young trees were reported in New’ Zealand forests 

(Bathgate  1973). Harrington (1976) reported th a t  studies in Iran had indicated the 

importance of rooting by wild boar in enhancing regeneration of forage plants of 

benefit to other wildlife and in suppressing forest insects. However Bobek and 

Perzanowski (1984) considered that no unequivocal evaluation of the impact of wild 

boar on Polish forests could be made due to lack of data.

Clearly feral pigs can have impacts on agriculture, forestry and the environment. 

W hether the impacts are regarded as deleterious or beneficial depends on the 

m anagement aims of the area concerned.

Tisdell (1982) and Auld and Tisdell (1986) argued th a t  the economic assessment 

of the effects of feral pigs in Australia needed to recognise the effects of damage 

and the game value of the animals. Auld and Tisdell (1986) estimated the annual 

game value of feral pigs a t  $30-35 million in Australia. The effect in Australia of 

game hunting and harvesting on populations of feral pigs or the impacts of feral 

pigs are not knowm. B arrett  (1971, 1978) formulated a m anagement plan for feral 

pigs on a private cattle  ranch in California based on game hunting to regulate pig 

density and control damage to pastures.

1.2. Control of feral pigs

Many methods of control of feral pigs and their damage have been, and are being 

used in Australia and overseas (Giles 1976. 1977. Hone et ah 1980, Appleton 1982. 

Tisdell 1982, Breckwoldt 1983). especially poisoning, trapping, hunting, shooting 

from the ground and from helicopters, fencing and habita t alteration. Biological 

control has been a ttem pted  in Pakistan  (Tisdell 1982) using swine fever, but this
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did not reduce damage or pig populations (Anon 1970). Holloway (1973) 

considered th a t  current control technologies were adequate and had effectively 

controlled feral pigs in New Zealand. Habitat alteration was described as an

elegant method of pest control (Caughley 1980). The method has had little 

application for feral pigs as the species is a habita t generalist (Bratton 1977). 

Feral pigs can colonise most ecosystems some of which may not be able to be 

easily manipulated such as some relatively intact forests.

Several poisons have been or are being used legally or illegally for control of feral 

pigs in Australia; sodium monofluoroacetate (1080), phosphorus (SAP, CSSP) and 

fenthion ethyl (Lucijet) (Bryant et ah 1984, Mcllroy 1985). Evaluation of poisoning 

with sodium monofluoroacetate (1080) has shown that a 73% reduction in 

abundance of feral pigs can be achieved in the short-term (one to two months) 

(Hone 1983). However several problems with the use of 1080 for control of feral 

pigs have been identified. Vomiting of 3 080 bait can occur (Hone and Kleba 1984, 

Rathore 1985, O'Brien et ah 1986) thus providing poisoned food for non-target 

species. Rathore (1985) reported that the high incidence of vomiting was

prevented by dosing feral pigs with metoclopramide. but Hone and Kleba (1984) 

and O'Brien et ah (1986) reported the opposite effects - no effect on the incidence 

of vomiting after ingestion of metoclopramide. Despite this Coblentz and Baber 

(1987) recommended the use of 3 080 poison and metoclopramide for the control of 

feral pigs on lsla Santiago in the Galapagos.

M ortality of feral pigs can be very low after ingestion of 1080-poisoned bait 

(Hone and Kleba 1984) and there is no antidote to treat victims of accidental

poisoning. O'Brien (1985) reported that the LD .0 to pigs of 1080 was 4.4 m g/kg  

which was higher than the 1.0 m g/kg  reported by Mcllroy (1983). The high body 

weight of pigs means tha t  many non-target species may be at risk in Australia 

because of the high concentration of 1080 in poisoned bait (Mcllroy 1983). The 

above problems have led to evaluation of an alternative poison, warfarin, w'hich in 

pen experiments caused mortality  of up to 92% (Hone and Kleba 1984).

There has been limited evaluation of the efficiency and costs of other control 

methods. Some fences are pig-proof and many are not (Plant 1980, Hone and 

Atkinson 1983). Netting fences can limit movements of feral pigs but are more

costly than plain wire or electric fences (Hone and Atkinson 1983).

Trapping had little impact on feral pig populations in GSMNP (Fox 1972, Fox 

and Pelton 1977). Fox and Pelton (1977) evaluated th<j effects of trapping and

shooting and found tha t  the cost per pig of shooting at night on foot, was less
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than th a t  for shooting by day which in turn cost less than trapping. Shooting by 

night from vehicles cost the most. Trapping success was significantly and negatively 

related to the age of adjacent pig rooting. Diong (1973) reported tha t  trapping, 

with snares, could reduce local populations of pigs in Malaya.

A limitation of trapping is that some pigs are not captured. Piglets less than six 

to eight weeks old were never trapped in an intensive study in Poland (Jezierski 

1977). Barrett (1978) considered tha t  in California old boars often a ttem pted to 

tip over traps to obtain bait rather than  enter the trap. Andrzejewski and 

Jezierski (1978) reported th a t  some wild boars in Poland were never caught in 

traps. All such individuals were older than one year and were believed to be 

im m igrants  to the study area. Giles (1980) noted that in western New South Wales 

(NSW) the sex ratio of trapped pigs was biased in favour of females.

Turvey (1978) described the use of trapping and other control methods and 

reported that trapping was widely used in north-west NSW. If low numbers of feral 

pigs were killed per year, then trapping was more cost effective than poisoning, 

and when high numbers of pigs were killed then poisoning was more cost effective. 

However Turvey relied on questionnaire da ta  from farmers so the results are of 

unknown accuracy. Boreham (1981) used trapping in what is now Namadgi

National Park in the Australian Capital Territory (ACT), and concluded that 

trapp ing  was the most effective control method then available. Baber and Coblentz 

(1986) after extensive trapping in two sites in California, caught 66.7% and 77.7% 

of pigs at least once. Coblentz and Baber (1987) reported a trapping success rate 

of 14 pigs captured in 91 trap  nights.

A limitation of both trapping and poisoning is the  need for feral pigs to eat the 

bait. In one study Hone (1983) estimated th a t  23% of feral pigs at a site did not 

eat the pellet bait used for poisoning. Hone et aT (1985) reported tha t  the daily 

ingestion of bait by free-ranging feral pigs varied significantly between seasons, 

from one to three kg/pig. Coblentz and Baber (1987) measured bait removal to 

estim ate  the efficiency of poisoning. This estimation assumed bait removal at 

adjacent sites to be independent. As some of the bait sites were only 10-30m apart 

the assumption is suspect. Transects were only 135-275m long so a pig could easily 

remove all baits along a transect. If that occurred then the efficiency of poisoning 

was grossly overestimated. The analysis also assumed that all pigs w'ould eat the 

bait, goat meat, yet the meat was not recorded in the natural diet of the feral 

pigs studied.

Shooting from a helicopter has been used to control feral pigs in swamps in NSW



(Hone 1983. Bryant et̂  ah 1984, O'Brien 1985). O'Brien (1985) reported a decline 

in the kill rate  (pigs sho t/h )  over several years of shooting from helicopters in the 

Macquarie Marshes in NSW. It was noted in th a t  study th a t  the optimal frequency 

of shooting was not known, nor w'as the cost relative to other control methods. 

Saunders and Bryant (in press) estimated th a t  80% of feral pigs in an area were 

shot from a helicopter. Feral pigs tha t  survived may have changed their behaviour 

in response to the shooting, as evidenced by two of six pigs that were radio- 

collared and known to be in the area but w'hich were not seen from the helicopter 

during shooting. Hence some pigs survived by not being seen, rather than pigs 

escaping from shooters.

In none of the previous studies has there been close integration of the ecological 

basis of any control method. The ecological basis of control has been explored by 

several authors. Tipton (1977), Giles (1980) and Hone and Robards (1980) 

discussed the effects of control on population dynamics but did not experimentally 

examine the effect of the control methods themselves. Tipton (1977) reported that 

the optimal control strategy, within cost constraints, w’as to remove 60% of the 0.5 

to 1.0 year old age class and 40% of the over 2.5 year old class each fall 

(autum n) and spring. The resultant finite ra te  of increase of the population was

0.85/yr. When food supply varied between years then the control could be reduced

to obtain the same result. Giles (1980) calculated that instantaneous reduction of 

population size by at least 70% was necessary to keep abundance of feral pigs 

below that of pre-control levels for at least one year. Hone and Robards (1980) 

reported the expected effect of control on a closed feral pig population which grew' 

exponentially with an instantaneous rate of increase of 0.6/yr. Annual control 

which killed 70% of pigs then alive, achieved eradication in 9.5 years, compared to 

biannual control of 70% which produced eradication in 3.5 years. Food supply was 

assumed to be high in each year. When food supply was variable between years 

then the populations were generally lower but eradication still took as long. 

However Gaughley (1980) showed that a hypothetical population increasing by 

logistic growth with an instantaneous rate of increase of 0 .6 /yr and subjected to 

continual control throughout the year at a level of 70% control, survived for 42 

years before eradication.

Calculations bv Giles (1980) indicated th a t  a major source of variation in the 

rate  of increase of pig populations was variation in juvenile mortality. No control 

method currently used specifically aims to increase juvenile mortality to get 

maximum  depression of the rate  of increase of a population.

In the present study, the aim was to increase our understanding of the effect of

two control methods; shooting from a helicopter and poisoning with w-arfarin.
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1.3. Surveying

The evaluation of the effects of control on pig populations or their impacts 

requires a survey method or methods which estimate the abundance of feral pigs or 

their sign prior to and after control. Such methods are now reviewed.

Survey da ta  are of three types; presence/absence, density index (relative density) 

or true density. Presence/absence da ta  are used for mapping the distribution of

animals. Recent a ttem pts  to map the distribution of feral pigs in Australia have

demonstrated broad agreement but also some notable differences. Maps by Frith 

(1973), Tisdell (1982) and Strahan (1983) differ in the presence or absence of

several colonies of feral pigs in Western Australia and the extent of isolation of 

colonies in eastern NSW. The differences appear to be associated with the authors 

rather than some extraordinary capacity of feral pigs to appear and disappear or 

be eradicated locally.

Most surveys of feral pigs have aimed to obtain density indices or estimates of 

true density. Many methods are available for counting wildlife populations. 

Norton-Griffiths (1975), Eberhardt (1978b), Eberhardt et ah (1979), Caughley 

(1980), and Seber (1982, 1986) described in detail most of the survey methods. A 

variety of survey methods has been used for feral pigs or wild boar, but no

universally accurate or precise method has been developed. Similarly there is no 

standardisation of survey variables. B arre tt  (1982) outlined briefly some of the 

methods, but 1 will discuss them in more detail.

Track counts and drive counts (by beating) were used by Pucek et ah (1975), 

Dzieciolowski (1976) and Bobek and Perzanowski (1984) in Polish forests in winter 

snow. Dzieciolowski (1976) reported a significant (P<0.05) but weak correlation 

(r=0.389. df=24) between the results of drive counts and the number of tracks of 

wild boar. The track counts were indices of population density but the accuracy of 

the drive counts was not known.

Diong (1973) used the number of pigs killed in small known areas in M alaya to 

obtain a rough estim ate ' of pig abundance over a wide area. Line transects were 

used by Singer and Ackerman (1981) in forests in GSMNP, USA. The transects 

were used to obtain estimates of true density by walking along existing trails and 

converting observed density to true density by E bcrhard t’s (1968) power function. 

However Burnham et ah (1980) concluded that the power function was not 

generally useful as an estim ator of true density and hence the density estimate by 

Singer and Ackerman (1981) was probably inaccurate. Saunders and Bryant (in 

press) used an index, m anipulation, index method (Eberhardt 1982) to estimate
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true population size of feral pigs. The indices were obtained by aerial survey. 

Coblentz and Baber (1987) used an area count on Isla Santiago and assumed it 

was an accurate count.

Capture-recapture was used by Henry and Conley (1978) to estimate true density 

by the Petersen estimate. Jezierski and Myrcha (1975), Jezierski (1977) and 

Andrzejewski and Jezierski (1978) used a calendar of captures method to estimate 

true density. Barrett (1971, 1978) used the ratio  of tagged and recognised pigs to 

untagged pigs, to estimate population density, supplemented by aerial 

reconnaissance of pig sign. How the latter  aerial observations were used was not 

specified. Giles (1980) used Schnabel and Jolly-Seber estimates, a cumulative catch 

equation and frequency of capture models (Poisson, negative binomial and 

geometric) to estimate true density of a pig population. Only the Jolly-Seber 

estimate and the negative binomial and geometric models allow for unequal 

catchability of feral pigs which has been reported in several studies (Barrett 1971, 

Jezierski 1977, Giles 1980).

Baber and Coblentz (1986) showed th a t  capture  probabilities can vary between 

individuals and times. They used two capture-recapture models (Mb and Mh) in 

program C A PT U R E  (Otis et ah 1978) to estim ate  true density of populations, but 

reported that at each of two sites the appropria te  mode) was different because of 

varying pig behaviour. At one site the  accuracy of the estimate of pig numbers 

was compared to  a Petersen estimate and a removal estimate, and all were in close 

agreement (63. 71 and 63 pigs respectively). The Petersen estimate assumed equal 

probability of capture and recapture (Caughlev 1980) and the appropriate  model 

from program C A PT U R E  (M .) assumed a constant probability of capture th a t  

varied between individuals (Baber and Coblentz 1986). The accuracy of the 

estimate from model M b was not tested. Coblentz and Baber (1987) also used 

m ark-recapture models, namely the generalized removal mode) (Mbh) in program 

C A PT U R E  (Otis et ah 1978). The latter  study estimated the size of the pig 

population on Isla Santiago, in the Galapagos. The authors cautioned tha t  the 

estimates may not be accurate. That is not surprising as in two habita ts  on the 

island, the number of pigs was estimated by 'com paring the number of pigs and 

pig sign" with those in other habit,ats. No details of how the comparisons were 

made were given. The number of pigs in those two habita ts  accounted for 64% of 

the estimated total number of pigs on the island.

Indices of population density of feral pigs have been obtained by area counts 

(Hone and Pedersen 1980. Hone 1983). spotlight strip transects (Hone 1983), aerial 

survey strip transects (Pavlov ei_ ah 1981, Hone 1983, Saunders and Bryant in
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press, Wilson ey ah in press), bounty payments on pig snouts (Giles 1980, Woodall 

1983) and dung counts on plots (Ralph and Maxwell 1984). The precision of the 

spotlight transect counts and the data from aerial survey (Hone 1983) was very 

low. The ratio of the standard error to the estimate »^as 31%>-54% for the aerial 

survey and 30%,-33% for the spotlight counts (Hone 1983) but was lower (25%) in 

surveys by Wilson et ah (in press). Barrett  (1982) noted th a t  many indices of pig 

abundance have been used but they have been rarely compared to known 

populations of feral pigs. He did not give an example and 1 do not know of any.

In the studies of Mackin (1970) and Gorvnska (1981) the methods used to obtain 

estimates of wild boar were only vaguely described and so the accuracy of the 

estimates can not be assessed. Despite the plethora of survey methods, accurate 

estimates of the abundance of feral pigs over extensive areas have not been 

obtained. There have been sets of guesses of the number of feral pigs in Australia; 

0.5-1.5 million (McKnight 1976). 8.7-10.1 million (Flynn 1980) and 3-6 million 

(Tisdell 1982). The usual caveat on the accuracy of guesses (Caughley 1980) should 

be applied to each of the above.

In the present study methods were needed to survey feral pigs or their sign in 

open floodplain, forest, woodland and grassland. For the thesis, aerial survey was 

chosen for open floodplain and open woodland habita ts  while ground transect 

surveys were used in forest, woodland and grassland.

The methods of control of populations of feral pigs have evolved from a 

combination of field experience arid experiments. JSot all the practices have been 

tested exhaustively because it is virtually impossible to do so. Experiments to 

evaluate three poisons in each of three bait types wdth four delivery systems, in 

each of four seasons become too costly to apply in the field. An alternative 

approach is to develop m athematical models of the control methods, based on 

relevant field and laboratory data. A review of modelling follow's.

1.4. Modelling

The principal use of m athematical models in pest control is to provide guidelines 

for evaluating various control strategies (Conway 1977, Conway and Comins 1979). 

If the values of param eters  used in a model can be estimated then the models may 

also be of predictive value.

There have been surprisingly few a ttem pts  to integrate the many pat,terns and 

processes which are involved when controlling vertebrate  pests such as feral pigs 

and to express the results in a mathematical form or model. Gentry (1971)
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developed a m athematical model of programs for eradication of rats. The model 

was based on a series of simultaneous integral equations which described changes in 

the number of rats of different ages. Natural changes in abundance were described 

and the effects of sterilisation and poisoning examined. Batcheler (1982) developed 

a simple probability model to estimate the number of random encounters with

poisoned bait tha t  were required to kill a pest. This was based on the poison 

content and piece-w'eight distribution of poisoned baits. G ran t et ah (1984) 

described a Leslie matrix model to evaluate the effect of pesticides on non-target 

populations. The effects of four hypothetical coyote (Canis la trans) control 

programs using sodium monofluoroacetate were simulated. Modelling has been used 

more extensively for evaluating chemical and other control of invertebrate pests 

such as cattle ticks (Sutherst et ah 1979).

Hone (1986a) developed probabilistic models which estimated the probability of an 

animal dying in a poisoning program. The probabilistic approach reflected 

underlying uncertainty in describing the effects of all factors and interactions th a t  

may determine how many or what percentage of animals die. The models

estimated the probability of an animal dying as the product of the probability of 

an animal eating the poisoned bait and the probability of dying given th a t  the

animal has eaten the poisoned bait.

Models of poisoning were developed for four ecological situations; each 

combination of random  and non-random search, and random and non-random bait 

dispersion. The models for random and non-random bait dispersion were based on 

type II and type III functional response relationships for mice (Peromvscus 

m aniculatus) feeding on wheat (Real 1979). However Taylor (1977) reported 

different results for mice (Onychomvs torrid u s ) feeding on mealworms, namely a 

type II functional response for both dispersion patterns. Similarly, Short (1985) 

reported type II functional responses for kangaroos (Macropus rufus), sheep (Ovis 

aries) and rabbits (Oryctolagus cuniculus) feeding on plants. The data  of Taylor 

and Short indicate type II functional responses though it should be noted that 

neither tested the fit of a type III response to their data. On the basis of the

above, the distinction between bait dispersion patterns by Hone (1986a) was 

probably not necessary. Similarly the labelling (May 1981) of a type II functional 

response as the "invertebrate" response and the type III as the "vertebrate" 

response is not appropriate .

The disc equation (Holling 1959. 1965. 1966) and later elaborations of the 

functional response (Pulliam 1974. Charnov 1976. Belovsky 1984, Fujii et ah 1986) 

assume that  prey density is constant during predation. The random predator
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equation (Rogers 1972. Lawton et ah 1974) allows for prey removal and is hence 

more analagous to feral pigs feeding on bait. Hone (1986a) suggested Pulliam's 

(1974) equation may be useful for modelling poisoning situations where bait is

randomly distributed and the pest’s search pa tte rn  is non-random. The model is

appropriate when the pest does not remove a substantial proportion of the bait. 

Hone (1986a) also suggested tha t  when both bait dispersion and the pest’s search 

pattern are non-random, then the model of Caraco and Pulliam (1984) could be 

used to describe bait removal. Their model, which is the same as tha t  suggested 

by Cowie (1977), assumes a linear relationship between prey (bait) removal and 

prey (bait) abundance, and th a t  the handling time per unit of prey (bait) is

negligible compared to the time spent by a pest at a bait station. From the above, 

and as a lternate food is nearly always available, the two-prey (bait and non-bait) 

equivalent of the random predator equation (Lawton et ah 1974) is a more 

appropriate  model for the functional response relationship than those used by Hone 

(1986a). Hence the four categories of models described in th a t  study can be

reduced to one general category and model.

The models of Hone (1986a) assume that the probability of an animal dying from 

poisoning is similar between individuals in the population. The probability of dying 

may not be constant however because of behavioural differences between animals. 

An analagous situation has been described for capture probabilities in trapping 

animals for estimating abundance (Otis et aL 1978). Incorporation of variable 

probabilities in the models of Hone (1986a) is an area for future research and is 

not a ttem pted  here.

This Chapter has reviewed why and how feral pigs are controlled and how such 

control can be evaluated by surveying and modelling. The next two Chapters 

describe the development and evaluation of survey methods. The evaluation builds 

on existing knowledge described in this Chapter.
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Chapter 2 

Aerial surveying

Aerial surveys are often used to estimate abundance of large mammals. Surveys 

usually aim to obtain indices, or estimates of true population density with 

acceptable levels of precision. Many survey and environmental factors can influence 

counts in aerial survey (Graham  and Bell 1969, Caughley 1974, Caughley et ah 

1976) usually resulting in negative bias (underestimating density). Many methods 

have been used to correct for this bias such as multiple regression (Caughley et aT 

1976), paired observers (Magnusson et ah 1978) and photography (Norton-Griffiths 

1975). These and other methods were reviewed by Pollock and Kendall (1987).

They concluded th a t  total ground counts were the best method for correcting for

visibility bias in aerial survey. Seber (1982) noted the need for evaluation of the 

various estimators on known populations.

Parallel development of on-ground line transects have concentrated on better 

models for defining the detection function (Eberhardt 1968. 1978a, Burnham et ah 

1980. Seber 1982. Burnham  and Anderson 1984. Buckland 1985). The detection

1 unction describes the decreasing probability of seeing an animal at increasing

distance from the observer. Burnham and Anderson (1984) and Hone (1986b) have 

emphasised the need for distance da ta  in transect counts and the use of established 

criteria for evaluation of methods. Ground and aerial survey techniques appear to 

be converging analytically but no study has reported an evaluation of line transect 

methods relative to an aerial survey of a known population. Alldredge and Gates 

(1985) evaluated line transect estimators for aerial survey of dolphins but did not 

independently estimate true density. Pollock and Kendall (1987) argued against 

widespread use of line transect estimators in aerial survey, as the critical 

assumption th a t  all animals were seen on the transect line may not be correct in 

areas of thick vegetation or if animals are underwater.

Aerial survey has been used in Australia  to monitor the abundance of feral pigs 

(Pavlov et ah 1981. Hone 1983, Saunders and Bryant in press, Wilson er ah in 

press). These studies used observed counts to obtain indices of abundance of feral 

pigs. Aerial survey of feral pigs can be used to estimate population density before.
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during and after control. A potential use is in the event of an outbreak of an 

exotic livestock disease such as foot and mouth disease. Aerial survey could be

used rather than ground survey techniques because of concern about accidental 

dissemination of disease pathogens bv ground staff or equipment. Such aerial survey 

would require a precise index of population density or a precise and accurate

estimate of density. The former is more easily obtained by the use of well-

established sample survey methods (Cochran 1977). The latter option would be 

useful bu t would require development and evaluation of new methods of aerial

survey. This Chapter reports the first stage of such development and evaluation. 

P as t  developments of both aerial and ground transects are utilised particularly in 

the application of distance data.

Of the many factors known to influence counts of animals by aerial survey, the 

effects of w'eather, time of survey and observers have been studied in some detail.

Short and Bayliss (1985) reported an effect of cloud cover on counts of kangaroos

(Macropus rufus and AT giganteus) and Hill et aL (1985) reported an effect of

time of day on counts of kangaroos (AT giganteus). Effects of observers on counts 

of large mammals have also been reported (moose A Ices alces, LeResche and 

Rausch 1974; kangaroos AT rufus, Caughley et aL 1976; dolphins T ursiops

tru n c a tu s . Leatherw'ood et aL 1978; feral horses Equus caballus, Frei et aL 1979; 

kangaroos AT rufus, AT giganteus. Short and Bayliss 1985). The effects of each of 

these trea tm en ts  except time of day. have not been studied previously for aerial 

survey of feral pigs. Wilson et aL (in press) reported no significant effect of time 

of day on counts of feral pigs by fixed-wing aerial survey.

To develop and evaluate an aerial survey method for feral pigs in open floodplain 

and open woodland habita ts , the effects of days, time of day, weather and 

observers on observed population density were investigated by applying a new 

survey method. This was complemented by a test of the m ethod's accuracy and 

precision from counts of objects a t  a known density. For this la tte r  experiment a 

known population of feral pigs was not available but a known population of 

carcasses of feral pigs were located in an area available for survey.

2.1. Methods

Site

The area studied was on the floodplain and surrounding area of the Alary and 

Adelaide Rivers (12° 305S. 130° 30"E) in the Northern Territory (Figure 2.1). The 

area of about 400 km ‘, is flat with broad floodplains of each river spreading in an



15

east-west direction as the rivers flow north. The surveys were conducted in October 

1985 (dry season) and March 1986 (wet season).

Prior to the study, the site was divided into three habita ts  on the basis of plant 

species composition. The first habitat was wet, open floodplain with abundant 

surface water. This hab ita t  is virtually treeless with large areas of green grasses 

and herbs to a height of l-2m. The second habita t was Eucalyptus woodland which 

occurs on the slightly higher land adjacent to the open floodplain. The common 

tree species in the woodland are R  te tradon ta  and R  miniata wrhich reached 

heights of 10-15m. There is very little understorey in the woodland except for 

grasses. The third hab ita t  was wet swamp of paperbarks, characterised by large 

areas of paperbark Melaleuca spp. trees. A bundant surface water occurs under the 

trees, with green grasses and herbs.

Design

A preliminary survey in October 3 985 tested the effects on observed population 

density of four treatm ents: days (two), time of day (early morning and late 

afternoon), observers (two) and hab ita ts  (wet open floodplain and wet paperbark 

swamp). A split-plot randomised block design was used, writh time of day as the 

sub-plot factor and other trea tm ents  as main-plot factors. Two blocks w'ere used, 

with all t rea tm en ts  assumed to be fixed. In the preliminary survey, transects were 

initially selected a t  random without replacement for the first flight, then the same 

transects were reflown on each subsequent flight.

For the test of accuracy a known population of carcasses of feral pigs was 

surveyed in March 1986. Many studies of the accuracy of aerial and ground 

survey methods have used knowm populations of inanimate objects (pins, Watson et 

al. 1969: blocks, sacks and deer carcasses. Robinette  et ah 1974: dots, Caughley et 

al. 1976: stakes, . >urnham et ah 1980: beans. Hone 1986b). Surveys of inanimate 

objects are not rep arem ents for surveys of wdld animals but can be useful areas for 

research in the development of survey methods. That is the context of the 

experiment reported here. Feral pigs had been shot, as part  of a control program 

and the number of pig carcasses was known from detailed records. A total of 618 

carcasses w'ere surveyed in an area of 223 km 2 of w'hich 472 carcasses were in 96 

k m “ of open floodplain habita t and 146 carcasses in 127 km 2 of adjacent open 

woodland. They were surveyed during the day immediately after the shooting which 

had taken two days.

