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Abstract Surprisingly complex tasks can be solved using a
behaviour-based, reactive control system, i.e., a system that
operates without an explicit internal representation of the en-
vironment and the own body. Nevertheless, application of
internal representations has gained interest in recent years
because such internal representations can be used to solve
problems of perception and motor control (sensor fusion,
inverse modeling) and may in addition be applied to higher
cognitive functions as are the ability to plan ahead. To en-
dow such a system with the ability to find new behavioural
solutions to a given problem in a broad range of possibilities,
the internal representation must be universally manipulable,
i.e. the model should be able to simulate all movements that
are physically possible for the body given. Using recurrent
neural networks, models showing this faculty have been pro-
posed being based on the principle of mean of multiple com-
putation (MMC). The extension of this approach to three di-
mensions requires the introduction of a joint angle represen-
tation which allows for computation of mean values. Here
we use dual quaternions that are singularity-free and unam-
biguous which allow for shortest path interpolation. In ad-
dition, it has been shown that dual quaternions are the most
efficient and most compact form for representing rigid trans-
formations. The model can easily be adapted to bodies of
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arbitrary geometries. The extended MMC net introduced in
this article represents a holistic system that can—following
the principle of pattern completion—likewise be used as an
inverse model, a forward model, for sensor fusion or other,
related capabilities.
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1 Introduction

Traditional Artificial Intelligence approaches focussed on
reasoning as a process working on explicit and purely sym-
bolic representations. Actions were only regarded as side
effects of higher-level processes. Perception’s only function
was to inform and construct the higher-level representations.
In this view, reasoning has been understood as the applica-
tion of rules with action and perception being mere subordi-
nate processes.

In contrast, during the last two decades the behaviour-
based approach focussed on a completely different perspec-
tive on intelligence, or in this case intelligent behaviour:
This approach does not presume representations, but con-
centrates on building acting systems instead, which fulfil
only limited tasks like simply wandering around in an en-
vironment without running into an obstacle or, as a more
complex task, acquiring information about the environment
to be used for homing. The systems are assumed to be ex-
tended in a bottom-up fashion: not by imposing an overly
sophisticated control structure to solve a certain task, but by
evolving a controller step-by-step. It is hoped that follow-
ing an evolutionary path will guide the construction of such
a system in a minimalist fashion, abandoning costly exten-
sions like unnecessary internal representations. To this end
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the environment itself can often be used instead of an in-
ternal model, an approach that is characterised by the terms
embodiment and situatedness (Brooks 1991a, 1991b).

While behaviour-based systems can solve surprisingly
complex tasks, e.g., starting from coordination of joints in
a walking robot going up to behaviours like crossing a
large gap (Brooks 1991a, 1991b; Pfeifer and Scheier 2001;
Bläsing 2006; Schmitz et al. 2008), without an explicit rep-
resentation of the environment, in recent years interest in
internal representations has grown, because they appear to
be important when such systems are to be developed further
(Steels 2003). However, internal representations are now as-
sumed to be directly influenced by and connected to mo-
tor functions or sensory influences. Higher cognitive func-
tions use the existing sensorimotor representations instead
of remodelling their function into an abstract representation
(which inevitably will be error-prone).

Systems which can be called embodied are reactive
systems in the sense that they at first exploit external
representations—the environment itself. At this stage their
behaviours rely on sensory data. Internal representations
may only gradually co-evolve in parallel and in service for
a specific action (Steels 2003). These representations may
later be used for higher-level functions. As a consequence,
these representations are always connected to the actions
themselves and are in service for these actions (Glenberg
1997). In fact, these representations are assumed to be re-
alised through the integration of neuronal activations in
sensing and acting related to the action itself and, as a conse-
quence, they are grounded and therefore avoid the problem
of symbol grounding (Harnad 1990). To the extent that these
representations concern properties of the body, we call this
form of representation second-order embodiment, follow-
ing Metzinger (2006), who defines it as “generating intelli-
gence by using an integrated representation of the body as
a whole”. As a consequence, Metzinger proposed the term
first-order embodiment for what is usually termed embodi-
ment.

The literature discusses three different tasks that rely on
internal representations which in the following will be de-
scribed as inverse modelling, forward modelling and models
for sensor fusion.

1. Inverse modelling: If the task is to grasp a visually
given object, the target position is defined in an egocen-
tric three-dimensional space. However, the movement to
reach the target must be described in terms of joint posi-
tions, displacements or muscle activations in some form.
Therefore, a transformation between these two reference
systems is needed. This transformation corresponds to
a mapping from Cartesian space to joint space and is
called an inverse model (e.g., Wolpert and Kawato 1998;
Stringer and Rolls 2007). This task may become, and
usually is, complicated if the body to be controlled is

characterised by extra degrees of freedom (DoF), i.e.,
contains more joints than necessary for the solution of
the task. In this case, there are not only one, but many so-
lutions to the task (Bernstein 1967). Therefore, the con-
troller has to select one out of these many possible solu-
tions.

Targeted limb movements can be found not only in
humans and other “higher” animals, but already in in-
sects, for example, in crickets (Honegger 1981), in lo-
custs (Page et al. 2008; Matheson and Dürr 2003) and
in stick insects (Cruse 1979). This suggests that inverse
models may be applied by many species.

2. Forward models: When performing fast movements or
adapting a movement to a fast-moving target, one can
not rely solely on sensory feedback for guiding the move-
ment, because of temporal delay inherent to the sensory
and motor pathways. A possible solution is to rely on
a fast prediction of the expected feedback that could
be provided by a forward model (Miall et al. 1993;
Desmurget and Grafton 2000). A forward model deter-
mines spatial locations when joint angles are given. For-
ward models are therefore often called predictors. Com-
bined with an inverse model, a possible error can be de-
tected faster than when relying only on proprioceptive
feedback.

When interacting in dynamic tasks, like catching a
ball, it is also necessary to be able to predict the move-
ment of target objects. Therefore a forward model that
forecasts future states from the current state is required.
Simple forms of predictive models can even be found
in insects (for example, stick insect (Bläsing and Cruse
2004), Drosophila (Strauss and Pichler 1998), see Webb
2004 for further examples).

3. Sensor fusion: A distinct feature of animals and hu-
mans, in contrast to most technical systems, is the very
high number of different modalities as well as sensors
for each modality. For example, the position of an arm
can be described by the visual system in a Cartesian,
body-centred coordinate system while different proprio-
ceptive sensors would provide joint angle-like represen-
tation (Makin et al. 2008). An advantage of such redun-
dant systems is that they allow one to compensate for er-
rors and disturbances, which however presupposes some
kind of integration mechanism of the sensory informa-
tion (e.g., van Beers et al. 2002; Wolpert et al. 1995;
Smeets et al. 2006, integration of visual cues (Muller
et al. 2009), or interpolation of positional information
like in the rubber-hand illusion (Botvinick and Cohen
1998)). Relying on redundant sensory information can be
found already in simple animals. An example are the dif-
ferent joint angle measuring sensory systems in insects,
e.g. Niven et al. (2009) showed that the different sensory
signals and visual information are integrated in targeted
movements.
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The three aforementioned tasks are examples of how ba-
sic tasks and behaviours require different sorts of internal
models. These tasks establish a set of requirements which
has to be fulfilled by potential implementations of such
models. On the one hand, an internal model should afford
the ability to represent all movements possible for a given
body including its kinematic and dynamic limits (Acosta-
Calderon and Hu 2005). On the other hand, it must be able
to relate different modalities to account for the diversity and
redundancy of sensors in natural systems (de Vignemont
2010). In other words, such a body model should be uni-
versally adaptable for perceptions and universally manipu-
lable when it is used for motor control and imagining body
movements.

At the same time, the different functions of internal mod-
els show that even quite basic behaviours as, e.g., grasping
or reaching, rely on quite complex internal models and rep-
resentations of complex structures, at first of the own body
but later-on of objects and the environment. This opens up
an evolutionary path on which internal models may have
co-evolved in service for specific actions as demanded by
Steels (2003). When these internal models became suffi-
ciently complex, they may be used in a different context and
for a different purpose. An internal model being capable of
the forward function could be used to predict the effect of a
behaviour. When the model can be decoupled from the body
(Hesslow 2002; Wilson 2002), the internal model may be
used as a simulator for planning ahead. The internal model
can then be used to try out new behaviours in a mental sim-
ulation or as done in imagination without actually perform-
ing them (Jeannerod 1999). If this ability to predict is com-
plemented by the ability to use these predictions as a basis
to decide on what behaviour will be performed, the system
is not anymore a reactive system, but can, according to the
definition of McFarland and Bösser (1993), be termed a cog-
nitive system. Therefore, if evolution has equipped a brain
of a reactive system with such a network, the step to ex-
ploit the predictive capabilities of this network and thereby
to become a cognitive system appears to be a small one. The
mechanism of internal simulation is critical for this notion of
a cognitive system, i.e., a system which is able to plan ahead.
Internal simulations means to imagine the consequences of
its possible actions and to choose an action which maximises
the benefit for the system—or as Shaw (1903) has put it “To
be able to choose the line of greatest advantage instead of
yielding in the direction of least resistance”.

Traditional solutions in robotics apply separate mono-
lithic models for each of the three tasks above, all of them
involving internal models. Wolpert and Kawato (1998) offer
a way of dealing with the inverse and the forward task by
introducing for each behaviour a pair of dedicated inverse
and forward models. The MOSAIC architecture (Wolpert
and Kawato 1998) has shown its ability to control systems

with a set of simple behaviours and to choose the appropri-
ate behaviour. Instead of applying a pair of separate models,
Morasso and Sanguineti (1994) proposed a body model by
combining both models in such a way that the output of the
inverse model is connected with the input of the forward
model and the output of the forward model with the input of
the inverse model. Thus, the body model is represented by a
recurrent network.

When addressing the third function, sensor fusion, appli-
cation of Kalman filtering has been proposed (Wolpert et al.
1995). Although this method can be applied to systems with
redundant degrees of freedom, due to a minimisation proce-
dure required for inverse modelling, only specific solutions
can be provided (Grush 2004). In other words, such a sys-
tem cannot exploit all possibilities the system is capable of
realising when exploiting its extra degrees of freedom.

In contrast, Cruse and Steinkühler (1993) proposed a
holistic network, forming a unified inverse-forward model,
which can represent any configuration that is geometrically
possible and may therefore be termed a universally manipu-
lable body model. While this network, termed mean of mul-
tiple computation (MMC) network, can be used as a forward
model, as an inverse model and as any mixed model (Cruse
and Steinkühler 1993; Steinkühler and Cruse 1998), it was
originally applied only to 2D structures and the extension to
3D structures was restricted to Cartesian coordinates. An ex-
tension to general coordinates including joint angles, for ex-
ample, requires additional processing of constraints which
introduce non-linearities. In this article the MMC princi-
ple is now applied to rigid transformations in general which
include translations and rotations in three dimensions. The
extension of angular relationships to three-dimensional ge-
ometries is not trivial. We apply the approach of dual quater-
nions that can be realised by using non-linear neural net-
works and leads to a more elegant structure. Therefore, the
MMC principle will be briefly reviewed first, followed by an
introduction to the dual quaternion structure.

