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PREFACE

Some decisions had to be made in the presentation of this thesis.

C hapters 2 through 9, representing the experimental results of the 

investigation, have been prepared as m anuscripts for submission to recognized 

journals. A t the tim e of thesis submission, all had been sent to journals, one has 

been published, two have been accepted for publication, and five are in the hands of 

editors. It was decided to present these experim ental chapters in the form in which 

they were subm itted to the respective journals, except th a t all references cited 

appear in a single section a t the end of the thesis and acknowledgements are

contained in a general sta tem ent a t the beginning. As journal policy differed on 

abbreviation lists, a comprehensive list is presented a t the begining of the thesis as 

well as in the applicable chapters. Page num bers are sequential throughout the 

thesis to avoid confusion with journal pagination of individual chapters, but full 

reference to the journal s ta tus of the chapter is given as a footnote on the title

page of each chapter.

Inevitably some reiteration of points will be evident in the introduction and 

discussion sections of experimental chapters because of the need for internal

consistency in each chapter. The general in troduction (Chapter 1), which sets the 

background to the investigation, and the final discussion (Chapter 10), which 

assesses the contributions of the investigation in th a t context, are designed to tie 

together the separate strands.

The experim ental work was carried out entirely by the candidate (C.D.B.

Hawkins) under the guidance of the supervisors of the Ph.D. program  (M.I. 

W hitecross and M .J. Aston). The writing up as m anuscripts was also done by the 

candidate, again with appropriate discussion between candidate and supervisors.

The subm itted papers thus have jo in t authorsh ip  with the candidate as senior 

au thor in each instance and supervisors as junior authors.
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ABSTRACT

Three well fertilized, non-nodulated legume species [broad bean (Vicia faba  

L. cv. Aquadulce), cowpea [Vigna unguiculata  (L.) Walp. cv. Caloona] and garden 

pea (P isum  sa tivu m  L. cv. Victory Freezer)] were infested with various initial 

densities of two aphid species [cowpea ( A p h is  craccivora Koch) and pea 

[Acyrthosiphon p isu m  (Harris)]] to determ ine the short-term  (10 days) effect(s) of 

aphid feeding on plant growth, to  test whether there was a critical initial aphid 

density, to gauge whether the response of the legumes to aphid feeding was general 

or plant-aphid species specific. Early experim ents showed th a t short-term  aphid 

infestation significantly reduced plant growth in all combinations used and th a t the 

reduction in p lan t biomass was greater t h a n  could be accounted for by the

increase in aphid biomass, thus indicating possible increased rates of respiration 

an d /o r decreased rates of photosynthesis. Initial aphid density appeared to be

unim portant in determ ining final plant dry weight, so tha t, in all future experiments 

an initial aphid density of 10 adult aphids per plant was chosen as the most 

economical num ber of aphids to ensure significant growth reductions. The overall 

p lan t response to aphid feeding was general ra ther than  plant-aphid species specific.

A series of studies were conducted on nitrogen (N) and phosphorus (P) 

accum ulation, root respiration, shoot respiration, translocation, and photosynthetic 

C 0 2 gas exchange to determine where biomass was being lost in non-nodulated 

aphid-infested plants, and if any of these physiological processes were plant-aphid 

species specific. After 10 days of infestation, there was no significant difference 

(nsd) between control and infested plants for N and P accum ulation on a percentage 

basis but on an absolute basis, control plants accum ulated significantly more N and 

P. The pattern  of N and P accum ulation was specific for each plant species. Root 

respiration was significantly reduced in aphid-infested plants because of a reduced 

translocate flux to the roots. The longer the aphid infestation, the less was the 

activity of the alternative respiratory pathw ay in the roots of infested plants. 

Shoots of aphid-infested plants had greater rates of respiration, alternative pathway 

capacity, and photosynthesis, and lower a lternative pathway activity than their 

respective controls. The increases in photosynthesis and shoot respiration, suggesting
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a delay of senescence, were probably associated with aphid-induced alterations in 

source-sink relationships and these were possibly due to changes in the

concentrations of plant growth substances.

To determ ine whether the increased rates of photosynthesis in aphid-infested 

shoots could result in a long-term compensatory growth response, cowpea aphids 

were removed from cowpea seedlings after 20 days infestation and the p lants were 

grown to m aturity . There was nsd in biomass between control and formerly

infested plants after four m onths, even though control plants were significantly

larger a t the time of aphid removal. It appears th a t the aphid-induced

enhancem ent of growth resulted from changes in the levels of endogenous plant

growth substances.

Series of plant tissue extractions and thin layer chrom atogram s were

conducted to determ ine whether aphids were injecting foreign substances into the

plant. No compound of unequivocally aphid origin was found, but there were 

differences in the am ounts of various substances present in host plants. From  early 

studies, it appeared th a t aphid feeding caused broad bean to  lose its apical

dominance. To determ ine if this was an aphid-induced cytokinin type response, 

BAP (6-Benzyl-aminopurine) was sprayed on shoots or poured in to  the root zone of 

broad bean seedlings. A phid-treated and B A P-treated plants had significantly more

lateral branches than controls and BA P-treated plants had lowered rates of root

respiration, higher rates of shoot respiration and of alternative pathw ay activity in 

shoots than  controls.

These results indicate th a t host plants respond to aphid infestation in a 

general way rather than in a plant-aphid species specific m anner and growth

responses m irror this tra it. The changes in translocation patterns, increases in 

photosynthesis and increases and decreases in shoot and root respiration,

respectively, appear to be due to aphid-induced alterations in endogenous plant 

growth substance concentrations.

The aphid-induced alterations to host p lant physiology are capable of resulting 

in a compensatory growth response if the aphids are removed.
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CHAPTER 1 

INTRODUCTION

Aphids are one of the most defenceless yet m ost destructive economic pests of 

agricultural crops around the world (Bornman and Botha 1973). The loss to the 

pastoral industry in A ustralia due to aphid feeding was estim ated in 1982 at over 

$A 100 million per annum  (Lehane 1982). Infestations of aphids may cause the 

p lants to be stunted or killed prem aturely; though often the damage is less obvious 

but nevertheless significant (Blackman 1974). L ittle is known of aphid-host plant 

interactions. Most plant biologists are familiar with the use of aphid stylets to tap 

sieve tube elements in translocation studies (Zim m erm ann 1960; Bornman and Botha 

1973; Dixon 1975; Richardson 1975) and are aw are th a t their roses can be severely 

damaged by aphids. Breeding of plant resistance to aphids, however, can  be  

a i d e d  by an understanding of the underlying physiological responses to aphid

probing and feeding (Southwood 1973; Dixon 1977; de Ponti 1982; Kowalski and 

Visser 1983).

1.1 A p hid  ch aracter istics

Aphids or Aphididae belong to the large order of hemimetabolous insects 

(insects with incomplete m etamorphosis) known as the Hem iptera or bugs (Blackman 

1974). T hey  belong to the suborder H om optera which also includes frog- 

hoppers, leafhoppers, scale insects and white flies (Dixon 1973).

Most aphids are polymorphic: th a t is, w ithin a single species several distinctly 

different forms or morphs of individuals are produced (Dixon 1973). Adult aphids 

can either be winged (alate) or wingless (apterous) and the quality of their food is 

thought to be partially responsible for determ ining this change of condition 

(Blackman 1974).
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1.1.1 Aphid morphology and reproduction

The morph of aphid familiar to most people is the summer form, both apterae 

and alatae, and they are all females (Dixon 1973). They are viviparous, that is, 

they give birth to live young, and the young are produced from unfertilized ova by 

parthenogenesis (Blackman 1974). It is this method of reproduction tha t  enables 

aphids to multiply at such a tremendous rate in the summer to exploit short-term 

food supplies (Blackman 1979). The nymphs can s ta r t  feeding as soon as they are 

born. Most aphids do have a sexual phase in their life cycle (Dixon 1973) but 

some, in countries with mild winters (Australia) or in the tropics, seem to have 

dispensed with it (Blackman 1974; Maelzer 1981). The aphids utilized in this study 

were maintained in the parthenogenetic phase.

Before birth the female aphid nymph already has her daughters developing 

inside her (Blackman 1974) and it is this telescoping of generations or paedogenesis 

which confers a reproductive advantage on the aphids (Dixon 1985). As Blackman 

(1974) points out; if you s tar t  with an ovum of an aphid and of a sexually 

reproducing insect, and assume they both produce 50 offspring per female in each 

generation, in two generations the aphid will have produced 127,550 individuals and 

in the same time, the other insect will have produced 50 individuals. Therefore, it 

is not surprising tha t  aphid infestations are capable of inflicting considerable damage 

to plants.

Parthenogenetic individuals are a genetic clone, meaning tha t  aphids should be 

very similar if not identical from one experiment to the next. However,

parthenogenetic aphids have a remarkable ability to adapt to a wide range of 

environments and host plants (Dixon 1985). The adaptation arises through 

phenotypic expression and genetic mutation as there is no unequivocal evidence for 

endomeiosis in parthenogenetic females (Blackman 1979).
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1.1.2 Aphid feeding

All the Hemiptera are piercing and sucking insects which feed on plant sap, or 

in some cases, blood (Blackman 1974). Their m outhparts  are modified for this 

purpose (Pollard 1973). The mandibles and maxillae, which form the jaws of 

insects which bite food, in the Hemiptera, form two pairs of fine, long, bristle-like 

stylets which can be seen only under a microscope (Auclair 1963). The beak or 

rostrum, which is characteristic of Hemiptera and has four segments in an aphid, is 

more easily observed (Blackman 1974). There is a dorsal groove in the rostrum in 

which the stylets run (Pollard 1971, 1973). At its apex, the stylet groove becomes 

a tube which encloses the stylets tightly and guides their movements (Dixon 1973). 

The two pairs of stylets come together in the groove forming an interlocking bundle 

(Blackman 1974). The inner faces of the maxillary stylets form two canals; the 

central food-canal for the uptake of plant translocate, and a fine duct through which 

saliva is injected into the plant (Auclair 1963; Dixon 1973; Pollard 1971, 1973, 

1977). The mandibular stylets protect and support the maxillary stylets, and aid in 

the piercing and penetration of plant tissue (Blackman 1974). There are sensory 

nerve dendrites running inside the stylets and this may indicate that the stylet tip 

also serves a chemosensory function (Parish 1967).

An aphid’s stylets can probe through plant tissue and tap  the phloem sieve 

tubes rich in plant translocate. In a healthy plant, the phloem is under 

considerable pressure (Zimmermann 1960) and once a sieve tube element is tapped, 

translocate will flow up the food-canal of the aphid into its pharynx, with no effort

on the part of the aphid (Kennedy and Mittler 1953). There is no doubt tha t

aphids can suck up food when a plant wilts and the phloem loses turgor because 

they have a muscular food pump at the entrance to the pharynx (Mittler and Dadd 

1962; Auclair 1963).

Phloem feeding aphids probably use their food pump as a regulatory valve so 

as to have control over the rate of translocate uptake (Mittler and Dadd 1962). 

Not all aphids are phloem feeders. The violet aphid M yzus  ornatus  Laing, is

obliged to suck up its food because it feeds from mesophyll cells near the edge of
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the leaf lamina (Lowe 1967). In actively growing leaves, parenchymatous cells are 

richer in nutrients than the phloem and this may compensate for the energy 

expended in obtaining the food (Blackman 1974). Some aphids also feed from the 

xylem (Dixon 1973).

1.1.2.1 Stylet penetration and saliva composition

The stylets may follow an indirect route to reach the phloem sieve tube 

elements, usually passing between the plant cells rather than through them 

(Zimmermann 1960). The aphid ejects saliva down the salivary-canal as it 

penetrates the plant tissue (Auclair 1963). The saliva contains a polyphenoloxidase 

which appears to be an invariable component (Miles 1968a), a pectin 

polygalacturonase (Laurema and Nuorteva 1961; McAllan and Adams 1961) which 

probably dissolves the middle lamella, and a cellulase so tha t  the stylet tips can 

pass through the plant tissues more easily (Adams and Drew 1963). Otherwise, 

only a few sugar hydrolyzing enzymes have been found in the saliva of bugs that 

feed on phloem or xylem sap (Nuorteva 1958). There is also good evidence that 

aphid saliva also contains natural phytohormones (Nuorteva 1955, 1956; Hussain et 

al. 1974).

The saliva sets into a gel as it flows out near the tip of the penetrating stylet 

and eventually forms a salivary sheath around the stylets (Auclair 1963). Aphis  

craccivora Koch has been reported to secrete two types of saliva, a watery liquid 

and a more viscous material which forms the stylet sheath (Miles 1959). Saliva is 

probably secreted only during feeding at times when ingestion is not possible (Miles 

1968a). Salivation ceases when the stylets penetrate a sieve tube element, although 

it occurs during penetration and removal of the stylets from the plant tissue 

(Kinsey and McLean 1967). It is thought that the saliva may contain in its 

combination of components, substances which can be ’toxic’ to the plant (Auclair 

1963; Miles 1968a; Dixon 1973; Blackman 1974;).
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1.1.3 Aphid host plant selection

Kennedy and Booth’s (1951) proposed theory of host plant selection involves 

two kinds of stimuli from the host plant, ’token’ and ’nutrient’ stimuli. Token or 

flavour stimuli provide information about the kind or species of plant on which the 

aphid has arrived and nutrient stimuli inform the aphid about the physiological 

condition of the plant and its value as food. The stimuli probably enable the aphid 

to optimize its feeding location on the plant.

1.1.4 Phloem feeding and aphids

The N to C ratio of plant translocate is probably sub-optimal for the growth 

of phloem feeders (Raven 1983). They must pass a large amount of translocate 

through their body to extract the nitrogenous compounds which are essential for 

growth and reproduction (Mattson 1980). Therefore, the honeydew or sugary liquid 

which the aphid excretes through its anus, is almost equal in quantity to the

translocate it imbibes at the other end (Mittler 1957). Under ideal conditions, an

aphid apparently takes in more nitrogen than it can use because most of the amino 

acids and amides tha t  are found in translocate are usually present, in smaller

quatities, in the aphid’s honeydew (Mittler 1958). Plant hormones are also present 

in the honeydew of aphids (Hussain et al. 1974). Changes in concentration of

nitrogenous substances in the phloem translocate of the plant are the major reason 

why aphids change or alternate host plants (Blackman 1974). Phloem feeding 

aphids are usually found on the youngest leaves (Mittler 1957). These leaves, even 

without the aphids, are in fact an energy drain to the plant because of their import 

of nutrient rich translocate (Harris 1973).

1.2 H o st p lan t-ap h id  in teraction s

There is a considerable volume of information available on the effect of the 

host plant upon the physiology of the aphid, ranging from host plant selection 

(Kennedy and Booth 1951; Kennedy and Stroyan 1959; van Emden et. al. 1969; 

Dixon and W ratten 1971; Dixon 1973; van Emden 1973; Blackman 1974) to effects 

of aphid diet on osmoregulation (Kennedy and Fosbrooke 1973). Much is known
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about the effect of aphid vectored plant viruses on the physiology of the host plant 

(Kennedy et al. 1962; M errett and Bayley 1969; Swenson 1973; Harris and 

M aramorosch 1977; Pollard 1977; Kurstak 1981). However, the information 

available on the effects of aphid feeding on the physiology of the host p lant is often 

a t best, scarce, and at worst, contradictory.

1.2.1 Reduced plant growth and the effect of translocate removal

One thing th a t most workers agree about is th a t severe to m oderate aphid 

infestations will reduce yield and to ta l plant biomass on a short- and a long-term 

basis, in both herbaceous and woody plant species (Harrington 1941; Allen 1947; 

Harvey and Hackerott 1958; Howe and Pesho 1960; M cM urtry 1962; Dixon 1971a,b; 

Forrest et al. 1973; van Emden 1973; Galecka 1977; Barlow et al. 1977; Kain et al. 

1977, 1979; M allott and Davy 1978; Wu and Thrower 1981; Barlow and Mesmer 

1982; Harper and Kaldy 1982; P e titt  and Smilowitz 1982; Tedders et al. 1982; 

Havlickova and Nemec 1983; R ohitha and Penman 1983; Singh et al. 1983; Bishop 

1984; Choudhury 1984; Sirur and Barlow 1984; Summers and Coviello 1984; Burton 

et al. 1985; Koritsas and Garsed 1985). There have been about as many 

mechanisms attribu ted  to these reductions in growth and reproductive output as 

there are physiological phenomena to be investigated.

The removal of translocate by aphids causes them  to act as physiological 

’sinks’ for plant nutrients drawn from distant plant organs (Way and Cammell 

1970). In fact, they can be a considerable energy drain on the plant. A single 

willow aphid can account for the photosynthetic products of 5 to 20 cm 2 of leaf 

(M ittler 1958). One average adult pea aphid represents about 8 percent of the 

daily net primary production of a 0.15 g dry weight pea plant (Randolph et al. 

1975). On a lime tree, an average seasonal aphid infestation of 5 aphids per leaf 

consumes 19 percent of the tree’s net annual production (Llewellyn 1975). Clearly, 

aphids can become a major drain or sink on infested plants and this in itself has 

the potential to cause severe dam age to the plant.

Wu and Thrower (1981) reported th a t aphids could divert 20 percent of the 

translocate of a leaf from its normal destination. There also can be a decrease in
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transport from roots to shoots with an aphid infestation of the shoots (Forrest et 

al. 1973; Hussain et al. 1973). Altered translocation patterns may be a significant 

contributor to  the damage observed in aphid infested plants (Daly 1976). The 

imbibing of translocate by aphids can also reduce starch and carbohydrates in roots 

(Tedders et al. 1982) and shoots (Kloft 1960; Tedders et al. 1982). In lime and 

sycamore trees the energy drain of the aphids, th a t is, removal of translocate, 

accounts for only one-third of the observed reduction in growth (Dixon 1971a,b). 

For another hom opteran, in a leafhopper infested grass, translocate removal 

accounted for about tw o-thirds of the observed reduction in plant growth 

(Andrzejewska 1967). Finally, there is some evidence th a t aphids feeding from the 

phloem do not cause phloem injury in branches of woody species (Evert et al. 1968) 

but do cause callose residues to clog the phloem in leaves (Tedders and Thompson 

1981; Wood et al. 1985), the exact cause and result of this direct response to aphid 

feeding is still not known (Wood et al. 1985).

1.2.2 P lant response to aphid saliva

Aphids cannot be regarded as simply imbibers of phloem sap because they 

secrete substances into the sieve tube elements (Green 1971) which cause changes in 

growth and translocation (Edwards and W ratten  1980), either directly or indirectly 

(Southwood 1973). Many of the aphid-induced changes are to the aphid’s advantage 

but not always (Dixon 1975). For example, some substances in hemipteran saliva 

may produce local proteolysis and increase free amino acids in the region where the 

insect is feeding (McNeill and Southwood 1978).

Some aphids induce the development of structural abnorm alities called galls in 

their host plant. The plant tissue grows around and surrounds the aphid and its 

progeny, then later in the season the gall opens and the aphids leave to  find 

another host (Dixon 1973). Early workers were able to stim ulate gall form ation by 

using sawfly or leaf-miner larval excrement (Cosens 1912; LaRue 1937) and also by 

applying heteroauxin (LaRue 1937). This lead to  the use of extracts of non-galling 

aphids in the search for auxin.

Link et al. (1940) dem onstrated curvature responses in Avena  coleoptiles with
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ether ex tracts of aphids but were unable to determ ine if the auxin’s origin was 

plant or aphid. Allen (1947) concluded th a t aphids either inject or w ithdraw a

substance which increases or decreases the activity of the p lan t’s response to growth 

substances. Allen (1947) also considered there was a similarity in growth changes 

caused by plan t hormones and insect feeding, and found th a t bean plants treated  

w ith hormones failed to show the expression of insect damage after insect feeding. 

It was then dem onstrated th a t substances in the saliva of aphids could be 

translocated throughout the entire plant (Lawson et al. 1954). The sim ilarity in

disturbance to the plant caused by insect feeding and plant hormone treatm ents was

noted again (Nuorteva 1955). Nuorteva (1956) then observed growth inhibiting 

substances in hom opteran saliva and later concluded th a t they may be hormones 

and enzymes previously drawn out of the p lan t (Nuorteva 1958). Later it was

shown th a t aphid feeding could reduce the auxin content of its host (Maxwell and 

Pain ter 1962a) and th a t aphids concentrate the auxins in their honeydew (Maxwell 

and Pain ter 1962c). The auxin present in pea aphids was reduced by a short 

period of food deprival prior to analysis for auxins (Maxwell and Painter 1962b). 

This dem onstrated th a t the auxin was plant derived rather than aphid synthesized. 

Maxwell and Pain ter (1962b) concluded th a t the ’toxins’ may be concentrated 

auxins or plant growth inhibitors which had their origin from substances extracted 

by the aphid during feeding.

Aphid infestation can result in increased levels of growth inhibitors in shoots 

and increased levels of cytokinins in roots, with decreased levels of growth prom oters 

in the shoots (Hussain et al. 1973) but the imbalance of growth inhibiting hormones 

can not be accounted for by indiscriminate translocate removal by aphids (Hussain 

et al. 1974). Perhaps, there is an interaction between the non-hormonal plant 

growth regulators (which may or may not be present in aphid saliva) and the plant 

hormones, as suggested by Kefeli and Dashek (1984). It has also been hypothesized 

th a t seasonal correlation of insect growth and reproduction to the environm ent is 

influenced by the changing levels of plant hormones (Visscher Neumann 1982). 

There certainly is a hormonal involvement between the plant and the aphid.
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However, even after 70 years, the mechanisms and modes of action of this 

involvement w ith respect to the basic metabolic processes of the plant such as 

nitrogen uptake, respiration, photosynthesis, and plant w ater relations are still 

uncertain.

1.2.3 Aphids and plant nitrogen accum ulation

Nitrogen uptake by plant roots is an energy requiring process (Pate 1983). In 

aphid infested plants to ta l N has been shown to be reduced (Macfoy and Dabrowski 

1984; Sirur and Barlow 1984; Koritsas and Garsed 1985) or remain unchanged 

(Forrest et al. 1973). There is some confusion as to whether aphid feeding results 

in increased or decreased content of percentage nitrogen in infested tissue (Harper 

and Kaldy 1982; Summers and Coviello 1984). The uncertainty of the percentage 

nitrogen content results could be related to the variability in the respiratory and 

photosynthetic rates observed in aphid infested plants (see below). Possibly, the 

response of a plant to an aphid a ttack  is species-species specific, even though the 

overall visible growth response is general for most plant-aphid combinations tha t 

have been examined.

1.2.4 Aphids and plant respiration

Respiration in infested and infected plants has been shown to increase (Allen 

1954; Kloft and Ehrhardt 1959; Scott and Smillie 1966; Daly 1976; U ritani and 

Asahi 1980), remain unchanged until the plant tissue became moribund and then 

decrease rapidly (Wu and Thrower 1981), or to decrease by up to 25 percent (Wood 

et al. 1985). Leafhoppers (also Homoptera) have also been shown to increase the 

rate  of respiration (Ladd and Rawlins 1965).

The purpose of respiration is two fold: to  provide carbon skeletons for the 

biosynthesis of primary and secondary plant products and to provide energy in the 

form of ATP (Millerd and Scott 1962; Uritani and Asahi 1980). Increases in 

respiration should indicate th a t  more energy is available for nutrient uptake and 

more carbon precursors are available for biosynthetic work, while decreases in 

respiration could indicate the opposite. Most respiration measurements have been 

carried out on hom opteran infested shoots, ignoring the roots where most of the
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nutrient uptake occurs. Little is known about the re s p i r a t o r y  apparatus of diseased 

plants (Daly 1976) or about the regulation of the various respiratory pathw ays 

(Uritani and Asahi 1980), such as, the A TP producing cytochrome pathway and the 

non-ATP producing alternative respiratory pathway (Day et al. 1980). For these 

reasons, a considerable portion of this study will investigate respiration and its 

regulation in the roots and shoots of infested and control plants.

1.2.5 Aphids and p lan t photosynthesis

Photosynthetic rates in aphid infested plants have been observed to increase 

(Way and Cammell 1970), remain unchanged (van Emden 1973), or decrease (Kloft 

and E hrhard t 1959; Daly 1976; M allott and Davy 1978; Wood et al. 1985). 

Leafhoppers have only been shown to decrease photosynthesis (Ladd and Rawlins 

1965; Womack 1984). Maggs (1964) and Sweet and W areing (1966) suggested th a t 

the photosynthetic rates of most plants are below the m axima of which they are 

capable, so, the various photosynthetic rates observed above, may all be correct, 

under the experim ental conditions in which they were obtained.

Some workers (Randolph et al. (1975) believe th a t some plants are able to 

compensate for aphid consumption by increasing production. This could be brought 

about by increases in photosynhtesis an d /o r decreases in respiration. To increase 

photosynthesis, increased levels of cytokinins, synthesized in the roots (Kende 1965), 

would be translocated to the shoots because cytokinins have been shown to 

stim ulate photosynthesis in both expanding and expanded leaves (Li and Proctor 

1984). The stim ulation is thought to arise because the composition anc^activ ity  of 

the photosynthetic apparatus is under phytohorm onal control, primarily cytokinins, 

and then auxins, w ith the gibberellins having little or no effect (Buschmann and 

Lichtenthaler 1977). To reduce photosynthesis, it could be something as simple as 

decreased light transm ission to the photochemical apparatus. Tedders and Smith 

(1976) dem onstrated th a t sooty moulds growing on the honeydew of aphids could 

reduce light transm ission by up to 25 percent. If a plant can increase production in 

response to aphid feeding, this probably is the result of a complex interaction 

between levels of p lan t hormones and translocate within various regions of the 

plant.
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1.2.6 Aphids and plant water relations

The fact th a t aphids take large am ounts of liquid food from the plant suggests 

the question of whether plant w ater relations are altered in response to aphid 

feeding. Galecka (1977) reported th a t severe aphid infestations on potato  plants 

had no effect on plant water relations, and suggested th a t the wilted appearance of 

aphid infested plants may be due to other causes. Van Emden et al. (1969) 

observed th a t aphid infested plants had a markedly raised m oisture content. They 

in tim ated th a t the wilting of aphid infested plants was ascribable to  a  reduction in 

root tissue rather than the removal of translocate by aphids. This does not imply 

th a t the water relations are not affected in plant-aphid systems.

1.3 A im  o f research

In order to  improve our understanding, the plant must be regarded as an 

im portan t and variable part of the environm ent of an aphid, rather than  ju st as a 

source of food (Dixon 1977). The understanding of the physiology of the host plant 

and the host plant-aphid relationship is critical to form a reservoir of knowledge to 

produce practical advice on crop m anagem ent and to develop an enhanced 

understanding of plant resistance and breeding. The aim of this study is to 

determ ine the short-term  effects of two wide ranging agricultural pest aphid species 

on the growth, nutrient m obilization, respiration, translocation and photosynthesis of 

three economically im portan t legume species. The water relations of one of the 

plant-aphid combinations will also be investigated. Further, the effects of short­

term  aphid infestation on long-term plant growth will be examined.

1.3.1 Aphids used in the research

Of all the aphid species present in A ustralia, less than 10 percent, 11 species, 

are native or specific to native plants (Eastop 1966). The rest have been

introduced from Asia, Europe and the Americas. The two phloem feeding aphid 

species to be utilized in this study, the cowpea aphid, Aphis craccivora Koch, and 

the pea aphid, Acyrthosiphon p isu m  (Harris), are both non-native cosmopolitan pest 

species (Eastop 1966; Blackman and Eastop 1984) but the la tte r was only
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introduced to A ustralia in 1980 (Milner 1982). A. craccivora has been reported to 

feed on members of 28 different host plant families but it feeds prim arily on the 

stem s and leaves of the Leguminosae (Kennedy et al. 1962; Eastop 1966). A.

p isu m  feeds on the stems and leaves of a t least six genera in the Leguminosae but 

there have been reports of occasional hosts in other plant families (Eastop 1966). 

