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Abstract 
If we want to model the dynamic and contingent nature of human social interaction (e.g. for the design of human-robot-interaction), 
analysis and description of natural interaction is required that combines different methodologies and research tools 
(qualitative/quantitative; manual/automated). In this paper, we pinpoint the requirements and technical challenges for constituting 
and managing multimodal corpora that arise when linking Conversation Analysis with novel 3D motion capture technologies: i.e. to 
robustly track multiple participants over an extended period of time. We present and evaluate a solution to by-pass the limits of the 
current standard Vicon system (using rigid bodies) and ways of mapping the obtained coordinates to a human skeleton model 
(inverse kinematics) and to export the data into a format that is supported by standard annotation tools (such as ANVIL). 
 

1. Introduction: Detecting interactional 
patterns across disciplines 

In recent years, a range of initiatives has begun to enable 
robots and other technical systems to engage in more 
naturalistic forms of interaction with the human user. 
After important advances have been made both in 
detecting/sensing human conduct and creating 
human-like forms of system output, a central challenge 
today consists in enabling technical systems to 
participate in and deal with the dynamic nature of human 
social interaction: Systems need to observe – on a 
micro-level – human multimodal conduct, interpret it as 
meaningful in terms of the interactional organisation and 
react appropriately. While there is a longstanding 
tradition in the field of Ubiquitous Computing and 
Computer Supported Cooperative Work (CSCW) to 
include qualitative approaches, such as Ethnography 
and/or Ethnomethodological Conversation Analysis 
(EM/CA), into the development cycle of technical 
systems (e.g. Dourish, 2009; Luff et al., 2009), only 
recently researchers have begun to scoop from these 
same sources for the design of robot systems (Nishida et 
al., 2007; Kuzuoka et al., 2008; Pitsch et al., 2009). In 
particular, for the design of robot systems, EM/CA – 
with its fine-grained analysis of video data – is able to 
provide insights into the sequential organisation of 
interaction, reveal patterns of social conduct and 
investigate how one person’s multimodal conduct both 
reacts to and shapes their co-participants’ actions. On the 
one hand, this offers a rich basis for modelling the 
dynamic and contingent nature of social interaction; on 
the other hand, the ways in which a qualitative, 
video-based EM/CA is able to present its findings do not 
always match the sort of quantifiable information that is 
required for building computational algorithms. Against 
this background, we argue that interactional corpora – 
combining video recordings and new motion capture 
technologies – are required that allow researchers to use 
different methodologies and research tools (qualitative/ 
quantitative; manual/automated) on the same data set (cf. 

Chen et al., 2006). However, with such an integrated 
methodological approach a range of new technical 
challenges arise regarding the constitution and 
management of multimodal corpora.  
In this paper, we pinpoint the requirements and technical 
challenges that a combined approach brings to light with 
regard to establishing multimodal corpora (section 2), 
present our solution to solve these problems (section 3) 
and evaluate seemingly ‘unnatural’ aspects of our 
approach (section 4).  

2.  Corpus: Requirements and technical 
challenges  

When planning and establishing a corpus that is designed 
to investigate multimodal turn-taking and other aspects 
of interactional organization in a group of two vs. three 
participants with a mixed approach of qualitative/ 
quantitative and manual/automated analysis, we have 
been largely informed by analytical experience from 
another ongoing interdisciplinary project (iTalk). We 
will use examples from this study to point out the 
requirements that the new corpus would need to fulfil.    

 
 

 

Figure 1: Parent demonstrating ‘stacking cups’ to his 
infant. (a) Video still with overlayed hand trajectories; (b) 

Normalized hand trajectories overlayed of several 
participants; (c) Transcript and stills from two cameras.  