Survey Methods
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Figure 2-1: Map of study area in the Northern Territory.
Hatched areas are woodland and cross-hatched 

areas are paperbark swamps.
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Transects were flown in each habita t and, other than in the preliminary survey, 

were selected at random with replacement. The transects were flown east-west to 

minimise effects of sunshine glare, and were of variable length as the habita ts  were 

of variable width. Counts were made by observers in the back seat of a Jet

Ranger helicopter with the side doors removed for counting. Each observer counted 

on only one side of the flight path. A navigator was seated with the pilot in the 

front of the helicopter and used 1:100.000 topographic maps for navigation. Survey 

altitude  was 46m (150ft) and speed 90km /h (50 knots). When a group of pigs was 

sighted the helicopter hovered so an accurate count of the group could be obtained. 

This was done to prevent undercounting of large groups, a problem reported by 

Sinclair (1973) in surveys of large mammals and in counts of inanimate objects 

(Hone 1986b). Also the technique was designed to prevent an association between 

group size and distance such th a t  at greater distances large groups were more 

likely to be seen than small groups. Eberhardt et ah (1979) reported th a t  in 

aerial surveys of otters (Enhvdra lu tris), sightability of groups was dependent on 

group size. Burnham et ah (1980) emphasised the need to avoid such a

relationship.

Pigs th a t  were sighted were recorded in one of four strip-width classes

(0-25,26-50,51-75.76-100m). The strip-widths were delimited by tape on a pole tha t  

projected perpendicular to the flight path from under the helicopter body and just 

in front of each observer. The accuracy of the strip-width markers was checked by 

flying over objects on the ground tha t  were at known distances apart. Surveys

were flown during the two hours after sunrise (about 061 Oh) and two hours before 

sunset (about 1840h).

The cloud cover (on a scale of 0 to 8). time (mins) of finishing or s tar ting  a

survey relative to sunrise or sunset, duration (mins) of each flight and distance 

(km) of surveying over each habitat were recorded for each survey flight.

Analysis

The preliminary survey was analysed by fixed-factor, split-plot analysis of 

variance (Snedec.or and Cochran 1967), after transformation of observed densities to 

common logarithms after adding one. The transformation was necessary to achieve 

homogeneity of variances. The residual variances were estimated from the sum of 

the block effects with other trea tm ents . Observed density was estimated by the 

ratio method (Jolly 1969. Cochran 1977. Caughley and Grigg 1981). using data  

pooled from all four strip-width classes (0-100m).
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For the full surveys in both seasons the effects of cloud cover, time of survey, 

duration and distance of survey were examined by correlation analysis, for each 

observer, season and habita t. The effects of observers on observed density were 

examined by Newman-Keuls test for each habita t. Chi-square analysis was used to 

test the numbers of individuals and numbers of groups of feral pigs in each strip- 

width class and the frequency distributions of group sizes seen by each observer.

The densities of carcasses and associated standard  errors were calculated using 

one strip transect estimator, the ratio method, and eight line transect estimators; 

Cox's method (Eberhardt 1978a, Seber 1982), the Fourier series, negative 

exponential, half-normal, exponential power series, exponential polynomial (using 

program TRANSECT) (Burnham et aJ. 1980), hermite polynomial and hazard rate 

estimators (Buckland 1985). The ratio method is simply the total count of 

carcasses divided by the total area sampled and does not correct for visibility bias. 

All other estimators correct for, or a ttem pt to correct for, visibility bias. For each 

of the last seven estimators (Fourier series, negative exponential, and so on) an 

estimate of population density (D) was obtained from the following equation;

D = np x f(0) /  L

where np was the number of animals sighted, L was the total length of transect 

and f(0) was the probability density function of observed perpendicular distances 

for each of the seven estimators, in this case when distance equals 0 (Burnham et 

al. 1980). Only one observer counted carcasses for the accuracy experiment and as 

the observer counted on only one side (not 2) of the helicopter then the equation 

for estimating density for all estimators except the ratio, was modified from its 

usual form (Burnham et ah 1980) to that above, by halving the denominator.

For each line transect estim ator calculated by program TRANSECT, the variance

of the density estim ate  was calculated by assuming tha t  the variance of the

num ber of carcasses counted wras twice the number of carcasses counted (var(n) = 

2n) following Eberhard t (1978b) and Burnham et ah (1985). Program TRANSECT 

(Burnham et_ ah 1980) underestimated the variance by assuming the number of 

animals counted equalled the variance of the number (var(n) = n).

During aerial surveys the bottom  of the observer's field of view was nearly

straight down, so the frequency distribution of the number of pigs or carcasses

counted in each strip-width class was not. " lef t- truncated” (Alldredge and Gates 

1985).

The effects of strip width on the accuracy of C oxrs method were also examined.
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The effects of increasing strip width and of increasing distance to the strip width 

were tested for the ratio method. In the first analysis the strip width increased 

from 0-25m to 0-50m to 0-75m and to 0-100m. Secondly the strip width of 25m 

started  directly under the helicopter then was from 26-50m, then 51 -75m and 

finally 76-100m from the helicopter flight path. Sampling intensity was 4.2% for 

the 25m strip width, 8.3% for the 50m strip, 12.5% for the 75m strip and 16.7% 

for the 100m strip width.

Estim ates of true density of carcasses were obtained for the floodplain habita t 

and for the combined floodplain and woodland habitats. There were insufficient 

data  for separate estimates in the woodland as time for surveying th a t  hab ita t  was 

loo short to get sufficient da ta  for the line transect estimators. Surveying had to 

be suspended when dingoes, feral pigs and birds of prey started feeding on and 

hence removing carcasses, thereby preventing us from knowing true density.

2.2. Results

The analysis of variance of the preliminary survey results showed no significant 

(P>0.05) effect of days (F=0.319, d f= l ,7 ) ,  times of day (F =  1.140, d f= l ,8 ) ,  

observers (F=0.158, d f= l ,7 )  and habita ts  (F=0.015, d f= l ,7 )  or any of their 

interactions on the observed density of feral pigs.

Correlation analysis showed no significant relationships between cloud cover, time 

of day or duration of flights and observed population density (Table 2.1). There 

was one significant negative correlation of survey day and observed population 

density (Table 2.1) and two positive and one negative correlation of distance of 

survey and observed population density (Table 2.1).

Further  testing of the effect of observers showed there were no significant 

differences between observers in observed population density within habita ts  within 

seasons (Table 2.2). In contrast there were highly significant differences between 

observers in the number of pigs counted in each strip-width class within habita ts  

and seasons (Table 2.3). In the dry season surveys, the left observer counted most 

pigs in the outer strip class (75-100m) in contrast to the right observer who 

counted more pigs in the inner strip in the paperbark habitat and in the second 

strip  in the floodplain hab ita t.  In the wet season da ta  there were no clear trends. 

Counts of pig groups showed broadly similar results (Table 2.4) but showed less 

variation across strip-width classes than counts of individual pigs. There were no 

significant differences in the frequency distributions of group sizes recorded by the 

two observers (Table 2.5), although the right-side observer usually counted more 

smaller groups.
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Most of the estimators gave estimates of the density of carcasses not significantly 

different from the true density (Table 2.6). The exponential polynomial estimator

significantly overestimated true density for the floodplain habita t and the ratio

method underestimated when strip width was wide (Table 2.6).

1 he most accurate estimator in the floodplain hab ita t  was the ratio method when 

the strip width was 0-25m (Table 2.6). The second most accurate estimator was 

the hazard rate, the third was the exponential power series and the fourth was the 

Fourier series estimator (Table 2.6). In the combined floodplain and woodland 

hab ita ts  the Fourier series estimator was the most accurate (Table 2.6). The 

second most accurate estimator was Cox's method (W =25m ), the third was the 

half-normal and the fourth was Cox’s method (W =50m ). In both situations there 

was a slight tendency to overestimate true density. The estimator with the lowest 

s tandard  error in the floodplain hab ita t  was the Fourier series and in the combined

floodplain and woodland habita t was the hazard rate estimator (Table 2.6).

On the open floodplain the ratio method gave significantly biased estimates of 

density as strip width increased (Table 2.6). The narrow inner strip wridth of 25m 

gave accurate estimates though the precision of the estimate was low (coefficient of 

variation 48%). When analysed for each 25m strip width the estimated density and 

accuracy quickly declined; 5.03 carcasses/km 2 (0-25m), 3.89 (26-50m), 1.60 (51-75m) 

to 0.46 (76-100m). The density estimates for the floodplain and woodland combined 

were accurate when strip width was narrow but significantly negatively biased when 

strip  width was wide (Table 2.6). Again the precision was low (coefficient of 

variation 48%). As the strip width was displaced out from the flight path the

density estimates and their accuracy for the combined floodplain and woodland 

declined (2.14 carcasses/km 2, 0-25m: 1.95, 26-50m; 1.15, 51-75m: 0.23, 76-100m).

The decline in the number of carcasses counted in successive strip widths was 

more rapid than the decline in the number of live feral pigs counted while 

surveying the same area at the same time of year (Figure 2.2). The d a ta  shown 

are for the combined floodplain and woodland habita ts .

2.3. Discussion

The results in this study indicate that the method of aerial survey from a 

helicopter developed in this project has application to feral pigs. The absence of 

effects on observed density a ttr ibu tab le  to cloud cover, days or time of day 

indicates th a t  survey da ta  can be pooled over those factors. The occasional effects 

of survey day or distance of survey suggest that, those factors have minor overall
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F i g u r e  2 -2 :  T h e  n u m b e r  of ca rcasses  of feral pigs
(dashed  lines), and n u m b e r  of live feral pigs 

(solid lines) co u n ted  in each s t r ip -w id th  
class d u r in g  aerial su rvey .  T h e  n u m b e rs  of 
each have  been a d ju s te d  to  a s im ila r  va lue  

of 100 in th e  inner s t r ip .
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effects on observed density within the range of levels examined in this work. With 

the large number of correlation tests conducted, a few significant results would be 

expected even if there were no real effects.

The results show that observers can return similar observed densities but have 

very different sightability curves (the number of animals counted in each strip- 

width class). The wide strip width (100m) blurred over all such differences 

between observers. The shape of some of the sightability curves such as those of

the left observer in the dry season, prevents their use in line transect estimation.

Such differences in sightability curves suggest the observers had different search 

patterns. Differences in fatigue or boredom would have resultec in different

observed densities. The differences could also be related to experience as only the

right-side observer had previously done aerial survey. The results show a need to 

check observers* sightability curves before they are used in extensive surveys. Such 

checking should complement other training such as tha t  outlined by Dirschl et ah 

(1981).

The accuracy of many line transect estimators for counting carcasses shows tha t  

models tha t  satisfy the criteria outlined by Burnham  et ah (1980) and Burnham

and Anderson (1984) have application to aerial survey, especially from a helicopter 

where, as done here, the helicopter can hover to get accurate counts of group size. 

The decreasing accuracy with increasing strip width in the present study agrees

with results of earlier studies for many species and objects (Caughley 1974,

Caughlev et ah 1976. Beasom ey ah 1981. Hone 1986b).

The precision of some estimators was high, especially the one-term Fourier series. 

However Buckland (1985) reported that the one-term Fourier series estimator may 

underestim ate the standard error of the density estimate. The precision of the line 

transect estimators was higher than that of the strip transect estimator (ratio

method) as reported by Burnham et ah (1985).

Cox's method gave accurate estimates of density on the open floodplain and in 

the combined data  for both habita ts  when strip wddth was 25m and accurate but 

slightly higher estimates w'hen strip width was 50m. The precision of both 

estimates was higher (coefficient of variation 32% and 28% respectively) than tha t  

of the ratio method. Eberhardt (1978a) noted that if the underlying sightability 

curve was half-normal then Cox's method could slightly overestimate. The 

sightability curve was similar to a half-normal distribution in the present study. 

The narrower strip width produced the more accurate estimates but the estimate 

was sensitive to small changes in the data. If one pig carcasse in the inner strip
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(0-25m) had been incorrectly tallied into the outer strip (26-50m) the density 

estimate would have fallen from 5.60 to 5.14 carcasses/km2. Conversely if the 

reverse had happened the estimate increased from 5.60 to 6.06. The effect of such 

recording errors will be more critical when low numbers of animals are counted.

Cox’s method satisfies two (model robustness and pooling robustness) of the four 

criteria (model and pooling robustness, shape criterion and efficiency) th a t  Burnham 

et ah (1980) suggested any estimator should meet. The method does not satisfy 

the shape criterion (p l69 but compare with p l62) and was not considered an 

efficient estimator. Burnham et ah (1980) suggested the method could be subjective 

in the selection of strip widths for ungrouped da ta  but tha t  was not a problem 

here. They also noted the method had the advantage over many others in th a t  the 

density estimate is easy to calculate.

The results in the present study suggest that Cox’s method could be applied 

cautiously to data  in other aerial surveys. Beasom et ah (1981) reported an effect 

of strip width on counts of white-tailed deer (Odocoileus virginianus). Observed 

density was 6.65 dee r/km 2 when strip width was 100m and 9.06 d ee r /km 2 when 

strip width was 50m. Using that data . Cox's method estimated the population 

density of white-tailed deer as 11.48 d ee r /km 2 which was substantially higher than 

the reported densities. More testing is needed to determine if Cox’s method 

overestimated population density or Beasom's da ta  underestimated population 

density.

Buckland (1985) argued tha t  a shoulder in the detection function was necessary 

for reliable density estimation. Each of the estimators, other than C ox’s method 

that gave accurate estimates of population density satisfied the shape criterion. The 

negative exponential and exponential polynomial series estimators, th a t  usually 

overestimatec density, did not have a shoulder in the calculated sightability curves 

and hence did not satisfy the shape criterion.

The slower decline in the sightability of live feral pigs compared to carcasses 

suggests that the sightability of live pigs was higher than th a t  of carcasses. That 

was probably because of live pigs flushing from cover as the helicopter approached. 

The accuracy of the line transect estimators and the higher sightability of live pigs, 

suggests that the survey method could be used to  estimate the population density 

of feral pigs. The results indicate tha t  the Fourier series estimator would be the 

best analysis. The results support the conclusions of Burnham ey ah (1980), 

Alldredge and Cates (1985) and Seber (1986) that the Fourier series estimator is 

the best line transect estim ator currently available.
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The experimental analysis of survey methods described in this Chapter has shown 

that some analyses have potential for use in evaluation of control of feral pigs in 

open habitats. In forest habita ts  aerial survey has less application, so alternative 

methods of survey need to be evaluated. In the next Chapter, a description is 

given of the development and evaluation of methods for measuring the extent and 

frequency of rooting and the abundance of feral pigs in forest habitats.
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T a b le  2 -1 : C orre la tion  coefficients between survey
variables and observed density of feral 

pigs in each season and h ab ita t for 
each observer (L . le ft and R, r ig h t). 

*P < 0 .0 5 , **P <0 .01

SEASON, 
HABITAT 
& OBSERVER

SURVEY
DAY

CLOUD
COVER

TIME 
OF DAY

DURATION DISTANCE DF

Dry Season
Pope rba rk L 0 . 4 0 8 - 0 . 3 8 5 0 . 3 5 3 - 0 . 4 4 7 0 . 1 0 3 10

R 0 . 0 8 4 0 . 2 89 0 . 1 5 3 0 . 3 0 8 0 . 1 9 6 10

F I o o d - L - 0 . 4 3 7 0 . 6 1 0 - 0 . 2 6 5 0 . 3 59 0 . 6 4 8 * 8
p l a i n R - 0 . 6 8 8 * 0 . 2 9 0 - 0 . 3 0 1 0 . 4 8 3 0 . 6 1 0 8
Poo Ied L 0 . 3 5 0 - 0 . 0 2 4 0 .2 59 - 0 . 2 9 8 - 0 . 4 3 6 10

R 0 . 1 1 2 0.261 - 0 . 0 3 5 0.251 - 0 . 3 7 1 10

Wet Season

Pape rba rk L - 0 . 7 7 5 0 . 1 3 3 0 . 7 32 - 0 . 4 9 2 0 . 9 6 4 * 2
R 0 . 7 6 4 0 . 6 69 - 0 . 6 0 4 - 0 . 2 5 7 - 0 . 3 2 2 2

F I o o d - L - 0 . 7 3 7 0 . 3 4 5 0 . 2 02 - 0 . 2 9 0 - 0 . 2 9 1 5
p l a i n R - 0 . 5 9 0 0 . 7 39 0 . 3 92 - 0 . 1 2 5 - 0 . 3 4 9 5
Wood I and L - 0 . 5 2 3 - 0 . 3 2 5 0 . 1 9 0 0 . 1 2 7 0 . 3 8 9 7

R - 0 . 0 6 4 0 . 0 2 0 0 . 1 9 3 - 0 . 2 4 1 - 0 . 8 0 1 * * 7
- 0 . 4 9 9
- 0 . 3 6 9

0 . 0 9 6  - 0 . 0 6 5  
0 . 3 4 4  - 0 . 0 5 2

0 . 2 1 6
0 . 2 5 7

0 . 0 4 5  
- 0 . 2 2 4

13
13

Poo Ied



T a b le  2 -2 : Indices o f p ig  dens ity  (p ig s /k m 2)
(SE) fo r each observer in  each season and 

h a b ita t. The  r ig h t-s id e  observer was the  same 
in each season, b u t the  le ft-s ide  observer was 

d iffe re n t.

SEASON OBSERVER NEWMAN-KEULS
Sc HABITAT LEFT RIGHT TEST

Dry Season
P a p e r b a r k 12 .26 ( 2 . 2 2 ) 9 . 6 2 ( 1 . 5 9 ) 0 . 9 7 NS
F 1o o d p l a i n 2 . 6 2 ( 1 . 0 0 ) 1 .6 8 ( 0 . 7 7 ) 0 . 7 5 NS

Wet Season
P a p e r b a r k 3 . 3 3 ( 3 . 1 6 ) 1 .94 ( 0 . 3 2 ) 0 . 4 4 NS
F 1o o d p l a i n 7.81 ( 2 . 2 4 ) 12.61 ( 2 . 7 0 ) 1 . 37 NS
Wood l and 0 . 6 2 ( 0 . 3 0 ) 1 .70 ( 0 . 5 9 ) 1 .63 NS
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T ab le 2-3: The n um be r o f fe ra l pigs counted in each s tr ip
w id th  by each observer in each season and 
h a b ita t. There  were too  few d a ta  in the  wet 
season in the  paperba rk  to  ca lcu la te  a C h i- 

square s ta tis t ic . * *P < 0 .0 1 .

SEASON OBSERVER
& HABITAT 0 - 2 5

STRIP
2 6 - 5 0

WIDTH
5 1 - 7 5

(">)
7 6 - 1 0 0

Dr y Season
P a p e r b a r k  L 39 150 2 43 362

R

( X 2= 3 1 7 . 8 * * . d f = 3 )

2 5 0 140 126 104

F I o o d p l a i n  L 0 5 53 105
R

( X 2= 6 9 . 8 * * , d f = 3 )

3 48 31 38

Wet Season
P a p e r b a r k  L 0 0 1 23

R 0 1 13 0
F I o o d p l a i n  L 18 115 195 43

R

( X 2= 1 1 4 . 3 * * , d f = 3 )

169 97 2 12 122

Woodl and L 2 31 2 29
R

( X2= 4 8 . 2 * * , d f = 3 )

28 42 73 37
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T ab le  2-4: The num ber o f g roups o f pigs in each s tr ip
w id th  counted by each observer in each season 

and h a b ita t. There  were to o  few da ta  fo r 
ana lys is  in the  w et season in the paperbark  
and w ood land  h a b ita ts . Degrees o f freedom  
d iffe r  between analyses because o f poo ling  

low  num bers. * * P < 0 .0 1 , NS n o t s ig n ifica n t.

SEASON OBSERVER
k  H A B I T A T 0 - 2 5

S T R I P
2 6 - 5 0

WIDTH
5 1 - 7 5

(m)
7 6 - 1 0 0

D r y  S e a s o n
P a p e r b a r k  L 7 2 4 2 5 2 5

R

( X 2 = 1 7 . 7 * * , d f = 3 )

3 4 21 19 2 3

F I o o d p l a i n  L 0 4 4 6
R

( X 2 = 0 . 5 . d f = 1 . N S )

3 5 7 2

Wet  S e a s o n
P a p e r b a r k  L 0 0 1 2

R 0 1 1 0
F I o o d p l a i n  L 6 19 2 2 10

R

( X 2 = 1 5 . 6 * * , d f = 3 )

4 7 2 6 29 2 3

W o o d l a n d  L 1 5 2 2
R 5 6 6 4
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T ab le  2-5: The frequency distributions of group
sizes observed in aerial survey by observers 

in wet and dry seasons in each hab ita t. In the 
Chi-square analysis the degrees of freedom are 
different due to pooling of low num bers. All 

tests were non-significant.

SEASON OBSERVER
tc HABITAT 1 -10

GROUP SIZE 
1 1 - 2 0  2 1 - 3 0 3 1 -5 0

Dry S e a s o n  
P a p e r b a r k  L 56 13 12 5

R 85 25 10 2
(X2= 5 . 1 , d f= 3 )
F I o o d p l a i n  L 10 5 2 1

R 14 4 1 1

(X2= 0 . 8 , d f= 2 )

Wet S e a s o n  
P a p e r b a r k  L 2 0 1 0

R 1 1 0 0
( n o t  t e s t e d )
F I o o d p l a i n  L 42 10 5 0

R 108 10 5 2
(X2= 5 . 0 , d f = 2 )  
Wood land  L 8 1 1 0

R 15 5 0 1
(X2= 0 . 1 , d f = 1 )
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T ab le  2-6: E stim a tes  o f dens ity  (D )  (ca rcasses/km 2)
and s tandard  e rro rs  (SE) o f p ig  carcasses 

derived  fro m  n ine  tra n se c t es tim a to rs . T ru e  
dens ity  was 5.02 c.arcasses/km 2 on the 
flo o d p la in  (F ) and 2.79 ca rcasses/km 2 

fo r the  com bined flo o d p la in  and w ood land  (F W ). 
The  n um be r o f pa ram ete rs  (P ) in  each e s tim a to r 

is show n. T he  d ifferences between the  dens ity  
es tim a tes  and the  tru e  d en s ity  were com pared 
by S tu d e n t's  t  tests the  va lues o f w h ich  are 

show n. The degrees o f freedom  fo r the  t  tests 
were 27 fo r the  flo o d p la in  and 54 fo r the  

com b ined  h a b ita ts . *P < 0 .0 5 , * *P < 0 .0 1 , NS n o t 
s ig n ific a n t, S W = s tr ip  w id th ,  W =  h a lf o f 

s tr ip  w id th .

ESTIMATOR P D SE t

R o t  i o 
S W =0 -2 5m _ F 5 . 0 3 2 . 4 2 0 . 0 1  NS

FW 2 . 1 4 1 . 0 3 0 . 6 3  NS
S W =0 - 50 m - F 4 . 4 6 1 . 7 9 0 . 3 1  NS

FW 1 . 9 0 0 . 7 6 1 . 1 7  NS
S W =0 - 75 m - F 3 . 5 1 1 . 3 3 1 . 1 4  NS

FW 1 . 6 2 0 . 5 7 2 . 0 5 *

SW=0—1 00rr - F 2 . 7 4 1 . 0 0 2 . 2 8 *

FW 1 . 2 7 0 . 4 3 3 . 5 3 * *

Cox  ’ s 
W=25m F 5 . 6 0 1 . 7 9 0 . 3 2  NS

FW 2 . 8 2 0 . 9 0 0 . 0 3  NS
W=50rr, - F 6 . 0 0 1 . 6 8 0 . 5 8  NS

FW 3 . 0 2 0 . 8 5 0 . 2 7  NS

F o u r i e r 1 F 5 . 3 1 1 . 5 0 0 . 1 9  NS
s e r i e s FW 2 . 8 0 0 . 5 8 0 . 0 2  NS

E x p o n e n t i o I 2 F 5 . 2 9 1 . 5 2 0 . 1 8  NS
p o w e r  s e r i e s FW 2 . 4 8 0 . 6 3 0 . 4 9  NS

Ho I f —no rmGI 1 F 5 . 7 5 1 . 3 3 0 . 5 5  NS
FW 2 . 9 3 0 . 6 6 0 . 2 1  NS

N e g a t i v e 1 F 8 . 8 6 2 . 2 7 1 . 6 9  NS
e x p o n e n t i a  I FW 4 . 4 6 1 . 1 1 1 . 5 1  NS

E x p o n e n t i a  I 2 F 9 . 0 5 1 . 9 0 2 . 1 2 *
p o I y n o m i a  I FW 4 . 6 0 0 . 9 4 1 . 9 3  NS

He r m i t  e 2 F 5 . 3 7 1 . 3 1 0 . 2 7  NS
p o I y n o m i a  I FW 2 . 5 0 0 . 7 3 0 . 4 0  NS

H a z a r d  r o t e 2 F 4 . 9 3 1 . 0 2 0 . 0 9  NS
FW 2 . 2 8 0 . 5 0 1 . 0 2  NS
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Chapter 3 

Ground surveying

3.1. Ground surveys - random, unmarked plots

During studies in forests, estimates of population density of feral pigs have been 

difficult to obtain or verify. Problems of sightability of the pigs appear to limit use 

of many direct survey methods and hence the extent of rooting has been examined 

to monitor trends in populations of feral pigs. For example. Beiden and Pelton 

(1975) suggested that a 'roo ting  extent index" had potential for monitoring 

population trends, but they did not calculate values, maybe because of the 

subjective nature  of the method. Pig rooting was recorded in Tennessee (Conley 

1977) with rooting scored qualitatively on line transects. Jezierski and Myrcha 

(1975), Cooray and Mueller-Dombois (1981) and Ralph and Maxwell (1984) 

recorded the extent of rooting on plots by estimating the percentage of ground 

disturbed. Alexiou (1983) plotted the location of rooting on maps.

Beiden and Pelton (1975), Conley (1977) and Giles (1980) assumed that  a 

significant positive correlation existed between the abundance of feral pigs and the 

extent of the rooting. The correlation was not tested by those authors but can be 

tested from data  in the literature. Cooray and Mueller-Dombois (1981) reported 

da ta  (their Table 6.13) which indicated no significant correlation (r=-0.208, df=2, 

P>0.05). Conversely da ta  from Ralph and Maxwell (1984) (their Table 6) showed 

a high positive correlation (r=0.901. df=3, P<0.05). These disparate results suggest 

t.! : 1 further testing is necessary.

The aims of the study described in this section of Chapter 3 were to (i) develop 

and use an objective method for determining the distribution and relative 

abundance of rooting (Monitoring), arid (ii) develop and test a method for 

predicting the level of rooting (Prediction).
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3 .1 .1 .  M e th o d s

Site

The area studied was around Honeysuckle Creek and Nursery Swamp in Namadgi 

National Park (NNP) (35°30'S, 149°E) in south-eastern Australia (Figures 3.1, 3.2). 

The topographic features of NNP are wide deep valleys between a series of 

m ountain  ranges. Altitude in the study area varies from 870m to 1380m. 

