
http://www.elsevier.com/locate/jcss
Journal of Computer and System Sciences 69 (2004) 525–546

Linear time algorithms for finding and representing
all the tandem repeats in a string

Dan Gusfield�,1 and Jens Stoye2,3

Department of Computer Science, University of California-Davis, Davis, CA 95616, USA

Received 21 February 2003; revised 19 December 2003

Available online 6 May 2004

Abstract

A tandem repeat (or square) is a string aa; where a is a non-empty string. We present an OðjSjÞ-time
algorithm that operates on the suffix tree TðSÞ for a string S; finding and marking the endpoint in TðSÞ of
every tandem repeat that occurs in S: This decorated suffix tree implicitly represents all occurrences of
tandem repeats in S; and can be used to efficiently solve many questions concerning tandem repeats and
tandem arrays in S: This improves and generalizes several prior efforts to efficiently capture large subsets of
tandem repeats.
r 2004 Elsevier Inc. All rights reserved.

1. Introduction

A tandem repeat (square) is a string of the form aa where a is a non-empty string.
Given a string S of length n; a number of questions regarding tandem repeats may be asked.

The simplest question is whether S contains a tandem repeat or is squarefree. Assuming a fixed
alphabet size, this question is known to be answerable in OðnÞ time [3,16,4,5]. One might further
be interested in identifying all occurrences of tandem repeats in S: Since there can be as many as

n2=4 occurrences of tandem repeats in a string of length n; an efficient algorithm for this task will
depend on the output size, denoted z: Several Oðn log n þ zÞ time algorithms are known [15,12,19]

ARTICLE IN PRESS

�Corresponding author.

E-mail address: gusfield@cs.ucdavis.edu (D. Gusfield).
1Research partially supported by Grant DBI-9723346 from the National Science Foundation, and by Grant DE-

FG03-90ER60999 from the Department of Energy.
2Research supported by the German Academic Exchange Service (DAAD).
3Present address: Universität Bielefeld, Technische Fakultät, 33594 Bielefeld, Germany.

0022-0000/$ - see front matter r 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcss.2004.03.004

praktikum2-ub
Rechteck

praktikum2-ub
Rechteck

praktikum2-ub
Rechteck

for this task. It is often of interest to restrict the output to those tandem repeats which do not
contain shorter repeats. These are called primitive tandem repeats. It is known that there can be at
most Oðn log nÞ occurrences of primitive tandem repeats in a string of length n; and several
algorithms are known that identify those occurrences in Oðn log nÞ time [2,1,19].
In a very impressive extended abstract, Kosaraju [11] addresses the question of finding for each

position i of S the shortest tandem repeat starting at position i; and sketches an OðnÞ time
algorithm for that problem. He also mentions the problem of finding all occurrences of primitive
tandem repeats in S and, without details, states that the sketched algorithm can be extended to
solve this question in Oðn þ zÞ time where, as above, z is the size of the output.
Recently it was shown that the number of different types of tandem repeats contained in a

string of length n is bounded by OðnÞ [7]. Two tandem repeats aa and a0a0 are of different type if
and only if aaa0: Note that this OðnÞ bound counts each tandem repeat type only once, no matter
how many times that tandem repeat type occurs in the string. This OðnÞ bound leads to an
interesting challenge: Can we find one occurrence of each tandem repeat type in OðnÞ time? Such a
list of different repeat types (or more precisely a start location and length of each) is called the
vocabulary (of tandem repeats) of string S: For example, a vocabulary of tandem repeats of the
string abaabaabbaaabaaba$ is given by the set of pairs fð1; 6Þ; ð2; 6Þ; ð3; 2Þ; ð3; 6Þ; ð8; 2Þg
representing the tandem repeats abaaba; baabaa; aa; aabaab; bb: The set of occurrences
of tandem repeats on the other hand contains a pair for each occurrence of a tandem repeat
in S: In the above example, the set of occurrences of tandem repeats is fð1; 6Þ; ð2; 6Þ;
ð3; 2Þ; ð3; 6Þ; ð6; 2Þ; ð8; 2Þ; ð10; 2Þ; ð11; 2Þ; ð11; 6Þ; ð12; 6Þ; ð14; 2Þg:

1.1. Main result

In this paper, we present an algorithm that finds the vocabulary of a string S of length n in OðnÞ
time and space. In so doing, the algorithm implicitly lays out the complete structure of the tandem
repeats in S: The result is achieved in a three-phase procedure. Phase I finds a subset of the
occurrences of tandem repeats, which we call a leftmost covering set, using an extension of
Crochemore’s linear-time algorithm that tests if S is squarefree [3–5], similar to the algorithm by
Main [14] which finds the leftmost occurrence of each tandem repeat type in OðnÞ time. Phase II
finds the end locations in the suffix tree of S for some of the tandem repeat types in the leftmost
covering set. Phase III traverses parts of the suffix tree from the endpoints found in Phase II,
to obtain the complete vocabulary of tandem repeats. The end result is that the suffix tree of S
is decorated with the endpoint of each tandem repeat in the vocabulary of S: For an example, see
Fig. 1.
Clearly, such a decorated suffix tree compactly represents all the different tandem repeat types

in S and the locations in S where they occur; it can be used to answer many questions regarding
tandem repeats. For example, once the suffix tree has been decorated with the endpoint of each
tandem repeat in the vocabulary, a standard linear-time traversal of the tree can identify for each
location i in S; the shortest (and/or longest) tandem repeat that begins at position i: Using the
decorated suffix tree, all the above-mentioned problems concerning tandem repeats (and more)
can be solved in time and space bounds that are as good or better than previously established.
Our OðnÞ-time method to decorate the suffix tree with the vocabulary of tandem repeats is

based on ideas that are quite different from the ideas in [11], and also different from those in [19].

ARTICLE IN PRESS

D. Gusfield, J. Stoye / Journal of Computer and System Sciences 69 (2004) 525–546526

praktikum2-ub
Rechteck

Independent of our work presented here, a recent analysis of the number of possible runs of
primitive tandem repeats was made, and a different linear-time algorithm was obtained [10] that
finds all these runs in OðnÞ time using an extension of Main’s algorithm [14]. Their algorithm then
allows one to find all the z tandem repeat occurrences in S in Oðn þ zÞ time, and in OðnÞ space.
However, their algorithm does not address the main result in our paper, finding the vocabulary of
tandem repeats and locating them in a suffix tree in linear time, and we do not see how to extend
their algorithm to achieve those goals.

2. Terminology and technical background

We assume a finite alphabet S of a fixed size. Throughout this paper we fix attention to a string
S of length n ¼ jSj: We assume S ends with a character ‘$’ not occurring elsewhere in S: For
1pipjpn; S½i::j� denotes the substring of S beginning with the ith and ending with the jth
character of S; we say there is an occurrence of S½i::j� at position i in S: String wa is called the

right-rotation of string aw; where aAS is a single character and wASþ is a non-empty string.

A string wASþ is a tandem repeat if it can be written as w ¼ aa for some aASþ: An occurrence
of a tandem repeat aa ¼ S½i::i þ l � 1� is represented by a pair ði; lÞ; called a tandem repeat pair.
The first entry of a tandem repeat pair is called the position entry, and the second entry is called
the length entry. Two occurrences of tandem repeats S½i::i þ l � 1� ¼ aa and S½i0::i0 þ l � 1� ¼ a0a0

are of the same type if and only if a ¼ a0: For simplicity, we will sometimes specify a tandem
repeat type by referring to an occurrence ði; lÞ of that repeat type, even though the specific location
is not of interest. The vocabulary (of tandem repeats) of S is a set of tandem repeat pairs such that

ARTICLE IN PRESS

11

12

4

18

16

2

13

17

10 8
9

7

15

14

6
5

3

1

a

a a

a

a
a

a

b

b

b

b
b

a

aa

b
a

b

Fig. 1. Suffix tree of string abaabaabbaaabaaba$: Circles indicate the endpoints of tandem repeats. Only the characters

needed to spell out the tandem repeats are shown on the tree.

