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Abstract. We analyze the status of numerical simula- 
tion of QCD at finite temperature. Emphasis is put 
on quantitative predictions emerging from lattice cal- 
culations that may be tested in heavy ion experiments. 
Recent results on the chiral phase transition, thermo- 
dynamics of the quark gluon plasma phase and var- 
ious screening lengths are discussed. 

1 Introduction 

At the first Quark-Matter conference in 1982 [1], re- 
sults from Monte Carlo simulations of QCD, which 
we now would call first exploratory studies, have been 
discussed enthusiastically. They revealed the possibili- 
ty that the creation of a quark-gluon plasma in heavy 
ion collisions is within reach of present days accelera- 
tor technology. Since then we learned a lot about 
the inherent problems of lattice simulations. Finite 
size effects, critical slowing down and violations of 
asymptotic scaling forced us to investigate larger lat- 
tices. However, also simulation techniques have im- 
proved steadily and efficient algorithms for the incor- 
poration of light dynamical fermions have been devel- 
oped. Thus much progress has been made since then. 

During this year Quark-Matter Conference first 
experimental results from the CERN heavy-ion ex- 
periments will be presented [2]. This is the first step 
in an extensive search for a new phase of strongly 
interacting matter predicted by QCD. From lattice 
gauge theory we expect to obtain quantitative predic- 
tions for the critical parameters of the phase transition 
to the quark-gluon (QG) plasma as well as a deeper 
understanding of the non-perturbative aspects of this 
new phase. Unfortunately, lattice simulations are still 

* Presented at the 6th International Conference on Ultra-Relativis- 
tic Nucleus-Nucleus Collisions - Quark  Matter  1987, 24-28 August  
1987, Nordkirchen, Federal Republic of  Germany  

restricted to the finite temperature (T), vanishing 
chemical potential (#) sector of the QCD. The prob- 
lems in simulating systems with non-zero baryon 
number density have not yet been overcome [3]. 
However, for T~e0, #--0  we have now accurate re- 
sults for the critical parameters of the phase transition 
in the pure gauge sector [4-6]. Simulations with dy- 
namical fermions have reached a stage where large 
scale projects lead to first quantitative results for 
QCD with "nearly" massless quarks [-7-12]. These 
simulations give strong evidence for the existence of 
a first order chiral phase transition in QCD. More- 
over, the critical temperature shows similar behaviour 
as in the pure gauge sector. This leads us to hope 
that the presence of dynamical fermions will not alter 
completely the picture gained from the analysis of 
the pure gauge sector. 

From an analysis of global thermodynamic ob- 
servables like energy density and pressure, we hope 
to get insight into the basic properties of the QCD 
plasma phase. These quantities are important to judge 
the initial energy density needed in a heavy ion col- 
lision to create a QG plasma in a small space volume. 
Moreover, lattice simulations allow to study non-per- 
turbative aspects of the high temperature plasma 
phase through the analysis of various screening 
lengths [13-16]. In particular, a quantitative under- 
standing of Debye screening in the quark-gluon plas- 
ma the discussion of heavy quark bound state sup- 
pression as a signal for plasma formation [17]. 

In the following we will discuss the present status 
of the quantitative analysis of these observables. In 
the next section we review results for the critical tem- 
perature both in the pure gauge sector as well as in 
the presence of dynamical fermions. In Sect. 3, we 
will discuss perturbative, as well as non-perturbative, 
aspects of the equation of state in the plasma phase. 
Section 4 is devoted to a discussion of screening 
lengths in the quark-gluon plasma. Our conclusions 
are given in Sect. 5. 
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2 QCD phase diagram at finite temperature 

The existence of a phase transition in QCD from a 
low temperature confining phase with spontaneously 
broken chiral symmetry to a high temperature decon- 
fined, chiral symmetric phase is one of the fundamen- 
tal predictions of QCD. In fact, the existence of such 
a phase transition has been proved rigorously on the 
lattice [-18, 19]. The bounds on the transition temper- 
ature, however, are weak and an infinite temperature 
in the continuum limit is not excluded by these proofs. 
A quantitative determination of the transition tem- 
perature has to rely on Monte Carlo simulations. To 
this extent, one analyzes the symmetry properties of 
the QCD action. The spontaneous breaking/restora- 
tion of certain symmetries at finite temperature sig- 
nals the presence of a phase transition. The QCD 
partition function depends on the lattice size in space 
(N,) and time (N~) direction, the number of quark spe- 
cies (n:), their masses in units of the lattice spacing 
(ma) as well as on the bare coupling g2 :  

