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Abstract— This paper presents the Robotics Service Bus
(RSB), a new message-oriented, event-driven middleware based
on a logically unified bus with hierarchical structure. Major
goals for the development of RSB were openness and scalability
in order to integrate diverse components in the context of
robotics and intelligent systems. This includes the ability to
operate on embedded platforms as well as desktop computers,
reduction of framework lock-in, and the integration with other
middlewares. We describe the design of the RSB middleware
and explain how it meets requirements which lead to a scalable
and open middleware concept. These requirements are based
on several application scenarios which are used to verify the
applicability of RSB. Furthermore, we relate RSB to other
middlewares in the robotics domain.

I. INTRODUCTION AND MOTIVATION

The Robotics Service Bus (RSB) is a new lightweight and
flexible middleware, developed in the context of robotics
and intelligent systems. The development has been driven
by three major goals: a) Integration of heterogeneous ex-
isting and future systems and components on diverse (and
sometimes restricted) platforms in a robotics-centric research
environment. b) External integration in the sense of integrat-
ing components designed for other frameworks into RSB-
based systems and exposing components designed for RSB
into systems using other frameworks in order to foster reuse
of components. c) Facilitation of system-level research (e.g.
fault detection, reverse engineering) and empirical experi-
ments (data set recording for HRI studies or evaluation of
algorithms) in this environment by providing introspection
support [1]. RSB contributes to robotics and intelligent
systems research by facilitating the integration of otherwise
separated systems. The results are generic interfaces for
system-level development and research.

A. Requirements

The aforementioned goals give rise to a number of re-
quirements a suitable middleware has to fulfill. These re-
quirements are discussed in the following paragraphs.

One class of requirements can be summarized as openness.
In the context of distributed software systems, openness
is the property that services provided by a system adhere
to standardized protocols which formalize their syntax and
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semantics [2]. According to this definition, openness of a
system leads to the following desirable qualities:
Portability The property of being able to function in dif-

ferent execution environments without modification. Ex-
amples include different hardware and software platforms
and their respective constraints regarding available (par-
allel) processing, memory and network resources. As a
consequence, aspects like acceptable dependencies or the
use of threads may be severely restricted.

Flexibility The ease with which the structure of a software
system can be changed, e.g., by adding new components
or altering behaviors of system parts.

Interoperability The ability to function in conjunction with
other systems designed for the same domain. In the context
of middleware, one enabler for interoperability is the
existence of common data types, as they form the basis
of every communication. Ultimately, components written
for one middleware can be used in another middleware if
both have sufficient interoperability qualities.
Another important requirement is scalability. In the con-

text of middleware we consider the following aspects of
scalability important (derived from [2]):
System size and distribution the system size and type

which can be handled by a middleware. E.g. components
in a single process, multiple processes on a single node
or on distributed nodes in a network. This includes the
number of components as well as their platform and
runtime context. Scalable systems foster the integration
of components. The ability to scale the size of a system
implies sufficient efficiency in its processing.

Organization The amount to which a system can be ad-
ministered, which is developed by several organizational
structures with potentially overlapping or conflicting aims
and guidelines.
The goal of enabling system-level research and data

recording can only partially be fulfilled by implementing
the requirements collected so far. Therefore, introspection
support, the ability to access and analyze the state and pro-
cesses of a deployed system, and the availability of sufficient
relevant meta-data have to be considered as an additional
requirement. This property also improves the usability of
a middleware for a component developer by making the
communications in a system traceable.

B. Why Yet Another Middleware?
Why yet another middleware is needed to fulfill the re-

quirements mentioned above? Especially having in mind that
several huge communities evolved recently for frameworks
like ROS [3], YARP [4], OpenRTM [5] or Orocos [6].
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First, our evaluation of existing middlewares showed that
the frameworks of our knowledge do not have sufficient
portability across different platforms while providing the in-
tended high-level functionality. Especially, existing systems
often expose a dependency graph with multiple libraries,
sometimes hard to (cross-) compile. In our research con-
text with the constant development of new platforms, easy
portability to them is a key aspect.

