1

Journal of Strength and Conditioning Research Publish Ahead of Print DOI: 10.1519/JSC.000000000002511

1	Morphological and physical fitness profile of young female sprint kayakers
2	
3	Physical profile of female kayakers
4	
5	Daniel López-Plaza ¹ , Fernando Alacid ² , Jacobo Ángel Rubio ² , Pedro Ángel López-Miñarro ³ , José
6	María Muyor ⁴ , Pedro Manonelles ¹ .
7	
8	¹ Sport Medicine Chair, Catholic University of San Antonio, Murcia. Spain.
9	² Department of Physical Activity and Sports Sciences. UCAM Research Center for High
10	Performance Sport. Faculty of Sport. Catholic University of San Antonio, Murcia. Spain.
11	³ Department of Physical Education. University of Murcia, Murcia, Spain
12	⁴ Faculty of Education Sciences, Nursing and Physiotherapy. Laboratory of Kinesiology,
13	Biomechanics and Ergonomic (KIBIOMER), University of Almería, Almería, Spain.
14	
15	Corresponding author
16	MSc Daniel López-Plaza ¹
17	Email: dlopez4@alu.ucam.edu
18	Telephone number: +34 968 278 824
19	UCAM, Universidad Católica San Antonio de Murcia
20	Campus de los Jerónimos s/n.
21	30107 Guadalupe, Murcia. Spain.

1 Abstract

2 Traditionally, physical and anthropometrical profiles of the most successful kayak athletes have been 3 identified in male kayakers. This study attempted to identify the differences in morphology and fitness 4 level of two performance-based groups of young elite female paddlers. Eighty-six female kayakers, aged 13.62 ± 0.57 years (mean \pm SD) were allocated in two groups (Top-10 and Rest) depending on 5 6 their ranking in the three Olympic distances (200, 500 and 1000 meters). All subjects underwent a 7 battery of anthropometrical (heights, weight, girths and sum of skinfolds), physical fitness (overhead 8 medicine ball throw, countermovement jump, sit-and-reach test and 20-m multistage shuttle run test) 9 and specific performance assessments (200, 500 and 1000 meters). Best paddlers presented significantly greater anthropometrical values in muscle mass percentage, maturity status and 10 chronological age (p < 0.05) whereas physical fitness comparison only revealed significant 11 differences in countermovement jump (p < 0.05). Furthermore, aerobic power and muscle mass 12 percentage appear to be crucial in achieving optimal performances at long (1000-m) and short 13 duration races (200 and 500-m). These findings confirm the importance of a larger and compact 14 morphology, as well as superior fitness level, for success in female kayakers. The current results not 15 16 only identify the weak areas on body composition and physical fitness depending on the maturity status but also the development of specific training programs for females. 17

18

19 Key words: body composition, performance, maturity status, talent identification, fitness level.

1 INTRODUCTION

2 Sprint canoeing became an Olympic sport for men in Berlin in 1936 but female kayaking was not 3 introduced at the Olympic program until 1948 in London. Nowadays, only three distances are 4 performed by paddlers at the Olympics (200, 500 and 1000-m) in two modalities, kayaking and canoeing (20). First studies have traditionally focused on the physiological characteristics of both 5 genders, specifically the aerobic and anaerobic metabolic contribution (28, 34). However, a complex 6 7 blend of different parameters determines optimal kayak performance (10, 14). In recent decades, 8 studies on anthropometric characteristics and their relationship with performance revealed an 9 increasing robust and compact somatotype in the most successful kayakers regardless of gender (2, 10 17, 26, 40).

11

Each sport is related to singular anthropometric and physical characteristics that suit the particularities of a specific sport or discipline (15, 38). For the determination of an optimal performance profile, predictive tests have typically been used as a measure of power, speed, aerobic fitness or flexibility (15, 18). Although most of these tests are only representative of a non-specific capacity, significant correlations have been observed with specific performance in team sports (18, 21). Nevertheless, the few investigations that have conducted studies on individual water sports have revealed contradictory results about the relationship between performance and physical fitness (11, 16, 17, 26).

19

20 In addition, the study of physical and anthropometric variables and their relationship with certain 21 disciplines or playing positions have been undertaken in several sports (15, 18, 22) and have become 22 paramount in the determination of a typical athlete profile (37). Similarly, in male sprint kayaking and 23 canoeing, different disciplines and events seem to be optimally performed by athletes with certain morphology and physical attributes (14, 40). Previous studies have revealed taller and heavier 24 25 somatotypes, lower skinfolds values and superior upper body girths and isokinetic force in the most successful senior paddlers (1, 14, 38). Furthermore, age group kayakers appear to show greater body 26 27 mass, size and physical capacities than canoeists (4, 25).

The identification of these attributes is especially important at early ages and during adolescence, not
 only for the development of particular capacities but also for sport and discipline specialization (2, 5,
 25). In an attempt to determine the optimal kayaker profile, only males and adult female paddlers
 have been analyzed (1, 39).