 
The iTalk project (www.italkproject.org) aims at 

Figure 1a Figure 1b 

Figure 1c 
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enabling robots to learn within and from the interaction 
with a human partner. Given the analogy of limited 
cognitive capabilities both in robots and young infants, 
our starting point consists in understanding the ways in 
which parents demonstrate actions to their young infants 
as a model for the design of the robot system (Rohlfing 
et al., 2006). In order to build the robot system, we need 
to know e.g. how participants structure their actions, 
which features are constitutive for tutoring, how the 
recipients react to the demonstration and how this, in 
turn, influences on the presenter’s demonstration (Pitsch 
et al., 2009; Vollmer et al. 2009). Therefore, we have 
built and are analysing – with different research 
methodologies – a video corpus, in which 128 parents 
are demonstrating a set of actions to their infants aged 8 
to 36 months. In this line of research, 
Ethnomethodological Conversation Analysis offers an 
interactional perspective on the task and is able to reveal 
with its qualitative-manual analysis the strategies and 
methods used by the participants, to uncover relevant 
multimodal features/cues and to find interactional 
patterns and systematic relationships between the 
co-participants’ actions. At the same time, this approach 
is limited e.g. in describing the presenter’s manual 
actions in terms of the concrete shape of the hand 
trajectory performed in a given demonstration. 
Interestingly, these shapes differ considerably in the 
corpus, which becomes visible once a semi-automatic 
computational 2D hand tracking is applied to the video 
data delivering time-stamped x,y-coordinates of the 
parent’s hand motions (Fig. 1a, 1b). While EM/CA is 
able to reveal the interactional causes and effects of the 
variability in the hand trajectories (linked to the child’s 
focus of attention, Fig. 1c), mathematical and statistical 
methods can describe these trajectories in a way that they 
become suitable for building computational algorithms 
that allow a robot to distinguish certain types of actions. 
At the same time, relevant interactional categories evolve 
from CA-analysis, which, then, can be systematically 
transcribed/annotated with corpus tools (such as ELAN, 
ANVIL) and be subject to a computational investigation 
of correlations between the different interactional 
variables on the entire corpus (Pitsch et al., 2009).  
Not only does this example give a case for closely 
interrelated qualitative-quantitative analysis, but it also 
provides us with central requirements when establishing 
a new interactional corpus that is designed for the same 
area of research: We need to be able to capture (i) the 
timely interplay of several (two or more) participants, (ii) 
their talk, gaze, body posture, gestures, head, arm and 
body motions, and (iii) interactional episodes that take 
about 30 minutes of time. As – for the parent-child- 
corpus – we only dispose of video recordings of the 
interaction, we had to develop a motion tracker in order 
to be able to precisely describe and analyze the hand 
trajectories. While this has proven extremely useful for 
our case (and might be oriented towards the sensors that 
current robot systems are equipped with), analysis is 
limited with regard to the features that can be tracked 

robustly and by the fact that it can only deliver 2D 
information (information about depths is missing). Thus, 
(iv) for the new corpus both video and 3D motion 
capture data are required.  
However, if we attempt to use current state of the art 3D 
motion capture technologies for recording data with the 
requirements presented above, we are facing a crucial 
technical challenge: How can we robustly track multiple 
participants over an extended period of time? 
Existing optical motion capture technologies, such as the 
Vicon system, have been originally developed for 
capturing human motions in the fields of sports and 
health sciences or for animating virtual characters in 
movies and computer games. Small reflective markers 
(spheres) are attached to particular places of the human 
body, tracked simultaneously by a set of (at least 10) 
infrared cameras and mapped to a generic model 
skeleton. In these cases, generally one single participant 
is recorded for a short period of time. In recent times, 
researchers have begun to use such systems also for 
recording multi-party interaction (Chen et al. 2006; 
Battersby et al. 2008). However, once we attempt to use 
the system to track two or three participants during an 
interaction period of e.g. 30 minutes, we encounter a 
range of problems: (i) Due to visual obstruction, the 
system easily loses the individual markers during the 
recording process. (ii) This leads either to incomplete 
and thus problematic data or an extensive 
post-processing phase is required, in which markers need 
to be re-assigned and labeled. We have conducted a set 
of internal trials, which revealed that 1 minute of 
recording time requires about 60 minutes of 
post-processing for one participant – impossible to 
handle for large corpora. 

3. The “Obersee Corpus”: Suggestions for 
robustly tracking multiple participants  

When establishing our corpus designed to investigate 
multimodal interactional organisation with a mixed 
methodological approach, we needed to find ways to 
by-pass the limits imposed by the current Vicon system, 
i.e. to robustly track multiple participants over an 
extended period of time. In what follows, we present our 
solution which involves both changes in hardware and 
new algorithms for transforming the raw motion capture 
data.  

