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非金属粒子を縣濁させた水ベースナノ流体のプール沸騰熱伝達に関する研究 

 

 

ムハマド ズハイリ ビン スライマン 

 

概要 

 

 非金属ナノ粒子を縣濁させた水ベースのナノ流体中における沸騰伝熱特性を系統的に調べ

た。3種類の実験装置を用いて、伝熱面姿勢、ナノ粒子材料、ナノ粒子濃度、ナノ粒子分散状

態、ナノ粒子層形成時の熱流束の影響を検討した。伝熱面姿勢としては、上向き面と下向き面

で実験を実施し、限界熱流束(CHF)の絶対値は伝熱面姿勢によって異なるが、いずれの条件に

おいてもナノ流体中の CHFは純水中の値の約 2倍となることを示した。次に、ナノ流体中の

沸騰熱伝達率は、ナノ粒子の材質および濃度により大きく異なり得ることを示した。ナノ粒子

の材質として、本研究では TiO2、Al2O3、SiO2を使用したが、Al2O3では伝熱促進、SiO2では

伝熱劣化が生じるのに対して、TiO2では低粒子濃度で劣化、高粒子濃度で向上する結果となっ

た。一方、ナノ流体中における粒子の分散状況は、本実験で調べた範囲内において、沸騰熱伝

達に及ぼす影響は顕著ではなかった。また、各実験条件で沸騰曲線を描いたところ、Al2O3ナ

ノ流体では水の場合と類似の沸騰曲線が得られたのに対して、TiO2と SiO2では、高熱流束条

件で壁面過熱度が大きく増加するという独特の振る舞いを呈する場合があった。ただし、計測

された CHF値は 1.7～2.1MW/m2の範囲にあり、純水中の CHFよりも顕著に増大するもの

の、ナノ粒子の材質、濃度、分散状態による明確な影響は認められなかった。これに対して、

伝熱面上にナノ粒子層を形成する際の熱流束は、CHF値に多大な影響を及ぼした。すなわち、

高熱流束条件では、ナノ粒子層を形成する際の沸騰時間が短くても顕著な CHF増大を実現で

きるのに対して、低熱流束条件では十分な CHF向上を達成する伝熱面状態とするのにきわめ

て長いナノ粒子層形成時間を要した。特に、本研究で用いた最低熱流束条件では、ナノ流体中

で沸騰状態を 1時間継続した場合でも、十分な CHF向上効果を発現するには至らなかった。

本研究では、純水中にナノ粒子を添加した後の熱伝達率の時間変化を様々な条件で調べたが、

ナノ粒子の添加直後では、熱伝達率が向上する場合が多かった。そこで、ナノ流体中における

熱伝達率変化のメカニズムについて知見を得るため、透明容器を用いた可視化実験を実施し

て、ナノ粒子天下の前後における沸騰気泡の生成状況の差異を検討した。この結果、ナノ粒子

を加えた直後、より多数の発泡核で気泡生成が生じることが観察された。これより、伝熱面上

にナノ粒子層が形成される際に、そのいくつかの部分が気泡生成核となり、核沸騰熱伝達の促

進に寄与することを示した。 
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ABSTRACT 

 

Heat transfer characteristics in boiling systems are significantly important, 

especially in high-density cooling, for instance, the application of In-Vessel Retention 

(IVR) during the Loss of Coolant Accident (LOCA) in a Nuclear Reactor. In the present 

study, the performance of nanofluids in a boiling system, namely, non-metallic water-

based nanofluids has been explored. The parametric effects of the nanofluids in nucleate 

pool boiling with various configurations have been tested. Three main experimental 

setups were prepared separately to investigate the effect of heater orientations: material, 

concentration, and dispersion as well as heat flux density, respectively. Additional 

research was performed by using a separate experimental apparatus in order to 

elucidate a possible nucleate boiling mechanism occurring in nanofluids. 

Conclusively, the Critical Heat Flux (CHF) was improved significantly in the 

nanofluid nucleate boiling, compared to pure water. The orientation effects showed 

similar magnitudes of enhancement, up to 200 percent in both upward-facing and 

downward-facing heaters. Several parameters related to the CHF enhancement rate, 

such as concentration and boiling time in nanofluids, were simultaneously investigated. 

The CHF enhancement rates are considerably high in a higher concentration of TiO2 

nanofluid and vice versa. In addition, the CHF enhancement for the downward-facing 

heater orientation is only half of that for the upward-ward facing heater. Surface 

wettability measurements were also being conducted to explore the relationship between 

surface properties and the CHF enhancement. 

Separately, the effects of nanoparticle materials, concentrations and dispersion 

conditions on the heat transfer coefficient and CHF were elucidated. The boiling heat 

transfer characteristics observed were significantly different depending on the 

nanoparticles’ material as well as on the difference in the concentration. The higher 

concentration of TiO2 and Al2O3 showed higher heat transfer enhancements (except for 

the low concentration of TiO2), whereas for SiO2 the heat transfer deteriorated for all 

concentrations in the time-variation of wall superheat. However, no noticeable effects of 



 

 

the dispersion condition was observed. Some peculiar boiling curves (BCs) were observed 

in TiO2 and SiO2 at the high heat flux compared to the simple BCs in Al2O3. The CHF 

enhancement was found to be within the range of 1.7 up to 2.1 MW/m2 for all materials. 

The effects of different heat flux density on the CHF enhancements were also 

investigated. The enhancement rate of CHF greatly depended on the heat flux density; 

the heat flux at the higher densities had shown considerably higher CHF enhancements 

rate to compare to lower heat flux density. The CHF enhancement still did not reach the 

asymptotic CHF value after boiling for 1 hour at the lowest heat flux in the present 

experimental investigation. Both the dimensionless CHF enhancement value respective 

to the dimensionless heat flux, concentration and boiling time were correlated. The trend 

showed a linearity in the high heat flux, especially for 450 and 600 kW/m2. Nevertheless, 

for lower heat flux, non-linear trends were observed especially at heat flux densities of 

300 kW/m2 and more obvious at 150 kW/m2. 

In conclusion, nanofluids showed an enhanced CHF both for upward-facing and 

downward-facing conditions. However, the heat transfer characteristic (HTC) 

performances was stochastic depending on materials and concentration of nanofluids, 

and nearly no noticeable dispersion condition was observed. The heat flux density 

affected the rate of CHF enhancements, where the high heat flux resulted in high 

enhancement rates, but nominal enhancements in the lowest heat flux.   
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CHAPTER 1 INTRODUCTION 

1.1  Background 

Nucleate boiling is known as a superior mode of heat transfer due to the latent 

heat transport during the phase-change. To date, when the advancement of modern 

technologies demands high heat flux removal, this mode of heat transfer has been widely 

integrated into a variety of engineering applications. Examples are high-density micro-

electronics cooling systems, heat exchanger system, as well as the emergency cooling 

systems in nuclear power plants (NPPs).  

Although extensive research has been performed on boiling heat transfer, the 

understanding of the responsible mechanisms involved in nucleate boiling is still in its 

infancy due to its non-equilibrium character. Therefore, researchers adopted semi-

empirical correlations based on experimental data and used such correlations to simplify 

the calculation of the complex variables in nucleate boiling, especially during the design 

of applications. This approach has been reasonably successful. Also, the heat transfer 

characteristics of boiling systems became even more complicated to deal with the 

integration of nano-meter sized particles. 

The nano-meter sized particles dispersed in the base-fluid called nanofluid have 

been conceived by Choi et al. [1]. This new type base-fluid has been extensively 

researched and had been proven to have superior thermo-physical properties. For instance, 

the thermal conductivity was increased significantly without significant changes in the 

physical properties. These features have attracted researchers to integrate the nanofluids 

in both pool and flow boiling systems. Since the integration, some plausible critical heat 

flux (CHF) enhancement has been found despite some inconsistencies, which had been 

reported concerning the boiling heat transfer characteristic. 

Nucleate boiling studies concerning nanofluids have dramatically evolved within 

a decade since the introduction of nanofluids. In 2003, You et al. [2] performed the 

pioneering work to integrate Al2O3 nanofluids into the boiling system. They reported 

significant improvements on the CHF. A separate study conducted in the same year by 
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Das et al. [3] on the boiling heat transfer (BHT) reported that the heat transfer coefficient 

(HTC) deteriorated. Since then, an increasing number of publications have appeared in 

this field.  

In nucleate boiling with nanofluids, investigators have focused predominantly on 

two parameters the HTC and the CHF. Both parameters are exceedingly significant and 

represent the performance of the integration of nanofluids into the boiling system. 

Information on HTC and CHF are valuable in designing applications that make use of 

nanofluid boiling.  

1.2  Motivation 

High-performance cooling systems are in high demand, especially in cooling for 

nuclear reactors. In particular, improvements in the safety margins are desirable to avoid 

a hypothetical severe accident. In the situation of a loss of coolant accident (LOCA) in a 

nuclear reactor, Buongiorno et al. [4] initially suggested to anticipate the insertion of the 

nanofluid into the in-vessel retention (IVR) to enhance the CHF in order increase the 

safety margin, which could avoid the subsequent fatal accident.  

Nanofluids can be assimilated into a vast spectrum of applications. For instance, 

in recent design of NPPs called economic simplified boiling water reactor (ESBWR), the 

nanofluid can be integrated into the passive coolant systems (PCSs) in either the isolation 

condenser system (ICS) or the passive containment cooling system (PCCS) or in both.  

In the ESBWR design, the cooling systems by passive method is extensively 

integrated and equipped with multiple safety management strategies to avoid a loss of 

coolant accidents (LOCAs) and to mitigate further damage to the system. The systems 

configuration are shown in the schematics in Fig. 1.1.  

During the moderate LOCA, passive safety features in ESBWR is activated to 

allow the steam flows to the ICS inside the water pool above the containment and remove 

the heat. The ICSs are designed to continuously operate for 72 hours. During the process, 

the heat transferred from the steam in ICSs pool by the convection mode especially via 

nucleate boiling as shown in Fig. 1.2(a). Here by integrating with suitable nanofluids as 

a base coolant, the heat dissipation could significantly improve. 
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Fig. 1.1: Safety system configuration of an ESBWR [5] 

 

 

However in the case of severe LOCA, another passive safety system (PCS) named 

as a passive containment cooling system (PCCS) together with a gravity driven cooling 

system (GDCS) could be initiated. In this safety management, the reactor pressure vessel 

(RPV) will be flooded to cool down the RPV temperature especially during the 

hypothetical large break in LOCA cases and the conditions is shown in Fig. 1(b). In this 

case, the lower surface of RPV surface is in the downward facing orientation and it is 

experiencing the lowest possible heat that could be transferred (known as CHF) compared 

to the other surface. Here, increasing the CHF at this region could significantly improve 

the safety margin. In parallel to that, the nanofluid has been proven to improve the CHF 

in many cases and the integration of this base liquid could increase higher safety margin 

especially during severe LOCA. 
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Figs. 1.2: Passive cooling systems in ESBWR [5] 

 

(a) Isolation condenser system (ICS) 

 

 

(b) Passive containment cooling systems (PCCS) and Gravity Driven Cooling 

System (GDCS) 
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1.3  Technical objective 

Given the lack of information concerning the boiling heat transfer in nanofluids, 

namely the HTC and CHF, the present study is designed to explore the performance of 

nucleate boiling in water-based nanofluids. The exploratory work is conducted to 

elucidate the parameters which influence the boiling performance. The objectives of the 

research are presented next. 

 The first objective is to explicate the effect of nanofluids under different heater 

orientations. This objective aims to identify the effect of heater orientation (upward-

facing of down-ward facing) concerning the CHF performance. These experimental 

findings are be hugely beneficial during the flooding of the outer surface of the reactor 

pressure vessel (RPV) and the activation of PCCS in ESBWR. 

Bearing in mind the inconsistency of the HTC and CHF characteristics reported 

by many investigators, the second objective is to explore the effect of nanoparticle-

materials, concentrations and dispersion conditions of nanofluids. The study is expected 

to be useful and crucial for nanoparticle selection for optimum HTC and CHF 

performance.  

 The third objective is directed towards investigating the heat flux effects on the 

CHF enhancement at a different deposition rate of nanoparticles. Where, for the case of 

a hypothetical accident, the effects of the heat flux on the CHF enhancement is significant 

as the rate of CHF enhancement determines the time frame that is available for maximum 

enhancement during the activation of PCCS. 

 Finally, from the observed HTC reduction in the most with the addition of 

nanofluids in a small heater, further investigations are performed with a larger and 

transparent heater to explore the possible mechanism of the BHT.  

1.4  Thesis outline 

This paper consists of eight chapters, and the content of each chapter is as follows: 

Chapter 2 discusses the fundamental theorem on the nucleate boiling heat transfer and 

assessment on the available and reported literature of nanofluids. 
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Chapter 3 explains the experimental methodology and the nanoparticle characterizations 

in the present experiment. 

Chapter 4 demonstrates and discusses the experimental work on the effect of heater 

orientation on the CHF namely, upward- and downward-facing copper heaters. Further, 

CHF enhancement in the downward-facing and upward-facing heaters, as well as the 

relation with nanofluid concentration and boiling time are discussed.  

Chapter 5 includes a detailed discussion of the parametric investigations of the effects of 

nanoparticle-materials, concentrations, and dispersion conditions of nanofluids. The 

influence of those parameters on the HTC performance is reported, which also reveals 

some peculiarities in the boiling curve. 

Chapter 6 explains the effects of different heat flux density on the CHF enhancement, 

from low to high heat flux, when the heated surface is prepared with a defined 

concentration. The time variation of wall superheat, and the surface wettability are also 

investigated. The boiling curves at the particular boiling time and heat flux are discussed 

as well.   

Chapter 7 demonstrates the possible mechanism when the nanofluid is added to the 

boiling system. Given the findings concerning the HTC enhancement in several cases 

studied, the visualization was performed using a larger and transparent glass heater in the 

separate test vessel. The findings are reported and discussed in detail. 

Finally, in Chapter 8 the conclusions obtained in this dissertation are summarized. 
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CHAPTER 2  LITERATURE REVIEW 

2.1 Nucleate boiling heat transfer 

2.1.1 Boiling curves 

Nukiyama [6] was the first to introduce boiling curves for nucleate boiling in 1934, 

followed by several well known works by Bergles [7], Rohsenow et al. [8] Kutateladze 

[9], Katto [10], Berenson [11], Kandlikar [12] and Dhir [13]. The three boiling regimes 

in the curve classify nucleate boiling, transition boiling and film boiling. These 

classifications are based on the bubble condition, representing the mode and intensity of 

the heat transfer. Among these boiling regimes, the nucleate boiling regime exhibits the 

highest heat transfer rate.  

 

 
 

 Fig. 2.1:  Pool boiling curve for water at atmospheric pressure 

 

Fig. 2.1 depicts the boiling curve relation between the heat flux, qW and the wall 

superheat, ΔTSAT. The boiling curve consists of several regions differentiated by the 
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bubble conditions. In the boiling curve, the region indicated by O to A is classified as 

natural convection, where no boiling occurs. The next region is the nucleate boiling region, 

which ranges from A to D. In this region, the curve from A to A’ indicates that the bubble 

nucleation was initiated at the vicinity of the surface, which known as the onset of 

nucleate boiling (ONB). At later stage, from A’ to A”, bubbles were nucleated and the 

wall superheat later reduced but maintained at the similar heat flux.  This region is called 

the inception of boiling region. In the region from A” to C, the bubble nucleation grows 

and departs more rapidly as the heat flux increases. As the applied heat flux increases, 

more nucleation sites will be activated, and the bubble behavior deviates from weak 

boiling until vigorous boiling conditions. The bubbling bubbles in this region differ 

depending on the heat flux intensities, i.e., discrete bubbles, vapor columns and 

mushrooms types. Later, in the region C to D, the intense evaporation underneath the 

vigorous bubble leads to periodic dry patches at the vicinity of the heater surface due to 

the reduction in the fluid rewetting process by the surrounding fluid. Consequently, the 

heat transfers stemming from the latent heat transfer start to decrease. The nucleate 

boiling at the highest heat flux intensity (point D) is referred to as critical heat flux (CHF). 

