
ITRACT – Best Practice Guide

Work Package 4 and 7

Information architecture and exchange
mechanisms for efficient transport concepts

Investing in the future by working together for a
sustainable and competitive region

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hanze UAS repository

https://core.ac.uk/display/159430532?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 II

Improving Transport and
Accessibility through new

Communication Technologies

Reference & Copyright

Title: Best Practice Guide on Information architecture and exchange

mechanisms for efficient transport concepts
Date: March 2015
Commissioned by: Hanze University of Applied Sciences
Authors: Johan Blok and Jacob Mulder (WP 4 leader)
Address: Hanze University of Applied Sciences

PO Box 3037
9701 DA Groningen
The Netherlands
www.hanze.nl

This Best Practice Guide may be freely distributed and/or its contents reprinted as long as no fee is
charged and the source is correctly attributed to ITRACT, a project funded by the Interreg IVB
North Sea Region Programme of the European Union.

 III

Improving Transport and
Accessibility through new

Communication Technologies

Introduction

Accessibility and connectivity are essential for livability and economic growth
throughout the world. Improving the accessibility of physical transport is important
for achieving the social and economic inclusion of rural areas. In reality, rural areas
lag behind with respect to physical accessibility and connectivity. The ambition of
the ITRACT project (Improving Transport and Accessibility through new
Communication Technologies) was to use ICT to create smart mobility services to
improve accessibility and connectivity in rural areas.

The Digital Agenda for Europe is vital for realizing optimally accessible and
connected rural regions in the North Sea Region. Moreover, collaboration between
regions is essential to solve the problems of limited accessibility and connectivity in
Europe. The transnational collaboration within the North Sea Region proved to be
essential for realizing the mobility services within the ITRACT project, undertaken
within the Interreg IVB North Sea Region Programme.

The ITRACT project started in 2012 and concluded in March 2015, developing
more than 40 new ICT transport service concepts, in close interaction with users,
transport organizations, transport authorities and local governments. These new
smart mobility services were tested in fifteen pilots in five different rural regions in
Norway, Sweden, Germany, England and the Netherlands. A novel ICT
architecture was built to support the services. In a project extension awarded in
2013, new algorithms were developed to optimize the combined transportation of
people and goods. These algorithms were also tested in pilots. To achieve the
results, the project was divided into ten different work packages.

Work packages of the project
The ten different work packages were led by various project partners who
collaborated in multidisciplinary and cross-border exchanges to create innovative
and creative service concepts which were tested in diverse environments and
regions.

General Project Activities
WP 1 Project management (Hanze University of Applied Sciences)
WP 2 Publicity and communication (University of Stavanger and Värmland County
Administrative Board)

 IV

Improving Transport and
Accessibility through new

Communication Technologies

Service Development, Realization, Implementation and Testing
WP 3 Development of services and self-optimizing networks (Viktoria Swedish
ICT)
WP 4 Information architecture and exchange mechanisms (Hanze University of
Applied Sciences)
WP 5 Pilot testing on transport and accessibility (Jade University of Applied
Sciences)
WP 7 Development and implementation of improved smart algorithms
(Karlstad University)
WP 8 Dynamic scheduling and incentivizing strategies for sustainable transport
(University of Groningen)
WP 9 Pilot testing on transport and accessibility (Alliance Healthcare)

Policy Recommendations
WP 6 Evaluation and strategy development (University of Groningen)
WP 10 Strategies for smart specialization of the regions (Hanze University of
Applied Sciences)

 V

Improving Transport and
Accessibility through new

Communication Technologies

This Best Practice Guide
This Best Practice Guide (BPG), ‘Information architecture and exchange
mechanisms for efficient transport concepts’, is the result of WP 4.

Within the ITRACT project, Work Package 4 provides an ICT platform consisting
of elements that support the use of dynamic information generated by services,
apps, users, sensors, etc. The platform provides apps with common functionality in
the form of building blocks to solve similar problems only once. It allows apps to
combine all types of transport (multimodal transport) and provides up-to-date
information about the current transport situation (traffic jams, delays, congestion,
etc.) potentially affecting planned trips. The platform thus provides features
independent of the mode of transport and location. As such, it provides the
technical means to cross the borders between modes of transport; borders that are
due to the way transport is currently organized. As a result, the platform prepares
the way to explore new means to organize transport.

This document is meant for ICT specialists who are building platforms for
transportation support as well as for non-ICT specialists who are interested in the
complex world of ICT platform realization and what difficulties can be expected.
Therefore, this document provides a technical overview of the requirements,
architecture and implementation of the project. Some parts, indicated with an
asterisk *, are quite technical, especially those presenting the implementation and
integration of the building blocks. They can be skipped by readers without technical
knowledge, who are recommended to proceed with the part on management and
execution of an ICT research project.

 VI

Improving Transport and
Accessibility through new

Communication Technologies

 VII

Improving Transport and
Accessibility through new

Communication Technologies

Table of contents
1 Requirements ... 1

2 Architecture .. 3

3 Implementation* ... 5

3.1 Building Blocks ... 5

4 Process & Iterations* ... 15

4.1 First Iteration .. 15

5 Lessons Learned ... 19

 VIII

Improving Transport and
Accessibility through new

Communication Technologies

 1

Improving Transport and
Accessibility through new

Communication Technologies

1 Requirements

Even today, despite technological advances, the majority of information about
public and other forms of transport is still static and bound to a particular mode of
transport. In other words, the information system and organization of public
transport is still based on the means of communication available when the first
railways appeared in the nineteenth century. The consequence is that there are
huge gaps between citizens’ transport needs and public and other forms of
transport services offered, especially in rural areas.

