Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

The Refolding of Recombinant Human Liver Methylmalonyl-CoA Mutase from Inclusion Bodies Produced in *Escherichia coli*

A thesis presented in partial fulfilment of the requirements for the Degree of Master of Science in Biochemistry at Massey University

Michelle Marie Haves

ABSTRACT

Human methylmalonyl-CoA mutase (hMCM) is an adenosylcobalamin-dependent enzyme that catalyses the structural rearrangement of (R)-methylmalonyl-CoA to succinyl-CoA as part of the catabolism of the branched chain amino acids valine, leucine and isoleucine, odd chain fatty acids and intermediates of cholesterol metabolism. Reactions that require adenosylcobalamin (AdoCbl) have been intensively studied, and the first step in the catalysis is widely agreed to involve homolytic cleavage of the unusual carbon-cobalt bond in the cofactor. A reliable source of recombinant hMCM would be useful in defining more fully the mechanistic pathway of AdoCbl-dependent enzymes.

Recombinant hMCM overexpressed in *E. coli* forms insoluble aggregates of inactive protein known as inclusion bodies. hMCM inclusion bodies were purified, solubilised and then several different *in vitro* refolding techniques were tested in attempts to produce active recombinant hMCM from purified solubilised inclusion body material. These methods included refolding by rapid dilution, refolding by dialysis, detergent-assisted refolding, refolding by gel filtration chromatography and chaperonin-assisted refolding. Chaperonin-assisted refolding necessitated the purification of recombinant *E. coli* chaperonins GroES and GroEL from the *E. coli* strain DH1/pGroESL.

Refolding by rapid dilution of the GdmHCl-solubilised inclusion bodies into a refolding buffer was judged to be the simplest and most effective method, however the refolding process was extremely inefficient. Refolding by rapid dilution was scaled up to 2 litres to produce as much active hMCM as possible. The refolded protein was concentrated by batch adsorption to and stepwise elution from hydroxyapatite, and further purified using a synthesised 5'adenosylcobalaminagarose 'affinity' chromatography column. The final refolded hMCM preparation contained a single ~29 kDa contaminant protein, tentatively identified as E. coli branched-chain amino acid aminotransferase (EC 2.6.1.42), present in approximately equal amounts to the hMCM, and had a specific activity of ~3.11 units/mg.

ACKNOWLEDGEMENTS

Firstly I would like to thank my supervisor Mark Patchett, who was continually there with wonderful ideas and practical assistance in the lab, for his advice during the research project and also during the writing of this thesis.

I would like to acknowledge Jo Mudford for N-terminal sequencing, and Carole Flyger for running the Twilight Zone lab so smoothly. Thanks also to John Tweedie for computing advice.

Thanks to my friends and colleagues in the Twilight Zone, and others around the Biochemisty Department, and University who have made the last few years so enjoyable. Also thankyou to all my flatmates, who I have learnt so much from.

Thanks to my family. Mum, Dad, Mark, Claire, Paul, Adrian and Ann for their constant support throughout my time at Massey.

Extra special thanks must go to Terry and Geordi for their encouragement and understanding while I was writing, and for believing me whenever I said it was "just about finished"!

Thank God for methylmalonyl-CoA mutase; it is a stubborn but special little protein.

And finally thanks to anyone who reads this line and has picked up this thesis hoping that they will find the information they need. Good luck!

LIST OF ABBREVIATIONS

5'AdoCbl	5'deoxyadenosylcobalamin
Amp	Ampicillin
Avg	Average
bMCM	Bacterial methylmalonyl-CoA mutase
BSA	Bovine serum albumin
C-terminal	Carboxyl terminal
C ₈ -β-D Gluc	C ₈ -β-D Glucopyranoside
CAM	Chloramphenicol
CAPS	3-[Cyclohexylaminol}-1-propanesulfonic acid
cDNA	Complementary DNA
CHAPS	3-[(3-Cholamidopropyl)dimethylammonio]-1-
	propanesulfonate
CHAPSO	3-[(3-Cholamidopropyl)dimethylammonio]-2-
	hydroxypropane-1-sulfonate
СМС	Critical micelle concentration
CNCbl	Cyanocobalamın
СТАВ	Cetyltrimethylammonium bromide
EDTA	Ethylenediaminetetraacetic acid
ER	Endoplasmic reticulum
g	Gravitational field, unit of
GdmHCl	Guanidinium hydrochloride
hMCM	Human methylmalonyl-CoA mutase
НТР	Hydroxyapatite
kan	Kanamycin
КР	Potassium phosphate
LDAO	Lauryldimethylamine oxide
LM	Lauryl Maltoside
Lubrol PX	Polyoxyethylene (9) lauryl ether
MAP	Methionine aminopeptidase

