A MEASUREMENT OF THE SPIN ASYMMETRY AND DETERMINATION OF THE STRUCTURE FUNCTION g_{1} IN DEEP INELASTIC MUON-PROTON SCATTERING

European Muon Collaboration

Aachen, CERN, Freiburg, Heidelberg, Lancaster, LAPP (Annecy), Liverpool, Marseille, Mons, Oxford, Rutherford, Sheffield, Turin, Uppsala, Warsaw, Wuppertal, Yale

J. ASHMAN ${ }^{\text {a }}$, B. BADELEK ${ }^{\text {b,1 }}$, G. BAUM ${ }^{\mathrm{c}, 2}$, J. BEAUFAYS ${ }^{\text {d }}$, C.P. BEE ${ }^{\mathrm{e}}$, C BENCHOUK ${ }^{\text {f }}$, I.G. BIRD ${ }^{\mathrm{g}, 3}$, S.C. BROWN ${ }^{\text {e, } 4}$, M.C. CAPUTO $^{\text {c }}$, H.W.K. CHEUNG ${ }^{\text {h }}$, J. CHIMA ${ }^{\text {i,5 }}$, J. CIBOROWSKI ${ }^{\text {b, }}$, R.W. CLIFFT ${ }^{i}$, G. COIGNET ${ }^{\mathrm{j}}$, F. COMBLEY $^{\text {a }}$, G. COURT ${ }^{\text {c }}$, G. D'AGOSTINI ${ }^{\text {f }}$, J. DREES k, M. DÜREN ${ }^{\ell}$, N. DYCE ${ }^{\text {g }}$, A.W. EDWARDS ${ }^{k}, 6$, M. EDWARDS ${ }^{i}$, T. ERNST ${ }^{m}$, M.I. FERRERO ${ }^{n}$, D. FRANCIS ${ }^{\mathrm{e}}$, E. GABATHULER ${ }^{\mathrm{e}}$, J. GAJEWSKI ${ }^{\text {b }}{ }^{1}$, R. GAMET ${ }^{\mathrm{e}}$, V. GIBSON ${ }^{\text {h, }}$, J. GILLIES $^{\text {h }}$, P. GRAFSTRÖM ${ }^{0,7}$, K. HAMACHER k, D. VON HARRACH ${ }^{p}$, P. HAYMAN ${ }^{\text {e }}$, J.R. HOLT ${ }^{\text {e }}$, V.W. HUGHES ${ }^{\text {c }}$, A. JACHOLKOWSKA ${ }^{\text {d, } 8}$, T. JONES ${ }^{\text {e, } 9}$, E.M. KABUSS ${ }^{m, 3}$, B. KORZEN ${ }^{k}$, U. KRÜNER ${ }^{k}, ~ S . K^{\prime}$ ULLANDER ${ }^{\circ}$, U. LANDGRAF ${ }^{m}$, D. LANSKE ${ }^{\ell}$, F. LETTENSTRÖM ${ }^{\circ}$, T. LINDQVIST ${ }^{\circ}$, J. LOKEN $^{\text {h }}$, M. MATTHEWS ${ }^{e}$, Y. MIZUNO ${ }^{\text {p }}$, K. MÖNIG $^{\text {k }}$, F. MONTANET ${ }^{\text {f,7 }}$, J. NASSALSKI ${ }^{\text {b, } 10}$, T. NIINIKOSKI ${ }^{\text {d }}$, P.R. NORTON ${ }^{i}$, G. OAKHAM ${ }^{\text {i,11 }}$, R.F. OPPENHEIM ${ }^{\text {c, } 12}$, A.M. OSBORNE ${ }^{\text {d }}$, V. PAPAVASSILIOU ${ }^{c}$, N. PAVEL ${ }^{k}$, C. PERONI ${ }^{\text {n }}$, H. PESCHEL ${ }^{k}$, R. PIEGAIA ${ }^{\text {c }}$, B. PIETRZYK ${ }^{f}$, U. PIETRZYK ${ }^{k}, 13$, B. POVH ${ }^{\text {p }}$, P. RENTON ${ }^{\text {h }}$, J.M. RIEUBLAND ${ }^{\text {d }}$, A. RIJLLART ${ }^{\text {d }}$, K. RITH ${ }^{\text {m, }}$, E. RONDIO ${ }^{\text {b, }}$, L. ROPELEWSKI ${ }^{\mathrm{b}, 1}$, D. SALMON ${ }^{\mathrm{a}, 9}$, A. SANDACZ ${ }^{\mathrm{b}, 10}$, T. SCHRÖDER ${ }^{m}$, K.P. SCHÜLER $^{\mathrm{c}}$, K. SCHULTZE ${ }^{\ell}$, T.-A. SHIBATA ${ }^{p}$, T. SLOAN g, A. STAIANO $^{p, 14}$, H. STIER ${ }^{m}$, J. STOCK ${ }^{m}$, G.N. TAYLOR ${ }^{\text {h, } 15}$, J.C. THOMPSON ${ }^{i}$, T. WALCHER ${ }^{\text {p. } 16}$, S. WHEELER ${ }^{\text {a, } 7}$, W.S.C. WILLIAMS ${ }^{\text {h }}$, S.J. WIMPENNY ${ }^{\text {e. } 17}$, R. WINDMOLDERS ${ }^{\text {q }}$, W.J. WOMERSLEY ${ }^{\mathrm{h}, 18}$ and K. ZIEMONS ${ }^{\ell}$
${ }^{\text {a }}$ Department of Physics, University of Sheffield, Sheffield S3 7RH, UK
${ }^{\text {b }}$ Physics Institute, University of Warsaw, PL-00681 Warsaw, Poland and Institute for Nuclear Studies, PL-00681 Warsaw, Poland
c Physics Department, Yale University, New Haven, CT 06520, USA
${ }^{\text {d }}$ CERN, CH-1211 Geneva 23, Switzerland
e Department of Physics, University of Liverpool, Liverpool L69 3BX, UK
${ }^{f}$ Centre de Physique des Particules, Faculté des Sciences de Luminy, F-13288 Marseille, France
${ }^{8}$ Department of Physics, University of Lancaster, Lancaster LA1 4 YB, UK
${ }^{\text {h }}$ Nuclear Laboratory, University of Oxford, Oxford OXI 3RH, UK
- Rutherford-Appleton Laboratory, Chilton, Didcot, Oxon OX1I OQX, UK
- Laboratoire de Physique des Particules, IN2P3, F-74019 Annecy-le-Vieux, France
${ }^{k}$ Fachbereich Physik, Universität Wuppertal, D-5600 Wuppertal, Fed. Rep. Germany
${ }^{*}$ III. Physikalisches Institut A, Physikzentrum, D-5100 Aachen, Fed. Rep. Germany
${ }^{\text {m }}$ Fakultät für Physik, Universität Freiburg, D-7800 Freiburg, Fed. Rep. Germany
" Istituto di Fisica, Università di Torino, I-10125 Turin, Italy
- Gustav Werners Institut, University of Uppsala, S-75121 Uppsala, Sweden
p Max-Planck Institut für Kernphysik, D-6900 Heidelberg, Fed. Rep. Germany
${ }^{9}$ Faculté des Sciences, Université de L'Etat à Mons, B-7000 Mons, Belgium