At a later stage, the liquid rewetting onto the heater surface decreases, leading to the 

formation of dry patches covering the heater surface region called transition boiling. At 

this point, insufficient liquid is supplied to cool the surface and to reduce the heat flux. 

These eventually decrease the heat flux and increase the wall temperature up to point E, 

where the heat flux reached a minimum called the Leindfrost point. At this stage, the 

surface is entirely covered with a tiny vapor blanket. As the heat flux is further increased, 

the temperature reaches point F, the film boiling region. Through experimental 

investigation, Nukiyama (1934) observed that the high temperature following the CHF 

point leads to physical burnout of nichrome wires, while platinum wires were able to 

withstand the higher temperatures. 

2.1.2 Heat transfer coefficient (HTC) 

The heat transfer coefficient 𝛼 represents the heat transfer performance in nucleate 

boiling. It is modeled from Newton’s law of cooling 
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 W W SAT
q T T           (2.1) 

where qW is the heat flux, 𝛼 is the HTC, TW is the wall temperature (usually the 

heat wall temperature) and TSAT is the bulk liquid. 

2.1.3  Correlations on boiling heat transfer 

The complexity of nucleate boiling heat transfer had led many researchers to 

develop semi-empirical correlation equations. Most of the correlations were based on 

experimental results from pure liquids and were only capable of predicting the 

performance of boiling heat transfer for most of the pure substances. The most well-

known correlations are summarized in the following. 

Stephen-Abdelsalam correlation  

The Stephan and Abdelsalam correlation [14] is used to estimate the ideal heat 

transfer coefficient in various types of pure fluid. The correlation is as follows: 
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  (2.2) 

 

where kl is the thermal conductivity of the liquid, db is the bubble departure 

diameter TSAT is the saturation temperature al is the thermal diffusivity and   is the heat 

transfer coefficient. 

The departure bubble diameter db is given by 
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v

d
g




 



        (2.3) 

where βo is the contact angle of the vapor bubbles. For water, βo = 45° was used 

and the mean absolute mean error was within 11.3 percent.  
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 The boiling curve drawn from Stephen-Abdelsalam (S-A) in Fig. 2.2 is widely 

used to estimate the value of wall superheat versus heat flux in the nucleate boiling region 

for various fluids. 

 

 

Fig. 2.2: Boiling curve drawn from Stephen-Abdelsalam correlation for water 

Rohsenow correlation 

Boiling is evaporation process associated with the development of vapor bubbles 

in the liquid. Based on the postulate that the nucleate boiling heat flux is associated with 

the pumping and removing the bubbles from the heated surface, Rohsenow et al. [15] 

obtained a correlation of nucleate pool boiling in the form 
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where hfg is the latent heat of vaporization of the fluid, σ is the surface tension, ρl 

and ρg are the liquid and vapor densities respectively, g is the gravitational acceleration, 

and Prl is the Prandtl number defined as μcpl/kl in which kl, μl, and cpl are the thermal 
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conductivity, viscosity and heat capacity of the liquid, respectively. Csf and s are constants 

and their conventionally used values for copper-water (surface-fluid) combination are 

0.013 and 1. The boiling curve drawn from Rohsenow correlation is shown in Fig. 2.3. 

 

 

Fig. 2.3: Boiling curve drawn from Rohsenow correlation for copper-water combination 

 

2.1.4  Correlations on critical heat flux 

The critical heat flux is defined as the maximum point of the nucleate boiling 

region, where the heat flux is at the highest rate. This point is also referred to as a 

departure of nucleate boiling (DNB) or the burnout heat flux. After this stage, the 

capability of removing high heat flux is reduced and the wall superheat continues to 

increase to the transition boiling regime and later reaches film boiling. Several well 

known researchers have reported in the literature to predict the CHF which have been 

widely used in the heat transfer applications design. The details of these correlations are 

further explained below: 
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Zuber-correlation on hydrodynamics boundary-layer model 

 The most imperative correlation on the CHF is developed by Zuber [16] to predict 

the critical heat flux based on the hydrodynamic boundary-layer model of the burnout 

crisis. This work is further supported by Kutateladze [9] and Tien [17]. At present, this 

correlation equation has been reasonably successful in predicting the CHF for various 

pure liquids. The equation for the Zuber correlation as [18] 

 

 
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For pure water, the CHF value for Zuber correlation is 1.1 MW/m2 and the 

calculated value is drawn in Fig. 2.4.  

 

 

Fig. 2.4: CHF drawn from Zuber correlation 

 

However, this correlation does not take into account the heating surface properties, 

and could not explain the CHF enhancement in nanofluids’ boiling. Based on this 

equation, the influencing parameters for CHF values are the heat of vaporization (hfg), the 

density of the vapor (ρv) and liquid (ρl). It should be noted that the density values of 
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nanofluids for heat vaporization are nearly the same as for pure water since the mass 

concentration of nanoparticles is insignificantly small. As the nanoparticles are colloidal, 

the deposition on the heated surface during the bubble nucleation is unavoidable. They 

dramatically modify the surface morphology. One of the most significant changes 

observed is the modification of the surface wettability. 

Kandlikar Correlation 

In connection with the previous section, Kandlikar [19] has introduced an 

improvement that takes into account the effect of the surface condition 
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     (2.6) 

 

where  r is the receding contact angle of the heater surface and   is the angular 

orientation of the heater, corresponding to the horizontal orientation as shown in Fig. 2.5. 

 

Fig. 2.5: CHF enhancement respective to the contact angle drawn from Kandlikar 

correlation for copper-water combination 
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Specifically, he takes into account the heater surface morphology and the 

wettability which dramatically influences the mechanism of bubbling during the 

nucleation. It is in excellent agreement with many experimental studies on the effect of 

reduction of the contact angle respective to the CHF as  

Ramilison Correlation 

As a result of more detailed studies on the surface properties to the CHF, 

Ramilison et al. [20] have proposed another correlation which takes into account another 

vital surface property, the surface roughness and contact angle into his correlation. The 

equation is 

   
0.253.0 0.125

CH

1/2

v fgF r q l v
0.0366 ,

4
hq R g


           

   (2.7) 

 

where Rq is the root mean square surface roughness of a heater and r
  is the receding 

contact angle. Measurement of the contact angle and the surface roughness are required 

for this correlation.  

 

2.2  Properties of the nanofluids 

2.2.1  Thermo-physical properties 

Nanofluids have been reported to have improved thermo-physical properties in a 

number of articles [1,21–30]. In particular, the thermal conductivity became a primary 

research interest. The thermal conductivity was shown to improve with the dilution of the 

nanofluids in various base fluids, i.e., aluminum oxide (Al2O3), titanium oxide (TiO2) and 

silicon oxide (SiO2) as well as carbon nanotubes (CNT). These were the nanofluids that 

have been tested and most commonly used for various applications. The enhancement of 

the thermal conductivity varies depending on the materials, concentrations, size and 

chemical characteristics. The improvement of the thermal conductivity usually ranges 
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from about 10 to 300 percent, as discussed by Wang et al. [31]. The details of the 

respective effect on the pertinent parameters of particle volume concentration, material, 

size, shape, base fluid material, temperature, additive, and acidity were considered 

individually by various research groups, and the results were summarized in a review by 

Yu et al. [32].  

Apart from thermal conductivity, another important parameter usually considered 

by many researchers is the viscosity, i.e., the viscosity of the base fluid after the addition 

of nanoparticles. It has been reported that the viscosity is significantly influenced by 

parameters such as temperature, particle size, and shape as well as volume fractions, for 

which a detailed reviewed has been given by Mahbubul et al. [33]. The significant 

enhancement in the thermal conductivity of nanofluids was also observed in experimental 

studies of natural and forced convection. However, the relations of these characteristics 

to the boiling heat transfer are still unclear due to the non-linearity phenomena in boiling 

system. Thus, to reveal the possible mechanism of the heat transfer performance in boiling 

systems, these parameters should not be neglected. 

2.2.2  Dispersion condition in fluid 

The preparation of the nanofluid is the crucial step in the experimental studies 

related to nanofluids and has been treated by many researchers [26,34–38]. Nanofluids 

are not merely any liquid-solid mixtures. For a technical application as coolants, several 

special requirements are essential, such as even and stable suspension, durable suspension, 

the negligible agglomeration of particles, and an absence of any chemical change of the 

fluid [31]. It was found that agglomeration could lead to different structures after 

deposition onto the heater surface, which could produce different sizes of micro-cavities 

that promote the nucleation of bubbles. Haddad et al. [39] had reviewed how various 

techniques that were used by investigators to obtain a good dispersion condition. In 

general, to obtain stable dispersions, ultrasonic vibrators, adjusting the pH value and the 

addition of surfactants are the most commonly used techniques. However, in some cases, 

the addition of chemical stabilizers such as surfactants could lead to inconsistencies in 

experimental results, especially in studies related to heat transfer. Apart of that, study on 
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nanofluid stability of several types of aluminium oxide also has been reported in detail by 

Andersson [40]. 

2.3  Nucleate boiling in nanofluids 

Two characteristics which are crucial in nucleate boiling are the heat transfer 

coefficient (HTC) and critical heat flux (CHF). To date, many researchers have published 

their experimental work in the study of nucleate pool boiling heat transfer in nanofluids 

[3,41–54]. However, the coefficient of the heat transfer is still elusive due to the 

complexity of the phenomena related to nucleate boiling.  

Several arguments among researchers on the enhancement and the deterioration 

of nucleate boiling heat transfer characteristics, especially in nanofluids pool boiling have 

been reported. However, for the CHF results, most researchers have reported 

enhancements from their studies [3,46,55–68]. 

Research on pool boiling with nanofluids was initially conducted in the early 21st 

century pioneered by You et al. [2] and Das et al. [3]. Since then, numerous studies have 

focused on pool boiling and related areas, such as HTC. Such studies have been conducted 

by Vassallo et al. [69], Bang and Chang [42], Park and Jung [43], Soltani et al. [44] and 

Huang et al. [45]; CHF studies were performed by H. Kim et al. [70], H. Kim et al. [71], 

Hegde et al. [72] and Kwark et al. [73]. Morerover, Jeong et al. [74] and Peng et al. [75] 

focused on the surfactant addition.  

A more in-depth understanding of both of these critical characteristics is an 

essential key to design cooling devices with optimum heat dissipation capabilities. 

2.3.1  Review of the heater orientation effects 

Buongiorno et al. [4] proposed the use of nanofluids to enhance the in-vessel 

retention (IVR) capability as a management strategy in the case in severe accidents in 

light-water reactors (LWRs). By IVR, in the case of severe accidents, the core melts and 

relocates to the lower head of the reactor vessel, these consequences can be mitigated by 

flooding the reactor cavity with cooling water from a water storage tank and nanofluids 
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stored in separate storage tanks. Thus, the decay heat from the molten core is removed by 

conduction through the reactor vessel wall and boiling on the outer surface of the vessel. 

Since the heat flux at the outer surface of the reactor vessel during severe accidents tends 

to increase the core power density while the CHF limits the possible decay heat removal. 

Thus, the use of nanofluids is expected to increase the safety margin. Moreover, in the 

newer design of nuclear power plants such as the economic boiling water reactor 

(ESBWR) [5], passive coolants have been integrated to a significant degree.  

Till today, the effects of the heater orientation have been less widely addressed by 

researchers, especially in the case of pool boiling for nanofluids. However, prior to the 

CHF in the pool boiling of nanofluids studies, Howard and Mudawar et al. [76] have 

reported findings on the effect of the heater orientation (change from upward to 

downward orientation) together with the CHF performance using pure water. In their 

study, it was reported that the CHF values decreased approximately by half for the 

downward-facing condition in Fluorinert liquid (FC-72). 

In the case of pool boiling of nanofluids, investigation results were reported by 

using different types of heaters, either for wire or flat plate heaters [2,45,70,77]. The 

reported information was mainly on the upward-facing flat heaters and nearly no 

information was available on the orientation effect. Also, for cylindrical heaters due to 

the wiring, the orientation effect could not be investigated. This setup is impracticable to 

reveal the information about the CHF with respect to the orientation of the heater. To  

obtain management strategy in severe loss of coolant accidents, a deeper understanding 

of the influence of the heater orientation on the CHF, especially in the case of downward-

facing heaters, is needed. Hence, the study on effects of the orientation is crucial to 

elucidate the CHF characteristics in both upward- and downward-facing nano-coated 

heaters. 

  In the literature, the CHF of pure water in pool boiling was found to decrease as 

the heater orientations was changed from upward to downward-facing [76]. Parallel to 

the application of nanofluids in the severe management strategy, a better understanding 

of the influence of heater surface orientation, especially for downward-facing heaters to 

critical heat flux became necessary. Therefore, in the present study, an attempt was made 

to investigate effects of the orientation with respect to critical heat flux in both upward- 
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and downward-facing heaters in nanofluid nucleate pool boiling and will be discussed in 

Chapter 4. 

2.3.2  Review on the effect of the particles’ material, concentration and dispersion 

condition 

Until now, many experimental investigations have been conducted since the study 

of pool boiling of water-based nanofluids by You et al. [2] revealed enhancement of the 

critical heat flux (CHF) by up to 200 percent. Also, a number of reports can be found for 

pool boiling with nanofluids which indicate CHF enhancement and the dependence on 

surface properties in particular, surface wettability, roughness, porosity and capillarity 

[19,48,70,78–82]. The deposition of the nanoparticles due to microlayer evaporation in 

nucleate boiling has been shown to improve the surface wettability and the porous 

structure along with the changes in roughness and capillarity and to contribute to a 

dramatical enhancement of the CHF. However, Kim et al. [71] reported that the CHF 

values obtained by using nanofluids with a nano-coated heater surface and pure water are 

lower than those for nanofluids. CHF values observed under different conditions 

depended on the particles’ material. Similarly, the boiling heat transfer characteristics 

have been extensively studied by an immense number of researchers [41,52,57,58,83–85] 

and great variations were reported. There is still no agreement on the cause for these 

contradictions. However, in the boiling heat transfer of nanofluids, it was reported that 

the heater surface structure (characterized by wettability, roughness, and nanoparticles-

layer thickness) is not the sole the reason for these inconsistencies, but there is also an 

effect from the suspended nanofluids’ physical properties (nanofluid materials, 

concentration, dispersion condition and shape) and thermo-physical properties (viscosity 

and thermal conductivity). How this could affect the bubbles dynamic has been discussed 

thoroughly by Wen D. [84]. Accordingly, one could conjecture the important parameters 

that consequently affect the boiling heat transfer performance in many ways and 

represented them by a complex time-variation of the wall superheat [86]. On the other 

hand, one could infer that the conflicting reports in the literature on boiling heat transfer 

are most probably due to the combined effects of the parameters listed above. These 
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effects may be either be self-attenuating or cancel depending on the material, size and 

dispersion conditions. In addition, an extensive review by Haddad et al. [39] on various 

preparation techniques showed a distinctive dispersion of the nanofluids, which depends 

on sonication time, volume fraction, nanoparticle size and type, base fluids, surfactants 

and the nanofluids production methods. In nanofluid nucleate boiling, it should be noted 

that varying the dispersion conditions leads to a different morphology of the heater 

surface microstructure. These significantly influence the bubbling activity due to an 

increase in the density of nucleation sites during nucleate boiling, as reported by Barber 

et al. [87] and Kamatchi et al. [88]. The complex time-variation of the boiling heat transfer 

in nanofluids [86] would be also one of the reasons for the inconsistency between 

investigations by  different groups. The literatures above revealed the effects of several 

vital parameters on the boiling heat transfer characteristics. However, the effects of other 

parameters, such as the material and dispersion condition of nanoparticles on the CHF are 

yet to understood sufficiently. To date, no systematic experimental information is 

available in the literature for boiling heat transfer in a nanofluid. Thus, the present study 

is also aimed at investigating the effects of the nanoparticle-material, the concentration 

and the dispersion condition of nanofluids. The detailed discussion will be presented in 

Chapter 5.  

