

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

The Recovery of Nickel from Hyperaccumulator Plant Ash

A thesis presented in partial fulfilment of the requirements for the Degree of Master of Science in Chemistry at Massey University, Palmerston North, New Zealand

> Anthony Hans Peter Kirk 2000

Errata

Throughout this thesis the data received from X-ray powder diffraction analysis was referred to as a spectrum or spectra. The correct terminology for such diagrams is in fact X-ray diffraction patterns or X-ray diffraction diagrams.

2.2.10.1 paragraph 2, page 24.

A UV/visible spectrum of the ash extract **solution**, ranging 190-820 nm, was obtained using a Hewlett Packard spectrophotometer (model 8452A).

3.3.2 paragraph 4, page 62.

Aluminium and iron especially are known to precipitate as hydroxides, even in mildly acidic solutions (**pH~2**), while their phosphates may co-precipitate.

4.2.3.3 paragraph 5, page 77.

The solution was tested again for electrowinning at 100 mA, 60°C and a period of 25 minutes, with a **visually** identical green deposit observed.

4.2.3.6 paragraph 3, page 79.

A green Ni hydroxide deposit was observed as predicted (see p. 75), indicative of the nitrate content of the solution.

4.3.1.4 paragraph 5, page 86.

The introduction of formaldehyde into the electrolysis solution, offering an alternative oxidation reaction to the **electrolysis** of water, should have had its greatest and possibly only effect on E_{pos} , the counter electrode potential.

5.2.1.3 paragraph 1, page 111.

A 200 ml solution, with Ni, Mg and K concentrations similar to those of the *A*. *corsicum* extract (pH 4.75) was **prepared** using the sulfate salts of each element: 0.250 M Ni²⁺ (introduced as NiSO₄.6H₂O), 0.368 M Mg²⁺ and 0.440 M K⁺ (introduced as anhydrous sulfates).

5.2.1.4 paragraph 2, page 112.

A small quantity of insoluble material was filtered off using filter paper and the remaining 195 ml ash extract solution was refrigerated ($4^{\circ}C$) for 24 hours, after which time a 0.5 ml sample was taken and made up to 100 ml.

Abstract

Nickel hyperaccumulator plants have the unusual ability to absorb nickel from the soil they grow in and incorporate it into their structure, to concentrations greater than 1% dry weight. This selective accumulation process occurs with the relevant exclusion of most other metals from the plant material. Combustion of this material then results in a nickel-rich ash (10-15%) of relatively high purity when compared to commercially mined ore (1-4% Ni). Much work has focused on the plants themselves, with suggestions of them being applied to the commercial extraction of nickel from soil, with yields up to 200 kg per hectare. However, little work has been undertaken on the recovery of nickel from the plant material. Given the refined nature of nickel hyperaccumulator ash and that any commercial enterprise is governed by economics, it was thought that a more specific nickel recovery process could be determined for the ash than simply smelting with nickel ore. Such a process should produce an end product of greater worth than smelted nickel. To this end nickel electrowinning and nickel salt crystallisation were investigated.

Ashing of the plant material by open flame combustion was found to produce a *bioore* suitable for nickel solubilisation, with the energy produced by the process possibly being of economic benefit if applied to the generation of electricity.

Leaching of the nickel from the ash was investigated using a variety of acids with sulfuric acid primarily used, owing to the common usage of a sulfate medium in both nickel electrowinning and crystallisation. A 96% solubilisation of the nickel from the ash was achieved using 4M H_2SO_4 , with resulting extracts containing nickel at approximately 0.35 mol/l concentrations. The addition of nitric acid to aid in nickel leaching while successful, also solubilised greater quantities of impurities and caused complications in later processing.

Electrowinning of nickel from an ash extract solution, once neutralised to pH values of 4-6, required the balancing of sulfate and nitrate concentrations. Excesses or indeed the absence of either, proved to inhibit metallic nickel electrodeposition, instead two-different hydroxide products were observed. However, once balanced a metallic nickel deposit was produced with a current efficiency for the electrowinning period of 94%.

From solutions containing a range of potassium and nickel sulfate concentrations it is found that the double salt $K_2Ni(SO_4)_2.6H_2O$ will crystallise. The ash extract, being of hyperaccumulator origin, contains both Ni and K in high concentrations, with SO_4^{2-} being added during the leaching process. It was found that double salt crystals formed without chemical aid even in a highly acidic solution, but with the addition of KOH and/or K_2SO_4 could be crystallised to the extent where as little as 1.5 g/l Ni remained in solution. The blue/green cubic crystals are easily recovered in good yield, corresponding to a 98% recovery of nickel from the ash extract. While no large market exits for the material at present, there are possibilities for its use and given a theoretical yield of 690 kg $K_2Ni(SO_4)_2.6H_2O$ per hectare, there is potential for substantial monetary return.