Received 22 December 1987; revised manuscript received 5 March 1988
For footnotes see next page.

Abstract

The spin asymmetry in deep inelastic scattering of longitudinally polarised muons by longitudinally polarised protons has been measured over a large x range ($0.01<x<0.7$). The spin-dependent structure function $g_{1}(x)$ for the proton has been determined and its integral over x found to be $0.114 \pm 0.012 \pm 0.026$, in disagreement with the Ellis-Jaffe sum rule. Assuming the validity of the Bjorken sum rule, this result implies a significant negative value for the integral of g_{1} for the neutron. These values for the integrals of g_{1} lead to the conclusion that the total quark spin constitutes a rather small fraction of the spin of the nucleon.

Deep inelastic scattering of polarised charged leptons from polarised targets provides a method of studying the internal spin structure of the nucleon [1-6]. The important quantity obtained from the measurements is the virtual photon-nucleon spin dependent asymmetry A_{1} from which the spin-dependent nucleon structure function g_{1} can be derived. The asymmetry A_{1} is $\left(\sigma_{1 / 2}-\sigma_{3 / 2}\right) /\left(\sigma_{1 / 2}+\sigma_{3 / 2}\right)$ where $\sigma_{1 / 2}$ ($\sigma_{3 / 2}$) is the photoabsorption cross section when the projection of the total angular momentum of the virtual photon-nucleon system along the virtual photon direction is $1 / 2(3 / 2)$. In the quark-parton model the structure function $g_{1}(x)$ is related to the difference of the quark distributions for quarks with helicities parallel and antiparallel to the nucleon spin.
The measured asymmetry (A) from scattering longitudinally polarised leptons by longitudinally polarised nucleons is defined as