	MEGA-9	Nonanoyl-N-methylglucamide
	МСМ	Methylmalonyl-CoA mutase
	Mr	Relative molecular mass
	mt	Mitochondrial
	NADH	Nicotinamide-adenine dinucleotide, reduced
	Nonidet P40	Nonaethylene glycol octylphenyl ether
	N-terminal	Amino terminal
	PAGE	Polyacrylamide gel electrophoresis
	PDI	Protein disulphide isomerase
	РК	Protein Kinase
	PMSF	Phenylmethylsulphonyl fluoride
	PPI	Peptidyl-prolyl cis-trans isomerase
	RNase	Ribonuclease
	SDS	Sodium dodecyl sulphate
	TCA cycle	Tricarboxylic acid cycle
	TEMED	N, N, N', N'-tetramethylethylenediamine
	Tris	Tris-(hydroxymethyl)-aminomethane
x	Triton X-100	Nonaethylene glycol octylphenyl ether
	Tween 20	Polyoxyethylene sorbitan monolaurate
	Z-3-XX	Zwittergent 3-XX series

THREE AND ONE LETTER AMINO ACID CODE

Ala	Α	Alanine
Arg	R	Arginine
Asn	Ν	Asparagine
Asp	D	Aspartic acid
Cys	С	Cysteine
Gln	Q	Glutamine
Glu	Ε	Glutamic acid
Gly	G	Glycine
His	Н	Histidine
lle	Ι	Isoleucine
Leu	L	Leucine
Lys	K	Lysine
Met	Μ	Methionine
Phe	F	Phenylalanine
Pro	Р	Proline
Ser	S	Serine
Thr	Т	Threonine
Tyr	Y	Tyrosine
Val	V	Valine
Trp	W	Tryptophan

•

TABLE OF CONTENTS

Title Page	i
Abstract	ü
Acknowledgements	iii
List of Abbreviations	iv
Three and One Letter Amino Acid Code	vi
Table of Contents	vii
List of Figures	xiii
List of Tables	xvii

CHAPTER ONE

INTRODUCTION

1.1 Methylmalonyl-CoA mutase 1 1.2 The Formation of Inclusion Bodies 4 1.3 Protein Refolding From Inclusion Body Material 9 1.3.1 Differences Between Refolding In Vitro 9 and Folding In Vivo 1.3.2 10 Refolding by Rapid Dilution 1.3.3 Refolding by Dialysis 14 1.3.4 16 Detergent-Assisted Refolding 1.3.5 Refolding by Size-Exclusion 19 Chromatography 20 1.3.6 In Vitro Chaperonin-Assisted Refolding 1.3.7 Co-expression of Molecular Chaperonins In Vivo 24 **Aims of This Project** 1.4 25

CHAPTER TWO

MATERIALS AND METHODS

2.1	Co-expres	ssion of Chaperonins In Vivo with hMCM	27
2.2	Expressio	n of hMCM Inclusion Bodies for Refolding	28
	2.2.1	Comparison of Two hMCM	
		Expression Systems	28
	2.2.2	Large-Scale Growth of	
		SRP84/pGP1-2/pMEXHCO and	
		Induction of Recombinant hMCM	
		Expression	29
2.3	Preparati	on of hMCM Inclusion Bodies for	
	Refolding	Experiments	30
	2.3.1	Isolation of Inclusion Bodies by	
		Differential Centrifugation	30
	2.3.2	Solubilisation of Inclusion Bodies	31
2.4	Initiai niv	ICM Reloiding Experiments	32
	2.4.1	Initial Small-Scale Rapid Dilution	
		Experiments	32
	2.4.2	Scale-up of Small-Scale Rapid Dilution	
		Experiments	32
	2.4.3	Dialysis of Solubilised Protein	33
	2.4.4	Detergent-Assisted Refolding by	
		Rapid Dilution	33
	2.4.5	Time Trial Refolding Experiment	
		Over 24 Hours	34
	2.4.6	Dimerization Experiment	34
	2.4.7	Refolding by Gel Filtration	
		Chromatography	36