5

6 It was hypothesized that young female paddlers would exhibit similar physical and morphological
7 characteristics to those observed in young male paddlers depending on the performance level.
8 Therefore, the aims of this investigation were: 1) to determine and compare the anthropometric
9 characteristics and physical fitness level between two performance-based groups of female kayakers,
10 and 2) to identify their relationship with performance at different events.

11

12 METHOD

13 Experimental Approach to the Problem

A comparative description (cross-sectional study) was conducted to assess the differences in 14 anthropometry and physical fitness in young elite female paddlers based on their performance level. A 15 16 variety of assessment test items were used as dependent variables to offer a wide description of the representative successful paddler depending on the performance level (independent variable). The 17 Leger test (23) was used to estimate VO_{2max} , which has been shown to provide compatible values 18 19 between treadmill and on water paddling tests in kayakers (30, 33). Performance tests were conducted 20 outside, and the weather conditions were not identical from one day to the other. However, wind velocity was measured to assure values below $2 \text{ m} \cdot \text{s}^{-1}$ at the beginning of each test to guarantee a 21 22 minimum influence on performance results (41). Moreover, paddling experience and training volume 23 were not collected as variables for posterior analysis and perhaps, in future research, they might be 24 taken into account as control variables. Based on previous studies aimed to identify typical athletes' 25 profiles, traditional field-based physical tests were selected, as they provide valid and reliable 26 information that can be used as normative data for further comparison using limited resources.

1 Subjects

2 Between 2006 and 2009, a total of 160-180 female kayakers per year (depending on the year) were 3 found eligible to participate in this study. Only the top 20 to 22 paddlers based on the Spanish national 4 championship ranking each year were pre-selected to take part in the present study, as they were chosen by the Spanish Federation to participate in National Development Camps. A total of 86 young 5 female kayak paddlers, aged 13.62 ± 0.57 years (mean \pm SD), finally were recruited and volunteered 6 7 to collaborate in this study. Afterwards, subjects were ranked depending on their positions in each of 8 the three distances performed during the Camp (200, 500 and 1000-m), where the mean ranking was 9 subsequently used to allocate them in two groups: Top-10 (best 10 kayakers of each year) and Rest 10 (kayakers between top 10 and top 20-22). The procedures were approved by the Institutional Ethical Committee. Written signed informed consent was obtained from all subjects and their parents before 11 12 the start of the study. During the testing period, subjects under pharmacological treatment or presenting any disease were excluded from assessment. All subjects were required to avoid caffeine 13 ingestion and hard-work sessions 48 hours prior to the measurements. 14

15

16 **Procedures**

A battery of field-based tests to measure physical fitness status and body size composition was 17 performed on three separate days. Clear instructions about the procedures were given to all subjects 18 19 before the beginning of each test. All physical fitness tests were performed 3 times, recording only the 20 best attempt for posterior analysis. Maximum oxygen consumption estimation and the three specific 21 race tests were measured just once due to the high physical demands required for completion. 22 Additionally, a 15 minute warm-up consisted of 5 minutes of general aerobic activity and 10 minutes 23 of specific joint movements and familiarization with materials and procedures was provided. To 24 prevent any potential morphology changes and to provide sufficient rest time, the order of the 25 assessments were as follows: 1) Anthropometry (early morning of the first day); 2) Physical fitness 26 (midday of the three separate days); 3) Specific performance on water for the three specific distance 27 (afternoon of the three separate days).

1 Anthropometric parameters

2 All anthropometric measurements were taken following the procedures of the International Society 3 for the Advancement of Kinanthropometry (ISAK) by a fully certified level-2 ISAK anthropometrist 4 (27). The parameters analyzed included body mass (kg), 2 heights (cm), 8 skinfolds (mm) and 6 breadths (cm). Body mass was measured using a SECA 862 scale (SECA, Germany); stretch stature 5 and sitting height with a GPM anthropometer (Siber-Hegner, Switzerland); girths with a metallic non-6 7 extensible tape Lufkin W606PM (Lufkin, USA) and skinfolds with a Harpenden skinfold caliper 8 (British Indicators, UK). Each parameter was measured two or three times, if the difference between 9 the first two measures was greater than 5% for the skinfolds and 1% for the rest of the dimensions. The mean values (or median in the last case) were used for further analysis. Body mass index (BMI) 10 was calculated by the equation: body mass (kg) / stretch stature² (m) whereas muscle mass percentage 11 12 (%MM) was determined using corrected arm, thigh and calf girths values following the anthropometric formula defined by Poortmans et al. (31). For the determination of fat mass 13 percentage (%FM) triceps and subscapular skinfolds were used according to the equation described by 14 15 Slaughter et al. (35).

16

Maturity status was estimated taking into consideration the age at peak height velocity (APHV)
following the guidelines described by Mirwald et al. (29). Since APHV was considered a maturational
benchmark (0 value), the difference in years between APHV and each measurement (described as
years from PHV) was considered as a value of maturity offset.