Increasingly, dynamic information is becoming available – also online – for
example, on delays, temporary detours, congestion and current travel needs.
Dynamic information can be used to create more tightly fitting travel solutions
and to update travel plans along the way when relevant changes occur. Ideally,
this type of information would be used to create smarter mobility solutions that
are more flexible and more fitting to current travel needs. Smarter mobility
services are especially desirable in rural areas to create a better match between a
relatively small number of travellers and a limited number of transport options.

The services defined in WP 3 and the planned apps of WP 5 provided input for the
required functionality of the platform. These apps vary from live travel maps to
stop information and ride-sharing. An ICT platform that contributes to maximum
common functionality was identified by means of a systematic presentation of the
planned apps and services and their needs. This resulted in the definition of nine
building blocks.

The system must satisfy the following functional requirements:

• Allow for instantaneous updates to travellers about delays, etc.
• Ride-sharing: support matchmaking between drivers with plans for a trip

and potential passengers
• Interactive map: display stops and current locations of vehicles on a

geographical map
• Multimodal planning: generate travel plans consisting of different modes

of transport such as bicycles, private cars, buses and trains
• Payment: support payments, including logging and aggregation
• User profiles: maintain user profiles, including reputations
• Dashboard: display real-time traffic information for a particular stop
• Information Storage: provide an information storage repository
• Traffic management: management of traffic
• Generic functions: small generic functionality to be used by building

blocks and apps

 2

Improving Transport and
Accessibility through new

Communication Technologies

The most important non-functional requirements are the following:

• Interface that is well documented and easy to use
• No production requirements such as fallback facilities
• Flexibility in access
• Feasible in costs (initial and recurring): preference for open source

 3

Improving Transport and
Accessibility through new

Communication Technologies

2 Architecture

The architecture of the platform depends on the functionality that is central to all
building blocks. Apart from general utility functionality, such as user profiles, the
building blocks centre around transport information. Accordingly, WP 4 of the
ITRACT project aimed to develop a generic distributed platform that could
support a wide variety of existing and new Intelligent Transport Systems (ITS)
applications. It would support a variety of scenarios in which mobile users roam
and need to use different services from different transport providers in a
transparent way. Since data stems from multiple transport providers, the platform
must support interoperability with external systems. Thus, the aim is to design a
cost-efficient flexible architecture that supports traffic data from multiple sources,
and is capable of processing this information and ultimately delivering the service
to consumers with fine granularity, especially when a trip includes multiple
transport providers.

The ITRACT architecture assumes the availability of various open data sources
and travel-planning functionalities. Typically, these include travel planners, public
transport schedules, route maps, delay information, traffic information and social
media platforms. Data about the transport available may stem from multiple
heterogeneous data sources, whose format (for example GTFS), availability and
update frequency may vary widely. An important task of the platform was to
provide an interface for accessing the data in a uniform way.

A generic architecture for distributed ITS is proposed for public transport systems
based on the observation that traffic data comes from different transport
authorities with different interfaces and formats which creates a big challenge
when a trip includes multiple transport providers. Therefore, the suggested
architecture must support data from multiple sources and be capable of processing
this information, delivering the service to consumers with fine granularity. This
high-level architecture is presented in Picture 1.

 4

Improving Transport and
Accessibility through new

Communication Technologies

Picture 1. High level architecture ITRACT

The ITRACT architecture is known as ‘service-oriented architecture’ (SOA). It
enforces a separation of ‘look & feel’ and business logic, and consists of three
separate layers:

The integration layer supports the collection of data from a large number of
different sources such as public transport databases, taxi databases, etc. It supports
both static data, such as geographical data on bus/train stops, transport schedules,
etc., and dynamic data, such as changes in the schedules, weather conditions, etc.
It also supports real-time data such as updates of vehicle positions.

The transformation layer focuses on the processing of a large volume of
collected data and aligns it using a common format to allow useful operations to
be performed on it.

The event-oriented service layer includes functionality for specifying triggers
and for matching events with triggers and generating actions triggered by events.
Mobile customers might, for example, receive a message when Bus No. 1 arrives
at the Karlstad University bus stop.

 5

Improving Transport and
Accessibility through new

Communication Technologies

3 Implementation*

The implementation achieved mainly consists of two elements:

- implementation of new features in the open source packages to fully
implement all functionality of the building blocks

- the implementation of an environment in which the open source packages
for ride-sharing and route-planning work nicely together in a scalable
manner

These two elements are described in the following two sections: the latter is more
technical due to the nature of integrating building blocks in a scalable manner.

3.1 Building Blocks
The building blocks were implemented as follows:

3.1.1 Ride-sharing
This building block supports matchmaking between drivers with plans for a trip
and potential passengers. It was implemented by adopting an open source system
called OpenRide. Proper support for multi-languages was added and several
financial features were added. The GUI was replaced.

3.1.2 Interactive map
This geographical map displays stops and current locations of vehicles. It was
implemented as a demo webpage for the proxy using Google Earth. The
demonstrated technology was also used in apps tested in several pilot studies. It is
also possible to use a geographical map without the proxy to visualize a data set.
The visualization module accepts a predefined set of geographical locations with
adjacent data, and displays that data on a map.

