Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Investigations on the emulsifying properties of egg white protein

A thesis presented in partial fulfilment of the requirements for the degree of Master of Food Technology at Massey University, Auckland, New Zealand

MASSEY UNIVERSITY

Amarachi Delight Onyemachi 2018

ABSTRACT

Egg white proteins (EWP) have excellent foaming and gelling functional properties. However, their emulsifying properties are considered poor when compared to soy proteins or milk proteins. Some studies have attributed the poor emulsifying properties to the hydrophobic amino acid groups buried deeply in the interior of the protein conformational structure which is crucial for emulsification. Several methods, such as heat treatment, acid/acid-heat treatment, Maillard reaction, phosphorylation and enzymatic hydrolysis, have been used by some researchers to improve the emulsifying properties of EWP. Preliminary experiments carried out in this study showed that oil-in-water (O/W) emulsions prepared with egg white liquid (EWL) generated lots of visible large aggregates, which no other study has reported. Therefore, it was important to investigate the factors responsible for the formation of these aggregates. Investigations into improving EWP's emulsifying properties could offer opportunities in developing unique and well-defined egg white-based emulsions.

The objective of this research project was to produce egg white emulsions with little or no aggregates. This thesis comprises three main parts. The first part focused on the effects of pH and heat treatment on protein aggregation and partial denaturation of proteins in EWL. The second part investigated the effects of heat treatment, oil concentration and protein concentration on the reduction of large visible aggregates in emulsions prepared with EWL. The third part studied the effect of enzymatic hydrolysis on the degree of hydrolysis and emulsifying properties of EWP hydrolysates. The emulsifying properties of original EWP and EWP hydrolysates were characterised in terms of size and zeta (ζ)-potential of emulsion droplets and emulsion stability (e.g. turbidity, microscopic examination and phase separation).

Firstly, an experimental study was carried out to evaluate the effect of pH on protein aggregation and precipitation in EWL containing different protein concentrations (0.5, 1, 2, 3, 4, 5 and 10% w/w). It was found that at all the protein concentrations used and at pH less than around 5, ζ -potential values were all positive but decreased as pH increased from 2 to 5. At pH 5, ζ -potential was close to zero (this is the pI of most egg white proteins), while, at pH levels above 5, ζ -potential became negative and increased as pH increased from pH 5 to 11. The spectral absorbance (turbidity) of emulsion samples was also

measured at 600 nm which revealed that for all protein concentrations, turbidity was observed to be higher at acidic pH of 3, 4 and 5, indicating the aggregation of EWP. At alkaline conditions of pH 7, 8, 9 and 10 the EWL solutions remained to be transparent. The effect of heat treatment and holding time on the denaturation of EWP in EWL was also studied at different temperatures (57-62°C) and heating times (0-19 minutes). Higher turbidity due to protein aggregation was observed as temperature increased from 57 to 62°C and the heating time increased from 5 to 19 minutes. It is therefore concluded that EWL can be safely pasteurized with little or no denaturation or aggregation at around 57-58°C for less than 5 minutes. At 60°C, it was observed that EWL began to thicken and after 5 minutes coagulation and gelation occurred rapidly.

Studies were also carried out to determine the cause of visible large aggregates formed in emulsions prepared with EWL using various factors, such as heat treatment, oil concentration and protein concentration. It was found that heat treatment (60°C for 30 minutes) of 1% (w/w) EWP solution prior to homogenisation had no effect on reduction of aggregates in emulsions containing 5, 10, 15 and 20% (w/w). However, the formation of aggregates was reduced significantly as oil concentration was reduced to 5%. Therefore, the effect of lower oil concentrations (1, 3, 5, 6, 7 and 10% w/w) on the formation of aggregates in emulsions prepared with 1% or 3% EWP concentrations was also investigated. Little or no visible aggregates were formed when emulsions were prepared with 1% EWP and \leq 5% oil or 3% EWP and 1% oil. Therefore, the results indicated that both protein and oil concentrations played a significant role in the formation of visible aggregates in emulsions prepared with EWP as an emulsifier.