Z(N., N~, n:, ma, g2)=6 I-I d Ux, u e -s~ (2.1) 
X, p 

with the effective action given by 

6 
Sefe=Us Z (1-�89 Ux, u Ux+u,~ U~,+~,~, U+,) 

g p l a q u e t t e s  

n: Tr In Q:. (2.2) 
4 

Here Q: denotes the fermion matrix which in the case 
of staggered fermions is given by 

1 3 
Q~Y=ma 6xy+~ ~0  [6y, x+~ Ux,~-6r,~-~ Ux+,~] 

~ ( - - 1 )  X O  "~- " ' "  q -  . . . .  �9 (2.3) 

Ux, ueSU(3) denotes gauge field variables which are 
defined on links (x, #) of a four-dimensional lattice 
of size N~ x N~. 

The phase structure of QCD at finite temperature 
and order of the phase transitions has by now been 
studied for various number of flavours and a wide 
range of quark masses. Let us first discuss the pure 
gauge sector (n:=0 or ma--* oo) which is best ana- 
lyzed. The phase transition is characterized by a spon- 
taneous breaking of the global Z(N) centre symmetry 
of the pure SU(N) gauge action. As an order parame- 
ter for this deconfinement phase transition serves the 
Polyakov loop operator 

(Tr Lx) = Tr l~i u( . . . .  ), o > 0, T< T~ 
X O  = 1 

Already first simulations for SU(3) indicated that the 
deconfinement phase transition is first order [20]. 
However, the critical temperature turned out not to 
scale according to the asymptotic scaling law 

4n 2 6 1 /8n 2 6\  -5U121 

This was not unexpected as Monte Carlo renormal- 
ization group studies also indicated that couplings 
6/g2> 6.1 are needed in order to see the above asymp- 
totic scaling behaviour [21]. Indeed constant critical 
temperatures have been found only for N~ > 10 where 
the critical couplings are larger than 6/gZ= 6.0 [4-6]. 
For these large temporal lattices a direct observation 
of co-existing states is difficult. As the spatial extent 
of these lattices is only about twice as large, i.e., N, 
= 2N~, metastable states are observable in a whole 
region of/~-values. This makes the precise location 
of the critical coupling difficult and to some extent 
dependent on the criterion used to define /3 c. How, 
ever, simulations of different groups seem to agree 
quite well [4-6]. These results are presented in Fig. 
1. From this we get for the critical temperature in 
the pure gauge sector 

T~/A~ = 1.78 -t- 0.03 (2.8) 

where we have used Aars/AL=28.82 to convert the 
lattice scale parameter to the MS-scheme. This allows 
a simpler comparison with dynamical fermion calcu- 
lations, as the scale parameter is less sensitive to the 
number of flavours in this scheme. 
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Fig. 1. Critical temperature in units of A~rs versus temporal lattice 
size N~. Shown are data  for SU(3) pure gauge theory, n:=O, (dots) 
[4-6]  and SU(3) with dynamical fermions, n:=O. The ny=2 data  
(triangle) are taken from [10, 11] and those for n:=4 (squares) 
are from [8, 9] 



To extract T~ in units of MeV from (2.8), we have 
to compare with measurements of other physical ob- 
servables in the asymptotic scaling regime. Using re- 
cent data for the string tension [22] and hadron 
masses [23] we find 

T~/]//6 = 0.58 ___ 0.04 -~ T~ = (254 + 18) MeV 

Tc/rnp =0.30+~176 -+ T~ =(231 _+ 13s) MeV 

TJm N = 0.21 + 0.02 ~ T~ = (197 _+ 20) MeV 

where we have used o-= 0.192 GeV z [-24] for the string 
tension. The difference obtained for T~ from measure- 
ments of the rho-meson and nucleon mass reflects 
of course that their mass ratio is still not well deter- 
mined from quenched Monte Carlo simulations. 