Both aphid species can be im portant virus vectors (Kennedy et al. 1962) but every 

a ttem p t will be made to keep the stock colonies free of viruses.

1.3.2 P lants used in the research

After the Gramineae, the Leguminosae are the most im portant family of 

cultivated crop plants in both the tropical and tem perate world (Langer and Hill 

1982). In A ustralia and New Zealand where little  nitrogen fertilizer is used, plants 

rely on the nitrogen fixed by legumes for their growth. Two tem perate legumes, 

the garden pea, P isum  sa tivum  L., and the broad, tick, horse, field or faba bean, 

Vicia faba  L., and one tropical legume, the cowpea, Vigna unguiculata  (L.) W alp., 

will be utilized in this study.

The pea crop is one of the four most im portan t grain legume crops (Davies 

1976) and constitu tes an im portant source of protein (seed crude protein about 22 

percent) for hum an consumption (Langer and Hill 1982). The origin of the pea is 

not certain but it would seem th a t it first entered cultivation in Ethiopia, the 

M editerranean, and central Asia, with a secondary source of diversity in the Near 

East (Vavilov 1949). V. faba  is the major grain legume of northern Europe and its 

seed crude protein is around 25 percent (Bond 1976; Langer and Hill 1982). Its 

supposed centre of origin was the Near East with the species then radiating out in 

four directions to create secondary centres of diversity (Cubero 1974). The cowpea 

is an ancient crop now grown as a pulse, a vegetable, or for fodder throughout the 

tropics and subtropics (Steele 1976). The bulk of the world’s crop is grown in 

Africa with Nigeria producing 61 percent of it (Langer and Hill 1982). The seed 

crude protein of cowpea is about 25 percent (Langer and Hill 1982). The plant is 

of tropical African origin and evidently reached Egypt, Arabia and India a t an early 

date  as there is a w ritten record of the cowpea in Sanskrit (Steele 1976; Langer and 

Hill 1982).
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CHAPTER 2

APHID-INDUCED CHANGES IN GROWTH INDICES OF THREE 

LEGUMINOUS PLANTS: UNRESTRICTED INFESTATION1

2.1 In trod u ction

Aphids are im portant pests of forage crops around the world and severe 

infestations may cause the plants to be stunted or killed prem aturely (Blackman 

1974). In contrast to leaf-eating insects, aphids cause little obvious damage to the 

leaves of the host and consequently the m agnitude of their effects on plants is not 

fully appreciated (Dixon 1971b). P lants can respond very rapidly to an aphid 

a ttack  even in organs removed from the site of feeding (Dixon 1975). However, the 

mechanisms by which the aphid infestations initiate their deleterious effects on 

plants are poorly understood (P e titt and Smilowitz 1982).

It is generally accepted th a t aphid infestations reduce the achieved total plant 

dry weight (Galecka 1977; Barlow et al. 1977; M allott and Davy 1978; Wu and 

Thrower 1981; Barlow and Mesmer 1982; Harper and Kaldy 1982; P etitt and 

Smilowitz 1982; HavliCkova and Nemec 1983; Rohitha and Penm an 1983; Lloyd et 

al. 1983) and the ultim ate leaf area (van Emden 1973; M allott and Davy 1978; Wu 

and Thrower 1981; Barlow and Mesmer 1982; Rohitha and Penm an 1983). Barlow 

et al. (1977) speculated th a t the reduction in plant biomass resulted from reduced 

to ta l photosynthesis because of decreased leaf area or because components of aphid 

saliva brought about changes in plant hormones. However, M allott and Davy 

(1978) a ttribu ted  reduction in biomass solely to removal of translocate by the 

aphids. Kain et al. (1977) suggested th a t the reduction in plant biomass was a 

combination of the effects of saliva components and translocate removal.

^HIS CHAPTER WAS PUBLISHED IN THE CAN. J. BOT. 63: 2454-2459 AND IS REFERRED TO
IN THE THESIS AS HAWKINS ET AL. {1985}
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Some workers (Dixon 1971b; Galecka 1977; Wu and Thrower 1981) felt that 

the plant response to  aphid feeding was specific to a particular plant-aphid system. 

This idea is supported by reports th a t various aphid-infested plants have increased 

(W ay and Cammell 1982), unchanged (M allott and Davy 1978) or decreased (Wu 

and Thrower 1981)rates of photosynthesis.

The analysis of components of plant growth (Causton and Venus 1981; Hunt 

1982) can be used to determ ine changes in the partitioning of assimilates and this 

may indicate particular systems th a t are stressed by aphid feeding.

The following study was conducted to  determ ine the sites of any primary 

effects and the time required for physiological responses to be severely impaired and 

to observe whether plant responses to aphid a ttack  are specific for the six 

combinations of plant-aphid species.
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2.2 M a ter ia ls  and m eth od s

Seeds of cowpea (Vigna unguiculata  (L.) Walp. cv. Caloona) were obtained 

from A rthur Yates Seed Company, Rockham pton, Queensland; seeds of broad bean 

{Vicia faba  L. cv. Aquadulce) and garden pea (P isum  sa tivum  L. cv. Victory 

Freezer) were obtained from M. F. Hodge and Sons, Adelaide, South Australia. 

Seeds were potted in vermiculite at a density of 1 seed per 12.5 cm diam eter pot. 

P lants were grown in a clear glasshouse for 2 weeks after planting, divided 

according to  size into 5 blocks with 12 or 9 plants per block, depending on the 

num ber of aphid densities, and then transferred to a LB growth cabinet, described 

by Morse and Evans (1962), for the experimental period.

P lants growing in the glasshouse received from 65 to 80% of the outdoor 

incident photosynthetically active radiation depending on the time of day, measured 

with a Licor quantum  probe (model LI-185A, Lam bda Instrum ent Corp., Lincoln, 

NB, U.S.A.). Air conditioning and under-bench heating allowed the shaded bench- 

top air tem perature to range from 11 to 35°C (Pernix Thermohygrograph, Wilh. 

Lam brecht, KG, G ottingen, Federal Republic of Germany). Glasshouse relative 

hum idity was not regulated and ranged from 30 to 90%. The growth cabinet was 

m aintained on a 16 h light: 8 h dark cycle with a  day tem perature of 23.0 ±  0.5°C 

and a photon flux density of 350 /xm ol.m ^.s'1, supplied by 28 140-W cool white 

fluorescent (95%) and four 100-W incandescent (5%) lamps, while the night 

tem perature was 18.0 _+ 0.5°C. The relative hum idity in the growth cabinet could 

not be regulated and ranged between 50 and 75%. W ater and nutrient (modified 

Hoaglands solution) schedules were identical in control and experimental plants.

Cowpea aphids (A phis craccivora Koch (Homoptera: Aphididae)) and pea

aphids (Acyrthosiphon p isum  (Harris) (Hom optera: Aphididae)) were obtained from 

Commonwealth Scientific and Industrial Research Organization, Division of 

Entomology, Black M ountain, Canberra, A ustralian Capital Territory, Australia 

(courtesy of R. Hughes, R. Milner and T. Woolcock) and each was m aintained on 

the three plant species in a growth cabinet under the environmental conditions

described above.
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On experiment day 0, the 12 plants per block were randomly divided into 4 

groups of 3, 1 control and 3 experimental treatments, while the 9 plants per block 

were randomly divided into 3 groups of 3. Various densities of 8-day-old (^6  h) 

adult aphids from synchronous colonies were transferred to the experimental plants 

using a fine, moist, camel-hair brush. This was repeated for the other blocks. 

Clear plastic collars, 18 cm tall, fitting closely to the top of the pot, confined the 

aphids to an individual plant. When plant branches extended beyond the edge of 

the plastic collar, aphids could leave their plants but had great difficulty in gaining 

access to others. Control plants were checked daily for aphids tha t  may have

gained access.

Experiments were continued for 10 days with one plant per treatment per 

block harvested on day 0 and one control and two or three aphid-infested plants 

harvested per block on days 5 and 10. Leaf area was measured on an automatic 

area meter (Hayashi Denko Co., Ltd., Tokyo, Japan). Other parameters measured 

were leaf number, shoot (stem, petiole and leaf) and root dry weight, and aphid 

fresh and dry weights. Each plant-aphid combination experiment was replicated at 

least once.

Calculations based on the equations described by Hunt (1982) were used to 

determine the following indices. The mean relative growth rate, R, for a period of 

time is

O )  R =  (lnW2 - ln W ,) / (T ,  - T j)

where Wj and W2 are the total plant dry weights at the beginning, Tj, and end, 

T 2, of the time period. This index is very sensitive to the whole environmental 

relationship of the plant (Hunt 1982). A mean relative aphid growth rate (RA) 

index was also calculated. The mean unit leaf rate or net assimilation rate, E, for 

a given time period is

( 2 ) E =  ((W j-W jJ/CTj-T ,))  X ((InAj-lnAjJ/tAj-Aj))
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where Aj and A2 are the leaf areas a t T j and T 2> The mean unit leaf rate  is an 

approxim ate measure of the net photosynthetic rate  if respiration is ignored and if 

mineral uptake is either neglected or allowed for (Causton and Venus 1981). For 

p lants grown in a constant environm ent, E can be considered an index of the 

p lan ts’ productive efficiency (W illiams 1946). The mean leaf area ratio, F, for a 

period of tim e, T j to T 2 is

I

(3) F = ((Aj/W,) + (A2/ W 2))/2

This term  is an index of plant leafiness and assumes th a t the leaves are the sole 

assim ilatory organs. Based on this definition, the stems and roots are unproductive 

(Causton and Venus 1981). In a broad sense, F represents the ratio  of 

photosynthetic to respiring tissue within the whole plant (Hunt 1982). The root to  

shoot ratio  on a dry weight basis was also calculated.

Two-way analysis of variance (ANOVA) was carried out using the G ENSTA T 

package (Statistics D epartm ent, Rotham sted Experimental S tation, U.K.) and 

trea tm ent means were compared using the protected LSD (least significant 

difference) a t a  =  0.05, as described by Snedecor and Cochran (1980).
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2.3 R esu lts

All da ta  presented are representative of the results of replicate experiments.

In all instances except one (three cowpea aphids on pea plants), the control 

plants had significantly higher dry weights than infested plants by day 10 (Fig. 1), 

including the dry weights of their aphids (Table l).This effect could be seen for 

some plant-aphid combinations by day 5 (Fig. l).

The mean relative growth rate, R, was greater in control than in aphid- 

infested groups by day 5, and this relationship was usually significant by day 10 

(Table 2). There was a decline in R between days 5 and 10 and the percentage 

decline was usually larger in experimental groups. Control groups generally had a 

greater mean unit leaf rate, E, than the experimental groups by day 5 (Table 2). 

This relationship was significant by day 10 for all trials except pea aphids on 

cowpea plants (Table 2). There were no significant differences in the mean leaf 

area ratio, F, for any of the plant-aphid combinations (Table 2).

The mean relative aphid growth rate, RA, was greater in the initial low aphid 

density plants than in the high density ones for all plant-aphid combinations on 

days 5 and 10 except for pea aphids on broad bean plants on day 5 (Fig. 2). 

Aphid dry weights initially increased rapidly and then gradually increased at a 

slower rate for all aphid densities in all six combinations (data not shown).



Figure 1. Average plant dry weight and LSD on the days 

shown, for cowpea, pea, or broad bean plants 
infested on day 0 with the number of cowpea or
pea aphids indicated at the base of each bar.



la
nt

 D
ry

 W
ei

gh
t 

( 
g 

)

20

Cowpea aphid Pea aphid

0 5 1
0

i—i I

mm
— I

0 5 1 1
9 5

oo
S
■o
®
CO

Cowpea aphid Pea aphid

„  I
f—1 I

—

0 5 1 1
0 5

•va>co

Cowpea aphid Pea aphid

LSD

oo
30acr
®

§

Day

Plant Type



21

Table 1. Mean dry weights of plants (cowpea, pea or 
broad bean) plus aphids (cowpea aphid or pea aphid) 
after 10 days.

Cowpea aphid Pea aphid

DW, ̂ DW,$

Plant
JL

No/' g *No. g

Cowpea 0 0.624a 0 0.349a
5 0.377b 5 0.296b
10 0.334b 10 0.271b

15 0.278b
LSD 0.148 0.029

Pea 0 0.566a 0 0.606a
3 0.55 lab 5 0.538b
5 0.486c 10 0.510b
20 0.525bc 15 0.457c

LSD 0.040 0.037
Broad bean 0 1.541a 0 1.726a

5 1.375b 5 1.130b
10 1.203c 10 1.170b
15 1.268b c 15 0.977c

LSD 0. 125 0.152

* Initial number of aphids per plant on day 0 
$ Mean plant plus aphid dry weight (DW). Means
followed by the same letter not significantly 
different, P = 0.95.
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Table 2. Average net relative growth rate (R), mean unit leaf rate (E), mean leaf ratio(F), 
and the LSD of 2-week-old cowpea, pea, or broad bean plants infested with different levels 
of cowpea or pea aphids for 5 and 10 days.

R, E, F,★Plant Aphid^ Day No.C -1 ̂  -1 mg.mg .day -2 . -1 mg.m .day 2 -1 m .mg

CP CP 5 0 0.177a 12 790a 0.000 014 3a
5 0. 156b 11 250b 0.000 014 la
10 0.175a 13 580a 0.000 013 2a

LSD 0.013 870 kk

10 0 0.138a 9 690a 0.000 014 8a
5 0.082b 6 010b 0.000 014 5a
10 0.073b 5 370b 0.000 014 4a

LSD 0.009 870 **
CP P 5 0 0.199a 8 400a 0.000 025 4a

5 0.164a 6 640a 0.000 025 8a
10 0.181a 7 300a 0.000 025 8a
15 0.183a 7 590a 0.000 025 3a

LSD ** kk kk

10 0 0.150a 6 320a 0.000 025 4a
5 0.137ab 5 860a 0.000 025 4a
10 0.128b 5 870a 0.000 024 0a
15 0.130b 6 140a 0.000 023 5a

LSD 0.014 ** **
P CP 5 0 0.121a 10 780a 0.000 Oil 3a

3 0.106a 8 890a 0.000 011 9a
5 0.098a 8 5 70a 0.000 011 4a
20 0.085a 8 880a 0.000 Oil 6a

LSD ** ** **

10 0 0.102a 9 070a 0.000 Oil 3a
3 0.099a 8 840a 0.000 011 2a
5 0.084b 7 260b 0.000 011 6a
20 0.093ab 8 370a 0.000 Oil 2a

LSD 0.010 1 000 **
P P 5 0 0.108a 8 900a 0.000 012 8a

5 0.103a 8 5 30 ab 0.000 012 la
10 0.095ab 7 400cb 0.000 012 8a
15 0.082b 6 550c 0.000 012 4a

LSD 0.019 1 480 **
10 0 0.110a 8 470a 0.000 012 9a

5 0. 100b 7 760ab 0.000 012 8a
10 0.093b 7 020b 0.000 013 la
15 0.081c 5 890c 0.000 013 5a

LSD 0.008 870 **

BB CP 5 0 0. 148a 19 190a 0.000 007 2a
5 0.093b 11 510b 0.000 008 2a
10 0.097b 11 850b 0.000 008 2a
15 0.124ab 16 5lOab 0.000 007 5a

LSD 0.040 5 530 kk

10 0 0.108a 13 350a 0.000 007 9a
5 0.091ab 11 310b 0.000 007 9a
10 0.077b 9 160c 0.000 008 3a
15 0.083b 10 260cb 0.000 008 0a

LSD 0.018 1 900 **

BB P 5 0 0.197a 29 740a 0.000 006 7a
5 0.119b 17 480b 0.000 006 8a
10 0.130b 19 830b 0.000 006 7a
15 0.148b 21 570b 0.000 006 9a

LSD 0.038 7 190 **
10 0 0.159a 22 720a 0.000 006 9a

5 0.099b 13 320b 0.000 007 4a
10 0.104b 15 730b 0.000 006 9a
15 0.085b 11 360b 0.000 007 4a

LSD 0.025 5 080 kk

Note: Means followed by the same letter are not significantly different (P=0.95). **, ANOVA
not significant, therefore no LSD.

*, Abbreviations: CP, cowpea; P, pea; BB, broadbean. 
$, Abbreviations: CP, cowpea aphid; P, pea aphid.
C, Initial number of aphids per plant.
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Figure 2. Average net relative aphid growth rate (R ) and 

LSD for pea and cowpea aphids after 5 or 10 days 

of infestation on broad bean, pea, and cowpea 

plants. Initial aphid numbers are indicated at 

the base of each bar.
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2.4 D iscu ssio n

The general decrease in p lant dry weight of aphid-infested plants by day 5 and 

for all plant-aphid combinations but one by day 10 (Fig. 1) indicates the severity 

with which small initial numbers of aphids can cause deleterious effects on plant 

growth. It also indicates th a t initial aphid density has little or no effect on final 

dry weight, van Emden (1973) reported th a t the degree of damage was similar for 

brussels sprouts (Brassica oleracea) regardless of whether the aphid infestation 

(Brevicoryne brassicae) was small or large. Reductions in aphid-infested plant dry 

weights have been reported for A. p isum  on P. sa tivum  (Barlow et al. 1977; 

Barlow and Mesmer 1982; Havlifkova and Nemec 1983) and for the green peach 

aphid (M yzus persicae) on potato  (Solanum  tuberosum) on both a long- and short­

term  basis (Galecka 1977; P e ttit and Smilowitz 1982), for the bean, Vigna 

sesquipedalis, infested with A. craccivora (W u and Thrower 1981), for alfalfa 

(Medicago sa tiva ) infested with various aphid species (Harper and Kaldy 1982; 

Rohitha and Penm an 1983; Lloyd et al. 1983), and for barley (Hordeum vulgare 

infested with the bird cherry-oat aphid (Rhopalosiphum  padi)(M allo tt and Davy 

1978). Wu and Thrower (1981) observed th a t the maximum stress to the leaf on 

which the aphids were feeding occurred on the 6th or 7th day of infestation. This 

would account for the large change observed between days 5 and 10 (Fig. 1).

The dry weight of aphid-infested plants plus the associated aphid dry weight 

was significantly less than their respective controls for the higher aphid densities 

(Table 1), which supports Raven’s (1983) observation th a t net production by the 

unparasitized host exceeds th a t of the host plus parasite. This also indicates tha t 

the aphids were doing more than merely removing translocate from the phloem 

stream  as proposed by M allott and Davy (1978) because the aphids’ conversion 

efficiency of photosynthate to  dry m atter, 43 to  65% (Dixon 1975), was similar to 

th a t reported for herbaceous plants (Lambers 1985).

Significant decreases in mean relative growth rates and mean unit leaf rates 

for aphid-infested plants with respect to their controls (Table 2) have also been 

reported by M allott and Davy (1978) and Barlow and Mesmer (1982). The 27%
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reduction in R for 15 pea aphids on pea plants was much greater than the 8% 

reduction reported by Barlow and Mesmer (1982) for 25 aphids on 14-day-old 

plants, probably because their p lants were larger when infested (day 10 control leaf 

area 0.1219 versus 0.0872 m2 in the present study). The greater decrease in R for 

smaller or younger plants infested with aphids was reported by Barlow and Mesmer 

(1982) while Howe and Pesho (1960) observed th a t alfalfa resistance to aphid attack 

increased with increased plant age or size.

The percentage decline in R (Table 2) between days 5 and 10 was much 

greater in experimental groups than  control, indicating th a t aphid infestation does 

alter the p lan t’s growth processes. The increased rate of reduction of R between 

days 5 and 10 in the aphid-infested plants indicates th a t the result of the severe 

stress was first observed during this time.

The reductions in E (Table 2) were similar to the reductions in R, but this 

was to be expected, as m athem atically E depends on R and the leaf area ratio. 

Aphid infestations decreased E up to 50% in 10 days, illustrating the severe stress a 

small number of aphids were capable of causing. Therefore, aphid infestation was 

capable of reducing significantly the net rate of assimilation either by increasing 

respiration and (or) decreasing photosynthesis in all cases but one within 10 days.

The absence of a significant difference in leaf area ratio between control and 

infested groups (Table 2) was also reported by Barlow and Mesmer (1982). 

However, they reported a trend for increased F with increased levels of aphid 

feeding, while M allott and Davy (1978) found it was slightly, but consistently, 

higher in infested plants after 3 weeks. Even though to tal leaf area was reduced, 

aphid feeding had not reduced the proportion of assim ilates th a t were available for 

leaf expansion.

The greater mean relative aphid growth rates found for the initial low aphid 

density plants compared with the initial high density ones (Fig. 2) probably 

occurred because the greater the aphid density, the fewer the number of young th a t 

are produced per adult (Barlow and Mesmer 1982). The rapid initial increase in 

aphid dry weight and subsequent slowing has been reported by M allott and Davy
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(1978) and may be a ttribu ted  to  a decrease in the host p lan t’s susceptibility (Dixon 

and W ratten  1971). The apparent decrease in host susceptibility was probably 

linked with the decreased RA found for the high aphid density plants after 10 days. 

A greater RA could be an indicator of decreased resistance by th a t host plant to 

the aphid species with the greatest RA.

The instantaneous growth rate  equals the product of the instantaneous unit 

leaf rate  and the instantaneous leaf area ratio, or

(4) R =  E x F

but, except in certain circumstances,

(5) R f  E x F

(Hunt 1982). A plant can have a large R because of an increased E and (or) 

F. Therefore, R is proportional to  E x F (Causton and Venus 1981). The usual 

significant decrease in R for aphid-infested plants (Table 2) was not due to the 

reduction in photosynthetic surface area or p lan t leafiness, F, bu t was due to the 

significant reduction in E (Table 2). This raises the question of whether the aphid- 

infested plants became less efficient a t converting light to chemical energy or 

whether the aphids caused new assim ilate sinks (in addition to themselves)

increasing respiration, thus resulting in the significant reduction in the mean unit 

leaf rate. Further studies will be required to elucidate whether or not the light or

dark reactions of photosynthesis or the plant respiratory processes are the prim ary

targets of aphid feeding or whether some com bination of impairm ent of all of these 

processes causes lesser production of new tissue.

This study has dem onstrated significant reductions in plant dry weight, leaf

area, R, and E. These effects were not due solely to the removal of photosynthate 

from the phloem. The effects of aphid feeding can be observed within 10 days of 

infestation, and there is little indication th a t initial aphid density is im portant in 

determ ining final plant dry weight. The physiological mechanisms th a t underlie
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these aphid-induced changes are likely initiated within the plant shortly after the 

aphid infestation begins. The overall growth responses, as measured a t day 10, of 

all legume-aphid systems examined here were sim ilar rather than  plant-aphid system 

specific, even though the underlying physiology could have differed. It will therefore 

be beneficial to  look a t short-term  aphid-induced physiological changes.
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CHAPTER 3

INTERACTIONS BETWEEN APHID INFESTATION, PLANT GROWTH AND 

UPTAKE OF NITROGEN AND PHOSPHORUS BY 

THREE LEGUMINOUS HOST PLANTS1

3.1  In tro d u ctio n

It has been suggested th a t changes in the p lan t’s respiratory and 

photosynthetic processes are the prim ary means by which growth is reduced in 

aphid-infested plants (Hawkins et al. 1985). Aphids remove sugar from the phloem 

via their stylets and this lost translocate could reduce the energy supply available 

for nu trien t uptake by the roots (Bowling and Dunlop 1978) and root growth and 

respiration. Both nitrogen and phosphorus uptake in the roots are energy requiring 

processes (Bidwell 1974). Cowpea plants (Vigna) reduce the bulk of absorbed 

n itra te  in their shoots (Atkins et al. 1980), while pea (P isum ) and broad bean 

(Vicia) plants possess highly active n itra te  reductases in their roots (Pate 1973). It 

is thought th a t internal nitrogen levels can also affect respiratory processes (Marek 

1984).

An extreme variablity is displayed among higher plant species with respect to 

to ta l nitrogen content (Pate  1983). There is also the general view th a t severe 

aphid infestations reduce to ta l nitrogen content (Macfoy and Dabrowski 1984; Sirur 

and Barlow 1984; K oritsas and Garsed 1985) though little is known of their effect 

on to ta l phosphorus. However, there is some doubt as to whether aphid feeding 

results in increased or decreased nitrogen and phosphorus as a percentage of plant 

dry weight (Harper and Kaldy 1982; Summers and Coviello 1984).

The following study was conducted to determ ine the short-term  (10 day) effect

^THIS CHAPTER WAS SUBMITTED TO CAN. J. BOT ON 31 OCT 85 AND IN REVISED FORM ON 
10 APR 86 AND IS REFERRED TO IN THE THESIS AS HAWKINS ET AL. (SUBMITTED 1985)
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of aphid feeding on the uptake of nitrogen and phosphorus by 3 well fertilized, 

nodulated legume species and to observe if their response to aphid infestation 

general or plant-aphid species specific.

non-

was
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3 .2  M a ter ia ls  and m eth od s

Seedlings of cowpea (Vigna unguiculata  (L.) W alp. cv. Caloona), broad bean 

{V ida  faba  L. cv. Aquadulce), and garden pea (P isum  sa tivum  L. cv. Victory 

Freezer) were raised, and cowpea and pea aphids, Aphis craccivora Koch and 

Acyrthosiphon p isum  (Harris), respectively, both Homoptera: Aphididae, were

cultured as previously described (Hawkins et al. 1985). Both aphid species had been

m aintained on the plant species utilized for a minimum of one year prior to the

initiation of these experiments.

On experim ent day 0, two-week-old plants were divided according to  size into

5 blocks of 6. Each block was randomly divided into 3 pairs of plants, one of each

pair being a control, and one an experimental plant with 10, 8 day-old adult aphids 

placed on it. One pair of p lants in each block was harvested on days 0, 5, and 10. 

The experiment was carried out in a growth cabinet as previously described 

(Hawkins et al. 1985). P lant-aphid com binations utilized were cowpea aphids on 

cowpea and broad bean seedlings and pea aphids on pea, broad bean and cowpea 

seedlings, and each combination was replicated a t least once.

The following param eters were assessed on each harvest day: aphid dry weight; 

leaf number; leaf area (A utom atic Area M eter, Hayashi Denko Co., Ltd., Tokyo, 

Japan); and leaf, stem and petiole, and root dry weights. Total nitrogen, organic 

and amm onium , and phosphorus were estim ated from the oven-dried samples of leaf, 

stem  and petiole (these 3 parts  comprise the shoot), and roots by a semi-micro 

Kjeldahl digestion and a molybdenum blue technique (Allen et al. 1974), 

respectively, determined in a Technicon Auto Analyzer (Technicon Industrial

Systems, Tarry town, NY, USA), and expressed on a dry weight basis. The mean 

relative growth rate, R, the mean unit leaf or mean net assimilation rate , E, and 

the mean leaf area ratio, F, were calculated (Hunt 1982), as was the mean relative 

growth rate of the aphids, RA, (Hawkins et al. 1985).

Two-way analysis of variance (ANOVA) was carried out using the GENSTAT 

package (Statistics D epartm ent, Rotham sted Experim ental Station, UK) at a  =  0.05. 

The protected LSD (Least Significant Difference) was calculated for each pair of 

means, a t a  =  0.05 (Snedecor and Cochran 1980).
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3.3 R esu lts

The d a ta  presented are representative of the results of replicate experiments.

The dry weights of the component plant parts  and the entire plant, leaf areas, 

and root-to-shoot ratios were not significantly different between control and infested 

plants after 5 days infestation (data  not shown) but were at 10 days for all leaf 

areas and dry weights, except for leaf, root, and to tal plant dry weight of pea 

plants, and for cowpea leaves infested with cowpea aphids (Table 1). However, the 

differences in root-to-shoot ratios remained insignificant (Table 1). Aphid feeding 

significantly reduced R, and E in broad bean and cowpea but not in pea seedlings 

after 10 days (Table 2). The mean leaf area ratio , F, was not affected by aphid 

feeding (Table 2). The increase in aphid biomass from day 0 to day 10 was

significant for all plant-aphid combinations and RA was similar for both aphid 

species on broad bean, pea aphids on pea, and cowpea aphids on cowpea plants, but 

was much lower for pea aphids feeding on cowpea (Table 3).

