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Thesis Ahstracl 

·111L~ sym pathetic noradrcnergir nel1rons of the superior cen ,ica1 ganglia provide the 

major source o f innervation to the pinL!a l gland . Studies described in th.is thesis were 

rksigncd to fmt hcr investigate the initial decline ,md subsequent recovery of pineal 

rn cl.1t o ni11 :;ccrcto ry capacit y whiL·h has been report ed in sheep after unilateral superior 

cervical ganglioncctomy (Lapwood, 19~13). Fmihcr to tl1at. the compensatory mechanism 

proposed by Dornay, et al (I 085), of re-innervation of dencrvatcd tissue hy residual nerve 

fibres originating from the int.act SCG, was investigated 

/\ k la lonin secretory capacity is advocated J S a superior index o f pineal function 

with direct m easurement of pineal output. Radioinmnmoassay was used to m easure dark 

period plasm a level~ o f rndatonin prior to and at I, 3, 7, 14_ 21 and 28 clays afier unilat eral 

SCGX. Initial response to pa1tial dcnervation was a reduction in secretory capacity by 

80% uf µre-operative kvds, follov,:c<l hy a linear rc;covery to pre-operative levels at 21 

days after surgery , which wa, sustained at 28 days 

Irnmunocytochcmical localization o f GAP-,13 detennined that nerve regeneration 

occurs in the pineal gland as a reponse to tmilateral SCGX GAP-43 in nerve fibres was 

most pwminent at 3 days aflcr surgery afic;r which followed a linear decline to pre­

operative levels in measurements taken at 28 days. An association between nerve 

terminals and the membranes of pinealocytes was observed at 28 days, suggesting those 

cells were the target of new nerve growth . 

The presence of nerve grov,rt.h maturity corresponded with the recovery in pineal 

function and for this reason the compensatory mechanism of re-innervation is reasoned to 

be responsible for that recovery. 



hnm1111ocytochernica\ localization of alpha t11buli11 established tl1e presence of 

that component ofmicrotubules in the c11oplasm ofpinealocylcs, where it is suggested to 

function in the process of hormone secretion. No variance in the presence of alpha 

tubulin was mcasmed in any treatment group indicating that cell integrity was maintained 

and that atrophy did not occur, despite partial dcnervation . 

The findings of this study have confinned a role for re-innervation in the full 

recovery of pineal melatonin secretory capacity aft er w1ila1era1 SCGX and has 

demonstrated that the SCG-pineal complex 1s a very useful model for future studies 

correlating nerve growth and fimcti.onal regeneration. 
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CHAPTER 1 

Review of Literature 

l. Introduction 

'llle pineal gland is an unpaired organ, situated in tl1e roof of the tllird ventricle of 

the brain, which controls a number of circadian and seasonal rhythms, through its 

secretion of melatonin at night (Reiter, et al, 1981). Its principle nerve supply is via post­

ganglionic sympatlletic fibres which originate in the superior cervical ganglia (Kappers, 

1965) See Section 1.3.4. 

As discussed in section 1.3.5, one technique which has been used to study the control 

of pineal gland function, is denervation by bilateral superior cervical ganglionectomy. 

Occasionally unilateral SCGX has also been utilized. In one such sh1dy Lapwood (1993) 

found that while melatonin secretory capacity was abolished after bilateral SCGX and 

was reduced to 92% of pre-operative levels on day I after unilateral SCGX, it recovered to 

77% by day 14 after surgery for tllat group. It was suggested that recovery of function 

after unilateral surgery, may have been due to re-innervation of denervated pineal 

endocrine cells (pinealocytes) by collateral sprouting of nerve tenninals originating from 

tlle remaining SCG. 

The experiment described in this thesis investigated whether full restoration of pineal 

melatonin secretory capacity occurred if the post-surgery period was extended to 28 days . 

In addition, a study was undertaken to investigate whether evidence of re-innervation of 

tlle pineal could be demonstrated. 