It has been expected that in the presence of dy- 
namical fermions the strong first order deconfinement 
transition of the pure gauge sector gets weakened and 
would eventually disappear [25]. This is indeed what 
has been observed in an intermediate quark mass re- 
gime for a limited regime of flavours [26]. However, 
this observation is strongly dependent on the number 
of flavours and quark masses. For  n s>  8 only first 
order transitions have been observed for all quark 
masses studied so far [27]. 

The crucial question, however, is what happens 
in the chiral limit, m a ~ 0 .  Universality arguments 
favour first order transitions for n r > 3  [28]. For  n-r 
= 2 the situation is unclear and the order of the transi- 
tion depends strongly on the temperature dependence 
of the axial anomaly [28]. 

First indications for a first order chiral transition 
have been found by R. Gupta  et al. [7]. They used 
an exact fermion algorithm on a 44 lattice. During 
the last year, it became possible to perform reliable 
Monte Carlo simulations with light fermions on 
larger lattices which gave evidence for a first order 
chiral transition for different numbers of flavours [8-  
12]. In Fig. 2, we show the behaviour of the chiral 
order parameter <XX) as well as the Polyakov loop 
<L) as a function of f l=6/g  2 for the n y = 4  theory. 
The discontinuity at/?c = 4.96_+ 0.03 is clearly visible. 
It seems, however, that quark masses smaller than 
m/T=O.15 are necessary to observe this first order 
singularity. Calculations for other values of n I seem 
to indicate that the first order transition weakens with 
decreasing number of flavours. Even smaller quark 
masses are needed to find signals for a first order 
singularity. Indeed the order of the transition is con- 
troversal for n i = 2  [10, 11]. Although a recent de- 
tailed analysis seems to favour a first order transition 
also for n i = 2  [29]. At present the location of the 
critical quark mass below which a first order chiral 
transition is observed is very uncertain. There are 
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Fig. 2. First order discontinuity in the chiral order parameter <2X> 
(triangles) and the Polyakov loop <L> (dots). Shown are <2X> and 
<L> versus fi for the SU(3), ns=4 theory (Fig. from [9]) 
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Fig. 3. Schematic view of the SU(3) finite temperature phase dia- 
gram in the m/T--nr plane. Shown is the gap in various observables 
which signal the presence of a first order transition. Question marks  
indicate the regions of present numerical and/or  theoretical uncer- 
tainties 

large discrepancies between results of different groups 
using different algorithms. In particular the Langevin 
algorithm seems to lead to larger critical quark mass. 
At present we also cannot rule out the possibility 
that the QCD phase transition is first order for all 
quark masses. 

The phase diagram in the m/T, n-r plane that 
emerges from these calculations is shown in Fig. 3. 
Notice that there seems to be a small region in this 
plane where the transition to the high temperature 
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Table 1. Compar ison of critical temperatures obtained on small 
lattices for various number  of flavours. The numbers  are taken from 
the references given in brackets 

N~ Tga~ 

n:=O nf=2 n:=4 

4 2.61+0.01 [-4,5] 2.46_+0.1 [10] 2.77+0.15 [9] 
2.6_+0.1 [,11] 

6 2.12+0.01 [-4, 5] 2.14+0.10 [-8] 

phase is continuous. It remains to be seen whether 
this region is connected to the m/T=O axis for small 
number of flavours, or whether it is present at all. 

Compared to the pure gauge sector the chiral 
transition temperature has been determined only on 
rather small lattices. Clearly, the asymptotic scaling 
regime has not been reached up to now in simulta- 
neous with dynamical fermions. Indeed T~h/A~r s 
shows similar scaling violations as the deconfinement 
temperature on small lattices. This becomes clear 
from Table 1 where we compare results for n:=O, 
2 and 4 on small lattices. These numbers are also 
plotted in Fig. 1. Using results from hadron mass cal- 
culations with dynamical fermions [30], the chiral 
transition temperature can be converted into physical 
units. This gives T~h~130-170 MeV [10, 11]. How- 
ever, given the present status of hadron mass calcula- 
tions and the additional extrapolations involved*, 
this number should be taken with caution. Certainly 
much better numbers will be available in the near 
future where we also can expect to see first results 
for a realistic mass spectrum of two nearly mass-less 
up and down quarks and a strange quark of interme- 
diate mass [31]. 