The effect of EWP concentrations (0.1, 0.3, 0.5, 0.8, 1 and 2% w/w) on the formation and properties of 5% oil emulsions at ~pH 8 was then investigated. It was discovered that little or no aggregates were produced in emulsions when prepared at 0.1-1% EWP while large aggregates were formed at 2% EWP concentration. The size of emulsion droplets was observed to increase significantly from 242.1 to 703.7 nm as protein concentration increased from 0.1 to 2%. ζ -potential was however not significantly affected by protein concentration and ranged from -35.3 to -39.2 mV. The emulsions prepared were also heat treated at 60-90°C for 30 minutes. No sign of instability with a significant change in the size of emulsions due to heat treatment was observed from all emulsion samples prepared at different EWP concentrations (0.1 - 2%). However, phase separation of the emulsions

was observed upon freezing at -20°C and thawing at 4 and 20°C, respectively, at all protein concentrations used. Also, the stability of emulsions was affected by the addition of salts, such as CaCl₂ (5-100 mM) and NaCl (50-600 mM), with an increase in droplet size and phase separation. However, the emulsions were relatively more stable to salt-induced flocculation, especially against NaCl, at higher protein concentration (1-2%) than lower protein concentrations (0.1-0.8%). Lastly, the effect of pH 2-10 was also determined from the emulsions prepared at 1% EWP and 5% oil. Extensive droplet aggregation was observed at pH 4 and 5 as expected which is around the pI of most egg white proteins. On the other hand, it was not observed at extremely acidic pH 2.0 and alkaline pH 9-10 and in the control emulsion prepared at pH 8.3.

In another part of the study, the effects of enzyme type (bromelain, ficin and papain), enzyme concentration (0.3, 0.5, 1, 2 and 4% w/w; enzyme/substrate (E/S) ratio) and hydrolysis time (0, 30, 60 and 120 minutes) on the degree of hydrolysis (DH) of EWP were investigated by diluting EWL containing 10% EWP to different EWP concentrations followed by adding enzymes into the EWL solutions. DH was observed to increase significantly (p < 0.05) with increasing enzyme concentration and hydrolysis time. A significant difference (p < 0.05) among the different types of enzymes was only observed from the samples with 4% E/S ratio at 120 minutes of hydrolysis time. Papain yielded the highest DH of 7.69% while bromelain and ficin yielded similar DH levels of 5.03% and 4.99%, respectively. The results of SDS-PAGE revealed that the protein bands corresponding to ovalbumin and ovotransferrin disappeared due to their enzymatic hydrolysis into smaller peptides but it was not significantly different between the samples treated with different E/S ratios and hydrolysis reaction times.

The effects of enzyme concentration, DH and hydrolysis time on the emulsifying properties of hydrolysed EWP prepared with bromelain and ficin were investigated. Surprisingly, enzymatic hydrolysis significantly improved the appearance of emulsions prepared with EWL containing hydrolysed EWP by producing an emulsion free of aggregates compared to the control emulsions prepared from original EWP which had lots of large aggregates in it. For example, emulsions containing 10% oil and various EWP concentrations (1, 5 and 10%) prepared with hydrolysed EWP (4% E/S, DH 5.16%) yielded smaller droplet size (0.66-0.98 μ m) than those of original EWP emulsions (1.22-39.35 μ m). However, phase separation occurred immediately after preparation at all protein concentrations (1, 5 and

10%) used while phase separation occurred in only emulsions stabilised with 5 and 10% original EWP. When the emulsions were heat treated at 60-90°C for 0-30 minutes, gelation occurred in the emulsions prepared with 5 and 10% EWP concentrations while the emulsions prepared with 1% EWP had no gelation but had aggregation and phase separation after heat treatment. Emulsions prepared with 1% E/S ficin (DH 4.03% and 4.96%, respectively, after 2 and 4 hours of hydrolysis time) yielded smaller droplets size (0.75-0.87 μ m) than droplet size (6.40-7.37 μ m) of emulsions prepared with 1% E/S bromelain (DH 4.10% and 4.87% after 2 and 4 hours of hydrolysis time). Droplet size decreased as hydrolysis time increased from 2 to 4 hours for both ficin and bromelain hydrolysates with phase separation occurring the following day after the preparation of emulsions. Thus, DH and enzyme type had some influence on the emulsifying properties of EWP hydrolysates.

