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ABSTRACT

The application of multi-tag protocols in fluorescence mi-
croscopy allows the visualization of a large number (> 10) of
molecules (i. e. proteins) in a sample (like a tissue section).
However, the analysis of such high dimensional bioimages is
a difficult task for most of the labs, since software solutions
for particular data mining steps are difficult to use or just not
available. In this paper we present two new free online tools:
MICOLT (Multivariate Image COlocation Tool) and MIFIST
(Multivariate Image Frequent Item Set Tool). Both tools can
be used via our recently proposed online bioimage analysis
platform BioIMAX, so users can upload their bioimage data,
apply the tools and share the results with other invited users
based on BioIMAX’ concept of shared virtual projects. Data
mining with these tools includes the computation and visual-
ization colocation factors well established in the microscopy
community (like Mander’s score) and association rule mining
following the frequent item set principle, thereby supporting
large and small scale analysis.

Index Terms— Bioimage informatics, fluorescence mi-
croscopy, proteomics, tissue analysis, data mining, visualiza-
tion, web systems, science 2.0

1. INTRODUCTION

In recent years, new fluorescence microscopy protocols have
been proposed to study the spatial dependencies of N pro-
teins in a sample, e. g. a tissue section or a cell culture. With
these new protocols, the number of N now depends just on
the availability of N high quality antibodies for the N pro-
teins of interest. Conjugating all N antibody markers to one
and the same dye and applying these tags in a cyclic proto-
col of marking, imaging, soft bleaching allows recording a
stack of N grey value fluorescence micrographs, all show-
ing the same field of view (FOV). This particular multi-tag
technique is usually referred to as MELC (Multi-Epitope Lig-
and Cartography) or TIS (Toponome Imaging System) and
has been originally introduced in [1] (we will refer to the
images as TIS images in the remaining of this paper). TIS
images belong the category of so called multivariate bioim-
ages (MBI) [2] which relate to so called high content imaging

techniques. Such techniques have been proposed recently to
fill some gaps in systems biology research which are left open
by traditional molecular techniques, since those are based on
homogenizing a sample. As a consequence these techniques
neglect the topological orders of molecular self organization,
i. e. the spatial dependencies in molecular networks [3, 4].
To visualize MBI, clustering and dimension reduction can be
applied to render dynamic pseudo color maps of the images
as we have shown in recent works [5, 6]. However, MBI
can also be analyzed following a more traditional data min-
ing approach. We consider one image stack of dimension
nx×ny×N (nx: image width, ny: image height, N number
of grey values associated to each pixel/number of tags). This
stack has to searched for (hidden) regularities and patterns in
the fluorescence features fx,y = (f (0), ..., f (N−1))x,y . With
F (a) = {f (a)

x,y} we will refer to one fluorescence micrograph
of the stack, recorded with the antibody / marker a (in the
following, we will omit the subscripts x,y if possible). Large
scale patterns can be expressed by large scale dependencies,
covariances, colocations or correlations of signals from pairs
of antibodies. Small scale patterns can be expressed by sin-
gle or a cluster of particular N -dimensional signal patterns,
observed at some pixels in an image. To analyze such large
scale or small scale patterns, researchers usually apply a va-
riety of software, e. g. MATLAB, software provided by the
microscope manufacturer, R or in-house products.

In this manuscript we present an online, i. e. web-based
approach to multivariate bioimage data mining as outlined
above. The technological platform is provided by the recently
introduced open online bioimage analysis platform BioIMAX
(BioImage Management, Analysis and eXploration) [7]. The
motivation for BioIMAX was the observation, that due to the
rapidly evolving options and flexibility in internet connec-
tion (Wi-Fi, UMTS, ethernet) and the increasing bandwiths
new, pure online - based tools for bioimage analysis are at-
tractive for some life science researchers, who may want to
share some of their data and results with their collaborators,
independent from their whereabouts, condition to an inter-
net connection. BioIMAX is a pure web-based approach,
allowing users to upload MBI, apply exploratory data anal-
ysis to MBI, annotate regions of interests, share MBI with
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Fig. 1. MICOLT is started within BioIMAX at the project browser level after selecting one data set (a). In the first step (b)
the user can deselect images in a stack and set a threshold manually after activating the box (otherwise, Otsu method-based
thresholds are applied as a default). Manually changing the threshold dynamically updates the image display as a binary image.
Although the image is not really binarized (see eq. (2)) a binary display is more appropriate to tune the threshold (c). The result
is shown in (d), the result is shown as text on the left and as grey value matrices on the right. The result Manders score values
can be saved to disc so the data can be rendered with alternative software or written to a database.

other users and apply different kinds of analytical tools to
their data. Here we present two new tools, MICOLT (Mul-
tivariate Image CO Location Tool) and MIFIST (Multivari-
ate Image Frequent Item Set Tool), which can be applied to
data via the BioIMAX platform. Using the login name ”test”
and the password ”test1”, the reader can log into BioIMAX 1,
choose the project ISBI 2012 from the project list, activate
the project browser and apply the tools as explained
below.