3 Equation of state of the quark-gluon plasma 

Besides knowing the critical temperature T~ for a 
phase transition to a quark-gluon plasma, an even 
more important quantity is the energy density re- 
quired to reach this new phase of QCD. The early 
calculations for SU(2) [32] and SU(3) [20, 23] gauge 
theories showed that the energy density was close to 
the ideal gas value 

~ s B / T  4 = 7C2 (N 2 -- 1) (3.1) 
15" 

already immediately above T~. On small lattices rather 
large finite size corrections have to be taken into ac- 

* As the hadron mass calculations have not been performed directly 
at the critical coupling 6/g 2, the results have to be extrapolated 
to this value using the asymptotic renormalization group equation 
and assumptions about the amount of scaling violation in this cou- 
pling region. 
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Fig. 4. Latent heat Ae/T: for SU(3) pure gauge theory versus N~. 
Data are taken from [6, 33, 34] and finite size corrections [35] 
have been taken into account. The crosses indicate uncorrected data 

count to arrive at this conclusion. However, by now 
the energy density has been studied on rather larger 
lattices with up to N~= 10 sites in temporal direction 
[6, 33-34]. The results obtained confirm the calcula- 
tions on smaller lattices. This shows that the finite 
size effects are well under control. In Fig. 4 we show 
results for the latent heat of the first order deconfine- 
ment transition for SU(3). Correcting for finite size 
effects [35] yields N:independent results for all N~. 
From this we get for the latent heat 

A E/To 4 = 3.44 + 0.02 = (0.65 _ 0.04) esn/T 4. (3.2) 

Thus the energy density at T~ is about 35% lower 
than the ideal gas value at the same temperature. The 
approach to this value from large temperatures is 
rather smooth. There are no indications for large non- 
perturbative corrections. In fact, from smaller lattices 
we know that the energy density is well described 
by the perturbative formula 

e/T4=ao+a2 g2 + O([g31) (3.3) 

with a0, a2 calculated on finite lattices [36]. On infi- 
nite lattices the parameters approach the correspond- 
ing continuum formula, which for SU(N) and n: 
massless fermion flavours are given by 

g2 
ao = ~ (U 2 - -  1 + �88 U ny) (3.4 a) 

a2 = -- ~g8 ( N2 -- 1)(N + �88 ny). (3.4 b) 

The coupling g2 appearing in (3.3) is the temperature 
dependent running coupling constant 

24rc 2 
g2 (T) -  (33 - -2n:) ln(x T/A~gs)" (3.5) 



Here x is a still unknown parameter which could in 
principle be determined in perturbation theory by 
performing a O (g4) calculation for the energy density 
[37]. We can extract x from the Monte Carlo data 
for the latent heat by assuming that this can be de- 
scribed by (3.3) at T~. From (3.2) and (3.3) we find 
then 

n :=0 :  x=3.9+2.6. (3.6) 

The strong coupling constant at T~ thus becomes 

cts(T~) g2(T~) t~oo+o.ll 
, o . z , ~ ,  _ O .  0 5  �9 

4re 

In general, we find that the energy density of the 
SU(3) gluon gas above T~ is well described by an 
ideal gas with O(g 2) perturbative corrections. In 
Fig. 5, we show e/T 4 on a large temperature interval. 