The MMC network represents a pattern-completion sys-
tem that can be used for any task, forward modelling, inverse
modelling, any mixed case or for perception/sensor fusion,
depending only on the selection of the input values. As an
example structure we use a three-segmented arm perform-
ing a reaching task. In such an inverse kinematic problem,
a target position described in a three dimensional Cartesian
space is given to the network. One task for the network is to
come up with a solution of how the joints of the manipulator,
e.g., a human-like arm, have to be moved to reach the target
position. But the network could further be used in different
contexts for sensor fusion, e.g. to cancel out noise or errors,
or for computation of the forward kinematics.

This article addresses the structure of the network and
shows how the network can be used to solve inverse kine-
matic problems. Results are presented and are, in the last
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Fig. 1 Graphic representation of a planar (2D) arm consisting of three
segments, upper arm (L1), lower arm (L2) and hand (L3). Vector R

points to the position of the end effector (tip of the hand). D1 and D2
represent additional diagonal vectors

section, discussed and related to other approaches. The us-
age for sensor fusion and prediction will only briefly be dis-
cussed as well as how the network can be incorporated into a
controller scheme as such (for a detailed explanation on how
such an internal model may be used for control and planning
ahead in a six-legged walking robot see Schilling and Cruse
2008).

2 MMC—an internal model

The MMC model is implemented as a neural network and
fulfils the aforementioned requirements, i.e., it can be used
as an inverse model, a forward model or a model for sensory
integration.

At first, we will briefly review the general idea—the
mean of multiple computation (MMC) principle—and how
to construct a neural network model for a very simplis-
tic kinematic example. Following the introduction of dual
quaternions as a suitable representation of the kinematics of
a body, the principle will be applied to a 3D body model.

2.1 Classical MMC approach

The classical MMC network (Cruse and Steinkühler 1993;
Steinkühler and Cruse 1998) is an autoassociator, a type of
self-organising map that is constrained by geometric rela-
tionships representing the kinematics of, to take a simple
example, a serial chain manipulator, or, as a more complex
case, of a six-legged walker with 18 degrees of freedom. By
means of the geometric constraints, the network is forced
into its attractor states, which always represent valid, geo-
metrically correct solutions. In the following, we will use a
three-segmented planar arm as a simple example.

Figure 1 shows the robot arm: the arm, which is restricted
to movements in a plane, consists of three segments that are
connected by two hinge joints forming a serial chain and
attached to a fixed point by a third hinge joint (the “shoul-
der joint”). Following the mean of multiple computation

approach, each variable is described only by relative rela-
tions of the adjacent variables. However, each variable may
be part of many equations (therefore allowing for multiple
computations).

The simple 2D, three degrees of freedom manipulator
shown in Fig. 1 is represented by the vectors characteris-
ing its segments. In addition, we introduce diagonal vec-
tors in such a way that each node of the manipulator—these
are the joints and the end-effector—is connected with each
other node. Local equations can be formulated that describe
the geometric relationships among all these vectors. A lo-
cal relationship simply represents a triangle of three vec-
tors. When we construct all possible triangles, we obtain

(
n
3

)

equations. In our example we have 4 triangles and each vari-
able is part of two triangles:

L1 + D2 − R = 0

L1 + L2 − D1 = 0

D1 + L3 − R = 0

L2 + L3 − D2 = 0

(1)

Next, for each variable we solve the two equations of which
they are part of. Now every variable is described by a set
of—in our simple example two—equations.

L1 = R − D2

L1 = D1 − L2

(2)

The general idea of the mean of multiple computation prin-
ciple is to compute the multiple equations for a variable in
parallel and to assign the mean value of these multiple com-
putations to the variable itself. The whole process is itera-
tive. As a consequence, the value of a variable can change
over time. The new value for a variable is calculated as de-
scribed above and shown for the first segment as an example:

L1(t + 1) = 1

2
(R(t) − D2(t)) + 1

2
(D1(t) − L2(t)) (3)

The resulting equations can now be written as a weight
matrix describing a recurrent neural network (see Fig. 2).
A prerequisite is to decompose the vectors into their com-
ponents. For every single component (here x- and y-
components), a unique network has to be built. In our ex-
ample, the two resulting weight matrices are identical. In
the simplest case, the diagonal of the weight matrix consists
of zeros. To prevent oscillations it has shown to be sufficient
to introduce a damping factor d in the diagonal of the weight
matrix (discussed in the Appendix of Steinkühler and Cruse
1998).

L1(t + 1) = 1

d
(R(t) − D2(t)) + 1

d
(D1(t) − L2(t))

+ d − 2

d
L1(t) (4)
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Fig. 2 A recurrent neural
network containing 2 × 6 units.
The complete net consists of
two identical linear networks,
one for the x-components (black
lines) and the other for the
y-components (grey dashed
lines) of the vectors. The units
represent the components of the
six vectors L1, L2, L3, D1, D2
and R of the planar arm (see
Fig. 1 for graphic illustration). If
an input is given, the
corresponding recurrent channel
is suppressed (symbolised by
the open arrow heads). For
details see text

The damping values can be related to the time constant of a
low-pass filter (Makarov et al. 2008). They can differentially
influence the relaxation dynamics, but do not affect the final
position.

When the network is in a stable state, the different
equations describing one variable lead to exactly the same
value—the geometrically correct solution. The different
equations are redundant. As a consequence, when we intro-
duce a disturbance into the network by changing one vari-
able, the network starts to compensate for the disturbance
and approaches a new state in which the disturbance is dis-
tributed over all the equations and the error is minimised.
In other words, the network compensates for this error and
relaxes to a stable state in such a way that it adjusts its inter-
nal values until all the equations are satisfied again and the
network represents a correct solution (see Fig. 3 for an ex-
ample). When setting the variable describing the tip of the
end-effector—R, see in Fig. 1—to a new value, the equa-
tions for the calculation of the other variables containing
the R vector are influenced correspondingly. During all it-
erations, the new target value is imposed upon the network,
therefore overriding the calculation of new target vectors (in
Fig. 2 this is represented by the open arrow heads). As a
result, the network relaxes to a solution that maintains the
value of R. Thus, the network solves the inverse kinematic
problem. In Fig. 3(a) the state of the arm is shown for differ-
ent points of time and in (b) the velocity of the end effector
is plotted.

The function of the network can be thought of as the ap-
plication of the passive motion paradigm as stated by Mussa-

Ivaldi et al. (1988) to solve the inverse kinematic problem
for surplus degrees of freedom. The network behaves as if
we had a real stick model of the manipulator and now pulled
this model at its tip with a rubber band to the target loca-
tion. The tip will move towards the target while the segments
and joints will just follow the movement. In principle, the
MMC network does the same. While “pulling” at the tip by
changing vector R, all equations are pulled in a direction to
counterbalance the movement at the tip and to distribute the
movement equally to all variables.

However, as explained, until now, there remains one ma-
jor problem: In the MMC network all the constraints are
treated equally. When changing the x- and y-components,
the joint angles as well as the segments length are adapted.
However, unless systems with prismatic joints were used,
changing the length of a segment is generally not intended.
In the classical MMC approach, additional external con-
straints have been introduced that counteract the segment-
length change. While the convergence of the model is guar-
anteed for the linear MMC model (Steinkühler and Cruse
1998), i.e., a model without external constraints acting on
some variables, this has not be proven in general for the
model extended through constraints which act in a non-
linear way on the variables. Until now there are only proofs
for special cases (Steinkühler 1994).

To apply constraints, it was in general necessary to trans-
form the variables in the network into a different representa-
tion form (Schilling and Cruse 2007)—scaling the segments
in Cartesian Coordinates can be thought of as transposing
the coordinates to a representation of a direction and a length
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Fig. 3 Solution of the inverse kinematic problem. A planar arm with
three segments (i.e., one extra DoF) should point to a given position,
marked by a cross, starting from an initial configuration. In (a) the state
of the arm for every second iteration step is shown. In (b) the velocity
profile of the end effector is plotted over time

of the vector. A more elegant way is to use dual quaternions
to represent positions, rotations and translations which al-
lows us to use one single type of representation and make
explicit transformation unnecessary. As a consequence, it
is easy to maintain constant segment lengths. In addition,
while applying the passive motion paradigm does not cir-
cumvent that the arm may be pulled near to its joint limits,
the type of representation chosen here allows us to easily in-
troduce external constraints. In this way approaching joint
limits can be avoided on a local level by steering each sin-
gle joint away from its workspace limits. Such extensions,
as have been proposed by, e.g., Yoshikawa (1985) or Cruse
(1986), Cruse and Brüwer (1987) can be easily applied to
the MMC model as proposed here.

2.2 Dual quaternion MMCs

Above, we introduced the mean of multiple computation
principle using a vector-based model that describes a ma-
nipulator in two-dimensional Cartesian space. Usually, such
manipulators are represented in a different format and a con-
figuration is given by the position of the joints. The lat-

ter representation is better suited for control and for plan-
ning movements because controllers usually have to deal
with the task of transforming a problem description given
in a global 3D space into a joint configuration. While such
joint representations and transformations are trivial for two-
dimensional spaces, making the application of the MMC
principle for this case straightforward, the extension of
trigonometric relations to three dimensions is complicated.

Usually homogenous coordinates are used to represent
affine transformations. Homogenous transformation matri-
ces (Maxwell 1951) are 4 × 4 matrices forming the group
of rigid body displacements, called the Special Euclidean
group SE(3) (Murray et al. 1994). The advantage of ho-
mogenous transformation matrices is that translational and
rotational parts are represented at distinct places in the ma-
trixand that the concatenation of two transformations equals
the multiplication of the two matrices. Translations can
be easily described by a relative position, that is a three-
dimensional vector. Rotations in two dimensions are easily
represented through an angle of rotation and a rotation cen-
tre that is a point in space. In combination with translations,
the origin is usually chosen as the rotation centre because
the computations of the rotation are then trivial. A descrip-
tion of a rotation in three dimensions is more difficult. Of-
ten, an orientation is described by means of a concatenation
of three standard rotations, which are rotations around one
of the three axes of the coordinate system in a predefined
order. The orientation is represented by means of the three
angles of this standard rotations, called Euler angles. One
set of such standard rotations is given by the Tait-Bryan ro-
tations, i.e., the Yaw, Pitch and Roll angles. The represen-
tation through homogenous transformation matrices and es-
pecially the use of Euler angles for representing orientations
has some serious disadvantages (Aspragathos and Dimitros
1998; Wang 1999; Klein Breteler and Meulenbroek 2006):

– Singularities: Euler angles form a chart with the special
orthogonal group of rotations in three dimensional space.
This chart is mostly smooth, but there are singularities:
The so called “Gimbal lock”, occurring when, following
a rotation, two of the rotation axes are aligned in parallel,
so that one degree of freedom is lost. Such a singularity
is characterised by the fact that small changes in one rep-
resentation may lead to very large changes in the other
(Wang 1999; Klein Breteler and Meulenbroek 2006). In
this case, infinitesimal changes of orientation may result
in fast and huge changes in the Euler angles, which may
cause movements with high velocity.

