

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Development of a Low-Cost Automated Sample Presentation and Analysis System for Counting and Classifying Nematode Eggs

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Engineering

In

Mechatronics

At Massey University, Manawatu, New Zealand.

Benjamin Pedersen

2017

Abstract

This thesis discusses the concept development and design of a low-cost, automated, sample presentation system for faecal egg counting, and classification. The system developed uses microfluidics to present nematode eggs for digital imaging to produce images suitable for image analysis and classification. The system costs are kept low by using simple manufacturing methods and commonly available equipment to produce microfluidic counting chambers, which can be interfaced with conventional microscopes. This thesis includes details of the design and implementation of the software developed to allow capture and processing of images from the presentation system. This thesis also includes details on the measures taken to correct for the optical aberrations introduced by the sample presentation system.

Acknowledgements

I would like to extend my deepest thanks my supervisors: Professor Robert Hodgson, Professor Donald Bailey, Ralph Ball, Professor Bill Pomroy. The support and guidance you provided throughout this project is greatly appreciated.

I would also like to thank the large number of people who supported and assisted with the development of this project.

Ian Thomas, and all the technicians at massey for their never-ending aid in almost all aspects of this project.

Dr Rob Ward, for his constant support, and for providing a substantial amount of the equipment used in the experimentation.

Dr Katherine Holt, for all pollen related assistance.

Dr Francis Reininger, for his assistance with optics.

Dr Andrea Bubendorfer, and Dr Mike Arnold from Callaghan Innovation, whose expertise and assistance in microdevice fabrication was essential.

Anne and Barb for the crash course on egg counting, and substantial help with egg filtration.

Cameron Jewellery for time and materials supplied at no charge.

Mark Cherrill and the team at the University of South Australia, for their work in developing machined PMMA channels.

The Earle Creativity Trust, and the Ken and Elizabeth Powell Bursary, for the tremendous financial support they provided to this project.

Contents

Chapter	1. Introduction and Background	1
1.1	Introduction	1
1.2	Research Aim	2
1.3	Thesis Outline	2
1.4	Problem Background	3
1.4.	.1 Nematology	3
1.4.	.2 Relevant Technologies	
1.5	Conclusions	
Chapter	2. Proposed System Design	20
2.1	Introduction	20
2.2	Constraints	20
2.3	Design	21
2.3.	.1 Components	21
2.3.	.2 Design challenges	
2.4	Conclusions	27
Chapter	3. System Mechanics and Optics	
3.1	Introduction	
3.2	Mechanics	
3.2.	.1 Introduction	
3.2.	.2 Flow Regime	
3.2.	.3 Rotation of objects in flow stream	
3.3	Optics	
3.3.	.1 Introduction	
3.3.		
	.2 Optical Prescription	
3.3.	.2 Optical Prescription..3 Aberrations.	
3.3. 3.3.	 Optical Prescription. Aberrations. Correction Methods. 	
3.3. 3.3. 3.3.	 Optical Prescription	35 37 41 45
3.3. 3.3. 3.3. 3.3.	 Optical Prescription	
3.3. 3.3. 3.3. 3.3. 3.3. 3.4	 Optical Prescription. Aberrations. Correction Methods. Ray Tracing. Optical Limitations of Tilt Angle. Lighting 	
3.3. 3.3. 3.3. 3.3. 3.4 3.5	 Optical Prescription	
3.3. 3.3. 3.3. 3.3. 3.4 3.5 3.5.	 Optical Prescription	

Chapter	4.	Microchannel Fabrication	49
4.1	Flov	w Cell Requirements	50
4.2	Mat	terials	51
4.2.	.1	Glass	51
4.2.	.2	Cyclic olefin copolymer (CoC)	51
4.2.	.3	PMMA	51
4.2.	.4	PDMS	63
4.2.	.5	PDMS bonded to PMMA	73
4.3	Mat	terial suitability and conclusions	80
Chapter	5.	Software	82
5.1	Sof	tware Description	82
5.1.	.1	Introduction	82
5.1.	.2	Constraints	82
5.1.	.3	General Approach	82
5.2	Rea	al Time Software	83
5.2.	.1	Image Acquisition	83
5.2.	.2	Approach	85
5.2.	.3	Process	86
5.2.	.4	Results	88
5.3	Off	line Software	91
5.3.	.1	Image Processing and Feature Extraction.	92
5.3.	.2	Approach	92
5.3.	.3	Steps	93
5.3.	.4	Data Structures	93
5.3.	.5	Software Techniques	94
5.4	Dis	cussion	103
Chapter	6.	Final Implementation, Results, and Discussion	105
6.1	Des	sign Results	105
6.2	Sele	ected Hardware	106
6.3	San	nple Preparation and Filtering	106
6.4	Fea	ture selection	107
6.5	Res	sults	107
6.5.	.1	System Performance	107
6.5.	.2	Limitations	110

6.6	Conclusion	111
Referenc	es	113
Appendix	x I Data Sheets	119
Appendix	x II Design Equations	125
Appendix	x III Class Descriptions	128
Clas	sses 128	
Appendix	x IV Software	131
Real T	ime (Key sections only, full code to be included on disk)	131
Post P	rocessing	134
Clas	sses 134	
Appendix	x V PCBS	146
Annula	ar Light	146
Direct	Lighting	147
Appendix	x VI System Outputs	150
Feature	e Histograms	150
Sample	e Images	157

