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Summary. We consider the problem of minimizing the spectral condition number of
a positive definite matrix by completion:

min

{
cond

([
A BH

B X

])
:

[
A BH

B X

]
positive definite

}
,

whereA is ann× n Hermitian positive definite matrix,B a p× n matrix andX is
a freep × p Hermitian matrix. We reduce this problem to an optimization problem
for a convex function in one variable. Using the minimal solution of this problem we
characterize the complete set of matrices that give the minimum condition number.

Mathematics Subject Classification (1991):65F35, 15A12

1. Introduction

Let A be ann × n positive definite Hermitian matrix (denoted byA > 0), let beB
a p× n matrix and

W (X) =

[
A BH

B X

]
for a HermitianX. (HereBH denotes the conjugate transpose of the matrix B.)

We consider the optimization problem

min
X,W (X)>0

cond(W (X)),(1)

where

cond(W (X)) = ‖W (X)‖‖W (X)−1‖ =
λmax(W (X))
λmin(W (X))

(2)
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is the spectral condition number [6]. (Hereλmax(W ), λmin(W ) denote the maximal
and minimal eigenvalue of the matrixW and‖ ‖ denotes the spectral norm.)

This problem arises in the construction of optimal feedback control for descriptor
systems [4] as well as in the construction of optimal preconditioners for the iterative
solution of linear systems on parallel computers via divide and conquer techniques
[7].

We will show that the optimization problem (1) is equivalent to a minimization
problem for a convex function in one variable in combination with a matrix inequality.

Using the solution of this convex minimization problem, we can then characterize
the complete set of solutions to (1).

The idea of treating such kind of optimization problems as a matrix inequality
problem is not new. Davis, Kahan and Weinberger [2] used it to solve the problem
of minimizing the norm of a matrix by completion and the authors applied it to the
problem of minimizing the norm of the inverse of a matrix by completion [4]. See
also [1, 8, 5].

2. Main theorem

To formulate our result, we introduce the following functions involving the parameters
A, B of our problem. Define the real valued function

f (t) := ‖t2BHB + (I − tA)2‖(3)

and forτ not in the spectrum ofA the matrix valued function

X(τ ) := τI +B(A− τI)−1BH.(4)

It is easy to see thatf (t) is strictly convex, as it is the maximum over allx 6= 0
of the strictly convex function

xH(t2BHB + (I − tA)2)x
xHx

.

Since
d

dτ
X(τ ) = I +B(A− τI)−2BH > 0,

it follows thatX(τ ) is monotone in any interval not containing an eigenvalue ofA.
Our main result then is as follows:

Theorem 1. LetA be ann×n positive definite Hermitian matrix and letB be ap×n
complex matrix. Consider the completion problem of finding an Hermitian positive
definite matrixX∗ such that the condition number ofW (X∗), where

W (X) =

[
A BH

B X

]
,

is minimal among allX such thatW (X) > 0. Then

min
X,W (X)>0

cond(W (X)) =
1 +

√
f∗

1−√f∗ ,(5)

where
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f∗ := min
t∈R

f (t),(6)

with f (t) defined in (3).
The set of all matricesX satisfying (5) isX = XH ∈ Cp,p : lim

α→ α∗
α < α∗

X(α) ≤ X ≤ lim
β → β∗
β∗ < β

X(β)

 ,(7)

where

α∗ =
1−√f∗

t∗
, β∗ =

1 +
√
f∗

t∗
.(8)

and t∗ is the unique argument satisfyingf (t∗) = f∗.
The limits in (7) both exists, even ifα∗ is the smallest eigenvalue ofA or β∗ is the

largest eigenvalue ofA.. All matricesX in (7) have the property thatα∗, β∗ are the
minimal, and maximal eigenvalue ofW (X), respectively.

Proof. We start the proof by establishing two facts:
Fact 1: For givenα, β, α < β the following two statements are equivalent:

X = XH satisfiesαI < W (X) < βI(9)

α < λmin(A), λmax(A) < β, andX(α) < X < X(β).(10)

This follows by taking Schur complements in bothW (X)− αI andβI −W (X).
Fact 2: For givenα, β, α < β the following four statements are equivalent:

X(α) < X(β) andα < λmin(A), λmax(A) < β.(11)

B(A− αI)−1(βI −A)−1BH < I, α < λmin(A), λmax(A) < β.(12)

BHB < (A− αI)(βI −A).(13) (
β − α

β + α

)2

> f

(
2

β + α

)
.(14)

Here the equivalence of (11) and (12) follows from the relation

1
β − α

(X(β)−X(α)) = I −B(A− αI)−1(βI −A)−1BH.(15)

The equivalence of (12) and (13) is evident, since (A− αI)(βI −A) > 0.
Using the relation

(A− αI)(βI −A) =

(
β − α

2

)2

I −
(
A− β + α

2
I

)2

,(16)

we obtain the equivalence of (13) and (14), since both inequalities are equivalent to(
β − α

β + α

)2

I >

(
2

β + α

)2

BHB +

(
I − 2

β + α
A

)2

.
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In order to prove our result we now show first that for anyX with W (X) > 0
we have (

cond(W (X))− 1
cond(W (X)) + 1

)2

≥ f∗,(17)

which is the same as the inequality

cond(W (X)) ≥ 1 +
√
f∗

1−√f∗ .(18)

Let α, β be the smallest and largest eigenvalue ofW (X), respectively. Then for
any ε > 0 we have

(α− ε)I < W (X) < (β + ε)I.(19)

By Facts 1 and 2 we have that (10) and hence (14) is satisfied for the pair of parameters
(α− ε, β + ε). Therefore (14) also holds, i.e.(

β − α + 2ε
β + α

)2

> f

(
2

β + α

)
≥ f∗.(20)

As cond(W (X)) = β
α , we obtain (17) from (20).

