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Frontispiece 

Scanning electron micrograph of a human colonic lamina propna 

dendritic cell demonstrating the characteristic cytoplasmic processes or 

veils. Final magnification x 8,000 
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The following abbreviations are used in the text: 

ADCC Antibody-dependent cellular cytotoxicity 

ATP Adenosine triphosphate 

ATPase 

C3b· I 

cDNA 

CD 

CDR 

CMF 

Con A 

CR3 

CSF 

DNase 

DTH 

on 
EDTA 

FAE 

Fab 

Fe 

FcR 

FCS 

GM-CSF 

HBSS 

HEPES 

HLA 

ICAM 

IFN 

Adenosine triphosphatase 

Complement component 

Complementary deoxyribonucleic acid 

Cluster of differentiation 

Complementarity-determining region 

Calcium- and magnesium-free 

Concanavalin A 

Complement receptor for component, C3bi 

Colony stimulating factor 

Deoxyribonuclease 

Delayed-type hypersensitivity reaction 

Dithiothrietol 

Ethylenediaminetetraacetic acid 

Follicle-associated epithelium 

F ab fraction of the immunoglobulin molecule 

F c fraction of the immunoglobulin molecule 

Cell surface receptor for F c 

Foetal calf serum (heat inactivated) 

Granulocyte/macrophage colony stimulating factor 

Hank's balanced salt solution 

N-2-hydroxylpiperazine-N 1-2-ethane sulphonic acid 

Human leucocyte antigen 

lntercellular adhesion molecule 

Interferon 
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lg lmmunoglobulin 

IL Interleukin 

LFA Leucocyte function antigen 

LPS Lipopolysaccharide 

MALT Mucosa-associated lymphoid tissue 

2-ME 2-mercaptoethanol 

MHC Major Histocompatibility Complex 

MLN Mesenteric lymph node 

MLR Mixed leucocyte reaction 

Mis Mixed lymphocyte stimulatory 

mRNA Messenger ribonucleic acid 

NK Natural killer 

NSE Non-specific esterase 

PBS Phosphate-buffered saline 

PG Prostaglandin 

PHA Phytohaemagglutinin 

PMA Phorbol-12-myristate-13 acetate 

PWM Pokeweed mitogen 

RAR Rabbit anti-rat (antibody) 

SE or SEM Standard error of the mean 

SPF Specific-pathogen free 

TCR T cell receptor 

TGF Transforming growth factor 

TNF Tumour necrosis factor 

VLA Very late proteins of activation 
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A note on style: 

The style used conforms, wherever possible, to the recommendations of 

the Council of Biological Editors, Committee on Form and Style, 1972 [ Council 

of Biological Editors, Committee on Form and Style. CBE Style Manual. Third 

Edition. American Institute of Biological Sciences, Washington, D.C.]. In 

particular, Latin terms in common usage are neither italicized nor underlined [op. 

cit. p. 183] 
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SUMMARY 

The aims of the experiments recorded in this thesis were to identify and 

characterize the cell(s) responsible for T cell activation in the murine and human 

intestinal lamina propria. 

Following the development of a method for the disaggregation of murine 

small intestinal lamina propria into single cell suspensions, antigen-presenting 

cell activity (as determined by the ability to stimulate the one-way primary 

allogeneic mixed leucocyte reaction {MLR}) was found to be comparable to that 

of splenic cell populations. Cell depletion experiments determined that the 

stimulatory cell expressed Class II Major Histocompatibility Complex antigens, 

but did not express features characteristic of macrophages, B cells or T cells. 

A method was developed for isolating intestinal macrophages. These 

cells were compartmentalized, comprising 10% of the yields from non-Peyer's 

patch lamina propria tissue, but < 1 % of the yields from Peyer's patches. The 

expression of cell surface markers of intestinal macrophages indicated that they 

were in an "activated" state - they expressed Class 11 M HC antigens, and had low 

level expression of the macrophage-specific F4 /80 antigen, the F c receptor and 

the receptor for the complement component, C3bi. Isolated intestinal lamina 

propria macrophages inhibited MLR stimulatory activity in an indomethacin­

sensitive manner, suggesting a prostaglandin-mediated effect. 

Unfractionated cell suspensions from the lamina propria were ten times 

more potent MLR stimulators per cell than unfractionated Peyer's patch cells . 

Dendritic cells were obtained from the intestinal lamina propria and from Peyer's 

patches by density gradient centrifugation following the removal of adherent 

cells (macrophages). Dendritic cell-enriched populations from both sites were 

potent MLR stimulators with activity indistinguishable from that of splenic 

dendritic cells. 
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Parallel experiments undertaken using human colonic lamina propria 

produced similar results. Isolated colonic macrophages were in an "activated" 

state and did not stimulate the allogeneic MLR, whilst enriched (30-50%) 

populations of dendritic cells were potent stimulators. 
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CHAPTER 1 

ANTIGEN-PRESENTING CELLS IN INTESTINAL IMMUNE 

RESPONSES 

"The truth is rarely pure, and never simple." 

From 'The Importance of Being Earnest" (1895) Act I 

Oscar Wilde (1854-1900) 



1.1 INTRODUCTION 

A distinctive characteristic of the vertebrate immune system is antigen 

specificity, a property conferred by well-characterized cell surface receptors 

present on T and B lymphocytes. The B cell antigen receptor (surface 

immunoglobulin) recognizes either bound or soluble antigen in a single inter­

action. In contrast, the T cell antigen receptor (TCR) has a requirement for dual 

recognition. That is, antigen must be ''seen 11 in association with proteins coded 

by the Major Histocompatibility Complex (M HC) on specialized antigen­

presenting cells. For this reason, the T cell repertoire is limited to those antigens 

that can bind to MHC molecules, and the net result is that immune 

responsiveness genes map to the MHC region . This introduction is concerned 

with the mechanisms involved in the regulation of T lymphocyte function. 

Precursors of T cells arise in the bone marrow and migrate to the thymus 

where they differentiate to express antigen-specific receptors and other cell 

surface molecules [reviewed in 6]. During thymic maturation, T cells are also 

subjected to selective pressures resulting in the induction of tolerance to self­

antigens and the phenomenon of MHC-restriction. After release from the 

thymus, mature T cells migrate through the peripheral blood and other tissues. If 

they come into contact with their cognate antigen in association with self-MHC 

molecules (MHC-restriction) on the surface of specialized antigen-presenting 

cells, T cell activation results [reviewed in 417] . In this process T cells undergo 

blastogenesis, proliferate and differentiate into immunological effector cells with 

functions including cytotoxicity, immune suppression and the provision of helper 

factors (for B cell antibody production, and for the control of other effector arms 

of the immune response [reviewed in 323]). 

1.1.1 Molecules involved in T cell interactions 

Interactions between T cells , foreign antigen and other components of the 

immune system are mediated by a number of cell surface molecules involved in 



antigen-recognition, intercellular adhesion and/or signal transduction (Fig. 1.1). 

The majority are members of two families of structurally-related integral 

membrane proteins, the immunoglobulin gene superfamily (Table 1.1) [reviewed 

in 13, 39, 175, 511] and the integrin receptor superfamily (Table 1.2) [reviewed in 

298, 408]. 

1.1.1.1 T cell antigen receptor 

The TCR is a disulphide-linked heterodimer (comprising o: and /3 poly­

peptides which contain the variant domains involved in antigen specificity) which 

is associated with a collection of at least five invariant proteins called CD3 

[Reviewed in 30, 97, 297]. The receptor complex appears to be present on all 

helper and cytotoxic T cells. A second type of TCR heterodimer (1:0) has also 

been recognized. It is found on a small proportion of peripheral blood T cells, 

but is more common in certain anatomical locations eg. the dendritic T cells of 

the skin [243] and the intraepithelial lymphocyte in the mouse [51, 137]. The 

function of the -y:o heterodimer is unknown. The four recognized TCR 

polypeptides are similar to the immunoglobulins in both structure and gene 

organization. Each has V, J and C regions and f3 and o also have D regions. 

Diversity is apparent in three regions equivalent to the classical immunoglobulin 

hypervariable regions which form the points of contact with antigens - the 

complementarity-determining regions (CDRs). The V gene codes for the CDR1 

and CDR2 regions whilst the CDR3-equivalent region is formed by the junction of 

V and J (in o: and 'Y) and V, D and J (in f3 and o). 

1.1.1.2 Major Histocompatibility Complex gene products 

The TCR ligand comprises MHC molecules complexed with a peptide 

fragment [7, 75]. MHC molecules are the products of highly polymorphic genes, 

termed Class I and Class II, within the major histocompatibility gene complex 

[reviewed in 209]. The nature of the crystalline structure of the Class I MHC 

molecule, Human Leucocyte Antigen (HLA)-A2 [44] and the hypothetical model 
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of antigen binding to Class II MHC molecules [66] suggest that the binding site 

for peptide is on the top surface of the molecules located between the a-helical 

regions of the polymorphic a1 and a2 domains in Class I MHC and the a1 and ,81 

domains in Class II MHC proteins. 

A model for the alignment of the TCR over a peptide-MHC complex 

proposes that the Va and V ,8 CDR1- and CDR2-equivalent regions contact the 

side chains of the MHC a-helices. The centrally located CDR3-equivalent regions 

would then be aligned with the bound peptide (Fig. 1.1) [97]. This model 

explains both antigen-specificity and MHC restriction. The formation of the 

trimolecular complex leads to signal transduction via the CD3 complex and, in 

association with other signals, induction of primary T cell responses. 

1.1.1.3 Antigen processing 

Antigen processing at the molecular level has recently been reviewed by 

Allen (1987) [9] and Benacerraf (1988) [30]. Unlike the B cell antigen receptor 

(the surface immunoglobulin molecule) which recognizes the tertiary 

configuration of an antigen (which may be in a soluble state), the T cell antigen 

receptor generally recognizes a denatured form of antigen in association with 

MHC molecules on the surface of a target or an antigen-presenting cell. The 

conversion of a native form to a non-native form is termed antigen-processing. 

For many exogenous antigens proteolytic degradation and contact with the 

acidic intracellular lysosmal compartment is presumably the major pathway of 

antigen processing. Another pathway involving nonendosomal proteases was 

originally believed to be accessible only to endogenous viral antigens 

synthesized in infected cells. Recent work examining the processing of a viral 

antigen showed that both pathways could handle antigen regardless of its 

source [202]. Thus, there are at least two pathways for antigen processing - an 

endosomal, chloroquine-sensitive and a non-endosomal, chloroquine-
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insensitive. A third pathway utilizing a cell-surface, proteolytic "ectoenzyme" 

system also has been proposed [80]. 

1.1.1.4 CD4 and CDS molecules 

CD4 and CDS glycoproteins are nonpolymorphic members of the 

immunoglobulin gene superfamily which are expressed on the surface of 

functionally distinct populations of peripheral T lymphocytes. The expression of 

CD4 and CDS molecules on peripheral T cells correlates with the class of MHC 

determinant recognized (Class II MHC and Class I MHC respectively). In 

addition to the demonstration of direct binding between C04 and Class II MHC 

molecules [100] and COS to Class I MHC molecules [404, 411], other evidence 

[reviewed in 39] suggests that this interaction increases adhesion between 

antigen-presenting cells and T cells. There is also evidence for an intrinsic, low 

affinity interaction between C04 and the C03-T cell receptor complex [ 410, 

reviewed in 13]. Thus, the C04 molecule may adhere to the Class II MHC 

molecule and stabilize its association with the TCR. A role for these molecules in 

signal transduction is also suggested by the demonstration of their association 

with cytoplasmic protein tyrosine kinases [339]. 

1.1.1.5 CD2 and leucocyte function antigen-3 (LFA-3) 

CO2 is a glycoprotein with limited tissue distribution (thymocytes, T cells 

and some natural killer {NK} cells) which plays an important role in cell adhesion 

and T cell activation [38]. Monoclonal antibodies against CO2 inhibit or stimulate 

T cells, depending on the epitope specificity. 

Its natural ligand is a widely distributed glycoprotein, LFA-3. Both these 

molecules are generally considered to be members of the immunoglobulin gene 

superfamily, although there is some debate [175]. The interaction between these 

molecules, together with a co-stimulatory signal (anti-CD3 antibody or 

suboptimal doses of the plant lectin, phytohaemagglutinin) can stimulate T cell 

proliferation [38]. 
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1.1.1.6 LFA-1 and intercellular adhesion molecules 1 and 2 {ICAM-1 

and ICAM-2) 

The LFA-1 molecule is a member of a family comprising three related 

heterodimers found on lymphoid and myeloid cells [reviewed in 39, 101]. These 

proteins share a common /3 chain (CD18) noncovalently associated with a 

unique n: subunit. The n: chain of LFA-1 is termed CD11 a; the other proteins in 

the family are CD11 b (CR3) and CD11 c (the p150,95 protein) . Binding of LFA-1 

is temperature-sensitive and cation-dependent. 

The ligand for LFA-1 is ICAM-1, a glycoprotein that is also widely 

distributed. A recent paper [11] demonstrated that co-expression of ICAM-1 is 

critical for effective MHC Class II-restricted and allospecific T cell activation in 

transfected cells expressing modest levels of HLA-DR antigens. This implies an 

important role for ICAM-1 in the induction of T cell responses. The presence of 

other ligands for LFA-1 was suggested by the failure of anti-lCAM-1 monoclonal 

antibodies to inhibit LFA-1 dependent adhesion to all cell types. An alternative 

ligand, ICAM-2, expressed on endothelial cells has now also been identified 

[439]. 

1.1.1.7 VLA proteins {very late proteins of activation) 

Studies on the adhesion of cells to the extracellular matrix led to the 

discovery of a family of cell attachment receptors recognising similar amino acid 

structures in the matrix proteins (the RGD { arginine-glycine-aspartic acid} 

sequence) [reviewed in 408, 39]. These receptors include the fibronectin and 

vitronectin . receptors, and VLA proteins 1-4 which bind other matrix proteins 

including laminin and collagen. Structural similarities with the LFA-1 family were 

identified, and together these proteins comprise part of the integrin receptor 

superfamily. 

The VLA proteins -1 and -2 were initially identified on the surface of stim­

ulated T cells, but are also found elsewhere. VLA-4 is found on all lymphocytes, 
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thymocytes and monocytes, whilst VLA-3 and VLA-5 (the fibronectin receptor) 

are not expressed on peripheral blood lymphocytes. 

Antibody blocking studies have shown that the VLA proteins mediate cell 

adhesion to matrix proteins, but inhibition of T cell function has not been demon­

strated. T cells, once activated, express increased levels of ICAM-1 [101] and 

VLA-1 and -2 [39]. 

1.1.1.8 Summary 

Many cell surface molecules are involved in both the stabilization of inter­

actions between T cells and antigen-presenting cells, and in signal transduction. 

The ultimate determinant of antigen-specificity, however, is the TCR. 

1.1.2 Mechanisms and measurement of T cell activation 

[Reviewed in 91, 177, 285, 505] 

The specificity of T cell receptors can be bypassed using various physio­

logical or non-physiological stimuli leading to non-specific T cell activation. 

Examples include calcium ionophores, plant lectins, and certain antibodies to 

either the T cell receptor, the CD3 molecule or the CO2 molecule. In addition, 

agents that activate protein kinase C (eg. phorbol myristate acetate {PMA}) are 

thought to reproduce the requirement for accessory cells and their products. 

The role of interleukin 1 (IL-1) in T cell activation is considered in Section 

1.2.5.3.2. 

The membrane and intracellular events initiated by these stimuli are 

similar to . those induced by many hormones [8, 91, 278, 34 7]. Inositol 

phospholipids are hydrolysed, intracellular stores of calcium are mobilized and 

membrane and cytosolic proteins are phosphorylated. The process continues 

for at least 10 days and involves a complex sequence of gene activation 

resulting in the regulation of more than 70 molecules [91], and the acquisition of 

specialized effector functions. For at least a subset of T cells, these events result 
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in increased production of the T cell growth factor, interleukin 2 (IL-2), increased 

expression of the cell surface IL-2 receptor and an autocrine mode of 

proliferation. 

The consequences of these cell surface interactions can therefore be 

measured by end-point assays that detect T cell functions (eg. proliferation, 

target cell cytotoxicity, help for antibody production or the production of 

lymphokines such as IL-2) or T cell activation markers (eg. Class II MHC 

antigens or receptors for IL-2 {CD25} or transferrin {CD71} ). 

1.1.2.1 Activation requirements for resting and sensitized T cells 

Activation requirements for resting and memory T cells differ from those 

for sensitized or activated T cells [21, 442, 446]. Steinman (1988) [ 442] 

described two broad functions of accessory cells. The first is the 11presentation 11 

of antigen in association with Class 11 M HC products to form a complex on the 

accessory cell surface. This structure can then be recognized by an antigen­

specific clonotypic T cell receptor. The subsequent response depends on the 

nature of both the accessory cell and the responding T lymphocyte. A resting T 

cell requires an additional 11sensitization 11 or co-stimulatory signal. As a result the 

T cells 11blast transform 11
, secrete and become responsive to lymphokines, and 

proliferate vigorously. In the absence of such a signal there is no response. A 

previously sensitized T cell does not require this second function and will 

respond vigorously to the antigen-MHC complex alone. 

The magnitude of this secondary response correlates with the concen­

tration of antigen and the surface density of Class II M HC molecles on an 

antigen-presenting cell [265, 302]. The complex may be present on 

macrophages, resting B cells, endothelial cells, epithelial cells or fibroblasts. 

Fundamental differences in activation requirements between resting and 

sensitized T cells were demonstrated using antibodies directed against the CD3 

molecule - the signal transducing element for the T cell receptor molecule [176] -
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and other cell surface molecules. In experiments measuring the activation of T 

cell clones (ie. sensitized cells), accessory cell activity was replaced by anti-CD3 

coupled to Sepharose beads [321]. When resting T cells were used, accessory 

cells were necessary for IL-2 production [476, 506]. Similarly, whilst studying T 

cell activation, Odum et al (1988) [357] showed that, in contrast to unprimed 

cells, the proliferation of sensitized cells was independent of the interaction with 

the CD5 and CD11 molecules, and IL-1 /3" Thus, activation requirements for 

sensitized and unsensitized T cells differ. 

1.1.2.2 The primary allogeneic mixed leucocyte reaction (MLR) 

The best physiological stimulus for studying primary T cell activation 

would be previously "unseen" antigen in association with syngeneic antigen­

presenting cells. However, the frequency of a particular antigen-specific T cell in 

an unprimed population is very low, making the study of primary antigen-specific 

responses difficult. A relatively large proportion ( > 1-3% of unprimed T cells) is 

activated by allogeneic MHC products so that this model is often used for the 

study of T cell activation. 

Co-culturing leucocytes which differ at the MHC loci results in cell prolifer­

ation and the development of cytotoxic T lymphocytes (reviewed in Steinman 

and Inaba (1986) [445]). Both Class I MHC and Class II MHC molecules can 

stimulate the MLR as can non-MHC encoded determinants, such as the product 

of the Mis locus (loci) in the mouse. 

The interactions between antigen, Class II MHC gene products and the 

clonotypic T cell receptor have been studied recently by gene transfer studies. It 

is now clear that a single T cell receptor a/3 heterodimer can recognise self-MHC 

molecules complexed with fragments of antigen, allogeneic MHC molecules and 

an Mis-encoded determinant [221, 294]. These observations verify that the 

primary MLR is a valid and physiological model for studying T cell activation. 
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1.1.2.3 The oxidative mitogenesis model 

Treatment with the oxidizing agent, sodium metaperiodate, induces 

extensive blastogenesis as the result of the oxidation of the terminal sialic 

residue of a specific membrane glycoprotein or glycolipid [reviewed in 17 4]. The 

effect of periodate can be reproduced by the removal of sialic acid with 

neuraminidase followed by oxidation of exposed galactose residues with 

galactose oxidase. Both these treatments cause cross-linking of membrane 

components and subsequent transformation and proliferation of a responder T 

cell population if accessory cells are present. Antigenic changes induced by 

oxidation of surface glycoproteins of a stimulatory cell population may be 

analogous to the MLR if the Class II MHC molecules are involved. 

1.1.3 Putative intestinal lamina propria antigen-presenting cells 

Cell types that express Class II MHC antigens, and might therefore act as 

antigen-presenting cells in the intestinal lamina propria (at least in a secondary 

immune response), include dendritic cells [446], macrophages [479], B cells 

[84], activated T cells [204], endothelial cells [352], and epithelial cells [ 48, 308]. 

In order to generate a T-cell-mediated immune response in the intestinal 

mucosa, antigen must cross the epithelial barrier. The major emphasis in studies 

of intestinal mucosal immunity has focused on Peyer's patches and their asso­

ciated specialized epithelium which is believed to be the main site of antigen 

contact and sampling. A number of observations, however, suggest an 

important role for the non-Peyer's patch epithelium and associated lamina 

propria lymphoid tissue. Firstly, presumptive antigens have been demonstrated 

in the lamina propria or within lamina propria macrophages. Examples include 

enterotoxin (by receptor-mediated transport [467]); infectious agents (Shigella, 

Salmonella [ 467], and Campylobacter antigens [ 407]), soluble protein antigens 

(eg. bovine serum albumin [37]) ; and carageenan [3]. Secondly, 
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immunohistochemical techniques have identified all of the putative antigen­

presenting cells described above in the small intestinal lamina propria. In 

particular, there are large numbers of Class II MHC antigen-bearing 

macrophages in the intestinal lamina propria of mouse, rat and human [169, 

170, 172, 197, 312, 437] and some evidence has been presented concerning a 

population of large irregularly-shaped antigen-presenting cells which lack 

macrophage markers (presumptive dendritic cells) [169, 172, 197, 312] (Figs. 

1.2a, 1.2b). Thirdly, the lamina propria contains T cells responsive to stimulation 

by the lectins, phytohaemagglutinin and concanavalin A, and by alloantigens in 

the mixed leukocyte reaction (MLR) [reviewed in 310]. 

1.1.4 Aims: 

The aims of the experiments reported in the following chapters of this 

thesis were to isolate and characterize the antigen-presenting cell from the 

intestinal lamina propria. This first chapter will review the current information on 

the nature of putative intestinal lamina propria antigen-presenting cells, 1n 

particular, the dendritic cell, the macrophage, the B cell and the epithelial cell. 
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1.2 THE DENDRITIC CELL 

Since the initial recognition of the dendritic cell by Steinman and Cohn 

(1973) [443], evidence has accumulated to suggest that it plays a unique role in 

the initiation of T cell dependent immune responses. Several recent papers have 

reviewed the properties and functions of these cells, and their proposed mech­

anisms of action [21, 442, 446, 448]. This review will concentrate on the 

following aspects of dendritic cells: 

1.2.1 Physical and phenotypic features; 

1.2.2 Functional properties; 

1.2.3 Origin, tissue distribution and pattern of circulation; 

1.2.4 Ontogeny and cell lineage; and 

1.2.5 Mechanisms of action. 

Because of the vast literature on dendritic cells wherever possible the 

evidence will be summarized in tabular form. 

1.2.1 Properties and phenotype of dendritic cells 

The initial studies of in vitro T cell activation identified a requirement for 

accessory cells, which were derived from the adherent fraction of munne 

lymphoid cell suspensions [reviewed in 446]. The study of the cellular 

composition of these adherent populations identified dendritic cells which were 

potent activators of T lymphocytes. Prior to these studies, all adherent cells were 

regarded as macrophages and the antigen-presenting cell activity of the 

adherent cell fraction was therefore thought to be a macrophage-mediated 

function. Over many years, the relationship between dendritic cells and 

macrophages has been the focus of considerable debate. 

Several properties distinguish the dendritic cell from the mononuclear 

phagocyte system. Dendritic cells are large, irregular in shape, low-density, non­

phagocytic and become non-adherent after overnight culture. They lack features 
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characteristic of other cell lineages including F c receptors, non-specific esterase 

(NSE), membrane adenosine triphosphatase (ATPase), and the F4/80 antigen 

(mononuclear phagocytes) , and surface markers of the T and B cell lineage. The 

dendritic cell constitutively expresses high levels of both Class I and Class II 

MHC molecules which do not change with time in culture and are not inducible 

by IFN--y [442]. The kinetics of dendritic cells are different from the mononuclear 

phagocyte system [ 482]. A rat lgG2b anti-murine splenic dendritic cell-specific 

antibody has been raised, and is useful when used with complement lysis to 

deplete dendritic cells [356]. 

Using immunohistochemical techniques, cells with the phenotype of 

dendritic cells have been identified in the interstitial tissues of all non-lymphoid 

organs studied except for the brain [150, 312]. The isolation and enrichment of 

dendritic cells from different tissues has also been possible. Recent extensive 

phenotypic analysis of dendritic cells obtained from three different tissues 

confirmed previous observations regarding the absence of key macrophage and 

lymphocyte antigens [93]. Of interest was the demonstration of heterogeneity 

amongst the dendritic cell populations studied (see Table 1.3). These 

phenotypic differences may reflect functional differences in dendritic cells or may 

be due to varying stages of development eg. migratory dendritic cells vs fixed 

tissue interdigitating dendritic cells [93]. These observations also raise the 

question of the relationship between phenotype and tissue distribution ie. does 

the phenotype determine the destination of the dendritic cell or does the 

phenotype_ develop after a common precursor is localized at a particular site? 

1.2.1.1 Electron microscopic appearances of dendritic cells 

Transmission electron microscopy of dendritic cells demonstrates an 

extremely irregular nucleus with a peripheral or rim heterochromatin pattern, few 

nuclear pores, and small nucleoli. The cytoplasm contains well developed mito­

chondria, rough endoplasmic reticulum and scattered smooth vesicles. The 

12 



Golgi region lacks typical lysosomes and secretory granules but contains a 

variety of multivesicular bodies comprised of large vacuoles surrounded by, or 

containing, smaller vesicles. Phagolysosomes are absent [ 44 7]. 

Scanning electron microscopy of cultured dendritic cells shows an array 

of bulbous cytoplasmic protrusions of varying size and shape, including the 

characteristic veils associated with the veiled cell of afferent lymph [378, 311]. 

1.2.2 Dendritic cell function 

Before summarizing the functional properties of dendritic cells, it is 

important to emphasize a number of principles in the study of T cell activation 

using the MLR to explain the inconsistencies in the published literature. Firstly, 

accessory cell requirements for resting T cells differ from those for sensitized or 

activated T cells (see 1.1.2.1 ). 

Secondly, given the potent stimulatory activity of dendritic cells, it is 

important to determine whether a small contaminating population could explain 

the observed experimental results. This is best done by removing possible 

contaminants and determining their relative contribution eg. by using the anti­

dendritic cell monoclonal antibody, 33D1, with splenic adherent cells in the 

mouse [ 444]. 

Finally, the accessory cell requirements of a responder population must 

be absolute. The presence of accessory cells in the responding T cells may 

result in a syngeneic MLR and the production of helper factors eg. IL-2 [178]. 

This will be of even greater magnitude if xenogeneic antigens (eg. foetal calf 

serum) are used in the culture medium [353]. There is also the theoretical 

possibility of "back-stimulation" ie. the "responder" accessory cells may interact 

with T lymphocytes in the stimulator population and cause sensitization. 

Although these stimulator cells could not proliferate themselves (eg. if treated 

with mitomycin C or irradiation), the signal may "spill over" onto the responder 

cells which would then proliferate. Depletion of accessory cells from the 

13 



responder population is best undertaken by removing Class II MHC-bearing 

cells using specific monoclonal antibodies. Methods using adherence or nylon­

wool adherence alone are unreliable. Comparisons of different methods for 

obtaining responder cells showed that la+ cell-depleted T cell populations had 

more stringent requirements for accessory cells than conventional T cell 

preparations [217]. For example, the removal of a small population (3%) of Class 

II MHC positive responder cells using monoclonal antibodies and complement 

lysis resulted in abrogation of 1a+-macrophage-induced T cell proliferation. This 

indicated that the 1a+-macrophages induced proliferation not as autonomous 

accessory cells, but by acting synergistically with dendritic or other cells in the 

responder T cell population. 

1.2.2.1 Dendritic cell functions 

The functional properties of dendritic cells as determined by many 

independent groups are summarized in Table 1.4 [ adapted from 446 and 21] 

and will not be discussed further. The evidence for MLR stimulatory activity of 

other putative accessory cells is considered below. 

1.2.3 Origin and tissue distribution of dendritic cells 

Studies on the origin and tissue distribution of dendritic cells indicate a 

definite circulatory pattern. In summary, dendritic cells (lymphoid dendritic cells, 

Langerhans cells and veiled cells) are bone-marrow derived [139, 216, 366, 378, 

449] and migrate to peripheral tissues via the blood. In tissues, they may be 

functionally immature, eg. Langerhans cells, but following exposure to antigen 

develop the ability to act as potent T cell activators whilst migrating in the 

afferent lymphatics as veiled cells to draining lymph nodes. Trapped as the 

interdigitating cells in T cell dependent areas, they interact with antigen-specific 

T cells in the initiation of T cell responses. In certain inflammatory exudates, eg. 

the synovial fluid of rheumatoid arthritis or the lamina propria of inflammatory 
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bowel disease, dendritic cells are recruited by mechanisms which remain to be 

determined. 

1.2.3.1 Human peripheral blood dendritic cells 

Human peripheral blood contains a small proportion of dendritic cells 

which have been enriched to varying degrees [41, 118, 129, 187, 237, 251, 322, 

384,412,413,485,486,487,492,521,522]. 

These cells possess properties similar to those of murine dendritic cells 

including: 

a) characteristic morphology at light- and electron microscopy; 

b) low density and poor adherence with time in culture; 

c) constitutively high level expression of Class I and Class II MHC 

antigens (including HLA-DR, -DP and -DO); 

d) absence of other cell surface markers and functions associated with 

macrophages, B cells, T cells and N K cells, including phago­

cytosis, F cR expression, surface immunoglobulin and the CD1 , 3, 

4, 8, 14 and 16 epitopes [521. CD nomenclature reviewed in 82, 

123]. (There is conflicting evidence about the presence [522] or 

absence [412, 494] of the CR3 antigen (CD11 b). The expression of 

this receptor on murine Langerhans cells is lost in culture [ 416], so 

these differences may reflect in vitro manipulation); 

e) potent stimulatory activity for many T cell responses including: 

i) oxidative mitogenesis [ 485, 487]; 

ii) mitogen- and antigen-induced T cell proliferation [ 41, 322, 487] ; 

iii) T cell-dependent antibody production [187]; 

iv) syngeneic and allogeneic MLR [237, 251, 384, 412, 413, 485, 

487]; and 

v) cluster formation with T cells [118, 251, 521]. 
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1.2.3.2 Langerhans cells 

[Reviewed in 57, 426, 453] 

Langerhans cells are Class II MHC antigen-bearing leucocytes found in 

the suprabasal region of the epidermis. Their dendritic processes form an 

extensive but non-overlapping network [173] which appears to be ideally suited 

for the trapping of antigens passing through the epidermis. In vitro and in vivo 

experiments using both enriched and purified epidermal Langerhans cells have 

demonstrated the ability of these cells to present antigen to T cells in various 

systems [2, 40, 111, 156, 181, 211, 365, 371, 416, 424, 441 , 460, 461, 515] . 

Recent work in vitro has shown that the ability of Langerhans cells to stimulate 

primary immune responses is weak upon initial isolation, but increases consid­

erably in culture under the influence of GM-CSF and IL-1 [156, 181, 371 , 416, 

424, 515]. Associated with this functional change is a change in phenotype (see 

Table 1.3) and morphology so that cultured Langerhans cells become indistin­

guishable from dendritic cells. 

