
Harvesting Relations from the Web
– Quantifiying the Impact of Filtering Functions –

Sebastian Blohm and Philipp Cimiano
Institute AIFB, Knowledge Management Research Group

University of Karlsruhe
D-76128 Karlsruhe, Germany

{blohm, cimiano}@aifb.uni-karlsruhe.de

Egon Stemle
Institute of Cognitive Science

University of Osnabruück
D-49069 Osnabruück, Germany

egon.stemle@uni-osnabrueck.de

Abstract

Several bootstrapping-based relation extraction algorithms
working on large corpora or on the Web have been presented
in the literature. A crucial issue for such algorithms is to
avoid the introduction of too much noise into further iter-
ations. Typically, this is achieved by applying appropriate
pattern and tuple evaluation measures, henceforth called fil-
tering functions, thereby selecting only the most promising
patterns and tuples. In this paper, we systematically compare
different filtering functions proposed across the literature. Al-
though we also discuss our own implementation of a pattern
learning algorithm, the main contribution of the paper is actu-
ally the extensive comparison and evaluation of the different
filtering functions proposed in the literature with respect to
seven datasets. Our results indicate that some of the com-
monly used filters do not outperform a trivial baseline filter
in a statistically significant manner.

Introduction

For many knowledge-intensive applications, the acquisition
of background knowledge still forms a major bottleneck.
Currently, the Web constitutes a major source of data for
many applications, but manually scanning the Web for rel-
evant data is typically neither feasible nor desireable. Ac-
quiring relational facts like interactsWith(Protein,Protein)
or releaseInYear(Company,CarModel,Year) in an auto-
mated fashion could have important impact on knowledge-
intensive tasks like pharmaceutical and medical research or
market analysis. Extracting such structured relations from
unstructured sources like text seems thus a key challenge
towards effectively tackling the knowledge acquisition bot-
tleneck.

Current research in Relation Extraction (e.g. (Agichtein
& Gravano 2000), (Downey et al. 2004) and (Pantel & Pen-
nacchiotti 2006)) has focused so far mainly on pattern learn-
ing and matching techniques for extracting relational facts
from large corpora or the Web. The Web as a source has the
advantage of being highly redundant, not domain-restricted
and freely available but lacks any control that could ensure

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

coherence or correctness. Many systems have been pre-
sented that successfully address the task of Web-based rela-
tion extraction for a limited set of relations or a particular ap-
plication. They typically build on the paradigm of iterative
induction of patterns as proposed by Brin (Brin 1998). How-
ever, to achieve the goal of minimal supervision and auto-
matic adaptation to new extraction tasks, further understand-
ing of crucial design choices for such systems is required. In
this line, we present experimental results obtained on a fairly
generic implementation allowing to systematically compare
different pattern evaluation functions presented in the liter-
ature. As opposed to previous studies we base our analysis
on a large number of relations that vary in size, domain and
presence on the Web. The extensive evaluation has, to our
knowledge, no precedent in the literature and constitutes the
main contribution of the paper.

The structure of the paper is as follows: in Section The
Pronto System we discuss the basic algorithm and our im-
plementation which we calledPronto. In Section Filtering
Functions we discuss the different evaluation functions sub-
ject to analysis. In Section Experiments we describe in detail
the settings and results of our experiments on seven rela-
tions. Before concluding, we discuss relevant related work.

The Pronto System

Figure 1 describes the generic pattern learning algorithm
used in our experiments. It subsumes many of the ap-
proaches mentioned in the introduction and implement-
ing similar bootstrapping-like procedures. The algorithm
starts with a set of initial tuples S′ of the relation in
question – so called seeds – and loops over a procedure
which starts by acquiring occurrences of the tuples cur-
rently in S. For the locatedIn relation the seed set may
be {(V ancouver, Canada), (Karlsruhe,Germany), ...}
Further, patterns are learned by abstracting over the text oc-
currences of the tuples. The new patterns are then evaluated
and filtered before they are matched. From these matches,
new tuples are extracted, evaluated and filtered. Patterns
may look like

