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P R I M E N U M B E R S A N D C Y C L O T O M Y 

Panayiotis G. Tsangaris (Athens, Greece) 

Abstract. F i r s t , an expl ic i te express ion for (1 —C* ) _ I , where £=exp(27ri '//i), is g iven, in the 

f o r m of a p o l y n o m i a l in f , w i th r a t i ona l coeff ic ients . T h e n a new p r i m a l i t y cr i ter ion is o b t a i n e d , 

which involves t h e g rea te s t i n t ege r f u n c t i o n . F u r t h e r , us ing a resu l t d u e to Yu.I . Volosin [1U], 

we t r a n s f o r m th i s c r i te r ion in to a series of c r i t e r i a involving r a t i o n a l express ions of C, [one of 

these c r i t e r i a involves t h e n u m b e r s (1 — C*) - 1 * l < f c < n —l]. Finally, t h e s e cr i te r ia a re re f ined to a 

t r i g o n o m e t r i c p r ima l i ty c r i t e r ion , t h a t involves only s u m s of cosines. 

AMS Classification Number: 1 I A5 I, 111118 

Introduction 

Denote by Fn(x) the n-th cyclotomic polynomial, while 0 will denote Euler's 
function and ( = exp(27n/ra). Given two polynomials f(v), ä(v) m variable v, 
denote by fír(f(v), g(v)) tlieir resultant. 

In Section 1 we express (1 — CA ) - 1 ? explicitly, in the form of a polynomial in 
<,", by employing a series of new properties of the cyclotomic polynomial (Theorems 
1.1 and 1.2). 

In Section 2 a new primality criterion is obtained. Our primality criterion 
(Theorem 2.1) extends a previous result of author [7] which improves upon classical 
result of Hacks [5]. 

In Section 3 the result of (Section 2) is given in "cyclotomic" form by using 
roots of unity and trigonometric functions. The key result for such a ""cyclotomic" 
modification is a Theorem of Yu. i. Volosin [10] expressing [a/n] by means of a 
primitive root of 1 of order n. Specifically, our Theorem 3.1 is a first primality 
criterion for n formulated in terms of (,* and involving (1 — C^) -1) \ < k < n — 
1. To calculate the inverse of (1 — ( k ) (Corollary 1.4), we thus obtain a second 
"cyclotomic" primality criterion (Theorem 3.2). The "trigonometric elaboration" 
of this result leads to our final Theorem 3.4, which is a "trigonometric" primality 
criterion. 

1. Expressing (1 — CA*)_1 a s a polynomial in (," 

Theorem 1.1. Let n, s be natural numbers and let d— (n,s). Then 
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f Fn/^x8)^!^!^ for n > 1 except for d = n = 2, 
Rv(vs - i»s, Fn{v)) = i -F^x3) = 1 - for d = n = 2, 

i ( - l ) i + 1 F i ( x s ) = - 1) for n = 1. 

Proof . Let R(x) = Rv {vs-xs, Fn(v)), G{x) = Fn/d(a:')*W/*(»/<0 and />1? p2,..., ps 

be the s-th roots of unity. Then p\X, p2x,..., psx are the roots of vs — xs (for x 
fixed). Hence 

R(x) = Fn(pix) • • • Fn(psx). 

Let £ be a root of R(x). Hence, Fn(pk£) — 0 for some k, with 1 < k < s, i.e. pk£ 
is a root of Fn(v). Thus, pk£ is a primitive n-th root of unity. Set pki — C> then 

= (,*s. But the order of £3 is n/d. Hence is a primitive n/d-th root of unity, 
i.e. 

Hence, 
Fn/d(C),p{n)/4>(n,d) = 0, 

i.e. £ is a root of G(x). Hence, every root of R(x) is a root of i.e. 

R(x)\G(x). (1) 

Also 
degG(z) = deg R(x) = s<f>(n). (2) 

From (1) and (2) we have: 

G(x) = cR(x), where c is a (rational) constant. (3) 

Hence G(0) = ci?(0), that is 

Fn/d{ ())*<")/*(»/*) = cF n(0) 5 . (4) 

To derive the sought formula it suffices now to evaluate the constant c. We have to 
examine two cases: 
(a) If n > 1. In case d / n, then n/d > 1. Also Fn(0) = 1 and Fi(0) = - 1 . Then, 
in view of (4) we have c = 1. In case d = n > 1, we have in view of (4) that 

1 ' - \ 1, if n > 2. 
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(b) If n = 1, then (4) implies that 

{1, if s is odd, 
— 1, if s is even. 

Remark. Theorem 1.2 should be considered as closely related to a corresponding 
Theorem of T. Apostol [1] on the resultant of the cyclotomic polynomials Fm(ax) 
and Fn(bx). 

Theorem 1.2. Let n,s be nat ural numbers. Denote by pi = I, pi,..., ps all the 
s-th roots of unity, and Jet 

An (x) = Fn(pix)' •' Fn(ps x) - Fn{pi) • • • Fn (ps). 

Then: 
(i) ( x s - l ) \ f ^ ( x ) . 
(ii) If n J(s, then 

( i - c r ^ i n W " ! . « 

where 
L°n(x) = K°n(x)/(x° 

Proof. The numbers pi, p2,..., ps form a cyclic group. Hence 

A'n [pk) = Fn (pi pk)--- Fn (ps pk) - Fn (pi) • • • Fn(ps) = 0 for k = 1 ,2 , . . . , s. 

Also pix,..., psx are the roots of vs — xs = (J (for x fixed). Thus 

K°n(x) = Rv(vs - x*,Fn(v)) - R(vs - 1, Fn(v)) 

is a polynomial of x with integer coefficients. Since every pk is a root, of K^(x), 
part (i) follows immediately. Then 

i * ( 0 = /C'(C)/(C* - 1) 

and so 
K(0 = —Fn(pi) • • • Fn(ps) = -R(o$ - l,Fn(v)). 

In conclusion 
(1 - C 5 ) - 1 = L'n{C)/R(v' - 1), Fn(v)). 

Theorem 1.3. Let. n, k be natural numbers such that n > 1, n j(k and let d = (n, k). 
Define 

K*(x) = Fn/d{xk)'t,(n)/(t,(n/d) - Fn/d(\)<)>(n)lHnld). 
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Then xk — 1 is a divisor of Kk(x), and 

(1 - C*)-1 = Lk
n(C)/Fn/d(l)*{nmn'd\ 

where 
Lk(x) = Kk(x)/(xk - 1). 

Proof. Immediate by using Theorems 1.1 and 1.2. 

Corollary 1.4. If n is a prime and k < n, then we have 

(1 _ £ * ) - ! = I W f ( n - w - l ) m 

Kw<n— 1 

Proof. Here (n, k) = 1 and Fn( 1) = n, so by Theorem 1.3 we have 

Lk
n(x) = (Fn(x

k) - Fn(l))/(x
k - 1) = ^ 

1 <w<n—1 

which proves the corollary. 

2. A Primal i ty Criterion 

The known formula of Hacks [5, p. 205] for the g.c.d. of two natural numbers 

(n, j) = 2 ^ [ji/n] - jn+j + n 
l<i<n-l 

together with the fact that n is prime if and only if ^ ^ (n, _/) = m where m = 
1 < j < m 

[>/n] implies the following: 

Theorem 2.1. Let n be a natural number with n > 1, m = [>/" ] and 

g(n) = 4 [jí'/n] - (m - l)m(n - 1). 
l<J<m 

l < t < n - l 

Then the following hold true: 
(i) n is prime if and only if y(n) — 0. 
(ii) ix is composite if and only if g(n) > 0. 
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3. Pr ime numbers, roots of unity, cyc lotomy and tr igonometry 

By Volosin's Theorem [10] we have: 

a n — 1 1 v 

n I _ ÍS K ' n 2 n n ' ] — i Ks<n-1 s 

for any pair of (positive) integers a,n. Hence by (5) and Theorem 2.1 we have the 
following: 

Theorem 3.1. Let n be a natural number with n > 1 and m = [>/"•]• Then, n is 
prime if and only if 

*k(tj+1) . / "I'JTM 
E T 3 7 T = " • ( » -

Theorem 3.2. Let n be a natural number with n > 1 and m = [\/n ]. Then n is 
prime if and only if 

1 < t~k < n - 1 

Proof . If n is a prime, by Theorem 3.1 and Corollary 1.4 we obtain: 

- ^ C(tj + 1)k J2 wC**"-""1* = m(n - 1). (7) 
i<j<™ l<w<n— 1 

1 < ( , k < n - 1 — -

Let ( k = l / z . Clearly ( k / 1, i.e. 1. Therefore 

E = ^ E « " ' - I S - <»» 
\<w<n-\ " 1 < w < n — 1 ^ ^ 

By (7) and (8) follows (6). 

Assume now that (6) holds true. We have C/v'(n~1) + ( k - 2 ^ 0 and ^ 1 
because ( k ^ 1. Also, the following hold true: 

1 - (k 1 
- 1) _ 2 -1) _ \ 

Hence 
l - £ f c ) +1) 

^fc(n-l) _ 2 ~~ 1 _ ' 
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Hence by our assumption we have: 

stjkn (k(tj+1) 
^fc(n-l) _i_ £k _ O I — Ck 

1 < j < m S ' S " l < j < m S 

1<(,KTI-1 L<(,FC<N-L 

Finally, by Theorem 3.1, n is prime Q.E.D. 

Our next Lemma 3.3 aims at transforming the above Theorem 3.2 into a 
"trigonometric11 primality criterion. 

Lemma 3.3. Let m,n be natural numbers with n > 1 and m = [\/n ]- Then 

2 v- Ctjk{l-Ck) v "Intjk 
Z ^ ^ ( n - 1 ) I fk _ 2 Zv COb

 n l<j<m S ' S l<j<m 

Proof. The following hold true 

,tjklx „ . + 1) . 7T& . TT* Trk(2tj + 1) 
(, J (1—C ) = 2 sin sin h sm — cos  

n n n n 

Also 

From (9) and (10) we obtain: 

sin i M M t i l 
2 V s * ^ ' = - V 

Z ^ rfe(n-l) I rk _ 2 
l<j<m S S 1 < j < m 

cos 

, , , sin 
1 < ] < m 

\<t,k<n- 1 

Moreover 

Esm — 3+ . 27TÍ 7Ä.* irk 

a _ \ sin J — cot — sin — ^ n n 
1 <3<m n l < j < m 

l<(,fc< n - 1 l < i , f c < n - l 

1 <]<m 

K t , k < n - 1 

(9) 

^ ( « - i ) + i * _ 2 = - 4 s i n 2 — . (10) 

Ecus  
A • ("J 

c o s - — - . (12) 
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On the other hand 

CQS (2tj+i) 2 jk k 2ntjk , ^ 
> 4 = > cos — c o t > sin — . 13 Z S TT« / J »] / J 77 v 

l<j<m n 1 < .7 < m " ' 1<J<™ 
1 < t , k < n - l 1<í , f c < n - 1 !<<,/>< n - 1 

The following hold true 

E 'Intik nk 

sin — c o t — = 0, (14) 
n n 

l<j<m l<f,fc<n-l 

E 'lwtjk Txk . „. 

cos — cot — = 0 (15) 
n n 

1 <j<m l<i,fc<n-l and 
V s i n — — = 0. (16) 

1' r? l<j<m 

Finally, by (11) together with (12), (13), (14), (15) and (16) we obtain: 

y- C°A-(1 -CA") y- ro., 2trtjk 
Ak(n — 1) I Sk _ 9 h

 n l<j<m s i s - l < j < m 1 < f, >c < n - 1 1 < f, is < n - 1 

It is now clear 1 hat Theorem 3.2 and Lemma 3.3 imply the following 

Theorem 3.4. Let n he a natural number with n > 1 and m = [y/n ]. Then n is 
prime if and only if 

2 7it jk ST *'lLJK / i\ > cos = — m\n — 1). < J n 
1 <]<m 

l < t , k < n - 1 
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ON SEPARATELY C O N T I N U O U S F U N C T I O N S f: t2 R 

J. Cincura, T. Salát, T. Visnyai (Bratislava, Slovakia) 

Abstract. In th i s p a p e r t h e n o t i o n s of s epa ra t e ly c o n t i n u o u s a n d s t r o n g l y s e p a r a t e l y 

c o n t i n u o u s f u n c t i o n s R are i n t r o d u c e d a n d p r o p e r t i e s of such f u n c t i o n s a r e inves t iga ted . 

T h e o b t a i n e d resu l t s a r e c o m p a r e d w i t h t h e c o r r e s p o n d i n g k n o w n resu l t s fo r f u n c t i o n s d e f i n e d 

on R M (m>'2). I t is shown t h a t t h e r e a r e several i n t e re s t ing a n d essent ia l d i f fe rences b e t w e e n 

p r o p e r t i e s of ( s t rong ly ) s e p a r a t e l y c o n t i n u o u s f u n c t i o n s def ined on I 2 a n d p r o p e r t i e s of ( s t rong ly ) 

s e p a r a t e l y c o n t i n u o u s f u n c t i o n s def ined on R M . 

Introduction 

Separately continuous functions / : R m R were investigated in several 
papers (see e.g. [2], [4], [8], [11]). Recall that a function / : R m -» R is said 
to be separately continuous at a point xq = (x®, . . . , x®}) £ R'" provided that 
for each k = 1,2, . . . , m the function <£>fc:R —» R defined by fk(t) = 
/(xi,..., x®_ v /, x®+,,..., x(

1
>

ll) is continuous at x®. It is well known that a function 
can be separately continuous at x° without being continuous at x". The standard 
example illustrating this phenomenon is the function / : R 2 —>• R given by 
f(x1,2:2) = 0 if x j • X'2 ^ 0 , while f(x 1,^2) — 1 if xi * x2 = 0 . This function 
is separately continuous at, (0,0) without being continuous at (0,0). On the other 
hand, if a function / : R'" —> R is continuous at A>0 then it is separately continuous 
at x° as well. 

In the paper [4] the author introduced the notion of strongly separately 
continuous function / : R'" —> R at and obtained the following result: A 
function / : R'n —> R is continuous at a point x° if and only if it is strongly 
separately continuous at x° (see [4; Theorem 2.1]) 

In this paper we extend the notions of separately continuous function and 
strongly separately continuous function to the functions defined defined on the 
space i 1 and prove several basic results about functions. We show that there are 
essential differences between some properties of (strongly) separately continuous 
functions / : R m —> R and the corresponding properties of functions / : P2 —>• R. 

The paper consists of three sections. In the first section we introduce the 
notions of separately and strongly separately continuous function for the functions 
f:('2 —* R and prove some basic results. In the second section we will investigate 
some properties of limit functions with respect to pointwise and weakly locally 
uniform convergence of sequences of (strongly) separately continuous functions 
/ : f 2 —y R and also with respect to pointwise convergence of transfinite sequences 
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of (strongly) separately continuous functions / : £2 —> R. In the third section we will 
study determining sets for the class of (strongly) separately continuous functions 
on £2. 

In this paper we, as usually, denote by t 2 the metric space consisting of all 
oo 

sequences x = ( x j ) ! ^ of real numbers such that x t < "t-00 endowed with the 
k-] 

metric g defined by 

Q(x,y) = - Vk)'' 
k = \ 

for all x,y E i2. 

If x° £ £2 and S > 0, then B{x°,S) denotes the set {x E £2 : g(x°,x) < 6}. 

1. Separately and strongly separately continuous functions 

The definitions of separate and strong separate continuity of functions 
/ : R m —» R can be in a natural way extended to the case of functions / : £2 —» R. 

Definit ion 1.1. 

(a) A function f: £2 —» R is said to be separately continuous at a point x° = 
[x<j)JL1 E £2 with respect to a variable xk provided that the function <pk- R- —> 
R defined by <Pk{t) = / ( x j 1 , . . . , x j j ^ , i, x ° + 1 , . . . ) is continuous at x°. If / 
is separately continuous at x° with respect to xk for all i G N , then / is said 
to be separately continuous at x°. If / is separately continuous at every point 
x° £ £2, then / is said to be separately continuous on £2. 

(b) A function f:£ 2 R is said to be strongly separately continuous at a 
point x° = (x°j)j:L1 £ £2 with respect to a variable Xk provided that for 
each £ > 0 there exists J > 0 such that | f(x) — f(x') | < e holds for each 
x = ( x j ) J l 1 £ B(x°,6), and x = (a?i , . . . , xk-\, x£, xk+i,...). If / is strongly 
separately continuous at x° with respect to xk for all k £ N, then / is said to 
be strongly separately continuous at x°. The function / : £2 —y R is said to 
be strongly separately continuous on £2 provided that it is strongly separately 
continuous at every xü E £2. 

Remark. Observe that in Definition 1.1 (b) £ ( x ° , x ) < p(x°,x). Hence, if 

x E B(x°,S) , then x E B(x°, <S) as well. It is also obvious that a function / : £2 —>• R 
is strongly separately continuous at x° = (x(j)JL1 with respect to Xk if only if for 

any sequence in t2 which converges to x° we obtain that lim ( / ( x ^ ) — 
n—too 

f{x^')) = 0, where *<") = ( a ^ ) ^ and x<">' = (x*"*,. . . , x j ^ , • • •) f o r 

all n E N. 
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From the above definition it follows the following: 

Proposit ion 1.2. 

(a) If a function / : t'2 —> R is continuous at x°, then f is strongly separately 
continuous at x°. 

(b) If a function f:i2 —> R is strongly separately continuous at x°, then fis 
separately continuous at x°. 

Proof, (a) Let ( í c ^ í J ^ J be a. sequence in £2 which converges to = 

(xS" ))?i1. Then, obviously, lim /(ar<n>) = f(x°). Let k G N. For every n G N put 
•> n—• oo 

x(n)' = ( x j " ) , . . . , S i n c e q(x^',x°) < g(x°,x<n>) for all n G N 

we obtain that lim x^' = J;0 and it follows that lim f(x{n)') = f{x°). Hence, 
11—I OO Tl—tOO 

lim (/(•£'"') — )) = 0 and this yields that f is strongly separately continuous 
71 —tOO 

at x° with respect to xk for arbitrary k E N. 

(b) Similarly to (a). 

In the paper [4] the following result was proved. 

Theorem A. A function f: R m —>• R is continuous at x° if and only if f is strongly 
separately continuous at x°. 

In the case of functions / : t2 R only the implication presented in Proposition 
1.2 (a) is valid and we show that there exist, strongly separately continuous functions 
/ : £2 —t R (on £2) which are discontinuous at every point of the space f2. F or 
defining such functions the following notion seems to be useful. A subset £ is 
said to be a. set of type (Pi) provided the following holds: If x = ( x j G S, 
y = (y.jjj'Li £ ^2 a n d {j € N; Xj ^ Vj) contains at most one element, then 

y G S. Next we present some examples of subsets S C £2 such that is a set of 
type(Pi) and S as well as £2 \ S are dense in f 2 . 

Example 1.3. 

(a) c> = {j? = (xj)JL l G f2'-j G N; x j is a rational (irrational, algebraic, trans-

cendent) number} is a finite set (see [14]). 

(b) S' = j * = ( x j ) ^ G £2 : E x j < +oo j 

Theorem 1.4. There exists a function y: £2 —> R such that y is strongly separately 
continuous on i2 and g is discontinuous at every point of £2. 

Proof. Let S C (2 be a set of type (Pi) such that S and f2 \S are dense in I2 (we 
can take some of the sets from Examples 1.3). Let C G R , C / 0. Define a function 
y:£2 —y R by y(x) — c for all x G S and y(x) = 0 otherwise. If x° G ^2, then for 
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every neighbourhood U of we have U fl S ^ 0, U n (£2 \ S) ± 0, and this yields 
that g is discontinuous at On the other hand, let k £ N and = ( , 

x = (xj)JL1: x = (Xj ) j c L i be arbitrary points of £2 such that for all j / k, Xj = x-

and x£ = xk. It is obvious that if x £ S, then also x E S and if x S, then also 

x £ S. Hence we always obtain |#(x) — g(x )| = 0 so that for each x° £ £2 and each 

k £ N the function g is strongly separately continuous at with respect to xjf. 

Remark. While all separately continuous functions / : R m —» R belong to the 
first Bai re class B\, Theorem 1.4 shows that neither strongly separately continuous 
nor separately continuous functions / : £2 —» R have this property. The function 
g: Í2 —> R defined in the proof of Theorem 1.4 does not belong to Bi because the 
set of all discontinuity points of g is a set of the second Baire category. 

We close this section with two examples. The function f:£2 —> R define 
oo 

by f{xi,a;2) •••) — I if Y1 xk € Q, Q being the set of all rationals, and 
k = 1 

f ( x i , X2i • •.) = 0 otherwise is an example of a function which is nowhere separately 
continuous. The function g:£2 —y R given by g(xi, , . . . ) = 0 if x\ • x,2 ^ 0 while 
g(xi, X2,...) = 1 in the opposite case is separately continuous at (0, U,...) without 
being strongly separately continuous at this point. 

2. Limit functions of sequences of separately continuous funct ions 
/: t2 R 

If a sequence {fn-.£
2 converges pointwise to a. function / : i 2 —» R 

and all fn are (strongly) separately continuous, then the function / need not be 
separately continuous. 

Theorem 2.1. There exists a sequence ( f n : £2 —» R)^! , of functions each of which 
is continuous on C'2 such that it converges pointwise to a function f:£2—t R which 
is not separately continuous on £2. 