Another aspect we found for many middlewares which
provide sufficient high-level functionality is that their im-
plementation results in a higher level of framework lock-in
than desired for our systems. We define framework lock-in
as the amount to which client code is coupled (technically
and conceptually) to the chosen framework. Reasons for this
include unchangeable communication patterns and transport
mechanisms, artificial framework data types which do not
reflect the client domain but deeply spread into client code
or a build system hard to replace with less coupled solutions.

We think that a new middleware or at least the extension
of existing middlewares is required to address all of the
aforementioned issues. However, we also specifically address
the issue of integrating with other solutions as stated by
the openness definition. Last but not least, while being a
completely new implementation, the ideas of RSB are not
entirely new, but instead are based on experiences with our
previous middleware XCF [7] and its information-driven
integration [8] principles.

The remainder of this paper is organized as follows:
After describing prototypical application scenarios of RSB
in Sec. II we will continue with a description of RSB’s
architecture in Sec. III. Afterwards, selected concepts of
RSB are discussed and evaluated along use cases from the
previously mentioned scenarios in Sec. IV. Finally, Sec. V
compares RSB with related middlewares.

II. APPLICATION SCENARIOS

This section introduces a number of projects in which RSB
is already applied and which guided the development of RSB.
Therefore, specific requirements of each application scenario
are related to the generic ones outlined above. The different
applications especially outline the bandwidth of distribution
types and system sizes for which RSB is currently used.

In the FP7 EU project AMARSi1 we are developing a
hierarchical motor control architecture based on dynami-
cal systems components. The resulting architecture needs
flexible deployment as some of the components run in a
single control process on the embedded system of a new
compliant quadruped robot [9]. Others are deployed remotely
on dedicated workstations. Furthermore, the currently used
RoBoard RB 1102 requires high efficiency and minimal
overhead as it features a single core CPU and threading has
a notable impact on performance.

Another platform on which RSB is used and which has
been the inception for developing the approach is the NAO

1http://www.armarsi-project.eu
2http://www.roboard.com/RB-110.htm

humanoid robot [10]. For experimental research, e.g. in the
context of the FP7 EU project HUMAVIPS3, an alternative
approach for system integration was needed than what was
provided by the NAO SDK (see Sec. V for a more detailed
discussion of NaoQi).

Fundamentally, RSB offers remote access to NAO’s sen-
sors and actuators for one or more remote computers. In this
context, efficiency is again a requirement with the 500 MHz
CPU of NAO as well as the limited network bandwidth,
especially for video streaming. To achieve the optimal system
performance, these limitations require the ability to easily
change the deployment scheme for components from remote
computation to on-board computation on the robot and the
other way around. As deployment to the robot requires
cross-compilation, RSB and its dependency graph should not
complicate this process. Furthermore, existing functionality
of the robot’s SDK (e.g. inverse kinematics or the walking
algorithm) is imported into the RSB-based architecture,
resulting in a use case for middleware-compatibility. Another
important aspect of the activities with NAO is the ability to
generate complete data sets for the training and evaluation of
algorithms as well as the analysis of HRI topics. RSB’s intro-
spection support is used in this context to generate data sets
without needing to program recording components for this
specific use case. Recording includes external devices like
cameras to observe the scene as well as the system internals.
Complete data sets require the availability of sufficient meta-
data, e.g. to synchronize different streams (i.e. sensors and
processing results). Moreover, the manual annotation process
should be facilitated, e.g. through a common storage format
which reduces the need to use many different tools. Replay of
recorded data should be possible with the same middleware
interface in order to later analyze and improve the behavior
of single components without interface modifications for the
replay trials.

On a larger deployment scale, RSB is used for teaching
activities at Bielefeld University and provides the technolog-
ical basis for a course in which about 25 students in the
Intelligent Systems Master program implement new func-
tionality for a smart-room environment. Besides the diversity
of integrated applications in this context, the opportunity
to empirically asses the usability of the framework from a
developer perspective is given.

RSB is also applied in an online learning scenario where
goal-babbling is used to learn a kinematic model of a
novel robotic manipulator [11], the Festo Bionic Handling
Assistant. From an architectural perspective, a particular
requirement in this scenario is the online integration of
ground truth data acquired through a motion tracking system
(Vicon Nexus [12]) with low latency and high frequency.
For instance, endeffector positions as input for the feedback
controller are streamed with 200 Hz while in parallel CAN
Bus control commands and joint information as outputs of
the controller are streamed with a frequency of 100 Hz.