11i.e aim of Chapter I is to provide an overview of the literature relating to both the 

pineal gland and the regeneration of nerves, as is pertinent to thi.s thesis. 
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1.1 Early history of pineal research 

Early anatomists held various views on the physiological function of the pineal 

in the human . This unique unpaired structure, that lies deeply recessed under the cerebral 

hemispheres of the brain, drew their attention and speculation. According to Kappers 

(1979) and Oksche (1984), Herophilas, an anatomist at the University of Alexandria in 

Egypt, was first to discover the pineal, around 300 BC. The philosopher Descartes 

considered it the "seat of the soul" . 1l1e possible physiological significance of the pineal 

was first recognised by Heubner in 1898, who noted precocious sexual maturity in a 

young boy whose pineal was destroyed by a tumor. Holmgren (1917/1918) noted that the 

cells of the pineal gland of an elasmobranch were sensory-like in nature: the pinealocytes 

resembled the sensory cells of the retina. Because some reptiles possess a prominent 

"third eye" the pineal of mammals was considered a vestige of this primitive visual organ. 

The obsenration that the human pineal may become calcified at an early age further 

consolidated thought that the pmeal was, indeed, a vestigial organ and therefore of little 

physiological consequence. However, in 1954, Kitay and Alt<;chule reviewed the 

literature on human pineal tumors and described clinical correlations of pineal 

dysfunction with evidence clearly revealing that the pineal may in some way be related to 

reproductive functions in humans. 

McCord and Allen (1917), interested in endocrme factors affecting morphogenesis, 

observed that bovine pineal extracts added to the water in which tadpoles swam caused 

the larvae to blanch. In 1958 dermatologist Aaron Lerner, in searching for a factor which 

might be responsible for vitiligo, was able to isolate and determine the structure of the 

bovine pineal extract as N-acetyl-5-methoxytryptamine, an indoleamine, which he named 

melatonin. Tilis molecule can now be readily synthesized and made available for a variety 

of physiological studies. 
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1.2 Seasonal adaptive changes mediated hy the pineal 

1.2.J Seasonal Reproduction 

Many mammals in their natural habitat are seasonal breeders. Seasonal 

reproduction is one of the more conspicuous changes that natural populations of 

mammals rely on for their survival. It ensures the birth of the young during those seasons 

of the year in which their chances of survival are greatest (Bronson, 1988). Clearly, the 

most favourable seasons for supporting the survival of off.spring are those in which food 

is accessible and environmental conditions are mild, in the spring and summer seasons 

(Karsch., et al, 1984). Diverse species mate during various seasons of the year so that 

birth occurs during those favourable seasons. 

There are potent exogenous factors on which animals rely for the synchronization 

of their annual cycles. Most biometerological parameters change throughout the course 

of the year and animals could have selected any one of these to guide or determine their 

annual cycle of reproduction (Stonehouse, 1981). However, some factors change with 

greater regularity than others. One of the most dependably recurring phenomena in the 

environment is the photoperiod, consequently it has great predictive value in terms of 

anticipating the upcoming season. Hence, it is logical that many mammals have come to 

depend on the seasonal changes in photoperiod to synchronize their annual reproductive 

rhythms, as it is both essential and advantageous for these species to initiate reproduction 

at approximately the same time each year, before the optimal conditions for birth and 

rearing have arrived (Reiter, et al, 1981). 
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1.2.2 Photoperiod and the pineal gland 

Both circadian and circannual rhythms in the duration of daily photoperiods have 

been shown to be the major factors influencing the timing of reproductive activity in 

2lmost all seasonally breeding mammalian species (Reiter, 1980). Central to seasonal 

reproductive adjustments in response to light is the pineal gland. Although the photic 

information is detected by the retinae of the lateral eyes (Moore, 1978), it is the pineal 

that tranduces (Wurtman, et al, 1968) the resultant neural information into a chemical 

signal that determines the level of reproductive activity. 