[^0]$A=\frac{\mathrm{d} \sigma^{\Uparrow}-\mathrm{d} \sigma^{\Uparrow}}{\mathrm{d} \sigma^{\dagger}+\mathrm{d} \sigma^{\Uparrow}}$,
where $\mathrm{d} \sigma^{\uparrow(t)}$ is the cross section when the lepton and nucleon spins are parallel (antiparallel). In the sin-gle-photon exchange approximation, A is related to the virtual photon-nucleon asymmetries A_{1} and $A_{2}=\sigma_{\mathrm{TL}} / \sigma_{\mathrm{T}}$ by
$A=D\left(A_{1}+\eta A_{2}\right)$.
Here $\sigma_{\mathrm{T}}=\frac{1}{2}\left(\sigma_{1 / 2}+\sigma_{3 / 2}\right)$ is the total transverse cross section and σ_{TL} is the contribution to the cross section resulting from the interference of the transverse and longitudinal amplitudes. D is the depolarisation factor of the virtual photon given by $y(2-y) /$ $\left[y^{2}+2(1-y)(1+R)\right]$ and η is $2(1-y) \sqrt{Q^{2} /}$ [$E y(2-y)]$. The standard kinematic variables of deep inelastic scattering are used in these formulae. The incident lepton energy is $E ; \nu$ and $-Q^{2}$ are the energy transfer in the laboratory frame and the fourmomentum transfer, respectively, and $y=\nu / E$. $R=\sigma_{\mathrm{L}} / \sigma_{\mathrm{T}}$ is the ratio of the longitudinal to transverse virtual photoabsorption cross sections and is small in the energy range of this experiment [7]. See refs. [5,8$]$ for a review of the notation. The asymmetries A_{1} and A_{2} are bounded by positivity limits to be $\left|A_{1}\right| \leqslant 1$ and $\left|A_{2}\right| \leqslant \sqrt{R}[9]$. Since both R and η are small in the kinematic range of the experiment, A_{1} is the dominant contribution to the measured asymmetry A.
The asymmetries A_{1} and A_{2} are related to the spindependent nucleon structure functions $g_{1}\left(x, Q^{2}\right)$ and $g_{2}\left(x, Q^{2}\right)$ by
$A_{1}=\frac{2 x(1+R)}{F_{2}}\left[g_{1}-(2 M x / E y) g_{2}\right]$,
$A_{2}=\frac{2 x(1+R)}{F_{2}}(2 M x / E y)^{1 / 2}\left(g_{1}+g_{2}\right)$,
where M is the nucleon mass, $x=Q^{2} / 2 M \nu$ and F_{2} is the spin averaged nucleon structure function (the explicit (x, Q^{2}) dependence of the structure functions
has been omitted, for brevity). Hence g_{1} is given by
\[

$$
\begin{align*}
g_{1} & =\frac{F_{2}}{2 x(1+R)}\left[A_{1}+(2 m x / E y)^{1 / 2} A_{2}\right] \\
& \simeq \frac{F_{2} A_{1}}{2 x(1+R)} . \tag{4}
\end{align*}
$$
\]

In the quark-parton model (in the scaling limit) g_{1} is given by $[2,10$]
$g_{1}(x)=\frac{1}{2} \sum e_{i}^{2}\left[q_{i}^{+}(x)-q_{i}^{-}(x)\right]$,
where e_{i} is the charge of the quark flavour i and $q_{i}^{+(-)}(x)$ is the distribution function for a quark of momentum fraction x having the same $(+)$ or opposite (-) helicity to that of the nucleon.
The Bjorken sum rule [1,11] relates the integral of $g_{1}(x)$ to the ratio of the axial and vector coupling constants G_{A} and G_{V} measured in nucleon β decay. After correction for QCD radiative effects [12], this fundamental sum rule is given by

$$
\begin{align*}
& \int_{0}^{1} \mathrm{~d} x\left[g_{1}^{\mathrm{P}}(x)-g_{1}^{\mathrm{n}}(x)\right]=\frac{1}{6}\left|G_{\mathrm{A}} / G_{\mathrm{V}}\right|\left(1-\alpha_{\mathrm{s}} / \pi\right) \\
& \quad=0.191 \pm 0.002 \text { for } \alpha_{\mathrm{s}}=0.27 \pm 0.02 \tag{6}
\end{align*}
$$