The percent nitrogen (%N) content (on a dry weight basis) was significantly 

greater in infested than  in control broad bean plants but was the same or 

significantly less in infested than in control cowpea and pea seedlings after 10 days 

(Table 4). Percent phosphorus (%P) content (on a dry weight basis) was similar to 

th a t of %N but most comparisons were not significant (Table 5). Component plant 

part %N was similar to the whole plant relationship with infested broad bean 

having a higher value than  controls, except for cowpea aphids on broad bean stems, 

and infested cowpea and pea having the same or lower values than controls after 10 

days (Table 4). The variability was much greater for %P of component plant parts 

and no clear pattern  emerged (Table 5). After 10 days of infestation, %N and %P 

for control and infested broad bean had decreased in comparison to day 5, cowpea 

had increased, and pea changed little (Fig. 1). The absolute content of N and P 

increased rapidly in all control plants from days 0 to 10, and in all infested plants 

from days 0 to 5, and then increased a t a slower or a negative rate  from days 5 to 

10 in infested plants (Fig. 2).
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Table 1., Mean leaf, root, stem and total plant dry weights, leaf area, root to shoot ratio,

and the LSD for control plants and cowpea or pea aphids on broad bean and cowpea seedlings,

and pea aphids on pea seedlings after 10 days infestation.

Dry weight Leaf area Root:shoot

mg 2m Ratio

Plant^ Aphid^ No. C Leaf Stem Root Plant

BB P 0 494 369 640 1503 0.0164 0.750

10 304 191 389 884 0.0087 0.800

LSD 113 112 109 230 0.0040 ns

BB CP 0 395 260 555 1211 0.0124 0.875

10 246 130 279 654 0.0073 0.765

LSD 72 105 95 230 0.0022 ns

CP P 0 175 77 93 345 0.0055 0.372

10 128 53 66 247 0.0042 0.350

LSD 15 6 23 30 0.0006 ns

CP CP 0 143 62 91 295 0.0043 0.455

10 95 33 70 198 0.0030 0.551

LSD ns 12 17 78 0.0011 ns

P P 0 133 72 200 405 0.0060 0.994

10 96 48 174 318 0.0051 1.174

LSD ns 19 ns ns 0.0006 ns

Note: If the means are not significantly different (ns) by ANOVA (°c= 0.05) the LSD is not

presented (®c » 0.05).

#, Abbreviations: BB, broad bean; CP, cowpea; P, pea. 

$, Abbreviations: P, pea; CP, cowpea.

C, Initial number of aphids per plant.



Table 2. Average net relative growth rate (R), mean unit leaf rate

(E), mean leaf area ratio (F), and the LSD of control plants and

broad bean, cowpea, and pea seedlings after 10 days infestation
??with cowpea or pea aphids.''

Plant^ Aphid$ No.C

R
-1mg.mg .

. -1 day

E
—2mg.m 

day *

F
2 -1 m .mg

BB P 0 0.118 5 766 0.000 013 6

10 0.075 2 882 0.000 014 5

LSD 0.287 1 801 ns

CP CP 0 0.056 4 643 0.000 012 1

10 0.016 1 314 0.000 012 5

LSD 0.032 2 539 ns

P P 0 0.144 10 290 0.000 013 7

10 0.115 7 790 0.000 014 7

LSD ns ns ns

Note: If the means are not significantly different (ns) by ANOVA

(°<- = 0.05) the LSD is not presented («*•= 0.05).

??, Similar results to those presented were obtained for the broad 

bean and cowpea seedling-aphid combinations not presented.

//, Abbreviations: BB, broad bean; CP, cowpea; P, pea.

$, Abbreviations: P, pea aphids; CP, cowpea aphids.

C, Initial number of aphids per plant.



Table 3. Mean total dry weight of the 10 aphids placed 

on the experimental plants on day 0 and the average net 

relative aphid growth rate of cowpea and pea aphids 

after 10 days growth on cowpea, broad bean, or pea 

seedlings.

DW$ R ^ra

Plant Aphid mg _1 j  -1mg. mg . day

Cowpea Pea 2.42 0.104 *

Cowpea Cowpea 1.50 0.212 *

Broad bean Pea 7.41 0.231 *

Broad bean Cowpea 2.60 0.256 *

Pea Pea 2.15 0.224 *

No te: *, change in total aphid biomass was significant

from days 0 to 10 (ANOVA at *C = 0.05).

$, Abbreviations: DW, dry weight; R^, average net 

relative aphid growth rate.



Table 4. Mean nitrogen content (%N) for total plant, and leaf, 

stem, and root component parts, and the LSD for control plants and 

pea or cowpea aphids on broad bean and cowpea seedlings, and pea 

aphids on pea seedlings after 10 days infestation.

%N

Plant/; Aphid$ No.C Plant Leaf Stem Root

BB P 0 4.63 6.86 3.13 3.79

10 5.80 7.98 4.64 4.68

LSD 0.24 0.43 1.02 0.43

BB CP 0 4.06 5.56 4.38 2.73

10 5.54 6.83 3.60 5.48

LSD 1.01 ns ns ns

CP P 0 3.23 4.71 2.07 1.44

10 2.80 3.45 2.29 2.03
LSD 0.40 0.57 ns ns

CP CP 0 3.37 3.61 1.91 2.61

10 3.37 3.64 2.18 2.58

LSD ns ns ns ns

P P 0 3.74 4.46 2.21 3.82

10 2.78 3.09 2.26 2.78
LSD 0.78 0.95 ns ns

Note: If the means are not significantly

(°* = 0.05) the LSD is not presented

different (ns) 

(-<■ - 0.05).

by ANOVA

//, Abbreviations: BB, broad bean; CP, cowpea; P, pea 

$, Abbreviations: P, pea aphids; CP, cowpea aphids. 

C, Initial number of aphids per plant.



Table 5. Mean phosphorus content (%P) for total plant, and leaf, 

stem, and root component parts, and the LSD for control plants and 

pea or cowpea aphids on broad bean and cowpea seedlings, and pea 

aphids on pea seedlings after 10 days infestation.

%P

Plant^ Aphid^ No.^ Plant Leaf Stem Root

BB P 0 0.491 0.630 0.432 0.420

10 0.566 0.547 0.456 0.525

LSD ns ns ns ns

BB CP 0 0.501 0.494 0.755 0.375

10 0.580 0.483 0.401 0.688

LSD ns ns 0.348 ns

CP P 0 0.392 0.630 0. 177 0.112

10 0.326 0.455 0.197 0. 185

LSD ns 0.105 ns ns

CP CP 0 0.345 0.412 0.194 0.217

10 0.286 0.327 0.199 0.178

LSD 0.039 0.053 ns 0.038

P P 0 0.330 0.348 0.201 0.364

10 0.219 0.191 0.173 0.249

LSD 0.055 0.102 ns 0.099

Note: If the means are not significantly different (ns) by ANOVA

(-C = 0.05) the LSD is not presented (<* = 0.05).

It, Abbreviations: BB, broad bean; CP, cowpea; P, pea. 

$, Abbreviations: P, pea aphids; CP, cowpea aphids.

C, Initial number of aphids per plant.
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F ig u re  1. The %N and %P f o r  c o n t r o l s  and p e a  a p h id s  on

b ro a d  b ean  and p e a  p l a n t s  and cowpea a p h id s  on 

cowpea s e e d l i n g s  a t  0 ,  5 ,  and 10 days o f  a p h id  

i n f e s t a t i o n .  S i m i l a r  r e l a t i o n s h i p s  w ere  

o b s e rv e d  f o r  th e  two p l a n t - a p h i d  c o m b in a t io n s  

n o t  shown. C o n t r o l  p l a n t s ,  i n f e s t e d

p l a n t s , □ ;  %N, 0  U ;  %P , O  □ ;  and

th e  LSD a f5 < .=  0 .0 5  i s  i n d i c a t e d  by th e  

v e r t i c a l  b a r ,  s i g n i f i c a n t l y  d i f f e r e n t  f o r  %N, 

A  and %P A .
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Figure 2. The absolute content of N and P (mg) for

controls and pea aphids on broad bean and pea 

seedlings and cowpea aphids on cowpea plants at 

0, 5, and 10 days of aphid infestation.

Similar relationships were observed for the two 

plant-aphid combinations not shown. Control 

plants, ̂  Q  ; infested plants, Jj Q ;  N, 

4^ iM : P, ; and the LSD at = 0.05

is indicated by the vertical bar, 

significantly different for N, A  and P, Zi .



38

Broadbean

1.5 o>

Cowpea

Time ( days )



39

3 .4  D isc u ss io n

The significant reductions in plant dry weight and leaf area in the infested 

plants (Table 1) are typical of those which have been reported previously for many 

plant-aphid com binations including those utilized in the present experiment (Galecka 

1977; M allo tt and Davy 1978; Wu and Thrower 1981; Barlow and Mesmer 1982; 

Rohitha and Penm an 1983; Hawkins et al. 1985). The difference in size between 

species’ control groups (Table 1) was a function of the glasshouse environmental 

regime prior to  in itiating the experiment. The reductions, significant and otherwise, 

for aphid-infested leaf and stem  dry weights, in the five plant-aphid combinations 

examined (Table 1), was probably the result of the aphids imbibing translocate th a t 

would normally have been used for growth by these tissues. Translocate removal by 

the aphids a n d /o r  a decreased supply of photosynthate because of reduced leaf area 

would result in a decreased flux of photoassim ilate to the roots and this could cause 

the reduction in root biomass (Table 1). The lack of root-to-shoot ratio changes 

(Table l) has been observed for other herbaceous plant-aphid systems (Wu and 

Thrower 1981; Rohitha and Penm an 1983). This indicates th a t the proportion of 

assim ilates available for shoot and root growth was the same in control and infested 

plants.

Cowpea and broad bean seedlings both had significantly reduced R (mean 

relative growth rate) and E (mean unit leaf or net assimilation rate) in infested 

plants (Table 2) and th is has been observed for several combinations of plants and 

aphids (M allott and Davy 1978; Barlow and Mesmer 1982; Hawkins et al. 1985). 

Neither R nor E was significantly reduced for pea seedlings (Table 2) because the 

aphid density was apparently  not sufficient to  reduce plant growth (Table 1). The 

sim ilarity in F (mean leaf area ratio) between treatm ents for all plant-aphid 

com binations (Table 2) is also consistent with the findings of M allott and Davy 

(1978), Barlow and M esmer (1982) and Hawkins et al. (1985). The coupling of 

this result w ith the lack of significance for the root-to-shoot ratios (Table 1), 

indicates th a t  the infested plants did not reallocate their assim ilate resources in 

response to aphid feeding, as proposed by Raven (1983). ;
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Aphid biomass increased significantly for all plant-aphid combinations from 

days 0 to 10 (Table 3) indicating th a t the plants were adequate hosts. The RA for 

pea aphids on cowpea seedlings was significantly less than th a t observed for the 

other 4 com binations suggesting th a t this cultivar of cowpea was not the most 

suitable host for the pea aphid. All 5 RA values were similar to those reported by 

Hawkins et al. (1985) for the same plant-aphid combinations.

Nitrogen and P are expressed as a percentage of the dry weight of the plant 

or component p lant part because aphid feeding had reduced the dry weights, usually 

significantly (Table 1).

P lan t %N and %P were greater in infested broad bean and the same or less 

in infested cowpea and pea seedlings (Tables 4 5), suggesting th a t the individual

plant species responded differently with respect to N and P accum ulation. Harper 

and Kaldy (1982) found no difference between control and infested alfalfa plants for 

%N, but did find a greater %P in infested ones. Summers and Coviello (1984) also 

reported no difference for %N between control and infested alfalfa plants. The 

present da ta  (Tables 4 & 5) indicate th a t infested broad bean expended more energy 

on a weight basis to acquire N and P than  the controls while infested cowpea or 

pea expended the same or less energy.

The lack of a  significant difference, in most of the plant-aphid combinations, 

for leaf and stem %N and %P (Table 4 & 5) indicates th a t generally aphid feeding 

does not result in a lowered incorporation of N and P into growing tissue. 

Furtherm ore, it is unlikely th a t aphids preferentially remove N and P from the 

contents of the phloem. However, when the reductions in stem and leaf dry weights 

are taken into account (Table 1) there is an obvious reduction of absolute N and P 

in leaf and stem tissue. This supports the observations of Macfoy and Dabrowski 

(1984), Sirur and Barlow (1984) and K oritsas and Garsed (1985) for N, though 

little is known about P. The values for %N and %P of non-nodulated roots were 

significantly different in only one case after 10 days (Tables 4 &; 5), suggesting tha t 

usually sufficient translocate reached the roots to m aintain %N and %P on a root 

tissue weight basis. Perhaps, resources were directed towards m aintenance of %N
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and %P a t the expense of other root physiological processes. The greater variation

observed for P than N (Tables 5 h  4) was also reported by DeJong (1982). The

d a ta  for the component plant parts (Tables 4 h  5) indicate th a t even though there

were for the most part significant changes for whole plant %N and %P, they could

not be a ttr ib u ted  to a single organ but were the cum ulative result of aphid feeding.

A different mechanism in the accum ulation of N and P, as a percentage of 

p lan t dry weight, appears to  be in operation in each plant species over the 10 days 

of the study (Fig. 1). The early differences, days 0 to 5, could be related to 

cotyledon size or different means of n itra te  reduction. Broad bean has very large 

cotyledons, pea interm ediate size ones, and cowpea tiny ones. Broad bean and pea 

are amide producing legumes which have high activities of n itra te  reductase in their 

roots (Pate  1973) compared to cowpea which forms ureide and reduces the bulk of 

n itra te  in its shoots (Atkins et al. 1980). The much greater R observed for broad 

bean compared to cowpea (Table 2) could account for the decrease in %N and %P 

in broad bean and the increase in cowpea (Fig. 1). However, pea had an even 

greater R than broad bean, suggesting th a t accum ulation of plant %N and %P may 

be related to  the speed and efficiency with which active uptake of N and P is 

in itiated , or it may be a combination of the above factors. The %N and %P 

values a t day 10 are within the normal range of values for legumes (Allen et al. 

1974). This suggests th a t the species differences (Fig. 1) were due to developmental 

ra ther than  aphid-induced causes.

The change in absolute N and P up to  day 5 was similar for control and 

infested plants (Fig. 2) and may also indicate th a t early changes in %N and %P 

were developmental ra ther than aphid related. The change in the rate of 

accum ulation of N and P in the infested plants from days 5 to 10 (Fig. 2) indicates 

the stress th a t aphid feeding was putting  on the plants. A significant reduction in 

the to ta l root respiration of infested plants has also been observed during this time 

period (Hawkins et al. 1986) and they a ttr ib u ted  it to a reduced flux of translocate 

to the roots. Perhaps, the significant reduction of absolute N and P in aphid-

infested plants was due to the significant decrease of their root respiration.
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DeJong (1982) has shown th a t C 0 2 assim ilation was proportional to peach leaf 

N and P content. The variability of %N and %P, indicating increased or decreased 

am ounts of N and P on a tissue weight basis, could account for the photosynthetic 

anomalies a ttrib u ted  to  aphids, such as increased (Way and Cammell 1970), 

unchanged (M allott and Davy 1978), or decreased (Wu and Thrower 1981) rates of 

photosynthesis. Marek (1984) observed th a t the rate of dark respiration in the light 

was significantly greater in low N trea tm en t plants. It would be interesting to 

determ ine if infested species could have greater rates of photosynthesis and lower 

rates of dark respiration in the light than  their controls.

This study has shown th a t plant dry weight, leaf area, to tal N, and total P 

were reduced for all p lant-aphid combinations by 10 days of aphid feeding; th a t the 

feeding itself did not result in an altered incorporation of N and P into plant 

tissues, as a percentage of dry weight; and th a t %N and %P accumulation into the 

plant were specific to the  plant species being investigated. It appears th a t the 

effect of aphids upon root respiration and on shoot respiration and photosynthesis 

are im portan t areas to be investigated before the prim ary and causal effects of 

aphid feeding on host p lan t physiology can clearly be understood.
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CHAPTER 4

SHORT-TERM EFFECTS OF TWO APHID SPECIES ON PLANT GROWTH AND 

ROOT RESPIRATION OF THREE LEGUMINOUS SPECIES1

4.1 Introduction

Hawkins et al. (1985) suggested th a t aphid-induced changes in respiratory and 

photosynthetic processes of infested plants were the prim ary means by which plant 

growth was reduced. Most studies on the effects of aphids on respiration have been 

concerned w ith shoot respiration (Kloft and E hrhard t 1959, Daly 1976, Wu and 

Thrower 1981, Wood et al. 1985). The removal of phloem translocate by the 

aphids could reduce the energy supply available to root metabolism or alter the 

efficiency of root metabolism.

In roots of higher plants, there are two respiratory pathw ays which may or 

may not function simultaneously (Day and Lambers 1983). The operation of both 

the alternative respiratory pathway and the phosphorylating cytochrome respiratory 

pathw ay in  vivo  implies th a t the cytochrome pathway is either saturated  or 

restricted by adenylates (Day et al. 1980, Laties 1982). The alternative pathway

per se is not coupled to A TP synthesis (Day et al. 1980) but is so widely 

d istributed th a t it must play a role of physiological significance in plants (Lance 

1981). Lambers (1980, 1982, 1985) has suggested th a t the physiological significance 

of the alternative pathway in the roots of higher plants is its function as an 

"energy overflow" when carbohydrate supply to the roots is in excess of energy 

requirem ents in the roots for structu ral growth, energy production, storage and 

osmoregulation.

The present study was conducted to determ ine the short-term  (10 days) effect

*THIS CHAPTER WAS ACCEPTED FOR PUBLICATION IN PHYSIOLOGIA PLANTARUM ON 05 
MARCH 1986 AND IS REFERRED TO IN THE THESIS AS HAWKINS ET AL. {1986}
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of aphid feeding on root respiration in three well fertilized, non-nodulated legume 

species, and to observe whether the response of root respiration to aphid infestation 

was general or species specific. In particular, the effect of aphid infestation on the 

capacity and engagement of the alternative respiratory pathway was monitored.

Abbreviations-

C P /B B , cowpea aphids on broad bean plants; C P /C P , cowpea aphids on 

cowpea plants; P /B B , pea aphids on broad bean plants; P /P , pea aphids on pea 

plants; RGR, mean relative growth rate; SHAM, salicylhydroxamic acid; V j , 

a lternative path activity; Vcyt, cytochrome path activity; Vreg, residual component of 

respiration; VT, to ta l rate of respiration.
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4 .2  M a ter ia ls  and m eth od s

Seeds of cowpea [Vigna unguiculata  (L.) W alp. cv. Caloona], broad bean {Vida  

faba  L. cv. Aquadulce), and garden pea (P isum  sa tivum  L. cv. Victory Freezer), 

and cowpea and pea aphids, A phis craccivora Koch and Acyrthosiphon p isum  

(Harris), respectively, both Homoptera: Aphididae, were obtained and raised as

described by Hawkins et al. (1985).

On the day prior to  commencement of the experiment, the plants were placed 

in a growth cabinet (16 h light: 8 h dark cycle with a day tem perature of 23 

0.5°C and a photon flux density of 350 /im ol.m ^.s '1, while the night tem perature 

was 18 i  0.5°C) and m aintained as described by Hawkins et al. (1985). The two- 

week-old plants were divided according to size into 5 blocks of 5 plants on 

experimental day 0. The respiration rate of the roots of one plant randomly

selected from each block was determined on day 0. The remaining 4 plants were 

randomly divided into 2 pairs; each comprising a control, and an experimental plant 

with 10, 8-day-old adult aphids placed on it. Root respiration was determined for 

one pair of plants on experimental days 5 and 10. This procedure was repeated for 

the other 4 blocks. Plant-aphid combinations utilized were C P /B B , C P /C P , P /B B  

and P /P . The other two combinations were not used because of the poor growth 

displayed by the aphids.

P lants were removed from the growth cabinet for respiration determ inations 

after a 7 to 9 h period of photosynthesis. The vermiculite was washed off the roots 

with water (24°C) prior to m easurem ent of respiratory rates. The whole root 

system  was cut from the shoot [ excis ion of the shoot does not affect root

respiration during the experim ental periods used here (de Visser and Lambers 1983)] 

and placed into a dark, tem perature controlled (24 ±_ 1°C), 110 ml capacity cuvette 

fitted with a Clark type oxygen electrode and a protected stir bar. A fully aerated 

nutrien t solution [modified Hoagland (Hoagland and Arnon 1938, solution 2)]

w ithout the iron com ponent, which chelates with SHAM (Schonbaum et al. 1971),

provided the bathing medium for the roots and the oxygen concentration changes 

were determined polarographically.
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After VT was determined (5 to 10 min) the effects of KCN and /or SHAM

were observed. This was achieved by slowly injecting KCN (0.22 M in water) or

SHAM (1.37 M in 2-methoxyethanol) into the original solution to give final

concentrations of 0.2 mM KCN and 15 mM SHAM. The high concentration of 

SHAM used has been shown to be sufficient to block the CN'-insensitive alternative 

oxidase w ithout affecting the cytochrome pathw ay (de Visser and Blacquiere 1984). 

After SHAM addition, respiration was m onitored for a maximum of 15 to 20 min 

(Lambers 1985). Respiration rates were expressed per g dry weight of roots dried 

for 2 days a t 70 °C, after which further weight change was insignificant.

The capacity of the alternative pathw ay (including Vres) was assumed to be 

fully expressed in the presence of CN' (Lambers 1982, Laties 1982). SHAM

inhibition of respiration measures the actual V lt (Lambers 1982, Lambers et al.

1983). O ther responses to SHAM have also been observed in root tissue and are

aptly discussed by de Visser and Blacquiere (1984) and M iller and Berczi (1985).

Lambers et al. (1983) defined the degree of engagement of the alternative pathway 

as the reduction in respiration due to SHAM divided by the rate  of respiration in 

the presence of CN ' (including V ).

Shoot (leaf, stem  and petiole) dry weights were determined as for roots. RGR 

was calculated for roots and for whole plants (see Hawkins et al. 1985) as this

index is very sensitive to  the whole environm ental relationship of the plant (Hunt 

1982).

Two-way analyses of variance (ANOVA), a t q =  0.05, were carried out on the 

various data  and linear regression was done on respiration rates using the 

GENSTA T package (Statistics D epartm ent, Rotham sted Experim ental Station, U.K.). 

The protected least significant difference [LSD, as described by Snedecor and 

Cochran (1980)] was calculated for each pair of means, a t a = 0.05.
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4 .3  R esu lts

The results presented are representative of at least one replicate experiment.

The RGR of the entire plant was significantly reduced in all cases for aphid- 

infested plants between days 0 and 10 but this was not necessarily the case between 

days 0 and 5, or days 5 and 10 (Tab. 1). The root RGR was also significantly 

reduced in the aphid-infested plants between days 0 and 10, with similar 

relationships to those observed for the whole plant between days 0 and 5, or 5 and 

10 (Tab. 1).

The rates of total root respiration were less in the aphid-infested plants after 5 

days and were significantly so in all cases after 10 days (Fig. 1). For all plant- 

aphid combinations, but the control plants of P/BB, VT declined with time (Fig. 

1). For the replicate experiments of P/BB, both control and infested plant VT and 

Vcyt decreased with time (data not shown). When the SHAM-inhibited portion of 

respiration (alternative pathway) was deducted from VT, control plants had greater 

Vcyt (including VreJ than aphid-infested ones, in all cases but one (P /P), after 5 

days (Fig. 2). This relationship was significant for all plant-aphid combinations 

after 10 days (Fig. 2). The respiration rate of control P/BB did not change with 

time when only the cytochrome pathway portion (V + Vreg) of respiration was 

considered (Fig. 2).

The alternative pathway capacity (including Vreg) was quite variable, but by 

day 10 all the roots of aphid infested plants, except for P /P , had a significantly 

lesser capacity than their respective controls (Tab. 2). The percentage engagement 

of the alternative pathway was greater in control roots on day 10 and this was 

usually also the case on day 5 (Tab. 3). It generally took 10 days for the dry 

weight of the infested plant roots to become significantly reduced (Tab. 3). The 

residual rate of respiration (SHAM + KCN or KCN + SHAM) also decreased with 

time and was generally greater in aphid-infested roots than in those of the controls 

(data not shown). After 10 days, Vreg for control and infested plants, respectively, 

were 15 and 22 % for CP/CP, 14 and 21 % for CP/BB, 12 and 25 % for P/BB, 

and 9 and 12 % for P/P .
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Figure 1 Change in total root respiration (total respiration 

(V̂ ,) = cytochrome path (V^^) + alternative path 

(V ) + residual respiration (V )) for the four3 1 1 1T0S

plant-aphid combinations investigated. The linear 

regression correlation coefficient is r. Vertical 

lines to the right of each pair of means are the 

LSD (P = 0.95) and the vertical line to the left 

of each mean is the standard error of the mean (SE) 

for five determinations from one experiment.

Cowpea aphids on cowpea (CP/CP) and broad bean 

(CP/BB), pea aphids on broad bean (P/BB) and pea 

plants (P/P), control ( (̂ ) ) and aphid-infested 

( Q] ) plants.
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r - 0 . 8 7

r - 0 . 9 4
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r - 0 . 7 1
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r - 0 . 8 3

r - 0 . 8 9



Figure 2. Change in root cytochrome pathway respiration

(V + V ) measured in the presence of 15 mM cyt res
SHAM for the four plant-aphid combinations 

investigated. The linear regression correlation 

coefficient is r. Vertical line to the right 

of each pair of means is the LSD (P = 0.95) and 

the vertical line to the left of each mean is 

the SE. Abbreviations as in Fig. 1; control 

( (̂ ) ) and aphid-infested ( Q  ) plants.
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Table 2. Capacity of the alternative pathway in 

the presence of 0.2 mM KCN (alternative + residual 

respiration) in roots of control (C) and aphid- 

infested (A) plants for cowpea aphids on cowpea 

(CP/CP) and broad bean (CP/BB), and pea aphids on 

broad bean (P/BB) and pea (P/P) plants on experi­

mental days 0, 5 and 10. An *, indicates the mean 

capacity of the alternative path was significantly 

different between C and A plants, LSD at the 95% 

level, while ns denotes no significant difference.

Capacity yimol 0 2 «g(DW) l b ' 1

Trial

Day 0 Day 5 Day 10

C A C A C A

CP/CP 232 232 196 169 140 111

ns ns JL

CP/BB 185 185 134 109 142 80

ns * *

P/BB 128 128 140 126 128 57

ns ns JU

P/P 142 142 122 94 99 110

ns JL ns
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Table 3. Percentage engagement of the alternative 

pathway ((total respiration - reduction with 15 mM 

SHAM) / (reduction with 0.2 mM KCN)) in roots of 

control (C) and aphid-infested (A) plants for cow- 

pea aphids on cowpea (CP/CP) and broad bean (CP/ 

BB), and pea aphids on broad bean (P/BB) and pea 

(P/P) plants on experimental days 0, 5 and 10. An 

*, indicates that the mean root dry weight was 

significantly greater in C than A plants, LSD at 

the 95% level, while ns denotes no significant 

difference. The difference in alternative path 

engagement was only significant in those cases

where root weights were significantly greater.

Engagement, %

Trial

Day 0 Day 5 Day 10

C A C A C A

CP/CP 0 0 39 29 17 0

ns ns

CP/BB 15 15 4 13 8 0

ns ns *

P/BB 0 0 14 6 25 0

ns ns *

P/P 0 0 23 0 30 20

ns * *
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4 .4  D iscu ssio n

Similar changes in plant RGR with time to those presented here (Tab. 1) have 

been reported by Hawkins et al. (1985) for the plant-aphid combinations used. 