3.1.3 Multimodal planning
The multimodal planner (MMP) generates travel plans consisting of multiple
modes of transport, such as bicycles, private cars, buses and trains. The
implementation employs OpenTripPlanner and OpenRide.

The MMP plans the trip according to a driver’s route. It aims to have a driver
either at the start of a trip or the end. If the traveller can be picked up, the MMP
searches for public transport stops where the user might be able to continue their
trip. If pick up is not possible then available rides are searched among drivers who
might be able to drop the traveller at their destination. In this case, public
transport is searched in relation to any location close to the driver’s route so that
the passenger can be picked up at this location.

 6

Improving Transport and
Accessibility through new

Communication Technologies

The MMP only supports trips composed of one ride-sharing part (R) and one
public transport part (P). It does not allow for additional ride-share or public
transport components. Therefore, no planned trip will be a sequence of the form
R>P>R or P>R>P. The main reason for this decision is that such scenarios are
unlikely to occur as people usually travel from rural to urban areas (or back).
Travel between urban areas usually involves good public transport connections.
The algorithm could be improved to match multiple routes if needed. However,
this functionality would come with a considerable performance penalty.

3.1.4 Payment
This module provides support for payments required when ride-sharing. Due to
the nature of the project – an international research project that produces pilots –
the actual execution of financial transactions was left open. The module provides
an interface for submitting and managing financial transactions. All registered
debit transfer requests can be compiled into a batch file that can be processed by a
bank. Such batch files can automatically be generated by the system.

3.1.5 User profiles
This building block maintains user profiles, including reputations to be used by
ride-sharing. These are realized by extending the minimal support for user profiles
offered by OpenRide. Many properties are added, such as whether the driver
smokes. The functionality is used by the apps for ride-sharing.

3.1.6 Dashboard
Implemented as a webpage that periodically executes an Ajax request to the proxy
server retrieving arrivals and departures for a particular location. The transit
platform is responsible for an appropriate response.

3.1.7 Information storage
This building block provides storage functionality to be used by app developers to
store and manage content such as images, movies, PDF files, etc. It allows the
content of apps to be changed easily, functioning as an editor for the content of
apps. It is also used to provide information about the system itself, such as FAQ,
API-documents, etc.

Analysis of different platforms revealed WordPress to be a simple and easy to
manage tool providing the required functionality. WordPress is an open source
blog and content management system (CMS) based on PHP and MySQL. The
plug-in architecture and template system makes WordPress easily customizable
for different use cases and suitable for the ITRACT project.

http://en.wikipedia.org/wiki/Content_management_system
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/MySQL

 7

Improving Transport and
Accessibility through new

Communication Technologies

The cloud-based infrastructure of ITRACT runs WordPress on three different
virtual machines:

• Server running Apache, PHP and WordPress
• MySQL hosts the database
• MemCached caches the content for fast access

Such deployment on different virtual machines hosted in the OpenStack Cloud
has the advantage that with increased traffic demand, more CPU and memory
resources can be added according to need. This allows scalability with user and
content volume.

3.1.8 Traffic management
Cancelled.

3.1.9 Generic functions

• PushMessage: web service to push a message to a mobile app of a specific
user. Enables users to subscribe to events correlated with a specific trip
and receive notifications about real-time updates concerning those trips;
for example, indicating to the driver that the traveller has arrived at the
pickup location. As the backend has to handle potentially thousands of
such updates per second, scalability is a major concern in the design.

• Configuration: generic storage of configuration settings as name-value
pairs.

• Security: functions to encrypt and decrypt messages, digitally sign objects
(e.g. scan of ID card), key management (connection to user database).

• Location: algorithms to calculate the distance between two locations and
determine whether X is between two locations.

3.2 Integration
The various building blocks need to be implemented in such a way that they
cooperate. The figure below illustrates how the parts of the three layers mentioned
in the overall architecture are implemented in the third iteration.

 8

Improving Transport and
Accessibility through new

Communication Technologies

Picture 2

Multiple clients with multiple purposes use the same API. A client could be an
application or service for end users or used for administrative purposes (like the
management page). Not all clients are developed in-house: some may be third
party. The backend (in the yellow cloud) provides re-usable functionality to the
clients using multiple instances of its building blocks if required. These building
blocks are described in more detail below. The main part consists of route
planning features for which data from public transport companies is required in
the form of GTFS. Not all building blocks of the backend (yellow cloud in the
architecture picture) are actually fully integrated into the API of the proxy. The
following picture shows the architecture of the integrated part, which consists of a
transit server combining the trip planner and graph builder. The latter is used to
generate transport data (a graph) in a format that allows for an efficient planning
algorithm.

 9

Improving Transport and
Accessibility through new

Communication Technologies

Picture 3: Architecture of proxy with transit server (trip planner + graph builder)

The proxy is the master node in the cluster and contains the API implementation.
The proxy receives all client requests and routes them to its underlying slave
nodes. The primary function of the ITRACT backend is to supply an API that
numerous types of client applications can utilize for their own purposes, each with
many different users (e.g. multiple client applications, each with their own
functionality and needs, each being used by multiple users and all at the same
time). This kind of system needs to be both flexible and scalable and to that end
the design of the backend has a computer cluster at its core.

Due to the scale at which the backend needed to operate, the distribution of the
computational load is paramount for the performance and user experience. The
solution to this problem involves the development of a computer cluster
consisting of a centralized master node and multiple underlying computational
nodes. The master node accepts all client requests and then routes these requests
to its underlying computational nodes that then process the requests and compute
the correct response. The cluster architecture provides the system with both
scalability and redundancy.

