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- hapter One 

I NTRODUCTION 

The problem the writer wishes to consider 

here is essential ly one rela ted to the classical field , 
description of I~a ture. 

The fr am ework o f General Rela tivity provides 

a t heory for th e geometry of t h e f our dimensional space­

time mani fo ld and a t t he same tim e g ives a description of 

t h e gravitatio nal field i n terms o f the metric tensor, 

wh ile t he e lectromagne tic field can be interpr e ted in 

t erms o f a par ticul a r second r ank , skew-symme tric tensor 

-- t he covariant curl of a vector field defined on the 

manifold. However t he sca l a r field, the simplest geo­

me tric object tha t could be def ined on t he manifo ld, does 

not s eem t o be experimenta l ly evi dent wh en it is interpret­

ed a s a third, classic a l lo ng r ange field. I n spite of 

t his l a ck of expe rimental evidence an d as there appears to 

be no theoretic a l ob j ection to the ex i stenc e of such a long 

range field, the problem i s to i nt ro duce the s c a l a r field 

- into th e cla s sical scheme of t h ings a nd t o construct a 

viab le theory c ont a ining a ll three long range fields. 

It is interesting to compare the physical 

descriptions involved with these fields. Both the gravi­

tationa l and the electromagnetic fields have gauge-like 

degre es of freedom a nd before a situation could be physic­

ally relevant these degrees of fre e dom must be fixed -

for the g7avitational field by imposing coordinate condi- · 

tions while for the electromagnetic field, after co9rdin­

ate ·conditions have been imposed t h e gauge of the field 

potential must be chosen . As a consequence of these 

gauge freedoms, ih order that the fields couple consist­

ently with matter sources, th_e energy momentum tensor of 

the souree must be covariantly conserved and the electro-
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magnetic current dens it y of t he source must be c o nserved. 

The scalar fi eld on t he othe r hand has no gauge-lik e 

degr ee o f fr ~edom and c onsequently has no c onserved 

11 charge" as a source. Thus fo r examp l e , i n contrast to 

the other two fields, no c ons trai n ts exist by whi ch the 

scalar field c ould be separated i n t o a sour c e 11 bound" 

part and a free " wav e 11 part. 

In rec en t y ears the pr ob lem of i ncorporating 

t he sca lar field i n to the description of gravitat i on has 

led t o the investigation of a spec i a l class of gr avi ta­

tion the ories -- the scala r-t ensor gravitation the ories. 

Wit h the previously mentioned pr ob l em in 

mi nd , the goa ls o f this th esis are 

( i ) t o review work that has been done on 

these theori es and 

(ii) t o discuss them i n a way t ha t compares 

them t o t he the ory of gr a vitation g iven 

i n Gener al Relativity. 

Chapter Two bas ically gives an historical ba ck­

ground and introduces mor e speci fic mo tives for co ns idering 

the scalar f i e ld as a fundamental phys ica l fieldo 

Chapter Three co nsider s th e i mportan t class 

of scalar-tensor gravitation t heories based on a Riemann 

space-time and Chapt er Four continues this t he me by looking 

at the "most developed" and perhaps simp l est member - the 

Brans-Dicke t heory. 

For c omplet eness the 11 massive Brans-Dicke" 

theories and some special scalar-tensor theories are looked 

at briefly in Chapter Five. 

Chapter Six retnrns to th e scalar-tensor model 

of gravitation developed in Chapter Three and looks at the 

implications for the model in more general space-times. 
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Chapter Two 

BACKGROUND 

The elec tr omagnetic en d gravi t a tional fields 

were described in t he introduction aG classical long r ange 

field s . These fields are r esponsible for forces that 

fal l off i nversely proportional t o the sq uare of the dis ­

tance apart of the intera c ting bodies (sources) ; in 

contras t to short r ange forc es which show an exponential 

hehaviour. Einstein (19 16) ( 1 ) , a ttrib u ted to t he space-

time manifold a Riemann :::: tructure ,nd gave "mea ning" t o the 

gr a vitational field in termP. of curvature through h i s ~ravi­

t a tional f i e ld ~qu~t io~n 

G­µv , 

wher e G i s Newton ' s gra vit a tio~~ l constant . 