21

22 Physical fitness and performance assessment

According to the procedures described by Lager & Lambert (23) maximum oxygen consumption (VO_{2max}) was estimated using the multistage shuttle run test (mp3 version, Coachwise, UK). Subjects were required to run 20-m shuttles progressively in speed and in time with an audible "beep" until reaching volitional exhaustion. The test was concluded if two consecutive shuttles were completed out of time, considering the last successful repetition for subsequent VO_{2max} estimation by the regression
equations described by Ransbottom et al. (32).

3

4 For the determination of upper and lower body power, Countermovement Jump test (CMJ) and Overhead Medicine Ball Throw test (OMBT) were used, respectively. CMJ test was performed on a 5 Bosco platform (Bosco System, USA) to record athlete's contact time (m·s⁻¹) in accordance to the 6 7 recommendations described by Temfemo et al. (36). During the action, a countermovement of 8 approximately 90° of knee flexion was permitted. The OMBT test was evaluated using a 3-kg 9 medicine ball (15). Subjects were requested to throw the ball over the head as far forward as possible from a standing and arm-relaxed position, registering the distance to the nearest centimeter. 10 Countermovements were allowed during the act of throwing since the feet remained motionless. 11

12

To determine hamstring flexibility, sit-and-reach test (SR) was used according to the procedures described by López-Miñarro et al. (24). Subjects were instructed to sit with no shoes, keep the legs together and the knees extended while the heels were flat against the bottom of a testing board (Richflex System, Sportime, USA). The maximum distance reached and maintained for 3 seconds by sliding the hands together along the testing board was then registered to the nearest centimeter. A tape measure placed on the top of the board, with the zero mark representing the plantar surface, was used for that purpose.

20

Specific performance tests were performed over 200, 500 and 1000 meters on separate days. Subjects were required to complete the three distances at maximum effort on a measured flatwater course under race conditions. All tests were laterally recorded by a JVC Everio MG-135 (Victor Company, Japan) at 30 frames per second from a motorboat, following each paddler and leaving at least 5-m of separation. Race times were obtained throughout the calculation of the frames from the first traction movement to the finish line using the Virtualdub software 1.8.8 (Avery Lee).

1 Statistical analysis

2 All statistical analyses were conducted using SPSS v22.0 (SPSS Inc. Chicago IL, USA). The 3 hypotheses of normality and homogeneity of variance were analyzed using the Kolmogorov-Smirnov 4 test and Levene's test, respectively. The difference between the mean values between groups was analyzed using t-test for independent samples when statistical tests revealed no violations of the 5 6 assumptions of normality and homogeneity. When normality supposition of data was rejected, the 7 Mann-Whitney nonparametric test was used. Statistical significance was set at the p < 0.05 level of 8 probability. To measure the effect size of observed differences Cohen's d analysis was used, 9 considering small effect between 0.2 and 0.5, moderate between 0.5 and 0.8, and large when it was > 0.8 (12). The relationships between anthropometric characteristics and performance and between 10 physical fitness and performance were investigated using Pearson's correlation coefficient (r) or 11 12 Spearman correlation coefficient (r_s) when the assumption of normality was violated. The magnitude of the correlations was assessed according to Hopkins et al. (19). Stepwise multiple linear regression 13 analysis was conducted using the significant variables from the linear correlation to determine which 14 ones could predict performance times. In addition, collinearity was analyzed using the variance 15 inflation factor (VIF). When VIF values were greater than 10 predictor variables were excluded from 16 17 the model.

18

19 **RESULTS**

The results of the anthropometric characteristics for both groups of kayakers, depending on their performance level, are presented in Table I. Significant differences (p < 0.05) between the Top-10 and the Rest groups were identified in chronological age, %MM and maturity status. Cohen's *d* analysis revealed moderate effect sizes in these parameters, with *d* values ranging from 0.50 to 0.80.

24

25 ***Table I near here***

Table II summarizes the physical fitness and race parameters of the two performance-based groups of kayakers. The independent t-test analysis revealed significant differences in CMJ (0.30 ± 0.05 vs 0.27 ± 0.03 cm for Top 10 and Rest kayakers, respectively) whereas OMBT, SR and estimated VO_{2max} presented no significant differences between means. Although moderate effect size was only identified in CMJ (0.73), OMBT and estimated VO_{2max} showed meaningful small effect sizes of 0.41 and 0.44, respectively. Highly significant lower race times (p < 0.001) were observed in the Top-10 group compared to the Rest group in all three distances performed (1000, 500 and 200-m). Additionally, Cohen's *d* calculations revealed large effect sizes with values not lower than 1.25 for

9 any distance.