D. Gusfield, J. Stoye / Journal of Computer and System Sciences 69 (2004) 525–546 527

praktikum2-ub
Rechteck

each tandem repeat type occurring in S is contained in the set exactly once. In contrast, the set of

occurrences (of tandem repeats) of S contains all the tandem repeat pairs of S:
An interval of positions i; i þ 1;y; j is called a run of l-length tandem repeats if ði; lÞ; ði þ

1; lÞ;y; ð j; lÞ are each tandem repeat pairs. A tandem repeat pair ði; lÞ covers another tandem
repeat pair ð j; lÞ if and only if there is a run of l-length tandem repeats in S that starts at i and
contains j:
Note that if ði; lÞ covers ð j; lÞ; then the substring S½ j::j þ l � 1� can be obtained by a series of

successive right-rotations from the substring S½i::i þ l � 1�; and by definition, each string created
by a right-rotation is also a tandem repeat of length l: In our example string
abaabaabbaaabaaba$; the tandem repeat pair ð1; 6Þ covers the pairs ð2; 6Þ and ð3; 6Þ; the pair
ð10; 2Þ covers ð11; 2Þ; and ð11; 6Þ covers ð12; 6Þ:
A set of tandem repeat pairs P is called a covering set if and only if at least one occurrence of

every tandem repeat in the vocabulary of tandem repeats is covered by one of the pairs in P: That
is, the runs starting from every pair in P collectively cover at least one occurrence of each tandem
repeat type. A set of tandem repeat pairs P is a leftmost covering set if the leftmost occurrence of
each type of tandem repeat in S is covered by a pair. For example, fð1; 6Þ; ð8; 2Þ; ð11; 2Þg is a
covering set of abaabaabbaaabaaba$; but is not a leftmost covering set since the leftmost
occurrence of aa at position 3 is not covered. However, fð1; 6Þ; ð3; 2Þ; ð8; 2Þg is a leftmost
covering set.

2.1. The size of the vocabulary

The following result by Fraenkel and Simpson [7] is essential to our present work.

Theorem 1. For any position i in S; there can be at most two tandem repeat types whose rightmost
occurrences start at position i: Stated differently, even though there may be many tandem repeat

types that occur starting at position i; all but two (at most) of these types will also occur starting
somewhere to the right of i:

Corollary 2. The size of the vocabulary of tandem repeats of any string of length n is bounded by 2n:

Actually, Fraenkel and Simpson give slightly tighter bounds for the size of a tandem repeat
vocabulary. They establish that for strings of length nX5 the size of the vocabulary is bounded by
2n � 8; and that for binary strings of length nX22; it is bounded by 2n � 29:
A simpler, direct proof of Corollary 2 has recently been obtained by D. Hickerson [9].

2.2. Background on suffix trees

We use suffix trees extensively both as computation tools, and as the data structure that holds
the output of the computation. For a general introduction to suffix trees, see [5] or [8].
We use TðSÞ to denote the suffix tree of S; i.e., the compacted trie of all the suffixes of S; LðvÞ

denotes the path-label of a node v i.e., the concatenation of the edge labels along the path from the
root to v: We say that v is path-labeled LðvÞ: DðvÞ ¼ jLðvÞj is the string-depth of v: Each leaf v of

TðSÞ is also labeled with index i if and only if LðvÞ ¼ S½i::n�: For a non-empty substring wASþ of

ARTICLE IN PRESS

D. Gusfield, J. Stoye / Journal of Computer and System Sciences 69 (2004) 525–546528

praktikum2-ub
Rechteck

S; we encode the endpoint of w in TðSÞ by a pair ðe;mÞ; where e ¼ ðu; vÞ is an edge in TðSÞ and m

is an integer satisfying 0ompDðvÞ � DðuÞ: The meaning is that string w ends m characters from u
(u is the parent of v) along the edge ðu; vÞ: Clearly, w ¼ LðuÞb where b is the m-length prefix of the
edge-label of e: Note that w is encoded on an edge ðu; vÞ even if its endpoint is at node v:
The suffix link of a node v with path-label LðvÞ ¼ aw; aAS; wAS�; is a pointer to the node

path-labeled w: This node always exists if v is a non-root internal node of TðSÞ: The character a is
the label of the suffix link pointing from the node labeled aw to the node labeled w: It is well
known that the suffix tree of S including the suffix links can be computed in OðnÞ time
[21,17,20,6].

3. Phase I: Finding a leftmost covering set

Crochemore [3–5] developed a linear-time algorithm that determines if a string is squarefree. In
this section we show how this algorithm can be extended to find a leftmost covering set of the
tandem repeats of S: That is the key task of Phase I. Crochemore’s algorithm, and our
modification of it, use two crucial tools. The first is a decomposition of the string S; called the
Lempel-Ziv (LZ) decomposition, and the second is the repeated use of longest common extension
queries. We first describe the LZ decomposition of S [13].
For each position i of S; let li denote the length of the longest prefix of S½i::n� that also occurs as

a substring of S starting at some position joi; let si denote the starting position of the leftmost
occurrence of this substring in S if li40; and si ¼ 0; otherwise. The Lempel-Ziv (LZ)
decomposition of S is the list of indices i1; i2;y; ik; defined inductively by i1 ¼ 1 and iBþ1 ¼
iB þmaxð1; liBÞ for iBpn: The substring S½iB::iBþ1 � 1�; 1pBok; obtained in this way is called the
Bth block of the LZ decomposition of S: It is well known that this decomposition can be
computed in OðnÞ time, e.g. using the suffix tree of S [18].4 Table 1 shows the values si and li for
the string abaabaabbaaabaaba$; and Fig. 2 shows the Lempel-Ziv decomposition.
The following two basic facts are stated explicitly or implicitly in [3–5] and connect tandem

repeats to the blocks of the LZ decomposition.

Lemma 3. The right half of any tandem repeat occurrence must touch at most two blocks of the LZ
decomposition.

Proof. Assume the scenario shown in Fig. 3, where the right half of tandem repeat aa touches
more than two blocks. Let b be the first block completely included in the right half of the tandem
repeat, and let g be the remaining (necessarily non-empty) suffix of the right a: Since aa is a
tandem repeat, there is an earlier occurrence of bg in S; namely as a suffix of the first half of the
tandem repeat. But then the second b is not maximal with respect to having appeared earlier,
contradicting the assumption that the second b is a full block. &

ARTICLE IN PRESS

4There are several published variants of this decomposition, with differing names. Crochemore [5] uses the variant

defined above, but calls it an f-factorization, and reserves the names Ziv and Lempel for a related decomposition. That

decomposition is called Ziv-Lempel in [8], where its efficient computation is detailed. Those details easily extend to the

LZ decomposition defined above.

D. Gusfield, J. Stoye / Journal of Computer and System Sciences 69 (2004) 525–546 529

praktikum2-ub
Rechteck

Lemma 4. The leftmost occurrence of any tandem repeat touches at least two blocks.

Proof. By the definition of the LZ decomposition, any substring which occurs completely
contained in one block has an occurrence starting at an earlier position in S: Hence it cannot be
the leftmost occurrence of that substring. &

We say that the center of a tandem repeat aa is inside block B if the rightmost character of the
left copy of a is contained in B: The prior two Lemmas establish the following:

Theorem 5. If the leftmost occurrence of a tandem repeat aa has its center inside some block B; then

either

(Condition 1) aa has its left end inside block B and its right end inside block B þ 1;

or

(Condition 2) the left end of aa extends into block B � 1 and possibly further left. The right end

may be inside block B or inside block B þ 1:

See Fig. 4.