The notation es t abl i shed here is used in mos t 

sections. Units of length and time ar& c hosen such t hat 

c 5 1, a lthough with this understanding some formulae may-still 

c ontai-n c • Greek indices r ange over the VD.lue-s 

lo 11 :1 • 3 } , the coordinates xJ and xi., (t - 1 2 3 ) > , - ' , , , 

a r e assumed time-like and space-like r espectively and the 

signature of the spac e -time me tric, g !'.\/ is _ + + + 
The Ri emann and Ric c i t ensors have the res p ecti~e forms 

The close relation between the Riemann curvature 

tensor and gravitational effec ts is further illustra ted, 

for example, in t he equations of ge odesic devia tion, (2) 

= , 2.2 
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de fi n e t he p at h s o f a D 

pair o f Drii ghb o uri 11g , fr e ely f a lli ng particles an d. I),r 

deno t e s t he abs o lut e der i va t ive a long t he cur ve xa(T). 

A fr ee ly f a l ling parti c l e i s a t r e st i n a c o or d i na te 

fr ame f a l l i ng wit h it, wher eas a pa ir of ne i ghbouring 

fr e ely f a lli ng particle s will s ho w a r e l a tive ac celera-

tion given b y eq . 2 .2. Tc a n ob server tra v elling wit h 

t he fr ame t h i s mo ti on will i n di ca te t he pr esenc e of a 

gr a vita ti ona l fi e lio 

Th e e l e ctromagn e t i c fi e ld on t he o t her hand , 

a ppear s i n t h i s p i c tur e as a fi e l d " embe dded" i n spac e-time , 

the ge ome try o f whi c h i s d e t e r mi ne d by g r avit a ti on. A 

r e s o l utio n of t his diffe rence i n the r o l e s of t he t wo 

l ong r a nge fi e l ds wa s pr o p osed by We y l (1 918) , ( 3 , 4 ) . 

Ho we v ,,r, a l ong wit h _, ther e t temp t s a t unif ica tio n it wa s 

g enera lly co nsi der e d t u be p hys i c a lly uns atisfa cto r y , a nd 

s o exc ep t f o r s ome sp ec i a l r e f e r e n c es , t he e l e c tr oma g -

net i c f i e l d i s i nc l ud ed i n t he s o ur c e side ( i oe o the 

r i g h t ha nd si d e o f e q . 2 . 1 ) o f Ei ns t e i n ' s f i e l d equa -

ti o n s or o f these e qua ti o ns i n a ny subseque ntly modified 

for mo 

Ba sic t o Weyl' s appr oac h wa s a g en e r a li sati on 

o f Ri ema n n s pa c e-time - th e \Je yl s pa ce-time , fo r s h ort. 

Th i s s pac e-time has b e e n revived quite recently by s om e 

a uthors ( e . g . Ros s, Lor d , and 0-mote, (5, 6, 7) ) a s a 

framework f or sca l a r-t ensor gr a vita tion t he ories a nd for 

t h is rea son it de serve s a few comments a bout its hi s tori­

c a l ori g ins , i n addition to the tr ea tment giv e n in Chapt­

er Sixo 

Curva t u r e in Ri ema nn space-time c a n b e relat e d 

t o the idea o f t he par a llel displa cement o f a v e ctor - the 

transport o f a v ector by par a lle l d i spl a cemen t around a 

closed curve r e sul ting in the fina l direction of the 

vector being d iffer ent fro m it s i n i t i a l dir e ction . Weyl 

s u pp osed that the .transported v ector has a differ e nt 

length as well as a diff e ren t dir e ction and s o for Weyl 
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space-time, unless t wo points a re infinitesma lly close 