“flights to ARG1 , ARG2 from ANY airport”
Where ARG1 , ARG2 represent the argument slots and

ANY is a wildcard.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Publications at Bielefeld University

https://core.ac.uk/display/15944903?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ITERATIVE PATTERN INDUCTION(PatternsP ′, TuplesS′)
1 S ← S′

2 P ← P ′

3 while not DONE

4 do Occt ← MATCH-TUPLES(S)
5 P ← P ∪ LEARN-PATTERNS(Occt)
6 EVALUATE-PATTERNS(P)
7 P ← {p ∈ P | PATTERN-FILTER-CONDITION(p)}
8 Occp ← MATCH-PATTERNS(P)
9 S ← S + EXTRACT-TUPLES(Occp)

10 EVALUATE-TUPLES(S)
11 S ← {t ∈ S | TUPLE-FILTER-CONDITION(t)}

Figure 1: Iterative pattern induction algorithm starting with
initial patterns P ′ and tuples S′

The process is stopped when the termination condition
DONE is fulfilled (typically, a fixed number of iterations is
set). A crucial issue for such an approach is an appropriate
filtering function on the basis of which the patterns can be
ranked and selected for matching new tuples. Our focus in
this article is on an extensive analysis of different filtering
functions to be applied within the filtering steps. Below, we
describe each of the steps of the algorithm in Figure 1 in
more detail.

To ensure the generality of our results, we have refrained
from integrating specific additional knowledge in our imple-
mentation. Common forms of background knowledge ap-
plied in the literature are thesauri, filters for part-of-speech
or syntactic criteria and knowledge about the type of relation
in question (e.g. part-of-speech tags in (Pantel & Pennac-
chiotti 2006) or named entity classification in (Agichtein &
Gravano 2000)).

Matching Tuples

In order to identify occurrences of the current seed set on
the Web, the search index is accessed via Google’s Java
API querying for pages on which all words present in both
arguments of the tuple can be found. A fixed number
nummatchTuples of results is retrieved. From those, only the
result headers and text snippets are kept which contain all ar-
guments within a distance of at most maxargDist. For the
experiments presented in this paper we set maxargDist = 4
and decrease nummatchTuples from 200 to 20 in steps of
45 over 5 iterations. Note that all parameters chosen for the
experiments have been determined experimentally to ensure
stable performance across typical configurations and target
relations.

Learning and Filtering Patterns

LEARN-PATTERNS aims at finding representative abstrac-
tions of as many valid occurrences of relation instances as
possible. Patterns are expressed as a set of constraints on the
tokens. There are two types of constraints: the surface string
of individual words and their corresponding capitalization.

Our learning algorithm essentially merges groups of oc-
currences on a token by token basis. Constraints that are
shared by all occurrences within a group are kept while the
others are eliminated. An unoptimized version of the algo-

LEARN-PATTERNS(Occ)
1 Queue← Occ
2 P ′ ← ∅
3 while NON-EMPTY(Queue)
4 do
5 o = FIRST(Queue)
6 for o′ ∈ Occ ∪ P ′

7 do
8 p← MERGE(o, o′)
9 if CONSTRAINTS(p) ≥ mincommon

10 then
11 P ′ ← P ′ ∪ p
12 ADD(Queue, p)
13 OUTPUT(P ′)

Figure 2: The algorithm that learns patterns from a set Occ
of occurrences.

rithm for merging is given in Figure 2 for illustration pur-
poses. Basically, it ensures that all subsets of the set of
found occurrences Occ are merged, if they share a certain
minimum number of constraints. The above pattern exam-
ple may have been generated by the following example oc-
currences:

“... flights to Athens , Greece from Heathrow airport...”

“... flights to Paris , France from JFK airport...”

The procedure MERGE(p, p′) takes the patterns p and
p′, aligns them by their arguments and generates a pattern
containing only the constraints that p and p′ share for any
of their token positions. The function CONSTRAINTS(p)
counts the number of non-empty constraints in p as we en-
sure that at least mincommon constraints are shared. To re-
duce the algorithm’s time complexity, an index data struc-
ture is used to avoid the |Occ|2 comparisons required other-
wise.