Separate sum rules for the proton and neutron have been derived by Ellis and Jaffe [13] using SU(3) current algebra with the assumption of an unpolarised strange quark sea. These sum rules are given by

$$
\begin{align*}
& \int_{0}^{1} g_{1}^{\mathrm{p}(\mathrm{n})}(x) \mathrm{d} x \\
& \quad=\frac{1}{12}\left|\frac{G_{\mathrm{A}}}{G_{\mathrm{V}}}\right|\left(+(-) 1+\frac{5}{3} \frac{3 F / D-1}{F / D+1}\right) \tag{7}
\end{align*}
$$

Again after correcting for QCD radiative effects [14] the integrals have values 0.189 ± 0.005 and -0.002 ± 0.005 for the proton and neutron respectively, using the current values of the ratio of the $\mathrm{SU}(3)$ couplings $F / D=0.632 \pm 0.024$ [15] and the value $G_{\mathrm{A}} / G_{\mathrm{V}}=1.254 \pm 0.006$. Because of the x in the denominator of eq. (4), the small x region is expected to make a large contribution to the integrals.

This paper reports the results of an experiment in which A_{1} was measured using high energy polarised muons and a polarised proton target, where the range of x extended from 0.01 to 0.7 and that of Q^{2} from
1.5 to $70 \mathrm{GeV}^{2}$. The experiment was performed in the M2 muon beam of the CERN SPS accelerator. The muon beam polarisation can be chosen by selecting a specific ratio of the parent pion to decay muon momenta. The polarisation was calculated using a Monte Carlo simulation [16] to be $(82 \pm 6) \%$ at 200 GeV where the error comes mainly from the uncertainty in the pion beam phase space. This calculation is in good agreement with a previous measurement [17] of the polarisation of the same beam.
Data were collected in eleven separate experimental running periods at beam energies of 100,120 and 200 GeV . Scattered muons and forward produced charged hadrons were detected and measured in the EMC forward spectrometer [18], modified [19] to run at the higher beam intensities necessary for this experiment.
The polarised target has been described in detail elsewhere [20]. The target consisted of two sections, each of a length 360 mm , which were polarised simultaneously in opposite directions. The two sections were separated by a gap of length 220 mm , chosen such that reconstructed vertices from each section could be clearly separated. The target material was irradiated ammonia, chosen because of its relatively high free proton content and its resistance to radiation damage. Peak proton polarisations of more than 80% were obtained with typical values in the range $75-80 \%$, measured with an accuracy $\pm 5 \%$.
The asymmetry A is obtained from the measured asymmetry Δ by
$\Delta=\frac{N_{1}-N_{2}}{N_{1}+N_{2}}=P_{\mathrm{T}} P_{\mathrm{B}} f A$,
where N_{1}, N_{2} are the numbers of events from the two target halves, $P_{\mathrm{T}}, P_{\mathrm{B}}$ are the target and beam polarisations, respectively, and f is the fraction of the events originating from the polarised free protons in the target. Here, f is a function of x since it depends on the neutron-to-proton cross section ratio. The value of Δ is less than 2% over most of the kinematic range of the experiment, requiring strict control of systematic effects to measure it. This was the reason for having a split target which ensured identical beam fluxes and apparatus conditions for both orientations of polarisation.
To compensate for the slightly differing geometric acceptances of the two target halves, the polarisation
directions were reversed during each data taking period, and the values of Δ obtained for each configuration were averaged. Hence the only systematic effects remaining were due to possible changes in the ratio of the acceptances of the two target halves before and after polarisation reversal. These effects were studied by splitting the data in different ways into two samples, one of which was expected to suffer much more acceptance changes. The consistency of the results obtained from the two samples showed no indication of residual systematic effects beyond the statistical errors.
The cuts applied to the data were similar to those used in previous EMC analyses [7]. The muon scattering angle cut was increased to 1° to ensure good resolution of events coming from the two target halves. A total of 1.2×10^{6} events survived these cuts.
Corrections to the dilution factor f were applied for the smearing of events into the target halves which originated in the unpolarised material around the target ($\sim 6 \%$) and kinematic smearing due to the intrinsic resolution of the track measurements ($<3 \%$), using a Monte Carlo simulation of the experiment. Corrections ($\sim 1.5 \%$) were also applied for the slight polarisation of the nitrogen nucleus [21], and for higher order radiative effects [22,23] (2-20\%). The contribution to the asymmetry from electroweak interference was calculated and found to be negligible.
The values of A_{1} are given in table 1 , where ηA_{2} has been neglected so that $A_{1} \simeq A / D$. These values were obtained by statistically combining the results from the 11 data taking periods. The consistency of the various periods is shown by the χ^{2} to the mean value,
given in table 1. These values of χ^{2} follow a reasonable statistical distribution, showing that time dependent systematic effects were well controlled. The systematic errors given in table 1 include the uncertainties in the value of R (50% of its value) which was taken to be the value calculated from QCD [24,25], the uncertainty in neglecting A_{2} in eqs. (2) and (4) (taking $A_{2}= \pm \sqrt{R}$), the uncertainty in f arising from the error in the measured neutron-toproton cross section ratio and nuclear effects on the structure function F_{2} in nitrogen, and the error due to radiative corrections. They also include an estimate of the possible systematic error, as described above, arising from time dependent acceptance changes.
The results for $A_{1}^{\text {p }}$ are plotted in fig. 1 together with those of previous SLAC experiments [26,27], which are in good agreement with our results in the region of overlap. The prediction of the model of Carlitz and Kaur [28] is also shown. This model gives a good representation of the data at large x but fails to reproduce it for $x<0.2$. In fig. 2 values of $A_{1}^{\text {p }}$ in several x are plotted versus Q^{2} to search for scaling violations. These are expected to be small [6,29], and we conclude that within errors the data are consistent with scaling. This justifies combining the data from periods with different beam energies. A good fit to the data in fig. 1 is given by
$A_{1}^{\mathrm{p}}(x)=1.04 x^{0.16}[1-\exp (-2.9 x)]$.
The spin-dependent structure function $g_{1}^{\mathrm{P}}(x)$ was obtained from $A_{1}^{p}(x)$ using eq. (4), setting R to the value calculated from QCD. The values of F ? were

