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Abstract 
Subsurface oil and gas reservoirs and fresh water aquifer systems are defined by 

fundamental geological characteristics such as mineral assemblage, grain and pore 

texture (size and shape), and porosity, and a range of petrophysical properties such 

as permeability, tortuosity, and capillary pressure, all of which contribute to fluid 

flow behaviour during extraction, injection, and storage. 

Computer-based models of reservoir and aquifer systems use these fundamental 

rock characteristics and petrophysical properties for large-scale fluid flow 

simulations. Designing and testing accurate static models is essential for reliable 

flow predictions. A wide range of analytical techniques has been developed over 

many years to expand the range and quality of formation modelling data. The most 

commonly used techniques include down-hole logging systems and laboratory-

based core analysis. Down-hole logging tools measure the geophysical properties of 

formations, for example: gamma radiation and electrical resistivity, and typically 

collect data at the scale of tens of centimetres to metres, though image logs from 

micro-resistivity tools can collect millimetre to centimetre scale data. Commonly 

used laboratory-based analytical techniques involve the use of drill core, core plugs, 

and drill cuttings, for routine and special core/cuttings analysis to determine 

reservoir and seal rock properties.  

Modern X-ray micro-Computed Tomography (µCT) core imaging, in combination 

with petrophysical simulation software, often referred to as Digital Rock Physics, is 

fast becoming a standard tool for augmenting formation characterisation and 

modelling. Due to the nature of high-resolution µCT imaging and the associated 

analytical equipment, sample size is limited and governs the attainable resolution. 

It follows that metre-scale whole core samples cannot be imaged at the same high 

resolution as centimetre- and millimetre-scale core plugs. High-resolution images 

are critical to achieve reliable results from simulations of transport properties such 

as permeability and threshold injection pressure, which relies on all significant 

pathways in the pore space being correctly represented in the image. With current 

technology a µCT image of a 25mm diameter x 100mm tall sample, imaged using a 

detector with 2000 pixels per row, will have a minimum voxel size of ~13 µm, 

which implies that rock bands with grain and pore textures smaller than ~50 µm 

(i.e. 4 voxels across) cannot be represented with enough detail to reliably simulate 

petrophysical properties.  

The main research objective is to investigate the relationships between geological 

characteristics and petrophysical properties of heterogeneous laminated sandstone 
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with the aim of estimating fluid flow properties for low-resolution images of larger 

rock volumes where fluid flow cannot be computed directly because of insufficient 

image resolution.   

This thesis presents an imaging and computation workflow for predicting absolute 

permeability, threshold pressure, lambda (a parameter in the Brooks-Corey 

equation describing the shape of drainage capillary pressure curves), and residual 

non-wetting phase saturation for sample volumes that are too large to allow direct 

computation of these properties or where traditional correlation methods fail. The 

workflow involves computing the above-mentioned petrophysical properties from 

high-resolution µCT images, along with a series of rock characteristics from 

spatially registered low-resolution images. Multiple linear regression models 

correlating the petrophysical properties to rock characteristics provide a means of 

predicting and mapping those property variations in larger scale low-resolution 

images.  

Two core samples of 25 mm diameter 80 mm tall of heterogeneous sandstone, for 

which 5 µm/voxel resolution is required to compute permeability and capillary 

pressure directly, were investigated in this study. Results show good agreement 

between statistical predictions of petrophysical properties made from intermediate-

resolution images at 16 µm/voxel and low-resolution images at 64 and 61 µm/voxel 

for samples 1 and 2 respectively. The statistical models to predict permeability from 

low-resolution images at 64 and 61 µm/voxel (similar to typical whole core image 

resolutions) include open pore fraction and formation factor as predictor 

characteristics. Although binarized images at this resolution do not completely 

capture the pore system, I infer that these characteristics implicitly contain 

information about the critical fluid flow pathways, which control permeability.  

Capillary pressure simulations were performed using both pore-morphology and 

network model-based methods. A prediction model of threshold pressure containing 

open pore fraction, formation factor, and, in this case, clay fraction is similar to the 

model of permeability from the low-resolution image of sample 1. My conclusion, 

which is similar to that of the permeability model results, is that formation factor 

and clay fraction, because their computation takes into account the image gray 

scale values, inherently capture information about the pore system length scale 

that controls threshold pressure. 

A surprising yet important result is that of sample 2, where the set of predictor 

characteristics are unable to accurately predict threshold pressure. I conclude that 
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this is because of image processing difficulties arising from a low signal to noise 

ratio in the high-resolution image, which complicates the segmentation of pore 

space from grain volume. The result suggests that image quality is critically 

important, which potentially eliminates the use of data collected using imaging 

techniques like ‘region of interest’ scans. 

Statistical models of lambda using characteristics from pore morphology-based 

simulations describe 62% of the parameter variance. The predictor characteristics 

included in the model using low-resolution characteristics are open pore fraction, 

surface area, and mean curvature. Correlations between lambda computed from 

network model-simulations and low-resolution predictors are more encouraging 

with formation factor and clay fraction describing 93% of the variance in lambda. 

Predicting residual non-wetting phase saturation poses a significant challenge and 

was not successfully addressed in this project. Neither the morphology-based nor 

the network model simulations produced data that correlate well with predictor 

characteristics. In the case of the network model-derived data it is possible that a 

larger dataset may improve residual non-wetting phase predictions. 
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1 Thesis Organisation 

The research objective is the prediction of petrophysical properties in digital 3D 

imaging data where their direct determination is not realistically possible because of 

limitations in image resolution. To provide the relevant background information to 

the project the introduction (section 2) starts with an overview of petrophysical 

properties and related physical phenomena, which is followed by a description of 

the target sandstone formation and its relevance to hydrocarbon production, 

aquifer management, and CO2 storage in a global context. Section 2 continues with 

an introduction to micro x-ray computed tomography imaging (µCT), the 

computation of the petrophysical properties from such 3D data sets, and the 

numerical upscaling of high-resolution geologic models for dynamic fluid flow 

simulation at formation scale. The introductory context of the project is followed by 

a detailed description of the research objectives. 

Chapter 3 (Numerical Modelling and Multi-scale Imaging) compiles a review of past 

works related to efforts to develop numerical models to predict petrophysical 

properties (particularly absolute permeability) and the use of multi-scale µCT 

imaging to improve the general understanding of complex formations. Chapter 3 

also contains a description of the unique contribution of the research results and 

interpretations documented in this thesis. Chapter 4 (Methods) provides details of 

sample selection and the methods used for data collection and analysis. Chapter 5, 

the first of the results chapters, demonstrates the impact of image resolution on 

the computation of absolute permeability and continues with a discussion on the 

changes to predictor characteristics with changing image resolutions. Chapters 6 

and 7 compile and discuss the results of absolute permeability statistical models 

and predictions, while chapters 8 and 9 document the results of statistical 

modelling and prediction of capillary pressure, which was computed from pore 

morphology-based simulations. Chapter 10 briefly demonstrates some exploratory 

results of network model-based drainage and imbibition flow simulations and 

highlights the differences between network modelling and morphology-based multi-

phase flow simulations. Conclusions and references are documented in chapters 11 

and 12 respectively. 
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2 Introduction 

2.1 Petrophysical Properties and Related Physical Phenomena 

2.1.1 Absolute and Relative Permeability 

Absolute permeability (!), with unit m2 or more commonly Darcy (D) (where 1 D = 

10-12 m2), was first described by Henry Darcy in 1856 following extensive 

experimentation with the flow of water through sand beds arranged in vertical 

tubes (Darcy, 1856; Simmons, 2008). Permeability describes the ability of a 

saturated porous medium to allow the flow of a single fluid phase through its pore 

system. It is a fluid-independent parameter of the porous medium, and, combined 

with fluid viscosity forms the proportionality constant in Darcy’s law (eq. 2.1) 

relating fluid flow through a porous medium to the change in fluid pressure over a 

certain distance. Darcy’s empirical law is based on laminar flow and fails when the 

flow rate is high enough to induce turbulence. ! is flow rate (e.g. vol/time), ! is the 

permeability constant (m2), A is the cross-sectional area (e.g. m2), ∆! in Pascals is 

the difference in pressure between the fluid inlet and outlet, ! is fluid viscosity 

(Pa.s), and ! is the length over which the pressure drop occurs. 

	 ! = ! !∆!!L 	 (2.1)	

 

Under operational conditions a reservoir system is rarely saturated with a single 

fluid, partly because the system naturally contains multiple fluids in the form of 

water, oil, and gas, and partly because additional fluids such as water and CO2 may 

be introduced into the system during enhanced production stages or injection for 

long-term storage. In a porous medium saturated with two or more immiscible 

fluids the effective permeability (!!") of the ith fluid can be determined by extending 

Darcy’s law and assuming that one fluid remains static, essentially occupying some 

fraction of the pore space, while only the other fluid flows under pressure (Muskat & 

Meres, 1936) (eq. 2.2). 

 

	 !! = !!"
!∆P
!!L

	 (2.2)	
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Relative permeability is often considered co-current, i.e. both fluids flow in the 

same direction. The relative permeability of the ith fluid (!!") describes the flow of 

one fluid as the ratio of its effective permeability (!!") to the absolute permeability 

(!) of the porous medium (Ahmed, 2001) (eq. 2.3). It is normally expressed as a 

function of the saturation of one fluid phase, where saturation is the fraction of the 

pore volume occupied by that fluid. 

 

	 !!" =
!!"
! 	 (2.3)	

 

2.1.2 Wettability 

Unlike absolute permeability, relative permeability is not only a function of the 

medium, but depends on numerous other factors such as saturation, wettability, 

flow rate, viscosity and saturation history (Bennion & Thomas, 1991). 

 

Wettability describes the wetting preference of a rock formation: whether a fluid 

prefers to adhere to, or to spread across a solid surface in the presence of another 

immiscible fluid (Craig, 1975). It is the result of forces such as adhesion, cohesion, 

and surface tension, and is quantified in terms of a contact angle, which is the 

angle between the contact surface between two immiscible fluids and a solid 

surface (figure 2.1). The wettability phenomenon is also a function of capillary 

forces (see section 2.1.3), which determine that, because of adhesion and cohesion 

forces, a fluid arranges itself in the smallest area per unit volume. A wetting fluid 

dropped onto a solid surface will spread across the solid surface, increasing the 

contact angle and displacing the non-wetting fluid until equilibrium is reached. A 

non-wetting fluid, on the other hand, forms droplets with a high value for the 

equilibrium contact angle. A water-oil/gas system is said to be “water-wet” when 

the contact angle is smaller than 75°, “neutrally wet” when it is 75°-105°, and 

“oil/gas-wet” when it is 105°-180° (Anderson, 1986). 
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Figure 2.1: A non-wetting fluid forms droplets with a low contact angle on a solid 

surface, while a wetting fluid spreads across a solid surface with a high equilibrium 

contact angle (Abdallah et al., 2007). 

Wettability affects relative permeability because capillary action fundamentally 

controls the distribution and flow of fluids in a porous substance. For example, 

figure 2.2 illustrates a strongly water-wet water-oil system at irreducible water 

saturation that undergoes imbibition (displacement of a non-wetting phase with a 

wetting phase). Water fills small pores, occupies pore crevices and covers rough 

grain surfaces, while oil fills the bulk of the pore volume. The relative permeability 

of the water phase, which exists as thin films at low to moderate saturations, can 

be very low. Under imbibition the non-wetting phase (oil) saturation and relative 

permeability decrease as a waterfront displaces the oil. Concurrently the wetting 

phase (water) saturation and relative permeability increase (figure 2.3). As 

imbibition continues, and water saturation increases, the connections between oil in 

adjacent pores are disconnected, leaving isolated oil droplets surrounded by water, 

resulting in decreased oil relative permeability. Even in this state the water relative 

permeability remains relatively low because the remaining oil droplets still occupy 

the larger pores and partially block the entrances to many of the pore throats 

[Anderson, 1987, part 5]. 

 

Figure 2.2: Waterflood displacement of oil from a pore [Anderson, 1987, part 5]. 
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Figure 2.3: The changes in relative permeability of water and oil as a function of 

water saturation [Anderson, 1987, part 5]. 

The preferential displacement of fluids as a consequence of wettability is a critical 

factor in reservoir and aquifer management. Because of the effects of wettability 

laboratory measurements of relative permeability are susceptible to errors, 

especially when core samples are cleaned with solvents or contaminated with 

drilling fluid. This highlights the need for replicating reservoir temperature and 

pressure conditions and using the same fluids and well-preserved core samples with 

representative reservoir wettability for laboratory testing [Caudle et al., 1951; 

Anderson, 1987, part 5; Bennion and Thomas, 1991]. 

 

2.1.3 Capillary Pressure 

Two or more immiscible fluids in a saturated porous medium, in contact with one 

another, experience internal pressure as a result of forces like adhesion, cohesion, 

and surface tension, causing fluids to arrange themselves into the smallest area per 

unit volume to minimise free surface energy (Ahmed, 2001), and essentially 

controls the contact angle. The capillary pressure (!!) is the pressure difference 

across the fluid interface and is proportional to the fluid-fluid interfacial tension and 

the mean curvature of the fluid-fluid interface, which is inversely proportional to the 

radius of curvature ! through the Young-Laplace equation, where !!" is the surface 

tension between the non-wetting and wetting phases and ! is the contact angle 

(figure 2.4 and eq. 2.4). Note that the constant, 2 in equation 2.4, is only valid 

when considering circular capillaries. The interfacial curvature itself is controlled by 
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the pore geometry (and particularly the pore radii), the fluid saturation and the 

contact angle (i.e. the wettability) [Bear, 1988, p 444-445]. 

 

Figure 2.4: A schematic showing the curved fluid-fluid interface in a capillary as a 

result of a pressure difference between the two fluids. The pressure is higher in the 

non-wetting fluid than in that of the wetting fluid and the interfacial curvature is 

proportional to the pressure difference. 

 

	 !! =
2!!"!"#$

! 	 (2.4)	

 

Capillary pressure either aids or hinders fluid flow defining the local pressure 

required to move a fluid through the pore network. At slow enough flow rates or for 

small enough samples, where the Darcy pressure difference across the sample is 

smaller than the capillary pressure, the flow is considered to be capillary- 

dominated. 

Hysteresis describes a history dependence or non-uniqueness in a measured 

physical parameter as a function of an independently controllable input parameter. 

Figure 2.5 illustrates the capillary pressure curve for a water-saturated system 

under drainage by oil or gas and imbibition by water. Under drainage (displacement 

of a wetting phase by a non-wetting phase) the capillary pressure increases with 

decreasing water saturation until the system reaches its irreducible water 

saturation (the fraction of water that remains when a very high capillary pressure 
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has been applied). Imbibition (displacement of a non-wetting phase by a wetting 

phase) increases the wetting phase saturation and decreases the capillary pressure 

along a pressure path that is lower than the capillary pressure for a given water 

saturation during drainage. Capillary hysteresis describes the difference in the 

capillary pressure curves under drainage and imbibition. The mechanisms for 

hysteresis are still a subject for debate. One mechanism suggests that the contact 

angle cannot be considered a single value for a given fluid pair, and that it is lower 

during drainage (advancing contact angle) than it is under imbibition (receding 

contact angle) [Anderson, 1987a, part 4; Bear, 1988, p 446-447 ]. 

In the context of CO2 injection and storage it is thought that capillary trapping as a 

function of wettability and capillary forces should contribute significantly to 

subsurface trapping mechanisms (Al-Menhali & Krevor, 2016; Andrew et al., 2013; 

Krevor et al., 2015; Ren et al., 2014). Consider a water-wet CO2-brine system with 

a water saturation of one. Under drainage (displacement of a wetting phase with a 

non-wetting phase) an injected CO2 plume displaces the brine, reducing the water 

saturation and increasing CO2 relative permeability. It is thought that CO2 trapping 

will occur under water imbibition at the trailing edge of the injected plume, which 

will cause connected CO2 clusters in adjacent pores to disconnect (snap-off) thereby 

trapping CO2 at the pore scale by a combination of wetting and capillary forces. 

 

Figure 2.5: The capillary pressure curve for a water-wet water-oil system under 

drainage and imbibition [Anderson, 1987a, part 4]. 
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2.1.4 Electrical Conductivity 

Archie [1942] determined that the resistivity (resistance to the flow of electrical 

current) of a relatively clean water-saturated sandstone (!!) is directly proportional 

to the water (usually brine) resistivity (!!) and a formation resistivity factor (!). He 

demonstrated empirically that ! is directly proportional to the formation porosity 

(!) raised to the power of −!, described as the cementation exponent and 

determined as the line of best fit on a plot of the logarithm of formation factor 

against the logarithm of porosity (eq. 2.5 and 2.6).  

	 !! = !"!	 (2.5)	

 

	 ! = !!!	 (2.6)	

 

Archie reports experimental results showing the cementation exponent typically 

varies from 1.3 for unconsolidated sediments to 2 for consolidated sediments. In 

more complex rocks with a variety of clay and other minerals, which also result in 

different wettability conditions because of more complex grain surface conditions, 

cementation exponent values of up to 5 have been reported (Focke & Munn, 1987).  

Archie’s law is only valid when there are no conductive minerals in the rock matrix 

and holds well for relatively clean sandstones; however, Patnode and Wyllie [1950] 

conclude that electric current could be carried, not only by the saturating fluid, but 

through conductive clay minerals in “shaly sands”, and propose an expanded form 

of Archie’s law to account for conductive phases in the rock matrix (eq. 2.7), where 

!! is the formation conductivity, and !! and !! represent the conductivity of solids 

and brine respectively.  

	 !! = !! +
!!
! 	 (2.7)	

 

Winsauer and McCardell [1953] suggest the excess conductivity in shaly reservoir 

rocks is due to an increased ionic concentration in the fluid layer adjacent to 

charged clay surfaces. This is still considered to be a significant factor controlling 

the conductivity of such rocks and presents yet another variation of Archie’s law 

(eq. 2.8) where !! is the conductivity of charged clay surfaces. 
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	 !! =
1
! (!! + !!)	 (2.8)	

 

2.2 The Precipice Sandstone 

The target formation for the primary study is the Precipice sandstone, the early 

Jurassic age basal formation of the Surat Basin, in southeast Queensland, Australia. 

The sedimentology of the Precipice sandstone was studied in detail by Martin 

[1977], and by previous investigators in early descriptions of the Surat Basin 

geology and stratigraphy (Jensen, 1921, 1926; Reeves, 1947; Whitehouse, 1953). 

Martin describes the Precipice sandstone as a fluviatile depositional facies, 

deposited by low-sinuosity braided stream systems, predominantly flowing from 

west to east. Source rocks include mainly granitic basement, evidenced by the 

presence of feldspar and biotite, with some contribution from metamorphic and 

sedimentary sequences, as interpreted from the occurrence of rock fragments, 

towards the western edge of the basin.  

Along with Allen and Houston [1964] Martin report the Precipice to be a fine- to 

coarse-grained laminated sandstone, with laminations ranging in thickness from 

just a few millimetres to several centimetres. It contains low quantities of clay 

minerals (generally less than 10%) and minor amounts of accessory minerals 

including feldspar and mica. Diagenetic alterations include silica redistribution and 

the chemical alteration of feldspar and biotite to kaolinite. Silica redistribution can 

be caused by overburden pressure or may be chemically induced. Martin [1977] 

describes that quartz dissolution is closely related to the occurrence of biotite, 

which is almost always partially altered to kaolinite. This suggests a chemical 

mechanism for silica redistribution, rather than by overburden pressure dissolution, 

in which case silica dissolution would be more distributed more evenly instead of 

being correlated with biotite. Results also indicate that finer grained sediments 

contain higher proportions of mica, which, due to its flaky habit, is commonly 

deposited along with finer sediment sizes, providing a possible explanation for the 

extraordinarily low porosity and permeabilities in the fine-grained intervals of the 

Precipice, which cannot be explained by grain size alone. 

Figure 2.6 shows a two-dimensional slice from a tomogram and demonstrates the 

range of grain and pore sizes present in a single core plug. It clearly shows fine-

grained lamellae near the top and much coarser grained zones near the middle of 

the image. 
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The Precipice is an ideal target formation for injection and storage because of its 

relatively high permeability, but also its large degree of heterogeneity. Even though 

the data from this project will be applied to CO2 storage, the results are more 

widely applicable to fields such as oil and gas exploration and production and 

aquifer management and remediation. In particular the methods developed in this 

study are aimed at improving the range of data available for large scale formation 

modelling and simulation. 

A typical feature of fluvial sedimentary rocks is sedimentary stratification, or 

layering, which is the accumulation of distinct beds as a function of changes to the 

depositional conditions in which they formed. Changes to the depositional 

environment may include the volume of water or the energy available to transport 

sediment, or the volume or type of detritus in the source region. Layering is evident 

because of differences in characteristics such as particle size, shape, and 

distribution, and the mineral and fossil content in each layer (Boggs, 2003). 

Layered sandstone formations such as the Precipice are fairly common around the 

world and the influence of heterogeneity on fluid flow properties is a topic of 

significant importance. Kjonsvik et al. [1994] investigate shallow marine reservoirs 

with layers of rock characterised by different texture and petrophysical properties. 

They point out that in order to assess waterflood performance it is important to 

understand the degree of pressure communication across the boundaries 

separating layers with different permeabilities. They also mention that the spatial 

arrangement of layers with contrasting permeability and their pore scale attributes 

such as wettability can either result in improved oil recovery or oil trapping during 

water flooding. The Burgan oil field in Kuwait, the largest sandstone reservoir in the 

world, was deposited in a fluvial deltaic system (Kaufman et al., 2002), 

encompassing braided river channels for the South Burgan field and estuarine and 

tidal channels for the North Burgan field (Filak et al., 2013), which produce fine 

laminated structures similar to those in the Precipice Sandstone.  

Fine laminations complicate the interpretation of petrophysical logs, especially when 

sand layers are interbedded with layers rich in clay content, because the 

laminations are often finer than the vertical measurement resolution of down-hole 

tools. Small-scale structures such as those in the Precipice cannot be taken into 

account with anything but the highest resolution tools such as those used to 

produce micro-resistivity logs, which may not report the information required. Fine 

laminations also result in less than ideal data from conventional laboratory 

measurements because the samples themselves may not be representative of the 

formation, and the sample may be heterogeneous and produce variable results as a 
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function of measurement direction). µCT image-based fluid flow simulations are not 

immune to fine scale heterogeneities. Section 2.3 and 2.4 describes the relationship 

between sample size, image resolution, and the impact on the ability to simulate 

flow properties. With insufficient image resolution to accurately capture the pore 

system, flow properties cannot be computed numerically; therefore, heterogeneities 

often cannot be taken into account with a single sample. The research objective is 

to develop a method to estimate fluid flow properties in low-resolution µCT images 

of samples where they cannot be computed directly. 

I approach this study with the conclusion that the Precipice Sandstone serves as a 

good approximation of typical sandstone reservoir and aquifer systems. It is 

relatively clean and free of clay minerals, but contains significant heterogeneity in 

the form of fine laminations defined by differences in grain and pore texture 

attributes.  

The remaining sections of the introduction continue with an overview of  µCT 

imaging, the impact of image resolution on fluid flow simulations, which is followed 

by a detailed description of the research objective (section 2.6) in the context of 

these introductory concepts.  

 

 

Figure 2.6. Demonstrating the range of grain and pore textures in a single 25 mm 

diameter x 80 mm tall core-plug sample. 
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2.3 Micro X-ray Computed Tomography Imaging (µCT) 

µCT scanning systems produce tomograms, which are three-dimensional 

representations of the internal structure of a sample placed in between a point 

source of X-rays and an X-ray detector array (camera) (figure 2.7). Van Geet et al. 

[2001], Cnudde and Boone [2013], and Wildenschild and Sheppard [2013] provide 

detailed descriptions of the history and fundamentals of µCT equipment, imaging 

principles, and potential applications of the technique in various fields of study. 

Focussed X-rays are generated within an X-ray source by bombarding a tungsten 

target with an electron beam. The X-rays are directed to travel through the sample 

and are captured by a camera, which converts the x-ray signal to a 16 bit grey-

scale image, also known as a projection. The grey level of each pixel in the 

projection is related to the degree to which the incident X-rays were absorbed 

(attenuated) by the minerals and fluids in the sample as a function of electron 

density and average atomic number. Following linearization of the projection data 

with respect to flat-field images, each pixel represents the integrated attenuation of 

each mineral lying on the X-ray line between the source point and the detector 

pixel. Incrementally rotating the sample, and collecting a new projection after each 

rotation, generates a series of projections. A reconstruction algorithm is used to 

produce the 3D tomographic image from the series of two-dimensional projections. 

 

 

Figure 2.7: A typical µCT configuration with the sample located between an X-ray 

point source and an X-ray detector array (Wildenschild & Sheppard, 2013). 

Varslot et al. [2010] demonstrates the use of a more advanced helical scanning 

system to achieve high-resolution imaging in a practical time frame. In addition to 

being rotated the sample is also moved vertically, where the pitch describes the 

vertical distance moved for each complete rotation of the sample. Varslot et al. also 

describes some of the challenges involved in producing high-quality µCT images, 
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such as misalignment artefacts, image drift due to fluctuations in ambient 

temperature, and the close relationship between X-ray source spot size, image 

resolution, and imaging data signal to noise ratio. 

In computed tomography imaging, field of view and image resolution are directly 

related through the number of voxels in each dimension in the reconstructed 

tomogram (Sakellariou et al., 2004). Lower resolution images, such as those of 

whole core samples, provide greater sample coverage and capture more sample 

heterogeneity, but do not adequately represent the pore structure and cannot be 

used for direct permeability computation. On the other hand, images with higher 

resolution permitting direct computation of fluid flow properties, have 

correspondingly smaller fields of view. These small images, though high in 

resolution, only cover a representative volume for the most homogenous rocks and 

are very different in scale from core plugs used in conventional experiments. High-

resolution µCT imaging can generally be achieved for sample sizes ranging from 5 

to 25 mm in diameter; however, sample size limits are very much a function of the 

imaging system in question. For samples greater than 25 mm diameter one would 

start considering the use of whole core or medical CT scanners, keeping in mind 

that medical CT images of whole core often provide little information about 

petrophysical properties.  Classifying an image as high- or low-resolution depends 

on how the image resolution compares to the scales of sample textures. Two core 

plug samples of 10 mm diameter, one with fine and one with coarse textures, could 

be imaged at the same absolute resolution (say 8 µm/voxel side length), and the 

image of the fine texture sample considered to be low-resolution and that of the 

course texture sample to be high-resolution, based on the extent to which the rock 

texture is captured within each image. 

 

2.4 Image Resolution and Petrophysical Properties 

The equations to compute electrical conductivity and permeability are those of 

Laplace and Navier-Stokes respectively. Laplace’s equation (eq. 2.9) (Øren et al., 

2007), also known as the continuity equation for potential flow, presents solutions 

in the form of potential functions that describe the idealised behaviour of potential 

fields.  