Vegetation changes from patches of grassland in valleys and Eucalyptus woodland 

at low- altitude to tall open Eucalyptus forest at higher altitude (Anon 1982). Sub­

alpine w'oodlands occur at the highest altitude and in frost hollow's a t  low'er 

altitude. Natural grasslands have been modified by livestock grazing in many of the 

open valleys. Annual average rainfall is approximately 650mm at 1owt altitude 

increasing to 1000mm at higher altitudes. SnowTalls are common in winter

especially a t  high altitude.

Feral pigs wrere first sighted in the area in the mid 1960's following their 

introduction at the southern boundary of the park (Figure 3.2). This corresponds 

to a rate  of spread of 3 .5km /yr, w'hich is slightly higher than that reported

(2 .5km /vr) for feral pigs in Great Smoky M ountains National Park, Tennessee 

(Singer 1981). Some feral pig control had been conducted at Honeysuckle Creek 

during the previous decade (Boreham 1981). though the subsequent effect on pig 

populations was apparently  slight.

Monitoring

Samples w'ere taken during the period January  to December 1984 inclusive. The 

presence or absence of rooting was measured in 29 grids each 1km2, randomly 

selected off 1:25.000 topographic maps. Eight parallel transects were surveyed in 

each grid in an east-west direction wdth each transect having a starting point 

located randomly w ithout replacement. Each transect of one kilometre consisted of 

50 plots each 5m long by lm  wide, spaced 15m apart. The first plot on each

transect  w’as placed 15m from the start of the transect. The presence or absence of

rooting, pig dung and pig tracks was recorded on each plot. As no a ttem p t was 

made to determine the age of rooting, dung or tracks, the various measures 

represent cumulative distribution and abundance. Rooting w'as distinguished from 

scratchings by w-ombats (Vombat us ursinus) and lyrebirds (Menura novaehollandiae) 

by the  general bulldozed nature  of rooting by feral pigs rather than the scratched 

disturbance caused by the other species. The number of feral pigs observed within 

100m either side of each transect was also recorded. The average (-1-/- SE) 

dura tion  of each transect was 1.05h (-f /-  0.02).



F igu re  3-1: Location of Namadgi National Park 
in south-eastern Australia.

CANBERRA •

NAMADGI

NEW

SOUTH

WALES
NATIONAL

PARK



Figure 3-2: Location of study sites and first sightings 
of feral pigs in Namadgi National Park.
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The frequency of occurrence of rooting was assumed to be curvilinearly related to 

the extent of rooting as occurs in many frequency/density relationships (Caughley 

1980). Hence the proportion of plots with pig rooting in each transect (pt) was 

converted to a linear index of rooting (y) by a Poisson transformation (Caughley 

1980 p20).

y =  - ln (1 - pt)

Estimates of a linear rooting index (LRI) for each 1km2 grid were calculated as; 

LR1 =  N y

where N was the total number of possible sampling units (transects) and y was 

the average rooting index per sampled unit (transect). The standard  error of LRI 

was calculated, as outlined by Caughley (1980 p30), as the square root of the 

summed variances of each grid.

Observed density of feral pigs (d ) /k m 2 was calculated as;

d =  N x

where N was the total number of possible transects/km ^ and x was the average 

population density per transect (1km long and 0.2km wide). Observed density was 

assumed to be an underestim ate (index) of true density as some feral pigs do not 

flush in thick forest, or may move away when an observer approaches.

Prediction

The extent of rooting in 13km2 was predicted in a two-stage process. The first 

st,age involved calculating a calibration regression for the extent of rooting in 16 

randomly selected 1km2 grids and the second stage involved comparing the 

observed extent of rooting in 13km2 with th a t  predicted by the calibration 

regression. The accuracy of predictions was determined by calculating the 95% 

confidence interval for the average difference between the observed and expected 

frequencies of pig rooting.

The regression was derived as follows and is a modification of point-distance 

methods for estimating animal abundance. The regression requires no a priori 

assumption of the dispersion pattern  of rooting and was calculated between the 

proportion of plots with pig rooting in a Ikrrr  grid (p) and the observed average 

num ber of consecutive plots that had no rooting from the start of a transect (n).
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When the average (over the 8 transects per grid) number of consecutive plots with 

no rooting was zero, then pig rooting was assumed to occur on all plots on all 

transects. Conversely when the average number of consecutive plots with no rooting 

was 50 (the length of each transect) then it was assumed no rooting occurred on 

plots or in the grid. These two assumptions fixed the end points ((n=0, p=1.0) 

and (n=50, p=0))  of a regression line without specifying the shape of tha t  line. 

One equation which satisfies the assumptions is Eberhard t’s (1968) power series 

function;

p =  1 - (n /50 )k

where p=proportion  of plots with rooting per 1km2 grid. n=average number of 

consecutive plots with no rooting from the s ta r t  of transects, and k=regression 

coefficient. When k =  l the regression is a s traight line, when k < l  the regression is 

concave and when k > l  the regression is convex. The equation can be rearranged to 

estimate k as the slope of a regression forced through the origin (Snedecor and 

Cochran 1967. pl69) between -ln(l-p) as the ordinate and -ln(n/50) as the abscissa 

for n>0.

A second equation satisfying the assumptions of the regression is a modified beta 

function (Burnham et aT 1980);

p =  ( ] - (n /5 0 ))m

where p and n are as above and m is the regression coefficient. This equation

can be rearranged to estimate m as the slope of a regression forced through the 

origin, as above, between -ln(p) as the ordinate and -ln(l-(n,/50)) as the abscissa, 

for n<50. The slope of each regression was estimated as the mean of the ratios of 

the ordinate over the abscissa (Snedecor and Cochran 1967).

3 .1 .2 .  R e su lts

Monitoring

Rooting was present in 27 of 29 grids and in 13.33% of all plots. The frequency 

of pig rooting varied among grids from 0% to 56.25% of plots. The frequency

distribution of the number o'” plots with rooting per transect was highly skewed,

with no rooting on 62 transects, then 29 transects  with only one plot with rooting 

(Table 3.1). The linear rooting index (LR1) was 4903.4 (+ / -  323.5 SE) over the 

29km - . The ratio of the SE to the estimate was 6.6%.
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The average observed population density of feral pigs was 1.0 /km 2 (+ / -  0.5 SE). 

The frequency distribution of the number of feral pigs per transect was highly 

skewed. On 224 transects no feral pigs w'ere counted. In each of four transects one 

feral pig was counted, and three, four, five and seven feral pigs were each counted 

on one transect. Pig dung occurred in 1.09% of plots and pig tracks in 0.14% of 

plots.

There were significant positive correlations between the percentage of plots in a 

grid with rooting and pig dung (r=0.724. df=27, PcO.Ol), feral pig tracks 

(r=0.485, df=27, P<0.01) and observed pig density (r=0.443, df=27, P<0.05). The 

regression between the transformed percentage of plots with rooting (PR) and the 

transformed percentage of plots with dung (PD) was;

PR = 2.48PD +  6.47

Prediction

The fitted power series function (Figure 3.3) was; 

p =  1 - (n /50 )0-14

The exponent (0.14 + / -  0.02 SE) was significantly different from zero (t=7.00, 

df=15, P < 0 .0 0 l) .  The average observed frequency of rooting in the 13km" was 

12.77% and the average expected frequency was 14.30%. The average ( + / -  SE) 

difference between the observed and expected frequency of rooting was -1.53% ( + /- 

1.42). The 95% confidence interval of the difference was -4.62% to 1.56%.

The fitted modified beta function was; 

p =  (1 - (n /50 ))3-65

The exponent (3.65) had a standard  error of 0.62 and was significantly different 

from zero (t=5.89, df=15. P<0.001). The observed frequency of rooting in the 

13km2 was 12.77% and the expected frequency was 29.15%. The average ( + / -  SE) 

difference between the observed and expected frequency of rooting was -16.38%' 

( + / -  4.98). The 95% confidence interval of the difference was -27.23% to -5.53%, 

which was wider than the interval for the pow'er series function.
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average number of successive plots with no pig 
rooting from the start of transects (n). Dots 

correspond to each of 16, 1km2 grids and 
the solid line is the power series function 

fitted to the data.
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3 .1 .3 . D iscu ss io n

Monitoring

Rooting by feral pigs was widespread and locally abundant in the forest and 

w’oodland. The results indicate tha t  the survey technique has potential for use in 

mapping and monitoring the distribution and abundance of rooting. Pig rooting can 

be mapped on a grid basis and the da ta  analysed as the percentage of plots with 

pig rooting or as the transformed linear rooting index. The regression between the 

frequencies of rooting and dung indicated th a t  even when no pig dung was present, 

rooting was. Hence rooting may be a more accurate  indicator of past occurrence 

of feral pigs than dung.

The present technique which used randomly selected transects had advantages 

over the technique using existing roads and trails outlined by Beiden and Pelton 

(1975) and Howe and Bratton (1976). The edges of roads and trails may be 

unrepresentative of an area. Conley (1977) reported the use of line transects on 

which rooting was scored as abundant,  common, scarce or none. The present 

method is more objective. Alexiou (1983) simply mapped the location of pig rooting 

in selected areas, which would require more field time than the present method.

The percentage of plots with rooting in the present study (13.33%) was lower 

than that (49.3%>-92.0%i) reported by Coorav and Mueller-Dombois (1981) in an 

Hawaiian forest though they used 15m2 plots compared to 5m2 plots in this study. 

Direct comparisons of the spatial extent of rooting in NNP with th a t  reported in 

other studies is difficult because spatial extent was not directly measured here.

Prediction

The power series function accurately predicted the frequency of rooting in an area 

of 13km2. This function should be useful for surveying and mapping the

distribution of rooting in forests and woodlands. The modified beta function did 

not accurately predict the frequency of rooting and was of lower precision than the 

power series function. The main advantage of the prediction method is the 

reduction in field-work time which in the present study would have been 60%. The 

method does not estimate the variance on the frequency of rooting in each lkm* 

grid, but the variance among grids can be estimated by sampling more than one 

grid.

The results described here indicate that the m ethods are useful for estimating the 

frequency of pig rooting in an area. A limitation of the methods is tha t  there is
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no time limit on the occurrence of rooting or production of dung. For short-term 

evaluation of pig control a method which measures the occurrence of rooting or 

accumulation of dung over a defined time period would be more sensitive to 

control-induced changes in either rooting or dung. Such methods include 

m easurem ent of rooting or dung on fixed and marked plots, tha t  can be relocated 

and hence the increment from time 1 to time 2 can be measured. Such an 

approach was investigated and is described in Section 3.2.

3.2. Ground surveys - random, marked plots

Section 3.1 outlined results of ground survey work using randomly selected and 

unm arked plots. A complementary study examined survey techniques using 

randomly selected fixed and marked plots. The results are described here. The 

study estimated (i) the repeatability and precision of two survey methods for feral 

pigs - line intercept measurement of rooting and strip counts of dung pellets, (ii) 

the spatial extent of rooting, (iii) the frequency of occurrence of rooting and dung 

on plots, (iv) relationships between the extent and frequency of occurrence of

rooting and dung, and (v) relationships between the survey results to investigate 

m ethod accuracy and to assess the usefulness of these methods in control 

evaluation.

As part of the aims this study tested three alternative hypotheses. The first

assumed no relationship between the change in the extent or frequency of rooting 

from m onth to m onth, and the abundance of dung. The second hypothesis assumed 

the relationship was positive and linear, and the third tha t  the relationship was 

positive but curvilinear. When pig dung was absent, then rooting decreased a t  a 

m axim um  negative rate but as dung abundance increased then the change in the

extent or frequency of rooting became less negative and then more positive. If the 

relationship was curvilinear then the extent or frequency of rooting did not increase 

indefinitely with increases in dung abundance, but reached an asymptote. These 

hypotheses are analogous to numerical response relationships (Krebs 1985).

3 .2 .1 .  M e th o d s

Sites

Seven sites were selected with restricted randomisation in the eastern half of 

Namadgi National Park (NNP); Nursery Swamp (NS), Cotter  Gap (CG), 

Honeysuckle Creek (HC). Brandy Flat (BF). Shanahans Falls Creek (SH), Pine 

Forest (PI) and Bobovan (BO) (Figure 3.2). Sites selected were at least 5km 

apart  to minimise effects of movement by feral pigs between sites. That distance
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T ab le  3-1: The frequency distribution of the number
of plots with rooting per transect in 29km2 

of Namadgi National Park. Each transect 
contained 50 plots.

NUMBER OF PLOTS 
WITH ROOTING

NUM3ER OF 
TRANSECTS

e
1
2
3
4
5
6 
7
>7

62
29
19
19

6
5
7
4

81

Total 232
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was chosen on the basis of limited radio-tracking data  (Terrill pers. comm.) for 

feral pigs in the park th a t  showed feral pigs had home ranges of up to 4-5km2. 

Rainfall was recorded monthly a t  each site and tem peratures recorded a t Glendale 

Crossing in the centre of the area.

Design and sampling

At each site da ta  were collected on the spatial extent and frequency of occurrence 

of rooting, counts of dung pellets and counts of feral pigs. D ata  were collected 

m onthly from May 1985 to December 1986, with the exception of August 1986, 

and in July 1986 when spatial extent of rooting was not measured.

Each site consisted of an area of 4km2 with 25 permanent plots in each of the 

four, 1km2 grids for a total of 100 plots per site. Each plot measured 10m x 2m. 

The number of plots was chosen on the basis of preliminary survey work th a t  

showed 48 plots was insufficient to get repeatable dung counts or to get adequate 

precision on the estimate of the proportion of plots rooted by feral pigs. Each of 

the plots was selected with restricted randomisation. Plots did not overlap 

(sampling w ithout replacement) and the distance between plots did not exceed 35m, 

to facilitate finding plots in the forest.

P lots were not rerandomised between months. The ensuing possible lack of 

temporal independence was traded off against the practical reality of the time 

required to relocate 1400 pegs each month. W hite and Eberhardt (1980) in their 

study of elk and deer pellets similarly did not rerandomise plots, without apparent 

significant loss of statistical robustness.

Rooting was recorded using a line intercept method (Lucas and Seber 1977) with 

the s ta r t  and end of each area of rooting being measured directly under a tape

measure held between two pegs 10m apart at each end of the long main axis of

each plot. An area w'as recorded as rooted if there were obvious signs of ground 

d isturbance by feral pigs and the vegetative ground cover was less than th a t  of 

surrounding non-disturbed areas.

Dung pellets of feral pigs w'ere counted on a lm  strip  either side of the centreline

tape  measure, so plot size was 20m2 (10m x 2m). T ha t size and shape was used

for comparison with results of Ralph and Maxwell (1984) rather than using a

circular plot wrhich has been reported to give more precise results (Neff 1968). 

However Ralph and Maxwell (1984) used adjacent plots in long transects rather 

than  randomly placed plots. That sampling method may be less precise than the

m ethod used in the present study because of serial correlation between adjacent

plots.
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The number of dung pellets was recorded then the plot was cleared of pig dung. 

Dung were classed as present if each pellet was still in tact and could be picked up 

without disintegrating. No a ttem pt was made to age dung pellets. Batcheler 

(1973) reported tha t  assigning ages to dung pellets of possums (Trichosurus 

vulpecula) was subject to error due to the effect of weather on dung appearance. 

Dung of feral pigs was differentiated from th a t  of other species on the basis of 

shape (oval to lobed), composition (fibrous, heterogeneous), colour (black) and 

odour (putrid). Identification of dung of adult pigs was very easy but th a t  of 

subadult (6-12mths) pigs required careful examination to avoid confusion wdth the 

dung of kangaroos and wallabies. Dung of juvenile (< 6mths) feral pigs was not 

seen during the study. Fresh dung pellets initially found on plots wrere placed 

outside but near plots and checked each m onth to determine disappearance rates.

Feral pigs seen at each site were recorded and their age (assessed by size into 

three age classes; juveniles, subadults and adults) and sex recorded whenever 

possible. Area counts w'ere used to estimate observed density wrhich wras assumed to 

be an index (underestimate) of true population density of feral pigs. Since the 

plots for dung counts were clustered a t  each site, the area over w'hich pigs w’ere 

observed was not the w-hole site. The proportion of each 4km2 site in w’hich pigs 

were counted w'as 0.25; that is 1km2 at each site. Study in 1984 (Section 3.1) 

indicated tha t  there were insufficient sightings of feral pigs to use a line or strip 

transect method (as used by Singer and Ackerman 1981). Burnham et ah (1980) 

recommended tha t  a t  least 40 animals had to be recorded to use transect methods, 

and I did not expect to see tha t  many each month.

Sampling each month revealed changes within seasons and allowed sufficient time 

for the extent of rooting to change and dung to accumulate but not decay too 

much th a t  most of it passed beyond the criteri;.- established for counting. 

Preliminary w’ork in March and April 1985 showed th a t  more than 65% of dung 

pellets lasted longer than one m onth in NNP in contrast to Hawaii w'here most 

disappeared in two w'eeks (Ralph and Maxwell 1984).

Analysis

The repeatability of measurements of rooting extent was determined by 

independently remeasuring each of the 700 plots within a day of each measurement. 

The difference among sites between the extent of rooting for each site w'as tested 

using a paired StudenFs t test (Snedecor and Cochran 1967). The repeatability 

between months of counts of dung pellets was examined using Chi-square analysis 

by comparing the frequency distributions of the num ber of dung pellets per plot for
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tw o  successive m onths. Data from  400 p lo ts were used, from  sites where no pig 

con tro l was occurring.

The standard errors o f the percentages o f p lo ts w ith  roo ting  or w ith  dung were 

estim ated from  a hvpergeom etric d is tr ib u tio n  as sam pling was w ith o u t replacement 

(Derm an et ah 1973).

To examine the app lica tion  of the data for p red ic ting  the extent o f roo ting  or 

abundance of dung, re lationships between the extent o f roo ting  or abundance of 

dung and the frequency o f occurrence of e ither roo ting  or dung were determ ined by 

least squares regressions forced through the o rig in . The x variab le  was e ither the 

frequency of occurrence or an index calculated from  the firs t te rm  o f a Poisson 

series (Caughley 1980), where the index (I) was;

1 =  - ln (1 - f)

where f  was the p ropo rtion  of p lots w ith  roo ting  (or dung). For regression i t  was 

assumed th a t the standard devia tion o f each value o f x was p roportiona l to  th a t x 

(Snedecor and Cochran 1967 p l6 9 ). The Poisson trans fo rm a tion  was investigated as 

there is com m only a cu rv ilinea r re la tionsh ip  between frequency o f occurrence data 

and density indices (Caughley 1980). Batcheler (1973) reported s ign ifican t 

corre la tions between density o f possum dung and an index of dung density 

calculated from  the firs t te rm  of a Poisson series.

The frequency d is tr ib u tio n s  o f roo ting  per p lo t (length of ro o tin g /lO m ) and the 

decay o f dung pellet,s were compared to  a negative exponentia l func tion  fit te d  by 

least squares regression after trans fo rm ation  to  na tu ra l logarithm s.

v =  a e 'bx

For the roo ting  data , x was the m id p o in t o f each roo ting  class. For the decay of 

dung, y was the arcsine o f the percentage o f dung pellets rem ain ing and included 

the in it ia l data (0 m onths. 100% dung present). The coefficient a. is an estim ate of 

the s ta rtin g  po in t (100%) dung pellets) when x = 0 .

The decay o f dung pellets was also compared to  a m odified exponentia l func tion , 

f it te d  by least squares regression a fte r rearrang ing the equation and trans fo rm a tion  

to  common logarithm s.

y =  100 - a x b
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where y was the percentage of dung pellets remaining, but did not include the 

initial da ta  and x was the number of months. This equation has the advantage 

over the simple exponential equation th a t  it solves to the starting point (100% 

dung pellets) for x=0.

The frequency distributions of numbers of dung pellets per plot for each month 

and the number of pigs per 0.25km2 were compared to Poisson distributions by 

Chi-square goodness-of-fit tests (Snedecor and Cochran 1967).

The corrected number of dung pellets per site (CD) (corrected for decay) was 

estimated from:

CD =  (M l n f f j / y )  /  (1 - (f2/ f j )

where M was the number of dung pellets counted, the number of reference 

dung pellets at the s ta r t  of a m onth and f0 the number of reference dung pellets 

still present a t  the end of the month (Hill 1981).

The relationship between the mean and variance (Taylor 1961) of the corrected 

number of dung pelle ts /s i te /m onth  was determined by least squares regression. 

D ata  were transformed to common logarithms for regression.

Plots were classified as being on or away from trails. Feral pigs move around 

their home range along such trails. The effects of trails and months on the 

proportion of plots with dung and on the average number of dung pellets on plots 

where dung occurred were both tested by two-way fixed factor analysis of variance 

(Snedecor and Cochran 1967). There was no replication of each trail x month 

combination so the residual mean square in each analysis was estimated from the 

interaction mean square.

The difference between successive months in the extent or frequency of rooting 

was calculated. The relationships between the change in the extent of rooting 

between months (length of roo ting /1000m) and the corrected number of dung 

pellets (averaged over sites) and average tem pera tu re  (°C) and rainfall (mm) for 

the month were determined by regression analysis. Data on tem pera ture  and 

rainfall were combined into a single index of climatic suitability for plant growth. 

The index was the product of average tem perature  and rainfall. A high value of 

the product corresponds to m aximum  plant growth and a low value to little or no 

plant growth. The analysis assumed a linear relationship between plant growth 

and the index. This was assumed to be realistic for the restricted range of 

tem pera ture  and rainfalls that, occurred in Namadgi National Park. Initially data
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were plotted and non-linear relationships transformed. Data on the percentage of 

plots with pig rooting were similarly analysed.

3.2.2 .  R esu l ts

Rooting

The average difference in rooting at each site between each repeated measurement 

was O.OOm/lOOOm (+ / -  0.57 SE). This was not significantly different from zero 

(t=0.00, df=6, P>0.05). The frequency distribution of the extent of rooting per 

plot (length of rooting/10m) was of negative exponential form (Table 3.2). The 

most frequent length of rooting was zero. A negative exponential equation fitted to 

each m onth 's  da ta  gave highly significant (PcO.Ol) correlations (Table 3.3).

The percentage of plots with rooting varied among months from 18.1% to 28.1%. 

The ratio of the standard error to the mean percentage ranged from 6.0% to 8.2%.

The percentage of the ground rooted by feral pigs differed between sites and 

months (Table 3.4) and was highest at the Pine Forest (PI), lowest at Brandy 

Flat (BF) and highest in October and lowest in June 1985 and January 1986. 

The extent of rooting increased over each winter (June, July, August) and early 

spring (September, October) and then decreased over late spring (November) and 

early summer (December). The actual extent of rooting (length of rooting/lOOOm) 

of plots was significantly (P<0.05) related in 17/18 months to an index of rooting 

extent calculated from the percentage of plots with rooting using the first term  of 

a Poisson series (Table 3.5), and was significantly related in each month to the 

percentage of plots with rooting (Table 3.6).

Dung

In the repeated counts of pig dung there was no significant difference (X“=  1.744, 

df—2. P>0.05) in the number of dung pellets per plot from June to July 1985. 

The frequency distribution of dung per plot was highly skewed wdth the most 

common number being 0 then 1, then 2 and so on. The frequency distribution was 

significantly different from a Poisson distribution in each month (Table 3.7).

The percentage of plots with dung pellets varied among months from 1.0% to 

8.3%. The ratio of the standard error to the mean percentage ranged from 12.5% 

to 38.0%. The average number of dung pellets per plot varied among m onths 

from 0.02 to 0.31 and the ratio of the s tandard  error to the mean ranged over the 

study from 14.3% to 50.0%:.
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The monthly number of dung pellets per site was significantly related in each 

month to an index of dung abundance calculated from the first term of a Poisson 

series (Table 3.8) except in October and December 1986. Similarly the number of 

dung pellets was significantly related to th^ percentage of plots with dung (Table 

3.9) except for December 1985. October 1986 and December 1986.

The number of dung pellets remaining each month declined (Table 3.10) 

exponentially in each month (Tables 3.11, 3.12). The estimated intercept of the 

exponential function (a) varied from 31.38 to 96.88 (Table 3.11) compared to the 

expected value of 100.0. The modified exponential regression had a higher 

correlation coefficient than the simple exponential regression in each of 11 months, 

and the reverse occurred in each of 6 months. The numbers of dung pellets at 

each site per m onth corrected for exponential decay are shown in Table 3.13.

The arcsine of the percentage of dung remaining in the first month after 

establishment was not significantly correlated (r=-0.311, df=14, P>0.05) with

rainfall (mm) over the m onth, average monthly tem perature  (°C) (r=-0.468, df=15, 

P>0.05) or average maximum tem perature  (r=-0.427, df=15, P>0.05) but was 

significantly correlated with average minimum temperature (r=-0.550, df=15,

P<0.05).

The regression between the logarithmically transformed means and variances of 

the corrected dung counts was significant (r=0.948, df=15, P<0.01). The slope of 

the regression line was 2.1.

The average proportion of plots with pig dung was significantly higher (F=17.50, 

df=1.16, PcO.Ol) on plots with animal trails (0.052) than on plots with no trails 

(0.033). The proportion was also significantly different among months (F=6.50, 

d f =  16.16. PcO.Ol) being highest (0.191) in June  1985 and lowest (0.022) in 

December 1986. The average number of dung pellets on plots where dung occurred 

was significantly higher (F=6.34, df=1.16. P<0.05) on plots with animal trails 

(0.173) than on plots with no animal trails (0.105). The average number of dung 

pellets was also significantly different among m onths (F=3.50, df=16.16, PcO.Ol) 

being highest (0.857) in June 1985 and lowest (0.047) in December 1985.

Pigs

The observed population density of feral pigs in the study area was 0 .93 /km 2 

( + /-  0.21 SE). Of pigs observed (122) in the seven sites, 63 (51.6%) were adults, 

18 (14.8%>) subadults and 41 (33.6%) juveniles. Of pigs that could be sexed, 20 

were male and 27 female. These data  may have included some recounting of pigs.
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The frequency distribution of pigs/0.25km2 was highly skewed with the most 

frequent number being 0 (499 subsites). The rest of the distribution was (number 

of subsites given in parentheses) 1 pig (8). 2 pigs (4), 3 pigs (4), 4 pigs (2). 5

pigs (2), 6 pigs (1), 7 pigs (1), 8 pigs ( l ) ,  9 pigs (2), and 19 pigs in 1 subsite.

The frequency distribution was significantly different from a Poisson series

(X2=103.0. d f = l ,  P<0.01).

Relationships between rooting and dung pellets

When calculated between months there was no significant correlation between the 

percentage area of each site rooted and the average number of dung per site 

(r—-Ü.Ü76, df—14, P>0.05), or the corrected average number of dung pellets

(r=0.015, df=14, P>0.05). When calculated between sites there was no significant 

correlation between the percentage of a site rooted by pigs and the average number 

of dung pellets (r=0.101, df=5, P>0.05) or the corrected average number of dung 

pellets (r=0.100, df=5, P>0.05).