– Ambiguity: Another problem with the Euler angle repre-
sentation is that a given orientation can be represented by
an infinite number of different combinations of Euler an-
gles (Foley et al. 1996). The map from Euler angles to the
Special Euclidean group is only surjective and not bijec-
tive. This is a serious disadvantage with respect to using
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such a representation for calculating mean values as re-
quired by the MMC principle. In such a case, the result
of the mean calculation of the involved parametrisations
depends not only on the orientations themselves which
should be averaged. Instead, the result also depends on
which set of possible Euler angles have been chosen to
represent the orientation.

– Ambiguous interpolation paths: As a consequence, the re-
sult of an interpolation can not be guaranteed to follow the
shortest path (this extends to homogenous transformation
matrices in general).

– Normalisation required in interpolation: Interpolation be-
tween two homogenous transformation matrices in gen-
eral is problematic. There is no simple computation of
a mean transformation or a possibility to combine two
weighted transformations. The resulting matrix does gen-
erally not describe a valid transformation. A normalisa-
tion of the matrix is required, which is quite costly.

– Compactness and efficiency: Orientation and position can
be represented by six numbers, but homogenous trans-
formation matrices use 16 numbers. Therefore, there is
a high degree of unnecessary redundancy. In addition, the
concatenation of two transformations becomes overly ex-
pensive (Funda and Paul 1990; Aspragathos and Dimitros
1998).

The main problems are related to the representation of ro-
tations: First, when describing an orientation by a set of stan-
dardised rotations the orientation can be mapped on multiple
sets of rotations. Second, choosing a 3×3 rotation matrix as
part of the homogeneous transformation matrix to represent
the rotation is inefficient. Ideally, a representation of a rota-
tion should describe a rotation in a compact way, allowing
for efficient computation. In addition, there should be no sin-
gularities in the representation. Concatenation as well as in-
terpolation between transformations should be easy. A suit-
able description of orientations or rotations is possible by
choosing an axis-angle notation: The rotation is described
by the rotational axis and by the angle giving the amount of
rotation.

Quaternions provide a compact and efficient way of rep-
resenting an axis-angle rotation which at the same time cir-
cumvents the aforementioned problems and can be easily
used for shortest path interpolation (see Appendix A, and
Hamilton 1844, 1866; McCarthy 1990; Bottema and Roth
1979): quaternions are quadruples (q = w + xi + yj + zk),
forming a normed division algebra over the real numbers
with three imaginary units (i, j, k). They can be thought of
as an extension of the complex numbers, but, while addi-
tion and multiplication are well-defined for quaternions as
in complex numbers, the commutativity is lost, thus form-
ing a skew field.

Quaternions are well suited to represent rotations. On the
one hand, the set of all three dimensional rotations is a three-
dimensional manifold whose topology is not trivial. It is

known as the special orthogonal group in three dimensions
or the rotation group for three-dimensional space SO(3). On
the other hand, all unit quaternions form a unit three-sphere
S3 and form a group under multiplication. There is a direct
relation between both groups. Unit quaternions capture the
topology and structure of the manifold of the rotation group.
The group of unit quaternions is a double cover of the group
of rotations in three-dimensional space. This means that ev-
ery rotation corresponds to two unit quaternions (q and −q).
While this twofold redundancy is important in some specific
application, e.g., for the description of spin in quantum me-
chanics, it can be neglected in our case. The combination
of two rotations can be realised as the multiplication of the
corresponding unit quaternions. As such, unit quaternions
provide a compact, stable and efficient way to express ro-
tations and use these in computations. Therefore, they have
become a standard tool for expressing rotations in Computer
Graphics (Shoemake 1985). There, quaternions are used to
calculate combinations of rotations (and reflections) and for
interpolation. But for the calculation of transformations in
general other representation formalisms are used which can
deal also with translations. This makes explicit conversions
before and after the use of quaternions necessary which is
quite inefficient and therefore not desired. To avoid these
conversions, one would need an extension of the quaternion
representation in which the properties of the quaternions are
still given and which can be used to represent translations.

How can translations be represented? One possible ex-
tension of the quaternions is the dual quaternions (Clif-
ford 1882; Kavan et al. 2008; McCarthy 1990; Bottema and
Roth 1979). Dual quaternions do not consist of real num-
bers, but instead use dual numbers. Dual numbers extend
the real numbers through the introduction of the unit ε—
for which ε2 = 0 holds true (with ε nilpotent)—constructing
a two-dimensional commutative associative algebra. A dual
number â consists of a non-dual part a0 and a dual part aε

(â = a0 +εaε). As a consequence, a dual quaternion consists
of eight numbers. Like the quaternions, the dual quaternions
form a non-commutative algebra over the reals. The real part
of the unit dual quaternions (q0) consists of four values and
represents rotations in the same way as a unit quaternion.
The important extension is the introduction of the dual part,
which can be used for representing translations. A transla-
tion by a vector about (tx, ty, tz) can be written as the unit
dual quaternion q̂ = 1 + ε

2 (txi + tyj + tzk) (the real vector
part of the dual quaternion equals zero). In analogy to using
half-angles for the representation of rotations (see Appendix
A), we also use half-translations. Then the composition of
transformation can be defined in exactly the same way as
for quaternions: for applying a transformation (represented
by the unit dual quaternion q̂) to a position P (written as the
dual quaternion p̂ = (vxi + vyj + vzk)) one has to compute

q̂p̂q̂∗ (5)
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q̂ can represent any transformation, a rotation, a translation,
a combination of both that can be accomplished by dual
quaternion multiplication (the order is critical) or any se-
quence of transformations. q̂∗ is the conjugate of the dual
quaternion q̂ (see Appendix A). In this way, unit dual quater-
nions can be used to represent the transformations describ-
ing kinematic relations. The multiplication of two such dual
quaternions corresponds to the concatenation of two trans-
formations. As for quaternions, the dual quaternions can
be geometrically interpreted: a quaternion can be written
as q = cos θ

2 + s sin θ
2 . The scalar part expresses the an-

gle of the rotation and the vector part expresses the nor-
malised axis of rotation (s is a unit quaternion describing
a vector, i.e., the scalar part is zero). In a similar way,

a dual quaternion can be written as q̂ = cos θ̂
2 + ŝ sin θ̂

2
with θ̂ = θ0 + εθε , ŝ = s0 + εsε . It can be interpreted as
the representation of a screw motion (Blohm and Craw-
ford 2007). Following Chasle’s theorem (Daniilidis 1999;
Chasles 1830), every rigid transformation can be described
as a rotation around an axis and a translation along the same
axis. The real part of the dual quaternion is used to represent
the rotation. θ0 is the rotation angle and s0 the rotation axis.
The translation along the rotation axis is given by θε . sε rep-
resents the position in space of the axis in an invariant way
(this is called the moment, see Kavan et al. 2008).

Dual quaternions have been used to describe rigid trans-
formations in robotics (Yang and Freudenstein 1964; Mc-
Carthy 1990; Bottema and Roth 1979), computer graph-
ics (Kavan et al. 2007, 2008) and other fields. They offer
a simple way to describe arbitrary geometric relations and
provide a mathematical background that allows combining
transformations by simple multiplication of the correspond-
ing dual quaternions. In a comparison of different represen-
tation formalisms, Funda and Paul (1990) have shown that
dual quaternions are the most computationally efficient and
most compact representation. For application in MMC net-
works, it is essential to be able to calculate a mean value of
two individuals representing transformations, i.e., to be able
to interpolate between the two (see Appendix B). In this re-
spect, dual quaternions are robust, exhibiting no singulari-
ties and being unambiguous (besides the antipodal property,
which is not relevant for our case). Quaternions—and dual
quaternions even more so—are often abandoned because
they, as 4-dimensional structures, are difficult to imagine or
illustrate. However, not only do they provide a geometrically
illustrative interpretation, one also gains a lot from the math-
ematical foundation of the quaternions: the extension to four
dimensions is essential for the properties, like the topology
of the manifold.

In the following, we use dual quaternions for the con-
struction of an internal model. The kinematics will be repre-
sented by dual quaternions and the MMC principle applied
to solve the kinematic tasks. The geometric structure will be
described by translations and rotations:

– Segments will be described by constant translations along
the segment (of course, constant changes of orientations
could be included here as well) being termed t̂i .

– Joints are represented as variable rotations or translations.
In hinge joints, the joint axis is fixed, while in ball joints
this axis can also be changed and a prismatic joint can
be represented by a variable translation. Below, we will
concentrate on rotational joints, which will be named r̂θi

.
– Additional diagonal vectors correspond to translations

and a set of rotations aligning these diagonals with the
coordinate frames given by the robot structure. These are
given as t̂di

and r̂δi
, or r̂γi

.
– The end effector position and orientation can be described

in the same way by a translation and a set of rotations
given as t̂r and r̂α , or r̂δi

.

2.2.1 Construction of the multiple equations—describing
the forward kinematics

Following the MMC principle, the kinematics should be de-
scribed in multiple ways. For the illustration, we will again
use the three-segmented arm (see Fig. 4). As a starting point,
the geometric structure is divided into subparts in exactly
the same way as has been described above for the classical
approach: triangles are used to describe the local geomet-
rical relationship, reducing the complexity and simplifying
the generally possible three-dimensional geometrical struc-
ture to relations acting in one plane. In our example, we end
up with the same set of triangles as in the planar approach,
but the representation is different (see Fig. 4): a kinematic
chain is described by the concatenation of transformations.
Some of these transformations are kept fixed (the segment
describing translations), while others are variable. The vari-
able ones are, on the one hand, the rotations describing the
joints. On the other hand, the variables represent the diag-
onal and end effector transformations with variable lengths,
which result from the forward kinematics.

As an example of setting up the equations of the MMC
network, we will concentrate on the description of the first
diagonal D1 (see Fig. 5), given by a rotation and a trans-
lation starting from the origin. We equate the generating
transformation for the given configuration of the arm which
is called a motor (a motor includes rotational and transla-
tional information): The transformation to get from the ori-
gin to the position of the second joint can be reached by the
concatenation of the rotation r̂γ1 followed by the translation
along this diagonal t̂d1 .1

1For calculation of the position with respect to the origin, following
(5) we have to apply this transformation to a dual quaternion describ-
ing the origin in the origin’s reference frame: r̂γ1 t̂d1 p̂(r̂γ1 t̂d1 )

∗ (note
the right multiplication of the following translation, as the translation
is with respect to the rotated coordinate frame). In the following, we
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Fig. 4 Graphical representation of the three-segmented arm, upper
arm (L1), lower arm (L2) and hand (L3). Vector R points to the po-
sition of the end effector (tip of the hand). D1 and D2 represent addi-
tional diagonal vectors. The figures illustrate how the equations can be
constructed. Each equation describes a triangle. The sides of the trian-
gle are the segments of the manipulator, the diagonal vectors and the
vector to the position of the end effector. These vectors are described
through a rotational part around the starting point of the vector and
through a translation following this rotation. Figure (a) to (d) show
the four different possible triangles and introduce segment names and
angle names

In the same way—through the concatenation of trans-
forma tions—the generating transformation can be calcu-
lated through the forward kinematics of the robot structure:
r̂θ1 t̂l1 r̂θ2 t̂l2 . These two transformations describe the same
configuration of the manipulator. In addition, we have to in-
troduce an auxiliary variable describing the necessary rota-
tion to align the two orientations in the second joint: r̂δ1 .
Following this operation, the diagonal can be described as:
r̂γ1 t̂d1 r̂δ1 = r̂θ1 t̂l1 r̂θ2 t̂l2 . This equation can now be solved for
each dual quaternion describing a variable transformation.
As an example, we can obtain r̂θ1 which equals the compu-

are concentrating only on the transformations and, due to the specific
properties of dual quaternions with respect to ambiguity, it is allowed
to equalise transformations obtained following different paths.

tation of L1 in (2) in the classical MMC approach:

r̂θ1 = r̂γ1 t̂d1 r̂δ1

(
t̂l1 r̂θ2 t̂l2

)−1

= r̂γ1 t̂d1 r̂δ1 t̂−1
l2

r̂−1
θ2

t̂−1
l1

(6)

As for the classical MMC approach and according to the
MMC principle, for every variable, different multiple com-
putations are generated by using different interrelations be-
tween the triangles (see Sect. 3, in the electronic supplemen-
tary material for a complete list of the equations). In the
example, for each variable, two different computations are
obtained. The second one describing the rotation of the first
joint involves the end effector position and the second diag-
onal vector.