toge ther lengths a t t hese po int s can only be compared 

with respect t o a path j o i ning t hem . b ,' ~a use a deter -

mination of length a t one point leads to only a fir s t 

order approxima tion to a det ermina tion of l eng t h a t 

nei ghbouring points one must set up , a r b itra r ily , a 

standar d of length a t each poin t an d with lengths r e ­

ferre d to t his loc a l st a nda rd a definite number c an be 

g iven for t he length of a vector a t a point . If a 

vector which has leng th,J,a t a point with coordinates xc' 

is par a lle lly d ispla ced to th e po int with coor dina tes 

xa .,_ <Sr ''. then its change_ o f lengt h \v ey l gave t c be 

61 ::: = 

where r; a r e t he . l..l componen t s of u v ector fiel d . 

For par al l e l d i sp l a cement a round a sma ll 

closed curve t he totc:..l change of length of the trans ported 

vector tur ns ou t to be 

' 
2 .1+ 

where &d~ describes t h e element of a r e a enclosed by the 

curve , and 

Weyl set tJ . 11 
A a nd so f,,, 

ll I""'' 

field tensor, 

f ~ 
!-'A 

r\ 
·, 11 '\ 

I , ,, 

p roportiona l to thE elect romagnetic potentia l 

is made proportiona l to the e l ectromagnetic 

~~ Thus the electromagnetic potentia l 

determines by eq. 2.3 the b ehaviour of length on parallel 

displa cement a nd the electric and magnetic fields find ex­

pression in the derived tensor, f!Jj\ . This tens or can be 

shown to be independent of the initia l choice of length 

standa rd, whic h is a necessa ry condition if it is to be 

physically me a ningful. 

A difficulty of the t heory wa s an appar ent con­

flict between eq . 2. 3 an d the interpretati on given 

above, with the idea that a tomic standards of length a nd 
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time appear abso lut e and i ndependen t o f spac e -tim e 
::, 

position . If t h e c oeffici ent of pr oporti ona l i t y b e twe e n 
2C 

(; an d A is a ssumed r eal and put equal t o~0 ( 
· µ ll 

e i s 

t he charge o f an e l ect ron and C i s d i mbns i on l ess ) then a 

r e c en t e x perimen t, (8) , plac es an upper bou nd o n C of 

10-47• Such a fi g ur e , howe v er, does no t exc lude the 

g eome tric i n t e r pr e t at i on of t he e l e ctromagnetic f ield in 

terms o f t he Weyl space-time if, for examp l e , Wcy l 1 s 

ori g i na l i dea of e qu i va l ent initial leng t h s t andards is 

rnod i f i e d t o g iv e speci~l s t atus t o a t om ic standar ds . 

Aside f r om i n tr oduc i nG t he Weyl space-time 

the se c ommen t s emphas iz e a f ea t ur e of lengt h s t anda rds 

i n Ri emann spac e -time , wher e. o nce t hey a r e defi ne d i n 

t e r ms of a tomi c s t andar ds a t a po i nt , par a lle l dis­

p l a c eme nt a l lows the comparison of l engths taken a t 

s e par a ted po i n t s . Without ge t t i ng inv olved i n pr ob-

l ems of measur ement we shall j us t assume tha t on t h is 

basis, t he physi cal descr ipti ons of a t omi c syst ems a r e 

i nd epende nt o f spac e -time pos i t i on a nd tha t b y us ing 

t he se s ys t ems t he spac e-time i n t e rva l measure d b e tween 

neighb our i ng e v ent s i s given b y 

- !.l. V 
~ -l VdX" c1.x j = 

wher e gµv i s ident i f i ed with the gr a vita ti o na l field 

va riabl e appearing in eq . 2 .1. 

With t his bri ef and r a t he r ind i r ect look a t 

s ome o f t he ideas i nv o l ved in the Riemann spa c e-time we 

r e tur n t o look at Einstein 's fi e ld equations and h is 

descri pt ion o f gr avi t a t ion i n order to pr ovide a back­

gr ound b e f or e int r oduc i ng t h e sca l ar fie ld. 