Proof . For each n £ N define a function gn: R —> R by gn(x) = sin ^ for all x £ 
((n + ')^n, i ) and gn{x) = 0 otherwise. It is clear that all gn are continuous functions 
on R and the sequence (gn)'^L1 converges pointwise to the function g: R -» R 
given by g(x) = sin ± for all x £ (Ü, £) and g(x) = Ü otherwise. Obviously, g is 
discontinuous at 0. For each n £ N define a function fn:£

2 —> R by fn(xi, X2,...) = 
gn(xj) and let / : £2 —> R be the function given by X2,...) = g(xi). It is evident 
that for all n £ N, fn is a continuous function on £2 ( f n = gn°Pi, where p\\í2 —> R 
is the first projection) and / is not separately continuous at the point (0, 0 , . . . ) with 
respect to X\. Clearly, the sequence (fn)£°=1 converges pointwise to / . 
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It is natural to ask whether some of various types of convergence of functions 
which are stronger than the point wise convergence can guarantee that the limit 
function of a sequence of (strongly) separately continuous functions on f 2 with 
respect to this type of convergence is also a (strongly) separately continuous 
function on £2. Next we show that there is a weaker type of locally uniform 
convergence (see [14], [5; p. 149]) which fulfills this requirement in the case of 
strongly separately continuous functions on Í2 . 

Definit ion 2.2. Let X he a topological space, ( f n : X R ) ^ ! be a sequence 
of functions and a'0 £ A'. A sequence (/n)nLi ' s s a i ( ' to converge weakly locally 
uniformly to a function f: X —> R at x° if for every £ > 0 there exist S > 0 and 
p £ N such that \fn{%) — /(•*')! < e holds for each n £ N with n > p and each 
xG B{x°,S). 

If a sequence ( f n ) j converges weakly locally uniformly to a function / at 
every point x° £ A', then it is said to converge weakly locally uniformly to f on X. 

Theorem 2.3. If a sequence (fn'£
2 R ) j converges weakly locally uniformly 

to f: £2 —y R at x° £ f2 and for each n £ N the function fn is strongly separately 
continuous at x°, then the function f is also strongly separately continuous at x°. 

Proof. Let k £ N. We will prove that / is strongly separately continuous at x° with 

respect to xk. bet £ > 0. Since converges weakly locally uniformly to / at x° 

there exist an open ball B(x°,Si) and p £ N such that \fn(x) — f(x)\ < - holds for 

all n > p and x £ B(x°, ái). The function fp is strongly separately continuous at x° 

with respect to xk and it follows that there exists 62 > 0 such that \fP[x) — fp (x )| < 

I holds for each x = (xj)J±1 £ B(x°, Ó2) and x = ( x j , . . . , xk-\, x£, xk+i,...). Put 

S = min{d"i, <5-2}• Then for each x £ B(x°,S) we obtain that |/ ;,(x) — fp(x )| < 

| /p(x) — / (x ) | < I and because o(x , x°) < f?(x°,x) < á we have also \fP(x ) — 

/ ( x ' ) | < §. Hence, for all x G B(x°,S) we obtain | / (x) - f{x)\ < | / (x) - fp(x)\ + 

I fp (x) - fp(x )| + I fp(x ) - / ( x )| < £ and this yields that, / is strongly separately 

continuous at x with respect to xk. 

In the rest of this section we will investigate some properties of limit functions 
of convergent transfinite sequences of (strongly) separately continuous functions. 
Recall that a transfinite sequence is the first uncountable ordinal) in a 
metric space (A', rr) converges to a point x £ X ( we write x^ —> x) if for every £ > U 
there exists £0 < & such that cr(x£,x) < £ holds for each £0 < £ < £2. It is well 
known (see e.g. [9]) that if x^ —> x in a metric space (A', <r), then there exists £0 < Q 
such that X£ = x holds for each £ > A transfinite sequence (/f: M —¥ R)^<n 
of functions, M is a set, converges pointwise to a function / : M —» R (we write 
ft f ) o n if for each x £ M we have /^(x) —y f(x) in R. In the next theorem we 
show that the pointwise convergence of transfinite sequences of functions preserves 
(strong) separate continuity. 
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Theorem 2.4. Let (f^: í2 —> R ) ^ ^ be a transfínite sequence of functions which 
converges pointwise to a function f:£2 —> R on I'2. If for all £ < Q the function 
ft is (strongly) separately continuous at x°, then the function f is also (strongly) 
separately continuous at x°. 

Proof . Let for each £ < the function be strongly separately continuous at a;0 

with respect to x^. We show that f is strongly separately continuous at x° with 

respect to x^. Let ( a ^ ' J ^ L j be a sequence in £2 which converges to a?0, = 

(®j n ) )J i i . For each n 6 N put x(n>' = (x< n ) , . . . , 4+ i> • • •)• suffices to 

check that lim ( / ( x ( n ) ) - /(«c (n) ')) = 0. Let n G N. For every ( < Q we have 
n—too 

liin ( f s ( x i n ) ) - fdx{nY)) = Since ft -> / o n £2 w e obtain / e ( z ( n ) ) -> f{x<">) 

and f z i x W ) / ( x ( » ) ' ) . T h e n there exists < fi such that f ^ n ) ) = / { x ^ ) 

and f t (x ( n ) ) = f ( x ^ ) holds for all £ > We can choose £0 < ß such that for 

all n G N we have £n < £„• Then for all n G N /io(a?(n>) = / (x , ( n ) ) and = 

f l x W ) . Clearly, lim ( f ( x ^ ) - / ( a r t » ) ' ) ) = lim { f f J x ^ ) -/<_ (ar<n)')) = 0. Hence, 
n —oo n—too 

the function / is strongly separately continuous at with respect to xk. The 
case of separate continuity immediately follows from the known fact that a limit 
of a transfinite s e q u e n c e ^ : R —> of continuous functions is a continuous 
function (see e. g. [10], [9]). 

3. Determining se ts for separately continuous functions f:£2 —>• R 

If T is a class of (real) functions defined on a set X and M C X, then the 
set M is said to be a determining set for T provided that any functions f,gET 
satisfying J\m = g\\i are coincidental on X. For the class Q of all separately 
continuous function of two variables the following result was proved (see [13], [11], 
[8]). 

Theorem B. Let Q be the class of all separately continuous functions defined on 
R2 . Then a set M C R 2 is a determining set for the class Q if and only if M is 
dense in R2 . 

Obviously, this result can be extended to the class of all separately continuous 
functions defined on R m , m > 2. On the other hand, from Theorem 1.4 it follows 
that there exist dense subsets of the space £2, e. g. £2 \ S, S ,£2\S where S, S 
are presented in Example 1.3, that are not determining sets for the class of all 
(strongly) separately continuous functions on £2. Another example is given in the 
next theorem. 
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Theorem 3.1. There exists a strongly separately continuous function h: e R 
and a residual (and, consequently, dense) set E in f'2 such that h(x) = 0 for all 
x £ E and h(y) ^ 0 for some y £ t2 \ E. 

oo 
Proof. Denote by H the set of all x = (xj)jLJ £ C2 for which ^ xj converges. Put. 

j=1 
oo 

E - I2 \ H and define h: i2 R by h{x) = x j for a11 x ^ 11 and hix) = 0 

J'=I 

otherwise. According to [7; Theorem 3.1.] (it suffices to put o n — 1 for all n = 
1, 2 , . . . and p = q = 2) the set E is residual in C2. To complete the proof it. suffices 
to show that h is strongly separately continuous on C2. Let x° = )J i 1 G Í2 and 
k £ N. We show that h is strongly separately continuous at x° with respect, to xA-. 
Let £ > 0. If £ — (xj)JL1 G B(x°,e), then also x = ( x i , . . . , xk+i ) G 

oo ( 

B(x°,e). If x G H and h(x) = Y, X j , then \h(x)-h{x )| - | a rA -xJ | < ß{x,x°) < e. 

3 = 1 

If x i H, then h(x) = h{x) = 0 and we have \h{x) - h(x') \ = 0 < e. This yields 
that h is strongly separately continuous at x° with respect to x^. 

In connection with determining sets for strongly separately continuous func-
tions on i2 the following observation seems to be useful. Let M be a subset of Í2  

and M is the set of all y — (yj)JL1 G t2 such that there exists x = (x j ) J i 1 G M for 

which the set {j G N : xj / yj} is finite. It is obvious, that M C A/, M — M and 

M is a set of type (Pj) . Similarly to the proof of Theorem 1.4 it can be checked 

that for any subset M C t2 the function g: t2 —Y R given by g(x) — 0 for all x £ M 

and ^(x) = 1 otherwise is strongly separately continuous. Hence, we obtain: 

Proposit ion 3.2. If M is a subset of t2 such that M ± C2, th en M is not a 
determining set for the class of all (strongly) separately continuous functions on C . 

It. is easy to see that if M C ('2 and card M < c, c being the cardinality of 
continuum, then M ^ (2 (evidently, there exists y = {yj)j(L1 G f 2 such that for each 
x - ( x j ) J i , G M, {j £ N : Xj — yj} — 0). Hence, as a consequence of Proposition 
3.2 we obtain. 

Proposi t ion 3.3. If M C £2 is a determining set for the class of all (strongly) 
separately continuous functions on f2, then card M — c. 
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P R I M I T I V E DIVISORS OF LUCAS S E Q U E N C E S 
A N D P R I M E FACTORS OF x2 + ] A N D x4 + 1 

Florian Luca (Michoacán, Mexico) 

Abstract. In th i s p a p e r , we show t h a t 24208144 3 +l=29 3 -37 2 -53-61 2 -89 is t h e la rges t 

i n s t ance in which n 2 + I d o e s no t have any p r i m e f a c t o r >100. 

1. Introduction 

For any integer n let, P(n) be the largest prime factor of n with the convention 
that P(0) = P{± 1) = I. In [8], it is shown that if x is an integer, then + 1) > 
17 once > 240. The method presented in [8] is elementary, and the computations 
were done using congruences with respect, to small moduli. 

The purpose of this note is two fold. First of all, we improve the lower bound 
from [8] by showing that P(x2 + 1) > 101 once \x\ > 24208145. Secondly, our 
method is entirely different from the one presented in [8] in the sense that it 
uses the existence of primitive prime divisors for the Lucas sequences associated to 
certain Pell equations. This method has been used previously by Lehmer in [6] to 
compute all the positive integer solutions x of the inequality P(x(x + 1)) < 41. The 
method is completely general and, in practice, armed with a good computer, one 
can employ it to find all the integer solutions x of the inequality P(x2 + 1) < A', 
where A is any given reasonable constant. We also use the same method to show 
that P(xA + \) > 233 for x > 11, which extends the range of computations described 
in [7] and [9] where it was shown that P(x4 + 1) > 73 if x > 3. We recall that 
explicit lower bounds for P(x3 + 1) appear in [1]. 

This note is organized as follows. In the second section, we present our 
algorithm and computational findings. In the third section, we make an analysis of 
the running time of our algorithm for computing all positive integer solutions x of 
the inequality P(x2 + 1) < A in terms of A . 

2. Computat ional Results 

Theorem 2.1. 
(i) The largest positive integer solution x of the inequality 

P(x2 + 1) < 101 
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is X = 24208144. 
(ii) The largest positive integer solution x of the inequality 

P(x4 -f 1) < 233 (2) 

is x = 10. 

Proof . We start with the first question. Assume that £ is a positive integer such 
that P(x2 + 1) < 101. The only prime numbers p that can divide a number of the 
form x2 + 1 are either p = 2, or p = 1 (mod 4). There are only 12 such primes p 
less than 101 and they are 

pev = {2, 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97}. 

In particular, the number x has the property that 

x2 + l = dy2, (3) 

where d > 1 and y > 1 are integers whose factors belong to and d is squarefree. 
If we rewrite equation (3) as 

x2-dy2 = -1, (4) 

it follows that the pair (x, y) is a positive integer solution of a Fell equation of the 
form (4) for some squarefree d > 1 whose prime factors are in the set V. Let A be 
the set of all the squarefree positive integers d > 1 whose prime factors are in the 
set V. Clearly, A contains precisely 2^1 — 1 = 212 — 1 = 4095 elements. For each 
d £ -4 let (Ai (d), Yi (d)) be the first, positive integer solution of the Pell equation 

X2-dY2 = ± 1. (5) 

It is wellknown that if we denote by rrid the length of the continued fraction of 
s/d, then (A'i(t/), V'i(c/)) = ( P m d _ i , Qmd-1), where for a nonnegative integer k we 
have denoted by Pk/Qk the A;th convergent to Vd. Moreover, if md is even, then 
equation (5) has no integer solution (A", Y) with the sign —1 appearing on the 
right hand side. Of the totality of 4095 elements d of A, only 2672 of them have the 
property that the period nid is odd. Let us denote by B the subset of A consisting 
of only these elements. We used Mathematica to compute (A'i(t/), Fi(c/)) for all 
d £ B. These computations took about 7 hours. 

Assume now that (x, y) is a solution of equation (4) for some d £ B. It then 
follows that (x, y) = (An(ei), Yn(d)) for some odd value of n > 1, where Xn(d) 
and Yn(d) can be computed using the formulae 

Xn(d) = and y„(d) = - W * » " 
2 2 Vd 
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for all n > 1, where 

a(d) = Xx(d) + Vd\'\(d), ß(d) = X\(d) - VdY\(d). 

It is wellknown that Y\ (d) | Yn(d) for all n > 1. Thus, since in equation (4) the 
number y has P{y) < 101, it follows that P ^ d ) ) < 101 must hold. Of the totality 
of 2672 pairs (X\(d), Y\(d)) with d £ B, only 143 of them satisfy this condition. 
Testing this took a few minutes with Mathematica. Of course, we did not factor 
the numbers Yi(d) because some of them are quite large. Instead, we computed, for 
each given d, the largest divisor Md of Y\(d) having P(Md) < 101, and we tested 
if l ' i ( d ) is equal to 4/,/. 

Let, now C be the set consisting of these 143 elements d £ B for which 
P(Y\(d)) < 101, and assume that y = Yn(d) for some odd n > 1 and some d £ C. 
Since 

v Í iw~ 11\ QWn - 3{dY' r ii % 1 }n(d)Yi{d) = — — -77—, for all n > 1, a-(a) — p{d) 

it follows that the sequence is a Lucas sequence of the first, kind 
I y 1 (d) J n> 1 

with roots o((/) and ß(d). Since a(d) and ß(d) are real, it follows, by a result of 
Carmichael (see [2]), that the nth term of this sequence has a primitive divisor 
for all n > 12. We recall that a primitive divisor of the nth term of a Lucas 
sequence is a prime divisor p of it which, among other properties, it also fulfills 
the condition that p = ±1 (mod 11). In particular, if n > 12 is odd, then there 
exists a prime number p | Yn(d) such that p > 2n — 1. Since we are searching for 
values of n and d such that P(Yn(d)) < 07, it follows that n is an odd number 
such that 2n — 1 < 97, hence, n < 49. Thus, we used Mathematica to compute, 
for every one of the 143 values of d £ the numbers Yn(d) for all odd values of 
n < 49, resulting in a totality of 143 • 25 = 3575 such numbers. For each one of 
these numbers, we applied the procedure described above to eliminate the ones 
for which P(Yn(d)) > 97. The computation took a few minutes, and a totality of 
156 numbers Yn(d) survived (that is, only 13 new numbers Yn(d) for n > 1 odd 
and d £ C were found). For each of these numbers we computed x - Xn(d). The 
conclusion of these computations is that there are precisely 156 positive integer 
values of x for which P(x2 + 1) < 101. Of these 156 positive integers, 140 of them 
are less than 105, 10 more of them are between 105 and 106, and the largest 6 of 
them are 1984933, 2343692, 3449051, 6225244, 22709274, and 24208144. Thus, 
the largest positive integer solution x of the inequality P(x2 + 1) < 101 is 

242081442 + 1 = 293 • 372 -53-61 2 • 89. 

W7e now turn our attention to P(x4 + 1 ) . Suppose that x is a positive integer such 
that P(x4 + 1) < 233. If p is a prime number dividing x4 + 1, then either p = 2, or 
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p is congruent to 1 modulo 8. There are only 9 such primes which are smaller than 
233, namely 

'PI = {2 , 17, 41 , 73 , 8 9 , 97 , 113, 137 , 193} . 

So, with 2 = x2 , we need to find all the solutions of the equation 

z2-dy2 = -1, (6) 

where d > 1 and y > 1 are integers whose factors belong to V\, and d is squarefree. 
There are precisely — 1 = 29 — 1 = 511 possible values for d. We used 
Mathematica to find, for every such d, the smallest solution (X\(d), Y\(d)) of 
the Pell equation (5). Only 255 values of d have the property that equation (5) 
has a solution with the sign —1 in the right hand side. Out of these values of d, 
only 13 have the property that all prime factors of Y\(d) are in V\. Now suppose 
that (z, y) — (Xn(d), Yn (d)) is a solution of equation (6) for some odd value of n 
and one of these 13 values of d. Since P(Yn(d)) < 197, it follows, by the primitive 
divisor theorem, that 2n — 1 < 197, i.e. n < 99. Thus, we have computed all the 
50 • 13 = 650 values of Yn(d) (i.e., for each one of the 13 values of d, and for each 
odd n with n < 99), and we tested each one of these numbers to see if their prime 
factors are in V\. No new number was found, so n — 1. Thus, z = X\(d) for one 
of the 13 values of d. Since 2 = x2, we tested if X\(d) is a perfect square. Five 
values of x were found, namely x = 1, 2, 3, 9, 10. So, the largest solution of the 
inequality P(x4 + 1) < 233 is 

104 + I = 73 • 137, 

and P(x4 + 1) > 233 holds for all integers x > 11. 

We conclude this section by remarking that we could have done the final testing 
for P(x4 + 1) < 233 by combining the primitive divisor technique with a result of 
J. H. E. Cohn from [3]. Namely, in [3], the following result is proved: Assume that 
d > 1 is a squarefree number. Then the equation X4 — dY2 = — 1 can have at most 
one solution in positive integers (A', Y). Moreover, let (X\(d), Y\(d)) denote the 
smallest positive solution of A"2 — dY2 = — 1, and write X\(d) — AB2, where A is 
squarefree. Then the only possible value of the odd integer k for which Xk(d) can 
be a square is k = A. 

3. The running t ime of the algorithm 

Given K > 1, an algorithm to compute all positive integer solutions x of the 
inequality P(a ,2-|-1) < K was presented in section 1, together with its findings when 
K = 100. Let f ( X ) G Z[Ar] be a polynomial having at least two distinct roots. 
In his PhD thesis, Haristoy (see [4]) improved upon earlier estimates of Shorey 
and Tijdeman (see chapter 7 of [10]) and showed that the inequality P(f(x)) 
log2 x log3 xj log4 X holds if X is a sufficiently large positive integer. Here and in what 
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follows, for a positive real number y we use logy for the maximum between the 
natural logarithm of y and 1, and for a positive integer k we use \ogk y for the Arth 
fold iterate of the function logy. From this result, if follows that if P(x2 -f 1) < A, 
then x < exp (exp ( 0 ( A log2 A / l o g A"))), so if one wants to find all the positive 
integer solutions x of the inequality P(x1 -f 1) < K by simply factoring x2 + 1 
for all positive integers x up to the above upper bound, then the running time of 
such a naive algorithm will be almost doubly exponential in A. In this section, we 
present the following result. 

T h e o r e m 3.1. The algorithm presented in section 2 finds all positive integer 
solutions x of the inequality P(x2 + 1) < A after at most exp(0(K)) elementary 
hit operations. 

Proof . Here, we keep the notations from section 2. First, to generate A, one 
first generates the 2 7 r 'A ; 4 ' 1 , + 1 = exp (0 (A) ) squarefree numbers d all whose prime 
factors are 2 or congruent to 1 (mod 4) and having P[d) < A. Secondly, to 
find i>, for each one of the numbers d £ A one computes the minimal solution 
(A'i (rf), V] (</)) of the Pell equation X2 - dY2 = ±1 . Then B is the subset of those 
d £ A such that (A'i(</), Y\(d)) is a solution of the equation X2 — d,Y2 = — 1. 
The continued fraction algorithm for quadratic irrationalities shows that this is 
computable in 0(dx!2) = exp(0(/v")) steps and since d < 4 A , it follows that at 
each step only numbers of the form exp(0(A )) are being handled. Now with each 
one of these numbers Y\(d), we test if P[d) < A . This step requires exp(0(A')) 
elementary operations. Indeed, let, p < A be a fixed prime and assume that 
p a | | i ' i ( i / ) . Then alIAogY\(d) = exp(0(A')) . Moreover, since a (mod b) requires 
O (log2(a + 6)) elementary bit operations (using naive arithmetic, and even less 
using Fast Fourier Transform), it follows that this part of the computation requires 
exp(0 (A) ) elementary bit operations. Thus, the subset C of B consisting of those 
d £ B such that P(d) < A can be generated after at most exp(0(A')) elementary 
bit operations. Finally, one now generates Yk(d) for k < A and tests again if 
P(Yk{d)) < A'. As previously, this requires again at most exp(0(A")) elementary 
bit operations after which the set consisting of all the positive integers x such that 
X2 + 1 = dY'K(d)2 has the largest prime factor < A is obtained. 
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G E N E R A L I Z A T I O N S OF B O T T E M A ' S T H E O R E M 

ON P E D A L P O I N T S 

Eva Sashalmi and Miklós Hoffmann (Eger, Hungary) 

Abstract. Given a polygon a n d one of its i n n e r po in t s P, t h e o r t h o g o n a l p r o j e c t i o n s 

of P o n t o t h e s ides of t h e po lygon a r e cal led peda l p o i n t s of P. Here we prove di f ferent r e s u l t s 

conce rn ing con f igu ra t i ons by a t t a c h i n g di f ferent t y p e s of po lygons to t h e s e g m e n t s of t h e s ides 

def ined by t h e peda l s . T h e s e t h e o r e m s can be cons ide red as t h e gene ra l i za t i ons of B o t t e m a ' s 

classical t h e o r e m . 