Following this approach, the equations can be set up de-
scribing the kinematic chain. The network can directly com-
pute the forward kinematics when the joint angles, i.e., the
position of the end effector, are given. When dynamic equa-
tions are included in the computation of the mean, the move-
ment of the arm to the end configuration can be predicted
and simulated. For the computation of the inverse kinematic,
it is necessary to introduce for each joint an error compen-
sation, because when enforcing a new end position the net-
work compensates for this disturbance by distributing the
disturbance onto all parameters of the free variables. As a
consequence, translational shares arise in the dual quater-
nions representing the joints. This effect can be balanced by
transforming the translational error into a compensating ro-
tation of the joint (see Appendix C).

Critical for the mean of multiple computation approach
is, besides the parallel multiple computation of equations,
the calculation of a mean value. For rigid transformations,
it is not quite obvious how to construct a mean transforma-
tion as a result of a set of transformations. Ambiguous rep-
resentation formalisms can not lead to an unambiguous cal-
culation of a mean transformation. Therefore such ambigu-
ous representations are not suited for our approach. Angle-
axis representations for rotations and screw motions for rep-
resenting transformations in general are not afflicted with
this problem. There are methods for interpolating between
quaternions that have recently been expanded to dual quater-
nions as well, allowing the calculation of a mean for a set
of transformations (see Appendix B for details on differ-
ent methods that produce exact solutions or a good approx-
imation following a simple principle). We used dual quater-
nion linear blending (see Appendix) for computation of a
weighted mean of dual quaternions as it is a simple and effi-
cient method.

2.3 MMCs containing dynamic equations

One problem with classical MMC networks is that the net-
work is approaching the solution with a velocity profile that
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Fig. 5 Graphical representation of the three-segmented arm, upper arm (L1), lower arm (L2) and hand (L3). Vector R points to the position of
the end effector (tip of the hand). D1 and D2 represent additional diagonal vectors

Fig. 6 Calculation of the velocity in the MMC network shown in
Fig. 2. For details see text

starts with a high velocity, but later-on decreases exponen-
tially. Changing the damping factors can only influence the
time constant, but not the characteristic velocity profile. Hu-
man arm movements are characterised by very different ve-
locity profiles usually being bell-shaped (Morasso 1981) for
small movements. Is it possible to introduce dynamic influ-
ences into the model leading to such bell-shaped profiles?
In the following we show how the MMC principle can be
exploited to specifically control the relaxation velocity.

Velocities are defined as position changes over time (v =
δs
δt

). The MMC network lacks any explicit representation of
time. Instead, changes of positions are linked directly to the
network dynamics and the iterative process of approaching
an attractor is time dependent. This process depends on the
iteration steps. As a consequence, the velocity can be writ-
ten for the classical vector MMC as v(t) = s(t)−s(t−1)

δt∗(t−(t−1))
=

1
δt

∗ s(t) − s(t − 1). s(t) is the output value of the network
at time t . During the relaxation process, the input variables
are determined by the recurrent connections, i.e. the input

values are the variable values from one time step ahead at
(t − 1). The neural network therefore includes both val-
ues needed: the current value of a variable and as an input
the preceding value of this variable. The difference between
these two values in the vector MMC represents the change
of the variable during one time step being proportional to the
velocity. The velocity can be illustrated as a diagonal con-
nection in the neuronal network which calculates the differ-
ence between input and output (see Fig. 6). The equations
describing the velocities can now be included as one of the
multiple computations like any other equation. Calculation
of the mean can be used to integrate multiple velocity equa-
tions (or even more to connect these equations describing
accelerations).

Applied to the dual quaternion representation the change
of a joint variable during a timestep represents a rotation.
This rotation represents the angular velocity of the joint. As
rotations are concatenated by multiplication, the joint veloc-
ity is not computed as the difference between the joint angle
at time t and the joint angle at time t − 1, but it uses the
quotient:

r̂ωi
(t) = r̂θi

(t − 1)−1 ∗ r̂θi
(t) (7)

ωi corresponds to mapping the old joint value onto the cur-
rent joint value.

To illustrate how this extension allows to access the dy-
namic variables in a flexible manner, we will apply the ex-
tension to our earlier example, the three-segmented arm. We
will add three joint velocity variables and the corresponding
equations. In this simple extension, we are not using multi-
ple velocity equations for each joint (like equations relating
velocity to inertia, momentum or energy). Instead, to make
the example as simple as possible, we are only extending
the neuronal network in such a way that the dynamics of the
arm in forward and inverse dynamic problems can be repre-
sented and accessed. No additional influences have to be in-
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Fig. 7 The recurrent neural
network containing the velocity
equations. The complete net
consists of two identical linear
networks (application of
non-linear constraints not
shown), one for the
x-components and the other for
the y-components (not shown,
but identical to the network
representing the x-component)
of the vectors. The units
represent the components of the
six vectors L1, L2, L3, D1, D2
and R of the planar arm (see
Fig. 1 for graphical illustration).
If an input is given, the
corresponding recurrent channel
is suppressed (symbolised by
the open arrow heads). The
velocities are calculated as the
difference between two time
steps. The output position for
the segments is calculated by
applying the internally
calculated offset given by the
velocity to the preceding
position. For details see text

tegrated in this rather simplistic case, only the recurrent con-
nections for the velocities are fed back to the network and
weighted by a damping factor—the velocity damping factor
dvel . The introduction of the recurrent connections allows us
to influence how strongly the new computed velocity—that
is used as a control signal—should depend on the current ve-
locity by changing the velocity damping factor dvel . A high
damping value would lead to a smooth velocity profile with
low accelerations while a low damping value would allow to
quickly accelerate. This small recurrent network shows low-
pass properties and provides a form of a dynamic model for
the movement of the arm (the velocity damping factor dvel

can be thought of as being related to the inertia of the con-
nected segments). This model is of course an oversimplifica-
tion as it reduces the overall dynamic influences to low-pass
properties. But while its simplicity allows to explain how
dynamic influences can be integrated, the network is suffi-
cient to produce quite naturalistic arm movements.

As indicated in Fig. 6 for a classical vector MMC net-
work the kinematic network operates as an internal part
of the whole network including velocity equations, pro-
ducing a new internal position estimate (Lint_i (t)). This is
used for the calculation of the velocity. But the overall out-
put of the network including the velocity influences can
be computed as the sum of the current positional informa-

tion (Lint_i (t − 1) = Loutput_i (t − 1)) and the positional
change as given by the computed velocity (see in Fig. 7 the
whole network). This transfers to the dual quaternion net-
work, as the joint angles derived from the kinematic equa-
tions are forming the internal network (θint_i ) which are
used for calculating the joint angle change during one time
step (see ωi , (7)). The control signal (θoutput_i (t)) is com-
puted as the joint change ωi(t) applied to the old joint posi-
tion θint_i (t − 1) = θoutput_i (t − 1). The change of the joint
angles therefore does not solely depend on the neural net-
work dynamics of the geometry describing part of the MMC,
but is coupled to the velocity and can be linked to other ve-
locity influences (for further details see Schilling 2009).

The advantage of this network structure is that we are
now able to alter the velocity-dependency of movements di-
rectly and introduce influences on the velocity into the net-
work. This network can be used in a flexible way for differ-
ent purposes by adjusting the two damping factors.

– It can still be used for any forward, inverse or mixed kine-
matic problem in the same way as the kinematic MMC
network through turning off the velocity damping factor
(dvel = 0).

– On the other extreme, when only using the velocity re-
lated part of the network and switching the recurrent con-
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Fig. 8 Realisation of
quaternion multiplication in a
neural network: (a) Two
quaternions (left) are multiplied.
Each quaternion (qA, qB ,
qA ∗ qB ) is represented by four
units. Multiplication of the
values (indicated by the
asterisk) and the following
linear summation in the units at
the right provides quaternion
qA ∗ qB as a result. (b) Example
of the connections describing
the equation
r̂θ1 = r̂γ1 t̂d1 r̂δ1 t̂−1

l2
r̂−1
θ2

t̂−1
l1

using dual quaternions

nections of the kinematic inner network off (d = 0), the
model works like a dynamic forward model. If a position
change is given as an input to the network, depending on
the current state of the system (i.e. the current position
and velocities of the segments), the network predicts a
new arm position. The velocity damping factor describes
a property similar to the inertia of the arm segments intro-
ducing low-pass properties.

– When both damping factors are greater then zero, both
parts of the network including all recurrent connections
interact. The network can be used to solve inverse prob-
lems and at the same time allows access to the variables
related to dynamic properties.

2.3.1 Realisation in neural networks

Traditional MMC networks can be easily represented in neu-
ral networks (Cruse and Steinkühler 1993) because the equa-
tions used to represent the geometric structure are based
on summation and the resulting equations can be directly
transferred into a weight matrix for a neural network. In
contrast, for the structure proposed here, the equations de-
scribing geometrical relations use quaternion multiplication
for the concatenation of transformations. How can such
an operation be implemented in a neural network? Usu-
ally, neurons in neural network approaches are simplified
as computational units that compute the weighted sum of

their input. Different solutions have been proposed to im-
plement the multiplication of two variables, for example,
multi-layer perceptrons or architectures using spatial cod-
ing (Hartmann and Wehner 1995). The sigma-pi neuron pro-
posed by Rumelhart and McClelland (1986) allows for an
easier realisation. Sigma-pi units are somewhat more com-
plex units than summation units. A sigma-pi unit is com-
posed of two processes: the central part is—again—the sum-
mation of the weighted inputs. But prior to entering the
unit as such, the incoming connections can be multiplica-
tive. Thus, a sigma-pi unit realises the summation of prod-
ucts. Sigma-pi units may represent biological mechanisms
like axo-dendritic synapses or pre-synaptic inhibition. Fig-
ure 8(a) shows how such units can be used to realise quater-
nion multiplication. Figure 8(a), for simplicity, shows the
case for quaternions, whereas Fig. 8(b), as explained be-
low, depicts, in a more abstract way, the realisation of a
complete equation using dual quaternions. In Fig. 8(a) each
quaternion is represented by four units, one for each value of
the quaternion. Following the multiplication table (see Ap-
pendix, (8)) for quaternions, the multiplication can be di-
rectly implemented as shown explicitly for the first values
(the computation of the following values can be obtained in
the same way, but is not shown for better readability). This
realisation of the multiplication of quaternions can now be
used to implement the equations of the MMC approach.
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In dual quaternions, 2 times 4 units are required. Multi-
plication can be realised in the same way as for quaternions.
As an example, the network for (6) (r̂θ1 =
r̂γ1 t̂d1 r̂δ1 t̂−1

l2
r̂−1
θ2

t̂−1
l1

) is shown in Fig. 8(b). Every vari-
able transformation is explained by five or six other trans-
formations represented through dual quaternions. As a con-
sequence, four or, as in our example, five multiplications are
needed. The first intermediate result q̂γ1,D1 describes the
first diagonal, the next one below describes the second seg-
ment q̂

θ−1
2 ,L−1

2
. The results of the multiplication appearing

on the next level (counted from left to right) are also used
by other equations.