 

	 ∇ ∙ !!∆! = 0	 (2.9)	
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!! is the electrical conductivity of the fluid in the rock and ! is the electrical 

potential. In the case of electric fields the Laplace equations describes the 

electrostatic potential in an area that has no charge. 

 

The Navier-Stokes equations are a set of formulations that describe fluid flow. It 

comprises the momentum equation, which arises by combining Newton’s second 

law of motion with a fluid component, and the continuity equation defining the 

conservation of mass. Permeability simulations in this study are based on the 

Lattice-Boltzmann method, which approximates the solutions of the Navier-Stokes 

flow equations. The fluid is represented as generalized particles (Christoph H. Arns 

et al., 2004) and placed under a pressure gradient by a body force throughout the 

volume (Ferréol & Rothman, 1995), or by constant-pressure boundary conditions, 

i.e. no-flow at the boundary. Additionally, the Lattice-Boltzmann method uses the 

Bhatnagar-Gross-Krook (BGK) relaxation term as an approximation of particle 

collision behaviour (Bhatnagar et al., 1954). 

 

Imaging techniques such as µCT described in section 2.4 make it possible to 

generate realistic digital 3D representations of rocks and their pore systems, which 

are ideal for the numerical computation of petrophysical properties. Spanne et al. 

[1994] and (Martys et al., 1999) investigate Fontainebleau sandstone and were 

among the first to identify the need for high-quality images with sufficient 

resolution. They emphasise the need for 3D images that accurately capture those 

pore geometries that control fluid flow to produce reliable computational results of 

petrophysical properties. Generally permeability simulations only return useful 

results if the image resolution is sufficiently high to represent flow pathways in the 

pore system with at least four open voxels, i.e., the voxel size needs to be 4 times 

smaller than the diameter of the smallest pore throats that lie on percolating flow 

paths. The no-slip conditions mean a Poiseuille velocity profile, which needs at least 

four voxels to be represented with any accuracy. 

 

Figure 2.8 is a qualitative diagram showing the theoretical effect of image 

resolution on phase proportions and the ability to compute numerically 

petrophysical properties, in this example, absolute permeability. Consider a two-

component system comprising one solid phase (grains) and one air phase (pores). 

With modern 3D scanning systems achieving micrometre- and tens or hundreds of 

nanometre-scale imaging resolution (Cnudde & Boone, 2013; Metz et al., 2009; 

Varslot et al., 2010) the two components are well differentiated and a histogram of 

gray scale intensities shows only two peaks, one gray scale value for each 
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component. As image resolution decreases (e.g. for imaging larger fields of view), 

an increasing fraction of the voxels lie on the surfaces between grain and pores and 

thus appear as intermediate gray scale values, because the volume sampled by 

those voxels includes both grain and pore (the ‘partial volume effect’). With a 

further decrease in image resolution the proportion of intermediate gray scale 

voxels increases and the proportions of voxels representing the original two 

components decrease. At some pore size dependent resolution the interconnections 

within the pore space (i.e. pore throats) start to be represented entirely by 

intermediate gray scale values and direct transport modelling becomes 

impossible.  Extracting information from images in this regime, where transport 

pathways cease to be fully resolved, is the focus of this work.  

 

At even lower resolution, the spatial averaging associated with each voxel covers 

such a large volume that all geometric information is lost.  It is normally considered 

that medical CT scanning, with a typical resolution of around 500 µm/voxel, falls 

into this last category. With a complete absence of geometric information, CT scans 

of whole core are not used to estimate permeability, and it seems unlikely that 

worthwhile information for predicting transport properties could be extracted. 

 

 
Figure 2.8: The effect of image resolution on phase identification. High-resolution 

images resolve pore space geometry with high fidelity while at low-resolution pores 

are represented partially or completely by intermediate gray scale values. 
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Berg [2012] and Zhang and Knackstedt [1995] evaluate electrical conductivity and 

highlight the importance of pore geometry and flow path tortuosity. Arns et al. 

[2001] investigate the effects of image resolution and associated segmentation 

errors, such as poor representation of pore geometry, on the numerical 

computation of electrical conductivity. For a single sample represented by a range 

of image resolutions, they observed systematic overestimation of formation factor 

with decreasing image resolution.  

In lower-resolution images, the pore throats are depicted by intermediate gray 

scale voxels (rather than open pore voxels) and consequently do not allow flow 

during simulation: the simulated permeability will therefore be zero regardless of 

the actual permeability. Apourvari and Arns  [2014] assess the effect of sub-

resolution porosity on permeability and use a Lattice Boltzmann method modified 

with the Brinkman approach (Brinkman, 1949) that includes regions of sub-

resolution porosity in the permeability computation by applying Darcy’s law to such 

regions. This approach suffers the shortcoming that one must estimate the 

permeability of the sub-resolution porosity, often without knowledge of the pore 

space geometry. Since permeability is highly dependent on channel diameter this 

approach may have very large uncertainties. 

In studying the effect of image resolution on permeability simulation, Peng et al. 

[2014] found that two µCT images of Berea Sandstone with resolutions of 1.85 and 

5.92 µm/voxel return nearly identical permeability, indicating that the latter is high 

enough resolution to capture the main flow paths for that rock, and that the smaller 

pores need not always be resolved. Zhang et al. [2000] investigate the scale 

dependency of the so-called representative element volume (REV), a range of 

physical sample volumes for which a measured quantity such as permeability does 

not change. Their results show that the REV for a Brent Triassic sandstone sample 

is considerably larger than that of a sample of crushed glass beads, because of the 

increased degree of heterogeneity of the sandstone. In the context of image 

resolution and field of view, and depending on the sample heterogeneity, it is clear 

that for any given sample, volumes that fall in the range of an REV may not always 

have sufficient resolution to allow permeability simulation.  

 

2.5 Numerical Upscaling 

Subsurface oil and gas reservoirs and fresh water aquifer systems are 

heterogeneous systems characterised by geological measures such as mineral 
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assemblage, grain and pore texture (size and shape), and porosity. These 

measures, or fundamental characteristics, combine together to produce a range of 

petrophysical properties such as absolute and relative permeability, tortuosity, and 

capillary pressure, which contribute to fluid flow behaviour during extraction, 

injection, and storage (Ahmed, 2005). 

Computer-based static models, or descriptions, of reservoir and aquifer systems are 

based on these fundamental geologic characteristics and petrophysical properties 

and form the basis for dynamic fluid flow simulations. Designing and testing 

accurate static models are essential for reliable flow predictions (M.J. King & 

Mansfield, 1999) and a wide range of analytical techniques has been developed 

over many years to expand the range and quality of reservoir modelling data. 

Notably, these techniques collect data at various scales and need to be 

incorporated in a single geological model. The most commonly used techniques 

include down-hole logging systems and laboratory-based core analysis. Down-hole 

logging tools measure the geophysical properties of formations, for example: 

gamma radiation (useful for identifying geological formation tops and serves as a 

measure of clay mineral content) and electrical resistivity (indicates formation fluid 

type) (Darling, 2005). Down-hole logs typically collect data at the metre scale, 

though image logs from micro-resistivity tools can collect millimetre-scale data. 

Laboratory-based analytical techniques most often involve the use of drill core, core 

plugs, and, in recent years, drill cuttings, for routine and special core/cuttings 

analysis, and 3D X-ray Computed Tomography imaging to determine reservoir and 

seal rock properties (Bell, 1996; Ubani et al., 2012). In addition to these laboratory 

and down-hole techniques, outcrop and field performance data are often included in 

static models (Michael J. King, 2007), which are typically constructed with small 

grid cells because it is generally accepted that fine scale features can significantly 

impact reservoir and aquifer flow behaviour (Jones et al., 1995).  

 

Several papers reviewing upscaling techniques and procedures have been written in 

recent time (Durlofsky, 2005; Farmer, 2002; Renard & de Marsily, 1997). 

Numerical upscaling, sometimes referred to as upgridding, describes the process of 

constructing lower-resolution models (models with fewer grid cells for the same 

volume) from high-resolution static geologic models of the formation in question. A 

high-resolution geologic model typically describes a formation with a large number 

of grid cells (~107 – 108 cells), where each grid cell, still potentially at the metre 

scale, is small enough to capture variations in the distribution of formation 

properties. In his review Durlofsky [2005] emphasises the need for uncertainty 
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analysis in reservoir performance, which means understanding the range of flow 

behaviour to be expected from a given formation. For this reason it is often 

necessary to perform many iterations of flow simulations, each one under slightly 

different conditions; therefore, the demands on computational resources are 

considerable and high-resolution models cannot be used to produce large-scale flow 

simulation data in an efficient and cost-effective manner. The upscaling process 

populates the grid cells of a lower resolution model (~105 – 106 cells) with 

effective, or representative, values of those properties relevant to dynamic flow 

modelling. Each grid-cell of the lower-resolution model, which could be several 

meters in length per side, is represented by several grid-cells in the higher-

resolution equivalent, which contains more detail on small-scale variations in the 

flow properties of the formation. Figure 2.9 demonstrates how a region with many 

grid cells in a static description is upscaled by computing a single representative 

value and assigning it to a single grid cell in a lower resolution model. 

 

 
Figure 2.9: A conceptual example of how the grid cells of a low-resolution model 

are populated with effective values based on the input information from a many 

grid cells in a high-resolution model. 

 

2.6 Research Objective 

The combination of µCT image resolution and the heterogeneity of laminated 

sandstone, with highly variable grain and pore textures from one lamella to the 

next, result in flow simulation data from small-scale samples that are not 

representative of the larger scale. This thesis focuses on developing a method to 

predict and map petrophysical property variations over the large fields of view 

obtainable from lower resolution tomographic images, such as images of core plug 

and whole core samples.  After initial exploration of the data yielded insufficient 

evidence to suggest a clear path for rock classification I concluded that a statistical 

approach would be more appropriate. The research is based on a multi-scale 
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imaging workflow and subsequent statistical correlations between rock 

characteristics computed from large-scale low-resolution images and petrophysical 

properties numerically computed from small-scale high-resolution data. The focus 

of this research is not numerical upscaling as described in section 2.5 above, but 

rather the construction of three-dimensional flow property maps in relatively low-

resolution core images, which can ultimately serve as input for numerical upscaling 

at the whole core scale and beyond. When it comes to estimating petrophysical 

properties in larger scale low-resolution data, many authors refer to this process as 

‘upscaling’ of pore-scale data. This can be a confusing use of terminology; 

therefore, I refer to the process as ‘property mapping’ in low-resolution images, 

rather than ‘upscaling’ to avoid confusion with its conventional meaning described 

in section 2.6. 

The petrophysical properties of interest are absolute permeability, and a small set 

of parameters defining capillary pressure curves, including, threshold pressure and 

residual non-wetting phase saturation, or trapping number in the context of CO2 

injection and storage. 

The range of rock characteristics I investigate in this thesis as potential predictor 

variables in statistical correlations with the aforementioned petrophysical properties 

are open pore fraction, porosity, which includes the sub-resolution pore fraction), 

clay fraction, formation factor, grain and pore size and sorting, and the Minkowski 

functionals (pore fraction, surface area, mean curvature and the Euler 

characteristic). Chapter 3 (Methods) provides more detail on how the petrophysical 

properties and rock characteristics were computed from the high- and low-

resolution images respectively. 

The accurate representation of pore throats is critical for reliable fluid flow 

simulation since they are the primary controllers of both permeability and capillary 

entry threshold pressure. I approach the objective of this work with the following 

two hypotheses: 

1) The classic approach to such problems applies classification methods to 

group repeating rock units; however, I suggest that a statistical approach 

may be more appropriate, and 

2) Where pore throats are represented as intermediate gray scale voxels in 

lower resolution images, those measures that somehow make use of the 

image gray scale values have the potential to correlate with fluid flow 

properties 
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In section 3.2 I mention that a classification-based workflow seems like a 

reasonable approach for heterogeneous laminated systems like the Precipice 

sandstone, however, evidence presented in chapter 4 suggest that a statistics-

based method to flow unit characterisation may be more appropriate. 

Considering which rock characteristics will provide the most value to a statistical 

method I hypothesise that where pore throats are represented as intermediate gray 

scale voxels in lower resolution images, those measures that somehow make use of 

the image gray scale values have the potential to correlate well with fluid flow 

properties. For this reason the formation factor characteristic is of particular 

interest. Even though it is a petrophysical property defined through electrical 

conductivity, the formation factor computation used in this study can be tuned to 

take into account gray scale values of low-resolution images, which makes it a 

potentially useful predictor of fluid flow properties. Chapter 4 (Results and 

Discussion) highlights the usefulness of formation factor as a predictor and contains 

extensive information related to how the range of predictors behave when they are 

combined in multiple linear statistical models to predict petrophysical properties. 

The funding for this project was provided by Australian National Low Emissions Coal 

Research and Development (ANLEC R&D), a federally funded agency that guides 

research and development aimed at low emissions coal technology. This project 

forms part of a larger umbrella project aimed at better understanding the technical 

challenges and feasibility of CO2 injection and storage in the Precipice Sandstone 

near Wandoan, Queensland, Australia. 

 

3 Numerical Models and Multi-scale µCT Imaging 

3.1 Numerical Models of Petrophysical Properties 

The relationships between petrophysical properties and fundamental rock 

characteristics have long been a topic of interest and stems from the need for 

petrophysical data in reservoir and aquifer modelling. However, petrophysical data 

is often difficult and costly to obtain; therefore, a large number of researchers have 

investigated and proposed various methods of predicting petrophysical properties, 

in particular absolute permeability, from more readily measurable rock 

characteristics. Nelson (1994) provides a thorough review of permeability, its 

controlling factors such as porosity, grain size and sorting, clay mineral content, 

and relationships with other petrophysical properties like electrical conductivity and 
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capillary pressure. All equations presented in this chapter provides permeability 

with darcy units. 

Some of the early attempts to predict petrophysical properties focussed on the rock 

fabric and grain characteristics. In clastic sedimentary rocks the grain texture 

(grain size and sorting) has indirect control on permeability. At a basic level 

porosity is grain size independent for rocks with equal sorting and grain packing. 

(Krumbein & Monk, 1943) conducted permeability experiments in sand packs at 

40% porosity with known grain size and sorting values. Their work resulted in 

equation 3.1 correlating permeability with the geometric mean grain diameter (!!) 
and an exponential dependence on grain sorting (!) (see section 4.6.1). 

Interestingly their equation does not include a porosity component, however, 

amongst other sedimentary processes grain sorting controls porosity in 

unconsolidated sands, therefore it could be argued that porosity is indirectly 

included in the grain sorting component. 

 

	 ! = 760 !!!e!!.!"! 	 (3.1)	

 

Berg [1970] developed a similar empirical model for unconsolidated sands and 

relatively clean consolidated sandstones also based on geometric mean grain size 

and grain sorting as the difference between the 90th and 10th percentiles of the 

grain size distribution; however, it also includes porosity (!). Berg’s assumption is 

that permeability is primarily controlled by the smaller grain sizes, which serve to 

block pores and pore throats (eq. 3.2). 

	 ! = 5.1 ∗ 10!!!!.! !!!e!!.!"#! 	 (3.2)	

 

Grain size and sorting serve as interesting and valuable parameters to predict 

permeability, however, more directly it is the pore size and the size of pore 

connections that control permeability (Nelson, 1994). 

One of the most well known empirical equations to predict permeability is that of 

Kozeny and Carman. The Kozeny-Carman equation (Carman, 1956; Kozeny, 1927; 

Paterson, 1983; Walsh & Brace, 1984) simplifies fluid flow through complex pore 

systems by expressing it in terms of laminar flow through a bundle of tubes of 

varying radii. The equation relates permeability to the hydraulic radius of the tubes, 

determined as the reciprocal of the ratio of pore surface area to rock volume, or, 
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specific surface area ( ! ), porosity (!), and tortuosity (!), the ratio between a 

path length longer than the sample (!!) and the sample length (!) (eq. 3.3). 

 

	 ! = !
! !!

	 (3.3)	

 

Ever since the initial days of digital image processing researchers have investigated 

the relationships between pore space geometries and flow properties such as 

absolute and relative permeability in an attempt to find measures by which they 

can predict fluid flow in porous samples. In his paper Doyen [1988] compiles a brief 

list of early works in this field. Rink and Schopper [1978] studied two-dimensional 

images of sandstone, which represent the pore system as isolated clusters of pore 

bodies connected with narrow tubes, which we might call the pore throats. They 

make use of image processing techniques including erosion and dilation to remove 

the pore throats from the image and represent the pore system as isolated pore 

bodies with roughly convex shapes. A pore size distribution histogram constructed 

by measuring the diameters of the pore bodies can then be used to calculate the 

sample permeability. Berryman and Blair [1986] collected high-resolution scanning 

electron microscope images of three samples: a reference sample of glass beads, 

Ironton-Galesville sandstone, and Berea sandstone. They estimated the porosity 

and pore specific surface area from measured two-point spatial correlation 

functions, which they combine with known values of electrical formation factors to 

predict permeability using a form of the Kozeny-Carman equation. The authors 

report that for the glass beads their estimated permeability data range within 10-

20% of the measured values. For the Ironton-Galesville and Berea sandstone the 

predictions are within 20%, and 10-30% respectively. The authors also specify that 

image resolution and detail are critical, especially for the specific surface area, 

which required magnifications of ~500x. Porosity measurements are less sensitive 

and could be collected at lower resolution settings of ~100x. Doyen [1988] 

continues the discussion around digital image resolution and mentions that the 

specific surface area is directly proportional to the slope of the two-point correlation 

function evaluated at the origin. Critically, digital images are represented by pixels 

of predetermined size, and the slope of the correlation function at the origin 

increases with decreasing pixel size, or increasing microscope magnification. It 

follows that the permeability predictions made using the Kozeny-Carman equation 

is strongly dependant on the imaging magnification used for computing the specific 

surface area. Doyen [1988] investigates seven epoxy-impregnated thin-sections of 

Fontainebleau sandstone, compiling pore and throat size distribution data using an 
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image-analyser and image erosion techniques similar to that of Rink and Schopper 

[1978]. He computes characteristic throat sizes for the flow of fluids and electrical 

current, which was used to predict permeability and electrical conductivity with 

Bruggeman’s effective medium approximation.  His predicted permeability and 

conductivity to within a factor of three of the laboratory measured values. The data 

indicate that in the Fontainebleau sandstone there is a large decrease in 

permeability and conductivity associated with decreases in porosity. Highlighting 

that sample porosity is controlled by pore bodies that maintain relatively large 

dimensions, even at low porosities, and that flow coefficients are related to pore 

throats, he suggests that during diagenesis the pore throats shrink until they are 

completely closed at porosities below 10%, thereby explaining the reduction in flow 

coefficients with decreasing porosity. He also mentions that such pore-scale 

heterogeneity cannot be explained by the Kozeny-Carman method, which relies on 

a homogenous pore system.  

 

Paterson [1983] and Walsh and Brace [1984] modified the Kozeny-Carman 

approach after highlighting the relationship between tortuosity and formation factor 

(! = !!
!

!
/! =  !/!) thereby removing the tortuosity component and resulting in 

equation 3.4: 

 

	 ! = 1
! !!

	 (3.4)	

 

 

Fredrich et al. [1993] computed pore geometric parameters (surface area to 

volume ratio and mean pore intercept length) using laser scanning confocal 

microscopy, and estimated the permeability of Fontainebleau samples using Walsh 

and Brace's [1984] equivalent channel model. Their results indicated that for 

samples with relatively high pore fractions the predicted permeabilities compared 

well with laboratory measurements. However, the estimated permeability of one 

low-porosity sample deviated by more than one order of magnitude from its bench-

top data. The authors argue that the equivalent channel model is appealing because 

of its simplicity and its direct relationship with physically meaningful and 

measurable microstructural parameters with. In a conclusion similar to that of 

Doyen [1988] they suggest that permeability prediction errors for low-porosity 

samples may be due to the mechanism by which pore geometry changes during 
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diagenesis and porosity reduction, resulting in pore geometries that are not 

accounted for by the equivalent channel model. 

 

Capillary pressure experiments determine the pressure required to force a non-

wetting or wetting fluid through a pore system. The Lucas-Washburn equation 

(Washburn, 1921) correlates the fluid injection pressure with the pore throat 

radius. Purcell [1949], motivated to develop a technique to determine permeability 

from drill cuttings, proposes an equation to calculate permeability using mercury 

injection capillary pressure data. In developing the equation Purcell utilises 

Poiseuille’s equation (eq. 3.5), which defines the rate of flow, !! , for a fluid with 

viscosity, !, through a tube with internal radius, !, and length, !, with a drop in 

pressure across the tube, !. 

	
!
! =

!!!!
8!" 	 (3.5)	

 

Purcell continues by incorporating the volume of the tube and the Young-Laplace 

displacement pressure equations into equation 3.5. By setting the resultant 

formulation equal to that of Darcy’s Law for flow rate he arrives at an equation that 

computes permeability of a bundle of parallel tubes with equal length, but a range 

of radii, as a function of porosity and the capillary pressure and volume of the 

component tubes. He recognises that the arrangement of tubes is an unrealistic 

simplification of natural pore systems, in that the flow paths of porous rocks are 

typically interconnected and do not follow straight lines, but are tortuous. 

Tortuosity describes the interconnectedness of the pore system and is often defined 

as the ratio between the actual flow path length and the net displacement distance. 

The reciprocal of formation factor has been described as the retardation factor, or 

the electrical tortuosity (!) where ! = 1 ! (Clennell, 1997). Purcells therefore 

modifies his formulation by incorporating the formation factor, !, to produce 

equation 3.6, where ! denotes the percentage pore space occupied by the liquid, 

and the capillary pressure, !!, is expressed in atmospheres. 

	 ! = 0.66!" !"
(!!)!

!!!""

!!!
	 (3.6)	
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Purcell concludes that the mercury injection technique yielded similar results to that 

of the porous diaphragm technique, and the predicted permeability values for his 

test samples of Upper Wilcox and Paluxy sands are in good agreement with 

conventional laboratory measurements. 

Swanson [1981], also interested in developing a method to determine permeability 

on small core samples and drill cuttings, points out that the gently rising values at 

low capillary pressure commonly seen in drill cuttings data (figure 3.1) tends to 

cause an over-estimation of permeability using the Purcell equation. Swanson also 

references Thomeer [1960] who develop a mathematical expression that describes 

log-log plots of capillary curves as hyperbola, which he then related with 

permeability. Swanson pointed out that capillary pressure data are not well 

represented as hyperbola resulting in questionable data from the Thomeer method. 

He considers drainage-type flow and the spatial distribution of the non-wetting 

phase. At low pressures when the non-wetting phase first enters the sample, its 

distribution is spotty, saturating only a small fraction of the connected pore system. 

Such low saturation values and the corresponding capillary pressures are not 

representative of the pore size that controls flow through the bulk system. Swanson 

suggests that connectivity between the majority of pores in the pore network is 

dominated by the effective porosity or saturation, which he defined as the point on 

a capillary pressure curve with the maximum mercury saturation to pressure ratio 

(the tangent point between the pressure curve and a 45o line ! − !′. Swanson 

calculated the permeabilities of a range of clean sandstone and carbonate samples 

using equation 3.7, where ! represents a formation constant and !! is the fluid 

saturation. 
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Figure 3.1: A capillary pressure curve showing a gentle rise in pressure during 

drainage and the 45o tangent line ! − !′ [Swanson, 1981]. 

	 ! = ! !!
!! !"#

!
	 (3.7)	

 

In a similar equation Katz and Thompson [1986] continues the use of the capillary 

pressure curves but instead use it to derive a pore system length scale they refer to 

as the characteristic length. The characteristic length can also be considered to be 

the effective pore throat diameter and is determined from the capillary pressure 

inflection point on the mercury intrusion curve, which they suggest corresponds 

with the establishment of a connected mercury cluster; only at this pressure does 

the non-wetting fluid spread in a connected manner from the inlet to the outlet of 

the sample. They propose an expression that relates permeability to a universal 

constant (!), the characteristic length (!!) and the electrical conductivity (!/!!) (eq. 

3.8). In the absence of grain surface conductivity the electrical conductivity is the 

inverse of the formation factor (1/!), which captures the connectedness and of the 

pore system can be expressed in terms of tortuosity (!) (Clennell, 1997). Berg 

[2014] provides an excellent summary of works related to permeability estimation 

in the context of characteristic length, tortuosity, and porosity.  
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!
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1
! = !!!!!	 (3.8)	

 

In the context of detailed 3D imaging, the characteristic length can be given a 

precise geometric definition as the diameter of the largest sphere that can pass 

through the pore system. Arns et al. [2005] use parameters computed from µCT 

images to predict permeability using empirical methods, including Kozeny-Carman 

and Katz-Thompson, and correlate the results with Lattice Boltzmann simulated 

permeability. They conclude that for resolutions where it is possible to compute, the 

characteristic length provides the best measure of length scale to predict 

permeability. 

 

3.2 Multi-scale µCT Imaging 

As is described in section 1.3 the nature of µCT imaging equipment places 

unavoidable limits on the sample sizes for which images that accurately capture the 

pore system can be collected. The resulting challenge is that only a small portion of 

a sample can be imaged at any one time. This small volume is often not 

representative of the larger sample, especially in heterogeneous material, and it is 

often not economic or practical to collect more than 1 or 2 sub-samples for high-

resolution imaging. A solution that partially solves this problem is to collect a low-

resolution image of the whole sample that captures some portion of the sample 

heterogeneity and a high-resolution image of a small-scale sample that provides 

information on pore-scale fluid flow properties. Latham et al. [2008a, 2008b] 

describe a technique for the registration, or geometric alignment, of two or more 

digital images. In particular the technique makes it possible to register large-scale 

3D images with one another, which, at the time of the publication, was a 

breakthrough capability. This was an exciting development as it is now possible to 

perform experiments, for example core flooding, on the same sample at different 

times and align the images that capture the results of those experiments to 

visualise and quantify any changes. Moreover, it is possible to physically collect a 

small-scale sample from a larger-scale volume, image it at high-resolution, and 

register the high-resolution image into a lower-resolution image of the larger scale 

sample. This approach forms the basis for much of the research reported in this 

thesis. 
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Many multi-scale imaging and analysis workflows currently in use rely on the visual 

assessment and classification of regions in a low-resolution image. In most cases it 

is assumed that there is no property variation within each class and the 

petrophysical properties computed from high-resolution images are assigned to 

their respective classes. This is an attractive concept for heterogeneous laminated 

sandstones such as the Precipice sandstone studied here. Visual assessment seems 

to indicate the presence of several repeating rock bands, which should, by all 

reasonable assumptions, have similar if not the same flow characteristics. However, 

chapter 4 presents evidence to suggest that a classification-based approach may 

not be ideal and to support the use of a statistical approach. 

 

Sok et al. [2009] present a multi-scale imaging workflow for carbonate samples. 