Table 1
Results for A_{1} in x bins. There is a further 9.6% normalisation error on A_{1} due to uncertainties in the beam and target polarisations.

| x range | $\langle x\rangle$ | $\left\langle Q^{2}\right\rangle$
 $(\mathrm{GeV} / c)^{2}$ | $A_{1} \pm$ stat. \pm syst. | χ^{2} / DOF |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $0.01-0.02$ | 0.015 | 3.5 | $0.021 \pm 0.035 \pm 0.017$ | $6.8 / 10$ |
| $0.02-0.03$ | 0.025 | 4.5 | $0.087 \pm 0.043 \pm 0.022$ | $9.7 / 10$ |
| $0.03-0.04$ | 0.035 | 6.0 | $0.013 \pm 0.054 \pm 0.024$ | $5.3 / 10$ |
| $0.04-0.06$ | 0.050 | 8.0 | $0.094 \pm 0.048 \pm 0.028$ | $4.0 / 10$ |
| $0.06-0.10$ | 0.078 | 10.3 | $0.139 \pm 0.049 \pm 0.037$ | $4.3 / 10$ |
| $0.10-0.15$ | 0.124 | 12.9 | $0.169 \pm 0.063 \pm 0.045$ | $19.8 / 10$ |
| $0.15-0.20$ | 0.175 | 15.2 | $0.360 \pm 0.087 \pm 0.057$ | $14.9 / 10$ |
| $0.20-0.30$ | 0.248 | 18.0 | $0.469 \pm 0.088 \pm 0.065$ | $13.3 / 10$ |
| $0.30-0.40$ | 0.344 | 22.5 | $0.517 \pm 0.141 \pm 0.068$ | $9.8 / 10$ |
| $0.40-0.70$ | 0.466 | 29.5 | $0.657 \pm 0.175 \pm 0.065$ | $8.4 / 10$ |

Fig. 1. The asymmetry $A_{1}^{\text {p }}$ plotted versus x together with results from previous experiments [26,27]. The curve is from the model of ref. [28].
taken from ref. [7] but corrected from the value $R=0$ assumed in that paper to the QCD value of R. Fig. 3 shows $\operatorname{xg}_{1}^{\mathrm{P}}(x)$ as a function of x. The solid curve is

Fig. 2. A_{1}^{p} versus Q^{2}. The data in each x range have been corrected to the same mean x using a fit to the data as a function of x.