The computation of the equations necessary for the com-
plete network can be simplified. First, most of the computa-
tions can be performed in parallel. Second, while each mul-
tiplication requires a dual quaternion for storing the result,
these intermediate results are shared by different equations.
Therefore, not every equation for each variable needs addi-
tional units, because several dual quaternions always occur
in the context of one specific other dual quaternion. This is
the case, for example, for the two dual quaternions that de-
scribe the orientation and the dimension of one side of one
of the triangles that were used to set up the equations. Third,
inversion of a dual quaternion (see (17) in the Appendix)
corresponds to a change of the sign and, in a neural network,
could be realised by inhibitory connections.

3 Three-dimensional arm example using dual
quaternions

In this section, results are presented that simulate 3D move-
ments of a three-segmented arm produced by a MMC net-
work using dual quaternion representation. Two general
questions are addressed. First, the convergence of the net-
work is analysed. It is difficult to proof the convergence for
the dual quaternion MMC network because non-linear func-
tions are involved. Therefore, the behaviour of the network
for a large set of movements is analysed. The simple kine-
matic MMC network is used to produce movements cover-
ing the whole workspace showing the convergence proper-
ties of the network. This first set of simulations also illus-
trates the major shortcoming of the kinematic MMC net-
works concerning the relaxation of the network. The net-
work starts with high velocities and then slows exponentially
down. Therefore, the second set of simulations addresses
how the dynamic extension can overcome this problem. In
these experiments, the performance of the network for a hu-
man arm reaching task is evaluated and it is shown that the
network complies with characteristic criteria for human arm
movement.

Fig. 9 Normalised distance between the tip of the arm and the target
position over time. For all 1260 movements the mean normalised dis-
tance is calculated for each iteration step. The distances are normalised
with respect to the distance between starting position and target posi-
tion (The dashed lines show the standard deviation around the mean
value. The standard deviation is quite high in the beginning—some
movements consist of an folding and unfolding of the arm taking more
time for relaxation)

3.1 Convergence of the dual quaternion MMC network

In the first experiment, the inverse kinematic problem has
to be solved for a manipulator consisting of three segments
of equal length (1 unit) which are connected by ball joints.
This results in 9 degrees of freedom. In this positioning task
the arm therefore is redundant and has supernumerous de-
grees of freedom. The network was constructed as explained
above (the damping factor was d = 10 for the joint variables
and d = 2.5 for all the other variables. The velocity con-
trol is turned off, dvel = 0). The goal of the simulation is to
show that the network is able to solve the inverse kinematic
problem and to come up with a geometric correct solution
independent of the starting and end point. Every simulation
consists of a movement with the tip of the manipulator from
a the starting point to a target point. As points, we used three
sets of twelve different points which are equally distributed
around the base of the manipulator. The first set consists
of twelve points which all lie on a sphere with a radius of
three units which equals the overall length of the arm. That
means, this points are reached by the arm when the arm is
fully stretched and oriented towards this points. The distance
between neighbouring points is identical—the points are the
corner points of a icosahedron. The same holds true for the
second and third set of points used in the simulation, with
the only difference being that the distances from the base of
the manipulator to the points are changed. For the second
set of twelve points the distance to the base is two segments
length and for the third set of points it is one segment length.
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Simulations were performed in which each of the 36 points
was used as a starting point and from there movements to
the remaining 35 points where performed.

Before each run the arm was moved from the initial con-
figuration (fully stretched) over 100 iteration steps to the
starting position. The arm always reached the starting po-
sition during that time. Then the movement started towards
the target position and was measured for 100 simulation
steps. Overall 1260 simulation runs (35 simulations from 36
different starting points) have been executed. In principle,
many of the start-target combinations are rotationally invari-
ant. But as non-linear functions are involved and the starting
posture can differ between these start-target combinations—
at least for the starting postures in which the arm is not fully
stretched—it can not in general be assumed that these com-
binations are also invariant in the dual quaternion represen-
tation.

In general, the network solves the inverse kinematic prob-
lem for all combinations of starting and end points covering
movements through the whole workspace of the manipula-
tor. The network has no problem to execute all the move-
ments between the targets, even for diagonal movements
for which the manipulator has to cross its base position in
a very short distance, meaning the arm is strongly folded.
All movements show the same characteristics. The target
point is approached initially very fast. Over time the dis-
tance between end effector and target is exponentially de-
creasing (the manipulator overshoots the target usually a lit-
tle bit and in plots from an individual movement one can see
this as a small damped oscilation). In Fig. 9, the mean nor-
malised distance between the tip of the manipulator and the
target point is drawn, showing this characteristic. The path
of the end-effector follows a slightly curved line (individual
movements are not shown for the first experiment, but the
same properties hold true for the movements shown below
in the second set of experiment on more biological move-
ments). While it is not the shortest path in Cartesian Space,
it is an approximation to the path which minimises joint
movements. The shape of human arm movements is quali-
tatively similar. Human arm movements have been assumed
to follow straight lines, but more recently it is recognised
that movements can deviate from straight lines. Human arm
movements seem to follow straight lines only when being
restricted to two dimensions or when small movements are
made. In contrast, reaching movements spanning three di-
mensions and larger parts of the working space show more
curved trajectories (Atkeson and Hollerbach 1985).

Looking at the velocity profile of the tip of the ma-
nipulator shows—similar as for classical Cartesian MMC
networks—an initial high velocity which in principle is then
decreasing exponentially (see Fig. 10). These movement
characteristics are not in agreement with that of biological

Fig. 10 Velocity profiles for two movements. In both cases the start
and target point are lying on the border of the working range. The arm
is therefore fully stretched to reach this position. In (a) the angle be-
tween the arm pointing to the starting position and the arm after having
reached the target position is ninety degrees. Such a small movement
shows the typical exponential decreasing velocity. In (b) the angle be-
tween the arm pointing to the starting position and the arm after having
reached the target position is 180 degrees. In this movement the arm
crosses the whole workspace. Movements covering large parts of the
workspace show velocity profiles with multiple peaks as during such
movements the arm performs several submovements. At first the arm
is quickly folded, then during a second phase mainly reoriented (in this
phase the tip is moving slowly as it is very near to the base), and at
last the manipulator is unfolding towards the target with an initial high
velocity again

movements. In the next section, a solution for more biolog-
ically plausible movements—given through bell-shaped ve-
locity profiles—as has been applied in classical MMC net-
works (Schilling 2009) and has been explained above will
be applied to the dual quaternion network in a special move-
ment task. To conclude the first set of simulations: Until
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Fig. 11 Set-up of the experiment. The target positions are taken from
Bockemühl et al. (2010). The task is to reach for different targets, be-
ginning at a predefined starting position. Left (a): different target po-
sitions, front view. Right (b): view from behind and to the right of the
reaching subject, as used in the following figures (target 6 is shown)

now, we have shown that dual quaternion MMC networks
converge for points covering the whole workspace.

3.2 Control of a human-arm like configuration including
velocity equations

In the second set of experiments the extension of the MMC
network through equations including the joint velocities is
analysed. In this case, the network represents an arm com-
parable to a human arm (upper arm 0.3 m, forearm 0.3 m
and hand 0.15 m) with however 9 degrees of freedom, i.e.,
with the elbow as well as the other joints in the shoulder and
in the hand having three degrees of freedom instead of only
one or two, as is the case for a elbow or the wrist joint in a
real human arm. (Simulation of a seven DoF arm was also
performed but required more parameters to be adjusted. In
this case, for a joint with only one degree of freedom the re-
sulting dual quaternion is afterwards projected onto the axis
of rotation of the joint. Using appropriate damping factors,
the results were qualitatively the same.) The task was to gen-
erate movements towards a set of prespecified goals. In the
starting position, the upper arm hangs vertically down from
the shoulder, about parallel to the upper part of the body of
the subject sitting on a chair. The forearm and the hand are
oriented horizontally, pointing towards the front. The start-
ing position and the 16 target points are taken from an exper-
imental set-up investigating human arm movements (Bock-
emühl et al. 2010). Target positions are situated in a plane
parallel to the x–z plane (see Fig. 11), z describing the ver-
tical axis and x describing the transversal axis. Therefore,
targets require movements to the front, left and right, as well
as up and down.

Two different types of MMC networks were used and
compared. At first, a MMC network was set up in which
the geometric relations were described by dual quaternions
as explained in the previous section (the damping factor was

d = 10 and dvel = 0). In the second approach, this MMC
network is extended by additional equations containing dy-
namic relations of the manipulator, in our case referring to
the velocity and acceleration (which can be introduced in the
same way as velocities, see Schilling 2009) of joint move-
ment. The simple extension introduces a low pass property,
meaning that the velocity changes smoothly over time. Of
course, other characteristics could be used and additional
equations could be included in the velocity calculation, e.g.,
to approximate a muscle like behaviour. But, as will be
shown in the results, the simple extension already circum-
vents the problem of the exponential decreasing velocities
and produces more biological plausible velocity profiles (see
Schilling 2009, for details). The damping factors for these
equations will be correspondingly termed velocity damping
factors dvel and acceleration damping factors dacc (damping
factor d = 10, for the velocity, damping factor dvel = 2.5,
and, for the acceleration, damping factor dacc = 1). The gen-
eral characteristics of the MMC network are not changed
by this extension. The dynamic equations are affecting the
temporal progress of the network. The reached end position
and the used trajectory remains basically unaffected. (See
for a comparison of both approaches below and in the elec-
tronic supplementary material. In addition, Schilling (2009)
compares the behaviour of the network for different velocity
damping factors and is mainly finding changes in the veloc-
ity profiles, while trajectories are only slightly affected.)

Both MMC networks were able to solve all inverse kine-
matic problems, producing smooth trajectories within 30 it-
eration steps in all 16 cases. Here the comparison between
both MMC versions will be shown for only one target, tar-
get 6, because there was no qualitative difference to be ob-
served for the other 15 targets (the corresponding results
can be found in the supplemental material, Sect. 1—for both
types of network all the movements and velocity profiles are
shown and compared). Figure 12 shows the movement of the
arm controlled by the kinematic network and Fig. 13 shows
the same for the network including dynamic equations. The
main difference between the two versions can better be seen
when regarding the velocity profiles (see Fig. 14). For the
kinematic MMC approach the velocity is high in the be-
ginning and then decreases exponentially, while in the dy-
namic case there is a more bell-shaped velocity profile with a
broader distribution of high velocities. (Again, see the veloc-
ity profiles in the electronic supplementary material, Sect. 2,
for results on the other targets.) Furthermore, the end effec-
tor overshoots the target position. Such an overshoot could
of course be compensated by applying a control law being
somewhat more sophisticated than the simple low-pass char-
acteristic used here which results from the application of
constant damping values.