There is evidence to suggest that, in the development of contact hyper­

sensitivity in vivo, Langerhans cells acquire antigen in the epidermis, migrate via 

the afferent lymph to the draining lymph nodes and, having matured, present 

antigen to T cells as dendritic cells [239, 281 , 282, 426]. Macatonia et al (1987) 

[282] after painting the skin of mice with fluorescein-isothiocyanate 

demonstrated a rapid increase in the number of dendritic cells in lymph nodes, 

the preferential location of antigen on dendritic cells and potency of antigen­

bearing dendritic cells in inducing syngeneic T cell responses. In addition, they 

showed 11transitional 11 forms of dendritic cells containing Birbeck granules, 

generally thought to be characteristic of Langerhans cells. 
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1.2.3.3 

1.2.3.3.1 

Other tissue dendritic cells 

Thymic dendritic cells 

Human and murine thymic dendritic cells have been isolated and charac­

terized in vitro [28, 93, 255, 259, 367]. The properties they share with the 

dendritic cell lineage include morphology, physical properties (low density and 

non-adherent), high level expression of HLA-DR surface antigens, the 

expression of the CD1 a (OKT6) and CD4 (weakly) molecules (also expressed by 

Langerhans cells), the expression of the S-100 protein (found on interdigitating 

cells in T cell-dependent areas of human lymph nodes [367] and on tonsillar 

dendritic cells [504]) and potent stimulation of the MLR. 

1.2.3.3.2 Tonsillar dendritic cells 

There are several reports on the isolation of dendritic cells from human 

tonsillar tissue [63, 149, 227, 317]. These cells had the features described 

above. Purified populations of tonsillar dendritic cells expressed the following 

markers: HLA-A, -8, -C; HLA-DR, -DP, -DO; CD4 (Leu3 only), CD11a, CD13, 

CD18, CD39, CDw40, CD45 and CD45R and lacked epitopes characteristic of T 

cells, B cells, macrophages and N K cells. 

1.2.3.3.3 Synovial dendritic cells 

Dendritic cells have been isolated from the synovial fluid of patients suffer­

ing from inflammatory joint diseases (in particular, rheumatoid arthritis) [147, 

478, 490, 491, 493, 494, 495, 496, 522, reviewed in 492] and, in lesser numbers, 

from joints affected by non-inflammatory arthritis [147, 478]. These cells had 

features characteristic of lymphoid dendritic cells. They expressed high levels of 

Class II MHC antigens (HLA-DR, -DP and -DO), even after 3-5 days in culture, 

bore the common leucocyte antigen (CD45) indicating bone-marrow origin 

[ 494], and had the typical features of dendritic cells, including characteristic veils 

at electron microscopy [478, 493, 496]. Functional studies demonstrated the 

ability of dendritic cell-enriched populations to stimulate oxidative mitogenesis 
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[522], antigen- [ 495] and mitogen- [ 4 78, 493, 496] induced proliferation of 

autologous peripheral blood lymphocytes, and both the syngeneic and 

allogeneic MLR [147, 494, 496]. As has been demonstrated in the mouse and 

the rat, the incubation of synovial dendritic cells with autologous T cells resulted 

in the formation of dendritic cell-T cell clusters which contained the proliferating 

cells. The addition of antibodies to the HLA-DR molecule on the dendritic cell or 

the CO2 molecule on the T cell inhibited the formation of these clusters [ 494]. 

Dendritic cells are not phagocytic and are negative for the enzyme 

markers, peroxidase and NSE [147, 492, 522]. Apart from some question about 

weak expression of the CR3 complement receptor [ 494, 522], they do not 

express cell surface markers found on mononuclear phagocytes, T cells, B cells 

or NK cells [147, 494, 522]. 

1.2.3.3.4 Mucosal dendritic cells 

Dendritic cells have been identified histologically in many tissues (see 

above) including human lung [423]. Isolation from rat lung has also been 

reported [167, 396]. The literature regarding intestinal mucosal dendritic cells is 

considered in Chapters 4 and 5. 

1.2.3.3.5 Functional maturity of tissue dendritic cells 

One, as yet, unresolved question relates to the functional maturity of the 

tissue dendritic cell in comparison to lymphoid dendritic cells (splenic, lymph 

node or veiled cell). Does the tissue dendritic cell, like the Langerhans cell, need 

to contact antigen and migrate to draining lymph nodes in order to achieve 

functional maturity or is the Langerhans cell in a specialized micro-environment? 

Are tissue dendritic cells as competent as lymphoid dendritic cells? 

This question is difficult to answer because of the difficulties involved in 

obtaining purified populations of dendritic cells from tissues and the possible 

effects of the isolation process on function. For example, maturation may be 

induced by cytokines during culture. Apart from evidence presented above relat-
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ing to munne Langerhans cells and splenic dendritic cells, the only direct 

functional comparisons are between murine splenic and Peyer's patch dendritic 

cells [ 433, 435], murine splenic or lymph node and thymic dendritic cells [368, 

519], rat lymph node and lung dendritic cells [396], rat thymic and lymph node 

dendritic cells [519], and human peripheral blood and synovial fluid dendritic 

cells [see above]. (Dendritic cells from the thymus and Peyer's patches should 

probably be considered as lymphoid-derived, but for the purpose of this 

discussion will be considered non-lymphoid). (A number of other investigators 

have indirectly compared dendritic cells from different tissues. For example, liver 

dendritic cell-enriched populations were found to have equivalent stimulatory 

activity/ cell when compared to splenic dendritic cells [231]; thymic and splenic 

lymphostromal clusters had equivalent antigen-presenting cell function [255], 

and thymic dendritic cells were found to have M LR stimulatory activity similar to 

that which would have been expected from splenic dendritic cells [93]). 

The only clear difference in the direct comparisons was that thymic 

dendritic cells generated lower levels of alloreactive cytotoxic T lymphocytes in 

vitro than those from the spleen [368]. The significance of these findings is 

unclear. All other comparisons of function found equivalent dendritic cell activity 

per cell. The comparisons of peripheral blood and synovial fluid dendritic cells 

found, if anything, greater activity in peripheral blood dendritic cells (which would 

be expected to have the less mature precursors) [ 493, 492], but the use of 

impure populations makes this finding hard to interpret. 

The matter is as yet unresolved. Studies on the archetypal tissue dendritic 

cell, the Langerhans cell, consistently showed a thirty fold increase in antigen­

presenting cell function during several days in culture (Section 1.2.3.2). The 

evidence on dendritic cells from other tissues is scarce, and will of necessity, 

have any interpretation clouded by the need to dissociate and culture cells 

during the enrichment process. 
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1.2.3.4 Veiled cells 

The veiled or non-lymphoid cells of afferent lymphatics are migratory 

forms of dendritic cells en route from the peripheral tissues to the draining lymph 

nodes. They are normally found in very small numbers in thoracic duct lymph 

(0.03%-0.05% [300, 311, 387]). Lymphadenectomy results in increased numbers 

in the lymph, whilst irradiation causes a higher relative proportion by depleting 

radiosensitive lymphocytes [300, 387]. By using these methods, the phenotype 

and function of these cells has been studied in rodents [26, 233, 234, 288, 289, 

300, 311, 341, 378, 387, 388, 389] as well as in other species [72, 168]. 

The reported properties of veiled cells are similar to those of dendritic 

cells. They are bone-marrow derived, non-phagocytic, low density, and have 

irregular surface morphology. Various forms including the 11classical 11 veiled cell 

have been described [234, 311, 378, 387]. They express high levels of Class II 

MHC surface proteins, and are potent stimulators of various primary and 

secondary T cell responses [234, 300, 311, 341]. The demonstration of ve/led 

cells bearing bacteria and bacterial antigens in the afferent lymph of orally 

infected rats suggests a significant role in the transport of antigen [311]. 

1.2.3.5 The migration patterns of dendritic cells and their relationship 

to interdigitating cells 

Using enriched populations of labelled dendritic cells a number of invest­

igators have examined their migration pattern in vivo [22, 120, 236, 252]. When 

injected into the footpads of mice or rats, labelled dendritic cells were carried by 

the lymphatics to the draining lymph nodes [252] where they were identified as 

interdigitating cells in the paracortex [120]. Studies in nude mice showed that 

this process was not dependent on the presence of T lymphocytes [120, 236, 

252]. 

When injected intravenously, dendritic cells localized preferentially in the 

spleen and the liver after brief sequestration in the lungs. They were unable to 
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enter lymph nodes [120, 252], except by an indirect route through the 

lymphatics of the liver [120]. The principal site of localization was the spleen and 

this process depended on the presence of T cells. The dendritic cells were not 

just 11 homing 11 to their tissue of origin since mesenteric lymph node-derived 

dendritic cells also localized to the spleen [252]. 

Shortly after injection the dendritic cells were found in the red pulp of the 

spleen where they were thought to bind to the endothelium in the marginal 

zones. By 24 hours after injection the majority had migrated to the T cell areas of 

the white pulp where they may have developed into interdigitating cells. It is likely 

that these differences in location are reflected by differences in phenotype and 

possibly even function. Witmer and Steinman (1984) [514] demonstrated 

staining with an anti-dendritic cell antibody, 3301, only in the marginal zone of 

the spleen. Crowley et al (1989) [93] showed that two populations of dendritic 

cells are present in the spleen: a major, 33D1 + population in the marginal zone 

(which may represent a migratory cell), and a minor (10-20%), 3301 - population 

corresponding to a fixed, longer-lived interdigitating cell. Rhodes and Agger 

(1987) [388] also found phenotypic differences between dendritic cells from 

different locations. 

1.2.4 Ontogeny and cell lineage of dendritic cells 

There is considerable evidence that the lymphoid dendritic cell, fixed 

tissue dendritic cell, Langerhans cell, veiled cell and interdigitating cell represent 

different developmental stages of the same bone marrow-derived precursor and 

that there are significant differences between this cell lineage and the 

mononuclear phagocyte. 

For example, studies on the appearance of accessory cells in human and 

rat foetal development consistently indicate an intrinsic developmental hetero­

geneity. Janossy et al (1986) [197] detected, in human foetal tissue, a major 

population of accessory cells which expressed typical macrophage surface 
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markers and were found at sites of accumulation of classical tissue 

macrophages. These cells did not bear Class II MHC antigens except for a 

subset present in the gut and the liver. A minor population of Class II MHC­

positive accessory cells localized to sites characteristic of dendritic cells. These 

cells were the first cells in the body to express HLA-DR antigens and 

constitutively expressed all subsets of Class II MHC antigens by 23 weeks 

gestational age. Differences between macrophage and dendritic cell lineages 

were maintained throughout foetal development. Others came to similar 

conclusions after studying the distribution of non-lymphoid cells in the human 

[ 437] and the rat foetal gut [312, 484]. 

lmmunohistochemical studies of dendritic cells and macrophages in adult 

tissues have also demonstrated distinctive differences in their phenotype and, by 

implication, their lineage [15, 71, 135, 375, 383, 422], although not all authors 

would agree [124, 291]. 

Although it has been suggested that dendritic cells and macrophages are 

members of the same cell lineage, contradictory findings have been reported. 

For example, diametrically opposed differentiation pathways have been 

proposed (dermal macrophages into Langerhans cells [338] and, conversely, 

veiled accessory cells into macrophages [369]). The finding that injected 

dendritic cells did not give rise to sinus macrophages, tingible body 

macrophages or follicular dendritic cells [120] implies, at least, that dendritic 

cells do not differentiate into macrophages. The in vitro differentiation of 

macrophages into dendritic cells has yet to be demonstrated convincingly. 

Overall, there is little evidence to suggest that these cells are members of 

the same cell lineage although an understanding of the nature of the relationship 

between the dendritic cell and the mononuclear phagocyte is of importance. The 

evidence presented above suggests that dendritic cells differ from the mono-
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nuclear phagocyte system in terms of ontogeny, morphology, phenotype, 

function and behaviour in vitro and in vivo. 

1.2.5 

1.2.5.1 

The mechanism of action of dendritic cells 

Antigen processing 

Although dendritic cells do not phagocytose particles in vitro there is 

compelling evidence to suggest that they are able to induce primary T cell 

responses to both soluble and particulate antigens (See Table 1.4) [eg. 12, 80, 

223, 322]. A recent report demonstrated that the ability of a dendritic cell popul­

ation to present intact exogenous protein antigens is greatest in immature epi­

dermal Langerhans cells, and is inversely related to its ability to stimulate the 

MLR [401]. 

Studies of the mechanism of antigen processing have yielded conflicting 

results. Dendritic cell chloroquine-sensitivity was reported by some authors [12, 

80, 144], whereas others [213] could not detect any inhibitory effect. Two factors 

may explain these differences. Firstly, in the doses used, chloroquine may be 

toxic [213]. A dose greater than 15 mM in continuous culture [76] or 

pretreatment with doses of 300 mM [213] has a suppressive effect on T cell 

proliferation. It is also possible that chloroquine has effects other than on antigen 

processing, eg. on the function of the Class II MHC molecules [184]. In 

experiments on dendritic cell-T cell clustering, antigen-independent clustering at 

37°C was unaffected by chloroquine. Nor did chloroquine appear to inhibit T cell 

receptor-antigen-Class II MHC complex interaction, since its presence did not 

alter accessory-T cell binding at 40c. However, when any antigen-presenting 

cell was pretreated with chloroquine, the ability to bind helper T blasts in an 

antigen-dependent manner was inhibited for both soluble and allo-antigens at 

4°C. Proliferation of primed blasts in the secondary M LR was also blocked by 

pre-exposure to a low dose of chloroquine, whilst primary MLR responses were 

unaffected [114, 144, 184]. These observations imply a reversible effect of 
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chloroquine on Class II MHC protein function. The mechanism of any effect has 

yet to be explored. 

There are also differences in the reported efficacy of dendritic cells to 

process insolubilized protein antigens. T cell proliferative responses to 

ovalbumin bound to latex beads or methylated bovine serum albumin were 

similar to controls in one study [213], while in another, proliferation was 

enhanced by a hapten bound to large, soluble and insoluble antigens 

(polystyrene beads) [12]. Possible reasons for these differences include the use 

of populations of dendritic cells at different stages of differentiation, the degree 

of spontaneous dissociation of the antigens from the carrier and the accessibility 

of the proteins to the putative 11ectoenzyme 11 system. Clearly, there is a need for 

further investigation into the method by which dendritic cells process antigen. 

To explain synergistic effects between dendritic cells and macrophages, 

some authors have suggested that dendritic cells present peptide antigens 

following metabolic degradation by macrophages [144, 213]. In vitro mixing 

experiments using macrophages and dendritic cells gave variable results - some 

showed synergy [324], some suppression [242] and others showed no effect 

[223]. Increased macrophage production of the cytokine, IL-1, may amplify the 

function of dendritic cells [241], but there are many other factors which may 

affect their interaction. This area has yet to be systematically analysed. 

1.2.5.2 Dendritic cell-T cell cluster formation 

One unique feature of dendritic cells is their ability to form clusters with 

unsensitized antigen-reactive cells in culture [24, 118, 142, 184, 185, 188, 190, 

reviewed in 21, 442, 446]. These cells may be CD4+, cos+ [190] or B cells in 

association with CD4 + cells [188]. Cluster formation precedes, and seems 

essential for, mitogenesis. In the periodate model (Section 1.1.2.3), Austyn et al 

(1988) [24] found that clustering between dendritic cells and responding T cells 

occurred within 2 hours, was associated with T cell release and responsiveness 
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to IL-2 within 18 hours, and with DNA synthesis at 24 hours. Proliferative activity 

was confined to the cluster fraction at all times. 

Studies on the human MLR demonstrated (allo)-antigen-specificity. 

Clustered T cells were depleted of reactivity to a third party but responded 

rapidly to rechallenge with leucocytes from the original donor. The non-clustered 

cells were depleted in specific reactivity to the original donor but responded 

normally to a third party [118]. 

Inaba and Steinman [180, 184, 185] studied the mechanisms of T cell­

accessory cell interaction. All Class II MHC-bearing cells studied (dendritic cells, 

Langerhans cells, B cells, macrophages) interacted with T cells at 4°C or 37°C 

in an antigen-dependent fashion. The mechanism presumably involved the 

recognition of the antigen-Class 11 M HC complex on the accessory cell by the T 

cell receptor. In contrast, antigen-independent clustering occurred primarily with 

dendritic cells and was greatest at 37°C. This implies a requirement for some 

metabolic process rather than a simple receptor-ligand interaction. This property 

was unique to dendritic cells, was inducible in cultured Langerhans cells and 

paralleled their ability to induce primary responses in vitro. 

Subsequent studies on the nature of dendritic cell-T cell interaction in the 

primary MLR examined the effect of monoclonal antibodies directed at T cell 

adhesion molecules (specifically anti-H-2k, anti-1-A/-E, anti-LFA-1 and anti-CD4, 

amongst others). No antibody tested interfered with antigen-independent 

binding [185]. The last three groups of antibodies inhibited proliferation and IL-2 

production. Antigen-dependent binding was inhibited by antibodies to Class II 

MHC products as would be expected. Antibodies to CD4 and LFA-1 did not 

affect the early steps of cluster formation but seemed to retard blastogenesis 

(and IL-2 release) and cluster stability, respectively. 

Odum et al (1988) [357] examined the effect of monoclonal antibodies 

directed at various adhesion molecules and T cell antigens in both primary and 
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secondary responses in the human. In summary, they found that the primary 

MLR was inhibited by antibodies to CO2, 4, 5, 11 a, 11 c and Class II MHC 

antigens, whereas suppression of secondary proliferation occurred only in the 

presence of anti-CD 2, -CD4 and -Class 11 M HC antibodies. 

King and Katz (1989) [227] also used monoclonal antibodies directed 

against cell surface antigens to study human tonsillar dendritic cell-induced T 

cell responses. In the oxidative mitogenesis model, antibodies to Class I and 

Class II MHC antigens, CO2, CD4, CD11a, CD18, LFA-3 and ICAM-1 inhibited 

proliferation (whereas anti-CDS and -CD16 antibodies did not). Dendritic cell-T 

cell clustering was inhibited by anti-CO2, -CD11 a, -CD18, -LFA-3 and ICAM-1 

whereas antibodies to Class I and Class 11 M HC antigens and CD4 had no effect. 

Antibodies against the CD45 molecule did not affect cluster formation but did 

weaken their stability, suggesting a role in cell-cell adhesion. With these and 

other experimental data, some conclusions about the role of the intercellular 

adhesion molecules in cluster formation and the nature of the antigen­

independent interaction may be drawn. 

The observed effect of anti-CD4 antibody implies a role in signal trans­

duction, either directly or in concert with the CD3-T cell receptor complex, as 

well as in intercellular adhesion. Further support for such a role is provided by 

the association of CD4 with a cytoplasmic protein tyrosine kinase [339]. 

LFA-1-ICAM interactions contributed to the stability of the clusters without 

affecting initial binding, since after treatment with anti-LFA-1
0 , aggregates were 

easily disrupted and did not reassemble [185]. The effect on proliferation was 

variable [Table II , 185] and probably depends on many factors including the 

dosage and the time of administration. Others [ 483] showed that the binding of 

ligand to LFA-1 in the human resulted in the transduction of regulatory signals 

across the plasma membrane (anti-LFA-1
0 antibodies enhanced proliferation 

whilst those directed against LFA-1 /3 inhibited proliferation). 
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CD2/LFA3 adhesion [reviewed in 39] also plays an important role in the 

stabilization of dendritic cell-T cell clusters. However, it is unlikely to account for 

the antigen-independent dendritic cell-T cell clustering because the ligand, LFA-

3 is not unique to the dendritic cell and the interaction is operative in the 

absence of divalent cations and functions at 4°C. VLA interactions (very late 

antigens of activation) [reviewed in 39, 408] are also unlikely to play a role in 

antigen-independent binding in primary responses because of their widespread 

distribution and their appearance late in lymphocyte activation. These antigens 

may play a role in secondary immune responses. 

Evidence suggests that antigen-independent dendritic cell-T cell binding 

precedes antigen recognition [180, 184]. This may be a means of surveying T 

cells with subsequent responses depending on the interaction between the T 

cell receptor and the antigen-Class II MHC complex. The mechanism of this 

interaction is unknown and is an exciting area of future research. 

One possible factor is the degree of desialylation of MHC molecules. 

Dendritic cell-associated MHC molecules carried fewer sialic acid residues than 

the same molecules from other putative antigen-presenting cells [54]. It was 

proposed the the low net negative charge at the dendritic cell surface, together 

with the tendency to form veils may explain the ability to form antigen­

independent clusters. Neuraminidase treatment of thioglycollate-elicited 

macrophages enabled them to stimulate cos+ (but not CD4 +) T cells in the 

presence of IL-2 [159] and B cell antigen-presenting activity has also been 

shown to be enhanced by treatment with neuraminidase [126, 159, 224, 248]. 

The role of sialic acid residues in intercellular reactions is unclear and further 

work needs to be undertaken in this area. Several groups have proposed that 

other characteristics of the dendritic cell contribute to its potent antigen­

presenting cell activity, for example, the expression of subclasses of Class II 

MHC antigens subserving different functions [238]. Dendritic cells express the 
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antigens HLA-DR, -DP and -DO constitutively [65, 130, 149, 494, 522], but it is 

unlikely that this factor is critical for accessory cell activity - in spite of high level 

expression of -DR and -DO, both B cells [394] and alveolar macrophages [272] 

are poor stimulators of resting T cells. 

As discussed in Section 1.1, the main factor determining the mapping of 

immune responsiveness to a particular MHC gene is the ability of the MHC 

molecules to bind antigen. Class II MHC polymorphism in an individual confers 

survival advantage by minimizing the number of antigens which do not bind and 

to which the T cell cannot respond. Class II MHC polymorphism in a species 

confers even greater benefits [ 406]. For this reason the suggestion that Class II 

M HC subregion molecules act as restriction elements for the generation of either 

immune responsiveness (HLA-DR and 1-E) or suppression (HLA-DQ and I-A) 

[158] is unlikely to be proven. Arguments against this proposition are, firstly, that 

inbred strains of mice which do not express the surface proteins coded for by 

the 1-E locus (HLA-DR equivalent) [301] survive and, secondly, that T cell 

proliferation [ 464] and antigen-dependent dendritic cell-T cell binding in the 

mouse was blocked only in the presence of antibodies to both I-A and 1-E 

determinants [185]. 

1.2.5.3 Dendritic cells and cytokines 

Recent interest in the role of cytokines in inflammatory responses, as well 

as in haemopoietic cell differentiation, has provided some information as to the 

possible mechanism of action of dendritic cells. I will review the literature in three 

areas: the production of lymphokines by T cells activated by dendritic cells; the 

production of cytokines by dendritic cells themselves; and the effect of cytokines 

on dendritic cell maturation, differentiation and function. 

1.2.5.3.1 Dendritic cell-induced lymphokine production 

Dendritic cells activate resting T lymphocytes by a process which results 

in the release of IL-2 and the expression of IL-2 receptors on the T cell surface 
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(see Table 1.4 for references). Other lymphokines detectable in both the primary 

and secondary MLR include IL-4 and other 8-cell growth factors [381]. A novel 

IL-2-enhancing factor produced by co-culturing dendritic cells with periodate­

treated splenic T cells has also been described recently [108]. 

The site of origin of a tissue dendritic cell may influence the particular 

lymphokines secreted. For example, Peyer's patch dendritic cell-T cell clusters 

preferentially induce polyclonal lgA responses when mixed with either Peyer's 

patch or splenic B cells, whilst splenic dendritic cell-T cell clusters do not 

augment lgA secretion by either splenic or Peyer's patch B cells [ 434, 435]. 

1.2.5.3.2 Dendritic cell cytokine production 

T cell activation was thought to require the delivery of two signals: the 

presentation of antigen in conjunction with the products of the Class 11 M HC 

gene locus and the production of antigen-nonspecific factors, presumably IL-1 

[325]. Although IL-1 is a well documented costimulator, an absolute requirement 

for I L-1 has not been demonstrated [34, 99, 126]. I L-1 has been shown not to 

directly influence the proliferation of isolated T cells after mitogen-induced 

stimulation or in the MLR, even in the presence of allogeneic Class II MHC­

bearing cells (peritoneal macrophages) [241]. Similarly, antibodies to I L-\r and 

IL-1 /3 did not inhibit proliferation in dendritic cell-induced oxidative mitogenesis 

[King PD and Katz DR, cited in 227] or in the M LR [317]. 

Evidence suggests that IL-1 mediates its effects on the immune system 

by amplifying proliferative responses to limiting doses of dendritic cells, which 

cluster more efficiently with T cells before the onset of mitogenesis [241]. IL-1 is 

not required to be present continuously in culture since IL-1 pretreatment of 

dendritic cells generally resulted in greater proliferation [241] which was not 

inhibited by the addition of anti-lL-1 antibody [442]. Other cytokines have been 

tested and either had no effect (TN F, I L-2, I L-3) or decreased dendritic cell 

function (IFN--y) [241]. 
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IL-1 production by dendritic cells has been examined in a number of diff­

erent systems. Murine splenic dendritic cells did not produce detectable IL-1 

(D10.G4 T cell clone bioassay) or IL-\): RNA (IL-\): cDNA probe) in response to 

a wide range of stimuli (LPS, PMA, IFN--y, con A, PHA) [240]. Similarly, human 

dendritic cells did not produce detectable IL-1 0 or -13 using immunolabelling with 

both anti-lL-1 0 and anti-lL-1/3 antibodies [149,240,317]. 

In contrast to these experiments using purified populations of dendritic 

cells, other investigators have demonstrated IL-1 production in human 

peripheral blood- or synovial fluid-derived dendritic cells. Enriched populations 

of synovial dendritic cells were shown to produce IL-1 spontaneously and after 

stimulation with LPS, when assayed by both the mouse thymocyte proliferation 

assay and the murine T helper clone (D10.G4.1) proliferation assay [490]. The 

spontaneous production of an I L-1-like factor ( detected by mouse thymocyte 

proliferation) by cloned, adherent, rheumatoid synovial dendritic cells in long­

term culture has also been described [140]. These cells were classified as 

dendritic cells on the basis of morphology, the absence of phagocytosis and 

(weak) reactivity with antibody to HLA-DR (which intensified after treatment with 

IFN--y). Functional T cell stimulation assays using these cells were not reported. 

Both these studies have methodological flaws. For example, in the former study 

[ 490], contaminating synovial fluid mononuclear phagocytes could have 

produced the detectable I L-1. To show that I L-1 activity decreased with 

decreasing ratios of dendritic cells to monocytes, peripheral blood monocytes 

were used instead of the appropriate control, synovial fluid mononuclear cells. 

The cells in the second study were not adequately characterized and in fact, 

were not typical dendritic cells. 

Subsequent studies have confirmed by double-labelling with anti-lL-1 and 

monocyte-specific antibodies that the I L-1-producing cells in rheumatoid 
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synovial fluid were monocytes and that dendritic cells did not produce IL-1, 

either constitutively or in response to a number of stimuli [35]. 

In rodents, two other papers have described IL-1 production. Pereira et 

al, (1986) [368] demonstrated IL-1 production by both splenic and thymic 

dendritic cells using the thymocyte stimulation assay. These findings are difficult 

to reconcile with the data presented above and may be due to the production of 

another cytokine which is stimulatory in the bioassay or the presence of 

contaminating macrophages. Nagelkerken and Vriesman (1986) [342] could not 

detect secreted IL-1 from rat dendritic cells and claim to have demonstrated 

membrane-associated IL-1-like activity. They showed that dendritic cells 

stimulated the EL4 murine thymoma cell line by a mechanism which involved 

cell-cell contact and which did not require metabolically active stimulator cells. 

Although suggesting that this mechanism involved passively acquired IL-1, they 

acknowledged that other membrane structures distinct from the secreted form 

of IL-1 may have been involved in T cell activation. There is no evidence to 

suggest that other cytokines are produced by dendritic cells. 

The evidence suggests therefore that IL-1 is not produced by dendritic 

cells but that it amplifies dendritic cell function by unknown mechanisms. 

A recent paper using the anti-CD3 model of T cell mitogenesis in dual 

chamber experiments showed that soluble lymphocyte-activating factors were 

not required for T cell activation [180]. 

1.2.5.3.3 Effect of cytokines on dendritic cell differentiation and 

function 

IL-1 

As discussed above, IL-1, although not produced by splenic dendritic 

cells, acts upon them to cluster T cells more efficiently, thereby amplifying 

proliferative responses. IL-1 also enhanced thymocyte proliferative responses to 

thymic dendritic cell-enriched populations [189]. These responses were not due 
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to a carry over effect of IL-1 on T cells since pretreatment of dendritic cells 

resulted in levels of proliferation which were similar to those induced by the 

continuous presence of IL-1 and which were not blocked by monoclonal 

antibodies to IL-1. 

IL-1 also acted upon thymic precursor cells which were 1a- and nylon 

wool-adherent to give rise to typical dendritic cells. Other cytokines (IL-2, IL-3, 

IL-4 and GM-CSF) had no effect. Similar IL-1-inducible 1a- precursors were not 

detectable in bone marrow, spleen or lymph node. Thus IL-1 appears to have an 

additional effect on dendritic cell precursors (at least in the thymus) which results 

in their differentiation into functionally competent dendritic cells. 

GM-CSF 

A senes of papers recently examined the relationship between 

Langerhans cells and dendritic cells [156, 181, 416, 424, 515, 516]. In summary, 

these papers demonstrated that freshly isolated Langerhans cells were able to 

present antigen to primed T cells but were weak stimulators of the MLR; over 

several days in culture, Langerhans cells lost features found in freshly isolated 

and in vivo Langerhans cells (eg. F4/80 and 2.4G2 (Fe receptor) antigens, 

nonspecific esterase and ATPase activity and pinocytosis of exogenous 

horseradish per-oxidase), and at the same time developed morphological and 

functional characteristics of splenic dendritic cells. This maturation was 

dependent upon factors present in keratinocyte-conditioned medium, in 

particular, GM-CSF, whilst IL-1 enhanced this effect. 

Other workers [327] showed that GM-CSF augments primary antibody 

responses by enhancing the function of murine splenic antigen-presenting cells. 

These cells were obtained by short-term adherence and were a heterogeneous 

population, so the results are difficult to interpret. GM-CSF did not increase the 

function of either mature Langerhans cell or splenic dendritic cells [515], but it is 

possible that immature dendritic cells were present in the splenic antigen-
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presenting cell population and that their function was augmented by exposure to 

GM-CSF. Another recent paper suggests that GM-CSF enhances the MLR 

initiated by relatively low numbers of dendritic cells, an effect that is inhibited by 

anti-GM-CSF antiserum [336]. 

In summary, it is clear that control of dendritic cell function and maturation 

1s, 1n part, dependent on the release of cytokines in peripheral tissues. The 

complex cellular and molecular interactions are only just beginning to be 

unravelled. 
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1.3 MACROPHAGES AS ANTIGEN-PRESENTING CELLS 

The immunological literature is replete with studies demonstrating that 

macrophages are the predominant antigen-presenting cell in vitro and in vivo. 

There is no doubt that macrophages can express Class II MHC molecules and 

can present antigen to sensitized T cells [ eg. 179, 182], but a critical appraisal of 

the many reports consistently fails to establish a role for macrophages as 

primary T cell activators. 

The main experimental flaws have been described above in detail 

(Section 1.2.2). They include the use of sensitized responder T cells (ie. the 

assessment of secondary rather than primary responses), the failure to 

adequately determine the proportion of "contaminating" dendritic cells (and to 

see primary antigen-presenting cell activity co-purified with dendritic cell or 

macrophage enrichment) and the use of "nonstringent" responder cell 

populations. 