They highlight the fact that carbonate rocks are naturally complex with pore 

structures ranging from nanometre to centimetre scale. To fully characterise and 

understand their fluid flow behaviour it is important to integrate information from a 

wide range of scales. They demonstrate the collection and registration of high-

resolution 100 nanometre scale focussed ion beam scanning electron microscope 

(FIBSEM) images with 2 and 20 micrometre scale µCT images, thereby capturing 

and integrating information across a wide range of scales. Computed permeability 

from the FIBSEM data showed good agreement with core-plug scale permeability 

measured in the laboratory. The results clearly demonstrate that there is merit in 

collecting images at multiple scales with multiple voxel sizes to capture the range of 

fluid flow properties. It is also apparent that assigning flow property values to 

regions in lower resolution images rely on assuming that those regions are 

equivalent or similar based on some observable criteria, implying that region 

classification may improve the reliability of those assigned values. In a similar 

project Grader et al. [2010] make use of what they call a descending scale of µCT 

imaging whereby they collect a low-resolution image of the whole core and higher 

resolution data for successively smaller samples that capture the pore-scale details 

of a heterogeneous carbonate sample.  

 

Golab et al. [2010] study tight sands and use a multi-scale multi-analysis approach 

by combining not only gray scale µCT images, but also high-resolution SEM and 

compositional mineral maps of thin-sections taken from the same rock volume. 

Instead of collecting and aligning low- and high-resolution CT images they collect 

two 3D images of the same sample volume: one in a dry state and another after 

the sample was flooded with an x-ray attenuating fluid. The approach assumes that 

the attenuating fluid occupies the pore spaces and is displayed with high gray scale 
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values in a tomogram. Subtracting the aligned dry and wet images from one 

another produces a 3D map of the sub-resolution micro-porous spaces previously 

not visible in the dry image. In addition to dry and wet 3D imaging the authors 

register high-resolution 2D SEM images and mineral maps generated using and 

automated SEM-EDS method into the 3D volume. The combination of these data 

sets identifies and maps the specific minerals associated with the micro-porous 

component of the pore system, in this case illite, muscovite, and chlorite. This 

mapping is not limited to the 2D plane of the SEM images, but can be extended to 

the 3D image using the tomogram gray scale values associated with these 

minerals. They argue that their data suggest the conventional assumption that 

pores in tight sands are connected by “slot-like” pore throats is not always 

accurate. In this instance the “slot-like” pore throats contribute relatively little to 

the overall porosity and are generally smaller than 200 nm in thickness, which lead 

them to conclude that the micro-porous regions represent significant pathways for 

fluid flow. 

 

A classification-based approach was used by (Bai et al., 2013) who also investigate 

the microscopic pore structures of tight sandstone from the Yanchang formation. 

They collect a µCT image of a 2.54 cm diameter core plug, in which they identify 

three units based on the characteristics of the pore system. One unit has very low 

porosity with very few pores. Unit two comprises a well-developed pore network 

with relatively large pores and connecting throats, while unit three shows a network 

of micro-fractures. They make use of nano-CT images to characterise sub-samples 

from each of the units and assign property values to the larger-scale core plug. In 

their study Yan et al. [2013] describe the core and pore scale characterisation of 

the Liujiago sandstone, from the Ordos Basin in northwest China for potential CO2 

injection and storage. They collect low-resolution medical- and µCT images of the 

sample that show the presence of laminations. Petrographic thin-section 

descriptions confirm that the laminations are the result of increased proportions of 

fine-grained rock fragments, mica, and porosity. In this instance the authors do not 

attempt to perform any classification and instead collect three sub-samples for 

high-resolution µCT imaging to better understand the distribution of rock and flow 

characteristics. 

 

Khalili et al. [2013] focus on carbonates and investigate the use of porosity-

permeability relationships derived from µCT images and the resulting calibrated 

porosity maps to constrain permeability estimates in larger-scale lower resolution 

µCT images. This method is significantly different to using a classification-based 
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approach to assign property values at the larger scale. In addition to predicting 

permeability they also perform data upscaling to compute the effective 

permeability. Their results indicate that the experimental and predicted 

permeability agrees at larger scale; however, at smaller scales the numerical 

results tend to underestimate permeability relative to the experimental values. 

They argue that upscaling techniques that rely on averaging cannot accurately 

account for high permeability contrasts and therefore do not provide accurate 

vertical flow information at the small scale. Capturing variability is a constant 

challenge in upscaling and is beyond the scope of this thesis. 

Studying gas transport in a shale reservoirs (C. Chen, 2016) uses multi-scale 

imaging to characterise the pore-scale geometry of porosity found in kerogen and 

the inorganic matrix of Middle Eastern and Eagle Ford shales. His results support 

the use of a dual-porosity in which the gas flow within the kerogen component is 

dominated by non-linear desorption and adsorption and molecular diffusion, while 

in the matrix component viscous flow is mainly driven by a pressure gradient. 

History matching of the model suggests that it accurately captures the dramatically 

different flow rates introduced by the kerogen and matrix components in a shale 

reservoir. 

 

3.3 Contributions of this Work 

This thesis explores the fundamentals of predicting the spatial variations in absolute 

permeability and parameters of capillary pressure of heterogeneous sandstone from 

high field of view tomographic images whose resolution is not sufficient to allow 

their direct computation. Surprisingly there is very little existing literature on this 

topic of cross-scale correlations, and I suggest it is because cross-scale alignment 

of high-resolution 3D tomograms is fundamentally difficult. The unique contribution 

of this work is the development of a workflow that combines existing analytical 

techniques to predict and map the spatial distribution of fluid flow properties in 

large field of view CT images, such as images of whole core, where they cannot be 

computed directly by numerical methods. The petrophysical properties of interest 

are absolute permeability and parameters derived from capillary pressure curves, 

including threshold pressure and residual non-wetting phase saturation. This 

workflow predicts the fluid flow properties of many small homogeneous regions 

within low-resolution images, thereby providing information that is unavailable from 

bulk laboratory techniques. Unlike classification-based or neural network 

approaches this method is based on statistical correlations between petrophysical 
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parameters computed from regions in high-resolution images with rock 

characteristics determined from the same regions in low-resolution images. Direct 

linear regression methods are well-constrained thereby producing results that are 

simpler to interpret in terms of the physical meanings of the predictor rock 

characteristics. 

 

Segmentation of lower resolution images (binarizing the image) typically eliminates 

much of the gray scale information related to pore geometry. In addition to macro-

scale quantities such as porosity and pore size, this work explores the use of a 

segmentation technique that preserves gray scale information and allows the 

computation of characteristics that incorporate image gray scales. Such 

characteristics should have the potential to correlate well with geometry-dependent 

properties like permeability.  

 

Fluid flow properties are computed directly on high-resolution images by numerical 

solution, while characteristics such as open pore fraction, pore size and formation 

factor are calculated from low-resolution images and used as predictor variables of 

those properties.  

 

The essential steps in the workflow used in this study are: 

1. Acquire a low-resolution (LR) 3D image of a core sample that spans a 

relatively large volume of the rock (in this work: 25mm diam. x 80mm 

long). 

2. Acquire an intermediate-resolution (IR) 3D image of the same core sample 

that spans a relatively large volume of the rock (in this work: 25mm diam. x 

80mm long). 

3. Acquire a high-resolution (HR) 3D image of one or more sub-samples of the 

core, and compute directly the permeability on homogeneous regions within 

each image.  In total, the sub-samples should span the bulk of the rock 

texture variability. 

4. Digitally align the low- and high-resolution images to locate the overlap 

region. 

5. Calibration: determine statistical correlations between petrophysical 

properties (from HR image) and rock characteristics (from the aligned 

overlap region of the IR and LR image). Develop statistical correlations using 

response and predictor data from exactly the same physical rock volumes 

represented by different resolution images. 
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6. Prediction: Calculate rock characteristics for the LR image of the core plug 

and/or whole core from step 1 and predict fluid flow parameters using the 

statistical correlations from step 4. 

 

Optionally, the workflow may include more than three levels of imaging to span a 

larger range of length scales. In the context of reservoir-scale modelling and 

simulation the predicted petrophysical properties obtained from this workflow can 

ultimately be used to compute effective permeability at the core scale by means of 

Darcy simulation techniques (Kløv et al., 2003). 

 

4 Methods 

4.1 Sampling and Multi-Scale Imaging 

This thesis reports on two core plug samples (sample 1 and sample 2) from the 

Precipice Sandstone in the Surat Basin, Australia, which can be considered a good 

example of relatively clean siliciclastic aquifer rock. The samples are 25mm in 

diameter and 80mm tall and form the basis for developing the previously described 

flow property prediction workflow. Samples 1 and 2 were collected at 1195.39 m 

and 1217.32 m respectively. Chapter 5 (Permeability Results and Discussion: 

Sample 1) discusses the development of the workflow in the context of the results 

from sample 1, followed by chapter 6 (Permeability Results and Discussion: Sample 

2), which reports on the main results from sample 2. Chapter 7 discusses the 

results for the modelling and prediction of parameters derived from capillary 

pressure curves. The core plugs were imaged in 3D using a helical scanning µCT 

system at The Australian National University (ANU), Canberra, Australia, by FEI 

staff members who assisted with data collection. Image analysis was conducted 

using the Mango image analysis software and custom data processing scripts 

created in Python during the course of the project. 

The 25 mm core plugs were first imaged rapidly as part of a bundle with other 

cores to produce image 1) a low-resolution image (LR) at ~64 and 61 µm/voxel for 

samples 1 and 2 respectively, after which image 2) an intermediate resolution 

image (IR) at ~16 µm/voxel was acquired through a high-fidelity scan of the core 

plugs in isolation. Finally, image 3) a high-resolution image (HR) at ~5 µm/voxel 

was acquired through physical coring and imaging of a 8mm diameter 15 mm long 

sub-plug from the original core plug of sample 1. The high-resolution image for 

sample 2 was collected using a ‘region of interest scan’ (see chapter 7). The three 

images for each of the core plugs are aligned to one another using a distributed-
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memory parallel cross-scale 3D image registration algorithm described in section 

4.2 (Latham, Varslot, & Sheppard, 2008; Latham, Varslot, Sheppard, et al., 2008). 

In addition to the high-fidelity imaging of significant sample heterogeneity across 

multiple scales, this imaging program enables the study of cross-scale correlations 

because of precise voxel to voxel registration of the images to each other. The 

overlap regions between the images provide information at all three resolutions; 

therefore, the statistical calibration step is restricted to the domain of the high-

resolution image. After registration one is left with the following image pairs: 

 

a. 5 µm/voxel HR image overlapped with the 16 µm/voxel IR image, 

b. 5 µm/voxel HR image overlapped with the 64/61 µm/voxel LR images, 

c. 16 µm/voxel IR image overlapped with the 64/61 µm/voxel LR images 

 

Figure 4.1 shows the difference in resolution between the images and the 

approximate location of the sub-plug for sample 1. The location for collecting the 

sub-plug was selected for both practical and analytical considerations. Based on 

visual assessment, the sub-plug location was selected to provide the best sampling 

across the range of relatively fine, medium, and coarse textures. The coarsest 

lamination in the sub-plug is poorly cemented and necessitates an 8 mm diameter 

sub-plug to avoid sample damage that may occur during coring to a smaller 

diameter. Furthermore, the 8 mm diameter makes it possible to collect reliable data 

on a larger volume of the coarsest lamination. Given the configuration of the µCT 

imaging equipment the 8 mm diameter sub-plug can be imaged with a maximum 

resolution of ~5 µm/voxel, which is sufficient to accurately represent the pore 

system in all three rock textures. As I discuss in section 4.1.4 it is worth noting that 

the analytical results may be affected if the sub-plug is chosen in such a way that it 

does not represent the range of rock textures present in the larger scale sample, or 

if it is too large for accurate imaging of the finest textures in the heterogeneous 

pore system. Since the images were not constructed through a digital down-

sampling procedure, they all contain real imaging artefacts such as noise and blur. 

 

The original schedule included working on a set of 16 samples; however, as the 

research progressed several obstacles prevented this from occurring. Significant 

amounts of time were spent on the initial development and testing of analytical 

methods, procedures, and results visualisation. The results from the analysis of the 

first sample created several fundamental questions along the way, which required 

extra time to investigate and document. At the time of analysing the second sample 

I discovered that the choice of imaging method for the remaining samples (region 
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of interest scans) introduced deficiencies in the data that prevented property 

predictions to be made. At this stage there was no longer time to conduct new 

experiments on these samples. 

 

 
 

Figure 4.1: a) The 25 mm core plug of sample 1 imaged at 

16 µm/voxel; b) the 5 µm/voxel image of the 8 mm sub-plug; and the overlap 

regions from the 16 µm/voxel and 64 µm/voxel images (c and d respectively). The 

white square indicates the approximate location of the 8 mm sub-plug. 

 

Figure 4.2 shows 2D slices, gray scale histograms and intensity profiles of select 

regions of the registered low-, intermediate-, and high-resolution images. The 

reduction in image resolution causes significant smoothing of the intensity profile 

and the inability to capture smaller features is evident. Furthermore, the intensity 

histogram of the 64 µm/voxel image shows an overall increase of intermediate gray 

scale values due to spatial averaging (blurring), which results in many regions of 

the pore space, most notably the pore throats, being completely occupied by 

intermediate gray scale values.  

 

The resolution of images 1 (LR) and 3 (HR) differ by a factor of 13, corresponding 

to a reduction in volumetric sampling density of over 2000, i.e. image 1 can cover a 

volume 2000 times larger that of image 3, given an image of the same number of 

voxels. 
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Figure 4.2: Close-up regions taken from the three different resolution images. Each 

image has an accompanying gray scale histogram above and intensity profile below 

(indicated by the yellow lines). Note how the change in resolution is reflected in the 

smoothing of the intensity profile. The red arrows indicate a narrow part of the pore 

space, which is resolved in the high-resolution image, but represented by 

intermediate gray scale values in the low-resolution image. 

 

4.2 Image Segmentation 

Conventionally the 65535 grey levels in the 16-bit gray scale images are arranged 

into a smaller number of phases, with each phase representing a different class of 

material. Typically the segmented phases are: pore, intermediate phase (clays), 

and solid phase (framework minerals). However, segmentation generally causes a 

loss of geometric information contained in the image gray scales. Figure 4.3a and b 

show how pore throats may be closed during segmentation and how corners and 

crevasses of pores are not always accurately represented by a segmented image, 

especially at low-resolution. Here we make use of a two-stage segmentation 
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method. First, using the converging active contour method (Sheppard et al., 2004), 

where the gray scale values are divided into three main phases; and second, a 

‘soft’ thresholding segmentation procedure (micro-porosity segmentation) allocates 

100 gray levels to intermediate intensity voxels to build a porosity map, which 

includes sub-resolution pores within the intermediate phase (figure 4.3c). Each 

voxel in the intermediate phase is assigned a value based on a linear interpolation 

between a minimum and maximum attenuation value corresponding to 100% pore 

and 100% grain respectively (Sok et al., 2009). This process assumes that the 

intensity of each intermediate-phase voxel in the image is linearly related to the 

porous fraction of that voxel.  This is a tolerable assumption for the very simple 

mineralogy of the Precipice Sandstone studied here; however, for more complex 

rock types it would be necessary to perform more reliable porosity mapping using a 

method such as the multi-image wet/dry imaging workflow described in Sheppard 

et al. [2014]. 

 

 

 
Figure 4.3: 2-dimensional slices from a 16 µm/voxel gray scale tomogram (a), the 

equivalent segmented (binarized) image (b), and the image produced by the micro-

porosity segmentation method (c). The blue circles indicate regions where the 

intermediate gray scale values from the tomogram (a) are lost in the segmented 

image (b), while the micro-porosity segmentation is able to retain the gray scale 

information (c). 

4.3 Image Unitisation 

The samples used in this study contain significant heterogeneity with fine-, 

medium-, and coarse-grained bands (figure 2.6 and figure 4.1). To improve the 

probability of identifying correlations between rock properties and petrophysical 

properties a unitization procedure (step detection) was developed during the course 

of this project to identify internally homogeneous zones, or units, to be 
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characterised individually. Log-type data, similar to time-series data, are ideally 

suited for analysis by step detection techniques. For example, in voice recognition 

software step detection is critical for the identification of the beginning and end of 

words within the audio signal (Li et al., 2002). Step detection analysis has also 

been applied to downhole well-logs by Gill [1970]. 

The method for µCT image unitisation presented here makes use of the gradient 

profile (rate of change) of the grain size and open pore fraction profiles to identify 

points of maximum rate of change along the length of the core sample. These 

points of maximum gradient are considered potential boundaries between units. I 

should emphasize that this procedure is not intended for rock classification. It 

serves to isolate internally homogenous zones within the image for individual 

characterisation with minimal overlap between adjacent yet distinct image volumes. 

Furthermore, it is worth noting that the procedure presented here operates on grid-

aligned µCT data and is intended for use on core samples with approximately 

horizontal laminations. A different unitisation method would need to be considered 

for strongly inclined laminations. 

 

4.3.1 Generating Unitisation Input Data 

The phase volume profiles, which includes open pore fraction and all phases 

separated during the image segmentation step, are generated slice-wise from the 

3D segmented data file by computing the phase fractions in each z-slice 

(orthogonal to the vertical axis) of the image, resulting in a representation of the 

phase fractions resembling a downhole geophysical log, albeit at a much smaller 

scale. The grain size log is generated by first using the segmented data file to 

define a Euclidean distance map, which, for each voxel, assigns a value equivalent 

to the shortest distance to a boundary voxel (Danielsson, 1980). The next step is to 

apply a covering radius transform (CRT) (Hazlett, 1995) to the grain phase, which 

is equivalent to the repeated application of morphological opening in which the 

structuring elements are the complete set of Euclidean balls up to the largest 

inscribed radius of the grain space. For practical purpose related to Mango software 

design and implementation, to allow the generation of log-type data from the CRT 

image one must use the segmented file to mask all components of the CRT image 

except the grain component (to which the CRT transformation was applied). It is 

now possible to convert the resulting image to a tomogram-type file and then 

compute the grain size log. A pore size log was also created using this procedure, 

however, because the grain phase is numerically dominant the pore size log was 
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excluded for use in the unitisation procedure. 

The small sampling interval of one z-slice (i.e. the height of one voxel) in 

combination with high but non-uniform levels of high-frequency fluctuations in the 

logs, necessitate a smoothing operation before the profile gradients are computed 

and the gradient analysis is performed. Conventional time series data such as 

audio, weather, or financial data can be smoothed using a rolling average with 

constant window sizes, however, given that the µCT log data are generated from 

rock volumes with spatially varying properties, a dynamic window size is calculated 

based on grain size. For each z-slice the averaging range (!) is given by the scaled 

ratio between the voxel size (!) and the mean grain size (!") from the CRT analysis 

described above (eq. 4.1). The non-uniform smoothing implemented here is based 

on the hypothesis that to achieve a representative average for any given z-slice, 

the averaging window must be small enough so that the data do not contain sharp 

fluctuations resulting from individual grain CRT values. It could be argued that a 

separate smoothing range ought to be computed for the open pore fraction profile; 

however, here grain size is considered the dominant geological feature that controls 

the occurrence of visually distinct laminations, which are the features targeted for 

separation by the unitisation procedure. Therefore, the averaging range computed 

from the grain size profile is applied to both the grain size and open pore fraction 

logs. 

	 ! = 1
50 ∗  !!"  	 (4.1)	

 

The main reason for smoothing the grain size and open pore fraction profiles before 

computing their gradients is to reduce the amount of high-frequency fluctuation in 

the gradient profiles, which would render them unusable for identifying points of 

maximum rate of change. Even with this smoothing operation (explained above) 

the resulting gradient profiles contain significant amounts of high-frequency 

variations, forcing another smoothing operation. Unlike the grain size and open 

pore fraction profiles, gradient is a consistent measure of instantaneous rate of 

change. Additionally, given that small scale fluctuations as a result of adjacent yet 

distinct µCT volumes have been accounted for during the dynamic smoothing of the 

grain and open pore fraction profiles, here the gradient logs are further smoothed 

using a constant averaging range of 100 z-slices. Figure 4.4 demonstrates the 

progression from raw data to smoothed profile and gradient logs for the grain size 

characteristic. 
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Figure 4.4: Showing the effect of the profile and gradient data smoothing 

operations. From left to right, the raw grain size profile and raw gradient (a), the 

smoothed grain size profile with the raw gradient of the smoothed profile (b), and 

the smoothed grain size profile and the smoothed gradient (c). The inset as a part 

of (b) indicates the nature of the high-frequency fluctuations that can affect 

analysis of the gradient profile without a smoothing operation. 

 

4.3.2 Gradient Profile Analysis   

The objective of the gradient analysis is to identify points of maximum rate of 

change along the grain size and open pore fraction gradient profiles. The gradient 

profiles contain positive and negative gradient values. For simplicity the absolute 

gradient is used as input for the analysis. The first step locates a set of local 

maxima as the initial candidates for points of separation (transitions or boundaries) 

between distinct yet adjacent units. For any given gradient profile the number of 

boundaries could be very large (up to several tens of boundaries), therefore, to 

produce a realistic number of transitions the second step of the analysis makes use 

of a user adjustable parameter to reduce the number of initial transitions. The 

parameter is a number (!) of standard deviations (!). For each initial transition the 

analysis compares the mean values (!) of adjacent units, in this case the 

characteristic values are grain size and open pore fraction. If the mean values for 

one of the adjacent units are smaller than ! ∗ ! of the other unit the transition is 

removed and the adjacent units are joined. The mean and standard deviation for 

the adjacent units are computed by using the individual z-slice values to define the 
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variance. For example, unit a and unit b are separated by a transition boundary 

identified as a local gradient maximum. If !! < ! ∗ !! or !! < ! ∗ !! the transition is 

removed. This analysis is an iterative process and terminates when no more 

transitions are identified for removal. Selecting the ! parameter is the only user 

input required for the unitisation procedure; all other steps are automated and 

occur when running the algorithm. In image processing terms the procedure might 

be considered a one dimensional watershed analysis (Beucher & Meyer, 1992). As a 

final step the grain size and open pore fraction profiles are joined to produce a 

single unitisation result where adjacent units are considered unique in terms of 

both grain size and open pore fraction. 

 

4.3.3 Applying Unitisation to Data 

In summary, the unitisation procedure follows these main steps: 

1) Generate the open pore fraction and grain size logs from the µCT image and 

apply smoothing operations. 

2) Compute the gradients of the open pore fraction and grain size logs at each 

point along the length of the profiles and apply the smoothing operations. 

3) Determine the local gradient maxima, which forms an initial division of the 

sample into a maximal number of units. 

4) Iteratively compare adjacent units and their properties. If the mean grain 

size or open pore fraction values for two adjacent units are within a 

predefined number of standard deviations (the number of standard 

deviations are adjustable), the boundary separating the units is removed, 

and the routine returns to re-calculate the updated unit properties and re-

compare adjacent units. 

5) When the routine converges, i.e. no more boundaries are identified for 

removal, the unitisation result from the open pore fraction and grain size log 

analyses are combined, thus defining units in which both the grain size and 

open pore fraction are considered distinct from their neighbours. 

The unitisation procedure is applied to the IR image at 16 µm/voxel (figure 4.5a) 

and the HR image at 5 µm/voxel (figure 4.5b). The unitisation results from the HR 

5 µm/voxel images are used to define the unitisation of the IR 16 µm/voxel and LR 

64 and 61 µm/voxel images in the regions where they overlap the HR images. The 

unitisation results from the 16 µm/voxel image are used to define the unitisation of 

the LR 64 and 61 µm/voxel images of the 25mm core plug. 
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The procedure is not intended for unsupervised operation. It is likely that after an 

initial attempt the user adjustable number of standard deviations, which controls 

the comparison step between adjacent units, would need adjustment to arrive at 

what the user deems a reasonable result. In some cases one of the logs may not 

show enough variation to warrant unitisation based on that parameter. The number 

of standard deviations can be used to effectively turn off the analysis of either log 

by being set to 0. Figure 4.5b shows such an example in the HR image of the sub-

plug for sample 1, in which the open pore fraction log shows relatively little 

variation and was turned off for analysis. 
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Figure 4.5: a) 25mm plug image unitisation, and b) 8mm sub-plug image 
unitisation. Horizontal red lines indicate boundaries from the grain size log. For this 
sample the open pore fraction profile (OPF) does not contain sufficient variation to 

warrant unitisation, which was therefore switched off. 
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4.4 Absolute Permeability 

Simulations of absolute permeability (k) were performed using the Morphy software 

suite (Christoph H. Arns et al., 2001, 2004). Permeability is calculated using the 

D3Q19 (3 dimensional lattice with 19 possible momenta components) Lattice-

Boltzmann method (Qian & Zhou, 1998). The fluid, which is represented by a series 

of particles during the simulation, is placed under a pressure gradient by a body 

force (Ferréol & Rothman, 1995; Martys & Chen, 1996). One of the key advantages 

of this method is that permeability computations can be performed on multiple 

small volumes of µCT data, thereby generating statistically large numbers of data 

points. 

 

4.5 Capillary Pressure Curves 

4.5.1 Pore Morphology 

There are several ways to compute drainage and imbibition flow in digital images of 

porous rocks, which include methods that solve directly for the Navier-Stokes flow 

equations, methods that make use of pore morphology, and methods based on 

pore network models.  

Pore-morphology-based methods make use of transformation procedures that 

express the pore system as covering radius transform (CRT) (Hazlett, 1995) maps. 

These morphology-based methods have the advantages of taking into account the 

full pore geometry, including corners and crevices near the connecting pore throats, 

being computationally efficient, and they can be used on the same small volumes 

used for permeability simulations. The disadvantage of morphology-based methods 

is the assumption of a zero contact angle between the wetting and non-wetting 

phases, i.e. it cannot incorporate wettability or hysteresis affects, which means 

they cannot compute irreducible wetting phase saturation under drainage flow or 

the irreducible non-wetting phase saturation under imbibition flow (Hilpert & Miller, 

2001). Regardless of these disadvantages, the fact that simulations could be 

performed on the same volumes used for the IR and LR image characterisation and 

permeability simulations, and their computational efficiency, I made use of pore 

morphology-based methods to compute drainage and imbibition flow capillary 

pressure curves to be used for parameterisation and then regression analysis (see 

chapters 8 and 9 for a detailed discussion on the methods and results). 
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4.5.2 Network Models 

An alternative method makes use of network models, which represent the pore 

system as a series of idealised shapes with larger pore bodies connected by smaller 

pore throats (Oren et al., 1998). In an excellent review paper on pore network 

models and multi-phase flow simulation Blunt [2001] emphasises that one of the 

major challenges in the use of pore-scale models is to determine the level of detail 

required in a description of the pore system to allow reliable predictions of fluid flow 

properties. He explains that traditional methods of representing the pore system as 

spheres and cylinders essentially allow only one phase to occupy the system. Given 

the more realistic scenario of multiple phases present in the pore network, higher 

accuracy models representing pores as shapes with irregular triangular cross-

sections allow the simulation of different flow behaviour in the corners and centres 

of the pores, which are typically occupied by the wetting and non-wetting phases 

respectively. Such models were successfully used by Oren et al. [1998], Lerdahl et 

al. [2000], and Bultreys et al. (2016) to produce good predictions of relative 

permeability, while Bultreys et al. (2016) simulated secondary water-flooding in 

heterogeneous rocks with diverging wettability characteristics. With the ability to 

now account for wettability, capillary pressure flow simulations can more accurately 

compute parameters such as non-wetting phase saturations and demonstrate a 

more realistic hysteresis effect. The extensive use of network modelling to generate 

capillary pressure curves is not within the scope of this project. However, I 

generate a small dataset to recognise and demonstrate the benefits of network 

modelling for multi-phase flow simulations (see chapter 10 for a discussion on the 

methods and results).  