The pineal is a small organ located near the centre of the brain, that functions as an 

endocrine organ which secretes melatonin. As an end organ of the visual system in 

mammals, the pineal gland's production and secretion of melatonin arc affected by light 

which causes a drop in blood levels of the compound. As day length (and therefore night 

length) varies seasonally, the pineal gland, because of the secretion of melatonin., provides 

information concerning time of year to all other organs of the body. Thus in animals 

whose reproductive patterns fit into a specific seasonal scheme the pineal may play a 

pivotal role in the control of their gonadal function (Kauppila, et al, 1987). Hence the 

pineal gland is essential to the chronobiology that assists an animal in adapting to the 

external environment, both daily and seasonally (Reiter, 1991). 
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1.2.3 Reproductive seasonality in sheep 

Seasonally breeding animals which use photoperiod to time their reproductive 

activity can generally be divided into two groups - short and long day breeders. Short day 

breeders, such as domesticated sheep, use the decreasing daily photoperiod of autumn to 

time the initiation of breeding activity and generally have long gestation periods 

eventuating in spring parturition O~albandov, 1976). lhese modem sheep breeds have 

developed as a result of controlled breeding programmes intended to improve meat and 

wool production, and to increase fecw1dity (Carter & Cox, 1982). Marshall in (1937) was 

the first to define the reproductive cycle of sheep, with Hammond (1944) later 

establishing the importance of photoperiod in regulating the onset and termination of 

reproductive activities . Yeates (1947, 1949) in early studies investigating seasonal 

reproduction in sheep, concluded that, seasonal variation in the length of photoperiod was 

the predominating factor determining the time of onset and the duration of the breeding 

season. A change from increasing to decreasing photoperiod induced in both rams and 

ewes to commence behavioural characteristics associated with the onset of reproductive 

activity. Ram behaviour associated with increasing reproductive activity occurs in 

conjunction with elevated testosterone secretion from the testes. Characteristic behaviour 

includes increased libido, inter-male aggression and the occurence of fl.ehmen, the 

raising of the upper lip in order to facilitate the detection of olfactory stimuli originating 

from vaginal secretions (Lincoln & Short, 1980). Behavioural oestrus of ewes is 

characterised by sexual receptivity towards the ram, culminating in pro-active behaviour 

by some ewes. Conspicuous signs of behaviol.lf'ctl oestrus are however, mostly absent, 

with rams detecting oestrous ewes by pheremonal signals from their vaginal secretions 

(Smith, 1982). 
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Seasonal reproductive capacity may also be measured by hormonal, physical and 

physiological changes in hoth rams and ewes. The initiation and cessation of 

reproductive activity is a reflection of the changing secretory profiles of pituitary 

gonadotrophins and gonadal steroids (Lincoln, et al, 1977). Ram testis size is greatest 

during the breeding season and least during sexual quiescence (fulley & Burfening, 

1983). Sperm output ancl quality (motility and percentage of live sperrnatazoa) (Dufour, 

et al, 1984; Boland, et al, 1985) and ejaculate volume (Sanford, et al, 1977; Barrell & 

Lapwood, l 978/l 979a: Boland, et al, 1985) are highest during the breeding season and 

lowest during sexual quiescence. For ewes, the onset of breeding activity is initiated by 

cyclic changes in ovarian hormones leading to follicle growth, ovulation and corpus 

luteurn development, swelling of the uterus and vagina, an increase in the secretory 

activity of glandular tissue within these structures, and an increase in the secretion of 

mucus from the cervix (reviewed by Smith, 1982). 

In addition to light and pheremonal factors influencing reproductive seasonality in 

sheep, both nutritional and temperature variations may be observed. Through effects of 

inhibition ofluteinizing hormone secretion, low levels of nutrition result in reduced levels 

of reproductive activity, delaying both the onset of puberty and of the breeding season. 