Nonetheless, comparing the distances to the target posi-
tion, both approaches end up in the vicinity of 1 cm of the
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Fig. 12 Arm movement
controlled by the kinematic
MMC network representing
joint configurations by dual
quaternions. (a) arm position
shown for every second iteration
step (dashed lines, end position
is plotted by solid lines), view as
in Fig. 11(b). (b) Same data
seen from back, from side and
from top. For coordinates see
Fig. 11(b)

Fig. 13 Arm movement
controlled by the dynamic
MMC network representing
joint configurations by dual
quaternions. (a) arm position
shown for every second iteration
step (dashed lines, end position
is plotted by solid lines), view as
in Fig. 11(b). (b) Same data
seen from back, from side and
from top. For coordinates see
Fig. 11(b)

target after around 25 iteration steps. The dynamic approach,
however, passes the target the first time after 15 iteration
steps.

For one more target the movements resulting from the
two different network versions are shown. Figure 15 shows
the behaviour of the kinematic MMC network when ap-
proaching target 4 and Fig. 16 shows the movement when
using the dynamic version reaching for the same target. Re-
sults for all the targets and comparisons of the velocity pro-
files are given in the supplemental material.

4 Discussion

The study of reactive systems in the strict sense (Mataric
1999, 2002) concentrated on systems that were assumed to
have no internal states and focussed on embodied systems
acting in an environment. In contrast, the understanding of
mechanisms underlying cognition is assumed to take inter-
nal representations into account. Considering internal rep-
resentations, it appears to be plausible that their basis is
formed by a model of the own body, which may later be
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Fig. 14 Velocity profile of the end effector. Comparison of movement
characteristics of the kinematic MMC and the MMC network including
equations for representing velocities

extended to include properties of the environment (Cruse
1999, 2003; Schilling and Cruse 2008). To learn how inter-
nal representations might be realised and applied by a neu-
ronal system, concentration on motor control tasks appear
to be a good starting point, because the domain of motor
control is considered a central paradigm for the application
of internal representations (e.g., Frith et al. 2000). For sim-
ple examples of behavioural elements, one might think of a
swing movement or a stance movement performed by a leg
during walking or a reaching movement performed by an
arm. How might neuronal systems be designed that are able
to control such behavioural elements? Most simple solutions
are given by fixed action patterns, movements elicited by a
stimulus and not changeable by further sensory feedback af-
ter the movement has once started. Neural networks control-
ling such fixed action patterns may be regarded as contain-
ing implicit representations of the body, for example. More
flexible solutions are given by the application of feedback
controllers. The feedback might be applied using a posi-
tive (Schmitz et al. 2008) or a negative sign, and it might
concern various entities such as position (and derivatives),
force or mixed information. Feedback controllers might be
equipped with inverse models and forward models, in par-
ticular when the system to be controlled contains redundant
degrees of freedom (Kawato and Gomi 1992). A most in-
tensively studied paradigm concerns reaching movements.
Given a starting configuration of the arm, the hand has to be
moved to a (usually visually) given point in space. The many
hypotheses being proposed as solutions for the task to find
a trajectory for the hand and an end position of the arm can
be classified into three groups. Two of them have been most
intensively studied. First, the equilibrium point controllers
and secondly, (different types of) minimisation procedures
(minimum torque (Uno et al. 1989), minimum jerk (Flash
and Hogan 1985), minimum work (Soechting et al. 1995)
and geodesics (Biess et al. 2007)). Both approaches require
inverse models. Minimisation approaches require the com-
putation of the complete movement before execution is pos-

sible which is not necessary for the equilibrium point con-
trollers.

Models of the third group that are characterised by the
“passive motion paradigm” (Mussa-Ivaldi et al. 1988) also
do not rely on the inverse kinematic computation in ad-
vance. Application of the passive motion paradigm requires
a model that (implicitly or explicitly) represents the kine-
matic properties of the body to be controlled. Following this
paradigm, the tip of the hand of this “internal model” can
then be moved to any desired endpoint and—as in the case
of the arm of a puppet—the arm segments follow passively,
providing an internally simulated solution to the problem.
The movements of the simulated joints can then be used to
directly control the movements of the corresponding actual
joints.

We are aware of two approaches following this paradigm,
the knowledge model of Rosenbaum et al. (1993, 1995,
2001) and the MMC network studied here. Both approaches
share the advantages of not requiring the precomputation of
the complete movement, being able to deal with extra de-
grees of freedom and finding solutions even if some extra
degrees of freedom may be controlled externally (e.g., by
fixing these joints). Compared with the knowledge model, to
date the MMC approach has the disadvantage that learning
is not possible yet (apart from a solution concerning linear
MMC nets in Cruse and Hübner 2008). On the other hand,
the number of neuronal units required is much smaller in
the MMC approach. Furthermore, as all relevant variables
(joint angles, joint and endpoint positions, as well as veloci-
ties) are explicitly addressable (which also includes the pos-
sible introduction of various constraints, e.g., joint limits),
the MMC model is capable of representing and exploiting
all geometrically possible configurations. This property has
the consequence that the MMC net can also be applied as
a forward model just by correspondingly selecting the input
variables.

We have addressed how a MMC model, here realised
by a network based on dual quaternions, can be used for
solving the inverse kinematic problem which is in robotics
usually thought of as the hard problem. Closed-form so-
lutions to the inverse kinematic problem are based on in-
verting the Jacobian matrix. While this can only be de-
rived for simple manipulator structures or specific indus-
trial robots underlying certain constraints (like positioning
of axes), closed-form solutions only exist for a small set of
manipulators. This can be extended through using a pseudo-
inverse (e.g., Whitney 1969). The inverse kinematic prob-
lem is also approached through numerical methods. On the
one hand, there are approaches also relying on inverting the
Jacobian matrices. These approaches cannot find a solution
when the matrix is singular. On the other hand, there are
optimisation approaches which essentially are performing a
sort of gradient descent. One such example is the cyclic co-
ordinate descent (CCD) algorithm (Luenberger 1984). CCD
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Fig. 15 Arm movement
controlled by the kinematic
MMC network representing
joint configurations by dual
quaternions for Target 4. (a) arm
position shown for every second
iteration step (dashed lines, end
position is plotted by solid
lines), view as in Fig. 11(b).
(b) Same data seen from back,
from side and from top. For
coordinates see Fig. 11(b)

Fig. 16 Arm movement
controlled by the dynamic
MMC network representing
joint configurations by dual
quaternions for Target 4. (a) arm
position shown for every second
iteration step (dashed lines, end
position is plotted by solid
lines), view as in Fig. 11(b).
(b) Same data seen from back,
from side and from top. For
coordinates see Fig. 11(b)

is an iterative heuristic search procedure over the joint an-
gles. CCD individually tries to change the joint angle in or-
der to minimise the overall positioning error. During one it-
eration step, it computes the position error and then steps
backwards through the whole structure—starting at the most
outer joint—and adjusts each joint value in order to min-
imise the position error. CCD has shown to rapidly find a
good approximation and is therefore often combined with
other methods which then take over and find an exact solu-
tion (Wang and Chen 1991). The complexity of the approach
increases dramatically with the complexity of the structure.

While the MMC approach is comparable in that for each
joint individually an error term is reduced, the MMC ap-
proach is relying on local relations and not one global error
measurement. The main difference is that the MMC network
is distributing the error onto different variables: In the in-
verse kinematic the end effector position is changed. The
joints try to compensate for the error and at the same time
the error is distributed to the additional variables (diagonals)
which contribute in the next iterations in guiding the over-
all optimisation process. This has the disadvantage that in
the MMC approach the number of used equations increases
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in more complex structure. But this can be counteracted
through distributing the complexity of the manipulator onto
different levels of abstraction (Kindermann and Cruse 2002;
Schilling and Cruse 2007). The advantage of the MMC ap-
proach is that each of the multiple computations contributing
to the calculation of a variable can be easily derived and cal-
culated. Especially all these computations are independent
and can be carried out at the same time. Unfortunately, this
makes it difficult to compare efficiency of MMC networks
and the CCD approach, as procedures like CCD are working
in strict sequence while the MMC network is a neural net-
work allowing for massive parallelisation. The second major
advantage of the MMC network is given by its autoassocia-
tor capacities which allow this network to be applied in addi-
tion to forward or any mixed kinematic problem in a flexible
manner.

As mentioned in the Introduction, Morasso and San-
guineti (1994) have introduced such a “holistic” model by
connecting an explicit inverse model with an explicit for-
ward model. Wolpert and Kawato (1998) proposed a differ-
ent approach. In their “MOSAIC” model for each individual
behavioural element, for example, a leg performing a swing,
a hand lifting a heavy object, a hand lifting a light object etc.,
a pair of models is assumed to be implemented, each consist-
ing of an inverse model and a forward model necessary for
the corresponding task. An advantageous property of apply-
ing such dedicated models is that during performance of the
action, the inverse models of several behaviours can be ac-
tive in parallel and the error (i.e., the difference between pre-
diction and sensory feedback) can be used to decide which
is the model that best matches the task at hand. A disad-
vantage compared with the MMC model is that only already
stored behaviours (or a weighted combination of stored be-
haviours) can be performed and estimated. Completely new
behaviours that may result from unusual exploitation of the
extra degrees of freedom may not be able to be produced (for
motor control or for planning) or be evaluated in a sensible
way. A related problem is that linear averaging may lead to
erroneous results.

There is another critical difference between the two ap-
proaches. When the number of behavioural elements be-
ing stored increases, in the MOSAIC model the number of
inverse/forward model pairs increases correspondingly. As
most behaviours require movement of the complete body
(even if only an arm appears to be moving), a large num-
ber of complete body models may be required. Therefore,
as an alternative approach we propose to use a unique
body model. The individual behavioural elements may then
be driven by separate networks that, however, share this
model. Support for a separation of the body model from
task-specific models has been provided by Cothros et al.
(2006). In the experiment people were trained to make tar-
geted movements with their arms while holding a robotic

device through which a novel force field was applied to
the hand. While adaptation to a given force field has been
observed many times before (Shadmehr and Mussa-Ivaldi
1994) and has been termed motor learning (Kawato 1999),
Cothros et al. (2006) studied adaptations to different force
field and were especially interested how these adaptations
influence each other. The result was that subjects who re-
turned to a known force field were able to completely re-
tain their previous learning. This result supports the idea that
during learning not an existing model of the complete body
plus the current task is adapted—or even newly learned—
but only an additional model of the object or the associ-
ated movement dynamics is constructed. Additional sup-
port comes from Davidson and Wolpert (2004) and more
and more evidence is emerging, favouring a modular or-
ganisation of internal models (Imamizu and Kawato 2008;
Ghahramani and Wolpert 1997; Krakauer et al. 1999).