The monthly change in the extent of rooting over all sites was calculated

between successive months from da ta  in Table 3.4. The regressions were significant 

between the monthly change in the extent of rooting (length of rooting/ 1000m) and 

corrected dung counts, and the product of tem pera ture  and rainfall. The linear 

regression between the change in extent of rooting and corrected dung counts had 

a correlation of 0.626 (df=13, P<0.05). When the corrected dung counts w'ere 

transformed to their square root, the correlation w;as 0.649 (df—-13, P<0.01). The 

highest correlation (0.653, df=13, PcO.Ol) was with the common logarithms of the 

corrected dung counts (CD) after adding one.

Change in rooting = -1.235 -f- 1.181 log(CD +  1)

The linear regression of the change in the extent of rooting and the product of 

average tem perature  arid rainfall for the month was significant (r=-0.649, df =13, 

PcO.Ol) .

The regression between the monthly change in the percentage of plots writh 

rooting and corrected dung counts was highly significant (r=0.675, df=14. PcO.Ol).  

The regression using the square root of the corrected dung counts was significant 

(r=0.703, df=14. PcO.Ol).  as was the regression with the corrected dung counts 

transformed to common logarithms after adding one (r=0.716. df =14, PcO.Ol).

Change in plots with rooting =  -6.440 -f 6.206 log(CD -f l)
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The regression of the change in the number of plots with rooting and the product 

of average tem perature and rainfall was significant (r=-0.643, df=14. P<0.01).

Relationships between rooting and number of pigs

Between months the percentage of ground rooted by pigs was not significantly 

correlated with observed population density (r=-0.158, df=16, P>0.05). Between 

sites the percentage of each site rooted by pigs was not significantly correlated 

with observed population density when this was averaged over months (r=0.131, 

df=5, P>0.05).

Relationships between dung pellets and number of pigs

There were no significant correlations between the number of dung pellets 

recorded per month and the observed population density of feral pigs at the end of 

a m onth  (r=-0.029, df=15), population density at the start  of a month (r=0.390, 

df=15) or population density averaged over the m onth  (r=0.247, df= 15).

There were, no significant correlations between corrected dung counts and observed 

population density of pigs at the end of a month (r=-0.041, df=15), at the s ta r t  of 

a m onth (r=0.373, df=15) or when pig density was averaged over the month 

( r= 0 .151, df=15).

The relationships were examined in more detail w'ith da ta  from Shanahans Falls 

Creek (SH) where pigs could be seen more easily and were not disturbed except by 

me. There was no significant correlation (r=0.099, df=15, P>0.05) between the 

num ber of dung pellets per month and observed population density of pigs at the 

end of the month. The correlation was significant with population density at the 

s tart of the month (r=0.516. df =15, P<0.05), but not significant with population 

density averaged over the month (r=0.392, df =15. P>0.05).

When juvenile pigs were excluded from the analysis, as their dung was never 

seen, and observed population densities at the s tar t  and end of each month were 

averaged, then there was a significant correlation between dung counted and 

average observed density of adult, and subadult pigs (r=0.512. df=15, P<0.05). The 

regression equation was:

Dung/100 plots =  9.6 -4-  9.4 (Pigs >6 mths)

There was a significant correlation between corrected dung counts and average 

observed population density (r—0.490. df=15. P<0 .05) of adult and subadult pigs. 

The regression equation was;
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Corrected Dung/100 plots =  13.4 -f 9.3 (Pigs >6 mths)

3 .2 .3 .  D iscu ss io n

The results show that repeatable measures of rooting and counts of dung were 

obtained by the methods used. Rooting was a more accurate indicator of past feral 

pig presence than dung counts, as rooting occurred when no dung occurred, and 

dung counts were more accurate than one or two counts of pigs per month.

For the same number of plots measured, the percentage of plots with rooting was 

a more precise measure than the percentage of plots with dung as the rooting 

estim ate  had a lower coefficient of variation. This was due to the higher average 

value of the variable measured. Such a result is expected with binomial da ta  

(Snedecor and Cochran 19G7), where precision is highest when the frequency of 

occurrence is between 20% and 80% (Batcheler 1973).

The extent of rooting in this study varied between months from 2.2%-4.4%. This 

extent was similar to th a t  reported for a Polish forest (3%-10%) by Jezierski and 

M yrcha (1975) and an Hawaiian forest (G%-11%) by Ralph and Maxwell (1984) 

but lower than th a t  reported' for parts  of Great Smoky Mountains National Park 

(0.3%.-80%) by Singer (1981) or an Hawaiian forest (14%-38%) reported by Cooray 

and Mueller-Dombois (1981).

The negative exponential frequency distribution of rooting per plot probably 

reflects different searching patterns by feral pigs. The large number of short lengths 

of rooting may have been sites of searching for food, and the longer lengths of 

rooting were sites where food was found. The negative exponential functions for 

the frequency distribution of rooting per plot had very high correlations but appear 

to have poor predictive value. Each equation underestimated the frequency of 

occurrence of plots with no rooting.

The lack of correlation between the extent of rooting and dung counts or pig 

counts supports da ta  in Section 3.1. The assumption of Beiden and Pelton (1975), 

Conley (1977) and Giles (1980). that the extent of rooting is positively correlated 

with population density, is not correct. In the present study the extent of rooting 

was not correlated with pig counts but in the previous study (Section 3.1) the 

frequency of rooting on plots was correlated with the frequency of pig dung on 

plots. Similar comparisons between the abundance of wild boar and the extent of 

crop) damage in Poland have shown statistically non-significant relationships in two 

studies (Mackin 1970, Andrzejewski and Jezierski 1978), but a significant 

correlation in another (Gorynska 1981).
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The lack of correlation between the extent of rooting and the abundance of pig 

dung suggests th a t  feral pigs do not, in the process of rooting, cover many dung 

pellets. If they did then a significant negative correlation would have occurred. The 

lack of correlation may result from a lack of time scale on the measure of rooting 

compared to that, of dung which accumulated over a defined time period, or simply 

reflect the suggestion of Cherrett et ah (1971) and Norton (1976) tha t  the extent 

of damage bv a pest is determined by many variables, as noted in Chapter 1.

In contrast the monthly change in the extent or frequency of rooting was highly 

positively correlated with the abundance of pig dung in a curvilinear manner. The

results support the third hypothesis described at the s ta r t  of this Section. The

curvilinear relationship may be associated with behavioural changes in feeding, and 

hence rooting, a t  varying pig densities, or "nested" rooting in which pigs root over 

an area before it has revegetated, and such rooting varied with pig density. This 

is a more sensitive analysis than the relationship between the extent or frequency 

of rooting and the abundance of pig dung, as both variables (monthly changes) 

were calculated over the same time period. In contrast there were significant 

negative correlations between the monthly changes in the extent or frequency of 

rooting and the climatic index (the product of rainfall and average temperature).

The results show a need for further research to clarify the relative importance of

pig abundance and climate in determining trends in the extent or frequency of pig 

rooting. In the present study the effects were confounded, as a summer decrease in 

dung counts corresponded to a seasonal increase in the climatic index because of 

higher temperatures.

The observed population density (0 .9 /km 2) of feral pigs in Namadgi National 

Park (NNP) was lower than th a t  reported for mountain forests (2-9 /km 2) in 

Tennessee and for forests (19-79/km2) in Hawaii (Singer 1981). The observed 

density was similar to that reported (1 .0 /km 2) in the earlier study (Section 3.1). 

The coefficient of variation of the population density was 23%, compared to 50% 

in the earlier study. The departures of the frequency distributions of pig counts 

and dung counts from Poisson distributions were expected as the distribution 

pa tte rn  of feral pigs is probably more clumped then the random distribution 

assumed by the Poisson distribution.

The counts of dung in the present study were on average much lower than those 

reported in Hawaiian forests. Average dung pellets/20nrT plot were 0.13 in NNP 

and 0.47-1.65 (Ralph and Maxwell 1984) and 83.3-150 in Hawaii (Cooray and 

Mueller-Dombois 1981). The latter  counts have been corrected to the same plot 

size as used in in the present study. The precision of the NNP dung counts was
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variable with the ratio of the standard error over the average varying from 

14%-50%, compared to the results of Ralph and Maxwell (1984) where the ratio 

varied from 9% -20>% between sites. The percentage of plots with pig dung in NNP 

ranged from 1.0%-8.3% in NNP compared to 4.0%-17.5% in Hawaii (Cooray and 

Mueller-Dombois (1981).

The regression between the means and variances of corrected number of dung 

pellets per month had a slope of 2.1. This is similar to the slopes (1.0-3.0) of 

regressions for many plant and animal populations reported by Taylor (1961), 

Anderson et ah (1982) and Taylor et ah (1983).

The number of dung counted declined over summer even when corrected for 

decay. This suggests th a t  pig density declined seasonally. A possible explanation is 

tha t  the pigs moved to higher altitude in summer as was suggested by Boreham 

(1981) and reported for feral pigs in the USA (Beiden and Pelton 1975, Singer et 

ah 1981).

Comparison of the population density and dung counts in NNP strongly suggests 

th a t  the pig counts were negatively biased. The average count of dung was 

0.13 '20m "/m onth  which is equivalent to 217 pelle ts /km 2/day . As the observed 

population density was 0.93/km* then those pigs m ust produce 233 pellets/pig/day. 

This is considered unrealistically high, though no estimates of the defecation rates 

of feral pigs have been published. The significant regressions between dung counts 

and counts of pigs indicate that even when no feral pigs were seen then dung

pellets were still counted.

The rates of decay of dung pellets in NNP were lower than those reported for 

Hawaii (Ralph and Maxwell 1984). This may have been associated with lower

tem peratures and rainfall in NNP. The modified exnonential function had a better 

lit to the decay data  more frequently than the simple exponential function.

The significant regressions between the extent of rooting and percentage of plots 

with rooting, and the abundance of dung and the percentage of plots with dung, 

suggest th a t  detailed measurement or counting of either variable may not be 

necessary. Only the percentage of plots with rooting or with dung need be 

recorded. Such a recording system reduced field time from 4hrs per site to 1.5hrs 

per site when used in July 1986. The varying slopes of the regressions indicate

each may be specific for a time period. Some of the variation may have been 

associated with seasonal changes in diet and defecation rates such as those reported 

for coyotes (Canis la tran s) by Andelt and Andelt (1984), and elk (Cervus
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canadensis) by Collins and Urness (1979). Other sources of variation could be 

changes in age structure, which in mule deer (Odocoileus hemionus) can influence 

defecation rates (Smith 1964).

The experimental analyses of survey methods described in this and the previous 

Chapter have shown that some methods have potential for use in evaluation of 

control of feral pigs. In open habita ts  feral pigs can be surveyed from a helicopter 

and the Fourier series estimator appears to be the most accurate for estimating 

density. In forest habita ts  the extent of rooting and the abundance of dung can be 

measured on marked plots. In the next Chapter the aerial survey method is 

applied to the evaluation of the effectiveness of shooting from a helicopter. In 

C hapter 5 the methods for measuring rooting and counting dung are applied to the 

evaluation of the short and long-term effects of poisoning with warfarin. In both 

Chapters  the development and evaluation of models of the control processes are 

also described.
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T ab le  3-2: The frequency d is tr ib u tio n s  o f length of
roo ting  per 10m plot in each m onth .The m idpo in t 

o f each rooting  class is shown (e.g. 0.5=0.01- 
1.00m). The to ta l number o f p lo ts was 600 in May 
1985 and 700 in all o ther months. The mean data 
were averaged over m onths from  June 1985 to 

December 1986.

MONTH 
k  YEAR 0 0 . 5

LENGTH OF 

1 . 5  2 . 5
ROOT ING 

3 . 5  4 . 5  5
(m)
. 5

PER 
6 . 5  7

10m 

. 5
PLOT 

8 . 5  9 . 5

1 9 8 5
May 4 8 0 7 5 21 12 4 5 2 1 0 0 0
J une 5 6 6 9 3 16 10 5 6 2 0 1 1 0
J u l y 5 6 3 8 8 17 16 3 7 3 2 1 0 0
A u g . 551 9 5 22 13 5 7 3 2 1 1 0
S e p t  . 5 2 2 123 16 17 6 6 4 4 1 1 0
Oc t . 5 1 4 111 34 2 0 5 5 5 3 2 1 0
N o v . 5 4 9 9 5 3 0 10 6 4 5 0 0 1 0
D e c . 5 6 6 8 2 2 5 11 5 3 6 1 1 0 0
1 9 8 6  
J a n . 5 7 3 8 3 19 12 3 3 5 2 0 0 0
F e b . 5 6 7 81 2 3 12 6 4 4 2 1 0 0
M a r c h 5 6 3 8 0 2 3 21 2 4 5 1 1 0 0
A p r i l 5 4 5 9 4 2 8 14 8 4 3 2 1 1 0
May 5 3 3 1 0 6 2 8 15 5 6 2 2 2 1 0
J un e 5 2 2 112 37 11 6 4 3 4 1 0 0
S e p t . 5 0 4 1 2 5 3 4 12 9 9 2 2 2 1 0
O c t . 5 0 8 1 0 3 4 5 13 8 11 3 2 4 1 2
N o v . 5 1 9 1 05 3 7 13 11 3 5 2 2 3 0
D e c . 5 3 9 101 2 2 15 12 3 5 0 3 0 0

Mean 541 99 27 14 6 5 4 2 1 1 0
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Table 3-3: The in tercepts, slopes and correlation
coefficients of a negative exponential equation 
fitted to the frequency d istribution of rooting 

per plot for each m onth (data  in Table 3.2).
Degrees of freedom vary between m onths as a zero 

occurrence could not. be included in the
regression (lnO=- ). All correlations were

significant a t the 0.01 level.

MON T H  
4c YEAR

INTERCEPT
(a)

SLOPE
(b)

C O RRELATION
COEFFICIENT

DF

1985
May 142.58 -0.81 -0.947 6
June 105.57 -0.64 -0.915 7
July 125.25 -0.69 -0.914 7
August 120.78 -0.64 -0.936 8
September 124.59 -0.62 -0.927 8
Octo b e  r 136.55 -0.62 -0.939 8
N o v embe r 123.52 -0.65 -0.914 6
De c e m b e  r 133.74 -0.72 -0.927 7
1986
January 126.10 -0.73 -0.885 6
Februa ry 133.11 -0.70 -0.935 7
March 133.41 -0.73 -0.911 7
April 130.89 -0.66 -0.949 8
May 123.97 -0.64 -0.931 8
June 148.08 -0.70 -0.932 7
Sept embe r 146.35 -0.64 -0.945 8
October 119.32 -0.54 -0.915 9
N o v e m b e  r 121.03 -0.57 -0.903 8
De c e m b e  r 131.72 -0.62 -0.888 6

Mean 152.66 -0.70 -0.963 9
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T ab le 3-4: The percentage o f ground rooted by pigs a t each
site in each m onth o f s tudy. Note th a t the 

percentage refers to  the extent o f ex is ting  
roo ting  at the tim e  o f measurement not the 
increm ent since the previous measurement. One 

site (B F ) was not sampled in M ay 1985. The names 
o f sites are abbreviated: HC Honeysuckle Creek, 

NS Nursery Swamp. PI P ine Forest, SH Shanahans 
Falls Creek, BO Boboyan, CG C o tte r Gap. BF 

B randy F la t.

SITES
MONTH 
k  YEAR

HC NS PI SH BO CG BF MEAN

1985
Moy 3.52 1 .07 5 .30 1.94 1.44 1 .12 _ 2.40
June 4 .19 0 .87 6 .08 2 .40 0.81 0 .43 0 .75 2 .22
J u l y 4 .69 0 .89 6 .75 3 .34 0 .99 0 .52 0 .14 2.47
August 4 .92 1.17 7.91 3 .32 1.11 1 .46 0 .03 2 .84
Sept embe r 5 .83 1.19 9 .83 3 .77 1 .26 1.08 0 .09 3.29
Oc t obe r 6 .93 1 .86 10.48 3 .60 1.11 1.13 0 .14 3 .60
Novembe r 5 .79 1 .42 7 .08 1.67 1 .01 1.01 0 .13 2.59
DecemDe r 6 .70 1 .43 6 .78 0 .87 0 .87 0 .77 0 .08 2 .50
1986 
Jonuory 5 .35 1.50 5 .90 0 .58 1.13 1.19 0 .02 2 .23
Feb ruory 6 .53 1 .23 6.71 0 .82 1 .40 1.19 0 .00 2 .55
March 6 .54 1.31 6 .45 1.50 1 .93 1 .43 0.01 2 .74
A p r i l 7.11 1.36 7 .99 0.81 1.31 2 .15 0 .09 2 .97
May 7.58 1.57 7 .18 1 .75 0 .83 1 .54 0 .02 2 .92
June 7 .73 1 .70 5 .89 2 .03 1 .27 2 .29 0 .4 5 3 .05
Sept embe r 9 .04 1 .78 4 .79 6.51 0 .77 2 .28 0 .0 8 3.61
Oc t obe r 10.22 1 .53 6 .54 7.71 0 .75 4 .20 0 .05 4 .43
Novembe r 8 .76 1.27 5 .70 5 .84 0 .69 3 .64 0 .16 3 .72
Decembe r 7.74 0 .88 4 .26 5.11 0 .57 3 .10 0 .08 3 .10

Mean 6.61 1.33 6 .75 2 .97 1 .07 1 .69 0 .14
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T ab le 3-5: The slopes, associated standard  errors
(SE) and S tudent's t s ta tis tics  * of regressions 

forced through the origin between the percentage 
of ground rooted by pigs at each site and an 
index of rooting extent. The index was 
calculated from the first term  of a Poisson 
series using the percentage of plots with 

rooting a t each site. One site (BF) was not 
measured in May 1985. *P<0.05, **P<0.01.

MONTH 
4: YEAR

SLOPE SE t DF S1GNIF.

1985
May 9 .81 1 . 7 0 5 . 7 7 5 • *
Ju ne 8 . 8 5 2 . 3 8 3 . 7 2 6 * *
J u l y 8 .61 1 . 8 9 4 . 5 6 6 • *
Augus t 3 . 8 3 1 . 7 3 5 . 1 0 6 * *
S e p t e m b e r 8 . 1 3 1 . 5 0 5 . 4 2 6 * *
O c t ob e  r 7 . 9 8 1 . 7 3 4 . 61 6 ♦ *
Novembe r 8 . 0 3 1 . 4 6 5 . 5 0 6 * *
Decembe r 6 . 2 2 1 . 89 4 . 3 5 6 * *
1986 
J a n u a  ry 8 . 1 2 1 . 6 5 4 . 9 2 6 * *
F e b r u a r y 9 . 8 8 1 . 6 0 6 . 1 8 6 * »
March 9 . 5 2 2 . 1 8 4 . 3 7 6 * *
Ap r i l 9 . 0 8 2 . 2 2 4 . 0 9 6 * *
May 8 .31 2 . 5 5 3 . 2 6 6 *
Ju ne 9 . 2 4 1 . 85 5 . 0 0 6 * *
Sep t embe  r 8 . 4 4 1 . 7 8 4 . 7 4 6 • *
Oc t obe  r 1 0 .9 0 2 . 7 2 4 .0 1 6 * *
Novembe r 1 0 . 0 7 2 . 1 2 4 . 7 5 6 * *
Decembe r 8 . 6 4 1 . 8 2 4 . 7 5 6 * *

• »Mean 9 . 1 6 1 . 8 2 5 . 0 3 5
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T ab le  3-6: The slopes, associated s tandard  e rro rs
(SE) and S tu d e n t's  t  s ta tis tic s  o f regressions 

forced th ro u g h  the  o rig in  between the  percentage 
o f g round roo ted  by p igs a t each s ite  and the  
percentage o f p lo ts  w ith  ro o tin g  a t each site . 

*P<0.05, **P<0.01.

MONTH 
k  YEAR

SLOPE SE t DF S I G N I F .

1985
May 0. 11 0 . 0 2 5 . 5 0 5 * *
J un e 0 . 1 0 0 . 0 3 3 . 3 3 6 *

J u l y 0 . 1 0 0 . 0 2 5 . 0 0 6 * »
A u g u s t 0 . 1 0 0 . 0 2 5 . 0 0 6 •  *
S e p t e m b e r 0 . 1 0 0 . 0 2 5 . 0 0 6 * *
Oc t obe r 0 . 1 0 0 . 0 2 5 . 0 0 6 % *
Novembe r 0 . 0 9 0 . 0 2 4 . 5 0 6 * *
Decembe r 0 . 1 0 0 . 0 3 3 . 3 3 6 *
1986
J a n u a r y 0 . 0 9 0 . 0 2 4 . 5 0 6 •  *
F e b r u a r y 0 . 1 2 0 . 0 2 6 . 0 0 £ * *
Ma r c h 0 . 1 1 0 . 0 3 3 . 6 7 6 *
A p r i l 0 . 1 1 0 . 0 3 3 . 6 7 6 *
May 0 . 1 0 0 . 0 3 3 . 3 3 6 *
J un e 0 . 1 1 0 . 0 2 5 . 5 0 6 * *
S e p t  embe r 0 . 1 0 0 . 0 2 5 . 5 0 6 * *
Oc t obe r 0 . 1 3 0 . 0 3 4 . 3 3 6 * *
Novembe r 0 . 1 2 0 . 0 3 4 . 0 0 6 * *
Decembe r 0 . 1 2 0 . 0 3 4 . 0 0 6 * *

Mean 0 . 1 1 0 . 0 2 5 . 5 0 6 * *
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T ab le  3-7: The frequency d is tr ib u tio n s  of num ber o f dung
pellets per p lo t for each m onth of study. The 
results o f the Chi-square goodness-of-fit test 

to  a Poisson d is tr ib u tio n  and degrees of 
freedom are also shown. A ll frequency

d is tr ib u tio n s  were s ign ifican tly  d iffe ren t
(PcO .O l) from  a Poisson d is tr ib u tio n . The number 
of p lots measured in June 1985 was 600 and in 

in a ll other m onths was 700.

MONTH NUMBER OF DUNG PELLETS PER PLOT

4: YEAR 0 1  2 3 4 5 6 7 8 9 1 0  >10 X2 DF

1955
June 557 17 8 3 2 2 3 1 4 1 2 3 2 4 9 . 0 0 2
Ju ly 659 14 13 3 3 1 2 0 2 0 0 3 11 8 . 40 1
Aug. 642 16 12 10 8 1 3 1 3 3 1 0 5 3 6 . 6 4 2
S e p t . 652 16 9 4 6 7 3 1 1 1 0 0 12 7 . 57 1
O c t . 678 7 2 5 1 1 2 0 1 1 1 1 89 .51 1
Nov. 686 4 6 1 1 1 0 0 0 1 0 0 115 . 02 1
Dec . 690 7 2 0 1 0 0 0 0 0 0 0 12 3 .4 8 1
1986 
Jo n . 681 9 4 2 2 1 0 0 0 1 0 0 8 0 . 5 5 1
F eb . 687 5 3 2 1 2 0 0 0 0 0 0 10 1 .1 5 1
Mo rch 668 15 8 6 0 1 1 0 1 0 0 0 8 6 . 5 5 1
A p r i l 661 20 8 3 1 1 0 3 0 0 0 3 8 4 . 1 6 1
May 673 12 8 3 1 1 1 0 0 0 0 1 9 3 . 2 0 1
June 680 8 3 2 2 1 0 2 1 1 0 0 7 7 . 2 2 1
Ju ly 691 1 3 1 0 1 0 1 0 0 1 1 6 9 . 3 2 1
Oct . 678 11 5 1 1 0 1 0 0 0 1 2 7 4 . 9 6 1
Nov. 688 2 5 3 1 0 0 0 1 0 0 0 1 4 4 . 10 1
Dec . 693 2 1 3 0 1 0 0 0 0 0 0 12 9 . 10 1
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T ab le 3-8: T he  slopes, associated s tandard  e rro rs  (SE) and
S tu d e n t’s t s ta tis tic s  o f regressions forced 

th ro u g h  the  o rig in  between the  n um be r o f 
dung  pe lle ts  a t each s ite  and an index o f 

dung  abundance. The index was ca lcu la ted  fro m  
the  firs t te rm  o f a Poisson series using the 

percentage o f p lo ts  wdth dung a t each site.
*  P < 0 .0 5 , * *  P c O .O l, NS no t s ig n ific a n t.

MONTH 
& YEAR

SLOPE SE t DF SIGNIF .

1985
June 26 8 . 9 58.1 4 . 6 3 4 * *
J u l y 3 2 0 . 7 4 7 . 3 6 . 7 8 6 * *
Augus t 263.1 3 3 . 2 7 . 9 3 5 * *
Sept  embe r 2 9 5 . 8 80.1 3 .6 9 5 *
Oc t obe r 366 . 9 132 .2 2 . 7 8 4 *
Novembe r 281 .9 6 5 . 6 4 . 3 0 5 * *
Decembe r 130.0 2 0 . 0 6 . 5 0 4 * *
1986
J an ua ry 197.2 3 6 . 6 5 .3 9 5 * *
Feb rua ry 2 7 6 . 7 6 3 . 6 4 . 3 5 4 •
Mo rch 186.3 2 5 . 9 7 .1 9 5 * t»
A p r i l 183.8 51 .3 3 . 5 8 5 *
May 2 3 9 . 7 41.1 5 . 8 3 4 * *
June 351.1 46 . 9 7 . 4 9 4 * *
J u l y 4 2 0 . 8 115 . 3 3 . 6 5 3 »
Oc t obe r 3 5 4 . 3 161 .8 2 . 1 9 4 NS
Novembe r 2 9 0 . 0 5 5 . 7 5.21 4 * *
Decembe r 2 5 4 . 2 2 0 . 8 12 .22 1 NS

• »Mean 25 3 . 9 2 6 . 8 9 . 4 7 6
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T ab le  3-9: The slopes, associated s tanda rd  e rro rs  (SE) and
S tuden t's  t s ta tis tic s  o f regressions forced 

th ro u g h  the  o rig in  between the num ber o f 
dung pe lle ts  at each s ite  and the  

percentage o f p lo ts  w ith  dung a t each site . 
P ^ .O ä , * *  P cO .O l, NS n o t s ig n ifica n t.

MONTH 
k  YEAR

SLOPE SE t DF S I G N 1 F .