1. Introduction 

Consider a triangle ABC and one of its inner points P. Let the orthogonal 
projection of P onto the sides AB, BC,CA be Pi, P-2 and P3, respectively. These 
are the pedal points of P. If we build squares on the segments of the sides defined by 
the pedals (outside of the triangle), we obtain six different squares. In [1] Bottema 
proved the following theorem about the areas of these squares: 

Theorem 1. The sum of the areas of the squares erected on the segments A P\, BP2 
and CP3 equals the sum of the squares erected on the segments P\B, PzC and P3A. 

More recently van Lamoen and other studied similar configurations ([2], [3]) 
and showed the following in [3]: 

Theorem 2. Let A\B\C\ be the triangle bounded by the lines containing the sides 
of the squares opposite to AP\, BP2 and CPs. Similarly let, A2B2C2 be the triangle 
bounded by the lines containing the sides of the squares opposite to P\ B. P2C and 
P3A. These two triangles are each homothetic to ABC and the ratio of homothety 
is 

a2 + b2 + c2 

41 ' 

where a,b,c are the sides and t is the area of ABC. 

To simplify the equation we use the following notations: 

Definit ion. The Brocard point ft and the Brocard angle w of ABC is t he point and 
angle for which 

l ABÜ = Z BCQ = ICAQ = to. 
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Since for the Brocard angle 

a2 + b2 + c2 

COt UJ — — (1) 

holds (c.f. [4]), the ratio of the homothety in Theorem 2 can simply be written as 

A = 1 -j- cot u>. 

Throughout the paper we use the phrases "left" and "right" to distinguish the two 
families of squares or other builded polygons. 

2. New results on tr iangles 

At first we prove that Bottema's statement holds not only for squares but 
for any rectangles similar for each other and also for regular triangles. Then we 
examine the ratio of homothety of Theorem 2 in the case when the squares are 
erected onto the inner side of the triangle and show that it equals cotu; — 1. 

Theorem 3. Consider the triangle ABC and one of its inner points P. Let the 
pedals of P on the sides AB, BC, CA be Pi, P2 and P3, respectively. If we build 
similar rectangles on the segments of the sides defined by the pedals, then the 
sum of the areas of the rectangles erected on the segments AP\, BP2 and CP3 (i.e. 
the "left" rectangles) equals the sum of the rectangles erected on the segments 
P\B, P2C and P3A (i.e. the "right" rectangles). 

Proof. Here we use the basic idea of [3]. Let us denote the sides of the triangle by 
a, b,c and the segments defined by the pedals by the following: c/ = AP\; cr = PiB; 
ai = BP2; ar — P2C; b[ = CP3; br = P3A. From Theorem 1 it is follows, that 

af + bf + cf = a2 + b2
r+c2

r. (2) 

Let us denote the other side of the rectangle erected onto at by s and let p = 
Thus the area of this rectangle can be written as ais = aipai = a2p. Since the 
rectangles are similar to each other, p is the ratio of their sides for all rectangles. 
Thus the sum of the areas of the "left" rectangles is 

a f p + b2p + cjp = p(af + bf + c2). 

Similarly for the "right" rectangles 

alp -\-b2,p-[- c2,p = p(a2. + b2 + c2) 

holds, which, together with (2) proves the statement. 
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Corollary. Let A\B\C\ be the triangle bounded by the lines containing the sides 
of the rectangles opposite to A Pi, Li and CP.3. Similarly let A2B2C2 be the 
triangle bounded by the lines containing the sides of the rectangles opposite to 
PiB, P2C and P3A. These two triangles are each homothetic to ABC and the ratio 
of homothety is A = 1 + pcotuj. 

Back to the original situation, building the squares to the inner side of the 
segments of the side of the triangle, Theorem 1 naturally remains valid (see Fig. 1). 
The ratio of the homotethy, however will be changed as follows. 

Figure 1. 

Theorem 4. Consider the triangle ABC and one of its inner points P. Let the 
pedals of P on the sides AB, BC,CA be P1, Pi and P3, respectively. If we build 
squares onto the inner side of the segments of the sides defined by the pedals, as 
in Tig.l., then the ratio of the homothety between the triangle ABC and AiBiCj 
as well as between ABC and A2B2C2 is X = cot, oj — 1. 

Proof. Denote the center of homothety between ABC and A\B\C\ by 0\ and 
the segments BP2, CP3, AP\ by a/, 6; and q . Let the distances of the sides 
BC,CA, AB from 01 be f,g,h, respectively. Obviously the distances of the sides 
B\C\, C\A\, A1B1 from 01 are (at — / ) , (6/ — g) and (c/ — //). Due to the homothety 
/ : g : h = (o./ — / ) : (6/ — g) : (c; — h) holds. From equation (2) 

af + bf 4- cf = (a - at)2 + (b - bt)2 + (c - a)2. 

Applying equation (1) this can be written as 

a2 + b2 + c2 

aai + bbi -f cc/ — = 'It cotu), 

where t is the area of the triangle ABC. Summarizing the area of the subtriangles 
OyBC, ()t AC and OxAB we find 

af + bg + ch = 21, 
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which, together with the previous equation yields 

Oj_ _ bj_ _ Q _ cot  

/ ~ g - h~C° 

Thus the ratio of homothety is 

ai - f bi - g ci-h 
A = - = = — COT U) — I , 

/ 9 

which completes the proof. 
By applying this method one can prove several similar theorems and compute 

the ratios of homothety. Here we mention only one more example (see Fig. 2). 

Figure 2. 

Theorem 5. Consider the triangle ABC and one of its inner points P. Let the 
pedals of P on the sides AB, BC,CA be P\, P2 and P3, respectively. If we build 
regular triangles on the segments of the sides defined by the pedals, then the sum 
of the areas of the triangles erected on the segments AP\,BP2 and CP3 equals 
the sum of the triangles erected 011 the segments P\B, P2C and P3A. Moreover, 
if we consider those vertices of the "left" triangles which are not on the sides of 
ABC and draw parallel lines to the sides of the original triangle through of them, 
then the triangle bounded by these lines is homothetic to ABC and the ratio of 
homothety is 

A = 1 + cote«;. 

Similar homothety holds for the triangle constructed from the "right" builded 
triangles. 



Generalizations of Bot tenia's theorem on pedal points 29 

3. N e w results on polygons 

In this section we generalize Theorem 1 for convex polygons and prove some 
further results about quadrilaterals. 

Theorem 6. Consider the convex polygon A\A2..-An and one of its inner 
points P. Let the pedals of P on the sides A\A2,A2A3,...,A n — 1 An A j be 
Pi, P2,..., Pn-i, Pn, respectively. If we build "left" squares onto the segments 
Ai Pi, (i = 1 , . . . , n) and "right" squares onto the segments /Vt<+ i, (i = 1 , . . . , n — 
1) and PnAi, then the sum of the areas of "left" squares equals the sum of the area 
of "right" squares. 

Proof . Applying the phytagorean theorem for the triangles PAjPi one can write 

AiPi2 = PAi2 - PPi\ i = l , . . . , n . 

PiAi+l
2 = PAi+l

2 - PPi2, i= l , . . . , n - 1 

PnAi2 = PA,2 - PP2. 

n n 

I - I i = l 

n— 1 

= - PP 2) + PAi2 - PPn
2 

i = 1 

n- 1 

= Y,PiAi+l2+PnA1
2, 

i = 1 

which completes the proof. 
The statement remains valid if the builded quadrilaterals are not squares but 

rectangles similar to each other as it was in the triangle case (c.f. the proof of 
Theorem 3). 

The statement of Theorem 6 can be seen for pentagons in Fig. 3. We have to 
remark, that if we consider the pentagons bounded by t he lines containing the sides 
of the squares parallel to the sides of the original pentagon, the two pentagons are 
not homothetic to each other. Generally speaking this property is valid only for 
triangles. For special cases, however, homothety still holds for quadrilaterals, as we 
will see in the next theorems. 

Similarly 

This yields 
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Figure 3. 

Theorem 7. Consider the rectangle ABC D and one of its inner points P. Let the 
pedals of P on the sides AB, BC, CD and DA be Pi, P2-, Ps and P4, respectively. If 
we build similar rectangles on the segments of the sides defined by the pedals in a 
way, that the larger sides of the rectangles are all parallel to the larger side of the 
original one, then the sum of the areas of the rectangles erected on the segments 
A Pi, B P2, CP3 and DP.\ equals the sum of the rectangles erected on the segments 
P\B, P2C, P3D and P4A. Moreover, the rectangle bounded by the lines containing 
the outer sides of the left" rectangles is homothetic to the original one and the 
ratio of homothety is A = 2. Similar statement holds for the rights rectangles. 

Proof . The first part of the statement can be proved analogously to Theorem 3 
and 6. For the ratio of homothety let us denote the ratio of the two sides of the 
rectangle by p = Consider the "left" rectangles. The sides of these rectangles 
parallel to AB are APU pBP2, CPs and pDP4 (c.f. Fig. 4). 

The side A!B' of the large rectangle parallel to AB is the sum of these sides: 

A'B' = APi + pBP2 + CPs + pDP4, 

but APi + CP3 = AB, while pBP2 + pDP4 = pBC = AB, thus A'B' = 2AB. 
Similarly B'C' = 2BC and this was to be proved. 
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Figure 4. 
Finally we remark, that the orientation of the builded rectangles in Theorem 

7 is important only in terms of homothety. If the rectangles are builded in a way 
that always their longer sides coincide to the segments defined by the pedals, then 
the sum of the areas of the "left" rectangles remains equal to the "right" one, but 
the large rectangle is no longer similar to the original one: the ratio of its sides is 

A'B' _ a2 + b2 

B'C ~ 2ab ' 

where a and b are the sides of the original rectangle. 
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E L E M E N T A R Y P R O B L E M S W H I C H A R E E Q U I V A L E N T TO 
THE G O L D B A C H ' S C O N J E C T U R E 

Bui Minh Phong and Li Dongdong (Budapest , Hungary) 

Abstract. W e d e n o t e by {pi—2, P2=3, p3 = 5,..., p*,.--) t h e s e q u e n c e of i n c r e a s i n g p r i m e s , 

a n d for e a c h p o s i t i v e in tege r k>l le t 

S(fc):=:min{2n>j>fc: 2 n - p u 2n-p2,..., 2 n - p k all a r e c o m p o s i t e n u m b e r s } . 

W e p rove t h a t t h e fol lowing c o n j e c t u r e s a r e e q u i v a l e n t t o t h e G o l d b a c h ' s c o n j e c t u r e . 

C o n j e c t u r e B. F o r eve ry pos i t ive i n t e g e r k , we h a v e 

S(/c) > pfe + 1 + 3. 

C o n j e c t u r e C. F o r eve ry pos i t i ve i n t e g e r k, t h e n u m b e r S(k) is t h e s u m of t w o o d d p r i m e s . 

1. Introduction 

Goldbach wrote a letter to Euler in 1742 suggesting that every integer n > 5 is 
the sum of three primes. Euler replied that this is equivalent to the following 
statement: 

Conjecture A. Every even integer 2n > 4 is the sum of two odd primes. 

This is now known as Goldbach's conjecture. A. Schinzel showed that Gold-
bach's conjecture is equivalent to every integer n > 17 is the sum of three distinct 
primes. It has been proven that every even integer is the sum of at most six primes 
[2] (Goldbach suggests two) and in 1966 Chen proved every sufficiently large even 
integers is the sum of a prime plus a number with no more than two prime factors. 
In 1993 Sinisalo [5] verified Goldbach's conjecture for all integers less than 4- 10 J I . 
More recently Jean-Marc Deshouillers, Yannick Saouter and Herman te Riele [1] 
have verified this up to 1014 with the help of a Cray C9Ü and various workstations. 
In July 1998, Joerg Richstein [4] completed a verification to 4 • 1014 and placed a 
üst of champions online. See the monografof P. Ribenboim [3] for more information. 

In the following, we shall denote by V the set of all increasing primes, that is 

V ~ {Pl = 2, p2 = 3, ps = 5 , . . . , pk, . . .}• 
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For each positive integer k > 1, let 

Ak '•= {2n > pk'. 2n — p\, In — p2,..., 2n — pk all are composite numbers}. 

Since pi • • - pk G C N, therefore has a minimum element. Let 

S(k) min Ak-

We shall prove that the following conjectures are equivalent to Conjecture A. 

Conjecture B . For every positive integer k, we have 

S{k) > pk+i 4- 3. 

Conjecture C. For every positive integer k, the number S(k) is the sum of two 
odd primes. 

The purpose of this note is to prove the following 

Theorem. We have 

(a) Every even integer 2 n > 4 is the sum of two odd primes if and only if 

(1) S(k) > Pk+1 + 3. 

holds for every positive integer k. 
(b) Every even integer 2n > 4 is the sum of two odd primes if and only if 

the number S(k) is the sum of two odd primes for all positive integers k. 

In the other words, Conjectures A, B and C are equivalent. 

2. Lemmas 

In the following we denote by G the set of all even positive integers which are 
the sums of two odd primes. Goldbach's conjecture states that G contains all even 
integers 2n > 6. 

Lemma 1. We have 

{ 2n: 6 < 2n <pk + 3 } C G if and only if {2«: 6 < 2 n < S{k)} C G. 

Proof. It follows from the definition of S(k) that S(k) > pk -f 9, consequently 

{2n: 6 < 2n < pk + 3} C G if {2n: 6 < 2n < S{k)} C G. 
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Now assume that {2n: 6 < 2n < pk + 3) C G. Let *2N be an even integer with 
f) < 27V < S(k). If 2A7 < pk + 3, then we have 2TV G G by our assumption. 
Letp fe + 3 < 2N < S(Ar). Hence 

2N-p1 > 2TV-p 2 > ••• > 2 TV — PA: > 3. 

On the other hand, the conditions 2TV < S(k) and S(k) = min Ak yield 

2 N $ A k . 

Since 

,4*. = {2n > pk'. 2n — pi, 2n — />2, . . . , 2n — all are composite numbers}, 

the last relations imply that 

2TV - pi is a prime for some pt £ {pi, p2, P3, • • PA.}-

Consequently, 27V G G, and so Lemma 1 is proved. 

Lemma 2. Let k be a positive integer. Then 

{2n: S(k) < 2n < S(k + 1 ) } C G if and only if S(k) > pk+1 + 3. 

Proof. Assume that 5(A>) ^ 5 ( i t+ 1) and {2n: 5(Ar) < 2n < S(k+ 1)} C G'. Then 
we have S(k) = p + q for for some primes p and q. Since the numbers S(k) — p and 
S(k) — q are primes, we infer from the definition of S(k) tliat. p > pk and q > 
Consequently, S(k) = p + q > 2pk + 4 > p f c + i + 3. 

Now assume that S(k) ^ S(k + 1) and S(k) > pk+1 + 3. Let 2TV be an even 
integer for which S(k) < 27V < S(k + 1) is satisfied. As we have seen in the proof 
of Lemma 1, in this case we also liave 27V ^ Ak+\ and 

27V - pi > 27V — p-2 > . . . > 2TV - pk > 2TV - Pk+l > S{k) - Pk+l > 3. 

Consequently, 

2TV - pi is a prime for some pt G {pi, p2, P3, • • •, Pk, PFC+i}, 

which shows that 2TV G G'. 

Finally, in the case S(Ar) = 5(Ar + 1 ) we also have that S{k) = S{k + 1) > 
pk+i + 9 > pk+i + 1 by the definition of S(k -j- 1). 

The proof of Lemma 2 is finished. 
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3. Proof of the theorem 

Proof of (a). Assume that every even integer In > 4 is the sum of two odd 
primes. In this case we infer from Lemma 2 that S(k) > pk+i +3 . Thus, Conjecture 
A implies Conjecture B. 

Now we assume that Conjecture B is true, that is (1) holds for every positive 
integer k. Hence, Lemma 2 shows that 

(2) {2n: 6 < 2 n < S{k + 1) } C G 

holds for all positive integers k. 

Finally, let 2n > 4 be any even integer. It is clear to see from the definition 
of S{k) that S(k) > pk. Hence 

S(k) —» oo as k —> oo. 

Consequently, S(£) > 2n is true for some positive integer t, and so we get from 
(2) that 2n E G. The proof of the the part (a) of the theorem is completed. 

Proof of (b). It is obvious that Conjecture C is a consequence of Conjecture A. 
Assume now that the conjecture C is true, that is, for each positive integer k, 

we have S(k) = p + q for for some primes p and q. Since the numbers Sk — p and 
S(k) — q are primes, we also have p > Pk and q > p^. Consequently, 

S(k) = p + q > 2pk > pk +1 + 1, 

and so Conjecture B is true. This with (a) completes the proof of (b). The assertion 
(b) is proved. 

The proof of the theorem is finished. 
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G E N E R A L I Z E D F I B O N A C C I - T Y P E N U M B E R S 
AS M A T R I X D E T E R M I N A N T S 

Ferenc Mátyás (Eger, Hungary) 

Abstract. In th i s n o t e we c o n s t r u c t such m a t r i x d e t e r m i n a n t s of c o m p l e x en t r ies w h i c h 

a r e equal t o t h e n u m b e r s def ined by F i b o n a c c i - t y p e l inear r ecurs ions of o r d e r k>2. 

AMS Classification Number: 11B39, 11C20 

1. Introduction 

Let. k > 2 be an integer. The recursive sequence {Gn}^_2-A; o r ( l e r k is 
defined for every n > 2 by the recursion 

( 1) Gn = p i G n - 1 + P'2Gn_2 H f pkGn-k, 

where pt (1 < i < k) and Gj (2 — k < j < 1) are given complex numbers and 
PiPkGi is not equal to zero. For brevity, we will use the formula 

Gn = Gn (p i ,P2 , . . . , pfe, Gz-k, G$-k, • •., G\), 

as well. In the case k = 2 we get the wellknown family of second order linear 
recurrences of complex numbers. The two most important sequences from this 
family are the Fibonacci {Fn} and the Lucas {Ln} sequences, where 

Fn = Gn{ 1,1,0,1) and Ln = Gn( 1, 1,2,1), 

respectively. 

The close connections between the Fibinacci (and Lucas) numbers and suitable 
matrix determinants have been known for ages. For example, it is known that for 
k > 1 Fk is equal to the following tridiagonal matrix determinant of k x k: 

\ 

1 / 

/ 1 

Fk = det 
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Recently, some papers have been pnblicated in this field. (For more information 
about the list of these papers see [1].) One of the latest such papers was written by 
Nathan D. Cahill and Darren A. Narayan [1]. They have constructed such family 
of tridiagonal matrix determinants of k x k which generate any arbitrary linear 
subsequence 

Fak+ß or Lak+ß (k = 1,2,...) 

of the Fibonacci or Lucas numbers. For example, 

/ 1 0 

0 8 
1 

Fik-2 = det, 

1 

7 / 

The aim of this note is to investigate suitable matrix determinants of n x n 
which form the terms Gn of the Fibonacci-type sequences defined by (1). In this 
paper we suppose that in (1) p\ ^ 0, jt>j = 0 (2 < j < Ar — 1 for 3 < k),pk = 
±1, and G\ ^ 0, that is we deal with the family of sequences 

( 2 ) Gn = Gn ( p i , 0 , . . . , 0 , ± 1 , G2-k, Ö 3 - / C , . •., Gl). 

(Naturally, the sign ± in (2) is fixed in a given sequence.) 

For our aim we construct the matrix A n x n — (a t j ) of complex numbers by 
the following forms: ci^i = Gi, = —e J + l Gj-k (2 < j < k), Oj+i,j - —e3 (1 < 
j < n — 1), a,jtk+j-1 = —ek+i (2 < j < n + 1 — k),ajj = pi (2 < j < n) and the 
other entries are equal to 0. Tha t is, 

( 3 ) A J l X n 

I G\ -e3G-2-k -e4G3-k - -ek+1G0 0 0 ... 0 0 \ 
-e 3

 P l 0 - 0 - e k + 1 0 ... 0 0 
0 - e 3 pi - 0 0 - e f c + 1 - 0 0 

V 0 0 0 ... 0 0 0 ... - e 3 P l J 
where e — — \ if p^ = — 1 and e = —i if pk = 1. 
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2. Result 

We shall prove the following theorem. 

Theorem. Let the squence {Gn}^L2-fc be defined by (2), where p\G\ ^ 0, pk = ±1 
and k > 2. Let the matrix Au xn be defined by (•}). I hen for every n 1 

Gn = det(Anxn). 

Remark. In the case k = 2 our matrices Anxn are of tridiagonal ones. 

Proof. First we consider the case 1 < n < k. Then, for n = 1 

d e t ( A l x l ) = 6'i. 

If n = 2 or 3, then 

1 , I Gi —e3G2-k\ r , Q /1 det 3 = Pi GI -e G 2-k V P 1 J 
- Pi GI + PKG2-K = G 2 

and / ^ 4 s Í \ 3-k \ 

= P i G 2 - E4G3-FCF6 — PiG-2 - e2G3-k = P I G 2 + PkG3-k = G 3 . 

Suppose that G n _ j = d e t ( A n _ ; x n _ ; ) ( j = 1,2,3) holds for an integer n, where 
4 < n < A;. Then, developing the determinant 

i Gi - e 3 G 2 _ f e —e4G 
det - e 3 Pi 0 

1 
1 o - e 3 

Pi 

det (A, l X n ) = det 

( Gi 
- e 3  

0 

„•if c CT 2 — A; 
Pi 

- e 3 
0 

Pi 

—enGn-i-k 
0 
0 

-en+1Gn  

0 
0 

\ 0 0 0 - e 3 Pi 

with respect to the last column, we have 

(let (An Xn) — P\Gn- - ( - l ) " + V + 1 G , 
/ Q x n — 1 

i-k(~e3) 

- Pi Gn l ) 2 n + 1 e 4 n ~ 2Gn-k — P l G „ - i + PkGn-k = G r i. 