When antigen-presenting cell activity has been assessed rigorously using 

either macrophages alone or in comparison with dendritic cell-enriched popul­

ations, macrophages have been less potent or suppressive [163, 245, 272, 280, 

313,414,473]. The results of in vivo studies are similar [64, 281]. 

1.3.1 The relationship between dendritic cells and macrophages 

Macrophages are a heterogeneous group of cells which may vary consid­

erably in size, morphology, phenotype and function [eg. 266, 267, 309, 438]. 

There are some similarities with dendritic cells in that they are both bone-marrow 

derived, generally of low density, and dendritic in morphology. The question 

then arises, are dendritic cells a subset of macrophages? (This question is also 

considered in Section 1.2.4) 

The Langerhans cell is in some ways a hybrid between the macrophage 

and the dendritic cell. In situ, it expresses the mouse macrophage-specific 

antigen detected by the F4 /80 antibody, as well as the C3bi and F c receptors 
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[ 400, 416]. In culture, the F4 /80 antigen and F cR are lost, the expression of 

Class II MHC determinants is increased [516] and the cells more closely 

resemble the phenotype of dendritic cells. Freshly isolated Langerhans cells are 

more effective at presenting protein antigens to T cell clones than cultured 

Langerhans cells, which, in turn, are very potent stimulators of the primary MLR 

[401]. Thus, the Langerhans cell in situ more closely resembles the macrophage 

but, in culture or after contact with antigen, develops the characteristics of the 

dendritic cell. 

In contrast, there are very distinct differences between macrophages and 

dendritic cells. These include the constitutively high level expression of Class II 

MHC molecules, the ability to form long-term clusters with antigen-specific 

lymphocytes and to induce lymphokine (IL-2) secretion and responsiveness, 

and the failure to secrete IL-1 after stimulation with LPS [240]. 

These differences together with the evidence for a separate cell lineage 

(discussed in Section 1.2.4) strongly suggest that dendritic cells and 

macrophages are not different stages in the same differentiation pathway. A 

more likely explanation is that they are divergent pathways extending from a 

common precursor. 
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1.4 B CELLS AS ANTIGEN-PRESENTING CELLS 

The B cell possesses many of the properties of a potential antigen­

presenting cell. These include the ability to take up antigen by a specific receptor 

(cell surface immunoglobulin), to process and to display protein antigens in 

association with Class II MHC molecules, and to release growth factors 

[reviewed in 1, 18, 20, 84, 319]. A review comparing the properties of dendritic 

cells and B cells as antigen-presenting cells has been published recently [318]. 

In the following review, I will present the evidence that activated, but not 

resting, B cells can initiate in vitro primary T cell responses. Different models 

have been used in vivo to explore this question, but the balance of evidence 

suggests no role for resting B cells in the induction of primary T cell responses. 

1.4.1 B cell antigen-presenting cell function in vitro 

The observation that the interaction between T and B cells was 

genetically restricted to the I region of the MHC gene complex [296], and the 

phenomenon of hapten-carrier-linked recognition between T and B cells 

suggested to Chesnut and Grey (1985) [84] that antigen served as a bridging 

unit in these interactions. This, in turn, led to the study of the ability of B cells to 

process and present the hapten-carrier complex to T cells and their capacity to 

induce antigen-specific T cell responses [83]. 

1.4.1.1 Resting B cells 

The role of resting B cells in inducing primary T cell responses is still 

debated [18, 19, 20, 138, 198, 397]. Most studies examining B cell antigen­

presenting activity have used secondary responses. Studies examining resting B 

cells in the primary MLR have shown poor stimulation [249, 319] except when 

Mis determinants were disparate [501]. Particular problems pertain to obtaining 

pure populations of resting B cells since the isolation procedure (eg. the use of 

anti-mouse immunoglobulin) may result in the initiation of the activation process. 

Similarly LPS may be present in media additives [126]. When care is taken to 
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eliminate activated cells, small resting B cells appear to be inefficient accessory 

cells [250,319]. 

1.4.1.2 Activated B cells 

There is experimental evidence [126, 249, 250, 319, 501] indicating that 

the ability to stimulate T cells in primary responses depends on the state of acti­

vation (and hence size or density) of the B cell. Greatest stimulatory activity was 

seen in large, low-density, LPS- or anti-immunoglobulin stimulated B cell blasts 

whereas small, dense, resting B cells were non-stimulatory or, at best, weak 

stimulators. The state of activation also determined the radiosensitivity of 

antigen-presenting cell function. For example, exposure to LPS resulted in both 

increased activation and increased radioresistance [84, 319]. In contrast, the 

weak stimulation of resting B cells was radiosensitive [19, 84, 126, 319]. 

A number of differences in the properties of resting B cells and B cell 

blasts may account for their varying capacity to stimulate T cells. For example, 

cluster formation is not seen when resting B cells are mixed with allogeneic T 

cells in the primary MLR [118, 182, 319]. B cell blasts do form clusters and once 

bound, are able to subserve the accessory functions required for T cell prolifera­

tion. This property is critically dependent on the LFA-1 molecule [319]. 

Other mechanisms by which activated B cells may be more active 

inducers of T cell responses are reviewed in Chesnut and Grey (1985) [84] and 

include: 

a) the uptake of antigen 

Resting B cells are less efficient in their capacity to take up antigen either 

by fluid-phase pinocytosis or by adsorptive binding when 

compared to activated B cells [84, 88]. These differences however, 

do not explain the inability of resting B cells to stimulate T cells in 

either the MLR or the rabbit anti-mouse immunoglobulin model. 
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b) antigen processing 

Both resting and activated B cells degrade protein antigens effectively, so 

this is unlikely to account for their different stimulatory activity [84, 

138]. 

c) density of Class II MHC molecules 

Class II MHC molecule density increases during activation of B cells and 

then gradually falls to levels found in resting B cells. There is 

evidence to suggest that la density is not a critical factor in the 

antigen-presenting cell activity of activated B cells so this 

mechanism is unlikely to account for the observed differences. 

At present the major difference between resting and activated B cells in 

terms of T cell activation is the ability of B cell blasts to form clusters with T cells. 

1.4.1.3 Differences between B cell blasts and dendritic cells 

B cell blasts differ from dendritic cells in being less efficient at forming 

clusters and by being more dependent on the LFA-1 molecule for initial cell-cell 

adhesion [319]. Another important difference in the mouse is the expression of 

the mixed lymphocyte stimulatory (Mis) determinants [195, 395]. These antigens 

were first described because of their ability to stimulate MHC-identical 

lymphocytes to proliferate in vitro. In certain combinations, disparities at the Mis 

locus (loci) stimulate 20% of T cells in primary mixed leucocyte reactions 

(compared to <3% in allogeneic-MHC interactions [445]). The nature of the 

gene products has not yet been determined. There is evidence for both a direct 

interaction of these products with the MHC antigens [21 O, 286] and as 

accessory molecules expressed on antigen-presenting cells (with a 

complementary T cell Mis-reactive molecule distinct from the T cell receptor) 

[502]. B cells differ from both dendritic cells and macrophages in expressing 

these determinants [319, 502]. 
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1.4.2 

1.4.2.1 

In vivo studies of B cell antigen-presenting cell function 

The anti-µ-treated mouse model 

One model for the study of B cell antigen-presenting cell function in vivo is 

the anti-µ-treated mouse model [196, 253, 403, reviewed in 18]. Mice given 

repeated injections of rabbit or goat anti-mouse µ-chain antibodies from birth 

showed an almost total lack of lg+ B cells whilst T cell numbers and responses 

to lectins appeared normal. To study T cell sensitization (and, indirectly, antigen­

presenting cell activity), lymph nodes or splenic cells from immunized mice were 

assayed for their secondary proliferative responses when cultured in the 

presence of antigen, and for their ability to act as helper cells in plaque-forming 

cell assays. After immunization, the proliferation of antigen-stimulated lymph 

node (but not spleen) T cells in anti-µ-treated mice was impaired [196] unless 

the animals were reconstituted with B cells before immunization [ 403]. Although 

initially reported as suggesting that B cells were the initiating antigen-presenting 

cell in peripheral lymph nodes [196], subsequent experiments suggested that 

the T cells had been sensitized but had not been clonally expanded. Ron and 

Sprent (1987) [ 403] argued that unprimed T cells were sensitized to antigen by 

dendritic cells in lymph nodes, but that as dendritic cell numbers became 

limiting, the interaction between antigen-specific T cells and B cells resulted in 

clonal expansion. When lymph node T cells were examined for secondary 

proliferative responses in B cell deficient mice, the proportion of sensitized cells 

would be so low that no proliferation would be detectable. This hypothesis was 

supported by the findings of significant T helper cell function from primed anti-µ­

treated or irradiated mice [ 403]. 

Kurt-Jones et al (1988) [253] used the anti-µ-treated mouse model with 

the adoptive transfer of antigen-specific B cells to show that T cell "priming" only 

occurred when transferred B cells were specific for the immunizing hapten­

carrier conjugate. Using parental to F 1 cell transfer, they also showed that 

39 



11primed 11 T cells were restricted to Class II M HC recognition of the donor strain if 

memory B cells were used, but to both host and donor strain if activated B cells 

were used. It was argued that in the latter situation, anti-hapten antibody 

enhanced presentation of antigen by host non-B cell antigen-presenting cells, 

whereas in the former experiments, the transferred B cells functioned as antigen­

presenting cells in vivo. These experiments also failed to differentiate between 

sensitization and clonal expansion and may be consistent with the hypothesis 

stated above. Thus, the main conflict is whether the B cells are the sensitizing 

antigen-presenting cell or whether they contribute to the clonal expansion of 

sensitized lymphocytes. 

1.4.2.2 The chicken chimera model 

Chickens treated neonatally with cyclophosphamide will generate their 

own T cells and antigen-presenting cells but will not develop B cells because 

they no longer have stem cells capable of homing to the bursa [261]. Donor B 

cell precursors can reconstitute a mature B cell compartment with resultant 

tolerance to the donor alloantigens. When host and donor strains expressed 

different Class II MHC determinants, the antibody responses of these animals to 

T-independent antigens was normal, showing that they had functional B cells, 

yet their T-dependent responses were greatly impaired. These data suggested a 

breakdown in T-8 cell communication in the allogeneic chimeras. The antibody 

responses were restored when donor strain splenic antigen-presenting cells 

were injected simultaneously with antigen, whereas host strain antigen­

presenting cells had little effect. Thus the defect in the chimeras was not a lack 

of T cells able to recognize antigen associated with donor MHC. Nor was the 

defect due to the inability of the B cells to display antigen and receive T cell help. 

The defect was a lack of donor antigen-presenting cells capable of providing the 

triggering signals to activate virgin T cells. Donor strain splenocytes were 

effective whereas donor strain B cells were not. Bottomly and Janeway (1989) 
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[59] subsequently argued that these experiments demonstrated the failure of B 

cells to prime the subset of T cells responsible for providing help for B cell 

antibody production (T h2). They reasoned that the experiments did not 

demonstrate a failure to prime the CD4 + T cells which proliferate in response to 

antigen and which actively suppress B cell responses (Th 1). 

1.4.2.3 Other models 

Macatonia et al (1987) [282] showed that B cells which expressed antigen 

after skin painting failed to transfer sensitization for delayed-type 

hypersensitivity. Dendritic cells possess this property [239] and are able to 

stimulate T cells in vitro [282]. 

1.4.3 Overview 

The in vitro data suggest that activated B cells are capable of initiating 

primary immune responses and that any activity of resting B cells is attributable 

to 11contaminating 11 activated B cells , or B cells activated during the isolation 

procedure. Clearly then, B cells must be activated by some mechanism before 

they can sensitize resting T cells. This precludes an initiating role for B cells in 

antigen presentation. 

The in vivo data is controversial. The evidence from the anti-µ-treated 

mouse model is consistent with a priming role for B cells as well as a function as 

a clonal expander of T cells. Unfortunately, the function of dendritic cells has not 

yet been examined in this system, so indirect effects of the anti-µ-treatment on 

dendritic cells as well as other explanations may account for the observed differ­

ences. 

The elegant and more biologically 11 clean 11
, chicken chimera model 

suggests that B cells are not able to turn on virgin T cells. However not all the 

properties of different subsets of T cells were examined so further experiments 

need to be undertaken. 
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In Mother Nature's human experimental model, patients suffering from B 

cell deficiencies appear only to be susceptible to those infections handled by 

humoral immune mechanisms. Infections wl1ich are normally controlled by cell­

mediated immune responses, such as those due to viruses, fungi and 

intracellular bacteria, do not occur more frequently than would be expected. In a 

mouse model of imn1unodeficiency, antigen-presenting cell activity is equivalent 

to that of normal mice when tested in vitro, in spite of the B cell deficiencies 

[186] . This suggests that the initiation of T cell responses is unaffected by the B 

cell deficiency. Another soft argument is teleological. Examination of the 

immunoglobulin supergene family gives sor11e clues to the evolutionary 

development of T and B cells. The imrnunoglobulin heavy chain may have arisen 

as a duplication of the T cell receptor and may, in fact, be regarded as a 

secreted T cell receptor. (This would have conferred a survival advantage in that 

the actions of immunoglobulins would occur at sites distant from, and possibly, 

inaccessible to the cellular components of the immune system. The requirement 

for T cell help in the production of antibodies to most antigens is consistent with 

more recent development of B cells, and possibly, the co-evolution of a subset 

of T cells concerned with antibody synthesis, isotype switching etc.) The 

question therefore arises, what turned on T cells before B cells had evolved? 

Assuming that B cells evolved after T cells, it suggests that at least at one stage 

in evolution, B cells were not present to initiate T cell responses. Although there 

are conflicting claims for the role of B cells as antigen-presenting cells in vitro 

and in vivo, the bulk of evidence points to a secondary role. 
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1.5 EPITHELIAL CEL.L ANTIGEN PRESENTATION 

Since the initial demonstration of Class 11 M HC protein expression on 

guinea pig [512], murine [363] and human [ 418] small intestinal epithelium, 

there has been considerable interest in the possible role of such cells in the 

induction and control of lamina propria and intra-epithelial immune responses 

[reviewed in 45, 62, 31 O]. The following discussion will consider the normal and 

abnormal expression of these molecules on epithelial cells, and their possible 

role in antigen presentation. It will be argued that aberrant expression of Class II 

MHC proteins is a response to inflammation rather than being an initiator of it. 

These molecules may play a role in immune regulation, either positively or 

negatively, but play a n1inor role in the induction of primary T cell responses. 

1.5.1 Normal expression of Class II MHC molecules on gut 

epithelium 

Class II MHC surface antigens are either not detectable [312, 437, 484] or 

expressed weakly [358] on the gastrointestinal epithelium during foetal develop­

ment. After birth the expression of these molecules increases and reaches adult 

levels at about one month of age [312, 345]. In some species, increasing 

expression coincides with weaning [312] . A role for environmental 

immunological stirnuli in the induction of epithelial Class II MHC expression is 

also suggested by the absence of these determinants in germ-free animals [79], 

and in foetal gut grafts placed under the renal capsule [312]. Expression is also 

temporally related to the ability to induce oral tolerance [ 45]. 

In adult animals of most species studied, the pattern of distribution is 

similar. The Class 11 determinants are expressed by small intestinal villous 

epithelium [ 418, 420, 436], and follicle-associated epithelium [ 42] . The 

molecules are present on the distal two-thirds of the villi, whilst the crypt 

epithelium normally does not have detectable levels [ 418], unless directly 

adjacent to lymphoid nodules [ 436] . Both immunofluorescence and electron 
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demonstrated expression along the basolateral membrane and on the microvilli 

of the apical surface [157, 418], as well as intra-cytoplasmic staining. 

The epithelia of the stomach and the colon are generally negative [110, 

157, 418, 420, 421, 314], again with the exception of cells directly associated 

with lymphoid tissue in the human [ 436]. 

1.5.2 Function of epithelial Class II MHC determinants 

The pattern of staining of Class 11 M HC molecules on the intracellular 

granules of mature absorptive cells of the villus in the small intestine was 

observed to be similar to that of absorbed protein in the gut [312]. These 

similarities suggested that la molecules were involved in the normal pinocytic 

uptake and transport of macromolecules across the epithelial cell barrier in the 

phagolysosome system. Specialized molecules with structural similarities to 

Class I MHC molecules mediate the uptake of lgG from maternal milk [427] and 

are involved in the transepithelial transportation of immunoglobulins (Table 1.1 ). 

If Class II antigens did play a role in the absorption of luminal macromolecules, 

polymorphism and regional variations in expression could result in differences in 

their handling. These, in turn, may confer susceptibility to hypersensitivity 

diseases involving the gastrointestinal tract [312]. The recent elucidation of the 

structure of the Class I MHC molecule, HLA-A2 [44], makes it unlikely that the 

Class II M HC molecules (which probably have a similar antigen-binding site [66]) 

play a role in the transportation of macromolecules. However, it is still possible 

that epithelial cells mediate genetically-restricted Class II-dependent 

transportation and presentation of luminal antigens to intra-epithelial 

lymphocytes or the cells of the lamina propria [ 45, 62]. 

1.5.3 Abnormal expression of Class II MHC molecules 

A large number of natural and experimental stimuli result in increased 

levels or de nova expression of Class II MHC determinants in the gut epithelium. 

Examples include graft versus host disease [25, 299], graft versus host reaction 
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[145], Trichinella spiral is-induced inflammation [25], topical application of a 

contact allergan [200], coeliac disease [16, 419], inflammatory bowel disease 

[110,314, 374, 421] and infections eg. Campylobacter pylori gastritis [362]. The 

expression of Class II MHC appears to be mediated by IFN-1 [79] and may be 

modulated by intra-epithelial lymphocytes [79, 419]. 

Similar observations have been made in many other epithelia. For 

example, keratinocyte Class II MHC expression is induced by graft versus host 

disease [25, 32, 299], by the topical application of contact sensitizing agents 

[200], and by infections [ 4 72]. There are many more examples of aberrant Class 

II MHC antigen expression in the literature. 

1.5.4 Expression of Class II MHC subregion products 

In human foetal gut epithium, HLA-DR antigens may be expressed 

weakly, if at all. There is no evidence however, that the other subregion products 

(-DP or -DQ) are expressed [358]. In contrast to the universal presence of HLA­

DR in histologically normal adult gut epithelium, HLA-DP is seen rarely, and -DQ 

is almost never seen [ 419]. In gluten-sensitive enteropathy, there is increased 

expression of the subregion products in the order -DR> -DP> -DQ, with -DQ 

expression only occurring in patients who have a high epithelial density of T 

cells. 

1.5.5 Functional significance of aberrant Class II MHC antigen 

expression 

The interest in aberrant expression of Class 11 M HG has arisen because of 

the theoretical possibility that epithelia expressing these molecules could act as 

"non-professional 11 antigen-presenting cells. The immune responses initiated in 

this manner may be normal and result in the elimination of a luminal pathogen or 

result in systemic hyporesponsiveness ie. the induction of oral tolerance, for 

example, by Ts cell induction. Alternatively, the responses may be abnormal and 
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result in uncontrolled reactions and disease eg. inflammatory bowel disease or 

auto-immune disease [58, 146, 193]. 

There is a paucity of information on the functional role of aberrant Class II 

MHC molecules on the intestinal epithelial cell, so I will first examine the evidence 

for a role of the epithelial cell in auto-immune disease. 

1.5.5.1 Thyroid auto-immune disease 

Hanafusa et al (1983) [146] observed that thyroid epithelial cells from 

thyroidectomy specimens of patients suffering from auto-immune disease had 

aberrant expression of HLA-DR antigens. A hypothesis about the induction of 

endocrine auto-immunity was then proposed [58]: an unidentified environmental 

stimulus (eg. a viral infection with resultant IFN--y production) would induce 

epithelial HLA-DR expression. These molecules would then present auto­

antigens (eg. hormone receptors) to the immune system with subsequent 

activation of auto-reactive effector T and B cells. Other factors such as 

abnormalities of Ts pathways, may also be permissive in the development of 

overt auto-immune disease. This hypothesis was supported by observations 

that Class II MHC-bearing thyroid epithelial cells presented viral peptide antigens 

(but not intact virus) to antigen-specific cloned human T cells [277]. 

Furthermore, clones of T cells derived from thyroid glands of patients with 

Graves' disease were auto-reactive [276]. 

A number of factors, however, suggested that the aberrant expression 

was a secondary phenomenon related to the release of I FN--y by T cells. 

Although the initial proposition was that lectins such as PHA, Con A or 

pokeweed mitogen (PWM) could induce Class 11 M HC expression on thyrocytes 

directly [379], it became apparent that this effect was mediated by IFN--y [102, 

193, 503]. Furthermore, in contrast to initial reports [146], in vivo thyroid follicular 

cell Class II MHC antigen expression was always associated with lymphocytic 

infiltration [143, 503]. Finally, aberrant expression was not an exclusive property 
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of thyrocytes in auto-immune disease, but could be observed in other diseases 

[143]. Regardless of the underlying disease, the antigen-presenting cell activity 

of Class II MHC antigen-bearing thyrocytes was similar (assayed in the MLR 

under non-stringent conditions) . This resulted in a modification of the original 

hypothesis: that Class II MHC expression was an essential but insufficient factor 

for the induction of auto-immunity [143]. Since cultured intra-thyroidal T 

lymphocytes proliferated specifically in response to autologous Class II MHc+ 

thyroid follicular cells only in Graves' disease, it was postulated that auto-antigen 

presentation occurred only in auto-immune disease. The nature of the other 

necessary components is unclear. 

Other investigators have demonstrated weak autologous MLR stimulatory 

activity [96] and weak antigen-presenting activity [103] of Class II MHC+ thyroid 

cells or thyroid cell lines [160]. However it is possible that these results were due 

to contaminating cells in either the stimulating or responding cell populations. 

For example, Davies (1985) [96] induced Class II MHC expression on thyroid 

cell monolayers with the lectin, PHA, implying at least a significant T cell 

contamination. Dendritic cells have been demonstrated histologically in the 

thyroid [203] and may be the cell responsible for the observed stimulation. 

Subsequent work from the same group showed that a cloned rat thyrocyte line 

was able to stimulate the syngeneic MLR [160]. In these experiments there was 

considerable background proliferation in the responder cell populations raising 

some questions about methodology. 

In contrast to the work on human thyroid follicular cells, workers using 

murine cells could not demonstrate antigen presentation in vitro (testing both 

antigen-specific responses and the allogeneic MLR), in spite of the IFN--y­

induced expression of Class II MHC surface proteins [102]. A murine thyroid 

epithelial cell line, which had been induced to express la antigens with IFN--y, 

was also ineffective in stimulating a primary allogeneic MLR in the absence of a 
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co-stimulatory signal (which was PMA and not IL-1) [440]. Other researchers 

have suggested that the role of Class 11 M HC expression on non-lymphoid cells 

may be to induce tolerance against self-antigens and that auto-immune disease 

is the result of an antigen-specific Ts cell defect [193, 194, 258]. Alternatively, it 

is possible that enhanced expression of Class II MHC antigens in auto-immune 

disease merely reflects the involvement of effector T cells in tissue pathology 

[329] and has no pathogenic role. 

1.5.5.2 Histological studies 

Further evidence against a role for aberrant expression on non-lymphoid 

cells in the induction of immune responses is provided by histological studies 

examining the time course of Class 11 M HC expression in various disease states. 

For example, in cutaneous graft versus host disease [32] and gut graft versus 

host reaction [145], there was no evidence to suggest that the induction of Class 

II MHC antigens triggered the target tissue phase of the disease. The data 

suggest that the HLA-DR expression was the result of the infiltrates. Similarly, in 

skin biopsies from patients suffering from alopecia areata, an organ-specific dis­

order thought to involve auto-immune mechanisms, lymphocyte and 

macrophage infiltration consistently preceded ectopic H LA-DR expression on 

keratinocytes [226]. In addition in the human colon, epithelial expression of 

Class II M HC antigens was a non-specific response to inflammation and only 

occurred in association with lymphoid infiltrates in both infective colitis and 

inflammatory bowel disease [314]. 

1.5.5.3 Studies in transgenic mice 

A recent paper from Markman et al (1988) [295] provides further 

evidence against a role for epithelial cells in antigen presentation. In a transgenic 

mouse model, beta cells of the pancreatic islets expressed Class II MHC 

molecules (1-E) whilst bone marrow-derived cells did not. Foetal pancreatic 

grafts from 1-E+ transgenic mice into naive 1-E- mice were accepted indefinitely, 
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indicating that the 1-E+ beta cells were incapable of initiating an immune 

response. If the recipients were primed with splenic cells from wild-type 1-E+ 

mice, the grafts from the 1-E+ transgenic mice were rejected, whilst their 1-E­

littermates survived. This showed that the 1-E proteins could be recognized by 

the host immune cells when presented by effective antigen-presenting cells. 

In vitro the 1-E+ beta cells were unable to stimulate T cells reactive to 1-E 

plus a peptide antigen. In fact, antigen-specific unresponsiveness was induced. 

These observations suggested that the expression of Class 11 M HC antigens on 

non-lymphoid cells played a regulatory role and was involved in the maintenance 

of self-tolerance. T cell activation would be induced if other factors overcame the 

T cell paralysis. 

More recent papers [50, 27 4] also cast doubt on the Bottazzo-Feldmann 

hypothesis of autoimmunity. These authors used transgenic mice expressing I-A 

or 1-E, on pancreatic islet or acinar cells respectively, to show that the 

expression of Class II M HC antigens did not independently trigger an auto­

immune attack. In contrast to Markham et al (1988) [295] and Lo et al 1989 

[274], Boehme et al (1989) [50] did not demonstrate tolerance to the 

"allogeneic" Class II molecules. 

1.5.6 In vitro studies of gut epithelial cell antigen presentation 

Considering the interest in the expression of Class II MHC molecules on 

intestinal and other epithelia and their putative function in vivo, there are 

surprisingly few reports examining intestinal epithelial cell antigen presentation 

[48, 49, 308, 431]. Bland (1988) [45] attributes this to methodological problems, 

namely that enterocytes are friable, terminally differentiated, highly polarized and 

do not survive in culture for more than a few hours. 

Bland and Warren (1986) [ 48] showed that isolated rat enterocytes in 

continuous culture with sensitized lymph node-derived T cells did not stimulate 

proliferation in the presence of the specific antigen. They proposed that epithelial 
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cells activated antigen-specific Ts cells or other suppressive factors which 

inhibited proliferation. By using discontinuous cultures (ie. by removing the 

presumably dead enterocytes after 18 h), antigen-specific T cell proliferation was 

demonstrated. Anti-la anti-sera inhibited these secondary responses. Significant 

proliferation in the absence of stimulator epithelial cells indicated 11contamination 11 

of the responder cell population. Subsequent experiments demonstrated that 

enterocytes mediated suppression by antigen-dependent and -independent 

mechanisms. Antigen-specific inhibition was conferred by the induction of cos+ 
cells and was also blocked with antibodies to Class 11 M HC antigens. The origin 

of these cells was not determined. 

The authors suggested that epithelial cell presentation of antigen to the 

intra-epithelial lymphocyte was a possible mechanism of oral tolerance 

induction. Furthermore, increased expression of epithelial cell la antigens during 

inflammation would result in aberrant presentation of enterocyte antigens and 

the subsequent generation of cytotoxic activity. 

Mayer and Schlien (1987) [308], using freshly isolated human colonic 

epithelial cells induced both primary (allogeneic MLR) and secondary (antigen­

specific) activation in responder lymphocytes. These results are surprising given 

the failure of other investigators to demonstrate Class II M HC expression on the 

normal colonic epithelial cell (see Section 1.5.1 ). 

In further experiments, a colonic adenocarcinoma cell line (DLD1) stim­

ulated a primary MLR following the induction of Class II MHC molecules by IFN­

"f. Like Bland and Warren (1986) [ 48], they demonstrated preferential stimulation 

of cos+ Ts lymphocytes but these cells inhibited both T and B cell responses in 

an antigen-non-specific manner. Of even more interest was the observation that 

colonic epithelial cells obtained from patients suffering from inflammatory bowel 

disease (and with increased expression of HLA-DR, -DP and -DO) preferentially 
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stimulated CD4 + cells with the implication that the enterocyte played a role in 

immunoregulation [307]. 

Other workers using a colonic carcinoma cell line (HT-29) after inducing 

HLA-DR (-DP and -DO), could not detect MLR stimulatory activity [431]. It is not 

clear whether these conflicting results are a manifestation of the properties of 

different cell lines or whether they represent methodological problems. 

In any case, the arguments that Class II MHC antigen expression on the 

small intestinal epithelial cell plays a role in oral tolerance induction or, altern­

atively, in the initiation of T cell-mediated immune responses fail to explain the 

following observations: 

(i) oral tolerance can be induced by intrarectal instillation of antigen [S. 

Strober, PhD Thesis, cited 330]. 

(ii) T cell-mediated immune responses directed against gluten in patients 

suffering from coeliac disease can also be elicited by intrarectal 

administration of the appropriate antigen [275]. Neither the colonic 

nor the rectal epithelial cell expresses Class II MHC antigens, so 

they are apparently not essential for the responses described 

above. 

Arguments that antigen could be presented by the follicle-associated 

epithelium (FAE) which does express Class II MHC antigens would need to 

account for the observed interspecies differences, eg. rat FAE does not express 

Class II MHC [312] and the patchy or absent expression of Class II MHC 

antigens on M cells [ 43, 61]. 

1.5. 7 Conclusions 

What then is the function of epithelial cell la expression? It is appealing to 

propose immunoregulatory positive or negative feedback loops activated by 

Class II MHC molecules on epithelial cells. An alternative explanation is that 
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increased expression of these determinants enhances retention of sensitized T 

cells at sites of antigen deposition [ 442]. In secondary immune responses, 

CD4 + lymphoblasts are responsive to antigens presented with Class 11 M HC 

molecules on any cell, so that local induction of la focuses even further the 

effector responses at the inflammatory site. 

Intestinal (and other) epithelial cells lie at the interface between self and 

non-self where they are in an ideal position to regulate immune responses. 

Supporting evidence for such a role is provided by the detection of Class II MHC 

surface antigens and the ability to produce IL-1 [46]. The weight of experimental 

evidence in four separate epithelial systems (thyroid, skin [128], pancreas and 

gut) mitigates strongly against a role for the epithelial cell in primary T cell activ­

ation. A role in secondary immunoregulatory circuits is yet to be proven. 
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TABLE1.1 

IMMUNOGLOBULIN GENE SUPERFAMIL Y 

[Modified from 511] 

Molecule 

lmmunoglobulins: 

Heavy chains 

Kappa light chain 

Lambda light chain 

T cell receptor complex: 

a chain 

/3 chain 

'Y chain 

o chain 

CD3: 

'Y chain 

o chain 

E chain 

MHC proteins: 

Class I (a chain) 

Class II (a, f3 chains) 

/32-microglobulin 

Ligand or molecular 

association 

Antigen 

Antigen/MHC protein 

complex 

T cell receptor (TCR) 

TCR 

a chain - CDS 

-CD4 

Class I a-chain 

Function 

Antigen recognition 

Antigen recognition 

Signal transduction 

Antigen presentation 



T cell adhesion molecules: 

CO2 

LFA-3 (C058) 

T cell subset markers: 

CD4 

COB 

Neural molecules: 

Neural adhesion 

molecule (NCAM) 

Myelin associated 

glycoprotein (MAG) 

PO myelin protein 

LFA-3 

CO2 

Cell adhesion 

CO2 present on T cells, 

LFA-3 on accessory or 

target cell 

Stabilization of 

MHC Class II TCR - antigen - MHC 

MHC Class l-0'.3 domain protein complex and 

signal transduction 

NCAM (C056) Neural cell adhesion 

? Myelination 

Myelin protein 

lntercellular adhesion molecules: 

ICAM-1 (C054) Leucocyte function Adhesion 

ICAM-2 antigen (LFA)-1 

.82-microglobulin-associated-proteins: 

Tl heavy chain Not known Not known 

Oa heavy chain 

C01 a heavy chain 

Brain/lymphoid antigens: 

Thy-1 Not known Not known 

MRC OX-2 

lmmunoglobulin receptors: 

Poly lg R Multimeric lgA, lgM Epithelial transport 

Fc12b/y1 R Aggregated lgG 



Tumour antigen: 

Carcinoembryonic antigen 

(CEA) 

Growth factor receptors: 

Platelet-derived growth factor 

(PDGF receptor) 

Colony stimulating factor-1 

receptor 

Link protein: 

Not known 

PDGF 

CSF-1 

Vaccinia virus haemagglutinin [201 ] 

Cytomegalovirus proteins [29] 

Not known 

Cell division, etc 

Cell division, etc. 