The situation is, however, quite different for the 
pressure. Close to T~ strong deviations from the ideal 
gas relation, ~=3p, are visible. This is true for SU(2) 
[32] and SU(3) [38] pure gauge theories as well as 
in the presence of dynamical fermions. In Fig. 6, we 
show results for SU(3) with n: = 2 flavours of quarks 
taken from [10]. These large deviations from the ideal 
gas value can hardly be explained by perturbation 
theory. In fact, from an analysis of SU(2) data 
K/illman found that this non-perturbative effect can 
be parametrized with a term proportional to T[39] 

7-C 2 
P = ~ ( N  2 -  1) T 4 - - C  T (3.7) 

with c~0 .2 (N2- I )  Tc 3 . Indeed this is also in agree- 
ment with the SU(3) data [38] although the accuracy 
of the data is still quite bad. A more detailed analysis 
of the equation of state for pure SU(3) gtuon matter 
is certainly needed. In particular, it should be worked 
out whether in the presence of dynamical fermions 
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Fig. 5. e/T 4 versus fl=6/g 2 for SU(3) on a 10ax 3 lattices. Also 
shown is the lowest order ( - . - )  and O(g 2) ( - - )  weak coupling 
perturbative result [36] 
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Fig. 6. e/T'* (squares) and 3p/T 4 (dots) versus fl for SU(3), n:=2, 
m/T=O.1. Data are taken from [10]. Lines are drawn to guide the 
eye 

the non-perturbative term in the pressure is also pro- 
portional to T. 

We note that due to the relation of e and p to 
the entropy 

S = 1 (e + P) (3.8) 

these results predict a substantial decrease in the en- 
tropy of the quark gluon plasma compared to an ideal 
gas close to T~. The origin of the quasi ideal gas 
behaviour and the non-perturbative nature of the 
pressure has been addressed to the presence of mas- 
sive plasma excitations [15, 38, 40] which besides of 
a massless phonon mode [41] are expected to contrib- 
ute to energy density as well as pressure in the plasma 
phase. The basic idea is the observation that in the 
plasma phase, heavy colour singlet excitations will 
contribute dominantly in the low momentum regime 
to the thermodynamic potential, while for large mo- 
menta a free massless gluon gas gives the dominant 
contribution. In the simplest version we may think 
of a single mass scale mc which defines the relevant 
momentum cut-off for these two different regimes. 
The thermodynamic potential reads then 

In Z = 7  Vf(T, mc) (3.9) 

with ~ denoting the effective number of degrees of 
freedom and 

--1 ~ dkk2 ln(l_e_k/r) f ( T, me)=~2  
mc 

1 ~ dkkZln l_e_~_ V . 
2n2 o 

(3.10) 
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Defining 

T 3 mc/T l _ e - 1 / ~  
h(T,mr 2rc2 ~ d x x  21n 

o 1 - e  -x 

i ~ d x x  2 ln (1 - e  -x) (3.11) 
asB-  2 ~r 2 o 

we can separate the ideal gas contribution in (3.9) 
which now reads 

In Z = ~ V T3 asB-  c~ Vh (T, m~). (3.12) 

For energy density and pressure we find 

P = c~ asB r 4 - -  ~ r h ( r ,  mc) (3.13 a) 

= 3 c~ asB T 4 -  ~ T 2 & h(T, mc). (3.13 b) 
0 1  

The first terms in (3.13a/b) give the ideal gas behav- 
iour while the function h(T, me) parametrizes the de- 
viations. We see that indeed we can describe the MC 
data for pressure and energy density with this ansatz, 
if h(T, me) turns out to be only weakly temperature 
dependent. This is the case for a temperature indepen- 
dent cut-off me. Comparing with the MC data for 
SU(2) one finds 

mc~2 T~. (3.14) 

This shows that 1/mc is compatible with standard zero 
temperature confinement scales of ,~ 1 fm, it does not 
seem to be related to high temperature screening 
lengths which would favour a linear increase of mc 
with T[38]. 

Up to now we have discussed the thermodynamics 
in the pure gauge sector. Does the situation change 
in the presence of fermions? Looking at Figs. 5 and 
6 the overall behaviour seems to be similar. However, 
a closer analysis of the energy density in the presence 
of dynamical fermions shows that its high tempera- 
ture limit is far away from the expected ideal gas 
result. Also a comparison with finite lattice perturba- 
tion theory is still unsatisfactory [-36]. This is shown 
in Fig. 7 where we compare the Monte Carlo data 
for SU(3) with two light flavours [10] with the pertur- 
bative results of [36]. We note that the O(g 2) correc- 
tions on this small lattice have the opposite sign com- 
pared to the continuum perturbative result, (3.4 b). 
Thus the MC data follow the trend of finite lattice 
perturbation theory. However, these finite size effects 
seem to be so large that we have to wait for MC 
results on larger lattices to discuss the equation of 
state with dynamical fermions on the basis of MC 
data. 
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Fig. 7. e/T 4 versus ft. Same data as in Fig. 6. Also shown is the 
continuum Stefan-Boltzman limit ( ) and finite lattice perturba- 
tive results to lowest order ( - - - )  and O(g 2) (-.-.-) from [36] 