Acknowledgements

I'd like to thank Associate Professor Roger Reeves for his support and encouragement, also for allowing me the freedom to investigate my own crazy ideas. This work would have been impossible without Roger's amazing depth of knowledge for all things science.

Secondly, I'd like to thank Dr Simon Hall for taking the time to answer the multitude of trivial and often irrelevant questions I had. The frequently denied role of secondary supervisor was always greatly appreciated.

Thank you Bec for being the best! For putting up with the little spiels about nickel and stuff. I greatly appreciate all your input on your "second thesis".

Really big thanks to Ma and Pa for giving me support (and food!) when I needed it and for listening to all my little problems with a sympathetic ear.

Cheers to Justin and G for the good times and entertainment.

Thank you to Massey University for the research money and scholarships, allowing me to undertake this work.

Finally thank you to the monkey and the wookie in the organic lab.

Table of Contents

Abstract		ii
Acknow	edgements	iv
List of F	igures	xi
List of T	ables	xiii
Chapter	One – Introduction	1
1.1	Overview	1
1.2	Hyperaccumulators	1
1.3	Hyperaccumulation Process	5
1.4	Nickel	7
1.5	Phytomining	10
1.6	Phytoremediation	13
1.7	Phytoextraction Approaches	14
1.8	Plant Treatment	16
Chapter	Two – Ash and Acid Extraction	18
2.1	Introduction	18
2.2	Materials and Methods	19
2.2.1	Hyperaccumulator Plant Material	19
2.2.2	X-ray Powder Diffraction Analysis and Comparison of	
	Ashing Techniques	20
2.2.3	Simulated Nickel-rich Plant Material	20
2.2.4	HF Extraction	21
2.2.5	Small-Scale (0.25 g) Sample Investigations	21
2.2.5.	1 Effects of Refluxing	21
2.2.5.	2 HCl Ash Extraction	22
2.2.5.	3 HNO ₃ Addition to Leaching Solutions	22
2.2.5.	4 Effects of Varying Acidity	22
2.2.6	Extract Residue and Comparison with Primary Ash Composition	22
2.2.7	Larger-Scale (1 g) Sample Investigations	23
2.2.8	Lower Concentration Acids	23

2.2.9	Effect of Ash on Extract Acidity	23
2.2.10	Large Volume (20 g Ash per 100 ml Acid) Extractions	23
2.2.10.1	9:1 2M H ₂ SO ₄ /8M HNO ₃ Synthetic Ash Extraction	23
2.2.10.2	4M H ₂ SO ₄ Synthetic Ash Extraction	24
2.2.10.3	Alyssum corsicum Material Treatment and	
	9:1 2M H ₂ SO ₄ /8M HNO ₃ Extraction.	24
2.2.11	Composite Hyperaccumulator Plant Material	25
2.2.12	$4M H_2SO_4$ Extraction of Composite Hyperaccumulator Ash	25
2.3 R	tesults and Discussion	26
2.3.1	X-ray Powder Diffraction Analysis and Comparison of	
	Ashing Techniques	26
2.3.2	HF Extraction	26
2.3.3	Small-Scale (0.25 g) Sample Investigations	31
2.3.3.1	Effects of Refluxing	31
2.3.3.2	HCl Ash Extraction	31
2.3.3.3	HNO3 Addition to Leaching Solutions	32
2.3.3.4	Effects of Varying Acidity	33
2.3.4	Extract Residue and Comparison with Primary Ash Composition	33
2.3.5	Larger-Scale (1 g) Sample Investigations	36
2.3.6	Lower Concentration Acids	36
2.3.7	Effect of Ash on Extract Acidity	39
2.3.8	Large Volume (20 g Ash per 100 ml Acid) Extractions	41
2.3.8.1	9:1 2M H ₂ SO ₄ /8M HNO ₃ Synthetic Ash Extraction	41
2.3.8.2	4M H ₂ SO ₄ Synthetic Ash Extraction	43
2.3.8.3	Alyssum corsicum Material Treatment and	
	9:1 2M H ₂ SO ₄ /8M HNO ₃ Extraction.	43
2.3.9	Composite Hyperaccumulator Plant Material	46
2.3.10	Acid Extraction of Composite Hyperaccumulator Ash	47
2.4 0	Conclusion	49
Chapter T	Three – Extract Neutralisation	53
3.1 I	ntroduction	53
3.2 N	laterials and Methods	54
3.2.1	Neutralisation of Synthetic Ash Extract (20 ml) with CaCO ₃	54

.