Binding molecule 

between proteoglycan 

and hyaluronate chain 



TABLE 1.2 

INTEGRIN RECEPTOR SUPER FAM IL V 

[Modified from 408] 

Molecule 

LFA-1 family: 

Common /3 chain (CD18) 

LFA-1 a chain (CD11 a) 

Mac-1 (CD11 b) 

p150,95 (CD11 c) 

VLA (very late antigens 

of activation) family: 

Common f3 chain (CD29) 

VLA-1 

-2 (CDw49b) 

-3 

-4 (CDw49d) 

-5 

-6 (CDw49f) 

Glycoproteins llb/llla 

Ligand 

ICAM-1 -2 
' 

C3bi 

Fibrinogen 

Fibronectin 

von Willebrand factor 

Vitronectin 

Function 

Cell-Cell adhesion 

Complement binding 

Cell-Cell adhesion 

Cell adhesion, 

phagocytosis 

Platelet gplla 

Adhesion to collagen 

Fibronectin receptor 

Laminin receptor 

Platelet aggregation 



TABLE 1.3 

PHENOTYPE OF MURINE DENDRITIC CELLS 

Antibodies Specificity 

33D1 

TIB120 

821-2 

10-2.16 

11-5.2 

M1/42 

NLDC 145 

2D2C 

F4/80 

M1/70 

(Mac-1) 

2.4G2 

DC 

Class II MHC 

Class I MHC 

IDC 

Pgp 

F4/80 antigen 

C3bjR 

Spleen 

s 

+ 

+ 

s 

+ 

+ 

+ 

Origin of Dendritic Cell 

VC LN Thymus Skin PP 

s + + 

+ + + + + 

+ + 

+ + + + + 

+ + 

+ 

+ 

+ + 



J11d "8 cell" 

RA3-3A 1 /6.1 8 cell, 8220 

13/2 Common leucocyte 

53-6.7 CDS 

GK1 .5 (CD4) 

85.3 (Thy1) Other T cell 

30-H12 

(Thy 1.2) 

S100 

MAC-2 

MAC-3 

antigens 

Macrophage 

Macrophage 

s 

+ 

s 

+ 

s 

s 

s 

s 

+ 

s 

s 

+ 

+ 

+ 

[Adapted from References: 

93,244,319,355,388, 400,402,405, 416, 433] 

Abbreviations: DC dendritic cell 

IDC interdigitating cell 

vc veiled cell 

LN lymph node dendritic cell 

pp Peyer's patch dendritic cell 

s Subset of cells 

+ 

+ 

+ 

+ 

+ 



TABLE 1.4 

Dendritic Cell Properties 

Oxidative mitogenesis (periodate) 

Mitogen-induced T cell proliferation 

Antigen-induced T cell proliferation 

Syngeneic MLR 

Allogeneic M LR 

Formation of T cell clusters 

Induction of lymphokine release 

Induction of cytotoxic T lymphocytes 

Direct activation of CDS+ T cells 

References 

23,60, 136,227,231,232,241,487,519 

12, 24,136,142,184,212,235,241,521 

12*,80, 184, 213,217,223*,322*,462, 

463,469,487 

(Particulate antigens *) 

142,149,178,231,241,251,353,384, 

485,487 

12,142,149,179,182,185,190,231, 

237,241,251,259,317,319,343,381, 

384,412,413,444,451,463,485,487, 

519,521 

24,118,142,179,180,182,184,185, 

186,227,241,245,246,319,353 

23, 24,108,178,179,182,184,185,186, 

188,190,241,319,381,462 

215,283,354,398 

52, 53,190 



T cell-dependent antibody responses 121, 178, 183, 186, 187, 188, 241, 242, 

414 

Clonal expansion of lymphocytes 151, 260 

Graft rejection eg. 112, 119, 192,264,316 

Contact- and delayed-type hypersensitivity 64, 208, 211, 236, 386, 460, 461 

Reversal of specific immune response defect 55 



LEGENDS TO FIGURES 

Figure 1.1 Cell surface molecules 

Figure1.1a 

Representation of the alignment of complementarity determining regions 

(CDHs) in a hypothetical T cell receptor (TCR) (top of figure) over a 

peptide-MHC complex (bottom of figure) . This figure demonstrates the 

complementarity between the two surfaces and the alignment of CDR-1 

and CDR-2 (green, top figure) with the helices of the MHC molecule 

(yellow, bottom figure) and of CDR-3 (pink, top figure) with peptide 

determinants (pink, bottom figure). [Adapted from 97]. 
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Figure1.1b 

Binding of T cell surface molecules to specific ligands on the antigen­

presenting cell. The T cell receptor (TCR)-CD3 complex interacts with 

antigen in association with MHC molecules on the antigen-presenting cell. 

CD4/8 interact with MHC Class 11/1 molecules respectively. LFA-1 

interacts with ICAM-1 and -2 whilst CO2 interacts with LFA-3. [Modified 

from 39]. 
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Figure 1.2 

lmmunoperoxidase staining of parallel sections of murine small intestine 

using the antibodies: (a) F4/80 (anti-macrophage); and (b) TIB120 (anti­

Class II MHC). The methods are described in references 169, 172, 173. In 

brief, the tissues were fixed in periodate-lysine-paraformaldehyde (2%), 

embedded in O.C.T. compound and stored at -20°c. lmmunoperoxidase 

staining was carried out using the avidin-biotin-peroxidase (ABC) method 

with reagents supplied by Vector Laboratories (Burlingame, CA). The 

slides were prepared by Dr W. Allan. Both antibodies, F4/80 and TIB120, 

stain the intestinal lamina propria macrophages, whilst TIB120 appears to 

stain an additional population of irregular intestinal lamina propria cells 

(presumptive dendritic cells) and the epithelium. Both antibodies are rat 

lgG2b· 
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CHAPTER 2 

THE DEVELOPMENT OF THE DISAGGREGATION TECHNIQUE AND 

PRELIMINARY CHARACTERIZATION OF THE INTESTINAL 

ANTIGEN-PRESENTING CELL 

11Take your hare when it is cased ... 11 

From ''The Art of Cookery" 

Hannah Glasse fl 17 4 7 

Usually misquoted as "First catch your 

hare". 



2.1 INTRODUCTION 

Prerequisites for the demonstration of antigen-presenting cell activity in 

disaggregated intestinal lamina propria cell suspensions include the 

development of the methodology for obtaining representative, viable and 

functional lamina propria cells and the characterization of an assay system, in 

this case the allogeneic MLR. This chapter describes the method for 

disaggregating intestinal lamina propna and outlines the functional 

characteristics of the MLR. 

The disaggregated cell suspension was initially shown to contain cells 

which could both induce and respond to mitogen-induced T cell activation. The 

MLR stimulatory activity of the cells was then assessed and found to be compar­

able to that of splenic cell preparations. Using cell depletion techniques, the MLR 

stimulatory cell was shown to express Class II MHC surface antigens but did not 

bear the surface markers or have other characteristics of T cells, B cells or 

macrophages. Finally, lamina propria cell suspensions were found to have 

greater antigen-presenting cell activity when directly compared to Peyer's patch 

cells. 
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2.2 MATERIALS AND METHODS 

2.2.1 Mice 

C57BL/6 and BALB / c mice were bred and maintained under specific 

pathogen free (SPF) conditions in the Animal Breeding Establishment of the 

John Curtin School of Medical Research, Australian National University or were 

purchased from the Animal Production Area of the NCI-Frederick Cancer 

Research Facility, Frederick, MD and maintained specific pathogen free at the 

Department of Cell Biology, M.D.Anderson Hospital and Tumor Institute, 

Houston, TX. Mice of both sexes aged between 8-16 weeks were used. 

2.2.2 Media 

Calcium- and magnesium-free Hank's balanced salt solution (CMF­

HBSS), supplemented with penicillin (100 U/ml) and gentamycin (60 U/ml) was 

used for isolation of cells from the lamina propria. Where indicated 0. 75 mM 

EDTA (Fluka, Buchs, Switzerland) was added. RPMI 1640 was supplemented 

with 2 mM L-glutamine (Sigma, St Louis, MO), penicillin (100 U/ml), gentamycin 

(60 U /ml) and 10% heat-inactivated foetal calf serum (FCS) (Flow Laboratories, 

Melbourne, Victoria). For cell culture experiments, 0.01 mM 2-mercaptoethanol 

(2ME) (BDH Chemicals Pty Ltd, Sydney, NSW) was added. 

2.2.3 Mouse tissues 

The small intestine or colon was dissected from C57BL/6 mice. The 

luminal contents were expressed, and where indicated the Peyer's patches were 

removed under a dissecting microscope. The intestine was split lengthwise and 

then cut into 1 cm segments. After brief washing in CMF-HBSS to remove 

remaining luminal contents, the intestines were placed in a Wheaton stirring flask 

and washed gently for 2-2.1 /2 h in CMF-HBSS with EDTA at 37°C. During this 

time, the medium was changed every 10-15 min until no increase in particulate 

matter was visible in the supernatant. Finally, after a 5 min wash in RPMI, the 

tissue was finely chopped, weighed and added to an enzyme cocktail containing 
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1.2 U/ml Dispase II (Boehringer-Mannheim, Tutzing, FRG), 10 U/ml collagenase 

CLSPA (Cooper Biomedical, Malvern, PA) and 5 U/ml DNase Type II 

(Calbiochem, Behring Diagnostics, La Jolla, CA) in glass Petri dishes siliconized 

with Coatasil (Ajax Chemicals, Sydney, NSW). Maximal yields were obtained 

when < 500 mg tissue was digested with 20 ml enzyme mixture. After 2-3 h 

incubation at 37°C under 5% CO2 with occasional gentle agitation, the digested 

tissue was mechanically disrupted by passage through a fine mesh stainless 

steel sieve. The cell suspension was then passed through six layers of cotton 

gauze to remove any particulate matter and washed three times. If necessary, 

the cells could be pelletted in RPMI 1640 containing 20% FCS and kept 

overnight at 4°C for use the next day without loss of antigen-presenting activity. 

Epithelial cells to be used as MLR stimulators were obtained by 

harvesting the supernatants from the EDTA-CMF-HBSS washes (after 

discarding the first two or three which contained excessive mucus and debris). 

FCS was added immediately to the supernatants which were centrifuged, 

resuspended in culture medium and pooled for use in M LR stimulation 

experiments. 

Spleen cells were obtained by passing spleens from C57BL/6 mice 

through a fine mesh stainless steel sieve, then centrifuging over Ficoll-Hypaque 

(Pharmacia, Uppsala, Sweden) (600g for 30 min at 20°C). The cells from the 

interface were washed, treated with mitomycin C (see below) and used in the 

MLR. 

Mesenteric lymph node (MLN) cells to be used as responders were 

removed from BALB/c mice, pushed through a fine mesh stainless steel sieve, 

washed, counted and viability assessed using Trypan blue. They were depleted 

of cells bearing Class II MHC molecules by incubating with a monoclonal 

antibody directed against murine Class II MHC antigens (see Table 2.1) and 
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using the technique of panning (Section 2.2.4). In the initial experiments, 1a+ 

cells were not removed. 

2.2.4 Panning to remove cells expressing particular antigens 

Bacteriological grade 90 mm Petri dishes were pretreated with 5 ml 

1/1000 rabbit anti-rat heavy and light chain lgG (RAR), (Nordic, Tilburg, The 

Netherlands), in phosphate-buffered saline (PBS) for 45 min at 4°C. The 

unbound antibody was removed by washing four times in PBS. Cells were 

incubated with a saturating amount of monoclonal antibody for 30 min at 4°C. 

After three washes, the antibody-binding cells were removed by panning [520]. 

After removing the unbound monoclonal antibody, 20-30x106 of the labelled 

cells suspended in 5 ml PBS/5% FCS were added to the RAR antibody-coated 

plates. Plates were kept for 75 min at 4°C and the non-adherent cells removed 

by gentle agitation and aspiration, centrifuged, then reapplied to a second RAR­

coated dish for another 75 min at 4°C. The remaining non-adherent cells were 

removed, washed, counted and used immediately or pelletted and kept 

overnight at 4°C. 

Antibodies used for cell depletion, immunocytochemistry and flow cyto­

metry included the culture supernatants of hybridoma cell lines secreting mono­

clonal antibodies listed in Table 2.1. 

2.2.5 Mitogen-induced proliferation of lamina propria cell suspen­

sions 

Concanavalin A (con A) (Sigma, St Louis, MO) and phytohaemagglutinin 

(PHA) (Commonwealth Serum Laboratories, Melbourne, Victoria) were added to 

constant numbers of disaggregated lamina propria cells (1 x1 o5 - 1 x1 o4 well) in 

varying concentrations (con A 0.05-50 mg/ml; PHA 0.4-400 mg/ml) and cultured 

for 2-3 days in flat-bottom 96-well plates. One microCurie of tritiated thymidine 

was added to each culture for the final 8 h. The contents of the wells were 

freeze-thawed and the cells harvested automatically onto glass fibre discs 
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(Whatman, Maidstone, UK) using a Dynatech CH-103 cell harvester. The assay 

was performed on a Packard TriCarb K60 scintillation counter following the 

addition of 5ml scintillant (0.5% 2,5-diphenyloxazole (PPO) in xylene). 

2.2.6 Mixed Leukocyte Reaction 

Cultures were performed in round-bottom 96-well plates (Linbro Flow 

Laboratories, McLean, VA). A constant number of responder MLN cells (2x1 o5) 

was incubated with varying numbers of stimulator cells (from the intestine or 

spleen). Cell proliferation in the stimulator population was prevented by 

pretreatment with mitomycin C (Sigma, St Louis, MO.) (5x106 cells/ml were 

incubated with mitomycin C at a final concentration of 25 mg/ml for 45 min at 

37°, then washed three times) or exposed to 2,500-3,000 Rads irradiation. The 

reaction was carried out in a total volume of 0.2 ml medium (see above). After 

four days, 1 µCi tritiated thymidine (Amersham Australia, Surry Hills, NSW or 

New England Nuclear, Boston, MA.) was added to each well and the incubation 

continued for a further 16 h. The plates were freeze-thawed and the cells 

harvested automatically onto glass fiber discs and counted as described in 

Section 2.2.5. 
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2.3 RESULTS 

2.3.1 Development of the disaggregation technique 

Application of previously published techniques for obtaining lamina 

propria cell suspensions (eg. Davies and Parrott, 1981 [95]) gave inconsistent 

results, so the methods were modified. The many variables examined included 

the use of mucolytic agents eg. dithiothrietol (OTT), type and concentration of 

enzymes, the length of incubation, the receptacle used for disaggregation, the 

medium used, the presence or absence of FCS, and the amount of tissue 

digested in a given volume of enzyme mixture. Figure 2.1 summarizes data from 

40 experiments examining cell yields in relation to the type and concentrations of 

enzymes and the length of incubation. Effective removal of the epithelial 

monolayer by washing with EDTA was confirmed by histological examination of 

the specimens on several occasions. The final technique is described in Section 

2.2.3. 

Factors critical to the successful application of the isolation procedure 

included: careful dissection of the intestines to ensure removal of blood vessels 

and fatty tissue; frequent washing in low concentrations of EDTA, the inclusion 

of DNase (to prevent cell clumping) and FCS (presumably to inhibit cytotoxic 

proteases [164]); the use of Petri dishes (rather than a stirring bar which was 

associated with poor viability); and siliconization to prevent loss of adherent cells 

during the enzymatic digestion. One of the most important factors was the 

amount of tissue digested (PG Holt. Personal communication). When more than 

500 mg tissue was digested in 20 ml enzyme mixture, cell yields and viability 

dropped considerably. For example, in one experiment, adding 400 mg tissue to 

20 ml enzyme mixture yielded 53x106 viable cells/g with 78% viability; adding 

1.02 g to the same volume resulted in 4x106 viable cells/g with < 10% viability. 
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2.3.2 Recovery of lamina propria and mesenteric lymph node cells 

Using the optimal procedure described in Section 2.2.3, disaggregation 

of intact small intestinal mucosa resulted in yields of 17 +4x106 per mouse (mean 

+ standard deviation, n=204 mice) with 78+16% viability as determined by 

Trypan blue exclusion. When the lamina propria and Peyer's patches were 

disaggregated separately, the average yield was 11.5+4x106 /mouse (n = 56) for 

Peyer's patches and 7 +3x 106 /mouse (n = 59) for the lamina propria. The yield 

from the colon was 7x106 cells/rnouse (n = 18) and from mesenteric lymph 

nodes was 39x106 /mouse. Following panning to remove cells expressing Class 

II M HC antigens (Tl B 120), the average yield of mesenteric node cells was 

52+7%. 

The yields of cells differed between the two institutions where the work 

was performed (the John Curtin School of Medical Research {JCSMR} and the 

MD Anderson Hospital and Tumor Institute {MDA} ). Yields of cells were 

compared using the Student's t test The differences were found to be 

statistically significant. Lamina propria yields were 7.0+3.0x106 /mouse at 

JCSMR versus 3.0+1.3x106/mouse at MDA (p<0.001) and Peyer's patch yields 

11.5+4.0x106/mouse at JCSMR versus 7.2+1.9x106/mouse at MDA (p<0.02). 

These data supported the visual observation that the number and size of Peyer 's 

patches was substantially greater at JCSMR than at MDA. This variable could 

reflect differences in feeding, or the nature of normal flora in mice in the two 

institutions. There was no clear functional difference between dendritic cells 

isolated in the two institutions, however. 

2.3.3 Mitogen-induced stimulation 

Isolated larT1ina propria cell suspensions proliferated in response to the 

mitogens, con A and PHA. Maximal proliferation with con A occurred with 

concentrations between 0.8-3.0 µg/ml for 1 x1 o5 cells/well and with PHA at 

concentrations between 25-50 µg/ml (Fig. 2.2). 
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2.3.4 Characterization of the MLR 

In the initial experiments, untreated or nylon-wool treated MLN cells were 

used. These cells gave unacceptably high background levels of stimulation (the 

syngeneic MLR) reaching a peak of 5-20,000 cpm between days 6 and 7 of 

culture. Removal of la+ cells by panning following incubation with TIB 120 (anti­

Class II MHC) consistently gave background levels of proliferation of < 500 cpm, 

whereas treatment with Tl B 120 alone (without panning) reduced the proliferation 

to half the control value. 

The time course of the MLR was determined using both unfractionated 

spleen and lamina propria cell suspensions as stimulators. Maximum levels of 

proliferation were comparable and occurred between 96-120 h of culture (Fig. 

2.3). To detern1ine whether the MLR stimulatory cells were adherent to plastic, 

splenic or lamina propria cells were cultured overnight and MLR stimulatory act­

ivity compared to cells left as a pellet overnight in RPMI containing 20°/o FCS at 

4°C (Fig. 2.4). Rather than decreased activity, overnight culture resulted in either 

increased or unchanged M LR stimulatory activity. 

2.3.5 Characteristics of mucosal cells stimulating the MLR 

Panning alone, which depletes surface immunoglobulin-bearing cells 

because the second antibody used cross-reacts with mouse immunoglobulin, 

resulted in removal of 41 +6°/o of the mucosa! cells; pretreatment with anti-la, 

57+14°/o. Other antibodies used in combinations (Lyt2, L3T4, F4/80, Pgp-1 and 

anti-mouse irnmunoglobulin), resulted in removal of 76+3%. Removal of la+ cells 

resulted in a shift in the stimulator dose-response curve so that, at low cell 

numbers, four to five times more cells were required to achieve the same level of 

tritiated thymidine uptake (Fig. 2.5). In addition, there was a 90-95% reduction in 

peak MLR stimulation (10.9 vs 113.5x1 o3 cpm at maximal stimulator cell 

number, Table 2.2). Treatment with other antibodies did not reduce the maximal 

MLR response. Cell depletion experiments using panning with 330 ·1 were 
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ineffective because it is not detectable on intestinal dendritic cells (see Chapter 

4) . Complement lysis experiments were not undertaken. In general, removal of 

the T cell (Lyt 2, L3T4, Thy ,-positive) or B cell (surface lg-positive) cells 

enriched for stimulator cells to the expected extent (given the proportion of 

lamina propria cells expressing T or B cell markers). Overnight plastic- or 

fibronectin-adherence decreased the proportion of macrophages to < 2% as 

judged by morphology. Removal of macrophages resulted in a significant 

increase in MLR stimulatory activity of the remaining non-adherent lamina 

propria cells (Fig. 2.6). These results suggest that the MLR stimulator cells in the 

intestinal lamina propria expressed Class II MHC antigens, but lacked the 

characteristics of macrophages, B cells or T cells. 

2.3.6 Epithelial cells as MLR stimulators 

Viability of small intestinal epithelial cells after 3-4 h in culture was < 30%. 

These cells were used in M LR experiments but did not stimulate proliferation 

(not shown). 

2.3. 7 Enrichment of MLR stimulatory cells 

Following the demonstration of M LR stimulatory activity in the lamina 

propria cell suspensions, attempts were made to enrich the antigen-presenting 

cells. Density gradient centrifugation using various concentrations of Percell 

(Pharmacia, Uppsala, Sweden) in both discontinuous and continuous gradients 

was unsuccessful, probably because of co-enrichment of low density 

suppressive cells (see Chapter 3). 

Other attempts at enrichment involved the use of a cocktail of antibodies 

for panning (Lyt2, L3T4, F4/80 and Pgp-1 ), and the use of temporarily adherent 

cells (ie. cells which were adherent to fibronectin-coated gelatinized flasks at 3 h 

but which became non-adherent during overnight culture). Neither approach 

resulted in significant or consistent enrichment. 
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2.3.8 Comparison of MLR stimulatory activity of lamina propria 

cells and Peyer's patch cells 

A comparison of Peyer's patch and non-Peyer's patch lamina propria cell 

suspensions in over 10 experiments consistently showed that the lamina propria 

fraction had 5-10 times greater MLR stimulatory activity per cell (Fig. 2.7). Similar 

results were noted when the incubation times were varied, suggesting that these 

differences were not due to different kinetics of MLR stimulation (Fig. 2.8). 
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2.4 DISCUSSION 

2.4.1 The development of the disaggregation technique 

Initial studies on immune responses in Peyer's patches failed to demon­

strate accessory cell activity in preparations obtained by mechanical dissociation 

[206], so that it was concluded that Peyer's patches were deficient in functional 

accessory cells. Similar observations were made from the study of lung-derived 

cell suspensions [reviewed in 164]. With the development of techniques for the 

enzymatic dissociation of tissue, it was clear that this deficiency was due to the 

failure of mechanical methods to release accessory cells from the connective 

tissue stroma [ 433]. When enzymatic and mechanical methods were directly 

compared, the latter resulted in lower yields, the selection of particular cell types 

and the liberation of suppressive factors eg. prostaglandin E2 [47,92]. 

On the other hand, the use of enzymatic methods in tissue disaggrega­

tion is also associated with particular problems. For example, trypsin treatment, 

amongst other effects [reviewed in 115], resulted in the loss of cell surface 

proteins [399], and impaired cellular cytotoxicity [ 425]. Other enzymes such as 

pronase and papain had variable effects depending on their concentration and 

duration of treatment [92]. Generally, the impairment of cellular function is 

completely reversible with time in culture [132, 225]. 

In spite of these possible adverse effects, enzymatic treatment of murine 

Payer's patch with the neutral protease, Dispase, yielded cell suspensions that 

were capable of accessory cell activity in vitro. Furthermore, Dispase treatment 

of murine splenic dendritic cells did not alter their stimulatory activity [ 433]. 

Treatment with collagenase generally has little effect on cellular function [132] or 

phenotype [166], although occasional batches may be overtly toxic [164]. Since 

broad spectrum proteases and/ or mixtures of enzymes are more efficient for 

tissue disruption than single enzymes alone [ 409], it was decided to examine the 
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use of multiple enzymes and the combination was found to give higher yields 

(Fig. 2.1 ). 

The final yields obtained were comparable with those published at the 

time, although methods reporting greater yields have since been published 

[reviewed in 481]. One important difference between our method and that of van 

der Heijden and Stok (1987) [481] is that our final proportion of epithelial cells 

was very low ( < 5%) compared to approximately 25% overall in their study. In 

our experiments the epithelial cells co-purified with other low density cells and 

caused cell losses by clumping, whereas van der Heijden and Stok (1987) were 

concerned with plaque-forming cell assays which presumably were unaffected 

by epithelial cells. 

There are many factors affecting the yield of cells using a particular dis­

aggregation technique. Examples include the age and strain [164], but possibly 

the most important is antigen-exposure. This may affect both the size and the 

cellular composition of Peyer's patches [90, 373, 428]. The use of Peyer's 

patches from specific pathogen-free mice resulted in lower yields when directly 

compared with mice housed in a conventional environment [eg. 287] and 

greater yields were obtained following inoculation with a specific micro-organism 

[77]. Other evidence [98] also points to selective effects of certain infections on 

immune function eg. the ability of dendritic cell-T cell clusters to induce poly­

clonal immunoglobulin secretion by cultures of Peyer's patch lymphoid cells is 

abrogated if the cultured stimulator cells are derived from mice infected with 

mouse hepatitis virus [78]. 

Our results demonstrated a difference in yields between 11SPF11 facilities. In 

addition, over the three year period during which the mouse experiments were 

performed, two viral diseases (ectromelia and mouse hepatitis virus) infected the 

laboratory animals for an unknown period before their discovery. 
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Intestinal lamina propria cell suspensions had MLR stimulatory activity 

and were capable of both stimulating and responding to mitogen-induced prolif­

eration. (These observations raise the possibility that significant T cell activation 

occurs in situ rather than, or as well as, in draining lymph nodes, but this 

question was not explored.) 

Attempts to characterize the MLR stimulatory cell confirmed the require­

ment for Class II MHC molecule expression and suggested that the cell was a 

dendritic cell. Attempts to enrich for this cell type were unsuccessful until the 

macrophages were removed from the cell suspension (See Chapter 3). 

An unexpected finding was the consistently greater MLR stimulatory 

activity in the unfractionated cell suspensions from the lamina propria when 

compared to Peyer's patches. In addition, there was clear evidence of inhibition 

of proliferation when large numbers of lamina propria cells were added. This 

raised the possibility of a suppressor cell population and led to the experiments 

in the following chapter. 
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TABLE 2.1 

Antibodies Used in Murine Experiments 

Name Determinant Class Reference 

TIB120 Class II MHC lgG2b J lmmunol 1981; 

1-Ab,d,q 1-Ed,k 
' 

127: 2488 

F4/80 F4 /80 antigen lgG2b Eur J lmmunol 

1981 ; 11 : 805 

M1/70 C3bi receptor lgG2b Eur J lmmunol 

(Mac-1) 1978; 8: 539; 

1979;9:301 

2.4G2 Fe receptor lgG2b J Exp Med 1979; 

150: 580 

IM7 Pgp-1 J Biol Chem 

1983; 258: 1014 

3301 Dendritic cell lgG2b Proc Natl Acad 

antigen Sci USA 1982; 

79: 161 

AT83 Thy 1 lgG2b Dr R Ceredig 

30-H12 Thy 1.2 lgG2b lmmunol Rev 

1979;47:63 

53-6.72 Lyt 2 lgG2a lmmunol Rev 

1979;47:63 

H0-2.2 Lyt 2.2 lgM lmmunogenetics 

1980; 10: 545 

GK-1.5 L3T4 lgG2b lmmunol Rev 

1983; 74: 29 



RA3-3A 1 /6.1 

J11d 

SAM 

B cell glycoprotein 

(8220) 

"B ceW 

Surface lg 

lgM 

lgM 

(sheep antimouse immunoglobulin) 

All antibodies except SAM were rat-derived 

Nature 1981; 

289:681 

J lmmunol 1981; 

127: 2496 



Table 2.2 

MLR stimulation: Comparison of different treatments of stimulator and responder 

cells. 

Stimulator cells (1 x1 o5 /well) and responder cells (2x1 o5 /well) were either 

untreated (control) or treated by incubating with TIB120 at 40c for 30 min and 

washing three times before plating (anti-la); by "panning" on rabbit anti-rat 

immunoglobulin-coated plastic Petri dishes without prior incubation with primary 

antibody (panning); or by incubating with Tl B 120 together with the "panning" 

treatment as described in the text (anti-la/panning) (Section 2.2.4). The figures 

in parentheses refer to the yields following the specified treatment as a 

percentage of the starting cell number. The MLR was performed as described in 

the text (Section 2.2.6). 

The first column and the first row indicate the uptake of tritiated thymidine 

when the stimulator and responder cells respectively were cultured alone. The 

other values in the Table indicate the uptake of tritiated thymidine when the 

stimulator and responder cells subjected to the specified treatments were 

cultured together in the allogeneic MLR. 



Table 2.2 MLR stimulation: Comparison of different treatments of stimulator and responder cells 

Uptake of [3H] thymidine (±SD) (cpm x 10-3) 

8.0±_ 1.4 4.0±_3.0 0.9±_0.3 0.2±_0.1 

Control 0.2±_0.04 92±3 41±4 89±5 88±4 
(100%) 

Stimulator cell treatment 
Anti-la 1.0±_0.5 58±7 56±8 74±6 66±3 
(84%) 

{1 x105 cells/well} 
Panning 0.7±_0.1 114±32 56±6 86±8 82±8 
(63o/o) 

(yields after treatment) 
Anti-I~/ 0.3±_0.01 11±2 8±1 4±_0.3 8±5 
ganning 
(51%) 

Control Anti-la Panning Anti-I~/ 
ganning 

(100%) (99%) (58%) (52°/o) 

Responder cell treatment {2 x105 cells/ well} 
(yields after treatment) 



LEGENDS TO FIGURES 

Figure 2.1 

Disaggregation technique: Effect of enzyn,e concentration and length of 

incubation on cell yields. Mouse small intestines were removed, washed 

in EDTA to remove the epithelial cell n1onolayer and incubated with differ­

ent enzyme types and concentrations for the indicated times. The points 

are the means of between three (at time 16 h) and eleven (at time three 

hours) experiments. The variability ranged from < 10% to 400% and 

depended on factors which were not initially recognized, eg. the amount 

of tissue added per 20 ml enzyme cocktail (see discussion). The method 

was otherwise as described in the text. Dispase 0.12 U / ml, inverted trian­

gles; 0.24 U/ ml, circles ; 0.48 U/ ml, triangles ; 0.96 U/ml, open squares; 

Dispase 0.48 U / ml closed diamonds; with collagenase 1 O U / ml, closed 

squares. 