4 Screening lengths 

We have seen that non-perturbative effects show up 
in the equation of state for the quark-gluon plasma. 
Close to T~ collective plasma excitations give impor- 
tant contributions to the pressure. 

Collective modes, leading to an electric and mag- 
netic screening length [42] have been discussed in 
the past as a solution for the well-known infra-red 
problem of the finite temperature perturbative expan- 
sion [43] of the thermodynamical potential. It is ex- 
pected that the gluon propagator develops a non- 
perturbative electric (roD) and magnetic (raM) screening 
mass of O(g) and O(g2), respectively, mD(r )~g(T)T ,  
m~t(T)~gZ(T) T. Lowest order perturbation theory 
yields the gauge invariant result 

m~(T) = (N +~6s ) g2(T)T 2 (4.1) 

for the Debye mass (roD). However beyond this, little 
is known about these screening masses from perturba- 
tion theory. The magnitude of the electric (Debye) 
screening mass became of interest during the last year 
due to its importance in the discussion of the suppres- 
sion of heavy flavour resonances as a signal of plasma 
formation [17]. Assuming that the QCD confinement 
potential is replaced by a Debye screened Coulomb 
potential above T~, 

I c~(T)+a(T)r ' 
r r < T~ (4.2) 

V(r, T)= ~(T) e_mD(T)r +c(T), T>=T~ 
r 

Matsui and Satz [17] derive a condition that has to 
be fulfilled in order to forbid the formation of bound 



states for quarks of mass rnq in the above potential 

mo(T)> 1.68 m o c~(T). (4.3) 

x/ I I 

We thus realize the importance of a quantitative de- 
termination of roD(T). On the lattice, information on 
the electric screening length can be obtained from 
correlations of static heavy quarks, i.e., Polyakov loop 
correlation functions 

e-m*' r)/T = (Tr Lo Tr L~ + ) (4.4) 

N ~  

with r=lxl,  Lx= 1-[ U(xo,x),o and F(r, T) denoting 
X o =  1 

the change of free energy due to the presence of a 
static quark-antiquark pair. At large distances this 
correlation function gives 

lime-F(r, T)/T = (Tr L o )  2. (4.5) 
r - - + ~  

Assuming that for large distances the free energy be- 
haves like 

F(r, t) =f(r, T) e-U(r)r + c(T) (4.6) 

with c ( T ) = - T l n ( T r  Lo) 2 and #(T) the screening 
mass for this correlation function we can extract #(T) 
from MC measurements of the correlation functions, 
(4.4). Results for SU(2) [14] and SU(3) [13] are 
shown in Figs. 8 and 9. From Fig. 8 we see that for 
SU(2) #(T)=I/ r  is a rapidly increasing function of 
T. In fact, it seems to grow faster than T, #(T)/Tstarts 
growing close to T~ reaching a value of about 4 for 
large T. For SU(3) #(T)/Tis roughly constant 

#(T)/T".2 3 for T~<T<2T~. (4.7) 

Simulations with dynamical fermions seem to give 
similar results [-44]. They also have the tendency to 
give values for #(T)/Twhich increase with tempera- 
ture rather than decrease as one would expect on 
the basis of the perturbative relation (4.1). This points 
to various problems with the determination of the 
Debye screening length which have not been clarified 
up to now. The relation of the screening mass #(T) 
defined through (4.4)-(4.6) to the Debye mass, being 
defined as the screening mass in the heavy quark col- 
our singlet potential, is not straightforward. In fact 
#(T) is related to the colour averaged potential (free 
energy) [45], at least in lowest order perturbation 
theory, which leads to the conclusion that in the high 
temperature limit #(T)=2mD(T). This may explain 
why #(T)/T seem to be an increasing function of T. 
A further problem is that the screening length should 
be extracted from the correlation functions at large 
distances which have not been reached in present MC 
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Fig. 8. Debye screening lengths ~ ~-1/m D in units of 100 AL versus 
T/A L for SU(2) gauge theory on a 183x 4 lattice. Data are taken 
from Ref. [14] 
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Fig. 9. Debye mass in units of T as a function of T/AL for pure 
SU(3) gauge theory. The figure has been taken from [13] 