Fig. 3. The quantity $x g{ }^{\rho}(x)$ (right-hand axis and solid circles) versus x. The left-hand axis and the crosses show the values of $\int_{x_{\mathrm{m}}}^{1} g_{1}^{\mathrm{p}}(x) \mathrm{d} x$ where x_{m} is the value of x at each lower bin edge. The inner error bars are statistical and the outer error bars are the total errors obtained by combining the statistical and systematic errors (table 1) in quadrature. The curves are described in the text.
derived from the fitted function to $A_{1}^{\mathrm{p}}(x)$. The integral of $g_{1}^{\mathrm{p}}(x)$ over the measured region was found to be
$\int_{0.01}^{0.7} g_{1}^{\mathrm{p}}(x) \mathrm{d} x=0.111 \pm 0.012$ (stat.) ± 0.026 (syst.) .
The convergence of this integral is also shown in fig. 3 where $\int_{x_{\mathrm{m}}}^{1} g_{1}^{\mathrm{p}}(x) \mathrm{d} x$ is plotted as a function of x_{m}, the value of x at the lower edge of each bin. It can be seen that the integral converges well towards $x=0$. The dashed curve is the integral of the solid curve and this was used to extrapolate to $x=0$. The data covered 98% of the value of the integral. The value obtained at a mean Q^{2} of $10.7 \mathrm{GeV}^{2}$ was
$\int_{0}^{1} g_{1}^{p}(x) \mathrm{d} x=0.114 \pm 0.012$ (stat.) ± 0.026 (syst.) .
Here the systematic error was obtained from the individual systematic errors, added in quadrature and includes a further uncertainty of 10% on the value of the integral to allow for possible errors on the value of F_{2} for the proton. The uncertainty due to the extrapolation outside the measured range of x is small providing that $x g_{1}(x)$ is well behaved and approaches zero reasonably as x tends to zero. It is expected from Regge theory [30] that $x g_{1}(x)$
approaches zero linearly with x at small x and such behaviour is compatible with the data in the range $0.01<x<0.1$. If, however, $x g_{1}(x)$ approaches zero as $(1 / \ln x)^{2}$ as predicted by an alternative Regge model [30] the value of the integral increases by 0.018 which is within the quoted systematic error. Such behaviour would imply that $g_{1}(x)$ diverges as x approaches zero i.e. the quarks remain strongly polarised, which seems unreasonable. This also applies to any other functional form for $x g_{1}(x)$ which tends to zero more slowly than linearly with x.

Our value for the integral of $g_{1}^{p}(x)$ is compatible with the previously measured value of 0.17 ± 0.05 [27] where the uncertainty is dominated by the extrapolation to low x. However, it is smaller than the value 0.189 ± 0.005 expected from the Ellis-Jaffe sum rule. It is also smaller than the value 0.17 ± 0.03 derived from a calculation based on QCD sum rule methods [31] and that (0.205) expected from the model [28] of the spin structure of the nucleon. As we show later, the discrepancy with the Ellis-Jaffe sum rule could be due to a polarisation of the strange sea antiparallel to that of the proton, although a perturbative QCD calculation for the generation of the sea [32] does not predict such an effect. Another possible explanation has recently been offered by Jaffe [33] in view of the non-conservation of the $\mathrm{U}(1)$ axial current in QCD, a consequence of the Adler -Bell-Jackiw anomaly [34,35]. Although the precise size of the effect is currently uncalculable, Jaffe gives a lower limit for the proton sum rule of 0.113 which is compatible with the measurement presented here.

The integral of $g_{1}^{n}(x)$ was expected to be close to zero according to the Ellis-Jaffe sum rule. Using our value for the integral of $g_{1}^{p}(x)$, and assuming the validity of the Bjorken sum rule, we obtain a value of -0.077 ± 0.012 (stat.) ± 0.026 (syst.) for the integral of $g_{1}^{n}(x)$. Hence polarised lepton-neutron scattering should show a significant negative asymmetry over at least part of the x range.

Using the above values for the integrals of $g^{p(n)}(x)$, the net spin carried by the quarks in the nucleon can be deduced. Integrating the quark-parton model expression for $g_{1}(x)$ (eq. (5)) and including first order QCD correlations, we obtain

$$
\begin{aligned}
& 2 \int_{0}^{1} g_{1}^{\mathrm{p}}(x) \mathrm{d} x=\frac{4}{9} \Delta u\left[1-\left(\alpha_{\mathrm{s}} / 2 \pi\right)\left(C_{\mathrm{f}}+1\right)\right] \\
& \quad+\frac{1}{9} \Delta d\left[1-\left(\alpha_{\mathrm{s}} / \pi\right)\left(2 C_{\mathrm{f}}-1\right)\right] \\
& \quad+\frac{1}{9} \Delta s\left[1-\left(\alpha_{\mathrm{s}} / \pi\right)\left(2 C_{\mathrm{f}}-1\right)\right]
\end{aligned}
$$

where $C_{\mathrm{f}}=(33-8 f) /(33-2 f)$ with f the number of quark flavours and

$$
\Delta u=\int_{0}^{1}\left[q_{u}^{+}(x)+q_{\bar{u}}^{+}(x)-q_{u}^{-}(x)-q_{\bar{u}}^{-}(x)\right] \mathrm{d} x,
$$