Because t he dynam i ca l va ri ab le o f the 

gr a vi ta ti ona l f i e l d in G~neral Re l ativity is t he rne tric 

t en~or, it p l a y s a n i mpor t ant geome try-d e t e r mi ning r ole 

i n spa c e -time and the fie l d equat i uns can be underst ood 

to coup l e the g~ometr y of space-time t o ma tt er. Th us 

t he only phys ical c onst r a int i mposed by these eq ua ti o ns 

,:, so \ !ndei1 :?:,,,1' .:'.llel lli ::J ~1J.::i.concnt e, vect or ne. i lYCG.ilIB 
, r"'l\1",,,.-1.,~ .,.;~·~'1 ,..,o~·IV-li n --?· ·1·n r+:ru·1i("'! c:: --:::--Y'lr1;":'1"''1~-

1• -~- ro . .,.., 
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on t he nature of ma tt er is tha t its energy-r.1omentum 

t ensor has zero d iv e r genc e . 

I mplicit i n dll of the discuss ion so f a r has 

been the division between the gravi t at i ona l field and 

matter. In his d iscuss i on of t he a ction pri nc i p l e 

f ormula tion o f h i s field equations , Ei ns tei n (9 ), stated 

an assumpti on t o ensur e t hat t h i s d i st i nction carr ied 

over t o the a ction principle -- t ha t is, the Lagrangian 

dens it y c oul d be divided into two part s , one of which 

ref ers t o t he gravitat ional fi eld and con t a i ns on ly the 

metric tenso r and its deriv&tives o The appr opri r1 t e 

density f o r this part is t he Ri emann sca lar den • ity an d 

apart fr om a c o smological t erm the r esulting ac t ion for 

th0 free g ravitatio nal field i s unique in givi nc field 

equati ons whi ch a r e linear i n the second derivatives of 

th~ metric and which in the wea k-fi eld limit g ive the 

New t onian cas e . 

I n sp ite of t hi s suc c ess i n g iving emp ty 

spac e-time field equat i ons tha t a re uni que modulo a 

cosmo l ogica l t erm, the a cti on pr i ncip l e without further 

assumptions,does no t offer much i nsigh t i nto the nat ur e 

o f t he ener gy- momen t um tensor. So the a ction principle 

r ema ins an important method f o r constructing fi e ld equa ­

tions . 

I n order t o ma ke pr ogress l a ter on , much use 

is made o f the Princi12l e o f Mir, i ma l Cou12line;, ( 0 . g . 10 

which And erso n notes is not an essential part o f Gener a l 
) ' 

RE:lativity. If a materi a l system is considered in Spec-

i a l Relativity as a set, X o f matt er field s th-:m H:; t~l::!r-

Lagrang e equati ons o f motion , i n some inertia l frame, will 

follow fr om an a cti on principle 

r ~ 6j ~ ,rd' x = o , 

f or suitable va riations o f the va ria bles X • The 
r 

action ( 6) lyd4 x ) will depend 

a nd with Tl ·v repla ced by g 
1-L llV 

on the Lor entz metric, "\.l.Y , 
this action when added to 
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the fre e gravitationJfield a ction gives the requ ired 
. 1 

actio~ for t he gravit a ti o na l and matt er field equations. 

denote s the matter or nongr a.v ita tiona l part of 

the full Lagr angian density ( i.e. wit h the pri nciple 

assumed , £., NG is the mi nimally coupled ½vi: ) then 

the energy-momentum t ensor of t he ma teri a l system is de­

fin e d in terms of the system ' s :1rc.sp s nse 11 t o the me tric 

field by 

J t 
iJlo \ rt;. ' _g,,y . 
\ oxix ) 

+ • • • 2 .8 

This definition still holds with out appea l to the 

Pri nci p l e o f Mi nima l Coupling but i n t h is casn the connec­

ti on describ ed b e twe en / , HG a nd LU[ c ould no t be supposed 

t o ho ld. 