The transit server is the slave node in the cluster. Each transit server contains
transit data for a specified geographical region. API requests for that region are
routed to the corresponding transit server, which calculates the correct response.
The file repository contains:

• Graphs: static transit and geographical data
• Real-time configuration files: specify sources to use for real-time transit

data

 10

Improving Transport and
Accessibility through new

Communication Technologies

• Graph-builder configuration files: specifies the sources and settings on
how to build new graphs

• Proxy and transit server configuration: settings regarding the deployment,
such as file resource paths and update frequencies

• Logs: error logs, backup files

The implementation of the transit server is based upon the open source software
OpenTripPlanner (OTP) v0.9.2: http://www.opentripplanner.org/. It provides
route-planning features on the basis of GTFS data. The implementation of OTP
was heavily modified for use in the ITRACT project, both in terms of new
features and some significant bug fixes. The changes are now intertwined with the
original OTP code and future versions of OTP cannot be used without huge
amounts of work due to the high impact of the changes.

3.2.1 Cloud-based deployment
Our architecture is made out of three fundamental components: OpenStack Virtual
Machines (VMs), traffic-related data sources, and consumers. The OpenStack
VMs are used to deploy different ITS services related to ITRACT, such as
ITRACT proxy, routing servers, WordPress, MySQL server, graph builder, etc.
The fundamental objective of our system is to ensure flexible management of the
available resources, such as scale down/up VMs according to load, redeployment
in a new testbed with minimal effort, etc.

The deployment of an intelligent transport system delivers a number of benefits
which make the system more efficient and reliable. This motivates public planners
to increase the funding for transportation development. ITS is already one of the
key factors stimulating economic growth in many countries. Although ITS has
significant advantages, high operational costs still hinder its wide adoption. A
cloud-based ITS architecture will reduce the overall system costs and hence
attract more interest. Cloud-based architecture provides an efficient way of
utilizing geographically distributed resources through virtualization and
distributed computing techniques. The main idea behind this technology is to
reduce operational costs, to increase the sharing of resources and to enable easy
access to the resources through different client platforms. Some key benefits of a
cloud-based architecture for ITS are mentioned below.

• Flexible Management: Cloud computing offers computing resources such as

infrastructure, platform applications or business processes to consumers as a
service without depending on the location. This reduces in-house operational
costs by utilizing resources efficiently, and by handling dynamic resource
allocation efficiently through scaling the system according to load. ITS needs
to deal with a large volume of real-time information processing, especially in
urban areas during peak hours. Therefore, there is a great possibility that
degrading operational performance will decrease at that time. Cloud-based
architecture offers a way to distribute tasks to different resources to balance
the load properly. As a result, the system fully utilizes the available resources
and provides the needed scalability.

http://www.opentripplanner.org/

 11

Improving Transport and
Accessibility through new

Communication Technologies

• High-performance computing and storage resources: Cloud computing offers
computational resources as services to utility-driven models, regardless of
geographical location, in a scalable, elastic, fault tolerant and cost-effective
way. An efficient ITS architecture requires the building of resources with high
computational power and large storage capacity. ITS needs to collect a large
volume of data through different instruments, process the data efficiently and
ultimately disseminate this information on time to meet the requirements of
travellers. Cloud-based architecture provides the opportunity for ITS to
compute and store traffic data efficiently on clusters of distributed resources.

• Loose coupling and high interoperability among heterogeneous and distributed
traffic departments: One of the important characteristics of ITS is that it
includes a large number of subsystems, such as traffic control centres,
different data sources and on/off-board control units. Therefore, to be
efficient, ITS should have an effective mechanism that ensures that these
different departments work in tandem. Cloud-based architecture has the
capability to build a distributed model which is loosely coupled, standard-
based and protocol independent. Moreover, this type of architecture also
ensures smooth coordination among different domains of transport, and
interoperability with external systems.

Although there are a large number of open source solutions for cloud platforms,
OpenStack has many large, established technology and service companies who
are adding wind to the sails and accelerating the legitimacy of its open source
solution. OpenStack is gaining popularity because it reduces the costs of running a
cloud-based architecture, specifically the licensing costs for virtualization and
ongoing maintenance. Moreover, it provides a flexible way of deploying private
cloud environments, and shows high-performance, scalability, elasticity and
automated management of the resources. Furthermore, it uses a suite of software
components which are compatible with Amazon EC2 and Amazon S3.

3.2.2 OpenStack
OpenStack currently consists of seven main projects:

1. OpenStack Compute Service Known as Nova
2. OpenStack Image Service known as Glance
3. OpenStack Identity Service known as Keystone
4. OpenStack Network Service known as Quantum
5. OpenStack Block Storage known as Cinder
6. OpenStack Object Storage known as Swift
7. OpenStack Dashboard Service known as Horizon

 12

Improving Transport and
Accessibility through new

Communication Technologies

OpenStack Nova is the core component for building a scalable cloud platform that
is mainly responsible for creating and managing clusters of virtual machines over
underlying hardware. Nova consists of six different components, providing
different services. Nova API provides an interface for consumers to carry out their
instructions. Nova Compute manages the lifecycles of VMs. Message Queue
handles the messages between different services and MySQL is used for storing
all metadata. Nova Scheduler coordinates all the services and makes decisions
about the resource placement based on different factors, such as processing load,
memory and physical distance of the nodes. The functions of Nova Network are
similar to Quantum. They are responsible for managing networks and IP addresses
within the cloud platform. The Dashboard provides a browser-based graphical
interface for users and administrators, allowing efficient access to and flexible
management of the cloud-based resources.