etc. The corresponding expression for $g_{1}^{\mathrm{n}}(x)$ is obtained by interchanging Δu and Δd. If we assume an unpolarised strange quark sea ($\Delta s=0$) these expressions become

$$
\begin{aligned}
& 2 \int_{0}^{1} g_{1}^{\mathrm{p}}(x) \mathrm{d} x=\frac{3.82}{9} \Delta u+\frac{1.08}{9} \Delta d \\
& \quad=0.228 \pm 0.024 \pm 0.052 \\
& 2 \int_{0}^{1} g_{1}^{\mathrm{n}}(x) \mathrm{d} x=\frac{1.08}{9} \Delta u+\frac{3.82}{9} \Delta d \\
& \quad=-0.154 \pm 0.024 \pm 0.052 .
\end{aligned}
$$

Hence the mean z component of the spin, S_{z}, of the u flavoured quarks in a proton with $S_{z}=+\frac{1}{2}$ is
$\left\langle S_{z}\right\rangle_{u}=\frac{1}{2} \Delta u=0.348 \pm 0.023 \pm 0.051$,
and that of the d flavoured quarks is

$$
\left\langle S_{z}\right\rangle_{\mathrm{d}}=\frac{1}{2} \Delta d=-0.280 \pm 0.023 \pm 0.051 .
$$

Thus the mean S_{z} of the quarks is
$\left\langle S_{z}\right\rangle_{u+d}=0.068 \pm 0.047 \pm 0.103$.
Hence ($14 \pm 9 \pm 21$) \% of the proton spin is carried by the spin of the quarks. The remaining spin must be carried by gluons or orbital angular momentum [36,37].

If we assume the discrepancy between our result and the Ellis-Jaffe sum rule prediction to be due to the polarisation of the strange quark sea we obtain

$$
\begin{aligned}
& \left\langle S_{z}\right\rangle_{u}=0.373 \pm 0.019 \pm 0.039, \\
& \left\langle S_{z}\right\rangle_{\mathrm{d}}=-0.254 \pm 0.019 \pm 0.039 \\
& \left\langle S_{z}\right\rangle_{\mathrm{s}}=-0.113 \pm 0.019 \pm 0.039 \\
& \left\langle S_{z}\right\rangle_{\mathrm{u}+\mathrm{d}+\mathrm{s}}=0.006 \pm 0.058 \pm 0.117,
\end{aligned}
$$

indicating that the quark spins carry ($1 \pm 12 \pm 24$) \% of the proton spin.
In conclusion, measurements have been presented of the spin asymmetries in deep inelastic scattering of polarised muons on polarised protons. The spindependent structure function g_{1} of the proton has also been determined. The integral $\int_{0}^{1} g_{1}^{\mathrm{p}}(x) \mathrm{d} x=0.114 \pm$ 0.012 ± 0.026 is significantly lower than the value expected from the Ellis-Jaffe sum rule. Assuming the validity of the Bjorken sum rule this result implies that the asymmetry measured from polarised neutrons should be significantly negative over at least part of its x range. In addition, the result implies that, in the scaling limit, a rather small fraction of the spin of the proton is carried by the spin of the quarks.