In conclusion, this study demonstrated that egg white emulsions can be prepared with little or no aggregates using low oil (\leq 5%) and low protein (1%) concentrations and by enzymatic hydrolysis of EWP. Emulsions containing 5% oil prepared with a relatively higher protein concentration (1-2%) were more stable to destabilization to ionic strength (salt concentration), especially against NaCl. These could lead to production of egg white protein based-emulsions with distinct appearance and characteristics.

ACKNOWLEDGEMENTS

First, my appreciation goes to the Almighty God, the author and finisher of my faith; the giver of wisdom and strength. I am nothing without you.

My utmost appreciation goes to my supervisor Dr Sung Je Lee for his thorough suggestions, intellectual expertise, constructive feedback and professional guidance from the beginning to the completion of my research project. I have learnt a lot working under his supervision.

I am grateful to Dr Jasper Mbachu and Dr Tony Mutukumira for their constant encouragement and advice.

I would like to express my gratitude to the Lab managers and technicians of the Massey Institute of Food Science and Technology (MIFST); Dr Kenneth Teh, P. C. Tong and Jia Shi for training me in laboratory protocols and use of equipment.

My appreciation goes to the New Zealand Ministry of Foreign Affairs and Trade for the opportunity given to me to study at Massey University through the New Zealand Aid Development Scholarship. Heartily, I would like to express my sincere gratitude to Sylvia Hooker, the Team Leader and Jamie Hooper, Anita Albert and Dave Broderick, the Support Officers for their immeasurable support during my entire stay in New Zealand. I also wish to acknowledge the MIFST's Postgraduate Research Support Committee for supporting my research project.

My gratitude also goes to my parents, siblings and in-laws, for their prayers, encouragement and support which kept me strong throughout my programme.

Finally, my appreciation goes to my lovely husband, Dr Chidozie Anyiro for his support, encouragement, prayers, and inspiration.

TABLE OF CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENTS	v
TABLE OF CONTENTS	vi
LIST OF TABLES	xi
LIST OF FIGURES	.xiii
LIST OF APPENDICES	xvii
LIST OF SYMBOLS	viii
LIST OF ABBREVIATIONS	.xix
Chapter 1. Introduction	1
Chapter 2. Literature Review	4
2.0 Egg white protein	4
2.1 Nutritional composition of egg white	4
2.2 Structure and composition of egg white	5
2.3 Physicochemical properties of egg white	6
2.4 Major egg white proteins and their characteristics	8
2.4.1 Ovalbumin	8
2.4.2 Ovotransferrin (Conalbumin)	9
2.4.3 Ovomucin	10
2.4.4 Lysozyme	11
2.4.5 Ovomucoid	13
2.4.6 Ovoflavoprotein	13
2.4.7 Ovoglobulin	13
2.4.8 Ovoinhibitor	13
2.4.9 Avidin	13
2.4.10 Cystatin	14
2.5 Functional properties of egg white protein	14
2.6 Food emulsions	15
2.6.1 Food emulsion properties	15
2.6.1.1 Droplet size and size distribution	16
2.6.1.2 Droplet electrical charge	16
2.6.1.3 Droplet microstructure	17
2.6.1.4 Emulsion appearance	18

2.6.1.5 Rheological properties	19
2.6.2 Factors influencing protein-stabilized emulsions	20
2.6.2.1 Thermal processing	20
2.6.2.2 Chilling and freezing	21
2.6.2.3 pH and ionic strength	21
2.6.2.4 Emulsifier type and concentration	22
2.6.2.5 Dispersed phase	23
2.6.2.6 Aqueous/continuous phase	24
2.7 Emulsifying property of egg white protein	24
2.8 Improvement of egg white's emulsifying properties	25
2.8.1 Acid-induced treatment	25
2.8.2 Heat treatment	26
2.8.2 Maillard reaction	26
2.8.3 Phosphorylation reaction	27
2.8.4 Enzyme hydrolysis	27
2.8.4.1 Degree of hydrolysis (DH)	
2.8.4.2 Enzyme type and concentration	29
2.9 Commercial egg white products	
2.9.1 Dried egg white powder	
2.9.2 Frozen and liquid egg white	32
2.10 Conclusion of Literature review	
Chapter 3. Effects of pH and heat treatment on EWL	34
3.1 Abstract	34
3.2 Introduction	
3.3 Materials and Methods	
3.3.1 Materials	
3.3.2 Sample preparation	
3.3.3 Zeta potential (ζ-potential) measurements	
3.3.4 Turbidity measurement	
3.4.5 Effect of heat treatment on EWL denaturation	
3.4.6 Statistical analysis	
3.5 Results and Discussion	
3.5.1 Effect of pH on zeta potential of EWL solutions	
3.5.2 Turbidity of EWL solutions	
3.6 Effect of heat treatment on EWL	42