As for its evolutionary plausibility, this unique body
model might well have been developed through the merging
of several of such dedicated networks, because application
of a unique model allows to minimise the number of neurons
necessary and to avoid errors resulting from inadequate av-
eraging between different modules. Actually, many results
indicate that internal models are widely distributed all over
the brain. For specific behaviours, the cerebellum is pro-
posed to implement forward and inverse models (Wolpert
et al. 1998). For coordination of hand and eye, Makin et al.
(2008) propose in addition the posterior parietal cortex, in-
cluding the intraparietal sulcus and the premotor cortex. Fur-
thermore, some neurological phenomena indicate that the
coupling between sections of the body model can be weak-
ened (e.g., OBE (Blanke et al. 2004, 2005), see Schilling
and Cruse 2008 for discussion).

To summarise: we propose not only to apply specific
and task-oriented models that can serve specific actions, as
found in reactive systems, but to go one step further and
think of ways models can be interconnected and related in a
flexible way. To this end, we propose a universally manip-
ulable model that is able to represent both active and pas-
sive movements that the real body is able to perform. The
model can be used for motor control (as an inverse model as
shown here), for perception and as a simulator for planning
ahead, i.e., applying actions to the model being decoupled
from the body (Hesslow 2002). These actions can be con-
trolled by specific modules representing knowledge required
earlier (i.e., by procedural memory) or by newly invented
behavioural elements.

The next step is to realise a network that is able to rep-
resent a complete body, for example, the body of a hexa-
pod walker with 18 joints and to use this body model for
planning ahead (for a review on the use of body models in
robotics see Hoffmann et al. 2010). It has been shown (Kin-
dermann and Cruse 2002; Schilling and Cruse 2007) that
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this task can be solved by modularising the structure us-
ing modules (e.g., representing a leg) connected in a hier-
archical manner. In this article, we only concentrated on one
such module representing an arm or a leg. Based on these
results, we are currently applying this approach to control a
six-legged robot equipped with the faculty to use its body
model for planning ahead and for finding solutions to new
problems.
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Appendix A: Dual quaternions

The Appendix shall, in brief, provide the necessary math-
ematical background on dual quaternions. As different au-
thors use different notations, those used here and the basic
calculations will be established. Quaternions, dual numbers
and dual quaternions will be introduced. For further read-
ing see, e.g., Hanson (2005) on quaternions. On dual quater-
nions, Kavan et al. (2008) is recommended as an introduc-
tion, whereas McCarthy (1990) provides more details.

A.1 Quaternions

Quaternion algebra was formulated by W.R. Hamilton
(Hamilton 1844). This algebra represents a special case of
the geometric algebras (also termed Clifford algebras).
A quaternion q is a 4-tupel q = w + xi + yj + zk, with
w,x, y, z being real numbers and i, j, k being the quater-
nion units. w is the scalar or real part of the quaternion and
(x, y, z) is usually termed the vector part. Summation and
subtraction are executed component wise. The quaternion
units are given as i2 = j2 = k2 = ijk = −1 and follow-
ing from this ij = −ji = k, jk = −kj = i, ki = −ik = j .
The multiplication of two quaternions can be derived from
the multiplication of the units. For every two quaternions
q0 = w0 + x0i + y0j + z0k and q1 = w1 + x1i + y1j + z1k

the product of the two quaternions is

q0q1 = (w0w1 − x0x1 − y0y1 − z0z1)

+ i(x0w1 + w0x1 + y0z1 − z0y1)

+ j (y0w1 + w0y1 + z0x1 − x0z1)

+ k(z0w1 + w0z1 + x0y1 − y0x1) (8)

or using a vector notation this can be subsumed to q0q1 =
(w0 + v0)(w1 + v1) = (w0w1 − 〈v0,v1〉) + w0v1 + w1v0 +
v0 × v1. The multiplication is associative and distributive,

but in general not commutative. The conjugate of a quater-
nion q is defined as

q∗ = w − xi − yj − zk (9)

For the conjugate of a product of two quaternions p, q the
following holds true: (pq)∗ = q∗p∗.
The norm of a quaternion q is defined as

‖q‖ =
√

w2 + x2 + y2 + z2 = √
q∗q = √

qq∗ (10)

The inverse of a quaternion q is only defined for q �= 0:

q−1 = q∗

‖q‖2
(11)

Quaternions can be used to represent rotations that, on the
one hand, are more compact, more efficient and unambigu-
ous compared to matrix notations, and, on the other hand,
are singularity free in contrast to representations like Euler
angles. A 3D rotation can be described by a rotation axis
given by a vector (ax, ay, az) of unit length and by a rota-
tion angle α. This rotation can be written as the quaternion

q = cos
(α

2

)
+ (axi + ayj + azk) sin

(α

2

)
(12)

As can be easily verified, this quaternion is of unit length.
Quaternions of the norm 1 are the unit quaternions, forming
a sub-group over the quaternions and forming the surface of
a hypersphere S3. The rotation group for three dimensions is
the special orthogonal group SO(3). There exists a mapping
between the two groups, i.e., the group of unit quaternions is
a double cover of the group of rotations in three-dimensional
space. In other words, every rotation corresponds to two unit
quaternions (q and −q).

A vector (vx, vy, vz) can be represented as a quaternion
v = vxi + vyj + vzk, i.e., the scalar part is zero. Applying a
rotation onto this vector would then be expressed as

qvq∗ (13)

The concatenation of subsequent rotation operations—q fol-
lowed by p—is given as the multiplication of the corre-
sponding quaternions. Analogous to the conventions used
for matrix multiplications, the order of the multiplicands is
determined by their frame of reference:

1. If the involved rotations are described with respect to
a fixed coordinate system—e.g., the world coordinate
system—then the concatenation is realised as a left mul-
tiplication, i.e., pq.

2. In contrast to this, if the second rotation is defined with
respect to the coordinate system generated by the first ro-
tation, then the concatenation is realised as a right multi-
plication, i.e., qp. This is the case for the transformations
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describing the kinematics of a manipulator. For example,
the rotation of the second joint is not given with respect to
the coordinate frame of the manipulator base or any other
fixed world coordinate system, but is given relatively to
the coordinate system of the prior segment which as such
is defined by the preceding rotation of the first joint.

A.2 Dual quaternions

The algebra of duals is similar to that of complex numbers.
A dual number is a two tupel â = a0 +εaε . a0 is the non-dual
part and aε the dual part with ε being the dual unit for which
holds true ε2 = 0. Summation and subtraction are done com-
ponent wise. Multiplication of dual numbers â, b̂ produces
âb̂ = (a0 + εaε)(b0 + εbε) = a0b0 + ε(a0bε + aεb0).
The conjugate of a dual number â is â = a0 − εaε .
The inverse of a dual number exists only if a0 �= 0 and equals
â−1 = 1

a0+εaε
.

Dual quaternions can be regarded as quaternions which
elements are dual numbers instead of real numbers. In
other words, dual quaternions can be regarded as a sum of
two quaternions q̂ = q0 + εqε . Analogous to quaternions,
dual quaternion addition and subtraction is done component
wise. Dual quaternions are associative and distributive, but
in general not commutative. The multiplication of two dual
quaternions—q̂0 = (w0 + x0i + y0j + z0k) + ε(wε

0 + xε
0 i +

yε
0j +zε

0k) and q̂1 = (w1 +x1i +y1j +z1k)+ε(wε
1 +xε

1 i +
yε

1j + zε
1k)—can be directly obtained through multiplying

out the dual quaternions following the introduced rules for
multiplication for quaternions and dual numbers (the dual
unit commutes with the quaternion units):

q̂0q̂1 = (w0w1 − x0x1 − y0y1 − z0z1)

+ i(x0w1 + w0x1 + y0z1 − z0y1)

+ j (y0w1 + w0y1 + z0x1 − x0z1)

+ k(z0w1 + w0z1 + x0y1 − y0x1)

+ ε(w0w
ε
1 + wε

0w1 − x0x
ε
1 − xε

0x1

− y0y
ε
1 − yε

0y1 − z0z
ε
1 − zε

0z1)

+ εi(w0x
ε
1 + wε

0x1 + x0w
ε
1 + xε

0w1

+ y0z
ε
1 + yε

0z1 − z0y
ε
1 − zε

0y1)

+ εj (w0y
ε
1 + wε

0y1 − x0z
ε
1 − xε

0z1

+ y0w
ε
1 + yε

0w1 + z0x
ε
1 + zε

0x1)

+ εk(w0z
ε
1 + wε

0z1 + x0y
ε
1 + xε

0y1

− y0x
ε
1 − yε

0x1 + z0z
ε
1 + zε

0w1) (14)

Differing definitions of the conjugate of a dual quater-
nion can be found, as dual quaternions can be regarded as

quaternions over dual numbers or as a sum of two quater-
nions. Both interpretations individually can be used to de-
rive conjugation. Following conjugation of a quaternion this
would yield q̂∗ = q∗

0 + εq∗
ε and following conjugation of a

dual number we obtain q̂ = q0 − εqε . For the application
of describing geometric relations by dual quaternions and
using—analogous to the usage of quaternions—left multi-
plication with the dual quaternion and right multiplication
with its conjugate for the calculation of the transformation
(see (13)), both conjugations have to be combined:

q̂∗ = q∗
0 − εq∗

ε (15)

The norm for dual quaternions is defined as

‖q̂‖ =
√

q̂∗q̂ =
√

q̂q̂∗

= ‖q0‖ + ε
〈q0,qε〉
‖q0‖ (16)

The inverse of a dual quaternion only exits when q0 �= 0:

q̂−1 = q̂∗

‖q̂‖2
(17)

The unit dual quaternions are those dual quaternions of unit
norm, i.e., ‖q̂‖ = 1, which means that for every unit quater-
nion ‖q0‖ = 1 and 〈q0,qε〉 = 0.

The dual unit quaternions with a zero dual part (qε = 0)
are equal to quaternions and therefore are related to ro-
tations in the same way as are quaternions. These dual
quaternions represent rotations. Furthermore, dual quater-
nions can be used to represent translations. A translation
about a vector (tx, ty, tz) is represented as the quaternion
q̂ = 1 + ε

2 (txi + tyj + tzk) which is also a unit dual quater-
nion.
Rigid transformations in general are combinations of ro-
tations and translations. Such concatenations are achieved
through dual quaternion multiplication (for the correct se-
quence of multiplicands see above). As an example, a rota-
tion expressed through the dual quaternion q̂ = q0 should
be followed by the translation p̂ = 1 + ε

2 (txi + tyj + tzk)

(defined in the root coordinate system from which follows
that the translation describing dual quaternion is left multi-
plicated):
(

1 + ε

2
(txi + tyj + tzk)

)
q0 = q0 + ε

2
(txi + tyj + stzk)q0

In analogy to the notation of quaternions, every unit dual
quaternion can be written as:

q̂ = cos

(
θ̂

2

)

+ ŝ sin

(
θ̂

2

)

(18)

where ŝ = s0 + εsε is a unit dual vector and θ̂ = θ0 + εθε .
This formulation can directly be interpreted as describing a
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screw motion. Following Chasle’s theorem (Daniilidis 1999;
Chasles 1830) every rigid transformation can be described
as a screw motion, i.e.,

– a rotation of θ0
2 around the rotation axis given by the vec-

tor s0,
– a translation of θε

2 along the rotation axis s0,
– and defined by the position of the rotation axis in space

given through sε which is the moment of the axis and
which can be obtained by aε = p × s0 with p being a
vector to any point on the axis.