1 9 8 5
J u n e 2 . 8 4 0 . 7 2 3 . 9 4 4 *
J u l y 3 . 2 5 0 . 4 7 6 . 9 2 6 * *
A u g u s t 2 . 7 5 0 . 3 9 7 . 0 5 5 » *
S e p t  embe r 3 . 6 7 0 . 8 0 3 . 8 4 5 *

O c t o b e  r 3 . 6 7 1 . 3 2 2 . 7 8 4 •
N o v e m b e  r 2 . 8 2 0 . 6 6 4 . 2 7 5 *  *
D e c e m b e  r 1 . 3 0 0 . 2 0 2 . 6 0 4 NS
1 9 8 6  
J o n u a  r y 1 . 9 7 0 . 3 7 5 . 3 2 5 •  *
F e b r u a r y 2 . 7 7 0 . 6 4 4 . 3 3 4 ♦
M a r c h 1 . 8 9 0 . 2 7 7 . 0 0 5 * *
A p r i l 1 .91 0 . 5 9 3 . 2 4 5 *
May 2 . 4 3 0 . 4 1 5 . 9 3 4 * *
J u n e 3 . 5 1 0 . 4 7 7 . 4 7 4 * *
J u l y 4 . 2 1 1 . 1 5 3 . 6 6 3 ♦
Oc t o b e  r 3 . 5 4 1 . 6 2 2 . 1 9 4 NS
N o v e m b e  r 2 . 9 0 0 . 5 6 5 . 1 8 4 *  0
D e c e m b e  r 2 . 5 4 0 . 2 1 1 2 . 1 0 1 NS

Mean 2 . 8 1 0 . 2 4 1 1 . 7 1 6 • *
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T a b le  3 -10 : The percentage o f reference dung pellets
rem aining over the m onths of the study. Reference 
dung pellets were not established in M ay 1985, 

or August 1986 or checked in August 1986. Sample 
sizes are also shown.

MONTH MONTH DUNG ESTABLISHED
DUNG 1985
CHECKED M A J J A S 0 N D J

Samp 1e 
S i ze

41 17 82 50 83 59 30 18 14 46

1985 
Ap r i I 8 5 . 4
May 82 . 9 94.1
June 78.1 8 8 . 2
J u l y 70 . 7 8 8 . 2 9 7 . 6
Aug us t 65 .9 8 8 . 2 8 6 . 6 9 0 . 0
Sep t  . 58 . 5 8 2 . 4 7 5 . 6 7 4 . 0 9 7 . 6
0c t . 51 .2 8 2 . 4 31 .7 64 . 0 77.1 71 .2
Nov . 43 . 9 41 .2 2 3 . 2 3 6 . 0 5 0 . 6 55 . 9 3 3 . 3
Dec . 41 .5 3 5 . 3 14 . 6 2 8 . 0 3 1 . 3 3 0 . 5 10 . 0 7 7 . 8
1985
J a n . 34 .2 2 3 . 5 4 . 9 16 .0 8 . 4 15 . 3 6 . 7 5 . 6 3 5 . 7
F e b . 31 .7 2 3 . 5 3 . 7 16 .0 8 . 4 13 .6 6 . 7 5 . 6 7.1 82 . 6
March 19 .5 2 3 . 5 2 . 4 10 . 0 8 . 4 10 .2 6 . 7 5 . 6 7.1 69 .6
A p r i l 12 .2 2 3 . 5 2 . 4 8 . 0 8 . 4 8 . 5 6 . 7 5 . 6 7.1 63 .0
May 9 . 8 17 .6 2 . 4 6 . 0 8 . 4 6 . 8 6 . 7 5 . 6 7.1 63 .0
June 7 . 3 17 .6 2 . 4 6 . 0 7 . 2 6 . 8 6 . 7 5 . 6 7.1 50 . 0
J u l y 2 . 4 17 .6 0 . 0 4 . 0 7 . 2 6 . 8 3 . 3 5 . 6 7.1 47 . 8
Sept  . 2 . 4 17 .6 0 . 0 2 . 0 7 . 2 6 . 8 3 . 3 5 . 6 0 . 0 3 4 . 8
Oct  . 2 - 4 17 .6 0 . 0 2 . 0 6 . 0 3 . 4 0 . 0 5 . 6 0 . 0 23 . 9
Nov . 2 . 4 17 .6 0 . 0 2 . 0 6 . 0 3 . 4 0 . 0 5 . 6 0 . 0 15 .2
Dec . 0 . 0 17 .6 0 . 0 0 . 0 3 . 6 3 . 4 0 . 0 5 . 6 0 . 0 10 .9

F M A

1986 

M J J S 0 N

Samp Ie 27 77 80 36 45 20 46 99 26
S i ze

March 59 . 3
A p r i l 44 .4 7 9 . 2
May 3 7 . 0 5 9 . 7 7 7 . 5
June 29 . 6 5 0 . 7 6 8 . 8 8 8 . 9
J u l y 2 9 . 6 41 . 6 51 .3 5 5 . 6 8 8 . 9
Sept  . 25 . 9 24 . 7 3 5 . 0 36 .1 5 3 . 3 15 . 0
Oc t . 18 .5 19 . 5 31 .3 2 7 . 8 3 5 . 6 10 . 0 89.1
N o v . 3 . 7 19 .5 2 6 . 3 13 .9 2 4 . 4 10 . 0 5 0 . 0 3 8 . 4
Dec . 0 . 0 13 .0 8 . 8 2 . 8 17 .8 0 . 0 2 3 . 9 2 8 . 3 6 5 . 4
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T able  3-11: The in te rcep ts , slopes and co rre la tio n
coeffic ien ts  o f negative  exponen tia l

regressions between the arcsine o f the  
percentage o f dung pelle ts rem a in ing  and the  
m on ths  since reference dung pe lle ts  were 

estab lished. P < 0 .0 5 , * *  P < 0 .0 1 , NS not
s ig n ific a n t.

MONTH 
4c YEAR

INTERCEPT

(a)
SLOPE

( b )
CORRELATION
COEFFICIENT

DF S IG N IF .

1 9S5 
M a rc h 9 6 . 8 8 - 0 . 1 2 - 0 . 9 7 4 18 * *
A p r i l 7 7 . 8 5 - 0 . 0 7 - 0 . 9 1 9 18 * *
J une 9 2 . 7 8 - 0 . 2 3 - 0 . 9 7 0 11 • *
J u l y 7 4 . 8 3 - 0 . 1 6 - 0 . 9 8 5 14 * *
A u g u s t 5 7 . 1 4 - 0 . 1 2 - 0 . 8 6 4 14 * *
S e p t  ember 5 2 .3 1 - 0 . 1 2 - 0 . 9 1 9 13 *  »
Oc t obe  r 3 6 . 8 6 - 0 . 1 4 - 0 . 7 7 9 9 • *
Novembe r 3 1 . 3 8 - 0 . 0 9 - 0 . 6 0 2 11 *
Decembe r 4 2 . 9 9 - 0 . 2 0 - 0 . 7 4 3 6 *
1986 
J a n u a  r y 8 6 . 7 4 - 0 . 1 2 - 0 . 9 7 7 9 •  *
F e b r u a r y 6 8 . 4 4 - 0 . 1 6 - 0 . 8 9 9 7 * *
M a rc h 7 4 . 7 7 - 0 . 1 5 - 0 . 9 8 1 7 * *
A p r i l 8 0 . 9 7 - 0 . 1 7 - 0 . 9 6 2 6 * *
May 9 4 . 7 4 - 0 . 2 7 - 0 . 9 5 6 5 ♦ *
J u n e 8 8 . 5 7 - 0 . 2 2 - 0 . 9 9 9 4 * •
J u l y 7 3 . 3 4 - 0 . 4 1 - 0 . 9 2 5 2 NS
S e p t  embe r 9 5 . 4 3 - 0 . 3 8 - 0 . 9 9 2 2 *  *
Oc t obe  r 8 0 . 3 9 - 0 . 5 2 - 0 . 9 3 5 1 NS
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T ab le 3-12: T he  in te rcep ts , slopes and c o rre la tio n
coeffic ien ts  o f m od ified  e xpo ne n tia l regressions 

between the percentage o f dung pe lle ts  re m a in in g  
and the  m on ths  since reference dung were 

estab lished. *P < 0 .0 5 , ^ P c O .O l,  NS no t 
s ig n ific a n t.

MONTH 
L  YEAR

INTERCEPT
(a )

SLOPE
( b )

CORRELATION
COEFFICIENT

DF SIGNIF.

1985 
Ma rch 11 . 15 0 . 7 6 0 . 9 8 8 17 * *
A p r i l 4 . 7 4 1 .06 0 . 9 3 6 17 • *
June 4.71 1 .43 0 . 9 3 5 10 * *
J u l y 15 .43 0 . 7 8 0 . 9 4 0 13 * *
Augus t 8 .6 2 1 .06 0 . 8 49 13 » *
September 36.71 0 . 4 3 0 . 9 17 12 * *
O c t o be r 7 4 .4 4 0 . 1 3 0 . 8 3 6 8 * *
Novembe r 44 .5 6 0 . 3 9 0 . 6 9 5 10 *
Decembe r 72 .9 7 0 . 1 6 0 . 7 8 3 5 *
1986 
Janua ry 16 .98 0 . 6 9 0 . 9 8 5 8 * *
F e b r u a r y 41 90 0 . 3 6 0 . 9 7 8 6 * *
March 22 t-4 0 . 6 8 0 . 9 8 7 6 * »
A p r i l 21 . 28 0 . 7 3 0 . 9 8 9 5 * *
May 14 .64 1 .16 0 . 9 6 0 4 * *
June 14.21 1 .23 0 . 9 5 4 3 ♦
J u l y 8 5 .4 8 0 . 0 4 0 . 9 29 1 NS
Septembe r 11 .83 1 .80 0 . 9 8 5 1 NS
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T ab le  3-13: The corrected num ber of dung pellets
at each site in each m onth. Counts o f dung 

were corrected for decay using the equation o ’ 
H ill (1981). Symbols for sites are listed in 

Table 3.4.

MONTH SITE
4: YEAR HC NS PI SH BO CG BF MEAN

1985
June 18 .2 4.1 15 .2 145.7 0 . 0 3 . 0 3 1 . 0
J u l y 2 7 . 4 7 . 4 7 . 4 5 4 . 8 7 . 4 3 . 2 3 7 . 9 2 0 . 8
A u g . 9.1 4.1 2 3 . 3 8 4 . 0 0 . 0 5.1 6 9 . 8 27 . 9
Sept  . 11 .8 0 . 0 51 .9 64 .9 15 .3 1 .2 2 8 . 3 2 4 . 8
Oc t . 3 7 . 9 1 .7 8 . 2 2 9 . 7 0 . 0 0 . 0 6 7 . 6 2 0 . 7
N o v . 15 .8 0 . 0 3 . 4 3 . 4 5 . 7 5 . 7 7 . 9 6 . 0
Dec . 9 . 6 0 . 0 1 .6 0 . 0 1 .6 1 .6 9 . 6 3 .4
1986
Jan . 1 .1 1 . 1 17 .6 2 2 . 0 5 . 5 0 . 0

CNCN 7.1
Feb. 6 . 4 0 . 0 7 . 7 12 .8 2 . 6 0 . 0 10 .3 5 . 7
March 2 2 . 4 0 . 0 13 .5 3 1 . 4 1 .1 2 . 2 5 . 6 10 .9
A p r i l 7 . 9 0 . 0 14 .7 103.1 2 . 3 1 .1 6 . 8 19 .4
May 11 .7 0 . 0 12 .7 2 9 . 7 3 . 2 0 . 0 10 .6 9 . 7
June 14 .8 10 .6 0 . 0 12 .7 0 . 0 5 . 3 2 4 . 4 9 . 7
J u l y 21 .2 0 . 0 0 . 0 18 .0 0 . 0 5 . 3 6 . 4 7 . 3
Oc t  . 14 .6 1 . 1 18 .0 5 . 3 0 . 0 0 . 0 6 2 . 5 14 .5
Nov . 4 . 7 0 . 0 12.4 15 .5 0 . 0 3.1 15 .5 7 . 3
Dec . e . e 0 . 0 0 . 0 8 . 6 0 . 0 0 . 0 13 .5 3 . 2

Mean 13 . 8 1 .8 12.2 3 7 . 7 2 . 6 2 . 2 2 3 . 7 13 .3
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Chapter 4

Shooting from a helicopter

To date there has been only one assessment of the short-term effect of shooting 

from a helicopter on populations of feral pigs (Saunders and Bryant in press). An 

estimated 80% of feral pigs were killed by shooting. Hone (1983) and Bryant et ah 

(1984) reported levels of inputs and kill rates but did not estimate the percentage 

effects on populations and nor did O'Brien (1985). Given the potentially high 

costs involved in shooting from helicopters, the limited evaluation of this method is 

surprising. Hone and Bryant (1981) based a plan for eradication of feral pigs in a 

hypothetical outbreak of foot and mouth disease on the use of shooting from 

helicopters and trapping. The duration of shooting during such eradication was 

assumed to be 0.5h km 2, which was recognised as a planning guess in the absence 

of other information. Clearly, such an approach needs to be improved and the 

development and use of models of the shooting process could assist.

Predator-prey interactions have been modelled extensively with key components 

being the functional and numerical responses (Krebs 1985). The functional response 

describes the change in the number of prey eaten relative to changes in_ prey 

density and the duration of time available to search and eat. Control of vertebrate 

pests such as feral pigs by shooting is analogous to a predator searching for, 

chasing and eating prey. The prey are the feral pigs, the predator is the shooter 

and the time for searching, chasing and eating prey is the time for searching, 

chasing and shooting feral pigs.

The present study was designed to evaluate the effect of shooting from a 

helicopter on the population density of feral pigs and to develop and apply 

predator-prey models to this shooting. Such models could then be used to evaluate 

the economics of such control of feral pigs and make some comparisons between 

the results in different studies.
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4.1. Modelling

The relationships between the number of feral pigs shot (n), initial density (N) 

and the duration of shooting (T) were examined using the number of pigs shot as 

the dependent variable. In theory both N and T could have linear or curvilinear 

relationships with the number shot and could act in an additive or multiplicative 

m anner with respect to each other. This defines a total of eight possible models. 

Each m ust satisfy two initial assumptions; when no shooting is conducted (T =0) 

the number shot (n) must equal zero and when no pigs (N=0) occur in an area 

then the number shot must be zero. The assumptions need not apply 

simultaneously.

Additive models are of the general type;

n =  a -  f(T) +  g(N)

where a is a constant estimated by regression, f(T) is some function for the effect 

of time and g(N) is some function for initial density. Such additive models do not 

satisfy the assumptions unless they are applied simultaneously and a=0. For 

example when T = 0  the equation predicts a value for n> 0  (= a -f g(N)). Therefore 

additive models were not examined further.

Multiplicative models are of the general type; 

n =  a f(T) g(N)

where terms are as above. The same assumptions apply as for additive models 

but now the models are robust to the non-simultaneous application of assumptions. 

The effects of time and initial density could act in a linear or curvilinear manner. 

It would be expected that with increasing duration of shooting the number of 

animals shot would increase but at a decreasing rate  as density is lowered and 

animals become harder to find. Hence the effect of time should be curvilinear 

(Figure 4.1). As density increases the number shot should increase unless shooters 

get to shooting saturation where more animals are seen than can be shot and 

hence the effect of initial density should be curvilinear (Figure 4.1). If this true 

then the use of kill rate  statistics (kills/h) as a linear index of pig density, as used 

by O 'Brien (1985), may not be appropriate.

Components of predator-prey relationships have been modelled extensively starting  

with the linear functional response (Nicholson 1933), disc equation (Holling 1959). 

random  predator equation (Rogers 1972) and the general model (Fujii et ah 1986).
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F igu re 4-1: Predicted relationships between initial density
and the duration of shooting, and the number 

of feral pigs shot from a helicopter.
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Each of the equations reported in those studies was an example of a multiplicative 

model. The early Nicholson model (and th a t  of Lotka and Volterra) assumed linear 

effects of time and initial density, the disc equation assumed linear effects of time 

and the random predator equation assumed curvilinear effects of both variables. 

From the previous discussion, if shooting removes a substantial proportion of an 

animal popula tion . then the models assuming linear effects of time, such as the disc 

equation, are not appropriate.

The random predator equation (Rogers 1972) is; 

n =  N (1 - e-a<T * nb>)

where a is a measure of shooting efficiency and h is the handling time for each 

pig shot. The param eters were estimated by least squares regression where 

y —ln (l - (n /N )) ,  x= n ,  the slope of the regression was ah and the intercept was aT. 

As the total duration of the shooting (T) was knowm. the parameters a and h 

could be estimated.

The random predator equation describes predation when the prey population is 

depleted by the killing, compared to the disc and general equations which assume 

prey density is constant (Fujii et ah 1986, Juliano and Williams 1987). The 

random predator equation has the m athematical limitation tha t  n, the number of 

prey killed, occurs on both sides of the equation. To avoid that problem 1 used a 

modified version of the equation.

A variation of Rogers’ (1972) random predator equation was generated by 

assuming th a t  the total time available for the shooting process (T) was reduced by 

shooting. If the time involved in shooting (chasing and shooting) was b (h/km~) 

the model is:

n =  N (1 - e-a(T ' b>)

The model was fitted by linear least squares regression where y = ln ( l - (n /N )) ,  

x = T . the slope of the regression was a. and the intercept wras ab. This model 

assumes curvilinear effects of T and N (if b was a function of N). The coefficient a 

was equivalent t< the efficiency of the shooter. The model assumed tha t  a 

threshold duration, b. occurs, before which no pigs were shot. Iterative least 

squares (Glass 1970) was not used to fit the regression as the value of N was 

estimated prior to calculating the regression equation.

If some feral pigs hide and hence can not be shot from a helicopter, as reportec
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by Saunders and Bryant (in press), and if the proportion of pigs that can be shot 

is j, then Nj is the total number of pigs tha t  can be shot. Hughes (1979) described 

a similar approach to analyse the effect of cryptic prey in predator-prey models.

4.2. Field evaluation

The aim of this study was to estimate the effect of a shooting program on

population density of feral pigs and to apply the models of shooting to the results.

4.2 .1 . M ethods

Site

The study was conducted on Woolner Station on part  of the floodplain of the 

Adelaide and Mary Rivers in the Northern Territory as described in Chapter 2.

The area has broad treeless floodplains surrounded by a strip of Eucalyptus

woodland which varies in width from 2 to 10km. At the  time of the study (March 

and April 1986) most of the floodplain areas were covered with l-2m of water. The 

to ta l area of the study site was 295km*.

Survey Methods

The survey methods were described in detail in Chapter 2. The population 

density of feral pigs in the area was estimated from an aerial survey using one 

observer in a Jet Ranger helicopter. Feral pigs were counted on east-w'est transects 

which were selected with replacement. Transects were of irregular length, and four 

str ip  widths for estimating density were used, each of 25m with the inner boundary 

at the bottom of the observer's field of view. During surveying the helicopter flew 

a t  46m (3 50 ft) and a t  a speed of 50 knots.

Shooting method

Feral pigs were shot from a Bell 47 helicopter. The helicopter had one shooter 

and the pilot. The area was searched completely a t  least once. The search pattern 

was pseudo-systematic. Encounters with pigs resulted in departures from a 

system atic search path. The pre-shoot survey showed no feral pigs were present in 

flooded areas, so those areas were not searched. Shooting was initially 

concentrated on the perimeter of the site and then towards the centre. As the 

western and eastern boundaries were flooded and the northern boundary was the 

ocean, no immigration or emigration could occur in those directions. The southern 

boundary was a fence (non-pig proof) in woodland. The pre-shoot survey indicated
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very few pigs were near this boundary so if immigration occurred it was assumed 

to be negligible. Shooting occurred in 65 sessions over 39.26h. for an average 

duration of 36 minutes per session. This time included ferrying, searching, chasing 

and shooting. Two shooters were used alternately. Shooters used an M14 .308 rifle 

and a shotgun which used BB and SG shot. Shooters averaged 2.04 shots/pig. 

The duration of searching, ferrying, chasing and shooting averaged 0 .13h/km 2. 

Efforts were made to shoot pigs as humanely as possible and no wounded pigs 

were left. The shooting started on March 21 and finished on April 16, with 

intensive periods from March 21-23 and April 5, 10-12 and 15-16, 1986.

Analysis

The population density of feral pigs in the area prior to shooting was estimated 

by the Fourier series estimator (Burnham et ah 1980). The percentage reduction 

of feral pigs was calculated from the estimate of density obtained from the pre­

shoot survey and the number of pigs sh o t /k m 2 (the removal density). A post­

shooting survey after the first three days of shooting showed a negative bias in the 

counts, presumably associated with the ‘repeated disturbance from the shooting and 

hence no final post-shoot survey was flown. The pre-shoot population density was 

not estimated by Leslie's removal method (Caughley 1980), as the calculated 

regression was not significant, or by the generalized removal method (Otis et ah 

1978) as hunting effort was not constant on each day. To apply the models to 

the shooting results, data from successive days were used to estimate n (pigs 

s h o t /k m 2) and T (duration of shoo ting /km “).

4 .2 .2 .  R e s u l t s

The percentage reduction of feral pigs was estimated to be 79%. Pre-shoot 

density was estimated a t  6.13 p igs/km 2 ( + / -  0.50 SE). The number of pigs shot 

(removal density) was 4.86 p igs/km 2. A total of 1434 feral pigs was shot in the 

area however 60 pigs were seen th a t  escaped.

The random predator equation fitted to the data  was;

n =  N (1 - e*2‘217(T * °-161n))

The coefficient of determination (r2) was 0.968. The estimated handling tim e/pig  

shot was 0.161h or 9.7 mins/pig.

The modified model when fitted to the data (Figure 4.2) was;
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n  =  N (] - e - 13 . 127(T - 0 .014 ) )

The coefficient of determination (r2) was 0.969. The standard error of the 

efficiency coefficient (13.127) was 0.890. The coefficient was significantly different 

from zero (t— 14.75, df=8, PcO.Ol). The time involved in shooting was

0 .014h /km 2 and as the removal density was 4.86 pigs/km* the estimated handling 

t im e/p ig  was 10.4secs. The handling time also estimated the threshold duration of 

shooting (0.014h /k m 2) needed before any pigs were shot.

The modified equation was used to estimate the time (h /k m 2) needed to kill 95% 

and 99%, of pigs in the whole 295km2 site. The estimates were 0.24 (95%) and 

0.36 (99% )h/km 2. The 95%; confidence intervals on the estimates were

0.21-0.27h/km 2 (95% kill) and 0.32-0.4lh /k m 2 (99% kill). The actual duration of 

searching, ferrying, chasing and shooting in the study was 0.13h/knT over the total 

site.

The cost/pig shot was A$7.31 (Table 4.1) which included helicopter charter, fuel 

and ammunition. The c o s t /k m 2 was A&35.53 (Table 4.1).

4 .2 .3 . D iscussion

Predator-prey models have been used to evaluate control of insect pests in the 

laboratory and in the field. This study shows th a t  such models can be applied to 

describe the effectiveness of control of feral pig populations. Nearly 97%. of the 

variation in the number of feral pigs shot was accounted for by the predator-prey 

equations. Tue models assumed a random search pattern  but the close fit of the 

da ta  to the models suggests th a t  the search pa tte rn  was more random than the 

shooters planned.

The two models gave very different estimates of the handling tim e/pig  shot and 

of shooter efficiency. Juliano and Williams (1987) showed that the least squares 

m ethod of estimating the parameters of the random  predator equation gave biased 

results. Both param eters were usually underestim ated. In the present study the 

efficiency coefficient was less for the random predator equation than for the 

modified equation, but the estimates of the handling time were the reverse. There 

is no independent way of determining which estim ate  of the shooter efficiency was 

biased. In contrast the estimates of the handling t im e/p ig  shot can be more easily 

compared. The random predator equation estimated 9.7mins/pig and the modified 

equation estimated lOsecs. My own experience strongly supports the latter estimate

as more accurate.
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shooting (T -  h/km 2) and the proportion of pigs 
shot. The solid line is the predicted trend and 
the crosses are 1 he data. The fitted equation 

has been rearranged to estimate the number of 
pigs shot (n /km ‘ ). as a function of pig 
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The method of estimating pre-shoot density of feral pigs gave a precise estimate. 

The coefficient of variation was 8%. This was higher than the precision of the 

aerial survey results (coefficient of variation 31%-54%) reported by Hone (1983) or 

Wilson et ah (in press) (coefficient of variation of 25%).

The estimated effect of the shooting in the present study (79% kill) was nearly 

identical (80%) to th a t  reported by Saunders and Bryant (in press). Both estimates 

were higher than the estimated 70% instantaneous kill (Giles 1980) needed to

depress population density for at least a year.

There is potential for research to determine the duration of shooting in an area. 

Green (1984) examined the stopping rules for predators feeding in patches of prey. 

A t present no stopping rule is used when shooting from a helicopter, and only the 

curvilinear nature  of the catch-effort relationship has been suggested for use. The 

strategy of a predator staying in an area (patch) for a fixed time, such as 

suggested by Hone and Bryant (1981). was the best rule only if prey were

randomly distributed. Such a distribution pa tte rn  is unlikely for feral pigs. An 

alternative approach often used in shooting from a helicopter is to stay in an area 

until a certain time period has elapsed since shooting the previous pig. This is the 

giving-up time (GUT) rule of optimal foraging. Jwasa et ah (1981) concluded tha t  

the G U T  rule was the best strategy to maximise kills when the prey had a 

clumped distribution. Feral pigs usually have a clumped distribution pattern. Green 

(1984) reported tha t  the GUT rule w>as fairly efficient and robust to changes in 

environmental conditions however an iterative assessment rule was more efficient. 

This rule has not been used for shooting feral pigs. The analyses of lwasa et aT 

(1981) and Green (1984) are relevant to the use of shooting to control agricultural, 

forestry and environmental impacts, as the analyses involve estimating the benefits 

and costs of predation or shooting. If the objective is to eradicate feral pigs then 

the stopping rules will be less relevant, as the primary consideration is the number 

of pigs killed, and the cost of doing so will be less relevant especially in an exotic 

disease outbreak.

The modified model has two main uses, first to estimate in a shoot how much

more time is required to remove a certain percentage of animals (ie n and N are

known and an equation solved for T) and second to obtain estimates of initial 

density when shooting conditions and personnel are similar to those in this study 

(ie n and T known and an equation solved for V). An example of the first use 

was given in the Results (Section 4.2.2). An example of the second use is to 

apply the fitted equation to data shown here in Table 4.1 from Hone (1983), 

Bryant et ah (1984) and Saunders and Bryant (in press). The study site
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reported by Hone (1983) was similar to tha t  in the present study - open treeless 

plain adjacent to woodland. The sites reported by Bryant et ah (1984) and 

Saunders and Bryant (in press) were mostly open swamp with scattered trees. The 

da ta  from Hone (1983) gave density estimates of 2 p igs/km 2, from Bryant et aL 

(1984) gave density estimates of 35.3 p igs/km 2 and from Saunders and Bryant (in 

press) 9.G pigs/km". Each estimate was similar to or slightly higher than the 

num ber of kills /km 2.

The results and the levels of control inputs of this study can be compared with 

those reported in the literature (Table 4.1). Shooting t im e /k m 2 and costs /km 2 were 

less in this than the other studies. However costs/kill, kills/h and kills/km 2 were 

intermediate between the other studies. Costs/kill were lowest (A$3) and kills/h 

highest (93) when kills/km" were highest (35). C osts /km 2 (A$114) were obviously 

highest when time (h /k rrr )  (0.38) was highest. Similar general trends in the costs 

of pig control by trapping and poisoning were reported by Turvey (1978)r that is, 

cost/an im al killed declined exponentially as pre-control density increased or the 

num ber of animals killed increased.