3.2.3 Automated server management
The proxy has a sophisticated server management system that gathers status
updates according to the following criteria:

- Low manual maintenance. The management system should run by itself
with low or no human input or interaction required.

- Low latency for updates. Changes in the system must be reported to the
proxy instantly so that actions can be taken if needed; for example, the
proxy should not send a route request to a server after it has gone offline.

- Low resource drain. The management system should not have to send or
parse data if it is not necessary.

These criteria informed the design of a system in which the server helper
periodically collects all the changed data from the transit platforms, aggregates
this data into one single JSON string, and then sends incremental updates to the
proxy.

3.2.4 Management of the cluster
Monitoring is an important aspect of a distributed system. ITRACT runs as a
distributed platform on several physical servers, each one hosting multiple Virtual
Machines that implement services that cooperate. It is important to gain an
overview of both physical machine and virtual machine resource usage, such as
CPU, memory and network, in order to troubleshoot and analyse runtime
problems.

The ITRACT platform provides a web-based graphical interface for monitoring
and updating the ITRACT proxy cluster (management homepage). From this page
the admin can monitor and make changes to the system. These operations include,
but are not exclusive: monitoring server status, monitoring graph status, removing
servers, loading graphs, unloading graphs, building new graphs, creating new
config files for real-time and graph-building, editing existing config files and so
on.

 13

Improving Transport and
Accessibility through new

Communication Technologies

Picture 4. Screenshot of the management homepage

Additional information can be obtained by a utility called Munin, which provides
a visual way to monitor a physical or virtual host. It is based on a client server
approach where a monitoring server collects statistics from munin-nodes. These
munin-nodes are software agents that run on the machine which is to be
monitored. Providing monitoring information at the munin-node is implemented
via plug-and-play. Several plugins can be used to provide all kinds of information,
such as memory consumption by the application containers in which the ITRACT
components are running (Tomcat 7).

3.2.5 Routing by geographical location 
Requests must be routed to a server in an efficient way. The design is based upon
geo-location, where the client sends a geographical coordinate with each request.
The coordinate is then matched against the geographical boundaries of each graph
and routed to the server of the matching graph. If the given coordinate is inside
the geographical boundaries of multiple graphs then the request is routed to the
servers of multiple graphs. The response contains a list with an answer related to
each graph with transit data for the given geographical coordinate. Many public
transport agencies travel across borders, so if we want all the transit data from a
given coordinate we can request it from both graphs of the adjacent countries.

The implementation avoids an algorithm with a linear average time, O(n), relative
to the number of graphs in the proxy. In order to achieve a constant average time,
the implementation uses a pre-computed geographical table representing every
possible geographical coordinate on the planet, where each graph is placed in the
cells that correspond to its geographical boundaries. This allows a huge number of
graphs in the system without adding any delay to the routing request, since it takes
the same amount of time to perform a table lookup whether the cell is empty or
contains multiple objects.

3.2.6 Redundant servers for one graph
Since each graph can be deployed on multiple servers, each graph object has a list
of all the servers where this graph is available. A server is chosen by a weighted
randomizer function, which randomizes a value in such a way that the
probabilities of the servers differ. Servers with a lower round-trip time will have a
higher probability than a server with a higher round-trip time. The round-trip time
is a weighted moving average that is updated for each routing request. The
random nature of the function guarantees that sometimes a server with a higher
round-trip time will be chosen. This prevents an overload of the server with the

 14

Improving Transport and
Accessibility through new

Communication Technologies

lowest round-trip time, which otherwise might occur depending on the status
update frequency.

3.2.7 Performance
The graphs used by the OpenTripPlanner to generate travel plans were optimized
for response time (at the cost of huge memory requirements) by employing
contraction hierarchies. Public transport data for densely populated countries such
as the Netherlands, with many stop locations, requires hundreds of gigabytes of
random access memory. Generation of the graph to update the information would
take several days. To prevent time-consuming generation of a new graph,
OpenTripPlanner was changed to support real-time updates to an existing graph.

New pilots in Work Package 7 of the ITRACT project involve the evaluation of
logistics models, deciding where to locate facilities given the location of
customers, the availability of transport and the preferences of customers. This
requires the capacity to process large batches of travel requests. Support was
added to OpenTripPlanner.

3.2.8 Suggested improvements
The proxy and transit server in particular provide an excellent case to pursue
further research on route planning algorithms, data processing and distributed
event architecture. It also allows students to gain experience in contributing to a
larger system. The most important fields for improvements are:

1. Minimize memory requirements for graphs. The memory requirements for
loaded graphs are very high in OpenTripPlanner. This part of OTP has not
yet been optimized.

2. Optimize graph building. The OTP graph-builder is very slow, the main
reason being that it is single threaded. It downloads OSM data and then
processes it, then downloads more OSM data and processes that, all in one
sequential thread. Making this process multithreaded would speed it up
significantly.

3. Calculate memory requirement from graph file size. When a graph is
loaded the Proxy chooses the server with the most free memory, but never
checks to determine whether there is enough memory. It is possible to load
a graph that requires more memory than the machine actually has. The
memory requirement needs to be calculated.