3.7 Conclusions	45
Chapter 4. Reduction of visible aggregates formed during emulsification using	
various methods	46
4.1 Abstract	46
4.2 Introduction	46
4.3 Materials and Methods	49
4.3.1 Materials	49
4.3.2 Effects of pre-homogenisation, heat treatment and oil concentration	49
4.3.2.1 Preparation of emulsions	49
4.3.2.2 Analysis of emulsion droplet size	51
4.3.2.3 Microscopic examination of emulsions	51
4.3.3 Effects of oil concentration and protein concentrations	51
4.3.3.1 Preparation of emulsions	51
4.3.3.2 Particle size and ζ -potential measurements	53
4.3.3.3 Creaming stability	53
4.3.3.4 Statistical analysis	53
4.4 Results and Discussion	53
4.4.1 Effects of pre-homogenisation, heat treatment and oil concentration on formation of EWP aggregates	53
4.4.1.1 Visual observations	53
4.4.1.2 Emulsion characteristics	56
4.4.2 Effect of oil and protein concentrations on formation of EWP aggregates de homogenisation	-
4.4.2.1 Visual observations	61
4.4.2.2 Particle size and ζ -potential of emulsions	63
4.4.2.3 Creaming stability	67
4.5 Conclusions	68
Chapter 5. Influence of protein concentration on stability of EWP emulsions: Ef of heat treatment, freezing and thawing, ionic strength and pH	
5.1 Abstract	
5.2 Introduction	
5.3 Materials and Methods	
5.3.1 Materials	
5.3.2 Preparation of emulsions	
5.3.3 Effects of environmental conditions on emulsions	
5.3.4 Particle size and zeta (ζ) potential measurements	

5.3.5 Confocal laser scanning microscopy	75
5.3.6 Statistical analysis	76
5.4 Results and Discussion	76
5.4.1 Effect of EWP concentration on particle size and size distribution	76
5.4.2 Effect of EWP concentration on ζ-potential	80
5.4.3 Effect of thermal treatment on protein concentration of EWP emulsions	80
5.4.3.1 Particle size	80
5.4.3.2 Confocal laser scanning microscopy	81
5.4.3 Effect of freezing and thawing	84
5.4.4 Effects of salt type and ionic strength	85
5.4.4.1 Particle size and size distribution	85
5.4.4.2 Emulsion stability	87
5.4.5 Effect of pH	89
5.5 Conclusions	91
Chapter 6. Emulsifying properties of EWP hydrolysates	93
6.1 Abstract	93
6.2 Introduction	94
6.3 Materials and Methods	96
6.3.1 Materials	96
6.3.2 Preparation of EWP hydrolysates	97
6.3.2.1 Effects of enzyme type, enzyme concentration and hydrolysis time on of EWPH	
6.3.2.2 Effect of hydrolysis on emulsifying property of EWPH	
6.3.3 DH	
6.3.4 SDS-PAGE analysis	
6.3.5 Preparation of emulsions	
6.3.6 Particle size distribution	
6.3.7 Effect of thermal treatment	102
6.3.8 Zeta potential (ζ-potential) measurements	102
6.3.9 Microscopic examinations	102
6.3.10 Colour measurement	102
6.3.11 Data analysis	103
6.4 Results and Discussion	103
6.4.1 Effect of enzyme concentration and hydrolysis time on DH of EWPH	103
6.4.2 Effect of enzyme type on DH of EWPH	105