They observed th a t it took between 5 and 10 days for the aphids to  cause 

significant alterations to plant physiological processes, and a ttribu ted  the alterations 

to  translocate removal by the aphids and decreases in the efficiency of 

photosynthesis and /o r respiration in the infested plants. The decrease in root RGR 

of aphid-infested plants by day 10 was relatively larger than the reduction in plant 

RGR (Tab. 1). This may have occurred by translocate imbibed by the aphids 

being lost to the root system. Translocation rates to the roots in these plant-aphid 

com binations have been observed to  decrease w ithin 5 days and to be significantly 

decreased after 10 days of infestation (C.D.B. Hawkins, unpublished results).

The significant decrease in VT of aphid-infested plants after 10 days infestation 

compared with controls (F ig .l) , could be the result of a reduced carbohydrate 

supply to the roots of the infested plants. This is suggested by the decreased RGR 

for both infested plants and their roots (Tab. 1). Lambers et al. (1980) suggested 

th a t higher rates of root respiration could result partly from a better photosynthetic 

performance in the shoots and partly from a higher capacity of the roots to a ttrac t 

carbohydrates. The shoots of the control plants have been shown to possess better 

photosynthetic abilities than those infested with aphids for all the plant-aphid 

com binations used here (Hawkins et al. 1985). Although it has been reported tha t 

aphid infestation increases plant respiration rates (Kloft and E hrhard t 1959; Daly 

1976), such infestations have also been shown to have no short-term  effect on shoot 

respiration (Wu and Thrower 1981) or even to decrease shoot respiration by up to 

25 % (Wood et al. 1985). Preliminary m easurem ents of shoot respiration rates for 

these plant-aphid combinations indicates th a t infested shoots have greater rates of 

0 2 uptake in the dark than the controls (C.D.B. Hawkins, M.I. W hitecross & M.J. 

Aston unpublished results).

The decrease in root respiration with age (Fig. 1) has been reported previously 

for other root systems (Blacquiere and Lambers 1981, Lambers et al. 1981) and was
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associated w ith decreased alternative pathway activity. This appears to be the case 

in this instance also (Tabs. 2 and 3).

Cytochrom e pathw ay respiration (V +  Vre9) in control plants was 

significantly faster than  in aphid-infested plants (Fig. 2). This difference was 

probably due to  carbohydrate supply and to regulation of the cytochrome pathway.

The absence of a significant difference between control and infested root VT 

after 5 days of infestation (Figs. 1 and 2) could help to explain why C.D.B.

Hawkins, M.I. W hitecross and M .J. Aston (unpublished results) found no difference 

in to ta l N and P accum ulation for these plants. However, they did find significant 

reductions in to ta l N and P in infested plants after 10 days of infestation ju st as 

significant reductions in respiration were found here (Figs. 1 and 2).

The unchanged respiration observed for control plants of P /B B  (Fig. 2) may 

indicate th a t physiologically these roots were more m ature than usual due to the

glasshouse regime prior to their transfer to the growth cabinet. The day 0 VT and 

Vcyt (Figs. 1 and 2) were in the range observed for replicate experiments on days 5 

and 10 (data  not shown).

Even though the capacity of the alternative pathway was considerable (Tab. 

2), in only one case was it engaged in 14-day-old seedlings, but 19-day-old seedlings 

had Va]t in all cases except for infested P /P  (Tab. 3). Infested plants had no VaU

after 10 days of infestation except for P /P . The difference in P /P  from the other

plant-aphid com binations was probably due to the significant reduction in root dry 

weight (Tab. 3) and root RGR (Tab. 1) after 5 days for P /P , while these 

differences did not become significant until day 10 for the other combinations. The 

low percentage engagement of the alternative pathway (Tab. 3) is typical for 

legume species (de Visser and Blacquiere 1984). The greater engagement of the 

alternative pathw ay in roots of control plants indicates th a t these roots are less 

efficient than the roots of infested plants in term s of energy conversion (Lambers 

1982, de Visser and Lambers 1983).

The decline in residual respiration with time and for control versus aphid- 

infested plants is not easily explained. It should be noted th a t the inhibitors are
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not 100 % efficient a t the concentrations used (Lance et al. 1985) and th a t 

trea tm ents involving applications of inhibitors to in tact tissue is questionable on the 

grounds of imprecision (Myfller and Berczi 1985).

The increased respiratory sink postulated by Hawkins et al. (1985) for aphid- 

infested plants was not present in the roots of these infested plants. In fact, the 

roots of the infested plants represent a decreased respiratory sink because aphids 

drain carbohydrates and less are available to the roots. This investigation has also 

shown th a t aphids cause a reduction in root respiration and an increase in the 

efficiency of energy conversion in the roots. The response of root respiration to 

aphid feeding was a general rather than  a plant-aphid species specific. However, 

further and longer time scale studies are required with both aphid-infested and 

control plants to  examine more closely the regulatory mechanisms of root 

m etabolism  in  vivo.
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CHAPTER 5

SHORT-TERM EFFECTS OF TWO APHID SPECIES ON PLANT GROWTH 

AND SHOOT RESPIRATION OF THREE LEGUMES1

5.1 Introduction

Hawkins et al. (1985) suggested th a t observed short-term , aphid-induced 

reductions in plant growth were the result of increased energy utilization an d /o r 

decreased energy production, in addition to the removal of translocate by the 

aphids. In a previous report, Hawkins et al. (1986) showed th a t aphid infestation 

resulted in decreased rates of root respiration, probably via decreased levels of 

substra te  transport to the roots. The roots, therefore, were not a site of increased 

energy utilization.

Most studies concerning the effects of aphids on shoot respiration have 

employed infrared gas analyzer techniques (Kloft and Ehrhardt 1959; Daly 1976; Wu 

and Thrower 1981; Wood et al. 1985) which do not allow the regulation and 

contribution of different respiratory pathw ays to be determined. Further, respiration 

of a single leaf was often deemed representative of the entire shoot and this ignores 

different respiration rates associated with different leaf ages (Azcon-Bieto et al. 

1983a).

Azcon-Bieto et al. (1983b) dem onstrated th a t the energy producing 

cytochrome pathway and the non-phosphorylating alternative respiratory pathw ay 

(Day et al. 1980) can function simultaneously in leaves of several plant species. 

The sim ultaneous operation of both pathw ays implies th a t the cytochrome pathw ay 

is either saturated  or restricted by adenylates (Day et al. 1980; Laties 1982).

Although the physiological significance of the alternative respiratory pathw ay

^HIS CHAPTER WAS SUBMITTED TO PHYSIOLOGIA PLANTARUM ON 10 MAR 86 AND IS 
REFERRED TO IN THE THESIS AS HAWKINS ET AL. [SUBMITTED 1986A]
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remains to be elucidated (Lambers 1980, 1982, 1985; Lance 1981), the contribution 

of the tw o respiratory pathways to respiration can be determined polarographically 

using respiratory inhibitors and uncouplers (Azcon-Bieto et al. 1983b). The capacity 

of the alternative pathw ay (including residual respiration) is assumed to be fully 

expressed in the presence of CN' (Lambers 1982; Laties 1982). The actual activity 

of the alternative pathw ay is measured by the SHAM inhibition of the to tal rate of 

respiration (Lambers 1982; Lambers et al. 1983). The engagement of the alternative 

pathw ay is calculated by dividing its activity by its capacity (Lambers et al. 

1983). Phosphorylation is uncoupled from electron transport in the presence of 

CC CP which acts to reduce the electrochemical proton gradient (A/xh+) across the 

inner m itochondrial m em brane to zero (Moore 1978). This allows maximum electron 

transport by the respiratory pathways (Moore 1978).

This study was conducted to determ ine the short-term  (10 day) effect of aphid 

feeding on plant growth and on the respiration of the entire shoot (leaf, stem and 

petiole) in three well fertilized, non-nodulated legume species, and to observe 

whether the response of shoot respiration to aphid feeding was general or plant- 

aphid species specific (see Hawkins et al. 1985 for discussion). In particular, the 

regulation, activity and capacity of the two respiratory pathways in response to 

aphid infestation was monitored.

Abbreviations:

CC C P, carbonyl cyanide-m-chlorophenyl-hydrazone; C P /B B , cowpea aphids on broad 

bean plants; C P /C P , cowpea aphids on cowpea plants; Hepes, N-2-

hydroxyethylpiperazine-N’-2-ethanesulfonic acid; Mes, 2-(N-morpholino)ethane-sulfonic 

acid; P /B B , pea aphids on broad bean plants; P /P , pea aphids on pea plants; 

SHAM, salicylhydroxamic acid; TCA-cycle, tricarboxylic acid cycle.
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5 .2  M a ter ia ls  and m eth od s

Seeds of cowpea (Vigna unguiculata  (L.) W alp. cv. Caloona), broad bean 

(Vicia faba  L. cv. Aquadulce), and garden pea (P isum  sa tivum  L. cv. Victory 

Freezer), and cowpea and pea aphids, A phis craccivora Koch and Acyrthosiphon  

p isu m  (Harris), respectively, both Homoptera: Aphididae, . were obtained as

previously described (Hawkins et al. 1985). P lants and aphids were raised as 

described by Hawkins et al. (1985) except th a t the potting medium was changed 

from vermiculite to washed river sand. The change in medium had no effect on the 

relationship between plant growth, aphid growth and their interactions as shown by 

two-way analyses of variance.

The plants were placed in a growth cabinet one day prior to the 

commencement of the experiment and m aintained as described by Hawkins et al. 

(1985). On experiment day 0, the two-week-old plants were divided according to 

size into Five blocks of five plants. The shoot respiration rate  of one plant 

random ly selected from each block was determined on day 0. The remaining plants 

in each block were randomly divided into two pairs; each pair comprised a control 

p lan t and an experimental plant with 10, eight-day-old adult aphids placed on it. 

Shoot respiration was measured for one pair of plants on experimental days 5 and 

10. This procedure was repeated for the other four blocks. The aphid-plant 

com binations utilized were P /P , C P /C P , P /B B  and C P /B B .

Plants were removed from the growth cabinet for respiration determ inations 

after a 7 to 9 h period of photosynthesis. The whole shoot system was cut from 

the roots, in tact leaves separated from the stem , and both placed into a dark, 

tem perature controlled (24 1°C), 110 ml capacity cuvette fitted with a Clark type

oxygen electrode and a protected stir bar. A reaction medium of 10 mM Hepes, 10 

mM Mes buffer (pH 6.6) and 0.2 mM C aC l0 in equilibrium with air (Azcon-Bieto et 

al. 1983b) provided the bathing solution for the entire shoot and changes in 

oxygen concentrations were determined polarographically.

After measuring the to ta l rate of respiration, aliquots of the uncoupler, CCCP 

(0.33mM in ethanol), the cytochrome pathway inhibitor, KCN (0.22M in water)
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an d /o r the alternative pathway inhibitor, SHAM (1.37M in 2-methoxyethanol) were 

slowly injected into the reaction medium to give final concentrations of 2 /rM 

C C C P, 0.2 mM KCN and 15 mM SHAM. Higher concentrations of CCCP or KCN 

did not give any additional effect; nor did up to  25 mM SHAM.

Respiration rates were expressed per g dry weight of shoot dried for two days 

a t 70 °C. Root dry weights were similarily determined.

The various d a ta  were analyzed using two-way analysis of variance (ANOVA) 

a t a =  0.05, and the linear regression of respiration rates were done using the 

G ENSTA T package (S tatistics D epartm ent, Rotham sted Experimental Station, U.K.). 

For each pair of means, the protected least significant difference [LSD, as described 

by Snedecor and Cochran (1980)] was calculated a t a  =  0.05.
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5.3 R esu lts

The results presented are representatives of replicate experiments.

Control plants had significantly higher dry weights than aphid-infested plants 

by day 10 (Fig. 1). This effect could be seen for C P /B B  alone at day 5 (Fig. 1). 

Shoot dry weights were also significantly greater in control plants than in aphid- 

infested plants after 10 days but again, this relationship only held for C P /B B  at 

day 5 (Fig. 1). The root dry weights of aphid-infested plants were significantly less 

than in controls after 10 days (not shown; but see Fig. 1).

The rates of total shoot respiration were greater in the aphid-infested plants

after five days and were significantly so in all cases by day 10 (Fig. 2). After 10 

days, using da ta  from all experiments, the increase in respiration of the infested 

plants ranged from 133 to 199 percent of their respective controls (not shown). 

The rate of total shoot respiration declined with time (Fig. 2) for all plant-aphid 

combinations. This relationship was observed for both cytochrome pathway and 

alternative pathway activity (Fig. 2). Simple linear regression of total and

cytochrome pathway respiration (as presented in Fig. 2) in control plants showed a 

high coefficient of correlation with all values being greater than -0.8. However, the 

same regressions on the aphid-infested plants displayed much more variability than 

on control plants and the correlation to linearity was always less for the aphid

treated plants.

The capacity of the alternative respiratory pathway (including residual 

respiration) in all plants decreased with time but was higher in aphid-infested

shoots, compared to controls, by day 10 (Tab. 1), even though it was no longer

engaged (Fig. 2). However, when the capacity of the alternative pathway was

expressed as a percentage of the total shoot respiration it was much more variable 

(not shown). The uncoupled rate of the cytochrome pathway (using CCCP) also 

decreased with age and by day 10, aphid-infested shoots had greater rates than 

controls (Tab. 2).

Little change in the  percentage of residual respiration ( 0 2 uptake in the

presence of both SHAM and KCN) was observed with time for either treatm ent
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Figure 1. Increase in total plant (entire histogram),
root (upper part of histogram), and shoot (lower 
part of histogram) dry weights with time for 

control (histogram on left) and and pea (P) or 

cowpea (CP) aphid-infested (histogram on right) 
pea (P), cowpea (CP) and broad bean (BB) plants. 

The interval ( X ) to the right of a pair of 
histograms is the LSD for plant dry weight, 
while the interval to the left ( X ) is the LSD 
for shoot dry weight, both at*'*’ = 0.05. The 
same sample was used for control and aphid- 
infested plants on day 0. Each histogram and 
segment thereof represents the mean of five

independent samples. Control shoot

□
and

root dry weights; and aphid-infested
shoot and root dry weights.
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Figure 2 Change in total shoot respiration (entire 

histogram) and the activities of the alternative 

(upper part of histogram) and the cytochrome 
(lower part of histogram) respiratory pathways 
with time for control (histogram on left) and 

pea (P) or cowpea (CP) aphid-infested (histo­
gram on right) pea (P), cowpea (CP) and broad 
bean (BB) plants. The interval to the left of 

a histogram pair ( J] ) is the LSD for total 
shoot respiration atc< =  0.05. Each histogram 
represents the mean of five independent
determinations. Control plant cytochrome,
and alternative pathway activity; and

aphid-infested cytochrome
pathway• a • H and alternative

activity.
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Table 1. Change with time in the capacity (pmol O^.gCDW) 

h ■*■) of the alternative respiratory path (including 

residual respiration) in shoots of control (C) and aphid- 

infested (A) pea (P), cowpea (CP), and broad bean (BB) 

plants infested with pea (P) and/or cowpea (CP) aphids.

treatment

0

C/A

Day c 

5 

C

>f trial 

A

10

C A

P/P 94.5 88.4 91.9 63.7 97.8

CP/ CP 92.2 61.3 65.1 42.6 47.7

P/BB 108.3 56.6 53.9 25.4 39.1

CP/BB 109. 1 49.4 44.2 27.8 55.3
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Table  2.  Change w i t h  t im e  i n  t h e  u n c o u p le d  r a t e  (pmol 0^,g 

(DW) ^ .h  o f  s h o o t  r e s p i r a t i o n  i n  c o n t r o l  (C) and a p h i d -  

i n f e s t e d  (A) pe a  (P) , cowpea (CP),  and b r o a d  b e a n  (BB) 

p l a n t s  i n f e s t e d  w i t h  p e a  (P) a n d / o r  cowpea (CP) a p h i d s .

T r e a tm e n t

0

C/A

Day

5

C

o f  t r i a l  

A

10

C A

P/P 166.7 141.8 130.9 70.9 9 7 .0

CP/CP 133.8 97 .6 101.9 61 .2 73.0

P/BB 142 .4 5 8 .2 6 4 .4 33 .4 5 8 .1

CP/BB 157.5 77 .7 75.6 43 .6 70 .9
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(not shown). The mean residual rates of shoot respiration for control and infested 

plants respectively, were 25 and 22 percent for P /P , 17 and 16 percent for C P /C P , 

25 and 23 percent for P /B B  and 20 and 18 percent for C P /B B  after 10 days.
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5.4  D isc u ssio n

The significant decrease in p lant, shoot and root dry weights by day 10 (Fig. 

1) has been reported previously for these plant-aphid combinations (Hawkins et al. 

1985, 1986). Hawkins et al. (1985) proposed th a t the decrease in plant growth 

was due to  an increase in energy utilization a n d /o r  a decrease in energy production, 

in addition to  the removal of translocate by the aphids. The major change 

observed in plant growth between infested and control plants from days 5 to 10 for 

these (Hawkins et al. 1985) and other plant-aphid systems (W u and Thrower 1981) 

has previously been reported. The observed aphid-induced changes in plant growth 

are obviously typical for these systems and th is assum ption is also made regarding 

the effects of aphid feeding on shoot respiration.

A significant increase in aphid-infested shoot respiration (Fig. 2) has been 

reported previously (Kloft and Ehrhardt 1959; Daly 1976) and also for shoots 

infested with other organisms (Allen 1954; Ladd and Rawlins 1965; Uritani and 

Asahi 1980). Other changes to  shoot respiration in response to aphid feeding have 

also been reported. Wood et al. (1985) observed decreases in respiration of up to 

25 percent while Wu and Thrower (1981) noted unchanged respiration rates until 

the tissue became m oribund, a t which time respiration decreased rapidly. The 

differences reported for the effects of aphids on shoot respiration suggest th a t this 

may be a species specific response, rather than  a general one.

The aphid-induced enhancem ent of shoot respiration by 133 to 199 percent 

indicates th a t this is a m ajor energy drain for the plant. The underlying 

mechanism is probably a com bination of many factors.

Increased rates of photosynthesis are usually accompanied by proportionally 

increased rates of respiration (McCree 1970) and these can be associated with 

increased alternative pathw ay activity (Azcon-Bieto et al. 1983b). The increased 

rates of respiration observed for the infested shoots (Fig. 2) could therefore be in 

response to aphid-induced increases in the rate  of photosynthesis. The phenomenon 

of increased photosynthetic rates for aphid-infested leaves was reported by Way and 

Cammell (1970) but the reported ’norm ’ is for aphids to decrease photosynthetic
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rates (Kloft and E hrhardt 1959; Daly 1976; Wu and Thrower 1981; Wood et al. 

1985). The increased rates of respiration could also be a response to metabolically 

active substances secreted by the aphids into the phloem, which eventually interacts 

with the shoot respiratory system. Aphid secretion into the phloem is well 

docum ented (Edwards and W ratten  1980).

The decrease in shoot respiration with age (Fig. 2) has been reported 

previously for other shoot systems (Azcon-Bieto et al. 1983a,b) and was ascribed to 

decreased cytochrome pathw ay activity. This was also the case in this instance 

(Fig. 2). Simple linear decreases in short-term  root respiration was reported for 

these plant-aphid systems (Hawkins et al. 1986) but for root respiration the 

correlation to linearity was best for the rates observed for the roots of aphid-

infested plants, rather than for control shoots. This lends support to Lambers’

(1985) observation th a t respiration studies on shoots and roots should be conducted 

separately. The decrease in to ta l shoot respiration was likely a function of tissue 

ageing because a t an older age, the respiration rates become constant until the

tissue becomes senescent (Azcon-Bieto et al. 1983a).

The capacity of the alternative respiratory pathway was greater in aphid-

infested plant shoots than in control plant shoots by day 10 (Tab. 1), even though 

this pathway was no longer engaged in aphid-infested shoots (Fig. 2). Therefore, 

the increased respiration in aphid-infested shoots was not due to higher alternative 

pathw ay activity  resulting from increased substra te  supply. Azcon-Bieto et al. 

(1983b) hypothesized th a t this was one of the major causes of increased shoot 

respiration in their system. This in tu rn  could indicate th a t the increased

respiration found in the aphid-infested plants was not a result of increased rates of 

photosynthesis.

The effect of the uncoupler, CCCP, on shoot respiration (Tab. 2) indicated 

there was a general decrease in respiration with age and th a t after 10 days the 

infested plants had greater uncoupled respiratory rates. This is probably a direct 

result of their higher cytochrome pathway activity  (Fig. 2).

There are three responses th a t may be observed when shoot respiration is 

uncoupled:
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A) CCCP will not stimulate respiration if glycolysis and the TCA-cycle are 

substrate limited and not controlled by ADP levels (Blacquiere and de Visser 1984).

B) CCCP will stimulate respiration via a Pasteur effect when glycolysis is restricted 

by adenylates (Wiskich 1980).

C) CCCP will stimulate respiration directly when the mitochondrial cytochrome 

chain is limited by adenylates (Azcon-Bieto et al. 1983c).

With this in mind, it becomes clear th a t  the effect of aphid feeding on cytochrome 

pathway respiration was quite variable (Tab. 2, Fig. 2).

On day 5, respiration was stimulated by the addition of CCCP (indicating 

adenylate control) for control P /P  and both treatm ents of C P /C P .  Therefore, in 

three of the four aphid treatments, the cytochrome pathway was substrate limited 

by substrate supply to the mitochondria. By day 10, the regulation had changed 

with the cytochrome pathway, for both treatm ents  of P / P  and P /B B  and the 

control of C P /C P ,  being limited by the supply of ADP. Now, mitochondria in only 

two aphid treatm ents were substrate limited. This suggests, that with time, as 

growth slows, cytochrome pathway activity becomes less regulated by substrate 

availability and more by adenylate control. The above also indicates tha t  in  vivo 

regulation of cytochrome pathway respiration is a complex phenomenon (Blacquiere 

and de Visser 1984) and that aphid infestation was not affecting respiratory 

regulation per se.

The increased respiration, activity and capacity observed in aphid-infested 

plants (Fig. 2, Tab. 1, Tab. 2) could also be the result of a delay in senescence of 

the infested shoots. If a substance injected by the aphids into the phloem (Edwards 

and W ratten 1980) caused an alteration in the plants hormonal balance, senescence 

could be delayed and respiration rates would be maintained for a longer time. The 

higher rates of respiration, without alternative pathway engagement, would tend to 

increase ATP production. This, presumably because it is not used for increased
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growth (Fig. 1), could be used for cellular m aintenance associated with the aphids’ 

feeding on the shoot. The increased energy put into maintenance could confer some 

advantage on the p lant in the future, such as upon aphid removal or their natural 

decline in numbers.

The constancy of the residual respiration rate in shoots is in m arked contrast 

to its decline observed for roots of the same species (Hawkins et al. 1986). This

may indicate th a t penetration of the inhibitors and uncoupler at the concentrations

used is easier or more efficient in shoot than  in root tissue.

In summary, this study has shown th a t short-term  aphid infestation does cause

an increase in shoot respiration, a decrease in the carbon economy of the shoot, and 

th a t the increase in respiration was not associated with the alternative respiratory 

pathw ay. How the increase in shoot respiration was initiated is unclear, but it may 

be via increased rates of photosynthesis, responses to toxins injected by the aphids 

an d /o r delayed senescence. Further studies investigating some of these proposals are 

worthwhile and have been initiated to examine in more detail the in  vivo  regulation 

of shoot respiration.
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CHAPTER 6

THE EFFECT OF SHORT-TERM APHID FEEDING ON THE PARTITIONING

OF 14CO -PHOTOASSIMILATE IN THREE LEGUME SPECIES1 
2

6 .1  In trod u ction

Hawkins et al. (1986) proposed th a t the observed decreases in root growth and 

root respiration, due to short-term  aphid infestations, were the result of decreased 

carbohydrate (translocate) flux to  the roots. This conclusion was based on growth 

analyses of the infested plants (Hawkins et al. 1986) rather than on more 

sophisticated techniques such as sugar analyses and patterns of translocate 

distribution.

Translocation studies using 14C 0 0 have been performed on aphid-infested plants 

(Thrower and Thrower 1966”, Way and Cammell 1970-, Wu and Thrower 1973; Veen 

1985) but these workers have prim arily been concerned with the effects of aphid 

feeding on the partitioning of 14C-translocate in the shoot and not transport to or 

from the root. The same authors all observed th a t, to varying degrees, short-term  

aphid infestation did cause alterations in shoot translocation patterns. Dixon (1975) 

proposed tha t some of the aphid-induced changes in assim ilate partitioning could be 

to the advantage of the aphid.

Change in the translocation patterns of non-aphid-infested shoot tissue is a 

complex phenomenon (W ardlaw 1985). It m ay involve hormonal

interactions (Starck 1983) for phloem loading (M arre et al. 1974; Herold 1980; 

Patrick 1982), and source-sink, end-product feedback regulation (Neales and Incoll 

1968; Thrower 1974; Geiger 1975; Geiger and G iaquinta 1982; Baker 1985; Wardlaw 

1985).

! THIS CHAPTER WAS SUBMITTED TO CAN. J. BOT. 15 APR 86 AND IS REFERRED TO IN THE 
THESIS AS HAWKINS ET AL. (SUBMITTED 1986B)
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This investigation was conducted to determ ine the effect(s) of short-term  aphid 

infestation on whole p lan t translocate partitioning, with special emphasis on the 

roots, in three well fertilized, non-nodulated legume species. A secondary aim was 

to  observe whether the response of whole p lan t translocation to aphid feeding was 

general or plant-aphid species specific (c f . Hawkins et al. 1985),
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6 .2  M a ter ia ls  and m eth o d s

Cowpea and pea aphids, Aphis craccivora Koch and Acyrthosiphon p isum  

(H arris), respectively, both Homoptera: Aphididae, were obtained and maintained as 

previously described (Hawkins et al. 1985). Seeds of cowpea (Vigna unguiculata  

(L.) W alp. cv. Caloona), broad bean [V ida faba  L. cv. Aquadulce), and garden pea 

(P isum  sa tivu m  L. cv Victory Freezer) were obtained and raised as described by 

Hawkins et al. (1985, 1986).

The glasshouse grown plants were placed in a growth cabinet under a 16:8 h 

light: dark cycle (Hawkins et al. 1985) one day prior to  the commencement of each 

experim ent. The 14-day-old plants were divided according to size into Five blocks of 

four p lants on experim ent day 0. The four plants of each block were randomly 

divided into two pairs; each comprising a control p lant, and an experimental plant 

which was infested with 10, eight-day-old adu lt aphids. Translocation patterns were 

determ ined and the aphid distribution was recorded for one pair of plants on 

experim ental days 5 and 10. This procedure was repeated for the other four blocks. 

No translocation patterns were determined on experimental day 0 because the 

m ajority of the 14-day-old plants or their leaves were too small to accommodate the 

translocation apparatus. The aphid-plant com binations used were P /P  (pea aphids 

on pea), P /B B  (pea aphids on broad bean), C P /C P  (cowpea aphids on cowpea) and 

C P /B B  (cowpea aphids on broad bean).

Growth analyses were not determined because it has been dem onstrated 

repeatedly for these aphid plant com binations th a t 10 adult aphids placed on a 14- 

day-old plant significantly reduce plant growth in 10 days (Hawkins et al. 1985, 

1986).

At noon on the day preceeding the experim ent, the 10 plants to be sampled in 

one translocation determ ination were moved to  an experimental growth cabinet 

which operated under identical environm ental conditions to the holding growth 

cabinet (Hawkins et al. 1985). This ensured a t least 6 h of photosynthesis prior to 

labelling. On the m orning of the experim ent, 200/d of 7.54xl04 Bq (2/xCi) 

N aH 14C 0 2 [specific activ ity  6 .36xl07 Bq.m m ol'1 (59.3 m Ci.m m ol'1) Radiochemical
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Centre, Am ersham , U.K.] was put into each of 10, 24 ml capacity vials (Fig. 1)

and a seal was effected between the leaf and vial. The leaf surface area exposed 

over the vial was 2.40 cm2. The leaves fed were one of the prim ary leaves of 

cowpea and one of the leaves from the th ird  or fourth leaf pair, of broad bean and 

pea seedlings, respectively.