Figure 2.2 

Mitogen-induced lamina propria cell proliferation. Disaggregated lamina 

propria cells from C57BL/6 mice (1 x1 os /well) were incubated for 72 h in 

flat-bottom 96-well plates in 200 ml medium with increasing concentra­

tions of concanavalin A (con A) and phytohaemagglutinin (PHA). Tritiated 

thymidine was added for the final 8 h of culture. The plates were freeze­

thawed and the cells harvested automatically onto glass fibre discs. The 

results are the means ± SE of triplicate assays. PHA-stimulated, squares; 

con A-stimulated, triangles . The optimal stimulatory concentrations for 

PHA and con A were 25-50 µg/ml and 0.8-3.0 µg/ml respectively. 
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Figure 2.3 

MLR stimulation: Comparison of intestinal lamina propria and spleen 

cells. Spleen or lamina propria cells from C57BL/6 mice (2x1 as cells 

/well) were added to 2x1os untreated MLN cells from BALB/c mice for 

the indicated times. For the last 16 h of incubation 1 µCi tritiated thymidine 

was added to each well. The plates were freeze-thawed and the cells 

harvested automatically onto glass-fibre discs. Spleen and lamina propria 

controls incorporated < 1,000 cpm. Values are the mean + SE of triplicate 

assays. Lamina propria (LP) cells , triangles; spleen cells, squares; 

mesenteric lymph node (MLN) cells , circles. 

Figure 2.4 

MLR stimulation : Effect of pelletting or culturing cells overnight. The 

experiment was performed as for Figure 2.3. Open symbols, cells 

cultured overnight; closed symbols, cells pelletted overnight at 4°C in 

RPMI containing 20% FCS. 
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Figure 2.5 

MLR stimulation by lamina propria cells. The abscissa represents 

increasing numbers of unfractionated small intestinal lamina propria cells 

(open squares) or lamina propria cells that were depleted of cells 

expressing class II MHC antigens (la) by panning (closed squares). 

Lamina propria cells from C57BL/6 mice were added to 2x1 as 

mesenteric lymph node cells, depleted of la-bearing cells, from BALB/c 

mice. After 4 days, 1 µCi of [3H]-thymidine was added to each 

microculture and the cells were freeze-thawed and harvested onto glass 

fibre discs after a further 16 h. Unstimulated responder cells incorporated 

< 1000 cpm whilst irradiated stimulator controls incorporated < 500 cpm. 

Figure 2.6 

MLR stimulation: Effect of removing fibronectin-adherent cells. The 

experiment was performed as described in Figure 2.5. Open squares, 

unfractionated small intestinal lamina propria cells; closed squares, 

fibronectin-non-adherent cells. 
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Figure 2.7 

Comparison of MLR stimulation by Peyer's patch and lamina propna 

cells. The experiment was performed as described in Figure 2.5. Squares, 

unfractionated small intestinal lamina propria cells; triangles, 

unfractionated Peyer's patch cells. 

Figure 2.8 

Time course of MLR stimulation by Peyer's patch and lamina propria 

cells. The experiment was performed as described in Figure 2.5. 

Unfractionated lamina propria cells (squares) or Peyer's patch cells 

(triangles) were incubated for three days (open symbols) or five days 

(closed symbols) with 2x1 as la-depleted MLN cells. 
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CHAPTER 3 

INTESTINAL LAMINA PROPRIA MACROPHAGES 

"So then Dr Froyd said that all I needed was to 

cultivate a few inhibitions and get some sleep." 

From 11Gentlemen Prefer Blondes 11 

Anita Loos (1893-1981) 



3.1 INTRODUCTION 

The role of macrophages in the regulation of immune responses is 

complex and reflects the morphological, phenotypic and functional diversity of 

the mononuclear phagocyte lineage in vivo [268, 270, 348, 349, 370]. Additional 

variability is added by the isolation procedure and by in vitro manipulation. 

Reports attributing antigen-presenting cell activity in primary T cell responses to 

macrophages often failed to consider other factors which were discussed in 

Sections 1.1.2.1 and 1.2.2. Although macrophages do stimulate activated T 

lymphoblasts [179, 182], there is no evidence for a role in the initiation of primary 

T cell responses. 

There is, however, considerable evidence to suggest that macrophages 

are modulators of T cell activation. Effects in vitro are seen in two phases. In low 

numbers, macrophages enhance responses [182, 217, 242, 273, 311, 343], 

either by releasing IL-1 [217] which amplifies dendritic cell function [241], or by 

improving cell viability [ 445]. At high cell numbers, macrophages are 

suppressive. Examples are found in all species studied including the mouse 

[152,182, 187,190,313,343,353,354], the rat [163,165,231,311,341], the 

rabbit [212] and the human [107, 116, 390, 473, 477]. 

Particular functions which may be affected include: 

i) the primary MLR [343, 450, 477]; 

ii) the syngeneic MLR [353, 377]; 

iii) stimulation of T lymphoblasts [182]; 

iv) antigen- or mitogen-induced T cell proliferation [107, 116, 117, 161, 

162,163,1 65, 212,245,311,341,390,473]; 

v) the induction of cytotoxic T cells [190, 354]; 

vi) oxidative mitogenesis [231, 396]; and 

vii) B cell antibody production [113, 187,242,279,313,414]. 
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One mechanism of high-dose inhibition involves the release of 

eicosanoids, in particular, prostaglandin E2 (PGE2) [116, 212, 326, 354, 414]. 

This is not a universal finding [ 107, 116, 272, 273, 341, 4 73, 4 77], and other 

mechanisms have been proposed eg. mediation by oxygen reactive species 

[320], by low molecular weight peptides [273, 359], by a contact-dependent 

mechanism [ 454] or by the secretion of suppressor T cell factors [113]. 

To study the role of macrophages in murine intestinal immune responses, 

a method for obtaining homogenous populations of macrophages was devel­

oped and the cells characterized. Using depletion and reconstitution experi­

ments, intestinal macrophages were shown to mediate the high-dose 

suppression seen when lamina propria cells were used as stimulators in the 

MLR. The absence of high-dose supression seen when Peyer's patch cells were 

used, was a reflection of the small numbers of macrophages resident therein. 

The inhibition of MLR stimulatory activity was mediated by an indomethacin­

sensitive mechanism. 
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3.2 METHODS 

The materials and methods used for obtaining single suspensions of 

lamina propria or Peyer's patch cells and for performing the MLR was as 

described in Chapter 2. In order to minimize macrophage losses, one change 

was instituted to the protocol. Stimulator cell proliferation in the allogeneic one­

way MLR was prevented by irradiation (2,500-3,000 Rads) rather than by 

treatment with mitomycin C at 370c. 

3.2.1 Intestinal macrophages 

The isolated lamina propria cell suspension at 5-1Ox106 /ml was 

incubated for 2-3 h on fibronectin-coated gelatinized flasks [125]. Human serum 

from healthy donors, clotted at 370c was used as a source of fibronectin. Non­

adherent cells were discarded or pelletted, and the adherent cells further 

incubated overnight. Any cells which were no longer adherent after overnight 

incubation were removed by washing with RPMI at 370c and pooled with the 

other non-adherent cells. Adherent cells were harvested by incubating with 10 

mM EDTA in RPMI with 10% FCS for 10-15 min. These cells were washed three 

times, counted and viability assessed. Phagocytosis was assessed by 

incubating the cells for 2 h with 1 µm diameter fluorescent microspheres 

(Polysciences Inc., Warrington, PA) after readhering the cells onto glass slides. 

3.2.2 Resident peritoneal macrophages 

Resident peritoneal cells were harvested by peritoneal lavage with CMF­

HBSS and treated in parallel, including incubation overnight on fibronectin­

coated gelatinized flasks. 

3.2.3 Splenic macrophages 

Spleens were removed from C57BL/6 mice and the pulp was extruded 

through a fine wire mesh. The resulting cells were vortexed, pelletted and 

centrifuged over Ficoll-Paque (Pharmacia, Uppsala, Sweden) (600 g for 30 min 

at 20°c). The cells at the interface were washed three times in complete media 
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and allowed to adhere overnight to fibronectin-coated gelatinized flasks. The 

non-adherent cells were removed by washing three times with warm media and 

the adherent cells harvested after 10-15 min incubation in 10 mM EDTA in RPMI 

containing 10% FCS. These cells were washed three times and their viability 

assessed. 

3.2.4 Alveolar macrophages 

C57BL/6 mice were anaesthetized with ether and allowed to exsan­

guinate after the left renal artery and vein were severed. The trachea was iso­

lated with careful haemostasis and a blunt needle inserted and secured. Five or 

six aliquots of CMF-HBSS (increasing from 50 to 200 µI) were injected and re­

aspirated. The first aliquot was discarded and subsequent ones pooled. The 

cells were washed in RPMI containing 10% FCS, resuspended, counted and 

viability assessed. These cells were also incubated overnight on fibronectin­

coated gelatinized flasks and the adherent cells harvested as above. 

3.2.5 lmmunocytochemistry 

Cytocentrifuge slides were made using 2-1 Ox1 o4 cells in RPMI with 50% 

FCS on poly-L-lysine coated glass slides (0.1% poly-L-lysine (Sigma, St Louis, 

MO) for 10 min then air-dried). Specimens for cytology were stained using Diff­

Quik (Lab Aids, Narrabeen, NSW). 

For immunocytochemistry, the cytocentrifuge slides were air-dried 

overnight, and then blocked with horse serum (4 drops in 1 O ml PBS) for 30 min. 

Primary antibodies (see Chapter 2) were added and incubated at 200c for 30 

min. The slides were washed in PBS then biotinylated sheep anti-rat 

immunoglobulin (1 /200)(Amersham, Amersham, UK) was added for 30 min. 

After washing, avidin-biotin-peroxidase complex (Vector Labs., Burlingame, CA) 

was added for 1 h and the slides developed for 1 O min with 0.5 mg/ml 3,3' -

diaminobenzidine (Sigma, St Louis, MO), 10 mM imidazole (BDH Chemicals, 

Poole, UK) and 0.3% hydrogen peroxide in PBS (pH 7.3). Except for 33D1 (with 
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which we could not demonstrate staining) appropriate positive and negative 

controls were included. The slides were lightly counterstained in Mayer's 

hematoxylin (BDH, Poole, UK), washed, air-dried and mounted. Photography 

was performed using a Zeiss Axiophot Microscope. 

3.2.6 Cytofluorometry 

Cells were suspended at a concentration of 2-1Ox106 /ml in a solution 

containing the primary antibody for 30 min at 40c, washed three times, resusp­

ended at a concentration of 2x1 O 7 in 1/100 fluorescein isothiocyanate-labelled 

sheep anti-rat immunoglobulin (Silenus, Melbourne, Australia) or 1 /100 fluor­

escein-conjugated affinity-purified F(ab')2 fragment goat anti-rat lgG (heavy and 

light chain specific) (Cappel, Cooper Biomedical, Cochranville, PA), washed 

three times then analysed in a FAGS IV flow cytometer (Becton-Dickinson, 

Sunnyvale, CA), a FACScan (Becton Dickinson, Mountain View, CA) or a Coulter 

Epics C flow cytometer (Coulter Electronics, Hialeah, FL) . 
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3.3 RESULTS 

3.3.1 Yields 

Yields of adherent cells from the intact small intestinal mucosa, the non­

Peyer's patch lamina propria and the Peyer's patch were 3%, 10% and < 0.1 % 

respectively. Yields from the colonic lamina propria were also 10% (phenotypic 

and functional studies were not performed on these cells). 

Yields of macrophages from the peritoneum and lung were 2-

5x105 /mouse and 1-2x105/mouse respectively. Splenic yields were not 

recorded. The proportion of adherent cells which were macrophages as judged 

by morphology was > 90% from all three tissues and close to 99% from the lung. 

Viability in all cases was > 90%. 

3.3.2 Morphology and phenotype 

The majority of the adherent intestinal cells were classical macrophages 

morphologically, with an oval nucleus, basophilic cytoplasm and numerous 

inclusions often giving a 11foamy 11 appearance (Fig. 3.1). An average of 91% (3 

experiments) phagocytosed fluorescent latex beads (Fig. 3.2). The phenotype of 

peritoneal and intestinal macrophages was compared by immunocytochemistry. 

Peritoneal macrophages were strongly positive for the F4 /80 antigen and Pgp-1 , 

while 20-29% (average 24%) were positive for la. In contrast, intestinal 

macrophages, although staining weakly for Pgp-1, had no detectable F4 /80 

antigen and were 45-55% (average 47%) positive for la. Other markers which 

could not be detected on intestinal macrophages were 2.4G2 (anti-F cR) and 

33D1 (anti-dendritic cell) . 

These observations were confirmed and extended using flow cytometry. 

When compared to peritoneal macrophages, intestinal macrophages expressed 

very low levels of the macrophage-specific markers, F4 /80, 2.4G2 (the F c 

receptor), (Fig. 3.3) and M1 /70 (the C3bi receptor) at flow cytometry. The low 

level of F4 /80 antigen expression does not appear to be due to the enzyme 
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digestion, since peritoneal cell expression of F4 /80 antigen was unaffected by 

the enzyme cocktail (not shown). The effect of other steps of the disaggregation 

procedure on peritoneal macrophage F4 /80 expression was not examined. 

The majority of the intestinal macrophages expressed definite but low 

levels of Class II MHC antigens in keeping with previous observations using 

immunohistochemistry [169, 172]. A variable, but small subpopulation 

expressed high levels, probably reflecting varying degrees of activation of the 

macrophages in vivo, or the presence of small numbers of dendritic cells. The 

mean levels of expression were not as high as for lamina propria dendritic cells 

(see Chapter 4). 

Using flow cytometry, the phenotype of intestinal adherent cells was 

compared with that of resident peritoneal, splenic and alveolar macrophages 

(Fig. 3.4). Levels of expression of F4/80 antigen were highest in resident 

peritoneal macrophages, followed by alveolar and splenic macrophages which 

had similar levels, and finally intestinal adherent cells which had no detectable 

F4/80 antigen. The expression of Class II MHC antigens decreased in the 

opposite order with intestinal macrophages having the highest levels, followed 

by splenic, alveolar and finally peritoneal macrophages. Systematic analysis of 

the macrophages from these different sites was not undertaken since the 

objective was to demonstrate heterogeneity of F4/80 and Class II MHC 

expression. 

To ensure stringent antigen-presenting cell requirements (see Sections 

1.1.2.1 and 1.2.2) mesenteric lymph node responder cells were depleted of la­

bearing cells (see Section 2.2.3). Cytofluorometric analysis of this MHC-11-

depleted population demonstrated a homogenous population of T lymphocytes 

with CD4 + :cos+ = 70:30 (Fig. 3.5). The background levels of proliferation 

were always < 1,000 cpm and generally between 200-300 cpm. 
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3.3.3 The role of adherent cells as modulators of immune 

responses 

As discussed in Chapter 2, separated lamina propria cells stimulated 

maximal MLR responses at 5-1 O fold lower stimulator:responder ratios than 

Peyer's patch cells from the same animals (Fig. 2. 7). At high 

stimulator:responder ratios, the lamina propria cells were suppressive. Removal 

of cells adherent to fibronectin (macrophages) did not abrogate any stimulatory 

activity, but abolished the high dose suppression (Fig. 2.6). Suppression by 

lamina propria adherent cells was also reversible by indomethacin (2 µg/ml) 

(Figs. 3.6, 3. 7). The MLR stimulatory activity of Peyer's patch cells was 

unaffected by both the removal of adherent cells (not shown) and by the 

addition of indomethacin (Fig. 3.6). The action of indomethacin was presumed to 

involve suppression of eicosanoid synthesis since prostaglandin E2 (PGE2) has 

been shown to inhibit lymphocyte activation [reviewed in 174]. We confirmed 

that addition of PGE2 resulted in impairment of the MLR generated by both 

Peyer's patch and lamina propria cells (Fig. 3.8). 

Adding increasing numbers of adherent cells to a constant number of 

either lamina propria or Peyer's patch cells (depleted of adherent cells) resulted 

in a dose-dependent inhibition (Figs. 3.9, 3.10). For both lamina propria and 

Peyer's patch cells, this suppression was overcome by adding indomethacin. 

When adherent cells and indomethacin were added to lamina propria cells, no 

increase in proliferation was seen when compared to lamina propria cells alone 

at both maximal (Fig. 3.9) and submaximal (Fig. 3.10) levels. In contrast, adding 

increasing numbers of adherent cells and indomethacin to cultures of Peyer's 

patch cells resulted in levels of proliferation greater than for Peyer's patch cells 

alone (Fig. 3.9). 

Adherent cells also inhibited LPS-induced cell proliferation 1n a dose­

dependent manner (Fig. 3.11 ). 
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3.3.4 Adherent cells as inhibitors of the MLR 

Since fibronectin-adherence did not deplete MLR stimulators from the 

lamina propria, it appeared unlikely that the adherent cells would act as stimul­

ators. This was found to be the case (Fig. 3.12). In the presence of 

indomethacin, some stimulator activity was revealed, but only at high 

stimulator:responder ratio. Whether this represents a weak stimulatory activity of 

all the cells, or is attributable to a minor contaminant is unclear. The latter 

explanation seems the more likely since, although the adherent cells are a 

relatively homogenous population of macrophages, cells with morphological 

features of dendritic cells were sometimes seen. Experiments assessing the 

effect of the removal of dendritic cells using the anti-dendritic cell antibody, 33D1 

[356], and complement lysis were not performed. 

The M LR stimulatory activity of peritoneal macrophages and intestinal 

adherent cells were found to be much less than that of unfractionated lamina 

propria cells, both in the presence and absence of indomethacin (Fig. 3. 7). 
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3.4 DISCUSSION 

Macrophages have been shown to have a specific magnesium­

dependent receptor which binds fibronectin [33]. This property allowed the 

separation and recovery of macrophages from the lamina propria and an 

assessment of their function. 

The lamina propria contained relatively large numbers of la+ 

macrophages (10% of disaggregated lamina propria cell suspensions). Consist­

ent with immunohistochemical observations [172, 173, 514, Fig. 3.13], and with 

previously described yields from disaggregation experiments [287], we found a 

paucity of macrophages in the Peyer's patch lymphoid tissue. In contrast to their 

presumptive counterparts in vivo [172], isolated lamina propria macrophages 

did not express detectable F4/80 antigen at cytofluorometry, in spite of exhaust­

ive efforts to demonstrate it. Variables considered included the use of sera from 

different species as blocking agents, varying dilutions of both primary and sec­

ondary antibodies, the use of biotinylated and a number of different fluorescein­

conjugated second antibodies and different methods of fixation. The failure to 

demonstrate detectable F4 /80 expression may simply be a question of the sens­

itivity of the avidin-biotin complex (ABC) immunoperoxidase method in compari­

son with immunofluorescence. However, this does not explain the failure to 

detect F4 /80 antigen on intestinal macrophages using immunocytochemistry 

and the ABC technique. It suggests that a factor in the isolation procedure (apart 

from the enzymes used) may affect the (presumably already low) F4 /80 antigen 

expression. The mechanism probably involves the release of unspecified 

mediators during the disaggregation process, rather than being due to the 

various compounds used (EDTA, collagenase, Dispase, DNase etc.). This was 

not investigated further. An additional problem in assessing low level expression 

of markers on these cells was high autofluorescence and non-specific binding of 

both first and second antibodies. 
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A comparison of intestinal, splenic, alveolar and peritoneal macrophages 

showed considerable variation in levels of the F4 /80 antigen consistent with 

other studies [348]. The expression of the F4 /80 antigen tended to decline as 

Class II MHC antigen expression increased. Others have observed similar 

changes following macrophage activation, namely, down-regulation of the F4/80 

antigen, the F c receptor and the fucose-mannose receptor and increased Class 

II MHC antigen expression [109]. In spite of low levels of F4/80 antigen per cell 

on intestinal macrophages, quantitative studies of the level of F4 /80 antigen in 

tissues suggest that the gut is the major repository of macrophages in the 

mouse [268]. 

In spite of the constitutive expression of Class II MHC antigens on lamina 

propria macrophages, these cells were weak stimulators of the MLR and were 

suppressive, in part, by an indomethacin-sensitive mechanism. 

Initial studies on intestinal macrophages examined their morphological, 

ultra-structural, histochemical and immunohistochemical features and from 

these results function was inferred [reviewed in 310, 436, 468]. With the advent 

of techniques for the enzymatic disaggregation of intestinal mucosa their 

properties could be studied in vitro. The reported yields of macrophages from 

Peyer's patch are variable and range from < 1% [218, 229, 287] to 10% [489]. 

Enzymatic methods of disaggregation resulted in up to ten times greater yields 

[122, 230, 287] and released cells capable of stimulating T and B cell responses 

[287, 393]. It is not clear why these large discrepancies should occur, but they 

are possibly related to the removal of surrounding lamina propria which does 

contain a large proportion of macrophages. 

The surface antigen expression of isolated Peyer's patch macrophages 

has been examined in only two papers [24 7, 489]. The proportion expressing la 

molecules was 7-13% (immunofluorescence microscopy) and 65% 
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(immunoprecipitation) respectively. In comparison with peritoneal macrophages 

only a small proportion expressed F c receptors. 

Functional studies of Peyer's patch adherent cells are difficult to interpret. 

Some investigators have reported the ability to stimulate secondary T cell 

responses [287, 393] whilst others failed to demonstrate either primary or 

secondary responses [24 7]. These differences are partly explained by the 

observation that the MLR stimulator cells were non-adherent, low density cells 

[27, 433]. 

Prostaglandin-mediated suppression of immune responses 

PGE2 is a major product of the cyclo-oxygenase pathway of arachidonic 

acid metabolism in activated cells, particularly monocytes and macrophages. It 

binds to lymphocyte receptors and acts by stimulating adenylate cyclase and 

increasing intracellular cyclic AMP levels [372]. PGE2 inhibits T cell activation 

both by inhibiting the increase in free calcium concentration in the cytosol [87] 

(with the resultant impairment of IL-2 production) and by inhibiting the activation 

of protein kinase C [87]. 

Lymphocyte functions inhibited by PGE2 include the effector function of 

cytotoxic T cells and NK cells, and cellular proliferation in response to PHA and 

con A (but not PWM). Antigen- and mitogen-induced IL-2 release and IL-2-

dependent proliferation are also inhibited. Preincubation of lymphoid cells with 

PGE2 stimulates suppressor cells, an effect which may be mediated by a 

specific stimulatory effect of PGE2 on the expression of IFN--y receptors on 

cos+ cells [104]. The capacity of PGE2 to inhibit proliferation may therefore be 

either due to a direct effect on lymphocyte proliferation or the result of the 

activation of suppressor cells [86]. 

Macrophages, the major source of PGE2 in immune reactions, differ in 

their capacity to produce PGE2 upon stimulation by activating agents. System­

atic studies on intestinal macrophages have not been reported. 
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lndomethacin, in addition to inhibiting the cyclo-oxygenase pathway, also 

inhibits cAMP-dependent protein kinase and phosphodiesterase and may shunt 

the products of arachidonic acid metabolism to the lipoxygenase pathway. 

An alternative means by which macrophages could inhibit MLR stimula­

tory activity is by the 1-J-restricted induction of suppressor T cells and the 

production of Ts factors [17, 191, 337]. Particular problems relate to the nature 

of the 1-J determinants. No polymorphic gene or coding element which maps to 

the 1-J region has been identified and DNA probes spanning the 1-J region fail to 

hybridize with mRNA in 1-J + somatic T cell hybrids [reviewed in 337]. A number 

of mechanisms to explain the absence of an 1-J-coded protein product have 

been suggested. These include the proposal that 1-J molecules represent novel 

T cell receptors that recognize self-Class II molecules and/or receptors for Class 

II molecules, or that the 1-J region controls the post-translational modification of 

Class II MHC antigens or other proteins. The mechanisms involved have not 

been elucidated and much work needs to be done to clarify these issues. 
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LEGENDS TO FIGURES 

Figure 3.1 

Cytocentrifuge slides of fibronectin-adherent lamina propria cells stained 

with Diff-Quik (x 630). 

Figure 3.2 

lmmunofluorescence microscopy of fibronectin-adherent lamina propria 

cells. Cells were adhered onto glass slides and incubated for 2 h with 

fluorescent-labelled latex beads (1 µ diameter). Over 90% of cells were 

phagocytic. 
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Figure 3.3 

Flow cytometric analysis of antigen expression by fibronectin-adherent 

cells. (a) Fibronectin-adherent resident peritoneal cells from C57BL/6 

mice were incubated with no antibody (control), F4/80, Pgp-1 or 2.4G2; 

then washed and labelled with FITC-conjugated (Fab')2 goat anti-rat lgG 

and analysed by flow cytometry. Greater than 90% of the cells expressed 

high levels of F4 / 80, Pgp-1 and 2.4G2. (b) Fibronectin-adherent small 

intestinal lamina propria cells were labelled as for (a). Expression of 

F4/80 and 2.4G2 was much lower than on peritoneal macrophages and, 

if present, was difficult to detect because of high levels of nonspecific 

staining. 
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Figure 3.4 

Phenotypic analysis of fibronectin-adherent splenic, alveolar and 

peritoneal cells using flow cytometry. (a) Fibronectin-adherent splenic 

macrophages were labelled as for Figure 3.3 using no antibody (control) , 

TIB120 (anti-la) and F4/ 80. (An isotype-matched control gave binding 

identical to the no primary antibody control.) The mean fluorescence 

intensity for the whole population is indicated. The vertical line represents 

the fluorescence intensity above which only 5% of the no antibody and/ or 

isotype-matched control cells were found . A cell expressing greater 

fluorescence intensity than this value was considered positive . (b) 

Fibronectin-adherent alveolar macrophages were labelled as in Figure 3.3 

using no primary antibody (control) , TIB 120 and F4/ 80. (c) Fibronectin­

adherent peritoneal cells labelled as above. 
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Figure 3.5 

Flow cytometry of mesenteric lymph node responder cells. Mesenteric 

lymph node cells were incubated with TIB120 (anti-Class II MHC 

antibody), panned, then labelled with the specified antibodies, using the 

methods described in Figure 3.3. About 70% of the cells were L3T4 + 

whilst 30% were Lyt2 +. The cells also expressed Pgp-1 as demonstrated 

by the shift of the curve to the right. The other curves were no different 

from the control (no primary antibody) . Antibodies used included anti-la 

(TIB120), J11 d (B cell) and F4/ 80 (macrophage). 
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Figure 3.6 

MLR stimulation by lamina propria and Peyer's patch cells in the 

presence and absence of jndomethacin. The abscissa represents 

increasing numbers of unfractionated small intestinal lamina propria cells 

(squares) or Peyer's patch cells (triangles) that were incubated in the 

presence (closed symbols) or absence (open symbols) of indomethacin 

(2 µg/ml). Lamina propria cells from C57BL/ 6 mice were added to 2x105 

mesenteric lymph node cells, depleted of la-bearing cells, from BALB/c 

mice. After 4 days, 1 µCi of [3H]-thymidine was added to each 

microculture and the cells were freeze-thawed and harvested onto glass 

fibre discs after a further 16 h. Unstimulated responder cells and control 

stimulator cells incorporated < 1000 cpm and < 500 cpm respectively. 

The values are the means_±_ S.E. of triplicate assays. 

Figure 3.7 

MLR stimulatory activity: Comparison of unfractionated intestinal lamina 

propria cells, intestinal adherent cells and peritoneal macrophages in the 

presence and absence of indomethacin. The experiment was performed 

as described in Figure 3.6. Increasing numbers of lamina propria non­

adherent cells (squares), adherent cells (diamonds) and peritoneal 

macrophages (inverted triangles) were added to 2x1 o5 MLN cells in the 

presence (closed symbols) and absence (open symbols) of indomethacin 

(2 µg/ml). 
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Figure 3.8 

The effect of prostaglandin E2 (PGE2) on MLR stimulation. The abscissa 

represents increasing amounts of PGE2 added to microcultures 

containing 2x105 MLN cells together with 2x104 lamina propria cells 

(squares) or 2x105 Peyer's patch cells (triangles). The MLR was 

performed as described in Figure 3.6. 

Figure 3.9 

Lamina propria macrophage-induced suppression of the MLR and the 

effects of indomethacin. The experiment was performed as described in 

Figure 3.6. Increasing numbers of lamina propria macrophages (enriched 

by fibronectin adherence) were added to 2x1 o5 purified mesenteric lymph 

node responder cells cultured with 1 x1 o5 non-adherent lamina propria 

cells (squares) or 1x105 Peyer's patch cells (triangles) in the presence 

(closed symbols) or absence (open symbols) of indomethacin (2 µg/ml). 
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Figure 3.10 

Lamina propria macrophage-induced suppression of the MLR and the 

effect of indomethacin. The experiment was performed as described in 

Figures 3.6 and 3.9 except that 5x1 o4 non-adherent lamina propria cells 

were used (squares). This number resulted in submaximal MLR 

stimulation. 

Figure 3.11 

Suppression of LPS-induced proliferation by lamina propna 

macrophages. The abscissa represents increasing amounts of LPS 

added to 5x104 Peyer's patch (triangles) or lamina propria (squares) cells 

in the presence (closed symbols) or absence (open symbols) of 2x104 

intestinal macrophages. 
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Figure 3.12 

A comparison of MLR stimulatory activity of non-adherent and adherent 

lamina propria cells and the effect of indomethacin. The experiment was 

carried out as described in Figure 3.6. Increasing numbers of non­

adherent (to fibronectin) (open squares) or fibronectin-adherent with 

(open diamonds) or without (closed diamonds) indomethacin (2 µg/ml) 

were added to purified mesenteric lymph node responder cells. 



~ 

r0 
I 
0 
,--

x 100 
E 
0.. 
0 ......__,, 

C: 
0 ·-+' 
0 
L 
0 
0.. 
L 
0 
0 
C: ·-

50 

Figure 3.12 

MLR Stimulation: LP nonadherent and adherent cells. 

1 

Nonadherent cells 

10 
-3 

Stimulator cell number (x 10 ) 

~ Adherent 
/ +indomethacin 

,,/ 

100 



Figure 3.13 

lmmunoperoxidase staining of a section through a murine small intestinal 

villus (upper left) and a Peyer's patch (lower right) using the anti­

macrophage antibody, F4 /80. The methods are described in references 

169, 172 and 173, and are summarized in the legend to Figure 1.2. The 

slides were prepared by Dr DA Hume. F4 /80 + cells can be identified 

only in the small intestinal villus. 





CHAPTER 4 

INTESTINAL LAMINA PROPRIA DENDRITIC CELLS 

"seek, and ye shall find ;" 

St Matthew 



4.1 INTRODUCTION 

Cells with the morphology and phenotype of veiled cells have been 

described in Peyer's patches from mouse [ 433], rat, guinea pig and pig [509]. 

Their presence in non-Peyer's patch lamina propria was also demonstrated in 

the guinea pig and pig but not in the rat [509]. The differences between species 

is not explained. Human intestinal dendritic cells will be considered in Chapter 5. 

Functional studies on dendritic cell-enriched populations from Peyer's 

patches showed that these cells were low-density, non-adherent and potent 

accessory cells in the oxidative mitogenesis model [433]. A particularly interest­

ing observation is that dendritic cell-T cell clusters originating from Peyer's 

patches preferentially induced splenic or Peyer's patch B cells to secrete lgA. 

[ 434, 435]. The mechanism is as yet unexplained. 

In this chapter, a method for obtaining populations of MLR stimulatory 

dendritic cells from murine intestinal lamina propria and Peyer's patches is 

described. These cells were as potent as splenic dendritic cells in their ability to 

stimulate the MLR. 
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4.2 METHODS 

The materials and methods used for obtaining adherent cell-depleted 

single cell suspensions from the intestinal lamina propria or Peyer's patches 

were as described in Chapters 2 and 3 unless otherwise stated. 