3http://www.humavips-project.eu



III. ARCHITECTURE AND IMPLEMENTATION

In essence, RSB4 can be described as a message-oriented,
event-driven middleware for research systems based on a
logically unified bus. As a result, the native communication
semantic is m : n broadcast. However, other communication
patterns based on this structure can be added. An asyn-
chronous request/reply pattern is already provided with RSB.

The basic functionality required for communicating in
a distributed system is contained in a concise core layer.
This core currently exists as full implementations in C++,
Java, Python and Common Lisp with the aim to provide a
natural interface in each language. Following this principle,
dependency footprints of the core layer implementations are
as small as possible and Linux, Mac and Windows are
supported.

The following description of the architectural concepts
of the RSB core is structured along three topics. First,
the basic event structure will be explained, second, the
notification model which transports events to participants is
described, and third, the observation model specifies how
participants receive relevant events. For the description, we
adopt the definitions of [13], in which an event is a detectable
condition that can trigger a notification. A notification, in
turn, is an event-triggered signal sent to a run-time defined
recipient. The explanations are supplemented by Fig. 1 which
gives an overview of the high-level concepts implemented in
RSB.

A. Event Model

An event is the basic unit of exchanged data in RSB.
Hence, all information required to fully specify and trace
the condition it represents need to be present in the event.
To fulfill these requirements, our event model consists of the
following components:
Payload The payload of an event is a user-defined object

of the respective programming language which contains
the major information specifying the condition the event
represents. It can be of an arbitrary domain type which
reduces the framework lock-in by means of an early
transition from framework types to domain objects (cf.
III-B for technical realization).

ID A unique ID for each event in an RSB-based system to
make events addressable and foster traceability.

Meta Data Each event is supplemented by meta data. It
consist of the event sender’s ID and several timestamps
that a) specify timing information relevant to the condition
represented by the event (user-extensible) b) make the the
processing of the event within RSB traceable. Besides
these framework-supplied items, a key-value store for
string-based additional meta data items is available for the
client and user-defined timestamps can be added.

Causal Vector This vector allows to represent the causing
events of a given event, as proposed in [14]. It facilitates
automatic system analysis and debugging.

4RSB is available as open-source software at: https://code.
cor-lab.de/projects/rsb

Fig. 1. Conceptual overview of the RSB model. The notification model
parts are color coded in yellow and red to distinguish between client level
and backend realization. The observation model is depicted in green.

Destination Scope Specifies the recipients of the event
notification (cf. Sec. III-B) by restricting the visibility of
event notifications [15].

B. Notification Model

The notification model defines how events are commu-
nicated in RSB. RSB forms a logically unified bus across
different transport mechanisms. Different Participants con-
nect to this bus. Informers send events, whereas Listeners
receive events. From a logical perspective, no point-to-point
connections are established.

In order to structure the communication via the bus –
or stated differently, restrict the visibility of events for
participants – RSB utilizes a hierarchical channelization
scheme. This scheme is best explained by it’s declarative
representation as a Scope, which is represented in RSB
with a hierarchical notation compatible with the path com-
ponent of URIs [16]. E.g. sending an event with desti-
nation scope (cf. III-A) /robot/camera/left/ will
make this event visible in the channels [13] represented by
scopes /robot/camera/left/, /robot/camera/,
/robot/, and /. Consequently, / represents a channel
where all events of the system are visible. Each participant
is associated to one channel, but multiple participants can
participate at the same channel (m : n semantics). The
yellow parts of Fig. 1 visualize these domain concepts.

The chosen hierarchical channel layout provides benefits
for logging purposes and provides a first-class means of
the framework to structure the data space, e.g. with sub-
scopes for different services. However, it also increases the
chance that a listener receives unexpected data, because a
new informer appeared on a sub-scope of the listener’s scope.
RSB’s filter mechanism (cf. Sec III-C) allows clients to
efficiently specify which events they expect.

To realize the logically unified bus, several constraints
need to be addressed in order to meet our requirements:

• Different transport mechanisms (transports) may be
used in one system. E.g. an in-process connection
provides high performance for several components,



whereas others are connected through diverse network-
based protocols. It is helpful to maintain communication
even inside single components using RSB in order to
make them introspectable with system-level tools.