 

4.6 Computing Predictor Rock Characteristics 

To increase the number of data points for use in statistical correlations (see section 

4.7) each unit identified in the unitisation procedure described in section 4.3 is 

subdivided into a series of approximately cubic sub-volumes. Petrophysical 

properties and predictor rock characteristics are computed for each sub-volume, 

and, therefore, each unit separately. It is now appropriate to introduce the concept 

of a representative element volume (REV), a volume, or a scale of observation, for 

which parameters such as porosity and grain size are constant (Al-Raoush & 

Papadopoulos, 2010). The top and bottom boundaries for the sub-volumes for each 

unit are chosen to match those from the unitization results, while the x and y 

dimensions are chosen so that the resultant sub-volume approximates a 
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representative element volume (REV) of that unit. The concept of the REV further 

implies that measuring a parameter in a sub-volume would yield a comparable 

result relative to measuring that parameter in the whole unit. The approach of 

analysing several sub-volumes for each unit has the benefit of capturing both the 

inter- and intra-unit variability for the petrophysical properties and predictor 

characteristics. The x,y,z voxel dimensions of the sub-volumes for sample 1 are: 

unit 1 = (330, 330, 330), unit 2 = (330, 330, 392), and unit 3 = (425, 425, 425). 

Figure 4.6 demonstrates how the computation of rock characteristics (grain size, 

pore size, and porosity) is impacted by the choice of sub-volume size. Here I 

investigate changing the sub-volume size for unit 3 from sample 1 (see section 

4.3.3 and figure 4.5). Unit 3 is the coarsest grained unit of the three units. Initially 

the computed values change dramatically as the volume of the subset increases, 

however, at some stage the computed values reach a point of relative stability. Unit 

3 was ultimately chosen with x, y, and z dimensions of 425 voxels3, which 

according to the data in figure 4.6 (see stippled line) is a point of relative stability 

for computed values of grain size, pore size, and porosity. Units 1 and 2 are both 

finer-grained, and I conclude that ~330 voxel3 dimensions for units 1 and 2 

represent REVs for those units. 

 
Figure 4.6: Demonstrating the changes in computed characteristics values with 

changes in sub-volume voxel dimensions. The stippled lines indicate the voxel 

dimensions for unit 3 at 425 voxels3. 
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As described in section 4.7 (Statistical Methods), the statistical correlations are 

developed using response data (absolute permeability and capillary pressure) from 

the HR images and predictor characteristics from the IR and LR image sub-volumes. 

The sub-volumes from each image resolution represent exactly the same physical 

rock volume from different resolution images. The exact alignment of sub-volumes 

between images is achieved by conducting digital image registration explained in 

section 4.1. 

 

4.6.1 Grain and Pore Size and Sorting (GS, Gsort, PS, and Psort) 

To compute grain and pore size and sorting I use the segmented data to construct 

a Euclidean distance map, which, for each voxel, assigns a value equivalent to the 

shortest distance to a boundary voxel (Danielsson, 1980). The distance map is 

further processed by a watershed transform (Beucher & Meyer, 1992), followed by 

the merging of labelled watershed regions, which generates a partitioning of the 

grain or pore space into individual grains or pores (A. P. Sheppard et al., 2006; 

Thompson et al., 2005). An analysis of the volumes of regions bins the regions into 

size classes expressed in number of voxels, which is converted to equivalent sphere 

diameter (ESD) (Jennings & Parslow, 1988). Assuming a log-normal distribution, a 

cumulative logarithmic ESD size distribution curve is used to calculate the median 

grain and pore size in micrometres for each sub-volume (Krumbein, 1934). I 

express grain and pore sorting as a measure of spread using the 5th, 16th, 84th, and 

95th percentiles from the size distribution curves (Folk & Ward, 1957). 

 

4.6.2 Open Pore Fraction (OPF), Porosity (Po) and Clay Fraction (CF) 

Here I make use of the segmented data files that represent the original gray scale 

tomograms in terms of three classes representing a) open pores as low brightness 

voxels, b) clay and sub-resolution porosity as intermediate gray scale voxels, and 

c) the grain phase as high brightness voxels (figure 4.3b). Summing the number of 

voxels in each class and normalizing to the total number of voxels in the image 

gives the fractional contribution of each class. Open pore fraction is the fraction of 

resolved void space clearly distinguished from the intermediate and grain phases. 

As mentioned in section 2.2 on image segmentation, I use a ‘soft’ thresholding 

segmentation method, which starts with a simple three-phase segmentation of the 

image into pores (low gray scale values), clay and sub-resolution pores 

(intermediate gray scale values), and grains (high gray scale values). The next step 

places low and high gray value thresholds (automatically chosen by the analysis 
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software) on the intermediate gray scale intensity voxels and rescales the voxels 

within the thresholds to a range between 0 and 100 grey scale values (figure 4.3c). 

Based on a linear interpolation between a minimum and maximum grey scale value, 

I compute the fractions of clay phase and sub-resolution pores for the range of 

intermediate gray scale voxels. By adding the fraction of sub-resolution pores to 

the open pore fraction I determine the porosity value (Sok et al., 2009). The 

fraction of clay phase is computed as the difference between one and the sum of 

the fraction of solid phase (grains) and porosity (the sum of the open pore fraction 

and sub-resolution pore fraction). Both the clay fraction and porosity characteristics 

are therefore computed as a function of the intermediate gray scale voxels. It is 

important to note that the intermediate gray scale voxels represent sample 

volumes physically occupied by clay mineral phases and the boundaries between 

the grain and pore phases. 

 

4.6.3 Formation Factor (F) 

In this thesis I compute and report the Formation factor by numerically solving 

Laplace’s equation using a finite difference formulation to solve for the potential in 

a unity strength electrical field (C. Arns et al., 2002; Christoph H. Arns et al., 

2001). The formation factor (!) of each gray scale voxel (including completely 

resolved pore voxels with 100% porosity) is given by Archie’s law ! = !!! (eq 2.6), 

where ! is the cementation exponent and ! the porosity. Using conventional 

experimental data the ! exponent can be computed as the slope of a plot of the 

logarithm of formation factor and the logarithm of porosity. The numerical 

computation of formation factors requires a predetermined value for !. Archie 

[1942] found that ! ranges between 1.8 and 2 for consolidated sandstone, and 

mentioned it can be as low as 1.3 for clean unconsolidated sands. I am specifically 

interested in testing if formation factor contributes significantly to a statistical 

model of permeability, because here the formation factor computation is tuned to 

take into account the scaled sub-resolution porosity data in the intermediate gray 

scale voxels. For this reason, especially in the case of low-resolution images, the 

result from the formation factor computation is not necessarily a reliable measure 

of electrical conductivity. Instead it is an arbitrary characteristic chosen for possible 

correlation with petrophysical properties, particularly absolute permeability, 

because it represents current flow through voxel space where resistance to flow at 

each voxel is determined by the fraction of pore space and intermediate clay phase 

in that voxel. To test the sensitivity of the correlation between formation factor and 

permeability to variations in the ! exponent I generate formation factor data for 
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! = 2, 2.5, and 4. I select 2 because it is the classically accepted value for 

consolidated sands, while 2.5 and 4 are considered because they may help to 

capture the fact that flow velocity is highly sensitive to obstructions. 

 

4.6.4 Minkowski Functionals 

The so-called Minkowski Functionals are a set of additive morphological measures 

representing, for three-dimensional objects, volume (Open Pore Fraction - OPF), 

surface area (SA), mean curvature (MC), and the Euler characteristic (EC) (C. H. 

Arns et al., 2001; Mecke, 1996; Schladitz et al., 2006). The volume measurement 

is equal to the open pore fraction explained in section 4.6.2. Here I generate data 

for the Minkowski Functionals using the morphological analysis algorithm 

implemented by Arns et al. [2001b], which includes the computation of the critical 

length (lc). 

 

4.7 Statistical Modelling 

4.7.1 Choosing a Statistical Approach 

Section 3.2 (Multi-scale Imaging) explains that a common approach to dealing with 

heterogeneous core samples is to perform a classification of the range of 

heterogeneity and to physically collect high-resolution data on a single or multiple 

portions of the sample that represent the range of classes. Initial visual inspection 

of the LR and IR images of the 25mm core plug of sample 1 revealed what 

appeared to be several repeating ‘units’ or ‘lamellae’. It was therefore tempting to 

consider a classification-based approach. Since that is a fairly common technique 

my hope was that the data would not require a user-defined classification, but that 

it would naturally cluster based on some characteristic such as grain size, porosity, 

mineral fractions, etc. The first step to investigate this possibility was to develop 

the unitisation procedure described in section 4.3. The next step was the 

computation of the range of rock characteristics described in section 4.4. A scatter 

plot of grain size for the HR 5 µm/voxel 8mm image against grain size for the IR 16 

µm/voxel data from the overlap region in the 25mm image showed that the three 

units identified by the unitisation procedure form three distinct clusters (figure 

4.7a). However, a scatter plot of pore size (figure 4.7b) shows less evidence of 

clustering and indicates that each unit has sufficient internal variability to obscure 

the presence of three distinct units. Each data point represents an approximately 

cubic sub-volume from one of the units. The x,y,z voxel dimensions of the sub-

volumes for sample 1 are: unit 1 = (330, 330, 330), unit 2 = (330, 330, 392), and 
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unit 3 = (425, 425, 425). It is also interesting to note that pore size should have 

more influence over permeability, as it is a measure of pore length scale. It would 

therefore be reasonable to deduce that permeability would likely show similar intra-

unit variability. 

 

 

 
Figure 4.7: Plotting median grain size (a) and median pore size (b) from the HR 5 

µm/voxel image of the 8mm sub-plug and the region of overlap in the IR 16 

µm/voxel image of the 25mm core plug. 

 

Figure 4.8 shows the grain size plotted against the pore size from the IR 16 

µm/voxel image of the 25mm core plug in addition to the unitisation of the 25mm 

core plug image as a guide to the diagrams. Notably there is no distinct clustering 

of the grain and pore size data; instead, the data is spread across the range of 

observed grain and pore sizes. Figure 4.8 shows that there is a more 

distinguishable spread of the data with units 9, 10, 11, and 12 separating slightly 
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from the rest of the units at the higher end of the grain size scale. The distinction is 

however not clear and there is no well-defined natural clustering similar to that of 

the grain size from the HR 5 µm/voxel image of the overlap regions (figure 4.7). 

 

 

 
Figure 4.8: Plotting grain size versus pore size of the IR 16 µm/voxel image of the 

25mm core plug. The data shows little evidence of natural clustering; instead, it 

shows a spread of data points along the range of grain and pore size values. 

 

Braided river systems are complex depositional environments and include a range 

of geological components including rapidly shifting channels of variable width, sand 

bars that are characterised by elevated areas, which are generally only active 

during times of flooding (Miall, 1977). In combination with fluctuations of variables 

such as discharge, sediment load, stream velocity, and slope, (Leopold & Wolman, 

1957) braided river deposits like the Precipice sandstone typically show 

considerable internal variability with large ranges of values for characteristics such 

as grain size and sorting, pore size, porosity, and mineral content. It is therefore 

unlikely that even a highly rhythmic depositional environment would produce 

lamellae with clear natural clustering based on grain and pore size. The data in 

figure 4.8 suggest that the natural product of the braided river system responsible 

for the deposition of this section of rock appears to be a set of lamellae that covers 
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the entire range of grain and pore sizes. A small sample may capture a limited 

number of lamellae that form well-defined clusters such as those in figure 4.7; 

however, as the number of lamellae increases the spaces between the clusters are 

gradually filled with more data points, thereby creating a population of lamellae 

that exist as a continuum over a range of values. A simple classification system 

such as one based on the Udden-Wentworth grain size scale (Udden, 1914; 

Wentworth, 1922) will likely result in sub-volumes from the same unit being 

classified in different size classes because of intra-unit variability. It follows that the 

assumption that each sub-volume in each group has the same flow properties 

would result in potential high-frequency fluctuations of flow properties within a 

single unit. The results presented in this section suggest that a linear regression 

approach is more appropriate and is more likely to capture subtle variability in flow 

properties both within and across the units. 

 

One cannot consider a statistical approach for the question of flow property 

predictions without also considering the use of machine learning algorithms. 

Machine learning, often referred to as neural networks, might be considered a sub-

domain of artificial intelligence where an algorithm modifies the outcome of an 

analysis if it is introduced to more examples of how it is expected to behave. It 

makes use of the principal of training the algorithm using an example dataset with 

known input and output values and then applying the trained algorithm to unknown 

data to perform predictions. Dividing a dataset with known input and output values 

into training and testing subsets helps assess and validate the prediction accuracy. 

Machine learning is increasingly being used in predicting petrophysical properties in 

reservoir and aquifer systems. Chen and Lin [2006] use a committee machine, 

which is a type of neural network that combines the tasks of two or more “experts” 

to achieve a desired result. In this instance Chen and Lin incorporate three known 

empirical formulas into their committee machine to derive permeability from 

downhole logging data. They divide 82 datasets comprising well logging and core 

data in half to train and test their algorithm and conclude that the neural network 

that combines the three empirical formulas perform better than any one formula 

individually. In a similar approach Karimpouli et al. [2010] predict permeability 

from ten input parameters using well logging data that intersect various lithologies 

including limestone, dolomite, sandstone, and shale. Critically they perform a basic 

characterisation analysis to divide their datasets into low- and high-permeability 

groups to limit the output range over which the neural network needs to function at 

any given time. Using support vector machines (SVM) and the structural risk 

minimisation (SRM) principal, rather than neural networks that rely on the empirical 
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risk minimisation (ERM) principal, Al-Anazi and Gates [2010] predict electrofacies 

and permeability distributions in a heterogeneous sandstone reservoir. Generally 

machine learning methods are good for prediction applications and have 

transformed image classification and speech recognition since 2013. However, in 

this study I am not only interested in predicting petrophysical properties, but also 

understanding how the predictor characteristics change with changes in image 

resolution, and which characteristics carry the most useful information for 

petrophysical predictions. Since machine learning methods are often opaque in their 

operation their use is beyond the scope of this thesis.  

 

4.7.2 Statistical Methods 

The workflow to predict petrophysical properties involves two stages of statistical 

calibration based on the 8mm sub-plug region in the HR, IR, and LR images. The 

first stage is the correlation between individual predictor character characteristics 

from the LR and IR images with numerically computed petrophysical properties 

from the HR image using ordinary least squares (OLS) linear regression. The 

statistical correlations are developed using response and predictor data from 

exactly the same physical rock volumes represented by different resolution images 

(see section 4.6). In OLS the coefficient of determination (!!) is a measure of how 

much variance in the response variable can be explained by the predictor 

characteristics. !! is the difference between 1 and the ratio of the total sum of 

squares (!!!"#) and the residual sum of squares (!!!"!) (eq. 4.2).  

 

 !! = 1 − !!!"#!!!"!
 (4.2) 

 

!!!"#is equal to the sum of the squares of the difference between the observed 

values (!) and the predicted values (!) of the model (eq 4.3). !!!"!is equal to the 

sum of the squares of the difference between the observed values (!) and the 

mean of the observed values (!) for the response variable (eq 4.4). 

  

 !!!"# = (!! − !!)!
!

!!!
 (4.3) 
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 !!!"! = (!! − !)!
!

!!!
 (4.4) 

 

 

!! ranges between 0 (no correlation between the predictors and the response 

variable) and 1 (the predictor characteristics perfectly describe the variability in the 

response variable). Based on 48 data points from sample 1 for each characteristic, 

we use !! as a measure of the predictive capability of individual rock 

characteristics, and to assess their relative contribution to predicting permeability in 

multiple linear models combining a subset of characteristics. Additionally, the F-

statistic, expressed as a probability value (p-value), gives an indication if a model 

of the response variable is significantly different from a regression model with no 

predictor variables (intercept model).  

 

In developing the statistical models used for permeability prediction I first assess 

the predictive ability of each individual characteristic. The next step is to consider if 

some combination of variables in a multiple linear model provides a more complete 

description of the permeability variations. As is generally accepted in regression 

analysis when considering multiple predictors with a range of values in different 

units, I standardize each predictor by subtracting the mean and normalizing to its 

standard deviation (Marquardt, 1980). Critically I must consider which 

characteristics to include in such a multiple model. One method is to assess each 

single variable model and decide, based on !!, the model p-value, and an 

understanding of the physical meaning of each characteristic, which combination of 

predictors are most likely to define a reliable model. Because I am specifically 

interested in the ability of the formation factor characteristic to predict absolute 

permeability, this is the method I use to develop its multiple linear model. Another 

purely statistical approach of model selection is that of stepwise regression, which 

can either be performed as forward selection or backward elimination of variables 

(Hocking, 1976).  

 

Forward selection starts by selecting the individual characteristic that describes the 

most variance in the response variable or has the lowest individual p-value. In a 

stepwise manner one starts to add additional variables. If the additional variable 

does not contribute significantly to the model (according to the variable’s p-value) 

it is discarded and the next variable is tested. A variable is deemed significant if its 

p-value is smaller than some arbitrarily selected alpha threshold. In his study I 
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select the 95% significance threshold, therefore the alpha value is 0.05, which 

indicates that any variable with a p-value greater than 0.05 has less than 5% 

probability of influencing the predictive capacity of the model. In other words the 

model is unlikely to be any different if that variable were omitted. Backwards 

elimination starts with all the characteristics in a multiple linear model. The variable 

with the largest p-value greater than 0.05, is removed from the model and the 

remaining characteristics are used for a subsequent model. At the end of the 

process one is left with a set of variables, each of which contributes significantly to 

the model (with p-values lower than 0.05). In the case of the capillary pressure 

parameters I make use of backwards elimination for model development.  

 

Alternatively one could use a multivariate analysis technique such as principal 

component analysis (PCA) to help with model development and selection. I perform 

a PCA on standardized variables since it aims to identify directions of maximum 

variance (Jackson, 2005). The results include eigenvalues - the amount of variance 

- and eigenvectors - the principal components defining the direction of maximum 

variance. PCA of ! variables produces ! principal components, with each principal 

component a linear combination of the original variables (Jolliffe, 2014). The 

‘loadings’ between each principal component and the original variables are 

computed using eq. 4.5.  

 

 !!" =
!!" !!
!!

 (4.5) 

 

in which ! is the correlation between the ith principal component and the jth original 

variable, ! is the eigenvector coefficient, ! is the eigenvalue, and ! is the variance of 

the original variable, which is 1 for standardized data. The loadings indicate how 

well each principal component is aligned with the original variables, i.e. how much 

information from each variable is reflected in each principle component (Abdi & 

Williams, 2010) (Please note that the popular statistics software package ‘R’ refers 

to eigenvectors as ‘loadings’, which is distinct from the definition used here). The 

loadings between the principal components and the original variables may reveal 

which original characteristics are best suited to construct a predictive multiple OLS 

model. Furthermore, the principal components can be used as new predictor 

variables of the response variable in a principal component regression; however, in 

this instance I choose not to make use of this regression method for statistical 
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calibration, because the principal components cannot be interpreted directly in 

terms of their physical meaning. 

5 Image Resolution Effects 

In this chapter I take a closer look at the impact of changing image resolution on 

the computation of permeability and a range of rock characteristics, including grain 

and pore size, grain and pore sorting, porosity, the fraction of clay phase, and the 

set of Minkowski Functionals. The comparison of petrophysical properties and rock 

characteristics data from the sub-volumes (see section 4.6) are based on exactly 

the same physical rock volumes in each of the HR, IR, and LR images. The x,y,z 

voxel dimensions for the comparison sub-volumes from the HR image of the 8mm 

overlap region are: Unit 1 = (330, 330, 330), Unit 2 = (330, 330, 392), and  

Unit 3 = (425, 425, 425).  

5.1 Permeability and Image Resolution 

Whenever possible, one would determine permeability directly; indirect methods 

are required only when direct computation is impossible. The main objective of this 

section is to demonstrate that conventional methods of estimating permeability, 

such as Lattice-Boltzmann based simulations and Katz-Thompson calculations, fail 

when there is not sufficient resolution in the image to accurately represent the pore 

space. Figure 5.1a shows how the loss of geometric information impacts computed 

permeability using the Lattice-Boltzmann method. The 16 µm/voxel image yields 

unreliable results, returning zero or underestimating the permeability compared to 

the 5 µm/voxel data for values lower than ~2000 mD. From a geometric standpoint 

the Lattice-Boltzmann method requires 4 voxels across a connecting pore throat to 

return some permeability data. Two voxels define the boundary voxels where there 

are no-flow boundary conditions, and at least 1, but preferably 2 voxels, are 

required within the pore channel to allow fluid flow during the simulation. It follows 

that in this example, for those volumes returning zero or underestimated 

permeability values, the pore throats governing fluid flow are smaller than 48 µm 

(3 x 16 µm), which the 16 µm/voxel image is unable to capture, but larger than 15 

µm (3 x 5 µm), which the 5 µm/voxel image is able to capture. 

 

Figure 5.1b shows the good correlation between permeability computed using the 

Lattice-Boltzmann method and the Katz-Thompson equation for the 5 µm/voxel 

image. The resolution is sufficient to accurately represent the largest connecting 

pore throats and to allow reasonable estimates of the pore system critical length, 
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and therefore its permeability using the Katz-Thompson method (eq 3.8 and, for 

convenience, eq 5.1). 

	 ! = !!!!
!
!!

= !!!!
1
! = !!!!!	 (5.1)	

 

Note that to achieve the correlation in figure 5.1b the universal constant (!) in eq. 

5.1, reported as on the order of !
!!" by Katz and Thompson, was modified to !!". The 

value for the universal constant was determined by modulating it until the best 

correlation was found. In their paper Katz and Thompson highlight that the 

constant value of !
!!" is a function of choice of the critical length (!!) from a capillary 

pressure curve, which is typically accurate to 15% of the true value. Specifically 

they point out that a chosen length value in the region of the actual !! would 

change the value of the universal constant. With µCT images the computed !! is 

directly related to the image resolution; therefore, it could be argued that the 

constant is effectively an additional scaling parameter to correct for scaling not 

taken into account by the computed length. Computing the !! statistic for the 1:1 

line in figure 5.1b (an indication of how closely the data points fall on the line 

passing through zero with a 45o angle) yields a value of 0.86, indicating the Lattice 

Boltzmann and Katz-Thompson computations match one-another closely. Figure 

5.1c shows the permeability using the Lattice-Boltzmann method for the 5 

µm/voxel image against the permeability computed using Katz-Thompson and the 

16 µm/voxel image. In this instance the universal constant was set to !!". Note how 

the Katz-Thompson results for the 16 µm/voxel image returns zero permeability for 

several volumes. The lower image resolution is not sufficient to capture the 

permeability-controlling flow pathways, leading to zero critical length values and 

zero computed permeability. It follows that for the 16 and 64 µm/voxel images of 

these samples both the Lattice-Boltzmann and Katz-Thompson methods cannot 

produce reliable results and we need an alternative method of determining 

permeability. 

 

The work by Katz and Thompson provides an opportunity to develop a basic 

workflow to estimate the minimum image resolution required to accurately capture 

the pore system geometry to allow fluid-flow simulation. Mercury injection 

porosimetry delivers the critical threshold pressure, which can be converted to a 

critical pore diameter using the Lucas-Washburn equation (Washburn, 1921). With 

the Lattice-Boltzmann method one requires four voxels across a pore throat for 

fluid flow simulation. The outer two voxels are no-flow voxels, while the inner two 
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voxels allow fluid flow. It follows that one could simply divide the critical pore 

diameter (computed from MIP) by 4 to estimate the required minimum voxel 

dimensions.  

 

 
 

Figure 5.1: Using Katz-Thompson computed permeability to demonstrate why 

permeability simulations using the Lattice-Boltzmann method fail for lower 

resolution images. Simulated permeability using the Lattice-Boltzmann method for 

the 5 and 16 µm/voxel images shows that the computation fails in the lower 

resolution image (a). There is good agreement between computed permeability in 

the 5 µm/voxel image using the Lattice-Boltzmann and Katz-Thompson methods 

(b); however, plotting permeability from the Lattice-Boltzmann method for the 5 

µm/voxel image against Katz-Thompson permeability computed from the 16 

µm/voxel image shows how several computation volumes in the 16 µm/voxel image 

have zero critical length, and therefore, zero computed permeability (c).  Plotted 

with the ‘Matplotlib’ python library with axis types set as ‘symlog’ 

(http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.xscale), which 

provides logarithmic scales that include a small linear scale around zero, allowing 

zero to be plotted. 
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5.2 Rock Characteristics and Image Resolution 

Before performing any statistical analyses let us first investigate the impact of 

image resolution on the computation of the various rock characteristics indented for 

use as predictor variables of the petrophysical properties. All data comparisons are 

performed on the region of overlap between the 8mm sub-plug and the 

intermediate- and low-resolution images of the 25mm core plug. Figure 5.2 

demonstrates the relationship between grain size computed from the HR and IR 

images and between the HR and LR images (a and b respectively). Figure 5.2c and 

d show the same comparison for the pore size characteristic. Both the IR and LR 

images produce larger grain size and pore size values than the HR image because 

the superior voxel resolution HR image naturally captures more information on 

smaller features in the rock. Additionally, as the image resolution decreases the 

boundaries between adjacent grains are less easily distinguished by the watershed 

operation resulting in merged grains, which are treated as single larger grains in 

the computation. The resulting grain and pore size distribution curves for the HR 

image carry more information for smaller grains and pores, thereby producing 

smaller median grain and pore size values. It is also interesting to note that the 

degree to which the grain size values of individual units change when comparing 

the IR and LR images is not the same. Compared to units 1 and 3 the grain size 

characteristic changes more rapidly in unit 2 (green data points), which has the 

finest grain and pore textures of the three units. Pore size shows a more uniform 

rate of change. This indicates that the merger of phases with decreasing resolution 

is more significant for grain size, whereas decreasing resolution causes larger pores 

to be isolated from one another, thereby resulting in a more consistent rate of 

change from one unit to the next. 

 

Apart from the fact that pore size is a geometric measurement and that fluid flow 

properties have been shown to depend on pore geometry, the fact that pore size 

changes at a more consistent rate across the units from one image resolution to the 

next might be an indication that it could be a useful predictor of geometry-

dependent flow properties in low-resolution images. 
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Figure 5.2: Comparing the grain size characteristic computed from the HR image of 

the 8mm sub-plug with the IR and LR images (a and b), and the pore size 

characteristic from the HR image with the IR and LR images (c and d) of the 

overlap regions from the 25mm core plug. The black diagonal lines show the 1:1 

relationship on each diagram. 