4.2.1 Cell Separation 

Disaggregated lamina propria or Peyer's patch cells at concentrations of 

10-20x106 /ml were layered onto 2-3 ml Nycodenz (Nyegaard, Oslo, Norway) 

and centrifuged at 600 g for 15 min at 200c. Cells at the interface or in the pellet 

were washed and resuspended in RPM I for further experiments. 

4.2.2 Splenic dendritic cells 

Splenic dendritic cells were obtained by a modification of a previously 

described technique [ 44 7]. Spleens from C57BL/6 mice were minced by 

pushing through a fine wire grid, washed and resuspended in serum-free media. 

The cells were seeded at 3x106 /ml in 185 cm2 tissue flasks (Nunclon, Roskilde, 

Denmark) at 50 ml per flask, and allowed to adhere for 2 h at 370c. Non­

adherent cells were removed by washing with H BSS and remaining adherent 

cells recultured in complete medium (F15 with 5% FCS and 1 o-5M 2-

mercaptoethanol) overnight. Non-adherent or loosely adherent cells were 

harvested by gentle pipetting and treated with anti-Thy 1.2 antibody (Serotec, 

Oxford, UK) and rabbit complement (Low Tax, Cedarlane, Ontario, Canada) with 

DNase 30 µg/ml. Dead cells were removed by separation on lsopaque-Ficoll 

(Pharmacia). To remove surface immunoglobulin- and Fe-receptor-bearing cells, 

the cell suspension was then rosetted with sheep erythrocytes coupled by 

chromium chloride (CrCl3) to hyperimmune sheep anti-mouse immunoglobulin 

(Division of Cell Biology, JCSMR). Following further separation on Ficoll, splenic 

dendritic cells were obtained. Yields from the spleen were 0.5-1 % [368]. The 

cells were >85% positive for expression of Class II MHC antigens by flow 

cytometry (Fig. 4.1 ). 
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4.2.3 Electron microscopy 

Cells were fixed in 3% glutaraldehyde/2% paraformaldehyde in 0.1 M 

cacodylate buffer (pH 7.4) and processed for scanning and transmission 

electron microscopy as described by Bucana et al, (1983) [70]. The cells were 

examined with a JEOL 1200X scanning electron microscope or a JEOL 1200EX 

transmission electron microscope. 
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4.3 

4.3.1 

RESULTS 

Enrichment of MLR stimulator cells 

The lamina propria and Peyer's patch cells that had been depleted of 

fibronectin-adherent macrophages could be further enriched for MLR-stimula­

tory activity by density gradient centrifugation. The yield of cells harvested at the 

Nycodenz interface (density < 1.068 g/ml) was 2. 7% of the starting cell number 

from both sites (see Table 4.1 ). These cells had 20-50x greater MLR-stimulatory 

activity than the initial, unfractionated lamina propria cell suspensions (Fig. 4.2). 

4.3.2 MLR stimulator cells in the colon 

Because of initial concern over the problem of eliminating bacterial 

contamination, fewer studies of lamina propria cells from the large intestine were 

performed. As noted above, the yield of cells from the small and large intestinal 

lamina propria was comparable. In experiments in which cells from small and 

large intestine of the same animals were compared the MLR-stimulating activity 

was not distinguishable (see below). 

4.3.3 Comparison of lamina propria, Peyer's patch and splenic 

dendritic cells 

Isolated dendritic cells from the lamina propria or Payer's patches were 

not distinguishable in terms of the number of cells required to induce a maximal 

MLR (Fig. 4.3). Morphologically, they are large cells which have oval, irregular or 

pleiomorphic nuclei and a basophilic cytoplasm. Characterization is best done 

by phase-contrast microscopy, immunofluorescence or by immunocyto­

chemistry, where they can be identified by their morphology and the expression 

of Class II MHC antigens (Fig. 4.4). Like splenic dendritic cells, they expressed 

very high levels of Class II MHC proteins with low, but detectable, levels of 

F4/80, Pgp-1 (Figs. 4.1 and 4.5), and the dendritic cell specific marker, 33D1 

(not shown). Other markers, in particular, surface immunoglobulin, were nega­

tive. The majority of the remaining cells in the intestinal low density fractions (20-
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35% of the total cell number at cytofluorometry) were Thy-1 +. The low density 

cells from the lamina propria of either the small or large intestine were greatly 

enriched for MLR-stimulatory activity (Fig. 4.6). 

When studied by electron microscopy, the cells exhibited the cytological 

features described previously for lymphoid dendritic cells. The nucleus was 

irregular with a peripheral rim of heterochromatin and small nucleoli. The cyto­

plasm contained well-developed mitochondria and scattered smooth vesicles 

but no evidence of phagolysosomes. The surface of the cells observed with the 

scanning electron microscope showed characteristic cytoplasmic processes 

often observed in cells from afferent lymphatics and referred to as veils [233] 

(Micrographs 4.1 a and 4.1 b). 

The function of dendritic cell-enriched intestinal cell populations was 

compared with that of splenic dendritic cells (Fig. 4. 7). MLR stimulatory activity 

was almost identical. When equal numbers of splenic and lamina propria 

dendritic cells were mixed together, there was no evidence of either enhanced or 

suppressed activity. Treatment of splenic dendritic cells with the enzyme cocktail 

used for disaggregation of the lamina propria for 2-3 h did not alter their MLR 

stimulatory activity (not shown). 
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4.4 DISCUSSION 

This study demonstrates the presence of M LR stimulatory cells in both 

the Peyer's patches, as described previously [ 433], and in the non-Peyer's 

patch lamina propria. These cells resemble the lymphoid dendritic cell first 

described by Steinman and Cohn (1973) [ 443], in their surface phenotype (la­

positive, absence of typical macrophage, T cell and B cell markers), their 

physical properties (low density, weakly or non-adherent, non-phagocytic) and 

their cytological and ultrastructural features (absence of secondary lysosomes, 

pleiomorphic nucleus). 

Intestinal macrophages could be differentiated from dendritic cells on the 

basis of morphology, function (macrophages are phagocytic, adherent 

overnight in culture, and suppress MLR stimulation), and the expression of Class 

II MHC antigens (dendritic cells express very high levels, Fig. 4.8). The MLR 

stimulator cells differed further from macrophages in failing to adhere to 

fibronectin. 

Other studies have demonstrated opposing actions of dendritic cells and 

macrophages on T cell responses in vitro and in vivo. For example, hapten­

specific tolerance was observed when haptenated, la+ -macrophages were 

injected intravenously. This macrophage-induced tolerance could be overcome 

by subsequent injection of haptenated dendritic cells [64]. (See also Chapter 3). 

Cells resembling dendritic cells have been isolated from afferent lymph 

draining the mesenteric nodes of the rat [290, 300, 311, 378] and other species. 

These so-called veiled cells, or non-lymphoid cells, express high levels of Class 

II MHC antigens and are potent antigen-presenting cells in vitro and in vivo [264, 

290, 300, 311, 378]. Like lamina propria dendritic cells, they lack most defineable 

macrophage markers [290]. Veiled cells in the rat and dendritic cells in the 

mouse are bone marrow-derived and have high rates of turnover [378, 449]. If 
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lamina propria dendritic cells are the precursors of similar cells in mouse afferent 

lymph, their turnover would be expected to be similarly rapid. 

There was consistently 5-10 times greater MLR stimulatory activity in the 

unfractionated lamina propria cell suspensions when compared to Peyer's 

patches. However, the yield of dendritic cells from the two sources was similar 

(Table 4.1) and maximal MLR stimulation occurred with similar numbers of puri­

fied stimulator cells from both the lamina propria and Peyer's patches (Fig. 4.3). 

In the unfractionated cell suspensions, the difference may represent a genuine 

decrease in Peyer's patch dendritic cell activity due to a deficiency of 

macrophage-derived factors. This possibility is supported by the data (Fig. 3.9) 

showing that macrophages can increase the sensitivity of the MLR to Peyer's 

patch cells. This effect may be mediated by macrophage production of IL-1 

which amplifies dendritic cell function [241]. 

When compared to splenic dendritic cells, lamina propria dendritic cells 

had similar MLR stimulatory activity (Fig. 4.7) . These observations are consistent 

with those of Spalding et al, (1983) [ 433] who demonstrated that splenic and 

Peyer's patch dendritic cells had equivalent T cell stimulatory ability in the oxi­

dative mitogenesis assay. In contrast, dendritic or Langerhans cells of the epi­

dermis are weak stimulators of the MLR upon initial isolation [181] but in the 

presence of granulocyte/ macrophage-colony stimulating factor (GM-CSF) and 

IL-1, in vitro rapidly mature into potent MLR stimulators [156, 515]. Tissue varia­

tions in cytokine production may account for the differences in maturity of 

dendritic cells at these sites. GM-CSF is produced constitutively by cells of the 

human intestinal lamina propria [380], but levels were not compared with those 

of the epidermis. An alternative explanation is that the isolation process 

produced different effects on cell maturation. 
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Table 4.1 

Fibronectin-
adherent 

Non-adherent 

High density* 
( > 1.068 g/ml) 

Low density 
( < 1.068 g/ml) 

Cell yields (% starting cell number) (range) 

Whole intestine 

3-5 

41 
(32-57) 

22 
(15-31) 

3 
(2-6) 

10 
(6-13) 

30 
(22-44) 

15 
(9-20) 

2 
(1-3) 

* The cells were predominantly small lymphocytes. 

< 0.1 

55 
(22-90) 

27 
(12-37) 

2 
(1-3) 

Table 4.1 details the yields at different stages of the isolation procedure as a 
percentage of the starting cell number. LP refers to the yields from lamina propria 
from which Peyer's patches have been removed and PP indicates the yields from 
Peyer's patches alone. 
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LEGENDS TO FIGURES 

Figure 4.1. 

Flow cytometric analysis of antigen expression by splenic dendritic cells. 

Splenic dendritic cells from C57BL/6 mice were incubated with no 

antibody (control), anti-la (TIB 120), F4/80 or Pgp-1 (PGP); then washed 

and labelled with FITC-conjugated (Fab')2 goat anti-rat lgG and analysed 

by flow cytometry. The abscissa represents fluorescence intensity 

(logarithmic scale, arbitrary units) and the y axis, cell number (linear 

scale, arbitrary units). The mean level of fluorescence intensity for each 

population of cells is indicated. The proportion of cells positive for each 

marker is also given. (The level of fluorescence at which a cell was 

considered to be positive was arbitrarily defined as that level which was 

not exceeded by > 5% of the control population.) Over 90% of the cells 

expressed high levels of la. The cells expressed intermediate levels of the 

Pgp-1 antigen, and low levels of the F4/80 antigen. 
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Figure 4.2. 

MLR stimulation by lamina propria dendritic cells and unfractionated cells . 

The abscissa represents increasing numbers of unfractionated small 

intestinal lamina propria cells ( open squares), lamina propria cells that 

were fibronectin-non-adherent and low density ( closed squares) and 

splenic dendritic cells ( closed diamonds). Lamina propria cells from 

C57BL/6 mice were added to 2x1 o5 mesenteric lymph node cells, 

depleted of la-bearing cells, from BALB/c mice. After 4 days, 1 µCi of 

tritiated thymidine was added to each microculture and the cells were 

freeze-thawed and harvested onto glass fibre discs after a further 16 h. 

Unstimulated responder cells incorporated < 1000 cpm and irradiated 

stimulator cells < 200 cpm. 

Figure 4.3. 

Comparison of MLR stimulation by dendritic cell-enriched populations 

from Payer's patches and intestinal lamina propria. The experiment was 

performed as described in Figure 4.2. Closed triangles, Payer's patch 

dendritic cell-enriched populations; closed squares, lamina propria 

dendritic cell-enriched populations. 
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Figure 4.4. 

lmmunocytochemistry of lamina propria dendritic cell-enriched 

populations. Cytospin slides of dendritic cell-enriched populations from 

the lamina propria were (a) stained with a modified Giemsa stain (Diff­

Quik); or (b) incubated sequentially with TIB120 (anti-Class II MHC) 

antibody, biotinylated sheep anti-rat immunoglobulin and avidin-biotin­

peroxidase complex, developed with diaminobenzidine and 

counterstained. Dendritic cells were large irregular cells with oval or 

pleiomorphic nuclei. 
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Figure 4.5. 

Flow cytometric analysis of antigen expression by fibronectin-non­

adherent low density cells. The experiment was performed as in Figure 

4.1 using dendritic cell-enriched populations from C57BL/6 mice. Over 

70% of the cells expressed high levels of Class II M HC antigens. The cells 

were negative for surface immunoglobulin (using FITC-conjugated goat 

anti-mouse lgG) (not shown). 
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Figure 4.6. 

Fractionation of lamina propria dendritic cells from small or large intestine. 

Fibronectin-non-adherent cells from the small intestinal- (SI, squares) or 

large intestinal- (colon, inverted triangles) lamina propria were separated 

into low density ( < 1.068 g/ml, open symbols) or high density (> 1.068 

g/ml, closed symbols) fractions by centrifugation over a Nycodenz 

density gradient. Increasing numbers of cells were added to 2x1 o5 

purified mesenteric lymph node responder cells and the experiment was 

performed as described in Figure 4.2. 

Figure 4.7. 

Comparison of M LR stimulation by lamina propria and splenic dendritic 

cells. The experiment was performed as described in Figure 4.2. Closed 

squares, lamina propria dendritic cell-enriched populations (60-80% la+); 

closed diamonds, splenic dendritic cells; closed inverted triangles, equal 

numbers of splenic and lamina propria dendritic cells. 
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Flow cytometry of intestinal lamina propria macrophages and dendritic 

cells. Intestinal lamina propria fibronectin-adherent cells and fibronectin­

non-adherent, low density cells were incubated with an isotype-matched 

control (LP Mcp control) or with TIB120 (anti-Class II MHC antibody) (LP 

Mcp TIB 120 and DC TIB 120 respectively). The experiment was performed 

as described in Figure 4.1. The macrophages had low, but definite 

expression of Class II MHC antigens. The level of dendritic cell Class II 

MHC expression was at least one order of magnitude greater than the 

macrophages. 
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Micrograph 4.1 

Transmission electron micrograph of a murine intestinal lamina propria 

dendritic cell. The nucleus is irregular with a peripheral rim of 

heterochromatin and a small nucleolus. The cytoplasm contains 

scattered smooth vesicles with no evidence of phagolysosomes. Final 

magnification x 7,500. 

Micrograph 4.2 

Scanning electron micrograph of a murine intesinal lamina propna 

dendritic cell showing the characteristic cytoplasmic processes or veils. 

Final magnification x 6,700. 
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CHAPTER 5 

HUMAN INTESTINAL DENDRITIC CELLS 

"and he that seeketh findeth ." 

St Matthew 



5.1 INTRODUCTION 

The experiments reported in the preceding chapters demonstrate the 

presence of MLR stimulatory dendritic cells in the Peyer's patches and lamina 

propria of the murine small intestine, and, with more limited data, in the murine 

colon. In contrast, murine intestinal macrophages were shown to inhibit the 

function of the dendritic cells in vitro. 

The following chapter describes a method for the partial enrichment and 

characterization of human colonic M LR stimulatory cells. These cells have the 

morphological, phenotypic and ultrastructural features of dendritic cells. 

86 



5.2 MATERIALS AND METHODS 

5.2.1 Mucosal specimens 

Specimens of intestine were obtained from patients undergoing surgery 

for colorectal cancer (30 patients), Crohn's disease (2) and non-malignant/non­

inflammatory conditions (3), including diverticular disease (2) and ischaemic 

colitis (1 ). The results of histological examination of adjacent tissue were 

recorded. Mucosa was taken at least 5 cm from tumours. 

5.2.2 Disaggregation of intestinal mucosa 

Full thickness specimens of mucosa were obtained and transported to 

the laboratory in ice cold HBSS supplemented with penicillin (100 IU/ml) and 

gentamicin (50 mg/ml). Disaggregation of the tissue was initiated in all cases 

within 1 h of resection. Tissue was disaggregated using a method based on 

modifications [134] of Bull and Bookman's (1977) [56, 73] original method. 

Strips of mucosa (2-3 cm x 0.5 cm) were dissected free from the muscularis and 

incubated with continuous stirring in Wheaton flasks in calcium-magnesium free 

HBSS (CMF-HBSS) containing 20 mM HEPES (pH 7.4), penicillin, gentamicin 

and 0.75 mM EDTA at 370c for 60 min. The tissue was washed in CMF-HBSS 

with EDTA for 30 min periods until there was no increase in particulate matter 

between washes (4-5 washes). The strips of tissue were then washed once in 

CMF-HBSS without EDTA. The tissue was minced finely (2 x 2 mm) and 

incubated overnight with gentle stirring in RPM I 1640 (Flow Labs, Australia) 

containing 10% heat-inactivated FCS (CSL Melbourne), 2 U/ml purified colla­

genase (CLSPA type, Worthington Biochemical Corp, Freehold, NJ.), 5 U/ml 

DNase II (Calbiochem, San Diego, CA.), 100 IU/ml penicillin, 50 mg/ml 

gentamycin, 100 U/ml nystatin, 20 mM HEPES and 2 mM glutamine. The 

undigested tissue fragments were then allowed to settle and the digest filtered 

through four layers of surgical gauze supported in a sterile Buchner funnel. The 

cells were washed (400 g, 1 O min at 40c) and resuspended in RPMI 1640 with 
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10% FCS. For isolation of lamina propria mononuclear cells and removal of red 

cells, neutrophils and debris, the cells were layered on to a Ficoll-Paque 

(Pharmacia Fine Chemicals AB, Uppsala, Sweden) density gradient (1.077 g/ml) 

and spun at 400 g for 30 min at 40c. Interface cells were harvested and washed 

twice. Viability was assessed by the exclusion of 0.1 % Trypan blue. Cytospin 

slides were prepared using 1 x1 o5 cells in a Shandon cytocentrifuge (500 rpm, 5 

min) followed by fixation in methanol and staining in Diff-Quik. 

5.2.3 Fibronectin adherence and binding to human 1-globulin 

The method of fibronectin adherence was as described in Section 3.2.1 . 

Bacteriological grade plastic Petri dishes were prepared with normal 

human 1-globulin (CSL, Melbourne) using a modification of the technique of 

Young and Steinman (1988) [521]. Pooled human 1-globulin (5 ml; 1 O mg/ml) 

was added to 100 mm dishes for 30 min at 200c. The plates were washed and 

the lamina propria cell suspension added at a final concentration of 5-10 

x106 /ml. After incubation at 370c for between 30 min and 4 h, the non-adherent 

cells were removed and the plates washed twice with warm medium. Adherent 

cells were harvested using EDTA in RPMI as described in Section 3.2.1. 

5.2.4 Carbonyl iron phagocytosis 

The lamina propria cell suspension at 2-3x1 O 7 /ml was added to 4 mg 

carbonyl iron powder (Sigma, St Louis, MO) and mixed thoroughly. The cells 

were incubated at 370c for 30 min with occasional mixing. The test-tube 

containing the cells was placed in a magnet (Dynal AS, Oslo, Norway) for 10 min 

at 4°C. The cells in suspension were transferred to a second tube which was 

placed in the magnet for a further 10 min at 40c. The remaining cells were 

removed, washed and counted. 

5.2.5 AET-Sheep red cell rosetting of T lymphocytes 

A 4% solution of 2-aminoethylisothiouronium bromide (AET) (pH 9.0) was 

mixed with packed sheep red blood cells (1-1 O days old) in a 4: 1 ratio (vol/vol) 
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for 20 min at 370c. The mixture was resuspended at a final concentration of 4% 

sheep red cells and used fresh. 

Colonic cell suspensions at a concentration of 107 /ml were mixed with 

equal volumes of AET-sheep red cells at 4% and RPMI/FCS (final concentration 

15%). The cells were centrifuged at 300 g at 200c for 1 O min and left on ice for a 

minimum of 1 h. The cells then were resuspended gently, layered over Ficoll­

Paque and centrifuged at 600 g at 200c for 25 min. The cells at the interface (T 

cell-depleted) were washed and used in subsequent experiments. When 

required, the rosetted T cells in the pellet were obtained after lysing the sheep 

red cells with 0.5 ml sterile water and washing three times in complete medium. 

5.2.6 Density gradient centrifugation 

Density gradients used included Ficoll-Paque (Pharmacia, Uppsala, 

Sweden), Nycodenz Monocytes (Nyegaard, Oslo, Norway), Lymphoprep 

(Nyegaard) and Percell (Pharmacia) both as continuous and discontinuous 

gradients. Continuous gradients were generated by centrifuging isotonic solu­

tions of 40%, 45% and 50% Percell at 30,000 g for 15 min in a Beckman L5-65B 

ultracentrifuge using 6.5 cm cellulose nitrate tubes (Beckman). 

5.2. 7 lmmunocytochemistry 

The methods used were as described in Section 3.2.5, using monoclonal 

antibodies directed against human cell surface antigens (Table 5.1) and biotin­

ylated sheep anti-mouse immunoglobulin (Amersham, Amersham, UK). To 

inactivate endogenous peroxidase activity, some air-dried slides were treated 

with 0.1 % (vol/vol) hydrogen peroxide in methanol for 30 min at 200c. The 

slides were rehydrated with decreasing concentrations of ethanol in water (90%, 

70%, 50%) before blocking. The methods were otherwise unchanged. 

5.2.8 Flow cytometry 

The methods were as described in Section 3.2.6 using monoclonal anti­

bodies directed against human cell surface antigens (Table 5.1) and FITC-con-
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jugated, affinity-purified anti-mouse immunoglobulin (Silenus, Hawthorn, 

Victoria) at a dilution of 1 :200. 

5.2.9 Electron microscopy 

Cells were fixed in 2% glutaraldehyde in 0.1 M phosphate buffer, pH 7.4 

for 2 hand post-fixed in 1% osmium tetroxide in 0.1 M phosphate buffer, pH 7.4 

for 90 min. For scanning electron microscopy, samples were then dehydrated, 

critical point dried and gold coated, with micrographs taken on a Hitachi 7000 

scanning attachment. For transmission electron microscopy, samples were "en 

bloc" stained in 1 % aqueous uranyl acetate for 1 h, dehydrated and embedded 

in "Spurrs" resin. Micrographs were taken on a Hitachi 7000 electron micro­

scope. 

5.2.10 Mixed leucocyte reactions 

Responder cells were derived from buffy coats prepared from normal 

blood donors (Red Cross Blood Transfusion Service, ACT). 

The buffy coat was diluted 1 :2 with HBSS and underlaid with Ficoll-Paque. 

The cells were centrifuged at 600 g for 30 min at 40c and the interface harvested 

and washed twice. The cells were resuspended at 10-20x106 /ml in the super­

natant of the L243 hybridoma cell line (anti-Class II MHC) for 30 min at 40c, 

washed three times and the antibody-labelled cells removed by panning or 

complement lysis. The technique of panning was as described in Section 2.2.4 

except that the plates were treated with affinity-purified rabbit anti-mouse 

immunoglobulin G (Cappel, Cochranville, PA). For complement lysis, the peri­

pheral blood mononuclear cells prelabelled with primary antibody were resusp­

ended at a final concentration of 107 /ml and complement (Pel-Freez, Rogers, 

AR or Cedar Lane, Hornby, Ontario) was added at a final dilution of 1 :5. The 

cells were incubated for 30 min at 370c, washed, layered over Ficoll-Paque to 

remove dead cells (600 g at 200c for 20 min) and then washed three times. The 

same method was used for lamina propria cells. 
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Responder peripheral blood mononuclear cells were also prepared from 

buffy coats using the method of Warren (1981) [ 498]. Peripheral blood mono­

nuclear cells were cultured in a preparation of lymphokine (see below) for 3 days 

to expand the population of lymphokine-reactive cells. Centrifugation of the 

cultured cells on discontinuous Percell gradients yielded a low density fraction 

( < 1.0623 g/ml) that contained monocytes, blast cells and medium-sized 

lymphocytes, and high density fractions ( < 1.0659 and < 1.0689 g/ml) that 

contained only small lymphocytes. 

The lymphokine preparation was prepared by stimulation of human tonsil 

lymphocytes (2x1o7 /ml) with PHA (25-50 mg/ml) in serum-free medium [499]. 

After a 2 h incubation, the cells were washed free of unbound mitogen and incu­

bated for a further 17 h. The supernatant was harvested, concentrated, and kept 

at -2ooc for further use. 

Responder cells were frozen 1n RPMI containing 20% FCS and 20°/o 

DMSO (Malinckrodt, Paris, KY) and kept in liquid nitrogen until use. They were 

thawed on the day of use. 

Cultures were perfor111ed 1n triplicate in round-bottom 96-well plates 

(Linbro Flow Labs, McLean, VA). A constant number of responder cells 

(generally 2x1 o5 /well) was incubated with varying numbers of irradiated stimu­

lators from the colon (2,500 Rads). The reaction was carried out in a total 

volume of 0.2 ml of medium supplemented with 5% AB serum. After 4 days, 1 

µCi tritiated thymidine (Amersham, Surry Hills, NSW) was added to each well 

and the incubation continued for a further 16 h. The plates were freeze-thawed 

and the cells harvested automatically onto glass-fibre discs (Whatman, 

Maidstone, UK) using a cell harvester (Dynatech CH-103). Non-aqueous 

scintillant (0.5% 2,5-diphenyloxazole in xylene) (5 ml/vial) was added and the 

assays performed on a Packard Tri-Carb K60 counter. 
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5.2.11 Method for enrichment of colonic dendritic cells 

The most effective depletion of macrophages and maximum enrichment 

of dendritic cells was obtained using the following method: 

The colonic cell suspension was incubated on human 1- globulin coated 

plastic Petri dishes for 2-4 h at 370c. The non-adherent cells were removed, 

washed and then treated with carbonyl iron (4 mg/107 cells) as described 

above. The remaining cells were incubated in siliconized dishes at 5-1Ox106 

cells/ml in RPMI containing 5% heat-inactivated pooled human AB serum 

overnight. The cells were removed, washed, resuspended at 5-1Ox106 cells/ml, 

underlaid with Nycodenz Monocytes (Nyegaard) (density 1.068 g/ml) and 

centrifuged at 600 g for 20 min at 200c. The low density (dendritic cell-enriched) 

cells and high density (T cell-enriched) cells were washed twice, counted and 

the viability was assessed. 
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5.3 RESULTS 

5.3.1 Cell yields and the development of the methods 

Cell yields after Ficoll-Paque were 15±-12x106 / g tissue. Recovery repre­

sented 69.± 15% of the number applied. The amount of tissue obtained from 

surgical specimens ranged from 5-21 g. The final yield of dendritic cell-enriched 

populations was always < 2%. 

Initial attempts to enrich for MLR stimulatory cells involved overnight 

adherence to fibronectin-coated gelatinized flasks and density gradient 

centrifugation (Nycodenz Monocytes and Percell at various densities). It was 

evident that this method did not allow the effective separation of human colonic 

macrophages from dendritic cells. Examination of the cytospin preparations and 

electron micrographs (Micrograph 5.1) showed that the low density, non-adher­

ent cells contained low, but significant (5-10%), numbers of macrophages. 

Similarly, the fibronectin-adherent cell fraction contained dendritic cells. 

Each of the techniques described in the Methods Section was used in 

different sequences and combinations to try to obtain populations of cells max­

imally enriched for dendritic cells with minimal macrophage contamination. The 

procedures were monitored for their effectiveness in removing macrophages 

and enriching for dendritic cells mainly by examining cytospin preparations and 

immunocytochemical slides (assessing the proportion of Class II MHC + or 

25F9+ cells, see below). In later experiments, flow cytometry was also used. To 

date, the best isolation technique is as described in Section 5.2.11. 

Effective removal of macrophages required at least two procedures. The 

use of human -y-globulin to immobilize the macrophages permitted their 

harvesting and use in subsequent experiments. Adherence to plastic did not 

remove as great a proportion of macrophages, whilst adherence to fibronectin 

resulted in populations of macrophages containing significant numbers of 

dendritic cells. Macrophages not adherent to -y-globulin-coated dishes were 
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depleted by carbonyl iron phagocytosis. The use of carbonyl iron phagocytosis 

as the initial step precluded comparative studies of MLR stimulation. If 

performed on the third day of the isolation, this procedure was not as effective in 

depleting the cell suspension of macrophages. This may be because the 

macrophages had exhausted their phagocytic capabilities by ingesting the 

cellular debris during the isolation procedure. 

5.3.2 lmmunocytochemistry 

5.3.2.1 Adherent cells (macrophage-enriched) 

The majority ( > 90%) of fibronectin- or plastic-adherent cells with the 

morphology of classical macrophages had detectable Class II MHC antigens 

when studied with immunocytochemistry (Fig. 5.2a). The mature macrophage 

marker, 25F9, also labelled virtually all the macrophages (Fig. 5.2b). The other 

macrophage markers used, OKM 1 and Leu-M5 were either not detectable on 

intestinal macrophages or present on small numbers ( < 5%) only. lmmunohisto­

chemical studies of intestinal macrophages [170] and immunocytochemistry of 

populations of macrophages isolated from the colon [134] demonstrated similar 

findings. 

5.3.2.2 Low density non-phagocytic non-adherent cells (dendritic 

cell-enriched) 

Cells with dendritic cell morphology were labelled with the antibody to 

Class II MHC antigens (Fig. 5.3). The monoclonal antibody, Leu-M5, directed 

against the p150,95 antigen (CD11 c) weakly labelled dendritic cells in three of 

eight experiments in which it was used (Fig. 5.4). None of the other antibodies 

used stained dendritic cells. 

5.3.2.3 Inactivation of endogenous peroxidase activity 

Some cytospin slides (particularly the plastic-adherent and high density 

fractions) contained significant numbers of eosinophils with endogenous per­

oxidase activity. The use of hydrogen peroxide in methanol effectively inactivated 
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this activity and produced preparations with better preservation of cellular 

morphology. However, the use of this step was associated with a loss of staining 

intensity with the ABC technique. 

5.3.3 Flow cytometry 

5.3.3.1 Adherent cells 

When the human -y-globulin-adherent cells were analysed using forward 

and side scatter, two populations were demonstrated (Figs. 5.5, 5.6). The larger 

cells expressed high levels of Class II M HC antigens but did not have detectable 

macrophage, Tor B cell antigens (Fig. 5.5). These cells had much higher levels 

of background fluorescence (nonspecific primary and secondary antibody 

staining and autofluorescence) than the smaller cells (Fig. 5.6). The population 

of smaller cells consisted of mainly T and B cells and comprised < 25% of the 

total cell number. 

5.3.3.2 Low density non-phagocytic non-adherent cells 

The low density non-adherent non-phagocytic cells also consisted of two 

populations when analysed using forward and side scatter characteristics (Figs. 

5.7, 5.8). When fluorescence was plotted against size or forward scatter (Fig. 

5.9), it was apparent that the highly fluorescent cells were spread over a wide 

size range. In addition, almost all the remaining small cells expressed intermedi­

ate levels of Class II MHC determinants. 

Analysis of a gated population of large cells (Fig. 5. 7) demonstrated high 

level expression of Class II MHC antigens, with no detectable macrophage, Tor 

B cell marker expression. This population comprised 40% of the total cell 

number. 