2.3.3  Review on the different heat flux density on the boiling heat transfer and 

critical heat flux  

The heat flux density is the most decisive parameter in high power cooling systems. 

In nuclear systems, the heat is continuously generated inside the core, transferred through 

the pressure vessel and dissipated at the outer surface. During this process, the amount of 

transferred heat is controlled by the elevation of the control rod bundles in the reactor 

vessel. However, during loss of coolant accidents (LOCAs), the amount of heat flux 

represented by the heat transfer coefficient (HTC) is unpredictable, uncontrollable and 

fluctuates depending on the severity of the accident. It is limited only by the maximum 

heat transfer capability of the system called the critical heat flux (CHF). Consequently, 

this has led to the introduction and adoption of in-vessel retention (IVR) in the design for 
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LOCAs in 1989. After that, progressive research on IVR has been reported in the literature 

[89–91]. Realizing the unique properties achieved, nanofluids have also been introduced 

in IVR for Light Water Reactors (LWRs) by Buongiorno et al. [4] to mitigate the 

consequences of a hypothetical severe accident. 

 To the best knowledge of the author, so far only a few studies have been conducted 

on the effect of heat flux on the CHF enhancement and the boiling heat transfer (BHT) 

characteristics can be found in the literature. From the available reported literature, most 

of the work in nanofluid boiling was performed in the quasi-equilibrium in BHT 

experiments with subsequent CHF measurement. Here, the heat flux effect at a particular 

fraction of the CHF could not be quantified as the heater surface had already been altered 

by the previous boiling process with nanofluids due to heat flux in quasi-equilibrium. 

Therefore, the applied elevated quasi-equilibrium heat flux is not applicable for research 

on the IVR condition. Conversely, Okawa et al. [86] had investigated CHF and HTC 

performance in constant heat flux and found that the CHF enhancement also depends on 

the boiling time and concentration; however, for the HTC their characteristics were 

somewhat random, with increases and decreases in HTC for a relatively high 

concentration. On the other hand, Kwark et al. [52] showed a decrease of the HTC in 

Al2O3 in quasi-equilibrium nucleate boiling experiments for a specified period and 

suggested that the responsible factors are the increased thickness of the deposition. 

Suriyawong et al. [92] also observed degradation of the HTC in TiO2 quasi-equilibrium 

experiments.  

Apart from that, it can also be noted that nucleate boiling is known to be the most 

efficient heat removal method due to the latent heat in the vaporization. Since the nucleate 

boiling system consists of at least three regions [93] which can behave differently 

depending on the nucleation size density, bubble departure diameter, bubble frequency, 

bubble coalescence and also the heat transfer mode in natural convection at low heat flux. 

It is expected that nanofluids could remarkably influence the boiling system 

characteristics which are at present poorly known. Differences in heat flux could affect 

the parameters that govern nanofluid nucleate boiling differently, and the changes are 

essential for successful IVR with nanofluid.  

 In short, numerous investigations have been conducted on pool boiling with 

nanofluids, with limited emphasis on the heat flux effect. Also, a sufficient understanding 
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on the performance of the HTC and the degree of the CHF enhancement after nanofluid 

injection is necessary. Therefore, the current study is expected to provide several 

noteworthy contributions to the success of IVR integration with nanofluids to improve 

the safety margins. The present work also attempts to explore experimentally the effects 

of heat flux applied during nanofluid boiling on the CHF and their HTC in nucleate pool 

boiling by using titanium oxide nanofluids, an extension to the previous study in Ref. [86]. 

A detailed discussion will be presented in Chapter 5. 

2.3.4  On the possible mechanism of the boiling heat transfer (BHT) improvement 

As the BHT-data were inconsistent among various research groups, it is 

challenging to identify the mechanism involved in the BHT characteristic. In most cases, 

the boiling curve measurements were performed using a base fluid that had been diluted 

with nanoparticles prior to pouring it into the vessel. Based on the detailed discussion in 

Chapter 5, the time variation of the wall superheat could be used to extract crucial 

information of the nucleate boiling condition at a particular heat flux. However, the 

limitation to observe bubbles using the small size copper heater and limited visibility of 

the nanofluid in the present experimental work was the primary constraint to observe the 

behavior of the bubble. Evidently, the finding in the current study by using the copper 

heater shows the heat transfer coefficient (HTC) to increase in most cases at the initial 

stage of the nanofluid addition for all concentrations and nanoparticle-materials (except 

in some cases indicated in the discussion in Chapter 5). The observed enhancement can 

be attributed to the ability of nanofluids to promote the addition of nucleation sites which 

eventually increases the HTC at the initial stages of the nanofluid injection.  

Based on the hypothesis that the nucleation site density increased upon the 

addition of the nanofluid into the test vessel at the initial stage of the time variation of 

wall superheat, a preliminary observation was conducted to observe the bubbling 

behavior. The visualization of nucleate boiling was performed by using another 

experimental apparatus. The details are further described in Chapter 7.  
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2.4  Bubble nucleation in nanofluid pool boiling 

In nanofluid boiling systems, the most significant feature is the deposition of nano-

particles due to bubbling. The deposition modifies the heater surface morphology, and 

the changes in morphology lead to the changes of several properties such as surface 

wettability, roughness, and porosity.  

 

 

Fig. 2.6: Deposition of nanoparticles at the nucleation site region [94] 

 

These properties are closely related to the availability of micro-cavities for bubble 

nucleation that could alter nucleation site density, bubble departure diameter, and 

frequency. Consequently, it is widely believed these are the primary causes of the changed 

heat transfer performance. Fig. 2.2 shows the surface modification during the nanofluid 

pool boiling. 
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The study conducted by You et al. [2] reported an increase of the bubble size and 

a decrease in the frequency after the addition of the nanofluid. The photograph in Fig 2.3 

shows sample pictures of the bubbles’ condition between the bare and the nanofluid 

boiling system.  

 

 

Fig. 2.7: Sample pictures of bubbling from a wire heater [2] 
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CHAPTER 3 EXPERIMENTAL SETUP 

In this chapter, the selected nanoparticles, experimental procedures, experimental 

apparatus and equipment are described in detail. 

3.1  Nanoparticle materials 

Three different types of nanoparticles are selected for the nanofluid preparation 

and used in the experiments. In the present study, two types of nanofluids are used, one 

prepared using a two-step method and one using the one-step method. The nanoparticles 

are purchased in powder form and later dispersed in the liquid (“two-step method”, “Type 

I”), while the second type is a nanofluid purchased in liquid form and later diluted into a 

larger volume of the base fluid (“one-step method”, “Type II”). 

The properties of the three different nanoparticle materials used in this research 

are summarized in Table 3.1 and 3.2. 

 Table 3.1: Nanoparticle-materials and description 

Item Nanoparticles 
Original 

form 

Size dp 

[nm] 
Type Manufacturer 

1 
Titanium Oxide 

(TiO2) 
Particles 21 Type I 

Aerosil Corporation 

(Aeroxide TiO2 P25) 

2 
Alumnium 

Oxide (Al2O3) 
Particles 13 Type I 

Aerosil Corporation 

(Aeroxide Alu C) 

3 
Silicon Oxide 

(SiO2) 
Particles 20 Type I 

Aerosil Corporation 

(Aerosil 90) 

4 
Titanium Oxide 

(TiO2) 
Slurry 21 Type II 

Aerosil Corporation 

Aeroxide (AERO DISP 

W740 X, 40 wt. %) 
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Table 3.2: Nanoparticles properties 

Molecular formula TiO2 Al2O3 SiO2 

Melting point [°C] 1850 1750 1713 

Appearance White solid White solid Transparent solid 

Density [g/cm3] 3.8 3.89 2.33 

Thermal conductivity 

[W/m.K] 
11.8 35 1.4 

3.2  Experimental equipment 

Four different experimental test setups are designed and used in the present study 

to achieve the specific technical objectives. The four different test vessels used are 

described in detail in the following section. 

3.2.1  Test vessel I (Upward-facing heater) 

Fig. 3.1 shows the schematic diagram of the experimental apparatus for the 

upward-facing heater experiment. The system is composed of a copper block, cartridge 

heaters, a test vessel, a cover plate, an external thermocouple to measure the liquid 

temperature, a series of thermocouples embedded in the copper block, and a thermal 

insulator. The heating device is mounted at the bottom of the cylindrical stainless steel 

vessel of 160 mm diameter and 200 mm height as shown in the figure. The side wall of 

the vessel is covered with an insulation material. 
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(a) 

 

(b) 

Fig. 3.1: Experimental apparatus for upward-facing experiment; (a) schematic 

diagram and (b) photo 

 

3.2.2  Test Vessel II (Downward-facing heater surface) 

Fig. 3.2 shows the schematic diagram of the experimental apparatus for the 

downward-facing heater experiment. The components are similar to those in upward-

facing heater except that the heating device is mounted on the top of the stainless steel 

bracket attached to the vessel of 160 mm diameter and 200 mm height as shown in Fig. 

3.2. The side wall of the vessel is covered with insulation material. At the bottom, the 

auxiliary heater is used to supply heat to keep the water at saturation temperature. 
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(a) 

 

(b) 

3.2.3  Test Vessel III (Transparent vessel) 

The schematic diagram and the picture of the experimental apparatus for test 

Vessel II are shown in Figs. 3.3 (a) and (b), respectively. The test vessel mainly consisted 

of a polycarbonate circular tube as a side wall, a stainless steel bottom plate, and a 

polycarbonate top plate. The inner diameter and height of the vessel are 144 and 170 mm, 

respectively, and the side wall of the vessel is covered with a thermal insulator. The 

heating device is mounted concentrically at the bottom of the test vessel as shown in Fig. 

3.3. An immersion heater with 1 kW power is arranged in the lower part of the vessel to 

keep the bulk liquid temperature at saturation temperature. A water-cooled reflux 

condenser is mounted in the top plate to prevent vapor release from the test vessel. Since 

the top of the condenser is not closed, the pressure inside the vessel can be assumed to be 

equal to atmospheric pressure. A type-K thermocouple is positioned 10 mm above the 

center of the heated surface to ensure that the bulk liquid is maintained in saturation. The 

top plate was designed with a 15 mm diameter hole to inject the nanofluid with a syringe 

into the vessel containing boiling water. The hole was always kept closed with a silicone 

rubber plug except during the nanofluid injection. 
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(a) Schematic diagram 

 

(b) Photo 

Fig. 3.3: Schematic diagram and photograph of the experimental apparatus 

3.2.4  Test Vessel IV (Transparent Heater and Transparent Vessel) 

The vessel is made of polycarbonate with the internal dimensions of 20 mm width, 

230 mm length and 98 mm depth, as shown in Fig. 3.4.  

 

 

 
 

(a) Schematic diagram (b) Photo 

Fig. 3.4: Schematic diagram and photograph of the experimental apparatus 



30 

   

3.2.5  Copper block heater 

The one end of a copper block was machined into a cylindrical shape of 20 mm 

diameter, and its end face was used as the heating surface. Nine heating cartridges with 

900 W power in total were embedded into the opposite end of the copper workpiece. The 

calculated maximum heat flux for this arrangement is 2.86 MW/m2. Whereas four type-

K thermocouples with an accuracy of ± 1.5 K were positioned along the central axis of 

the copper cylinder to measure the heat flux, qW and the wall superheat, ΔTW and also to 

shut down the system when the critical heat flux condition is reached. The copper block 

is placed in a stainless steel jacket of 2 mm in thickness to reduce the heat loss from the 

side wall of the block. The copper block and the jacket are bonded smoothly by electron-

beam welding to avoid leakage and to eliminate the possibility of any significant vapor 

bubble generation at the bond part. 

 

 

 

(a) Schematic diagram (b) Photo 

Fig. 3.5: Schematic diagram and photograph of the heater block 

3.2.6  ITO Quartz glass heater 

The heater surface has a dimension of 10 mm width and 170 mm length (Fig. 3.6) 

and the surface is heated ohmically using a DC power supply. An ITO film-deposited 

glass plate forms the bottom face of the experimental vessel and the vessel is fixed to the 
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holder as shown schematically in Fig. 3.4. A small stripe of black tape is placed at the 

center of the underside surface of the glass plate. The superheat temperature, TBW of the 

glass plate is then measured using an infrared thermometer. 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

  

 Fig. 3.6: ITO Quartz glass heater (a) Schematic diagram (b) Photo 

  

3.3  Instrumentation and Equipment 

Ultrasonic bath device 

 In order to obtain a finer dispersion of nanofluid, an ultrasonic bath as shown in 

Fig. 3.7 is used to break the agglomeration of the nanoparticles into smaller agglomerates. 

The sonication time tus used in this study was between 1 to 8 hours. The detail description 

is given in Table 3.3. 

 

ITO HeaterTop view

Side view
Glass subtract
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Fig. 3.7: Ultrasonic bath 

 

Table 3.3: Descriptions of the ultrasonic bath 

Manufacturer BRANSON 

Model CPX2800H-J 

Specification 
Voltage：110W 

Frequency：40kHz 

 

Scale 

 The nanoparticles were weighted with the high-resolution scale in Fig. 3.8 with 

the detailed specifications of the scale in Table 3.4. 
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Fig. 3.8: Scale used for the experiment 

Table 3.4: Detail description of the scale 

Manufacturer AS ONE 

Model ASP213 

Specification 

Minimum Display：0.001g 

Accuracy：±0.002g 

Stabilizing time：3 second 

Contact angle measurement device 

The PG-X (FIBRO system AB) instrument (Fig. 3.9) is used to measure the 

contact angle for the surface wettability. The integrated micropump is designed for a 
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standard liquid where the droplet size can be set in steps of 0.5 μL. Degassed and distilled 

water is injected into a small tube to develop a single drop of water on a copper surface. 

The digital image of the droplet profile is obtained and analyzed to derive the static 

contact angle. 

 

 

Fig. 3.9: Contact angle measurement device 

 

Condenser 

In order to retain the fluid and prevent it from evaporating into atmosphere 

(outside of the vessel), two condensers are used to prevent the changes in the 

concentration caused by evaporation. The specification is shown in Table 3.5. 
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 Table.3.5: Detailed description of the condenser device 

Manufacturer Shibata Scientific Technology Co. Ltd. 