 

The grain and pore size distributions for each sub-volume in the 8mm overlap 

regions were expressed as sorting values (see section 4.6.1). Small sorting values 

indicate well-sorted grains or pores, and large sorting values indicate poorly sorted 

grains and pores. Figure 5.3 shows the changes associated with the grain and pore 

sorting data from the HR to the IR and LR images. The grain sorting characteristic 

has a surprisingly linear trend between the 5 µm/voxel HR image and the 16 

µm/voxel IR image; however, the IR image produces slightly lower sorting values 

compared to the HR image (figure 5.3a). This is attributed to a smoothing effect 

where the boundaries between grains are less easily distinguished because of the 

decreased image resolution. It is interesting to note that the grain sorting from all 

three units appear to be affected to a similar degree from the HR to the IR image. 

The linearity of the relationship between HR and IR grain sorting indicates that the 
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IR 16 µm/voxel image contains some geometric information, which may be useful 

for predicting permeability. Figure 5.3b shows the changes in grain sorting 

compared between the HR and LR images. The change is much more dramatic and 

there is no relationship between the HR and LR image grain sorting data. 

 

A comparison between the pore sorting of the HR and IR images (figure 5.3c), and 

between the HR and LR images (figure 5.3d) indicates similar behaviour compared 

to that of grain sorting; however the HR and IR pore sorting data do not show a 

particularly strong linear relationship. In both the 16 µm/voxel IR and 64 µm/voxel 

LR images pore sorting is underestimated compared to the 5 µm/voxel HR data. 

The pore network has a much smaller length scale than the grain component of the 

rock, for this reason the lower image resolution has a more significant impact on 

the pore sorting computation. With a decrease in image resolution smaller pores 

are effectively removed from the leaving behind the larger more similar size pores, 

which results in lower sorting values. 

 

 
 

Figure 5.3: Comparing the grain sorting characteristic computed from the HR image 

of the 8mm sub-plug with the IR and LR images (a and b), and the pore sorting 
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characteristic from the HR image with the IR and LR images (c and d) of the 

overlap regions from the 25mm core plug. The black diagonal lines show the 1:1 

relationship on each diagram. 

 

The changes associated with porosity and clay fraction reflect the impact of the 

increasing proportion of voxels with intermediate gray scale values. Porosity and 

clay fraction are computed by taking into account sub-resolution porosity from the 

soft-segmentation data (see section 4.6.2). The resolution change from 5 µm/voxel 

in the HR image to 16 µm/voxel in the IR image of the overlap region is not large 

enough to have a significant impact on the porosity and clay fraction characteristics 

(figure 5.4a and c). The 64 µm/voxel LR image contains a considerable proportion 

of intermediate gray scale voxels, which increases the porosity and clay fraction 

values computed from the LR overlap image relative to those of the HR image 

(figure 5.4b and d). Based on these data it is possible that porosity may contribute 

to predictions of absolute permeability because it takes into account image gray 

scales, which includes connecting pore throats. However, the porosity characteristic 

cannot distinguish between connected and non-connected pores, and, in the LR 

image, even those pores that do not contribute significantly to fluid flow may be 

represented as intermediate gray scale voxels. For this reason porosity may not 

correlate with permeability. 

 

A similar characteristic to porosity is the resolved pore spaces, here referred to as 

the Open Pore Fraction, which does not include sub-resolution porosity, but rather 

those voxels that are clearly defined as pore space in the segmentation process. 

Open pore fraction represents the first of the Minkowski functionals. Figure 5.5a 

demonstrates that there is a remarkably linear relationship between the open pore 

fraction computed from the HR and IR images. As expected the IR 16 µm/voxel 

image resolves fewer open pore spaces because of the reduced resolution and 

therefore produces a lower open pore fraction relative to the HR image. Unit 2 (the 

green data points) shows the most significant deviation from the 1:1 line. Being the 

finest-grained unit in the overlap region with the smallest pores it is expected that 

its open pore fraction would be most affected by changes in image resolution. A 

comparison between the HR image and the 64 µm/voxel LR image shows that the 

reduction in resolution is large enough to significantly impact the open pore fraction 

of all three units (figure 5.5b). As for the IR image the fine-grained unit 2 

experiences the most dramatic shift, followed by units 1 and 3, which respectively 

contain medium and large size grains and pores. 
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Figure 5.4: Comparing the porosity characteristic computed from the HR image of 

the 8mm sub-plug with the IR and LR images (a and b), and the clay fraction 

characteristic from the HR image with the IR and LR images (c and d) of the 

overlap regions from the 25mm core plug. The black diagonal lines show the 1:1 

relationship on each diagram. 

 

 
Figure 5.5: Comparing the open pore fraction characteristic computed from the HR 

image of the 8mm sub-plug with the IR and LR images (a and b) of the overlap 

regions from the 25mm core plug. The black diagonal lines show the 1:1 

relationship on each diagram. 
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Figure 5.6 shows the comparison between the remaining Minkowski functionals, i.e. 

surface area (a and b), mean curvature (c and d), and the Euler characteristic (e 

and f), computed for the overlap regions of the HR 5 µm/voxel, IR 16 µm/voxel, 

and LR 64 µm/voxel images. Here the Minkowski functionals are measured in the 

pore space and reported in standardised real units (not voxel units). The change in 

image resolution has a significant effect on these characteristics and for all three of 

them there is no clear relationship between the computed values from various 

resolutions. For all three Minkowski functionals the distribution of the data points 

remain relatively consistent in the image pairs; however, the scale of the computed 

values change significantly in the IR and LR images. The only notable change in the 

distribution of the data points is the relative positioning of those sub-volumes from 

unit 3, which, for the surface area (a and b) and mean curvature (c and d), are 

located slightly to the right on the x-axis for the LR 64 µm/voxel images (figures 

5.5b and d) compared to IR 16 µm/voxel images (figures 5.6a and c). This may be 

expected since surface area and surface curvature are likely to be highly resolution 

dependent for rough surfaces. In both cases the changes for the sub-volumes from 

unit 3 are in the same order of magnitude as units 1 and 2. Unit 3 has the largest 

grains and pores, therefore, it is expected that as the image resolution decreases 

the surface area would decrease at a slightly lower rate, while the mean curvature 

increases at a slightly faster rate. 

 

Vogel [2008] explains that the Euler number (!) can be computed by combining the 

basic topological measures i.e.: the number of isolated objects (!), the number of 

redundant connections in the pore space (!), and the number of enclosed cavities 

(!) as shown in eq. 5.2. It follows that the Euler number is an indication of pore 

connectivity; with positive and negative values typically indicating poorly connected 

(! > !) and well connected (! < !) structures respectively. It can be argued that ! 

is inconsequential for most porous rocks since the occurrence of isolated grains 

within a pore space is not common. 

 

 ! = ! − ! + ! (5.2) 

 

The data in figure 5.6e indicate that unit 1 in the IR 16 µm/voxel image, with 

intermediate grain and pore size relative to units 2 and 3, generally has a better 

connected pore system compared to those of unit 2 (the finest grained) and unit 3 

(the coarsest grained but least well sorted). At the lowest resolution of the 64 
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µm/voxel (figure 5.6f) most of the sub-volumes have positive Euler numbers 

showing poor connectivity in all three units, even though the relative positioning of 

the units along the x-axis remains fairly consistent. 

 

 
Figure 5.6: Comparing the surface area (a and b), mean curvature (c and d), and 

Euler number (e and f) Minkowski functionals computed from the HR image of the 

8mm sub-plug with the IR and LR images of the overlap regions from the 25mm 

core plug. The changes in the characteristics are too large to plot a practical 1:1 

line. 
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6 Permeability Results and Discussion: Sample 1 

In this chapter I compile and discuss the results of the statistical correlations 

between permeability and predictor rock characteristics. The chapter starts with a 

look at the commonly used porosity-permeability plot, which is followed by an 

explanation of the development of the single and multiple linear statistical models 

from the overlap regions in the HR, IR, and LR images. The chapter concludes with 

the application of the chosen statistical models to estimate absolute permeability in 

the 25mm 16 and 64 µm/voxel images of the sample 1 core plug. The statistical 

correlations are developed using response and predictor data from exactly the same 

physical rock sub-volumes represented by different resolution images. 

 

The x,y,z voxel dimensions for the sub-volumes used to develop statistical 

correlations in the high-resolution image of the 8mm overlap region are: 

Unit 1 = (330, 330, 330), 

Unit 2 = (330, 330, 392), and  

Unit 3 = (425, 425, 425). 

 

6.1 Porosity-Permeability 

In his review paper Nelson [1994] highlights the use of porosity-permeability 

relationships to assist in the determination of permeability from well logs and core 

samples. He references the work of several authors demonstrating the often linear 

relationship between porosity and permeability. Beard and Weyl [1973] investigate 

artificially mixed unconsolidated sand packs with a range of grain sizes and sorting. 

Their results are extremely informative and demonstrate how, for each grains size 

class, the permeability increases with increases in porosity as a function of changes 

in sorting from poorly to well sorted. Permeability also increases as the average 

grain size increases. Their results contain subtle information regarding the 

relationship between porosity, grain size, grain packing, and permeability. Sand 

packs containing well-sorted grains are grain size independent (as for uniforms 

spheres) and porosity decreases slightly as grains become less well sorted while the 

permeability increases with increasing grain size. Beard and Weyl’s results 

demonstrate the complexity of flow through porous rocks and the range of 

parameters impacting on permeability. 

 

Figure 6.1 shows the general linear relationship between the logarithm of the 

permeability and porosity in the HR 5 µm/voxel image of sample 1. An interesting 

observation is the large spread of data points with little evidence for clustering on 
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either axis, thereby providing further support for a statistical approach over a 

classification-based methodology. Furthermore, from simple visual observation 

there is a considerable range of permeabilities for any given porosity. In particular 

the finer unit 2 is a factor of 10 lower in ! for the same porosity. As demonstrated 

by the work of Katz and Thompson [1986] the porosity measure is not capable of 

capturing the length scale in which fluid flow must occur, and, even though these 

data were collected from consolidated material, in the context of the results of 

Beard and Weyl [1973] porosity is but part of the story. 

 
Figure 6.1: A porosity-permeability plot for the HR 5 µm/voxel image of the overlap 

region of sample 1. The graph shows a roughly linear relationship and the nearly 

continuous spread of the data points. 

 

6.2 Statistical Calibration: Individual Characteristics 

As a first step I compile ordinary least squares (OLS) models between the logarithm 

of each characteristic and the logarithm of permeability. The second stage of 

statistical calibration combines some subset of the individual characteristics into 

multiple linear models (section 4.5.2) to provide a more complete statistical 

description of permeability. One method of identifying predictor variables for a 

multiple OLS linear model is a principal component analysis. The results from the 

PCA (table 6.1) show that the first three principal components explain 90% of the 
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variance in the predictor characteristics for both the 16 and 64µm/voxel images. 

For the 16 µm/voxel data the first two principal components, PC1 and PC2, 

correlate well with permeability based on their !! values. The loadings for the 16 

µm/voxel data indicate that PC1 shares considerable information with open pore 

fraction, porosity, formation factor, grain sorting, clay fraction, and mean 

curvature, while PC2 shares information with pore and grain size and pore sorting. 

For the 64 µm/voxel image PC1 correlates best with permeability. The loadings of 

PC1 show a similar trend compared to that of 16 µm/voxel image, but with the 

addition of the Euler characteristic, which also shares considerable information with 

the first principal component. 

 

Table 6.1: Principal component analysis results for the 16 and 64 µm/voxel data 

showing the coefficient of determination (!!) between the first three principal 

components and permeability, the fraction of variance explained by the 

components, and the loadings (correlations) of the components onto the original 

variables.  

 

R2 w. 

Perm. 

Variance 

Fraction 
OPF P PS F GS Gsort Psort CF SA MC EC 

16 µm/voxel Image 
           

PC1 0.8 0.6 -0.9 -0.9 -0.5 0.8 0.0 0.9 0.1 0.9 -1.0 -0.9 1.0 

PC2 0.7 0.2 0.3 0.1 -0.8 0.2 -0.9 0.0 -0.8 -0.4 0.0 -0.3 0.0 

PC3 0.3 0.1 0.3 0.3 -0.1 -0.3 -0.3 0.3 0.6 0.1 -0.1 -0.2 0.1 

64 µm/voxel Image 
           

PC1 0.8 0.5 -0.9 -0.3 -0.6 0.9 0.2 0.7 -0.4 -0.3 -1.0 -0.9 0.9 

PC2 0.2 0.3 0.2 0.9 -0.6 -0.2 -0.9 0.1 -0.3 0.9 -0.1 -0.4 0.1 

PC3 0.1 0.1 0.1 -0.2 -0.2 0.1 0.0 -0.2 -0.8 -0.1 0.2 0.1 -0.2 

 

 

Another method of choosing the characteristics for a multiple regression model is to 

consider the predictive capability of the individual characteristics by interpreting the 

coefficient of determination from OLS regressions (table 6.2). Based on the !! 
statistic the characteristics relating to rock fabric in neither the 16 nor 64µm/voxel 

images correlate well with permeability, while specifically open pore fraction and 

formation factor, which relate more directly to the pore system, show much 

stronger correlations. Mean curvature, surface area, and the Euler Characteristic 

correlate reasonably well and justify further investigation. Each model’s p-value of 

the F-statistic is lower than 0.05. With a chosen significance threshold of 95% the 

p-values indicate that each model has less than 5% probability of being equal to 

the intercept model; therefore, each individual characteristic provides a statistically 

significant description of permeability variance. 
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Table 6.2: The coefficient of determination from ordinary least squares modelling of 

each calculated characteristic (from the 5 µm/voxel, 16 µm/voxel, and 64 µm/voxel 

images) with Lattice Boltzmann permeability from the 5 µm/voxel image. 

Characteristic 

!! for log (k) vs. 

log (5µm/voxel 

characteristics) 

!! for log (k) vs. 

log (16µm/voxel 

characteristics) 

!! for log (k) vs. 

log (64µm/voxel 

characteristics) 

Rock Fabric    
Grain Size (GS) 0.114 0.018 0.206 

Grain Sorting (Gsort) 0.556 0.544 0.275 

Clay Fraction (CF) 0.393 0.542 0.286 

Pore System    
Porosity Fraction (Po) 0.612 0.780 0.221 

Open Pore Size (µm) (PS) 0.564 0.332 0.216 

Open Pore Sorting (Psort) 0.103 0.019 0.033 

Formation Factor (m=2) (F) 0.770 0.932 0.871 

Formation Factor (m=2.5) (F) 0.754 0.931 0.850 

Formation Factor (m=4) (F) 0.740 0.928 0.875 

Minkowski Functionals    
Open Pore Fraction (OPF) 0.567 0.841 0.899 

Surface Area (SA) 0.071 0.770 0.643 

Mean Curvature (MC) 0.555 0.719 0.488 

Euler Characteristic (EC) 0.187 0.752 0.626 

 

We now choose the most suitable predictor characteristics based on the combined 

results of the principal component analysis and the regression for each individual 

characteristic with permeability. 

 

6.2.1 Rock Fabric 

In unconsolidated sands, grain size, grain sorting, and packing structure have 

fundamental control over the pore system, and have shown strong correlation with 

permeability (R. R. Berg, 1970; Chapman, 1981; Detmer, 1995; Krumbein & Monk, 

1943). However, diagenetic and lithification processes, such as chemical 

dissolution, recrystallization of minerals, and compaction alter the flow properties in 

consolidated systems (Hayes, 1979). Even though the PCA results show that grain 

size and sorting align well with the main principal components, table 6.2 indicates 

that Precipice Sandstone grain properties do not correlate well with permeability. 

One could argue that such rock properties have a significant influence on fluid flow; 

however, the relationships between these simple measurements of fabric properties 
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and permeability are not evident in this dataset. In the remainder of the thesis, I 

focus on those characteristics that relate more directly to the pore system and 

show stronger individual correlation with computed permeability. 

 

6.2.2 Open Pore Fraction, Pore Size, and Formation Factor 

The PCA results show that open pore fraction and formation factor share 

considerable information with the first principal component in both image 

resolutions (table 6.1). Table 6.2 indicates that these are the characteristics that 

correlate best with permeability, for both 16 and 64 µm/voxel images. !! for the 

correlation between open pore fraction and permeability is lower in the 5µm/voxel 

image, compared to the 16 and 64 µm/voxel images. Figure 6.2a and b plot 

simulated permeability against open pore fraction for the 16 and 64 µm/voxel 

images of the 8 mm sub-plug. The correlation is relatively poor at 5µm/voxel image 

resolution since relevant factors such as the length scale and connectedness of the 

pore system make no direct contribution to the open pore fraction characteristic. 

However, at lower image resolutions open pore fraction is no longer a direct 

measure of sample porosity, but rather the resolved fraction of the larger actual 

pore volume; i.e. pores larger than some resolution-dependent length cut-

off.  Figure 6.2b demonstrates an excellent correlation between open pore fraction 

and permeability in the 64 µm/voxel images. I postulate that when the resolution is 

such that the length cut-off is close to a controlling length scale of the pore system 

(e.g. the critical length), then the fraction of open pore space correlates well to the 

number of transport pathways relevant for permeability. 

 

The correlation coefficient for pore size shows that it is a stronger predictor 

characteristic in the 16µm/voxel image, which retains more geometric information 

compared to the 64µm/voxel image (table 6.2 and figure 6.2c and d). Even though 

the pore size correlation coefficient is relatively low, being the only direct measure 

of size in these low-resolution images it may contribute to the statistical description 

of permeability in a multiple model, and we choose to include it in the subset of 

characteristics for further analysis. 

 

Formation factor represents relative electrical conductivity; however, in low-

resolution images, where electrical flow paths are poorly characterized, formation 

factor computations do not provide reliable information on the electrical properties 

of the rock. This study shows similar results than those of Arns et al. [2001a] with 

higher computed formation factor for lower resolution images. Additionally, the 
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correlation coefficient between formation factor computed on the 5 µm/voxel image 

and that from the 16 and 64 µm/voxel images is 0.5 and 0.3 respectively, 

indicating that formation factor is poorly correlated with itself between image 

resolutions. Here the formation factor computation is tuned to take into account the 

scaled micro-porosity information contained in the gray scale value of each 

intermediate voxel. Computation results with ! = 2, 2.5, and 4 show only minor 

differences in the correlation coefficients when modelled against permeability (see 

section 4.6.3 for a discussion on the motivation for selecting these values for !). 

For each value of ! the correlation coefficient for formation factor is lowest in the 5 

µm/voxel image and highest in the 16 µm/voxel image.  I suggest that in the lower 

resolution images, the formation factor computation appears to incorporate some 

measure of connecting channel size from image gray scales and therefore becomes 

a reasonable predictor of permeability (figure 6.2e and f). Additionally, when 

computing gray scale sensitive formation factor values in lower resolution images, 

the smaller pores, which contribute to permeability but which are not fully resolved 

in lower resolution images, are still taken into account because they are 

represented as intermediate gray scale values. It is expected that the range of 

resolutions for which formation factor is a useful predictor will vary between 

samples as a function of rock texture, and it is likely that the correlation coefficient 

will drop off at even lower resolutions. 
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Figure 6.2: The correlations between permeability and open pore fraction (a and b), 

open pore size (c and d), and formation factor (e and f) calculated from the 16 and 

64 µm/voxel images. 

 

6.2.3 Sensitivity to Segmentation Parameters 

Unlike formation factor, which takes into account the gray scale values from the 

original tomogram, open pore fraction is directly dependent on the image gray scale 

segmentation threshold, therefore, the sensitivity of this promising correlation to 
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the segmentation threshold parameter should be explored. Figure 6.3a and b show 

open pore fraction from the 64 µm/voxel image and its correlation with 

permeability as a function of simple gray scale thresholding. As the threshold 

increases the open pore fraction and its range increase indefinitely as more voxels 

are included in the segmented pore phase. The correlation coefficient with 

permeability increases to a maximum and then decreases. The maximum !! of 

0.915 is very similar to the !! of 0.899 (reported in table 2), indicating that the 

component of the pore system that correlates well with permeability can be 

captured over a relatively large range of gray scale thresholds (200 gray scale 

values between 1900 and 2100). Even if I set a minimum correlation coefficient 

value of 0.85 (only 0.05 from the reported value in the table 6.2) the range of gray 

scale segmentation thresholds to achieve a R2 value 0.85 increases from 200 to 

~400 between 1800 and ~2200. This result indicates that the predictive model 

based on open pore fraction is relatively independent of the segmentation 

parameters used for the low-resolution image; however, it does not eliminate the 

need to carefully select the appropriate segmentation thresholds during image 

processing. 

 

 
Figure 6.3: a) Open pore fraction as a function of the gray scale threshold value; b) 

The correlation !! between permeability and open pore fraction as a function of the 

gray scale threshold. The shaded areas show the range of gray scale values over 

which permeability remains highly correlated to open pore fraction, indicating that 

the statistical model is relatively independent of the image segmentation 

parameters. 

 

The question now arises whether it is possible to optimise image acquisition based 

on sample composition. Sheppard et al. (2004) describe the challenges of 

segmenting natural materials with multiple phases and often sub-resolution 

features that blur the edges defining boundaries between phases. Clearly one would 
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always desire the highest possible image quality, regardless of image resolution; 

therefore, it is important to optimize the acquisition conditions (flux, sample 

positioning to optimize field of view, sample stability to prevent drift, etc.). In lower 

resolution images the proportion of voxels with intermediate gray scale values 

increase as a result of the mixed volume effect, therefore there is increased 

potential for segmentation errors. The “cascading active contour” segmentation 

method used in this project (see section 4.2) requires input values for the gray 

scale threshold and gradient between two phases. The segmentation method uses 

these parameters to actively optimize the positioning of the boundary in the 

segmented image. In lower resolution images the gradient between two phases are 

generally lower compared to high-resolution images. For complex samples with 

multiple clay phases producing intermediate gray scale values it could be worth 

considering the use of an injected contrasting agent to elevate the attenuation of 

the pore volume above the lower attenuation grain phases. I suggest that this 

approach ought to increase the gradient between pores and the main framework 

grain boundaries, which should simplify the segmentation process to an extent. 

 

6.3 Statistical Calibration: Multiple Characteristics 

Combining predictor characteristics into multiple linear models has the potential to 

improve predictive capabilities and serves as the second step in calibrating the 

statistical models. With the knowledge of the predictive behaviour of each individual 

rock characteristic I make use of the statistical method known as forward selection 

(see section 4.7.2 Statistical Methods) to compile multiple linear models to predict 

absolute permeability. Based on the results from the principal component analysis 

and the regression of each characteristic with permeability, I suggest that some 

combination of open pore fraction, pore size, formation factor and the Minkowski 

Functionals are likely to generate good multiple linear models of absolute 

permeability. It is important to emphasise that the intention is to develop a 

workflow rather than an empirical model for predicting permeability. It is possible 

that other samples will require different statistical models depending on their 

textures and the image resolution. 

 

Table 6.3 shows six multiple models and their !! values for regressions using 

characteristics from the 5, 16, and 64 µm/voxel images. Each model’s p-value of 

the F-statistic is lower than 0.05, indicating that each model is significantly different 

from the intercept model. The two best individual characteristics are open pore 

fraction and formation factor, and a multiple linear model containing both (model 1) 
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provides an excellent description of permeability, especially in the 16 µm/voxel 

image.  

 

Table 6.3: The coefficient of determination from ordinary least squares modelling of 

five combinations of predictor characteristics (from the 5 µm/voxel, 16 µm/voxel, 

and 64 µm/voxel images) with Lattice Boltzmann permeability from the 5 µm/voxel 

image. 

Multiple Model 

!! for log (k) 

vs. log 

(5µm/voxel 

characteristics) 

!! for log (k) 

vs. log 

(16µm/voxel 

characteristics) 

!! for log (k) 

vs. log 

(64µm/voxel 

characteristics) 

1) OPF, F 0.843 0.932 0.908 
2) OPF, PS, F 0.965 0.963 0.912 
3) SA, MC, EN 0.696 0.777 0.677 
4) OPF, SA, MC, EN 0.830 0.955 0.922 
5) SA, MC, EN, F 0.910 0.953 0.875 
6) OPF, PS, F, SA, MC, EN 0.971 0.969 0.927 
 

Even though pore size alone does not appear to contain any significant predictive 

capability (table 6.2 above), adding it to model 1, to produce multiple model 2, 

significantly increases the correlation coefficient in the 16µm/voxel image. This is 

not true for the 64 µm/voxel data, where adding pore size to model 1 only 

increases the !! by 0.004. This indicates that at low-resolution the pore size 

characteristic no longer has any predictive capability, showing that the 64 µm/voxel 

image contains no direct geometric information that contributes to a model for 

permeability. Instead the pore geometry is now represented by intermediate gray 

scale values and is accounted for by the formation factor, which incorporates gray 

scales during computation. 

 

As individual characteristics the Minkowski functionals generate promising !! 
values, particularly for the 16 µm/voxel image (table 6.2 above). However, when 

combined in model 3, the correlation coefficient is less impressive at 0.8, 0.78, and 

0.67 for the 5, 16, and 64 µm/voxel images respectively. Only when open fraction 

or formation factor is added to surface area, mean curvature and the Euler 

Characteristic in models 4 and 5 does the !! improve. Furthermore, model 6 

contains open pore fraction, pore size, and all three of the remaining Minkowski 

Functionals, and produces an !! of 0.968 and 0.927 for the 16 and 64 µm/voxel 

data, which is only marginally better than the correlation coefficients for models 1 
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and 2. It is therefore clear that the Minkowski Functionals do not contribute 

additional information to a multiple model, which is not already accounted for by 

open pore fraction, pore size, and formation factor. Based on the results in table 3 

we therefore identify models 1 and 2 for use in predicting permeability in the 25 

mm 64 and 16 µm/voxel images respectively. 

 

The coefficient of determination alone, though a valuable measure of precision, 

cannot be used to determine the quality of a model. Model residuals (the 

differences between the predicted and observed values) should ideally show a 

random distribution around zero with no clustering of the data points and no clearly 

discernable patterns, the presence of which may point to some systematic bias in 

the model (Draper & Smith, 2014). Figure 6.4a shows the simulated permeability 

from the 5 µm/voxel image plotted against the predicted permeability from the 16 

µm/voxel image using multiple linear model 2 (open pore fraction, open pore size, 

and formation factor). Figure 6.4b shows the model residuals plotted against the 

predicted values. Figure 6.4c and d show similar data for the 64 µm/voxel image 

obtained from model 1 (open pore fraction and formation factor). Upon visual 

inspection the residuals in figures 6.4b and d show relatively random distributions 

indicating that a linear model is unbiased and appropriate for the data. There are a 

few data points at lower permeabilities with higher residual values, which I propose 

is a consequence of the low-permeability data being more scattered. It also shows 

the difficulty of predicting lower permeability values (<1000 mD) from such low-

resolution images. 
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Figure 6.4: Calibration of statistical models over the small field of view of the 

highest resolution image. The simulated permeability from the 5 µm/voxel image 

plotted against the predicted permeability from the multiple model containing open 

pore fraction, open pore size, and formation factor from the 16 µm/voxel image (a) 

and open pore fraction and formation factor from the 64 µm/voxel image (c). 