2.5	Concentratio	n of Refolded Protein with	
	Hydroxyapat	ite	37
	2.5.1	Hydration of Hydroxyapatite	37
	2.5.2	Adsorption of Protein to Hydroxyapatite	37
	2.5.3	Elution of Protein from Hydroxyapatite	38
2.6	Synthesis and	d Testing of 5'AdoCbl-agarose for	
	Affinity Chro	omatography	38
	2.6.1	Synthesis of 5'AdoCbl-agarose Resin	38
	2.6.2	Scanning of Prepared	
		5'AdoCbl-agarose Resin	39
	2.6.3	Testing Reversible Adsorption of MCM	
		to the Prepared 5'AdoCbl-agarose Resin	39
	2.6.4	Conditions for Effective hMCM Adsorption	
		to 5'AdoCbl-agarose	41
2.7	Large-Scale	Refolding and Purification of hMCM	41
	2.7.1	Inclusion Body Purification, Solubilisation	
		and Refolding	41
	2.1.2	Batch Adsorption to and Stepwise Elution	
		from hydroxyapatite	42
	2.7.3	5'AdoCbl-agarose 'Affinity'	
		Chromatography	42
	2.7.4	Concentration of the Pooled 'Affinity'	
		Chromatography Fraction	43
2.8	Purification	and Use of Recombinant GroEL	
	and GroES		44
	2.8.1	Ammonium Sulfate Precipitation Method	44
	2.8.2	Cell Lysis, Clarification of Extract and	
		First DEAE-Sephacel Step	44
	2.8.3	Continued Purification of GroES	45
	2.8.4	Continued Purification of GroEL	46

	2.8.5	Chaperonin-Assisted Refolding	
		of β -galactosidase	47
	2.8.6	Chaperonin-Assisted Refolding of hMCM	49
2.9	Protein Elect	rophoresis, Electroblotting and	
	N-terminal Se	equencing	49
	2.9.1	Treatment of Samples Taken from	
		Cultures for SDS-PAGE	49
	2.9.2	Discontinuous SDS-Polyacrylamide	
		Gel Electrophoresis	50
	2.9.3	Drying of SDS-Polyacrylamide Gels	52
	2.9.4	Electroblotting for N-terminal	
		Sequence Analysis	52
	2.9.5	N-terminal Sequencing	54
2.10	Protein Deter	rmination and Activity Assay Methods	54
	2.10.1	Determination of Protein Concentration	54
	2.10.2	Succinyl-CoA Preparation for use in	
		hMCM Activity Assay	54
	2.10.3	Enzyme Coupled Assay for	
		Methylmalonyl-CoA mutase Activity	56
	2.10.4	β-galactosidase Activity Assay	57

CHAPTER THREE

RESULTS

3.1	Purification of hMCM Inclusion Bodies	59
3.2	Comparison of Two hMCM Expression Systems	61
3.3	Large-Scale Growth and Induction of	
	SRP84/pGP1-2/pMEXHCO	
	and Induction of Recombinant hMCM Expression	61
3.4	Large-Scale hMCM Inclusion Body Purification	64