Product name 
SPC Cooler rod (a) 

Dimroth condenser rod (b) 

Model 
030730-15200(a) 

006680－24500(b) 

Specification 

 

(a) Height：200mm 

Diameter：30mm 

Rubber cap：8mm 

(b) Height：500mm 

Diameter：34mm 

Rubber cap：10mm 

Cartridge heater 

Cartridge heaters are attached to the copper block to supply heat. The specification is 

shown in Table.3.6 

Table 3.6: Description of the cartridge heater 

 

Manufacturer Daiki Industrial Co. Ltd. 

Name Cartridge Heater 

Specification 

Diameter：7.3mm 

Length：45mm 

Power：100W 
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Voltage controller 

Slider type voltage controllers supply the electrical power to the heater. Two 

controllers are used, one to regulate the heat for the immersion heater and one for the 

copper block heater as shown in Fig. 3.10. The specifications are given in Table 3.7. 

 

 

Fig. 3.10: Voltage controller for the copper block heater (a) and the one used for the 

immersion heater in (b). 

 

Table 3.7: Description of the voltage controller 

Manufacturer Yamabishi Electric Co. Ltd. 

Product name Voltage controller (Slider type) 

Model 
S-130-10(a)  

N-130-10M(b) 

Specifications 

(a) (a) & (b)  

Output：0~130V 

Input：100V 

Maximal current：10A 

(a) (b) 
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Digital multimeter 

The digital multimeter shown in Fig. 3.11 is used to measure the supplied input 

current to the copper block. The specifications of the meter are given in Table 3.8. 

 

 

Fig 3.11: Digital multimeter 

 

Table 3.8: Description of the digital multimeter 

Manufacturer Advance Ltd. 

Product name Digital multimeter 

Model R6452A 

Specification 
Resolution：Voltage 0.01V，Current 0.1mA 

Measurement accuracy：±0.1V，±2.3mA 

Thermocouples 

The thermocouples used in the experiment are the K-type thermocouples. Four 

units of thermocouples are used; three units is attached to the copper block heater and one 

for the temperature measurement of the bulk fluid.  
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Data logger 

 

The data logger in Fig. 3.12 with a capability of recording data in intervals of 1 s 

is used to measure the temperature and voltage during the experiment. The specification 

of the logger is given in Table 3.9. 

 

Fig. 3.12: Data logger 

 

Table 3.9: Description of the data logger 

Manufacturer Eto Electric Co. Ltd. 

Model Cadac 3 

Specification 
Mode：K-CA (Temperature module) 0~1372℃ 

Tolerance：K-CA (Temperature module) ±0.02%rdg±0.3℃ 

Hot Plate 

In the downward-facing heater, a hot plate as shown in Fig. 3.13 is used to keep 

the temperature at the saturation temperature. The specification of the hot plate is given 

in Table 3.10. 
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Fig.3.13: Hot plate 

Table 3.10: Description of the hot plate 

Manufacturer AS ONE 

Name Ceramic hot plate 

Model CHP-170DN 

Specification 
Maximum temperature：550℃ 

Heater power：900W 

Transmission Electron Microscope (TEM) 

A JEOL JEM-2010 high-resolution transmission electron microscope operating 

between 80 and 200 kV accelerating voltage is used in this study. 
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Fiber-Optics Particles Analyzer 

The dispersion conditions of the nanoparticles in the fluids is measured by using 

the Dynamic Light Scattering (DLS) analysis machine in Fig. 3.14 with the description 

in Table 3.11. 

 

 

Fig. 3.14: Fiber-optic Particles Analyzer 

 

Table 3.11: Description of the fiber-optics particle analyzer 

Maker Otsuka Electronics Co.  Ltd. 

Product name Fiber-Optics Particles Analyzer 

Model FPAR-1000 

Specification Particle diameter range：3nm ~5000 nm 

Concentration range：0.01%~10% 

Sample temperature range：10~70℃ 
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3.4  General experimental procedure 

3.4.1  Preparation of the nanofluids 

Each experiment starts with the preparation of the nanofluids. In order to ensure 

stable and uniform dispersion conditions, ultrasonic excitation is performed for several 

hours by using an ultrasonic bath for each type of nanoparticles before the experimental 

investigation. 

3.4.2  Heater surface preparation 

Before each experimental run, the heater surface is prepared. First, the surface is 

polished using a metal polishing paste and further cleaned using acetone. After the surface 

cleaning, five water droplets of about 0.5 mm3 in volume are placed on the heated surface 

to measure the static contact angle, θ from the side view of the droplets using a goniometer 

(PG-X, Fibro System AB). The value of θ was between 85o and 95o as shown in Fig. 3.15. 

 

 

Fig. 3.15: Photograph of droplets placed on the heated after surface preparation. 

 

3.5  Nanoparticles characterization  

The nanoparticles size and aggregation conditions were verified by the 

transmission electron microscope (TEM) in Fig. 3.16. The size of the nanoparticles was 

fairly close to the specifications given by the manufacturer.  



42 

   

 

  

 

  

 

  

 

  

 
Fig. 3.16: TEM micrograph of nanoparticles observed at different scales; (a) TiO2 

(Type I), (b) Al2O3 (Type I), (c) SiO2 (Type I), (d) TiO2 (Type II)  

50 nm 100 nm 
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3.6  Data analysis 

In the present study, the heat flux is calculated by the Fourier law as shown in Figs. 

3.17. Temperature measurements at different locations in a copper block were used to 

determine the heat flux through the heater. 

 

 

Fig. 3.17: Measurement of heat flux by the Fourier Law 

The wall temperature is calculated based on 

𝑇W = 𝑇2 −
𝛿𝑇

𝛿𝑥
𝑥2 = 𝑇2 − 2(𝑇2 − 𝑇1),                   (3.1) 

 

while, the wall superheat is calculated based  

 

Δ𝑇W = 𝑇W − 𝑇𝑠𝑎𝑡.                       (3.2) 

 

The wall heat flux qW is calculated by using the value of thermal conductivity of 

copper k and the difference of the temperature gradient of the copper block as 

 

 𝑞W = 𝑘 𝑑𝑇 𝑑𝑥⁄ .                                    (3.3) 

The precise value of the copper thermal conductivity corresponds to the 

temperature obtained from the correlation  
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𝑘 = 3.99×102－4.31×10−2TW－2.02×10−5TW
2 .                (3.4) 

 

Hence, the heat transfer coefficient, 𝛼 could be obtained by dividing ΔTW with qW 

as shown in Eq. 3.5. 

 

𝛼 = 𝑞W Δ𝑇W⁄ .                                (3.5) 

 

 3.7 Error analysis 

 The error in the heat flux measurement is estimated by using the method defined 

by Cooke and Kandlikar [95] 

2
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p a
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U u
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 
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 where p is the calculated parameter, ai is the measured parameter and u denotes 

the error of the subscripted parameter.  

In the present study, the three possible sources of error are listed in Table 3.12.  

Table 3.12: Parameters for the error determination 

From the error analysis method described, the measurement error of qW and ΔTW 

are less than 90 kW/m2 and 3 K, respectively. 

 

    Parameters Resolution 

    Thermocouple Precision Resolution [K] 1.5 K 

    Thermal conductivity of the material at different temperatures 

    [W/m. K] 
1 W/m. K 

    Length resolution of the equipment [m] 0.0001 m 
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CHAPTER 4 EFFECT OF HEATER ORIENTATION ON CHF 

4.1  Introduction 

In nuclear power plants (NPPs), the reactor pressure vessel (RPV) is located in the 

containment. In the bottom part of the RPV’s outer surface, the orientation is downward. 

As the nanofluid could be used during the loss of coolant accident (LOCA), information 

regarding the CHF in upward- and downward-facing conditions is important. Hence, this 

chapter discusses the result of the experimental work for the CHF enhancement in both 

upward- and downward-facing nano-coated heaters. In the present work, the mean contact 

angle of the heater surface for both orientations with various concentration are discussed 

in detail.  

4.2  Experimental description  

The main experimental parameters are shown in Table 4.1 for the upward-facing 

heater and in Table 4.2 for the downward-facing heater.  

Table 4.1: Main experimental conditions for the investigation of the upward-facing 

heater 

Run 
qW 

[kW/m2] 
C [kg/m3] tb [s] tus [hrs] Type 

1-6 330 0.004 
1,3, 10, 20, 

40, 60 
8 Type I (TiO2) 

7-12 330 0.04 
1,3, 10, 20, 

40, 60 
8 Type I (TiO2) 

13-18 330 0.4 
1,3, 10, 20, 

40, 60 
8 Type I (TiO2) 



46 

   

 

Table 4.2: Main experimental conditions for the investigation of the downward-facing 

heater 

Run qw [kW/m2] C [kg/m3] tb [s] tus [hr] Type 

19 -24 

 
330 0.004 

1,3, 10, 

20, 40, 

60 

8 
Type I 

(TiO2) 

25-30 330 0.04 

1,3, 10, 

20, 40, 

60 

8 
Type I 

(TiO2) 

31-36 330 0.4 

1,3, 10, 

20, 40, 

60 

8 
Type I 

(TiO2) 

 

 

The experimental apparatus has been explained in Chapter 3. In the present work, 

titanium oxide nanoparticles (Aeroxide TiO2 P 25, manufactured by Aerosil Corporation 

with a reported mean particles size of 21 nm) were selected. The nanoparticles were 

dispersed in distilled water and underwent sonication in the ultra-sonic bath for 8 hours 

to ensure an excellent dispersion stability. The experimental procedures are described as 

follows. 

Following the surface preparation as discussed in Section 3.4.2 in Chapter 3, the 

distilled water was kept boiling in a separate vessel for 20 minutes for degassing. In the 

present experiment, test vessel I and test vessel II were used. After mounting the heating 

device on both test vessels, 1.8 and 3.0 liters of degassed distilled water were poured into 

Vessel I (upward facing heater) and Vessel II (downward facing heater). Then, electric 

power was applied to the cartridge heaters to heat up the water. The heat flux qW was 

adjusted to 330 kW/m2 for both the upward- and downward-facing heaters. At this 

particular stage, the temperature of the copper blocks increased gradually to generate 

vapor bubbles on the heated surface. Then, the fluid reached the saturation temperature, 

and the block temperatures approached asymptotic values. In the experiments for the 
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downward-facing heater, the hot plate was also used to ensure saturated boiling. After the 

steady state was reached, 0.2 respectively 0.3 liters of nanofluid were added to the boiling 

water depending on the configuration. The mixture was stirred with a stick to obtain a 

uniform spatial distribution of the nanoparticle concentration in the vessel; the stirring 

time was about 3 seconds. The concentration of nanoparticles C was defined as the total 

mass of TiO2 nanoparticles divided by the total volume of the test liquid supplied to the 

experimental vessel. The particle concentration varied from 0.004±0.01 to 0.40±0.01 

kg/m3 in the present experiment depending on the configuration. The temperatures in the 

heating block were monitored to obtain information regarding the effect of the 

nanoparticle deposition on the nucleate boiling heat transfer. After waiting for a 

prescribed time tb from the addition of nanofluid, the cartridge heaters were turned off, 

and the test liquid containing nanoparticles was poured off to eliminate the chance of 

further boiling in the nanofluid. It was supposed that the deposition of nanoparticles on 

the heated surface occurred during the waiting time in this experimental step. The waiting 

time was therefore used as the definition of the boiling time in the nanofluid, tb. The 

boiling time tb was set to 1, 3, 10, 20, 40, and 60 minutes. From the elapsed time during 

stirring and pouring off the test liquid, the accuracy of tb was estimated within 10s. After 

the block temperature decreased until it was less than 40 degrees Celsius due to the heat 

transfer with ambient air, the contact angle was measured again to obtain the information 

concerning the change of surface properties. Then, the experimental vessel was cleaned 

and refilled with degassed distilled water. The electric power applied to the cartridge 

heaters was increased gradually, and the value at which a sudden increase in the block 

temperature was detected was regarded as the CHF. An analog-to-digital converter 

attached to a personal computer was used to record the temperatures measured in the 

copper block, and test liquid and the electric power were upplied to the heaters every 

second. 
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4.3  Results and Discussion 

4.3.1  Critical heat flux and mean contact angle 

 

Fig. 4.1: Relation between boiling time and CHF 

 

For the surfaces that did not experience boiling with nanofluid (tb = 0), the CHF 

value was 0.47 MW/m2 for the downward-facing heater was, 58 % less than for the 

upward-facing surface (1.14 MW/m2). Also, the CHF value increased asymptotically with 

an increase in tb in both the cases. The asymptotic CHF values for upward-facing and 

downward-facing heater obtained were 2.2 and 1.1 MW/m2, respectively. Furthermore, 

the observed improvement varied depending on the nanofluid concentration and boiling 

time used. 

 The measured CHF value for the upward-facing and downward-facing heated 

surfaces at various concentrations and boiling time are shown in Fig. 4.1. From the figure, 

it can be comprehended that the downward-facing nanofluid-coated-heater had an 

approximately 50 percent lower CHF value compared to the upward-facing heater. Also, 
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the asymptotic critical heat flux enhancement is achieved after a boiling time of 10 

minutes in both configurations (earlier in high concentration and slightly later for lower 

concentration).  

In the upward-facing region, the buoyancy force removes the vapor from the 

heater surface in vertical direction. However, for the downward-facing heater, the vapor 

repetitively stratified and accumulated on the heater surface; the upward-facing heater did 

not experience these effects. The accumulation of a bubble layer upon the heater surface 

in downward-facing reduced the heat dissipation; thus, the heater absorbed the heat from 

the vapor. This consequentially contributed to the degradation of the critical heat flux. 

 

 

Fig. 4.2: Relation between contact angle and CHF 

 

 

Fig. 4.2 shows the relation between the critical heat flux and the mean contact 

angle of the nanofluid-coated-surface for both upward- and downward-facing heaters. In 
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heated surfaces show a strong relationship between the mean contact angle and CHF 
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deposited nanoparticles. The changes in the morphology of the heated surface are one of 

the primary factors for the critical heat flux enhancement. However, the CHF 

enhancement reached the asymptotic maximum value when the contact angle reduced to 

below 20° for all concentrations and orientations. Meanwhile, at lower contact angles, the 

reduction in wettability showed a positive effect respective to the CHF enhancement.  

 

4.4  Conclusion 

The CHF of nucleate boiling in titanium oxide nanofluid pool boiling under 

various concentrations in upward- and downward-facing heaters has been extensively 

investigated. The reduction of the CHF in the downward-facing heater compared to the 

upward- was by 50% in the bare heater surface condition. The CHF enhancements were 

observed faster for the higher concentration (C = 0.4 kg/m3), slower for the low 

concentrations. The CHF was enhanced with nanofluids concentration as low as C = 0.004 

kg/m3. The higher concentrations led to faster CHF enhancement for both orientations. 

The maximum CHF enhancements in the nanofluid in various concentration for CHF for 

upward- and downward-facing heaters were 2.1 and 1.9 times, respectively. Both 

orientations of the heater surface demonstrated a similar magnitude of the CHF 

enhancement rate in nanofluids. 

The reduction of the mean contact angle showed an enhancement of the critical 

heat flux for both upward-facing and downward-facing heaters. For the asymptotic CHF 

values, the mean contact angle was below 20° for both the upward-facing and downward-

facing heaters.  
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CHAPTER 5 EFFECT OF NANOPARTICLE-MATERIALS, 

CONCENTRATIONS AND DISPERSION CONDITIONS 

5.1  Introduction 

This chapter deals with the effects of the nanoparticles' material, concentration 

and dispersion condition on the heat transfer characteristics of nucleate pool boiling in 

water-based nanofluids. For the boiling heat transfer, the time-variation of the wall 

superheat, the boiling curve and the critical heat flux are discussed. Some peculiarities 

during the experimental work, the detachment of layers of nanoparticles as well as 

abnormal temperature spikes are also explained in detail.  