10

1

2

3

4

5

6

7

8

11 ***Table II near here***

12

Pairwise correlations between the anthropometric, physical fitness variables and race times in all three 13 distances are presented in Table III. Furthermore, Table IV shows the stepwise linear regression 14 models to identify the determining factors that predict race times over 200, 500 and 1000-m. 15 Chronological age, sitting height, %MM and maturity status were negatively and significantly 16 associated with all distances (p < 0.01), except for sitting height with 200-m race time. Several and 17 substantial relationships were also observed between physical fitness and race times. SR and OMBT 18 revealed negative and significant correlations with race time over 1000 and 500-m (p < 0.05) whereas 19 20 over 200-m only OMBT presented a significant correlation (p < 0.01). Conversely, no significant associations were observed for the rest of parameters analyzed apart from estimated VO_{2max} with 21 1000-m (r = 0.31; p < 0.01) and CMJ with 200-m race time (r = 0.23; p < 0.05). Chronological age, 22 sitting height, estimated VO_{2max} and %MM significantly contributed as predictor variables of 1000, 23 500 and 200-m time, observing r^2 values not greater than 0.47. 24

25

26 ***Table III near here***

27 ***Table IV near here***

1 **DISCUSSION**

The main objectives of this study were to determine the differences in anthropometry and physical fitness and to identify their relationship with race times between the more successful (Top-10) and the rest (Rest) of the young elite female paddlers. Additionally, other findings revealed the importance of chronological age, maturity status, upper body strength and muscle mass in obtaining optimal results over the three Olympic distances.

7

8 Traditionally, the typical morphology of the more successful kayakers involved superior 9 anthropometric parameters than their opponents, mainly in weight, height and lean mass, resulting in larger and heavier somatotypes (1, 14, 40). Over the last decades these differences in somatotype have 10 been intensified, especially for female athletes competing not only in paddling (1) but also in rowing 11 12 (9). Although, in the current research only significant differences were discovered in chronological age, %MM and maturity, the greater values observed in most parameters for the Top-10 kayakers 13 support the affirmations of a more solid and robust somatotype in the best paddlers. Similar results in 14 the basic anthropometric attributes were observed by Alacid et al. (3, 6), except for the greater sum of 15 16 6 and 8 skinfolds (above 88 and 110 mm, respectively) in a group of young female kayakers. Prior investigations with senior female competitors reported heavier and taller morphology but similar fat 17 18 mass percentage values than those observed here (1, 2, 10, 34). Previous analysis of proportionality of 19 the sum of 8 skinfolds revealed that young female kayakers presented higher levels of adiposity in 20 comparison with Olympic paddlers (ranging from -0.6 to -0.7 vs -2.2 in the Phantom Z-score, respectively) (1, 3). 21

22

One of the main anthropometric differences between both performance-based groups was identified in %MM. The significantly greater muscularity in the more successful kayakers (41.3 vs 40.1% of MM) has traditionally been stated in prior research with male competitors (10, 14, 40). Despite the fact that no data about muscle mass in female paddlers was found in the literature, greater levels of certain variables that are typically associated with greater muscularity such as relaxed and contracted arm girths were observed in the more successful female competitors (1, 2). In addition, the higher ratings
of mesomorphy exhibited by the Olympic and international kayakers in comparison with younger and
national paddlers may be mainly explained by larger %MM (1, 3, 40). In recent years, more resistance
workouts have been added to female training programs (10) contributing, perhaps, to the observed
increases in muscle mass increases.

6

7 Along with these morphological differences, Top-10 kayakers also showed significantly higher levels 8 of maturation than the Rest, partially explained by the significantly greater chronological age 9 observed in the first group. In most sports, the improvements in physical attributes and morphology as a result of maturation have been well documented (13, 29). In water sports, the few investigations in 10 11 analyzing athletes' physical fitness reported superior results in the most mature male paddlers (26) 12 and the most experienced female rowers (9). In the current investigation, Top-10 paddlers were also those who showed superior results in all physical parameters but only significantly in CMJ. Best 13 paddlers seem to have greater power and strength since better results were obtained in the OMBT and 14 CMJ tests traditionally used as upper and lower limb power predictors (15, 36). In both tests, overall 15 16 moderate effect sizes were also observed between performance groups. This suggests that not only meaningful power and strength levels are essential for talent identification at early ages but also for 17 18 optimal long-term development in young female paddlers. Additionally, there is some evidence supporting these affirmations when comparing the isokinetic strength between different level male 19 20 paddlers (14, 40). Perhaps, these superior levels of power production may be related to the larger 21 muscularity shown above in the most successful female kayakers.