The 14C 0 9 was generated in the sealed vial by injecting 1.5 ml of 50% lactic 

acid into the vial through the rubber diaphragm . It took about three min to  trea t 

the 10 plants. The 14C 0 2 was fed to the leaves for 20 min a t which tim e it was 

absorbed from the atm osphere of the vial by injecting 2.0 ml of 1M KOH into the

vial through the diaphragm . The vials were removed from the fed leaves and the

plants were then left in the growth cabinet, in the light, for 4 h of translocation. 

Both feeding and translocation were done a t a light intensity of 350 /unol.m '^s"1.

The 10 plants were removed from the growth cabinet after 4 h and divided

into component parts: leaf tissue from above and below the fed site, tissue from the 

fed leaf, root tissue, and a representative sample of aphids (some aphids from all 

areas of the p lant) were collected where applicable. No aphids were taken from the 

fed leaf or the opposite member of the pair. Leaf tissue was sampled with a  punch 

th a t removed 0.30 cm2 discs; stems, petioles and roots were sampled using a razor 

blade; and aphids were removed with a fine, camel hair brush. Two leaf discs were 

taken from each fed leaf and one leaf disc was taken from the m id-lateral portion of 

all other leaves and pooled for samples from above and below the fed site. In 

cowpea, the below sample was from the cotyledon scar region of the stem. Roots 

were washed in w ater, blo tted  dry and spread out and divided into upper, m id, and 

lower root zones. 0.5 cm samples of root tip  and of root base were randomly 

selected from roots originating in each of the three zones, giving a to ta l root sample 

of three tips and three bases. All plants were sampled system atically: all aphid 

samples first, then all above fed site samples, etc. Upon removal, the sampled 

tissue was immediately placed in tared, closed weighing bottles for fresh weight 

determ inations. The m axim um  tissue sample was usually about 50 mg.

After weighing, each tissue (except for aphids) was sliced into 1 mm strips or
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In'u VTTf

Figure 1. CO^ feeding apparatus for translocation determinations.
A 24 ml vial (B) held in a retort stand clamp (A) was 
manoeuvred under the leaf to be fed (E). The leaf was 
placed on top of the neoprene 'O' ring (D) and a second 
'O’ ring (F; that was fastened to a wire loop) was 
placed on the leaf directly over the 'O’ ring on the 
vial. The seal between the leaf and the vial was 
effected by the tension (which did not damage the leaf 

tissue) provided by the elastic band (G). Chemicals 

were injected into the vial through the rubber 
diaphragm (C). Five such apparatus were attached by a 
clamp (H) to a supporting bar (I), one of which was on 
each side of the growth cabinet.
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segments and placed separately into a scintillation vial. 1.5 ml of NCS™  tissue 

solubilizer (Am ersham /Searle, Arlington Heights, IL, U.S.A.) was then added to each 

sample. The vials containing tissue and solubilizer were placed in a w ater bath at 

50 1°C for 48 h a t which tim e they were removed and 450 /d of benzoyl

peroxide decolorizer (1.0 g benzoyl peroxide in 5 ml of toluene) was added. The 

samples were digested for another 1 h, removed from the water bath and cooled to 

room tem perature, after which, 10.0 ml of the scintillation cocktail [44 ml 

Perm afluor(R) 1 (Packard Instrum ent Co., Downers Grove, IL, U.S.A.; 125 g .l'1 PPO 

(2,5-diphenyloxazole), 2.5 g .l'1 PO PO P (1,4 bis[5-phenyl-2-oxazolyl]-benzene)), 319 ml 

Triton-X100, and 637 ml toluene] was added. Samples were allowed to settle 

overnight, in the dark, a t  room tem perature before counting was begun.

Sample radioactivity  was determined with a B e c k m a n ^  LS-7500 liquid 

scintillation spectrom eter (Beckman Instrum ents, Irvine, CA, U.S.A.) with autom atic 

quench compensation activated. The 14C was measured in the 397-655 energy 

window at efficiencies of 75-85 percent.

The radioactivity of each sample was corrected for background and normalized 

to  one g fresh weight of tissue. Radioactivity for each sample was summed to give 

to ta l plant (including aphids where applicable) recovered radioactivity. Each sample 

was then expressed as percentage of to tal plant recovered radioactivity.

Calculation of m eans and two-way analysis of variance (ANOVA) at a =  0.05, 

on % TPR were done using the G EN STA T package (Statistics Departm ent, 

Rotham sted Experim ental S tatiom , U.K.). Analysis of residual versus fitted values 

for the ANOVA model indicated th a t da ta  transform ation was not required (Netter 

and W asserman 1974). The protected LSD (least significant difference) was 

calculated (Snedecor and Cochran 1980), a t a =  0.05, for each pair of means.
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6.3  R esu lts

All da ta  presented are representative of the results of replicate experiments (2 

trea tm ents  X 5 blocks).

The percentage of total plant recovered radioactivity was not significantly 

different between fed leaves of control and aphid-infested plants (data not shown). 

However, fed leaf radioactivity accounted for such a large amount of the total 

recovered plant radioactivity th a t  it was not included (c/. Cralle and Heichel 1985) 

in the % TPR  (total plant recovered radioactivity) da ta  tha t  follow.

Control plants had significantly greater % TPR in the roots than infested 

plants of P /B B  and C P /C P  by day 5 and this relationship was significant for all 

plant-aphid combinations by day 10 (Fig. 2). By day 5, control C P /C P  had 

significantly higher % TPR  for tissue from below the fed leaf, whereas the 

relationship was variable and not significant for the other combinations (Fig. 2). 

All control plants had higher % T PR  in tissue from below the fed site than aphid- 

infested ones by day 10, but this was only significant for P / P  and C P /B B  (Fig. 2). 

The % TPR  for tissue from above the fed leaf was significantly greater in control 

plants for P /B B  and C P /B B  and in aphid-infested plants for C P /C P  by day 5 

(Fig. 2). By day 10, all the control plants had significantly higher % T PR  for 

tissue from above the fed leaf than the aphid-infested plants (Fig. 2). A large 

portion of the % TPR  was found in the aphids on day 5 and this increased 

significantly (data not shown) for all plant-aphid combinations between days 5 and 

10 (Fig. 2).

A brief description of where the aphids were distributed on the plants on days 

5 and 10 and any differences observed in growth form between aphid-infested and 

control plants are presented in Table 1.

Aphid-infested plant % TPR  were recalculated, ignoring the radioactivity 

ingested by the aphids, to determine if translocation partitioning was changed when 

the basis of comparison was the same for control and aphid-infested plants. The 

% T P R  going to the roots was the same or greater in controls on day 5 and was 

greater in all cases on day 10, but on day 10 it was only significant for P / P  and
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Figure 2. %TPR on experimental days 5 and 10 for aphid-

infested and control plants’ root tissue, tissue 

from below the fed leaf, tissue from above the fed 

leaf, and for aphids of all four plant-aphid 

combinations. The LSD (°<. = 0.05) for the 

experimental tissue and the control tissue to its 

left is the vertical line over the experimental 

tissue. P/P, P/BB, pea aphids on pea and broad 

bean plants; CP/CP, CP/BB, cowpea aphids on 

cowpea and broad bean plants. Control tissue, [""] 

experimental tissue,® ; aphid tissue,
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C P /C P  (Fig. 3). The % TPR from below the fed leaf was variable, with only

control C P /C P  being significantly higher on day 5 (Fig. 2). By day 10, all the

aphid-infested plants had higher % TPR for tissue from below the fed site than

controls and this was significant for P /B B  and C P /C P  (Fig. 3). The partitioning 

of % TPR above the fed leaf was variable (Fig. 3). Control C P /C P  % TPR was

significantly greater on day 5 while on day 10, % TPR from above the fed site of 

control P /B B  and C P /C P  and aphid-infested P / P  and C P /B B  were greater than 

their respective counterparts (Fig. 3).

The distribution of % TPR in the major organs of cowpea, both control and 

aphid-infested plants, on day 10 is presented in Table 2. Again, the aphids

accounted for the bulk of % TPR and control plant roots had significantly higher 

% TPR, either accounting for or ignoring uptake by the aphids (Table 2). The

difference observed in partitioning when the aphids were removed from the

calculation between this experiment (Table 2, AR) and the other C P /C P  trials (Fig. 

3) was that the aphids were concentrated above the fed leaf in this experiment

(data not shown).
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Figure 3. %TPR recalculated for tissue from aphid-

infested plants (omitting the label taken up by 

the aphids) and for control plants’ (same as Fig. 

2) root tissue, tissue from below the fed leaf, 

and tissue from above the fed leaf on 

experimental days 5 and 10 for all four plant- 

aphid combinations. The LSD (°C= 0.05) for the 

experimental tissue and the control tissue to 

its left is the vertical line over the 

experimental tissue. Abbreviations as in Fig,

; experimental tissue,2. Control tissue
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Table 2. Partitioning of photoassimilate into each tissue

region of the plant and the LSD for aphid-infested and control 
14cowpea plants where CC^ was fed to one of the primary leaves 

after 10 days infestation.

Tissue region A

%TPR/;

C AR

3rd trifoliate 25.06
.. „ 17.09

2nd trifoliate 4.16 3.49 18.50

LSD 15.85 4.36

" " petiole 6.55 3.76 26.54

LSD 13.52 23.36

" " " aphids 6.83

1st trifoliate 2.38 1.25 9.30

LSD 9.69 12.88

" " aphids 1.36

" " petiole 2.47 4.15 14.38

LSD 13.06 19.04

" " " aphids 43.82

opposite primary 0.51 2. 16 3.16

LSD 5.52 5.46

" aphids 1.57

cotyledon scar 3. 17 12.51 12.86

LSD 17.65 17.09

" " aphids 22.78

upper root zone 2.59 11.57 9.80

LSD 8.88 3.31

lower root zone 0. 78 18.95 5.47

LSD 5.97 12.91

Summary $

above fed site 15.56 54.80 68.72

below fed site 3.68 14.67 16.02

root zone 3.37 30.52 15.27

aphids 77.36 0.0

II Abbreviations: %TPR, percentage plant recovered radioactivity; 
A, aphid-infested plant; C, control plant; AR, aphid radio­
activity removed from %TPR calculation to allow a direct 
comparison between C and AR plant tissue.

$ A summary of the data from above is presented for the four 
main tissue regions
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6 .4  D iscu ssio n

The significant reduction in % TPR  (percentage of total plant recovered

radioactivity) after 10 days for the aphid-infested plants (Fig. 2) in comparison to 

controls indicates tha t  aphid feeding was reducing the flow of assimilate to the

roots. Aphids could reduce translocate flux to the roots either by imbibing

carbohydrates normally destined for the roots, by redirecting the flow of translocate 

within the plant away from the roots, or both. The decline in assimilate flux to 

the roots (Fig. 2) supports the proposal of Hawkins et al. (1986) tha t  the observed 

decline in infested plant root respiration wras a result of a decreased supply of 

carbohydrates to the roots. The marked decrease in translocation to the roots

between days 5 and 10 (Fig. 2) parallels and possibly explains the significant 

reductions in root growth and root respiration th a t  occurred between those days in 

previous experiments (Hawkins et al. 1985, 1986). Wu and Thrower (1981) also 

observed th a t  similar major perturbations to their plant-aphid system were 

manifested during this time period.

The higher % TPR found in control plants compared with aphid-infested ones 

for tissue taken from below the fed leaf after 10 days (Fig. 2) was a result of a 

greater translocate flux to the roots of control plants since aphid feeding reduced 

th a t  in the experimental plants. Under normal conditions, mature leaves below the 

fed site are not sinks but sources (Thrower 1974; Ismail and Sagar 1981). This 

probably explains non-significant differences of % T PR  from below the fed site in 

plants other than cowpea. In cowpea, the sample site was not a leaf but the 

cotyledon scar region of the stem and hence the higher % TPR of samples from this 

region in control plants was probably a reflection of the amount of translocate going 

to the roots.

Initially, the change in % TPR from the region above the fed leaf was variable 

(Fig. 2), but again, by day 10 the control plants all had significantly higher % TPR 

than  infested ones. This indicates tha t  aphid feeding prevented translocate moving 

from the fed source leaf to its natural sinks, the expanding leaves above (Geiger 

and Giaquinta 1982). The simplest and most obvious explanation is th a t  the
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aphids removed this translocate from the phloem stream and thereby prevented it 

from reaching the expanding leaves. This is supported by the significant proportion 

of the total label found in the aphids on days 5 and 10 (Fig. 2).

There was a significant increase in % TPR  found in the aphids between days 5

and 10 (Fig. 2). There are a t  least two possible explanations for the increase:

i) On day 5, the aphid population consisted of few adults and more but about 

equal numbers of first through fourth instar nymphs while on day 10, there were a 

large number of adults and first and second instar nymphs with smaller numbers in 

the other instars. If the larger adults ate proportionally more than the nymphs, 

possibly due to a greater development of their cibarial pump, the aphid % TPR for 

the day 10 sample should be greater than for the day five one.

ii) As the aphid sample was representative of the aphid population structure on the

plant and did not include aphids from the fed leaf, it is possible tha t  the stylet

length of the nymphs prevented them from reaching the larger phloem elements. It 

is known that  stylet length is very important in determining the feeding site in

aphids (Gibson 1972; Dixon and Logan 1973; Dixon 1975) and for a gall forming 

aphid, Neothoracaphis yanonis (M atsumura), the adults feed on the phloem but the 

young can not because their stylets are too short (Sorin 1966). This too could 

account for the higher % TPR in the day 10 aphid sample.

The advantage of removing the aphids’ contribution to total recovered plant 

radioactivity from the calculation is th a t  control and infested plants are then being 

compared on a more equitable basis. Control plants still had greater fluxes of 

carbohydrates to the roots than aphid-infested ones on days 5 and 10 (Fig. 3), even 

though the difference was only significant for P / P  and C P /C P  on day 10. A 

possible reason for the control broad bean plants not having significantly higher root 

% T P R  than roots of infested plants is tha t  roots of non-infested broad bean are 

capable of re-exporting labelled assimilate to the high demand sinks of the shoot 

within 1 to 3 h of labelling the fed leaf (Ismail and Sagar 1981). The significant 

reductions observed for aphid-infested broad bean root growth and root respiration
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(Hawkins et al. 1985, 1986) makes it unlikely tha t  these plants would be re­

exporting carbohydrates to the shoot. Nevertheless, the reduced flux of 

photoassimilate to the roots of all aphid-infested plants, with time, should account 

for the reductions in root growth and root respiration of these plant-aphid 

combinations (Hawkins et al. 1985, 1986).

By day 10 in the aphid-infested plants, all of the tissue from below the fed 

site had higher % TPR than their respective controls (Fig. 3) when the aphid

contribution to % TPR was removed but the difference was only significant for

P /B B  and C P /C P .  This was surprising because the result for this tissue region 

was the opposite when aphid 14C-label was taken into account (Fig. 2). The

change in this relationship between control and infested tissue indicates th a t  the

aphids were inducing a change in the partitioning of photoassimilate. The absence 

of a significant difference for P / P  (Fig. 3) could be related to the lower aphid

% T PR  found for these plants (Fig. 2). The almost even aphid distribution over the 

shoots of C P /B B  (Table 1) could be responsible for the similar values obtained in 

this system (Fig. 3).

In both cases where the difference for % T P R  of tissue from below the fed leaf 

were significant and for P / P  (Fig. 3), there was a noticeable number of aphids

feeding in the region (Table 1). This could indicate tha t  at least in two, if not all 

cases, the aphids were inducing leaves tha t  normally would be sources, to become 

translocate sinks. The region of the plant below the fed site is not normally a sink 

(Thrower 1974; Ismail and Sagar 1981). Imbibition of radioactivity by aphids 

feeding on sink leaves has been reported previously for other aphid-plant systems

(Thrower and Thrower 1966; Canny and Askham 1967; Way and Cammell 1970;

Wu and Thrower 1973). Tissue from below the fed leaf accounts for the smallest 

% T PR  in control plants (Fig. 3) while in the aphid-infested ones, P / P  and C P /B B  

responded as controls did but for P /B B  and C P /C P  the shoots accounted for the 

smallest %TPR. This indicates tha t  aphids can induce a redirection in the normal 

partitioning of assimilate. Starck (1983) proposed tha t  a redistribution of 

translocate was a primary response to a change in the supply-demand balance of the 

plant.
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The distribution of % TPR in tissue from above the fed leaf was quite variable 

on day 10 (Fig. 3) and appears to be related to where the aphids fed on the plant 

(Table l) .  The amount of translocate moving up the plant was significantly 

reduced when aphids fed primarily below the 14C 0 2-fed site except for P /P  (Fig. 3). 

These da ta  indicate tha t  aphid feeding can result in a redirection of the normal 

source-sink translocation relationships. A closer look a t the C P /C P  system may 

illuminate some possible mechanisms for the redirection of translocate.

The flow of translocate to the roots was significantly reduced (Table 2),

whether aphids were included in the calculation or not, especially to the lower,

actively growing root zone. The large amount of label accounted for in the % TPR

of the aphids is another prominent feature of the system (Table 2). The topmost 

trifoliate leaf of both control and experimental plants accounted for more than 40 

percent of the % TPR  but in the aphid-infested tissue, the petiole had a higher

% TPR  than the trifoliate (Table 2). This occurred because in cowpea, as opposed 

to the other three aphid-plant systems, aphids feed preferentially on petioles, stems 

and then leaves (data not shown). This again indicates tha t  aphids can induce a 

change in the partitioning of plant photoassimilate. The similarity in % T PR  for 

tissue from below the fed leaf (Table 2, AR) arose because very few aphids were 

feeding in this region. These da ta  (Table 2) illustrate tha t  feeding aphids are 

capable of preventing significant translocate from reaching the roots, of redirecting 

translocate from normal sinks in the shoot region, and of inducing the conversion of 

sinks to sources. The question of what possible physiological mechanisms could 

account for these observations remains.

Roots are a considerable distance from their sources and the downward flux of 

translocate could be reduced by the aphids imbibing assimilate in passage and 

destined for the roots. This would require no direct biochemical interaction between 

aphids and roots and probably would be sufficient to account for the reduction in 

root % TPR (Figs. 1 and 2, Table 2) and root respiration (Hawkins et al. 1986).

A redirection of photoassimilate in the shoot and /o r  conversion of former 

sources to sinks requires some kind of direct biochemical communication between the
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aphid and the host plant because source-sink interactions are more than direct

regulation by end-product inhibition (Wardlaw 1985). For example: it is known

th a t  the allocation of photosynthate is under hormonal control (Starck 1983); that 

phloem loading [the definition of a source (Baker 1985)] and the transport of

photosynthate can be enhanced by cytokinins and auxins (Marre et al. 1974;

Herold 1980; Patrick 1982); tha t  the rate of phloem transport is dependent on the 

activity of the sink (Thrower 1974; Geiger and Giaquinta 1982); tha t  aphids can 

inject plant hormones into phloem elements via their saliva (Miles 1968a,b); and 

tha t  aphid infestation can result in increased levels of cytokinins in the roots and 

growth inhibitors in the shoots, and decreased concentrations of growth promoters in 

the shoots (Hussain et al. 1973). The increased lateral branching observed in aphid- 

infested broad bean (Table 1) also indicates aphid-induced changes in the cytokinin 

to auxin ratios of these plants (Matthysse and Scott 1984).

If phloem loading is regulated by cytokinins and auxins, for aphids to ’turn 

o ff  a source and convert it into a sink, they would have to initiate a decrease in 

local cytokinin and auxin concentrations. This does seem to be a distinct possibility 

(Hussain et al. 1973). Aphids, in themselves, are considered to be ’physiological 

sinks’ on the plant (Way and Cammell 1970). This coupled with the ability to 

turn sources off (aphids receive not only the photosynthate of the source but that 

which it can import as well) would alter the normal partitioning of translocate.

The idea of inducing sources to become sinks seems counter-productive to the 

well-being of the aphid (c/. Dixon 1975). However, it is generally agreed tha t  an 

increase in the sink to source ratio (the case here) will lead to increased export 

from the sources (Geiger and Giaquinta 1982) which in turn can lead to increased 

photosynthesis (Sweet and Wareing 1966; Neales and Incoll 1968; Peet and Kramer 

1980; Wardlaw 1985). An increase in photosynthesis is compatible with increased 

phloem loading and transport because it has been demonstrated tha t  cytokinins and 

auxins can promote photosynthetic unit synthesis (Buschmann and Lichtenthaler 

1977) and increased net rates of photosynthesis (Li and Proctor 1984). This implies 

th a t  if the auxin and cytokinin concentration is lowered in the leaves th a t  are
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converted to sinks it must be increased in those leaves th a t remain sources. 

W areing et al. (1968) concluded th a t an increase in the sink-source ratio  could 

prom ote the export of cytokinins from the roots.

Hawkins et al. (subm itted 1986a) have observed significant increases for whole 

shoot respiration in aphid-infested plants of all these plant-aphid combinations and 

a ttribu ted  it to either increased rates of photosynthesis and /o r maintenance 

respiration. Unfortunately, the design of the present study precludes any direct 

comparison being made between shoot translocation and whole shoot respiration. 

The phloem loading step involves a protonated carrier (Baker 1985) and the proton 

gradient is m aintained by a proton extrusion pump (Geiger and G iaquinta 1982; 

G iaquinta 1983). Therefore, it is a ttrac tive  to speculate th a t the increase in 

infested shoot respiration (Hawkins et al. subm itted 1986a) is in response to 

increased phloem loading in the remaining source leaves.

This investigation has shown th a t short-term  aphid feeding results in a 

decreased flux of translocate to  the roots of affected plants, a change in the 

partitioning of assim ilate in affected shoots, and the induction of sources to  become 

sinks. Some of these effects appear to be directly related to the imbibing of 

translocate by aphids, while others appear to be a complex combination of 

interactions involving aphid saliva, plant hormones and source-sink levels of 

photoassimilate. The effect of aphid feeding on translocation appears to be a plant- 

aphid species specific phenomenon except for the decreased rate of translocation to 

the roots. The proposal th a t aphid feeding results in increased rates of 

photosynthesis in source leaves is being pursued.
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CHAPTER 7

SHORT-TERM EFFECTS OF APHID FEEDING ON PHOTOSYNTHETIC

CO GAS EXCHANGE AND 
2

DARK RESPIRATION IN LEGUME LEAVES1

7.1 In trod u ction

Hawkins et al. (subm itted 1986a) proposed th a t the observed increase in 

legume shoot dark respiration in response to short-term  aphid infestation was 

paralleled by an increase in net photosynthesis. This was based on M cCree’s (1970) 

observation th a t increased rates of photosynthesis are accompanied by proportionate 

increases of dark respiration. However, the view generally held is th a t aphid feeding 

reduces the rate  of photosynthesis and increases the dark respiration rate (Kloft and 

E hrhard t 1959; Daly 1976; Uritani and Asahi 1980). Wood et al. (1985) did report 

decreases in rates of both net photosynthesis and dark respiration for aphid-infested 

pecan leaves, while Way and Cammell (1970) reported th a t aphid infestation could 

increase photosynthesis.

If aphid feeding does increase the sink-source ratio  of infested plants, this will 

lead to increased export from the source leaves (Geiger and G iaquinta 1982; 

G iaquinta 1983). This can, in tu rn , lead to increased rates of photosynthesis 

(W ardlaw 1985) because normally leaves are not operating a t peak capacities 

(Maggs 1964). The notion of photosynthetic rate  being regulated by leaf 

carbohydrate levels was first proposed over a hundred years ago (Boussingault 1868), 

recently refined (Neales and Incoll 1968), and is now accepted with the proviso that 

it also involves phytohorm one regulation (Starck 1983).

This study was conducted to determ ine the effects of short-term  (6 to 9 days)

^HIS CHAPTER WAS SUBMITTED TO AUST. J. PLANT PHYSIOL. ON 07 APR 86 AND IS 
REFERRED TO IN THE THESIS AS HAWKINS ET AL. (SUBMITTED 1986C)
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aphid infestation on the rates of net photosynthesis and dark respiration in single 

attached leaves (which had undertaken most of their development under conditions 

of aphid infestation) of three well fertilized, non-nodulated legume species. Another 

aim  was to observe whether these responses were plant-aphid species specific or 

general.

Abbreviations:

CER, net C 0 2 exchange rate; C P /B B , cowpea aphids on broad bean; C P /C P , 

cowpea aphids on cowpea; IRGA, infra-red gas analyzer; LAW, leaf area to leaf 

weight ratio; P /B B , pea aphids on broad bean; P /P ,  pea aphids on pea; and Rß , 

dark respiration rate.
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7.2 M a ter ia ls  and m ethods

Seeds of cowpea [Vigna unguiculata  (L.) Walp. cv. Caloona], broad bean [Vida  

faba  L. cv. Aquadulce), and garden pea (P isum  sa tivum  L. cv. Victory Freezer) 

and pea and cowpea aphids, Acyrthosiphon p isum  (Harris) and Aphis craccivora 

Koch, respectively, both Homoptera: Aphididae, were obtained and raised as

described and modified by Hawkins et al. (1985, 1986).

The plants were moved from the glasshouse to a growth cabinet on the day 

prior to the commencement of the experiment and were then grown under the 

environmental conditions described by Hawkins et al. (1985). For each aphid-plant 

combination the 14-day-old plants were divided according to size into five blocks of 

two plants on experimental day 0. Each pair of plants was randomly divided to 

include a control, and an experimental plant with 10, 8-day-old adult aphids placed 

on it. P lant aphid combinations utilized were C P /B B , C P /C P , P /B B  and P /P .

On the day prior to photosynthetic and dark respiration rate determinations, 

the pairs of plants to be measured the following day were moved from the holding 

growth cabinet to the experimental growth cabinet which was under a similar 

environmental regime as the holding cabinet. This insured tha t  all plants had a 

minimum period of 6 h of photosynthesis in the experimental growth cabinet prior 

to determinations of photosynthesis and dark respiration rates (c/. Hawkins et al. 

1986). Rate measurements were carried out after 6, 7, 8 or 9 days of aphid feeding 

because this is when major physiological changes s tar t  to manifest themselves (Wu 

and Thrower 1981; Hawkins et al. 1985). Three pairs of plants were randomly 

selected for rate determinations of each plant-aphid combination and no more than 

two pairs of plants from any one plant-aphid combination were tested on any one 

day. This procedure was repeated in its entirety at a later date.

Measurements of steady-state net C 0 9 exchange rates (CER) and dark 

respiration rates (RD) of the centre leaflet of the first trifoliate, and one leaf from 

the third or fourth leaf pair, for cowpea, broad bean and pea plants, respectively, 

were made using an open gas exchange system. This ensured tha t  leaves from 

infested plants had undertaken most, if not all, of their development while the plant
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was aphid-infested. The appropriate attached leaf (with aphids removed if present) 

was sealed into a 23 ml Plexiglass^) leaf chamber. Temperature was regulated to 

23 +  1 °C by water circulated from a water bath. Prior to connecting the leaf 

chamber to the IRGA (Infra-red gas analyzer, Model 225 MKII, Analytical 

Development Co., Ltd., Hoddeson, U.K.) system, the enclosed leaf was allowed to 

equilibrate for at least 20 min at 23 °C in the light (photon flux density of 315 

//mol.m'2.s'1), with air from within the growth cabinet being pumped past the leaf 

a t  a rate of 2.0 l.min'1. After equilibration, the leaf chamber was connected to the 

IRGA system whose source of C 0 0 variable air was drawn from inside the growth 

cabinet.

The above design allowed steady-state CER (determined twice) and RD to be 

measured under the CO,,, light (315, instead of 350 //mol.m'2.s '1), temperature (23.0 

+_ 0.5 °C) and relative humidity (not regulated in these cabinets) regimes tha t  the 

plants had been growing under since the aphids had been placed on the 

experimental plants.