3.5	Determination of the Best of Three Different Solubilisation	
	Solutions	64
3.6	The Effect of Protein Concentration on Refolding by	
	Rapid Dilution	67
3.7	Scale up of Rapid Dilution Experiments	67
3.8	Time Trial Experiment	69
3.9	Dimerization Experiment	71
3.10	Detergent-Assisted Refolding	75
3.11	Protein Refolding by Dialysis Against a Refolding Buffer	79
3.12	Refolding by Gel Filtration Chromatography	79
3.13	E. coli GroEL and GroES Chaperonin Purification	80
3.14	Testing Purified GroEL and GroES for Biological Activity	96
3.15	Chaperonin-Assisted Refolding of Solubilised hMCM	
	Inclusion Body Material	98
3.16	Co-expression of Chaperones In Vivo with hMCM	101
3.17	Synthesis of 5'deoxyadenosylcobalamin-agarose for	
	Affinity Chromatography	102
3.18	UV-Visible Spectroscopy of Control Cobalamin Solutions	
	and Prepared 5'AdoCbl-agarose Resin	105
3.19	Solubilisation and Refolding of hMCM Inclusion Bodies	
	on a Large-Scale	108
3.20	hMCM Purification by Affinity Chromatography	114
3.21	Further Purification and Concentration of the Two	
	hMCM Pools	114

CHAPTER FOUR

DISCUSSION

4.1Preparation of hMCM Inclusion Bodies1194.2Refolding of hMCM by Rapid Dilution119

xi

4.3	hMCM Re	folding by Dialysis Against a Refolding Solution	120
4.4	Detergent-	Assisted Refolding of hMCM	120
4.5	Refolding	by Gel Filtration Chromatography	121
4.6	Dimerizati	ion Experiment	122
4.7	Chaperoni	n-Assisted Refolding	123
	4.7.1 In	Vitro Chaperonin-Assisted Refolding	123
	4.7.2 In	Vivo Chaperonin-Assisted Refolding	125
4.8	Production	n of Recombinant hMCM From Inclusion Bodies	
	in E. coli		126
4.9	Affinity C	hromatography	128
4.10	Future Wo	ork	129

APPENDIX 1	131
Plasmids for hMCM Expression in SRP84/pGP1-2/pMEXHCO	131
APPENDIX 2	132
Edited SWISS-PROT Database Entry of hMCM	132
REFERENCES	135

LIST OF FIGURES

FIGURE

.

•

1.1	A schematic view of the structure of the active α chain of methylmalonyl-CoA mutase from <i>Propionibacterium</i>	2
	shermanii	
1.2	The reaction pathway involved in the interconversion of	3
	succinyl-CoA and propionyl-CoA	
1.3	hMCM-catalysed reaction	5
1.4	Possible fates of an over-expressed protein in E. coli	
1.5	Flow chart showing the possible outcomes in vitro refolding	11
1.6	Illustration of the effect of protein concentration on the	12
	refolding of rhodanese	
1.7	Illustration of the temperature dependence of renaturation	13
1.8	Illustration of the concentration dependence of functional	13
	renaturation	
1.9	The effect of the addition of L-arginine to the refolding	14
	solutions, on the yield of renaturation	
1.10	Percent reactivation vs rhodanese concentration after	15
	denaturation in guanidine and subsequent dialysis	
1.11	Schematic diagram of detergent monomers and micelles in	17
	solution	
1.12	Schematic representation of protein refolding within size-	20
	exclusion chromatography media	
1.13	Effect of order of addition of GroES and substrate on	22
	protection of substrate from proteolysis	

3.1	SDS-PAGE analysis of samples taken during the small-scale preparation of inclusion bodies	60
3.2	SDS-PAGE analysis of samples taken after induction of two hMCM <i>E. coli</i> expression systems	62
3.3	SDS-PAGE analysis of samples taken during large-scale growth and induction of <i>E. coli</i> SRP84/pGP1-2/pMEXHCO	63
3.4	SDS-PAGE analysis of large-scale inclusion body purification	65
3.5	Graph showing the hMCM activity recovered after rapid dilution experiments over a range of final protein concentrations	68
3.6	Plot of the gain in hMCM activity during 24 hours on ice	70
3.7	Graph of hMCM specific activity in fraction 12 vs the number of hours since fraction 12 was eluted from hydroxyapatite	72
3.8	A_{280} nm profile of fractions collected during hMCM refolding by gel filtration chromatography	78
3.9	SDS-PAGE analysis of fractions collected during refolding by gel filtration chromatography	81
3.10	SDS-PAGE analysis of samples collected during purification of GroES and GroEL on a DEAE-Sephacel column	83
3.11	SDS-PAGE analysis of fractions 81 to 97 collected during purification of GroES and GroEL on a DEAE-Sephacel column	84
3.12	SDS-PAGE analysis of fractions 66 to 78 and 100 to 112 collected during purification of GroES and GroEL on a DEAE-Sephacel column	85
3.13	SDS-PAGE analysis of the <i>E. coli</i> chaperonin GroES (Amrein et al., 1995)	86