4. Automatically build a new graph when new GTFS data is available rather
than waiting for the graphs to become outdated. Check the GTFS sources
to determine whether there is new data. If so, rebuild the graph and then
redeploy it on all machines, one at the time.

5. Link GTFS-RT vehicle position data with static data. When a vehicle
reports which route or trip it is taking, link that data with the static GTFS
data and provide a next stop for a vehicle, next vehicle due at a stop,
destination display on the vehicle and more.

6. Implement graph pool. Rather than specifying which server should have
which graph, just ensure that this graph is loaded on X number of servers.
When a server goes down, the graph is automatically loaded onto another
one.

 15

Improving Transport and
Accessibility through new

Communication Technologies

Picture 5

4 Process & Iterations*

As a research project, the platform demonstrates techniques and innovation rather
than establishing a stable production-ready infrastructure. Three iterations were
planned to allow exploration of a diverse range of approaches.

The third iteration implemented the platform by adjusting and combining the open
source projects discovered, consisting of a trip planner, a project providing real-
time information and a project for ride-sharing (OpenTripPlanner, OneBusAway,
OpenRide). The implementation of the final and third iteration was presented in
the previous section. This section describes the previous iterations, providing an
overview of the options considered during the development of the platform.

4.1 First Iteration
The first iteration was planned as a short exploration. From the very beginning it
was clear that the huge amount of transport data would require distributed
computing. Accordingly, two common elements in distributed computing, namely
the enterprise service bus (ESB) and multi-agent technology, were explored.
Additionally, the first iteration consisted of an evaluation of the Dutch data
sources for public transport. The research was executed by groups of students
during a study unit of ten weeks.

The need to allow a quite diverse range of services to cooperate requires a
middleware solution. The most promising candidates, namely an enterprise
service bus (ESB) and multi-agent systems, were explored. Apart from research
into candidates for the architecture of the platform, the first iteration contained an
investigation into a data provider for public transport in the Netherlands.

 16

Improving Transport and
Accessibility through new

Communication Technologies

4.1.1 ESB
The WSO2 product suite was the most promising candidate for an ESB because of
its extensive feature set and availability as open source. WSO2 was set up and
attempts were made to create a web frontend which could access a number of
existing services. This resulted in the following conclusions about WSO2:

1. Difficult to set up due to the business model: the software is free, but
support and hosting are not. The activity of the online community is quite
small and there is virtually no technical documentation, so support is
definitely required.

2. Hosting the WSO2 suite is an option, but too expensive for ITRACT.
3. WSO2 turned out to be a rather heavy user of memory and processing

power.

After thorough research, the group decided not to use WSO2, relying on the
Microsoft suite instead. The team used Atlassian and AppHarbor as the
development environment to create a demo application consisting of a web
frontend and a mobile app using Microsoft software (.NET/WindowsPhone).
This demo plans a trip, shows all stops and displays this information on a map.
The demo also shows real-time disruptions and the location of buses.

4.1.2 Multi-agent technology
With the requirements of scalability and a heterogenic landscape for service in
mind, an agent-based solution seemed a qualified candidate for the platform. The
agent implementation JADE was selected as a candidate for the ICT platform for
ITRACT.

The group of students who undertook the research focused on public transport on
the Dutch island of Texel. They created a demo with both a web frontend and a
mobile app. It shows the public transport stops in the neighbourhood of a GPS
location and showed the real-time location of buses, trains and ferries. The
research group partially faked the actual public transport data in order to focus on
the agent technology.

They concluded that agent technology is a suitable candidate for ITRACT. The
initial setup is very important and requires sufficient knowledge of agent
technology, which was not available in the group of students. As a result,
establishing a proper initial setup of the agents turned out to be quite difficult and
time consuming. However, the extendibility and scalability are quite good.

4.1.3 GOVI
GOVI is a system that provides real-time information about Dutch public
transport. The team created a demo with a web frontend and a mobile app to
display bus stops in the vicinity and the real-time location of buses on a map. The
team discovered that the actual delivery of data by GOVI did not fulfil
expectations based on the documentation available on various sites. The data
lacked both completeness and quality. Changes in stop locations, in particular,
resulted in confused data.

 17

Improving Transport and
Accessibility through new

Communication Technologies

4.2 Second Iteration
The aim of the second iteration was to fully implement the platform employing
ESB technology. Difficulties with implementing the chosen ESB suite and the
discovery of several open source projects led to an early end to the second
iteration. The planned deliverables of the second iteration, such as performance
indicators, test specifications, etc., were cancelled.

Multi-agent technology was considered but rejected because it would add several
additional risks to the project:

- multi-agent technology is still seldom used in practice (relatively difficult
to control a running environment)

- multi-agent technology requires a lot of knowledge and experience, which
the participants did not possess.

The first iteration showed the WSO2 to be a fascinating product. Unfortunately, it
also proved very difficult to run and operate without quite expensive support by
the commercial WSO2 corporation (http://www.wso2.com). Although this
constituted a rather serious impediment to the project, it was still felt that the
software suite should not be overlooked, primarily because of its unique features,
such as support for event-driven architecture and open source advantages. R&D,
including different hosting, that is, not purchased from WSO2, was thus to be
continued.

4.2.1 Process
At this stage of the project, apps and pilots of other work packages were already
being tested. Transnational meetings brought a series of observations and findings
to light.