• The payload of events is a user-defined programming
language object (cf. III-A). Thus, no common (de-)
serialization mechanism can be used.

• If different transports are used, they may require differ-
ent (de-) serialization strategies.

• Different domain objects should create compatible se-
rialization formats to allow standardization and com-
patibility between different applications and libraries
(e.g. a participant implemented in C++ sends OpenCV’s
images5 and a receiving participant uses PIL images6).

• Depending on the application, client-level code may
pose different quality-of-service and performance re-
quirements on the transmission of events.

To address the application of different transports in one
system, RSB introduces the concept of Connectors. A con-
nector implements sending and receiving of events for a
specific transport mechanism. These connectors realize the
logically unified bus and each participant uses one or more
of these connectors as its backend. Internally, connectors
exchange Notifications, which are serialized events according
to the connector’s protocol. This structure is visualized
by the red parts in Fig. 1. Currently, three transports are
implemented. For complex distributed systems over a net-
work connection, a transport using the Spread Toolkit [17]
is available. A more lightweight network-based transport
using sockets with TCP communication can be used with
less configuration overhead. Finally, an in-process transport
implements efficient event exchange without serialization
overhead. Connectors can be chosen through a configuration
mechanism or programmatically.

Concerning the dynamics of sending events, RSB provides
an interface to implement different strategies [18]. For in-
stance this allows to integrate a queuing strategy for temporal
decoupling in the case events are generated with a higher
frequency than the connector can achieve for sending, but the
client code should not block. The default strategy, however,
is synchronous. Moreover, clients may specify reliability
and ordering requirements for events. These two properties
have a strict ordering in a way that e.g. a higher level of
reliability includes all aspects of lower levels. For different
transport mechanisms it cannot be generally stated where
these requirements need to be specified (sending or receiving
side). Therefore, they can currently be passed to sending and
receiving connectors. Only the minimum specification for
each sending and receiving connector pair is the resulting
guarantee for the client. E.g. specifying [reliable, ordered]
at the sending side and [unreliable, ordered] at the receiving
side will effectively result in [unreliable, ordered].

The (de-) serialization of event payloads from/to notifica-
tions is the responsibility of Converters. RSB comes with

5http://opencv.willowgarage.com/wiki/
6http://www.pythonware.com/products/pil/

a set of pre-defined converters for fundamental data types
(payloads of events) like numbers and strings. This set can
be extended by the user to integrate user-defined payload
types. Converters vary in 3 dimensions and have to be chosen
along these aspects: 1) the serialization format they operate
with7 2) the concrete serialization they operate with, given
their serialization format8 3) the data type they operate with,
e.g. IPL image or PIL images. Given a specific connector,
only those converters matching the serialization format of the
underlying transport mechanism can be used to (de-) serialize
events. However, no clear selection criterion for a certain
converter exists which also covers the other two aspects. For
instance, the created serialization is a design decision of the
overall system and, in the case of deserializing, multiple con-
verters multiple converters can exist which produce different
data types. Therefore, RSB uses exchangeable strategies to
select converters. Default implementation are provided in
cases where only a limited and unambiguous set of converters
is registered or user-supplied predicates are sufficient to
describe the selection.

To properly initialize participants in RSB with their
scope, required connectors and other options, RSB provides
a configuration procedure using configuration files and
environment variables as well as programmatic access to the
configuration. Moreover, the chosen scope syntax is the basis
for a URI-based configuration scheme, which provides a
useful addition to the aforementioned system. As an example,
spread://localhost:4803/nao/vision/left/
configures a participant using a spread-based connector for
scope /nao/vision/left/ with the daemon running at
port 4803.

C. Observation Model

Clients of RSB receive events by registering Handlers at
listeners. These callbacks are invoked asynchronously and
implicitly whenever a new event was received and decoded
by a connector. Each listener can have multiple handlers
registered.