3.2.1.1	CaCO ₃ Addition and UV/Vis Analysis	54
3.2.1.2	Further CaCO ₃ Addition	54
3.2.1.3	Neutralisation of Synthetic Ash Extract (50 ml)	55
3.2.1.4	Complete Synthetic Ash Extraction and Neutralisation with CaCO3	55
3.2.2	Alyssum corsicum Ash Extract Neutralisation	56
3.2.3	Neutralisation by NaOH Addition	56
3.3 I	Results and Discussion	57
3.3.1	Neutralisation by CaCO ₃ Addition	57
3.3.1.1	CaCO ₃ Addition and UV/Vis Analysis	57
3.3.1.2	Further CaCO ₃ Addition	59
3.3.1.3	Neutralisation of Synthetic Ash Extract (50 ml)	59
3.3.1.4	Complete Synthetic Ash Extraction and Neutralisation with $CaCO_3$	60
3.3.2	Alyssum corsicum Ash Extract Neutralisation	61
3.3.3	Neutralisation by NaOH Addition	62
3.4 (Conclusion	63
Chapter H	our – Electrowinning	66
4.1 I	ntroduction	66
4.1.1	Overview	66
4.1.2	Electrowinning solution	66
4.1.3	Electrodeposition	67
4.2 I	Materials and Methods	70
4.2.1	Electrowinning Conditions	70
4.2.1.1	Electrolyte Solution	70
4.2.1.2	Electrode Choice	70
4.2.1.3	Electrolysis Cell Construction and Electrical Set-up	71
4.2.2	Electrowinning	71
4.2.2.1	Current Efficiency and Visual Characteristics of Nickel Deposit	71
4.2.2.2	Reproducibility of Nickel Deposit and Current Efficiency	72
4.2.2.3	Effect of Increasing Current on Current Efficiency	73
4.2.2.4	Effect of Ni Concentration on Current Efficiency	73
4.2.2.5	Galvanostat Investigation - Comparison of Potential,	
	Current and Temperature	73
4.2.2.6	Linear Scan Voltammetry – Rotating Disc Electrode	74

4.2.3	Plant Extract Electrowinning	75
4.2.3.1	9:1 2M H ₂ SO ₄ /8M HNO ₃ Synthetic Ash Extract	75
4.2.3.2	2 Effect of Calcium on Electrowinning Solution	76
4.2.3.3	Simulation of 9:1 2M H ₂ SO ₄ /8M HNO ₃ Synthetic Ash Extract	76
4.2.3.4	Addition of Na ₂ SO ₄ to the 9:1 2M H ₂ SO ₄ /8M HNO ₃	
	Synthetic Ash Extract	77
4.2.3.5	Simulated Sulfate Ash Extract Solution	78
4.2.3.6	Electrowinning from the A. corsicum Extract	78
4.3	Results	79
4.3.1	Electrowinning	79
4.3.1.1	Reproducibility of Current Efficiency and Visual	
	Characteristics of Nickel Deposit	79
4.3.1.2	2 Effect of Increasing Current on Current Efficiency	80
4.3.1.3	Effect of Ni Concentration on Current Efficiency	81
4.3.1.4	Galvanostat Investigation - Comparison of Potential,	
	Current and Temperature	82
4.3.1.5	E Linear Scan Voltammetry – Rotating Disc Electrode	86
4.3.2	Plant Extract Electrowinning	95
4.3.2.1	9:1 2M H ₂ SO ₄ /8M HNO ₃ Synthetic Ash Extract	95
4.3.2.2	2 Effect of Calcium on Electrowinning Solution	96
4.3.2.3	Simulation of 9:1 2M H ₂ SO ₄ /8M HNO ₃ Synthetic Ash Extract	96
4.3.2.4	Addition of Na_2SO_4 to the 9:1 2M $H_2SO_4/8M$ HNO ₃	
	Synthetic Ash Extract	99
4.3.2.5	5 Simulated Sulfate Ash Extract Solution	99
4.3.2.0	Electrowinning from the A. corsicum Extract	100
4.4	Conclusion	101
Chapter	Five – Crystallisation and Precipitation	105
5.1	Introduction	105
5.1.1	Overview	105
5.1.2	Nickel Sulfate	105
5.1.3	Nickel Hydroxide	106
5.1.4	Nickel Carbonate	106
5.1.5	Nickel Sulfide	107