Multiple linear model residuals plotted against the predicted permeability values 

have no apparent systematic bias (b and d). 

 

6.4 Predicting Permeability in the 25mm Core Plug 

The last step in the workflow is to predict permeability from the images of the full 

25 x 80 mm core plug. Using the statistical calibration of model 1 (open pore 

fraction and formation factor) for the 64 µm/voxel image and model 2 (open pore 

fraction, open pore size, and formation factor) for 16 µm/voxel image, figure 6.4 

shows the predicted absolute permeability for the 25 mm core plug from both 

image resolutions. As before, the predictor characteristics are computed on several 

sub-volumes within each unit separately. Figure 6.5 shows permeability as a single 

value for each rock unit, which is the average of the predicted permeability of the 

sub-volumes. Each unit indicated in figure 6.5 contains 9 sub-volumes (3 x 3 x 1), 
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except units 8 and 12, which both contain 18 sub-volumes (3 x 3 x 2). All sub-

volume x and y dimensions are 310 x 310 voxels. Certain sections in the core plug 

such as units 2 and 3 show relatively high permeability, despite their fine-grained 

rock fabric and apparently closed pore systems compared to that of units 11 and 

12.  

 

The best imaging resolution that could be achieved over the full 25 x 80 mm 

volume was 16 µm/voxel, a dataset of 1800 x 1800 x 5000 voxels, which was 

shown in section 5.1 to be insufficient to allow direct simulation of permeability. In 

the absence of accurate direct simulations, and having achieved excellent statistical 

permeability predictions from the 16 µm/voxel calibration data (figure 6.4a), the 

predicted permeability over the full 25 x 80 mm volume serves as a proxy for 

directly computed permeability.  One of the key results in the thesis the comparison 

between predicted permeability for the 8 mm sub-plug (the calibration volume) and 

25 mm core plug, which are shown in figure 6.5. The 1:1 !! values show that 

predictions from the low-resolution 64 µm/voxel image match those from the 16 

µm/voxel image very well for both the 8 x 15 mm calibration volume (!! = 0.93) 

and the as-yet-unexplored 25 x 80 mm volume (!! = 0.90). This is an exciting 

result since two different statistical models, applied to two images with different 

resolutions, predict very similar permeabilities.  

 

As a word of caution, the high-resolution data from the 8 mm sub-plug underpins 

the permeability predictions made over the full 25 x 80 mm volume from the 16 

and 64 µm/voxel images. If the sub-plug does not represent an adequate range of 

rock textures, so that significant extrapolation of the statistical model is required 

beyond the range of rock characteristics captured in the 8 mm sub-plug, then 

uncertainties in the predicted permeability are bound to increase. Future research 

will need to look into this aspect in more detail. An approach likely to provide some 

quantitative data is to collect a second sub-plug from a different location, and test 

the predicted permeability over the whole 25 mm core plug from the two calibration 

volumes. 
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Figure 6.5:  The predicted permeability of the 25 mm core plug computed from 

multiple linear model 2 (open pore fraction, open pore size, and formation factor) 

for the 16 µm/voxel image, and multiple linear model 1 (open pore fraction and 

formation factor) for the 64 µm/voxel image. Green horizontal stippled lines 

indicate the boundaries between rock units and the black box indicates the 

approximate location of the 8mm sub-plug. The scatterplots compare the predicted 

permeabilities from the 16 and 64 µm/voxel images for the 8 mm sub-plug 

calibration volume (left) and the 25 mm core plug (right). 

 

 

Closer inspection of figure 6.5 above shows there is one sub-volume for which the 

predicted permeability value using the 16 µm/voxel image of the 25 mm core plug 

plots well below the 1:1 line. Further investigation reveals that this sub-volume is 

from unit 1 and that it contains a significant amount of masked area (figure 6.6). I 

propose that this sub-volume is therefore not representative of the unit and that 

the formation factor and open pore fraction computations from this sub-volume do 

not fall within the appropriate range expected by the statistical model. The adjacent 

sub-volume also contains some masked area; however, in this case it is clearly not 

enough to influence the permeability prediction (figure 6.6). 
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Figure 6.6: Example images from the outlier sub-volume containing masked area 

(orange) and plotting far from the 1:1 line (a); a normal sub-volume without any 

masked area plotting near the 1:1 line (b); and a normal sub-volume with a small 

amount of masked area plotting near the 1:1 (c). 

 

 

7 Permeability Results and Discussion: Sample 2 

After initial development of the workflow (using sample 1) I apply the workflow to 

sample 2, another Precipice core plug of similar character to sample 1. Sample 2 is 

generally finer grained and overall better sorted compared to sample 1 based on a 

visual assessment of 2D slices from the 3D µCT tomograms. Sample 2 contains a 

range of grain sizes and lamellae in the mm to cm range. As for sample 1, the 25 

mm core plug of sample 2 was first imaged rapidly as part of a bundle with other 

cores to produce image 1) a low-resolution image (LR) at ~ 61 µm/voxel, after 

which image 2) an intermediate resolution image (IR) at ~16 µm/voxel was 

acquired through a high-fidelity scan of the core plug in isolation. Finally, image 3) 

a high-resolution image (HR) at ~5 µm/voxel was acquired by means of a region of 

interest scan of a 8mm diameter 15 mm long region in the original core plug 

(whereas the HR image for sample 1 was collected from a physically cored sub-

plug). The three images are aligned to one another using the algorithm described in 

section 4.2 (Latham, Varslot, & Sheppard, 2008; Latham, Varslot, Sheppard, et al., 

2008), after which one is left with the following image pairs: 

 

a. 5 µm/voxel HR image overlapped with the 16 µm/voxel IR image, 

b. 5 µm/voxel HR image overlapped with the 61 µm/voxel LR images, 

c. 16 µm/voxel IR image overlapped with the 61 µm/voxel LR images 
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Figure 7.1 shows the difference in resolution between the images and the 

approximate location of the sub-plug for sample 2 and figure 7.2 shows the results 

from the unitisation procedure applied to the 8mm region of interest. 

 

      

 
Figure 7.1: a) The 25 mm core plug of sample 2 imaged at 16 µm/voxel; b) the 5 

µm/voxel image of the 8 mm region of interest; and the overlap regions from the 

16 µm/voxel and 61 µm/voxel images (c and d respectively). The white square 

indicates the approximate location of the 8 mm region of interest. 
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Figure 7.2: 8mm region of interest image unitisation for sample 2. Horizontal red 

and blue lines indicate boundaries from the grain size and porosity logs 

respectively. 

 

Sample 2 statistical calibrations and permeability predictions in the 25 mm core 

plug were done using the same multiple linear models as for sample 1 (see 

chapters 6.2 and 6.3). For the IR 16 µm/voxel data calibration and permeability 

prediction were based on multiple linear model 2 (open pore fraction, open pore 

size, and formation factor), while for the 61 µm/voxel data calibration and 

permeability prediction were based on multiple linear model 1 (open pore fraction 

and formation factor). Principal component analysis was not performed on sample 

2. Figure 7.3 shows statistical calibration data for the intermediate resolution 16 

µm/voxel image (figure 7.3a) and the low-resolution 61 µm/voxel image (figure 

7.3b). Notably the R2 of the models are not as high as for the first sample; 

however, they appear good enough to suggest that the low-resolution images 

contain the relevant information on the pore system to allow permeability 

prediction. 
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Figure 7.3: Calibration of statistical models for sample 2. The simulated 

permeability from the 5 µm/voxel image plotted against the predicted permeability 

from the 16 µm/voxel image (a) and the 61 µm/voxel image (b). 

 

 

I suggest that the two main causes of the poor correlations are related to a) the 

quality of the high-resolution image used for permeability computation, and b) the 

fact that unit 3 has the smallest average pore size (figure 7.2 above). Here the 

high-resolution image was not collected on a physically cored sub-plug, but rather 

as a ‘region of interest scan’, which means that the high-resolution image was 

collected by physically positioning the original large scale sample closer to the x-ray 

source, thereby reducing the field of view and increasing the image resolution. This 

technique reduces the contrast-to-noise ratio in the high-resolution image (figure 

7.4a), directly impacting image segmentation. Most notably the pore space contains 

isolated groups of non-pore voxels (figure 7.4b), which in turn impact the 

permeability computation because non-pore voxels do not allow fluid flow. More 

critically however, the pore channels controlling fluid flow would also be constricted 

or completely blocked as a result of the presence of inaccurate non-pore voxels. 

The resulting permeability data for calibration are therefore less reliable, thereby 

leading to poorer statistical correlations. Please note that the predictor 

characteristics are computed from high-quality intermediate- and low-resolution 

images, which are not affected by the region-of-interest scanning method. Figure 

7.3 shows that even though most units contribute to the larger variance and 

therefore smaller correlation coefficient in this model, unit 3 shows the most spread 

of all. I propose that the increased spread from unit 3 is a result of its small pore 

size, which increases the pore surface area and therefore results in higher 

proportions of intermediate gray scale voxels. The effect is confounded by the 

relatively poor image quality in the high-resolution image, which further increases 

the fraction of intermediate gray scale voxels at pore-grain boundaries. 
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To test the hypothesis of non-pore voxels blocking the pore channels critical for 

fluid flow I compute a new set of permeability data using a micro-porosity 

segmented image; specifically I set the first 26 gray scale values of the 100 

intermediate gray scale voxels to permit fluid flow as if they were open pore voxels, 

thereby removing the negative effect of some of the isolated non-pore voxels and 

those in the connecting pore channels (figure 7.4c). An unavoidable affect of this 

procedure, especially given the low signal to noise ratio of the original tomogram, is 

the impact on other parts of the image where legitimate intermediate gray scale 

voxels may be changed to permit fluid flow in the same way as open pore space. 

The calibration results using this new set of permeability data show significant 

improvement and give R2 values of 0.93 and 0.91 for the 16 and 61 µm/voxel 

images respectively (figure 7.5a and b). The 1:1 comparisons of the predicted 

permeability data are nearly as good as for sample 1 (figure 7.5c and d), showing 

that 16 and 61 µm/voxel models produce similar predicted permeability values. 

This result demonstrates that a region of interest scan HR image can be sensitive to 

errors in segmentation and the resultant computed permeability directly impact the 

statistical calibrations and the quality of the predicted data. 

 

It is true that removing isolated clusters would completely remove the impact of 

isolated clusters in the pore spaces; however, the main objective of this section of 

work was to investigate whether non-pore voxels in the connecting pore channels 

impact on permeability computations and the resulting statistical correlations. Non-

pore voxels in the pore channels are unlike to be impacted by removing isolated 

clusters, which is why I chose to set the first 26 gray scale voxels to permit fluid 

flow. This method targets both the isolated clusters in the larger pore spaces and 

the intermediate gray scale voxels in the pore channels, and provides support for 

the conclusion that accurate representation of pore connectivity is more important 

for developing statistical models than completely removing isolated clusters. 

Furthermore, high-quality images that sufficiently capture the connecting pore 

channels are unlikely to have detrimental imaging artefacts in the larger pore 

spaces. 

 

Samples 1 and 2 presented in this thesis contain a wide range of rock textures from 

fine to coarse grained, which makes them ideal for testing correlations between 

rock characteristics and petrophysical properties. However, both samples are from 

the same formation of sandstone, which may limit the generality of the results. 

Further work is required to fully understand the impact of the choice of sub-plug 
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location and whether or not similar statistical relationships exist in samples from 

other sandstone formations. 

 

 

 
Figure 7.4: A 2D slice from the original tomogram showing the presence of noise 

(a), the segmented image of the same area showing isolated clusters of non-pore 

voxels in the pore space (b), a slice of the micro-porosity segmented image where 

the first 26 gray scale values are set to permit fluid flow (c). It is also important to 

note that this procedure has the potential to impact other parts of the image, as 

can be seen in the cluster of legitimate intermediate gray scale values in the 

bottom centre of the image, which changes to allow fluid flow from image (b) to 

(c). 
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Figure 7.5: The simulated permeability from the 5 µm/voxel image plotted against 

the predicted permeability from the 16 µm/voxel image (a) and the 61 µm/voxel 

image (b) making use of a micro-porosity segmentation to adjust the permeability 

computation. Comparing the predicted permeability for the 8 mm sub-plug (c) and 

the 25 mm core plug (d). 

 

8 Capillary Pressure Results and Discussion: Sample 1 

In this chapter I demonstrate the use of morphology-based capillary pressure 

simulations on segmented µCT images to produce primary drainage and imbibition 

curves. Furthermore I process the capillary pressure data by fitting the Brooks-

Corey function to extract threshold pressure and lambda (a parameter describing 

the shape of the drainage flow capillary pressure curve and is related to pore size 

distribution), which, in addition to residual non-wetting phase saturation, I later use 

in statistical correlations with predictor characteristics. 
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8.1 Pore Morphology-Based Capillary Pressure Simulations 

As a first step to produce primary drainage and imbibition curves I performed pore-

morphology-based simulations on the segmented HR images. The simulation 

requires Euclidean distance transform (EDT) data to which it applies a covering 

radius transform (CRT). For drainage flow the simulation starts by setting a CRT 

threshold equal to the maximum radius in the pore space (indicating low capillary 

pressure) and determines the wetting phase saturation of the pore space by 

computing the fraction of pore volume occupied by spheres of that threshold and 

smaller (Knackstedt et al., 2004). Selecting successively smaller sphere radii 

thresholds increases the capillary pressure and alters the corresponding wetting 

phase saturation. For imbibition flow the CRT threshold is set equal to the minimum 

value (indicating high capillary pressure) followed by the computation of the 

fraction of pore volume occupied by spheres of the threshold size and larger. 

Selecting successively larger sphere radii thresholds decreases the capillary 

pressure and alters the corresponding wetting phase saturation. The imbibition 

simulation also checks for isolated clusters of pore space below the threshold value, 

which are not included in the computations at subsequent threshold values. These 

isolated clusters represent the trapped fraction of non-wetting phase. The results 

include drainage and imbibition curves expressed in terms of the pore radius, the 

reciprocal of which is a measure of pressure (1/pore radius), the wetting phase 

saturation as a fraction of the total resolved pore volume, and the fraction of 

trapped non-wetting phase (figure 8.1). 
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Figure 8.1: Drainage and imbibition curves from pore morphology-based capillary 

pressure simulations (capillary pressure on the y-axis). The trapped non-wetting 

phase curve defines the pressure at which snap-off occurs to trap a fraction of the 

non-wetting phase. 

 

8.2 Parameterisation of Morphology-Based Capillary Pressure Curves 

Absolute permeability is a relatively simple petrophysical property in that the 

simulation results provide a single number for each sub-volume, which could be 

used for statistical analysis. Here the result for each simulation volume is a series 

of data points defining a set of curves. I process each drainage curve by describing 

the capillary pressure (!!) mathematically in terms of the Brooks-Corey function 

(Brooks & Corey, 1964) (eq. 8.1), which contains three critical parameters: the 

threshold injection pressure (!!"), residual water saturation (!!"), and lambda (!). 
 

Another option would have been to compute the Leverett-J function (Leverett, 

1941) for each sub-volume. The Leverett-J function depends on several input 

values, which include capillary pressure, porosity, permeability, and fluid contact 

angle. It is possible to derive porosity and permeability from the high-resolution 

images (and has been done in this thesis); however, the contact angle in this 
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instance would be an assumed value. Furthermore the Leverett-J function provides 

just one output value for each sub-volume to describe the drainage capillary curve. 

Here I have chosen to use the Brooks-Corey function because it relies directly on 

the measured capillary pressure and fluid saturation values computed during 

simulation. By fitting a Brooks-Corey function to the simulated data I am presented 

with at least three parameters that describe the drainage capillary curve for each 

sub-volume. It follows that there are three parameters available for statistical 

correlation testing, rather than the one value derived from the Leverett-J function.  

 

 !! = !!"
1 − !!"
!! − !!"

! !
 (8.1) 

 

 

The injection threshold pressure represents a relatively intuitive value describing 

the pressure required to initiate breakthrough of a non-wetting phase into the pore 

system of a porous medium. The residual water saturation quantifies the fraction of 

wetting phase, in many cases water, which cannot be driven from the formation by 

the non-wetting phase, regardless of increases in the injection pressure. Lambda is 

less intuitive, but essentially controls the rate at which the steepness of the curve 

increases as the injection pressure increases. In physical terms the part of the 

curve that increases sharply in steepness generally relates to when non-wetting 

fluid starts to invade the smaller pore spaces and the crevices and corners of the 

pore volume. 

 

In general, and not with specific reference to the method based on CRT values used 

here, the imbibition curve combined with the physical phenomena of hysteresis 

makes it possible to quantify the fraction of residual non-wetting phase. Here the 

CRT method can only represent the trapping aspect of the hysteresis phenomena. 

In terms of CO2 storage the fraction of residual non-wetting phase represent the 

fraction of CO2 remaining in the pore system as a result of capillary trapping. The 

difference between one and wetting phase saturation at the end of imbibition flow 

represents the trapped fraction of non-wetting phase. 

 

Notably the data points for the drainage curve in figure 8.1 do not define a smooth 

curve. For a range of pressure values there may be just a single saturation value, 

which demonstrates that the pressure needs to increase to a certain value for the 

injected non-wetting phase to access the next pore space and cause a change to 
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the wetting-phase saturation. Additionally, the drainage simulation is not capable of 

computing realistic residual water saturations and reports zero as the lowest water 

saturation. In the data processing stage prior to performing the Brooks-Corey 

modelling, for those data points with duplicate saturation values I retain only the 

maximum pressure value and the corresponding saturation value (figure 8.2a). The 

data series also contains several large jumps from one saturation value to the next. 

These gaps correspond to when the non-wetting phase gains access to and fills a 

pore space without the need for an increase in pressure. The range of saturation 

values spanning each of the jumps clearly exists in reality, but is not recorded by 

the simulation. The data processing step adds data points to these ranges to 

construct a capillary pressure curve that is more appropriate for Brooks-Corey 

modelling (figure 8.2b). 

 

 

 
Figure 8.2: a) The original drainage simulation data showing duplicate saturation 

values (white dots with black edges) for a range of pressures. The blue data points 

are used for further processing. b) Additional data points in yellow filling the jumps 

in saturation values. 

 

 

The parameters from the simulation results are used to correlate with the same 

rock characteristics to develop statistical models that are used to estimate the 

multi-phase flow parameters in volumes where there is not sufficient resolution for 

direct computation. 

 

I perform the Brooks-Corey modelling using Python’s Curvefit module, a least 

squares method that requires an initial guess for each parameter in the function. 

The simplest approach is to set the initial guess for the residual water saturation 
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(!!") to zero and lambda (!) to 1. Testing indicated that the model fit is insensitive 

to initial guess lambda values below 5. At high wetting phase saturation values, as 

the pressure increases, the curve rises steeply and sometime irregularly before 

flattening out. The initial flattening of the curve is associated with the threshold 

capillary pressure. To estimate the threshold pressure for use in the Curvefit 

module I start by computing the ratio between pressure and saturation data, 

performing a linear interpolation between each data point, smoothing the ratio 

curve, and plotting it against saturation (figure 8.3a). The pressure to saturation 

ratio curve shows an inflection point at high saturation values, which corresponds 

with the threshold pressure. The next step is an iterative process that uses each 

saturation value as a break point in the ratio curve and computes a line of best fit 

for those data points below the breakpoint and a second line of best fit for those 

data points above the breakpoint, resulting in a set of lines for data below and 

above the series of breakpoints. The final step is identifies the pair of lines with a 

minimum intercept angle, and uses the pressure associated with the saturation of 

the intercept point as the threshold pressure (figure 8.3b). Before performing the 

Brooks-Corey modelling those data points below the estimated threshold pressure 

are removed. In physical terms these data points relate to the initial infiltration of 

the fluid into the rock and do not provide additional information useful to modelling 

the data with the Brooks-Corey function. In a final step of pre-modelling processing 

I include additional data points to extend the curve to a wetting phase saturation of 

1. Figure 8.4 shows an example of the Brooks-Corey modelling performed on the x-

direction simulated drainage capillary pressure curve for one of the sub-volumes 

from unit 1 in sample 1.  

 

For the purposes of this study I focus on the injection threshold pressure for 

statistical modelling and prediction. Because the original simulation results do not 

approach the actual residual water saturation I do not consider !!" from 

morphology-based simulations for statistical modelling. The difference between 1 

and the wetting phase saturation at the end of imbibition flow represents the non-

wetting phase saturation (!!"), or in the case of CO2 injection, the fraction of 

trapped liquid CO2. In section 8.1.2 I briefly present and discuss the results of 

statistical modelling of ! and !!", however, in the case of !!", because of the nature 

of morphology-based flow simulations, snap-off occurs at lower capillary pressure 

values than in reality, thereby increasing the residual non-wetting phase saturation.  
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Figure 8.3:a) Plotting the ratio between pressure and saturation against saturation 

and smoothing the curve for analysis; and b) showing the set of linear models for 

data above and below the saturation breakpoints with a minimum intercept angle to 

define the threshold pressure and saturation coordinate. 

 

 
Figure 8.4: Morphology-based simulated capillary pressure data in the x-direction 

showing the drainage and imbibition curves and the Brooks-Corey model for 

drainage flow. Note once more the relatively low wetting phase saturation at the 

end of imbibition flow and the resulting high non-wetting phase saturation. 
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8.3 Threshold Pressure Statistical Calibration: Individual Characteristics 

The threshold pressure used for correlation with predictor rock characteristics was 

computed from the parameterisation of the of the primary drainage pore-

morphology-based capillary pressure curves using the Brooks-Corey function (eq. 

8.1). These parameters are the threshold pressure (!!"), describing the pressure 

required to initiate breakthrough of a non-wetting phase into the pore system, 

which establishes a connected cluster of fluid between the inlet and outlet faces. To 

understand their individual predictive ability I investigate the coefficient of 

determination (!!) from ordinary least squares modelling between each individual 

rock characteristic computed from the 5, 16, and 64 µm/voxel images and !!" (table 

8.1). 

 

Table 8.1: The coefficient of determination (!!) from ordinary least squares 

modelling of the logarithm of each rock characteristic (from the 5 µm/voxel, 16 

µm/voxel, and 64 µm/voxel images) with the logarithms of threshold pressure (!!") 
computed from the Brooks-Corey models of the pore-morphology-based primary 

drainage simulations performed on the 5 µm/voxel image. 

Characteristic 
!! for log (!!") vs. 
log (5 µm/voxel 
characteristics) 

!! for log (!!") vs. 
log (16 µm/voxel 
characteristics) 

!! for log (!!") vs. 
log (64 µm/voxel 
characteristics) 

Rock Fabric       

Grain Size (GS) 0.520 0.289 0.003 

Grain Sorting (Gsort) 0.414 0.535 0.344 

Clay Fraction (CF) 0.061 0.270 0.006 

Pore System       

Porosity Fraction (Po) 0.407 0.429 0.002 

Open Pore Size (µm) (PS) 0.886 0.723 0.464 

Open Pore Sorting (Psort) 0.001 0.061 0.073 

Formation Factor (m=4) (F) 0.217 0.635 0.700 

Minkowski Functionals       

Open Pore Fraction (OPF) 0.089 0.343 0.754 

Surface Area (SA) 0.039 0.696 0.852 

Mean Curvature (MC) 0.105 0.903 0.841 

Euler Characteristic (EC) 0.003 0.633 0.794 

  

The results in table 8.1 indicate that in the 5 µm/voxel data open pore size shows 

the most promising ability as a predictor of !!" with an !! of 0.886. The threshold 

pressure on a capillary pressure curve is generally considered the pressure required 

to establish a connected cluster of non-wetting phase from the inlet to the outlet of 
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the sample and is an indication of the largest connecting pore throat diameter. As I 

discuss in section 3.1 several authors have investigated and demonstrated the 

relationships between pore geometry and permeability and capillary pressure (Katz 

& Thompson, 1986; Purcell, 1949; Swanson, 1981; Thomeer, 1960). It is therefore 

not surprising, yet reassuring, that the 5 µm/voxel pore size characteristic 

correlates well with the threshold pressure. It is also important to note, however, 

that in this instance the pore size value is the median size computed from a volume 

weighted size distribution curve of the total resolved pore volume, which includes 

pore bodies and pore throats. 

 

With decreasing image resolution there is an associated loss of geometric 

information and changes in the ability of the rock characteristics to predict !!". In 

the 16 µm/voxel image the !! value for the pore size characteristic decreases to 

0.723 (table 8.1 and figure 8.5a), while in the 64 µm/voxel data it decreases 

further to 0.464 (table 8.1 and figure 8.5b). Compared to an !! of 0.217 in the 5 

µm/voxel data, Formation factor (!) shows an improved correlation with !!" in the 

16 and 64 µm/voxel images with !!values of 0.635 and 0.700 respectively (table 

8.1 and figure 8.5c and d). This result is similar to that of correlations between 

pore size and formation factor with absolute permeability (section 6.1.2). In the IR 

and LR images pore-grain boundaries and pore throats are represented as 

intermediate gray scale voxels. For the IR and LR images formation factor is gray 

scale sensitive computation, i.e. it incorporates gray scale values representing 

pore-grain boundaries and pore throats. I suggest that in this instance formation 

factor is able to capture some information on pore geometry based on the 

distribution of intermediate gray scale voxels. 

 

A surprising result is the lack of correlation between the Minkowski functionals from 

the 5 µm/voxel image and !!" (table 8.1). Even more surprising is the significantly 

improved predictive abilities of surface area and the Euler characteristic in the IR 

and LR images. For the IR image their !! values are 0.696 and 0.633, and for the 

LR data !! improves to 0.852 and 0.794 respectively (table 8.1). Unlike the 

statistical calibration to predict absolute permeability the open pore fraction 

characteristic shows little correlation with !!" in the 16 µm/voxel data (!! = 0.343), 

while in the 64 µm/voxel image the correlation is somewhat stronger with !! = 

0.754 (table 8.1). In particular mean curvature shows a very strong correlation 

with !!" in both the IR and LR images, with correlation coefficients of 0.903 and 

0.841 for the 16 and 64 µm/voxel images respectively (table 8.1 and figure 8.5e 

and f). The Minkowski functional computations in the IR and LR images are applied 
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to the fraction of resolved pore space and does not take into account voxel gray 

scale values from the original tomogram. 