Combining da ta  from each study showed th a t  there was a significant negative 

exponential regression between the costs/kill (y) and kills/h (x) (r—-0.970. df=2, 

P<0 .05). For kills/h greater than zero, the regression was;

costs (S)/kill =  28.51 e‘0’03 kllls/ h

The negative exponential regression of cost/kill (y) and kills /km 2 (x) was not 

significant (r=-0.917, df=2, P>0.05), though the correlation was high.

The estimate from the modified equation of the handling t im e/pig  of 10 seconds 

was biased as an estimate of handling tim e/kill, as it included the time spent 

chasing and shooting at feral pigs tha t  eventually escaped. The results indicate 

thai shooting saturation should rarely be a problem except possibly for large 

groups of pigs in thick vegetation. Low kills were caused by limited total time 

spent searching and shooting.

The efficiency coefficient (13.127) estimated in this study is a relative measure of 

the shooter s efficiency at spotting arid shooting feral pigs. In predator-prey studies 

it has been shown th a t  the rate of capture (equivalent to the efficiency coefficient) 

varies with predator density (Hassell 1981). T ha t  could not have occurred in the 

present study as there was onl\ one predator (shooter).

The estimated time needed to kill 95% of pigs in the present study was
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0 .24h /km 2. This was longer than the time reported by Hone (1983) and less than 

the time used by Bryant et ah (1984) and th a t  suggested by Hone and Bryant 

(1981), though the latter  study assumed that 0 .5h /km 2 searching and shooting was 

sufficient to achieve eradication. The confidence intervals for the times needed to 

kill 95% and 99%: of feral pigs may be biased. The regression analysis assumed a 

constant variance in the number of pigs shot across levels of duration of shooting. 

The variance may actually have increased with increasing duration of shooting.

Replication of the present study would be needed to determine this.

The estimated duration of shooting (0 .36h/km 2) needed to kill 99% of pigs would 

cost approximately $86 /km 2 or $25,488 over the total study area. Such costs will 

be beyond most graziers and would probably only be spent by government in an 

outbreak of an exotic livestock disease such as foot and mouth disease.

The application of predator-prev models to vertebrate pest control probably has 

much wider relevance to the control of oiher large mammals such as buffalo and 

donkeys. The general shooting process would be the same but the regression 

constants  may be different for each species, habita t and possibly shooters and

helicopter type.

This Chapter has reported studies of the effect of shooting from a helicopter on

the abundance of feral pigs. An evaluation of the theory and practice of poisoning

of feral pigs is described in the next Chapter.
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T ab le  4-1: Inputs and costs of control of feral pigs
when shooting from helicopters in the present 

study and those reported by Hone (1983), Bryant 
et ah (1984) and Saunders and Bryant 
(in press). Costs (A$) cover helicopter 

flying and ammunition and for the earlier 
studies have been corrected for inflation by 

assuming an annual inflation rate of 1%.

CONTROL
VARIABLE

THIS
STUDY

HONE BRYANT
(1983) et a l .

(1984)

SAUNDERS 
& BRYANT 
( in press)

Total
/km^

Hours 0.13 0.16 0.38 0.21

Costs
/krr^

($) 36 71 114 93

Costs
/kill

($) 7 38 3 12

Kills/h 37 11 93 39

Kills,/km^ 5 2 35 8
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Chapter 5 

Poisoning

Use of 1080 poison in the field reduced population density of feral pigs by an 

estimated 58%-73% (Hone and Pedersen 1980. Hone 1983), but lower mortality 

(11%) was reported in pen experiments (Hone and Kleba 1984). In the latter study 

warfarin was found to be highly acceptable and toxic (92% deaths) to penned feral 

pigs which were fed warfarin in wheat, in a no-choice experiment. To date the 

effect of warfarin on field populations of feral pigs has not been reported.

The aim of this Chapter is to report an evaluation of the short and long-term 

effects of warfarin on both the abundance of feral pigs and the extent of rooting 

by feral pigs. In addition the results are compared to the percentage reduction of 

feral pigs as indicated by independent estimates obtained by radio-tracking, and the 

predictions of a deterministic model of poisoning.

5.1. Modelling

Tiie evaluation of poisoning for control of feral pigs has been done largely in the 

absence of any theoretical framework of the poisoning process or the factors 

influencing percentage kills. Hone (1986a) developed probabilistic models of 

Doisoning of vertebrate pests th a t  indicated what factors influence the probability 

of an animal dying and how those factors relate to each other as described in 

m athematical equations. Those models prescribed relationships such as the dose- 

response curve, between factors. A copy of the paper containing those models is 

included as an Appendix. In this Chapter an alternative approach is used. A 

model is developed which describes temporal changes in a pest population during 

poisoning.

The model was formulated by examining the similarities and differences between 

an infectious disease spreading through an initially susceptible population and the 

introduction and spread of poison through a pest population. A population can be 

divided into segments or com partm ents  (Anderson 1981) and the rates of change of 

individuals between com partm ents  mat then be described by differential or finite
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difference equations. Such an approach has been used widely in epidemiology

(Bailey 1975, Anderson 1981. Jones and Sleeman 1983). A susceptible population 

can become infected, then infectious and later it may develop into an immune 

population. Each of these compartm ents is analogous to susceptible, poisoned and 

recovered individuals of a vertebrate pest population. The obvious difference 

between the spread of infection or poison through a population is that in the 

simplest case, poisoning is analogous to a non-infectious disease. Individuals 

contract the disease (poison) by contact, with poisoned bait, not by contact with 

infectious (poisoned) individuals. Hence some of the  basic assumptions of disease 

models need to be changed.

The aim here is to develop a model of poisoning. The application of the model 

to a poisoning program in the field will be described later in this Chapter and 

predictions of the model tested by comparison with field data.

The process of poisoning of feral pig populations usually occurs in two steps. 

Initially feral pigs are offered non-poisoned bait. This step is usually called free- 

feeding or pre-baiting. The bait is placed in trails or in heaps called bait stations. 

When removal of bait by feral pigs has reached a high and stable level, then the 

second step is instigated which involves switching poisoned for the non-poisoned 

bait.

During free-feeding (Figure 5.1). feral pigs may be isolated (1) if they cannot find 

or eat the bait, susceptible (S) if they cat the bait when they find it, or they eat 

the non-poisoned bait (E). Obviously feral pigs can change from one compartment 

(1 to S to E) to another over the duration of free-feeding, and must do so at 

certain rates. Assume th a t  the per capita ra te  of change from isolated to 

susceptible is ft. and the per capita rate of change from susceptible to eating is ft. 

Births and natural deaths could occur for feral pigs in each compartment at per 

capita rates a and b respectively.

When poisoned bait is offered some animals may be isolated (1) by geographical 

(rivers, mountains) or behavioural (neophobic) factors (Figure 5.1). Isolated animals 

can become susceptible (S) at a per capita rate rr. Susceptible animals can become 

poisoned (P) at a per capita rate ft , and after a latent period (1/ <T ). during 

which poison symptom s are not apparent, they show symptom s and are then in the 

fourth and final compartm ent (Y) (Figure 5.1). Animals which show symptoms die 

at a per capit.a rate oc , or recover at a per capita  rate  . and again become 

susceptible, or recover at a per capita rate A and become* isolated. During 

poisoning, animals in each compartment can die naturally  at a per capita rate b or 

births can occur at, a per capita rate a.
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Finally it is assumed that the sex ratio in the population is equal and the total 

population (N) is the sum of each segment;

N = 1 + S + P + Y

In a classic disease model the rate  of change of the infected population is 

assumed to be proportional to the product of the number of susceptible animals 

and the number of infected animals (Bailey 1975, Anderson 1981). The latter 

occurs because infected individuals are infectious; they can spread the pathogen 

from one infected individual to an uninfected individual w ithout going back to the 

source of infection. An analogous situation occurs in poisoning vertebrate pests 

when individuals are poisoned by ingesting poison bait or pa r t  or all of another 

individual th a t  has been poisoned and died. The latter  is usually called secondary 

poisoning, and is mostly of concern when the second individual is of a different 

an d /o r  native species from th a t  initially poisoned. Where secondary poisoning does 

not occur, the initial assumption needs modifying. The change in the number of 

poisoned animals (P) is related to the number of susceptibles (S) but independent 

of how many individuals have been poisoned or are dead.

The flow of individuals between com partm ents  in a feral pig population can be 

described by a series of equations. In the models developed here finite difference 

equations are used for com putational simplicity.

Free-feed period

1 = - tt 1 al - bl

S =  I +  aS - bS - ß S

E = f i  S +  aE  - bE

Poisoning period

1 — a] + X T  - bl - v l

S =  aS -+ irl +  *Y - bS - /3S

P = aP  -+ ß S  - bP - <rP

Y aY 4- <rP - bY - otY - *Y - XY

Application
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F igure  5-1: Compartment model of poisoning of a feral
pig population. Arrows show direction of 

transfer and associated Creek symbols indicate 
rates of transfer per unit time. Symbols in 

boxes show actual numbers of animals, and are 
those animals, isolated (1), susceptible (S), 

eating non-poisoned bait (E), eating poisoned 
bait, (P) and showing symptoms of poisoning (V).

FREE-FEED

PERIOD

POISONING

PERIOD

DIE
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The model can be applied in different field situations. If the free-feed period is 

not used then obviously only the second part of the model is appropriate. If a 

latent period is absent, such as with cyanide, then =0 and P=0. If poison bait is 

left available to pest animals then the existing mode) can be used. If however the 

poisoned bait is removed after several days then for time periods after that, ß  =0. 

If bait shyness (that is an aversion to eat the poisoned bait) occurs then X 

approaches or equals zero. If births and natural deaths are absent then a= b=0 . 

Inhibition of reproduction by a poison results in no births for th a t  segment (Y) of 

the population and so a = 0  for th a t  segment. If there is no isolated segment of the 

population then J= 0 = tt= A .  If pesticide resistance occurs then *rr approaches 0 and 

oc is a negative function of time.

Estimation of param eters
P

The method of calculating the model parameters is now described. It was 

assumed th a t  free-feeding occurred for at least three days, bait shyness was absent, 

natural deaths and births were zero and resistance to warfarin did not occur. 

Density of the pig population was assumed to be 5 p igs/km 2 and all pigs were 

susceptible (S=5, 1 = 0).

As no portion of the population was isolated then 1 = 0= IT = \ . The rate of 

change from susceptible to eating the bait, either non-poisoned or poisoned. (ß  ) 

was assumed to be the inverse of the contact, frequency, which was assumed to be 

the average number of days til! the bait (either non-poisoned or poisoned) was

eaten. It was assumed that bait removal was rapid and that the time was 1.1 

days. Hence ß  = 1 /1.1=0.909 days '1. The inverse of the time from ingestion of 

poisoned bait to development of symptoms was <T . For warfarin poisoning of feral 

pigs the average time for development of symptoms was assumed to be 3 days 

based on the results of Hone and Kleba (1984). Hence <S =1 /3= 0 .333  days '1. The 

rate at which feral pigs died ( OC ) was estimated as the product of the inverse of 

the average time from dosing till death and the proportion of feral pigs killed by 

the poison at the concentration to be used. The average time till death was 

assumed to be 7 days and the proportion dying 0.92 (Hone and Kleba 1984).

Hence OC = (1 /7 )x0 .92=0.131 days '1. The m ortality for both sexes is combined 

though Hone and Kleba (1984) reported males were significantly more tolerant of 

warfarin than females. Hone and Kleba (1984) reported the days till death, 

measured from the end of the poisoning, not from the s tart,  as estimated here.

The rate at which pigs recovered and became susceptible ( # )  was the product of

the inverse of the duration of symptoms and the proportion of pigs that survive 

and become susceptible. The duration of symptom s was assumed to be 10 days and



the proportion surviving and becoming susceptible was 0.08 ( =  1-0.92). Hone

(1983) estimated tha t  some pigs a te  1080 bait and survived in the field so a small 

proportion of feral pigs were assumed to survive here. Hence the rate was & =0.008 

(=0.08/10) days '1.

The model for free-feeding was;

S = -0.909 S

E =  0.909 S

The model for the poisoning period was;

S =  0.008 Y - 0.909 S

P =  0.909 S - 0.333 P

Y =  0.333 P - 0.131 Y - 0.008 Y

5.2. Field evaluation

5.2.1.  M e t h o d s

Site

The study was conducted in Narriadgi National Park (Figure 3.2). The 

topography, vegetation and climate were described in Chapter 3. Section 1.

Design

There were two evaluations: short-term  (April 1980 to July 3 980) and long-term 

(May 1985 to May 1986). in the short-term  evaluation feral pigs a t  two sites were 

poisoned and a t  five were not poisoned, but all seven sites were monitored. In the 

long-term evaluation, poisoning and monitoring occurred at three sites and four 

sites were monitored but not poisoned. In both evaluations, the sites poisoned and 

monitored were a sample from a large number of sites which were being poisoned. 

Sites t.o be poisoned were selected by park staff on the basis of access and 

perceived damage by feral pigs. The selection was not made on the basis of any 

estimates I had of the extent of pig rooting or pig density. Sites monitored were 

those described earlier in Chapter 3. Section 2.

Survey methods
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For the short-term evaluation, the frequency of pig rooting on plots was 

measured and the abundance of feral pigs was estimated by dung counts on 

randomly selected plots as described in Chapter 3, Section 2. Dung were cleared off 

the plots monthly, and fresh dung were marked each month to estimate decay 

rates. For the short-term evaluation the total number of plots on which rooting 

and dung were measured was 500 at the poisoned sites and 450 at the non- 

poisoned sites. Monthly monitoring started in April 1986 and ended in July 1986. 

Poisoning occurred at the Pine Forest and Bobovan (Figure 3.2) in May 1986.

For the longer-term evaluation, the variables measured were the extent of rooting, 

the frequency of plots with rooting, the number of dung pellets per site and the 

frequency of plots with pig dung as described in Chapter 3, Section 2. For the 

evaluation. 100 plots were measured monthly at each of seven sites from May 1985 

to May 1986. The sites (Figure 3.2) at w'hich poison was applied and the dates of 

poisoning were: Nursery Swamp in July 1985, Shanahans Falls Creek in August 

1985 and Bobovan in September 1985. Additional measurements were made a t  each 

of the seven sites from June to December 1986, except for August 1986, and were 

used in part  of the evaluation to estimate rates of increase of pig populations.

In both the short and longer-term evaluations there were insufficient observations 

of feral pigs to directly analyse the effect of poisoning on their population density.

Poisoning

At sites to be poisoned, feral pigs were offered non-poisoned bread and wheat for 

several days prior to the introduction of wheat poisoned with warfarin a t 0.13(/c 

concentration (wyw). The poisoned bait was prepared in a 29c sodium hydroxide 

solution to dissolve the warfarin. Poisoned bait was usually placed under tussocks 

or soil and poisoned bait not eaten by feral pigs w'as not removed. The free-feed 

and poisoned bait w7ere distributed at several hundred small bait stations, each 

with l-2kg of bait. The bait stations were placed at random with respect to the 

plots for monitoring. A similar method of distributing 1080-poisoned bait was 

described for control w'ork in Namadgi National Park (then Gudgenby Nature 

Reserve) (Mcllroy 1982).

Analysis

The short-term  effects of poisoning on the frequency of occurrence of pig rooting 

and dung, and the abundance of dung pellets were tested by Chi-square analysis 

(Snedec.or and Cochran 1967). The percentage reduction was estimated from the 

pre- and post-poisoning counts. For analysis, the number of plots with rooting, the
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num ber of plots with dung, and the number of dung pellets of the first post­

poisoning month were corrected to allow for the latent period of 7 days, from the 

ingestion of warfarin-poisoned bait till death in pigs (Hone and Kleba 1984). This 

was based on the results of poisoning pigs with warfarin in wheat a t  a 0.1% 

concentration (w/w) for 2 days where the average time till death was 5 days, from 

the end of poisoning. The correction was necessary as the percentage reduction, 

especially of the abundance of dung, would otherwise have been underestimated.

The longer-term effects of poisoning, months and their interaction, on each of; the 

percentage of ground rooted, the percentage of plots with rooting, the corrected 

num ber of dung pellets, counts of dung pellets and the percentage of plots with 

dung, were tested by analyses of variance (Snedecor and Cochran 1967). Both 

t rea tm en ts  (poisoning and months) were analysed as random factors since they 

were a random sample from a larger population. Percentage da ta  were arcsine 

transformed prior to analysis and other da ta  transformed to common logarithms, 

after adding one, to obtain homogeneity of variances. Counts of dung pellets were 

corrected for decay as described in Chapter 3, Section 2. Differences between 

trea tm en t means were compared by least significant differences if the initial 

analysis of variance test was significant (Snedecor and Cochran 1967).

The analysis of variance assumed independence of observations a t the poisoned 

and non-poisoned sites, if some pigs moved between sites over the year then the 

analysis would not accurately estimate the effect of poisoning. To overcome this, 

paired S tu d e n fs  t tests (Snedecor and Cochran 1967) were used to test if the 

average difference between poisoned and non-poisoned sites was different from zero. 

.Months were used as replicates and data were not transformed prior to analysis. 

Tests  were applied to the same five variables as analysed by analysis of variance.

The long-term effects of poisoning were also analysed by calculating the observed 

instan taneous rate of increase over the duration of the study a t  the poisoned (May 

1985 to December 1986) and non-poisoned (June 1985 to December 1986) sites. 

Rates of increase were estimated as the slopes of the regressions of months and the 

transform ed corrected counts of dung pellets. Pellet counts were transformed to 

natu ra l  logarithms (Caughlev 1980). The significance of the regression slopes were 

analysed by Student's  t test (Snedecor and Cochran 1967).

Differences between poisoned and non-poisoned sites, and between months, in the 

average number of dung pellets per plot where dung occurred, were analysed by 

one-way analyses of variance.
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5 .2 .2 .  R e su lts

Short-term evaluation

The uncorrected percentage reduction at the poisoned sites in the number of plots 

with pig rooting was 2% after 1 month and 3% after 2 months (Table 5.1). 

There was significant heterogeneity in the number of plots with rooting between 

the poisoned and non-poisoned sites (X2=12.67, df=3, P<0.01). The significance of 

the Chi-square analysis was associated with the reduction in the number of plots 

with rooting from April to May which was before the poisoning. The corrected 

reduction was 25% after 1 month. The number of plots with rooting increased at 

the non-poisoned sites and decreased at the poisoned sites (Table 5.1).

The uncorrected percentage reduction a t  the poisoned sites in the number of dung 

pellets was 83% after 1 month and 94%, after 2 m onths (Table 5.2). There was 

significant heterogeneity in the number of dung pellets between the poisoned and 

non-poisoned sites (X2=22.27, df=2, P<0.01). The corrected reduction was 87% 

after 1 m onth.

The uncorrected percentage reduction at the poisoned sites in the frequency of 

occurrence of plots with dung was 88%. after both 1 and 2 months (Table 5.3). 

There was no significant heterogeneity in the number of plots w'ith dung (X"=4.26. 

df=2. P>0 .05). The corrected reduction was 90% after 1 month.

The percentage reduction of radio-tagged pigs was 94% (30/32) after 14 days 

(Saunders pers. comm., Mcllroy pers. comm.). The deterministic model predicted a 

reduction of 76% after 14 days and 97%: after 1 m onth (Figure 5.2).

Long-term evaluation

The eff cts of poisoning were estimated firstly by analysis of variance. The 

monthly average (-% - SE) percentage of ground that had been rooted by feral pigs 

at the poisoned sites was 1.50% ( + / -  0.01) which wras significantly (P<0.01) lower 

than that at the non-poisoned sites (3.66% +  / -  0.01) (F=105.303, df =  1.12). There 

were no significant effects of months (F = 2.189, df=12,12) or the interaction of 

poisoning and months (F=0.047. df=12.64) on the percentage of ground that had 

been rooted by feral pigs.

The monthly average ( + / -  SE) percentage of plots writh rooting at the poisoned 

sites (18.4% + / -  0.01) was significant,ly (P<0.01) lower ( F = 10.494. df= 1.12) than 

that a t  the non-poisoned sites (23.6% — - 0.01) (Figure 5.3). There was a
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Figure 5 -2 : A com parison o f th e  ac tua l (dashed line )
and p red ic ted  (so lid  lin e ) percentage reductions 
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significant (P<0.01) difference in the percentage of plots with feral pig rooting 

between months (F=4.164, df =12.12) with the highest in October and the lowest in 

February (Table 5.4). The interaction of poisoning and months was not significant 

(F=0.057, df=12,64).

Both of the above analyses refer to the spatial extent or frequency of rooting a t 

the time of measurement, not the increment from month to month.

The monthly average ( + / -  SE) percentage of plots with dung was 4.09% (+ / -  

0.01) at the poisoned sites, which was significantly (P<0.05) lower (F=5.275, 

df=1.10) than th a t  a t  the non-poisoned sites (4.27% + / -  0.01) (Figure 5.4). The 

percentage of plots with dung was significantly (P<0.05) different (F=4.236, 

df=  10.10) between months and was highest in August and lowest in December 

(Table 5.5). There was no significant interaction between poisoning and months 

(F=0.251, df= 10.55).

There was no significant effect of poisoning on the corrected number of dung 

pellets (F=3.671, d f= l,10 ) ,  m onths (F=2.081, df=10,10) or their interaction

(F=0.518, df=10,55).

The monthly average ( + / -  SE) number of dung pellets (not corrected for decay) 

per 100 plots at the poisoned sites (13.3 — - 0.2) was significantly (P<0.05) higher 

than at the non-poisoned sites (11.5 -f /-  0.2) (F=9.163, df =  1.10). There was a

significant (P<0.05) effect of months (F = 4.349. df= 10.10) with the number of dung 

pellets being highest in July and lowest in December (Table 5.6). The interaction 

(F=0.262, df=10.55) of poisoning and months on the average number of dung 

pellets was not significant.

A complementary analysis of the effects of poisoning was done by paired

S tuden t’s t test. The t test analysis found significant differences in the extent of 

rooting ( t - 15.07. df= 12. P <0.001) and the percentage of plots with rooting 

( l = 6.02. d f -1 2 .  PcO.001) between the poisoned and non-poisoned sites. In both

cases the rooting was Jess at the poisoned sites. There were no significant

differences between poisoned and non-poisoned sites in the corrected number of

dung pellets (t—1.12, df =10. P>0.05), the number of dung pellets ( t = 0.70, df=10. 

P>0.05) and the percentage of plots with dung (t=0.35. df= 10. P>0.05).

Over the duration of the study (May 1985 to December 1986 a t the poisoned

sites and June 1985 to December 1986 at the non-poisoned sites) poison was placed 

at five sites (NS, SH. BO, PI, HC) and not a t  two sites (CG, BF). The observed 

instantaneous rate of change of corrected dung pellets at the poisoned sites was
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Figure 5-8: The percentage of plots with rooting at
poisoned and non-poisoned sites from June 1985 

to May 1980 in Namadgi National Park. 
Poisoning with warfarin was applied at one 
site in each month from July to September 

inclusive, and each poisoning is indicated 
by an arrow.

MONTH
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Figure 6-4: The percentage o f p lo ts w ith  pig dung at
poisoned and non-poisoncd sites from  June 1985 

to  May 1986 in Namadgi N ationa l Park. Poisoning 
w ith  w arfa rin  was applied at. one site in each 
m onth from  Ju ly to September inclusive, and 

each poisoning is indicated by an arrow.
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-1 .12/yr ( + / -  0.36 SE) which was significantly different from zero (t— 3.11, df=15, 

P < 0 .0 l ) .  At the non-poisoned sites the rate  of change was -0.41/yr (+ / -  0.56 SE) 

which was not significantly different from zero (t=0.73, df=14, P>0.05). Over all 

sites the rate  of change was -0.86/yr (-1-/- 0.33 SE) which was significantly 

different from zero (t=2.62, df= 15. P<0.05). The overall regression was solved for 

y= 0  (no pigs) to estimate the duration of the presence of feral pigs in the park if 

the present rate  of poisoning continued and no immigration of pigs occurred. The 

predicted duration was 3.5 years which corresponds to December 1988. Note tha t  

this evaluation was over a  slightly longer time period and had more sites poisoned 

than the earlier analyses.

On plots where dung occurred, the average number of dung pellets at poisoned 

and non-poisoned sites (2.52 v 2.54) were not significantly different (F=0.004, 

df= 1,61, P>0.05). There were no significant differences between months (F=1.265, 

df=10.52, P>0.05) in the average number of dung pellets on plots where dung 

occurred.

5 .2 .3 . D isc u ss io n

The results show that in the longer term , warfarin poisoning of feral pigs 

significantly changed the extent and frequency of occurrence of rooting and the 

frequency of occurrence of dung pellets. The extent of rooting and the frequencies 

of occurrence of rooting and of dung on plots were less at the poisoned than non- 

poisoned sites. At the poisoned sites the observed instantaneous rate  of change of 

counts of corrected dung pellets was negative, but a t  the non-poisoned sites it was 

not significantly different from zero. In contrast, the uncorrected abundance of 

dung was higher at the poisoned than  non-poisoned sites. This may have been 

associated with differences in the initial abundance of dung pellets or different 

decay rates between sites. The results reported here are the first long-term 

evaluation of poisoning for control of feral pigs or their sign.

In the short term there were significant reductions in the population density of 

feral pigs, but no change in the frequency of rooting. As areas of rooting may take 

months or years to revegetate, the lack of response of rooting, especially in winter 

(June. July and August) was expected. The corrected percentage reduction in the 

number of plots with rooting (25%) was an overestimate. This must have been 

associated with very little rooting activity in May 1986 at the poisoned sites. In 

contrast, at the non-poisoned sites rooting was more frequent. This difference may 

have been associated with the free-feeding of feral pigs. Large amounts of non- 

poisoned bait were distributed and it was eaten rapidly by the feral pigs. The
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estimated percentage reduction in pig abundance (87%-90%) was nearly identical to 

th a t  reported (92%) for penned feral pigs fed warfarin (Hone and Kleba 1984). The 

independent estimate from radio-tracked pigs (94%) was also similar. That 

closeness of the estimates from the counts of dung pellets and from radio-tagged 

pigs is notable. The pigs with radio-transmitters were trapped in the area using 

wheat, the same bait as used for the poisoning. Hence there was potential for bias 

in the estimate from the radio-tagged pigs, but any bias appears to be minimal. 

Each estimate was higher than those reported (58%-73%) for 1080 poison use in 

the field (Hone and Pedersen 1980, Hone 1983).

As the long-term evaluation was conducted over a year there was potential for 

feral pigs to move between poisoned and non-poisoned sites. This may limit 

interpretation of the analyses of variance tests of the effects of poisoning, but will 

not influence the paired t tests. There were no significant interactions of poison 

and months in any of the analyses of variance. T ha t  may indicate th a t  each 

variable measured was inherently too variable for the analysis to give a significant 

result as this variability led to a large residual variance in each analysis of 

variance.