That is, our theorem holds for every n, if I < » < 
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Now, we shall deal with the case n > k. If n = k + 1 then 

3G- • -<=4 

Pi 
det ( A f c + l x f c + 1 ) = det 

/ G1 -eóG2-k -e4G3-k 
3 o 

Pi 0 

\ 0 

-ek+1G0 0 \ 
0 - c * + 1  

0 0 

—e" Pi 

= PiGk + e 3 det 

/ Gi - e 3 G 2 _ * - e 4 G 3 _ f c 

- e 3 p i 0 
0 - e 3 pi 

\ 0 0 0 

-ekG-1 ü \ 
0 

0 

—e ; 

0 

0 / 

Developing successively the resulting determinants with respect to their last rows, 
we have 

det ( A n x n ) = PiGk + ( e 3 ) " - 1 det ( ^ _ J + 1 ) 

= PiGk - e3k~3ek+lGi = PiGk + pkGx = Gk+1. 

Let us suppose that det ( A n _ j X n _ j ) = Gn-j (1 < j < k) holds for an integer 
n > k + 2. In this case 

det ( A „ x „ ) 

= det 

/ Gi 
- e c  

0 

V 0 

r2 — k 

= p i G n - i + e3 det 

Pi 

(Gi 
—ev  

0 

V o 

•k+lG0 0 0 
0 _ek+1 0 
u 0 _ek+l 

'2-k 
Pi 

—e" 

0 

0 0 

Gq - e * + 1 G n 0 

0 

0 

0 0 \ 
0 0 
0 0 

-e 3 pi J 

0 0 \ 

0 0 

0 0 

0/ 
Now, develop successively the resulting determinants with respect to their last rows. 
Then one can get the following equalities: 

k-1 
det ( A n x „ ) = p i G n _ i + (e3) (~ek+l) Gn-

— piGn-i - e2Gn-k — PiG>j_i + pkGn-k — Gn. 

This completes the proof of the Theorem. 
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ON T R A N S F O R M A T I O N M A T R I C E S C O N N E C T E D 
TO N O R M A L B A S E S IN R I N G S 

J. Kostra (Zilina, Slovakia), M. Vavros (Ostrava, Czech Republ ic) 

Abstract. In t h e p a p e r [6, P r o b l e m 7] the re is p resen ted an open problem to cha rac t e r i ze 

all c i rcu lan t ma t r i ce s which t r a n s f o r m any no rma l bas is of any o rde r of cyclic a lgebra ic n u m b e r 

field K to a n o r m a l basis of its s u b o r d e r in K. A c o n j e c t u r e is t h a t if a c i rculant m a t r i x A = 

circ„(ai ,a2, . . . ,<Jn), ^ a , = ± l , t r a n s f o r m s s o m e n o r m a l bas is of r ing to no rma l basis of i ts s u b r i n g 
1 = 1 

then it. t r a n s f o r m s any n o r m a l basis of r ing t o no rma l basis of its sub r ing . In th is p a p e r it is shown 

t h a t if Y^ then t h e re la ted c o n j e c t u r e is false. 1=1 

AMS Classification Number: 11R16, 11C20 

1. Introduction 

Let K be a tamely ramified cyclic algebraic number field of degree n over the 
rational numbers Q. It seems that A C Q(Cm)> where ( m is a m-th primitive root 
of unity and m is square free. Such a field has a normal basis over the rationals Q, 
i.e. a basis consisting of all conjugations of one element. Transformation matrices 
between two normal bases of A over Q are exactly regular rational circulant 
matrices of degree n. 

In the paper [6, Problem 7] there is presented an open problem to characterize 
all circulant matrices which transform any normal basis of any order of cyclic 
algebraic number field A to a normal basis of its suborder in A. A conjecture is 

n 
that, if a circulant matrix A - circn (01,02, . . . ,o n ) , o, — ±1, transforms some 

j = i 
normal basis of ring to a normal basis of its subring, then if transforms any normal 
basis of ring to a normal basis of its subring. In the paper it, is shown that if 

n 
i2 then the related conjecture is false. 

1 = 1 

In the paper [5], the special class of circulant matrices with integral rational 
elements is characterized by the following proposition. 

T h i s research was s u p p o r t e d by V E G A '2 /4138/24 
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Proposit ion 1. Let K be a cyclic algebraic number fíeld of degree n over rational 
numbers. Let 

A = c i r c n ( a i ,Ű2 , . . . , a n ) 

be a circulant matrix and a i , . . •, an G Z. By Ai, i — 1 , 2 , . . . n we denote the 
algebraic complement of element a; in the matrix A. Let 

ai + ö2 H f a n = ± 1 
and 

a, = a j (mod /1) 

for i, j G {1 ,2 , . . . , n}, where 

d e t A 
gcd(^ i , A2,...,An) ' 

Then the matrix A transforms a normal basis of an order B of the field A to a 
normal basis of an order C of the field K, where C C B. 

In the papers [3, 4] previous matrices are characterized by Theorem 3 [4]. 
Proposi t ion 2. Let G be a multiplicative semigroup of circulant matrices of degree 
n, satisfying the assumptions of Proposition 1. Let U be multiplicative group of 
integral unimodular circulant matrices of degree n. Let II be the semigroup of 
circulant matrices of type circn(a, 6 , . . . , 6), such that 

a + (n — 1)6= ±1. 

Then G — H • U. 

2. Resul t s 

First we recall the definition of order of algebraic number field. 

Definit ion 1. Let K be an algebraic number field and let the degree of the 
extension A'/Q be equal to n. A Z-module B C A is called an order of the field K 
if it satisfies the following conditions: 

1. 1 G B, 
2. B has a basis over 7L consisting of n elements, 
3. B is a ring. 

Remark 1. Matrices from Proposition 1 transform also normal bases rings which 
have a basis over Z consist ing of n elements to normal bases of their subrings. Such 
rings we will call semiorders. 
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Def in i t ion 2. Let K be an algebraic number field and let the degree of the 
extension K/Q be equal to n. A Z-module B C A is called a semiorder of the 
field K if it satisfies the following conditions: 

1. B has a basis over Z consisting of n elements, 

2. B is a ring. 

In the following it will be shown that the condition 

a + {n - 1 ) 6 = ±1. 

from Proposition 1 for matrix circn(«, 6 , . . . , b) is necessary. 

E x a m p l e 1. Let (V be a 7-th primitive root of unity and let (e 1,^2, £3) '>e a 
normal integral basis of the field K = Q+(CT) over Q, where 

it - CR + <7, £2 = Ct + C7. -3 = Cr + Ct-

Let A = circ3(0, 5, 5) and (« i ,a 2 ,0 -3) = (ej,£2,£3) • A, so 

01 = hs2 + 5 f 3 , 

« 2 = 5?i + 5c 3 , 

03 = 5 e i + 5£2 • 

Then 
- 5 5 5 

Ol ' Oi2 - y « i + - « 2 + 7 ^ 3 

and the module Z[ai , 02,03] is not. a ring, so ^[01,02,03] is not a semiorder. 

E x a m p l e 2. Let £"1,^3, £3 and A be the same as in above example. 

Let 

0 1 = 2 t ! , 

«2 = 2^2, 

03 = 2e3 . 

and (ßi,ß2,ß3) = ( « 1 , 0 2 , 0 3 ) • A, so 

ßi - 5O2 + 5 O 3 , 

ß2 — 5a 1 + 5O3 , 

ß3 = 5o 1 + 5a2 . 

Then 

ßl = - 5 0 a 1 - 100a2 - 150a3 , 

ß l = - 1 5 0 o i - 50a2 - 100a3 , 

ßl = - 1 0 0 a ! - 150a2 - 50a 3 . 



48 J . Kostra, M. Vavros 

and 

We have 

- f t = 50a i , 
02 . 0 3 = 50«2 , 
ß3 . ß1 = 50a3 . 

0i = -2001 - 1002 , 

02 = "2002 - 1003 , 

03 — 1001 2003 • 

and 

01 • 02 = - 5 0 1 + 502 4- 503 , 
02 ' 03 — 501 - 502 + 503 , 
03 • 01 = 501 + 502 - 503 . 

And so Z[ai,a-2, ct3] is a semiordcr. 
By the previous examples we have that in the case A = circn(ai , . . . , an)? 

n 
«I 7*- ±1, the conjecture from [6], that if a circulant matrix transforms some 

J = I 

normal basis of a semiorder to normal basis of its subsemiorder then it transforms 
any normal basis of any semiorder to normal basis of its subsemiorder, does not 
hold. 

Theorem 1. Let A' — circn(a, 6 , . . . , 6), a + (n — 1 )6= 1. Let A = circn(0, b — 
a,..., b — a). Let 6 = 1 (mod n — 1), then matrix A • U, where U is a unimodular 
circulant matrix of degree n, transforms any norma1 basis of any semiorder R to a 
normal basis of its subsemiorder S. 

Proof . Let A' = circn(a, 6 , . . . , 6), a - f ( n - 1)6 = 1, A = circn(0, 6 — a , . . . , 6 — a) 
and 6 = 1 (mod n — 1). From 

we obtain 

So 

Then 

A - 1 = circn 

ö + ( n - 1)6 = 1 

6 — a = nb — 1. 

det A = ( - l ) n _ 1 • (n - 1) • (nb - l)n. 

n - 2 1 
(n — 1) • (nb — 1)' (n- 1) • (nb - 1)' * "' (n - I) • (nb - I) 
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Let (a t , Q25 • • •) a n ) be a normal basis of semiorder R. Let 

(ßl,ß2,...,ßn) = (ai,02,.--,Ön) • A 

be a normal basis of submodule S C R- Then 

ßi = (nb - 1 )o2 + (nb - 1 )o3 + • • • + (nb - 1 )a 

ß2 = (nb - l)a 1 + (nb - 1 )a3 + h {nb - I )o 

ßn = (nb - 1)o 1 + (nb - l)a2 + • • • + (nb - l)a„_i. 

From the above it follows that for all i,j 

ßißj = (nb - l)2 • (&!<*! + b2a2 + • • • + bnan), 

where bi E 7L for all i. By the expression of A - 1 we have for any i,j 

ßißj = Clßl + • • • + Cnßn 

( n - 1) 

If b = 1 (mod n — 1), then coefficients Cj £ S, and S is a subsemiorder of the 
semiorder R. Clearly the same holds for A • U, where U is a unirnodular circulant. 
matrix of degree n. 

R e m a r k 2. Matrix A = circ3((), 5, 5) from Examples 1, 2 was obtained from matrix 
A' = c i rc 3 ( -3 ,2 ,2) and 2 ^ 1 (mod 2). 

R e m a r k 3. If in the above Theorem 1 a + (n— 1)6 = — 1, then if b = - 1 (mod n— 1) 
matrix A transforms a normal basis of any semiorder R to a normal basis of 
subsemiorder S C R. 

The previous Theorem 1 gives the way to find a circulant matrix A of arbitrary 
degree for which there exist semiorders R\,R2 such that A transforms a normal 
basis of Ri to a normal basis of submodule Si C Ri and 6'j is a semiorder and S2 

is not a ring and so S2 is not a semiorder. 

E x a m p l e 3. Let £11 be an 11-th primitive root of units and let (^i, s - 2 , £ 3 , 6 4 , £ 5 ) , 

where 

£1 = C11 + Cii\ £2 = Ci 1 + Cid = Ci 1 + C111 £4 = Ci 1 + CID £5 = C11 + Cm 

be a, normal integral basis of the field A = Q+(Ci 1) o v e r Q- The field K — Q(Cii + 

Cii ) is the maximal real subfield of Q(Cn)« 
Let A ' = circ5(a, b, 6, 6, b) = circ5(—7,2, 2,2,2), a + 46 = 1, b £ 1 (mod 4). 

Let 
A = circ5(0, 56 - 1, 5 6 - I, 5 6 - 1, 56 - 1) = circ5(0, 9,9,9,9) , 
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1 
36 

, _ i _ . / 1 1 1 1 
A ~ c i r c 5 { 1 2 ' 3 6 ' 3 6 ' 3 6 ' 

and R2 = (£i, £2, £3, £4, £5), S2 = (<*i, »2, »3,04, <*s), where 

(Í*i, t*2, a 3 , a 4 , a 5 ) = (£1,£2,£3, £4, £5) • A, 

Qi = 9£2 + 9^3 + 9£4 + 9S5 , 

«2 = 9ei + 9e3 + 9e4 + 9e5 . 

Then 

a 1 • a 2 = 8 l £ i — 8 1 £ 4 - 8 U 5 . 

After transformation by matrix A - 1 we have 

45 9 9 81 81 
0 1 - 0 2 = ——01 - 7«2 - -OC3 r « 4 T-Q5-

4 4 4 4 4 

From this it follows that S2 is not a ring. 
And now let Ri = (£1, £2, £3, £4, £5) and Si — (ßi, ß2, /?4, ß5), where 

ßi = 6£i , 

ß'2 - 6£2 , 

/?3 = 6^3 , 

ß4 — 6^4 , 

ß§ = 6e5 . 

<7l,72,73,74,75> = (ßl,/32, #3,/?4, A>) • A 

We have 7i7j = 36 • (&i/3i + 62/̂ 2 + 1- Hßs)- From the expression of A - 1 it 
follows that 7t7j = C171 + C272 H h C575 with integral rational coefficients c*. So 

is a semi order. 

R e f e r e n c e s 

[1] BOKEVICH, Z. I . , SHAFAREVICH, í . R,., Number theory, N a u k a , Moscow, 1985. 

3rd ed. (in Russian). 

[2] DAVIS, P. J., Circulant matrices, A. Wiley-Interscience Publisher, John Wiley 
and Sons, New York-Chichester-Brisbane-Toronto, 1979. 



O n t r a n s f o r m a t i o n matr ices connec ted to no rma l bases in rings 
17 

[3] D i v i s o v Á , Z . , KOSTRA, J . , P O M P , M . , O n t r a n s f o r m a t i o n m a t r i c e s c o n n e c t e d 
to normal bases in cubic fields, Acta Acad. Paed. Agriensis, Sectio Mathema-
ticae 2 9 (2002 ) , 6 1 - 6 6 . 

[4] DIVISOVÁ, Z . , KOSTRA, J . , P O M P , M . , O n t r a n s f o r m a t i o n m a t r i x c o n n e c t e d 
to normal bases in orders, JP Jour. Algebra, Number Theory and Appl. 3 / 1 
(2003 ) , 4 3 - 52. 

[5] KOSTRA, J. , Orders with A normal basis, Czechoslovak Math. Journal 35 
(1985) , 3 9 1 - 4 0 4 . 

[(>] KOSTRA, J. , Open problems on the relation between additive and multiplica-
tive structure, Annales Mathematicae Silesianae 16 (2003), 21-25. 

J. Kostra 
Department of Algebra, Geometry and Didactics 
University of Zilina 
Húrban ova 15 
Zilina, Slovak Republic 
E-mail: juraj.kostra@fpv.utc.sk 

M. Vavros 
Department of Mathematics 
University of Ostrava 
30. dubna 22 
Ostrava, Czech Republic 
E-mail: michal.vavros@osu.cz 





Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae 31 (2004) 53-60 

LINEAR D I O P H A N T I N E E Q U A T I O N W I T H 
T H R E E C O N S E C U T I V E B I N O M I A L C O E F F I C I E N T S 

Florian Luca* ( U N A M , Mexico) 
László Szalay (Sopron, Hungary) 

Abstract. In t h i s no te , we s t u d y t h e d i o p h a n t i n e e q u a t i o n + ; + I)+C(*+2)—0  

posi t ive in tegers (n,fc), where A, B a n d C a re fixed in tegers . 

AMS Classification Number: 11D04, 111)1)9 

1. Introduction 

D. Singmaster (see [3]) found infinitely many positive integer solutions (n,k) 
to the diophantine equation 

All such solutions arise in a natural way from the sequence of Fibonacci 
numbers {Fm)m>0 given by F0 = ü, F\ = I and Fm+2 = Fm+i + Fm for rn > 0. 
Goetgheluck (see [1]) extended the above result and found infinitely many positive 
integer solutions (n,k) for the diophantine equation 

These solutions arise in a natural way from the positive integer solutions of the Pell 
equation x2 — 3y2 — —2. Several other diophantine equations involving binomial 
coefficients have been considered in [2], [4] and [5]. 

In this note, we fix three integers A, B, C, not all zero, and look at the 
positive integer solutions (n,k) of the equation + B(k'^_[) + C(k,?2) = 0. To 
avoid degenerate cases, we shall assume that l<k<.k + 2<n — 1. We shall also 
assume that AC 0. Indeed, say if 4 = (J. then the above equation simplifies to 

* T h i s research was pa r t i a l ly s p o n s o r e d by g r a n t s S E P - C O N A C Y T 37'259-E a n d 37260-E . 



54 F. Luca, L. Szalay 

Obviously, equation (2) has no solution if BC > 0. Suppose that BC < 0 (say, 
up to changing signs, that B < 0 and C > 0) and that g c d { B , C ) = 1. Then 
equation (2) implies B(k + 2) -f- C(n — k — 1) = 0, which can be rewritten as 
n = ((C - B)k + C - 2B)/C = k + 1 - B(k + 2) /C. Thus, n is an integer if and 
only if A: = —2 (mod C). Moreover, the conditions l < A r < A r + 2 < n — 1 are 
always fulfilled if k > 1 and k > —2(1 + C/B), and therefore (2) has infinitely 
many solutions. 

The case when ( 7 = 0 can be reduced to the case when A = 0 by using the 
symmetry of the binomial coefficients and the substitution (A , C, k) i—> (C, n — 
k - 2). 

Acknowledgements . This paper was written during a very enjoyable visit 
by the first author to University of West Hungary in Sopron; he wishes to express 
his thanks to that institution for the hospitality and support. 

2. Main Resul t 

It is clear that we may assume that g c d ( A , B , C ) = 1 and that A > 0. Our 
main result is the following. 

Theorem. Let A, B and C be integers with A > 0, C ^ 0 and gcd(.4, B, C) = 1. 

If the diophantine equation 

<3> ; , )=•• 

admits infinitely many integer solutions l<k<k + 2<n — 1, then one of the 
following holds: 
(i) B = A + C and C < 0, case in which all the solutions (n, k) are on the line 

A(k + 2) + C{n - k) = 0, 

(ii) A = AQ, B = — 2_4QCo, C = C'% hold with some positive coprime integers AQ 
and Co, case in which all solutions (n, k) with l<k<k + 2<n — 1 of (3) are of 
the form 

(4) k + 2 = ; —— and n - k = 
Ao(Ao + Co) Co(Ao + Co) 
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for some positive integer t. 
(Hi) B / A + C, D = B2 - 4AC > 0 is not a perfect square, and 

(5) x2 - m'2 = E 

holds, where X = (B2 - 4/lC)(/?. - A*) - A(B - 2C), F = + 2) + B(n - fc) - A, 
E — 4A2C(A — B + C), case in which all positive integer solutions (n, k) of equation 
(3) can be found by solving the Pell like equation (5). 

Proof. After simplifications, equation (3) becomes 

A(k 4- l)(Jfc 4- 2) 4- B(k + 2)(n - k) + C(n - k)(n - k - 1) = 0. 

Writing k + 2 = x, n — k — y we get 

We shall assume that D B2 — A AC ^ 0, and we shall return to the case 
when D — 0 later. 

With the substitution x = u 4- et, y = v 4- ß, we get that the above relation 
becomes 

We choose a and ß such that the coefficients of the linear terms in u and v in 
equation (7) vanish. These lead to the system of equations 

Ax(x - 1 ) 4 - Bxy 4- Cy(y — 1) = 0, 

or, equivalently, 

(6) Ax2 4- Bxy + Cy2 - Ax - Cy - Ü. 

(7) (Au2 4- Buv 4- Cv2) 4- (2,4a + Bß - A)u + (Bo 4- 2 C ß - C)v 

= -(Aa2 4- Baß 4- Cß2) 4- Aa 4- Cß. 

2 Aa Bß — A 

Ba 4- 2 C ß = C, 

whose rational solution is 

C(B - 2.4) 
B2 - 4AC ' 

ß = 
A(B — 2 C) 
B2 - 4 AC 
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Note that we may divide by D = B2 — 4AC, because D ^ 0. With the above 
formulas for a and ß, we get that 

+ Baß + Cß2) + Aa + Cß= + C ) , 

and so equation (7) becomes 

, 2 0 „ 2 -AC(A -B + C) 
An2 + Buv + C»2 = 

This last equation implies that 

(2 + 

and since 

2Au + Bv = (2Ax + By) - (!2Aa + Bß) 

, 2ACÍB - 2.4) + AB(B - 2 C ) 
= (2Az + By) -i d2

 }Jaac
[ -1 = 2Ax + By - A, 

while 
(B2 - 4AC)y - A(B - 2C) 

v = y - ß = 
B2 - 4AC 

it follows that if we write 

X := {B2 - 4AC)y - A(B - 2C), 

Y := 2Ax + By- A, 

E :=4A2C{A- B + C), 

we get that X, Y 6 X and 

(8) X 2 - DY2 = E. 

We thus see that if £) < 0, then the diophantine equation (3) has at most 
finitely integer solutions 1 < k < A; + 2 < n — 1. We now assume that D > 0. If 
E = 0, then since AC / 0, it follows that B = A + C. In this case, D = B2-4AC = 
(A — C)2, and so pairs of integers A', Y satisfying equation (8) satisfy either 

X = (C - A)Y or X = {A- C)Y. 