3.1 Study Design 
As the corpus should allow for investigating a range of 
different aspects of multimodal interactional 
organization, we choose a semi-experimental set-up that 
would engage groups of participants in (a) a free 
conversation and (b) a task-related interaction which 
requires the use of material objects and gesticulation. At 
the same time, we needed to both control the situation in 
a way to allow for comparison between different groups 
of participants and to be open enough to allow for 
spontaneous social interaction. Therefore, we invited in 
total 15 groups of participants (6 dyades, 9 triades) to 
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engage in a 20 minutes conversation, in which they were 
supposed to discuss and come up with a solution for a 
redesign of the local lake (the “Obersee”) into a new 
recreation area. We asked them to each assume a certain 
role (financial investor, local mayor, Greenpeace activist) 
and provided them with a map of the area as well as a set 
of toy objects (such as inline skater, diver, quad, 
barbeque) that they could use for inspiration and 
(re-)position on the map. Afterwards, they were asked to 
remain seated while the experimenter had to check the 
recording, get the questionnaires to be filled out, which 
provided us with further 10 minutes of free conversation. 

3.2 Technical Setup 
We recorded these interactions with four HD video 
cameras, ten Vicon T20 cameras and an additional 
microphone hanging from the ceiling (Fig.2). While the 
video footage was stored individually, the Vicon data 
was (i) firstly gathered and processed by a Vicon MX 
Giganet server, (ii) then sent to a PC using the Vicon 
Nexus software V1.4.112 to detect (patterns of) Vicon 
markers and to calculate their position and orientation 
and (iii) finally sent to another PC for saving the data. 
This setup allowed us to by-pass the limits of recording 
time and amount of data imposed by the Vicon Nexus 
software while using its pattern recognition facilities.  

Figure 2: Technical setup  
 
With this approach, we lose the function provided by the 
Vicon system of producing synchronized video and 3D 
motion capture data. We compensate for it by making 
one participant clap a slate at the beginning of the 
session, which creates a distinctive signal that can – 
afterwards – be automatically detected in the different 
media sources. In addition, a visual calibration pattern 
was positioned in the middle of the scene, so that we are 
able to calculate 3D information from the video footage. 

3.3 Rigid bodies for robustly tracking three 
participants  
In order to deal with the problem of losing markers and a 
resulting extensive post-processing, we decided to use – 

instead of individual markers – so-called “rigid bodies”. 
A rigid body consists of a pattern of several markers that 
are spatially arranged in a particular way and can be 
distinguished from other rigid bodies (Fig. 3 and 4). It 
has a unique ID assigned by the marker, which, in turn, 
denotes the corresponding body part, so that it can be 
assigned to a position and an orientation in 3D space. 
The main advantage resides in the fact that – in case 
markers get lost – they can be automatically reassigned 
to each body limb by the system. Also, in the case of 
marker loss, chances are high that at least one or two 
markers (out of the set of five) are continuously tracked, 
so that limited information about the whereabouts of that 
particular body part will still be available. Consequently, 
no extensive manual post-processing is required.1 
 

Figure 3: Three Sets of 8 rigid bodies worn by the 
participants 

 

Figure 4: Participants wearing rigid bodies 
 
In order to capture the most central movements of the 
human body, which are supposed to be interactionally 
relevant in a seated face-to-face setting, we used eight 
rigid bodies per person. These were attached to the head, 
back, left/right shoulders, left/right elbows and left/right 
hands (Figure 3). As we wanted to robustly track three 
participants simultaneously, we had to provide a set of 
24 rigid bodies that were clearly distinguishable from 
each other. While we started with a systematic 
arrangement of markers on a 10 cm x 10 cm grid 
(allowing for a 5 by 5 grid), we soon had to increase the 
grid size to 16 cm x 16 cm (8 by 8 grid) to be able to 
create enough patterns that the Vicon Nexus software 

                                                             
1Systematic evaluation of this approach will be undertaken. 
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would robustly recognize as distinct. 2  
While the size of the rigid bodies was determined by the 
technical feasibility and robustness, we were concerned 
to keep their size as small and unobtrusive for the 
participants as possible. Initial pre-trials suggested that 
participants would rather tolerate the larger rigid bodies 
attached to their back and the top of their head, and could 
cope with the 10cm x 10cm grids at the other positions if 
they were fixed appropriately (e.g. by using thin 
fingerless biker gloves). Being aware that rigid bodies 
could potentially influence the participant’s “natural” 
conduct in the experiment, we used a questionnaire to 
evaluate their experience of our setup (Section 4).  