6.4.3 SDS-PAGE analysis106
6.4.4 Emulsifying properties of EWPH prepared with bromelain (4% E/S)110
6.4.4.1 Characteristics of emulsions110
6.4.4.2 Particle size and size distribution of emulsions112
6.4.4.3 ζ- potential of emulsions115
6.4.4.4 Microscopic examination of emulsions116
6.4.4.5 Colour of emulsions
6.4.4.6 Effect of heat treatment on EWPH emulsions119
6.4.5 Emulsifying properties of EWPH prepared with 1% (w/w) bromelain and ficin
6.4.5.1 DH
6.4.5.2 Particle size and ζ-potential122
6.4.5.3 Visual appearance and creaming stability125
6.4.5.4 Microscopic examination of emulsion126
6.4.5.5 Colour measurement
6.4.6 Characteristics of 0.3% FEWPH emulsions
6.5 Conclusions
Chapter 7. Overall Conclusions & Recommendations
References
Appendices154

LIST OF TABLES

Table 2.1: Nutritional composition of egg white, whole egg and egg yolk
Table 2.2: Mineral and vitamin composition of egg white 5
Table 2.3: Chemical properties of egg white proteins 7
Table 2.4: Physcochemical properties of egg white proteins
Table 2.5: Metal complexes of ovotransferrin and their properties10
Table 2.6: Applications of lysozyme in the food industry
Table 2.7: Functional properties of EWP in food systems 15
Table 2.8: Enzyme characteristics 29
Table 3. 1: Heat treatment of egg white liquid (EWL) at different temperatures at different holding times
Table 4.1: Formulations of O/W UEWP emulsions and HEWP emulsions prepared with 1% w/w EWP and 4 different oil concentrations (5, 10, 15 and 20% w/w)50
Table 4.2: Formulations of O/W emulsions prepared with 1% (w/w) EWP and various oilconcentrations (1, 3, 5, 6, 7 and 10% w/w)
Table 4.3: Formulations of O/W emulsions prepared with 3% (w/w) EWP and various oil concentrations (1, 3, 5, 6, 7 and 10% w/w)
Table 4.4: Mean particle size (D3,2) and span values of UEWP and HEWP emulsions prepared with 1% w/w EWP and various oil concentrations (5, 10, 15 and 20% w/w oil)
Table 4.5: Mean particle size ($D_{4,3}$ and $D_{3,2}$) and ζ -potential values of O/W emulsions containing different concentrations of canola oil (1,3, 5, 6, 7 and 10% w/w) stabilised by 1 and 3% (w/w) EWP
Table 5.1: Addition of CaCl ₂ at different concentrations to EWP-stabilised emulsions containing 5% oil (w/w) and various protein concentrations (0.1, 0.3, 0.5, 0.8, 1.0 and 2.0% w/w)
Table 5.2: Addition of NaCl at different concentrations to EWP-stabilised emulsionscontaining 5% oil (w/w) and various protein concentrations (0.1, 0.3, 0.5, 0.8, 1.0 and2.0% w/w)
Table 6.1: Enzyme characteristics
Table 6.2: Hydrolysis conditions for preparing EWPH
Table 6.3: Formulations of emulsions with different types of EWPH101

Table 6.4: Degree of hydrolysis (%) of EWP hydrolysates hydrolysed with three different enzymes using various E/S ratios (0.3, 0.5, 1, 2 and 4%). Hydrolysis was carried out at 50°C for 120 minutes with samples taken out at 0, 30, 60 and 120 minutes104
Table 6.5: Particle size and span values of emulsions prepared with various protein concentrations (1, 5 or 10% w/w) and 10% (w/w) oil concentration
Table 6.6: Specifications of L, a, b colour values of FEWPH and BEWPH emulsionshydrolysed for 2 and 4 hours.128
Table 6.7: Emulsion properties of emulsions prepared from 0.3% FEWPH containing 10% (w/w) oil and 1% EWP. Data are presented as mean and standard deviation (n =4)