In terms of the variables x and y, the above lines become 

x + y = 1 or Ax + Cy — 0. 
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It is clear that the first one admits no integer solutions x = k + 2 and y = n — k 
for 1 <A*<Ar + 2 < n — 1, while the second one admits infinitely many such 
solutions if and only if C < 0 (whereas if C > 0. then the second one does not 
admit any such solutions either). Finally, if E ^ 0, then equation (8) admits only 
finitely many solutions (or none) if D is a perfect square, while if D is not a perfect 
square, the above equation (8) is a Pell like equation, which either has no solutions, 
or it has infinitely many, and in this later case all integer solutions (A', Y) of such 
equation belong to finitely many binary recurrent sequences whose roots are the 
fundamental unit ( of norm 1 in the quadratic order IK = <Q[s/D] a. id its conjugate 
Ci, respectively. 

Finally, we deal with the case I) = 0. In this case, B2 — 4AC, so B - '2B0, and 
Bl - AC. Since gcd(.4, B, C) = 1, and A > 0, it follows that gcd(/l ,C) = 1. and 
then that A = AQ and C = CQ hold with some positive integers Ao and Co- Hence, 
BO = ±AQCQ. When BO — AQCQ, it is clear that the left hand side of equation (3) 
is positive whenever 1 < k < k + 2 < n — 1. Thus, Bo — — -4oC'o, and therefore 
B = —IAqCo- Equation (6) becomes 

A2
0X2 - 'lAoCoxy + Cly2 = A2

0x + C^y, 

which can be rewritten as 

{A0x - C'oy)2 = A2x + Cly = A0(A0x - C0y) + C 0 ( A 0 + C0)y. 

Setting t Aox — Coy, we get that 

Co(Ao + C0)y = t2 - A0t, 

leading to 

= t(t-Ap)  
y Co(Ao + Co)' 

and since Aox = Coy + t, we get that 

t(t + Cp) 
Ao{Ao + Coy 

which lead to formulae (4) via the fact that x = k + 2, and y = n — k. Note that 
since x, t, and y are integers, it follows that t is in certain arithmetical progressions 
modulo AoCo{Ao + Co), and from the fact that x > 3 and y > 3, it follows that 
either t > G\ := Gi(Ao,Co), or t < Gi := GI{AQ, CO), where G\ and G2 are two 
constants which depend on ,4o and Co and which can be easily computed by solving 
the coresponding quadratic inequalities. 

This completes the proof of the Theorem. 
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3. Examples 

Example 1. The equation 

is a particular case of equation (3) for A = 1, B = — 1 and C — —2. Since 
B = A + C, all solutions of equation (9) satisfy 

(Ar + 2) - 2(n - Ar) = 0, 

which is equivalent to 2n — 3A" = 2. The integer solutions of the above equation are 
given by n — 1 + 'it and Ar = 21 with some integer t, and since n and k must be 
positive, we must have t > 1. Conversely, one verifies easily that 

3í + l \ _ / 3 í + l \ _ 9 / 3 í + 1 \ 
21 ) \2t + 1J \21 + 2J 

holds for all positive integers t. 

Example 2. The equation 

has A = C = 1 and B = 2, therefore D — 0. Moreover, To = Co — 1, so all 
solutions (n,k) of the above diophantine equation (10) have 

K + 2 =
t ± ± H AND „_T = ÍÍ^Ü, 

which gives 
t2 + t - 4 , 2 „ A- = and n = t — 2. 

Since n > A* > 0, it follows that either t > 3, or i < —3. Conversely, one may check 
that if t is any integer which is < —3, or > 3, then 

t2 _ 2 \ f t 2 - 2 
( 2 + t —4 J ~ ~ J + ^ t 2 + t I — 
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E x a m p l e 3. The equation 

reduces to equation (3) for . 4 = 1 , B — 1, and C — —1. In this case, I) = 
B2 - 4AC = 5, = 4A2C(A — B + C) = 4, X = (B2 -4AC){n —k) - A(B-2C) = 
5(n - k) - 3, and Y = + 2) + B{n - k) - A = 2(k + 2) + (« - k) - 1. Since 
X2 — 5 Y 2 = 4, it follows tha t A' = Lm and Y = Fm hold with some even positive 
integer m, where (Le)e>o is the Lucas sequence given by LQ = 2, L\ = 1, and 
Li+2 = ^i+i + Li for all t > 0, and (Fc)oo is the Fibonacci sequence. We now get 
that n - k = (X + 3)/5 = (Lm + 3)/5, and that k + 2 = (F - (n - + l ) / 2 = 
(5Fm - Xm + 2 ) / 1 0 . Hence, A; = (5Fm - Lm - 18)/10, and n = ( 5 F m + L m - 12)/10. 
Since Ii and A- are integers, we need that 5 |L m + 3, and that 10|5Fm — Lm + 2. 
Thus, 5 |L m + 3 and 2 |F m -f L m . The second relation is always fulfilled, while the 
first one is fulfilled precisely if m = 0 (mod 4). Thus, n = {bF^ + L\t — 12)/10, and 
k = (5 F 

41 — L4t — 18)/10. Since k > 0, we also need that 5F.if > L + 18, which 
forces t > 2. One can now easily verify that 

5F.,, + / . . „ - 1 2 x / 5 f 4 > + /- •» f — 12 
10 \ / 10 \ , / 10 

- l - u + 2 I I 5 / . \ , , - L 4 , - 8 I ^ I 5 t — L.u— 18 
10 / v 10 / x 10 

holds for all integers t > 2. Note also (hat since 

n \ {n\ (n + 1 

k+ [J \ k j \k+ 1 

it follows that the diophantine equation (11) reduces to the diophantine equation 
(11), which in turn is a consequence of our Theorem. 

Remark. We remark that at instance (iii) of our Theorem, it could be possible 
that the Pell equation (5) has integer solutions (A", F ) , and yet none such that the 
additional congruence X = — A(B — 2 C ) (mod B2 — 4 A C ) (necessary in order for 
n — k to be an integer) is satisfied. 
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S H A P E M O D I F I C A T I O N OF CUBIC 
B - S P L I N E CURVES B Y M E A N S OF K N O T P A I R S 

Róbert Tornai (Debrecen, Hungary) 

Abstract. T h e effect of t h e mod i f i c a t i on of n o t consecu t ive kno t values on t h e s h a p e 

of B-sp l ine curves is e x a m i n e d in t h i s p a p e r . It is known t h a t an enve lope of t h e o n e - p a r a m e t e r 

f ami ly of B-sp l ine cu rves of o rde r k, o b t a i n e d by t h e modi f i ca t ion of a k n o t , is also a B - s p l i n e 

c u r v e of t h e s a m e con t ro l polygon a n d of o rde r k — m, whe re m is t h e mul t ip l ic i ty of the m o d i f i e d 

k n o t . An ex tens ion of s h a p e mod i f i ca t ion m e t h o d s a r e p rov ided for cub ic B- sp l ine curves , t h a t 

util ize t h i s envelope . T h i s p a p e r e x t e n d s t h e possibi l i t ies fo r choosing t h e new pos i t ion of a p o i n t 

of t h e cu rve by a l lowing to m o d i f y k n o t s t h a t a re not consecu t ive . 

A MS Classification Number: 68U05 

1. Introduction 

Computer aided design widely use B-spline curves and their rational gener-
alizations (NURBS curves) that play central role today. Besides, they are used 
in computer graphics and animations. These curves are excellent tools in design 
systems to create new objects, but the modification and shape control of the existing 
objects are also essential. 

The data structure of a B-spline curve of order k is fairly simple. It only 
consists of control points and knot values. Hence shape control met hods can modify 
such curves only by altering these data. One of the most comprehensive books of 
this field is [9] where shape modifications, based on control point repositioning 
are also described. Some publications discuss shape modifications, e.g., [10] which 
present constraint-based curve manipulations of curves of arbitrary degree and basis 
functions. [11] proposes direct modification of free-form curves by displacement 
functions, which method comprises knot refinement and removal, control point 
repositioning and degree elevation. 

Some aspects of knot modification is also been studied, like in [12] where 
the effect of knot variation is examined from numerical point of view. Several 
papers and articles investigate the choice of knot values in curve approximation 
and interpolation, cf. the recently published [13] and the references therein. 

It is an obvious fact, that the modification of the knot vector affects the shape 
of the curve. Some results concerning the geometric aspects of knot modifications 
have already been presented by Juhász and Hoffmann for B-spline curves in [2], 
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[3] and [6], where the main result was the following: the one-parameter family 
of B-spline curves of order k, resulted by the modification of a knot, possesses 
an envelope which is also a B-spline curve of the same control polygon and of 
order k — m, where m is the multiplicity of the modified knot. This envelope 
can be used for geometric constraint-based shape modification of cubic B-spline 
curves. This property forms the basis of constrained modification of the curve 
which first outlined in [1] and discussed in a detailed form in [4] and [7]. Further 
special shape control techniques discussed in [8]. In terms of surfaces t he theoretical 
generalization of these theorems can be found in [5]. 

In this paper I extend the possibilities of a shape control method described in 

[4] and [7] by letting not necessarily neighboring knots to change. 

2. Modify ing a knot 

Definition 1. The curve s (u) defined by 
n 

s (u ) = N[k d / ' " G iUk-h wn+l] 
1=0 

is called B-spline curve of order k (degree k — 1), (1 < A: < n + 1), where (u) is 
the Ith normalized B-spline basis function of order k, for the evaluation of which 
the knots uo, u i , . . . , u n +k are necessary. Points d/ are called control points or de 
Boor points, while the polygon formed by these points is called control polygon. 

The j t h arc of the B-spline curve of Definition 1 is of the form 

j 

*j («) = dlNik (u)' u G ' 0' = * - 1) • • • * n) 
i=j-k+1 

The modification of the knot value u,- alters the shape of the arcs sj (u), j = 
i — k + 1, i — k + 2 , . . . , i + k — 2. The point of such an arc that corresponds to an 
arbitrarily chosen parameter value ü £ describes the curve 

j 
S j ( Ű , U j ) = ( " > U i ) > Ui £ [«*-1) Ui+1] • 

l=j-k +1 

In [2] Juhász and Hoffmann proved the following property. 

Theorem 1. Altering a knot value uG [wi-i, w»+i) of a B-spline curve s(u) of 
order k (k > 2), the one-parameter family of B-spline curves 

n 

s(u,uj) = y^ diNt
h («, Ui) , U e [iifc-l, Mn+l] 

/=0 
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has an envelope which is a B-spline curve of order (k — 1) and can be written in 
the form 

i- 1 
h(v) = Y , diNf'^v), v G [f>i-i,t>i] 

l=i-k +1 

where the knot values 
_ i u j , i f j < i 

:l \ My + i, otherwise Vj 

i.e., from the knot values {itj} we have to leave out the ith one, where the 
multiplicity of Ui is one. Their points of contact are h («,•) = s(//2-, «,•). 

For k = 4 by the modification of the knot value u,+i, we obtain a one-
parameter family of cubic B-spline curves of the form 

n 

s («, uj+l) = diN* (u, Uj+i), u G [u3, u n + i ] , uj+i G [uj, uj+2) 

with knots wo, u\,. . . un+4, and the envelope is the parabolic arc 

j 

1=3-2 

with knots Vj-2 = « j - 2 , ^ - 1 = « j - u V j = Uj,vj+l = uj+2, vj+2 = «j+ 3,Wj+3 = 
"j+4-

3. M o v e a po in t of t h e curve to a specif ied loca t ion 

A generally accepted shape modification method is, when the user picks a point 
of the curve, then species a new location where the picked point has to be moved. 
Furthermore, let's assume that for the parameter of the picked point s(w), ű G 
[«,•,«,•+2) holds. The new location will be denoted by p, and its coordinates in the 
coordinate system {d/_i ; d/_2 — 1; d ; — d ; _ i } by x and y. It is known (c.f. [1], 
[4], [7]) that the s(ü) —> p shape modification can be performed by the alteration 
of three consecutive knots of the curve s(u). 

For the determination of the permissible positions of p the following has to be 
taken into account: in the fíézier representat ion of the envelope the value t which 
corresponds to v — ü varies with the variation of the knots Vj and f j + i, since 
t = (v — Vj)/('Vj + i — Vj). Therefore, the B-spline representation of the envelope can 
be used. 

Utilizing that Nf_2{v) + Nf_i{v) + Nf(v) = l,Vv G [vj,vj+1) Eq. (1) can be 
written in the form 

h » = d j _ 1 + Nj_2(v)(dj-2 - d j_ ! ) + Nj(v)(dj - d ,_ , ) 
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where 

N ? - 2 ( v ) 

N f ( v ) = 

[vj+1 -

(®i+l — ®j-l)(vi+l - VJ 

(v - Vj 

{Vj+2 - Vj){Vj+1 - Vj) 

3.1. Examined areas so far 

In [1], [4] and [7] three pairs of knots are allowed to change. These are (v j - i , Vj), 
(vj,vj+1) and (vj+i, ^j+i)- The corresponding permissible regions of p will be 
denoted by J?i, i?2 and i?3 respectively. (In this case the aim is to minimize the 
number of altering arcs of s(w), so only the change of consecutive knots are allowed.) 
The boundary of sub regions i? 1, and i?3 are formed by paths that belong to 
different extreme positions of the point h( i) . 

i?i is bounded by three paths. The first path is determined by letting 2 = 
Vj-1 and varying Vj; the second by letting vj — Vj and varying and the third 
path is determined by letting t ' j_i = Vj and varying them simultaneously. 

Qi is bounded by four paths. The first path is determined by letting Vj +1 = 
Vj-\-2 and varying Vj; the second by letting Vj+i = Vj and varying Vj the third by 
letting Vj — Vj-1 and varying Vj + 1 and the fourth path is determined by letting 
Vj — Vj and varying Uj+i. 

i?3 is bounded by three paths. The first path is determined by letting Vj+2 = 
Vj+ 3 and varying Vj+1; the second by letting Vj+1 — Vj and varying Vj+2 and the 
third path is determined by letting Vj+1 = Vj+2 and varying them simultaneously. 

These three overlapping regions are shown in Fig. 1. a), d), e). 
Thus, if the point p is in the union of these three regions above, then the 

solution to the shape modification problem s(ii) —> p is guaranteed. In such a case, 
the number of solutions can be 1, 2 or 3 depending on the position of p with respect 
to the regions and i?3. In order to obtain the solutions, we have to solve the 
system of equations 

K + l - Vj-l){Vj + 1 - Vj) ^ 

y = ( f i - P j ) 2 

Oj+2 - Vj)(Vj + l - Vj) 

either for the pair of unknowns ( v j - i , v j ) or for (uj, t>j+i) or for (vj+i, ^+2) ' Only 
those solutions of Eq. (2) provide solutions to the shape modification problem which 
fulfills the monotonicity condition 

v3-1 < v3 < 0 < + 1 < 
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as well. Such a solution always exists, when p is in t lie region that corresponds to 
the pair of unknowns, for which the system is solved. 

3.2. N e w areas, that ex tend the possibilites 

What is more interesting, we can choose not consecutive knots of the curve. 
This way we can reach points of three other regions. In this case three pairs of 
knots are allowed to change also. These are ( t ' j - i , Vj+1), ( f j - i , Vj+2) and (v j , 1^+2)-
The corresponding permissible regions of p will be denoted by Q4, and ŰQ 
respectively. The boundary of sub regions are formed by paths that belong to 
different extreme positions of the point h( f>). These new three regions will overlap 
each other and unfortunately they mean only a little region compared to the union 
of Í2j, j?2 and 1?3. Another disadvantage is that the union of i?|, i?2 and overlaps 
mainly the union of Q4, and QQ. In spite of all of t hese facts, these new solutions 
can be useful. They let greater freedom for the designer to modify the shape of a 
curve. Here we shall discuss these three regions. The detailed discussion of the 
permissible positions of the point, the parameter values and the unknowns can be 
found in [7]. 

3.2.1. i?4i the unknowns are Vj_ 1 and Vj+i 

The boundaries of the permissible positions of the point p in this case are the 
paths connecting the following four extreme positions of a point of the quadratic 
B-spline curve arc b;(1?), ( t ' j - i <E [vj-2,vj] and Vj+\ € [u,Vj+2]): 
(1) Vj-2 = Vj-1 < Vj <U = Vj +1 < Vj + 2 

(2) vj-2 = vj-1 < Vj < u < vj+1 = Vj+2 
(3) Vj-2 < Vj-1 = Vj <U = Vj + i < Vj+2 
(4) Vj — 2 < Vj-! = Vj <U< Vj + I = Vj + 2• 

The paths can be described similarly to the preceding case, but only t hree 
of them are actual boundaries, the other three paths run inside the region. The 
boundaries can be seen in Fig. 1. b). 

3.2.2. : the unknowns are Vj-1 and Vj+2 

The boundaries in this case are straight line segments. The paths connect the 
following extreme positions: 
(1) Vj — 2 = Vj-1 < Vj < U < VJ+{ = Vj + 2 < Vj+3 
(2) Vj-2 = Vj-1 < Vj <U< Vj + i < Vj+2 = Vj+3 
(3) Vj-2 < Uj-1 = Vj <U< Vj +1 - Vj + 2 < Vj+3 
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( 4 ) Vj-2 < Vj-l = Vj < U < VJ + 1 < VJ+2 = Vj+3 

In this case only four of the six paths form the boundary of the area that can 
be seen in Fig. 1. c). 

Figure 1. 

3.2.3. Qq: the unknowns are vj and Vj+2 

Due to the symmetry this final case is similar to the one with the unknowns 
vj-1, Vj+1. The four extreme cases can be described as follows (vj £ [ f j - i , m], 2 £ 
[vj+1,vJ+3] ): 
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(1) Vj — l = VJ <U< Vj + I = Vj+2 < Vj+3 

(2 ) Vj. 1 < Vj = U < Vj +1 = f j + 2 < t ' i+3 

(3) T'J-1 = Vj <U< Uj + 1 < Vj + 2 = Vj+3 

( 4 ) Vj- 1 < Vj = Ü < Vj +1 < vj+2 - C J + 3 

The resulted region can be seen in Fig. 1. f). 

4. R e s u l t s 

By fixing one parameter and choosing two parameters for unknown, we got a 
system of two equations having two unknown parameters. (So it has a solution.) 
These three parameters shall not be necessarily neighbours. The resulted new areas 
will overlap partly. However points can be chosen from these areas, where from up 
to now coidd not. 
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E X A M I N A T I O N OF T H E MSSQL SERVER FROM 
T H E USER'S P O I N T OF V I E W C O N S I D E R I N G DATA I N S E R T I O N 

Tibor Radványi (Eger, Hungary) 

Abstract. In th i s p a p e r we s u m m a r i z e t h e exper iences of t h e p a r t i a l e f fec t iveness 

e x a m i n a t i o n m a d e on t h e M S S Q L server . We e x a m i n e d t h e effect iveness of t h e inser t s a m p l e 

d a t a b a s e s on t h e server . T h e cl ient p r o g r a m was w r i t t e n in C + + l anguage , in t h e V i s u a l . N E T 

s y s t e m . We have d o n e t h e e x a m i n a t i o n of t h e d a t a inser t b o t h f r o m single—and mul t i c l i en t 

e n v i r o n m e n t . T h e e x a m i n a t i o n c o n t a i n s inser t o p t i o n s of t h e A D O . N E T s u b s y s t e m given by t h e 

. N E T s y s t e m - a n d inse r t o p t i o n s of s t o r e d p r o c e d u r e s t h a t were s t o r e d on t h e M S S Q L server . 

These c o m p a r i s o n s were e x t e n d e d wi th t h e ana lys is of t h e different n e t w o r k speed e n v i r o n m e n t s . 

Tes t s were m a d e on high speed i n t r a n e t a n d on I n t e r n e t , A D S L (512 kbs ) , connec t ion . We t h i n k 

t h a t t h e p r o f o u n d a n d var ious e x a m i n a t i o n of t h e d a t a b a s e servers is very i m p o r t a n t . H e r e we 

re l a t e test resu l t s t h a t can be usab le e i t h e r in resea rch in connec t ion wi th d a t a b a s e se rve r s o r in 

p rac t i ca l usage of t h e s a m e s y s t e m s . 

AMS Classification Number: 68P30, 68P10 

I. Introduction 

The testing of the database systems and the measuring of their effectiveness lias 
an important part in todays research fields [1]. When talking about systems with 
great data traffic, the insert of data is an especially resource-required operation. 
In the case of the benchmark test both the servers and the clients software options 
must be kept in view [2], [3]. Our test expressly closes and examines the functioning 
of the database from the clients side. Comparison means the collation of the 
different opportunities given by the programming environment during the creation 
of the client software. The first task is the recording of environment that influences 
the test results such as the size of the DataSet, the complexity of the SQL 
commands, hardware/software environment, the expandantion and capability of 
the network [1]. The goal of our test is to compare two data uploading methods 
given by the new .NET technology. We can only do this with an appropriately built 
program on the clients side and with the measuring of the results 011 the clients 
side. The client program was made in the Visual.NET system, in C + + language. To 
reach the database, the ADO.NET technology is a new and effective tool. In order 
to get best performance we used the Microsofts recommendations and research 
results [2], [5], 
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2. Hardware and software sy s t ems that were used during the test 

A server computer that was indispensable for the test was installed 011 the 
Computing Department of the Károly Eszterházy College. This machine gave us 
the opportunity that show acceptable performance on the servers side and dont 
go off from the opportunities given by ensured by real user environments. As the 
formation of the current environment greatly influences the test results, the most 
important information for us are not the exact time information, but the differences 
shown between usage of the different programming tools, so we have to examine 
the proportion of the measured time values. The parameters of the server and the 
client machines can be found in the appendix. The program development was done 
on the C + + language that is part of the Microsoft Visual Studio .NET 2003. The 
database can be found on the Microsoft SQL Server 2000 Enterprise Edition. 