References

[1] J.D. Bjorken, Phys. Rev. 148 (1966) 1467.
[2] J. Kuti and V.F. Weisskopf, Phys. Rev. D 4 (1971) 3418.
[3] A.J.G. Hey and J.E. Mandula, Phys. Rev. D 5 (1972) 2610.
[4] N.S. Craigie et al., Phys. Rep. 99 (1983) 69.
[5] V.W. Hughes and J. Kuti, Annu. Rev. Nucl. Part. Sci. 33 (1983) 611.
[6] E. Gabathuler, Proc. 6th Intern. Symp. on High energy spin physics (Marseille, 1984), ed. J. Soffer.
[7] F. Sciulli, Proc. Intern. Symp. on Lepton and photon interactions at high energies (Kyoto, 1985), eds. M. Konuma and K. Takahashi.
[8] EM Collab., J.J. Aubert et al., Nucl. Phys. B 259 (1985) 189.
[9] M.G. Doncel and E. de Rafael, Nuovo Cimento 4 A (1971) 363.
[10] R.P. Feynman, Photon-hadron interactions (Benjamin, New York, 1972).
[11] J.D. Bjorken, Phys. Rev. D 1 (1970) 1376.
[12] J. Kodaira et al., Phys. Rev. D 20 (1979) 627; Nucl. Phys. B 159 (1979) 99.
[13] J. Ellis and R.L. Jaffe, Phys. Rev. D 9 (1974) 1444; D 10 (1974) 1669(E).
[14] J. Kodaira, Nucl. Phys. B 165 (1980) 129.
[15] M. Bourquin et al., Z. Phys. C 21 (1983) 27.
[16] C. Iselin, A computer programme to calculate muon halo, CERN report CERN 74-17 (1974).
[17] D. Bollini et al., Nuovo Cimento 63 A (1981) 441.
[18] EM Collab., O.C. Allkofer et al., Nucl. Instrum. Methods 179 (1981) 445.
[19] EM Collab., J. Ashman et al., to be published.
[20] S.C. Brown et al., Proc. 4th Intern. Workshop on Polarised target materials and techniques (Bonn, 1984), ed. W. Meyer.
[21] G.R. Court and W.G. Heyes, Nucl. Instrum. Methods A 243 (1986) 37.
[22] L.W. Mo and Y.S. Tsai, Rev. Mod. Phys. 41 (1965) 205; Y.S. Tsai, SLAC report SLAC-PUB-848 (1971), unpublished.
[23] T.V. Kukhto and N.M. Shumeiko, Yad. Fiz. 36 (1982) 707.
[24] G. Altarelli and G. Martinelli, Phys. Lett. B 76 (1978) 89.
[25] M. Glück and E. Reya, Nucl. Phys. B 145 (1978) 24.
[26] M.J. Alguard et al., Phys. Rev. Lett. 37 (1976) 1261; 41 (1978) 70.
[27] G. Baum et al., Phys. Rev. Lett. 51 (1983) 1135.
[28] R. Carlitz and J. Kaur, Phys. Rev. Lett. 38 (1977) 673; J. Kaur, Nucl. Phys. B 128 (1977) 219.
[29] O. Darrigol and F. Hayot, Nucl. Phys. B 141 (1978) 391.
[30] B.L. Ioffe, V.A. Khoze and L.N. Lipatof, Hard processes (North-Holland, Amsterdam, 1984) p. 61.
[31] V.M. Belyaev, B.L. Ioffe and Y.I. Kogan, Phys. Lett. B 151 (1985) 290.
[32] F.E. Close and D. Sivers, Phys. Rev. Lett. 39 (1977) 1116.
[33] R.L. Jaffe, Phys. Lett. B 193 (1987) 101.
[34] S.L. Adler, Phys. Rev. 177 (1969) 2426.
[35] J.S. Bell and R. Jackiw, Nuovo Cimento 60 A (1969) 47.
[36] L.M. Sehgal, Phys. Rev. D 10 (1974) 1663.
[37] P.G. Ratcliffe, Phys. Lett. B 192 (1987) 180.

[^0]: ' University of Warsaw, PL-00681 Warsaw, Poland, partly supported by CPBP-01.06
 ${ }^{2}$ Permanent address, University of Bielefeld, D-4800 Bielefeld, Fed. Rep. Germany.
 ${ }^{3}$ Present address: MPI für Kernphysik, D-6900 Heidelberg, Fed. Rep. Germany.
 ${ }^{4}$ Present address: TESA S.A., Renens, Switzerland.
 ${ }^{5}$ Present address: British Telecom, Ipswich, UK.
 ${ }^{6}$ Present address: Jet, Joint Undertaking, Abingdon, UK.
 ${ }^{7}$ Present address: CERN, CH-1211 Geneva 23, Switzerland.
 ${ }^{8}$ Present address: LAL, F-91405 Orsay, France.
 ${ }^{9}$ Present address: RAL, Chilton, Didcot, Oxon OX11 0QX, UK.
 ${ }^{10}$ Institute for Nuclear Studies, PL-00681 Warsaw, Poland, partly supported by CPBP-01.09.
 ${ }^{11}$ Present address: NRC, Ottawa, Ontario, Canada K1A 0R6.
 ${ }^{12}$ Present address: AT\&T, Bell Laboratories, Naperville, IL, USA.
 ${ }^{13}$ Present address: MPI für Neurologische Forschung, D-5000 Cologne, Fed. Rep. Germany.
 ${ }^{14}$ Present address: INFN, I-10125 Turin, Italy.
 ${ }^{15}$ Present address: University of Melbourne, Parkville, Victoria 3052, Australia.
 ${ }^{16}$ Present address: University of Mainz, D-6500 Mainz, Fed. Rep. Germany.
 ${ }^{17}$ Present address: University of California, Riverside, CA 92521, USA.
 ${ }^{18}$ Present address: University of Florida, Gainesville, FL 32611, USA.