After rate determinations, the leaf(let) was removed from the plant and its 

area and dry weight were determined (Hawkins et al. 1985). CER (mean of the 

two steady-state rates) and RD were calculated on both an area and a dry weight 

basis. The mean rates for each treatm ent of each plant-aphid combination were

calculated using both experiments (3 +  3 plants). Analyses of variance (ANOVA) 

were used to compare means, a =  0.05, and protected least significant differences 

(LSD) were calculated (Snedecor and Cochran 1980), a = 0.05.
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7.3 R esu lts

Net C 0 2 exchange rates (CER) were significantly greater in leaves from aphid- 

infested plants when expressed on a weight or an area basis, except for P / P  when 

the area calculation was used (Table 1). The percentage increases in infested leaf 

CER over that of controls on a weight and an area b a s i s  were r e s p e c t i v e l y  66 and 76 7. for 

C P /C P ,  14 and 25 % for C P /B B , 24 and 30 % FOR P /B B , and 23 and 9 % for 

P /P .

The leaf area to weight ratio (LAW), the inverse of specific leaf weight, was 

not significantly different between control and experimental leaves (Table 2).

C P /C P  and P / P  aphid-infested plants had significantly greater dark respiration 

rates (RD) than controls, whether expressed on a weight or an area basis (Table 3). 

The percentage increases in infested leaf Rß over control leaf Rß on a weight and 

an area basis were 116 and 129 % for C P /C P ,  53 and 61 % for C P /B B , 106 and 

113 % for P /B B , and 110 and 176 % for P /P .  RD as a percentage of CER was 

greater in aphid-infested than in control plants (Table 4).

When the mean net daily carbon gain of the leaf [(CER.h'1 x löh.day"1) - 

(R p .h '1 x 8h.day'1)j was calculated for each plant-aphid combination (Table 5), 

leaves from aphid-infested plants had greater net daily gains than control leaves. 

Again, except for P /P ,  the percentage increase was greater when expressed on a leaf

area basis.
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Table 1. Mean net CO^ exchange rates (CER) of 
control (C) and aphid-infested (A) plants. Each 
value is the mean of 6 independent observations. 

Results are expressed on both a leaf weight and a
leaf area basis.

Trial

pmol CO^.h 
C

CER

"1.g(DU)~1 pmol C02
A C

,-l  ̂"2. h .dm 
A

CP/CPC 489 809 22.4 39.4

LSD$ 85 5.4
CP/BB 516 588 25.5 31.8
LSD 40 1 .5
P/BB 505 623 26.2 34.0

LSD 84 5.,7
P/P 568 700 28.9 31.6

*38 (4.0)

C, Abbreviations: CP/CP and CP/BB, cowpea aphids on

cowpea and broad bean; P/BB and P/P, pea aphids 

on broad bean and pea.

$, LSD at •<. = 0.05.
*, If LSD is enclosed, ( ), it is not significant.



Table 2. Mean leaf area to leaf weight ratio (LAW) 

of control (C) and aphid-infested (A) plants. Each 

value is the mean of 6 independent observations.

Trial LAW LSD
dm2.g(DW)_1 

C A

CP/CPC 21.95 21.56 (3.03)
CP/BB 20.48 18.51 (1.69)
P/BB 19.27 18.67 (1.89)

P/P 19.71 22.64 (4.43)

C, Abbreviations: CP/CP and CP/BB, cowpea aphids on 
cowpea and broad bean; P/BB and P/P, pea aphids 
on braod bean and pea.

$, LSD at •< = 0.05.
*, If LSD is enclosed, ( ), it is not significant.
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Tab le  3. Mean d a rk  r e s p i r a t i o n (R^) o f  c o n t r o l  (C)

and a p h id - - i n f e s t e d  (A) p l a n t s . Each v a l u e  i s  t h e

mean o f  6 i n d e p e n d e n t  o b s e r v a t i o n s .  R e s u l t s  a r e

e x p r e s s e d on b o t h  a  l e a f  w e i g h t and a  l e a f  a r e a

b a s i s .

T r i a l R.D

pmol C02 . h ~ 1. g(DW)~1 - 1  -2pmol C02 .h .dm

C A C A

CP/CPC 114.5 2 4 7 .1 5 .2 1  11 .93

LSD$ 48 .6 2 .8 8

CP/BB 6 3 .9  9 8 . 0 3 .37  5 .4 3

LSD ( 3 8 . 3 ) * ( 2 .5 7 )

P/BB 5 9 . 3  122 .7 3 .1 3  6 .6 6

LSD ( 6 6 .7 ) ( 3 .7 8 )

P/P 72.6  153 .0 3 .84  6 .7 6

LSD 4 9 .4 2 .2 3

C, A b b r e v i a t i o n s :  CP/CP and CP/BB, cowpea a p h i d s  on 

cowpea and b r o a d  b e a n ;  P/BB and P / P ,  p e a  a p h i d s  

on b r o a d  bean  and  p e a .

$, LSD a t  •<. = 0 . 0 5 .

*,  I f  LSD i s  e n c l o s e d ,  ( ) ,  i t  i s  n o t  s i g n i f i c a n t .



Table 4. Mean dark respiration rate as a percentage 

of mean net CO^ exchange rate calculated on both a 

leaf weight and a leaf area basis for control (C) 
and aphid-infested (A) plants.

Trial Percentage

Weight Area
C A C A

CP/CPC 23 31 23 30

CP/BB 12 17 13 17
P/BB 12 20 12 20
P/P 13 22 13 21

C, Abbreviations: CP/CP and CP/BB, cowpea aphids on
cowpea and broadbean; P/BB and P/P, pea aphids on
broadbean and pea.
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Table 5. Mean net daily carbon gain ((CER x 16h) - 

(Rp x 8h)) and percentage increase in this value for 

aphid-infested (A) plants over controls (C).

Results are expressed 

leaf area basis.

on both a leaf weight and a

Trial Mean net daily 

pmol CO^.h ^.g(DW)
C A

carbon gain 

pmol C0o.h 

C

-1 a ”2 . dm

A

CP/CPC 6908 10967 316 5 35
?%* 59 69

CP/BB 7745 8624 381 466

% 11 22

P/BB 7606 8986 394 491

% 18 25

P/P 8507 9976 431 452

% 17 5

C, Abbreviations: CP/CP and CP/BB, cowpea aphids on 
cowpea and broad bean; P/BB and P/P, pea aphids 

on broad bean and pea.
?, Percentage increase in A over their respective C
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7.4 D isc u ssio n

Increased CER (net C 0 2 exchange rates) for leaves of aphid-infested plants 

(Table 1) has been reported previously (Way and Cammell 1970) but the general 

view is th a t  aphid feeding reduces CER (Kloft and Ehrhardt 1959; Daly 1976; 

Mallott and Davy 1978; Wu and Thrower 1981; Veen 1985; Wood et al. 1985). 

This view is also held for another sucking bug, the potato leafhopper (Empoasca  

fabae ), and its effect on CER (Ladd and Rawlins 1965; Womack 1984; Walgenbach 

and Wyman 1985). It has also been reported th a t  aphid infestation had no effect 

on CER (van Emden 1973). The discrepancy in the literature for the response of 

CER to aphid feeding could indicate tha t  CER is a response specific of the plant- 

aphid system being investigated.

The significant increase observed for CER of leaves from aphid-infested plants 

(Table 1; except for P / P  on an area basis) could result from an increase in the 

assimilate sink to source ratio (Geiger and G iaquinta 1982; Giaquinta 1983) because 

aphids are considered to be ’physiological sinks’ on the plant (Way and Cammell 

1970). Experimental manipulations of sink to source ratios have shown that 

increases or decreases in the ratio result in respective increases or decreases of CER 

(Herold 1980; Peet and Kramer 1980; Wardlaw 1985). The regulation or fine 

tuning of this relationship is thought to be under hormonal control (Starck 1983), 

particularly, cytokinins and auxins (Marre et al . 1974; Herold 1980; Patrick 1982).

It did not make any difference whether CER or the dark respiration rate (RD) 

were expressed on a leaf weight or a leaf area basis because the leaf area to leaf 

weight ratio (LAW) was not significantly different between control and infested 

plant leaves (Table 2). This indicates tha t  after 6 to 9 days, aphid feeding had 

not resulted in a re-organization of leaf structural matter. The lack of significance 

for CER of P / P  when expressed on an area basis (Table 1) was due to an 

increased, rather than a decreased LAW for the infested P / P  leaf (Table 2). The 

expression of CER on both a leaf area and a leaf weight basis allows comparisons 

with most values in the literature, however, it is most biologically meaningful to 

express rates on an area basis because leaf area can be associated with light 

interception (Wilhelm and Nelson 1985).
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G reater Rß values for leaves of aphid-infested plants (Table 3) have also been 

reported in whole shoot respiration studies of the same plant-aphid combinations 

(Hawkins et al. subm itted 1986a). An increased dark respiration rate  is considered 

to  be the general response of aphid-infested (Kloft and Ehrhardt 1959; Daly 1976; 

U ritani and Asahi 1980) and leafhopper-infested (Ladd and Rawlins 1965) plant 

tissue. However, there are reports of decreased (Wood et al. 1985) and unchanged 

[until the tissue became moribund, when RD decreased (Wu and Thrower 1981)] Rß .

The increased RD of aphid-infested leaves was not due to increased alternative 

respiratory pathw ay activity (Hawkins et al subm itted 1986a). However, if 

increased sink demand stim ulates CER as proposed above, this would be

accompanied by increases in phloem loading and phloem transport. The phloem 

loading step requires th a t a proton gradient be maintained by a proton extrusion 

pum p (Geiger and G iaquinta 1982; G iaquinta 1983). This increased use of energy 

could account for the increase in RD. Another possibility is th a t the maintenance 

energy requirem ents of the leaf have been increased due to increased rates of 

photosynthesis and cellular damage caused by aphid feeding. The increased 

m aintenance requirem ent of the aphid-infested leaves may be indicated when RD was 

expressed as a percentage of CER because the value was greater for all infested 

tissue (Table 4). If the increase in RD was due only to an increase in phloem

loading, and CER increased proportionately, the percentage of RD to CER should be 

the same for control and infested leaves. Therefore, the increased Rß observed for 

leaves from aphid-infested plants was likely caused by increased phloem loading and 

m aintenance requirem ents.

When the mean net daily carbon gain for leaves from each plant-aphid 

com bination was calculated, leaves from aphid-infested plants had a greater 

acquisition than  those of control plants (Table 5). However, this excess of

production, which can be considerable, was not allocated to plant growth but rather

to  aphid ingestion. There were in fact significant reductions in short-term  growth 

for the plant-aphid combinations used (Hawkins et al. 1985, 1986). W hether the 

observed compensatory responses can be extrapolated from the leaf to the plant is
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unknown but the response of RD of a single leaf was the same as for the whole 

shoot (Table 3; Hawkins et al. subm itted 1986a). However, in this case the 

m agnitude of the difference between control and infested leaves was much greater 

than  for whole shoot measurements.

This study has shown that there is an increase in CER, Rß and net daily 

carbon gain in the leaves of aphid-infested plants. It was proposed th a t CER 

increased due to increased assimilate sink demand and th a t Rß increased to meet 

the increased energy requirements of phloem loading and cellular maintenance 

associated with aphid feeding. The compensatory carbon acquired by infested leaves 

was apparently consumed by the aphids. The response of CER and RD to aphid 

feeding appeared to be general rather than plant-aphid species specific. The 

possibility th a t compensatory CER in infested plants can result in long-term 

recovery after aphid removal is being investigated for the C P /C P  system.
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CHAPTER 8

LONG-TERM EFFECTS ON COWPEA PLANT GROWTH OF A 

SHORT-TERM COWPEA APHID INFESTATION1

8 .1  In tro d u ctio n

Aphids are important agricultural pests tha t  feed on plants by inserting their 

stylets into the phloem (Raven 1983). It is generally accepted tha t  short-term (less 

than  3 or 4 weeks) aphid feeding results in reduced plant biomass (Galecka 1977; 

Wu and Thrower 1981) and reduced relative growth rates (Barlow and Mesmer 

1982; Hawkins et al. 1985). Long-term (more than 3 or 4 weeks) aphid feeding 

results in decreased relative growth rates (Mallott and Davy 1978) and severely 

decreased plant height and biomass or even death (Kennedy and Stroyan 1959; 

Mallott and Davy 1978; Harper and Kaldy 1982; Rohitha and Penman 1983; Singh 

et al. 1983; Macfoy and Dabrowski 1984; Choudhury 1984). Short-term aphid 

infestation followed by aphid removal and subsequent long-term aphid-free growth 

results in reduced total vegetative and reproductive production (Kain et al. 1977, 

1979; Petit t  and Smilowitz 1982; Rohitha and Penman 1983; Bishop 1984; Summers 

and Coviello 1984).

Losses of translocate from the phloem to the aphid may affect the plant in 2 

ways; directly, by removing the amount actually ingested, and indirectly, by lost 

production tha t  would have resulted from the consumed translocate (Barlow et al. 

1977). The mechanisms underlying the deleterious damage caused by the aphids 

acting as adventitious sinks are only poorly understood (Kennedy and Stroyan 1959; 

P e t i t t  and Smilowitz 1982).

Compensatory growth, that can occur in plants fed upon by grazers, has not

*THIS CHAPER WAS ACCEPTED FOR PUBLICATION IN CAN. J. BOT. ON 25 MAR 86 AND IS 
REFERRED TO IN THE THESIS AS HAWKINS ET AL. (IN PRESS 1986)
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been observed for aphid-infested plants, but this may be because the aphid densities 

used have been too great (Raven 1983). In addition the net biomass production by 

the unparasitized host generally exceeds tha t  of the host plus its parasite (Raven 

1983). There is some evidence that aphid infestations can promote growth (Miles 

and Lloyd 1967; Miles 1968b; Dyer 1980) and leaf photosynthesis (Way and 

Cammell 1970), suggesting the possibility of a compensatory response.

Aphids might possibly be seen as analogous to grazing herbivores. 

McNaughton (1983) delineated 3 broadly contrasting effects of herbivores on the 

fitness of affected plants. If this classification is applied to aphid feeding, 3 possible 

outcomes can be postulated: (i), aphid feeding is always detrimental to the plant; 

(ii), plants can compensate for low levels of aphid feeding; and (iii), moderate levels 

of aphid feeding may result in overcompensation by the plant. Which response is 

displayed by a plant is likely to be a function of aphid population density and the 

susceptibility of the plant species.

The study reported here was conducted to determine if there were any short­

term or long-term compensatory responses to a short-term aphid infestation and to 

observe if any mechanisms for plant adaptation to aphid feeding could be discerned.
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8.2 M a ter ia ls  and m eth od s

Seeds of cowpea [Vigna unguiculata  (L.) Walp. cv. Caloonal, obtained from 

Arthur Yates Seed Company, Rockhampton, Queensland, were potted in vermiculite 

at a density of 1 seed per 12.5 cm diameter pot. Plants were grown in a clear 

glasshouse for two weeks after planting and then divided according to size into 5 

blocks with 15 (planted in December) or 19 (planted in January) plants per block. 

Plants grown in a clear glasshouse, from December to early June, received 65 to 80 

% of the outdoor photosynthetically active radiation (Hawkins et al. 1985). Air 

coolers and under-bench heating allowed a relative humidity range of 30 to 90 % 

with a shaded bench-top air temperature of 16 to 37 C (Pernix Thermohygrograph, 

Wilh. Lambrecht, KG, F.R.G.).

Cowpea aphids [Aphis craccivora Koch (Homoptera: Aphididae)] obtained from 

CSIRO, Division of Entomology, Black Mountain, Canberra, Australia (courtesy of 

R. D. Hughes and L. T. Woolcock) were maintained in a growth cabinet under the 

environmental conditions described by Hawkins et al. (1985). Ten, 8 day-old £  6 h 

adult aphids were transferred to the experimental plants using a fine, moist camel 

hair brush on experiment day 0. Aphids were confined to an individual plant by

the use of clear plastic collars described by Hawkins et al. (1985). Control plants

were checked daily for adults tha t  may have gained access. Water and nutrient

(modified Hoaglands) regimes were identical between control and experimental 

plants.

On experiment day 0, the 15 two-week-old plants per block were randomly 

divided and treated as shown in Figure 1. To determine if the insecticide had any

effect on plant growth and to replicate the initial trial, an experiment was started

in which 19 plants per block were randomly divided as per Figure 1, except that: 

on day 0, one control (c) was not sprayed with Rogor^R  ̂ and one experimental (e) 

plant was; a c and an e plant were harvested and a c and an e were sprayed on

days 5, 10, 15, and 20; the sprayed plants were harvested at the end of the

experiment. This was repeated for the other 4 blocks. The clear plastic collars

were removed from the 30 or 50 plants remaining on day 20 and these plants were 

allowed to grow for about 3 more months until they were harvested.
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F ig u re  1. Flow c h a r t  o f  e x p e r i m e n t a l  d e s ig n .  On e x p e r i m e n t a l

day 0 ,  15, 2 -w e e k -o ld  cowpea p l a n t s  w ere  random ly

d i v id e d  i n t o  8 c o n t r o l  (c )  and 7 e x p e r i m e n t a l  (e)

p l a n t s .  One p l a n t  was h a r v e s t e d  on day 0 ,  a  c and

an e p l a n t  were h a r v e s t e d  on days 5 ,  10, 15, and 20.

On days 10, 15, and  20 , a  c and an  e p l a n t  w ere  e ach

(R )s p ra y e d  w i th  th e  s y s te m ic  i n s e c t i c i d e  Rogor 

( a c t i v e  c o n s t i t u e n t  d im e th o a t e ,  10 ml p e r  10 1 

w a t e r ,  Chemspray P ty .  L t d . ,  M arayong, N .S .W ., 

A u s t r a l i a )  to  remove th e  a p h id  i n f e s t a t i o n ,  and a l l  

r e m a in in g  p l a n t s  w ere  h a r v e s t e d  on day 112. T h is  

was r e p e a t e d  f o r  t h e  o t h e r  4 b l o c k s .
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On harvest days the following parameters were assessed: leaf number; number 

of nodes; internodal distances at the end of the trial; leaf area (Automatic Area 

Meter, Hayashi Denko Co., Ltd., Tokyo, Japan); leaf, stem and petiole, and root 

dry weights; and number of mature and immature seed pods and seeds produced. 

The equations described by Hunt (1982) and discussed recently (Hawkins et al. 

1985) were used to calculate the mean relative growth rate, R, the mean unit leaf 

rate( mean net assimilation rate) E, and the mean leaf area ratio, F.

Two-way analyses of variance (ANOVA) were carried out using the GENSTAT 

package (Statistics Department, Rothamsted Experimental Station, U.K.) and 

trea tm ent means were compared using the protected LSD [least significant difference 

(if ANOVA F ratio is not significant, then neither are the means)] at a =  0.05, as 

described by Snedecor and Cochran (1980).
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8 .3  R e s u l t s

The da ta  presented are primarily from the 5 x 15 plant trial. However, 

identical relationships were observed in a 5 x 19 plant replicate.

At the end of the trial, there was no difference in R (mean relative growth 

rate) and the biomass of experimental plants was 100 % tha t  of the controls (Table 

1). Control plant dry weights had been significantly greater than those of the 

infested plants by day 10 and remained so until day 20 when infested plant biomass 

was 67 % th a t  of controls (Table 2). Control plant R and E (mean unit leaf rate) 

were significantly greater than the experimental ones after 10 days. There was only 

one occasion when experimental plants had a significantly greater F (mean leaf area 

ratio) than controls (Table 2). Leaf number was significantly greater in controls by 

day 15 and remained so until about day 80, and there was no difference at the end 

of the trial (Table 3). The ratio of root-to-shoot dry weights was not significantly 

different between control and experimental plants for any of the harvests (Table 3). 

Because of leaf drop between aphid removal and the end of the study, E and F 

were not calculated for the entire period. The aphid-infested plants had a 

significantly greater R from the time of aphid removal until the end of the study 

(Table 1). R values for component plant parts were all significantly greater in 

experimental plants from the time of aphid removal until the end of the experiment 

(Table 4). There was no significant difference between treatm ents for reproductive, 

vegetative, or total biomass produced (Table 5) at the end of the experiment.

By the end of the experimental period, there was no difference in total number

of main axis nodes produced for either treatm ent but between days 15 and 80 the

controls produced significantly more nodes and did not produce any more nodes

after day 80 (Table 3). Internode lengths prior to day 30 were significantly longer

in controls, then there was no further difference until about day 65 when formerly

infested internodal lengths were significantly longer, and finally, there was no 

be tween
difference treatm ents  for the last 4 internodal lengths (data not shown).

Flowering was first observed in controls on day 65 and in experimental plants 

on day 72. Control plants produced significantly more seed pods by day 80 but
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Table 1. Average net relative growth rate (R) of cowpea 
plants for the three trials and the LSD for control and 
aphid-infested plants from day 0 to day 112 and from removal 

of the cowpea aphids until day 112.

Day^ Condition^
R0-112*
-1  ̂ - 1 mg. mg . day

Rr-112’
-1  ̂ -1 mg.mg .day

10 C 0.0499a 0.0495ac

A 0.0500a 0.0533b

15 C 0.0499a 0.0489a

A 0.0498a 0.0536b
20 C 0.0500a 0.0481a

A 0.0500a 0.0524bc
LSD ns 0.0031

Note: Means followed by the same letter are not significantly

different (°* = 0.05). ns, ANOVA not significantly 
different, therefore no LSD.

//, Day aphids were removed with insecticide 

$, Abbreviations: C, control plants; A, aphid-infested
plants; r, day of aphid removal, either day 10, 15 or 20.
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Table 2. Average net relative growth rate (R), mean unit leaf rate (E), 

mean leaf area ratio (F), plant dry weights, and the LSD for control and 

aphid-infested cowpea plants on experimental days 5, 10, 15 and 20.

„ // Day $Condition
R,
-1 ; -1 mg. mg .day

E,
- 2  , -1 mg.m .day

F,
2 -1 m .mg

$Dvr

mg

0-5 C 0.0093 948 0.000 009 94 172.6

A 0.0111 1 120 0.000 009 92 175.0

LSD ns ns ns ns

0-10 C 0.0536 4 692 0.000 Oil 47 276.3

A 0.0172 1 387 0.000 012 43 193.7

LSD 0.0099 872 ns 14.4

0-15 C 0.0564 5 545 0.000 010 27 389.8

A 0.0250 2 084 0.000 012 04 238.7

LSD 0.0153 2 661 0.000 000 92 97.2

0-20 C 0.0587 5 741 0.000 010 17 525.6

A 0.0389 3 541 0.000 010 53 356.9

LSD 0.0197 2 133 ns 167.8

Note: If the means are not significantly different (ns) by ANOVA (oe. = 0.05)

the LSD is not presented.

//, Days between which the various parameters were calculated.

$, Abbreviations: DW, dry weight; C, control plants; A, aphid-infested

plants.
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T ab le  3. Mean number o f  l e a v e s ,  r a t i o  o f  r o o t - t o - s h o o t  d ry  

w e i g h t s ,  number o f  m ain  a x i s  nodes  p r o d u c e d ,  and th e  LSD f o r  

c o n t r o l  and a p h i d - i n f e s t e d  cowpea p l a n t s  a t  v a r i o u s  t im e s  

d u r in g  th e  t r i a l .

Day^ C o n d i t io n ^

L e a f  number Root to  

s h o o t  r a t i o

Node number

0 C 5 .0 0 .4 3 0 3 .0

A 5 .0 0 .4 3 6 3 .0

LSD ns ns ns

15 C 10.6 0 .3 7 9 5 .0

A 8 .4 0 .3 1 7 4 .4

LSD 0 .5 ns 0 .3

80 C 6 0 .4 ?? 18.5

A 5 2 .0 ?? 17 .5

LSD 4 .3 0 .7

112 C 38 .5 0 .195 18.5

A 40 .5 0 .1 6 5 19 .4

LSD ns ns ns

N ote :  I f  th e  means a r e  n o t  s i g n i f i c a n t l y  d i f f e r e n t  (n s )  by

ANOVA (<=*■ = 0 .0 5 )  th e  LSD i s  n o t  p r e s e n t e d .

//, Day o f  e x p e r im e n t  c o u n te d  from  when th e  a p h id s  w ere  

i n i t i a l l y  p l a c e d  on th e  p l a n t s .

$, A b b r e v ia t i o n s :  C, c o n t r o l  p l a n t s ;  A, a p h i d - i n f e s t e d  p l a n t s .  

? ? ,  No d a t a  as  h a r v e s t  n o t  made.
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Table 4. Leaf, stem and root average net relative growth 

rate (R) and the LSD for control and aphid-infested plants 
from the day of aphid removal until the end of the 

experiment, day 112.

Day# $Condition Leaf

R,
-1 j -1 mg. mg .day
Stem Root

10 C 0.0387ac 0.0517ac 0.0360ad

A 0.0430b 0.0571b 0.0408bc
15 C 0.0382ac 0.0504a 0.0365acd

A 0.0426b 0.0577b 0.0434b
20 C 0.0367a 0.0484a 0.0350a

A 0.0411bc 0.0544bc 0.0399bcd
LSD 0.0034 0.0039 0.0046

Note: Means followed by the same letter are not significantly
different (®c = 0.05).

#, Day aphids removed with insecticide.

$, Abbreviations: C, control plants; A, aphid-infested plants.
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Table  5.  F i n a l  v e g e t a t i v e ,  r e p r o d u c t i v e ,  and t o t a l  d ry  

w e i g h t s ,  and t h e  LSD f o r  c o n t r o l  and a p h i d - i n f e s t e d  p l a n t s  

which h a d  t h e  a p h id s  removed on days 0 ,  5 ,  10, 15 and 20.

DW$g

// $Day C o n d it io n  V e g e t a t iv e  R e p r o d u c tiv e  T o ta l

0 C 2 0 .7 6 a 2 3 .4 5 a 4 4 .2 1 a

S 2 0 .6 2 a 2 2 .2 1 a 4 2 .8 3 a

5 C 2 2 .7 6 a 19 .25a 4 2 .0 1 a

A 19 .89a 18 .85a 38 .74a

10 C 1 9 . 18a 2 2 .7 3 a 4 1 .9 4 a

A 2 1 .4 2 a 2 1 .2 9 a 4 2 .7 1 a

15 C 2 1 . 32a 2 1 .4 4 a 4 2 .7 6 a

A 2 1 .6 4 a 2 1 .4 5 a 4 3 .0 9 a

20 C 2 0 .3 9 a 2 1 .3 2 a 4 1 .7 1 a

A 2 0 .9 8 a 2 0 .7 1 a 4 1 .6 9 a

LSD 4 .0 8 3.46 4 .5 8

N ote :  Means f o l l o w e d  by t h e  same l e t t e r  a r e  n o t  s i g n i f i c a n t l y

d i f f e r e n t  (°* = 0 . 0 5 ) .

#,  Day a p h i d s  removed w i t h  i n s e c t i c i d e .