3.14	SDS-PAGE analysis of fractions 48, 50, 52, 54, 56, 58, 60, 62 and 64 collected during the purification of GroES and GroEL on a DEAE-Sephacel column	87
3.15	SDS-PAGE analysis of fractions collected during the second DEAE-Sephacel chromatography step in the GroES purification	88
3.16	SDS-PAGE analysis of more fractions collected during the second DEAE-Sephacel chromatography step in the GroES purification	89
3.17	Further SDS-PAGE analysis of fractions collected during the second DEAE-Sephacel chromatography step in the GroES purification	90
3.18	SDS-PAGE analysis of fractions collected during elution of the HiLoad 26/10 Q-Sepharose high performance column, during the GroES purification	92
3.19	SDS-PAGE analysis of fractions collected during Sephacryl S300 chromatography of the first half of the GroEL sample	93
3.20	SDS-PAGE analysis of fractions collected during the Sephacryl S300 chromatography of the second half of the GroEL sample	94
3.21	Combined GroEL and GroES purification; SDS-PAGE analysis	95
3.22	Absorbance spectra of a 0.5 mM control solution of 5'AdoCbl	106
3.23	Absorbance spectra of the prepared 5'AdoCbl-agarose resin	107
3.24	SDS-PAGE analysis of fractions collected during stepwise elution from hydroxyapatite	110

xv

3.25	SDS-PAGE analysis of fractions collected during stepwise	113
	salt elution of the 5'AdoCbl-agarose affinity chromatography	
	resin	
3.26	SDS-PAGE analysis of the concentrated hMCM pools and the concentrated low salt pool filtrate	115
3.27	SDS-PAGE analysis of samples taken throughout the large- scale hMCM inclusion body purification, solubilisation,	117

refolding and further purification

. . .

LIST OF TABLES

FIGURE

D	A	0	F
Г	A	U	Ľ

2.1	Detergent concentrations used in refolding solutions	35
3.1	Refolding by rapid dilution of hMCM inclusion bodies solubilised with three different solubilising agents	66
3.2	100-fold rapid dilutions of hMCM inclusion bodies, solubilised at two different final GdmHCl concentrations, and assayed in duplicate for hMCM activity	67
3.3	Effect of protein concentration on activity regain when refolding by rapid dilution into a non-denaturing buffer or refolding solution	69
3.4	hMCM activity assays of fractions eluted from hydroxyapatite	73
3.5	hMCM activity assays of HTP fraction 12 over 189 hours	74
3.6 a	hMCM refolding by rapid dilution using detergent- supplemented refolding buffers	76
3.6b	hMCM refolding by rapid dilution using detergent- supplemented refolding buffers	77
3.7	Refolding by dialysis at three different protein concentrations	79
3.8	Refolding of <i>E. coli</i> β -galactosidase in the presence of GroES and GroEL	97
3.9	Chaperonin-assisted refolding with incomplete basic refolding solutions	99
3.10	Chaperonin-assisted hMCM refolding by rapid dilution	100

3.11	Batch adsorption results	103
3.12	Elution of hMCM from 5'AdoCbl-agarose	104
3.13	Different elution conditions trialled to elute hMCM from the prepared 5'AdoCbl-agarose	105
3.14	Colour of neutral and acidified cobalamin control solutions, prepared 5'AdoCbl-agarose and cyanocobalamin-agarose	109
3.15	Fractions collected during elution of protein from hydroxyapatite	101
3.16	Fractions collected during purification by affinity chromatography of large-scale refolded hMCM	112