3. The database 

During the test the following database has beert used: 
Subtables: these simple tables contain basic data that are used for the random 

filling of the table with the subscriptors data: (sHelysegnev, sVezeteknev, sKereszt-
nev, sUtcanev). These have no role in the test, they help to create the appropriate 
environment. As this system is a simplified model of a real system, the starting 
data information about the subscriptors are generated by a procedure that uses 
the subtables as a help. These subtables do not contribute to the database 011 the 
classical way, they do not take part in the test, they have no influence on its results 
so their connection to the database through keys and references is superfluous and 
harmful. What still indicates their usage is the nearly 10 million generated record, 
that can be used later to test requests and to get readable results and lists that are 
true to life. The test is influenced by the data of the following tables, these are the 
ones that give results. 

Elofiz: stores the data of the telephon Companys subscriptors. These data will 
be generated by the help of the subtables. 
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Fields: 

ID Int (Identity) The subscriptors unique identifier. 
A serial number given by the system. 

Vnev Varchar(25) The subscribers family name 
(from the SVezeteknev table) 

Knev Var char (20) The subscribers christian name 
(from the Skeresztnev table) 

Lakhely Varchar(25) The city where he lives 
(from the SHelysegnev table) 

Utca Varchar(25) Street (from the SUtcanev table) 

SzulDatum Datetime Date of birth 

Szemig Char (8) ID Cards number (a randonly created 
series of characters) 

Telszam: phone numbers that belong to t lie costumers 
Fields: 

Tszam Char (12) Unique phone number 

IDElofiz Int, The ID of the subscriber, foreign key, have 
cpnnection with the Elofiz table. The connec-
tion between the two tables is one-more, as one 
subscriber may have more phone numbers, but 
one number can only belong to 1 subscriber. 

Hmod: Type of call (line, cell, inland) 
Fields: 

ID Int (Identity) Unique identifier, primary key, a serial number 
given by the system. 

Típus Varchar(20) To differentiate the many district numbers in 
the case of cell phones and to differentiate the 
line phone. Hungarian specific. 

Cel Varchar(l) The destination of the inland or foreign call. 

Forg: The t raffic table that serves as the base of test, storing information about 
the calls. Approximately 10 million items were inserted into this table during the 
test. It 11 will have a basic role during the experimentation of the requests. 



72 T. Radványi 

Fields: 

ID Bigint (Identity) 
Primary key, a serial number given by 
the system. 

IDTszam Char(12) The costumers phone number. 

IDHMod Int 

The type of the call, foreign key to 
the HMod table, holds the connection 
between the tables. 

Hszam Char(12) The called phone number 

Hkezd Datetime The time of the calls begining 

Hbef Datetime The time of the calls end 

Hido lnt 
The time period of the call, its value is 
counted by a trigger. 

LogTab: We store the results of the tests in this table. The system automa-
tically generates a record for every test in this table. 

Fields: 

ID int (Identity) 
Primary key, a serial number given by 
the system. 

Midopont Datetime The costumers phone number. 

Mkezd Datetime The tests beginning date and time 

Mbef Datetime End of test 

Mido Float Time period of the test 

MtipSQL Char (10) 
The type of SQL command that we test. 
In our case, the type is INSERT 

Rekordszám Bigint 
The number of inserted records during 
the test. 

TriggerAll Bit 

Counter to show that if every trigger 
was active or not. It is a factor in tlie 
systems load 

Mtip Char (10) Type of test 

Gepszam Smallint Number of machines in the test 

Cel Char(10) Destination datatable, Forg in our case 

Módszer Char(10) StoredProc/ADO comparison 

Triggers: two triggers belong to the forgalom table: 
forgJimod: Sets the time and type of the call after the record was inserted. It 

worth using the automatic data-definition as it can reduce the networks data-traffic. 
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forg_hbef : Counts the calls the time period after the Hívás befejezése field 
was filled, than it puts it to the records appropriate column. 

4. The program 

The client programs technology uses the latest Microsoft development, the 
Visual.Net system. The software was written 011 C + + language, that gives a flexible 
tool to do the appropriate tests. 

As our test included the Microsoft MSSQL servers data-insert partition, we 
chose the DataSet solution from the options of the DataReader on-line read-only 
connection and the DataSet off-line solution. The DataSet class communication 
with the SQL server is well represented by the picture below. The program in its 
current state from the tests view point uses two different datahandling method. 
One amplifies the Rows Collection of the SqlDataSets DataTable class given by the 
ADO.NET frame with new records and at the end of the amplification, it uses the 
SqlDat.aAdapter class Update method to actualise the content of the database. The 
other does the same by using stored procedures. Practically, holding the connection 
with the database lays on ADO.NET bases in both cases, but in the last case the 
procedures stored on the server are responsible for the uploading that we call 
with parameters by the SqlCommad class help. When using a stored procedure 
for uploading we only need the SQLCornmand class with right parameters and 
the running of the command. So the goal of the test is to compare the two data 
uploading methods given by the new .NET technology. We can only do this with an 
appropriately built program on the clients side and with the measuring of the results 
on the clients side. The test includes the examination of the whole system, as it.ll 
seem from the results shown later, the results are unambiguously and consistently 
influenced by the speed of the network and the servers software and hardware 
preparation. As our goal is the test on the clients side, the results are valid to this 
given system. Inasmuch as we would only test the performance of the SQL server, 
we could only make test with programs run 011 the server to exclude the clients 
and the network. This is possible, but the goal of the article is not that. The test 
of the two methods was our goal, and well show the results of these now. 

5. Tests and results 

With the tests, we kept in view that many factors may influence the results 
due to the complexity of the system. A test result row starts with the selection of 
given method (Stored Procedures (SP) or DataSet (ADO)) and with the definition 
records number that will inserted. We repeat such a test for fifty times to exclude 
errors. We did approximately 800 tests with t he different record numbers. The test 
results went through an examination before they were averaged and the once or 
twice occurred extreme results didnt get in to the average. These deviations always 
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had cause that, was independent from the test (hardware error, non-planned load 
011 the server). We stopped all other resource requiring processes on the server for 
the tests duration. No other SQL servers (Oracle, MySQL) were running. This was 
the way we tried to ensure the most undisturbed conditions. 

Signs, abbreviations: 
Rcount: number of inserted records; 
SP: usage of Stored Procedures; 
ADO: usage of DataNet. 

(a) Local Area Network, one client machine (results in seconds) 

Rcount SP ADO 

10000 14.26565 24.2969 

20000 30.9583 52.224 

30000 44.401 113.5 

40000 59.4896 174.3 

50000 71.32825 216.016 

60000 89.25 289.2373 

70000 106.37 330.556914 

80000 121.474 371.876529 

90000 129.271 406.723 

100000 159.161 289.2373 

The curve that took shape can be approximated by a linear equation, where, 
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from the 
y — mx - } - b 

equation, we examine the value of the m parameter compared to each other. We 
did the definition of the equation with the method of the smallest squares, thats 
how we fit the line on the measured value pairs. The results from this count: 

mSP = 0.00150933 mADO = 0.00411515 

As the graph shows the usage of the stored procedure is more even amd have a 
better rate of effectiveness: 

M = mADO/mSP = 2.7265 

This shows that the usage of the stored procedure, in this case, gives a three 
times faster speed than the DataSet class ensured by the ADO.NET as a tool. 
An important note: If we would use the Update method not after the creation of 
the full record group in the memory, but after each and every record, this number 
could grow to a 10U times bigger. So if we are inserting thousands of records and 
the momenta! actualisation is not a must, than we should do it after the inserting 
of the records, but at least after greater groups. 

(b) WAN network, through ADSL connection 

Rcount ADO SP 

1000 82.8625 39.9775 

3000 248.073 120.266 

5000 415.618 200.004 

7000 583.255 286.318 

10000 847.462 407.74 

WAN, ADSL 512/128 



76 T. Radványi 

The curve that took shape can again be described with a linear equation. After 
the counting, the following factors remain: 

inSP = 0.040665 mADO = 0.084036 

As the graph shows, the usage of the stored procedure is more even and have a 
better rate of effectiveness: 

M = mADO/mSP = 2.06652 

The redundancy of the rate of effectiveness can be influenced by the different speed 
of the network and by its stability. 

6. Conclusions, further directions 

The programming of databases, its access from application sofwares is a wide 
spread and major problem in many places that occurs in many fields of live. The 
first step of handling da ta their storage a method that occurs in every system, 
uses great resources from the given frame at some places. Our goal with this test 
was to examine the reducing possibilities in the case of a wide spread system. 
The test results unambiguously supports that the systems inserting effectiveness 
can be greatly improved if we use the options given by the SQL servers, the use 
of the stored procedures, even in the case of such tasks that seem to be easily 
solved by other methods. We will expand the examination of the insert method to 
the Oracle, the IBM DB2 and to the lnterbase SQL servers. We will not only do 
this by comparing the different methods, but will also compare the test results to 
find the most effective da ta insert method on the above mentioned servers. For 
a more flexible and easier handling, we also need to upgrade the client program 
written in C + + language. It 11 be a task to create different classes for the different 
database-handling devices, for the different methods. All classes must have the 
same procedures for in the main program, we only need to use an object of 
the appropriate class instead of the conditional, that are getting more and more 
complex. The timing system should be altered to a form, where the timing should 
not be set again and again on each and every machine, be we only need to put them 
into timing mode. The actual timings would appear centrally in the database, and 
the timed programs would continuously check if there is a task for them. This would 
greatly improve and mke the testing easier, even in the case of a small number of 
computers, and it is obligatory for a large number of clients. 
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A p p e n d i x 

Server (dragon.ektf.hu) 
Processor type: 2 db Intel Pentium 111 Xeon 
Memory: 1024 MB 
HDD: 2 db SCSI controlled, 30 Gb size, no Raidbe 
Operai ing system: Microsoft Windows 2003 server 
Database server: Microsoft SQL Server Enterprise Edition 
Version Number: 8.00.760 (SP3) 

Workstat ion 
Processor: Intel Pentium 4 (1600 MHz) 
Memory: 256 MB 
HDD: 1 db 40 Gb size, IDE controlled 7200 turn/min 
Operating system: Microsoft Windows XP professional SP1 

Network 
Internal network: 100 Mbps, DHCP, DNS options 
External network: 512 Kbps ADSL, DHCP and DNS options 
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1. I n t r o d u c t i o n 

hi this article we describe the computer approach to the analytic geometry 
of the plane. In order to do this we shall use the symbolic computation program 
M a t h e m a t i c a . Of course, the same could be done in the rival program M a p l e V. 
These are the most widely known and the most popular extensive systems or CAS 
that "know mathematics". Each of them has its own programming language. Our 
task is reduced to describing basic functions that are needed for solving geometry 
problems with the analytic method. 

This is the translation to English of the article [2] that is in Croatian. In the 
references [1], [3] and [4] that are also in Croatian the same task was done in the 
program Maple V. The whole project is the result of the second author's course 
"Geometry and computers" at t he Mathematics Department of the University of 
Zagreb (in Croatia) in which the first and the third authors (the undergraduate 
mathematics teachers students) have been enrolled in the academic year 2002/2003. 

This elective course is offered to all fourth year mathematics major students. 
The number of students is growing so that for the academic year 2004/2005 there 
will be ten participants. The aim of the course is to teach how to use computers 
in mathematics working on projects under the guidance of the professor. We meet 
four hours each week in the computer laboratory. The first few weeks the professor 
is presenting the basics of text processing (LaTeX) in the program WinEdt and 
the commands in Mathematica and Maple. For figures in geometry we use the 
Geometer's Sketchpad. None of these programs is really explained in all details 
because we believe that they could be helpful even if we have rather limited 
knowledge of them just as we drive cars without being mechanics. The students 
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pick up on their own more advanced features of these programs later on while 
working on the project. 

What the project can be will become clear in the rest of this article because 
this is an example of the final outcome. In short, here the project was to program 
functions in Mathematica which cover analytic geometry in the plane and use 
them to solve with computers several problems from the secondary school level as 
we wanted to publish this in the Croatian mathematics and physics journal for high 
schools "Matematicko-fizicki list". Some other projects were geometric inequalities, 
properties of regular polygons, and identities for Fibonacci and Lucas numbers. 

All this effort is in the direction to help teachers in Croatia to accept computers 
as an important tool in teaching mathematics. The Croatian Mathematical Society 
has started an experimental program for two groups of the first and the third 
year pupils of gymnasiums in Zagreb that could be described as mathematics with 
computers. Both high school and university professors are involved in this effort 
but a lot of work still remains to effectively introduce computers into all levels of 
schools. Ours is only a small contribution on this way. 

2. Basic function of analytic geometry 

The key idea of the analytic geometry is to associate algebraic entities with 
geometric objects and then investigate them using algebraic methods. 

The input of points on the plane in Maple V is quite simple because they are 
just ordered pairs of real numbers (their rectangular coordinates). For example, 
the input 
tA:={2, 3}; tB:={5, 7}; tC :={ -2 , 0}; tT :={x , y}; 
defines four points on the plane /1(2,3), B(5,7), C(—2,0), T(x,y). 

The function FS is a shortcut for the simultaneous use of commands Fac tor 
and F u l l S i m p l i f y while d i s t a n c e measures the distance. 

FS[m_] :=Fac tor [Ful lS impl i fyCm]] 
d i s t a n c e [{a_,u_} , {b_,v_}] :=Sqrt [FS [ (b -a ) ~2+(v-u) ~2] ] 

The name of this function is distance. It asks for two ordered pairs of real 
numbers. The first pair has the components a and u while the components of the 
second pair are b and v. The machine first computes (b — a)2 + (v — u)2 and then 
tries as much as possible to simplify and factor this sum of squares (the command 
FS). In the end it finds the square root of every thing (the command Sqrt) . 

Many times it is important to determine the midpoint of the segment whose 
endpoints are given or the point which divides this segment either in ratio k (real 
number different from —1) or in the ratio ^ (of real numbers whose sum is not 
zero). 
midpoint [{a_,u_}, {b_,v_}] : = FS [{ (a+b) /2 , (u+v)/2}] 
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ratio [{a_,u_}, {b_, v_} ,k J := FS [{ (a+k*b)/( 1+k) , (u+k*v)/( 1+k) }] 
ratiomn [{a_,u_} , {b_, v_} ,m_,n J :=FS[{ (a*ri+b*m)/(m+n) , (u*n+v*m)/(m+n)}] 

The lines in the program Mathematica are represented as ordered triples 
[«, b, c] of coefficients of their linear equations. For example, the input 
pX:={l,0,0}; pY:={0, 1,0}; pD:={l,-1, 0}; PG:={-1,2,2} 
defines four lines in the plane. They are the y-axis, the x-axis, the bisector of the 
first and the third quadrant and the line — x + 2 y 2 = 0. 

The line is given either by one of its points and the tangent k of the angle 
which it. makes with the positive direction of the x-axis (better known as its slope) 
or by two different points, 
linel [k_, {bl_,b2_}] : = FS[{k,-l ,b2-bl*k}] 
line2[{xl_,yl_} ,{x2_,y2_}] : = FS [{y2-yl, xl-x2 , xl*y2-x2*yl}] 

Sometimes it is useful to have the following functions which test if a point, lies 
on a line and if three points are collinear. The letter Q in their names suggests 
the word "question"". A point is on a line or points are collinear if and only if the 
function evaluates to zero. 
onlineQ [{a_,b_} , {x_, y_,z_}] : = FS [a*x+y*b+z] 
collinearQ [{xl_, y 1_} , {x2_, y2_) , {x3_,y3_}] : = 

FS [y2*x3-yl*x3+xl*y3-x2*y3+xl*y2-x2*yl] 
The intersection of lines or the information that they are parallel (when we 

get the error message of division with zero) gives our next function, 
inter [{a_,b_, c_} , {i_, j_,k_}] : = 

FS[(-j*c+k*b)/(-i*b+a*j), (i*c-a*k)/(-i*b+a*j)] 
Functions for t he parallel and t he perpendicular through a point to a line and 

tests if lines are parallel or perpendicular are next, 
parallel[{a_,b_}, {x_,y_,z_}] : = FS [{x,y,-x*a-b*y}] 
perpen[{a_,b_} ,{x_,y_,z_}] : = FS[{y,-x,x*b-y*a}] 
parallelQ [{a_,b_, c_} , {x_,y_,z_}] : = FS [a*y-x*b] 
perpenQ [{a_,b_, c_} , {x_, y_, z_}] : = FS [a*x+y*b] 

When the functions parallelQ or perpenQ, for a. given pair of lines, return 
the value zero, then these two lines are parallel or perpendicular, respectively. 

In Mathematica the test for concurrency of three lines (i.e., whether they are 
parallel or intersect in a point) is the following. 
concurQ [{a_,b_, c_} , {i_, j_,k_} , {p_,q_,r_}] : = 

FS[a*j*r-a*k*q-i*b*r+i*c*q+p*b*k-p*c*j] 
Hence, three lines either intersect in a point or are parallel provided the value 

of the function concurQ in them is zero. 
In solving problems using the analytic geometry it. is often necessary to deter-

mine the projection of a point, onto a line. Since the projection is t he intersection 
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of the line and the perpendicular to the line through the point, if we input into 
Mathematica 
P :={p ,q} ; m : = { a , b , c } ; Q:=in ter [m, perpen[P, m]] ; 
the output will be the coordinates of the projection Q of the point P onto the line 
m. Hence, the corresponding function looks as follows: 
p r o j e c t [{p_, q_},{a_, b_, c_}] : = 

FS[{-(c*a+b*q*a-p*b~2)/(b~2+a~2),(-b*c+q*a~2-a*p*b)/(b~2+a~2)}] 
This concludes the listing of the most basic functions for the analytic geometry 

of the plane. In the rest of this paper we shall present fifteen geometry problems 
from the problem collection [6] and give detailed solutions of them in Mathematica. 
The collection is for the first year high school level (age 15-16) but some solutions 
require knowledge from the second and the third year. 

3. F i f t e e n p rob l ems 

Our first example is the problem 395 from the book [6] that reads as follows: 

P r o b l e m 1. Prove that the area P of a triangle ABC with vertices in the points 
A(a?i, yi), B(x2, y2) an<J C(x3, y3) is given by the formula: 

p _ 1*1(2/2 - y3) + x2(y3 - y\) + j 3 (y i - 3 /2) | 

or 
p _ |y i (a- '2 - x3) + y2(x3 ~ s i ) + 3/3(a?i ~ ^ 2 ) !  

~ 2 

Solu t ion . Recall that the area of a triangle is a half of the product of lengths of any 
of its sides with the corresponding altitude. Hence, with the help of Mathematica 
functions introduced earlier, the area is easily computed as follows: 
tA :={Subsc r ip t [x ,1 ] , S u b s c r i p t [ y , 1 ] } ; 
tB :={Subsc r ip t [x ,2 ] . S u b s c r i p t [ y , 2 ] } ; 
tC :={Subsc r ip t [x ,3 ] , S u b s c r i p t [ y , 3 ] } ; 
t D : = p r o j e c t [ t C , l i n e 2 [ t A , t B ] ] ; 
vP : =FS [ d i s t a n c e [tA, tB] *d i s t ance [ tC, tD] /2 ] ; 

The output in Mathematica will be a rather complicated expression 

í - 2 « . * . + *1 2 + y i 2 - + »>>• 
As the computer is just a machine and we have not explained the nature of 

symbols representing the coordinates of the vertices, it will not cancel out the 
denominator in the first square root with the second square root even though they 
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are clearly identical. It also does not notice that the square root of the square in 
the numerator of the first square root is equal to the absolute value 

1-2/3*1 + X3Vl + 2/3*2 - *2i/l - X3V2 + Xiy2\. 

When we make these simplifications we shall obviously get the required formula. 
It is interesting to note that without the absolute value the above formula 

computes the oriented area of the triangle ABC. If this triangle is positively 
oriented, i.e., if the movement ABC A is in the counterclockwise direction, then 
this real number will be positive and otherwise is negative. It will be zero if and 
only if the points .4, B and C are collinear. 

The function that gives this oriented area in Mathematica is realized in the 
following input: 

area[{a_, x_} , {b_, y_}, {c_, z_}] :=FS[(x*c-b*x-a*z+a*y+b*z-c*y)/2] 
The second example is the problem 425 from the same book [6]. 

P r o b l e m 2. Let ABC be a triangle and let U, V, W be midpoints of sides BC, CA 
and AB. The segments AU, BV and CW are called the m e d i a n s of the triangle 
ABC. Prove analytically that the three medians intersect in a point that we call 
the cen t ro id of the triangle and that the centroid divides each median in the ratio 
2 : 1 counting from the vertex. 

Solu t ion . The proof on the computer, in Mathematica, begins by typing the 
following input: 
tA : = {Subscript[x,1].Subscript [y, 1]}; 
tB :={Subscript[x,2] ,Subscript[y,2] } ; 
tC : = {Subscript[x,3].Subscript[y,3]}; 
tU:^midpoint [tB,tC]; tV:=midpoint [tC,tA];tW:^midpoint [tA,tB]; 
concurQ[line2[tA, tU] ,line2[tB,tV] ,line2[tC,tW]] ; 

In amazingly short, time the computer will output the value zero which proves 
that the medians intersect in a point. The coordinates of this point are revealed 
with the commands: 
tG := inter[line2[tA,tU] , Hne2[tB,tV]] ; 

The point G has the coordinates ( - ' + • ' ' a ; m+M+Ms.) s o t,liat we can imme-
diately write clown the Mathematica function which associates the centroid to a 
triangle: 
centroid[{a_,x_} , {b_,y_} , {c_,z_}] : =FS [(a+b+c)/3, (x+y+z)/3] 

In order to prove the second claim of the problem we shall find the point that 
divides the median of the vertex A (i.e., the segment AU) in the ratio 2 : 1 counting 
from the vertex A and show that it. coincides with the point G (the centroid of 
the triangle ABC). The same argument could be repeated for the medians of the 
vertices B and C. 
tT:=ratiomn[tA,tU, 2, 1]; distance[tG, tT] 
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Since the returned value is zero, the points G and T coincide so that the proof 
of the problem is completed successfully. 