ARTICLE IN PRESS

a a b a a bba b a a a b a a b a $

1 2 3 4 5 6 7

Fig. 2. The Lempel-Ziv decomposition.

LZ decomposition

β γ β γ

α

α

S

Fig. 3. The right side of a tandem repeat touches at most two blocks of the Lempel-Ziv decomposition.

Table 1

The definition of li and si

Text a b a a b a a b b a a a b a a b a $

Position i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

li 0 0 1 5 4 3 2 1 3 2 6 6 5 4 3 2 1 0

si 0 0 1 1 2 3 1 2 2 3 3 1 2 3 1 2 1 0

D. Gusfield, J. Stoye / Journal of Computer and System Sciences 69 (2004) 525–546530

praktikum2-ub
Rechteck

It follows immediately that in order to identify the leftmost occurrence of each type of
tandem repeat, it suffices to look only for occurrences of tandem repeats that satisfy one of
the two above conditions. This point is crucial in the linear time bound for finding a leftmost
covering set.
We now describe the second crucial tool of Phase I, the use of the longest common extension

query.
For two indices i and j of a string S; we define the longest common extension from i and j (in the

forward direction) as the length of the longest substring in S that starts at i and matches a
substring starting at j: We define the longest common extension in the backward direction as the
longest substring of S that ends at i and matches a substring ending at j: It is known that after
linear processing time of S; any longest common extension computation (forward or backward)
can be executed in constant time. This is achieved in one of two ways, either by using a constant
time least common ancestor algorithm (although that is a complex method), or much more simply
by using variants of Knuth-Morris-Pratt or Boyer-Moore or Z-algorithm preprocessing. See [8,
pp. 196, 208] for more details on these two approaches. We assume that string S has been
preprocessed so that any subsequent longest common extension query can be executed in constant
time.
With the LZ decomposition, and the use of longest common extension queries, we can now

begin to develop the Phase I algorithm that finds a leftmost covering set. The algorithm is an
extension of Crochemore’s algorithm for determining if a string is squarefree. The algorithm
processes blocks 1; 2;y of the LZ decomposition in order, and it outputs an ordered list of
tandem repeat pairs as each block is processed. The algorithm maintains the invariant that
after processing blocks 1;y;B of the LZ decomposition, all occurrences of tandem repeats
whose center is inside some block B0 from 1 to B; and that satisfy either Condition 1 or Condition
2, will be covered by the pairs output by the algorithm. Since the leftmost occurrence of any
tandem repeat satisfies either Condition 1 or 2, the algorithm will have output a leftmost
covering set at termination. Every block B is processed with two algorithms that are described
next.

3.1. Algorithm 1: Processing block B

Assume block B starts at position h and block B þ 1 starts at position h1:

ARTICLE IN PRESS

B + 1

B + 1B

B

α

 α α

α

B B + 1

α α

 Condition 2

Condition 1

Fig. 4. The two conditions for leftmost tandem repeats.

D. Gusfield, J. Stoye / Journal of Computer and System Sciences 69 (2004) 525–546 531

praktikum2-ub
Rechteck

Algorithm 1a: Processing block B for tandem repeats that satisfy Condition 1 (see Fig. 5)

1: for k ¼ 1;y; jBj do
2: Let q ¼ h1 � k:
3: Compute the longest common extension in the forward direction from positions h1 and

q: Let k1 denote the length of that extension.
4: Compute the longest common extension in the backward direction from positions

h1 � 1 and q � 1: Let k2 denote the length of that extension.
5: Let start ¼ maxðq � k2; q � k þ 1Þ:
6: if k1 þ k2Xk and k140 then
7: output the tandem repeat pair ðstart; 2kÞ:
8: end if

9: end for

The key to understanding Algorithm 1a is the fact that if k1 þ k2Xk; any tandem repeat of
length 2k starting between q � k2 and q � 1 will be covered by a run of tandem repeats starting at
position q � k2: If k140 then that run also extends into block B þ 1; and hence contains tandem
repeats of length 2k which have their center in B and their right end in B þ 1: In that case, we want
to output a repeat pair that covers those tandem repeats. The pair ðq � k2; 2kÞ does that, but if
k2Xk; the pair ðq � k þ 1; 2kÞ also covers all the desired tandem repeats, and in that case we will
use ðq � k þ 1; 2kÞ to simplify the exposition of a subsequent computation.

Algorithm 1b: Processing block B for tandem repeats that satisfy Condition 2 (see Fig. 6)

1: for k ¼ 1;y; jBj þ jB þ 1j do
2: Let q ¼ h þ k:
3: Compute the longest common extension in the forward direction from positions h and q:

Let k1 denote the length of that extension.
4: Compute the longest common extension in the backward direction from positions h � 1

and q � 1: Let k2 denote the length of that extension.
5: Let start ¼ maxðh � k2; h � k þ 1Þ:
6: if k1 þ k2Xk and k140 and start þ koh1 and k240 then
7: output the tandem repeat pair ðstart; 2kÞ:
8: end if

9: end for

ARTICLE IN PRESS

h1

1k
2k2k

1k

B+1B

k

qh

Fig. 5. Algorithm 1a.

D. Gusfield, J. Stoye / Journal of Computer and System Sciences 69 (2004) 525–546532

praktikum2-ub
Rechteck

The explanation of Algorithm 1b is similar to that of Algorithm 1a. The point is to output a
tandem repeat pair that covers all the length k tandem repeats (k1 þ k2Xk) whose center is in B
(k140 and start þ koh1), and whose left end is in a block to the left of B (k240). Again, if the
run extends further to the left than necessary, the leftmost tandem repeat whose center is in block
B; ðn � k þ 1; 2kÞ; is reported since it covers all the desired tandem repeats. Algorithms 1a and 1b
are together referred to as Algorithm 1. Fig. 7 continues our example.

Theorem 6. Algorithm 1 outputs a leftmost covering set of pairs in OðnÞ time and space.

Proof. We have already established that Algorithm 1 outputs a leftmost covering set of tandem
repeat pairs. Algorithm 1a runs in OðnÞ time because each block B is processed in OðjBjÞ time, and
the blocks are disjoint. In Algorithm 1b, each block B is processed in time proportional to
jBj þ jB þ 1j: Hence over the entire running of Algorithm 1b, each block (except the first and last)
contributes twice to the total count. But since the blocks are disjoint, the total time for Algorithm
1b is also OðnÞ: &

For each position i in S; let PðiÞ denote the list of pairs ði; li
jÞ output by Algorithm 1, which

have position entry i: Let P denote the complete set of the output pairs, i.e., the union of the
PðiÞ: One additional implementation detail is needed in Phase I, in order to facilitate the work
in Phase II.

Lemma 7. Without increasing the worst-case running time of Algorithm 1, the lists PðiÞ can be

accumulated so that for each position i; the pairs ði; li
jÞ in PðiÞ are sorted by decreasing order of the

length entry. That is, li
j4li

jþ1:

ARTICLE IN PRESS

h1

1k
2k 1k

2k

h

k

B+1qB

Fig. 6. Algorithm 1b.

(3,2) (8,2) (11,2)

(11,6)(1,6)

b a a b a a b b a a a b a a b a $a

Fig. 7. The result of Algorithm 1 on string abaabaabbaaabaaba$: The tandem repeats from the leftmost covering set

are shown as thicker lines below the string. The corresponding tandem-repeat pairs ði; lÞ are written next to them. ð1; 6Þ
is output by Algorithm 1b while processing block three; ð3; 2Þ is output by Algorithm 1a while processing block three;

ð8; 2Þ is output by Algorithm 1a on block four; ð11; 2Þ is output by Algorithm 1a on block five; and ð11; 6Þ is output by
Algorithm 1b on block six.