2. MATERIALS

To illustrate the functions of MICOLT and MIFIST we will
consider a data set from a TIS study. TIS imaging was applied
to two tissue samples from a colon cancer patient. One tissue
sample was selected from cancerous tissue, the other sample
was selected from healthy colon tissue from the same patient.
An antibody library of 22 tags (see [8] for details) was applied
to record a stack of 22 fluorescence images from manually
selected two visual fields in each sample, leading to four TIS
data sets. After image registration has been applied [9, 10], a
set of N = 8 channels, i. e. proteins were selected for a deeper
analysis. In each image, a pixel (x, y) is associated to a 8-
dimensional intensity vector f = (f1, ..., f8) with fa ∈ [0; 1].
To view the data in BioIMAX, the user starts the Preview
tool on the right [7].

3. METHODS

The BioIMAX system connects the user to a data server to
upload and manage the the image data and with a powerful
compute server to offer efficient analytical compute services
for data mining. On the client side, BioIMAX is designed
as a rich internet application using the FLEX environment.
This concept allows the combination of powerful data anal-
ysis tools, efficiently implemented in C/C++ with sophisti-

1http://ani.cebitec.uni-bielefeld.de/BioIMAX/

cated and visually appealing interfaces which is attractive, es-
pecially for users who do not apply data mining algorithms
every day.

3.1. MICOLT

One basic question in the analysis of MBI such as TIS images
(or for instance MALDI images) is, if some of the considered
molecules or residues colocate across the visual field. In the
context of TIS analysis, a colocation of two (or more) proteins
could hint to particular molecular networks or active path-
ways. In other techniques, the colocation of signals would
help in sorting or binning the images of one stack into groups
which should be analyzed in a next step, but restricted to the
colocating signals, for instance in the case of MALDI im-
ages. The most established parameter to measure colocation
is Manders’ score [11], which is defined for the comparison
of two fluorescence micrographs Fa and Fb. To quantify the
colocation of the two fluorescence signals recorded with anti-
bodies a and b the following two coefficients are computed:

ma =

∑
x,y

Cb(f (a))∑
x,y

f (a)
and ma =

∑
x,y

Ca(f (b))∑
x,y

f (b)
, (1)

with Cb(f (a)
x,y ) =

{
f

(a)
x,y if f

(b)
x,y > 0

0 else

and Ca(f (b)
x,y) defined analogous. However, before the two

scores are computed thresholding is applied to each image
Fa(a = 1, ..., N) of a stack to map weak signals to the value
0:

f (a)′

x,y =
{

f
(a)
x,y if f

(a)
x,y > ta

0 else
(2)

To select an appropriate threshold ta for each image in a stack,
the user can either apply the default value, which is computed



Fig. 2. MBI frequent item set analysis with the MIFIST tool: MIFIST runs basically in two modes, selected in the first screen
(a). In the compute mode, a MBI (b) is searched for frequent items set rules (FIS) with a minimum support and confidence (note
that in this screen, one image from the stack has to be selected as the reference image for later visualizations). In a next step the
images are transformed into binary images by manually adjusting thresholds (c) and the thresholds ts and tc are selected (d),
before finally the computation of the rules starts. In the display mode, a computed list of frequent item set rules (FIS) can be
analyzed after it has been selected in screen (a). In a next step (e) the user chooses the antibodies / markers of interest, to filter
out those item sets that do not show these ones. Finally, the rule overview is displayed (f). The location of a rule IA → IB is
displayed in a special color code: IA = yellow, IB=blue, IA ∪ IB= green. The right side displays all rules as a bar chart, each
bar representing one rule. Selection of a bar triggers the display of the rule (g).

using Otsu’s method [12], or select the threshold manually
using a slider and inspecting the thresholding result in real
time as displayed in Figure 1. MICOLT displays the Manders’
scores for all pairs of images in as text and as a non-symmetric
grey value matrix. The text can be saved to disc, so alternative
visualization tools (such as graph / network visualizations)
can be applied. In addition to Manders’ scores MICOLT also
computes the N × N covariance matrix C with coefficients
ca,b = (f (a) − E(f (a)))(f (b) − E(f (b))) and display it as a
grey value matrix (see Figure 1).