LIST OF FIGURES

Figure 2.1: Structure of an egg showing the components of egg shell membrane, egg white layer and egg yolk. Adapted from Mine (2008)
Figure 2.2: Schematic diagram of the L*a*b* tristimulus coordinate system for colour specification. Adapted from McClements (2015)19
Figure 2.3: Schematic diagram illustrating effect of emulsifier concentration on oil droplet coalescence and flocculation. Aadapted from Gao et al. (2017)23
Figure 2.4: Schematic flowchart of production of commercial egg white products
Figure 3.1: ζ -potential of pH adjusted EWL at different protein concentrations (0.5, 1, 2, 3, 4, 5 and 10% w/w). Each data point is mean \pm standard deviation of two independent measurements with triplicates (n=6)
Figure 3.2: Turbidity of EWL containing different EWP concentrations (0.5, 1, 2, 3, 4, 5 and 10%) at different pH ranging from pH 3 to 10. Each data point is mean ± SD for n=6.
Figure 3.3: Photographs of EWL solutions containing different EWP concentrations at pH levels ranging from pH 3 to 1142
Figure 3.4: Time taken for EWL solution at 20°C to reach desired temperatures (57, 58, 59, 60 and 62°C). Each data points represents mean \pm SD (n=3)43
Figure 3.5: Photographs of time dependent (0-19 minutes) changes in turbidity and denaturation of EWL (10% w/w protein) due to heat treatment (57, 58, 59, 60 and 62°C).
Figure 4.1: (a) Ultra Turrax (IKA T25 Basic, Staufen, Germany) and (b) 2-stage high pressure homogeniser (APV-2000 APV Manufacturing, Poland)50
Figure 4.2: Photographs showing insoluble aggregates in UEWP and HEWP emulsions prepared with 1% (w/w) EWP and different oil concentrations (5, 10, 15 and 20% w/w). UEWP and HEWP represents Unheated EWP Heat-treated EWP respectively55
Figure 4.3: Particle size distributions of UEWP and HEWP emulsions prepared with 1% w/w EWP and different oil concentrations (5, 10, 15 and 20% w/w). UEWP and HEWP represents Un-heated EWP and Heat-treated EWP respectively
Figure 4.4: CLSM images of EWP-stabilized emulsions at 5, 10 and 20% oil concentrations. UEWP: Un-heated egg white protein and HEWP: heat-treated egg white protein. Each bar notes represents 40µm
Figure 4.5: Emulsions prepared with 1% (w/w) EWP and different oil concentrations (1- 10%). Protein aggregates increased as oil concentration increased from 1 to 10% (w/w).
Figure 4.5: Emulsions prepared with 1% (w/w) EWP and different oil concentrations (1-10%). Protein aggregates increased as oil concentration increased from 1 to 10% (w/w).

Figure 4.8: Particle size distributions of emulsions containing different oil concentrations (1, 3, 5, 6, 7 and 10% w/v) which were stabilized by 1% EWP (a) and 3% EWP (b)65

Figure 4.9: Creaming stability of emulsions stabilised containing different oil concentrations (1, 3, 5, 6, 7, and 10% w/w) stabilised by 1% EWP (a) and 3% EWP (b).68

Figure 5.1: (a) Z-average and (b) particle size distributions of O/W emulsions prepared with 5% (w/w) oil and various protein concentrations (0.1, 0.3, 0.5, 0.8, 1 and 2% w/w). Data points represents mean \pm standard deviation (n=6)
Figure 5.2: ζ -potential of O/W emulsions prepared with 5% (w/w) oil and various protein concentrations (0.1, 0.3, 0.5, 0.8, 1 and 2% w/w). Data points represent mean \pm standard deviation (n=6)
Figure 5.3: Effects of heat treatment of temperature (60, 65, 70, 80 and 90°C) and holding time (0 and 30 minutes) on the mean particle size (Z-average) of emulsions prepared with different protein concentrations. Control indicates emulsion samples without heat treatment (a) 0.1% (b) 0.3% (c) 0.5% (d) 0.8% (e) 1% and (f) 2%. Each data point indicates mean \pm SD for n=6
Figure 5.4: Confocal images of O/W emulsions prepared with 5% w/v oil and various EWP concentrations (0.1, 0.3, 0.5, 0.8, 1 and 2% w/w) taken before and after heat treatment at 90°C for 0 or 30 minutes. NH=no heat treatment (i.e. control samples), H= heat treatment for 0 minute and H-30= heat treatment for 30 minutes. The scale bar inserted represents 20 µm
Figure 5.5: Photographs of phase separation of emulsions stabilised by EWP containing various protein concentration (0.1, 0.3, 0.5, 0.8, 1.0 and 2.0% w/w) and 5% oil (w/w) after freezing at -20°C for 24 hours and thawing at 4°C and 20°C, respectively
Figure 5.6: Influence of (a) $CaCl_2$ (0, 5, 10, 50 and 100 mM) and (b) $NaCl$ (0, 50, 100, 200, 400 and 600 mM) on the mean particle size (D3,2) of O/W emulsions prepared with 5% oil (w/w) and various EWP concentrations (0.1, 0.3, 0.5, 0.8, 1.0 and 2.0% w/w)86
Figure 5.7: Photographs showing the influence of CaCl ₂ concentration (0, 5, 10, 50 and 100 mM) on stability of emulsions containing 5% oil (w/w) and different EWP concentrations (0.1, 0.3, 0.5, 0.8, 1.0 and 2.0% w/w)
Figure 5.8: Photographs showing the influence of NaCl concentration (0, 50, 100, 200, 400 and 600mM) on emulsions containing 5% oil (w/w) and different EWP concentrations (0.1, 0.3, 0.5, 0.8, 1.0 and 2.0% w/w)
Figure 5.9: Influence of pH on ζ-potential of emulsion prepared with 1% (w/w) EWP and 5% (w/w) oil. Data represents mean ± standard deviation of two independent measurements with duplicates (n=6)
Figure 5.10: Confocal images of pH adjusted (2, 4, 5, 7, 8.3, 9 and 10) of emulsions prepared with 1% (w/w) EWP and 5% (w/w) oil. The scale bar inserted represents 20 μm.