In its pure form, the algorithm generates much more can-
didate patterns than could reasonably be processed further.
We heuristically filter out too specific patterns by elimi-
nating those that were generated from merging occurrences
from one tuple and too general patterns by eliminating those
consisting mostly of stop words.

Prior to merging, the occurrences are stripped off the text
more than tprefix words before the first and tsuffix words af-

ter the last argument. When comparing the occurrences in
which the arguments stand at different distances, only the
first t tokens are considered, where t is the minimum dis-
tance encountered between arguments. For our experiments
we chose tprefix = tsuffix = 2 and mincommon = 2.

In our experiments, we define PATTERN-FILTER-
CONDITION(p) to always retain the top 100 best scoring pat-
terns according to filtering functions, i.e. |P | = 100. Thus,
newly learned patterns compete against those kept from pre-
vious iterations and may replace them. Filtering is impor-
tant so as to exclude too specific (e.g. “ the Acropolis in
ARG1 , ARG2”) or too general patterns (e.g. “... ARG1 is
in ARG2...”).

Matching Patterns and Filtering Tuples

MATCH-PATTERNS(P ′) matches each pattern in P ′ by run-
ning a set of queries to the Google API. For this purpose,
patterns are translated to queries. For each query, a fixed
number of search results nummatchPatterns (60 in our ex-
periments) is retrieved. The queries are generated by tak-
ing the surface string constraint for each token in a blank-
separated manner. Tokens with empty surface string con-
straints are represented by a ∗ wild card, which - when
used in quotes - will be replaced with any word or very few
words in this position in the Google results. This sequence
is stripped from leading and closing ∗ wild cards and sur-
rounded by quotes. For instance, the above pattern example
would be translated into a Google-query as follows:

"flights to * * from * airport"

A ∗ wildcard is filled in for each argument slot and each to-
ken with eliminated surface string constraint (above marked
by “ANY”). The comma in the pattern is represented as
an individual token with the comma surface string. Dur-
ing querying, however, it is omitted as Google discards
punctuation characters in queries. More exact matching is
done in a subsequent analysis step prior to tuple generation
(EXTRACT-TUPLES(Occp)).

For the purpose of our experiments we compute the confi-
dence of a tuple by averaging over the confidence that Pronto
assigns to the patterns that extracted the tuple.

TUPLE-FILTER-CONDITION(t) is implemented to be
true for the top pfilterTuples % of the newly generated tu-
ples (we use 50% if not otherwise specified). In the follow-
ing section, we present several pattern filtering functions and
evaluate the impact of the choice of the filtering function in
Section Experiments.

Filtering Functions
We model both the assessment of patterns in P and tuples S
as scoring functions scoreP : P → R and scoreT : S → R

and then filter out potentially erroneous tuples and weakly
performing patterns.

As the focus of this paper is to compare the performance
of different pattern filtering functions, we present those used
for comparison in more detail. Tuple filtering is kept con-
stant and across all experiments (cf. Section), i.e. the top
50% of the ranked tuples are selected and carried over to the
next iteration as seeds.

We identified five general types of pattern quality assess-
ment.

• Syntactic assessment. Filtering purely based on syntac-
tic criteria is for example done in (Brin 1998), where a
pattern’s length is used to predict its specificity.

• Inter-pattern comparison. If there is a set of patterns that
is known to be good, it may be worth-while to rate a new
pattern based on how similar its output is to the output of
those patterns.

• Support-based assessment. The iterative nature of the ex-
traction allows to estimate quality of patterns based on
the set of occurrences that contributed to the generation
of this pattern. An analogous filtering step was suggested
in (Brin 1998).

• Performance-based assessment. The most straightfor-
ward way to assess a pattern’s quality is to judge the rate
of correctly produced output typically by comparing it to
output of previous iterations.