The third example is the problem 989 also from the collection [6]. 

P r o b l e m 3. Prove that the midpoints of sides and the feet of the altitudes of a 
triangle lie on the same circle. 

So lu t ion . Without loss of generality we can assume that the points A, B and 
C are selected in the plane so that their coordinates are (0, 0), (c, 0) and (u, v), 
where c, u and v are real numbers with c and v different from zero. 
eA:={0, 0}; eB:={c, 0}; eC:={u, v}; 

Then we get the midpoints of the sides applying the function midpoint: 
eAp:=midpoint[eB,eC]; eBp:=midpoint[eC,eA]; eCp:=midpoint[eA,eB]; 

The feet of the altitudes are the projections of the vertices onto the opposite 
sidelines: 
eApp:=project[eA,line2[eB,eC]]; eBpp:=project [eB,line2[eC,eA]]; 
eCpp:=project[eC,line2[eA,eB]]; 

The center of the circle circumscribed to a triangle is the intersection of 
perpendicular bisectors of its sides. Hence, in our situation, the center S of the 
circle circumscribed to the triangle A'B'C with vertices in the midpoints of sides 
is defined as follows: 
eS:=inter[perpen[midpoint[eBp,eCp],line2[eBp,eCp] ], 

perpen[midpoint[eCp,eAp],line2[eCp,eAp]] ] 
Applying the same method to the triangle A" B"C" with vertices at the feet 

of the altitudes we can find the center T of its circumscribed circle. 
eT:=inter[perpen[midpoint[eBpp,eCpp],line2[eBpp,eCpp]], 

perpen[midpoint[eCpp,eApp],line2 [eCpp,eApp]]] 
After we type in the above commands the computer will output the coordinates 

of the points S and T. We see that they are equal, so that the points S and T 
coincide. 

In order to complete the proof it remains still to prove that the radii of the 
circumcircles of the triangles A'B'C' and A"B"C" are equal. This is checked in 
Mathematica with the following input: 
FS [distance[eS,eCp]-distance[eT,eCpp]] 
Since the returned value is zero the proof is successfully accomplished. 

With almost no effort we can now prove that the radius of the above circle 
(also known as the nine-point circle because it also goes through the midpoints 
of the segments joining vertices with the orthocenter) is equal to the half of the 
radius of the circle circumscribed to the triangle ABC. In order to check this using 
the same method as above we first find the coordinates of the center O of the 
circumcircle of ABC 
eO:=inter[perpen[midpoint[eB.eC],line2[eB,eC]], 
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perpen[midpoint[eC,eA],line2 [eC,eA]]] 
and request from Mathematica to compute the following: 
FS [distance [eO, eC] /distance [eS ,eCp] ] 
Of course, the result is the number two. 

The fourth example are the problems 719 and 720 from the book [6]. 

P r o b l e m 4. Prove that if a triangle has two equal altitudes or two equal medians, 
then it is isosceles. 

So lu t ion . With the assumptions and the notation from the proof of the Problem 
3, typing in 
FS[distance[eA,eApp]"2-distance[eB,eBpp]"2] 
we obtain —TT—c l' ——. Hence, if the altitudes A A" and BB" have the 
same lengths then u = | so that ABC is an isosceles triangle because the vertex 
C lies on the perpendicular bisector of the side AB. 

Similarly we see that after typing into the program Mathematica 
FS[distance [eA,eAp]"2-distance[eB,eBp] "2] 
the output is ,}t<,2 t t - t ) that leads to the same conclusion for medians. 

More complicated to prove is the Problem 721 from [6]. Our method of its proof 
assumes the knowledge of the trigonometric functions (the cotangent in particular). 

P r o b l e m 5. Prove that a triangle is isosceles if and only i f i t has two equal angle 
bisectors. 

So lu t ion . In order to have simple expressions we shall assume that the vertices A 
and B and the incenter I (i.e., the center I of the circle inscribed to the triangle 
ABC) have the coordinates (0, 0), (f + g. 0), and ( / , 1), where / and g are positive 
real numbers. In fact, these are the cotangents of the halves of the angles .4 and 
B. In addition, we assumed that the inradius is equal to 1. 
tA:={0, 0}; tB:={f+g, 0}; tl:={f, l}; tJc:={f, 0}; 

If the points Ja, .//,, Jc are the projections of the incenter / onto the sides 
of ABC, then Jc has the coordinates ( / , 0) while we get the coordinates of Ja as 
solutions of the following system of equations: 
sys:=Solve [{distance[tB,{p, q)]==distance[tB ,tJc], 

distance [tl,{p, q} ]==l} ,{p , q}] ; 
where p and q are the coordinates of the point Ja that we are trying to determine. 
This system has only two solutions. The first are the coordinates of the point Jc 

while the second are the required coordinates t+ i + 2 i / a n ( l ^ + 7 °f the point Ja. 

tJa:={p,q} /. Extract [sys, 2] 
f Í F2 I) . 2 f 2 * 

In a similar way we can find also the coordinates y a + | • i yíípj of the point 

Jb • 
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tJb:={p,q} /. Extract [Solve[{distance[tA,{p, q}]== 
distance[tA,tJe], distance[ti,{p, q}]==1},{p, q}] , 2] 

Now we can find the points A{ and Bi of intersection of bisectors of angles A 
and B with the opposite sides as intersections AI Pl BJa and BI n AJb-
tAi : =inter [line2 [tA, 11] ,line2[tB,tJa]] ; 
tBi : =inter [line2[tB, 11] ,line2[tA,tJb]] ; 

Let us now ask the program Mathematica to calculate the difference of the 
squares of lengths of angle bisectors with the following input: 
Q:=FS[distance[tA,tAi]"2-distance[tB,tBi] ~2]; 

The output will be the quotient 

4 (/ + g)3 if - g) (f4g2 + 4 g3f - 5 f2g2 + g 4 / 2 + 4 fg - l ) 

(g2 + t f g - i)2 i f 2 + 2 / 0 - l ) 2 

Since its numerator contains f — g as a factor and f + g is obviously never zero, 
we conclude that the proof will be completed provided we show that the long 
parenthesis 

Z = / V + 4 g3f - 5 / V 2 + g4f + 4 fg - 1 

in the numerator is always positive. 
A B 7T 

First note that the sum 1 of halves of the angles is at most — so that 
2 2 6 2 

A , B\ c o t ( f ) c o t ( f ) - 1 f g - 1 
cot ( h — 1 — w = - T > 0. 1 2 2 J c o t ( 4 ) + c o t ( f ) / + </ 

We conclude that f g > 1. 
The first and the fourth term of Z together give 

/ V + / V 4 = ( / 2 + g2){fy? > 2 ( f g ) ( f g ) 2 = 2 ( f g ) 3 

because f2 + g2 > 2fg. If we introduce the notation d — fg then 

Z > + 1. 

Since d > 1 we can replace d in the above cubic polynomial with 1 -f *] with rj > U 
and get (3 r? + 2) (2 r)2 + 3 ?/ + 2). This expression is always positive because the 
new variable i] is positive. This completes the proof. 

Notice that the same could be obtained with the substitution / = for the J 9 

positive real number k in the polynomial Z. Following the input 
Collect[Extract[Q,4] /. f->(l+k)/g, g]; 
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the program Mathematica outputs 

(1 + k)2g2 + ( J + 2 + 6 k + 7 Är2 4- 4 Är3  

í r 

which is obviously always positive. 
We continue with the problem 833 from [6] which is in the section about 

similarity of triangles. 

P r o b l e m 6. Let r be the radius of the circle inscribed to a triangle ABC and let 
R be the radius of its circumscribed circle. Prove ihat. R > 2r. 

Solu t ion . The following proof has great similarity with the solution of the previous 
problem. Without loss of generality we can assume that the angles A and B of the 
triangle ABC are acute (i.e. less than ^ radians) and that the vertices A, B and 
the center I of the incircle have the coordinates (0, 0), (?'(/ +<?), 0) and ( f r , r) for 
some real numbers / > 1, g > 1 and r > 0. 

Our idea of the proof is first to determine the coordinates of the vertex C and 
the center O of the circumcircle. This will make it possible to compute the radius 
R of the circumcircle. Finally, we show that the difference R —2 r is always positive 
except in the case of the equilateral triangle when it is zero. 

Let Ja, ,/5, Jc be projections of the center I of the incircle onto the sides 
of the triangle ABC. The point Jc has the coordinates ( / r , Ü) while we get the 
coordinates of the Ja from the following system of the equations 
sys:=Solve[{distance [tB,{p, q}]== 

distance [tB , tJc] , distance [tl, {p, q}]==r},{p, q}] ; 
where p and q are the wanted coordinates of the point Ja. This system lias two 

solutions: the coordinates of the point Jc and the coordinates ^ a n c l 

J a - In a similar way we get the coordinates and of the point 
Jb-

tJa:={p,q} /. Extract[sys, 2] 
tJb:={p,q) /. Extract[Solve[{distance[tA,{p, q}]== 

distance[tA,tJc], distance[tI,{p, q)]==r},{p, q}], 2] 
The vertex C is the intersection AJi, C\BJa. 

tC : =inter [line2 [tA, t Jb] , line2 [tB, t Ja]] ; 
The center O of the circumcircle and its radius R are given as the solutions of 

the following system of equations: 
tO : = {p, q} ; Solve [{distance [tA, tO]==R, distance[tB,tO]==R, 

distance [tC,tO] ==R}, {p, q, R}] ; 
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From the two solutions of the system only the one where 

» r ( l + g*) (1 + / 2 ) 
4(fg - l) 

is correct. In the second solution the radius R is negative which is not acceptable. 
R:=r*(l+f~2)*(i+g~2)/4/(f*g-l); 
M :=Collect [Extract [FS[R-2*r] ,2] ,f] ; \ [CapitalDelta] : = 

FS[Coefficient[M,f,1]~2- 4*Coefficient[M,f,2]*Coefficient[M,f,0]] 
The difference R — 2 r is equal to ^ , where M is the quadratic trinomial 

(g2 + l ) f 2 - 8 g f + g 2 + 9 

in / . Its discriminant is —4 (—3 + <72)2 which is always negative (so that M > 0 
because the leading coefficient g2 + 1 is positive) except when g = cot y = and 
/ = -v/3 (i.e. the triangle ABC is equilateral) when M = 0. 

Next is the problem 312 from [6] which is in the second chapter on the 
perimeter and the area of circles. 

P r o b l e m 7. Let T be a point inside the triangle ABC and let A\, Bi, C\ be 
interior points of the sides BC, CA, AB. Let /?, for i = 1, 2, 3, 4, 5, 6 be radii 
of the circumcircles of the triangles ACiT, C\BT, BAXT, AXCT, CB{1\ B\AT. 
Prove that Rx R3 R5 = R2 R4 R6. 

Solu t ion . Let us first define in Mathematica the function which associates to a 
given triple of points the radius of the circumcircle of the triangle whose vertices 
are these points. 
bisector[a_, b_3 : =perpen[midpoint [a,b] ,line2[a,b]] ; 
CC[a_, b_, cj :=inter [bisector [a,b] .bisector [a, c]] ; 
RC[a_, b_, c j :=distance [a,CC[a, b, c]] ; 

Let us now input the points A, B, C and T. 
t A: ={0, 0} ; tB:={c,0}; tC:={s,t}; tT:={p,q}; 

If s ^ c then the position of a point A\ on the line BC can be described by 
a real number u and the coordinates of this point are ' ' • We get this by 
requiring that the point with the coordinates (u, z) lies on the line BC and then 
solve the condition with respect to z. 
tAl:={u,z} /. Solve[onlineQ[{u, z}, line2[tB, tC]]==0, z]; 

Similarly, if s ^ 0, then any point B\ on the line CA has the coordinates 
(v, '-jr) and any point C\ on the line AB has the coordinates (w, 0) for some real 
numbers v and w. 
tAl:={u,t*(c-u)/(c-s)}; tBl:={v,t*v/s}; tCl:={w,0}; 
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If s = c then any point A2 on the line BC has the coordinates (c, «) for some 
real number u. If s = 0 then any point B2 on the line CA has the coordinates (0, c) 
for some real number v. 
tA2 :={c , u} ; tB2:={0,v}; 

Let us now define a function which computes the difference of the squares of 
the products of radii of the circumcircles for seven points in the plane. 
FR[a_, b_, c_, d_, e_, f_,gj : = FS [(RC [a, f ,g] *RC [b,d ,g] *RC [c, e ,g] ) ~2-

(RC [f , b, g] *RC [d, c , g] *RC [e,a,g])"2]; 
It is now easy to check that the following values are zero: 

FRCtA, tB, tC, tAl, tBl, tCl, tT] 
s:=c; FR[tA, tB, tC, tA2, tBl, tCl, tT] 
s : =0 , FR[tA , tB, tC, tAl, tB2, tCl, tT] 

This completes the solution of the Problem 312 from [6] in the program 
Mathematica. 

R e m a r k . It is clear from the above proof that, we have never used the assumption 
that the point T is inside of the triangle ABC nor the assumption that the points 
Ai, ß i , Ci are interior points of the sides BC, CA, AB. In this way, using the 
computer, we succeeded to prove a more general statement. 

The following example is the Problem 644 from the collection [6] which is in 
the section on the volume of the cylinder, cone, and ball. 

P r o b l e m 8. On the bottom of the cylindrical container whose base has the 
diameter 15 cm there is a. ball with the diameter 12 cm. The water is poured 
into the container up to the highest point of the ball. For how many cm will drop 
the level of the water when the ball is taken out? 

Solu t ion . Recall the formulas Vb = § ( y ) n f° r the volume of the ball with the 

diameter D and Vc = (f ) 2 f> k for the volume of the cylinder of the height h whose 
base is a circle with the diameter <1. 

In the program Mathematica these volume functions are defined as follows: 
VB[dJ : =d~3*Pi/6; VC[d_, h j : =d~2*h*Pi/4; 

The volume of the water in the container is the difference of the volume of the 
cylinder (with the height equal to the diameter of the ball) and the volume of the 
ball: 
Vwater:=VC[15, 12]-VB [12]; 

After the removal of the ball the water will fill in the cylindrical container 
whose base is the circle with the diameter of 15 cm and its height will be 12 —pcm 
where p is the required drop in the level of the water in the container. This drop p 
is found in the program Mathematica as follows: 
Solve[Vwater==VC[15, 12-p] , p] 

The solution is p = 5.12 cm. 
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Another nice example is the Problem 963 from [6]. We assume again the 
knowledge of trigonometric functions. 

P r o b l e m 9. A trapezium is circumscribed about the circle with the radius R. The 
chord that joins the touching points of the lateral sides has the length b and is 
parallel to the bases. Prove that the area of the trapezium is 

So lu t ion . Select the rectangular coordinate system so that the circle k with the 
radius R inscribed to the trapezium AC EG has the center in the origin and its 
parallel sides (bases) AC and EG touch k in the points B(0, —R) and F(0, R). 
Let the lateral sides CE and AG touch k in the points D(R cos 0, Rs'mO) and 
H (Rcosa, Rs'mcr) for some angles 0 and a. 

Let us first input into the program Mathematica the points O, B, F, D, H 
and the lines AC, EG. 
tO:={0, 0); tB:={0, -R} ; tF:={0, R}; 
tD : ={R Cos [\ [Theta]] , RSin[\[Theta]]}; 
tH:={RCos [\ [Sigma]] , RSin[\ [Sigma]] } ; 
pAC:={0, 1, R}; pEG:={0, 1, -R}; 

Then we ask when will the chord DH joining the touching points D and H of 
the lateral sides be parallel with the bases. 
parallelQ[line2[tD, tH], pAC] 

The condition is R(s\n6 — sincr) = 0 so that we must have cr = ir — 0. Hence, 
the trapezium AC EG is equilateral and symmetrical with respect to the line BF. 
It suffices therefore to find the area only of the right half BCEF. 

The line CE is the perpendicular in the point D to the line OD (the property 
of the tangent to the circle) and the points C and E are the intersections of the 
line CE with the lines AC and EG. 
pCE:=perpen[tD, Iine2[t0, tD]]; 
tC:=inter[pAC, pCE]; tE:=inter[pEG, pCE] ; 

The area of the right half BCEF is the sum of the areas of the triangles BCE 
and BEF. 
FS[area[tB, tC, tE]+area[tB, tE, tF]] 

The program Mathematica will compute that this sum has the value 
Since b = 2 R cos 6, we conclude that the wanted area of the trapezium AC EG is 
indeed 

R e m a r k . In the book [6] there is the incorrect claim that the area of the trapezium 
is Using the approach from the solution of the Problem 13 (i.e., the Problem 
1112 from [6]) it is possible to completely avoid the trigonometric functions. This 
solution we leave to the readers as an exercise. 

We continue with the solution of the Problem 1026 from [6]. 
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P r o b l e m 10. Prove that in every regular heptagon AiA2A3A4A^AqA-; the follow-
ing equality holds: 

1 _ 1 I 
l^al " \AiA3\ + MiAiT 

Solu t ion . Choose the coordinate system so that the circle k with the center at the 
origin and with the radius R is circumscribed to the heptagon ,1 j A2 A3.44 45 1 o 47. 
We can assume that the vertex A\ has the coordinates (R, ()). The other rele-
vant vertices have the coordinates A2 (Rc os R sin .43 (R cos R sin 
A4 ( f i c o s ^ , Rs'm^-). 

Let us input these points into the program Mathematica: 
tAl :={R, 0}; tA2:={RCos[2 Pi/7], RSin[2 Pi/7]}; 
tA3: ={R Cos [4 Pi/7], RSin[4 Pi/7]}; 
t A4 : = {R Cos [6 Pi/7], RSin[6 Pi/7]}; 

In order to check the above relation among the reciprocal values we must type 
into the program Mathematica the following: 
FullSimplify[Numerator[Together[1/distance[tAl,tA2]-

1/distance[tAl,tA3]-l/distance[tAl, tA4]]], R>0] 
For few seconds the computer will output the value zero which proves that the 

statement in the problem holds. 

R e m a r k . Several other interesting properties of the regular heptagon proved in 
the program Maple V are described in the article [5]. 

Next is the Problem 1084 from the section eight of the collection [6]. 

P r o b l e m 11. The projections of the legs of the right triangle onto the hypothenuse 
have lengths -P, 4f - Find the radius of the circle inscribed into this triangle? 

So lu t ion . Select the rectangular coordinate system so that its origin is the vertex 
C of the right triangle and its legs are 011 the coordinate axes. We can assume that 
the remaining vertices A and B have the coordinates (0, b) and («, 0), for some 
positive real numbers a and b. 

In the program Mathematica these points are input as follows: 
tC:={0, 0}; tA:={0, b}; tB:={a, 0}; 

Then we find the projection D of the vertex C onto the hypotenuse AB. 
tD : =project [tC, line2[tA, tB]] ; 

The values for the variables a and b can be determined from the information 
that \AD\ = f and \BD\=f. 
Solve [{distance [tA,tD]==18/5, distance[tB,tD]==32/5},{a, b}] ; 

There are eight solutions (four real and four complex) but only one when a = 8 
and b — 6 is acceptable. Hence, this right triangle has sides 8, 6, 10 (that are twice 
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as long as the sides of the standard (Egyptian) right triangle with sided 4, 3, 5) so 
that its inscribed circle has the radius r — 2. 

This could also be seen by asking tha t the center I of the inscribed circle with 
the coordinates (r, r) is at the distance r from the line AB. 
a:=8; b:=6; tl:={r, r}; 
Solve [distance [tI, projectftl, line2[tA,tB]]==r, r] ; 

^From the two solutions r = 2 and r = 12 only the first satisfies the conditions 
of the problem. The second solution gives the radius of the corresponding excircle. 

Now we consider the Problem 1103 again from the collection [6]. 

P r o b l e m 12. Two sides of the triangle have the length 6 cm and 8 cm. The 
medians of these sides are perpendicular. Find the third side of this triangle. 

So lu t ion . Let the triangle ABC be embedded into the rectangular coordinate 
system so that T(0, 0), B(c, 0), and C(u, u) for positive real numbers c and v and 
for a real number u. 

In the program Mathematica these points and the centroid T are input as 
follows: 
tA: ={0, 0} ; tB:={c,0}; tC:={u,v}; tT:=centroid[tA,tB,tC] ; 

Since the medians of the vertices A and B are perpendicular, ABT is the right 
triangle and c2 = \AB\2 = \AT\2 + \BT\2 by the Pythagorean theorem. On the 
other hand \BC\ = 6 and \AC\ = 8. If we ask the program Mathematica to solve 
this system of three equations in the variables c, u, and v with the input 
Solve [{distance[tB,tC]==6, distance [tA,tC]==8, 

c~2==distance[tA,tT] ~2+distance [tB.tT] "2} ,{c, u, v}] 
it. will respond with two solutions. Only the one where c = 2i/5 cm is correct. 

Our next example is the Problem 1112 from [6]. 