3.4 Skeleton representation and inverse 
kinematics 
While our approach to by-pass the limits of the standard 
Vicon system (rigid bodies, “Vicon Nexus” software for 
detecting patterns of markers and giving their location 
and orientation, external data storage) allows us to 
robustly capture three participants over a long period of 
time, we have to find ways to map the rigid body's 
coordinates to a human skeleton model to calculate the 
joint angles. 
To calculate the joint angles of the tracked person, we 
use a mathematical representation of the human skeleton 
based on the Denavit-Hartenberg-Convention developed 
and used in the field of robotics. It describes the 
transformation of a single joint with one degree of 
freedom to the next adjacent joint. For this, it uses four 
elementary transformations: Ai = Rz i-1, * Tzi-1 * Txi *Rxi 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5: The four elementary transformation from one 

joint axis to the next adjacent joint 
                                                             
2 While the rigid bodies and their locations were robustly 
tracked, initial investigation of the motion capture data showed 
slight problems for four markers, where – at moments – the 
orientation of the marker could not be precisely tracked. This 
can be caused by different factors (positioning of cameras, 
obstruction, the marker itself) and more detailed analysis of the 
causes will be required. At the current state, we used entire 
plastic plates as the basis for the rigid bodies. In a next iteration, 
we might consider cutting out the ‘unused’ space to reduce 
their obtrusiveness for the user. This, however, will need 
further consideration regarding mirror-invariance in the 
patterns. 

The transformation Ai contains a rotation around the 
previous z-axis, a translation along the previous z-axis, 
another translation along the current x-axis and a rotation 
around the current x-axis. Such a transformation can be 
used to model either a complete human skeleton or a 
single arm etc. (Fig.5). A single rotation joint is 
represented as a cylinder and has the ability to rotate 
around the z-axis which is parallel to the height of the 
cylinder (see Fig.6 where e.g. the shoulder has got three 
joints represented as cylinders). 
 
 

 Figure 6: (a) Arm and (b) complete body representation 
in the Denavit Hartenberg Convention 

 
Based on the mathematical description of the skeleton, 
we have developed algorithms that firstly calculate the 
positions of the joints out of the rigid body coordinates. 
Secondly, we proceed with inverse kinematics, in which 
the angles of each joint are calculated using the tangent = 
sinus/cosine = adjacent/opposite = y0/x0 (Spong et al., 
2006; Brüning et al., 2008). 

 
 

 

 

 

 
 
 
 

Figure 7: Inverse kinematics – Calculation of a single 
joint angle from a local joint coordinate system  

 
From these calculations, we obtain the angles for one 
joint, which we then have to apply for all joints for each 
individual participant. When applying this procedure, we 
start by localizing the human body in space (i.e. the 
marker attached to the participant’s back) and from there 
proceed by calculating step by step each further joint. 
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3.5 Displaying data and integration into existing 
annotation tools 
Once we have obtained the angles for all joints, we can 
display a skeleton of the human participant showing its 
posture at a given moment in time during the interaction 
(Fig.8a). The motion capture data also allows us to 
display and analyze in 3D the motion trajectories that the 
participants perform (Fig.8b). 
 

Figure 8: (a) Representations from the current scene and 
(b) including motion trajectories of one participant 

 
In order to link the motion capture data with the video 
and sound files, we export the data obtained into a 
format that is supported by standard annotation tools 
(such as ANVIL) which are used by Conversation 
Analysts for transcription and annotation. To do so, we 
have developed a program that exports the motion 
capture data to the BVH (biovision hierarchy) format 
which is supported in the current version of the ANVIL 
annotation tool (Kipp et al., 2010). This file format 
consists of two main parts: one containing a description 
of the hierarchical order of the joints that describe the 
skeleton with the offsets from one joint to another; the 
other one comprising the angles of all joints written in 
the order of their hierarchical arrangement. 
However, at the current state, ANVIL only supports 
motion capture data displaying one human; extensions 
will be required to also include the appropriate display of 
the interactional organization between multiple 
participants. 

4. User Experience: How obtrusive are 
rigid bodies for the participants? 

When developing our approach of using rigid bodies we 
were concerned with the question to which extent these 
objects might be – when being attached to the human 
participants – uncomfortable to wear and obtrusive for 
interacting or grabbing objects. While initial pre-trials 
suggested this approach to be acceptable, we wanted to 
evaluate the participants’ experience more systematically. 
Therefore, after the experiment, we asked all participants 
to fill out a short questionnaire collecting information 
about their experience with regard to participating in 
(semi-)experimental studies, being videotaped and 
having used motion capture systems before.  