Besides the scope, which is already defined by the listener,
further filtering may be required for clients to receive only
the relevant information. Hence, dedicated Filters can be
installed at each listener to further restrict the set of received
events. Several filters are connected as a conjunction, thus
the first filter which does not match an event leads to a
complete rejection of the event. Filter of one listener affect all
registered handlers. RSB implements the concept of content-
based [13], client-side filtering, where filters are explicitly
allowed to inspect the user-defined payload of events. Users
can provide additional filters according to their requirements.
As a default, the payload of the event is first deserialized
using an appropriate converter and afterwards filtered. How-
ever, this may result in a high computational load on the

7E.g. socket-based communication can be based on binary encodings,
whereas a SOAP-based transport usually requires XML serializations

8I.e. the byte layout for a binary encoding or the XML schema. This
information has to be carried in each notification since channels are not
restricted to a particular serialization.



message FaceDetection {
message FaceBox {

required BoundingBox box = 1;
required double confidence = 2;

}
repeated FaceBox detections = 1;

}

Listing 1. An exemplary Protocol Buffers-based data type definition for
face detection results.

receiving side without visible actions for RSB clients if many
events are filtered based on their content. To mitigate the
impact of client-side filtering, connectors of each listener
are informed about the attached filters. Each connector can
implement selected filters already at the transport level before
decoding an event from a notification. This allows a flexible
optimization. Imagine e.g. the case that a transport encodes
the data type of the user payload outside of the serialized
notifications. In this case the transport can implement a type
filter even before decoding the notification. A static view of
the relevant concepts is visualized with green color in Fig. 1.

From a dynamic perspective, RSB includes an interface to
implement strategies that dispatch received events to regis-
tered handlers of a listener. These strategies also apply the
filters (except those optimized by connectors). The default
strategy uses a small, fixed-size thread pool to serve all
registered handlers.

IV. DISCUSSION AND EVALUATION

The aim of this section is to outline how the chosen design
of RSB meets the requirements posed by the application
scenarios introduced in Sec. I.

Starting with practical issues, RSB’s small dependency
graph facilitated the application on our NAO robots. For
this platform, no complete system administration access for
the embedded Linux PC is provided by the manufacturer.
Nevertheless, several standard libraries like Boost [19] are
available on the system. RSB (for the C++ implementation)
explicitly states to rely only Boost for its core. Moreover,
the Spread-based connector requires the Spread Toolkit,
which is an easy to compile C-library, and Google Protocol
Buffers for internal serialization. This small footprint allowed
the application of RSB on NAO without a much more
complicated cross-compilation setup.

A. Assessment of Openness

As stated in Sec. I-A, an important aspect of scalability is
the availability of common data types. This is an essential
requirement for coupling components originally developed
for different systems. ROS [3] provides a collection of these
data types in the common_msgs package9. However, we
argue that the technical realization with the custom IDL
results in a coupling to ROS which prevents the general
use of this message definition technique outside ROS. For
this reason, RSB does not include a custom IDL for data
exchange and does not require its application. Instead, an
additional project RST10 provides common data definitions

9http://www.ros.org/wiki/common_msgs
10Available at https://code.cor-lab.de/projects/rst
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Fig. 2. Roundtrip latency for RSB, ROS and YARP scaling over data size
and the number of components that generate the pong reply. Please note the
logarithmic scales.

using an external IDL (Google Protocol Buffers [20]). This
IDL is well-known outside the robotics community and is not
inherently coupled to a broader framework, nor is the RST
project itself limited to RSB. In order to access the data
types already defined by ROS for robotics (cf. openness),
we evaluated an automatic translation which proved to work
properly. Listing 1 shows an exemplary data type definition
from RST.

To validate the intended facilitation of interoperability
by architectural choices, we prototypically implemented a
dynamic bridge component that translates between RSB-
based and ROS-based systems. Structurally, the compo-
nent consists of additional connectors that implemented the
communication protocols used within the ROS framework,
namely TCPROS and the XMLRPC-based connection setup
and converters for the ROSMSG serialization mechanism.
The component operates by creating a listener or informer
using these connectors and converters and participating in the
ROS-based part of the system. Another informer or listener
participates in the RSB-based part of the system. Using
the converter mechanism, messages/events received in one
part of the system are first (de-) serialized into a common
representation and then sent to the other part of the system
after a second (de-) serialization.