3.2. MIFIST

While MICOLT compares pairs of fluorescence images on a
large scale, MIFIST was developed to study the patterns on
a pixel level. The idea is, that in the analysis of MBI data,
one could consider all M = nx×ny pixel as M observations
of N variables and one way to analyze this data set without
any prior knowledge is association rule mining [13]. One al-
gorithm to compute association rules is the frequent item set
algorithm which is applied in many data mining contexts such
as market basket analysis. MIFIST applies the frequent item
set algorithm to binary image data. Thus, each image of the
MBI has to be thresholded, transforming the grey value im-

ages into binary images:

b(a)
x,y =

{
1 if f

(a)
x,y > ta

0 else
(3)

so the frequent item set algorithm is applied to a stack of N

binary images B(0), ..., B(N−1) with b
(a)
x,y ∈ 0; 1. And the

binary values of one pixel bx,y = (b(0), ..., b(N−1)) are con-
sidered as one observation of N variables or items. An item
set is a collection of variables with b

(a)
x,y = 1 (at least one). In

the case of TIS images, one item corresponds to an observed
protein, visualized with a fluorescence value fa > ta. A fre-
quent item set is an set of items (i. e. proteins) that has met a
certain condition: Its support has to be greater than or equal
to the minimum support ts and the support is defined as the
number (or percentage) of observations showing this time set.
After computing all item sets, i. e. all observed combinations
proteins that have been observed with the minimum support,
each item set I is transformed into rules. Rules are generated
by dividing an item set I into two disjoint subsets IA and IB

(i. e. IA ∪ IB = I). For each possible rule the confidence, is
computed. The confidence in a rule IA → IB is defined as the
percentage of all observations of item set IA that also showed
the item set IB . Since we deal with image data, that is al-
ways subject to distortions and noise, we allow users to filter



out rules with a confidence below a given confidence thresh-
old tc. Another special feature of MIFIST is, that we need
to account for the fact, that in bioimage analysis not only the
colcation pattern, i. e. the frequent item set rule is of interest
but also its location. Thus, after computing the rules for given
thresholds ts and tc, MIFIST allows an interactive filtering
and display of rules at the anatomical site in the image, as
shown in Figure 2.

4. RESULTS

Both tools MICOLT and MIFIST can be applied through
BioIMAX to one example data set. Registered BioIMAX
users can upload own data and apply the tools to the data
without restrictions. In practice we recommend first to apply
MICOLT to study the large scale dependencies between the
considered molecules. In a next step, and based the results,
MIFIST is applied maybe to a subset of the data and with
appropriate values for ts and tc.

5. DISCUSSION

MICOLT and MIFIST resemble first steps into the direction
of sophisticated MBI mining through the web. Next, we will
extend MICOLT with other indices (such as mutual informa-
tion for instance) and develop alternative filtering operations
for MIFIST and its applicability to sets of MBI.
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[5] D. Langenkämper, J. Kölling, S. Abouna, M. Khan, and
Nattkemper T.W., “Tical - a web-tool for multivariate
image clustering and data topology preserving visual-
ization.,” in Workshop on Microscopic Image Analysis
with Applications in Biology (MIAAB), Heidelberg, Ger-
many, 2011.

[6] D. Langenkämper, J. Koelling, A. Humayun, M. Khan,
N. Rajpoot, D.B.A. Epstein, and Nattkemper T.W., “To-
wards protein network analysis using tis imaging and
exploratory data analysis,” in Workshop on Computa-
tional Systems Biology (WCSB) 2011, Zuerich, Switzer-
land, 2011.

[7] C. Loyek, N. Rajpoot, M. Khan, and T.W. Nattkem-
per, “Bioimax: A web 2.0 approach for easy exploratory
and collaborative access to multivariate bioimage data,”
BMC Bioinformatics, vol. 12, no. 1, pp. 297, 2011.

[8] S. Bhattacharya, G. Mathew, E. Ruban, D.B.A. Epstein,
A. Krusche, R. Hillert, W. Schubert, and M. Khan, “To-
ponome imaging system: In situ protein network map-
ping in normal and cancerous colon from the same pa-
tient reveals more than five-thousand cancer specific
protein clusters and their subcellular annotation by us-
ing a three symbol code,” J. Proteome Res., vol. 9, no.
12, pp. 611225, 2010.

[9] A. Humayun, A. Raza, C. Waddington, S. Abouna,
M. Khan, and N. M. Rajpoot, “A framework for molec-
ular co-expression pattern analysis in multi- channel to-
ponome fluorescence images,” in Proc. of MIAAB, Hei-
delberg, Germany, 2011.

[10] S. E. A. Raza, A. Humayun, T. W. Nattkemper, D. Ep-
stein, M. Khan, and N. Rajpoot, “Registration of mul-
tiplexed fluorescence images using phase contrast im-
ages,” in Proc. of ISBI, Barcelona, Spain, 2012, submit-
ted.

[11] S. Bolte and F. P. Cordelieres, “A guided tour into sub-
cellular colocalization analysis in light microscopy,” J
Microsc, vol. 224, no. 3, pp. 213–32, 2006.

[12] N. Otsu, “A threshold selection method from gray-
level histograms,” Systems, Man and Cybernetics, IEEE
Transactions on, vol. 9, no. 1, pp. 62 –66, 1979.

[13] I.A. Witten and F. Eibe, Data Mining: Practical Ma-
chine Learning Tools and Techniques, Morgan Kauf-
mann Publishers, 2 edition, 2006.