• Instance-Pattern correlation. A further indicator for the
quality of a pattern is whether its presence correlates
strongly with the presence of instances of the target re-
lation. Estimating this by counting occurrences of pat-
terns, seed instances and patterns instantiated with seed
instances allows controlling both precision and potential
recall of a pattern within one value. Such measures are
used for example in the Espresso (Pantel & Pennacchiotti
2006) and the KnowItAll (Etzioni et al. 2005) system.

We present here the filtering functions compared in our ex-
periments, which are partly taken from the literature of state-
of-the-art pattern induction systems.

Definition 1 scoreprec(p):
Following (Agichtein & Gravano 2000) we use the output

of previous iterations to approximate a performance-based
precision. We define m(p) to be the tuples matched by pat-
tern p, and S to be the seeds of the current iteration. Ap-
proximating the precision amounts to calculating:

scoreprec(p) =
|m(p) ∩ S|

|m(p)|

Filtering functions based on instance-pattern correlation
rely on counts of Web search matches of patterns with or
without filling their argument slots with particular relation
instances. The Web frequencies derived in this manner are
used to assess the correlation between patterns and certain
tuples via pointwise mutual information (PMI).

Definition 2 scorepmi(p): Once such a coherence value
pmi(p, t) is available, pattern confidence values can be
computed by averaging over a random subset of the cur-
rently accepted tuples S′ (whereby sampling is done for ef-
ficency reasons).

scorepmi(p) =
1

|S′|

∑

t∈S′

pmi(p, t)

The pmi(p, t) is approximated in different ways two of
which are given below1.

Definition 3 pmiKnowItAll(p, t): The KnowItAll (Etzioni
et al. 2005) information extraction system uses PMI in the
following way to assess coherence of a pattern-tuple pair
(p, t) in2:

pmiKnowItAll(p, t) =
|t1, p, t2|

|t1, ∗, t2|

1Note that in both versions PMI is not applied in line with its
original definition. See (Pantel & Pennacchiotti 2006) for a PMI
definition in this context

2Following (Pantel & Pennacchiotti 2006), we write |t1, p, t2|
to denote the number of search engine matches of a query generated
by filling the components of tuple t = (t1, t2) into the argument
slots of pattern p, while ∗ means allowing arbitrary values for the
pattern or the argument replaced.

Definition 4 pmiEspresso(p, t): In the Espresso system
(Pantel & Pennacchiotti 2006), PMI is used in a different
way aiming at relating the event of the pattern occurring in
the corpus and the event of the tuple occurring in the corpus:

pmiEspresso(p, t) = log
|t1, p, t2|

|∗, p, ∗| |t1, ∗, t2|

In addition to the above filtering functions, we further
present a simple filtering function based on the count of dis-
tinct tuples from which a pattern was generated:

Definition 5 scoremerge(p): Given the number of distinct
tuples present in the occurrences from which a pattern was
generated, i.e. distinct generators(p), we define

scoremerge(p) = |distinct generators(p)|

Thus, scoremerge evaluates patterns by the number of dif-
ferent seed tuples from which they have been produced,
hence favoring more general patterns and penalizing pat-
terns which just hold for a few examples.

Definition 6 scorerandom(p): As a baseline condition, a
pattern evaluator has been implemented that assigns ran-
dom confidence values scorerandom(p) to all patterns.

Definition 7 scoregold(p): In order to estimate the upper
limit of the potential of performance-based pattern evalua-
tion, we introduce a scoring function that is based on the full
knowledge of the extension G of the target relation. This ex-
tension is made available externally from large datasets we
produced for that purpose (compare Section Experiments):

scoregold(p) =
|m(p) ∩ G|

|m(p)|

We use the term gold standard for this measure even though
the measure may still be out-performed due to limitations
inherent to performance-based filtering.

Experiments

In order to assess the potential of the approach taken, we
have performed experiments with various target relations
and configurations of Pronto. The goal of our experiments
is to explore the strengths and weaknesses of different filter-
ing functions from the literature, comparing these results to
our baseline scorerandom(p) as well as the informed upper
bound scoregold(p).