 

As discussed in section 6.1.2 the resolved fraction of pore space in the IR and LR 

images capture some physically larger component of the actual pore fraction that 

seems to correlate well with the number of transport pathways relevant for 

controlling absolute permeability. The improved correlation between open pore 

fraction from the LR 64 µm/voxel image and !!" computed from the HR 5 µm/voxel 

image suggests a similar behaviour in that the resolved pore fraction represents a 

larger component of the pore system that has some control over the threshold 

pressure. Taking into account the predictive ability of the mean curvature 

characteristic in the IR and LR images, which is computed on the resolved pore 

fraction, I suggest that the geometry of the open pore fraction, and specifically the 

curvature, either plays a role in controlling the injection threshold pressure, or, at 

least in the case of relatively clean sandstone, serves as an indirect measure of the 

pore throat characteristics. In general it might be expected that larger pore bodies 

be connected via larger pore throats. It could be argued that the lack of correlation 

between mean curvature and !!", both computed from the HR 5 µm/voxel image, 

support this hypothesis, since the HR mean curvature computation includes 

connecting pore throats. The IR and LR images effectively separate the pore bodies 

from the connecting pore throats. The geometries of the pore bodies and the pore 

throats are then accounted for respectively by the mean curvature and formation 

factor characteristics. 

 

On the other hand the negative correlation between mean curvature and !!" may 

generate more questions than answers. In general the expectation is that smaller 

pore features ought to correspond to higher !!". In terms of mean curvature, 

smaller pore features produce higher mean curvature values; however, in this 

instance higher mean curvature values correspond to lower pressure. It follows that 

in this instance it may be that mean curvature simply serves as a predictor variable 

of the !!", but that there is no causality, i.e. the mean curvature of the resolved 

pore bodies do not have a controlling effect on !!". To investigate the nature of the 

negative correlation in more detail would require computing the correlation at a 

range of image resolutions to determine what happens with progressive closure of 

the pore throats. This amount of work falls well outside the scope and budget of 

this project. 
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Figure 8.5: The correlations between threshold pressure (computed from the HR 5 

µm/voxel image) and open pore size (a and b), formation factor (c and d), and the 

mean curvature Minkowski functional (e and f) calculated from the 16 and 64 

µm/voxel images. 

 

8.4 Threshold Pressure Statistical Calibration: Multiple Characteristics 

For multiple linear modelling of threshold pressure, lambda, and trapped non-

wetting phase I chose to make use of the backwards elimination procedure. 

Starting with the complete set of predictor characteristics in a multiple linear 
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model, one proceeds to the next model by removing the statistically least 

significant characteristic according to their p-values. Sequential application of this 

procedure eventually arrives at a multiple linear model in which all remaining 

characteristics provide a statistically significant contribution (section 4.5.2). 

 

In multiple linear regressions the coefficient of determination (!!) increases with 

each additional predictor characteristic added to the model. Too many explanatory 

variables, causes the model to be overly sensitive to small changes in predictor 

characteristics that do not provide significant contributions to the model, i.e. noise. 

The implication is that an overfitted model is likely to produce unreliable predictions 

when applied to data outside the calibration set. A general rule of thumb states that 

one needs approximately ten events for every predictor variable in the model 

(Harrell et al., 1984; Peduzzi et al., 1996). In this instance, with 48 data points in 

the calibration set, it would therefore be reasonable to select a calibration model 

with between three and five predictor characteristics. An additional parameter that 

helps to select an appropriate calibration is the adjusted r-squared (!!). The 

adjusted r-squared (eq. 8.2) includes the number of variables (!) and the sample 

size (!) to modify the standard r-squared (eq. 4.2) to apply a penalty if an 

additional variable does not improve the model by more than what would be 

expected by chance.  

 

 !! = 1 − (1 − !!) − !
! − ! − 1 (8.2) 

 

In combination with the p-values for the individual characteristics and the rule of 

thumb suggesting the use of three to five predictors, !! is a powerful tool in 

choosing the most appropriate calibration models. 

  

Table 8.2 summarises the results for the stepwise multiple linear modelling of the 

logarithm of !!" with the logarithms of the characteristics computed from the 5, 16, 

and 64 µm/voxel data using the backwards elimination technique (section 4.5.2). 

The backwards elimination technique is distinctly different from the approach used 

to develop permeability models and I include the full set of models in table 8.2. It 

shows the characteristics included in each successive model, the characteristic with 

the highest p-value, and the !! and !! for each model in the sequence. Figure 8.6 

plots the !! and !! for the series of multiple linear models constructed using the 16 

µm/voxel data and shows the results of multiple linear model 10 from table 8.2. As 

expected !! decreases with each sequential model containing one less predictor 
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characteristic on each occasion (figure 8.6a). Conversely !! increases as predictor 

characteristics are removed for each sequential model reaching a maximum at 

model 7 with a value of 0.94, which contains open pore fraction, pore size, mean 

curvature, clay fraction, and porosity (with porosity as the least significant predictor 

with a p-value of 0.08). !! increases because there are fewer predictor 

characteristics in each successive model resulting in a lower penalty for an 

overfitted model. After !! reaches its maximum it starts to decrease because the 

remaining characteristics explain less of the variability in the response variable. 

Model 10 with an r-squared of 0.937 and an adjusted r-squared of 0.934 is the first 

model in which all the predictors (pore size and mean curvature) are statistically 

significant, i.e. they have p-values smaller than 0.05. It is interesting to note that 

even though a characteristic may be classified as insignificant according to its p-

value, which is a good statistical measure to help guide model development and 

selection, that characteristic may still describe some portion of the variance in the 

response variable. Evidence of this effect is clearly visible in models 7 to 10, which 

include non-significant characteristics, yet the adjusted r-squared increases with 

the addition of those insignificant variables from model 10 to model 7. Given the 

negligible difference in the coefficient of determination between model 7 and 10, 

and the fact that model 10 contains all significant characteristics, model 10, with 

pore size and mean curvature as predictors, is chosen here as the calibration model 

for !!" using the 16 µm/voxel data (figure 8.6b). This result suggests that there is 

likely enough geometric information in the 16 µm/voxel image for purely geometric 

characteristics to adequately describe the variance in threshold pressure. The 

residuals for model 10 (the difference between the observed and predicted pressure 

values plotted against predicted !!") shows no observable bias in the data. 
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Table 8.2: The R-squared (!!) and adjusted R-squared (!!) results from backwards 

elimination stepwise multiple linear modelling of the logarithm of !!" with the 

logarithms of the characteristics computed from the 5, 16, and 64 µm/voxel 

images. 

 

	

5um/voxel 
Characteristics 

16um/voxel 
Characteristics 

64um/voxel 
Characteristics 

Model	
#	

Multiple 
Model 
(Least 

Sig. Char: 
P-val) 

R2 Adj. 
R2 

Multiple 
Model 
(Least 

Sig. Char: 
P-val) 

R2 Adj. R2 

Multiple 
Model 

(Least Sig. 
Char: P-

val) 

R2 Adj. R2 

1	

OPF, PS, 
Psort, GS, 
Po, F, SA, 
MC, EC, 
CF, GSort 
(GSort: 
0.875) 

0.942 0.924 

OPF, PS, 
Psort, GS, 
P, F, SA, 
MC, EC, 
CF, GSort 
(SA: 
0.987) 

0.949 0.934 

OPF, PS, 
Psort, GS, 
P, F, SA, 
MC, EC, CF, 
GSort 
(Psort: 
0.836) 

0.948 0.932 

2	

OPF, PS, 
Psort, GS, 
Po, F, SA, 
MC, EC, CF 
(CF: 
0.451) 

0.942 0.926 

OPF, PS, 
Psort, GS, 
P, F, MC, 
EC, CF, 
GSort (F: 
0.963) 

0.949 0.936 

OPF, PS, 
GS, P, F, 
SA, MC, EC, 
CF, GSort 
(MC: 0.842) 

0.948 0.933 

3	

OPF, PS, 
Psort, GS, 
Po, F, SA, 
MC, EC 
(GS: 
0.502) 

0.941 0.927 

OPF, PS, 
Psort, GS, 
P, MC, EC, 
CF, GSort 
(EC: 
0.916) 

0.949 0.937 

OPF, PS, 
GS, P, F, 
SA, EC, CF, 
GSort (P: 
0.679) 

0.948 0.935 

4	

OPF, PS, 
Psort, Po, 
F, SA, MC, 
EC (SA: 
0.075) 

0.94 0.928 

OPF, PS, 
Psort, GS, 
P, MC, CF, 
GSort 
(GSort: 
0.762) 

0.949 0.939 

OPF, PS, 
GS, F, SA, 
EC, CF, 
GSort (EC: 
0.748) 

0.947 0.936 

5	

OPF, PS, 
Psort, Po, 
F, MC, EC 
(P: 0.167) 

0.935 0.923 

OPF, PS, 
Psort, GS, 
P, MC, CF 
(GS: 
0.653) 

0.949 0.94 

OPF, PS, 
GS, F, SA, 
CF, GSort 
(GS: 0.681) 

0.947 0.938 

6	

OPF, PS, 
Psort, F, 
MC, EC 
(EC: 
0.254) 

0.932 0.922 

OPF, PS, 
Psort, P, 
MC, CF 
(Psort: 
0.415) 

0.949 0.941 

OPF, PS, F, 
SA, CF, 
GSort (SA: 
0.35) 

0.947 0.939 

7	

OPF, PS, 
Psort, F, 
MC (Psort: 
0.086) 

0.929 0.921 
OPF, PS, 
P, MC, CF 
(P: 0.08) 

0.948 0.942 

OPF, PS, F, 
CF, GSort 
(GSort: 
0.19) 

0.946 0.939 

8	
OPF, PS, F, 
MC (MC: 
0.264) 

0.924 0.917 

OPF, PS, 
MC, CF 
(OPF: 
0.087) 

0.944 0.939 
OPF, PS, F, 
CF (PS: 
0.12) 

0.943 0.938 

9	
OPF, PS, F 
(OPF: 
0.004) 

0.922 0.917 
PS, MC, CF 
(CF: 
0.137) 

0.94 0.936 
OPF, F, CF 
(OPF: 
0.001) 

0.94 0.936 

10	 PS, F (F: 
0.004) 0.905 0.901 PS, MC 

(PS: 0.0) 0.937 0.934 F, CF (CF: 
0.0) 0.923 0.919 

11	 PS (PS: 
0.0) 0.886 0.884 MC (MC: 

0.0) 0.903 0.901 F (F: 0.0) 0.7 0.694 
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Figure 8.6: The R-squared and adjusted R-squared of multiple linear models of 

threshold pressure computed from the 5 µm/voxel image using sequentially fewer 

predictor characteristics calculated from the 16 µm/voxel image. Model 1 contains 

all eleven characteristics, while model 11 contains only one predictor (a). The 

vertical green and magenta stippled lines indicate respectively the models with the 

highest adjusted r-squared and with all significant characteristics (table 8.2). The 

computed threshold pressure plotted against the predicted pressure calculated with 

model 10 containing pore size and mean curvature as predictor characteristics (b). 

The residuals for model 10 plotted against the predicted threshold pressure values 

have no apparent systematic bias apart from an overabundance of data points 

towards lower pressure values (c). 

 

Figure 8.7 plots the !! and !! for the series of multiple linear models constructed 

using the 64 µm/voxel data and shows the results of multiple linear model 9 from 

table 8.2 above. The backwards elimination of characteristics results in a maximum 

adjusted R-squared of 0.939 at model 6 (note that table 8.2 reports that model 7 

also has an adjusted r-squared of 0.939). The first model in which all the 

characteristics are significant according to their p-values is model 9 with open pore 
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fraction, formation factor, and clay fraction and predictor characteristics (figures 

8.7a and b). In a result similar to the modelling of absolute permeability using the 

LR data it would appear that the open pore fraction characteristic is able to capture 

some larger scale portion of the actual pore system that partly controls the 

threshold pressure. The range of resolutions at which open pore fraction correlates 

with !!" is likely to depend on the dominant pore length scales in the sample in 

question. The open pore fraction characteristic for a sample with a smaller (or 

larger) length scale pore system, imaged at the same 64 µm/voxel, may not 

contribute as significantly to a model of threshold pressure. As with the 16 

µm/voxel data a plot of the residuals (figure 8.7c) shows a slight bias towards the 

lower threshold pressure values. This bias in the distribution of the data points is 

likely to be sampling effect as a function of the range of pressures represented in 

the calibration volume. This, along with the question of length scale dependence, 

remains a topic for further investigation.  

 

As with the modelling of absolute permeability, formation factor, used here in a 

manner that incorporates the intermediate gray scale values, again appears to 

capture some geometric information about the pore system in regions where the 

image resolution is insufficient to accurately capture its geometry. A surprising 

inclusion in model 9 is that of the clay fraction characteristic, which is computed as 

a function of the intermediate gray scale voxels (section 4.4.4) and, in the LR 64 

µm/voxel image, is not a true measure of the clay fraction in the sample. Instead it 

represents the sum of those voxels depicting actual clay phase and some fraction of 

those voxels depicting the boundaries between the grain and pore phases. In the 

LR image of this relatively clean sandstone sample the proportion of intermediate 

gray scale voxels representing grain-pore boundaries is likely to be much greater 

than those from actual clay mineral phases. Additionally, the open pore fraction and 

formation factor characteristics both take into account the fraction of resolved pore 

space, whereas clay fraction incorporates the unresolved portion of the pore 

system. I suggest that, like the formation factor, the clay fraction characteristic is 

able to capture some additional information on the pore system that controls the 

distribution of wetting and non-wetting phases and the entry threshold pressure. 
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Figure 8.7: The R-squared and adjusted R-squared of multiple linear models of 

threshold pressure computed from the 5 µm/voxel image using sequentially fewer 

predictor characteristics calculated from the 64 µm/voxel data. Model 1 contains all 

eleven characteristics, while model 11 contains only one predictor (a). The vertical 

green and magenta stippled lines indicate respectively the models with the highest 

adjusted R-squared and with all significant characteristics (table 8.2). The 

computed threshold pressure plotted against the predicted pressure calculated with 

model 9 containing open pore fraction, formation factor, and clay fraction as 

predictor characteristics (b). The residuals for model 9 plotted against the predicted 

threshold pressure values have no apparent systematic bias apart from an 

overabundance of data points towards lower pressure values (c). 

 

With the threshold pressure calibration models selected for the 16 and 64 µm/voxel 

images of the region of overlap, figure 8.8 compares the predicted values from the 

IR and LR data. The 1:1 !! provides an encouraging result indicating that there is 

96% agreement between the predicted threshold pressure values from the 16 and 

64 µm/voxel data for the 8mm overlap region used for statistical calibration. This 

result emphasises the ability of gray scale data in low-resolution images to capture 
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important information pertaining to pore-geometry, which has some control over 

the threshold pressure as derived from Brooks-Corey models of morphology-based 

drainage flow simulations. 

  

 
Figure 8.8: Comparing the predicted threshold pressure from the 16 and 64 

µm/voxel calibration data for the 8 mm sub-plug. 

 

8.5 Lambda and Residual Non-Wetting Phase Saturation 

Here I briefly show the results of statistical modelling of lambda (!) and residual 

non-wetting phase saturation (!!"). Figure 8.9a plots the reference lambda 

parameters derived from the HR 5 µm/voxel image against predicted lambda using 

a multiple linear model containing formation factor, mean curvature, and clay 

fraction from the IR 16 µm/voxel data. Figure 8.9b shows the correlation between 

lambda and predictors from the LR 64 µm/voxel image, which includes open pore 

fraction and mean curvature. The correlation results of lambda are not as 

convincing as the results for threshold pressure. The correlation coefficients are 

0.62 and 0.48 using predictors from the IR and LR data respectively. A low !! is not 

necessarily grounds for declaring a model as bad, but it means that the predictors 

may not explain enough variance in the response variable to make useful and 

reliable predictions. 

 

Calibration models of residual non-wetting phase saturation (1 – wetting phase 

saturation at the end of imbibition flow) using predictors from the 16 and 64 
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µm/voxel images (figure 8.10a and b) have correlation coefficients of 0.67 and 0.76 

respectively, with predictors in the form of the Euler characteristic and clay fraction 

for the 16 µm/voxel data and porosity and formation factor for the 64 µm/voxel 

image. 

 

The models presented in figures 8.9 and 8.10 all show a roughly linear trend 

between the logarithms of the response variable and the predicted values, 

however, it is clear that these models will not be able to produce reliable 

predictions results, especially considering the scale of the y-axis and the range and 

scatter over which the predicted values occur. These results may be interpreted in 

several ways. Either the results suggest that the morphology-based capillary 

pressure simulations are not able to produce accurate estimates of the modelled 

parameters, or that the predictor characteristics do not contain the relevant 

information to accurately predict those parameters. I suggest that both of these 

explanations are valid. Because of the limitations to morphology-based simulations 

explained in section 4.5.1 estimates of lambda from the capillary pressure curve 

are not accurate; therefore, resulting in poor correlations. In the case of 

correlations with residual non-wetting phase saturation I refer the reader to chapter 

10 where I present data collected using network model-based capillary pressure 

simulations, which are generally considered more accurate. In support of the poor 

correlations in figure 8.10, in chapter 10 I provide further evidence that the 

predictor characteristics may not have the relevant information to make accurate 

predictions of residual non-wetting phase saturation. 

 

 
Figure 8.9: The computed lambda (!) from the HR 5 µm/voxel image plotted 

against the predicted ! using predictors from the 16 (a) and 64 (b) µm/voxel data. 
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Figure 8.10: The residual non-wetting phase saturation (!!") computed from the HR 

5 µm/voxel image plotted against the predicted !!" using predictors from the 16 (a) 

and 64 (b) µm/voxel data. 

 

9 Capillary Pressure Results and Discussion: Sample 2 

As for absolute permeability here I investigate a second sample with a similar 

character to that of sample 1. The 25 mm diameter 100 mm tall core plug of 

sample 2 was collected at 1217.32 m (sample 1 was collected at 1195.39 m). I 

follow the same procedure as from sample 1, i.e. perform a unitisation procedure to 

identify distinct regions, compute capillary pressure curves using a pore-

morphology-based simulation method, model the curves using the Brooks-Corey 

function (eq. 4.1) to determine the threshold pressure for each sub-volume, and 

compute statistical correlations between the predictor characteristics from the 

overlapping IR (16 µm/voxel) and LR images (61 µm/voxel) with the modelled 

threshold pressure using the backwards elimination procedure. 

 

Chapter 7 provides the results for the statistical calibration of absolute permeability 

for sample 2 and highlights that the HR 5 µm/voxel image of the sample 2 sub-plug 

was collected using a region of interest scan, which resulted in complications for the 

accurate modelling of absolute permeability. Because of the low signal to noise ratio 

in a region of interest scan the data I present in chapter 7 suggest that the pore 

system, and, more specifically, the connecting pore throats are not accurately 

depicted in a region of interest scan. Additionally the segmentation step of an 

image with a low signal to noise ratio produces isolated clusters of intermediate 

gray scale voxels in the within what should be open pore phase. The data in 

chapter 7 show that the combined effects of these images artefacts impact the 

numerical permeability computation and therefore the statistical calibration and 
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prediction stages of the procedure. For absolute permeability I was able to correct 

for this effect by making digital adjustments to the HR image, which involved 

making of the micro-porosity segmentation method (see section 4.2) to depict the 

intermediate gray scale voxels on a linear scale between 1 and 100. By setting the 

first 26 phases on this linear scale to permit fluid flow (essentially converting those 

voxels to pore phase) I was able to remove the effect of some of the isolated 

clusters and improve the permeability calibration, bearing in mind that this 

procedure has some unavoidable effects on areas of the image that represent 

actual clay phase as intermediate gray scale voxels. The first 26 phases were 

chosen because in 3D images the centre voxel in a cluster of 27 voxels (3 x 3 x 3 

voxels) is surrounded by 26 voxels. By setting the first 26 phases on the linear gray 

scale to permit fluid flow one essentially allows the 26 voxels surrounding an actual 

pore voxel to also allow fluid flow.  

 

For the threshold pressure correlations in sample 2 I make use of the same 

modified image as used for permeability correlations in chapter 7. Given that 

several authors have demonstrated the use of capillary pressure curves and the 

concept of the critical threshold pressure to predict permeability (Katz & Thompson, 

1986; Swanson, 1981; Thomeer, 1960), and the fact that sample 2 produces good 

correlation between the predictor variables and permeability, the expectation is that 

statistical correlations between the predictor characteristics and the modelled 

threshold pressure values would be similarly good. Figure 9.1 shows the results of 

the backwards elimination statistical modelling procedure by plotting the R-squared 

and adjusted R-squared statistics for each successive model, each with one fewer 

predictor characteristic, for the IR 16 µm/voxel data. Noticeably the coefficient of 

determination is considerably lower compared to the results of sample 1. In a 

similar result to that of sample 1 there is not a large difference between the R-

squared and adjusted R-squared for model 1 (containing all predictors) and model 

9, the first model where all the included characteristics are considered significant 

according to their p-values, indicating that only a few characteristics describe the 

bulk of the variance in threshold pressure. Table 9.1 provides a summary of the 

series of multiple linear models for both the 16 and 64 µm/voxel data. Surprisingly 

the formation factor characteristic, which actively takes into account the image gray 

scale data, is deemed insignificant in model 5 and for the IR 16 µm/voxel image the 

statistically significant characteristics in model 9 are porosity, pore sorting, and 

grain sorting (table 9.1 and figure 9.2). The 61 µm/voxel data tell a slightly 

different story mainly in terms of the characteristics that contribute to the first 
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model with all-significant characteristics, i.e. model 8 with open pore fraction, 

formation factor, mean curvature, and clay fraction. 

 

 
Figure 9.1: The R-squared and adjusted R-squared of multiple linear models of 

threshold pressure computed from the 5 µm/voxel image using sequentially fewer 

predictor characteristics calculated from the 16 µm/voxel data. Model 1 contains all 

eleven characteristics, while model 11 contains only one predictor. 

 

Table 9.1: The R-squared (!!) and adjusted R-squared (!!) results from backwards 

elimination stepwise multiple linear modelling of the logarithm of !!" with the 

logarithms of the characteristics computed from the 16 and 61 µm/voxel images. 

	
16um/voxel Characteristics 61um/voxel Characteristics 

Model	
#	

Multiple Model (Least 
Sig. Char: P-val) R2 Adj. 

R2 

Multiple Model 
(Least Sig. Char: P-

val) 
R2 Adj. 

R2 

1 

OPF, PS, Psort, GS, Po, F, 
SA, MC, EC, CF, GSort 
(SA: 0.908) 0.462 0.355 

OPF, PS, Psort, GS, Po, 
F, SA, MC, EC, CF, 
GSort (PS: 0.709) 0.504 0.405 

2 

OPF, PS, Psort, GS, Po, F, 
MC, EC, CF, GSort (PS: 
0.881) 0.462 0.366 

OPF, Psort, GS, Po, F, 
SA, MC, EC, CF, GSort 
(GS: 0.366) 0.503 0.414 

3 
OPF, Psort, GS, Po, F, MC, 
EC, CF, GSort (CF: 0.443) 0.462 0.377 

OPF, Psort, Po, F, SA, 
MC, EC, CF, GSort (SA: 
0.226) 0.496 0.416 

4 
OPF, Psort, GS, Po, F, MC, 
EC, GSort (OPF: 0.234) 0.457 0.382 

OPF, Psort, Po, F, MC, 
EC, CF, GSort (Psort: 
0.249) 0.482 0.411 

5 
Psort, GS, Po, F, MC, EC, 
GSort (F: 0.343) 0.443 0.377 

OPF, Po, F, MC, EC, CF, 
GSort (GSort: 0.166) 0.47 0.407 

6 
Psort, GS, P, MC, EC, 
GSort (EC: 0.161) 0.434 0.378 

OPF, Po, F, MC, EC, CF 
(EC: 0.093) 0.453 0.398 

7 
Psort, GS, Po, MC, GSort 
(GS: 0.091) 0.415 0.367 

OPF, Po, F, MC, CF (P: 
0.167) 0.426 0.379 

8 
Psort, P, MC, GSort (MC: 
0.1) 0.387 0.348 

OPF, F, MC, CF (OPF: 
0.04) 0.408 0.369 

9 
Psort, Po, GSort (GSort: 
0.023) 0.359 0.329 F, MC, CF (CF: 0.165) 0.366 0.335 

10 Psort, Po (Psort: 0.116) 0.304 0.283 F, MC (MC: 0.219) 0.346 0.325 

11 Po (P: 0.0) 0.277 0.266 F (F: 0.0) 0.33 0.32 
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Figure 9.2: The computed threshold pressure plotted against the predicted 

threshold pressure calculated with model 9 containing porosity, pore sorting, and 

grain sorting as predictor characteristics from the IR 16 µm/voxel data. 

 

Here I propose that the lack of good correlations between the predictor 

characteristics and the modelled threshold pressure is again the result of the low 

signal to noise ratio in the HR 5 µm/voxel region of interest scan of the sample 2 

sub-plug. The low signal to noise ratio has two effects: a) the connecting pore 

throats are not accurately represented, and b) the pore bodies often contain 

isolated clusters of non-pore voxels. Both scenarios have a detrimental effect on 

both single- and multi-phase fluid flow simulations. To investigate the reasons for 

the poor correlations between predictor characteristics and threshold pressure I 

modified the region of interest HR 5 µm/voxel image first by increasing the number 

of intermediate gray scale voxels to be converted into the pore phase and second 

by means of an isolated clusters analysis. 
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The first modification to the image makes use of the same mechanism as when 

changing the image to improve the correlations between predictors and absolute 

permeability (chapter 7). Instead of selecting only the first 26 gray scale values in 

the micro-porosity segmentation, here the first 40 phases are converted to the pore 

phase (figure 9.3). In this instance 40 was chosen as an arbitrary number larger 

than 26 as the first step in testing the impact of incrementally increasing the 

number of gray scale values to permit fluid flow. The effect of this modification is 

that the number of voxels in the spaces that ought to represent pore bodies, and 

that would potentially affect the capillary pressure simulation, is reduced, and the 

pore throat diameters are increased. Additionally true clay phase voxels are also 

converted to pore phase, which has the effect of creating pore space where in 

reality the image should show clay phase. Essentially this procedure has a similar 

effect to applying a new set of segmentation parameters in which the gray scale 

threshold between the pore volume and solid material is increased. The second 

modification to the image is the direct removal of isolated clusters of non-pore 

voxels, the hypothesis being that isolated voxels of solid material in the pore phase 

have a negative impact on the capillary pressure simulations. After the HR 5 

µm/voxel image was modified a new set of capillary pressure curves were 

computed and analysed for threshold pressure. 

 

 
Figure 9.3: Demonstrating the subtle effect of opening the pore throats and 

removing and decreasing the size of some isolated clusters of voxels by increasing 

the number of intermediate gray scale values to convert to the pore phase. The 

original image in which the first 26 gray scale values were converted to pore 

volume (a), and the new image with the first 40 intermediate gray scale values 

converted to pore phase (b). 
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In the sequence of multiple linear models making use of the threshold pressure 

data computed from the modified HR 5 µm/voxel image the models with all 

significant predictor characteristics for the 16 and 61 µm/voxel data both contain 

grain size and formation factor (figure 9.4a and b). The coefficient of determination 

is still relatively low for both the 16 and 61 µm/voxel data compared to what was 

achieved for sample 1. Additionally the presence of grain size in these models is 

surprising, considering the lack of geometric information in the IR and LR images. 