22

To date, the association between performance at different events and physical and anthropometric characteristics has only been investigated in elite male kayakers (14, 26, 38). The performance of the female kayakers in all distances were significantly related to chronological age and maturity, especially in 200-m. Nevertheless, only chronological age was identified as a predicting factor of 1000 and 200-m perhaps due to the fact that all kayakers had already reached PHV a long time before

1 and/or as a consequence of maturity status calculations from other anthropometric parameters. 2 Regarding prior studies with female paddlers, Aitken & Jenkins (2) found no correlation between 3 anthropometry and 500-m performance. Male kayak research has revealed contradictory results in 4 morphology, except for chest and arm girths correlations with performance (14, 17, 38). In addition, as distance decreases, there is an increasing association of %MM with performance which is 5 consistent with the high relationship between mesomorphy and short events observed by van Someren 6 7 et al. (38, 40) and the presence of %MM in the 500 and 200-m predictive equations. Along with the 8 significant associations of the power tests with 200-m time (r = -.289; p < 0.05 and r = -.231; p < 0.05for OMBT and CMJ, respectively) observed in the current investigation, it appears that muscular 9 10 factors seem to be a determinant for optimal sprint performance irrespective of gender.

11

The analysis of maximum oxygen consumption has usually been used to evaluate the aerobic power in 12 sprint canoeing (28, 34). Prior research comparing different male paddlers' level reported 13 contradictory results when VO_{2max} was analyzed. Fry & Morton (14) determined greater values in the 14 best 1000-m adult kayakers while van Someren & Palmer (40), conversely, identified slightly lower 15 16 peak VO₂ levels in 200-m sprinters, perhaps due to the larger anaerobic metabolic contribution in this event. In the current investigation, the effect size observed in the estimated VO_{2max} would suggest that 17 the enhancement and monitoring of this capacity during adolescence would be important in the 18 development process of successful female kayakers. Furthermore, the estimated values of both groups 19 20 were consistent with those identified in previous research for female kayakers, ranging from 44 to 49 $ml \cdot kg^{-1} \cdot min^{-1}$ (10, 34). 21

22

Concerning the relationship between maximum oxygen consumption and performance, Bishop (10) reported significant correlations between 500-m race time and VO₂ in female kayakers (r = 0.72), finding even greater correlations for relative peak VO₂ (r = 0.82) that suggests a significant influence of body mass on this variable. In addition, the presence of estimated VO_{2max} in the predictive equation for 1000-m might suggest a greater importance of aerobic power over long distances than that 1 previously revealed by the linear correlation analysis (r = -.307; p < 0.01). The results from the 2 current investigation are in agreement with previous research that identified greater aerobic 3 contribution at longer distances (14). On the contrary, van Someren & Howatson (38) revealed no 4 significant relationships between peak VO₂ and 200, 500 or 1000-m race times. Nevertheless, the fact that some evidence only found meaningful associations in absolute and threshold VO_2 (38) may 5 indicate the importance of not only the achievement of high VO_{2max} levels but also of the maintenance 6 7 of maximal and supramaximal intensities. Unfortunately, most investigations on young paddlers have 8 focused on male kayakers, limiting the possibility for further comparisons.

9

10 As for the relationship among all these parameters, especially at early ages, performance and aerobic power seems to be largely influenced by morphology, therefore, VO₂ parameters were typically 11 12 normalized for body mass (10). Although the improvement of aerobic power during puberty is difficult to predict due to maturational changes (37), biological and chronological age plays an 13 important role in its development (13). Interestingly, aerobic power in pubertal athletes may not be as 14 influential on performance as other physiological parameters (8). The metabolic specialization into 15 16 aerobic or anaerobic that occurs late in the maturity process may be responsible for the secondary role of this parameter (13). Additionally, best kayakers performed equally better (p < 0.001) over the three 17 Olympic distances (200, 500 and 1000-m) compared with the Rest, suggesting that specific distance 18 19 specialization observed in elite adult paddlers arises likely as a result of this posterior metabolic 20 specialization.

21

The results of the current investigation demonstrated the importance of physical and morphological parameters for success in young female kayakers. Best paddlers exhibited a significantly greater %MM but only slightly larger body sizes than less successful competitors. Additionally, chronological age, muscle mass and physical fitness level appears to be associated with better performances at the three Olympic distances. All these findings may be explained by the superior maturity status also identified in the best competitors. Therefore, assuming that there is an influence of biological age on performance, this parameter should be taken into consideration as critical factor in the talent identification programs. Currently the parameters used in the selection process of future talents among age-group paddlers are mainly race-time based tests (26). To date, this is the first research conducted with female paddlers that provided normative data regarding the optimal profile of successful kayakers, which may be useful for early talent identification.

6

7 PRACTICAL APPLICATIONS

8 For coaches, this is the first study to analyze the anthropometric and physical fitness profile of young 9 female paddlers based on field tests. The anthropometric characteristics of the current female kayakers are consistent with those previously reported for both male kayakers and canoeists (3, 7, 26). 10 Thus, the findings presented here provide valuable information about the characteristics of the 11 12 paddlers depending on their level and may be a useful tool and guide for talent identification among young athletes. The physical fitness results may allow for identification of the weak areas of the 13 strength and conditioning programs that might need to be reinforced for optimal athlete performance 14 depending on individual maturity status. Currently, most specific training programs followed by 15 16 female paddlers are based on prior male scientific knowledge or on coach training experience. Therefore, these results may also help to improve individual program designs for females, developing 17 specific paddler training to allow for a smooth transition to the professional field. In addition, all test 18 19 and assessments could be performed with little equipment by following the procedures defined in the 20 methods, making it accessible for teams and athletes with limited resources.