All other parameters have been chosen as described in
Section The Pronto System.

The experiments consisted of running the extraction algo-
rithm for five iterations, starting with a seed set S of size
10.

Datasets and Evaluation Measures

We obtained large relation sets using (i) a DAML version of
the CIA World Factbook (for currency), (ii) lineup data from
50 years of FIFA soccer games provided by the SmartWeb

albumBy Musicians and their albums (occasion-
ally other types of musical works)
n = 19852

bornInYear Persons and their year of birth
n = 172696

currencyOf Countries and their official currency
n = 221

headquarteredIn Companies and the country of their head-
quarter n = 14762

locatedIn Cities and the Country they lie in.
n = 34047

productOf Product names and the brand names of
their makers. n = 2650

teamOf Sportspersons and the team or country
they are playing for n = 8307

Table 1: Relations used for evaluation.

project3 and (iii) exploiting Wikipedia categories in a semi-
automatic manner using the CatScan tool by Daniel Kin-
zler4. Some facts about the relation sets acquired are given
in Table 1.

The extraction output has been evaluated automatically
based on the data sets described above. Approximate
matches are admitted by allowing the omission of stop
words and respecting WordNet synonyms.

In our experiments, we rely on the widely used precision
and recall measures to evaluate Pronto’s output. These mea-
sures compute the ratio of correctly found instances to over-
all tuples extracted (precision) or all tuples to be found (re-
call). As the fixed number n of iterations in our experiments
poses a fixed limit on the number of possible extractions we
use a notion of relative recall assuming the maximally ex-
tracted number of tuples by any configuration as the overall
number of possible extractions. The F-measure (more pre-
cisely F1-measure) is a combination of precision and recall
by the harmonic mean.

Analysis of Filtering Functions

The impact of the choice of filtering function on the preci-
sion of the output can be observed in Figure 3. The precision
of the output of the last iteration has been plotted over the
relations examined and the filtering function chosen. The
results of a two-sided paired Student’s t-test given in Table
2 show the significance of the observed differences. The
null hypothesis is that the results for all relations of the two
filtering functions compared originate from the same distri-
bution. A ‘+’ indicates that the null hypothesis could be
rejected at an α-level of 0.10 and a ‘++’ indicates rejection
at an α-level of 0.05.

The significance tests show that scoregold outperforms
all other strategies as expected and that scoremerge and
scoreprec are superior to scorerandom. However, the
PMI-based evaluation measures implemented in Know-
Itall and Espresso do not perform significantly better than
the baseline, while at the same no significance differ-

3http://www.smartweb-project.de
4http://tools.wikimedia.de/∼daniel/

WikiSense

Figure 3: Overall output precision after 5 iterations for the
7 different relations and evaluation strategies based on auto-
matic evaluation.

ence could be in fact observed between the filtering func-
tions scoremerge, scorepmiEspresso

, scorepmiKnowItAll
and

scoreprec.

gold merge Espr. Prec. Rand. Know.

gold - ++ ++ ++ ++ ++

merge ++ - - - + -

Espresso ++ - - - - -

Precision ++ - - - ++ -

Random ++ + - ++ - -

KnowItAll ++ - - - - -

Table 2: Results of a significance test on the difference of
output distributions.

While scorerandom(p) incorporates no information what-
soever into its selection, scoregold(p) incorporates complete
information about the extension of the relation and thus rep-
resents a ’fully informed’ evaluation strategy. Such com-
plete information would actually never be available, such
that it is important to stress that this evaluation strategy has
to be regarded merely to assess the impact of pattern filter-
ing.

As can be observed in Figure 3 and has been shown with
the significance tests in Table 2, most filtering functions
presented here perform better in terms of precision than
scorerandom and worse than the informed filter scoremerge,
which is an expected result. Although the evaluation strate-
gies based on performance and instance-pattern correlation,
as implemented in Espresso and KnowItAll do not perform
significantly better than our baseline, it is important to em-
phasize that the baseline we have compared with, which
consists in eliminating all patterns generated from only one
instance, provides already a non-trivial baseline difficult to
outperform.