An a spect of t he field e quations no t e d here 

then, is tha t the nature o f the energy -momen t um tensor is 

det er mi ned by crit eria outside of Genera l Rela tivity. To 

work within the f ram ework o f Gene r a l Rela tivity lea ds to 

a~ extrem e posit io n su ch a s suggest ed by Mc Cr ea (11), 

that t he Ei nstein tensor i s t o be i nterpreted or identified 

as an ener gy - momentum tensor a nd the central ques tion is 

then which g eometric constra ints imposed by the field 

equations are phys ica lly meaning ful . This r ather forma l 

approa ch ha s be e n developed a little by Harrison , (12) , 

in a way, to suggest tha t scalar-tensor gravitation theories 

are in f a ct deriva tive from Einstein's t heory by s uita ble 

interpretations of the energy- momentum tensor. However 

this view is a bit unort hodox and we shall r e turn to it 

later. 

It was mentioned in the introduction that the 

gravitational field, as described by Einstein1 has a gauge-

like degree of freedom. This of course corresponds to 

1 t h is minimalcoupling prescription is som e times, when needed , 

supplemented with the rule that :-

partial d t:ri vati ves - • covariant derivatives. 

\ 



the coordi nat e tra nsfor ma ti ons of the metric t ensor and 

one c a n a lways intr oduce a t a poin t a loca l c oordinate 

s yst em, sometime s c ha r a cterised a s a loca lly fr ee ly 

f a lling sys t em , i n which f e r a s u fficiently small 

neighbourhood o f the po i n t the metric is the Lorent z 

metrico By d e scribi ng phys ics i n t h is neighbo urho od 

i n t erms o f such a c oordinate syst em t he effects of the 

gra vitationa l field a re trans f or med away . Ess entia lly 

it i s t his fe a ture of Gene r a l Re l a tivity - tha t g r a vita ­

tional or cosmo log ic a l effects c a n be mad e t o vanish in 

the sma ll, whi c h ha s been questi one d and l e d to the 

scalar-t ensor gr a vita ti on theor i es . 

In 1937 Dir a c , (1 3) , ( an d 1938 ( 14 ) ) , 

suggested tha t an expand i ng mode l o f th8 Un i v&r se no t 

on l y provided a c osmic time scale but a lso a llowed t he 

~ossibil i t y t ha t t he g r a vita tional c onsta~t ma y vary with 

this time . 

t o a unit of 

one ob t a i ns a 

Ey t a ki ng t he r a ti u o f t he age of t h e Univer se 
, e• h 

time fixed by a tomic cons t ants \ e . c; . DO B or n ca ) 
40 numbe r , t, of t he or der 10 , an d by t ak-

i ng t he r a ti o of t he gr a vita t iona l f orc e to the e l ec tric 

forc e between t ypic a lly cha r ged - particles one obtair.s a 
r~n2 -40 dimensionl e ss exp r e ss io n , · --;2 , of th e order 10 • 

So fo r t his ep och 

~ 

and wi t h m and o s upposed c ons t an t t his r e l a ti on becomes 

G 
' whi c h Dira c's hjpothesis implied, held for a ll epochs . 

In mor e gener a l t er ms Dira c's hypo t hesis, (14) , sta t e d 

that " any two of t h e v ery l a rge dimensicnless numbers 

occurring in Nature a r e connect e d by a simple ma t h ematica l 

relati on in which t he coefficients a r e of the order o f 

magnitude u nity" and as a consequen ce if a number va ries 

with epoch then o ther dimensionless numbers may be re­

quired to vary wit h epoch in order t o keep the relations 

between themo 
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A fe a ture o f the cosmology which Dira c was 

led to, is tha t fundamenta l significa nc e need no t be 

g iven t o t h ese numb ers. For exa mple, fr om e q. 2. 9, the 

ratio of gra vita tion ~l to electric f orces is s ma ll beca use 

the Univers e is old . Alt ho u gh Dira c 1 s c osmology could 

a l most be ruled out by presen t o b s erva ti ons , t h e idea re­

ma ins t ha t funda ment a l c onst a nts and in pa rtic u l a r, the 

gr a vit a tionQl c onstan t, ma y n o t i n f a ct be co nsta nt . 