An open source project called ‘One bus away’ was discovered. This bus-tracking
system, based on GPS location, is already up and running. It offers some
functionality similar to ITRACT. The deployment of WSO2 was subsequently
interrupted. It is now on hold while the usability and applicability of ‘One bus
away’ is investigated. In Germany, a university is using ‘Ride-sharing’. In
addition, Mitfahrzentrale is already an existing phenomenon in Germany
(www.Mitfahrzentrale.de).

With these and other new suites in mind, it is recognized that all of the necessary
building blocks can now be fully designed and specified. The single most
important remaining step to accomplish is the integration of all parts, without the
further use of WSO2. Consequently, all the other steps in the fixed developmental
sequence of Iteration 2 have become obsolete – in other words, all those aspects
following the detailed architecture of Iteration 2.

http://www.wso2.com/
http://www.mitfahrzentrale.de/

 18

Improving Transport and
Accessibility through new

Communication Technologies

 19

Improving Transport and
Accessibility through new

Communication Technologies

5 Lessons Learned
Apart from the technical knowledge concerning distributed transport systems
described above, important lessons were learned concerning the execution and
management of the process of developing such a system in the context of a
research project.

• Summary conclusion for non-ICT stakeholders
ICT is a complex part of any project. Communication between ICT and non-ICT
partners is key. Interaction on functionality and usability should be regular and
iterative. Non-ICT stakeholders should therefore stay abreast of the ICT
developments and keep the communication going so everyone has a common
understanding of what is needed and is able contribute to the overall goal.
Expectations of every stakeholder must be clear and managed. Defining the
necessary functionality and usability and monitoring the development of this
functionality and usability is not only an ICT responsibility, but also that of the
clients and users.

There is a lot of open source software in the public domain that can be reused to
create smart mobility applications. Using open source as building blocks for new
applications is attractive because it minimizes development costs and time.
However, make sure the open source software is compatible and up-to-date with
the functionality needed, because adjustments are complex and not all open source
software is actively maintained and kept up-to-date. The ICT partners should
explain the implications of reusing open source.

The use of open source software rather than vendor-owned software may make
the ICT landscape difficult to maintain. Make sure that the project has the right
ICT people on board to handle open source software and to maintain the overall
software architecture when it is delivered.

• Maintenance and security
Maintenance and support activities comprise both a helpdesk offering support to
current users and can offer an assessment and improvement service for developing
new functionality. The helpdesk consists of both the implementation of supporting
ICT tools and the development of the organization surrounding it, including the
design and implementation of the necessary procedures specified.

Operation of a full development, test, acceptance and production (DTAP)
environment costs time and money, which comes on top of the time and money
involved in developing the necessary features (e.g. extensive detailed test
specifications are required). Within the ITRACT project, there was not sufficient
time or budget to allow for a full implementation of the DTAP process in all
regions. A limited version was set up to support the pilots. However, when
planning and budgeting for the live implementation of new applications, one

 20

Improving Transport and
Accessibility through new

Communication Technologies

should look for an organization that is able to maintain the applications and the
underlying architecture and budget for the costs involved.
This organization should also be tasked with managing the security of the data
involved. While the use of personal data increases the usefulness and added value
of the applications, it also introduces vulnerability with respect to security.

• Regulations for transport data
The countries involved in ITRACT all have their own national laws and
regulations. For this reason alone, it is inevitable that all public transport
information from one country needs to be translated, as it were, from its own
national format and/or standard to that of the other country.

For example, the United Kingdom has defined and developed a completely
separate standard from the rest of the participating countries. This standard, called
the TransXChange, has been set out in an Act. The Act is binding for all public
transport companies. As public transport is fully privatized in the UK, and all
companies adhere to the TransXChange standard, this is an achievement of the
highest level.

The Netherlands uses GTFS (General Transit Feed Specification), which defines a
common format for public transportation schedules and associated geographical
information. GTFS allows public transit agencies to publish their transit data, and
developers to write applications that consume the data in an interoperable way.
GTFS is a widely used standard. ITRACT has adopted the GTFS standard but has
not made it publically available.

Another example is Germany’s Deutsche Bahn. The organization is the only
official body in Germany that is legally permitted to decide on itineraries and
timetables. This prevents others, such as Google, from using it to their own
advantage.

In all three iterations, intellectual property law proved to be very important when
it came to licensing. In Iteration 1 the use of certain purchased products, such as
Microsoft, IBM and Oracle, became unfeasible, as the licensing became
excessively expensive and any further use became legally impermissible. Having
embarked on WSO2 during Iteration 2, it became apparent that although the
product was freely available – including download – it proved to be so laborious
and so difficult to install that it would have been necessary to commission the
WSO2 company to solve the problems.

As the research project only delivered pilots, laws prohibiting the provision of
services similar to taxis did not damage the project, as recently experienced by the
new taxi service Uber.

Several projects similar to ITRACT undertaken elsewhere in the world were also
discovered. The products of each of these projects appeared to use free intellectual
property and as such they could be used by ITRACT and hence constituted
Iteration 3.

 21

Improving Transport and
Accessibility through new

Communication Technologies

• Research versus production
As a research project, ITRACT merely realized pilot systems. As a result, there
remains no uptime guarantee, nor any backup system. Moreover, after running the
pilots, there is no assurance that continued use of the central system will occur.
However, third parties, especially those neither acquainted with the software
projects nor with the research project, tended to have much higher expectations,
especially when the pilot proved successful.