B. Assessment of Scalability

In order to scale a system, the efficiency of the processing
must be sufficiently high. We performed a benchmark of the
RSB C++ implementation against well-known competitors
in robotics, ROS and YARP (cf. Sec. V), to quantitatively
validate that the performance of RSB is comparable and
sufficient for robotics use cases. For this purpose, RSB’s
Spread-based transport was compared against ros_comm11

and YARP in a roundtrip scenario. A sending component sent
a ping message to a varying number of replying components,
which replied with a pong. The latency between sending the
ping message and receiving the pong message was measured
for different message sizes. All receivers and the sending
component were started in unique processes on the same
node and connection was established through the loopback
device. This computer was equipped with an Intel R© CoreTM2
CPU with 2.40 GHz and 4 GB of RAM. The results of this

11http://www.ros.org/wiki/ros_comm



benchmark are depicted in Fig. 2. As visible, ROS provides
the fastest roundtrip performance while RSB and YARP op-
erate with a comparable performance. We conclude from this
that RSB’s current performance is sufficient for robotics use
cases as YARP is successfully applied in several scenarios.
However, we will further try to improve the performance
of RSB and evaluate the progress by continuously running
the benchmarking suite12. Please note that the advantages
of the multicast mechanisms implemented by Spread are
not exploited by the current benchmarking setup. Several
connected workstations would be required to make them
visible.

Having a look at optimization possibilities in RSB, the
content-based filtering approach (cf. Sec. III-C) can be tuned
by implementing parts of the matching inside connectors.
One example of content-based filtering consists of apply-
ing XPath [21] expressions to serialized protocol buffer
messages, e.g. from RST. In order to achieve sufficient
efficiency, the filtering is performed in the transport layer
prior to deserialization and dispatching with the optimiza-
tion strategy introduced in Sec. III-C. To this end, an
approximate DOM-interface has been specified for protocol
buffers messages to enable application of an XPath engine.
Message fields required by the XPath engine are lazily
deserialized to minimize overhead. Consider the following
example based on the message definition in Listing 1:
node()/detections[@confidence>0.5]. This XPath expres-
sion would result in handlers being only called for face detec-
tion messages which contain at least one reliable detection.
Applying XPath facilitates scalability in two aspects. On the
one hand, it provides clients with flexible access to data
which is an essential requirement in constantly changing and
growing systems. On the other hand, it allows the efficient
application of binary encodings while exposing a high-level
interface to clients. For scaling a system, XPath expression
can be made a configuration property of the system instead
of requiring code changes and recompilation.

On the level of integrating diverse components with de-
fined runtime environments, we could assess RSB’s scalabil-
ity while implementing several GStreamer13 plugins. These
plugins provide sinks and sources for RSB-based commu-
nication with GStreamer pipelines and thus are maintained
through GStreamer’s life cycle management. Hence, the
explicit lack of a component life cycle model in the RSB
core is an essential requirement for this kind of integration.
This example also demonstrates how RSB can be used within
different organizational structures which might impose dif-
ferent life cycles components. RSB does not enforce one of
them and hence can be integrated in any of the systems, an
advantage of reduced lock-in.

C. Assessment of Introspection Support

RSB’s introspection support has been used in a human-
robot interaction study centered around the NAO robot.

12The whole benchmarking code is publicly available at https://
code.cor-lab.de/projects/rsbench.

13http://gstreamer.freedesktop.org

Control of the robot and streaming of its sensor information
was implemented using a set of components running partially
on the robot and partially on a workstation. All RSB-based
communication, including the sensor data streams generated
on the robot, was recorded and stored using introspection-
based tools and with a common format. Based on this format,
a generic replay component was implemented and addresses
the requirement to use the same components for online and
replay purposes (the same RSB interfaces are served). For
this purpose, the management of timestamps outside of the
user data in framework-supplied data structures provides the
replay tool with the ability to analyze and also automatically
adapt these timestamps without needing knowledge about the
structure of the user data. Moreover, due to the rich meta-
data attached to every RSB event, no manual augmentation
with timestamps or other meta-data was required for the
recording. Finally, assuming synchronized clocks of the
participating computers, a synchronization of recorded data
is possible solely and on these meta data in a generic way.

V. COMPARISON TO OTHER MIDDLEWARES

Subsequently, we will briefly review related approaches
for system integration with a focus on robotics middleware.
As a complete overview is beyond the scope of this paper,
we refer the interested reader to recent surveys, e.g., about
robotics middleware [22] or complete development environ-
ments for mobile robots [23]. For our comparison we se-
lected NaoQi [10], ROS and YARP as representatives of the
state-of-the-art in robotics system integration, demonstrated
by their wide adoption in mobile and humanoid robotics.
Please note that the following assessments focuses on the
major differences and may be subject to a strong bias on the
requirements introduced in Sec. I.