D. Gusfield, J. Stoye / Journal of Computer and System Sciences 69 (2004) 525–546 533

praktikum2-ub
Rechteck

Proof. This is achieved by attaching an initially empty list PðiÞ to each position i of S: Then as
each pair ði; lÞ is output by Algorithm 1, the pair ði; lÞ is pre-pended to the list PðiÞ: To see that this
gives the desired result, focus on a fixed pair ði; lÞ output while block B is processed. We claim that
at the time ði; lÞ is output, all the pairs ði; l0Þ with l0ol; have already been added to list PðiÞ: First
consider all pairs ði; l0Þ with center in blocks 1;y;B � 1: These pairs were output in earlier
iterations of Algorithm 1, and hence are already in PðiÞ:Moreover, l0ol because l0 (respectively l)
is the distance between i and the center of the tandem repeat ði; l0Þ (respectively ði; lÞ).
Second, when processing block B; Algorithms 1a and 1b do not output pairs with the same i

value. The reason is that Algorithm 1a outputs pairs whose position entry i falls in block B; while
Algorithm 1b outputs pairs whose position entry falls in blocks before B:
Finally, Algorithm 1a (and 1b) varies k in increasing order, and hence if ði; l0Þ and ði; lÞ are

output in that order when Algorithm 1a (or 1b) is processing block B; then l0ol:
For the time bound, note that because the tandem repeat pairs are output in OðnÞ time and each

entry in a list is pre-pended to the list in constant time, the ordered lists are accumulated in OðnÞ
time as well. &

4. Phase II: Marking the endpoints of some tandem repeat types

Each tandem repeat pair in the leftmost covering set P found in Phase I specifies a particular
tandem repeat occurrence, and hence a particular tandem repeat type. (Note we are not talking
about the repeats covered by a repeat pair, but only the single repeat specified by the pair itself.)
Let Q denote the set of tandem repeat types specified by P: To introduce the idea of Phase II, we
motivate it by saying that we would ideally like to mark the endpoints of the repeats in Q during
Phase II. However, because of time constraints, that will not be possible, and Phase II will only
mark the endpoints of a particular subset Q0 of Q: The full explanation for the use of Q0 will have
to wait until part of Phase III is introduced.
Phase II processes every non-root node of TðSÞ during a linear-time, bottom-up traversal. To

start, each leaf i is given the list PðiÞ computed in Phase I, and Q0 is the empty set. During the
traversal, each internal node v will be given some end-portion of a list given to one of its children
(details below). The list given to v will be denoted PðvÞ; by induction and Lemma 7, PðvÞ is
guaranteed to be sorted by decreasing order of its length entries. The algorithm processes each
node v (which could be a leaf), whose parent is denoted u; as follows:

repeat

Let ði; lÞ denote the pair at the head of the list PðvÞ:
if l4DðuÞ then
//Tandem repeat ði; lÞ ends at node v or on the interior of edge ðu; vÞ:
Store the number l � DðuÞ on edge ðu; vÞ
Remove ði; lÞ from PðvÞ:
//For the exposition, place pair ði; lÞ into list P0:
end if

until PðvÞ is exhausted or lpDðuÞ:

ARTICLE IN PRESS

D. Gusfield, J. Stoye / Journal of Computer and System Sciences 69 (2004) 525–546534

praktikum2-ub
Rechteck

Since the traversal is bottom-up, a node u is processed only after all of its children have
been processed. When u is processed it would be appealing to merge-sort the current lists of the
children of u; according to the length entries of the pairs, and give that merged list to u: If that
were done for each node u; then the algorithm would record the endpoint of each repeat in Q:

However, over the entire tree, that approach would take Oðn2Þ time for the merges, even though
the size of all the lists is OðnÞ: But, as will be proved in the next section, merging can be avoided
as follows.
Before the traversal, label each node with the smallest leaf number in its subtree. Note that

the label at each node u agrees with the label of exactly one of its children. Then during the
bottom-up traversal, after all the children of an internal node u have been processed, set the list
PðuÞ; given to u; to the current list PðvÞ; where v is the child of u with the smallest label. The
traversal now takes OðnÞ time, since the size of the original lists is OðnÞ; and no lists are merged.
Moreover, if node u is labeled with leaf i; then the act of creating and ‘‘giving’’ a list to u is
implemented by passing a pointer to u that points to the appropriate position in list PðiÞ: Hence
Phase II takes OðnÞ time.
Let Q0 be the set of distinct tandem repeat types specified by the pairs in P0 at the end of Phase

II. Clearly, Q0 is the set of tandem repeat types that are recorded in TðSÞ; and Q0 is a subset of Q

and might be a strict subset. The utility of Q0 will be explained in the next section.

5. Phase III: Using Q0 to record the endpoints of the full vocabulary

The end result of Phase II is the decoration of the suffix tree with the endpoints of the tandem
repeat types in Q0:We will now use those endpoints to find the endpoints of all the tandem repeats
in the full vocabulary of tandem repeats. The key algorithmic operation is that of a suffix-link

walk, which is a common operation in building and using suffix trees.
Consider a tandem repeat aa ¼ ag; where aAS is a single character. A suffix-link walk (or walk

for short) from the end of aa first moves to a location in TðSÞ labeled with the string g: There are
two cases to consider. In the first case, the end-location in TðSÞ of aa is at a node v: In this case,
the suffix-link walk first moves along the suffix link ðv; v0Þ to the node v0 labeled g: In the second
case, the endpoint of aa is strictly in the interior of an edge ðu; vÞ entering v: In that case, denote
LðuÞ by aw; and let b denote the (non-empty) prefix of the label of edge ðu; vÞ such that g ¼ wb (see
Fig. 8). In this case, the walk starting at the end of aa first moves to node u; and then follows the
suffix link of node u to a node denoted u0: By construction, the suffix link ðu; u0Þ is labeled a; and
the node u0 is labeled w: From u0; the suffix-link walk follows the path labeled b (which always
exists) until it reaches the end-location of string g ¼ wb:
When the suffix-link walk reaches the end of string g; in either of the two cases, the algorithm

tests if there is some path from the endpoint of g that starts with the character a (the starting
character of aa). If that continuation exists, the algorithm moves to the endpoint of string ga; and
the suffix-link walk is called successful; otherwise the walk terminates at the endpoint of g and is
called unsuccessful. A successful walk from a tandem repeat location ag corresponds to a right-
rotation of ag; creating the tandem repeat ga:Hence a run of right-rotations in S defines a chain of
successful walks, each walk starting where the previous one ended.

ARTICLE IN PRESS

D. Gusfield, J. Stoye / Journal of Computer and System Sciences 69 (2004) 525–546 535

praktikum2-ub
Rechteck

For efficiency, one implementation detail is needed in the second case. When a walk follows the
path labeled b from node u0; it can traverse each edge e on the path in constant time, no matter
how long the label of e is. This is accomplished by using the skip/count trick that is standard in
many suffix tree algorithms: since a path labeled b must extend from u0; any edge whose label is
shorter than (the remainder of) b can be skipped in one step, and the walk continued at the next
node with the appropriately truncated suffix of b: Determining which edge to traverse from any
encountered node simply requires finding the unique edge whose label starts with the correct next
character of b: For more details on the skip/count trick see [8].
Now that the suffix-link walk has been defined, we can more fully explain the utility of Q0: We

define a set Q� of tandem repeat types to be sufficient if the endpoint in TðSÞ of every tandem
repeat in the vocabulary of S can be reached by some chain of successful suffix-link walks starting
from the endpoint in TðSÞ of some tandem repeat type in Q�:

Theorem 8. The subset Q0 of Q defined during Phase II is a sufficient set of tandem repeat types.