The trends in the extent of rooting and of dung show th a t  the effects of season 

were as large as, or larger than, the effect of poisoning. The rooting and dung 

counts were lowest in summer (December to February) and highest in wdnter (June 

to August). This could be associated with seasonal movement of feral pigs to 

higher altitudes in summer and their return in winter. Such seasonal movements 

have been reported for feral pigs in Tennessee (Beiden and Pelton 1975, Singer et 

al. 1981) and suggested for pigs in Namadgi National Park by Boreham (1981).

The agreement between the predictions of the deterministic model and the field 

results suggests tha t  the model describes the essential features of poisoning feral 

pigs. The model is of strategic and predictive use in the evaluation of warfarin. 

The analogy between the spread of infection through a susceptible population 

(Anderson 1981) and the spread of poison through a population of feral pigs 

appears to be useful. The model also indicates which data  would be useful to 

collect in preliminary pen and field experiments in the process of pesticide 

evaluation. The relevant da ta  are the average number of days till the bait is eaten, 

time from ingestion of poison to development of symptoms, time from ingestion of 

poison to death, percentage kill at a specified poison concentration and the 

duration of symptoms.

The accuracy of the model's predictions depends on the robustness of the model.
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the assumptions and the accuracy of the data  used in the model. The results here 

suggest th a t  each of these criteria needs more research. Some caution may be 

needed in the application of the model. For example, deaths began occurring later 

in the field than predicted, but once started the deaths occurred over a short time 

period. Hence after 14 days the predicted percentage kill was 76% and the actual 

percentage kill was 94%. Deaths may occur over a longer time in pen experiments 

than they do in the field. Alternatively the feral pigs may have been slower to 

s ta r t  eating the poisoned bait than assumed in the model. Two general cautions 

need to be applied to the results of the modelling. Agreement between predictions 

and results does not prove the model is correct, as the results may be explained by 

an alternative model some time in the future. This is the fallacy of affirming the 

consequent of logic (Hempel 1966). Secondly the predictions describe average 

results and the actual da ta  describes one unreplicated result. Hence some difference 

between the turn results is to be expected.

The predictions of the model were examined by sensitivity analysis. The 

predictions of percentage kill are density-independent. The model was run at 

different initial pig densities and identical trends in percentage kill were obtained. 

The inclusion of isolated pigs in the model lowered the predicted percentage kill. 

For example, if 6% of feral pigs were initially isolated, but gradually lost isolation, 

the predicted percentage kill was 71% after 14 days and 91% after 30 days. When 

the time till bait was eaten was increased to 5 days, the predicted percentage kill 

was 64% after 14 days and 93%' after 30 days.

The probabilistic model (Hone 1986a) discussed in Chapter 1 was not tested in 

this experiment. However the results of the field poisoning suggest tha t  several 

control parameters identified by th a t  model w'ere relevant. The maximum value of 

the probability of a pig eating the bait was apparently high, and the pigs 

apparently found the bait frequently. The maximum value of the probability of a 

pig dying given that it had eaten the poisoned bait was apparently high. The 

weight of bait available was high and the bait was available for a long time. For 

wheat, the handling time per unit (wheat grain) of bait was low. It appears tha t  

behavioural interactions between pigs at bait stations were either neutral or 

facilitatory and th a t  the poison appears to have been applied when there was low 

intake of alternative food.

The results in this and previous Chapters of the thesis are reviewed in the 

Discussion (Chapter 6), with review of their broader scientific interest and 

relevance to control of feral pigs arid their impacts.
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T ab le  5-1: The num ber of plots w ith rooting by feral pigs
a t the poisoned and non-poisoned sites in each 

m onth of study. Poison was applied in May after 
the plots were measured.

MONTH POISONED NON-POISONED

Ap r i 1 141 119
Moy 117 137
Ju n e 115 143
J u l y 114 175
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T a b le  5 -2 : T he  num ber o f dung pe lle ts  a t the  poisoned and 
non-poisoned sites in each m o n th  o f s tu dy . 
Poison was app lied  in  M ay  a fte r the pe lle ts  were 

counted .

MONTH POISONED NON-POISONED

May
June
J u l y

18
3
1

55
66
52
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T ab le  5-3: The number of plots with dung pellets at the
poisoned and non-poisoned sites in each month 
of study. Poison was applied in May after the 

pellets were counted.

M O NTH P O I S O N E D N O N - P O I S O N E D

M a y 8 2 6

J u n e 1 2 0

J u l y 1 1 2
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T ab le  5-4: The average percentage o f p lo ts  w ith  ro o tin g  by
fe ra l pigs in each m o n th  fro m  M ay  1985 to  M ay 

1986 inc lus ive . Percentages not s ig n ific a n tly  
d iffe re n t are u nd e rlin ed . Averages are 
expressed as the  arcsine o f the  percentage. 

The least s ig n ific a n t d ifference was 3.0.

Feb Jan Dec Mar May85 Jun Jul Aug Nov Apr May86 Sep 
2 3 . 4  2 3 . 7  2 4 . 9  25.1 2 5 . 3  2 5 . 3  2 5 . 3  26.1 2 6 . 7  2 7 . 0  2 8 . 0  2 9 . 3

Oct
30.1
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T a b le  5-5: T he  average percentage o f p lo ts  w ith  dung o f
fe ra l pigs fro m  J u ly  1985 to  M a y  1986.

Percentages n o t s ig n ific a n tly  d iffe re n t are 
u nde rlined . Averages are expressed as the  

arcsine o f the  percentage. The least 
s ig n ific a n t d ifference was 0.6.

Dec Feb Nov Jan Oct May Mar Apr Jul Sep Aug
5 . 7  6 . 6  7 . 4  8 . 0  8 . 3  9. 1 10 . 4  11 . 7  12 . 9  13 . 0  14 . 3
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T a b le  5-6: The average number of dung pellets per
100 plots each m onth from  July to  M ay 1986. 

Averages not s ign ifican tly  d iffe ren t are 
underlined. D ata  are counts transform ed to  

common logarithm s after adding one. The least 
sign ificant difference was 0.35.

Dec Feb Jan Nov May Oct Mar Apr Sep Aug Jul 
6 .37  0 .59  0 .63  0 .69  0 .76  0 .77  0 .78 0.81 1.04 1.09 1.15
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Chapter 6 

Discussion

Control of populations of feral pigs occurs in many areas, using many methods 

(Tisdell 1982). The results in this thesis show that  the effects of shooting from a 

helicopter and poisoning on populations of feral pigs can be assessed and modelled. 

The effects on populations can exceed the 70% instantaneous reduction needed to 

depress populations for at least one year (Giles 1980) and the effects of continual 

control were broadly similar to the hypothetical effects suggested by Hone and 

Robards (1980). T ha t  is, continual control each with a high percentage kill will 

decrease pig abundance.

The aims, methods and results will now be reviewed for each of the three 

components of the thesis; surveying, modelling and field evaluation.

6.1. Surveying

In the survey component of the study, repeatable and precise methods of ground 

surveying the population density of feral pigs and their sign were developed and 

applied in forests and woodlands. Precise methods of aerial surveying of populations 

were developed and applied in floodplains and open woodlands. The aerial survey 

method appears to give accurate estimates of density using the Fourier series 

estim ator which Burnham et ah (1980), Alldredge and Gates (1985), Buckland 

(1985) and Seber (1986) considered was the most powerful line transect estimator 

currently available. The results expand the range of survey methods available for 

feral pigs and their sign. The analysis of the methods was more extensive than 

th a t  of other evaluations and reviews (Barre tt  1982), except for capture-recapture 

m ethods, some of wTich were evaluated well by Baber and Coblentz (1986).

Feral pig sign such as rooting or dung can be surveyed on either randomly 

selected unmarked or marked plots. In this study the main criterion for selecting 

fixed, marked plots was the increased sensitivity of measures on fixed plots to 

detect short-term changes in population size of feral pigs or their sign. The 

evaluation of survey methods in Namadgi National Park occurred with relatively
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low pig abundance compared to reported densities in forests in Hawaii, Tennessee 

and Poland (Singer 1981), and so required a large number of fixed plots to detect 

changes in pig abundance or rooting. The method of dung counts and measurement 

of rooting extent will probably have much wider application than just  m ountain 

forests and woodlands. The method could be used in any habitat, except swamps, 

in contrast to the aerial survey method which will be of most use in floodplain, 

grassland and open woodland habitats.

6.2. Modelling

The modelling work indicated th a t  the functional response component of predator- 

prey theory is relevant to the evaluation of shooting and poisoning of feral pigs. 

Predator-prey theory seems widely applicable to the evaluation of trapping of feral 

pigs and shooting pigs from the ground, and to the control of other vertebrate  

pests. The modelling work integrated theory and data , as is necessary for any 

mode] to be useful (Stenseth 1984), and identified strategies for improving the 

efficiency of the evaluation of shooting from helicopters and of poisoning. The

agreement between predictions and field da ta  for poisoning is encouraging but more 

testing of predictions is necessary before the generality of the models can be 

assessed.

The effect on predator-prey systems of hiding behaviour by prey has been

examined partly by Hughes (1979) but more research is needed. T ha t this is a

real problem was shown by Saunders and Bryant (in press). They reported two of 

six feral pigs with radio-transm itters were never seen by shooters despite intensive 

searching and shooting from a helicopter.

The differing susceptibility of hosts or prey is an im portant source of population 

stability in host-parasite (Hassell and Anderson 1984) or predator-prey (Murdoch 

and Oaten 1975) relationships. Murdoch and Oaten (1975) also identified prey

refuges, limits to predator dispersal and switching by predators as im portan t  

sources of population stability of prey species. Each of these factors may be

im portan t in control of feral pigs.

The dynamics of pig populations relative to population or damage control have 

been emphasised in previous work (Tipton 1977, Andrzejewski and Jezierski 1978,

Giles 1980, Hone and Robards 1980, Tisdell 1982). Results reported here indicate 

the need to integrate theories of population dynamics and of impact and control 

processes. Caughlev (1970) and Caughley and Lawton (1981) suggested th a t  non-

territorial ungulates exhibit an eruptive fluctuation in population size over time
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since introduction (Figure 6.1a). The relationship results from the interaction of

ungulates with their food supply which can be shown as an inward spiral (Figure 

6.1b) during the eruption. Feral pigs are non-territorial ungulates, which do reduce 

the abundance of their food supply (Howe et ah 1981). Challies (1975) reported 

that feral pigs on Auckland Island appeared to have an eruptive pattern in

population size over time since introduction. Singer (1981) suggested that feral pigs 

in Great Smoky Mountains National Park (GSMNP) in Tennessee erupted then 

stabilised, the oscillations apparently being dampened by variable food supply. Such 

a phenomenon could amplify oscillations depending on the timing of variation in 

food supply. In contrast, Crawley (1983) considered tha t  the effect of rooting by

feral pigs in GSMNP was an example of amensalism. The interaction decreased the

abundance of vegetation but had negligible effect on the pig population.

The pattern in Figure 6.1b suggests that a relationship may occur between the 

abundance of feral pigs and the extent of new rooting over the duration of an 

eruption. If the extent of new rooting is negatively related to vegetation (food) 

abundance (Figure 6.1c) then the extent of new rooting will be related to 

abundance of feral pigs in a curvilinear relationship (Figure 6 .Id).

The predicted relationship between the extent of rooting and pig abundance 

suggests th a t  the assumption of Beiden and Pelton (1975), Conley (1977) and Giles 

(1980) of a simple, positive relationship between feTal pig abundance and the extent 

of rooting was too simplistic, as some levels of rooting correspond to more than 

one level of feral pig abundance. However a distinction needs to be made between 

the extent of new rooting and the extent of rooting. The former refers to rooting 

occurring in a defined time period and the la t te r  to the extent of rooting a t  a 

particular time and does not involve any determination of the age of the rooting. 

The model presented here indicates how the disparate results (Section 3.1) of 

Cooray and Mueller-Dombois (1981) and Ralph and Maxwell (1984) differed in the 

relationship between rooting and the abundance of feral pigs. Each study may have 

been measuring rooting and pigs a t  different times since introduction of feral pigs.

The probabilistic models of poisoning (Hone 1986a) reviewed in Chapter 1 can be 

applied to results of an evaluation of rodenticides. Richards and Huson (1985) 

reported a response surface between the percentage reduction of rodents and five 

control parameters. Their analysis assumed linear relationships between the 

parameters and the response. However Richards and Huson (1985) identified a 

significant linear trend in the residual error of the response surface. The cause of 

th a t  trend may be the curvilinearity of relationships described in the models of 

Hone (1986a).
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Figure 6-1: A theoretical model of temporal changes in
population density of feral pigs and the extent 
of new feral pig rooting, (a) Predicted trends 
in ungulate and vegetation density over time 

since introduction, (b) The same data graphed in 
phase space, (c) Hypothetical relationship 

between vegetation density and the spatial 
extent of new pig rooting, (d) Predicted 

relationship between density of feral pigs and 
the extent of new pig rooting during an 

eruption.
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A genera] issue about the poisoning of feral pigs or other vertebrate pests follows 

from the modelling work reported here. Caraco and Pulliam (1984) and Clark and 

Mangel (1984) reported models of foraging which predicted tha t  when animals fed 

in groups the variance of individual food intake, compared to feeding alone, was 

reduced. Feral pigs sometimes feed in groups and sometimes alone, so could be 

expected to have less variable food intake per pig compared to the situation where 

they all fed alone or in equal-sized groups. Hence, pigs would be expected to 

receive more variable poison doses when feeding alone. Similarly, when feeding 

interference occurs, the variance in poison bait intake would be expected to 

increase. Conway (1981) reported results of work by Comins which showed the 

consequences of each pest receiving an equal or unequal dose of poison. The latter 

situation increased the proportion of the population subject to a  low dose and 

hence to higher selection pressure for pesticide resistance. In the context of feral 

pigs eating poisoned bait, feeding interference could be the mechanism producing 

the same result. T ha t is, interference between pigs may result in variable poison 

doses and variable selection pressure for tolerance or resistance to the poison. The 

development of resistant rodent populations has occurred (Greaves 1971) and could 

occur in feral pigs.

The topics of immigration, evaluation and objectives will now be discussed in 

turn , relative to the Field results obtained in this thesis.

6.3. Field evaluation

Immigration

Poisoning in Namadgi National Park, by applying poison once in one to two 

years, probably allowed immigration and breeding of pigs to reduce the effects of 

the poisoning on the extent of rooting. Tisdell (1982) discussed the implications for 

farmers of immigration of pigs. Movement would reduce the profitability of control 

and if immigration was high would make control unprofitable. Eradication of feral 

pig populations in parts  of Hawaii Volcanoes National Park was based on fencing, 

to prevent immigration (Stone 1985). Andrzejewski and Jezierski (1978) reported 

th a t  a substantia] proportion of a wild boar population in a Polish forest were not 

resident but moved into or out of the area of study. This could have been 

associated with extensive movements or a very small area of reference in that 

study.

If immigration is a significant component of the increase in abundance of feral 

pigs then the term 'population '’ is difficult to apply. Krebs (1985) defined
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population as a group of individuals of one species occupying a particular space at 

a particular time. Immigration may blur the discreteness of a population,

especially one with no clear boundaries. Where feral pigs are continuously 

distributed then the concept of a population is hard to use, as discussed bv Krebs 

(1985) for any species. In eastern and northern Australia feral pigs are distributed 

continuously (Tisdell 1982).

Stenseth (1981) and Stenseth and Hansson (1981) analysed, by modelling, the role 

of immigration in population dynamics and pest control. They concluded th a t  the 

best control strategies varied with the dynamics of a pest population. If empty 

patches (no pests) occurred and methods were available to prevent immigration, 

then the methods should be used rather than try to increase mortality elsewhere in 

the population. This is the strategy used in Hawaii Volcanoes National Park 

(Stone 1985) and corresponds to the use of conditions identified by Soule (1983) as 

contributing to the extinction of species; isolation and poor dispersal.

Stenseth (1981) concluded th a t  it was more effective to reduce reproduction if 

trying to control r-selected species compared to K-selected species. Stenseth (1981) 

also noted that, the application of pesticides was unlikely to be the optimal

strategy for control of r or K-selected species. In contrast, Conway (1981) 

considered that pesticides were the most appropriate means of control of r-selected 

species and that they were efficient for K-selected species. Caughley (197G) 

criticised as simplistic the r and K classification of species, as his modelling of 

ungulate dynamics showed that, seven variables needed to be described to predict 

trends in abundance, not two - the values of r and K. Feral pigs may be more of 

an r-selected species because of their large litter size, but their relatively large 

bodysize suggests that they are a K-selected species. Such difficulties in classifying

feral pigs as an r or K-selected species and the differences in opinion between

authors indicate that  further research is needed.

Evaluation

The evaluation of poisoning was assisted by the monitoring of the non-poisoned 

sites. W ithout the control (non-poisoned) sites the effect of poisoning could easily 

have been overestimated and the decline in rooting in October and November 1985 

a ttr ibu ted  solely to poisoning. Cochran and Cox (1957) described experimental

situations where a t rea tm en t control may or may not be necessary. When the 

effect, of a treatm ent is well known then the control (non-treatm ent sites) is not 

necessary. When the effect of a treatm ent is variable or not known then a control 

is necessary. These three situations can occur sequentially in the evaluation of a
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pesticide or any control method as the effect is unknown a t  the s tart  of a study 

hut well known by the end. In this study a control (no shooting) site was not 

used in the evaluation of shooting from a helicopter, as the effects of such shooting 

were better known than the effects of warfarin poisoning in the field.

In many field evaluations of the use of poisons for vertebrate pest control, 

experimental controls (non-poison sites) were not used (Rowley 1958, Poole 1963, 

Batcheler et aP 1967, Rowley 1968. Rennison 1977. Hone and Pedersen 1980, 

Richards 1981, Rowe et ah 1981. Tietjen and Matschke 1982, Greaves et ah 1982a, 

Robinson and Wheeler 1983. Buckle 1985, Rowe et ah 1985, Balasubramanvam et 

ah 1985. and Thomson 1986). In contrast, experimental controls were used in field 

evaluations of pesticides for vertebrate pest control by Cooke (1981), Oliver et ah 

(1982). Greaves et ah (1982b), Hone (1983), Foran ey ah (1985), Crosbie et ah 

(1986) and Mcllroy et ah (1986).

Objectives

Caughley (1981) identified four classes of "overpopulation". The first class was of 

animals that threaten life or livelihood. The second class was of animals tha t  

depress the density of favoured species. The third class was of animals tha t  are too 

numerous for their own good and the fourth class was of animals in systems that 

were off their equilibrium. Caughley considered many wildlife management issues 

were claimed to be class four situations when they were actually one of the other 

classes. It has been shown th a t  feral pigs depressed the density and biomass of 

some plant species in Tennessee (Bratton 1975, Singer et ah 1981, Howe et ah 

1981) and Hawaii (Stone 1985) and changed the composition of plant communities 

in a sub-alpine area in Australia (Alexiou 1983). Examples of class one situations 

were reported for lamb predation by feral pigs (Pavlov et aP 1981. Pavlov and 

Hone 1982). 1 know of no situations of "overpopulation" of feral pigs in Australia 

thai are classified as class three or four. The abundance of feral pigs in nature 

conservation areas in Australia has probably been incorrectly labelled as a class 

four situation as Caughley (1981) discussed for many mammals.

Caughley (1983) described five types of culling of mammal populations. Closer 

scrutiny of those types is needed to determine if control of feral pig populations is 

one of these, namely manipulative or idiotic culling. The former is aimed at 

conserving various specified plant and animal communities and the latter is not 

(Caughley 1983). Similarly, continuing management can be viewed as tests of 

scientific hypotheses (Caughley 1983. Macnab 1983). the results of which should 

advance scientific knowledge and understanding of management.
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Any of the methods of population control or culling that are used periodically 

should be used at a frequency that achieves a particular objective. Occasional 

control will simply result in a culling operation of indefinite duration tha t  may not 

achieve any objective other than satisfying some desire to kill pigs. Such control 

could also reduce competition between pigs and result in a high rate of recruitment 

into the population.

The response of feral pig populations to culling or control is influenced by the 

rate of increase of the populations. A variety of estimates of instantaneous rates of 

increase have been reported for populations of feral pigs. Hone and Pedersen (1980) 

reported an observed rate of increase of 0.57/yr ( +  /-  0.18 SE) with a range from 

-0.84 to 1.64/yr. Giles (1980) reported a range from -0.73 to 0.71/yr, and Bratton 

(1975) cited Kozlo (1970) (1.02/yr) and Kormilitsin and Dulitskii (1972) (0.41/yr).

The intrinsic rate  of increase (r ) for populations of feral pigs can be estimated 

from empirical relationships between the intrinsic rate of increase and bodvweight. 

Using an average bodvweight of 40kg for an adult feral pig, the estimated intrinsic 

rates of increase are 0 .40/vr (Caughley and Krebs 1983), 0 .3 l /y r  (Hennemann 

1983) and 0.26/yr (Robinson and Redford 1986).

Not all reported estimates of rate of increase can be interpreted as real increases. 

The estimates cited by Bratton (1975) and Giles (1980) and those from the 

bodyweight equations, have no estimates of precision so the statistical significance 

of the rates cannot be calculated. Hone and Pedersen (1980) reported tha t  the 

overall rate of increase was not significantly different from zero (t=3.17, df=2, 

P>0.05). but at one site the rate of increase (1.09/yr + / -  0.06 SE) was

significantly different from zero (t =  18.17. df=2, P <0.005). In the field studies 

described in this thesis a better test of the rates of increase would have required 

more data. Harris (1986) showed tha t  when counts of animals are highly variable 

it was necessary to obtain multiple counts each year, or some other unit of time, 

to ensure a precise estimate of rate  of increase. The estimates from the bodyw'eigbt 

equations may be conservative as they w'ere calculated for species in their natural 

habita ts ,  and feral pigs in Australia may have a higher intrinsic rate of increase 

because of fewrer predators, diseases and parasites, than in their natural habitats.
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6.4. Synthesis

On the basis of the results in this thesis and relevant literature on feral pigs and 

other wildlife populations, new ideas were synthesised. The ideas should be treated 

as hypotheses, not conclusions.

The different aspects of the control of feral pig populations may be combined in 

a new concept of the control regime; the combined aspects of intensity, frequency, 

season and spatial extent of control. Intensity refers to the level of control effort 

(and hence percentage kill), frequency to how often control occurs, season to time 

of year and spatial extent to the area over which control occurs. The concept is 

analagous to tha t  of a fire regime that has been developed in fire management in 

Australia (Gill 1981). In the assessment of control of feral pigs as in this thesis, 

emphasis has been placed on the intensity of control and little a ttention has been 

placed on the other components of the regime.

Research on control of feral pigs or their impact has concentrated on the effects 

of control methods on pig density, rather than investigating the relationship 

between the level of a control method (such as the amount of poisoned bait) and 

the response of population density - the classic dose-response relationship as 

discussed for pest control generally by Hillebrandt (1960). The law of diminishing 

returns (Hardaker et ah 1970) is central here. Each unit increase in the amount 

of control gives a slightly smaller increase in the response. Alternately the least 

cost combinations of control methods could be determined by linear prog-ramming 

(G upta  and Cozzolino 1975).

The frequency of control has been discussed relative to the rate of increase of 

feral pig populations. The rate of offtake of pigs must exceed the intrinsic rate of 

increase for abundance to decline (Singer 1981). The effect of season on control was 

not examined in this study. If bait intake or pig reproduction rates varied with 

season then control effectiveness will vary with season. The importance of spatial 

extent of control has been discussed, particularly with respect to immigration.

The control regime is part of a suggested broader planning process th a t  is 

outlined in Table 6.1. The planning steps broadly follow those described by 

McAllister (1980). The suggested analyses and tools are also listed. They include 

analyses not examined in this thesis or used previously in control of feral pigs, 

such as decision theory (Raiffa 1968, Norton 1976) and the use of geographic 

information and expert systems (Davis et ah 1986). The control methods could be 

target-specific using the approach described by O'Brien (1986). The management 

planning process (Table 6.1) is an a ttem pt to develop a planning framework for
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control of feral pigs, similar to the framework for fire management described by 

Good (1981).

Data th a t  could be collected for monitoring in a nark like Namadgi National 

Park should be similar to tha t  described by Macdonald and Grimsdell (1983) for 

conservation areas of about 1000km' in the sub-humid rainfall zone. They 

suggested da ta  on distribution and abundance of large herbivores should be 

collected on a longer than annual basis, be moderately accurate, of high to 

m oderate precision and at a scale of resolution of 4-25km2. In Namadgi National 

Park monitoring would be most useful if it occurred at about 3 monthly intervals 

and a t  a finer scale of resolution (<4km ‘ ).

The theory of population dynamics has additional relevance to control of feral 

pigs. Populations have been reduced to low numbers after control in NSW (Hone 

1983) and Hawaii (Stone 1985). The pattern  of distribution and abundance of such 

populations appears similar to th a t  described for some rare, vulnerable or 

endangered species (Drury 1974, Margules and Usher 1981, Ride and Wilson 1982). 

That is, populations show limited distribution and very low density. Such a pattern 

generates the hypothesis tha t  such populations of feral pigs may become extinct 

naturally as a consequence of inbreeding. To test the hypothesis requires a closer 

look at the literature and estimation of the effective population size.

Andrzejewski and Jezierski (1978). after a study of wild boar in a Polish forest, 

concluded that "it would not appear possible for a wild boar population with 

density less than 10 individuals per 1000ha il.U /km 2 of forest to exist continuously 

in time without constant immigration..". In their study area of 2500ha in 

Kampinos National Park this would correspond to a minimum of 25

(=2500x10/1000) wild boar.

Kimura and Crow (1963) defined the effective population size as "the size of an 

idealized population tha t  would have the same amount of inbreeding or of genetic 

frequency drift as the population under consideration". Hill (1972) defined it as the 

number of individuals entering the population each generation, where an individual 

must breed to enter the population." Lacava and Hughes (1984) used a model by 

Kimura arid Crow (1963) to estimate the effective population size for several 

species. Reed et ah (1986) reviewed the model of Lacava and Hughes (1984) and 

improved it. Using the model of Reed el ah (1986) for a population with 

overlapping generations, and data from Giles (1980), the number of feral pigs 

needed to have an effective population size of 50 pigs can be estimated. Such a 

population size should retain its genetic diversity for decades or longer
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(Schonewold-Cox 1983, Reed et ah 1986). If pigs of both sexes have peak breeding 

rates a t  3 years old. the sex ratio of pigs at birth is 1:1, average litter size is 6 

piglets, and sows produce 2 litters per year, and 80% of sows and boars breed each 

year, then the number of pigs needed to have an effective population size of 50 is 

72 pigs.