A. NAOqi

The humanoid robot NAO is delivered with a the SDK
NAOqi, which consists of a middleware core and functional
components specifically for the robot. The middleware in
NAOqi is based on a broker architecture and implemented
using SOAP over TCP. In contrast to RSB, NAOqi comes
with a component model which consists of modules. A
client component needs to implement the module interface.
NAOqi uses request-reply-based communication as funda-
mental communication pattern. A module can implement
1 : n publish-subscribe only manually by managing a list
of callbacks for interested modules. The RSB-like m :
n anonymous broadcast semantics are realized through a
central storage component called ALMemory, which raises
signals to subscribed listeners.

NAOqi’s data type model is based on a generic data
container called ALValue, comparable to JSON values [24].
All transfered data must be expressed with this container. No
early transition to client domain data is available.

Even though NAOqi uses SOAP as its underlying com-
munication mechanism, no standardization efforts are visi-
ble and the implementation is inherently coupled to NAO.
Middleware and functional modules are delivered as a single



package with specialized interfaces for functions of the NAO
robot. Also, no introspection tools are available and extension
points to change communication behaviors do not exist.

B. ROS Communication System

Willow Garage, the makers of ROS (Robot Operating
System), aim to provide an open-source, meta-operating
system supporting robotics software development in different
robotics domains with a focus on mobile manipulation.
Over the last years, ROS gained wide community support.
It provides access to a large number of software libraries
for building robotics systems, which expose their external
interface using features of the ROS communication stack
called ros_comm. Due to the wider focus of ros, our approach
mainly compares to this communication subsystem.

The ros_comm stack implements a type-based, anonymous
publish/subscribe model where each logical connection be-
tween a set of publishers and subscribers is bound to a
symbolically identified Topic which prescribes the type of
exchanged data with this channel. Conceptual differences to
the concepts presented in Sec. III are the lack of hierarchi-
cally organized topics14 and the restriction to a single data
type per topic whereas RSB allows polymorphic channels.
Polymorphic channels remove the necessity to couple names-
paces with data type design. More importantly, this facilitates
the development of generic software components such as
the RSB/ROS bridge described in Sec. IV. While ROS
also provides content-based filtering with the message_filters
package15, installed filters are not visible to the transport
layer and hence cannot be optimized like for RSB.

Besides publish/subscribe, ROS supports Services which
offer remote procedure calls. In contrast to RSB, ROS
services are conceptually outside of the channel system
described above. In RSB an RPC-like request/reply pattern
is logically implemented on top of the unified event bus.
This facilitates easier implementation of advanced event-
based RPC patterns with optional feedback such as the
Task-State pattern [25] and allows us to apply the same
toolchain, e.g., for introspection or recording. Performance
drawbacks caused by this implementation can be mitigated
if necessary by using special connectors which implement
RPC interaction natively at the network-level. However, in
contrast to ROS and other approaches, this optimization is
not visible to client code or even framework tools.

The ROS communication stack may very well scale to
larger distributed robotics systems. However, it remains
unclear how it is able to support more tightly integrate
component interactions. To this end, no direct equivalent to
the presented in-process transport for collocated optimization
[26] is available. The comparable features we could identify,
in particular Nodelets and intra-process publishing seem
to require changes at the level of the client code which

14ROS allows a hierarchical syntax in topic identifiers but does not
enforce or associate any semantics with it. Redirections into a common topic
or sub-topic would require developers to know beforehand every possible
topic to be aggregated.

15http://www.ros.org/wiki/message_filters

would prevent seamless reconfiguration of ROS components
to scale down to embedded platform and integration of com-
ponents in more tightly coupled feedback controllers. The
RSB architecture allows this kind of configuration change
without code-level changes.

While the aforementioned differences influence (among
other aspects) the scalability of a system integration solution,
one of the primary goals of the ROS communication library
as well as RSB is to be as lightweight as possible. Here,
both frameworks are on an equal footing with the Boost
libraries as their primary dependency and additions for
communication with the ROS Master (XML-RPC) in ROS
or Protocol Buffers as the internal serialization mechanism in
RSB. However, ROS lacks clearly defined extension points
for important functionality, e.g., for 3rd party serialization
formats or different transports.