Proof. By the definitions of a chain of walks and a run (of right rotations), if the pair ði; lÞ covers
the pair ð j; lÞ in S; then a chain of successful walks in TðSÞ starting at the endpoint of the tandem
repeat ði; lÞmust reach the endpoint of the tandem repeat ð j; lÞ: It follows that Q is sufficient, since
P is a (leftmost) covering set. Moreover, by transitivity, if the endpoint of every tandem repeat
type in Q is reached by a chain of walks from the endpoint of some tandem repeat type in Q0; then
Q0 is also sufficient.
Define Q00 to be the set of tandem repeat types in Q whose endpoints in TðSÞ are not reached by

any chain of successful walks from Q0: To prove the theorem, assume for contradiction, that

Q00a|: Let P00CP be the set of pairs in P which specify tandem repeat types in Q00: Let ð j; lÞ be a
repeat pair in P00 such that j is smaller or equal to the position entry of any pair in P00: Let aa
denote the tandem repeat type specified by ð j; lÞ:

ARTICLE IN PRESS

β
β

v

u′a

aw w

u

Fig. 8. The definition of a suffix-link walk.

D. Gusfield, J. Stoye / Journal of Computer and System Sciences 69 (2004) 525–546536

praktikum2-ub
Rechteck

Clearly, if j were the leftmost starting position of aa in S then ð j; lÞ could never have been
removed in Phase II, so ð j; lÞ would be in P0 and not in P00: So, the leftmost occurrence of aa must
start at some position qoj: Now because P is a leftmost covering set, there is some pair ðr; lÞAP
which covers ðq; lÞ: But rpqoj; so ðr; lÞ is in P0 by the choice of j: Hence a chain of walks in TðSÞ
from the endpoint of the tandem repeat specified by ðr; lÞmust reach the endpoint of aa in TðSÞ; a
contradiction. We conclude that Q00 is empty, and Q0 is sufficient. &

Now we are ready to present the Phase III algorithm which decorates the suffix tree. Recall that
an endpoint of a tandem repeat in Q0 is recorded in TðSÞ on edge ðu; vÞ if the repeat ends at node v

or in the interior of edge ðu; vÞ: We will continue to use this convention to record the endpoints of
additional tandem repeats that we find. However, we distinguish between tandem repeats in Q0

and the new ones found in Phase III.
At the high level, Phase III executes a linear-time (depth-first say) traversal of TðSÞ: This

traversal is interwoven with suffix-link walks. In detail, when the traversal encounters a
tandem repeat aa in Q0 recorded at some edge ðu; vÞ; it executes a chain of suffix-link walks in
TðSÞ (starting from the end of aa), to find and record in TðSÞ all of the right rotations of aa
which are tandem repeats. This chain of walks ends the first time an unsuccessful walk ends, or the
first time that a successful walk ends at the endpoint of a tandem repeat that has already
been recorded in TðSÞ: After terminating this chain of walks, the algorithm returns to edge ðu; vÞ:
It executes one chain of walks for each tandem repeat in Q0 recorded on edge ðu; vÞ: After all
of these walks have been executed, the algorithm continues its linear-time traversal of TðSÞ from
edge ðu; vÞ: Some additional implementation details will be introduced when the time analysis is
considered.
In the example shown in Fig. 9, the pair ð11; 6Þ (representing tandem repeat aabaab) is in list

Pð11Þ; but aabaab is not in Q0 (because of leaf 3). However, the endpoint of tandem repeat abaaba

ARTICLE IN PRESS

11

12

4

18

16

2

13

17

8
9

7

15

14

6
5

3

1

a

a a

a

a
aa

a

b

b

b
b

b
b

a

(3,2)

10

(3,2)

(11,6)

(11,2)

(3,2)

(3,2)

(1,6)

(8,2)

a

b

a

(3,2)

Fig. 9. Example (cont.).

D. Gusfield, J. Stoye / Journal of Computer and System Sciences 69 (2004) 525–546 537

praktikum2-ub
Rechteck

is in Q0; and two right-rotations of it create aabaab: Hence the endpoint of aabaab is reached in
Phase III after two successful suffix-link walks.

5.1. Analysis of Phase III

5.1.1. Correctness

Theorem 9. Phase III correctly records the endpoint in TðSÞ of each tandem repeat in the vocabulary
of S:

Proof. Recall that Q0 is sufficient, and a run of right-rotations from a pair ði; lÞ corresponds
to a chain of successful suffix-link walks that start at the endpoint of the tandem repeat
defined by ði; lÞ: Hence, if every chain of suffix-link walks from endpoints of tandem repeats in Q0

ended only at the end of an unsuccessful walk, then correctness of Phase III would be immediate.
However, a chain of suffix-link walks may also end at the endpoint of a tandem repeat that is
already recorded in TðSÞ: If that ending tandem repeat is guaranteed to be in Q0; then correctness
is again immediate, since a chain of walks will be (or has been) started from the end of that
tandem repeat.
We will show that every chain of walks in Phase III ends either with an unsuccessful walk, or at

the endpoint of a tadem repeat in Q0: For contradiction, suppose two chains of successful walks
start at the endpoints of two tandem repeats in Q0; aa and a0a0 respectively, and that both chains
contain successful walks that end with the same tandem repeat a00a00 not in Q0: Suppose one of
those chains first finds and records the end of a00a00; and the other later encounters this record.
Suppose the chain from aa contains more walks than the other chain does.
A successful walk in TðSÞ corresponds to a right rotation of a specific string. Hence, two

successful walks that end at the same point in TðSÞ must have also started at the same point.
Repeating this reasoning, the chain from aa must contain the chain from a0a0: But this is not
possible in Phase III, for then the chain from aa would have ended with the walk that ends at the
endpoint in TðSÞ of string a0a0: We conclude that every chain of walks in Phase III ends either
with an unsuccessful walk, or at the endpoint of a tandem repeat in Q0; and the correctness of
Phase III is proven. &

5.1.2. Time and space analysis of Phase III
We begin with two Lemmas.

Lemma 10. For any edge e ¼ ðu; vÞ in TðSÞ; at most two tandem repeat types end in the interior of

edge e or at node v:

Proof. For each node v of TðSÞ; let RðvÞ denote the largest of all leaf-labels in the subtree below v:
Then the rightmost occurrence of a substring of S whose endpoint ends in the edge e ¼ ðu; vÞ
starts at position i ¼ RðvÞ in S: Since there can be at most two tandem repeat types whose
rightmost occurrences start at the same position i (see Theorem 1), the number of tandem repeats
whose endpoints are contained in edges which end at nodes with the same R-value is bounded by

ARTICLE IN PRESS

D. Gusfield, J. Stoye / Journal of Computer and System Sciences 69 (2004) 525–546538

praktikum2-ub
Rechteck

two. In particular this means, that there can be at most two tandem repeats whose endpoints are
contained in edge ðu; vÞ or at node v: &

Lemma 11. The total number of edges traversed during all the suffix-link walks in Phase III is

bounded by OðjSjnÞ:

Proof. By Corollary 2, the number of different tandem repeat types in S is bounded by 2n: Each
suffix-link walk begins at the endpoint of a distinct tandem repeat type, no walk is repeated twice.
Therefore, the total number of suffix-link walks, and hence suffix-link traversals, is bounded by
2n: We next bound the total number of edges skipped by the skip/count trick.
The suffix-link walk from a tandem repeat whose endpoint is at a node involves no edge

skipping, hence edges are skipped only when the starting point of a walk is in the interior of an
edge. Before analyzing the time for these skips, consider an edge ðu; vÞ labeled with string b: There
is a single suffix link, labeled a say, from u to u0; and a single suffix link from v to v0; also labeled a:
By construction, v0 must be a descendant of u0; and the path from u0 to v0 must be labeled with the
string b: Therefore, any suffix-link walk that starts on the edge ðu; vÞ must end on the path from u0

to v0: Again by construction, there can be no node strictly between u0 and v0 that has an incoming
suffix-link labeled with a: It follows that any suffix-link walk that traverses a suffix link labeled a;
must end before encountering a second node that has an entering suffix link labeled a: We
conclude that if e is an edge on the path from u0 to v0; and e is skipped during a suffix-link walk
which started by traversing a suffix link labeled a; then that walk must have started on edge ðu; vÞ:
See Fig. 10.
What we have established is that if e is skipped during a suffix-link walk, then the label of the

suffix link used on that walk uniquely determines a single edge where that walk could have begun.
But every suffix-link walk starts at the endpoint of a tandem repeat, so by Lemma 10, at most two
suffix-link walks can start on any given edge. Hence the number of times that edge e can be
skipped (each time during a different walk) is bounded by 2jSj; and the lemma is proved. &

ARTICLE IN PRESS

No entering suffix links

�

u

aw w

u′

e

a

a

v

v′

can be labeled "a"

Fig. 10. All the suffix-link walks that skip edge e and traverse a suffix link labeled a must start on the same edge, or at

the head of that edge.

D. Gusfield, J. Stoye / Journal of Computer and System Sciences 69 (2004) 525–546 539

praktikum2-ub
Rechteck

Each suffix-link traversal, or edge traversal, or edge skip in a walk requires only constant time.
Hence to finish the time analysis of Phase III we only need to bound the time needed to test if a
new walk should be started after a successful walk has ended. Suppose a successful suffix-link
walk begins at the end of a tandem repeat of length l: It ends at string-depth l also, so to
implement the test, the algorithm checks to see if a tandem repeat of length l is recorded on the
appropriate edge (the edge into a node if the walk ends at a node, else on the edge where the walk
ends). The time to check for such a record is constant since, by Lemma 10, at most two tandem
repeats can be recorded on any edge. Finally, the only additional space needed in Phase III is used
to record the endpoints of the tandem repeats in TðSÞ: Since each such record takes constant
space, and there are only a linear number of them, we conclude with the following:

Theorem 12. Phase III runs in OðnÞ time and space, and when finished, the endpoints of all tandem
repeat types are recorded in TðSÞ: Hence TðSÞ can be decorated with the complete tandem repeat

vocabulary of S in OðnÞ time and space.

Corollary 13. By a linear time traversal of TðSÞ; the complete vocabulary of the tandem repeats of S

can be collected and output (as position, length pairs) in OðnÞ time and space.

6. Extensions of the basic algorithm

6.1. Many immediate extensions

Once the suffix tree TðSÞ is decorated with the endpoints of all tandem repeats, several
questions regarding tandem repeats in S can easily be answered. In this section we mention some
of these.
Certainly, all occurrences of tandem repeats in S can be found if for each tandem repeat

location, the subtree below this location is traversed and the labels of all leaves in this subtree are
reported. The space required for this algorithm is only OðnÞ; and since each subtree traversal is
possible in time proportional to the number of its leaves, the total running time of this extension is
Oðn þ zÞ; where z is the output size.5 Note that existing algorithms that find all occurrences of
tandem repeats and run in Oðn log n þ zÞ time were previously declared (in some places) to be

time-optimal, because in worst-case there can be Oðn2Þ occurrences. Hence our new algorithm
with its Oðn þ zÞ time bound is ‘‘more optimal’’ than the previous ‘‘optimal’’ algorithms.
Several questions can be answered in OðnÞ time by propagating information about the

tandem repeats down towards the leaves of the suffix tree. These questions include finding the
number of tandem repeats starting at each position of S (and hence the total number of tandem

ARTICLE IN PRESS

5We should note that Algorithm 1 can be extended to directly find all occurrences of tandem repeats in this time

bound, using Oðn þ zÞ space. The key is to pick up and copy those tandem repeats that are entirely contained in a single

block, since all others are collected in the original Algorithm 1. We leave the details to the reader. Crochemore’s original

algorithm [3–5] that tests if a string is squarefree, can also be extended to find either the leftmost occurrence of each

tandem repeat in OðnÞ time and space [14], or to find all the runs of primitive tandem repeats in OðnÞ time and space

[10], and to find all occurrences of primitive tandem repeats in Oðn þ zÞ time and OðnÞ space [10].

D. Gusfield, J. Stoye / Journal of Computer and System Sciences 69 (2004) 525–546540

praktikum2-ub
Rechteck

repeats in S), and finding the shortest or the longest tandem repeat starting at each position of S:
The details are left to the reader. More complex extensions are discussed in the next subsection,
and in Section 7.

6.2. Primitive tandem repeats

Recall from the introduction that a primitive tandem repeat is a tandem repeat aa where a is

primitive, i.e., a ¼ bk for some non-empty string b only if k ¼ 1:
We decorate the suffix tree with the endpoints of all the primitive tandem repeat types in S by

filtering out non-primitive repeats from the suffix tree decorated with the complete repeat
vocabulary. We use an auxiliary data structure depth-array of size n; where all cells are initialized
to zero.
Tree TðSÞ is traversed in a depth-first order. Each time an endpoint of a tandem repeat of

length l; say, is encountered, we do the following. If the entry of cell l in the depth-array is 0; we
insert the value l into cell 2l of the depth-array. If the entry of cell l is ka0; we insert the value k
into cell l þ k of the depth-array, and we mark the tandem repeat we just encountered as non-
primitive. When the depth-first traversal backs up to the endpoint of a tandem repeat of depth l

(primitive or not), it sets the depth-array value of cell 2l (if the entry of cell l is zero) or of cell l þ k
(if the entry of cell l is ka0) back to zero.
After the depth-first traversal, every non-primitive tandem repeat type in the vocabulary is

marked in TðSÞ; so the primitive tandem repeat types can be collected in OðnÞ time with another
linear-time tree traversal. Further, all the occurrences of primitive tandem repeats can be found in
optimal Oðn þ zÞ time, where z is now the number of occurrences of primitive tandem repeats in
S: This algorithm is again ‘‘more optimal’’ than the previous Oðn log nÞ time algorithms.

7. Tandem arrays

A tandem array is a string w ¼ ak with kX2: If a is primitive, w is a primitive tandem array.
Generalizing the goal of finding the vocabulary of all tandem repeat types, we would like to find
the set of all distinct tandem array types or (more often) the distinct primitive tandem array types
in a string. We don’t know the size of those sets, but assuming there are z distinct primitive
tandem array types in the string, we can find one representative of each type in Oðn þ zÞ time. The
method again relies heavily on the use of suffix trees.
The algorithm works in two phases. To explain the first phase, we define a set Q of primitive

tandem repeat types to be p-sufficient if the endpoint in TðSÞ of every primitive tandem repeat
type can be reached by a chain of successful suffix-link walks from the endpoint of some primitive
tandem repeat in Q: A minimal p-sufficient set Q is a p-sufficient set satisfying the condition that
the removal of any tandem repeat type from Q creates a set that is no longer p-sufficient.
Note that if aa ¼ wa is in a minimal p-sufficient set Q; then either wa is not the right-rotation of

another tandem repeat type aw in S; or all rotations of aa are tandem repeats in S; but none of
these is in Q except for aa itself. (Due to the second possibility, a minimal p-sufficient set of S is
not necessarily unique.)