5.2  Description of the preparation of the experimental 

In the present study, TiO2, Al2O3 and SiO2 were used as nanoparticle materials. 

The following three types of nanoparticles of (all white color, manufactured by Aerosil 

Corporation) were used to prepare the nanofluids:  

 (1) Aeroxide TiO2 P 25, TiO2 particles that are a mixture of anatase (80%) and  

rutile (20%) crystal structures with average primary particle diameter dp of 21 nm),  

(2) Aeroxide Alu C (Al2O3 (Alumina) particles with dp of 13 nm), 

(3) Aerosil 90 (SiO2 (Silica) particles with dp of 20 nm).  

Two different sonication times were used to prepare the dispersion, 1 hour and 5 hours 

for coarse and fine dispersion, respectively. Three variations of the concentration, C of 

0.04, 0.4 and 1 kg/m3 were used.  The experimental setups are summarized in Table 5.1. 
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Table 5.1: Main experimental conditions and parameters 

Run Particle 

material 

Boiling 

time tb 

[hour] 

Concentration, C 

[kg/m3] 

Dispersion 

condition 

tus [hour] 

Base fluid used 

during the CHF 

measurement 

1 TiO2 1 hr 0.04 1 hr Nanofluid 

2 5 hr Nanofluid 

3 0.4 1 hr Nanofluid 

4 5 hrs Nanofluid 

5 1 1 hr Nanofluid 

6 5 hrs Nanofluid 

7 Al2O3 1 hr 0.04 1 hr Nanofluid 

8 5 hr Nanofluid 

9 0.4 1 hr Nanofluid 

10 5 hrs Nanofluid 

11 1 1 hr Nanofluid 

12 5 hrs Nanofluid 

13 SiO2 1 hr 0.04 1 hr Nanofluid 

14 5 hr Nanofluid 

15 0.4 1 hr Nanofluid 

16 5 hrs Nanofluid 

17 1 1 hr Nanofluid 

18 5 hrs Nanofluid 

19 TiO2 1 hr 0.4 1 hr Distilled water 

20 SiO2 1 hr 0.4 1 hr Distilled water 

21 1 1 hr Distilled water 
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Table 5.2: Experimental condition for the detachment investigation 

Run Particle 

material 

Concentration, 

C 

[kg/m3] 

Dispersion 

condition 

tus [hour] 

qW,  

[MW/m2] 

(Maximum qW 

applied)  

1 
TiO2 0.4 1 hr 

1.1 

2 1.4 

3 
SiO2 0.4 1 hr 

1.4 

4 1.6 

 

 The nanoparticles were mixed with 100 ml of distilled water in a cup and placed 

in the ultrasonic bath (CPX2800H-J, Branson) to perform ultrasonic excitation to obtain 

a uniform dispersion of nanoparticles. The particle concentration in the bath was set to 

0.8, 8 and 20 kg/m3. As will be described later, 75 ml of this nanofluid were injected into 

1425 ml of boiling water in the test vessel to measure the heat transfer characteristics. As 

a result, the particle concentration C was reduced to 1/20 in the vessel and the final 

concentration obtained was 0.04, 0.4 and 1 kg/m3, respectively. 

5.3  Dispersion condition 

In nanofluids, the primary particles commonly aggregate into larger agglomerates. 

The excitation time in the ultrasonic bath tus was set to 1 respectively 5 hrs to obtain 

different dispersion conditions. The distribution of the aggregate size was measured using 

the fiber-optics particle analyzer (FPAR-1000, Otsuka Electronics). Figs 5.1 (a)-(i) 

compare the aggregate size distributions for short (1 hr) and long (5 hrs) excitation times 

for different materials and concentrations of nanoparticles. The values of the Sauter mean 

diameter dsm is also presented in the figures. For the results of tus = 5 hrs, all the aggregate 

size distributions have single peaks in the size dispersion except for Fig. 5.1 (f) in which 

a second peak of small magnitude is found (at 20 nm); the range of dsm is slightly greater 

in SiO2-water nanofluids than in TiO2- and Al2O3-water nanofluids (95-119 nm for TiO2 

and Al2O3 and 127-188 for SiO2). No clear dependence of dsm on the particle  
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(a) TiO2; C = 0.04 kg/m3 (b) TiO2; C = 0.4 kg/m3 (c) TiO2; C = 1 kg/m3 

(d) Al2O3; C = 0.04 kg/m3 (e) Al2O3; C = 0.4 kg/m3 (f) Al2O3; C = 1 kg/m3 

(g) SiO2; C = 0.04 kg/m3 (h) SiO2; C = 0.4 kg/m3 (i) SiO2; C = 1 kg/m3 

Fig. 5.1: Fractional aggregate volume vs. aggregate size 
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concentration C is found. The distributions for tus = 1 hr are similar to those for tus = 5 hrs 

in Figs. 5.1 (c), (d) and (f) but are slightly shifted to the right in Figs. 5.1 (b), (e) and (h). 

In particular, the signature of considerably large aggregates of 1-10 m in size can be 

seen in Figs. 5.1 (a), (g) and (i). This implies that 1 hr is not enough to obtain a stable 

particle dispersion, and the particle dispersion condition is fairly different in nanofluids 

boiled for 1 and 5 hrs. The dispersion conditions obtained when tus was 1 and 5 hrs were 

hence regarded as the coarse and fine dispersions, respectively, to preliminarily 

investigate the effect of the particle dispersion condition on the heat transfer 

characteristics in saturated pool boiling of nanofluids. 

5.4  Experimental procedure 

The experiment began with the surface preparation as described in Section 3.4.2 

of Chapter 3. In the present work, the test vessel III was used. After mounting the heating 

device on the test vessel, 1425 ml of distilled water was poured into the vessel, and electric 

power was applied to the cartridge heaters in the copper block; the heat flux qW was 

adjusted to 600 kW/m2. At this stage, electric power was also applied to the immersion 

heater to boil and degas the water. At the same time, the reflux condenser was used to 

return the vapor to the test vessel as liquid water. After about 15 minutes of degassing, 

the power to the immersion heater was reduced to the optimum level to keep the bulk 

fluid temperature at the saturation temperature. Then, the fluid temperature and the copper 

block temperatures changed asymptotically to the steady state. When the equilibrium state 

was reached, the value of the wall superheat, TW was calculated from the thermocouple 

data. Although the same experimental procedures were kept as in the other experiments, 

the scattering of TW was not negligible since the condition of the heated surface could 

not be kept unchanged. Hence, we moved to the next step only when wall temperature 

TW was within a range of 203 K to reduce the influence of the scattering of the initial 

wall superheat before adding the nanofluid. 

    When TW was within the desired range, 75 ml of nanofluid were added to the 

boiling water from a syringe in the hole of 15 mm in diameter on the top plate. Here, prior 
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to the addition of the nanofluid, the cup with the nanofluid was heated up in hot water to 

about 90 C in order to reduce the temperature difference. After the addition of the 

nanofluid, the hole was closed again with the rubber plug, and the heating using the 

cartridge heaters was continued for 1 hr to record the time-variation of TW. After this, 

qW was increased step by step to accumulate the data of TW to draw the boiling curves. 

The increment of qW was within 50-100 kW/m2 and qW was maintained for 400 to 600 s 

in each step to obtain the steady state. The experimental run was finished when a sudden 

increase of the block temperature was detected or the block temperature reached the 

maximum allowable limit. The value of qW just before the sudden increase of the block 

temperature was regarded as the CHF. 

    The electric power applied to the cartridge heaters and the immersion heater were 

controlled and monitored using voltage transformers and digital multimeters, respectively. 

An analog-to-digital converter (CADAC 3, Eto Denki) attached to a personal computer 

was used to record the copper block temperatures, the liquid temperature and the electric 

power supplied to the cartridge heaters every second. 

5.5  Results and discussion 

5.5.1  Time-variation of wall superheat 

The time variation of wall superheat after adding the nanofluid is presented in Figs. 

5.2 (a)-(i). Here, tb = 0 denotes to the time at which the nanofluid was added. As the base 

case, 75 ml of distilled water was added to the boiling water. Although the temperature 

of the added water was about 10 K lower than the saturation temperature, the addition of 

the distilled water caused no noticeable variation of ΔTW. However, ΔTW varied 

significantly after the addition of the nanofluid. The trend of the time-variation of ΔTW is 

similar for the coarse and fine dispersions (tus = 1 and 5 hrs), while the effects of the 

nanoparticles’ material and concentration are significant. In most cases in the present 

experiments, ΔTW decreased rapidly immediately after the addition of the nanofluid and 

then increased asymptotically, see Fig. 5.2 (d) for a typical case. The amounts of initial 

decrease and asymptotic increase are however different depending on the material and 
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concentration of nanoparticles. In particular, the initial decrease is not observed for SiO2 

in high particle concentration in Figs. 5.2 (h) and (i) while the asymptotic increase in the 

later stage is negligibly small for Al2O3 of high particle concentrations in Figs. 5.2 (e) and 

(f). The initial decrease is more significant than the asymptotic increase for Al2O3 but less 

significant for SiO2. In consequence, for all nanoparticle concentrations, the value of ΔTW 

in the steady state is lower than the initial value before the addition of nanofluid for Al2O3 

but higher for SiO2 (Figs. 5.3 (g)-(i)). It can therefore be said that under the present 

experimental conditions, the boiling heat transfer is enhanced by Al2O3 but deteriorates 

with SiO2. For TiO2, the amount of asymptotic increase of ΔTW in the later stage varies 

considerably depending on the nanoparticle concentration. Consequently, the equilibrium 

value of ΔTW is higher than the initial value at the lowest concentration in Fig. 5.2 (a) but 

lower at the higher concentrations in Figs. 5.2 (b) and (c). 

 Since ΔTW decreased immediately after the addition of the nanofluid, it is possible 

that the deposition of a small amount of nanoparticles on the heated surface contributed 

to increase the number of active nucleation sites and enhanced the boiling heat transfer. 

A further support of this hypothesis is an extra experiment that was performed using a 

different apparatus to visualize the bubble nucleation process. The description and result 

of this experiment are presented in the Chapter 7. As already mentioned, in most cases in 

the present experiment, ΔTW increased asymptotically after the initial decrease and 

reached the steady state. This indicates that the deposition of a larger amount of 

nanoparticles causes the deterioration of boiling heat transfer. It is plausible that the 

nanoparticle layer acted as a thermal insulation material or the nucleation sites were 

deactivated by the sedimentation of nanoparticles. 

 The present results show that the same nanofluid leads to competing effects which 

depending on the circumstances either enhance or decrease the nucleate boiling heat 

transfer. This can be considered to be one of the reasons why small changes in 

experimental conditions may cause a significant difference in the effect the nanofluid has 

on the boiling heat transfer. It is also noted that a long time was needed to reach the steady 

state for ΔTW in several experimental conditions. For example, in the cases shown in Fig. 

5.2 (b), ΔTW kept increasing even after 1 hr from the addition of nanofluid. This would 

be another reason of the scattering in the boiling heat transfer data of nanofluids reported 

in the literature. 
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(a) TiO2; C = 0.04 kg/m3 

 

 
(b) TiO2; C = 0.4 kg/m3 

 
(c) TiO2; C = 1 kg/m3 

 
(d)  Al2O3; C = 0.04 kg/m3 

 

 
(e)  Al2O3; C = 0.4 kg/m3 

 

 
(f)  Al2O3; C = 1 kg/m3 

 

 (g)  SiO2; C = 0.04 kg/m3 

 

(h)  SiO2; C = 0.4 kg/m3 (i)  SiO2; C = 1 kg/m3 

Fig. 5.2: Time-variation of wall superheat after adding the nanofluids (qW= 600 kW/m2) 

0 600 1200 1800 2400 3000 3600
10

15

20

25

30

tb (s)


T

W
 (

K
)

TiO2 (C=0.04kg/m
3
)

Distilled water

tus =1hr

tus =5hrs

0 600 1200 1800 2400 3000 3600
10

15

20

25

30

tb (s)


T

W
 (

K
)

TiO2 (C=0.4kg/m
3
)

Distilled water

tus =1hr

tus =5hrs

0 600 1200 1800 2400 3000 3600
10

15

20

25

30

tb (s)


T

W
 (

K
)

TiO2 (C=1kg/m
3
)

Distilled water

tus =1hr

tus =5hrs

0 600 1200 1800 2400 3000 3600
10

15

20

25

30

tb (s)


T

W
 (

K
)

Al2O3 (C=0.04kg/m
3
)

Distilled water

tus =1hr

tus =5hrs

0 600 1200 1800 2400 3000 3600
10

15

20

25

30

tb (s)


T

W
 (

K
)

Al2O3 (C=0.4kg/m
3
)

Distilled water

tus =1hr

tus =5hrs

0 600 1200 1800 2400 3000 3600
10

15

20

25

30

tb (s)


T

W
 (

K
)

Al2O3 (C=1kg/m
3
)

Distilled water

tus =1hr

tus =5hrs

0 600 1200 1800 2400 3000 3600
10

15

20

25

30

tb (s)


T

W
 (

K
)

SiO2 (C=0.4kg/m
3
)

Distilled water

tus =1hr

tus =5hrs

0 600 1200 1800 2400 3000 3600
10

15

20

25

30

tb (s)


T

W
 (

K
)

SiO2 (C=1kg/m
3
)

Distilled water

tus =1hr

tus =5hrs

0 600 1200 1800 2400 3000 3600
10

15

20

25

30

tb (s)


T

W
 (

K
)

SiO2 (C=0.04kg/m
3
)

Distilled water

tus =1hr

tus =5hrs



59 

   

5.5.2  Boiling curves 

Figs. 5.3 (a)-(f) show the boiling curves for the nanofluids of different materials, 

concentrations and dispersion conditions (tus); the measured CHFs are indicated with 

double line symbols. In the figures, the Stephan-Abdelsalam (S-A) correlation [14] and 

the boiling curve for distilled water are also given for comparison. It can be seen that for 

the distilled water, the boiling curve is in fairly good agreement with the Stephan-

Abdelsalam (S-A) correlation and the value of CHF is about 0.7 MW/m2. 

 First, it can be seen that as in the case of the time-variation of ΔTW, the boiling 

curves are not influenced significantly by the dispersion condition of the nanoparticles 

within the range tested in this work. For Al2O3 and SiO2 (Figs. 5.3 (c)-(f)), the boiling 

curves are roughly parallel to the S-A correlation for all the nanoparticle concentrations 

except for the results of SiO2 in the high heat flux range. In consequence, for all values 

of the heat flux, the boiling heat transfer is increase in comparison with the S-A 

correlation for Al2O3 while it decreased for SiO2. For TiO2, see Figs. 5.3 (a) and (b), 

however, the slope of the boiling curve is steeper at the lowest concentration of 0.04 kg/m3. 

In consequence, although the value of ΔTW is higher at the lowest concentration in the 

low heat flux range, it becomes higher when the heat flux reaches about concentrations 

of 0.4 and 1 kg/m3 at the heat fluxes higher than 1.4 MW/m2. It can hence be said that the 

boiling heat transfer enhancement by nanofluid depends on various parameters including 

the material of the nanoparticles, the concentration, the boiling time and the heat flux. 