On the other hand high nutrition levels are associated with increased reproductive activity 

(Lindsay, et al, 1984; Bronson, 1988; Rhind, et al, 1989a). A study of the effects of 

temperature on the breeding cycle of Chm ewes has indicated that temperature, at least in 

this breed, may play a secondary, but important, role in timing the onset of breeding 

activity (Lees, 1971). 
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1.3 Pineal function 

1.3.l Pineal development and morphology 

The vertebrate pineal, a part of the epithalamus, arises as a median evagination of 

the dienccphalic roof of the embryonic bra.in (Oksche, 1965). In some mammals the 

pineal gland moves away from the roof of the third ventricle and loses connection with 

the brain except for a thin 'pineal' stalk. The gland is richly perfused with blood vessel<; 

derived from the posterior cerebral arteries. The venous drainage of the gland is directly 

into large venous sinuses which surround the organ (Reiter, 1991). 

Pineal parenchyrnal cells, pinealocytes, are derived from the ependyrnal lining of 

the epithalamus; both light and dark parenchyrnal cells can be distinguished in the 

mammalian pineal gland (Oksche, 1%5). The dark cells contain pigment granules of an 

unkno>w11 nature, as well as glycogen deposits of undefined physiological significance. 

Dark pinealocytes are interconnected by tight junctions, suggesting that electrical signals 

may be communicated between the cells (Reiter, 1977). TI1e main body of the 

pinealocyte, the parikaryon, has either one or two processes emanating from it. These 

processes terminate in buds which he in close proximity to pericapillary spaces or inter­

cellular lacunae. The actual relationship of the terminals with the pericapillary space 

varies between species and is perhaps related to the mode of release of the secretory 

products (Reiter, 1977). The number of pinealocytes may decrease in advanced age, 

when calcium deposits, which can be visualised radiologically, also form in the gland 

(Reiter, 1991 ). Fibroblasts and glial cells make up the rest of the cellular components of 

the glandular mass which, in an adult sheep weighs about 60-80 mg and measures 

approximately 5-7rnm in length, and 3-5 mm in width (Barrell & Lapwood, 197811979b; 

Vollrath, 1981). 



8 
1.3.2 Pineal indoleamine blosynthesis 

111c biochemistry of pineal indoleamine biosynthesis is well documented (Relkin, 

I 076; Sugden, 1989; Wurtman, et al, 1968). Indoleamine biosynthesis involves 

pinealocy1e uptake of the amino acid, L-tryptophan, from the blood (King & Steinlechner, 

1985) Conversion by hydroxylation to 5-hydrnxytryptophan by the enzyme tryptophan 

hydroxylase follows. The aromatic enzyme 5-hydroxytryptophan decarboxylase acts on 

the hydroxylated derivative to form 5-hydroxytry1Jtamine. Serotonin concentrations are 

higher in the pineal than in any other organ or brain region (Quay, 1964). Serotonin is 

converted t,1 N-acetylserotonin by the action of N-acetyltransferase (Klein & Weller, 

1970). The N-acetylserotonin produced is O-methylated by hydroxyindole-O-

methyltransferase to fonn N-acetyl-5-methoxytryptaminc (melatonin) (A'<elrod & 

Weissbach., 1960). The methyl group in this latter conversion is provided by S­

adenosylmethionine. 

Conversion of serotonin to N-acetylserotonin by NAT occurs almost exclusively during 

the dark phase and is considered to be the rate limiting step in the production of 

melatonin, due to the lower Km value of this enzyme relative to those of other enzymes in 

the melatonin synthetic pathway (King & Steinlecher, 1985). It is considered that the 

increase in N-acetylserotonin concentration acts by a mass action effect to enhance the 

production of melatonin (Adrendt, 1985). 

Although acetylation to N-acetylserotonin is a necessary step in the biosynthesis of 

melatonin, dearnination of serotonin by monoarnine oxidase can also occur in the pineal. 