 

 
Figure 9.4: The computed threshold pressure from the modified HR 5 µm/voxel 

image plotted against the predicted threshold pressure calculated using model 10 

with grain size and formation factor as predictor characteristics. 

 

Modification of the HR 5 µm/voxel image of sample 2 did not result in a dramatic 

improvement in the correlations between predictor characteristics and the threshold 

pressure computed from the HR data. Here I restate the suggestion that the lack of 

correlation is related to the fact that the HR image does not capture the true 

structure of the pore system. One might argue that the correlations with 

permeability produced much more promising results; however, in this instance I 

suggest that the geometry of the pore bodies play a more important role in 

capillary pressure simulations, which is already sensitive to problems with image 

quality. With permeability in sample 2 the correlations were improved by opening 

the pore throats with the inclusion of the first 26 intermediate gray scale values in 

the pore phase. This operation also converted a small fraction of isolated clusters in 

the pore bodies to the pore phase. If capillary threshold pressure were purely a 

function of the critical length of the pore system in the form of the largest diameter 

sphere that can be passed through the pore structure, it would be reasonable to 

expect good correlations for threshold pressure using the same image as for 

permeability. In this instance the correlation with threshold pressure is poor, and 



128 

further modification of the image by opening the pore throats and removing 

isolated clusters from the pore bodies did not improve the correlations significantly. 

The presence of non-gray scale sensitive predictors such as grain size and sorting 

also suggest that the gray scale information from the IR and LR images do not 

correspond with the HR data used for capillary pressure simulation. The HR image 

does not accurately represent the pore structure and the location of grain and clay 

mineral phases, while the IR and LR gray scale data represent actual features that 

the simulations on the HR data does not take into account. The only way of 

properly testing this hypothesis is by drilling a physical sub-plug and collecting a 

high quality HR image, which was outside the budget and time constraints for this 

project. 

 

10 Capillary Pressure Results from Network Models 

In this chapter I document and discuss the results from network modelling capillary 

pressure simulations and multiple linear modelling of threshold pressure (!!"), 
lambda (!), and residual non-wetting phase saturation (!!"). The objective is to 

explore the extent to which network modelling data can be used for statistical 

calibration and prediction of these parameters in low-resolution images where they 

cannot be computed directly. The irreducible wetting phase saturation (!!") of 

network model simulations is not computed by any intelligence in the algorithm, 

but is controlled by the proportion of intermediate gray scale voxel and their 

fractions of sub-resolution porosity, therefore, similar to the morphology-based 

data I do not investigate correlations between !!" and the predictor characteristics. 

This work is intended as a preliminary investigation to explore some of the 

differences between morphology- and network model-based simulations. Because 

network modelling is not the main focus of this thesis I perform simulations on 

thirteen sub-volumes, which prevents me from drawing significant conclusions 

about the predictor characteristics; however, the data provide positive indications 

of what might be possible with larger datasets. 

 

10.1 Comparing Network Model and Pore Morphology Simulations 

Pore network models are commonly used for multi-phase flow simulations to better 

understand fluid flow in terms of capillary pressure, relative permeability, 

wettability, and hysteresis. Generally in 3D images of porous rock and other 

materials the pore phase is extracted and analysed for parameters such as 

coordination number (the number of throat connections with each pore body) and 
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pore and pore throat size, which is then used to construct a ball and stick 

representation of the pore network, which is further used for flow simulation. I 

generate network models using Thermo Fisher Scientific’s eCore software package 

and perform capillary pressure simulations on thirteen sub-volumes (four from unit 

1, four from unit 2, and five from unit 3) from the HR 5 µm/voxel image of the 

overlap region in sample 1. The methods used here to generate the network models 

and to perform the capillary pressure simulations are described in detail by Bakke 

and Øren [1997] and Oren et al. [1998]. The sub-volumes from units 1 and 2 are 

3303, while the sub-volumes from unit 3 are 4253. The pore network extractor 

requires cubic volumes for analysis, therefore the sub-volumes from unit 2 used for 

network modelling are slightly smaller in the z-direction compared to the volumes 

used for pore morphology-based capillary pressure simulations, which are 330 

voxels in the x and y directions, and 392 in the z-direction (as determined by the 

unitisation procedure – section 4.3). Other than the size difference for the volumes 

in unit 2 the volumes used for network modelling are the same as those used for 

morphology-based simulations. 

 

Figure 10.1 plots the morphology and network modelling capillary pressure 

simulation results for one sub-volume from each of the three units (figure 10.1a, b, 

and c), while figure 10.1d, e, and f directly compare the critical threshold pressure 

(!!"), lambda (!), and the residual non-wetting phase saturation computed from 

Brooks-Corey modelling of the network model and morphology-based simulation 

drainage curves. To produce the plots in figure 10.1a, b, and c I convert the 

pressure data from the network models, expressed in Pascal, to the same units as 

the morphology-based pressure data (1/pore radius) by dividing the Pascal units by 

the interfacial tension (set to 30 dynes/cm) and the contact angle of 10 degrees. 

Here the purpose of the comparison is to demonstrate that one is able to set the 

contact angle of the network model simulation to a non-zero value, and that the 

result is likely to be a more accurate representation of reality. I acknowledge that it 

is more appropriate to also perform a network model simulation with the contact 

angle set to zero, however, limitations on computational resources and time 

prevented those tests in this project.  

 

The results in figure 10.1a, b, and c demonstrate that for units 1, 2 and 3 the 

estimated and computed threshold pressures using Brooks-Corey modelling of the 

network modelling simulation drainage curves are consistently higher compared to 

that of the morphology-based simulations. Moreover, there appears to be a general 

linear relationship between the network model and morphology-based threshold 
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pressure data (figure 10.1d). As expected both the morphology and network 

modelling results show that unit 2 (the finest grained unit of the three) has the 

highest threshold pressure values, while unit 1, with intermediate grain size, has 

the lowest threshold pressure values. Unit 3, which is generally coarser grained, 

with poorer sorting and higher proportions of clay minerals, produce intermediate 

threshold pressure data that fall between those of units 1 and 2. A comparison of 

the lambda (!) parameter estimated from Brooks-Corey modelling shows no 

discernable relationship between ! derived from network modelling and 

morphology-based drainage simulations, except that the ! estimates from network 

modelling simulation curves of sub-volumes in unit 1 are generally lower compared 

to the morphology-based data, and for most, though not all, sub-volumes from 

units 2 and 3 the network modelling-based lambda data are higher compared to the 

morphology based values (figure 10.1e). Additionally, lambda depends largely on 

the corners and crevices of the pore system, which are quite different between pore 

network models and the morphology-based analysis. Figure 10.1f compares the 

residual non-wetting phase (!!") results and, similar to the ! comparison, shows no 

clear trend in the data, except that the estimates of !!" from the network modelling 

imbibition curves are considerably lower compared to the morphology-based data. 

This is not a surprising result considering that the morphology-based drainage 

simulations approach zero as the irreducible wetting phase saturation. Additionally 

the imbibition flow simulations cannot account for multi-phase flow phenomena 

such as wettability (contact angle) and therefore it cannot account for flow 

hysteresis, therefore the !!" is over-estimated compared to results derived from 

network model simulations. 

 

The summarised results in figure 10.1 clearly demonstrate the main advantages of 

network modelling over morphology-based capillary pressure simulations. A 

network modelling method incorporates parameters such as wettability in the form 

of contact angle, therefore the simulation is able to produce more realistic 

estimates of the residual non-wetting phase saturation (the difference between 1 

and the wetting phase saturation at the end of imbibition flow) compared to 

morphology-based simulations, which have no method for distinguishing drainage 

and imbibition flow. The network model drainage curves do not approach zero like 

their morphology-based counterparts, therefore estimates of lambda, essentially 

the parameter controlling the rate at which the curve rises from the threshold 

pressure value to the maximum pressure at the end of drainage flow, are 

potentially more accurate. 
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Figure 10.1: A visual comparison of x-direction network model and pore 

morphology-based capillary pressure simulation results of one sub-volume from 

units 1 (a), 2 (b), and 3 (c) in the HR 5 µm/voxel image of sample 1; diagrams 

comparing the threshold pressures (d) and lambda (!) (e) parameters computed 

from Brooks-Corey modelling (section 8.2) of the network model and morphology-

based drainage curves; and, a diagram comparing the estimated residual non-

wetting phase saturation at the end of network model and morphology-based 

imbibition flow simulations (f). 
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In the early stages of investigating capillary pressure in this study I concluded that 

network modelling would likely provide useful data for parameters such as residual 

non-wetting phase saturation; however, the data I present here in figure 10.1 

demonstrate that, even though there is a difference in the absolute values of 

threshold pressure computed from network modelling and morphology-based 

drainage simulations, there is a general linear relationship, therefore morphology-

based simulations can provide valuable insights into the flow behaviour of 

heterogeneous systems such as the Precipice sandstone. Moreover, performing 

morphology-based capillary pressure simulations are computationally efficient and 

is a convenient method for generating large amounts of data in a short timeframe. 

 

As valuable as pore network models are, it is worth considering some of its 

limitations. Most flow simulation methods rarely take into account dynamic effects 

on the pore structure as a result of fluid flow or fluid-rock interaction. It follows that 

contact angle and wettability in pore network model-based simulations are assumed 

to be constant from the beginning to the end of the simulation, whereas, in reality, 

the pore geometry may have changed as a result of fluid flow and fluid-rock 

interaction effects such as diffusion or precipitation. Additionally, pore network 

models do not take into account variables such as temperature and its influence on 

wettability. To compensate for these variables a simulation may be run several 

times using different parameters in an attempt to understand the potential impacts. 

Finally, wettability is typically set for the entire network model, while in reality 

wettability is different for various components of the pore network where pore-

grain boundaries are defined by different minerals, e.g.: quartz, calcite, or clay. 

 

10.2 Multiple Linear Statistics with Network Model-Derived Parameters 

In this section I present and discuss the multiple linear modelling of the capillary 

pressure parameters derived from network model simulations of drainage and 

imbibition flow. Brooks-Corey modelling of the drainage curves produce threshold 

pressure, lambda, and irreducible wetting phase saturation (section 8.2), while 

residual non-wetting phase saturation is computed by subtracting the wetting 

phase saturation at the end of imbibition flow from 1. Here I make use of the same 

backwards elimination statistical procedure used for the morphology-based 

statistical model development in section 8.4 (see section 4.7.2 for a description of 

the backwards elimination method). I perform network modelling on a small 

exploratory data set of thirteen sub-volumes, therefore I choose to consider only 
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model 10, which contains just two predictor characteristics for each response 

variable. 

 

Figure 10.2 shows the multiple linear statistical modelling of threshold pressure 

using IR 16 µm/voxel and LR 64 µm/voxel predictor characteristics (a and b). The 

IR and LR models respectively contain pore size and formation factor, and 

formation factor and clay fraction, with !! values of 0.91 and 0.93. The results 

clearly demonstrate that, even with the small number of data points, a multiple 

linear model containing some combination of predictor characteristics is likely to 

describe a large proportion of the variance in the threshold pressure data. The 

comparative model containing just two characteristics to describe the variance of 

the morphology-based threshold pressure data using 16 µm/voxel characteristics 

also include pore size, but it lacks formation factor, which is substituted by mean 

curvature (table 8.2). The comparative 64 µm/voxel model contains the same 

characteristics (formation factor and clay fraction) as the model of network 

modelling threshold pressure data (table 8.2). These results demonstrate some 

consistency in the low-resolution characteristics that correlate with threshold 

pressure, regardless of the method used for its computation. 

 

 

 
Figure 10.2: Threshold pressure computed from network model drainage curves 

simulated using the HR 5 µm/voxel image plotted against the predicted threshold 

pressure of multiple linear models using characteristics from the IR 16 µm/voxel 

data (a) and the LR 64 µm/voxel image (b). The 16 µm/voxel model contains pore 

size and formation factor, while the 64 µm/voxel model contains formation factor 

and clay fraction. 
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Figures 10.3 shows the multiple linear models of lambda using IR 16 µm/voxel and 

LR 64 µm/voxel predictor characteristics (a and b). Surprisingly the statistical 

correlations between the response parameter lambda and the IR 16 µm/voxel and 

LR 64 µm/voxel predictor characteristics produce encouraging results. The predictor 

characteristics included in the model are surface area and mean curvature for the 

IR data (figure 10.3a), and formation factor and clay fraction for the LR data (figure 

10.3b), with coefficients of determination of 0.95 and 0.93 respectively. Threshold 

pressure and lambda are modelled with the same 64 µm/voxel predictor 

characteristics in the form of formation factor and clay fraction. 

 

 
Figure 10.3: Lambda computed from network modelling drainage curves using the 

HR 5 µm/voxel image plotted against the predicted lambda of multiple linear 

models using characteristics from the IR 16 µm/voxel data (a) and the LR 64 

µm/voxel image (b). The 16 µm/voxel model contains surface area and mean 

curvature, while the 64 µm/voxel model contains formation factor and clay fraction. 

 

 

Figure 10.4 shows the multiple linear statistical modelling of !!" using IR 16 

µm/voxel and LR 64 µm/voxel predictor characteristics (a and b). The IR and LR 

models respectively contain open pore fraction and the Euler characteristic, and the 

Euler characteristic and mean curvature. In this instance the results are less 

encouraging compared to the modelling results of those parameters derived from 

the drainage curves. The coefficients of determination of the IR and LR data are 

0.67 and 0.61 respectively. The model containing three characteristics from the IR 

16 µm/voxel image has an !! of 0.85. It is therefore possible that with a larger 

number of data points and one or two more predictor characteristics, rather than 

just the two used in this example, one could achieve a more complete description of 
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!!". Admittedly this is a somewhat speculative assessment and would require 

further investigation. 

 

 

 
Figure 10.4: Residual non-wetting phase saturation computed from network 

modelling imbibition curves using the HR 5 µm/voxel image plotted against the 

predicted residual non-wetting phase saturation of multiple linear models using 

characteristics from the IR 16 µm/voxel data (a) and the LR 64 µm/voxel image 

(b). The 16 µm/voxel model contains open pore fraction and the Euler 

characteristic, while the 64 µm/voxel model contains Euler characteristic and mean 

curvature. 

 

10.2.1  Dependence of Residual Non-Wetting Phase Saturation on Initial 

Wetting-Phase Saturation and Contact Angle 

It is important to note that !!" at the end of imbibition flow can be influenced by !!" 
at the beginning of imbibition flow, i.e. at the end of drainage flow, and the 

receding contact angle (!); therefore, changes in these parameters may produce 

!!" data that show stronger correlation to the predictor variables than is shown in 

figure 10.4. To explore the effects of these parameters on !!" I perform several 

imbibition flow simulations on the same volumes used previously by setting !!" to 

0.1, 0.2, 0.3, and 0.4, and the receding contact angle to 20, 40, and 60. The !!" 
values equate to initial non-wetting phase saturations of 0.9, 0.8, 0.7, and 0.6. 

Here, a single drainage simulation is performed and purposefully terminated as 

close as possible to the pre-set !!" value; this state is then used as the starting 

point for imbibition flow simulation. Figure 10.5 shows the changes in !!" as a 

function of !!" and !. Each column represents a target !!" value and contains the !!" 
values as columns of data series for ! equal to 20, 40, and 60. The first column for 
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!!" = 0.1 also contains the !!" values for ! = 10, which is the original imbibition flow 

simulation result used to compute the statistical models in figure 10.4. For !!" = 0.1 
figure 10.5 shows that increasing ! to 20 causes an overall decrease in !!" for all 

the sub-volumes, while also increasing the range of values. A further increase in ! 
to 40 again decreases !!", but limits the range of values except for one low value of 

~0.125. A final increase of ! to 60 also results in lower !!" values, but this time 

increases the range. This patter associated with changes in ! is repeated for !!" 
equal to 0.2, 0.3, and 0.4. Considering the effect of !!" the graph shows that there 

is a relatively small decrease in !!" from 0.1 to 0.2 and to 0.3 for all ! values, with 

the largest decrease in !!" occurring at !!" of 0.4. The decrease in !!" with 

increasing !!" is largest for ! = 20 and smallest for ! = 60. In the context of CO2 

injection and storage the data from this kind of analysis is plotted as a trapping 

curve. In this instance because I am working with multiple units and sub-volumes 

in a single sample the data is complex to visualise and therefore not plotted in the 

conventional manner for trapping curve analysis. Trapping curves are important to 

understand the changes in potential capillary trapping of liquid CO2 with increasing 

distance from the injection site, where there is less certainty of what injection 

pressure could be achieved. As the injection pressure drops with distance from the 

well-bore !!" increases, which, as can be seen in the simulation data of figure 10.5, 

causes a general decrease in !!" (the trapped fraction of CO2). 
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Figure 10.5: The residual non-wetting phase (!!") plotted as a function of 

irreducible wetting phase saturation (!!") at the end of drainage flow and receding 

contact angle (!). The colours indicated in the legend are applicable to all marker 

shapes. 

To check if changes in !!" as a function of !!" and ! has an impact on the statistical 

correlations with predictor variables I run the backwards elimination statistical 

modelling process for each set of !!" values. Figure 10.6 reports the coefficient of 

determination for each set of values. The data demonstrates that there is very little 

change in the amount of variance in !!" described by the predictor characteristics as 

a function of changes to !!" and !. There is a small increase in !! compared to the 

correlation results using !!" = 0.1 and ! = 10 when !!" increases to 0.2 and ! to 20. 

In all other cases, except with !!" = 0.4 and ! = 40, the correlation coefficient is 

lower compared to the original data. In the one case where an improvement occurs 

it is only when for the 16 µm/voxel characteristics. With these results I suggest that 

!!" and ! are not the main drivers for relatively poor correlations between !!" and 

intermediate- and low-resolution predictor characteristics. 

  

 
Figure 10.6: The coefficient of determination (!!) of multiple linear models between 

!!" values, produced as a function of changes to !!" and !, and the 16 and 64 

µm/voxel characteristics. Owing to the relatively small dataset the !! values plotted 

here are for those models containing just two predictors. The colours in the legend 

reference all marker shapes. 
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The multiple linear statistical modelling results of parameters derived from network 

model drainage curves are mostly encouraging. Even though the dataset used here 

is small, especially compared to the relatively large number of predictor 

characteristics, the results indicate that it is possible to produce multiple linear 

models to describe large proportions of variance in the parameters derived from 

Brooks-Corey modelling of the drainage curves. As mentioned in section 10.1 even 

though there are differences in the threshold pressure data computed from network 

model and morphology-based simulations, in both cases statistical models are able 

to provide good descriptions of its variance. In the case of lambda network model 

simulations appear to produce more accurate estimates of the lambda parameter, 

which correlate well with predictor characteristics. Given the good statistical 

modelling results of threshold pressure and lambda, I suggest it could be possible, 

if the contact angle is known, to predict a Brooks-Corey function that describes 

drainage flow in IR and LR images where its direct simulation is not possible, but 

that imbibition may be more challenging. 

 

11 Conclusions and Further Work 

Computing petrophysical properties from low-resolution µCT images that cannot 

accurately represent the pore system is a significant and important challenge. 

Solving this problem would make µCT imaging of small-scale samples more 

applicable and useful to larger scale reservoir and aquifer modelling. Flow 

properties such as permeability and threshold pressure are controlled by pore 

system geometry and length scales. In practice large-scale images of 

heterogeneous systems are critical to capture formation heterogeneity at the whole 

core scale, however, at the time of writing this thesis µCT imaging systems cannot 

generate images with the desired combination of sufficient resolution and field of 

view. Even it were possible to collect such images, current computing infrastructure 

are not able to manage the large amounts of data. Instead, in large-scale images, 

the critical pathways that control fluid flow are typically represented as 

intermediate gray scale values as a result of the partial volume effect, where, at the 

boundaries between pores and grains, high and low gray scale values contribute in 

various proportions to produce some intermediate gray scale value.  

 

In this body of work I present the fundamentals of a workflow aimed at predicting 

petrophysical properties where they cannot be computed directly. The two main 

hypotheses with which I approached this work are: 



139 

1) The classic approach to such problems applies classification methods to 

group repeating rock units; however, I suggest that a statistical approach 

may be more appropriate, and  

2) Where pore throats are represented as intermediate gray scale voxels in 

lower resolution images, those measures that somehow make use of the 

image gray scale values have the potential to correlate with fluid flow 

properties 

Results clearly showed that a statistical approach is more appropriate since the 

range of rock characteristics with which a classification of units or laminations could 

be performed exists on a continuum with no clear boundaries between repeating 

units. The statistical approach relies on multi-scale imaging to compute absolute 

permeability and parameterised capillary pressure curves on high-resolution images 

of small-scale samples that cover a range of grain sizes and pore length scales. 

Furthermore I compute fundamental rock characteristics from lower resolution 

images that are digitally aligned to correspond with the high-resolution data. I 

make use of multiple linear ordinary least squares regression analyses between the 

high-resolution petrophysical properties and the lower resolution rock 

characteristics to generate statistical models with which to predict the flow 

behaviour in other parts of the sample where high-resolution data are not available. 

Critically the low-resolution characteristics include formation factor, which, in digital 

rock physics can be tuned to take into account image gray scale values by 

performing a soft-thresholding image segmentation technique. The workflow 

produces a 3D property map for large-scale core images, which is ideally suited for 

property upscaling.  

The results on two laminated sandstone samples demonstrate that multiple linear 

regressions can successfully model permeability and threshold pressure. The 

statistical model for permeability using the intermediate-resolution data includes 

pore size, open pore fraction, and formation factor, while the model using the low-

resolution data only includes open pore fraction and formation factor. It can be 

inferred from the results that the open pore fraction and formation factor 

characteristics appear to capture critical aspects of the pore system when computed 

on images with relatively low resolution. The voxel sizes of 64 and 61 µm/voxel 

used in samples 1 and 2 are far lower than that required to capture the full pore 

system in black-and-white, making open pore fraction a surprising inclusion as a 

predictor characteristic. Open pore fraction is, however, no longer a measure of 

porosity in these lower-resolution images and appears to relate to the number of 
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transport pathways critical to fluid flow. The correlation coefficient of the statistical 

model between permeability and open pore fraction remains relatively unchanged 

over a reasonable range of gray scale thresholds used for image segmentation, 

indicating that the predictive ability of the model is to some extent independent of 

the segmentation parameters used to isolate the pore space. Formation factor, 

because of the use of gray scale information in its computation seems to 

incorporate some measure of pore system length scale and connectedness. At 

intermediate resolution pore size is still a measure of pore length scale and is 

deemed to contribute significantly to a statistical model of permeability. 

 

Statistical models of threshold pressure were developed using the backwards 

elimination technique and contain pore size and mean curvature using the IR 16 

µm/voxel data, and open pore fraction, formation factor, and clay fraction using the 

LR 64 µm/voxel data for sample 1. As for permeability it would appear that the IR 

data contain enough geometric information for purely geometric characteristics in 

the form of pore size and mean curvature to adequately describe the variance in 

threshold pressure, while using the LR data requires gray-scale sensitive 

characteristics like formation factor and clay fraction to capture the length scale 

information required to properly model threshold pressure variance. It is critical to 

mention the failed result of threshold pressure regression analysis in sample 2. 

Sample 2 was imaged as a region of interest scan, which means it has a low signal 

to noise ratio. The results of modelling permeability and threshold pressure in 

sample 2 demonstrates the importance of image quality and the associated quality 

of the reference computed property values, which are critical to the reliability of the 

predicted petrophysical data. Even though some modifications were made to correct 

for this effect and to produce good models of permeability, these modifications had 

little effect on the models of threshold pressure. I suggest the modifications to the 

low signal to noise ratio image of sample 2 also changed the distribution of 

intermediate gray scale voxels in the pore bodies, which means the lower resolution 

images now contain information in locations where the high-resolution image does 

not. I conclude that the accuracy of predictions made using the workflow presented 

in this thesis is highly dependent on image quality and consistency. I further 

recommend that additional testing be conducted using a physically cored sample as 

a comparison to the results from samples 1 and 2 reported in this thesis. These 

new data will give greater insight into the impact and usability of high-resolution 

region of interest scans for statistical calibrations and predictions. 
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In terms of the overall body of work I emphasise that further research is required 

to assess the general applicability of the results and workflow presented in this 

thesis. In more complex rocks with more varied clay mineral composition and 

where the pore system connects in a different way, it is possible that the 

characteristics used in this study lose some of their value as property predictors. 

For example, intermediate gray scale values representing pore throats and those 

representing clay minerals could easily be confounded, potentially compromising 

the statistical models. In the workflow presented here, these cases would be 

identified by poor cross-scale correlations during the statistics calibration stage. 

Additional work should also test the degree to which the choice of sub-plug location 

impacts on the predicted permeability and threshold pressure results and to what 

extent a single calibration can be transferred to other samples collected from the 

same or different formations. Additionally, the quality of the statistical calibrations 

should be assessed on a sample-by-sample basis before any predictions are made 

at the larger scale. It is likely that there is a relatively narrow range of image 

resolution for which the characteristics identified in this paper are effective 

predictors of permeability and threshold pressure for a given rock. If the resolution 

is too high then characteristics such as open pore fraction and formation factor will 

not contain information on channel sizes; if the resolution is too low then pore 

system geometric information is lost altogether. Nevertheless, the approach 

presented here allows for permeability, and with further testing, capillary pressure 

estimation for images of significantly lower resolution than was hitherto possible, 

and opens up the possibility of estimating these petrophysical properties for whole-

core digital images, since scanners exist today which can image whole core of 100 

mm diameter at the ~64 µm/voxel resolution used in this study. 

The exploratory dataset of network model-based drainage and imbibition flow 

simulations presents encouraging results for the prediction of multi-phase flow in 

low-resolution images. The results indicate that, compared to data derived from 

pore morphology-based simulation, network model simulations produce higher 

values of threshold pressure and more accurate estimates of irreducible wetting 

phase saturation and lambda. Both network model and morphology-based 

simulations produce good correlations between threshold pressure and lower 

resolution predictor characteristics. Combined with the encouraging correlations 

with lambda I suggest it could be possible to predict a Brooks-Corey function that 

describes drainage flow in lower resolution images where its direct simulation is not 
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possible. Statistical models of residual non-wetting phase saturation at the end of 

imbibition flow were less successful. Testing the influence of increasing irreducible 

wetting phase saturation and receding contact angle indicated that the non-wetting 

phase saturation generally decreases; however, the data in this thesis show that 

changes in residual non-wetting phase saturation do not translate to improvements 

in correlations with predictor characteristics. It is possible that larger datasets and 

the inclusion of more than just two predictor characteristics in a statistical model 

could describe more of the variance in residual non-wetting phase saturation. 

One of the main objectives of this study was to explore the fundamentals of cross-

scale correlations between predictor characteristics and petrophysical properties. 

Now that we have a better understanding of the relationships between flow 

properties and their predictor characteristics, more advanced techniques such as 

machine learning could be used to develop smarter predictions systems that might 

be able to perform more efficient image classifications and relate subtle changes in 

predictors to differences in flow behaviour at the larger scale. 
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