In particular, two aspects are of interest here. We asked 
whether the participants felt disturbed during their 
interaction (i) by being videotaped and (ii) by the rigid 
bodies attached to their different body parts. Analysis 
reveals that in general, participants feel only ‘slightly’ 
disturbed by the recording equipment with a similar 
distribution between (i) being video-taped and (ii) having 
rigid bodies attached to their bodies (2x 
s-field- -Pearson´s chi square test, with !=0,05). This 
result confirms our initial observations from the 
pre-trials and suggests that the rigid bodies do not seem 
to create more a unauthentic situation than video 
recordings – with the latter being recognized as a 
standard method of data acquisition in research.  
Considering the answers for the motion capture in detail, 
we find that the participants’ disturbance with regard to 
hand and elbow markers shows a tendency for slight 
disturbance while they feel hardly, i.e. ‘less than slightly’, 
disturbed with head, shoulder and back markers (Fig. 9).    

Figure 9: How disturbed do participants feel when (i) 
being videotaped and (ii) using rigid body markers?  

 
These results and their analogy with the video recording 
situation suggest that our approach of using rigid bodies 
for overcoming the problem of robustly tracking multiple 
participants might able to generate – both technically and 
socially – valid interactional data. 
In addition to asking users about their experience, close 
examination of the video recordings should allow to 
explore in more detail the rigid bodies’ impact on the 
users’ conduct in situ and the potential form of 
disturbance they might cause. Initial analysis of one 
group reveals that participants, at the beginning of the 
experiment, appear to position their hands rather flat on 
the table and without much manual actions or motions 
(Fig. 10a). This, however, changes step by step as the 
interaction unfolds. Around 8 minutes in the recording – 
when the participants are immersed in their roles and 
tasks – the first instance of gesticulation can be observed 
(Fig. 10b), and participants begin to bring their hand 
(and markers) close to some body else’s hand (and 
markers) while manipulating objects on the plan (Fig. 
10c). At this time, also vertical hand positions begin to 
occur, which suggests that participants are not 
particularly concerned (any more) with the question of 
the rigid bodies’ adherence or trackability (Fig. 10d). 
After 17 minutes, participants can be seen to approach 
their hands even closer to the co-participant’s hands (Fig. 
10e) and to also reach to the other side of the table while 
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crossing their co-participants’ arms and markers (Fig. 
10f).  

Figure 10: Participants’ gestures and manipulation of 
objects changing over time 

 
These observations suggest that during the first 5 to 8 
minutes of an experiment participants seem to use more 
controlled hand motions and gestures, while after this 
initial period both their individual motions and their 
collaboration with others become more vivid. However, 
the question whether this effect is linked to the general 
situation of being observed or whether it might be caused 
specifically by the rigid bodies needs further 
consideration. Further analysis will also need to include 
other groups of participants, to investigate the motion of 
different body parts and begin to link the participants’ 
motions to the concrete interactional tasks being carried 
out.  

5. Conclusion and Future Work 
In this paper, we have presented a system that is able to 
robustly track and record multiple participants over an 
extended period of time (30 minutes) with a 3D motion 
capture system. Linking this data to four HD video 
recordings, we are able to establish a multimodal corpus 
that is suitable for a combined qualitative/quantitative 
corpus analysis. The recorded data from the different 
sources can be analyzed using both Conversation 
Analysis and mathematical/statistical methods. 
Our approach consists of by-passing the limits of the 
current standard Vicon system (using rigid bodies) and 
ways of mapping the obtained coordinates to a human 
skeleton model (inverse kinematics) and to export the 
data into a format that is supported by standard 
annotation tools (such as ANVIL). With regard to 
traditional motion capturing the following main 
differences can be summarized as follows:  
 

Motion Capturing 
Aspects Traditional Rigid bodies 
Preparation 
(w/o subject) 

 - Build rigid bodies 

Preparation 
(with subject) 

- Attach 18 markers 
per user  
- Map markers to 
the body parts 

+ Attach 8 rigid 
bodies per user 

Comfort for  
subjects 

+ More comfortable - Less comfortable 

Stability of 
tracking 

- Markers lost easily 
- Once marker is 
lost, the system 
doesn’t know the 
position of that 
body part until the  
post processing 

+ Set of 5 markers 
more stable to track 
+  Once rigid body 
is lost, it can be 
automatically 
reassigned to each 
body limb by the 
system 

Data saving - After recording. 
Time consuming  

+ Real-time 

Post 
processing 

- Map marker (that 
got lost) to the 
corresponding body 
part 

+ None. Rigid body 
is always attached 
to a specific body 
part 

 
A first evaluation of the setup suggests that the use of 
rigid bodies does not create more an unauthentic 
situation than do video recordings.  
Next steps consist in further evaluating the impact of the 
rigid bodies on the user’s conduct, and we aim to 
establish automated ways of detecting typical motions to 
allow for more automated ways of corpus annotation. 
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