When the smaller population was analysed (Fig. 5.8), the cells expressed 

T cell markers (OKT3 and OKT 4) with intermediate and high levels of Class 11 

MHC antigens. Markers expressed on macrophages and B cells were 

undetectable or expressed only on small numbers of cells. 
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5.3.3.3 AET-SRC rosetting cells 

The cells obtained by AET-rosetting consisted of a homogenous popul­

ation of lymphocytes (mainly CD4 +) expressing low-intermediate levels of Class 

II MHC antigens (Fig. 5.10). 

5.3.3.4 MLR responder cells 

The peripheral blood responder lymphocytes consisted of a homogenous 

population of T cells with a CD4 +:CDS+ ratio = 70:30 (Fig. 5.11 ). There was no 

detectable expression of Class II M HC antigens on the cells treated with L243 

and either complement lysis or panning. 

5.3.4 MLR stimulation 

In the initial experiments using fibronectin-adherence, greater MLR stimul­

atory activity was always found in the low density, non-adherent cells (Fig. 5.12). 

There was, however, significant activity in the adherent fraction. This suggested 

either that there was significant contamination with dendritic cells (as suggested 

by their presence in cytospin and immunocytochemical slides) and/or that 

macrophages had MLR stimulatory activity. In order to differentiate between 

these two possibilities, the effect of adding macrophages to dendritic cell­

enriched populations was studied and the activities of the separate populations 

was directly compared. 

When added to dendritic cell-enriched populations, human colonic 

macrophages neither inhibited nor potentiated MLR stimulation, either in the 

presence or absence of indomethacin (Fig. 5.13) . 

The direct comparison of dendritic cell-enriched populations (40% 

dendritic cells) with macrophage-enriched populations (> 75% macrophages), 

non-adherent colonic lamina propria cells ( < 1% dendritic cells) (Fig. 5.14) and 

high density cells ( < 5% dendritic cells) (Fig. 5.15) showed greatly enhanced 

MLR stimulatory activity in the dendritic cell population. A small cross-contami-
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nation with dendritic cells can explain the weak activity of the macrophage­

enriched population but the converse does not hold true. 
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5.4 DISCUSSION 

Cells with the morphology of veiled cells were first described in the human 

intestinal lamina propria in tissue obtained from patients suffering from inflamma­

tory bowel diseases [507, 508]. These cells, which were neither phenotyped nor 

functionally characterized, may have been tissue dendritic cells, and were found 

in greater numbers in inflammed bowel than in normal controls. 

Dendritic cells have been obtained from human tissues including peri­

pheral blood, synovial fluid, tonsils, thymus and the lung (See Section 1.2.3). 

The isolation of human dendritic cells was associated with many of the problems 

encountered in the mouse eg. low cell numbers and the absence of specific cell 

surface markers. Particular problems have been encountered using human 

tissues. For example, human dendritic cells are fibronectin-adherent, at least in 

the short-term [129], so this property did not permit their separation from 

macrophages. In addition, the function and viability of human peripheral blood 

dendritic cells appears to be sensitive to the toxic effects of complement [521]. 

Colonic dendritic cell function was affected by complement so this method could 

not be used for enrichment. The purest populations of human dendritic cells 

reported to date were obtained by highly sophisticated techniques, including cell 

sorting by negative selection using a broad range of monoclonal antibodies 

[149, 317]. 

Particular importance was placed on the development of a method to 

effectively deplete the colonic cell suspensions of mononuclear phagocytes. 

This was because of the demonstration of a suppressive effect of mouse intesti­

nal lamina propria macrophages (Chapter 3), and the observation that cell 

populations need to be depleted of monocytes to see the rapid development of 

large cell aggregates in the human MLR [118]. In addition, there is still some 

controversy about the antigen-presenting cell function of the human intestinal 

macrophage. Mahida et al (1988) [292] reported the association of antigen-
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presenting cell activity with intestinal macrophages. These cells were obtained 

using fibronectin-adherence so that it is likely that there was a significant propor­

tion of "contaminating" dendritic cells. These investigators used cell depletion 

experiments (panning with a monoclonal antibody directed against human 

monocytes, 3C10) to demonstrate that MLR stimulatory activity was diminished. 

The data (Table 2, [292]) show that panning with 3C10 reduced the MLR stimu­

latory activity of the treated population to 55% of an unfractionated cell popula­

tion. Although statistically significant, these results are higher than would be 

expected if the MLR stimulatory cell was 3C10 positive. The omission of impor­

tant data make the interpretation of the cell-depletion experiments difficult. For 

example, an assessment of the effectiveness of the macrophage depletion was 

not included in the results. In addition, the appropriate control (colonic cells not 

incubated with monoclonal antibody and then panned) was not available for 

comparison. 

In these experiments, the differentiation of dendritic cells from intestinal 

macrophages was difficult because of their shared properties. These included 

fibronectin-adherence (dendritic cells weakly), low density and the expression of 

Class II MHC antigens (dendritic cells > macrophages). This distinction could 

be made, however, using several criteria. Firstly, macrophages had a 

characteristic morphology with oval or round nuclei and basophilic cytoplasm 

which contained varying numbers and sizes of phagolysosomes (Micrographs 

5.1, 5.2); the nuclei of dendritic cells were oval or pleiomorphic whilst the 

cytoplasm contained, if any inclusions, only small vesicles (Micrographs 5.2, 

5.3). Secondly, when cytospin preparations were examined, the majority of the 

macrophages expressed the antigen labelled by the antibody, 25F9. (This 

marker was not readily detectable at flow cytometry because it labels a 

predominantly intracellular, rather than a cell surface, antigen [170].) This 

antigen was not detectable on dendritic cells using either method. Thirdly, 
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macrophages could be distinguished from dendritic cells by their electron 

microscopic features (Micrographs 5.1-3 and Frontispiece); and finally, dendritic 

cells were not adherent to human -y-globulin and were not phagocytic. 

Our results showed that low density, fibronectin-adherent cells were 

potent stimulators of the MLR (Fig. 5.12), but that there were, on morphological 

grounds, low, but functionally significant, numbers of dendritic cells. The 

addition of macrophage-enriched cells to a constant number of low density 

dendritic cell-enriched population, resulted in neither suppression nor 

enhancement of MLR stimulatory activity, either in the presence of, or the 

absence of indomethacin. This suggested that human intestinal macrophages 

played no role in MLR stimulation in spite of their high level expression of Class II 

MHC antigens. 

When direct comparisons were made between macrophage-depleted, 

low density cells and human -y-globulin-binding macrophages, the greater MLR 

stimulatory activity was associated with the former. The levels of maximal prolif­

eration and stimulator:response curves of the dendritic cell-enriched populations 

are comparable to those using purified populations of human tonsillar dendritic 

cells [149]. 

Examination of the data presented reveals variations in the absolute levels 

of MLR-induced stimulation. There are at least two explanations to account for 

these differences. Firstly, the stimulation depended on the degree of mis­

matching between different pairs of allogeneic stimulators and responders, and 

secondly, in the initial experiments (Figs. 5.12, 5.13), a foreign antigen (FCS) 

was introduced into the assay system. 

In summary, dendritic cells are the major stimulators of the MLR in the 

human colonic lamina propria. Intestinal macrophages, in spite of expressing 

high levels of Class II MHC antigens, have no effect on MLR stimulation in vitro. 
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TABLE 5.1 

Monoclonal Antibodies Used in Human Experiments 

Name Determinant recognized Class Reference 

L243 Class II MHC, monomorphic lgG2a J lmmunol 1980; 

125:293 

25F9 Monocyte, macrophage lgG1 J lmmunol 1985; 

antigen 134: 1487 

OKT1 T cells lgG1 Proc Natl Acad Sci 

USA 1980; 77: 4914 

OKT3 CD3 lgG2a Proc Natl Acad Sci 

USA 1980; 77: 4914 

OKT4 CD4 lgG2b Proc Natl Acad Sci 

USA 1980; 77: 4914 

OKTB CDS lgG2a Proc Natl Acad Sci 

USA 1980; 77: 4914 

OKM1 CD11b lgG2b Proc Natl Acad Sci 

USA 1980; 77: 4914 

Leu M5 CD11c lgG2b Blood 1985; 65: 974 

Leu11b CD16 lgG1 Proc Natl Acad Sci 

USA 1985; 82: 1766 

All antibodies were mouse-derived 



LEGENDS TO FIGURES 

Figure 5.1 

Human colonic lamina propria macrophages. Cytocentrifuge slide of 

human colonic -y-globulin-adherent cells stained with Diff-Quik (modified 

Giemsa stain) (x 630). 
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Figure 5.2 

lmmunocytochemistry of colonic macrophages. Cytocentrifuge slides of 

-y-globulin-adherent cells were air-dried overnight and stained with (a) 

L243 (anti-Class II MHC) ; and (b) 25F9 (anti-macrophage), using the 

method described in Section 3.2.5. Inactivation of endogenous 

peroxidase using 0. i % H2o2 in methanol was not performed (x 630). 
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Figure 5.3 

lmmunocytochemistry of low density, non-phagocytic, non-adherent 

colonic lamina propria cells. The technique was performed as described 

for Figure 5.2. The monoclonal antibodies used included (a) and (b) L243 

(anti-Class II MHC) (x 1000); and (c) Leu-M5 (anti-CD11c) (x 400). Note 

the irregular nuclear morphology and the tendency to form clusters with 

lymphocytes. 
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Figure 5.4 

lmmunocytochemistry of low-density, fibronectin-non-adherent cells. The 

methods are as described in Figure 5.2 using 25F9 (anti-macrophage). 

The 25F9 + macrophages are readily discernable in the cell preparations. 

The antibody did not stain the cells with the irregular nuclear morphology 

and was used to assess the degree of macrophage contamination. (x 

400). 





Figure 5.5 

Flow cytometry of human colonic 1-globulin-adherent cells: Analysis of a 

gated population of large cells. Adherent cells were incubated with no 

antibody ( control) or the specified antibody, then washed and labelled 

with FITC-conjugated sheep anti -mouse lgG and analysed by flow 

cytometry (5000 events). The abscissae represent forward scatter (linear 

scale, arbitrary units) or fluorescence intensity (logarithmic scale, arbitrary 

units) as indicated . The ordinate axes represent side scatter (linear scale, 

arbitrary units) and cell number (linear scale, arbitrary units). The gated 

population comprised > 75% of the total numbers analysed. These cells 

expressed high levels of Class 11 M HC antigens but did not express any 

other markers. These are the same cell populations as illustrated in 

Figures 5.1 and 5.2. 
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Figure 5.6 

Flow cytometry of human colonic -y-globulin-adherent cells: Analysis of a 

gated population of small cells. The experiment was performed as 

described in Figure 5.5. The gated population comprised 16% of the total 

cell number analysed. These cells were mainly T cells (OKT3 +) with a 

subpopulation of B cells (Leu 16 +). 
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Figure 5.7 

Flow cytometry of human colonic low density non-adherent cells: Analysis 

of a gated population of large cells. Low density non-phagocytic non­

adherent human colonic lamina propria cells were incubated with no 

antibody ( control) or the specified antibody. Fluorescence labelling was 

performed as described in Figure 5.5. The gated population comprised 

40% of the total cell number analysed. All these cells expressed high 

levels of Class II M HC antigens. 
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Figure 5.8 

Flow cytometry of human colonic low density non-adherent cells: Analysis 

of a gated population of small cells. The experiment was performed as 

described in Figure 5. 7. The gated population comprised 40% of the total 

cell number analysed. A significant subpopulation of these cells were 

OKT3 + and OKT4 +. Double staining was not performed, but it is likely 

that these cells also expressed intermediate levels of Class II MHC 

antigen (see Figure 5.10). The T3- cells may be expressing high levels of 

Class II MHC antigens and may be small dendritic cells (see also Figure 

5.9). The cells were not Leu16 + (B cells). 
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Figure 5.9 

Flow cytometry of human colonic low density non-adherent cells: Dot-plot 

of fluorescence against forward scatter (cell size). The experiment was 

performed as described in Figure 5.7. The abscissae represent 

fluorescence intensity (logarithmic scale, arbitrary units) and the ordinate 

axes forward scatter (linear scale, arbitrary units). In the top graph, the 

cells were labelled with an isotype-matched control as described in Figure 

5.7, and 5,000 events analysed. The bottom graph represents labelling 

with L243 (anti-Class II MHC). The events with high fluorescence intensity 

spanned a wide range of sizes from very large (which may represent cell 

clusters) to a size approximating that of a lymphocyte. The smaller cells 

(lymphocyte size) expressed intermediate levels of L243 when compared 

to the isotype-matched control. 
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Figure 5.10 

Flow cytometry of human colonic lamina propria cells obtained by 

rosetting with AET-treated sheep red blood cells. The experiment was 

performed as described in Figure 5.5. The cells are a homogenous 

population of CD3 + cells expressing low-intermediate levels of Class II 

MHC antigens. The expression of all other markers was similar to that of 

the control (no primary antibody). 
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Figure 5.11 

Flow cytometry of responder human peripheral blood lymphocytes. 

Peripheral blood lymphocytes were incubated with L243 (anti-Class II 

MHC), washed and then "panned" to remove cells expressing Class II 

MHC antigens. The remaining cells were incubated with no antibody 

(control) or the specified antibody, washed and then labelled with FITC­

conjugated sheep anti-mouse immunoglobulin. The abscissae represent 

fluorescence intensity (logarithmic scale, arbitrary units) and the ordinate 

axes, cell number (linear scale, arbitrary units). The proportion of cells 

expressing each marker is indicated. (The cut-off was chosen by 

selecting a level of fluorescence intensity at which less than 5% of the 

control cells were positive.) 
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Figure 5.12 

MLR stimulation: Comparison of high- and low-density non-adherent 

intestinal lamina propria cells with fibronectin-adherent cells in the 

presence and absence of indomethacin. The abscissa represents 

increasing numbers of low-density (squares) and high-density (circles) 

non-adherent cells and fibronectin-adherent cells (triangles) that were 

incubated in the presence ( closed symbols) and absence ( open symbols) 

of indomethacin (2 µg/ml). Intestinal lamina propria cells were added to 

2x105 peripheral blood cells from an unrelated donor. After 4 days, 1 µCi 

of [3H]-thymidine was added to each microculture and the cells freeze­

thawed and harvested onto glass-fibre discs after a further 16 h. 

Unstimulated responder cells and control stimulator cells incorporated 

< 1000 cpm. The values are the means ± SEM of triplicate assays. The 

absolute yields of high-density, adherent and low density cells in this 

experiment were 50x106, 2x106 and 2.5x106 respectively. Assuming 

relative activities of 1: 10:50 from the graph, this indicates that 26%, 10% 

and 64% of the total activity was present in the respective fractions. 

Figure 5.13 

MLR stimulation: The effects of adding intestinal macrophages. The 

experiment was performed as described in Figure 5.12. Increasing 

numbers of human colonic macrophages (enriched by fibronectin­

adherence) were added to 2x1 o5 peripheral blood responder cells 

cultured with 5x1 o4 low-density non-adherent lamina propria cells in the 

presence (closed symbols) or absence (open symbols) of indomethacin 

(2 µg/ml). 
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Figure 5.14 

MLR stimulation: Comparison of high- and low-density lamina propna 

cells using two different responder cell populations. The experiment was 

performed as described in Figure 5.12. Increasing numbers of high­

density (circles) and low-density (squares) cells were added to 2x105 

peripheral blood cells obtained by panning with L243 (anti-Class II MHC) 

(open symbols) or using the method of Warren (1981) [498] (closed 

symbols). 

Figure 5.15 

MLR stimulation: Comparison of non-adherent lamina propria cells with 1-

globulin adherent cells and low-density, non-phagocytic, non-adherent 

cells. The experiment was performed as described in Figure 5.12. 

Increasing numbers of non-adherent lamina propria cells (inverted trian­

gles), 1-globulin adherent cells (triangles) and low-density, non­

phagocytic, non-adherent cells (squares) were added to 1x105 peripheral 

blood responder cells (obtained using the method of Warren, 1981 

[498]). 
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Micrograph 5.1 

Transmission electron micrograph of the low density cells prepared by 

density gradient centrifugation (Nycodenz Monocytes, density 1.068 

g/ml) of a single cell suspensio~ of human colonic lamina propria cells 

(from which macrophages had not been removed). In the low density 

fraction there are populations of both macrophages, which contain 

numerous phagolysosomes ( electron-dense and electron-lucent vesicles) 

of various sizes, and dendritic cells which are smaller, have an irregular 

nucleus with a peripheral rim of heterochromatin and do not contain 

phagolysomes. Final magnification x 3,600. 

Micrograph 5.2 

Transmission electron micrograph of an intestinal lamina propna 

macrophage. Final magnification x 5,900. 
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Micrograph 5.3 

Transmission electron micrograph of human colonic lamina propna 

dendritic cells demonstrating irregular nuclei, the absence of 

phagolysosomes and the irregular cytoplasmic processes. Final 

magnification x 13,000. 





CHAPTER 6 

DISCUSSION 

"The more we study, we the more discover our ignorance." 

Scenes from "The Magico Prodigioso of Calderon" 

Percy Bysshe Shelley (1792-1822) 



6.1 INTRODUCTION 

The study of the host response to foreign antigens has, for many years, 

bypassed the mucosal immune system. This has been both in the physical 

sense, by the direct inoculation of antigen into host tissues, and in terms of 

research interest, although there has been greater interest in the last two 

decades. 

Most environmental antigens are encountered during or after their 

passage through an epithelial barrier eg. the epidermis and dermis of the skin 

and the laminae propriae of the respiratory, gastrointestinal or genitourinary 

tracts. Each of these sites is a unique microenvironment. For example, the 

intestinal lamina propria surrounds a lumen containing a wide array of ingested 

food antigens proximally, while distally, there is passive diffusion of bacterial 

breakdown products, including LPS, through the lamina propria [385]. In spite of 

these differences, there are many similarities between the mucosa-associated 

lymphoid tissues (MALT), which are often classified as a unified system. Two 

responses, in particular, are characteristic of the mucosal route of exposure to 

most antigens - the preferential induction of T cell tolerance and/or lgA antibody 

production. These responses result in minimal inflammation and the ability of the 

epithelial barrier to subserve specific functions, eg. gas transfer, the absorption 

of nutrients, electrolytes and water, etc. When these responses are deranged, 
11 hypersensitivity11 diseases (eg. gluten-sensitive enteropathy, hypersensitivity 

pneumonitis, inflammatory bowel disease, etc.) may result. 

The main conclusions drawn from the experiments described 1n this 

thesis are that: 

(a) the intestinal lamina propria contains small, but significant numbers of 

antigen-presenting dendritic cells; and that 
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(b) intestinal macrophages are found predominantly in the non-Peyer's 

patch lamina propria and may oppose the effects of dendritic cells 

on T cell activation. 

In addition, the migration of monocytes into the intestinal lamina propria 

may result in differentiation into macrophages with a characteristic phenotype, 

and possibly, function. Other workers have suggested that dendritic cell 

functions are also affected by their environment (see below). 

This discussion will focus on the role of dendritic cells and macrophages 

in the induction of T cell activation and show how they may participate in the 

regulation of mucosa! immune responses in the gut. Particular points to be 

addressed include the unique properties of these cells in the intestinal lamina 

propria; their role in antigen handling; and mechanisms by which they may 

control T cell-mediated immune responses, with the consequent induction of 

either oral tolerance, specific mucosal protection or, rarely, chronic inflamma­

tion. 

Several excellent and more comprehensive reviews of intestinal immune 

responses have been published [36, 61, 105, 310, 350, 518] and the reader is 

referred to these for consideration of other aspects of intestinal immunity. 
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6.2 INTESTINAL MACROPHAGES - EFFECTS OF THE 

MICROENVIRONMENT 

Intestinal macrophages, like other tissue macrophages, are a hetero­

geneous population of cells [ 482]. Studies of their turnover have shown that 

peripheral blood monocytes migrate into tissues where they differentiate into 

tissue macrophages [ 482]. In the intestinal lamina propria, this process presum­

ably occurs in response to antigenic stimuli (including bacterial lipopoly­

saccharide {LPS}) and the components of the immune system, particularly the 

cytokines (eg. IFN-1 and GM-CSF). As a result of these complex interactions, 

macrophages can secrete any number of a wide range of secretory products 

[346], including substances which enhance immune responses eg. interleukin 1 

(IL-1 ), or which are immunosuppressive eg. prostaglandin E2 (PGE2). Although 

E-type prostaglandins are often regarded as being pro-inflammatory [eg. 284], 

analysis of many of their effects suggests a suppressive function, eg. the inhibi­

tion of cytokine-inducible Class II M HC expression [ 4 7 4, 488], the inhibition of T 

cell activation and down-regulation of the transferrin receptor by effects on 

protein kinase [87], the suppression of macrophage IL-1 activity [326], the 

inhibition of NK cell activity [127] and its effects on suppressor T cell induction 

[reviewed in Section 3.4]. Thus, at any point in time, the intestinal lamina propria 

contains macrophages, at varying stages of differentiation, presumably 

attempting to eliminate absorbed antigens or invasive microorganisms. In 

contrast to this postulated role of macrophages, the observations reported 

above suggest that activated intestinal macrophages suppress T cell responses. 

Are these two roles compatible? 

Before considering this point, another problem should be addressed, 

namely, can in vitro findings be extrapolated to the in vivo situation? Attempts to 

do so should always be made with great caution, since there are many 
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confounding factors, eg. the activation or selection of subsets of cells, or the 

disturbance of cellular function by the disaggregation process. 

In the lung, a situation similar to that of the intestine pertains. Alveolar 

macrophages in vitro down-regulate responses in an indomethacin-sensitive 

prostaglandin-mediated manner [116, 117, 163, 326]. Evidence that alveolar 

macrophages suppress pulmonary immune responses in vivo was provided by 

Thepen et al (1989) [470]. Alveolar (but not interstitial) macrophages were effect­

ively removed from the lungs of mice by the intratracheal instillation of liposomes 

containing dichloro-methylene-diphosphonate. Subsequent intratracheal 

administration of antigen resulted in enhanced pulmonary immune responses 

(plaque-forming cell assays) suggesting that elimination of alveolar 

macrophages abrogated their normally suppressive role. 

It is reasonable to assume, therefore, that intestinal macrophages also 

play a predominantly suppressive role in vivo. The question again arises, can 

intestinal macrophages effectively eliminate foreign antigens and have a moder­

ating effect on T cell responses? In teleological terms, it would be in the best 

interests of the host to minimize the adverse effects on absorptive function that 

may arise from the amplification of immunological responses to commonly 

encountered luminal antigens, eg. LPS. 

Some insights into this problem are provided by studies examining 

intestinal mononuclear cell responses to, and production of, various cytokines. 

Both GM-CSF and IL-1 are produced constitutively by the cells of the 

human colonic lamina propria [293, 380]. The basal low-level production of IL-1 /3 

by control colonic intestinal mononuclear cells was unaffected by exposure to 

LPS [293]. Mononuclear cells obtained from specimens resected from patients 

with inflammatory bowel disease, however, responded to LPS with increased IL-

1 /3 production. This observation was interpreted as suggesting that the IL-1 tr 
producing activated macrophages were derived from circulating monocytes and 
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implies that monocytes become refractory to the effects of LPS as they differen­

tiate into intestinal macrophages. Another interpretation is that refractory 

macrophages regain their sensitivity to LPS in response to cytokines produced 

by the lamina propria cells in inflammatory bowel disease. In both cases, it can 

be argued that intestinal macrophages are refractory to the effects of LPS in the 

normal colon. 

The use of in situ hybridization to detect IL-1o and IL-1 ~ m-RNA 

producing cells in the mouse intestine demonstrated only scattered positive cells 

in the stroma of intestinal villi and in the interfollicular areas of Peyer's patches 

[ 466]. These observations indicate either that the sensitivity of the assay was not 

great enough to detect low level production of IL-1 m-RNA and/or that there is a 

small subpopulation of intestinal macrophages producing the background levels 

of I L-1. These cells may be newly-arrived monocytes which respond to the 

environmental stimuli (eg. LPS, cytokines, etc), differentiate and become 

activated before they lose responsiveness to these signals and produce net 

negative effects on immune responses. In any case, there is evidence that 

intestinal macrophages have blunted responses to agents that normally result in 

activation. 

The mechanisms by which the responses are down-regulated are 

unknown, but a parallel may be drawn with the responses of murine peritoneal 

macrophages to GM-CSF [154]. Short-term incubation with GM-CSF primed 

macrophages for IFN--y+LPS-stimulated TNF0 release. In contrast, prolonged 

incubation with GM-CSF resulted in a markedly reduced responsiveness to IFN­

'Y + LPS, an effect which was probably PGE2-mediated. Thus, incubation of 

macrophages with GM-CSF resulted in the sequential generation of two 

products mediating activation and then suppression of immune responses. In 

this autoregulatory circuit, PGE2 limited GM-CSF-induced macrophage activa-
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tion. LPS also primes macrophages for prostaglandin production [5], indicating 

the presence of multiple mechanisms of negative feedback control. 

These processes are presumably affected by many other factors, but do 

argue for the presence of mechanisms to explain the apparently contradictory 

properties of the intestinal macrophage in vivo, namely, the effective elimination 

of invasive or particulate antigens, and the maintenance of a suppressive effect 

on the recruitment of other effector arms of the immune response. 
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6.3 DENDRITIC CELL FUNCTION IN THE INTESTINAL LAMINA 

PROPRIA 

In contrast to the postulated inhibitory effect of intestinal macrophages in 

vivo, the experimental data reported above suggest that dendritic cells stimulate 

T cell responses. In vitro, this was measured by the induction of T cell prolifera­

tion in the allogeneic MLR. Mesenteric lymph node cells were chosen as 

responder cells in order to simulate the conditions in the lamina propria as 

closely as possible, bearing in mind the known organ-specific trafficking of T 

lymphocytes [74, 199, 344, 455]. In terms of MLR stimulatory function, no differ­

ences could be demonstrated between enriched populations of dendritic cells 

obtained from the spleen, from the lamina propria and from Peyer's patches. 

This is in contrast to the potentiation of M LR stimulatory ability observed follow­

ing the culture of Langerhans cells with IL-1 and GM-CSF (See Discussion 

Chapter 4). It is likely that these disparities are a reflection of the factors affecting 

differentiation at varying sites, and suggests that intestinal dendritic cells are 

constantly exposed to antigen, IL-1 and GM-CSF. 

The demonstration that intestinal dendritic cells preferentially induce lgA 

secretion indicates that intestinal dendritic cells have other properties related to 

their environment. Spalding et al (1984) [ 434, 435] showed that successful 

induction of polyclonal lgA secretion by either Peyer's patch or splenic B cells 

was dependent upon their interaction with Peyer's patch-derived (but not 

spleen-derived) dendritic cell-T cell mixtures. These observations raised the 

possibility that Peyer's patch dendritic cells had special properties leading to the 

preferential induction of lgA secretion. Subsequent work [432] supported the 

hypothesis that the isotype of antibody secreted and the extent of pre-B cell 

differentiation was dependent on the lymphoid tissue source of dendritic cells 

(but not T cells). (These results need confirmation using purified populations of 

dendritic cells. In the experiments reported above, the degree of Peyer's patch 
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dendritic cell enrichment was not reported, but was presumably around 60% 

[ 433]. It is possible that the small numbers of intestinal T cells present in the 

"Peyer's patch dendritic cell" populations directed isotype switching to lgA. This 

result is possible because of the potent activity of transforming growth factor-,B 

(TGF ,a) in inducing lgA isotype secretion by LPS-stimulated B lymphocytes [89]) . 

On the other hand, immunoglobulin subclass and isotype secretion is 

also known to be regulated by subsets of T cells [218] with characteristic profiles 

of cytokine production [153, 328]. The final arbiters of the differential regulation 

of antibody production [eg. 89, 429, reviewed in 364, 452] are likely to be these 

T cell-derived products. 

Spalding and Griffin (1986) [ 432] suggested possible mechanisms to 

explain the observed interactions between dendritic, T and B cells. Firstly, 

Peyer's patch dendritic cells may selectively bind, from a heterogeneous 

population, subsets of T cells that would preferentially induce lgA secretion. 

Alternatively, dendritic cells may bind T cells nonselectively, but would then 

induce activation and differentiation of T cells into isotype-specific helper cells 

capable of providing the signals for antibody production. 

In summary, Peyer's patch dendritic cells appear to regulate B cell 

differentiation and preferentially induce lgA secretion. The final steps in this 

regulatory pathway involve the production of specific cytokines by T cell 

subsets. The early stages (the differentiation of dendritic cells in the intestinal 

lamina propria) may be the consequence of the interaction of dendritic cells with 

tissue-specific receptors and/or the effects of locally generated cytokines. The 

result is dendritic cells with properties determined by their environment - in the 

case of the intestine, fully immunocompetent dendritic cells. 
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Having considered the unique properties of intestinal macrophages and 

dendritic cells, I will now consider the role of these cells in intestinal antigen 

handling. 
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6.4 INTESTINAL LAMINA PROPRIA ANTIGEN UPTAKE 

Intact particles, macromolecules and soluble antigens are taken up from 

the intestinal lumen and transported into the lamina propria [31, 500, Section 

1.1.3, reviewed in 310, 350, 517]. The fate of such antigen and the subsequent 

generation of an immune response probably depends on many factors including 

the nature of the antigen itself, a history of previous exposure, the amount and 

frequency of antigen administration and various host factors. Inert particles can 

gain access to the systemic circulation and can be gradually excreted without 

initiating any immune responses at all [reviewed 350]. Most antigens are 

presumably taken up by lamina propria macrophages and dendritic cells - the 

resultant immune response is considered below. 

The various means by which antigens gain access to the lamina propria 

include: 

(a) non-specific uptake of antigens between epithelial cells, presumably 

associated with leaking intercellular tight junctions; 

(b) persorption, ie. the passage of macromolecules or small particulate 

antigens into the lamina propria by kneading between epithelial 

cells - a consequence of normal intestinal motility; 

(c) villus uptake of antigen via the exclusion zone. The villi undergo cycles 

of contraction and relaxation which are associated with the extru­

sion of cells from the villous tip. Uptake of antigen through gaps 

between epithelial cells occurs during the relaxation phase; 

(d) active uptake of antigen through the epithelial cell by non-specific 

endocytosis or by receptor-mediated uptake. Intracellular process­

ing may also result; and 

(e) transportation through the membranous epithelial (M) cell into the 

underlying Peyer's patch. 
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6.4.1 M cells in antigen handling 

[reviewed in 430, 517] 

The M cell acts as a conduit for the transportation of luminal antigens, 

including viruses and bacteria, to the extracellular space. These cells form part 

of the epithelial layer overlying intestinal follicles and can be distinguished from 

absorptive cells by their lack of a well-developed brush border, their decreased 

height and their proximity to the underlying lymphoid cells (which are often found 

in an indentation of the M cell cytoplasm called the "central hollow"). 

Macromolecules and micro-organisms shown to be transported to the 

underlying lamina propria include ferritin, horseradish peroxidase, wheat germ 

and other agglutinins, cholera toxin, reovirus types 1 and 3, mycobacteria, 

chlamydiae, Vibrio cholera and Cryptosporidium [517]. There is some evidence 

to suggest that the virulence of microorganisms is determined by the ability of M 

cells to take up and transport organisms to the subepithelial lymphoid tissue 

[ 430]. For example, for organisms that need to pentrate the mucosa to initiate 

infection (reovirus, poliovirus, Mycobacterium tuberculosis, salmonella) trans­

location to the lamina propria is a positive virulence factor. On the other hand, 

for non-invasive organisms which colonize the mucosal surface, eg. the RDEC-1 

strain of enteroadherent E. coli, M cell transportation may result in the initiation 

of immune responses and prevention of such colonization and/or elimination of 

the pathogenic organism. For these organisms, virulence requires a mechanism 

of adherence to the absorptive or M cell in the absence of pathways for trans­

location. 