Som e observa ble effect s o f a va ria ble gra vit a ti ona l con­

stan t ha ve b e e n discussed by Jordan, ( 15) , an d by Dicke , 

(16) , but bec a use these effects a re geophysic a l or cos­

mologic a l, t h e systems i nvolv e d a re c omplex a n d t h e 

num eric a l da t a a va ila ble i s i nsuffici en t a s ev i dence f or 

va ri a ti o n o f t he gr a vit a ti o na l con sta n t. Recen t results 

by Shapiro , ( 17 ) , u s i ng p l a neta ry r a da r syst ems , a n d 

a t omic clocks put a n experimen t a l limit on t h e fr a cti o na l 

time va ria tion of t he gra vit a t i o na l c o ns t a nt a s 4 x 1• -10 / yea r 

u n d s o t h e ide~ o f a va ri a b ]e gr a vit a tiona l c ons t ant i s s till 

a c on j e ctur e whi c h ha s no t b ~en e s t a blished by dir ect ob ­

s e rva ti on . 

Ei nst e in' s equatio ns app ear a t pr e sen t to 

describ e loca l gra vita ti o na l effects quite a d equa tely a nd 

one c ould ex p ect these e qua tions to h old for t he Univ erse 

n s a wh ole . But , sinc e t he equa ti ons require t h e gr a vi-

t a ti on a l c onsta nt, when mea sur e d in units defi ned by atomic 

sta ndards , to be consta nt they ne ed to be modifi e d if Dira c's 

hypo thesis is a ssumed t o b e va lid. A simple wa y to intro-

duce a va riable gra vit a tio na l c onsta nt into the fi e ld 

e qua tions is to ma k e t h e gra vita ti o na l consta nt a n e w l oc a l 

sca lar field va riable d ependi ng on position in s p a ce-time . 

Historica lly ; Jordan (1948) was the first to use 

this approach to incorporate a va riabl8 gravitationa l constant 

in a field theory of gra vitat i on . He originally used the 

five-dimensional r epresenta tion of General Relativity de­

veloped by KaJuza (1921) and Klein (1926) and later (1955\(\~)) 
he and others dev e loped the theory as a four-dim ensional 
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scalar-tensor formalism. These earlier references to 

Jordan 's theory are given more completely by Pauli, 

(19) , and a comprehens ive review of Jordan ' s t heor y is 

given in an article by Brill , (20) . The most widely 

known theory o f gravitation which i ncludes a va riable 

gravitational constant is the Brans-Dicke theory (1961) 

wh ic h is form a lly, very closely r elated t 0 Jordan's 

t heory. From 1961 onwards, t he existence of such a 

long-range sca l a r field seemed feasible ( but perha ps 

experimenta lly doubtful) and i n t h e writer's opinion 

the most interesting developments to c ome fr om t he Brans ­

Dicke theory rela te to the problem of c o nstructing 

dynamica l l aws inv olving the gravitatio nal f ield va ri ab le, 

the sca l a r fi e ld va riab l e a nd matter field va riables . 

Fina lly, one notes t ha t, t o i ntroduce t Le sco l a r field 

as n l ong r ange cosmolo gical field f or t he purpose of 

ob t a ining a va ri ab l e gravitational c ons t ant is by no 

means tho only way of gi ving express ion t o Dira c's 

hypo t hes is. 

In a pattern similar to that described above , 

o ther aut hors have postulated a scala r field and intro­

duced scalar field terms int o Einstein's field equa tions 

in order to deduce fro m these equa tions preferable models 

of the Universe . Hoyle's equations ( 1948) (21) implied 

that ma tter was not conserved and ga ve a steady- state 

model o f the Universe . Here the scalar field wa s rela ted 

to the crea ti on of matter, in contrast to the sca lar fi e ld 

postula ted by Rosen (1969) (22) which had no i n teraction 

with ma tt er. Rosen 's equations gave an oscilln ting model 

of the Universe,. 