5.1.6	Nickel Oxalate	107
5.1.7	Nickel Recovery from Hyperaccumulator Plant Solutions	108
5.2	Materials and Methods	110
5.2.1	Nickel potassium Double Salt Investigation	110
5.2.1	.1 (A) Investigation of Ni-rich Crystals from A. corsicum Extract	110
	(B) Pure K ₂ Ni(SO ₄) ₂ .6H ₂ O Production for XRPD Comparison	110
	(C) Crystals from Simulated Hyperaccumulator Extract.	110
5.2.1	2 Determination of Magnesium in White Powder Material	111
5.2.1	.3 Addition of K ₂ SO ₄ to Simulated Hyperaccumulator Solution	111
5.2.1	.4 Nickel Salt Crystallisation from 9:1 2M H ₂ SO ₄ /8M HNO ₃	
	Synthetic Ash Extract	111
5.2.1	.5 Sulfate Concentration Increase by H ₂ SO ₄ Addition	112
5.2.1	.6 Treatment of Hyperaccumulator Composite Extract	112
5.2.2	Nickel Oxalate Investigation	113
5.2.2	.1 Initial Oxalic Acid Study	113
5.2.2	2 Addition of Oxalic Acid to Simulated Hyperaccumulator Extract	114
5.2.2	.3 K ₂ Ni(SO ₄) ₂ .6H ₂ O Crystallisation and Secondary Nickel	
	Oxalate Recovery	114
5.3	Results and Discussion	115
5.3.1	Nickel potassium Double Salt Investigation	115
5.3.1	.1 X-ray Powder Diffraction of A, B and C Crystals	115
5.3.1	.2 Determination of Magnesium in White Powder Material	119
5.3.1	.3 Addition of K ₂ SO ₄ to Simulated Hyperaccumulator Solution	120
5.3.1	.4 Nickel Salt Crystallisation from 9:1 2M H ₂ SO ₄ /8M HNO ₃	
	Synthetic Ash Extract	121
5.3.1	.5 Sulfate Concentration Increase by H ₂ SO ₄ Addition	125
5.3.1	.6 Treatment of Hyperaccumulator Composite Extract	126
5.3.2	Nickel Oxalate Investigation	128
5.3.2	.1 Initial Oxalic Acid Study	128
5.3.2	.2 Addition of Oxalic Acid to Simulated Hyperaccumulator Extract	130
5.3.2	.3 K ₂ Ni(SO ₄) ₂ .6H ₂ O Crystallisation and Secondary Nickel	133
	Oxalate Recovery	
5.4	Conclusion	134

Chapter Six – Conclusion		140
6.1	Overview	140
6.2	Combustion	140
6.3	Acid Leaching	141
6.4	Neutralisation	142
6.5	Electrowinning	142
6.6	Crystallisation and Precipitation	142
6.7	Final Assessment	144
Apper	ıdix	145
A.1	Flame Atomic Absorption Spectroscopy	145
A.2	Ultraviolet-Visible Spectroscopy	145
A.3	pH Determinations	145
A.4	Inductively Coupled Plasma – Atomic Emission Spectroscopy	146

References

147

List of Figures

2.1	X-ray diffraction spectra of A. corsicum ash	28
2.2	Elemental concentrations of typical A. corsicum ash and synthetic ash	29
2.3	Comparison of elemental composition for synthetic ash and residue	35
2.4	Comparison of % elemental extractions for 9:1 4M H_2SO_4/HNO_3 vs.	
	19:1 4M H ₂ SO ₄ /HNO ₃	37
2.5	Comparison of theoretical and actual acid neutralisation during ash	
	leaching	40
2.6	UV/Vis spectra for synthetic ash and A. corsicum ash extracts	42
2.7	Comparison of A. corsicum ash and synthetic ash	
	9:1 2M H ₂ SO ₄ /8M HNO ₃ Extractions	44
3.1	UV/Vis Spectra of synthetic ash extract during neutralisation with	
	CaCO ₃ and A. corsicum Extract at pH 4.75	58
4.1	Cell and electrode potentials with varying current for Watts solution	
	at 60 degrees C	83
4.2	Comparison of Ecell and current with varying temperatures	84
4.3	Comparison of cell and electrode potentials vs. current for Watts	
	and Watts + 0.5 M formaldehyde at 60 degrees C	85
4.4	Effect of temperature on current and potential at 4000 rpm and	88
	60 degrees C	
4.5	Effect of nickel concentration on current and potential at 4000 rpm	
	and 60 degrees C	89
4.6	Effect of rotation rates on current and potential for 0.50 M Ni at	
	60 degrees C	90
4.7	Effect of rotation rates on current and potential for 0.05 M Ni at	
	60 degrees C	91
4.8	Effect of boric acid concentration on current and potential at 4000 rpm	
	and 60 degrees C	92
4.9	Effect of chloride concentration on current and potential at 4000 rpm	
	and 60 degrees C	93
4.10	Effect of sulfate concentration on current and potential at 4000 rpm	
	and 60 degrees C	94