$, A b b r e v i a t i o n s :  DW, d ry  w e i g h t ;  C, c o n t r o l  p l a n t s ;  S,

s p r a y e d  w i t h  i n s e c t i c i d e ,  no a p h i d s ;  A, a p h i d - i n f e s t e d

p l a n t s .
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there was no difference in total seed or seed pod production by the end of the trial 

(Table 6). Controls had significantly more ripe seed pods and seeds and 

significantly less unripe seed pods and seeds while experimental plants had 

significantly more ripe and unripe seeds per seed pod (Table 6). The w ater content 

of the m ature seeds was 5 % for both trea tm en ts and the mean seed dry weight of 

m ature seeds was 63.0 mg and 65.9 mg for control and infested plants, respectively 

(not significantly different).
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8 .4  D iscu ssio n

T hat the final plant biomass and R (mean relative growth rate) were the same 

for control and formerly infested plants (Table 1) was unexpected, since it is 

generally accepted that long-term aphid infestation does significantly reduce plant

dry weight (Barlow et al. 1977; Mallott and Davy 1978; Harper and Kaldy 1982; 

Singh et al. 1983). Lucerne (alfalfa) infested with aphids and then sprayed in the 

fall to remove them, in New Zealand, Australia or California, still had not recovered 

by the following spring (Kain et al. 1977, 1979; Rohitha and Penman 1983; Bishop 

1984; Summers and Coviello 1984). P e tit t  and Smilowitz (1982) observed that 

po tato  plants were unable to resume normal foliar growth after early damage and 

subsequent aphid removal. Summers and Coviello (1984) reported th a t  even though 

prior aphid infestation significantly reduced the first cut, there was no effect on

second and subsequent cuts of alfalfa. This possibly indicates th a t  there is no

residual long-term effect for alfalfa in response to aphid feeding. McNaughton 

(1983) noted that removal of a portion of the vegetative tissue is rarely translated 

into a commensurate proportional reduction in yield, provided there is an

intervening period of growth. Perhaps, this type of phenomenon was observed here.

Significant short-term reductions in aphid infested cowpea dry weights, R, and 

E (mean unit leaf rate), with F (mean leaf area ratio) being similar between 

treatm ents  (Table 2), has been previously reported by Hawkins et al. (1985), and 

for pea plants (Barlow and Mesmer 1982; Hawkins et al. 1985). Significant short­

term  reductions in plant dry weights have been reported for potatoes (Galecka 

1977), beans (Wu and Thrower 1981), and alfalfa (Rohitha and Penman 1983) 

infested with aphids. The reduction in R was due to a decrease in E with no 

change in F (Table 2), indicating changes in activity of the plants’ anabolic and /or  

catabolic pathways (see Hawkins et a l., 1985, for more detail). The significant 

difference in F on day 15 (Table 2) does indicate a change in the partitioning of 

photosynthate but the difference was insignificant again on day 20.

The short-term reduction in leaf number and unchanging ratio of root-to-shoot 

dry weights (Table 3) for various plant-aphid combinations has also been noted by
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Wu and Thrower (1981) and Rohitha and Penman (1983). The decline in leaf 

number has been attributed to decreased resources being available for leaf initiation 

in the infested plants (Wu and Thrower 1981). The unchanging root-to-shoot ratio, 

and F, indicates tha t  the infested plants were not re-allocating their resources to 

alleviate the stress of aphid attack.

The relative growth rate of infested plants was significantly greater than tha t  

of controls (Table 1), as was R of the component plant parts (Table 4), from the 

time of aphid removal until the end of the experiment. This indicates that the 

infested plants had managed to overcome the deleterious effects associated with 

aphid infestation. This result, coupled with insignificant differences for root-to-shoot 

ratios (Table 3), reproductive and vegetative growth, and total biomass production 

(Table 5), suggests that, again, as was the case for short-term infestation, the 

primary causal factor was to be found in E. The unit leaf rate may change either 

by increases in photosynthetic and /o r  decreases in respiratory processes after aphid 

removal. This effect is the opposite of tha t  observed for the short-term infestation. 

The enhancement in plant growth may be specific to the cowpea aphid-cowpea plant 

system. Perhaps, in another plant-aphid system there would have been no enhanced 

plant growth after aphid removal. These da ta  also indicate tha t  the duration of 

infestation, up to 20 days, had no effect on the final development of plant biomass.

The increase in plant growth from aphid removal until the end of the 

experimental growth period indicates a compensatory response on the part of the 

experimental plants. There is some evidence tha t  ’hormones’ present in animal 

saliva and transferred to the plants during feeding may promote growth (Miles and 

Lloyd 1967; Miles 1968b; Dyer 1980), while Way and Cammell (1970) have shown 

tha t  leaves are capable of increasing the rate of photosynthesis in response to aphids 

feeding on adjacent leaves. Rates of photosynthetic oxygen evolution, implying C 0 2 

uptake, have been observed in control cowpea plants to be as little as one-half those 

found in infested plants (C.D.B. Hawkins unpublished data). This would indicate 

compensation by the plant in response to aphid feeding.

The total plant dry weights were the same for both day 0 treatments (Table
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5) indicating tha t  the insecticide had no long-term effect on plant growth. 

McNaughton (1970) also found tha t  R o g o r ^  did not affect growth of sycamore 

seedlings.

The gradual increase in node production between aphid removal and the end

of the study for experimental plants (Table 3), and the changes observed for

internodal lengths, also suggest an enhancement in plant growth after aphid 

removal. Continued node production in the experimental plants after day 80 (Table 

3) could indicate delay of senescence or altered development in response to the 

reduction in plant biomass from the prior aphid infestation (Table 2), or just 

compensatory growth. Most aphid infestations are believed to promote senescence 

(Kennedy and Stroyan 1959). Therefore, it is most likely tha t  either a delay in 

development or else compensatory growth was being observed.

The one-week delay in flowering for the formerly infested plants may be the

result of a developmental delay in response to aphid feeding. It also could be due

to ’hormonelike’ substances (Miles 1968a) tha t  may be injected into the phloem by 

the aphid.

It was surprising that the total number of seed pods and seeds produced was 

the same for both treatm ents (Table 6) because reduced yield is generally associated 

with aphid infestations (Mallott and Davy 1978; Choudhury 1984; Burton et al.

1985). However, the partitioning of seed pod and seed production was significantly 

different (Table 6). This suggests a developmental delay in experimental plants as 

a result of reduced biomass at the time of aphid removal or an aphid induced

hormonal alteration. The greater mean number of seeds per pod on the

experimental plants (Table 6) indicates either more fecund ovaries were produced or 

fewer ovules were aborted during development; both explanations imply hormonal 

involvement. Similar water content and mean mature seed dry weight for both

treatm ents indicates tha t  there was no final developmental difference for the mature 

seeds.

Macfoy and Dabrowski (1984) reported higher concentrations of total phenols 

in infested than in noninfested cowpea stems and suggested tha t  this was probably
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an active part of the cowpea defence mechanism against A. craccivora infestation. 

This is supported by Dreyer and Jones (1981) who have shown that  phenolics can 

be a deterrent to aphid feeding. The enzyme polyphenoloxidase is an invariable 

component of the saliva of all phytophagous bugs (Miles 1968a) and could result in 

increased phenolics in the plant.

Phenolics are non-hormonal factors which serve as coordinators of 

phytohormone regulation and they behave non-specifically, modifying the actions of 

auxins, gibberellins, and cytokinins upon growth (Kefeli and Dashek 1984). The 

composition and activity of the photosynthetic apparatus (Buschmann and 

Lichtenthaler 1977) and the partitioning of photosynthate (Starck 1983) are both 

under phytohormone control. The ’catch up’ in growth observed after aphid 

removal could be the result of compensatory growth which resulted from non- 

hormonal regulator /  plant hormone interactions.

This study has shown that  the short-term plant response to aphid feeding 

included reduction of R and E, with the underlying causes being apparent decreases 

in photosynthesis and /or  increases in respiration. The long-term response revealed 

no differences in vegetative growth, indicating compensatory growth in the formerly 

infested plants, and only changes in the timing of reproductive growth, suggesting 

hormonal changes. Whatever the underlying mechanisms are for the observed 

results, it is clear that some basic plant growth regulatory mechanisms are involved 

and require further investigation.
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CHAPTER 9

SIMILARITIES BETWEEN THE EFFECTS OF APHID INFESTATION 

AND CYTOKININ APPLICATION ON DARK RESPIRATION 

AND PLANT GROWTH OF LEGUMES1

9.1 In tro d u ctio n

Hawkins et al. (in press 1986) suggested tha t  the observed long-term 

compensatory growth response of formerly aphid-infested cowpea plants might result 

from changes in concentration of various plant growth substances as a consequence 

of aphid feeding. These authors also observed tha t  shoot respiration of aphid- 

infested plants decreased at a slower rate than in control plants and attr ibuted this 

to a delay of senescence in the infested shoots (Hawkins et al. submitted 1986a). 

Delayed shoot senescence is a response promoted by cytokinins (Matthysse and Scott 

1984, Fig. 6.3). Aphid infestation of broad bean has been shown to increase lateral 

branching (Hawkins et al. submitted 1986b) and this too is a cytokinin response. 

Hawkins et al. (submitted 1986b) also suggested tha t  changes in translocation 

patterns of aphid-infested plants might be caused by changes in the endogenous 

concentrations of auxin and cytokinin.

The concept that aphids inject, into their host plants, substances which can 

interact with plant growth substances is not new (see e.g., Allen 1947). These 

substances may be of plant origin and may be concentrated by the aphid before 

injection back into the plant (Nuorteva 1955, 1958; Maxwell and Painter 1962b), or 

they may be of aphid origin (Allen 1947). Further, it has been suggested th a t  the 

morphological characteristics of plant diseases and insect infestations could be best 

simulated with the applications of cytokinins (Thimann and Sachs 1966). There are

XTHIS CHAPTER WAS SUBMITTED TO CAN. J. BOT. ON 24 APR 86 AND IS REFERRED TO IN 
THE THESIS AS HAWKINS ET AL. {SUBMITTED 1986D}
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also reports that cytokinins have direct effects on dark respiration (Miller 1979, 

1980; Dizengremel et al. 1982; Musgrave and Siedow 1985), tha t  cytokinins can 

promote photosynthetic unit formation twice as effectively as auxins (Buschmann 

and Lichtenthaler 1977), and tha t  cytokinins promote photosynthesis in both 

expanding and fully expanded leaves (Li and Proctor 1984). Many of the cytokinin- 

induced physiological changes are similar to those induced by aphid infestation.

Zimmerman and Hitchcock (1942) formulated the idea tha t  the epinastic 

response of young tom ato  plants could be used as a bioassay to detect plant growth 

substances. This procedure was quantified (Synerholm and Zimmerman 1945, 1947), 

particularly for the auxins and their analogues, and is an effective, inexpensive 

method of checking for the presence or absence of plant growth substances in 

biological tissues.

The present investigation was conducted to examine the possibility tha t  aphids 

inject some foreign substance(s) into their host plant, to study whether aphids 

contain any active plant growth substances whatever their origin, and to compare 

responses to foliar and root applications of cytokinins to see whether they simulate 

some observed aphid-induced plant physiological responses.
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9 .2  M a ter ia ls  and m eth od s

9.2.1 P lan t and aphid material

Cowpea and pea aphids, Aphis craccivora Koch and Acyrthosiphon p isum  

(Harris), respectively, both Homoptera: Aphididae, and broad bean {V ida  faba

L. cv. Aquadulce), cowpea (Vigna unguiculata  (L.) Walp. cv. Galoona), and garden 

pea (P isum  sa tivum  L. cv. Victory Freezer) seedlings, were obtained, cultured and 

grown as described by Hawkins et al. (1985, 1986). Plants were placed in the 

standard  experimental design (Hawkins et al. 1986) of 5 blocks (according to size) 

by 2 trea tm ents  (control and aphid-infested).

9.2.2 Examination of aphid-infested and control plants for foreign substances

After 10 days of aphid infestation, a randomly selected control and an 

experimental plant shoot (stem, petioles and leaves) were each homogenized for 60 s 

a t  high speed (Omni-mixer, Sorvall Inc., Newton, CT, U.S.A.) in 60% aqueous 

methanol. The extract was passed through a cotton wool column, collected, and 

the methanol evaporated. The column was washed twice with dichloromethane. 

This wash was combined with the water remaining from the evaporation and this 

mixture was extracted three times with dichloromethane. The dichloromethane was 

evaporated and the residue was dissolved in 2.5-5.0 ml of dichloromethane. 25 p\ 

aliquots of control and aphid-infested shoot extracts were spotted on silica gel thin 

layer chromatography (TLC) plates (60 F-254, E. Merck, Darmstadt, F.R.G.). Each 

plate was first developed in 3% ethyl acetate in hexane (v:v); it was then developed 

in the same direction, three times, in 100% chloroform; and finally it was sprayed 

with concentrated sulphuric acid. This procedure was repeated for all eight plant- 

aphid combinations.

9.2.3 Assay for aphid-contained plant growth substances

Tomato seeds (Lycopersicon esculentum  Mill. cv. Roma Teardrop) were 

obtained from the Henderson Seed Company (Lower Templestowe, Vic., Australia) 

and potted in a  loam topsoil, Perlite mix (6:1) at a density of 2 seedlings per 15 

cm pot. Plants were grown in a clear glasshouse, under conditions previously



121

described (Hawkins et al. 1985), for the duration of the experiment. When the

seedlings had developed 2 or 3 internodes, extracts (in 60% methanol, 2 drops 

Tween 20, distilled water) of cowpea aphids, pea aphids, and cowpea plant tissue 

(all extracted after 10 days infestation on the same plant) were painted on the

lateral aspect of the second internode or the petiole emerging from the third node. 

Extracts were made as concentrated as possible to maximize potential growth 

substance concentrations. This procedure was repeated six weeks later, but the

internode utilized was then between the second and third nodes basal to the

growing apex and the petiole used emerged from the second node. Additionally, the 

internode was encircled with cowpea aphid extract. A 10 mm ink line was placed 

on each side of all internodes immediately prior to their treatm ent to determine if 

there was any change in cellular elongation.

9.2.4 Simulation of aphid infestation by cytokinin application

In addition to the standard experimental design (5 blocks X 2 treatments), 

three additional trea tm ents  were instituted for some of the pea aphid on pea and 

cowpea aphid on broad bean plant trials. The three treatm ents were control, and 

foliar and root applied 44.4 /zM 6-Benzyl-aminopurine (BAP; 10 mg dissolved in a 

few drops of IN NaOH, 2 drops of Triton-X100, made up to 1 1 with distilled 

water, see Henny and Fooshee (1985)). The BAP was either sprayed on the shoot 

until run-off on experimental days 0, 5, and 10 or a volume equal to tha t  sprayed 

was poured into the root zone on days 0, 5, and 10. Control plants were sprayed 

with the carrier solution (less BAP) on days 0, 5, and 10. Root and shoot 

respiration measurements and plant weights, including component parts, were carried 

out as described by Hawkins et al. (1986, submitted 1986a) after 15 days of 

treatment.

Later the BAP trial was modified to include two levels of BAP, cowpea aphids 

and control treated broad bean plants to determine if the concentration of BAP had 

a significant effect on plant growth. The two concentrations of BAP utilized were

44.4 /zM (10 m g.l'1) and 222 /z M (50 mg.l'1) and both were either applied to 

foliage or to the root zone on experimental days 0 and 5. The aphid treatment
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was the placing of 10 adult cowpea aphids on the broad bean seedling shoots on 

day 0, and control plants were sprayed with the carrier solution on days 0 and 5. 

After 10 days, the plants were examined for changes in biomass and growth form.

9.2.5 Statistical analyses

Two-way analyses of variance (ANOVA), a =  0.05, were done using the 

GENSTAT package (Statistics D epartm ent, Rotham sted Experim ental Station, U.K.). 

The protected least significant difference (LSD, as described by Snedecor and 

Cochran (1980)) was calculated, a  =  0.05, between means.
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9.3 R esu lts

On one occasion chromatographic results showed tha t  cowpea aphid-infested 

cowpea seedling shoots contained a substance (after the second development in 100% 

chloroform) which was not present in equivalent control shoots (Fig. 1), though this 

result could not be repeated on either of two subsequent occasions. Generally, no 

difference was found for the number of substances in the extracts between control 

and aphid-infested shoots for any of the plant-aphid combinations, either before or 

after spraying the chromatograms with sulphuric acid, except for th a t  noted above 

(Fig. 1). There were differences in the amount of those substances present when 

comparing extracts from control and aphid-infested shoots (data not shown).

None of the cowpea tissue extracts painted on the petioles and /o r  internodes 

of tomato seedlings caused any change in growth form (data not shown). Both 

aphid extracts induced bending in treated petioles (changing angle between petiole 

and stem); increased growth on the treated side of the internode, causing a bending 

away from the treated side; and increased growth of the entire internode, without 

inducing a bending in it, when the internode w'as encircled with cowpea aphid 

extract (Table 1). The results were similar whether seedlings (second or third 

internode) or m ature plants (between the second and third nodes back from growing 

tip) were used.

6-Benzyl-aminopurine (BAP), whether applied to the foliage or to the roots 

caused root respiration and root growth to decrease significantly compared with 

controls in broad bean (Fig. 2A). In plants subjected to the three treatm ents, 

alternative respiratory pathway activity was evident and it was not significantly 

different between treatm ents , but cytochrome pathway activity was significantly 

greater in the roots of control plants (Fig. 2A). Shoot respiration was significantly 

increased for both BAP treatm ents  and they also demonstrated alternative pathway 

activity, which was not evident in the control broad bean shoots (Fig. 2B). Plant 

growth was reduced in BAP treated plants, root growth was reduced significantly, 

and shoot growth was enhanced with foliar application of BAP (Figs. 2A and 2B). 

Pea seedlings treated with BAP responded in a similar manner to broad bean
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F ig u re  1. P h o to g ra p h  o f  th e  t h i n  l a y e r  ch rom a tog raphy  

p l a t e  a f t e r  a  se c o n d  deve lopm en t i n  100% 

c h lo r o f o rm .  The s p o t s  e n c lo s e d  i n  c i r c l e s  on 

th e  r i g h t  o f  t h e  p l a t e  a r e  from  a p h i d - i n f e s t e d  

p l a n t  e x t r a c t s .  There  a r e  no c o r r e s p o n d in g  

e n c l o s u r e s  f o r  th e  c o n t r o l  p l a n t  e x t r a c t s  on 

th e  l e f t  o f  t h e  p l a t e .
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Table 1, Mean changes in the angle between stem and the 

petiole and in treated and untreated internodal lengths of 

tomato plants 24 h after application of various aphid and 

plant tissue extracts.

Change in angle Internodal
cLengths

Degrees mm

Treatment Application site UT T

s Mid-superior petiole 0.0

c None 0.0 10.7 10.7

P/BB Mid-lateral internode 10.8 11.7

P/BB Mid-superior petiole + 11.0
DB Mid-superior petiole 0.0

CP /CP Mid-lateral internode 10.2 11.8

CP/CP Encircle internode 11.8 11.8

CP /CP Mid-superior petiole +5.4

CP/CP Mid-inferior petiole -4.0

$, Description: S, solvent (60% methanol, 0.05% Tween 20, water); 

C, control; P/BB, pea aphids (extracted in solvent) raised on 

broad bean; DB, dry paint brush; CP/CP, cowpea aphids 

(extracted in solvent) raised on cowpea. All applications on 

2nd petiole basal to the growing tip and between nodes 2 and 3 

C, UT, untreated side of internode; T, treated side of internode; 

+ and increase or decrease in angle between stem and 

petiole. All means based on six observations.
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seedlings for root growth and root respiration but none of the differences was

significant (data not shown). Both BAP treatm ents caused significant increases in 

shoot respiration of pea seedlings and there was no significant difference in shoot 

growth (Table 2). The activity of the alternative pathway (as a percentage of total 

respiration) was 0% in control pea shoots, 8% for pea shoots which had foliar 

applied BAP and 11% for those which had root applied BAP. Cytochrome pathway 

activity was greater in shoots from BAP treated plants (data not shown).

A five fold increase in BAP concentrations from 44.4 to 222 /xM did not alter 

the earlier observed growth differences (Table 3 vs. Fig. 2 and Table 2). The

number of lateral branches produced was significantly greater in aphid-infested and 

BAP treated plants compared to control plants (Table 3). The lower concentration 

of BAP, particularly root applied, was the more effective in inducing branching, 

while the effectiveness of the aphids was intermediate between the two BAP 

concentrations (Table 3).
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Figure 2 A. Total root respiration (Resp) of control (C), foliar

applied BAP (F), and root applied BAP (R) treatments for 

broad bean plants. Cytochrome pathway respiration is 

the lower portion of the histogram and alternative 

pathway respiration is the upper portion. Vertical bar 

to the right of the histograms is the LSD for total 

respiration and the one to the left is the LSD for 

cytochrome pathway respiration, both atcc = 0.05.

Plant dry weight (Growth) is shown in the histograms on 

the right for C, F, and R treatments. Root dry weight 

is the lower portion of the histogram and shoot dry 

weight is the upper portion. Vertical bar to the right 

of the histograms is the LSD for plant dry weight and 

the one to the left is the LSD for root dry weight,

both at04-* 0.C
I
)5.
— 71

Resp: cytochrome respiratory path;

c>D F> R j j j ; alternative respiratory

pathway; C, |\ F, H R n . Growth: root
Li.

dry weight; C, E] f9 R ; shoot dry

weight; C, ^
F - 0 R - n

•

B. Total shoot respiration (Resp) of C, F, and R treated 

broad bean plants. Cytochrome pathway respiration is 

the lower portion of the histogram and alternative 

pathway respiration is the upper portion. Vertical bars 

for the LSD as in Fig. 2A. Plant dry weight (Growth) is 

shown in the histograms on the right for C, F, and R 

treatments. Shoot dry weight is the lower portion of 

the histogram and root dry weight is the upper portion. 

Vertical bar to the right of the histograms is the LSD 

for plant dry weight and the one to the left is the LSD 

for shoot dry weight, both at°c= 0.05. Histogram code

as in Fig. 2A.



pm
ol

 0
2 

g(
D

W
)

127

- C

T

Resp Growth

O )

DW
,



128

Table 2. Mean shoot respiration and mean shoot and plant 
dry weight for control or BAP treated pea plants 15 days 
after treatment, and the LSD for each parameter.

$Treatment Shoot respiration 
pmol 0^.g(DW) ^.h *

Shoot DW^ 

8

Plant DW 

g

C 63.0a 0.980a 1.403a
F 72.5b 0.899a 1.215b
R 75.3b 0.862a 1.27 3ab
LSD 7.8 0.111 0.150

Note: Means followed by the same letter are not

significantly different (=*■ = 0.05).
$, Abbreviations: C, control; F, foliar applied BAP (6- 

Benzyl-aminopurine); R, root applied BAP.
C, Abbreviations: DW, dry weight.



Table 3. Mean plant and shoot dry weights and mean number of 

branches from the stem in control, aphid-infested and BAP 

treated broad bean 10 days after treatment was initiated and the 

LSD for each parameter.

$Treatment

Plant DWC 

g

Shoot DW 

g

Branches

No.

C 1.919a 1.367ab 0.4a

A 1.26 7b 0.998c 2.2bc

BAP50F 1.892a 1.465a 2.0bc

BAP50R 1.655a 1.166bc 1.8b

BAP10F 1.834a 1.385a 2.4bc

BAP10R 1. 779a 1.300ab 2.6c

LSD 0.324 0.217 0.6

Note: Means followed by the same letter are not significantly

different (°* = 0.05).

$, Abbreviations: C, control; A, 10 adult aphids per plant on 

day 0; BAP50F and BAP10F, foliar applied BAP(6-Benzy1-amino- 

purine) 50 mg and 10 mg per litre, respectively; BAP50R and 

BAP10R, root applied BAP 50 mg and 10 mg per litre, 

respectively.

C, Abbreviations: DW, dry weight; No., number.
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9 .4  D isc u ssio n

The transient presence of a foreign substance in the extract from cowpea 

aphid-infested tissue (Fig. 1) could be an experimental artifact or its absence in 

replicate experiments may indicate that the compound was light sensitive or present 

in very minute amounts. The first assumption is the more likely because no foreign 

compounds were detected in extracts from the seven other aphid-plant combinations. 

The difference observed in the quantities of compounds present between control and 

aphid-infested tissue may indicate tha t  any toxins associated with aphid infestation 

are not produced by the aphids but are rather of plant origin (Nuorteva 1955, 1958; 

Maxwell and Painter 1962b). The lack of difference between control and aphid- 

infested plant extracts indicates only tha t  with this particular combination of 

solvents and developers no differences could be detected. Aphid-injected substances 

may still be present in subtle quantities which require more precise detection 

methods.

The petiole bending and internode elongation induced by the various aphid 

extracts (Table 1) indicates tha t  there were plant growth substances present in the 

extracts (Synerholm and Zimmerman 1945, 1947), probably auxins because of the 

observed increased cell elongation (Thimann 1937). The absence of any induction of 

bending by the cowpea plant tissue extracts (Table 1) indicates tha t  the plant 

growth substances in the aphids were present in higher than plant physiological 

concentrations. The increase in elongation of the entire internode without bending 

when encircled with aphid extract (Table 1) again suggests an auxin involvement. 

However, it has been demonstrated that cytokinins may induce localized increases in 

auxin concentration by the enhancement of the movement of auxin to the treated 

area (Lagerstedt and Langston 1967; Hemberg 1972). Whether the aphid extract 

contained increased concentrations of auxins and /o r  cytokinins, the cell elongation 

response is clearly auxin-induced (Thimann 1937).

The effects of foliar and root applied cytokinin on plant respiration, growth, 

and form were examined. A simulation using auxins and cytokinins would have 

been more appropriate but logistical constraints prevented this. The overall effect
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of BAP (6-Benzyl-aminopurine) to decrease root respiration (Fig. 2A) and to 

increase shoot respiration (Fig. 2B) in broad bean was analogous to the respiratory 

response observed in the roots (Hawkins et al. 1986) and shoots (Hawkins et al. 

submitted 1986a) of aphid-infested plants. Root or foliar application of BAP did

not affect the alternative pathway activity in roots but it did significantly reduce 

root cytochrome pathway activity (Fig. 2A), whereas, aphid infestation resulted in 

decreased activities of both respiratory pathways (Hawkins et al. 1986). The 

increased shoot respiration in BAP treated plants (Fig. 2B) resulted from increased 

activities of both respiratory pathways while in the aphid-infested shoots it was 

entirely due to increased cytochrome pathway activity (Hawkins et al. submitted 

1986a). Hawkins et al. (submitted 1986a) a ttributed the aphid-induced increase in 

shoot respiration to increased rates of photosynthesis and the possibility th a t  aphids 

can delay shoot senescence. It is known th a t  cytokinin application increases the

rate of photosynthesis (Li and Proctor 1984) and also delays shoot senescence 

(Matthysse and Scott 1984, Fig. 6.3) and these could account for the BAP-induced 

increase in shoot respiration.

In contrast to BAP application having no effect on alternative pathway 

respiration in roots (Fig. 2A), BAP application in shoots promotes alternative 

pathway activity (Fig. 2B). Miller (1979, 1980), Dizengremel et al. (1982) and

Musgrave and Siedow (1985) observed th a t  cytokinins inhibited rather than 

promoted alternative pathway activity but they used considerably greater

concentrations of BAP. The promotion of alternative pathway activity in shoots 

may be associated with increased rates of photosynthesis and the proposed role of 

the alternative pathway functioning as an energy overflow (Lambers 1985).

The responses of pea seedling respiration to BAP application were similar 

(Table 2) to those of broad bean (Fig. 2) indicating tha t  the effect of cytokinin on 

legume respiration is probably a general rather than a species specific response.

The significant reduction in root growth of foliar or root BAP treated broad 

bean (Fig. 2) was also characteristic of the response of roots of aphid-infested plants 

(Hawkins et al. 1985, 1986). BAP application apparently reduces the flux of
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translocate to the roots just as aphid infestation does (Hawkins et al submitted 

1986b) but the mechanisms must differ because aphid feeding removes translocate 

from the plant, and roots of aphid-infested plants had no alternative pathway 

activity (Hawkins et al. 1986), while BAP application did not affect root alternative 

pathway activity (Fig. 2A).

Shoot growth was enhanced with foliar application of BAP (Fig. 2) even 

though both BAP treatments (Fig. 2) and aphid infestation (Hawkins et al. 1985, 

1986) resulted in significant reductions in plant growth. The BAP promotion of

shoot growth was presumedly due to cytokinin enhanced photosynthesis (Li and 

Proctor 1984). Increased rates of shoot respiration with increased alternative 

pathway activity (Fig. 2) may account for the reduction in BAP treated plant 

growth. In aphid-infested plants, the reduction in plant growth was likely due to 

removal of translocate by the aphids and increased rates of shoot respiration.