21

22 Acknowledgments

The authors would like to gratefully acknowledge the Royal Spanish Canoeing Federation and allparticipants and coaches for their cooperation and support during the process.

1 **REFERENCES**

- 2 1. Ackland TR, Ong KB, Kerr DA, and Ridge B. Morphological characteristics of Olympic sprint
- 3 canoe and kayak paddlers. J Sci Med Sport 6: 285-294, 2003.
- 4 2. Aitken DA and Jenkins DG. Anthropometric-based selection and sprint kayak training in children.
 5 *J Sports Sci* 16: 539-543, 1998.
- 3. Alacid F, Marfell-Jones M, López-Miñarro PA, Martinez I, and Muyor JM. Morphological
 characteristics of young elite paddlers. *J Hum Kinet* 27: 97-112, 2011.
- 4. Alacid F, Muyor JM, Vaquero-Cristobal R, and López-Miñarro PA. Morphological characteristics
 and maturity status of young female sprint and slalom kayakers. *Int J Morphol* 30: 895-901, 2012.
- 5. Alacid F, Marfell-Jones M, Muyor JM, López-Miñarro PA, and Martínez I. Kinanthropometric
 comparison between young elite kayakers and canoeists. *Coll Antropol* 39: 119-124, 2015.
- 6. Alacid F, Muyor JM, Vaquero-Cristobal R, and Lopez-Minarro PA. Morphological characteristics
 and maturity status of young female sprint and slalom kayakers. *Int J Morphol* 30: 895-901, 2012.
- 7. Arlettaz A, Rieth N, and Courteix D. Assessment of lean body mass and bone mass in specific sites
 in elite kayak paddlers. *Sci Sports* 19: 199-201, 2004.
- 8. Bar-Or O. A commentary to fitness and children: a public health perspective. *Res Q Exerc Sport*58: 304-307, 1987.
- 9. Battista RA, Pivarnik JM, Dummer GM, Sauer N, and Malina RM. Comparisons of physical
 characteristics and performances among female collegiate rowers. *J Sports Sci* 25: 651-657, 2007.
- 10. Bishop D. Physiological predictors of flat-water kayak performance in women. *Eur J Appl Physiol*82: 91-97, 2000.
- 11. Borges TO, Dascombe B, Bullock N, and Coutts AJ. Physiological characteristics of well-trained
 junior sprint kayak athletes. *Int J Sports Physiol Perform* 10: 593-9, 2015.
- 12. Cohen J. Statistical power analysis for the behavioral science. 2nd ed. Hillsdale, NJ: Lawrence
 Erlbaum Associates, 1988.
- 13. Falk B and Bar-Or O. Longitudinal changes in peak aerobic and anaerobic mechanical power of
 circumpubertal boys. *Pediatr Exerc Sci* 5: 318-331, 1993.
- 14. Fry RW and Morton AR. Physiological and kinanthropometric attributes of elite flatwater
 kayakists. *Med Sci Sports Exerc* 23: 1297-1301, 1991.
- 15. Gabbett T and Georgieff B. Physiological and anthropometric characteristics of Australian junior
 national, state and novice volleyball players. *J Strength Cond Res* 21: 902-908, 2007.
- 32 16. Geladas ND, Nassis GP, and Pavlicevic S. Somatic and physical traits affecting sprint swimming
 33 performance in young swimmers. *Int J Sports Med* 26: 139-44, 2005
- 34 17. Hamano S, Ochi E, Tsuchiya Y, Muramatsu E, Suzukawa K, and Igawa S. Relationship between
- 35 performance test and body composition/physical strength characteristic in sprint canoe and kayak
- 36 paddlers. J Sports Med 6: 191-199, 2015.