Figure 4 shows precision, recall and F1-measure values
for different filtering functions averaged over runs on dif-
ferent relations. There is a clear superiority of scoregold

and scoremerge in terms of precision. In terms of re-
call, however, the other filtering functions scorerandom,
scorepmiEspresso

and scoreprec are slightly superior. This
negative correlation between recall and precision can be ob-
served in the output for all individual relations but is partic-

Figure 4: Precision, relative recall and F1-measure by filter-
ing strategy averaged over the 7 relations.

ularly apparent for the productOf relation which is the re-
lation for which all scoring function achieve highest overall
precision. The reasons for the lower recall with scoregold

and scoremerge lie in the fact that many of the patterns they
generate contain individual tokens that make them too spe-
cific. Manual inspection of the patterns extracted for the lo-
catedIn relation with scoregold mention a city, person name
or date in a position that should have been a wildcard in
48% of the cases (as opposed to 19% with scorerandom).
Apparently these patterns do not harm extraction precision
but reduce recall.

Finally, we have also asked human evaluators to manually
evaluate the output of the experiments and presented them
100 randomly selected tuples of the learned relations. The
precision was between 0.30 and 0.81 on average(with an ex-
ception of headquarteredIn), such that we can conclude that
the automatic evaluation presented above underestimates the
actual performance by a factor of 1.2 to 1.8 depending on the
quality of the dataset.

Related Work

Several systems have addressed the task of learning in-
stances of concepts, among them Know-It-All (Etzioni et al.
2005) and PANKOW (Cimiano, Handschuh, & Staab 2004).
These approaches are based on a set of rigid patterns in the
line of Hearst (Hearst 1992), which are matched on the Web
and used to find instance-concept relations. The Know-It-
All system has even been extended with pattern learning ca-
pabilities to discover new patterns (compare (Downey et al.
2004)). A similar system is that of (Snow, Jurafsky, & Ng
2005) which integrates syntactic dependency structure into
pattern representation but has been only applied to the task
of learning instance-of relations or isa-relations.

The seminal work of (Brin 1998) introduced the basic
bootstrapping algorithm used by Snowball, Espresso as well
as in Pronto as it is presented here. DIPRE was manually
evaluated for (author,book) tuples reaching a precision of
19

20
= 95%. As a novelty, Snowball (Agichtein & Gra-

vano 2000) relies on annotation of named entities with their
category which can be used in formulating the patterns.
Parts of the pattern are represented as bag-of-words vec-
tors and not plain strings, thus capturing the frequency of
the words occurring around the arguments in diverse occur-

rences. Like Snowball, the system of Ravichandran and col-
legues (Ravichandran & Hovy 2001) has recently been ap-
plied and evaluated in question answering scenarios. An in-
teresting feature of Ravichandran’s system is the automatic
detection of reasonable pattern borders with suffix trees as
a data structure that allows retrieving occurrence counts for
all sub-strings of the occurrence in linear time.

Espresso (Pantel & Pennacchiotti 2006) is a similar sys-
tem to the ones described above, but mainly differs in its
pattern evaluation strategy. Espresso relies on the Web to
calculate a PMI-based association measure between tuples
and patterns. Espresso is evaluated automatically on dif-
ferent text collections and various relations: the classical
is-a and part-of relations, but also the succession, (chemi-
cal) reaction and product-of relations. The precision ranges
from 49%-85% depending on the relation considered and
thus performs similar to our results. The precision of both
systems is thus smaller compared to the ones achieved by
DIPRE and Snowball, but the latter ones have also been only
evaluated on one relation.

Conclusion and Future Work

We have investigated how the alternative approaches to pat-
tern filtering affect the induction process. To our knowledge,
this is the first systematic comparison of different evaluation
techniques. A notable exception is the work of (Downey,
Etzioni, & Soderland 2005), who show that a probabilis-
tic model – URNS – significantly outperforms PMI. URNS
however is specialized on tuple filtering requiring a preci-
sion estimate for each pattern as input to the model.