The dearninated product may either be oxidized to 5-hydro>-.yindoleacetic acid or reduced 

to 5-hydroxytryptophol. The latter compounds can then become O-methylated by 

HIOMT to give 5-methoxyindole acetic acid and 5-methoxytryptaphol (Wilson, 1978). 

The formation of melatonin may also occur from methoxytryptophan, although this 

is a minor synthetic pathway (Morton, 1987). 
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1.3.3 Effect of light on pineal lndoleamlnc blosynthesis 

Within the pineal conversion of serotonin to melatonin is a highly cyclic event 

which is closely related to the prevailing light : dark cycle to which animals are exposed. 

ln all animals thus far studied, melatonin production is greatest within the pineal gland 

during the dark phase of the light: dark cycle (Quay, 1964; Lynch, 1971; Panke, et al, 

1978). Pineal serotonin levels also rewal marked diurnal changes with highest levels 

noted during daylight hours and depressed levels during darkness. 

Pineal enzyme activities are rapidly depressed by light (Reiter, et al, 1986). At 

night there is an increase in the activity of NAT in rat pineals which is 10- to nearly 100-

fold greater than values in the light (Adrendt, 1985). The pineal concentration of N­

acetylserotonin is subsequently increased to values ten to thirty times greater than 

observed under day conditions. HIOMT activity also increases, which results in 

nocturnally elevated levels of pineal melatonin (Adrendt, 1985) 

ln experimental conditions reversal of external lighting periods reverses the rhythm 

of pineal enzyme activity and indolearnine biosynthesis. Thus a diurnal rhythm of pineal 

melatonin synthesis is observed but with maximum levels measured during the true day 

when lights are off. Shaw, et al (1988) observed a cessation of melatonin production in 

sheep exposed to continuous light, with normal night time levels recurring within 10 mins 

of lights off. 

Studies using monochromatic light have demonstrated that not all wavelengths are 

equally effective in suppressing pineal melatonin synthesis and secretion. Reiter (1985), 

in a review of the effect.s of light characteristics on the pineal, identified green wavelengths 

(510-550 nm) as being the most potent suppressors of pineal HIOMT activity. That 

review also reports between-species differences in effectiveness of various wavelengths in 

altering melatonin production. 
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In sheep, the intensity of light required to suppress nocturnal pineal melatonin 

levels in a dose-dependent manner has been shmvn to range between 1.02 to 88.60 Iux.., 

with 88.6 hD, producing a >80% reduction (Arendt & Ravau.lt, 1988). The duration of 

light exposure that can inhibit pineal melatonin synthesis during a period of darkness is 

very short, as little as 1 sec for the Syrian hamster. Return to night-time melatonin levels 

after a light pulse may take several hours in many rodent species, while in sheep there is a 

lag period of only 5-10 min (reviewed by Vollrath, 1981 ; Reiter, 199 J ) . 
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1.3.4 Neural control of pineal lndoleamine biosynthesis 

Melatonin is synthesised in response to norcpinephrine released from 

postganglionie sympathetic neurons originating from the SCG's. Thus the pineal is 

considered to be a neuroendocrine transducer, as neural input to this organ is converted 

into an endocrine output (Wurtman. et al, 1968). Postganglionic stimulation of the 

pinealocyte cells depends on the absence of light activation of the retina of the lateral 

eyes. Light information perceived by the eyes is transduced into a neural signal by the 

rcti.nal ganglion cells and then conveyed to the suprachiasmatjc nuclei of the brain by way 

of the retinohypothalamic tract. This pathway is always bilateral and decussates at the 

optic chiasma innervating the contraleral SCN (Mess & Ruzsas, 1986). 