Figure 6.1: SDS-PAGE images of egg white protein hydrolysed with different types of
enzymes (a) bromelain, (b) ficin and (c) papain using various amounts of enzymes (0.5. 1,
2 and 4% w/w)

Figure 6.2: SDS-PAGE images of egg white proteins hydrolysed with 2% (w/w) enzyme concentration of (a) bromelain (b) ficin and (c) papain at different time intervals (0, 30, 60 and 120 minutes)
Figure 6.3: Photograph of OEWP and EWPH emulsions prepared with various EWP concentration (1, 5 and 10% w/w) and 10% (w/w) oil. (a) and (c) shows the presence or absence of droplet aggregates (b) and (d) shows presence or absence of phase separation. OEWP and EWPH represents original EWP and EWP hydrolysates, respectively 111
Figure 6.4: Particle size distributions of emulsions prepared with various EWP concentrations (1, 5 and 10% w/w) and 10% oil concentration. (a) original egg white protein emulsion (b) egg white protein hydrolysate emulsion
Figure 6.5: Mean ζ potential of emulsions prepared with various protein concentrations and 10% (w/w) oil concentration. OEWP and EWPH represents original egg white protein and egg white protein hydrolysates respectively. Data points represent the means \pm SD (n =6)
Figure 6.6: Microscopic images of control and hydrolysed emulsions prepared with various concentration of EWP (1, 5 and 10% w/w) and 10% (w/w) oil. OEWP and EWPH represents original egg white protein and egg white protein hydrolysates respectively. The scale bar inserted represents 20 μ m
Figure 6.7: Colour specifications (L, a, b values) of emulsions prepared with original and hydrolysed egg white proteins. OEWP and EWPH represents original egg white protein and egg white protein hydrolysates respectively. Data points represent the means \pm SD (n =6)
Figure 6.8: Photograph of thermal treatment of EWPH emulsions prepared with various EWP concentration (1, 5 and 10% w/w) and 10% (w/w) oil
Figure 6.9: Particle size diameter (D3,2) of EWPH emulsions prepared with 1% (w/w) EWP and 10% (w/w) oil heat treated at various temperature (60, 65, 70, 80 and 90oC) for 0 and 30 minutes. Data points represent means \pm SD (n =6)
Figure 6.10: DH of egg white protein hydrolysates prepared with bromelain and ficin after 2 and 4 hours. Results are expressed as means \pm SD of two independent replicates. ^{a,b} Means with different superscripts are significantly different (p < 0.05)
Figure 6.11: (a) Particle size diameter (D3,2) and (b) ζ -potential of emulsions prepared with ficin and bromelain EWPH (at an E/S ratio of 1% w/w) hydrolysed for 2 and 4 hours containing 1% (w/w) EWP and 10% oil. FEWPH and BEWPH represents ficin egg white protein and bromelain egg white protein hydrolysates respectively
Figure 6.12: Particle size distribution of emulsions prepared with prepared with ficin and bromelain EWPH (at an E/S ratio of 1% w/w) hydrolysed for 2 and 4 hours containing 1% (w/w) EWP and 10% oil. FEWPH and BEWPH represents ficin egg white protein and bromelain egg white protein hydrolysates respectively
Figure 6.13: Photograph showing appearance of FEWPH and BEWPH emulsions. B-2 = BEWPH after 2 hours, B-4= BEWPH after 4 hours, F-2= FEWPH after 2 hours, F-4= BEWPH after 4 hours
Figure 6.14: Photograph showing the onset of phase separation appearance in FEWPH and BEWPH emulsions hydrolysed for 2 of 4 hours. B-2 = BEWPH after 2 hours, B-4 = BEWPH after 4 hours = 126