 It should be noted that peculiar boiling curves were obtained in several 

experimental conditions. In most experiments with SiO2, ΔTW increased remarkably when 

qW exceeded about 1.5 MW/m2. Since not the whole boiling curves could be fitted into 

Figs. 5.3 (e) and (f), the whole curve was shown with extended axes in Figs. 5.4 (a) and 

(b), respectively. These figures indicate that when C was 0.4 kg/m3, ΔTW reached the 

particularly high value of 175 K before the onset of CHF condition (the CHF could not 

be measured in these cases since the copper block temperature had reached the maximum 

allowable limit). The conditions during the experiment under which the peculiar boiling 

curves were obtained, i.e. the time-variation of the electric power applied to the cartridge 

heaters Q and the copper block temperature measured at 5 mm below the heated surface  
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(a)  TiO2; tus = 1 hr 

 

 
(b)  TiO2; tus = 5 hrs 

 
(c) Al2O3; tus = 1 hr 

 

 
(d) Al2O3; tus = 5 hrs 

 
(e) SiO2; tus = 1 hr 

 
(f) SiO2; tus =5 hrs 

 

Fig. 5.3: Boiling curves: the double lined symbols correspond to the CHF 
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T1, are displayed in Figs. 5.5 (a) and (b). Here, the experimental conditions are C = 0.4 

kg/m3 and tus = 1 hr for SiO2 nanoparticles. It can be seen that until 6000s, T1 rises 

asymptotically after the stepwise increase of Q as expected. At 6000s, however, T1 rises 

sharply to about 192C despite the fact that Q is held constant as shown in Fig. 5.5 (a). 

The abnormally high value of T1 is kept for more than 1 min and then T1 drops 

asymptotically to the ordinary value within about 6100-6300s. This is the situation when 

the peculiar trend marked ‘(A)’ in Fig. 5.4 (a) appears. After this, T1 is unstable but 

increases to a higher temperature range before a steady state for each stepwise increment 

of Q is achieved. When T1 reaches 310C, the experiment was terminated to avoid damage 

to the experimental apparatus. This point is indicated as ‘(B)’ in Fig. 5.4 (a). A peculiar 

trend is also seen for the TiO2 nanofluids for which typical results at C = 0.4 kg/m3 and 

tus = 1, as well as 5 hrs, are shown in Fig. 5.3 (a) and (b). In this case, the boiling curve is 

fairly similar to the S-A correlation in the intermediate heat flux range of 1.1-1.4 MW/m2. 

However, ΔTW rises sharply within the range of 1.4-1.5 MW/m2 and then returns to the 

previous range within 1.5-1.9 MW/m2; ΔTW increases slightly before the CHF condition 

is reached. 

 
(a) SiO2; tus = 1 hr 

 
(b) SiO2; tus =5 hrs 

 

Fig. 5.4: Boiling curves for the SiO2-water nanofluids (the horizontal axes are 

extended; the double lined symbols correspond to the CHF) 
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(a) 

 

(b) 

 

 

Fig. 5.5: Extracted time variation of SiO2 wall superheat at high heat flux; (a) 

abnormal spike of T1,(b) large scale stepwise increment of T1 at constant Q 
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5.5.3  Nanoparticle layer detachment from the heated surface 

To explore the mechanisms which cause the various peculiar trends in the boiling 

curves, the boiling heat transfer was measured for the nanoparticle-coated surface 

immersed in distilled water. In this experiment, nucleate boiling at 600 kW/m2 was kept 

up for the nanofluid during   1 hr as described in Section 5.5.1 to enable the nanoparticle 

deposition on the heated surface. Then, the nanofluid in the vessel was exchange with 

distilled water. After the distilled water had been degassed with the immersion heater, the 

heat flux was increased step by step to accumulate the data for the boiling curves. The 

resulting boiling curve for TiO2 of C = 0.4 kg/m3 and those for SiO2 of C = 0.4 and 1 

kg/m3 are presented in Figs. 5.6 (a) and (b), respectively. For comparison, the boiling 

curves the nanofluids are also shown in the figures. It can be seen that the boiling curves 

for the nanoparticle-coated surface in the distilled water are fairly parallel to the S-A 

correlation for all the three cases tested in this work. It can therefore be concluded that 

nucleate boiling in nanofluids at high heat flux is necessary so that the peculiar 

temperature rise can occur.  

 

(a)  TiO2; C = 0.4 kg/m3 

 

(b) SiO2; C = 0.4 and 1 kg/m3 

 

Fig. 5.6: Comparison of the boiling curves performed in nanofluids and nanoparticles-

deposited heated surface (experiment were performed using nanoparticle-deposited 

heated surface with nucleate boiling time, tb = 1hr), (double lined symbols 

correspond to the CHF) 
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 The photos of the heated surface taken at several experimental stages for the TiO2 

and SiO2 nanofluids of moderate particle concentration (C = 0.4 kg/m3) are depicted in 

Figs. 5.7 and 5.8, respectively. Fig. 5.7 (a) indicates that the heated surface was totally 

covered by the nanoparticle layer after the nucleate boiling in the TiO2 nanofluid at 600 

kW/m2 for 1 hr. As depicted in Fig. 5.7 (b), the surface condition before the onset of the 

peculiar temperature rise at qW = 1.1 MW/m2 is not significantly different from that in 

Fig. 5.7 (a). In the photo taken after the peculiar temperature rise at qW = 1.4 MW/m2 (Fig. 

5.7 (c)), several defects are found in the nanoparticle layer on the heated surface, however, 

in the surface condition after the CHF measurement shown in Fig. 5.7 (d), no such defects 

are found. The photos in Figs. 5.7 (b) and (c) were taken after the separate experiments 

in which heating was terminated when qW reached 1.1 and 1.4 MW/m2, respectively. 

These results indicate that the nanoparticle layer was partly detached from the heated 

surface when qW was within 1.4-1.5 MW/m2 but the defects were repaired when qW was 

further increased. Fig. 5.7 (e) indicates that a small number of defects were present also 

after the CHF measurement in the distilled water. 

 In the case of SiO2 nanofluids, the nanoparticle deposition occurred only around 

the nucleation cavities after nucleate boiling at 600 kW/m2 for 1 hr (Fig. 5.8 (a)). After 

several stepwise increases of qW to 1.4 MW/m2, the surface was totally covered by the 

nanoparticle layer (Fig. 5.8 (b)). However, after the peculiar temperature rise at about 1.6 

MW/m2, the detachment of a significant layer of nanoparticles was detected which is 

shown in Fig. 5.8 (c). It can be seen that the detached nanoparticle layer was not repaired 

even when the copper block temperature reached the maximum allowable limit (Fig. 5.8 

(d)). On the other hand, the surface condition after the CHF measurement in distilled 

water (Fig. 5.8 (e)) is similar to the initial condition shown in Fig. 5.8 (a). 
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(a) 

 

 

(b) 

 

 

 

(c) 

 

 

 

 

(d) 

 

 

(e) 

 

 

Figs. 5.7: Photos of heated surfaces deposited with TiO2 (C=0.4 kg/m3 and tus = 1 hr); 

(a) After the surface preparation with qW = 600 kW/m2and tb = 1 hr, (b) 

before the onset of the peculiar temperature rise, (c) after the onset of the 

peculiar temperature rise, (d) after the CHF measurement in nanofluid, and 

(e) after the CHF measurement in distilled water. 
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(a) 

 

 

 

(b) 

 

 

 

(c) 

 

 

 

(d) 

 

 

 

(e) 

 

 

 

 

Figs. 5.8: Photos of heated surfaces deposited with SiO2 (C=0.4 kg/m3 and tus = 1 hr); 

(a) After the surface preparation with qW = 600 kW/m2and tb = 1 hr, (b) 

before the onset of the peculiar temperature rise, (c) after the onset of the 

peculiar temperature rise, (d) after the CHF measurement in nanofluid, and 

(e) after the CHF measurement in distilled water.  
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In the observation of the heated surface presented above, the detachment of the 

nanoparticle layer was always detected when the wall superheat was abnormally high 

(Figs. 5.7 (c), 5.8 (c) and (d)) while no such defect was found before the peculiar 

temperature rise and after the return to normal temperatures. One exception can be seen 

in Fig. 5.7 (e). The photo was taken after the CHF measurement in distilled water for a 

surface on which a TiO2 layer had been deposited. In this case, the peculiar temperature 

rise did not occur, but several defects were found after the experiment. Obviously, further 

studies are needed to clarify the mechanism of the significant deterioration of boiling heat 

transfer in nanofluids. The present results however indicate that the significant rise of the 

wall superheat is likely to occur when a partial detachment of the nanoparticle layer 

occurs. We conclude that the formation of the defects in the nanoparticle layer may lead 

to the deterioration of the nucleate boiling heat transfer. 

5.5.4  Critical heat flux 

The measured CHFs are plotted against the particle concentration in Fig. 5.9. It is 

noted that in this figure, the highest heat flux during the experiment was plotted for the 

SiO2 nanofluids of C = 0.4 kg/m3 since the block temperature reached the maximum 

allowable limit before the CHF condition was reached. The values of CHF measured in 

the nanofluids are within 1.74-2.1 MW/m2 and therefor 2.5-3 times higher than that in 

distilled water (0.7 MW/m2). The highest CHF was measured for the Al2O3 nanofluid of 

C = 1 kg/m3 and tus = 1 hr. It seems that the CHF tended to increase slightly with an 

increase in C, but no clear dependence of CHF on the material and concentration of 

nanoparticles is found. It is interesting to note that although a significant nanoparticle 

layer detachment as shown in Fig. 9 (d) was observed, after all CHF measurements in the 

SiO2 nanofluids the CHFs for SiO2 nanofluids are comparable to those for TiO2 and Al2O3 

nanofluids. We conclude that the detachment of the nanoparticle layer may deteriorate the 

boiling heat transfer significantly but its influence on the CHF is not noticeable. 
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Fig. 5.9: Critical heat flux vs. nanoparticle concentration for different materials and 

dispersion conditions of nanoparticles (the data for both tus= 1hr and 5hrs of 

SiO2 at C = 0.4 kg/m3 are not for the CHF but for the heat flux at which the 

copper block temperature reached the maximum allowable limit) 

5.6  Conclusions 

Experiments were performed to investigate the effects of the nanoparticles’ 

material, concentration and the dispersion condition on the boiling heat transfer 

characteristics in saturated pool boiling of water-based nanofluids. The heat transfer 

characteristics studied in this work were the time-variation of the wall superheat during 

nucleate boiling, the boiling heat transfer (boiling curve) and the CHF. The main 

conclusions of this work are summarized as follows: 

In most cases in the present experiment, the wall superheat first dropped rapidly 

and then rose asymptotically with the increase of the boiling time of the nanofluid. It can 

hence be said that the same nanofluid can increase or decrease the boiling heat transfer 

depending on the boiling time. The temperature drop was greater than the temperature 

rise for Al2O3 nanofluids but smaller for SiO2 nanofluids. In consequence, the Al2O3 

nanofluids increase while the SiO2 nanofluids decrease it. The effect of the TiO2 nanofluid 
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on the boiling heat transfer in the equilibrium state was depended on the nanoparticle 

concentration. The effect of the nanoparticles’ dispersion was not noticeable in the 

experimental range tested in this work. It was also found that extremely long times may 

be necessary that the wall superheat reached the steady state, which is probably one of 

the main reasons for the inconsistencies in the boiling heat transfer data reported in the 

literature. 

An abnormal increase of the wall superheat was observed for the TiO2 and SiO2 

nanofluids when the heat flux was sufficiently high. It can be concluded that this 

phenomenon is related to the partial detachment of the nanoparticle layer formed on the 

heated surface since the defects of the nanoparticle layer could be always detected when 

such a temperature rise took place. 

The CHF in the nanofluid was several times higher than that in distilled water in 

all the experimental conditions tested in this work. The maximum CHF was measured for 

the Al2O3 nanofluid of the highest particle concentration. Although significant cases of 

detached nanoparticle layers were found after the CHF measurement for the SiO2 

nanofluids, the value of CHF was not significantly different from those for the TiO2 and 

Al2O3 nanofluids. 
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CHAPTER 6 EFFECTS OF HEAT FLUX ON THE CRITICAL HEAT FLUX AND 

BOILING HEAT TRANSFER IN TiO2 POOL BOILING 

 

6.1  Introduction 

In this chapter, the effect of heat flux density on the heat transfer characteristics 

(HTC) and critical heat flux (CHF) were investigated. Since the enhancements in 

nanofluid pool boiling depend on the nucleated bubbles, the influence of the CHF 

enhancement rate on the heat flux is significant. In view of the importance of the heat flux 

effect in Loss of Coolant Accidents (LOCA), experiments were performed to elucidate 

the effect of the heat flux on the boiling heat transfer enhancement in nanofluids. Thus, 

the emphasis of the present study is on the boiling time in nanofluids at the corresponding 

heat flux density. The CHF enhancement and boiling heat transfer with respect to heat 

flux are discussed in detail. 

6.2 Experimental description 

In the present experimental setup, a similar surface preparation method has been 

employed as described in Chapter 3 (Section 3.4.2) and some other experimental steps 

were similar to those described in Chapter 5. However, in the present experiment, four 

different levels of heat flux were applied, from low to high heat flux in the saturated pool 

boiling. The heat flux applied was at 150, 300, 450 and 600 kW/m2. The boiling time, tb 

varied between 1, 3, 10, 20, 40 and 60 minutes. The concentration of nanofluids was 

selected based on the findings in Chapter 4: When the boiling with the nanofluids was 

performed with a higher concentration of 0.4 kg/m3, the effects of CHF enhancement 

were instantly observed, in contrast to a lower concentration of 0.004 kg/m3 which 

showed slower CHF enhancement. Therefore, the medium concentration of C = 0.04 

kg/m3 was selected as it could be expected to be the ideal concentration for the heat flux 

investigation. The primary experimental conditions are shown in Table 6.1.   
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Table 6.1: Main experimental conditions for the investigation of heat flux density 

effects 

Run qW 

[kW/m2] 

tb 

[min] 

C 

[kg/m3] 

Type 

1 

2 

3 

4 

5 

6 

150 1 

3 

10 

20 

40 

60 

0.04 Type II 

(TiO2) 

7 

8 

9 

10 

11 

12 

300 1 

3 

10 

20 

40 

60 

0.04 Type II 

(TiO2) 

13 

14 

15 

16 

17 

18 

450 1 

3 

10 

20 

40 

60 

0.04 Type II 

(TiO2) 

19 

20 

21 

22 

23 

24 

600 1 

3 

10 

20 

40 

60 

0.04 Type II 

(TiO2) 
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The first step in the experimental procedure was the preparation of the nanofluids 

by the one-step method in order to have a stable and uniform dispersion of TiO2. The 

TiO2 nanofluids used were from Aerosol Corporation (Aeroxide AERO DISP W 740 X, 

40 wt. %) and diluted in distilled water. For each experiment, 15 ml of nanofluid were 

prepared and added to the vessel with a syringe. The mean particle diameter reported by 

the manufacturer was 21 nm and the size was confirmed with a TEM micrograph from 

dried samples of the nanofluid. Further, in order to determine the dispersion stability of 

nanoparticles before and after the experiment, a device (ELSZ-1000 series) that is capable 

of measuring the Zeta Potential and particle size provided by Photal Otsuka Electronics 

was used. 

