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Abstract

Perception and generation of verbal and nonverbal behavior
is one of the main foundations of human social interaction.
We model these abilities for embodied conversational agents
(ECAs) on the basis of perception-action links as in humans.
With a focus on gesture processing, we propose a computa-
tional model which enables ECAs to interact with humans in
an embodied manner and supports many aspects of social in-
teraction. The model performance is briefly illustrated on the
basis of an interaction scene.
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Introduction

An increasing number of findings and theoretical consider-
ations in Cognitive Science suggest that human interaction
and intersubjectivity is grounded in embodied processes. Ac-
cording to this view, perceiving and generating behavior are
not separate processes but are both grounded in the per-
ceiver’s own motor repertoire (cf. mirror neurons). More-
over, such couplings between perception and action can be
considered as a basis for creating common ground, mutual
coordination, and social resonance [3]. Some of these pro-
cesses apply also to the interaction of humans with artificial
anthropomorphic agents [4]. The development of embodied
conversational agents (ECAs), however, has so far neglected
embodied processing of social behavior. Although coupling
of perception and action has been touched upon by work on
computational models of mirror neurons and in particular im-
itation learning [5], these approaches do not focus on so-
cial behavior, which requires fast and concurrent processing
based on motor resonances during observation. In this pa-
per we propose a computational model for the processing of
communicative hand gestures in ECAs when interacting with
humans. In general, this model has to account for a num-
ber of behaviorally and neurobiologically suggested require-
ments: (1) Hierarchical structure: Perception-action links [1]
are assumed to be effective at various levels of a hierarchi-
cal sensorimotor system, from kinematic features to motor
commands to goals and intentions [2]. (2) Motor resonance:
Motor representations are shared between processes of per-
ception and generation, and this accounts for motor reso-
nances and covert imitation during embodied perception [7].
(3) Top-down and bottom-up processing: The levels of the
action representation hierarchy in the model must be able to
interact bidirectionally with each other [8] during both per-
ception and generation. (4) Fast and incremental processing:
With incoming stimuli, resonances and activation of sensori-
motor structures must arise in a fast, robust, concurrent and

incremental manner. (5) Imitation learning: The integra-
tion of perception and generation abilities must support the
social learning of behaviors. (6) Interpersonal coordination:
Perception-action links provide a likely basis for the fast and
often non-conscious interpersonal coordinations (e.g., align-
ment, mimicry, interactional synchrony) that lead to rapport
and social resonance [3] between interactants.

In the remainder of this paper, we describe our computational
model and show how these requirements are met.

The Computational Model

Our computational model provides an ECA with motor knowl-
edge that is shared between - and interacts with — perception
and generation processes (see Figure 1). On the one hand,
the perception module receives wrists’ spatial positions of a
human interlocutor at each time step, preprocesses them,
and tries to recognize or learn gestures based on the shared
motor knowledge. On the other hand, the generation mod-
ule employs the represented motor knowledge to control the

wrists movements of the ECA for gesture generation.
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Figure 1: Overall model for embodied gesture perception
and generation, integrated via shared motor knowledge. An
example representation of a “waving” gesture is highlighted
through bold lines and nodes.



Shared Motor Knowledge

The shared motor knowledge module consists of a pair of
generic forward and inverse models and a hierarchical mo-
tor representation. At the lowest level, motor commands (in
short, MC) represent spatiotemporal features of simple move-
ment segments, arranged in a graph-like structure for each
wrist (cf. motor primitives). At the next level, motor pro-
grams (MP) represent particular performances of a gesture
as sequence(s) of motor commands. At the highest level,
motor schemas (MS) cluster different performances of a ges-
ture (i.e. MPs) and separate between invariant and variant
features such as handedness or sub-movement repetition.
When the ECA observes a hand movement, all these rep-
resented motor components (MCs, MPs and MSs) serve as
recognition hypotheses. At each time step, forward models
evaluate those hypotheses against the observed movements,
which results in a recognition confidence for each motor com-
ponent. If the agent is not confident enough about observing
any of the known motor component at one level, the percep-
tion process switches to inverse models that extend or adjust
the motor knowledge to the newly observed movement. The
same motor repertoire is, in turn, also used to perform ges-
tures through a generation process in which probabilistic ac-
tivation flows top-down to the level of executable MCs. That
is, the ECA perceives hand movements in an embodied man-
ner as he recognizes a movement by continuously comparing
it with a motor repertoire that represents how the agent itself
would perform that gesture.

Embodied Motor Resonances

The previously described perception process is realized in a
probabilistic Bayesian framework. Following the Bayesian in-
ference (see Figure 2), forward models resonate each mo-
tor component probabilistically w.r.t. the current observa-
tion. In order to make this embodied perception process
robust, fast and incremental, we take three methodologi-

cal steps: First, the motor resonance of each component
(m € {mc,mp, ms}) at each time step T is defined as its
average activation over time: Pr(m) := + EtT:tl P.(m).
This step makes motor resonances incremental and robust
against sensory noise. Second, at each time step ¢, the a
priori of each motor component as a hypothesis is set to the
previous a posteriori at time ¢ — 1, which supports incremen-
tal processing. Third, motor resonances are updated at each
time step by two processes: (1) bottom-up belief propaga-
tion computes the a posteriori at each level given wrists ob-
servations and the a posteriori of the associated components
at lower levels; (2) top-down belief guidance updates these
probabilistic motor resonances by setting priors according to
their dependence on higher level components. This cogni-
tively plausible processing makes online recognition faster
and more robust.
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Figure 2: Probabilistic dependencies of motor resonances at
different levels, given observations of left and right wrists (0;
and o0,.); « indicates the Bayesian normalizing constant.

Perception-Action Integration

To support the mutual effects between perception and gener-
ation processes, we define a neural activation for each motor
component which is updated and used by both processes at
each time step. On the one hand, the perception process
sets the activations equal to the corresponding recognition
probabilities. The generation process activates all generat-
ing motor components and the activations of all not-updated



components decrease. On the other hand, these neural acti-
vations are considered as prior probabilities while recognizing
or generating gestures. In this way, we create perception-
action links which account for different social capabilities and
characteristics. For instance, this coupling enables direct, si-
multaneous imitation when the agent is set to perform mo-
tor resonances overtly. Furthermore, alignment and behav-
ior coordination becomes possible because the ECA automat-
ically tends to perform gestures which have been observed
or generated last. Likewise, the ECA will tend to recognize

previously self-generated or observed gestures.
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Figure 3: Left: Human user interacting with an ECA. Right:
Evolving motor activations at the motor program level while,
first, observing a known “waving” gesture (wave2), and then
performing it in return (see [6] for more detailed results).

Conclusion

We have argued that embodied interactive agents like ECAs
should be based more on principles of embodied cognitive
processing to support many aspects of social interaction, from
microscopic effects of behavior coordination to macroscopic
abilities of imitation learning. We have presented a model
that assumes a common sensorimotor structure and provides
an embodied account of how to perceive, recognize, learn and
generate hand gestures at the motor level. In this context,
extending this model to higher representational levels that

capture referential, communicative, and social intentions will
be an important step for future work.
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