All parties involved extensively discussed the various ideas and concepts
developed for the building blocks, the apps, the pilots and tests. This ultimately
resulted in a change of plan, as a number of regions chose not to wait for ITRACT
to deliver the Central Platform and its Building Blocks. Instead, they opted to
involve external parties (local ICT companies) to build the apps and immediately
go live.

The innovative ideas that were devised during the transnational cooperative
process of the project were considered so promising that the cascade-like structure
of Iteration 2 was cut short. Subsequently, the regions started to implement real,
live local solutions based on these ITRACT ideas and concepts, using the
resulting apps and systems as the basis for their pilots. Paradoxically, the fact that
the majority of the regions will not use the central system can be considered as
one of the great successes of ITRACT, insofar as the success of any research is
mainly determined by the adoption of the ideas it develops.

• GTFS data
Inherent to the use of the open source suite ‘Open Trip Planner’ is the use of
GTFS. The public transport data were uploaded into the system by GTFS format.
This decision, however, has had a rather unfortunate consequence due to the fact
that GTFS is almost too precise. When travelling from A to B, there are two bus
locations, that is, a point of departure and a point of arrival. At either one of those
points, there may be other stops for different buses within a few metres. With
regard to the Dutch data for the OV-bureau this caused a problem: the
unnecessary calculation of routes between all of these stops.

In England, where TransXChange is used, the centre point of such multiple bus
stops will be taken when calculating a route. The Dutch system, with its precision,
causes problems in Trip Planner by including every bus stop nearby and
calculating as many routes. This approach results in data contamination, also
labelled ‘garbage in garbage out’.

With Open Trip Planner failing in this respect, the open source suite was
subsequently adjusted to properly cope with the data, without losing efficiency. It
now excludes all other bus stops within a radius of 50 metres of the requested
points of arrival and departure, and all necessary stops in between, in order to
produce a correct calculation from A to B.

 22

Improving Transport and
Accessibility through new

Communication Technologies

• Dependency management
WP 4 employed a number of off-the-shelf software suites which were built
externally. Some are now outdated and no longer maintained. For technical
reasons, one of the software suites, Ridesharing (Open Ride), had to be reinstalled
on a server. Problems arose because there had been multiple updates since the
original version had been built: not only in the operating system, but also in the
database, the corresponding JavaScript and other technical environments. A
student group investigated and studied the problem and eventually came to the
conclusion that additional help was required. An external specialist was hired to
tackle the issue.

When a project depends on external software packages, they must be maintained.
In the event of neglect, much more time and many additional resources will be
required to keep everything functioning properly. Therefore, the maintenance
costs might outweigh the costs of developing a new implementation. In the
context of a research project and an educational institute, it could also be argued
that development activities rather than the maintenance of a project result in more
worthwhile knowledge, since the development of functionality usually leads to
increasing abilities and more profound knowledge of technical topics, while
maintenance merely increases knowledge of particular versions of frameworks.

When considering whether to use an open source software package, the following
must be taken into account:

- the current activity on the project
- the (in)compatibility of its dependencies and deployment requirements

with other parts of the project
- source codes and the deployment of projects should be kept separate to

guarantee a loose coupling of components.

• ICT versus the rest of the world
During the ITRACT project a gap between the ICT and the non-technical work
packages was felt by many. People working on both sides had difficulties
understanding each other and finding common purpose. An important lesson
learned is that a mediator who is familiar with both worlds can ensure better
communication between and the alignment of the goals of future users of ICT and
the ICT developers. The Agile software development methodology is designed to
offer a means to bridge the gap between technical and non-technical project
members, which became apparent in other concurrent projects undertaken by
ITRACT partner Hanze University of Applied Sciences.

Every Best Practice and Lesson Learned, with 20/20 foresight and 20/20 hindsight
respectively, will offer one specific reference with regard to its content: ITRACT
website, www.ITRACT-project.eu

http://www.itract-project.eu/

 23

Improving Transport and
Accessibility through new

Communication Technologies

www.itract-project.eu

Contact
Hanze University of Applied Sciences

Jacob Mulder
Phone: +31 641 424 634

 E-mail: j.mulder@pl.hanze.nl
www.hanze.nl

Lead Beneficiary
Hanze University of Applied Sciences

www.hanze.nl

Drs. Theo Miljoen
Phone: +31 683 099 791

E-mail: t.a.miljoen@pl.hanze.nl

http://www.hanze.nl/
http://www.hanze.nl/
mailto:t.a.miljoen@pl.hanze.nl

	Introduction
	1 Requirements
	2 Architecture
	3 Implementation*
	3.1 Building Blocks
	3.1.1 Ride-sharing
	3.1.2 Interactive map
	3.1.3 Multimodal planning
	3.1.4 Payment
	3.1.5 User profiles
	3.1.6 Dashboard
	3.1.7 Information storage
	3.1.8 Traffic management
	3.1.9 Generic functions

	3.2 Integration
	3.2.1 Cloud-based deployment
	3.2.2 OpenStack
	3.2.3 Automated server management
	3.2.4 Management of the cluster
	3.2.5 Routing by geographical location 
	3.2.6 Redundant servers for one graph
	3.2.7 Performance
	3.2.8 Suggested improvements

	4 Process & Iterations*
	4.1 First Iteration
	4.1.1 ESB
	4.1.2 Multi-agent technology
	4.1.3 GOVI

	4.2 Second Iteration
	4.2.1 Process

	5 Lessons Learned