Such calculations and theory assume th a t  small populations of feral pigs are 

isolated. In many such populations of feral pigs there may be enough natural 

dispersal of individuals into the small populations to neutralise any effects of 

inbreeding depression on fecundity or mortality. This is an area for further 

research. However small isolated populations may be vulnerable to chance events 

including storms or disease outbreaks as outlined for the management of 

endangered species by Maguire (1986). That study suggested th a t  to increase the 

chances of survival of the endangered species it was better to have several small 

populations than only one. In this context the management strategy should be to 

decrease the number of small feral pig populations so th a t  the species is more 

vulnerable to the effects of chance events.

The different effects of poisoning on the extent of rooting and pig abundance in 

Namadgi National Park in this study indicate a need to research the ecological 

effects of rooting in Australia. A large body of theory on disturbance dynamics is 

now available (Noble and Slatver 1977. Pickett and White 1985, Groves and 

Burdon 1986) which could be integrated with the theories of plant-herbivore 

interactions (Caughley and Lawton 1981, Crawley 1983, Edelstein-Keshet 1986).

To conclude, this thesis investigated the assessment of the results of control of 

feral pig populations. The assessment was in three parts; surveying, modelling and 

field evaluation of shooting and poisoning. The central hypothesis in the thesis 

was that control of feral pigs does not influence the population density of feral 

pigs. That hypothesis was refuted for shooting from a helicopter and poisoning 

with warfarin. The la tter  control method also reduced the frequency of pig sign, 

rooting. The relevance of theories of predator-prey relationships and the spread of 

diseases to control of feral pigs has been described. A new concept of a pest 

control regime was introduced. Much exciting research remains to be done.
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T ab le  6-1: Steps in  p la nn ing  c o n tro l o f p o p u la tio n s
o f fe ra l pigs. T oo ls  and analyses useful a t each 

step are also shown.

STEPS TOOLS AND 
ANALYSES

E s t a b l i s h  o b j e c t i v e s

Measure e f f e c t s  of  pigs on 
ecosys t ems

Expe r iment  s

De sc r i be  or p r e d i c t  e f f e c t s  
of c o n t r o l  on f e r a l  pigs  
and impacts

Re f or mu l a t e  o b j e c t i v e s

Mode I I i n g , 
geographi c  
i nf  ormat i on  
systems ( GI S)

S p e c i f y  cont r o l  regime and 
a 1 1ocat e  resources

Implement  cont r o l

Bu d g e t i n g , 
d ec i s i o n  
ana l ys i s

Record c ont r o l  e f f o r t  and 
moni t o r  r e s u l t s

GI S,  survey i ng

I n t e r p r e t  r e s u l t s  in long 
—term p e r s p e c t i v e  (>10 y r s )

Mode I I i ng

P r e d i c t  f u t u r e  co n t r o l  regime GIS
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INTEGRATIVE MODELS OF POISONING VERTEBRATE PESTS
J. HONE, School of Applied Science. Canberra College of Advanced Education. Belconnen. ACT. Australia 
2616.

ABSTRACT: Strategies for the control of vertebrate pest are identified using mathematical models of
poisoning. The models integrate aspects of foraging ecology and toxicology in a probabilistic framework 
The structure, assumptions and control implications of the models are presented. Variables (control 
parameters) influencing the probability that a pest animal dies in a poison programme are identified 
and classified according to their degree of operator control. Control strategies suggested by the model 
are identified, and practical means of applying them are discussed. The models suggest that the proba­
bili ty that an animal dies is a function of 15 to 17 control parameters, of which operators have direct 
control over a maximum of 4: poisoned bait abundance, poison bait dispersion, the time over which poi­
soned bait is available, and poison concentration.

INTRODUCTION

Many methods are used to control the damage or abundance of vertebrate pests. Poisoning 1s one of 
the oldest methods, with a recorded history going back to classical Greece. Today poisoning 1s used 
against many vertebrate pests around the world, such as rodents, birds, and large mammals.

The evaluation of poisoning has concentrated on either laboratory or field testing of and 
acceptability and toxicity to, target and nontarget species. Many of the current field practices have 
evolved from a combination of rigorous experiments and field experience. Not all the practices have 
been exhaustively tested because i t  is virtually impossible to do so. Experiments to evaluate three 
poisons, in each of three bait types with four delivery systems, in four seasons of the year become too 
large to conduct in the field. An alternative approach to evaluating poisoning is to develop theoretical 
models based on relevant field and laboratory data and evaluate the effects of different poisoning 
strategies. Mathematical models can be used to indicate the response of pests to different control in­
puts, and to describe how the control inputs interrelate.

The principal use of mathematical models in pest control is to provide guidelines for evaluating 
alternative control strategies (Conway 1977, Conway and Comins 1979). If the values of model parameters 
can be estimated then the models may also be of great predictive value. This paper is concerned with 
the development of models of strategic rather than predictive value. The models are developed from 
theoretical and empirical backgrounds in vertebrate pest control, and aspects of theoretical and applied 
ecology. The integration of principles from these diverse scientific fields reveals some unusual and 
useful patterns.

There have been surprisingly few attempts to integrate the many patterns and processes in poisoning 
vertebrate pests, identify control strategies and express the results in a mathematical form or model. 
Gentry (1971) developed a mathematical model of rat eradication programs. The model was based on a 
series of simultaneous integral equations, which describe changes in the number of rats of different 
ages. Natural changes in abundance were described, and the effects of s ter il izat ion and poisoning exam­
ined. Batcheler (1982) developed a simple probability model to estimate the number of random bait en­
counters required to kill a pest. This was based on the toxic loading and piece-weight distribution of 
baits. Modelling has been used more extensively for evaluating chemical and other control of inverte­
brate pests such as catt le tick (Sutherst et al. 1979).

The aim of this paper is to describe strategies suggested by four mathematical models of poisoning 
vertebrate pests.

Models

The models are formulated for short time periods so that natural births, deaths, immigration and 
emigration are approximately zero. An attempt has been made to remove from a poisoning program many 
minor features and describe the essential, central elements. Population parameters such as age, breed­
ing status, sex ratio, and weather are treated as sources of random variation. The models relate to 
typical vertebrate pest poison programs such as those using poisonous bait stations, throw-packs, or 
poisoned bait t r ia ls .

Probabilistic models are developed which estimate the probability of an animal dying in a poisoning 
program. The probabilistic approach reflects underlying uncertainty in describing the effects of all 
factors and interactions that may determine how many, or what percentage of a vertebrate pest population 
is ki1 led by poisoning.

The models are based on several principles. Firstly, that the total number of animals in a 
population (N) is equal to the sum of the number of animals that find and eat the poisoned bait (NE), 
that find and do not eat the poisoned bait (NDE), and that do not find the poisoned bait (NDF).

N = NE + NDE + NDF (1)
where NE, NDE or NDF > 0
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Secondly, the number of animals that find and eat the poisoned bait (NE) comprises two groups: 
those that eat the poisoned bait and die (NED) and those that eat the poisoned ba it  and do not die (NEd) 
(Hone 1983).

NE ■ NED ♦ NEd (2)

Thirdly, the number of animals that eat the poisoned bait and die (NED) 1s equal to the product of 
the number of animals (N) and the probability  of an animal dying (p).

NED -  p N (3)

The fourth principle 1s that the probability  (p) of an animal dying is the product of the 
probability of an animal eating the poisoned bait ( P( E)) and the probability of dying given that 1t has 
eaten the poisoned ba it  (P(D/E)).

p » P(E) x P(D/E) (4)

The modelling process now concentrates on estimating the probabilit ies P(E) and P(D/E).

Models are developed for d if fe r ing  ecological and control situations (Table 1). The determinants 
of which model is appropriate are bait  dispersion and the search pattern of the vertebrate pest(s). 
Models based on random search by a pest use d if fe ren t forms of the functional response relationship 
commonly described for predator-prey (Hassell 1981) and plant-herbivore interactions (Caughley and 
Lawton 1981).

Table 1: Ecological components of probabili ty  models of poisoning vertebrate pests for d iffering bait
dispersion and pest search patterns. The notation in the table Indicates that the probability of an 
animal dying (p) is partly  a function of that enclosed by the brackets.

Pest >
search Poisoned bait dispersion
pattern__________________Random______________________Clumped

Random p = f  (Functional p = f  (Functional
response Type I I I ) response Type I I )

Non-ranuom p = f  (Optimal p = f  (Optimal
foraging) foraging)

The functional response describes the relationship between ba it  (food) intake and bait (food) 
abundance. In poisoning programs when ba it  is provided ad 1ibiturn this response is s t i l l  relevant as i t  
is simply a special situation described by the functionaT~response relationship. As animal search pat­
terns are often nonrandom, other models are developed based on such searching, and these models use 
aspects of optimal foraging theory (Charnov 1976 a,b , Caraco and Pulliam 1984).

Discussions of functional response and optimal foraging models in the li te ra tu re  usually assume 
that once an animal found food i t  ate the food. The models developed here do not assume this, but gen­
erate a probability that an animal eats b a it ,  P(E), and describe what influences that probability.
Hence the models are more general than that developed by Batcheler (1982) in which random search and a 
l in ear  relationship between bait  abundance and ba it  intake were assumed. The models are simpler than 
that developed for mantid feeding by Charnov (1976a), as vertebrate pests feed on stationary not mobile 
prey (b a i t ) .

Poisoning vertebrate pests most commonly involves d istr ibuting poison bait in clumps and the pests 
feeding in a nonrandom manner. Such a situation is described in model ( i v ) .  The other models are de­
scribed for comparative purposes. Surprisingly the control strategies suggested by each model are very 
simi 1 ar.

(1) Random bait dispersion and random search pattern.

The probability  that an animal eats the poisoned bait Is assumed to be a positive saturation 
function of the number of times an animal finds the bait ( t )  and a function of behavioral interference 
or fa c i l i ta t io n  between animals that find the bait ( a ). In a simple case:

P(E) k i t
( -------

Xl  +
- )
t

a for t > 1 

0 < k i < 1

x, > 0

( 5 )
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where k] 1s the maximum p r o b a b i l i t y  o r  va lue  o f  P (E ) ,  and xj 1s the number of times required to  have kj 
a t  h a l f  I t s  maximum v a lu e .  Equation  (5 )  is  a s a tu r a t io n  equation  a t  t  increases . Animals showing neo­
phobia such as some ra ts  (S h orten  1954, B a rn e t t  1958) and some ra b b i ts  ( Oryctolagus cun lculu s) (Rowley 
1963, O l i v e r  e t  a l .  1982) w i l l  have k : ■ 0 and hence P( E) •  0 .  The c o e f f i c i e n t  « equals 1 when animals  
do not I n t e r a c t ,  «>1 rep resents  b eh a v io ra l  In te r f e r e n c e  between animals such th a t  others decrease the  
p r o b a b i l i t y ,  and 0 < « <  1 re p re s e n ts  s o c ia l  f a c i l i t a t i o n ,  where o th er  animals Increase the p r o b a b i l i t y  
th a t  an In d iv id u a l  eats  the poisoned b a i t .  The va lue  of « 1s assumed to be r e la te d  to the weight (W) 
o f  each an im a l,  such th a t  l a r g e r  animals exp e r ie n c e  less In te r fe r e n c e  from o th e rs ,  and less so c ia l  f a c i ­
l i t a t i o n .  This r e la t io n s h ip  1s not fo rm a l iz e d  h e re ,  but w i l l  be examined elsewhere.

The p r o b a b i l i t y  th a t  an animal Ing es ts  a l e th a l  dose o f  poison given th a t  1 t  has eaten the b a i t  
( P( D /E) )  1s a p o s i t i v e  s a tu r a t io n  fu n c t io n  o f  the dose o f  poison b a i t  Ingested ( f ) /  weight o f animal 
(W )) .  This 1s based on the c l a s s ic  dose-response r e la t io n s h ip  when the dose 1s expressed on an a r i t h ­
metic scale  (Snyder 1984) .  A s im ple  equ a t io n  f o r  t h is  1s:

P(D /E)  « a ( W * (6 )

( W } + b

a f

f  ♦ bW

where 0 < a < 1 and b > 0 .  The maximum p r o b a b i l i t y  1s a ,  and when a *  P( 0 / E) ■ 1 .0  then b is  the  
dose/weight a t  which the p r o b a b i l i t y  ( P ( D /E ) )  1s 1 /2 ;  the LD5Q.

The weight o f  poisoned b a i t  ea ten  ( f )  1s the sum o f  the weight o f  b a i t  ( fo od ) eaten (Wb) and the  
weight o f  poison ea ten  (Wp). ,

f  *  Wb + Wp (7 )

The w e ight  o f  b a i t  ea ten  (Wb) 1s assumed to  be a p o s i t iv e  s a tu r a t io n  fu n c t io n  o f  the weight o f  
poison b a i t  a v a i l a b l e  ( x ) ,  b a i t  d is p e rs io n  ( i ) ,  a fu n c t io n  o f  b eh av iora l  In te r fe re n c e  or f a c i l i t a t i o n  
among animals t h a t  f in d  the  b a i t  ( g ) ,  and the  time b a i t  is  a v a i l a b le  ( T ) .

Wb X 1
+ ( k 2t , x  + k j t 7AF) f o r  k > 0

( 8 )

where k2 is  the maximum w e ig h t  (kg )  o f  b a i t  t h a t  can be e a te n ,  AF is  the weight of a l t e r n a t e  food, t i  
is  the handling  t im e f o r  each b a i t  u n i t ,  t 2 is  the handling  time f o r  each a l t e r n a t e  food u n i t ,  k, 1s a 
c o e f f i c i e n t  and ß *  1 when th e re  is  no in t e r f e r e n c e  between anim als.  When 0 < ß < 1 o th er  animals de­
crease an i n d i v i d u a l ' s  i n t a k e ,  and when ß >  1 o th e r  animals f a c i l i t a t e  g re a te r  b a i t  in ta k e .  Hence th is  
inco rp ora tes  the e f f e c t  o f  s o c ia l  rank (Brown 1975) .  The va lue  o f  ß i s ,  as t o r  « , a fun c tio n  o f  body 
weight (W).

The p a r t  o f  eq u a t io n  ( 8 )  in  the o u te r  b rackets  is  the m u lt is p e c ie s  e q u iv a le n t  o f  the fu n c t io n a l  
response o f  a p re d a to r  o r  h e rb iv o re  to  changes in  prey abundance (Lawton e t  a l .  1974) .  Real (1979)  
showed t h a t  random prey d is p e rs io n  gen era ted  a Type I I I  response, which occurs when 1 > 1, so t h is  was
added to  the b as ic  model. O ther types o f  fu n c t io n a l  responses (Marten 1973) are  not described here but 
may be in c o rp o ra te d  l a t e r .  S i m i l a r l y  the two-prey  e q u iv a le n t  o f the Rogers (1972) random predator  
equ atio n  (Lawton e t  a l .  1974) is  not d iscu ssed ,  o th e r  than the note th a t  i t  is re le v a n t  when feeding  
s i g n i f i c a n t l y  reduces b a i t  abundance ( x ) .

The maximum w e ig h t  o f  b a i t  eaten  by an animal ( k 2 ) is  assumed to  be l i n e a r l y  re la te d  to i t s  
maintenance energy re q u ire m e n ts ,  which is  r e la t e d  to  body weight (Kirkwood 1983) as:

0 .7 5
k j  = d W (9 )

where d is  a c o e f f i c i e n t  such th a t  d > 0.

The w e ight  o f  poison ea te n  (W^) 1s r e la t e d  to the co n c e n tra t io n  o f  poison (C) in the poisoned b a i t ,  

r  * WP O 0 )

Rearranging e q u a t io n  (1 0 )  g iv e s :

wn = ( C ) Wb
P 1 -  C

(ID
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Substituting for k2 in equation (9) into equation (8 ), then modified equation (8) and equation (11) 
into equation (7 ), and equation (7) into equation (6) gives:

P(D/E)
__________a(dW°-75; i T)ß __________

(dW°* 75i i T)6 "♦ b(l 4 (dW°*7sti5c ♦ kjtjAF)^ )^W(1 - C)
( 12)

We now have estimates of P(E) (equation (5 )) and P(D/E) (equation (12)). 
equation (4) gives:

Substituting for each 1n 

(13)

P x __________________ a(dW°-7s; 1T)6___________________
(dW#* 7 i^ T ) 6 * b(l + (dWc*7it j i  ♦ k jtjA F )1) ^ !  - C)

Equation (13) Indicates that the probability that an animal dies 1s a function of 17 control 
parameters. As equation (13) Includes two terms each with divisions, then the value of p w ill be deter­
mined by the re lative  value of parameters 1n the numerator and denominator of each term, rather than the 
absolute value of each parameter.

The strategic planning options are defined by the above relationships (Table 2 ). However, of a ll 
17 parameters operators have direct control over only x (bait density), 1 (degrees of bait randomness 
or clumping), C (poison concentration) and T (time bait 1s available). By prebaiting (also called free- 
feeding) operators attempt to Increase t (number of times an animal finds the bait) to increase the pro­
bability  of dying. Rowley (1958) reported an Increase in the number of rabbits feeding on b a it, with 
days since start of free-feeding, indicating an increase 1n the probability of eating bait (P(E)).
Rowley (1958) also noted the social effect of feeding on the b a it, corresponding in this model to social 
fac ilita tio n  ((K a< 1) increasing the probability of eating. Krebs et a l. (1972) reported a similar 
effect of group foraging on the behavior of captive great t its  (Partis major). Operators have partial 
control over behavioral interactions (a and ß) by careful design of poison sites.

Table 2. Control parameters that influence the probability of an animal dying in a poisoning program, 
based on a model for random bait dispersion and random pest search pattern. Control strategies suggest­
ed by the model to increase the probability and a subjective assessment of the degree of operator con­
trol over each control parameter are also lis ted . Strategies for other bait dispersion, search pattern 
combinations are outlined in the text.

Control Degree of
No.____________Control parameter___________ strategy_____operator control

1 ki Maximum value of P(E) Increase Li mi ted
2 t Times animal finds bait Increase Partial
3 X j Coefficient Decrease None
4 a Behavioral interactions Decrease Partial
5 a Maximum value of P(0 /E) Increase Limi ted
6 d Coefficient Increase None
7 W Animal weight Decrease Limited
8 X Poisoned bait abundance Increase Direct
9 1 Poisoned bait dispersion Increase Direct

10 T Time bait available Increase Direct
11 ß Behavioral interactions Increase Partial
12 b Susceptibility to poison Decrease Limited
13 t! Handling time of bait Decrease Limited
14 k s Coefficient Decrease None
15 t 2 Handling time of other 

food Decrease None
16 AF Alternate food abundance Decrease Limited
17 C Poison concentration Increase Direct

There is limited or no control over the average value of each other parameter. By strategic timing 
>f poisoning, the amount of alternate food available (AF) and animal weight (W) can be decreased. Man­
ning poison resistance, can decrease the LDS0 (b).

11) Clumped bait dispersion and random search pattern.
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With clumped bait dispersion the above model (equation (13)) is altered, but only by setting i 
1.0. This generates a Type II functional response (Real 1979) and simplifies the model slightly. This 
corresponds to the situation of extreme clumping, where all the bait is 1n one location. The control 
options are the same as for the previous model. In both models the response to an Increase or decrease 
of a control parameter will be a curvilinear change 1n the value of p.

( i i i )  Random bait dispersion and nonrandom search.

Many models of foraging by a predator have been developed to describe how a predator forages when 
i t  responds to food abundance and depletes i ts own food supply. Such foraging 1s equivalent to non- 
random search by an animal. Mathematical description of this foraging usually assumes prey occur 1n 
patches with the patches randomly distributed. Pulliam (1974) developed a foraging model for random 
distribution of prey and systematic searching by the foraging animal. This will form the basis of the 
discussion here. Similar equations were described by Charnov (1976a), Belovsky (1984) and Persson 
(1985). The stopping rates are not discussed here other than to recognize they are a basic mechanism o1 
nonrandom search.

The model developed by Pulliam (1974), described the number of prey eaten per-un1t-t1me when two 
prey types were available. These correspond to the bait and alternative food which 1s Invariably pre­
sent. Pulliam's equation (9) when translated to familiar terminology and Including the effect of be­
havior (ß) 1s:

(  ( x  ♦ AF)T Y
Wb + «AF ■ \ l  * t,-x * t.AFyl (U)

where W.p is the weight of alternate food eaten per-un1t-t1me, AF 1s the weight of alternate food 
available, tj is the handling time for each alternate food unit,  and T 1s the time bait 1s available. 
This equation 1s very similar to the functional response 1n equation (8)—both are positive saturation 
equations. Differences between the equations will be discussed elsewherje.

Rearranging equation (14), and substituting as before, into equation (6) gives:

P(D/E) a( (x + AF)T)ß - aWAfr(l + t ,x + t 2AF)ß 

((i  + AF)T)ß - (1 + t ,x  + t ?AF)ß(WAp + bW(l - O)
(16)

We now have estimates of P(D/E) (equation (16)) and P(E) (equation (5)), so substituting for each 
in equation (4) gives:

/ k , t  \ °  a(( i + AF)T)ß - a W.p (1 ♦ t,x + t,AF)ß
P - f -------- ] x -------------------------------- ^ -------- ------------------------- (17)

\x, ♦ t j  ((x 4 AF)T)ß - (1 + t ,x + t 2AF)B(WAF ♦ bW(l - C))

Equation (17) shows that the probability that an animal dies is a function of 16 parameters. The 
strategic planning options are as listed in Table 1, with the exceptions of increasing the coefficient 
d, and bait dispersion i.  A new strategy is to decrease the value of the weight of alternate food eater 
(W F), though this is under limited operator control. Of all parameters only bait density (x), poison 
concentration (C) and the time bait is available (T) are under direct operator control.

Pulliam (1974) also developed a model for clumped prey distribution. It is not used in the next 
section, as i t  assumed that once an animal found a clump i t  consumed all prey in the clump before going 
to the next clump. Clearly this violates the marginal value theorem of Charnov (1976b), or other stop­
ping rules (Iwasa et al.  1981, Green 1984).

(iv) Clumped bait dispersion and nonrandom search.

Most situations of poisoning vertebrate pests involve poisoned bait distributed in clumps, and pesl 
animals searching for i t ,  with a nonrandom search pattern.

Caraco and Pulliam (1984) outlined a model for a group of n animals exploiting food in a patchy 
environment. Extending the model by including alternative food the average amount of food (poisoned 
bait and alternate food) consumed by individuals (Wfa ♦ WAF) in the group in a patch is given by

wb * waf = • e"hnT) {18)

where x ♦ AF is the in i t ia l  food abundance in a patch (= weight of poisoned bait offered + alternate 
food), h is a coefficient,  T is the time in the patch (e time at a bait station), e = 2.718 and n is th< 
number of animals that eat the bait.

Caraco and Pulliam (1984) described the situation where no interference occurred between animals 
feeding in a patch, i . e . ,  ß = 1 where:
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(19)Wb + WAF
x ♦ AF,, -hn^T. 
- o ' (1 - e )

Behavioral interference occurs when ß > 1, and when o < ß < 1 social fa c i l i ta t io n  occurs.

Further, they assumed that when one Individual had located a food patch, other members of the group 
Iffwediately congregated there and started feeding. This 1s equivalent to the lim iting value of 0 for a, 
because of the social fa c i l i ta t io n .

Caraco and Pul 11am (1984) assumed P(E) * 1.0; however. In the more general case here we w ill  not be 
so re s t r ic t iv e .  An estimate of P(E) 1s given by equation (5 ) .  An estimate of P(D/E) 1s given by equa­
tion (6 ) ,  however, f 1s now estimated from equation (19).

Substituting for f  from equation (19) Into equation (6) gives:

P(D/E)

«(« ■> AF)(1 -  e~hn&T) .  t w ^ r 6^ )

• hnST) -  r A v t - r L )  + bW(x + AF)(l -  e

Substituting for P(E) and P(D/E) 1n equation (4) gives:

k ,t a(x + AF)(1 -  e bn^ )  _ aw^pn^(yq«-)

Xi + t (x + AF)(1 -  e-hnßT
} • nßwAF(T^C} + bW

( 20)

( 21)

Equation (21) indicates that the probability that an animal dies is a function of 15 parameters.
This is only s lig h t ly  simpler than the models above for random search (Equation 13). The control s tra ­
tegy options are again similar to those outlined in Table 1, with several exceptions and additions. The 
exceptions are changes to d, i ,  t i ,  k3 or t 2 as they do not appear in equation (21). Two new variables 
are included: a coeffic ient h and the number of pest animals that eat the poisoned bait n. In both 
cases the control strategy is to increase the parameter which is under limited or no operator control.

Caraco and Pulliam (1984) showed that when feeding interference within a group of n foragers did 
not occur (ß = 1) and animals foraged optimally, the rate of food intake was the same for individuals 
whether they were in a group or not. Also they showed the variance on daily  intake per individual was 
n times greater for so litary  than group foragers. Clark and Mangel (1984) also reported a model that 
predicted a reduction in the variation in individuals feeding when in a flock. Since feeding in te r ­
ference is unlikely to be nonexistent, these interesting results may not be of general application, but 
they identify  an interesting area for applied research. When feeding interference occurs, an increased 
variance in food intake could be expected and would have important practical consequences. Conway (1981) 
described a model developed by Comins, which showed the consequences of each pest receiving an equal 
pesticide dose or an unequal dose. The la t te r  situation increased the proportion of the population 
subject to a low dose and hence to higher selection for pesticide resistance. In our example feeding 
interference could be the mechanism producing the same result because of the increased v a r ia b i l i ty  in 
poison intake. This poss ib il ity  has not been widely discussed in managing resistance to anticoagulant 
pesticides in rodents or other species.

CONCLUSION

Many strategic planning options for poisoning vertebrate pests have been described. The planning 
options for d if feren t ecological situations are very similar. Some options are currently used, such as 
varying the poison concentration, and amount, location, and temporal a v a i la b i l i ty  of poisoned ba it .
Other options have had limited or no use, such as using small baits to decrease handling (eating) time 
p e r-b a it -u n it ,  poisoning when there is limited a lternative  food, and designing bait packets or stations 
to decrease behavioral interference between animals.

The modelling shows how many control parameters interact in complex, usually nonlinear relationships. 
The models provide a theoretical framework for explaining why particu lar events occur when poisoning 
vertebrate pests. Aspects of foraging ecology are suggested as a useful area for applied pest research. 
Demographic characteristics (e .g . ,  age and sex) of pest populations influence poisoning k i l ls  in several 
ways, especially as determinants of pest body weight, which d irec t ly  influence food intake, behavior and 
poison susceptib il ity . Pest species with a large variation in body weight, such as large mammals, should 
have more variable responses to poisoning than small mammals. As a consequence they may develop greater 
pesticide resistance independent of any contribution from d ifferen t breeding rates.

The models outlined describe some of the essential features of poisoning programs and reveal 
interesting relationships between various factors influencing the probability that an animal is k i l le d .
The models are more than an analogy but less than a facsimile of poisoning vertebrate pests. The s tra ­
tegic planning uses of the models are obvious, and some agreement exists with laboratory and f ie ld  data. 
Further development w i l l  refine the strategic and predictive applications of these models.
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