Appendix B: Computation of the mean: quaternion
interpolation

One disadvantage of most representation formalisms con-
cerns the question of how to interpolate between two states.
While the translational part is trivial, the rotation is prob-
lematic. Therefore we want to concentrate at first on how
to blend an arbitrary number of rotations before extend-
ing this algorithm to transformations in general. Homoge-
nous transformation matrices are usually seen as the stan-
dard representation formalism. Nonetheless, blending be-
tween two individual matrices is usually done via a detour.
Computer graphics heavily deal with such interpolations and
use quaternions to interpolate. Even though this requires
one additional transformation from the rotation matrix to a
quaternion and another one back from the quaternion rep-
resentation to a matrix, the advantages outweighs these ad-
ditional computations. Furthermore, this procedure is more
efficient and computationally less costly.

Interpolation of quaternions can be easily imagined: Each
unit dual quaternion representing a valid rotation corre-
sponds to a point on the four-dimensional unit hypersphere.
The shortest circular arc connecting these two points should
now be found. To illustrate this problem, we can think of
a two dimensional unit circle in the x–y plane. If we want
to find the point lying in the middle of the two, one way
is to find a rotation which maps one point onto the other.
For the two-dimensional case the centre of rotation is sim-
ply the origin and the angle of rotation is the enclosed angle
of the two radii. The point lying in the middle can now be
calculated by applying a rotation with half the angle on the
first point. In the same way, other points between the two
points on the unit circle can be found and can be used to
interpolate between these two. This procedure can be ex-
tended to the four-dimensional hypersphere. In the case of
the four-dimensional hypersphere, the center of rotation can
not only be described by the origin, but must be represented
by a rotation axis. Together with the origin, the two points on
the unit hypersphere span a three-dimensional hyperplane.
The rotation takes place in this hyperplane around the ori-
gin. The rotation axis can therefore be described by a vector

which is orthogonal to the hyperplane—the normal. The ro-
tation angle is, again, the angle enclosed by the two radii
and for interpolating between the two points a rotation of
the first point around the same axis by an amount of the
original rotation angle can simply be applied. This transfor-
mation describing the transformation between two quater-
nions p and q can be computed as p∗q. The Spherical Lin-
ear Interpolation algorithm (SLERP) (Shoemake 1985) fol-
lows this procedure to blend two quaternions which each de-
scribe a rotation. This approach produces shortest path, con-
stant speed and shortest path invariance (Shoemake 1985;
Kavan et al. 2007). However, the major disadvantage of this
algorithm is that it can not be extended to more than two
quaternions. When we want to interpolate between more
than two quaternions, we have to start with two and after-
wards we can interpolate the result with the next quaternion.
Unfortunately, the result of this procedure depends on the
sequence and is not very efficient.

An easy solution which is at the same time fast and ef-
ficient has been proposed by Govindu (2004), Kavan and
Žára (2005). Interpolation is realised component-wise over
the set of quaternions. It is, therefore, named Quaternion
Linear Blending (QLB). Afterwards, the result is normalised
through projecting it onto the unit hypersphere. Again, this
can be better illustrated for the two dimensional case: the
point lying between the two other points is constructed as
lying on the straight line connecting both points. Then, the
point is projected to the unit circle. This method can be ex-
tended to an arbitrary number of quaternions. It uses the
shortest path and is coordinate invariant. But due to the non-
linearity of the projection onto the unit sphere, it does not
result in constant velocities. Kavan and Žára (2005) have
computed the upper bound for the difference of an interpo-
lation angle produced by the linear component-wise method
and a SLERP like method. The upper bound is 8.15 deg, but
in practice it is usually much smaller.

How can these methods for blending between quater-
nions be extended to dual quaternions? For both methods
presented, there exists an extension to unit dual quaternions.
The Screw Linear Interpolation (ScLERP) is the extension
of the SLERP algorithm. A dual quaternion is not simply
describing a rotation around an axis located in the origin. As
mentioned above, a dual quaternion describes the parame-
ters of a screw motion. In addition to the axis of rotation
and the rotation angle, these parameters describe the rela-
tive position of the rotation axis, given by a translation vec-
tor, and a translation along the rotation axis. In the same
way SLERP is interpolating two rotations by weighting the
connecting transformation matrix between these two quater-
nions. This means SLERP blends rotation axis and rotation
angle described by the two quaternions individually over
time, ScLERP blends dual quaternions by interpolating in-
dividually the parameters describing the screw (for details
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Fig. 17 Graphical representation: two segments, upper arm (L1),
lower arm (L2), D1

see Kavan et al. 2006, 2008). ScLERP preserves the proper-
ties of shortest path, constant velocity and coordinate invari-
ance. Again, a simpler solution is the component-wise inter-
polation between a set of dual quaternions (Dual quaternion
Linear Blending (DLB)), being easier to compute and being
extendable to more than two dual quaternions. Kavan et al.
(2006) proposed an iterative algorithm for computing a valid
dual quaternion as the result of a weighted set of dual quater-
nions which would be the equivalent to QLB for the dual
quaternion case. For our case the component-wise interpo-
lation is sufficient, as the interpolated quaternions stemming
from multiple computations will converge over time due to
the iterative nature of the MMC approach.

In short, the two approaches differ as SLERP and
ScLERP handle individually the parameters describing the
rotation, or the screw describing the transformation, while
the linear blending works component-wise. As for the lin-
ear blending of quaternions, a normalisation is also needed
for DLB which can be computed easily. The upper bound
for the derivation of DLB from ScLERP is for the rotational
part—as for quaternions—8.15 deg and for the translational
part 15.1% of the translation between the two dual quater-
nions involved. DLB is therefore not producing movements
of constant speed, but regarding the usually occurring small
differences, it is acting at almost constant speed. DLB gen-
erates the shortest path and coordinate invariance holds true
(Kavan et al. 2006, 2007, 2008).

Appendix C: Compensation of displacements in
rotational joints

On the one hand, the MMC network can describe a kine-
matic chain by using dual quaternions and solve in this
way the forward kinematic problem. On the other hand, for
solving the inverse kinematic problem the mean of multiple
computation principle is used by computing the mean as an
interpolation over a set of dual quaternions. In the introduc-
tion of the MMC vector network, we have mentioned the
need for additional constraints which are applied between

the iteration steps of the recurrent network. This constraints
were used in order to keep segments length constant or to
monitor joint angles because the recurrent network searched
for an attractor by distributing the external introduced distur-
bance over all variables without differentiating between vec-
tors which should keep their length and ones that are flexible
(like the diagonals).

The computation of the kinematic chain through dual
quaternion can directly address this problem of changing
segment lengths: the multiple computations act on con-
catenations of dual quaternions. The segments can be eas-
ily fixed by keeping the according translation fixed. The
joints on the other hand should only represent rotations and
there should be no translational portion in dual quaternions
representing a joint. When disturbing a quaternion MMC
network—like in an inverse kinematic task introducing a
new target position—one introduces an error term which is
spread over all variables which are the dual quaternions rep-
resenting the rotation in the joints and rotation as well as
translation of the diagonals while the translations along the
segments are kept fixed. As a result, it can happen that this
lead to translational shares in the dual quaternions represent-
ing a joint.

To illustrate the problem: when looking at the multipli-
cation table of dual quaternions (see (14)) what one can ba-
sically see is that combining two arbitrary unit dual quater-
nions results in a dual quaternion, in which the dual part de-
pends on both—rotational shares and translational shares of
the dual quaternions—, but the real part of the dual quater-
nion which represents the rotation is just depending on the
two involved rotations and does not take the translational
parts into account. This means, that the rotational part, in
which we are interested when computing the joint values for
solving the inverse kinematic problem only depends on the
rotational parts of all influencing transformations. One can
compare this to calculating the angular sum in a triangle.
For the planar case this is exactly what we are doing. For
any arbitrary case of three-dimensional rotations the MMC
principle reduces one equation to a triangle in which then all
rotations are concatenated in order to add up to an identity
rotation.

To illustrate the solution in general, we are concentrat-
ing again on a geometric illustration of the problem for one
equation, i.e., one triangle. As an example, we take the first
two segments and the diagonal. When the network is now
describing a current configuration (see Fig. 17(a)) all the
rotation describing dual quaternions have no translational
shares. What happens, if we now are just elongating the di-
agonal? The only value that is changed is the length of the
translation along the diagonal. What the network should do
is an extension of the arm which can be only done by moving
the two joints (see Fig. 17(b)). But none of the rotations is
affected by the modification and therefore, as argued above,
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Fig. 18 Graphical representation: two segments, upper arm (L1),
lower arm (L2), D1

there is no disturbance introduced into the relations of rota-
tions. Still the rotational parts of the network are in a stable
state. The network will remain in the overall state because
the only other solution would be to distribute the displace-
ment onto the two other translations. But these are the seg-
ments with a fixed length. So, the network is stuck in this
situation. The solution is to use the displacement which ac-
cumulates in the dual quaternions representing the joints as
an error signal affecting the joint value.

How can one account for this error? We explain the solu-
tion directly for the general case, using a three dimensional
example (Fig. 18), but only concentrate on one equation.
One equation can be described as a triangle, a concatena-
tion of transformations which always lie in one plane. Sup-
pose, the current state of the variables is forming a solu-
tion, i.e., they represent a coherent configuration. This is in-
dicated in Fig. 18(a) through the two black segments and
the other transformations represented as lines on the plane.
A change of the translational part of the transformation de-
scribing the endpoint of the kinematic chain—one of the di-
agonals or the end-effector vector—is depicted as the trans-

parent arrow. A translational error arises in all of the rotation
describing transformation which shall be compensated (red
transparent bar). For a single joint this translational error has
accumulated along the sequence of transformations, but dur-
ing the last transformation the error is only shifted along the
segment actuated by the joint and its relative position is not
changing. The error can therefore be used to construct a de-
sired position of the following segment end point (shown in
Fig. 18(b) and (c)). One can now calculate a rotation which
aligns the vector between current end point and desired end
point. This rotation applied to the joint rotation compensates
for the error. In the example, the translational error—which
is the dual part of the first joint rotation dual quaternion—
of the first joint is moved along the first segment (red bar
in Fig. 18(b)). To account for this error, the axis of the first
joint is shifted. This can be done by a rotation which can be
easily described and applied as a quaternion. The rotation
needed is the one which aligns the current relative segment
translation and the desired segment end point position which
is given as the concatenation of the segment translation and
the error translation (in Fig. 18(b) and (c)). These are the two
vectors delimiting the enclosed rotation angle β . The result-
ing quaternion q̂error representing the compensating rotation
can be set-up

q̂error =

⎡

⎢⎢
⎣

cos β
2 0

0 0
−1 ∗ sin β

2 0
0 0

⎤

⎥⎥
⎦

and applied to the dual quaternion representing the rotation
in the first joint.

r̂
′
θ1

= q̂errorr̂θ1 q̂∗
error (19)

This dual quaternion is now used as the value for the joint
rotation and consists only of a rotation.
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