Increasing the BAP concentration five fold did not alter the previously 

observed growth differences (Table 3 vs. Fig. 2 and Table 2) probably indicating 

th a t  the higher concentration of BAP was still not an inhibitory level. The

significant increase in lateral branching induced by both aphid infestation and BAP 

application (Table 3) suggests tha t  aphids are capable of increasing cytokinin and/or 

decreasing auxin concentrations sufficiently (increase ratio of cytokinin to auxin) to

overcome apical dominance. The apparent aphid-induced change in cytokinin to

auxin ratio fell between th a t  induced by the two known BAP concentrations because 

the effectiveness of the aphids in inducing lateral branching was intermediate to the 

two BAP concentrations (Table 3).

This series of experiments has shown that  there are similarities between aphid- 

induced changes in root and shoot respiration, in plant growth, and in plant form 

and cytokinin-induced changes in the same parameters. However, even though

cytokinins may be very important in effecting the changes induced by the aphids, it 

is more likely that the final physiological expression is the result of several plant 

growth substances interacting in conjunction with other factors, both external and 

internal. It would be worthwhile to a ttem pt to simulate the effects of aphid
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infestation using a ’cocktail’ of plant growth substances in order to delineate the 

interaction(s) between aphid feeding, plant growth substances, and plant 

physiological responses.
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CHAPTER 10 

DISCUSSION

10.1 E x p er im en ta l design , b en efits  and lia b ilit ie s

All but one of the experim ental studies (Hawkins et al. in press 1986) reported 

in the preceding chapters were conducted under identical strictly controlled growth 

cabinet conditions. The aphids u s e d  in all experiments were raised under the 

same growth cabinet conditions as above, since the colonies were first established in 

Septem ber and October of 1983 for cowpea and pea aphids, respectively. This 

design had the advantage of always providing aphids of known strains a t the same 

adu lt stage of development when experiments were initiated. Furtherm ore, the 

stress effect of the aphid infestation upon the plants was very similar between 

experim ents, provided the p lants were of similar developmental stage [the same lot 

of each seed type was used for all the experim ents reported here (see Hawkins et al. 

1985)] on the day of aphid infestation. However, the greatest advantage of this 

design was th a t d a ta  from experim ents d istan t in time could be directly compared 

w ith a high level of confidence because aphids, plants, and environm ental conditions 

were as close as possible to being identical between experiments.

In C hapter 1, it was noted th a t aphids are im portant virus vectors (Kennedy 

et al. 1962) but th a t every a ttem p t would be made to keep the aphid stock colonies 

free of viruses. No symptom s of viral infection were observed for any plants in the 

10 or 15 day experiments. For the long-term growth experiments, no viral diseases 

were observed for any cowpea plants, but both treatm ents of broad bean suffered 

from periodic fungal disease after removal of the aphids. Therefore, the results from 

these experiments are likely the consequence of aphid feeding rather than  secondary 

plan t infections.

The primary disadvantage of the experim ental methods utilized was tha t the
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investigations were conducted in growth cabinets under conditions tha t  were optimal 

for both plants and aphids. Under field or even glasshouse conditions, it is unlikely 

tha t  much of the growing season would have conditions tha t  are optimal for both 

host and parasite. Rather, such environments frequently alternate between 

conditions favouring host plant or aphid, or it may favour neither of them. The 

effect of the growth cabinet is to apply a constant stress to the experimental 

system, while under field conditions the experimental system would be exposed to a 

series of oscillating stresses. However, when determinations of photosynthesis and 

root respiration were conducted on glasshouse grown, aphid-infested cowpea and 

broad bean seedlings the response of these physiological measures to aphid 

infestation were almost identical (C.D.B. Hawkins, unpublished data) to those 

observed for the growth cabinet experiments.

It is therefore probably reasonable to assume that aphids induce similar 

changes in the physiology of their host plants whether the latter are grown in a 

growth cabinet or in the field. However, the amplitude of the response is possibly 

enhanced or diminished depending upon the field environmental conditions.

10.1.1 Plant water relations

One very important physiological process not dealt with in the body of the 

thesis was the effect of aphid feeding on plant water relations, even though it was 

noted in the introduction (Chapter 1) th a t  aphids are capable of removing 

considerable volumes of fluid from their hosts. Experiments were carried out to 

check this phenomenon. It was found tha t  cowpea aphid feeding had no effect on 

plant water potentials and stomatal conductances of cowpea plants (Appendix A, 

Figs. 1 and 2) grown in the glasshouse under light intensities and temperatures 

higher (on a cloudy day) than those used in growth cabinet experiments (350 

/im ol.m ^.s '1, 23 °C). In contrast, under full sunlight and much higher temperatures 

in the glasshouse, cowpea aphid feeding resulted in significant decreases in plant 

water potential and increases in stomatal conductance (Appendix A, Figs. 1 and 

2). For the environmental conditions utilized for the growth cabinet experiments, 

altered plant water relations by aphid feeding does not appear to contribute
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appreciably to changes in the physiology of host plants. This conclusion can only 

be drawn with confidence for cowpea plants because cowpeas are considered to be 

an extremely drought resistant species (pers. comm. Dr. M.M. Ludlow, CSIRO, St. 

Lucia, Queensland, A ustralia). T hat aphid feeding may alter plant water relations 

along with the other measured physiological responses, for pea and broad bean in 

the growth cabinet studies, should always be considered a possibility, when not 

directly measured. Under field or glasshouse conditions plant w ater relations would 

be expected to  be an im portan t param eter of the aphid-induced changes in 

physiological responses for all three plant species studies. In the field, altered water 

relations due to aphid infestation could result in an increased cost of plant 

m aintenance: if the m aintenance cost became too energetically expensive, the plants

could die prem aturely as Blackman (1974) reported.

10.2  S u m m ary and in teg ra tio n  o f the m ajor find ings

Aphid-infested plant growth was reduced after 5 days but only significantly so 

after 10 days of infestation (Fig. 2-1). It was postulated th a t the underlying cause 

of the reduced growth was decreased energy production, or else increased energy

consumption by non-growth processes (Hawkins et al. 1985). Such an alteration in 

energy relationships could show up as a deficiency in the uptake of elements 

essential for growth.

After 6 days of aphid infestation, absolute nitrogen and phosphorus

accum ulation was not significantly different between control and infested plants (Fig. 

3-2). This was probably a result of root and shoot respiration not being 

significantly different between treatm ents (Figs. 4-1 and 5-2). Even though 

translocation of photoassim ilate to  roots of aphid-infested plants was reduced (Figs. 

6-2 and 6-3) this reduction had not altered potential root energy production. This 

view is supported by the fact th a t the roots of both control and aphid-infested 

plants had non energy producing alternative respiratory pathw ay engagement on day

5 (Table 4-3), except for pea aphid-infested pea seedlings, indicating tha t a t this

tim e, there was an adequate supply of substra te  to the roots (Lambers 1985) to
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maintain the uptake of nitrogen and phosphorus. Absolute nitrogen and phosphorus 

accumulation was significantly reduced in aphid-infested plants by day 10 (Fig. 

3-2). Aphid-infested plant root respiration was also significantly reduced by day 10 

(Fig. 4-1) with no alternative pathway engagement (Table 4-3), except for pea 

seedlings infested with pea aphids. Aphid-infested plant shoot respiration was 

significantly increased with no alternative respiratory pathway activity (Fig. 5-2) 

and the flux of photoassimilate to the roots of infested plants was significantly 

reduced (Fig. 6-2). This collection of da ta  indicates tha t  the roots of aphid-infested 

plants were not receiving an adequate supply of energy to maintain nitrogen and 

phosphorus accumulation, either on an absolute (Fig. 3-2) or on a relative (Fig. 

3-1) basis, suggesting tha t  the plants were starting to incur nitrogen and phosphorus 

debts.

Even though the individual leaves of the aphid-infested plants are capable of 

significantly increasing photosynthetic rates (Table 7-1), implying increased energy 

supplies, the concomitant increase in leaf (Table 7-3) and shoot (Fig. 5-2) 

respiration and aphid ingestion of translocate apparently prevent an adequate flux of 

photoassimilate to the roots of these plants, leaving them unable to maintain the 

active uptake of nitrogen and phosphorus a t the levels observed in control plants. 

The increase in respiration and the decrease in the carbon economy of aphid-infested 

shoots probably results from increased cellular maintenance costs (Hawkins et al. 

submitted 1986a) and increased energy costs associated with enhanced phloem 

loading in response to increased rates of photosynthesis (Hawkins et al. submitted 

1986c). A decreased carbon economy of aphid-infested shoots along with the 

imbibition of translocate by aphids resulted in the reduced flux of translocate to the 

roots (Fig. 6-2). This resulted in lowered substrate supplies to maintain root 

respiration and caused a decreased uptake of nitrogen and phosphorus from the soil 

solution. This scenario ultimately, in concert with other aphid-affected processes,

resulted in reduced plant growth.
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10.2.1 Timing of p lant response to aphid feeding

For all the physiological param eters examined on both days 5 and 10 

(Hawkins et al. 1985, 1986, in press 1986, subm itted 1985, subm itted 1986a,b,c), the 

perturbation  to  the aphid-infested plant was usually not significant on day 5. 

However, for all p lant-aphid systems, by day 10 the aphid-induced change to the 

physiological system  under investigation was usually significant. A similar 

phenomenon was observed for Aphis craccivora feeding on Vigna sesquipedalis (Wu 

and Thrower 1981) suggesting th a t this may be a general legume response to  aphid 

feeding.

Possibly, a  critical am ount of translocate has to be lost from the p lant before 

the delayed response of the physiological param eter, induced by aphid feeding, can 

be perceived. If w ith time, insufficient energy was available to m aintain the 

infested p lan t’s processes a t ’norm al’ levels, the delayed response could occur. This 

explanation would be analogous to the direct (aphid removal of translocate from the 

phloem) and indirect (loss of production th a t would have resulted from the 

consumed translocate) effects of aphid feeding on plant growth proposed by Barlow 

et al. (1977). If the hypothesis is correct, it would be the indirect effect which 

alters the physiology of the aphid-infested plant.

10.2.2 Energy consum ption and production in infested plants

Aphid infestation resulted in an increased respiratory sink for the whole plant 

as postulated by Hawkins et al. (1985) when changes in root respiration, shoot

respiration and plant growth are considered (Figs. 4-1, 5-2 and 5-1). Calculated 

from the values in these figures (and from the typical case of control broad bean 

respiration), the percentage reduction in growth of infested plant was 23 and 49 for 

pea aphid-infested pea and broad bean, and 24 and 50 for cowpea aphid-infested

cowpea and broad bean; while the percentage decrease in whole, aphid-infested, plant

respiration with respect to controls was 1 and 27 for pea aphid-infested pea and 

broad bean, and 19 and 20 for cowpea aphid-infested cowpea and broad bean.

Therefore, plant growth decreased proportionally more than  respiration did when 

aphid-infested plants were compared to control plants, indicating a larger respiratory



139

sink in the infested plants. The postulate of a decreased photosynthitic energy 

supply in aphid-infested plants is apparently incorrect as judged by the net daily 

carbon gain for leaves of control and infested plants (Table 7-5). However, when 

aphid consumption of photoassim ilate and decreased flux of translocate to the roots 

are considered, there is a decreased supply of energy available for plant growth in 

parts  of the plant remote from the source of the substrate  in the infested plants. 

Therefore, aphid-infested plants have net increased respiratory sinks and net 

decreased substrate sources and this results in decreased plant growth with respect 

to  controls.

10.3  G eneral v ersu s specific  p lan t resp on se  to  aphid  feed ing

The suggestion th a t the plant response to aphid feeding is specific to a 

particu lar plant-aphid system (Dixon 1971b; Galecka 1977; Wu and Thrower 1981) 

did not apply to many of the physiological param eters examined in this study. The 

physiological responses of aphid-infested tissue were very similar regardless of the 

plant-aphid combinations utilized: decreased plant growth, decreased nitrogen and 

phosphorus accum ulation, decreased root and increased shoot respiration, decreased 

translocation to the roots, and increased leaf photosynthesis and respiration. 

R ather, the responses are general for com binations of these legumes and the cowpea 

and pea aphid species, and may possibly be general for aphid-infested legumes. 

Even the application of 6-Benzyl-aminopurine (BAP) to legume tissue appears to 

result in a general ra ther than a species specific response (Hawkins et al. subm itted 

1986d).

Some species specific responses were, however, observed. On a percentage 

basis, nitrogen and phosphorus accum ulation was plant species specific (Fig. 3-1) 

and, except for aphid-infested pea plants, the infestation did not alter the plant 

species’ nitrogen and phosphorus accum ulation patterns. O ther than the general 

decrease in the flux of translocate to the roots, the effect of aphid feeding on whole 

p lan t translocation patterns appeared to be somewhat plant-aphid species specific 

(Fig. 6-3). Regulation of the cytochrome respiratory pathway in aphid-infested
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shoots was different between the p lant species but the difference did not appear to 

be a ttrib u tab le  to aphid feeding per se (Hawkins et al. submitted 1986a). The 

effect of a short-term  aphid infestation on long-term plant growth was also a species 

specific phenomenon: the cowpea aphid cowpea plant combination was not 

significantly different in biomass from controls a t final harvest even though infested 

plants had been significantly smaller a t the tim e of aphid removal (Hawkins et al. 

in press 1986), but the pea aphid broad bean plant combination did not recover 

after aphid removal, formerly infested plants being still significantly smaller than 

controls a t final harvest (Appendix B, Table 1).

The response of long-term plant growth to  the short-term  aphid infestation 

could, however, also vary with the aphid species utilized. The growth rates of the 

two aphid species were often quite different on different host plants (Fig. 2-2 and 

Table 3-3) suggesting species specific aphid-plant interactions. It is possible th a t 

very different effects would be observed for cowpea and broad bean long-term 

growth if the reciprocal aphid-plant com binations were used. If this were the case, 

the long-term plant growth response would be specific to the plant-aphid 

com bination under investigation.

When a response being measured has resulted from the integration of many 

other physiological processes, the response may be seen to be plant-aphid species 

specific. This could be true e.g., for long-term  plant growth and whole plant 

translocation patterns. However, when a single or less complex physiological process 

is examined, the differences observed between plant-aphid combinations may be so 

slight th a t the response appears to be general to all legume-aphid systems being 

investigated. In short, the more basic the process contributing to  an overall

physiological response, the less likely th a t the measured process will be specific to 

the plant-aphid system being investigated.
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10.4 P h y s io lo g ic a l sign ifican ce o f  the a ltern a tiv e  resp iratory  p ath w ay

It was proposed by Lambers (1980, 1982, 1985) tha t  the physiological

significance of the non-phosphorylating alternative respiratory pathway was to act as 

an ’energy overflow’ when substrate  (carbohydrate) supply was in excess of the

energy requirements of the phosphorylating cytochrome pathway. Some of the 

evidence presented in this thesis lends support to the hypothesis and certainly none 

contradicts it.

When translocate supply was significantly reduced after 10 days of aphid 

infestation (Fig. 6-2), the alternative pathway was still engaged in the roots of all 

control plants while it was only engaged in one instance in the roots of infested

plants (Table 4-3). This indicates tha t  restriction of substrate supply can limit

alternative pathway engagement in roots. Shoot respiration of aphid-infested plants 

was significantly increased after 10 days of feeding but none of the increase was 

attr ibutable  to the alternative respiratory pathway, even though it was engaged in 

some control shoots (Fig. 5-2). This suggests th a t  the aphid removal of substrate 

from the phloem induces an increased shoot respiration without ’wasteful’ alternative 

pathway activity, perhaps indicating tha t  alternative pathway activity is dependent 

upon an excess supply of substrate. The application of BAP [which is known to 

promote photosynthetic unit formation (Buschmann and Lichtenthaler 1977) and to 

enhance photosynthesis (Li and Proctor 1984)] to broad bean and pea seedlings 

resulted in increased alternative pathway respiration in the shoots of treated plants 

(Fig. 9-2B and Table 9-2), whereas roots of all treatm ents displayed alternative 

pathway activity (Fig. 9-2A). Since growth was not significantly enhanced by BAP 

treatm ent (Fig. 9-2A) and photosynthesis likely was, and there were no aphids to 

imbibe the excess photosynthate, this suggests tha t  the alternative pathway was 

operating because of the higher levels of substra te  available to the cytochrome 

pathway.

It appears tha t  when potential substrate supply is limited, such as in aphid- 

infested plant roots or shoots, there is no activity of the alternative pathway even 

though its potential capacity is very large. Conversely, when substrate  supply does
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not appear to be lim ited, such as in control plants and BAP treated  shoots and 

possibly roots, the alternative pathway is engaged. Therefore, in  vivo  there is a 

good possibility th a t one of the functions of the alternative respiratory pathway is 

to  act as an energy overflow when substra te  supply is in excess of the energy needs 

of the cytochrome pathw ay.

10.5  C om p en satory  carbon  gain  and p lant grow th

The question was presented as to whether the enhanced net daily carbon gain 

of aphid-infested leaves (Table 7-5) m eant there was a net carbon gain for the 

whole plant (Hawkins et al. subm itted 1986c). Clearly, there was not because of 

the significant reductions observed in infested plant growth after 10 days (Fig. 2-1). 

The enhanced production of photosynthate was not being utilized in plant growth, 

but was being imbibed by the aphids for their growth. This contributed to the 

significant reduction in p lan t growth but does not wholly account for it (Hawkins et 

al. 1985).

However, a ’catch u p ’ or compensatory growth response was evident in the 

experim ent on long-term  growth effects of a short-term  aphid infestation (Hawkins et 

al. in press 1986). The formerly infested plants exhibited an enhanced growth with 

respect to controls after aphid removal. If the leaves of the formerly infested plants 

had m aintained their higher carbon gain after the removal of the aphids, this would 

account for their ability to  grow at an increased rate compared to controls. In 

theory, if this enhanced growth rate of formerly infested plants were to proceed 

w i t h o u t  restriction, it would allow their biomass to catch up and even to

surpass th a t of control plants. The catch up was observed for cowpea plants th a t 

had been infested with cowpea aphids (Hawkins et al. in press 1986). However, 

when pea aphids fed on broad bean, the formerly infested seedlings remained 

significantly smaller than  controls a t the final harvest, even though their biomass 

was ultim ately increasing a t a greater rate than th a t of controls (Appendix B, 

Table 1). This result is som ewhat perplexing because the infested broad bean leaves 

displayed a similar enhanced net daily carbon gain (Table 7 - 5 )  to th a t of cowpea,
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but the ’catch up’ was insufficient to overcome the original discrepancy by harvest 

tim e. Perhaps, in comparing the growth of cowpea and broad bean, the recovery 

after aphid removal was qualitatively sim ilar, but the significant quantitative 

differences reflect the geographic origins (Cubero 1974; Steele 1976) and subsequent 

evolutionary history of the two species.

It is not known how respiration and photosynthesis change in the leaf or shoot 

after aphid removal. Perhaps, in the case of cowpea enhanced growth, respiration 

rates decreased and photosynthetic rates were unchanged, while in broad bean, 

possibly, there was a delay in the decrease of the respiration rate while 

photosynthesis, as in cowpea, was unchanged. If the mechanism(s) underlying 

enhanced growth after aphid removal were delineated, it would provide much basic 

and im portan t information about the interaction between respiration, photosynthesis 

and ultim ate  p lant growth.

10.6 P o ss ib le  m ech an ism s to  accou n t for ap h id -in d u ced  changes in the

p h y s io lo g y  o f th eir  h ost p lan ts

Several mechanisms were presented in the thesis to  explain the observed 

physiological responses of the plant to aphid feeding. The principal ones were:

(a )  , th a t the increased shoot respiration in aphid-infested plants was the result of a 

delayed shoot senescence caused by changes in the levels of endogenous plant growth 

substances (Hawkins et al. subm itted 1986a). However, it has been reported th a t 

aphid infestation of other plant species resulted in enhanced plant senescence 

(Kennedy and Stroyan 1959);

(b ) , th a t aphid-induced increases in leaf photosynthesis and possibly respiration 

resulted from changes in the normal p lan t source-sink relationship caused by 

increased concentrations of cytokinins and auxins and the removal of translocate by 

the aphids (Hawkins et al. subm itted 1986c, subm itted 1986b);

(c) , th a t the com pensatory growth displayed by cowpea plants after aphid removal 

resulted from an interaction between endogenous plant hormones and hormone
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regulators (hormonal and non-hormonal) injected by the aphids (Hawkins et al. in 

press 1986);

(d )  , that aphid-induced lateral branching in broad bean (Table 6-1) resulted from an 

increase in the cytokinin to auxin ratio (Hawkins et al. submitted 1986d);

(e) , that plants had increased shoot respiration, decreased root respiration, and 

increased lateral branching induced by aphid feeding and the effects could be 

mimicked in uninfested plants by BAP treatm ent (Hawkins et al. submitted (1986d).

All of these proposals intimate tha t  aphid feeding (probably via substances injected 

in saliva) caused changes in the endogenous levels of plant growth regulators, but 

the mechanism(s) for the interaction between aphid and plant growth substances 

remains to be described. Such a fine tuning in the relationship between plants and 

aphids is neither unlikely nor surprising when their long period of coevolution 

(Southwood 1973) is considered.

10.6.1 A proposal concerning the aphid-induced reduction in plant growth

Kain et al. (1977) proposed th a t  the reduction of plant biomass caused by 

aphid feeding resulted from a combination of the interaction of aphid saliva upon 

host plant physiological processes (without any elaboration on where the saliva was 

interacting) and the removal of translocate by the aphids. To date, this appears to 

be the most accurate proposal presented to account for the aphid-induced reductions 

in plant growth.

I would like to refine this proposal in the following form.

Potential plant biomass is not achieved in aphid-infested plants because of the 

culmination of the effects of (i) hormonal and non-hormonal substances present in 

the aphid’s saliva interacting with and altering the levels of endogenous plant 

growth substances and (ii) translocate removal by the aphid, and both of these 

facilitate the modification of host plant physiological processes.
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10.7 F u tu re  exp er im en ts and econom ic im p lica tion s

The proposal th a t aphid infestation may result in a delay of shoot senescence 

(Hawkins et al. 1986a) could be of m ajor importance both biologically and 

agriculturally if the exact mechanism can be elucidated. Growth could be enhanced 

if shoot senescence were able to be slowed or delayed and the increased growth 

could be translated into a comm ensurate increased yield, provided th a t the harvest 

could still be institu ted  efficiently and economically.

In order to investigate this possibility it is necessary to  conduct a series of 

experim ents to ascertain the effects of aphids, cytokinins and auxins on 

m itochondrial development and respiratory expression. Also, the effects of the 

hormone in vitro on m itochondrial action would have to be examined to determine 

if the m itochondria are involved in the delay of senescence.

The aphid enhancem ent of the photosynthetic process and apparent induction 

of compensatory growth also has agricultural advantages along the same lines as 

those outlined for the delaying of plant senescence. F irst it would be im portant to 

determ ine if aphid-infested whole plant com pensatory growth resulted from continued 

increased rates of photosynthesis with the respiration rate being decreased, or from 

other perm utations of these processes. The next step would be an a ttem pt to 

sim ulate respiratory and photosynthetic responses using a ’cocktail’ of plant growth 

substances. If these experiments proved successful in producing a net daily carbon 

gain, experiments similar to those proposed for m itochondria could be conducted on 

leaves and chloroplasts to determine their in vivo and in vitro regulatory 

mechanisms.

The above studies, w ith the potential of significantly enhancing plant growth 

and production, may need to be linked with detailed translocation mapping 

experiments because it may be very difficult to  separate enhanced respiration and 

photosynthesis from the altered translocation patterns. This is a very tedious, 

costly and labour intensive proposition. However, the series of respiratory and 

photosynthetic experim ents may provide sufficient information because all three 

physiological processes appear to be regulated by similar plant growth substance

reactions.
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Information gained from such experiments would prove useful to plant 

breeders, geneticists and molecular biologists in their quest for improved plant 

growth and production, particularly if key regulatory mechanisms at the protein 

level were identified.

10.8  C on clusion

Clearly, the overall effect of short-term aphid infestation on their legume host 

plants was the significant reduction of plant growth via important alterations to 

central physiological processes, such as respiration, photosynthesis and translocation. 

These were apparently caused by aphid-induced changes in the levels of endogenous 

plant growth substances. However, there is the possibility tha t  short-term aphid 

feeding also results in potentially beneficial alterations in legume host plant 

physiology. The study of aphid-host plant physiology has the potential to provide 

basic information regarding plant performance and could become a very important 

and an exciting field of research.
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APPENDIX A

COWPEA PLANT WATER RELATIONS

Cowpea plants were raised from seed in the glasshouse at a density of one 

seed per pot. 14 days after planting, the plants were divided according to height 

into 5 blocks each of 20 plants and each block was randomly divided into 10 pairs 

of plants; each pair comprised a control plant, and an aphid-infested plant with 10, 

8-day-old adult cowpea aphids placed on it. This was repeated for the other four 

blocks. See Hawkins et al. (1985) for further detail and explanation regarding the 

design.

After 10 days of aphid infestation, plant water potential [measured using a

pressure chamber (Scholander et al. 1965)] and stomata! conductance [measured

using a steady state  diffusive porometer (Licor 1600, Lambda Instrument

Corporation, Lincoln, NB, U.S.A.)] were determined on one pair of plants that was

randomly selected from each block (Figs. 1 &; 2) for each sample time period (5

control and 5 infested plants for each sample).
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Figure 2. Cowpea stomatal conductances (conducted on plants 
just prior to harvesting for water potential 
determinations) after 10 days of aphid infestation 

on a cloudy day (as in Fig. 1) and a sunny day (as 
in Fig. 1). Vertical bar for each mean is the SE,
n = 5 plants. Control plants,#--- #; aphid-

infested plants , O ” — O.
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APPENDIX B

LONG-TERM BROAD BEAN GROWTH

Broad bean plants were raised from seed in the glasshouse a t a density of one 

seed per pot. 14 days after planting, the plants were divided according to height 

into 5 blocks of 19 plants and each block was randomly divided into 9 pairs of 

plants; each pair comprised a control p lan t, and an aphid-infested plant with 10, 8- 

day-old adult pea aphids placed on it. The remaining plant was harvested on 

experimental day 0. This procedure was repeated for the other four blocks.

On days 5, 10, 15, 20, and 25 a control and an aphid-infested plant were

harvested from each block and their dry weights were determined. On day 25, the

40 plants th a t remained were sprayed with RogorR to remove the aphids (see

Hawkins et al in press 1986). A control and a formerly infested plant were 

harvested from each block on days 35, 50, 70, and 100 and their dry weights were 

determined (Table 1).
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Table 1. Mean plant dry weights for control and pea aphid-infested 

broad bean plants on experimental days 0, 5, 10, 15, 20, and 25 and 

for control and formerly aphid-infested broad bean on days 35, 50, 

70, and 100 all with the LSD and the percentage of aphid-infested 

plant biomass with respect to control plant biomass.

Day

Plant DW$ 

C
g
A LSD

A/C

%

0 0.448 0.448 ns 100.0

5 0.730 0.697 ns 95.5

10 1.205 0.790 0.152 65.6

15 1.981 0.831 0.182 41.9

20 2.718 0.848 0.836 31.2

25C 5.003 1.521 2.082 30.4

35 11.257 3.087 2.489 27.4

50 17.217 4.870 2.977 28.1

70 29.138 14.766 2.442 50.7

100 77.690 42.360 9.412 54.5

Note: If the means are not significantly different (ns) by ANOVA, the

LSD is not presented, (•<■ = 0.05).

$, Abbreviations: DW, dry weight; C, control plants; A, aphid- 

infested or formerly aphid-infested plants.

C, On day 25 all remaining plants, both control and aphid-infested,
(R)were sprayed with Rogor^ , a systemic insecticide, to remove the

aphids.