Neuronal fibres from the SCN, which convey information to the pineal on the 

status of the environmental photoperiod, then course through the medial forebrain bundle 

down to the upper thoracic spinal cord. Axons from the preganglionic neurons, located in 

the intermediolateral cell columns of the spinal cord, synapse within the SCG. From 

these ganglia postganglionic fibres proceed to innervate the pinealocytes in the pineal 

gland (Mess & Ruzsas, 1986). Prior to their entrance into the gland many of the 

sympathetic fibres coalesce to form two bilaterally symmetrical nervi conarii which, in 

some mammals, fuse before entering the pineal. Within the pineal the fibres branch 

extensively and with the onset of darkness release noradrenaline from their terminals, 

followed by interaction of the catecholeamine with beta adrenergic receptors in the 

pinealocyte membrane (Panged, et al, 1990). Beta-adrenergic stimulation activates an 

adenylate cyclase enzyme via a stimulatory, guanine nucleotide-binding, regulatory 

protein (Spielgel, 1989). This results in a rapid and large (up to 60-fold in the rat pineal) 

increase in intracellular cyclic adenosine monophosphate. cAMP setves as a second 

messenger in the nocturnal elevation of melatonin biosynthesis by activating a cAMP 
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dependent protein kinase Transcription of mRNA follows, initiating an eventual rise in 

serotonin NAT activity (Sugden, 1989). 

ln addition to sympathetic innervation controlling pineal biosynthesis there is also 

evidence for a possible central innervation of sheep pineals. lmmunocytochemical 

studies have demonstrated irnmunoreactivity for vanous substances including 

somatostatin, GnRH, Substance P, CGRP, TRI-I, DSIP, NSE, A VP, OXT, GnRH NPY 

and VIP, as well a5 the enzymes ChAT and PNM!', within pineal nerve fibres, particularly 

in the stalk (Mockett, 199 I). Also electrophysiological (Schapiro & Salas, 1971; Dafuy, 

1980: Reuss, et al, 1984: Reuss, 1987), retrograde neuron tracing (Guerillot, et al, 1982; 

Moller & Korf. 1983a, 1986) and lesion studies (Moller, et al, 1987b) indicate that various 

central structures have direct neural connections with the pineal in a range of species. For 

example, NPY-like immunoreactive nerve fibres projecting to the pineal from central 

nuclei have been demonstrated in the hypothalamus of cat, rat, monkey and golden 

hamster. Other peptidergic projections exhibited include rat arnygdala, monkey limbic 

regions and rat hippocarnpal region (reviewed by Ebadi, et al, 1989). Catecholaminergic 

neurons with a central origin have been demonstrated in the habenular area (Bjorkland, et 

al, 1972; Wiklund,. 197 4), brainstem (Moore & Bloom, 1979) and hypothalamus (Cuhnan, 

et al, 1987). 

Although no function has yet been ascribed to these central innervations, it appears 

possible that they may influence pineal function indirectly as demonstated in one lesion 

study conducted in rats in which disruption of central fibres from the PVN and 

hippocampus resulted in a significant reduction in nocturnal levels of NAT and HIOMT 

activity (Moller, et al, 1987b). Also, Morgan, et al (1988) demonstrated a VIP dose­

dependent effect on cAMP in sheep pineal homogenates, suggesting that modification of 

enzyme activity by centrally derived nerves is possible in this species. 
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Similar conclusions may be drawn from the findings of Mockett (1991) who clearly 

demonstrated the presence of NPY, VIP and PNMT immunoreactive nerve fibres v.:ithin 

the ovine pineal. While regulation of ovine pineal function is similar to that of most other 

mammalian species, in that it is primarily mediated by the sympathetic nervous system, it 

is unclear to what extent the two innervations interact to initiate or modify pineal 

secretory response. The various central structures having direct neural connections with 

the pineal are suggested to process or relay information about environmental or social 

conditions (e.g. visual processing by the dorsal nucleus of the lateral geniculate body), 

and hence may act as secondary routes fi.1r information of this nature to influence pineal 

function . 