- 18. Higham DG, Pyne DB, Anson JM, and Eddy, A. Physiological, anthropometric, and performance
 characteristics of rugby sevens players. *Int J Sports Physiol Perform* 8: 19-27, 2013.
- Hopkins WG, Marshall SW, Batterham AM, and Hanin, J. Progressive statistics for studies in
 sports medicine and exercise science. *Med Sci Sports Exerc* 41: 3-12, 2009.
- 5 20. ICF. Flatwater racing competition rules. Lausanne: International Canoe Federation, 2011.
- 6 21. Johnstone JA and Ford PA. Physiologic profile of professional cricketers. *J Strength and Cond*7 *Res* 24: 2900-2907, 2010.
- 8 22. Lätt E, Jürimäe J, Mäestu J, Purge P, Rämson R, Haljaste K, Keskinen KL, Rodriguez FA, and
- 9 Jürimäe T. Physiological, biomechanical and anthropometrical predictors of sprint swimming
- 10 performance in adolescent swimmers. J Sports Sci Med 9: 398-404, 2010.
- 23. Lager L and Lambert J. A maximal multistage 20-m shuttle run test to predict. *Eur J Appl Physiol Occup Physiol* 49: 1-12, 1982.
- 13 24. López-Miñarro PA, Muyor JM, Alacid F, Vaquero-Cristobal R, López-Plaza D, and Isorna M.
- 14 Comparison of hamstring extensibility and spinal posture between kayakers and canoeists.
- 15 *Kinesiology* 45: 163-170, 2013.
- 16 25. López-Plaza D, Alacid F, Muyor JM, and López-Miñarro PA. Differences in anthropometry,
- biological age and physical fitness between young elite kayakers and canoeists. *J Hum Kinet* 57: 18190, 2017.
- 19 26. López-Plaza D, Alacid F, Muyor JM, and López-Miñarro, PA. Sprint kayaking and canoeing
- performance prediction based on the relationship between maturity status, anthropometry and physical
 fitness in young elite paddlers. *J Sports Sci* 35: 1083-1090, 2016.
- 22 27. Marfell-Jones M, Olds T, Stewart A, and Carter L. ISAK Accreditation Handbook. ISAK, 2006.
- 28. Michael JS, Rooney KB, and Smith R. The metabolic demands of kayaking: a review. *J Sport Sci Med* 7: 1-7, 2008.
- 25 29. Mirwald RL, Baxter-Jones ADG, Bailey DA, and Beunen GP. An assessment of maturity from
- anthropometric measurements. *Med Sci Sports Exerc* 34: 689-694, 2002.
- 30. Pendergast D, Cerretelli P, and Rennie DW. Aerobic and glycolytic metabolism in arm exercise. J *Appl Physiol* 47: 754-760, 1979.
- 29 31. Poortmans JR, Boisseau N, Moraine JJ, Moreno-Reyes R, and Goldman S. Estimation of total-
- 30 body skeletal muscle mass in children and adolescents. *Med Sci Sports Exerc* 37: 316-322, 2005.
- 31 32. Ramsbottom R, Brewer J, and Williams C. A progressive shuttle run test to estimate maximal
 32 oxygen uptake. *Br J Sports Med* 22: 141-144, 1988.
- 33. Shephard RJ. Science and medicine of canoeing and kayaking. *Sports Med* 4: 19-33, 1987.
- 34. Sidney K, Shephard RJ. Physiological characteristics and performance of white-water paddler.
- 35 Eur J Appl Physiol Occup Physiol 32: 55-70, 1973.

- 1 35. Slaughter MH, Lohman TG, Boileau RA, Horswill CA, Stillman RJ, Van Loan MD, and Bemben
- DA. Skinfold equations for estimation of body fatness in children and youth. *Hum Biol* 60: 709-723,
 1988.
- 4 36. Temfemo A, Hugues J, Chardon K, Mandengue S-H, and Ahmaidi S. Relationship between
- vertical jumping performance and anthropometric characteristics during growth in boys and girls. *Eur J Pediatr* 168: 457-464, 2009.
- 37. Vaeyens R, Lenoir M, Williams AM, and Philippaerts RM. Talent identification and development
 programmes in sport Current models and future directions. *Sports Med* 38: 703-714, 2008.
- 9 38. van Someren KA and Howatson G. Prediction of flatwater kayaking performance. *Int J Sports*10 *Physiol Perform* 3: 207-218, 2008.
- 11 39. van Someren KA, Howatson G, and Whyte GP. The relative importance of anthropometric and
- 12 physiological attributes in sprint kayaking performance. *Med Sci Sports Exerc* 38: S239, 2006.

13 40. van Someren KA and Palmer GS. Prediction of 200-m sprint kayaking performance. *Can J Appl*

- 14 *Physiol* 28: 505-17, 2003.
- 15 41. van Someren KA, Phillips GRW, and Palmer GS. Comparison of physiological responses to open
- 16 water kayaking and kayak ergometry. Int J Sports Med 21: 200-204, 2000.