List of Figures

Figure 1-1, Nematode Life Cycle. [8]	4
Figure 1-2, Variety of nematode eggs. [8]	5
Figure 1-3, Developed nematode larva, large number of internal cells causes the	ne oocyst
to appear opaque	6
Figure 1-4, Nematode worm inside egg shell.	7
Figure 1-5, McMaster Counting Chamber (300uL) [9]	8
Figure 1-6, FLOTAC Counting Chamber. [11]	9
Figure 1-7, FLOTAC steps. [12]	10
Figure 1-8, FECPAK G2 complete unit. [13]	10
Figure 1-9, Fourier shape features. [16]	13
Figure 1-10, Gray level cross-sections from [20].	14
Figure 1-11, 3D surface from confocal image stack of Prumnopitys pollen	15
Figure 1-12, Slanted microchannel. [30]	17
Figure 2-1, System block diagram.	21
Figure 2-2, N1010 syringe pump. [40]	23

Figure 2-3, Automated micrometer syringe pump23
Figure 2-4, Elveflow pressure generator. [41]
Figure 2-5, Tilted microchannel concept
Figure 2-6, IDS USB3 Camera. [42]25
Figure 2-7, Sensor FoV relative to tilt angle
Figure 3-1, Circular channel section view
Table 3-2, Glycerol solution density, by concentration [44].
Table 3-3, Glycerol solution viscosity, by concentration. [44]
Figure 3-4, Shear flow profile [45]
Figure 3-5, Poiseuille flow [46]
Figure 3-6, Jeffery orbit graphic [50]
Figure 3-7, Numerical Aperture [51]
Figure 3-23, Defocus in ray trace (red rays from Figure 3-22)46
Figure 4-1, Channel plates design (top plate in red (shown in center), bottom plate in blue
(shown on right)) units in mm
Figure 4-2, CO2 Laser channel profiles at 1200DPI, (left: 50% speed 2% laser power,
Center: 50% speed 10% laser power, Right: 10% speed 6% laser power) (all cuts were
horizontal)53
Figure 4-3, Surface finish of Horizontal cut at 50% speed 2% laser power, 1200DPI54
Figure 4-4, Top down channel profiles (Top left: vertical cuts on horizontal path, Top
right: vertical cuts on diagonal path, Bottom: horizontal cuts on horizontal line)55
Figure 4-5, Machined surface finish and tooling
Figure 4-6, Adhesive well full after gluing
Figure 4-7, Adhesive wells, to prevent superfluous adhesive from entering channel 57
Figure 4-8, Cracks in and around channel from solvent bonding technique
Figure 4-9, Thermally bonded channel from two pieces of PMMA59
Figure 4-10, Design commissioned from UoSA (CAD drawings produced by Mark
Cherill)
Figure 4-11, Radulok fitting in PMMA microchannel
Figure 4-12, UoSA channel profile (Figure provided by Mark Cheril)61
Figure 4-13, Pine pollen clumping at channel walls. (4X objective magnification)62
Figure 4-14, Tilted channel CAD design (CAD drawings produced by Mark Cherill)63
Figure 4-15, PDMS soft lithography [62]65

Figure 4-17, Mold set up for third channel design (photographs by Dr Andrea
Bubendorfer)
Figure 4-18, Lycopodium pollen inside 2nd generation PDMS channel
Figure 4-19, Orientation of channel during molding. Bubbles move to top, out of optical
path when rotated70
Figure 4-20, Channel orientation in operation70
Figure 4-21, Increasing top thickness
Figure 4-22, Surface finish of PDMS angled channel72
Figure 4-23, Pine pollen inside PDMS device72
Figure 4-24, Planar wavefronts entering circular channel (Images produce with
OpticalRayTracer 9.3)73
Figure 4-25, Multi-channel concept74
Figure 4-26, Hybrid PMMA & PDMS device geometry75
Figure 4-27, PMMA shell
Figure 4-28, Wire rolling jig, rollers are 200µm apart77
Figure 4-29, Rolled wire profile (dimensions in μ m)77
Figure 4-30, Internal surface damage visible as dark regions78
Figure 4-31, Image of nematode egg inside channel (20X objective)79
Figure 4-32, Final microfluidic device
Figure 5-1: Software process Flow
Figure 5-2, Background Subtraction
Figure 5-3, Binarized image of nematode eggs (Left: without background subtraction,
Right: after background subtraction)
Figure 5-4, Morphologically opened binary egg image
Figure 5-5, Image acquisition flow diagram
Figure 5-6, Shows an object of interest rotating as it is imaged. Rotation perpendicular to
specimen plane, causes different projections of the object to be imaged, these projections
will differ in area
Figure 5-7, Examples of frame tearing during image acquisition90
Figure 5-8, proportion of frames corrupted during data capture90
Figure 5-9, Frames collected compared to frames of interest
Figure 5-10, Comparison of frames stored in manual analysis against algorithm91
Figure 5-13, Raw image of Palynospheres and binarized version (left: raw image, right:
binarized image)

Figure 5-14, Major and minor Axes of nematode egg (Major axis shown as dashed line,
Minor axis shown as solid line)
Figure 5-15, Egg with damaged shell97
Figure 5-16, Wavelet based pollen fusion (A-H focal stack, I fusion)
Figure 5-17, Image fusion results on rotating nematode eggs
Figure 5-18, Nematode egg rotating on focal plane
Figure 5-19, Egg rotating on focal plane (Left: egg images. Right: Render of observed
rotation)100
Figure 5-20, Egg rotating through the focal plane (Left: egg images. Right: Render of
observed rotation)
Figure 5-21, Focus assessment algorithm
Figure 5-22, Fusion, and binary masks of eggs from focal stack(Order left to right: Image
without background, Binary mask, Mask from image fusion, Binary mask multiplied by
fusion mask)101
Figure 5-23, Measured Focus in Z-stack102
Figure 6-1, Fourier transform of external contour histogram, (Orange microscope slide,
Blue: flow cell)

List of Tables

Table 4-1, Comparison of materials for microchannel fabrication. [62-65]	80
Table 4-2, Materials and refractive index matches [44, 66]	80