Figure 6.15: Microstructure of emulsions prepared with ficin and bromelain EWPH (at an	
E/S ratio of 1% w/w) hydrolysed for 2 and 4 hours containing 1% (w/w) EWP and 10%	
oil127	
Figure 6.16: Photograph of 0.3% EWPH emulsions showing no separation on the day of preparation and phase separation the next day	

LIST OF APPENDICES

Appendix 1: Zeta potential for EWL solutions containing different protein concentrations
(0.5-10% w/w) at different pH values using Zetasizer Nano ZS90154
Appendix 2: Turbidity for EWL solutions containing different protein concentrations
(0.5-10% w/w) at different pH values using Zetasizer Nano ZS90155
Appendix 3: Time taken for EWL solution at 20°C to reach desired temperatures (57, 58,
59, 60 and 62°C)
Appendix 4: Z-average and Zeta potential of O/W emulsions prepared with 5% (w/w) oil
and various protein concentrations (0.1, 0.3, 0.5, 0.8, 1 and 2% w/w)156
Appendix 5: Effects of heat treatment of temperature (60, 65, 70, 80 and 90°C) and
holding time (0 and 30 minutes) on the mean particle size (Z-average (nm)) of emulsions
prepared with different protein concentrations157
Appendix 6: Influence of CaCl ₂ (0, 5, 10, 50 and 100 mM) on the mean particle size
(D3,2) of O/W emulsions prepared with 5% oil (w/w) and various EWP concentrations
(0.1, 0.3, 0.5, 0.8, 1.0 and 2.0% w/w)
Appendix 7: Influence of NaCl (0, 50, 100, 200, 400 and 600 mM) on the mean particle
size (D3,2) of O/W emulsions prepared with 5% oil (w/w) and various EWP
concentrations (0.1, 0.3, 0.5, 0.8, 1.0 and 2.0% w/w)
Appendix 8: Colour specifications (L, a, b values) of emulsions prepared with original
and hydrolysed egg white proteins

LIST OF SYMBOLS

D4,3	Sauter mean diameter
D _{3,2}	Volume mean diameter
μm	micrometre
°C	Degree Celsius
mM	Millimolar

LIST OF ABBREVIATIONS

AEP	Acid treated egg protein
AHEP	Acid-heat treated egg white protein
ANOVA	Analysis of variance
BEWPH-	Bromelain egg white protein hydrolysates
CaCl ₂	Calcium chloride
CLSM	Confocal Laser Scanning Method
Da	Dalton
DH	Degree of hydrolysis
DLS	Dynamic Light Scattering
E/S	Enzyme/Substrate
EWP	Egg white protein
EWPH	Egg white protein hydrolysate
EW	Egg white
EWL	Egg white liquid
FEWPH	Ficin egg white protein hydrolysate
HCl	Hydrochloric acid
HEWP	Heat-treated egg white protein
HMW	High molecular weight
HPLC	High Performance Liquid Chromatography
kDa	Kilodalton
LMW	Low molecular weight
MPa	Mega pascal
NaCl	Sodium chloride
NaOH	Sodium hydroxide
nm	nanometre
OEWP	Original egg white protein
OPA	Ortho-phthalaldehyde
O/W	Oil-in-water emulsion
PDI	Polydispersity Index
pI	Isoelectric point
SDS	Sodium dodecyl sulphate
SDS-PAGE	Sodium dodecyl sulphate polyacrylamide gel electrophoresis

SEM	Scanning Electron Microscopy
SLS	Static Light Scattering
TEM	Transmission Electron Microscopy
W/O	Water-in-oil emulsion
β-lg	Beta-lactoglobulin
ζ-potential	Zeta-potential