 The next step of the experiment was the preparation of the heated surface (similar 

to the preparation method discussed in Chapters 3, 4 and 5. Following the surface 

preparation, the heating device was mounted on the test vessel. Next, 1.485 liters of 

distilled water were supplied to the vessel. The distilled water was degassed with an 

immersion heater of power 1 kW power for 15 minutes. At a later stage, the power 

supplied to the immersion heater was reduced to the optimum level, sufficient to keep the 

bulk liquid in the saturated condition. Then, the cartridge heaters were powered up to the 

prescribed heat flux. In this experiment, the heat flux qW was adjusted to 150, 300, 450 

and 600 kW/m2 for the measurement of the data series. After it could be confirmed that 

the heater block had reach a steady state, the nanofluid was added to the boiling water. A 

particle concentration of C = 0.040±0.01 kg/m3 was used in the present experiment. The 

temperatures at several locations in the heating block were monitored to obtain the 

information regarding the effect of the nanoparticle deposition on the nucleate boiling 

heat transfer. After waiting for a prescribed boiling time following the addition of the 

nanofluid, the cartridge heaters and immersion heaters were turned off, and the test liquid 

containing the nanoparticles was poured off to eliminate further deposition of 

nanoparticles by boiling. It can be supposed that the deposition of the nanoparticles on 

the heated surface occurred during the prescribed boiling time in this experimental step. 

The waiting time was therefore used as the boiling time in the nanofluid. The boiling 

times tb were set to 1, 3, 10, 20 40 and 60 minutes. After the block temperature decreased 

below 40 degrees Celsius due to the cooling in ambient air, the contact angle was 

measured again to obtain the information concerning the change of surface properties. 
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Then, the vessel was cleaned and refilled with degassed distilled water. The electric power 

applied to the cartridge heaters was increased gradually, and the value at which the sudden 

increase in the block temperature was detected was treated as the CHF. An analog-to-

digital converter attached to a personal computer was used to record the temperatures 

measured in the copper block and the test liquid every second. 

6.3  Results and Discussion 

6.3.1  Critical heat flux enhancement and heat flux densities 

Fig. 6.1 represents the CHF enhancement with respect to the boiling time in 

nanofluids at four different values for the heat flux. The CHF value of the heater surface 

without experiencing nucleate boiling in the nanofluid was 0.7 MW/m2.  

 

Fig. 6.1: Relation between CHF value and boiling time tb at different heat flux density 
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The data for critical heat flux enhancement after experiencing boiling in the 

nanofluid for a prescribed time and heat flux are shown in Fig. 6.1. Here, the heater 

surface was coated with a nanofluid bath at a concentration of C = 0.01 kg/m3
, and four 

different levels of heat flux were applied within prescribed times, at 1, 3, 10, 20, 40 and 

60 minutes. Later, the CHF value of the heated surface was successively measured by 

using distilled water. Fig. 6.1 shows that the CHF enhancement significantly depended 

on the heat flux, especially for the smaller boiling times in a nanofluid. However, the 

enhancement rate decreased gradually until it reached the asymptotic steady state value 

of approximately 1.7 MW/m2. Here, the highest applied heat flux, qW = 600 kW/m2, shows 

faster CHF enhancement compared to the moderate applied heat flux (qW = 450 kW/m2 

and 300 kW/m2) and subsequently reached the asymptotic steady state in most cases. For 

instance, the applied heat flux of 600 kW/m2 shows a significant increase in the CHF 

which reached the asymptotic steady state value after 10 minutes, while for 450 kW/m2 

and 300 kW/m2 it occurred within 20 minutes.  However, an exception can be seen for 

the minimum applied heat flux, with the lowest boiling intensity of qW = 150 kW/m2 

which exhibits a relatively low CHF enhancement, and stochastic behavior. In this case, 

the asymptotic steady state could not even be reached after boiling in the nanofluid for 60 

minutes. 

Based on the previous study by Okawa et al. [86], empirical correlations were 

proposed to relate the dimensionless CHF enhancement, *

c
q  and the amount of deposited 

nanoparticles with the heater surface in nanofluid boiling, Ctb. However, that study [86] 

had used a single value of applied heat flux. Therefore, in the present study, an additional 

dimensionless applied heat flux had to be incorporated together with the amount of the 

deposited nanoparticles Ctb, in order to account for the effect of the differing heat flux on 

the CHF enhancement.      

The dimensionless CHF enhancement was defined by 

 c c

C,asy c

* 0

0

c

q q
q

q q





         (6.1) 

where qC,asy is the asymptotic value of CHF, qc is the CHF value of the coated heater at 

the respective heat flux and boiling time and qc0 is the CHF value of the uncoated heater 
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(tb = 0 min). The variable *

c
q  was plotted against *

w
q Ctb . The *

w
q is dimensionless heat 

flux is defined by 

hf*

max

W

q
q

q
           (6.2) 

where qhf is heat flux applied during nanofluid boiling for the coated surface preparation, 

and qmax is the highest applied heat flux) and the results are shown in Fig. 6.2. 

 

 

From Fig. 6.2, the relation between  *

c
q  and  *

w
q Ctb for qW at 450 and 600 kW/m2 

show a similar, parallel and linear trend. The highest heat flux qW = 600 kW/m2, 

demonstrates the highest dimensionless CHF value at all times before reaching the 

asymptotic dimensionless CHF value. However, for qW = 300 kW/m2 the trend for the 

dimensionless CHF enhancement demonstrates a parabolic curve before reaching the 

asymptotic value. For all these heat fluxes, the asymptotic CHF values were observed 

when the *

w
q Ctb value was higher than 30 kg s/m2. Nevertheless, for the lowest heat flux 
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of qW = 150 kW/m2, a minimal increase in *

c
q  was observed, even though the value for

*

w
q Ctb reaches 29 kg s/m3. In the present experiment, the maximum dimensionless CHF 

enhancement for all heat flux values occurred at a value of *

w
q Ctb ≈ 29 kg s/m3 (except 

for weak boiling) and that value is close to the empirical correlation proposed by Okawa 

et al. [86].  

6.3.2  Surface characteristics and the critical heat flux 

 The CHF enhancement, as discussed by several previous researchers [63,83,96] is 

mainly caused by the surface deposition of the nanoparticles. The modified surface 

structure changes the surface properties and affects several essential parameters for the 

bubbling activities in the boiling system. Several parameters which are believed to be of 

primary importance to the CHF enhancement were varied, i.e., the surface wettability, the 

surface porosity, and the capillarity. In the present study, the images of gradual 

modification of the surface morphology produced by boiling in nanofluids for a 

prescribed time are shown in Fig. 6.3. Here, all heated surfaces experienced a gradual 

change in the surface structure after the nanofluid injection into the base liquid at the 

respective heat flux. The deposition of nanoparticles started to take place at the vicinity 

of the nucleation sites, modifying the surface characteristics that affect several factors that 

favor the CHF enhancement. 

The changes of corresponding gradual surface morphology of each surface 

condition after experiencing boiling with the respective heat flux and prescribed boiling 

times are shown in Fig. 6.3 (a) to (d). Here, the heated surfaces were gradually covered 

by the deposited nanoparticles during boiling for the prescribed boiling time. In most 

cases, the surface was fully covered with the deposited nanoparticles, especially for high 

heat flux. For example, faster changes in the surface characteristics could be clearly seen 

for the highest heat flux of qW = 600 kW/m2 where the nanoparticles covered the whole 

heated surface after 10 minutes of boiling time. For heat flux values of  qW = 450 kW/m2 

and 330 kW/m2 , this effect occured after 20 and 40 minutes, respectively. At this 

particular state, the CHF reached the asymptotic value, consistent with the CHF 

enhancement discussed in the previous section.  
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(i) 

tb=1 

min 

    

(ii) 

tb=3 

min 

    

(iii) 

tb=10 

min 

    

(iv) 

tb=20 

min 

    

(v) 

tb=40 

min 

    

(vi) 

tb=60 

min 

(a) qW=150 

kW/m2 

(b) qW=300 

kW/m2 

(c) qW=450 

kW/m2 

(d) qW=600 

kW/m2 

 

 Figs. 6.3: Photographs of the heater surfaces with deposited nanoparticles after boiling 

in nanofluid between tb = 1 to 60 min and C = 0.04 kg/m3 with values of the 

heat flux; (a) 150 kW/m2, (b) 300 kW/m2, (c) 450 kW/m2 and (d) 600 kW/m2 
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However, for the lowest boiling intensity of qw = 150 kW/m2, the heated surface was still 

not fully covered after 60 minutes of boiling, as shown in Figs. 6.3 (a) from (i) to (vi).  

In the case of high heat flux, the nucleation site densities and the frequency of the 

release of bubbles were high which resulted in a faster deposition of the nanoparticles 

near the bubbles at the vicinity of the surface at a number of nucleation sites. As a result, 

the heated surface was rapidly fully covered with deposited nanoparticles so that it 

reached the asymptotic CHF value. For the lowest heat flux of qW = 150 kW/m2, minimal 

nucleation sites could be seen, as depicted in Figs. 6.3 ((a) – (i-iv)) and the surface was 

never covered fully. Apparently, the reason that the maximal CHF value was not reached 

at the lowest heat flux was due to the fact that heated surfaces underwent less 

modifications since on the bare heater surface, only minimal spots of nanoparticles were 

observed. This lack of change in the structure could be the causes for the early occurrence 

of the local CHF. However, it could be inferred that the CHF under low heat flux during 

nanofluid boiling did have a noticeable small enhancement while the maximum CHF 

enhancement was still not achieved in the present boiling time of 1 hour. 

 Surface wettability is one of the critical surface characteristics of the boiling 

system, especially in the case of CHF. In the present study, the surface wettability 

properties of the heater surface were measured after boiling in the nanofluid for a 

prescribed time. The results and conditions after boiling in nanofluids for 1 hour for 

several applied heat flux are shown in Fig. 6.4. 

The data series for the surface wettability in the present experiment were plotted 

against the CHF, and compared to the experimental study by Wang and Dhir [97] and the 

theoretical study by Kandlikar [19] 

   
0.5
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.         (6.3) 

 

The detailed explanation of Kandlikar’s correlation was described in Section 2.1.2. 
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(a) 

 

(b) 
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(d) 

 

(e) 

 

  

Figs. 6.4: Photographs of droplets on the heater surface after surface 

preparation (a), and after boiling in nanofluids C = 0.04 

kg/m3 for 60 minutes at qW = 150 kW/m2 (b), 300 kW/m2 

(c), 450 kW/m2 (d) and 600 kW/m2 (e) 
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The correlation equation formulated by Kandlikar incorporates the effect of the 

surface wettability on the CHF enhancement. It is widely used and has been shown 

reasonably successful in predicting the CHF enhancement with respect to the effect of the 

surface wettability from the range of hydrophobic surface conditions (high contact angle) 

to the fully wetted surface condition (small contact angle). 

    

 
 

Fig. 6.5: Relation between the mean contact angle and the critical heat flux at qW = 

150, 300, 450 and 600 kW/m2 
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correlation and Wang and Dhir experimental data, but slightly lower than the Zuber 
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below 20°, except for the weak heat flux of 150 kW/m2, where the angle decreased to the 

value of between 55° to 22°. For low values of the heat flux, although the mean contact 

angle was reduced, the CHF enhancements were still minimal.  

An interesting finding in the present results was the CHF enhancement at similar 

values of the surface wettability condition. For example, one can notice in Fig. 6.5 that 

the CHF enhancement for qW = 300 kW/m2, 450 kW/m2 and 600 kW/m2 showed a 

sequentially sharp increase at the mean contact angle of about 15°, and eventually reached 

the asymptotic CHF value. At the particular point where the mean contact angle was about 

15°, the CHF increased sharply in the vertical direction, independent of the changes in 

the surface wettability. The asymptotic CHF value for the present experiment was 

comparable to that of the Kandlikar correlation for the lower average contact angle when 

θ < 15°.  

Here, it could be deduced that instead of the surface wettability, another factor of 

the surface structure (respectively the surface porosity) was probably modified. In 

addition, recent studies have also suggested that the porosity may be a dominant factor, 

in nexus the surface wettability properties for the CHF enhancement [81,98]. Hence, the 

increase of the CHF in the low wettability region is most probably due tof the buildup of 

a porous layer at the base of the vapor column that increases the capability of wetting. It 

is expected that the contact angle measured by Wang and Dhir [97,99] on the oxidation 

of copper also was related to porosity effects, compared to the nanofluid coated surface. 

The gradual build-up of the porous layer in nanofluid boiling was a continuous process 

which improved the ability of the surface structure to favor CHF enhancement. This 

gradual build-up of the porous layer could be observed qualitatively in Fig. 6.3, as 

discussed previously. 

6.3.3  Time variation of the wall superheat for different heat flux values 

The time variation of the wall superheat for all heat flux values during the 

prescribed boiling time is shown in Fig. 6.6 (a) to (b). The initial ΔTW for distilled water 

was maintained at 20±2 °C. In the present work, upon the addition of the nanofluid, the 

ΔTW was slightly reduced from the original ΔTW of the distilled water, but at a later stage, 
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it increased monotonically to reach a fairly asymptotic steady state condition with a higher 

ΔTW. This shows that the HTC slightly increased at first and later decreased. The present 

condition was similar to that described in Section 5.5.1 (Fig. 5.2) for the concentration of 

C = 0.04 kg/m3 at qW = 600 kW/m2. In the present case, the final asymptotic ΔTW increase 

compared to the case with distilled water for all the applied heat flux densities.   
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6.3.4  Boiling curves 

Fig. 6.7 depicts the boiling curves (BCs) measured from the pre-coated heater for 

a prescribed heat flux and boiling time. The boiling curve measurements were performed 

with distilled water.  

Here, the BC values for all heat flux values at a boiling time of tb=1 min were 

close to the Stephen Abdelsalam (S-A) correlation, see Fig. 6.7 (a). After continued 

boiling until tb=3 min, the BCs at the lower heat flux region were shifted towards the right 

indicating that the boiling heat transfer deteriorated for all heat flux values (see Fig. 6.7 

(b)). Here, ΔTw was increased, and the onset of nucleate boiling (ONB) was delayed. A 

similar condition for the lower heat flux BCs could be observed for all conditions (Figs. 

6.7 (a)-(b)). After tb=10 minutes, as shown in Fig. 6.7 (c), the CHF was gradually 

increased, especially for high heat flux with qW = 600 kW/m2.  During this stage, the BC 

for the higher heat flux region became steeper and shifted towards the left, away from the 

S-A correlation, especially when the BC was at qW > 800 kW/m2. This indicates that the 

HTC was increased. Similar steeper BCs trends could be observed after 20 minutes for 

qW = 300, 450 and 600 kW/m2, as shown by Fig. 6.7 (d). However, after tb = 40 min, the 

BCs at the high heat flux region for the heater surface which had been coated at qW = 600 

kW/m2 were shifted towards the right, approaching the S-A correlation, as can be seen in 

Fig. 6.7 (e). At a later stage, when tb = 60 min, the BC for the heated coated surface at qW 

= 450 kW/m2 was shifted to the right and approached the S-A correlation as shown in Fig. 

6.7 (f). At this stage, the BC of the heated surface coated at qW = 600 kW/m2 was slightly 

shifted to the right of the S-A correlation. The shifted trend towards the right indicates 

that the heat transfers was decreased after further boiling in the nanofluid.  