C. YARP

YARP is another robotics middleware which has been
used for the system integration in a number of projects on
advanced robots [4] such as Kismet, COG or currently in the
context of the iCub humanoid robot16. With our approach it
shares the motivation to focus only on the middleware as-
pects of robotics system integration. Besides its dependency
on ACE, YARP is a lightweight framework which allows the
execution on platforms with limited processing capabilities.
Openness is additionally supported by a number of available
Carriers which realize different transports such as TCP, UDP
or also local transport.

Using YARP, an integrated system is organized as a num-
ber of independent components which expose their interface
via Ports that allow to send data to other participants. Port
communication implements a distributed observer pattern,
which is similar to the event bus concept introduced in
Sec. III. However, compared to the presented implicit in-
vocation architecture, ports are directly connected to each
other through an explicit connection which has to be estab-
lished manually. While a hierarchical name scheme typically
appears in port identifiers, e.g., in the iCub interface, their
syntax is rather unspecified and the hierarchical structures
do not impose any semantics.

The default serialization in YARP is the Bottle format. At
client-level, the bottle concept provides a simple interface
where native data types, strings, lists and dictionaries can be
added and removed to a bottle instance. While this represents
a straightforward concept, the lock-in at code-level would
be very high if used extensively. Furthermore, no IDL for
specifying data types and no generators for encoding or
decoding code exist. That said, YARP supports a limited
number of predefined data types natively, e.g., OpenCV
images, and users may write their own serialization engines.
Besides that, content-based filtering is not directly supported
neither at client-level nor within the framework.

16http://www.icub.org



VI. CONCLUSION AND OUTLOOK

This contribution presented the Robotic Service Bus
(RSB) middleware for system integration in robotics and
intelligent systems. The described structure features (i) a
logically unified and hierarchical bus based on exchangeable
transports, (ii) allows the integration of domain-specific data
with filtering at transport level and (iii) facilitates introspec-
tion and analysis of an RSB system utilizing a well defined
set of event meta data.

By strictly making openness and scalability a key require-
ment, RSB is usable on diverse platforms and within varying
research contexts. This explicitly includes the ability to inte-
grate with existing components for different middlewares in
order to strengthen software reuse and foster collaboration in
research projects. This integration is further facilitated by the
rich set of extension points within the described architecture
and has already been demonstrated by the dynamic bridge
discussed before and with a TCP-based ROS connector (so
far implemented in Common Lisp) that can be transparently
replaced by our native connector implementations.

A second key property of RSB is the reduction of frame-
work lock-in. This has been achieved by an early inclusion
of user data types, the (intended) lack of explicit component
models and is also supported by the lightweight dependency
graph with standard libraries.

Besides scalability and reduced framwork lock-in, RSB
features a number of functional concepts not found in other
robotics middleware so far. In particular, the consequent
adoption of an event-based model, the hierarchcial message
distribution, content-based filtering at user and transport level
as well as the flexible mapping from serialization to domain-
specific types are beneficial features for system integration.

While the presented framework is already usable for a
broad range of tasks, several additions are planned to address
further use cases or make them more convenient. Currently,
solutions to the question how to correctly form the logically
unified bus across several transports are under design and
development. Several transports are often involved when
performance is critical (e.g. by choosing in-process com-
munication for parts of the system) and hence the obvious
solution of sending all events to all transports is not feasible.
The current RSB model already provides a solution to this
problem by installing custom sending strategies for events,
which e.g. could send only every n-th event on expensive
transports. However, we will further develop more formal
ways of bridging between several transport mechanisms.

In the context of performance optimization we will also
integrate signals which enable informing components to
be aware of listeners in order to prevent expensive com-
putations when no listener is available. More generally,
we will integrate a distributed name service which allows
access to participants of each scope and provides contextual
information at runtime about an RSB system.

With its focus on openness, we acknowledge the existence
of widely used approaches such as ROS and thereby facilitate
integraton with these in collaborative projects. That said, we

are convinced that innovative features explored in smaller
communities can provide hints also to widely accepted
approaches such as ROS and that the presented concepts are
applicable also in system integration tasks beyond robotics.
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