The conclusions of our experiments are in fact not only
interesting for our own pattern-learning systems, but for all
bootstrapping-based systems in the sense that it sheds light
on the benefits and disadvantages of different pattern evalu-
ation strategies. In particular, we have shown the influence
of pattern filtering on extraction performance by compar-
ing random and fully informed filtering (scorerandom and
scoregold, respectively) to various filtering strategies based
on evaluation functions presented in the literature. Our re-
sults indicate that a relatively simple evaluation strategy, i.e.
our simple merge evaluation strategy overall yields better
results than more elaborate measures such as PMI, which
relies on web occurrence counts. In fact, the PMI-based
scores were unable to outperform the random baseline in a
statistically significant way, while the merge strategy count-
ing solely the number of distinct relation instances from
which a pattern was generated does achieve statistical sig-
nificance. This raises indeed doubts about the appropriate-
ness of PMI and Web-based evaluation measures in general
(compare also (Downey, Etzioni, & Soderland 2005)). How-
ever, we have also shown that PMI yields a higher recall than
our straightforward merge strategy, which is biased towards
precision.

The vision behind this research is developing a system
that is relatively autonomously able to inform itself from
Web sources choosing extraction parameters, appropriate fil-
tering strategies and the level of pattern representation ac-
cording to the task at hand. In future work we will consider

if richer structural and linguistic information can be used in
the description of patterns. Furthermore, it will be necessary
to clarify those properties of relations which have a clear
impact on their learnability of relations and therefore might
turn out as crucial to guide the pattern induction algorithm.

Acknowledgements

The authors would like to thank Johanna Wenderoth, Mina
Nikolova and Matthias Mantel for manually evaluating ex-
traction output. This work was funded by the X-Media
project (www.x-media-project.org) sponsored by the Euro-
pean Commission as part of the Information Society Tech-
nologies (IST) program under EC grant number IST-FP6-
026978. Thanks to Google for giving enhanced access to
their API.

References

Agichtein, E., and Gravano, L. 2000. Snowball: extracting
relations from large plain-text collections. In Proceedings
of the fifth ACM conference on Digital libraries (DL), 85–
94.

Brin, S. 1998. Extracting patterns and relations from the
world wide web. In WebDB Workshop at 6th International
Conference on Extending Database Technology, EDBT’98.

Cimiano, P.; Handschuh, S.; and Staab, S. 2004. Towards
the self-annotating web. In WWW ’04: Proceedings of the
13th international conference on World Wide Web, 462–
471.

Downey, D.; Etzioni, O.; Soderland, S.; and Weld, D. 2004.
Learning text patterns for web information extraction and
assessment. In AAAI-2004 Workshop on Adaptive Text Ex-
traction and Mining.

Downey, D.; Etzioni, O.; and Soderland, S. 2005. A prob-
abilistic model of redundancy in information extraction. In
Proceedings of IJCAI’05.

Etzioni, O.; Cafarella, M.; Downey, D.; Popescu, A.-M.;
Shaked, T.; Soderland, S.; Weld, D.; and Yates, A. 2005.
Unsupervised named-entity extraction from the web: an
experimental study. Artificial Intelligence 165(1):91–134.

Hearst, M. A. 1992. Automatic acquisition of hyponyms
from large text corpora. In Proceedings of the 14th confer-
ence on Computational linguistics.

Pantel, P., and Pennacchiotti, M. 2006. Espresso: Leverag-
ing generic patterns for automatically harvesting semantic
relations. In Proceedings of COLING/ACL-06, 113–120.

Ravichandran, D., and Hovy, E. 2001. Learning surface
text patterns for a question answering system. In Proceed-
ings of the 40th Annual Meeting of the ACL, 41–47.

Snow, R.; Jurafsky, D.; and Ng, A. 2005. Learning syntac-
tic patterns for automatic hypernym discovery. In Proceed-
ings of the 17th Conference on Advances in Neural Infor-
mation Processing Systems (NIPS). MIT Press.