xi

4.11	X-ray spectra of amorphous electrowinning deposit	98
5.1	Crystals recovered from simulated hyperaccumulator solution	116
5.2	X-ray spectra of crystals recovered from A. corsicum extract	118
5.3	Concentration of Ni remaining in simulated hyperaccumulator	
	solution after nickel salt crystallisation	122
5.4	Phase diagram for NiSO ₄ -K ₂ SO ₄ -H ₂ O system	124
5.5	Concentration of nickel remaining in simulated hyperaccumulator	
	solution after nickel oxalate precipitation	132

xii

List of Tables

2.1	ICP results for 1:1 HF/HNO ₃ extraction.	30
2.2	% Ni extracted for refluxing experiments.	31
2.3	% Ni extracted by HCl treatment.	32
2.4	% Ni extracted with H ₂ SO ₄ and with HNO ₃ addition.	32
2.5	% Ni extracted and corresponding final $[H^+]$ for varying acid extracts.	33
2.6	Comparison of ICP results for % elemental composition of synthetic	
	ash and residue.	34
2.7	% extractions of major elements for 1 g ash / 10 ml acid.	36
2.8	$\%$ Ni extractions and corresponding final $[H^{\!+}]$ for lower acidity extracts.	38
2.9	The effects of varying quantities of ash and extract neutralisation.	39
2.10	ICP results for the 9:1 2M $H_2SO_4/8M$ HNO ₃ extract solutions of	
	A. corsicum and synthetic ash.	45
2.11	Elemental composition of A. corsicum residue after acid extraction.	45
2.12	Elemental concentrations of hyperaccumulator composite plant material.	46
2.13	Elemental concentrations of hyperaccumulator composite ash.	47
2.14	Elemental concentrations of hyperaccumulator composite extract.	48
2.15	Elemental concentrations of hyperaccumulator composite residue	
	after acid extraction.	49
3.1	Neutralisation of a 20 ml sample of synthetic ash extract by $CaCO_3$	
	addition.	59
3.2	Neutralisation of a 50 ml sample of synthetic ash extract by $CaCO_3$	
	addition.	60
3.3	Elemental concentrations of 9:1 2M H ₂ SO ₄ /8M HNO ₃ synthetic	
	ash extract before and after neutralisation with CaCO ₃ .	61
3.4	Elemental concentrations of A. corsicum extract before and after	
	neutralisation.	62
3.5	Elemental concentrations of synthetic ash extract (4M H ₂ SO ₄)	
	before and after neutralisation with NaOH.	63
4.1	Parameters investigated using LSV.	74
4.2	Elemental concentrations in simulated synthetic ash extract solution.	76
4.3	Simulated solution with varying sulfate and nitrate additions.	78

•

4.4	Nitrate and sulfate additions to A. corsicum extract.	79
4.5	Current efficiencies for nine identical electrodeposition experiments.	80
4.6	Effects of increasing current on electrowinning cell.	81
4.7	Effect of Ni concentration on current efficiency.	81
4.8	Total sulfate/nitrate concentrations in simulated sulfate solution.	99
4.9	Electrowinning from A. corsicum extract.	101
5.1	Interpretation of ICP results for A. corsicum extract crystals.	119
5.2	Ni concentration after K ₂ Ni(SO ₄) ₂ .6H ₂ O crystallisation	
	and K_2SO_4 addition.	121
5.3	Ni concentration after $K_2Ni(SO_4)_2.6H_2O$ crystallisation for increasing	
	periods of refrigeration.	123
5.4	Elemental concentrations of composite ash extract before and	
	after K ₂ SO ₄ addition and comparison to A. corsicum.	126
5.5	Elemental concentrations of composite extract after KOH addition.	127
5.6	Elemental concentration of K2Ni(SO4)2.6H2O crystals recovered	
	from hyperaccumulator composite extract.	128
5.7	Elemental concentrations of oxalate precipitate.	129
5.8	Elemental concentrations of washed oxalate precipitate.	129
5.9	Titration of synthetic extract solution with oxalic acid and the	
	resulting Ni extraction.	132