Because of the proximity of the M cell to the underlying lymphoid tissue, 

immunological processing of luminal antigens and microorganisms is facilitated. 

The factors governing the adherence and transportation of antigens to the M cell 

is not known, nor is it known whether there is one or a number of pathways, nor, 

indeed whether antigens undergo processing within the M cell. It is conceivable 
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that these factors may influence the nature of the subsequent immune response. 

Alternatively, the M cell may play a purely passive role with the underlying 

lymphoid cells determining the outcome. 

6.4.2 Antigen handling by intestinal macrophages and dendritic 

cells 

What is the fate of the absorbed antigens? At least four possibilities exist. 

Firstly, the antigens may be completely degraded in situ eg. by the enzyme 

systems of resident or elicited macrophages. Another possibility is that 

macrophages sequester antigen in an inactive form and are either extruded into 

the gut lumen or migrate to, and become resident in an inactive site, eg. the 

draining lymph nodes or subserosal area. A third possible consequence is the 

release of either undegraded or partly degraded antigens into the surrounding 

tissue and subsequent uptake and presentation to T cells by dendritic cells. 

Finally, dendritic cells may directly take up antigens which are presented to T 

cells, either in situ or after migration to the draining nodes. 

This discussion is concerned primarily with the role of macrophages and 

dendritic cells in the regulation of T cell responses so their role in the degrada­

tion of absorbed antigens will not be considered. This and other important 

aspects of intestinal and other tissue macrophage function (eg. secretion of 

oxygen free radicals, neutral proteases and lysosomal enzymes) have been 

reviewed extensively elsewhere [155, 171, 262, 310, 391, 468, 480]. 

Both murine and human intestinal macrophages had evidence of pre­

vious phagocytic activity (Chapters 3 and 5). Large vacuoles (presumed phago­

lysosomes) were present and the expression of the monoclonal antibody, 25F9, 

on human macrophages strongly suggested previous endocytic activity [170]. 
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They also had features of "activation", a process which is associated with 

enhanced phagocytosis. These included the expression of Class II MHC 

antigens and the down-regulation of F c and complement receptors in both 

species, and the down-regulation of the F4 /80 antigen in the mouse (Chapters 3 

and 5). Although not examined in this work, others have shown that F c 

receptors are not normally expressed on macrophages in the human colon in 

vivo [291] and that expression increased with time in culture [513]. 

Absorbed antigens are more likely to be taken up by macrophages than 

by other cells because of their numerical superiority (10% of disaggregated 

lamina propria cells vs < 1 % dendritic cells). What then is the fate of these 

phagocytosed antigens? A potential mechanism for their removal may be by the 

shedding of antigen-laden macrophages into the intestinal lumen. The presence 

at immunohistochemistry of large numbers of macrophages with evidence of 

prior phagocytosis in the subepithelial regions of the colonic mucosa [170] is 

consistent with such a mechanism. Other supportive evidence is reviewed by Le 

Fevre et al (1979) [262] and includes the migration of latex-containing 

macrophages from Peyer's patch to the tips of nearby villi and their possible 

extrusion. This process is analogous to the migration of waste-laden 

macrophages from the lungs via the mucociliary elevator system. 

Another possible destination of antigen-laden macrophages is the drain­

ing lymph nodes. This pathway has been described in the intestine [263, 303] 

and the lung [148]. In a guinea pig model of melanosis coli, apoptotic bodies 

derived from surface intestinal epithelial cells were phagocytosed by intra­

epithelial macrophages and transported into the lamina propria [ 497]. These 

macrophages passed through fenestrations in the surface epithelial basement 

membrane, accumulated progressively in the lamina propria, entered the sub­

mucosa and finally migrated to the regional lymph nodes. This migration path­

way is analogous to the translocation of inert particles from alveolar spaces to 
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draining nodes in the lung [148] and need not be associated with active inflamm­

ation. 

The presence of bacterial antigens in association with veiled cells in the 

intestinal afferent lymph [311] suggests that dendritic cells transport antigen 

from the intestinal lamina propria in the same way that Langerhans cells migrate 

from the skin to its draining nodes. It is not clear whether these antigens are 

taken up by dendritic cells directly or indirectly after processing by 

macrophages. These and other aspects of dendritic cell-macrophage interaction 

need to be examined further. 

In summary, antigen once present in the lamina propria is taken up by 

macrophages and/or dendritic cells. It may be degraded in situ, eliminated by 

passing into the intestinal lumen within macrophages, or carried to the draining 

nodes by dendritic cells or macrophages. The subsequent reactions may be an 

active immune response, a null response or immunosuppression. The relative 

proportion of antigen eliminated from the intestinal lamina propria by each mech­

anism and the significance of each in the regulation of immune responses has 

yet to be determined. 

Having considered the properties of macrophages and dendritic cells in 

the unique environment of the intestinal lamina propria and their possible partici­

pation in lamina propria antigen handling, I will now review their roles in the reg­

ulation of immune responses following antigen exposure. In particular, I will try to 

relate their properties to the possible outcomes in the gut, namely, the induction 

of oral tolerance, the generation of T cell-mediated or B cell-mediated 

(predominantly lgA) responses or the development of hypersensitivity reactions. 
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6.5 ORAL TOLERANCE 

"Oral tolerance" is a state of specific immunological unresponsiveness 

induced by prior oral administration of antigen [330, reviewed in 81, 85]. In 1829, 

Dakin reported that South American Indians ate poison ivy leaves in an attempt 

to prevent contact hypersensitivity reactions to the plant [ cited in 330]. This 

observation raised the possibility that the oral ingestion of an antigen could 

modify subsequent systemic immune responses. This phenomenon was further 

explored this century following the studies of Beredska, Wells, Osborne and 

Chase which showed that feeding proteins to experimental animals could inhibit 

systemic responses (anaphylaxis and contact hypersensitivity) to the same 

antigens [reviewed in 330]. 

Oral tolerance induction affects various immune parameters including 

helper T cell function, T cell proliferation, delayed-type hypersensitivity and T­

dependent specific antibody production [85]. B cells themselves are potentially 

reactive as shown by studies bypassing the requirement for helper activity eg. 

by removing T cells and stimulating B cells with antigen plus LPS [335] or by the 

in vivo administration of T-independent antigens [471]. 

Several lines of evidence suggest that there are different mechanisms by 

which oral tolerance can be induced. In particular, the time course of induction 

of oral tolerance and the responses of different arms of the immune response 

vary. For example, feeding the antigens, ovalbumin [85] and gliadin [ 4 75], 

resulted in the dose-dependent suppression of both cell-mediated and humoral 

immune responses. In contrast, feeding cholera and related toxins, inhibited 

delayed-type hypersensitivity responses whilst having no effect on the genera­

tion of specific antibody [220]. Even when only one protein antigen is studied, 

for example, ovalbumin, variations in the duration of tolerance for cell-mediated 

and humoral immunity [ 457] and differences in the doses required to induce 
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tolerance in the effector arms of the immune response [334] imply that there are 

different means of generating systemic hyporesponsiveness. 

Mechanisms which have been suggested include antigen-processing 

[68], the generation of circulating antibodies [205], antigen-antibody complexes 

[eg. 14] or suppressive serum factors [304], and both T and B suppressor cells 

[reviewed in 220, 330]. Both MHC-influenced [331] and non-MHC-linked [205, 

257,304] mechanisms have been described. 

Intestinal handling of antigen plays an important role. In the early phase of 

oral tolerance induction, a serum factor, which passively transfers antigen­

specific oral tolerance for T cell- (but not B cell-) mediated immune responses to 

syngeneic recipients, can be identified one hour after feeding [67, 68, 220, 458]. 

Studies of the nature of this factor using ovalbumin suggest that the protein 

undergoes some form of subtle immunochemical modification resulting in 

antigenic material similar in size to native ovalbumin and reactive with anti­

ovalbumin antibodies [68]. Although removal of these immunoreactive 

ovalbumin antigens abrogated oral tolerance induction [68], modifications of the 

protein structure are likely to be more important than the quantity of unchanged 

antigen absorbed since: (i) serum levels of ovalbumin were unrelated to the 

development of tolerance [69] and; (ii) the parenteral administration of 

ovalbumin in a range of doses did not induce immunological hyporesponsive­

ness [ 458]. Other evidence suggesting some form of antigen-processing or 

modification is provided by studies using cholera toxin [219] . Formaldehyde­

modification of the protein conformation of cholera toxin before feeding did not 

affect the ability of the two antigenic forms to induce totally cross-reactive oral 

tolerance. This suggests that the putative suppressive serum protein has under­

gone some form of antigen-processing rather that being absorbed unchanged in 

its tertiary configuration. Another factor which may be important in the genera­

tion of oral tolerance may be the rate of delivery of antigen to the intestinal 
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lamina propria - antigen concentration is an important factor in the development 

of other forms of tolerance (see below). 

The nature of the cell responsible for the generation of such tolerogenic 

proteins is not known - possibilities include the M cell of the Peyer's patch, the 

enterocyte or the intestinal lamina propria macrophage. The generation of 

immune responses by bypassing the epithelium (eg. the injection of antigen 

directly into Peyer's patches [37]) implies that the former cells play a significant 

role. Other evidence, however, suggests that the epithelial cell is not as impor­

tant as a lymphoid cell in the generation of oral tolerance. Cyclophosphamide­

treated [ 458] or irradiated [69] mice lose the capacity to generate the tolero­

genic form of protein antigens in a manner which appears to be unrelated to the 

effects of the treatment on the donor epithelial cell. This ability may be reconsti­

tuted by the adoptive transfer of splenic lymphoid cells [69]. As discussed in 

Section 1.5.6, if the epithelial cell does play a role in oral tolerance induction, this 

function is unlikely to be a property of the expression of Class II MHC molecules 

on the small intestinal epithelial cell. 

Another mechanism for the suppression of delayed-type hypersensitivity 

is the generation of suppressor T cells which can be identified in Peyer's 

patches, mesenteric lymph nodes, thymus and spleen after feeding [305] . 

Transfer of "fed" serum to syngeneic recipients resulted in the induction of 

antigen-specific suppressor cells and was abrogated by treatment of the recipi­

ent (but not donor) animals with cyclophosphamide [220, 458]. These cells 

appeared to preferentially regulate the afferent limb of the immune response, 

since feeding the protein antigen, cholera toxin, in tolerogenic doses did not 

suppress the activity of mature delayed-type hypersensitivity effector cells. Other 

mechanisms are also involved since oral tolerance induction can occur in the 

absence of demonstrable splenic suppressor cells [256]. 
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The importance of the macrophage and its products in oral tolerance 

induction is illustrated by the abrogation of this response by agents which acti­

vate the "reticulo-endothelial system", eg. oestrogen, muramyl dipeptide, LPS 

and the graft versus host reaction [332, 333, 456, 459]. In addition, treatment 

with the anti-macrophage agent, carageenan, partially relieves the suppression 

of T cell responses induced by feeding protein antigens [305], whilst inhibitors of 

macrophage production of prostaglandins (eg. indomethacin) interfere with the 

induction of systemic tolerance in vivo [ 415]. 

6.5.1 Possible roles of macrophages and dendritic cells in oral 

tolerance induction 

Although oral tolerance is generally considered separately from systemic 

immunological tolerance, they may have similar mechanisms of induction, 

namely: (i) antigen sequestration; (ii) clonal deletion; (iii) generation of 

suppressor cells; and (iv) clonal anergy [reviewed in 351]. lmmunoregulatory 

mechanisms which may be involved in the intestine include: 

(i) antigen sequestration in the lumen by physical agents and antibody 

Cantigen exclusion" [61]) will not be considered here. 

(ii) defective antigen presentation 

The initial failure to demonstrate antigen-presenting cell activity in the 

intestine [37, 206] was the result of the inability of the physical disaggregation 

techniques to release antigen-presenting cells from the extracellular tissue matrix 

(See Discussion Chapter 2). Subsequent work demonstrated that potent 

antigen-presenting cells (dendritic cells) were present in murine Peyer's patches 

[ 433] and that both murine and human intestinal lamina propria cells were 

capable of stimulating the MLR. 
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(ii) generation of suppressor T cells 

Adoptive transfer of oral tolerance by T cells is well recognized [305, 392, 

reviewed in 330] but the mechanisms of suppressor cell generation have not 

been elucidated. Possible mechanisms were described in Section 4.4 and 

include prostaglandin-mediated CD8 + cell induction or the interaction with 1-J + 

antigen-presenting cells [332]. Complex immunoregulatory suppressor and 

contrasuppressor circuits have also been proposed [141, 228, 269, 465]. 

As discussed above, immunoreactive protein antigens, implicated in the 

generation of suppressor T cells, are observed in serum after feeding. Intestinal 

macrophages may play a role by modifying absorbed antigens to produce these 

tolerogenic forms. 

(iii) clonal anergy 

Feeding protein antigens tolerizes both cellular and humoral immunity, 

with the former generally being more consistently affected (see above). The 

development of clonal anergy, at least in B cells, depends on both the concen­

tration of the tolerogen, and the affinity of the cell to the antigen involved [351]. 

One conceivable function of the enterocyte or the M cell is the delivery of antigen 

in concentrations critical for tolerance induction. 

The induction of clonal anergy may involve intestinal macrophages either 

directly, by the release of prostaglandins or other cytokines, or indirectly by the 

generation of antigen-specific suppressor T cells. 

The presentation of antigen to T cell clones in the absence of IL-1 or other 

accessory cell-derived factors [271, 382] results in the transmission of a tolero­

genic signal and the induction of a long-lived state of proliferative non­

responsiveness. The compartmentalization of macrophages between the lamina 

propria and the Peyer's patch may explain the differences between the antigen­

presenting cell activity of the unfractionated cell suspensions from these distinct 

sites (ie. the lesser activity of the Peyer's patch cells may be due to the absence 
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of macrophage-induced synergistic factors) and suggests a possible mecha­

nism of clonal anergy - that is, the presentation of antigen to T cells by dendritic 

cells in the Peyer's patch in the absence of macrophage-derived factors, eg. IL-

1. 

However, these observations in vitro are obviously artefactual. In situ, 

macrophages far outnumber dendritic cells and are present in greater numbers 

than can be supported by culture medium in vitro (ie. > 1-2x106/ml). These 

facts, in the context of the experimental data reported above (Chapter 3), 

suggest that the net effect of these forces in the lamina propria is suppressive. 

Oral tolerance would therefore be the result of the balance between "weak" 

immunostimulatory and "stronger" immunosuppressive factors present in the 

intestinal lamina propria. The generation of intestinal immune responses would 

depend on the ability of invasive antigens to override these suppressive influ­

ences in the lamina propria or to be selectively taken up by the M cells of the 

Peyer's patch. In the Peyer's patch, the presence of immunostimulatory cells 

without suppressive macrophages enables the Peyer's patch to subserve its 

known functions of luminal antigen sampling and the initiation of mucosa! 

immune responses. 

(iv) clonal deletion 

Clonal selection - the maturation of the lymphocyte through a stage when 

any contact with a recognizable antigen leads to the death of that cell - is an 

important mechanism for the induction of T cell self-tolerance. Nossa! (1989) 

[351] distinguishes between clonal abortion - the elimination of a cell before it 

has become immunocompetent - and clonal deletion - the elimination of a previ­

ously functional lymphocyte. Clonal abortion within the thymus [6] may be the 

main mechanism of self-tolerance in the T cell compartment. This process 

requires antigen-presenting dendritic cells, but the end result (activation or elimi­

nation) is dependent on the maturational stage of the T cell [306] and not on the 
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properties of the dendritic cells. For example, splenic dendritic cells are potent 

activators of mature T cells, but were the most potent inactivators of young 

developing thymocytes [306]. 

A similar process may occur in draining lymph nodes, where T cells prolif­

erate in response to the entry of antigens [360]. In athymic nude mice, small 

numbers of T cells which have undergone extrathymic differentiation can be 

found. These cells are tolerant of self, as well as being capable of allogeneic 

responses [306]. These observations are consistent with the conclusion that the 

outcome of antigen-recognition is dependent on the maturational stage of the 

lymphocyte. The site of such extrathymic differentiation is not known, and may 

be the secondary lymphoid structures such as lymph nodes. 

The factors affecting the possible outcomes (proliferation and differentia­

tion into effector, helper or suppressor cells, ie. clonal "expansion", clonal 

anergy, clonal deletion, and perhaps even clonal abortion) remain to be eluci­

dated, but may include such parameters as antigen concentration, and cytokine 

production, amongst many others. 
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6.6 ROLE OF DENDRITIC CELLS AND MACROPHAGES IN 

NORMAL RESPONSES - IMMUNOHISTOCHEMICAL STUDIES 

The anatomical distribution of human intestinal macrophages and 

dendritic cells in normal and diseased tissues has been examined using enzyme 

and immunohistochemical techniques [10, 131, 170, 291, 422]. In normal tissue, 

macrophages were found to be concentrated towards the luminal surface and 

expressed the following phenotype: acid phosphatase+ , non-specific 

esterase+, HLA-DR+, CD4 +, CD11 b+ /-, macrophage-specific markers+ 

(25F9, EBM/11, 3C10, RFD?, Y1 /82A). 

Dendritic cells (RFD1 +, HLA-DR+, Heca-452+ {specific for an adhesion 

molecule on high endothelial venules}, acid phosphatase-) were found mainly in 

highly organised tissue present at the deeper layers in the gut wall, around the 

broad zone of scavenger macrophages at the bottom of ulcers and fissures in 

inflammatory bowel disease, in lymphoid aggregates adjacent to granulomas in 

Crohn's disease [ 422] and, in smaller numbers, in the subepithelial regions 

[291], and in the epithelium itself [ 497]. Localization of these cells in rodents also 

demonstrated the presence of macrophages at the site of antigen entry, eg. in 

the peri-epithelial region of the small intestine [169], and in the subepithelial 

dome of Peyer's patch [361, 514], whilst putative dendritic cells were identified in 

the subepithelial regions of the villi and Peyer's patch [312, 51 O] and in the 

epithelium [312] and the interfollicular area of Peyer's patch [510]. 

This pattern of distribution is in keeping with the proposed roles of intesti­

nal macrophages as phagocytic, degradative cells and dendritic cells as a 

"second line" defence involved in the presentation of persisting or evasive 

antigens to other effector arms of the immune response. 
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6.7 THE ROLE OF DENDRITIC CELLS AND MACROPHAGES IN 

INTESTINAL INFLAMMATION 

In tissue samples resected from patients suffering from chronic inflamma­

tory bowel disease, 11 scavenger 11 macrophages, arranged in band-like zones 

forming the bases of ulcers or fissures, were present in greater numbers than in 

control tissue [291, 422]. 

The granuloma of Crohn's disease was often localized along the draining 

lymphatics of the intestinal wall and in the mesenteric lymph nodes. These were 

composed of 11epithelioid 11 cells expressing acid phosphatase, non-specific 

esterase, HLA-DR, CD11 b, CD71, and the macrophage markers, EBM11, RFD9, 

3C10, Y1 /82A [131, 291, 422]. They were negative for the dendritic cell-assoc­

iated marker, RFD1 [422], although not all would agree [291]. There is also 

evidence for the presence of a population of recently elicited cells in the inflamm­

atory infiltrate as suggested by the presence of CD11 b +, 25F9- monocytes 

[170]. These may be the cells which are able to respond to LPS and activating 

cytokines by producing detectable IL-1 mRNA [466] and IL-1 itself [293]. Thus, 

in the state of chronic low grade inflammation which is regarded as normal in the 

intestinal mucosa, and in areas of acute and chronic inflammation, there are 

heterogeneous populations of macrophages which are derived from recently 

elicited macrophages. These may differentiate under the influence of the 

predominant regulatory factors into activated phagocytic tissue macrophages or 

epithelioid cells, and effectively eliminate or transport the putative pathogen 

through the lymphatics to draining nodes. 

Similarly there is considerable evidence pointing towards the dendritic cell 

playing a prominent role in chronic inflammatory diseases, eg. rheumatoid 

arthritis [reviewed 376] and infections [eg. 222]. In studies of ongoing inflamma­

tion, dendritic cells can be identified around blood vessels before the arrival of 

lymphocytes. When T cells do arrive, a significant proportion can be shown to 
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express activation markers. Furthermore, in the rheumatoid synov1um there 

appears to be a definite spatial organization of lymphocytes around dendritic 

cells [376] (possibly representing in vitro cluster formation). These observations 

suggest that the dendritic cell is involved in the recruitment, activation and orga­

nization of T lymphocytes in the inflammatory response. 

In immunohistochemical studies of dendritic cells in inflammatory bowel 

disease, increased numbers of dendritic cells were identified as part of orga­

nized lymphoid cell accumulations (predominantly T cells). These aggregates 

were found surrounding the bands of "scavenger" macrophages or were 

adjacent to granulomas [422] in Crohn's disease, whilst in ulcerative colitis, 

dendritic cells were identified in large numbers in association with lymphoid infil­

trates in the lamina propria [1 O]. 

Disaggregated mucosal tissue resected from patients suffering from 

inflammatory bowel disease contained larger numbers of veiled cells than tissue 

from controls [508]. These veiled cells were the targets of a process termed 

peripolesis, in which lymphocytes migrate around other cells, and which was 

sometimes followed by target cell lysis [507]. 

Thus, in inflammatory bowel disease, the presence of increased numbers 

of dendritic cells, their anatomical distribution and their known function as activa­

tors of T cell responses, suggests that they play a role in the initiation and 

continuation of the inflammatory response. The macrophage may subserve two 

functions - firstly, as an effector cell, and later as a regulatory (suppressive) cell. 

The net result would therefore depend on the putative effects of the predominant 

population - either the recently elicited "activated" monocyte or the "resident" 

suppressive tissue macrophage. 
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6.8 

6.8.1 

CONCLUSIONS 

Putative mechanisms of induction of intestinal T cell 

responses 

After consideration of the above information, it is possible to arrive at a 

reasonably cogent theory of intestinal antigen handling and the role of intestinal 

dendritic cells and macrophages in the induction of T cell responses: 

Luminal antigen is endocytosed by (Class 11 M HC positive or negative) 

epithelial cells and secreted from the basolateral membrane into the intestinal 

lamina propria via the basement membrane or via intraepithelial macrophages. 

The rate of antigen secretion from epithelial cells may be an important criterion in 

the development of clonal anergy, ie. the nature of the responses may depend 

on the local antigen concentration - which may in turn be regulated by the 

epithelial cell. 

The antigen may undergo some process (eg. attachment to a particular 

receptor or transport molecule) which renders it less immunogenic, and then 

travel into the systemic circulation in this form. Alternatively, the antigen may be 

taken up by macrophages or dendritic cells. The numerical preponderance of 

the former make this the more likely result. Successful destruction of the antigen 

(or microorganism) would presumably result in a net negative signal mediated, 

for example, by immunosuppressive molecules, such as PGE2. The tolerogenic 

protein antigen and prostaglandin-mediated inhibition of lymphocyte proliferation 

or induction of antigen-specific suppressor T cells would ensure systemic hypo­

responsiveness. 

Failure of the macrophage to successfully eliminate the antigen, even 

after activation by ambient LPS and cytokines (eg. GM-CSF and IFN--y) may 

cause release of the antigen together with dendritic cell-potentiating agents, eg. 

IL-1. Subsequent uptake and transportation of antigen to draining nodes by 

dendritic cells would result in induction of T cell-mediated responses with 
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recruitment of antigen-specific effector T cells to the site of inflammation or 

infection. IFN-1-induced Class II MHC expression on any cell may help focus this 

response. In addition, the intestinal dendritic cells would effect the preferential 

differentiation of B cells into lgA-producing plasma cells. 

Eventual eradication of the antigenic load would see a shift towards the 

net negative signals and the attraction of fewer monocytes to the focus of 

inflammation. The biphasic responses of elicited macrophages (secretion of 

"activating" cytokines initially and then subsequent generation of immuno­

suppressive signals) would help minimize the period of active inflammation in the 

gut. 

6.8.2 

6.8.2.1 

Further characterization of mucosal immune responses 

Intestinal lamina propria antigen handling 

The above discussion opens up many exciting avenues of research. 

Perhaps the most important experiments would be aimed at understanding the 

mechanisms by which oral tolerance and intestinal immune responses are 

generated, eg. by determining the nature of antigen handling in the lamina 

propria. One approach would be to observe the traffic of cells following oral 

administration of a labelled antigen eg. ovalbumin, in studies similar to those 

performed by Macatonia et al (1987) [282]. Initially, the time course of antigen 

trafficking would be determined by identifying the antigen using immunohisto­

chemistry or immunofluorescence. The nature of the antigen-bearing cell(s) 

could also be ascertained using double-labelling techniques. The appearance of 

antigen-bearing cells at different sites (eg. the lamina propria, Peyer's patches, 

mesenteric lymph nodes, spleen or other sites such as popliteal or inguinal 

lymph nodes) would indicate the route of antigen trafficking. Removal of 

recirculating cells (eg. by mesenteric lymphadenectomy and cannulation of the 

thoracic duct) would help clarify the importance of local (eg. the production of 
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macrophage suppressive agents) versus systemic factors (eg. suppressor T 

cells) in the generation of local immune responses. 

Subsequent work could be aimed at isolating antigen-bearing cells to 

verify the information supplied by the immunohistochemistry described above. 

The phenotype of the antigen-bearing cell would be determined using flow 

cytometry and a panel of monoclonal antibodies. If necessary, double labelling 

could be performed using FITC-conjugated antigen and phenotyping using 

monoclonal antibodies and an alternative chromogen, eg. rhodamine. 

Adoptive transfer experiments using cells exposed to antigen in vivo or in 

vitro would determine which cells were responsible for the induction of tolerance 

or sensitization [64]. Mixing experiments may also help to determine the nature 

of the interaction between the candidate antigen-bearing cells (macrophages 

and dendritic cells) and the effects of pharmacological intervention assessed 

(eg. inhibitors of prostaglandin synthetase or macrophage activating agents). 

Finally, and of major importance, methods of subverting oral tolerance induction 

could be explored with the ultimate goal being the development of successful 

oral vaccines. 

6.8.2.2 Regulation of macrophage and dendritic cell differentiation 

Another area of interest is the understanding of the mechanisms control­

ling macrophage and dendritic cell migration, differentiation and activation in the 

intestinal lamina propria. As discussed in Section 6.2 monocytes recently arrived 

in the lamina propria become down-regulated in their responses to LPS (in terms 

of IL-1 production). By minimizing immune activity in the lamina propria, the 

normal absorptive functions of the epithelial layer remain operative whilst 

"hypersensitivity" diseases may impair epithelial function and result in the failure 

of the host to survive. Factors controlling macrophage differentiation and activa­

tion could be undertaken using disaggregated cell suspensions in order to 

examine basal and stimulated cytokine production or the expression of m-RNA 
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for the cytokine of interest. Correlation of the findings with in vivo studies using in 

situ hybridization would also be required. 

Similarly, the factors controlling dendritic cell function need further invest­

igation. One particular point to be addressed is whether the preferential induc­

tion of lgA by intestinal dendritic cells is truly a property of the dendritic cell 

(either directly or indirectly by the induction of certain patterns of cytokine pro­

duction in T cells) or whether the T cell production of cytokines is dependent on 

the signals present in the mucosa! microenvironment and independent of the 

dendritic cell. Such studies would necessitate the use of pure populations of 

dendritic cells and T cells in mixing experiments using recombinant cytokines 

and/or the appropriate inhibitory anti-cytokine antibodies. 

6.8.2.3 The role of intestinal macrophages and dendritic cells in 

disease 

Ulcerative colitis and Crohn's disease are two conditions of unkown 

aetiology afflicting the human gastrointestinal tract [the immunological distur­

bances are reviewed in 106, 284]. Although commonly grouped together as 

"idiopathic inflammatory bowel disease", there is increasing evidence to suggest 

that the two conditions reflect two distinct pathogenic pathways. 

Ulcerative colitis is a diffuse condition which arises in the rectum, spreads 

proximally through the colon in continuity, and affects the superficial layers of 

the mucosa. A number of observations support the hypothesis that the epithelial 

cell is the target of a predominantly antibody-mediated immune response. 

Firstly, abnormal survival of the epithelial cell has been documented, even in 

quiescent disease [133]. Secondly, epithelial cell-associated antigens have been 

identified and characterized [94, 340] and are the putative targets of an auto­

immune process. In addition, studies on the pattern of immunoglobulin produc­

tion in ulcerative colitis show greatly enhanced production of lgG 1 and to a 
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lesser degree, lgG3 (in contrast to the increase of all lgG isotypes seen in 

Crohn's disease [reviewed in 284]) - a pattern which may be associated with the 

activation of subsets of T cells producing the cytokine, IL-4 [452, reviewed in 

364]. Increased production of IL-4 in the lamina propria of patients suffering from 

ulcerative colitis may also account for the observed impairment of lymphokine­

activated killer cell activity [254] if the generation of these cells is inhibited by IL-4 

as proposed by Kanoff and Strober (1989) [207]. 

Crohn's disease is a condition characterized by focal, transmural 

inflammation occurring anywhere in the gastrointestinal tract, with relative spar­

ing of the epithelial cell layer. The appearances histologically and at immuno­

histochemistry are those of a delayed-type hypersensitivity reaction with the 

granuloma being a significant feature. Studies on the cytokine production of 

mononuclear cells obtained from specimens resected from patients suffering 

from Crohn's disease have shown that they generate greater amounts of IL-1 

than those from controls and from patients with ulcerative colitis [380]. This 

factor participates in the induction of granulomata [214]. Similarly, the delayed­

type hypersensitivity reaction and granuloma formation may also reflect activa­

tion of a subset of T cells producing IL-2 and IFN--y [4, 153, 328]. 

Although possibly an incidental observation, the pattern of histological 

damage in Crohn's disease (focal, transmural, with granulomata in submucosal 

lymphoid tissue and draining lymph nodes) parallels the known migratory path­

ways of macrophages and dendritic cells. Increased numbers of both these cell 

types are seen in Crohn's disease (see Section 6. 7) but no consistent functional 

abnormality has yet been detected. This may due to our inability to identify the 

defect if it exists. Ways in which a macrophage abnormality may contribute to 

the pathogenesis of Crohn's disease include: 
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(i) a deficiency of the degradative pathways resulting in the inability of the 

host to eliminate a normal commensal gut microorganism or an 

"infective agent" which would not cause symptoms in a normal 

host; 

(ii) a heightened response to normal or abnormal gut flora resulting, for 

example, in the "overproduction" of cytokines and other inflammat­

ory mediators, recruitment and amplification of intestinal immune 

responses and disordered regulation; or 

(iii) a diminished host response. McElrath et al (1988) [315] hypothesized 

that the effectiveness of a granulomatous response required the 

destruction of parasitized host cells in a lymphokine-rich environ­

ment. A defect in this process may see persistence of an invasive 

microorganism and ongoing inflammation. 

The ability to isolate and enrich populations of cells, including 

macrophages, dendritic cells and T cells from the intestinal lamina propria and to 

examine them using complementary techniques (such as functional assays 

including cytokine production, immunohistochemistry, and molecular biological 

techniques such as in situ hybridization), should contribute to our understanding 

of their roles in the pathogenesis of inflammatory bowel disease and other cond­

itions. The ultimate objective will be to modulate the mechanisms governing 

regulation of intestinal immune responses in order to treat such conditions and 

to develop strategies for effective oral immunization. That is to: 

11Venienti occurite morbo 11 

(Confront disease at its onset) 

Satires iii 64 

Persius (A.O. 34-62). 
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