This could be interpreted in such a way that the surface modification has a 

significant influence on the heat transfer rate in distilled water and that the HTC depends 

on heat flux density and the boiling time in the nanofluids. Several possibilities could be 

associated with the reduction of the BHT in the region with the lower heat flux for boiling 

curve. The first possibility concerns the reduction of the number of nucleation sites which 

are affected by the reduction of the surface wettability. Prior to this study, a study by 

Wang and Dhir [97] has shown that the reduction of the heater surface wettability resulted  
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Fig. 6.7: Boiling curves measured with distilled water for the nano-coated surface 
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in a dramatic reduction in the number of cavities which allowed nucleation of bubbles 

and consequently deteriorated heat transfer. This is similar to the present experiment 

where the surface contact angle was also reduced. Related to this, the change in the size 

of the size of the cavities which act as nucleation site cavities for the bubbles could also 

be another possible reason. Micro-sized cavities have been shown to be the ideal size for 

bubble nucleation. However, since the material deposited from the nanofluid is of 

nanometer size, it could be deposited onto the heater surface and the newly changed cavity 

after the deposition becomes smoother compared to the original rougher surface condition 

and possibly deactivates the nucleation site. In fact, several researchers, Hegde et al. [100] 

and Stutz et al. [47] reported that the heated surface with deposited nanoparticles resulted 

in smaller than the original surface roughness values. In addition, the shifted trends at 

high heat flux for the BC of the heated surface coated at qW = 600 kW/m2 at longer boiling 

times was most probably caused by thermal insulation due to the deposited nanoparticles, 

as explained by Kwark et al. [52]. This is due to the fact that in the present case, the 

magnitude of the thermal conductivity of deposited TiO2 nanoparticles was 

approximately ten times lower than copper heater surface. 

Nevertheless, the reason for the increase of the heat transfer in the high heat flux 

region in the BC is still unknown. A number of new nucleation sites at high heat flux 

could possibly activate due to the increase in micro-cavities from the deposited 

nanoparticles, as suggested by the studies of Kim et al. [46]. Apparently, further studies 

are needed to clarify the reasons for HTC increases in this particular region. 

6.4  Conclusions 

In the present work, experimental investigations have been carried out to explore 

the effects of various values for the heat flux on the BHT and the CHF in TiO2-water 

nanofluids for pool boiling. The essential conclusions from in the present experiments are 

as follows: 

 Nucleate boiling was the most crucial for the nanoparticle deposition on the heated 

surfaces. Higher heat flux leads to faster modification of the properties of the heater 
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surface properties such as surface wettability and porous structure which lead to a faster 

enhancement of the CHF.  

 For a particles concentration of C = 0.04 kg/m3,  the required time of nucleate 

boiling to achieve the maximum CHF enhancement was 10 minutes for heat flux of qW = 

600 kW/m2, while 20 minutes were necessary for qW = 300 and 450 kW/m2
. Weak boiling 

at qW = 150 kW/m2 does not lead to a the maximal CHF value, even after 60 minutes of 

boiling in nanofluids.  

 The CHF enhancements were independent of the mean surface wettability when 

the contact angles were at θ = 18 degrees. It is possible that another parameter responsible 

for the CHF enhancement is the porosity at the surface. 

 For the boiling curve, the HTC exhibits different trends for different heat fluxes: 

While at lower heat flux of the BC, all the HTC decreased, for higher heat flux in the BC, 

a stochastic trend manifested itself. During shorter to moderate boiling times in the 

nanofluid, the HTC increased at higher heat flux of the BC, but as the boiling time 

increased further, the HTC started to decrease. 
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CHAPTER 7 VISUALISATION OF NUCLEATE BOILING IN THE TiO2 

NANOFLUID  

7.1 Introduction 

As discussed in the previous Chapter 5 in section 5.5.1, the wall superheat dropped 

after the addition of the nanofluid in the present experiment in most cases. To 

preliminarily investigate the enhancement the heat transfer during boiling, a visualization 

of nucleate boiling was performed using another experimental apparatus.  

7.2  Experimental description 

To allow direct observation, a transparent and thin rectangular vessel was used 

(test vessel IV). The vessel was made of polycarbonate, and its inside cavity was 20 mm 

width, 230 mm length and 98 mm depth. An ITO film was deposited on the glass substrate 

was used as the heated surface as shown in Fig. 3.4 and Fig. 3.6 in Chapter 3, respectively. 

The size of the heated surface was 10 mm width and 170 mm length, and this region was 

heated ohmically using a DC power supply. The ITO film-deposited glass plate was used 

as the bottom face of the experimental vessel, and the vessel was fixed to the holder as 

shown schematically in Fig. 3.4. A small black tape was put at the center of the underside 

surface of the glass plate to measure the superheat of the glass plate TBW using an 

infrared thermometer. 

 Prior to the experimental work, the test section was cleaned to remove any 

contamination that could affect the experimental results. Then, 247.5 ml of distilled water 

was poured into the test vessel. The DC power was regulated to fix the wall heat flux at 

qW = 230 kW/m2. This rather low value for the heat flux value was selected to allow a 

clear observation of individual bubble nucleation. The values of qW and ΔTBW were 

recorded every second, and the bubble nucleation was visualized using a high-speed 
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camera after the steady state had been reached. After that, 2.5 ml of TiO2 with a 

concentration of C = 4 kg/m3 were added to the distilled water in the vessel; the resulting 

concentration was 0.04 kg/m3. The boiling inside the vessel was further recorded with the 

high-speed camera to explore the effect of nanofluids on the bubble nucleation. The wall 

superheat ΔTW of the transparent heater surface was calculated and described in Appendix 

A. 

7.3  Experimental results and discussion 

The time variation of TBW is shown in Fig. 7.1. Though qW was kept constant, 

TBW decreased from 11 K to 8 K asymptotically and reach a steady state after the 

addition of the nanofluid. It could be therefore be confirmed that the boiling heat transfer 

was enhanced immediately after the addition of the nanofluid as in the most cases in Fig. 

7.1. The snapshots of the bubbles before and after the addition of nanofluid are shown in 

Figs. 7.2 (a) and (b). A comparison of these photos reveals that after the addition of 

nanofluid, the number of bubbles increased dramatically and the bubbles were distributed 

in a much wider region in the test vessel than before. From this observation, one can 

conclude that the formation of micro-cavities which had been caused by the nanoparticle 

deposition on the heated surface is one of the main mechanisms of the boiling heat transfer 

enhancement observed immediately after the addition of nanofluid.  

 

Fig. 7.1: Time variation of the wall superheat vs. boiling time 
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(a)  C = 0 kg/m3 

 

(b)  C = 0.04 kg/m3 

 

Fig. 7.2: Snapshots extracted from high-speed camera video for the bubbling of the 

distilled water in (a) and after addition of the nanofluid in (b). 

 

7.4  Conclusion 

  In the present experiment, we concluded that the reduction of the ΔTBW after the 

addition nanofluid addition was possibly due to the increase number of nucleation sites 

for the bubbling bubbles. Consequently, the latent heat transfer was increased to lowering 

wall superheat.  
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CHAPTER 8 CONCLUSION 

8.1  Summary and conclusion 

The effects of the nanofluid integration in nucleate pool boiling with various 

configurations have been studied and discussed in detail. Four experiments setups were 

designed and performed to investigate;  

(a) the effect of the heater orientations on the critical heat flux (CHF),  

(b) the effect of the nanoparticle-materials, concentrations and dispersion  

      conditions;  

(c) the effect of the heat flux density to the HTC and CHF.  

(d) the visualizations of the nucleate boiling in nanofluid have also been  

      performed.  

It has been observed that the CHF increase significantly in nanofluid nucleate 

boiling compared to the distilled water. The heater orientation was also observed to affect 

the CHF. An improvement up to 200 percent in both upward-facing and downward-facing 

heaters’ has been documented. Several other essential parameters related to the CHF 

enhancement rate, such as concentration and boiling time in nanofluids, was also 

investigated. The findings reveal that at higher concentration of TiO2 nanofluid, the CHF 

enhances considerably and vice versa. Also, the CHF value for the downward-facing 

heater orientation is only half of that for the upward-ward facing heater. In addition, 

surface wettability measurements were also performed to explore the relation between 

surface properties and the CHF enhancement. 

Moreover, the effects of nanoparticle materials, concentrations, and dispersion 

conditions on the HTC and CHF were also studied. The boiling heat transfer 

characteristics varied significantly depending on the nanoparticles material and 

concentration level. The higher TiO2 and Al2O3 concentration, the higher was the heat 

transfer enhancement (except for the low concentration of TiO2). Whereas, the SiO2 

showed deterioration in heat transfer for all concentrations in the time-variation of wall 
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superheat. However, no noticeable effect of dispersion condition was observed. Some 

peculiar boiling curves (BCs) were observed in TiO2 and SiO2 at the high heat flux 

compared to the simple BCs in Al2O3. The CHF enhancement was found to be in the 

range of 1.7 up to 2.1 MW/m2 for all materials. 

The effects of different heat flux density on the CHF enhancements was also 

investigated. The enhancement of the CHF depended significantly on the heat flux 

density; the heat flux at the higher densities shows considerably higher CHF enhancement 

rates compared to lower heat flux densities. However, the CHF enhancement value did 

not reach the asymptotic CHF value after boiling for 1 hour at the lowest heat flux in the 

present experimental investigation. Both the dimensionless CHF enhancement value with 

respect to the dimensionless heat flux for coated surface, concentration and boiling time 

was then correlated. The trend showed a linearity in the high heat flux especially for 450 

and 600 kW/m2. Nevertheless, for lower heat flux, non-linear trends were observed 

mainly at heat flux density of 300 kW/m2 and more evident at 150 kW/m2. 

Heat transfer in nucleate boiling with nanofluids showed an enhancement in the 

CHF for both upward-facing and downward-facing conditions. However, the HTC 

performance was stochastic depending on materials and concentration of nanofluids, and 

nearly no noticeable dispersion condition effect was observed. The heat flux density 

affected the rate of CHF enhancements, where the high heat flux resulted in high 

enhancement rates, while nominal enhancements at the lowest heat flux.   

In conclusion, experimental investigations on the boiling heat transfer in nanofluid 

pool boiling have been successfully performed. The findings are expected to contribute 

significantly towards high-density cooling, for example, in the passive cooling systems 

(PCS) during loss of coolant accidents (LOCAs) in nuclear power plants (NPPs). In the 

study, non-metallic nanofluid; metal oxide in water-based was used, and their 

performance was investigate and presented.  
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Appendix A 

 

Estimation of wall superheat temperature on glass heater surface. 

 

A.1  Theory 

 

Correlation for lower surface of the hot flat plate in natural convection of air is 

given by [1] 

 0.25
0.27Nu Ra         (A.1) 

where 
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Rearrange equations (A.1) and (A.2) to obtain 
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Note that the relation between TW and surrounding fluid is given by 
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and the heat transfer coefficient h expressed in final form 
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where Ts is equal to TBW. 

 

Given the relation between conduction and convection is 

 

 W BW

BWglass

T T
h T T
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Rearranging Eq. (A.8) to obtain TW as 

 

 BW

W BW

glass

h T T
T T


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
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  .        (A.9) 

 

A.2  Parameters 

Table A1: Parameters 

  1.034 kg/m3 Density 

Ts 111 οC  Surface temperature 

Tf 68.15 οC  Film temperature 

T∞ 25 οC  Fluid temperature 

β 0.00293 1/K Volume expansion coefficient 

µ 2.044 x 10-5 kg/m.s Viscosity 

af 2.75 x 10-5 m2/s2 Thermal diffusivity 

kf 2.7526 x 10-5 W/m.K Thermal conductivity 

Lc 0.00472 m Characteristic length 

Ap 1.7 x 10-3 m2 Area 

P 0.36 m Perimeter 
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λglass 1.4 W/m.K Glass thermal conductivity 

  0.005 m Glass heater thickness 

TBW 111 οC  Bottom wall superheat 

 

 

A.3  Calculations 

 

The characteristic length is calculated using Eq. (A.3) 

0.17 0.01
0.00472

(2 0.17 2 0.01)

p

c

A
L

P


  

  
 m. 

 

Then the heat transfer characteristic h is obtained using Eq. (A.7) 

   
0.25

33

6 6

1.034 2.93 10 (9.81) 111 25 0.00472
0.02868

20.44 10 27.5 10
0.27

0.00472
h



 

    
 

   
 

  

    7.672 W/m2.K. 

 

Finally, wall superheat of the heater surface W
T  is calculated by Eq. (A.9) 

 2 ο ο

ο

W ο

7.672 W/m . K 111 25 C 0.005 m
111 C

1.4 W/m. K
T

  
   

W
113 C.4T    

 

Thus, the difference between TW and TBW is 2.4 K. 

A.4  Nomenclature 

 

  Density [kg/m3] 

Ts Surface temperature [ οC ] 

Tf Film temperature [ οC ] 
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T∞ Fluid temperature [ οC ] 

β Volume expansion coefficient [1/K] 

µ Viscosity [kg/m.s] 

αf Thermal diffusivity [m2/s2] 

kf Thermal conductivity [W/m.K] 

Lc Characteristic length [m] 

Ap Area [m2] 

P Perimeter [m] 

λglass Glass thermal conductivity [W/m.K] 

  Glass heater thickness [m] 

TBW Bottom wall superheat temperature of the glass 

heater [ οC ] 

TW Wall superheat temperature of the glass heater 

[ οC ] 

 

 

A.5  References 

 

[1] Cengel, Y. A. (1998). Heat transfer: A practical approach. Boston, Mass: WBC 

McGraw-Hill. 

 

 

 

 

 

 

 

 

 

 



107 

   

 

PUBLICATIONS 

 

Journals : 

1) Muhamad Zuhairi Sulaiman, Masahiro Takamura , Kazuki Nakahashi, Tomio Okawa, 

“Boiling heat transfer and critical heat flux enhancement of upward- and downward-facing 

heater in nanofluids”, Journal of Engineering Gas Turbines and Power, Vol. 135(7)-072901 

(2013) ASME. (The contents of Chapter 4) 
 

 

2) Muhamad Zuhairi Sulaiman, Daisuke Matsuo, Koji Enoki,  Tomio Okawa, “Systematic 

measurements of heat transfer characteristics in saturated pool boiling of water-based 

nanofluids”, International Journal of Heat and Mass Transfer, Vol. 102 264-276 (2016). (The 
contents of Chapter 5 and Chapter 7) 

 

International Conferences:  

1) Muhamad Zuhairi Sulaiman, Masahiro Takamura , Kazuki Nakahashi, Tomio Okawa, 

“Boiling heat transfer and critical heat flux enhancement of upward- and downward-facing 

heater in nanofluids”, International Conference on Nuclear Engineering (ICONE20-

POWER2012), July 30 - August 3, 2012, Anaheim, California, USA.  

 

2) Tomio Okawa, Muhamad Zuhairi Bin Sulaiman, Daisuke Matsuo, “Experimental study on 

the critical heat flux and heat transfer coefficient in nanofluid pool boiling”, 10th International 

Topical Meeting on Nuclear Thermal Hydraulics, Operation and Safety (NUTHOS10), 14 – 

18. 

 

Local Conferences: 

1) Muhamad Zuhairi Sulaiman, Tomio Okawa, “Heat flux effects on nanofluid boiling surface 

to the CHF enhancement”, The 18th National Symposium on Power and Energy Systems 

(SPES2013), 20-21 June 2013, Chiba, Japan. 
 

2) Daisuke Matsuo, Muhamad Zuhairi Sulaiman, Tomio Okawa, ”Effects of particle dispersion 

on boiling heat transfer in nanofluids”, The 63rd Japan National Congress for Theoretical and 

Applied, 26 -  28 Sept 2014. 

https://www.jstage.jst.go.jp/AF06S010ShsiKskGmnHyj?chshnmHkwtsh=Tomio+Ookawa

	CoverZuhairi4.9
	Thesis_Zuhairi_V4.9