To establish (5) we show that we have equality in (17) if and only if

lim
α→ α∗
α < α∗

X(α) ≤ X ≤ lim
β → β∗
β∗ < β

X(β)},(21)

where both limits exist.
Observe thatα∗, β∗ as in (8) satisfy(

β∗ − α∗

β∗ + α∗

)2

= f

(
2

β∗ + α∗

)
= f∗.(22)

Hence forε > 0 the pair (α, β) = (α∗− ε, β∗ + ε) satisfies (14) and by Fact 2 also
(11), i.e.,

X(α∗ − ε) < X(β∗ + ε) andα∗ ≤ λmin(A), λmax(A) ≤ β∗.(23)

As X(α∗−ε) is monotonically increasing inε and by (23) also bounded, the left limit
in (21) exists and an analogous argument yields the existence of the right limit.

Now, letX be a matrix satisfying (21). Then we have

X(α∗ − ε) < X < X(β∗ + ε)(24)

by the strict monotonicity ofX(τ ).
By Fact 1 we then have

cond(W (X)) <
β∗ + ε

α∗ − ε

and hence
cond(W (X))− 1
cond(W (X)) + 1

<
β∗ − α∗ + 2ε
β∗ + α∗

=
√
f∗ +

2ε
α∗ + β∗

(25)

for all ε > 0. This implies equality in (18).
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To show the converse letX be any matrix satisfying (18) with equality, and let
ᾱ, β̄ be the minimal and maximal eigenvalues ofW (X), respectively. Then

β̄

ᾱ
= cond(W (X)) =

1 +
√
f∗

1−√f∗ =
β∗

α∗
.(26)

Let ε > 0. Then (ᾱ − ε)I < W (X) < (β̄ + ε)I. By Facts 1 and 2 we infer (14) for
the pair (α, β) = (ᾱ− ε, β̄ + ε), i.e.,(

β̄ − ᾱ + 2ε

β̄ + ᾱ

)2

> f

(
2

β̄ + ᾱ

)
and forε→ 0 we have

β̄ − ᾱ

β̄ + ᾱ
≥
√
f

(
2

β̄ + ᾱ

)
≥
√
f∗ =

β̄ − ᾱ

β̄ + ᾱ
,

where the last equality follows from (26).
Sincef is strictly convex, it follows that

2

β̄ + ᾱ
= t∗ =

2
α∗ + β∗

.

Together with (26) it follows that ¯α = α∗ and β̄ = β∗ and by (24) we obtain (21).
This finishes the proof. ut

To actually calculatet∗ we remark thatt∗ ∈ [0, 2
‖A‖ ], as outside this interval

f (t) > 1.
In the following we denote the lower and upper bounds in (21) byX∗

−, X∗
+

respectively. Observe that genericallyα∗ < λmin(A) and β∗ > λmax(A) and hence
X∗
− = X(α∗), X∗

+ = X(β∗).
Due to the property that both matrices are positive definite, it follows immediately

that X∗
− is the solution that minimizes andX∗

+ is the solution that maximizes the
determinant ofW (X) among all possible minimizers of the condition number.

3. Special cases and examples

In some special cases the solution to the problem of minimizing the condition num-
ber is much simpler than the one described in Theorem 1. It is clear that in the
case thatABHB = BHBA the solution can be reduced to finding the optimum out
of the solution ofn quadratic equations, sinceA andBHB can be simultaneously
diagonalized.

Even more special is the case thatA = I. In this case problem (1) can be solved
explicitly. Let σ = ‖B‖, then the maximal eigenvalue oft2BHB + (I − tA)2 is
t2σ2 + (1− t)2, sof (t) = t2σ2 + (1− t)2. A simple calculation shows that the minimum
of f (t) is f∗ = f (t∗) = σ2/(σ2 + 1) at t∗ = 1/(σ2 + 1), and

1 +
√
f∗

1−√f∗ = (
√

1 +σ2 + σ)2.(27)
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Remark 1.It should be noted that by relaxing the requirement thatW (X) is positive
definite, it is possible that the condition number can be made even smaller. Consider
for example the matrix

W (x) =

[
1 1
1 x

]
.

The condition number ofW (x) has two minima atx1 = 3 andx2 = −1, where
cond(W (x1)) = 3 +

√
2 and cond(W (x2)) = 1. It is even cond(W (0))≤ cond(W (x1)).

The minimum among all positive definite completions is by (27) atx1 = 3.

In order to further illustrate our results consider the following example:

Example 1.Let

A =


6

5
4

3
2

1

 , BT =


0.1 0.1
0.2 0.0
0.3 0.2
0.4 0.0
0.5 0.3
0.6 0.0

 .

Sinceλmax(A) = 6, the minimum off (t) is within the interval of (0,0.3333). We have
t∗ = 0.2873 and

α∗ = 0.9149, β∗ = 6.0426.

The following Table 1 shows the distributions of the eigenvalues ofW (X∗) corre-
sponding toX∗

− andX∗
+ .

Table 1. The eigenvalues ofW (X∗)

X∗ = X∗
− X∗ = X∗

+

α∗ α∗
α∗ 1.9038

2.0089 2.94562
2.9453 3.9254
3.9619 4.9541
4.9555 5.5760
5.7634 β∗
β∗ β∗

It is not a special case that the smallest eigenvalues ofW (X∗
−) are multiple. In fact

it is obvious that in generalW (X∗
−) has an eigenvalueα∗ of multiplicity greater

or equal to the dimension ofX. The same holds forW (X∗
+ ): W (X∗

+ ) has a largest
eigenvalueβ∗ of multiplicity greater than or equal to the dimension ofX.
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