Table I. Mean values of the anthropometric parameters

	Top 10 (n = 40)		Rest	(n = 46)	Р	Effect size
	Mean ± SD	95% CI	Mean ± SD	95% CI	values	(Cohen's d)
Chronological age (years)	13.86 ± 0.53	13.69 - 14.03	13.42 ± 0.54	13.26 - 13.58	< 0.001	0.80
Body mass (kg)	55.39 ± 7.88	52.87 - 57.91	54.56 ± 8.18	52.13 - 56.99	0.63	0.12
Height (cm)	163.48 ± 4.99	161.89 - 165.07	162.16 ± 6.10	160.35 - 163.97	0.27	0.25
Sitting height (cm)	87.87 ± 2.22	86.84 - 88.90	86.97 ± 3.44	85.95 - 88.00	0.22	0.31
BMI (kg ⋅ m ⁻²)	20.65 ± 2.16	19.96 - 21.34	20.70 ± 2.46	19.97 - 21.43	0.93	0.02
Sum of 6 skinfolds (mm)	72.76 ± 19.70	66.46 - 79.06	72.91 ± 20.10	66.95 - 78.88	0.97	0.01
Sum of 8 skinfolds (mm)	98.13 ± 27.87	87.72 - 108.54	98.76 ± 25.91	89.57 ± 107.95	0.93	0.02
FM (%)	23.00 ± 4.28	21.63 - 24.37	22.95 ± 4.33	21.66 - 24.24	0.96	0.01
MM (%)	41.31 ± 1.87	40.72 - 41.71	40.14 ± 2.02	39.54 - 40.74	0.01	0.60
Maturity status (years from APHV)	1.82 ± 0.47	1.67 - 1.97	1.56 ± 0.56	1.39 - 1.72	0.02	0.50

Notes: Means \pm SD and the lower and upper bound 95% confidence intervals for the means.

Significant differences are highlighted in bold text.

Abbreviations: BMI = Body Mass Index; FM = Fat Mass; MM = Muscle Mass; APHV = Age at Peak Height Velocity.

C

Table II. Mean values of the physical and performance parameters

	Top 10) (n = 40)	Rest	(n = 46)	Р	Effect size (Cohen's <i>d</i>)
	Mean ± SD	95% CI	Mean ± SD	95% CI	values	
SR (cm)	11.73 ± 5.53	9.99 - 13.46	10.14 ± 7.33	7.96 - 12.32	0.43	0.25
OMBT (m)	4.97 ± 0.63	4.76 - 5.18	4.71 ± 0.64	4.52 - 4.91	0.07	0.41
CMJ (m)	0.30 ± 0.05	0.28 - 0.32	0.27 ± 0.03	0.26 - 0.28	0.01	0.73
$VO_{2max} (ml \cdot kg^{-1} \cdot min^{-1})$	46.18 ± 3.46	45.04 - 47.31	44.69 ± 3.38	43.68 - 45.71	0.05	0.44
1000-m time (s)	289.28 ± 7.99	286.73 - 291.83	304.55 ± 9.63	301.69 - 307.41	< 0.001	1.73
500-m time (s)	146.69 ± 6.44	144.63 - 148.75	154.93 ± 5.79	153.22 - 156.66	< 0.001	1.35
200-m time (s)	53.16 ± 2.24	52.44 - 53.87	56.35 ± 2.82	55.52 - 57.19	< 0.001	1.25

Notes: Means ± SD and the lower and upper bound 95% confidence intervals for the means.

6

Significant differences are highlighted in bold text.

Abbreviations: SR = Sit and reach; OMBT = Overhead Medicine Ball Throw; CMJ = Countermovement Jump.

Table III. Relationship between anthropometric and physical fitness characteristics and performance

	1000-m time	HPM	500-m time	HPM	200-m time	HPM
Anthropometry						
Chronological age (years)	490**	М	272*	L	640**	LA
Body mass (kg)	013	-	.035	-	083	-
Height (cm)	187	L	067	-	078	-
Sitting Height (cm)	332**	М	333**	М	183	L
BMI (kg · m ⁻²)	113	L	.101	L	068	-
Sum of 6 skinfolds (mm)	.129	L	.100	L	.117	L
Sum of 8 skinfolds (mm)	.146	L	.081	-	.246	L
FM (%)	.075	L	.070	-	026	-
MM (%)	320**	Μ	337**	М	352**	М
Maturity status (years from APHV)	441**	М	267*	L	459**	М
Physical Fitness						
SR (cm)	232*	L	256*	L	149	L
OMBT (m)	278*	L	222*	L	289**	L
CMJ (m)	072		065	-	231*	L
VO_{2max} (ml · kg-1 · min-1)	307**	М	186	L	181	L

Notes: *Significant correlation (p < 0.05); ** Significant correlation (p < 0.01). Abbreviations: BMI= Body Mass Index; FM= Fat Mass; MM= Muscle Mass; APHV= Age at Peak Height Velocity; SR= Sit and reach; OMBT= Overhead Medicine Ball Throw; CMJ= Countermovement Jump; HPM= Hopkins' magnitude; M= moderate; L= Low; LA= Large.

Table IV. Regression equations to p	predict performance over 1000= 500 and 200 meters.

Distance		r²	SEE
1000-m	1000-m time = 525.04 - (7.93 x Chronological age) - (1.17 x VO _{2max}) - (0.42 x SR) - (0.71 x Sitting height)**	0.39	9.36 s
500-m	500-m time = 265.12 - (1.24 x %MM) - (0.73 x Sitting height)**	0.21	6.54 s
200-m	200-m time = 113.65 - (3.23 x Chronological age) - (0.36 x %MM)**	0.47	2.26 s

C

Note: **Significant contribution (p < 0.01) to the predictive model. Abbreviations: MM= Muscle Mass