ARTICLE IN PRESS

D. Gusfield, J. Stoye / Journal of Computer and System Sciences 69 (2004) 525–546 541

praktikum2-ub
Rechteck

7.1. The first phase

In the first phase of the algorithm, we identify a minimal p-sufficient set of tandem repeats; we
use that set in the second phase to find the endpoints in the suffix tree of all the distinct primitive
tandem array types.
A minimal p-sufficient set can easily be found in linear time, using the set of all primitive

tandem repeats (whose endpoints in TðSÞ are found as described in Section 6.2). Let W denote
the set of endpoints in TðSÞ of all the primitive tandem repeat types. Algorithm 2 will mark
all the points in W ; using marks of M; C and R; whose meanings will be explained later. Initially,
all endpoints in W are marked M: The following filtering procedure then finds a minimal
p-sufficient set.

Algorithm 2

1: for each endpoint (denoted v; but not necessarily a node) in W ; in any order, do
2: if the endpoint v is marked R then

3: end
4: end if

5: Set v0 to v:
6: Perform a suffix-link walk from v0:
7: if the walk is unsuccessful then
8: end
9: end if

10: if the walk ends at point v then

11: mark v with C and end
12: end if

13: set v0 to the endpoint reached in the walk.
14: mark v0 with R

15: go to step 6
16: end for

At the end of the algorithm, the tandem repeats marked M or C are placed in a set called
MC: We claim that set MC forms a minimal p-sufficient set. The distinction between tandem
repeats marked M and those marked C will be explained in the next section. Minimality of
MC is easy to establish. For primitivity, note that a successful walk from tandem repeat aw

ends at the endpoint of a tandem repeat wa; and that aw is a primitive tandem repeat if and only
if wa is also (this is proved in [19]). We leave the full proof that MC is a p-sufficient set to the
reader.
We also claim that the running time of Algorithm 2 is OðnÞ: That can be proven by an extension

of Lemma 5, and we leave the details to the reader. Also, in the same time bound, whenever a
marked tandem repeat is found, the algorithm can mark the corresponding endpoint in TðSÞ: We
assume that this is done in Phase I.

ARTICLE IN PRESS

D. Gusfield, J. Stoye / Journal of Computer and System Sciences 69 (2004) 525–546542

praktikum2-ub
Rechteck

7.2. The second phase

To begin to describe Phase II, we first state the following key fact, whose proof is immediate.

Lemma 14. Let b be a right rotation of string a: If ai is a tandem array somewhere in S; for i42;

then the bi�1 must also be a tandem array in S: Reversing roles, if there is no occurrence of bi in S;

then there cannot be an occurrence of aiþ1 in S:

Lemma 14 tightly connects the length of the longest tandem array of a’s with the length of the
longest tandem array of any rotation of a: those lengths can differ by at most one. In Phase II, the
algorithm successively focuses on each minimal p-sufficient tandem repeat aa in MC; trying to
find the length of the longest tandem array of a’s, along with the length of the longest tandem

array of each rotation of a: In particular, for each i such that ai is in S; and bi is also in S for each

right rotation b of a; the algorithm determines whether aiþ1 is in S; and then uses a modified

version of a suffix-link walk to determine whether biþ1 is in S; for every rotation b of a: By Lemma
14, this process ends at a value of i where some biþ1 (including possibly aiþ1) is found to be missing
from S:
We now develop this in more detail. Assume a ¼ ag; and we know the endpoint in TðSÞ of

string aid; where iX2; aASþ and aid is the longest prefix of aiþ1 that occurs anywhere in S: Hence

d ¼ a if and only if aiþ1 occurs in S: For each right rotation b of a; we would like to find the

endpoint in TðSÞ of the longest prefix of biþ1 that occurs in S:We describe how this is done for the
first rotation of a; i.e., for b ¼ ga:

We start by executing a standard suffix-link walk performed from the endpoint of aid; arriving
at the endpoint of string ðgaÞi�1gd; which is guaranteed to be in TðSÞ: Note that during this suffix-
link walk, we use the standard skip/count trick when appropriate (see a more detailed discussion
in Section 5). Next, the walk continues down the tree (explicitly comparing characters along the

path) to find the endpoint in TðSÞ of the longest prefix of ðgaÞiþ1 that occurs in S: We call that
point v; although it may not be a node in TðSÞ: We call this walk a generalized suffix-link walk.
Note that if it is started at the endpoint of a tandem array, and if the right-rotation of that tandem
array also occurs in the suffix tree, then the generalized suffix-link walk is identical to the standard
suffix-link walk.

To find the longest prefix of biþ1 that occurs in S; for b defined by two right rotation steps of a;
simply start from v and execute another generalized suffix-link walk. Continuing in this for exactly
jaj generalized suffix-link walks, the algorithm finds for each rotation b of a; the endpoint in TðSÞ
of the longest prefix of biþ1 that occurs in S: Moreover, those jaj walks end exactly where they

began, i.e, at the endpoint in TðSÞ of aid: We call such a series of generalized suffix-link walks a
suffix-link cycle.

Lemma 15. Any suffix-link cycle, started at the endpoint of aid; takes OðjajÞ time.

Proof. First, the cycle traverses exactly jaj suffix links, and those traversals take OðjajÞ time. So
we only have to show that the number of node skips (using the standard skip/count trick), and the
number of explicit character comparisons in all the down-traversals is bounded by OðjajÞ:

ARTICLE IN PRESS

D. Gusfield, J. Stoye / Journal of Computer and System Sciences 69 (2004) 525–546 543

praktikum2-ub
Rechteck

To count the number of node skips, we consider how the node-depths change as points are
traversed during a cycle. Recall that the node-depth of a point v in TðSÞ is the number of nodes on
the path from the root to v: Each suffix-link traversal decreases the node-depth by at most one,
and each node skip increases the node-depth by exactly one. Since the node depth at the end of the
cycle is exactly the same as it is at the start, the number of node skips cannot exceed the number of
suffix-link traversals, which is exactly jaj:
Now we consider the number of explicit character comparisons done during a cycle. Each

generalized suffix-link walk ends the first time a mismatch occurs, hence there are at most jaj
mismatches during a cycle. To bound the number of matches, recall we are finding for each

rotation b of a; the longest prefix of biþ1 that occurs in S: We bound the number of matches that
occur during a cycle by considering pl which is defined as the length of that prefix minus i jaj:
The key observation is that if pl ¼ k after some generalized suffix-link walk, then plXk � 1 after

the next generalized suffix-link walk. For example, if ðagÞi
af is the longest prefix of ðagÞiþ1 in S;

then ðgaÞif is a prefix of ðgaÞiþ1 and it is also in S: That means that if there are m character
comparisons that are matches during a generalized suffix-link walk, then pl after that walk is
exactly m � 1 larger than before the walk. Since pl must be bounded by jaj; the total number of
matches that occur during a cycle is bounded by 2jaj: &

7.3. Algorithm 3

We now present the algorithm that decorates the suffix tree with the endpoints of all primitive
tandem arrays, given the endpoints of all the tandem repeats from a minimal p-sufficient set MC:
The endpoints in TðSÞ of all the primitive tandem repeats have already been located and

marked in Phase I. Moreover, if aa is a tandem repeat in MC and is marked M; then there is some
right rotation b0 of a such that b0b0 is not in S:Hence by Lemma 14 there is no right rotation b of a
(including a) such that b3 is in S: So if bi for i42 is a tandem array in S and b is a rotation of a;
where aa is in MC; then aamust be labeled C: The following algorithm restricts attention to the C

labeled tandem repeats, and finds the endpoints in TðSÞ of every primitive tandem array bi

for i42:

Algorithm 3

1: for each endpoint of a tandem repeat aa in MC marked C do

2: Set i to 1
3: repeat

4: Set i to i þ 1:
5: Walk in TðSÞ from the end of ai to the end of the longest prefix of aiþ1 that occurs

in TðSÞ: Call that point v:
6: Perform a suffix-link cycle starting at v to locate in TðSÞ the endpoints of every

tandem array biþ1 that occurs in S; where b is a right rotation of a:
7: until there is a b (possibly a) such that biþ1 is not in S:
8: end for

ARTICLE IN PRESS

D. Gusfield, J. Stoye / Journal of Computer and System Sciences 69 (2004) 525–546544

praktikum2-ub
Rechteck

7.3.1. Analysis of Algorithm 3

The endpoint of every tandem array bi for i42 is located at least once by Algorithm 3 because
MC is p-sufficient, and it is located at most once because MC is minimal. In more detail, if aa and
a0a0 are two C marked tandem repeats in MC; then b is a rotation of at most one of the strings a
or a0: If that were not true, then MC would not be minimal. Hence the endpoint of every tandem

array bi for i42 is located exactly once by Algorithm 3. Because of this non-redundancy, the time
analysis of Algorithm 3 can concentrate separately on the time used for each execution of the
repeat loop in Algorithm 3, i.e., for each C-labeled tandem repeat in MC:

Time complexity. We have already established that Phase I takes OðnÞ time, so we analyze the
time used for Algorithm 3. For a fixed C-labeled tandem repeat aa; each iteration of the steps
inside the repeat loop involves at most jaj individual character comparisons, followed by the
traversal of a suffix-link cycle. So, using Lemma 15, the time for an iteration is OðjajÞ:
By construction, at the start of each iteration of the repeat loop (where i is set say to k), it is

known that bk is in S for each of the jaj rotations b of a: Hence, when i is set to k; the time to

execute the statements inside the repeat loop can be charged to the jaj tandem arrays bk: It follows
that the time for Algorithm 3 is proportional to z; the number of primitive tandem arrays in S;
and the total time for both phases is Oðn þ zÞ:

7.4. Final extension

Note that the above algorithm starts with the suffix tree decorated with the endpoints of all the
primitive tandem repeats occurring in S; and finds the endpoints of all the primitive tandem arrays
occurring in S: Similarly, if one starts the algorithm with all the tandem repeat endpoints marked,
one gets also the endpoints of all the tandem arrays marked, even though in most cases we only
wish to locate the primitive tandem arrays.

8. Conclusion

Linear-time decoration of the suffix tree of S with the endpoints of the OðnÞ tandem repeat
types provides a compact representation of all the tandem repeat occurrences and tandem repeat
types in a string. Many problems concerning tandem repeats can then be easily solved using this
decorated suffix tree, resulting in algorithms which are as fast, as space efficient (and simpler) or
faster, or more space efficient, or both (but perhaps not simpler) than previously proposed
algorithms.
Implementations of the algorithms discussed in this paper (and other algorithms concerning

repeats) can be found at:
http://www.cs.ucdavis.edu/~gusfield/strmat.html

References

[1] A. Apostolico, F.P. Preparata, Optimal off-line detection of repetitions in a string, Theoret. Comput. Sci. 22 (1983)

297–315.

ARTICLE IN PRESS

D. Gusfield, J. Stoye / Journal of Computer and System Sciences 69 (2004) 525–546 545

*http://www.cs.ucdavis.edu/~gusfield/strmat.html
praktikum2-ub
Rechteck

[2] M. Crochemore, An optimal algorithm for computing the repetitions in a word, Inform. Process. Lett. 12 (5)

(1981) 244–250.

[3] M. Crochemore, Recherche linéaire d’un carré dans un mot, C. R. Acad. Sci. Paris 296 (1983) 781–784.

[4] M. Crochemore, Tranducers and repetitions, Theoret. Comput. Sci. 45 (1986) 63–86.

[5] M. Crochemore, W. Rytter, Text Algorithms, Oxford University Press, New York, 1994.

[6] M. Farach, Optimal suffix tree construction with large alphabets, in: Proceedings of the 38th Annual Symposium

on Foundations of Computer Science, FOCS 97, IEEE Press, New York, 1997, pp. 137–143.

[7] A.S. Fraenkel, J. Simpson, How many squares can a string contain?, J. Combin. Theory Ser. A 82 (1998) 112–120.

[8] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology,

Cambridge University Press, New York, 1997.

[9] D. Hickerson, Preprint, 2003.

[10] R. Kolpakov, G. Kucherov, in: Proceedings of the 40th Annual Symposium on Foundations of Computer Science,

FOCS 99, IEEE Press, New York, 1999, pp. 596–604.

[11] S.R. Kosaraju, Computation of squares in a string, in: Proceedings of the Fifth Annual Symposium on

Combinatorial Pattern Matching, CPM 94, Lecture Notes in Computer Science, Vol. 807, Springer, Berlin, 1994,

pp. 146–150.

[12] G.M. Landau, J.P. Schmidt, An algorithm for approximate tandem repeats, in: Proceedings of the Fourth Annual

Symposium on Combinatorial Pattern Matching, CPM 93, Lecture Notes in Computer Science, Vol. 684,

Springer, Berlin, 1993, pp. 120–133.

[13] A. Lempel, J. Ziv, On the complexity of finite sequences, IEEE Trans. Inform. Theory 22 (1) (1976) 75–81.

[14] M.G. Main, Detecting leftmost maximal periodicities, Discrete Appl. Math. 25 (1989) 145–153.

[15] M.G. Main, R.J. Lorentz, An Oðn log nÞ algorithm for finding all repetitions in a string, J. Algorithms 5 (1984)

422–432.

[16] M.G. Main, R.J. Lorentz, Linear time recognition of squarefree strings, in: A. Apostolico, Z. Galil (Eds.),

Combinatorial Algorithms on Words, NATO ASI Series, Vol. F12, Springer, Berlin, 1985, pp. 271–278.

[17] E.M. McCreight, A space-economical suffix tree construction algorithm, J. ACM 23 (2) (1976) 262–272.

[18] M. Rodeh, V.R. Pratt, S. Even, Linear algorithm for data compression via string matching, J. ACM 28 (1) (1981)

16–24.

[19] J. Stoye, D. Gusfield, Simple and flexible detection of contiguous repeats using a suffix tree, Theoret. Comput. Sci.

270 (1–2) (2002) 843–856.

[20] E. Ukkonen, On-line construction of suffix trees, Algorithmica 14 (1995) 249–260.

[21] P. Weiner, Linear pattern matching algorithms, in: IEEE 14th Annual Symposium on Switching and Automata

Theory, IEEE Press, New York, 1973, pp. 1–11.

ARTICLE IN PRESS

D. Gusfield, J. Stoye / Journal of Computer and System Sciences 69 (2004) 525–546546

praktikum2-ub
Rechteck

	Linear time algorithms for finding and representing all the tandem repeats in a string
	Introduction
	Main result

	Terminology and technical background
	The size of the vocabulary
	Background on suffix trees

	Phase I: Finding a leftmost covering set
	Algorithm 1: Processing block B

	Phase II: Marking the endpoints of some tandem repeat types
	Phase III: Using Qprime to record the endpoints of the full vocabulary
	Analysis of Phase III
	Correctness
	Time and space analysis of Phase III

	Extensions of the basic algorithm
	Many immediate extensions
	Primitive tandem repeats

	Tandem arrays
	The first phase
	The second phase
	Algorithm 3
	Analysis of Algorithm 3

	Final extension

	Conclusion
	References