simulations. At short distances the heavy quark po- 
tential does not have to be of the simple Debye 
screened Coulomb form [46]. The determination of 
#(T) from MC data is thus very sensitive to the specif- 
ic ansatz forf(r, T) (4.6) used in the fits to the data. 

Also finite lattice effects that lead to a distortion 
of the Coulomb potential have not been taken into 
account in present fits. The determination of the De- 
bye screening mass should, therefore, be considered 
as being in an exploratory stage. Further work is nec- 
essary to get a quantitative understanding of the 
heavy quark potential in the plasma phase. 
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Fig. 10. Various hadronic screening masses in units of T versus 
coupling fl~6/g 2 for SU(3) with four light flavours. The dashed 
region indicates the transition region to the chiral symmetric phase 
with massive pionic mode (n). The scalar/pseudoscalar (n-a), vec- 
tor/pseudovector (p-al) and nucleon parity doublet (N+--N_) 
seem to have degenerate screening masses. The figure has been taken 
from [16] 

Let us finally mention a rather interesting analysis 
of hadronic screening lengths in the quark-gluon plas- 
ma performed recently by C. DeTar and J.B. Kogut 
[16]. They study spatial correlation functions of oper- 
ators with hadronic quantum numbers, i.e., correla- 
tion functions that define ordinary hadron masses at 
zero temperature. Above T~ chiral symmetry is exact 
in the massless limit and the full SU(ny) x SU(ns) fla- 
vour symmetry of QCD is restored. That should be 
visible in the "screening mass" spectrum for these 
operators. In particular, the pion is no longer a Gold- 
stone particle and thus may be massive above T~, 
in addition scalar (vector) and pseudoscalar (vector) 
modes should have degenerate masses above T~ as 
they are related through an exact symmetry transfor- 
mation. These features are borne out by their data 
for SU(3) with four light dynamical flavours shown 
in Fig. 10. This clear shows the presence of hadronic 
modes in the quark-gluon plasma. However, these ex- 
citations are quite heavy. As discussed before, they 
will only contribute to the low frequency part of the 
thermodynamic potential. Their relevance in the ther- 
modynamics of the plasma phase thus deserves fur- 
ther studies. In particular, the stability of these modes 
has to be analyzed. 

5 Conclusions 

Lattice simulations at finite temperature are at pres- 
ent in a transient stage. In the pure gauge sector they 
have reached a stage where reliable quantitative re- 

sults can be obtained. The deconfinement temperature 
as well as the latent heat of the SU(3) deconfinement 
transition seem to be well established 

T~/]/~ = 0.58 _ 0.04 (5.1) 

A e/T~ 4 = 3.44_ 0.02 (5.2) 

Moreover we found indications for non-perturbative 
features of the plasma phase in the non-perturbative 
behaviour of the pressure and the existence of a non- 
vanishing Debye screening length. The quantitative 
analysis of this effect, however, has to be pursued 
further. 

Simulations with dynamical fermions just start to 
reach a stage where large scale simulations become 
possible to extract quantitative results relevant for 
the continuum limit. Algorithms have been developed 
which have small enough systematic errors so that 
they can be used for simulations with small quark 
mass on large lattices. First results are encouraging. 
They have established the existence of a first order 
chiral phase transition and indicate that T~/Arts shows 
little flavour dependence. Thus the results found in 
the pure gauge sector seem to be a good guide for 
continuum physics. However, we have also seen that 
some observables like the energy density show large 
finite size effects in the presence of dynamical fer- 
mions. These effects have to be analyzed in detail 
before any conclusions can be drawn about the equa- 
tion of state of the QCD plasma with light dynamical 
fermions. 
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