The Machian idea o f a conn e ct ion between local 

physical laws and properties of the Universe as a whole 

has already been partly met , wi th Dirac's hypothesis. In 

an effort to explain inertia , the Brans- Dicke theory was 

based more on Mach's Principle than on Dirac's hypothesis. 

Some further references to these ideas are given in 

Chapter Four while passin~ men tion is made here to Caloi 
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and Firmani's (1970) (23) mod i f i ed Brans-Dicke theory in 

whi c h r ad iation is given a more Mach i an property in de­

termini ng a lone with matter , th e inertia of a body. 

Howeve r t hei r theory is re s tri ctive an d applies only to 

a hom ogeneous , iEftropic spa ce-time in which the matter 

content can be represented a s a perfec t fluid. Gursey 's 

(24) t heory is Machian motivated in a different kind of 

way and t his theory is discussed in Chapter Five . 

It is apparent that the sca l a r field 

has been intro duced into the Genera l Relat ivistic frame­

work to incorpora te many quite different physical 

features which have been t hough t desirable a nd found not 

to follow from the usual interpreta tions of Einstein 's 

field equat ions~ The fi e ld e qua tions of the scalar-

t ens or g r a vita tion t heories tha t have been devised, poss­

ess cosmological solutions describi ng a va riety of models 

of the Universe . So with these r a ther gener a l comments 

summarizing ( and substituting for) what could ha ve been a 

leng thy look a t the indivi dua l theories, the relation be­

t ween t he scalar-tensor a nd Einstein 's descriptions of 

gravitation is t aken up with refer e nce to Harrison's 

papers (12 , 25). 

Harri son , (12) , states that the scala r­

tensor f ield equations "constitute in f&ct a limit ed and 

particular class of equations tha t derive from General 

Relativity and a re of lesser gener ali ty". He arrives 

at t his view after showing that the forms of the action 

principles of different scalar-tensor theories can be 

transformed into each other and into the form of the 

a ction principle for General Relativity, by r ecalibr a tions 

( i.e. conformal or scaling transfor ma tions ) of the field 

variables. Thus1 together wit h the observation n oted 

earlier that the physical nature of the energy-momentum 

t ensor lies outside of the scope of the theory of General 

Relativity1 a sca l a r-tens or gravitation theory seems to 

be, (25), "a specialised application of the theory of 

General Relativity" . In t h is way the scalar-tensor and 
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Eins tein' s theories of gravit a tion d o not have the same 

sta tus a s gr avita tio n t heori es . Gener a l Relativity be -

comes in a sense a generic t heory where one works in a 

Riemann space-time and pos t u l a t es field e quations based 

on a ssumptions abou t t h e content of the energy-mom e ntum 

tensor in Eins tein's fiel d equations . A class ic example 

of t h is procedur e is g iv en by McCr ea ( 1951), ( 26) , who 

found t ha t Hoyle's re sult s (1948) could be derived from 

Einstei n ' s field equa tions if negat ive stress was a llowed 

in the energy-momentum t ensor of the Un iv erse. Anoth er 

ex amp le i s im plied by r emarks of Dira c ( 1938) tha t, assum­

ing t h e gra vit a tiona l cons t an t wa s variab le with respect 

to a tomic s t andards of measurement, Ei ns tei n ' s equations 

should hold for unit s which ~ary appro pr i ate ly with r espec t 

to t he a tomic standards. 

Perhaps t his view emphasizes the ge o­

me triza tion of gra vitation ach i eved by General Relativi t y 

and t he specia l i mportance p l a ced on the i nt erpr e t a tion of 

the Eins t e i n tens or. 

In contras t, t he ass umption of the follow­

ing cha p ter s is that one wants t he scalar field to be an 

i nt egra l part of t he description of gr a vita tion for the 

purpose of g iving p osi tio n dependence to the gr avita tional 

cons t ant, inertia l mass or jus t to offer new models of the 

Universe a nd therefor e t h e scalar-tensor and Einstein's 

theories of gravit a tion a r e to be on e qual footing as 

gr a vit a tio n th eories. 