P r o b l e m 13. A circle is inscribed into a trapezium. Prove that the ratio of the 
areas of the circle and the trapezium is equal to the ratio of their perimeters. 

So lu t ion . Choose the rectangular coordinate system so that the circle k with the 
radius R which is inscribed to the trapezium ACEG has the center in the origin 
while its parallel sides (bases) AC and EG touch k in the points ß(0, —R) and 
F(Q, R). Let the vertices A and C have the coordinates ( — it, — R) and (u, —R) for 
positive real numbers u and v. Let the lateral sides CE and AG touch k in the 
points D and H. Our first goal is to find the coordinates of these points and then 
the coordinates of the vertices E and G. 

Let us first input into the program Mathematica the points O, B, F, T, C 
and the lines AC, EG. 
tO:={0, 0); tB: = {0, -R} ; tF:={0, R>; tA:={-u, -R}; 
tC:={v, -R}; pAC:={0, 1, R}; pEG: = {0, 1, -R}; 
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Assume that the point // has the coordinates (p, q). They must satisfy two 
conditions. The first is p2 + q2 = R2 i.e. that the point II lies on t he circle k. The 
second condition is that the distance from A to H is equal to u because the lines 
AB and AH are tangents through the point A onto the circle k. 
H:=Solve[{p~2+q"2—R~2, distance[{p, q} , tA]==u} , {p, q}] 
tH:={p,q} /.H 

In a similar way we can determine the coordinates of the point I). 
K:=Solve[{p~2+q~2==R~2, distance[{p,q},tC]==v}, {p, q}] 
tD: = {p,q} /.K 

The vertices E and G are the intersections of the line EG with t he lines CD 
and AH, respectively. 
pAH:=line2[tA, tH]; pCD:=line2[tC,tD]; 
tE:=inter[pEG, pCD]; tG:=inter[pEG,pAH]; 

The first coordinates of the points E and G are and — Hence, the 

perimeter OACEG of the trapezium A C E G is 2 ( u + v + ^ L + Its area PACEG 

FS [area[tA, tC, tE]+area[tA, tE, tG]] 
equal to 1 +í{ ) _ ]\fow it, is easy to check that 1 U V J 

2 R TT _ R 2 7r 
OACEG PACEG 

R e m a r k . In [6] there are no solutions for the Problem 1112. 
The next example is the Problem 1139 from [6]. 

P r o b l e m 14. Prove that if the angle bisector of a triangle is also the bisector of 
the angle determined by the altitude and the median, then this triangle is right,. 

So lu t ion . Let us choose the rectangular coordinate system so that the points 

.4(0, Ü), B((f + g)r, 0), C j ^ t ) a r e t h e v e r t i c e s o f t h e triangle and 

the center of its inscribed circle is the point / ( / r , r), where / and g are cotangents 
of y and Y and r is the radius of the incircle. 

We shall first input into the program Mathematica the points A, B, the 
midpoint Cg of the segment AB. the points C, I and the feet C\ of the altitude of 
the vertex C on the line AB. 
tA:={0, 0}; tB:={r*(f+g), 0); tCg:=midpoint[tA,tB]; 
tC:={r*g*(f"2-l)/(f*g-l), 2*f*g*r/(f*g-l)}; tl:={f*r,r}; 
tCh:=project [tC,line2[tA,tB]]; 

In order that the bisector of t he angle C (i.e. the line CI) is the bisector of the 
angle between the altitude (i.e. the line CC\) and the median (i.e. the line CCg) 
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it is necessary and sufficient that the segments I Ih and IIg have the same length, 
where Ih and Ig are the projections of the point I onto the lines CCh and CCg. 
tIh:=project[tl,line2[tC,tCh]]; tig:=project[tl,line2[tC,tCg]]; 
IZ:=FS[distance[tl,tig]"2-distance[tl, tlh] "2] 

The program Mathematica reports that the expression I Z is equal 

r2 (/ - g)2 (fg + g + f - l ) ( f g - g - f - l ) (fg 4-1)2  

(12 Pg2 + ffV4 - 2 Pg3 + g4P + 2 pg 4- 2 fg3 + p - 2 fg + g*) ( f g - l )2 ' 

Hence, it will be zero if and only if f — g (i.e. \BC\ = \CA\ so that the triangle 
ABC is isosceles) or 

(fg + g + f - i ) ( f 9 - 9 - f - i ) = o 

which is the condition for the lines BC and CA to be perpendicular (i.e. that the 
angle C has 90 degrees and the triangle ABC is right). 
perpenQ [line2[tB , tC] , line2[tC, tA]] 

R e m a r k . In the collection [6] the possibility that the triangle ABC is isosceles is 
absent. 

Our final example is the Problem 1152 from [(}]. 

P r o b l e m 15. Let different points A and B be given and let the point T be outside 
the line AB. Through the point T construct the line m so that the ratio of the 
distances of the points A and B to the line m is 2 : 3. 

So lu t ion . Choose the rectangular coordinate system so that the given points are 
T(0, 0), B(c, 0), and T(p, q) for real numbers c, p, q. Let the line m has the equation 
u x + V y 4- w = 0 for some real numbers u, v, w. In order that it goes through the 
point T the free term w must be equal to —up — vq. 

Let us input into the program Mathematica the points A, B, T and the line 
m. 
tA:={0, 0}; tB:={c, 0}; tT:={p, q}; pm:={u, v, -u*p-v*q}; 

Let Am and Bm be the projections of the points A and B onto the line m. 
tAm: =project [tA, pm] ; tBm:=project [tB, pm] ; 

By the requirement of the problem the quotient is equal to Notice 
that the expression 
IZ:=FS [distance[tA,tAm]~2/distance[tB,tBm]"2-4/9] 
has as the numerator the product (5 up 4-5 vq — 2 uc) (up + vq + 2 uc). Hence, there 
are two possibilities q = a n c j q — u{2c-->p) _ ^hey give lines q x— (2c4-p)y4-
2qc = 0 and 5<7-c + (2c — 5p)y — 2qc = 0 as solutions of the problem. Even though we 
know the solutions the question remains how to construct them. But, it is simple 
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to see that they intersect the line AB in the points C(—2c, U) and ö ( f c , ()) and 
these are easily constructed. 

Remark. In the collection [6] there are no solutions for the problem 1152. 

Remark. A longer version of this paper with figures is available on the Internet 
at the home page of the second author: http: / /www.math.hr/~cerin 
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C O M M O N T E R M S IN CERTAIN B I N A R Y R E C U R R E N C E S 

Erzsébet Orosz (Eger, Hungary) 

Abstract. T h e p u r p o s e of t h i s p a p e r is to p rove t h a t t h e c o m m o n t e r m s of l inear 

recur rences M(2a,—1,0,6) a n d N(2c,—1,0,d) have a t m o s t 2 c o m m o n t e r m s if p=2, a n d have a t 

m o s t t h r e e c o m m o n t e r m s if p>2 whe re D a n d p a re fixed pos i t ive in tegers a n d p is a p r ime , 

such t h a t ne i t he r D n o r D+p is pe r f ec t squa re , f u r t h e r a,b,c,d a r e nonze ro in tegers sa t i s fy ing t h e 

e q u a t i o n s a2 — Db~ = 1 a n d c2 — (D+p)d~ = l. 

AMS Classification Number: 95U50 

1. Introduct ion 

Let, G — G(A, B,GQ,GI) = {Gn}^L0 be a second order linear recursive 
sequence of rational integers defined by the recursion 

Gn = AGn _ 1 + BGn _ 2 (n > 1), 

where A, B and the initial terms G'o, G\ are fixed integers, AB / U and Gg+Gj ^ 0. 
Let a and /3 be the roots of the characteristic polynomial x — Ax — B of the 

sequence G. Throughout this paper we assume that jo | > \ft\ and the sequence G 
is liondegenerate, that is, ^ is not, a root, of unity. 

It is well-known that the terms of G can be written in the form 

( 1 ) C „ Q — ß 

where q = G\ — Goß and e — G\ — G'oo. 
It can be proved that in the case A2 + AB > 0 

| G „ | > c M " , 
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while in the case A2 + 4B < 0 

ci\a\ 
(2) | G „ | > n-c 0 

holds by the results of C. L. Stewart [13], where c, ci,co, no are positive real 
constants depending on the parameters of G and n > no-

Thus |6rn | > x for all fixed real x, if n is large enough, that is all elements can 
be equal to finitely many other elements of the sequence G. 

A similar problem is to determine the common terms of distinct sequences. 
G. Revuz [11] proved a general theorem for the common terms of different 

second order linear recurrences G and H defined by the same A, B constants: The 
equation Gx = IIy has finitely many solutions (x, y); if x > no then Gx ^ Hy. 

A variety of classical algebraic and elementary estimations to the common 
terms of recursive sequences and similar problems can be found in the papers of 
M. D. Hirsch [3], P. Kiss [4], [5], M. Mignotte [9], F. Mátyás [8], H. P. Schlickewei, 
W. M. Schmidt [12] and others. 

Using Shure's theorem K. Liptai [7] proved that certain recursive sequences 
have finitely many common elements. 

j . Binz [2] proved that the sequences G (6, —1,0,6) and H (10, —1, 0,10) have 
only one common term. 

There is a connection between the number of solutions of a special type of 
Pell's equations and the number of common terms in certain recurrences, that is 
why we use the following result: 

Michael A. Bennett [1] proved that if a and b are distinct nonzero integers 
then the simultaneous Pell's equations 

2 2 1 2 j. 2 1 x — az = 1, y — bz = 1 

possess at most three solutions in positive integers (x, y,z). 

1. Resul t s and proofs 

Some special cases are the most interesting because the number of the common 
terms can be determined. 

The aim of the next part is to give the common terms in certain binary 
recurrences and generalize the result of J. Binz. Our main result is the following. 

Theorem 1. Let I) and p be fixed positive integers, where p is a prime, such that 
neither D nor D + p is perfect square. Further let a, />, c, d be non-zero integers 
satisfying the equations a2 — Db2 — 1 and c2 — (D + p) d2 = 1. Then the sequences 
M (2a, —1,0, b) and N (2c, —1, 0 , d ) , apart from the zero initial terms, have at most 
two common terms if p = 2. 
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Proof. First we prove that, (.r, y) = (x, Mn) is a solution of the equation 

(3) - Dy2 = 1 

for all Mn. The number pairs ( x n , y n ) are also solutions, where 

(4) *„ + yny/D = (a + bs/D^ (n = 0,1,2,. . .) . 

This follows from the condition (x, y) — (a, 6) and 

x2
n - Dy2 = (xn + yn \/Z>) (xn - yn S/D^J 

= (a + 6> /d ) " (a - b \ í ö Y = (a2 - /J>62)" = 1. 

From (4) we have 

1 
yn — (a + bs/l^j " - (a - 6>/!>)"]. 

2\/~D 

The roots of the characteristic polynomial a?2 — 2«x + 1 of the sequence A/ are: 

a = a + \/<i2 - 1 = a + bVo, 

ß = a- b\ÍD, 

so with A/0 — 0, M\ = 6, a - ß — 2b\f~D and by (I) the equality yn = Mn holds. It 
is similarly true for all terms Nk that (z, y) = (z, Nk) is a solution of the equation 

z2-(D + p)y2 = l. 

If the sequences M and N have some common terms, then the number of integer 
solutions (x,y, z) of the equation system 

(5) x2-Dy2 = 1, 

z2-(D + p)y2 = 1 

is the number of the different common terms. It is enough to prove that the equation 
system has at most two solutions if y ^ 0. Assume that (x, y, z) is the solution of 
(5). In this case 

x2-Dy2 = z2-(D + p)y2 

(6) x2+py2 = z2 
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and gcd(a;,y) = 1, gcd(z, y) = 1. The solution (x,y,z) is a positive solution of 
equation (6). If gcd(x,z) > 1 then p \ x2 + y2 and p \ y contradict to what is 
mentioned before. Now p — 2. Then (6) can be written in form 

(7) x2 + 2y2 = z2. 

The primitive solutions of (7) are: x — \u2 — 2v21, y = 2uv,z = i i2+u2 ,gcd(u, u) = 1, 
where u is an odd integer. Substitute these into the first part of (5) 

(u2 - 2v2)2 - 4DU2V2 - 1. 

It can be written in the form 

(8) [u2 - (2 + 2D) v2]2 - (8D + 4D 2 ) v4 = 1. 

The diophantine equation x2 — Dy4 = 1 has at most two solutions (Mordell [11]), 
8D + 4D2 = {2D + 2) - 4 is not perfect square. Thus (8) holds for at most two 
pairs (u, u). If p = 2 than the equation system (5) has at most two solutions. 

T h e o r e m 2. Let D and p he a ßxed positive integer and a prime, respectively, such 
that neither D nor D-f p is perfect square. Further let a, 6, c, d be non-zero integers 
satisfying the equations a 2 - Db2 = 1 and c2 — (D + p) d2 = 1. Then the sequences 
M (2a, — 1,0, b) and N (2c, — 1, 0, d), apart from the zero initial terms have at most 
three common terms if p > 2. 
P r o o f . If the sequences M and N have some common terms then the equation 
system 

x-2 - Dy2 = 1, 

z2-(D + p) y2 = 1 
has at most three solutions. It follows from the first Proof. It is enough to prove 
that this equation system have at most three solutions if y ^ 0. It follows from 
the result of M. A. Bennett which was published in [1]. Our simultaneous Pel l ' s 
equation system has at most three solutions in positive integers (x,y,z). If p > 2 
then the sequences M(2a, — 1,0, b) and N(2c, — 1, 0, d) apart from the zero initial 
terms have at most three common terms. 

R e m a r k : If we use the result of Mordell [10] then it can be proved that the number 
of common terms at most four. 

If p > 2 then the primitive solutions of (6) 

(9) x = |p?7i2 — n2 | , y — 2mn, z = pm2 + n2 

or 

10) 
pu2 

y — út), z = 
pu2 -j- V2 
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where rn and n are different and gcd(m, n) — 1, gcd(u, v) = 1. Substitute these 
into the first equation of (5) and we get from (9) 

whereas from (10) 

These can be formed as 

{pin2 - n2) - 4Dm2n2 = 1, 

P"2 - v2 \ n 2 2 , — Du v = 1. 

; 11) [n2 ~{p + 2D)m2)2 - (4D2 + 4pD)m4 = 1, 

It can be shown that neither 4D2 + 4pD nor Dl + pD are perfect squares. 
Equations (11) and (12) have at most 2 solutions. So the equation system of (5) 
has at most 4 integer solutions. 

T h e o r e m 3. Let L be a fixed positive integer such that neither L nor L + 8 is 
perfect square and 8 | L. Further let r,s,k,t be non-zero integers satisfying the 
equations 

r2 - Ls2 = 1 

and 
k2 - (L+ 16) t2 = 1. 

Then the sequences H = H (2r, — 1,0, s) and I\ — K (2k, — 1, 0, t) apart from the 
zero initial terms, have at most 2 common terms. 

P r o o f . The proof is based on the proof of the Theorem 1. 
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Remarks 

I . Let D be a positive integer which is not a perfect square. Pell's equation 

x2 - Dy2 = 1 

has infinitely many integer solutions pairs of (x,y). It can be seen that there 
are infinitely many a, b, c, d or r, s, k,t integers for which our conditions hold. 

2. If L = 8, then J. Binz's theorem follows from the Theorem 3. In this case 
we can determine the common terms of the sequences G(6, —1,0,6) and 
/ / (10 , -1 ,0 ,10) . 

3. In particular, it would be interesting to prove a similar result for any sequence 
of G ( A , B , Go, Gi) and H ( C , D , H Q , H I ) for which there are finitely many 
common terms. But the upper bound of the common terms would be too 
large. 
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R E M A R K S 
ON T H E C O N C E P T OF SIMILARITY IN T E A C H I N G G E O M E T R Y 

IN T E A C H E R S ' T R A I N I N G COLLEGE 

István Krisztin Német (Szeged, Hungary) 

Abstract, i n [12] a n d [13] ( t e x t b o o k s for t e a c h e r s ' t r a i n i n g colleges w r i t t en by B . Pel le) 

i s o m e t r y a n d s imi la r i ty a re def ined no t in t h e classical way, b u t as a p r o d u c t of ref lect ions , a n d 

as a p r o d u c t of cen t r a l d i l a t a t i o n a n d i somet ry . We m a k e s o m e r e m a r k s on t h i s way of de f in i t i on , 

a n d we s t u d y s o m e i m p o r t a n t t h e o r e m s on s imi lar i ty (e.g. fixed p o i n t , c lass i f ica t ion) by u s i n g t h i s 

way of def in i t ion . 

AMS Classification Number: 00A35 (ZDM: G55, G59) 

1. Introduction 

In the classical treatment of geometrical transformations isometry is defined 
as a transformation which preserves distance, and by similarity one means a 
transformation in which the ratio of each corresponding line segments is constant 
(e.g. [5], [17], [18]). In [12] and [13] (textbooks for teachers' training colleges) these 
concepts are defined in a different way. The basis of the structure is the group of 
the axioms of Reflection refering to the primitive concept of '"reflection in plane"; 
then follows the concept of reflection in line. Space (plane) isometry is defined as a 
product of reflections in plane (in line). After the axioms of Metric and Parallelism, 
the theorems of parallel secants and the concept and properties of central dilatation, 
similarity is defined as a product of central dilatation and isometry. If we want to 
describe the difference between the two ways of definition, we can say that the 
classical one is based on a property, and the other one is a. ""constructive" way; it 
provides technique to give the transformation. 

In this paper we examine the connection between the classical and ""construc-
tive" ways. We shall apply the latter way consistently throughout the study of 
similarity; we aspire to the complete analogy with the concepts and theorems 
involved in studying of isometry. Related to these purposes we suggest some 
complements, changes to the structure involved in [12] and [13]. There are some 
topics which are not detailed in [12] and [13], namely the theorems on the fixpoint 
and the classification of similarities, the concept of dilatation; we shall examine 
these topics also in the "constructive" way. We make t hese suggestions with the 
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aim of forming a unified system of concepts and theorems for the students in this 
very important domain of geometry. 

We note here that the axioms of Reflection involved in [12] and [13] are used 
instead of the classical axioms of Congruence only. So the concept of reflection has 
not such a central role as in [1] or in [14] (chapters 5., 6.). 

2. I s o m e t r y 

The axioms of Reflection which we use are a little bit different from the axioms 
involved in [12] and [13] ([12] pp. 21-22; [13] pp. 17-18), therefore we list them ( R l -
R5). In [8] we wrote some remarks on these axioms and the concept of orthogonality 
and reflection in line. We note tha t in this paper by space (plane) transformation we 
mean a bijective mapping from the space (plane) onto itself; two transformations 
are said to be equal, if they transform any point into the same point; by line-
preserving mapping we mean a mapping, which transforms collinear points into 
collinear points; by fixed point of a mapping we mean a point which coincides with 
its image under the mapping; by fixed plane (line) of a mapping we mean a plane 
(line) whose points are fixed by the mapping; by plane-flag we mean the union of 
a halfplane and a ray on its boundary, and by space-flag we mean the union of a 
halfspace and a plane flag on its boundary. 
Rl : Any reflection in plane is a line-preserving involutory space-transformation, 

which has a fixed plane; and this plane separates every P--P' pair, if P is not 
on it. 

R2: For any plane there is a unique reflection in plane, whose fixed plane is the 
given one. 

R3: For any two points there is a unique reflection in plane, in which they are 
corresponding points. 

R4: For any two rays, starting from the same point, there is a unique reflection in 
plane, which transforms the given rays into each other. 

R5: If two products of reflections in plane transform a space-flag into the same 
one, then the products are equal. 

Def in i t ion 2.1. By space (plane) isometry we mean a product of reflections in 
plane (in line). ([12] pp. 58, 198; [13] pp. 57, 190) 

We make some remarks on this definition. Students in secondary school learn 
the classical definition (e.g. [4]), so the different definitons may cause confusion. 
To avoid this, we think that it is important to show them the equivalence of the 
definitions. It is easy to see that isometry, defined in 2.1, preserves distance; since 
we defined the distance of two points as the length of their line segment ([12] p. 41; 
[13] p. 34) and in the axiom of Metric we postulate that the lengths of congruent 
segments are equal ([12] p. 40; [13] p. 34). For the equivalence we need the following 
theorem. 
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Theorem 2.2. If a space (plane) transformation preserves distance, then it can be 
got as an isometry. 

Proof of Theorem 2.2. First we shall prove the case on the plane. Since the 
given transformation preserves distance, then due to the triangle-inequality the 
images of three points are collinear iff the points are col linear. So it is a line-
preserving transformation. Let us consider three noncollinear points and their 
images. The corresponding sides of the triangles are equal due to the distance-
preserving property, so due to the "three sides'1 congruency theorem of triangles 
([12] p. 55; [13] p. 54) there is an isometry, under which the images of the three 
points are the same as under the given transformation. Finally it is easy to see, 
that due to the line- and distance-preserving properties our previous statement is 
true for every point, so the isometry and the given transformation are equal. In 
the proof of the case on the space the only difference is that we have to take four 
noncoplanar points instead of three noncollinear points, and we have to refer to 
the congruence of tetrahedra instead of that of triangles. 

Classically the previous proof is related to the theorem, which states that on 
the plane any two triangles whose corresponding sides are equal, are related by a 
unique isometry (e.g. [3], [15]). In the structure based on axioms of Reflection the 
analogue of this "fundamental" theorem is the following one ([13] p. 43, only the 
case on the plane). 

Theorem 2.3. Any two space (plane) Hags are related by a unique isometry. 
This theorem can be proved easily by axioms of Reflection and their equivalents 

refering to the case on the plane. At the same time we also proved the following 
Theorem 2.4. We use axiom R5 instead of axiom XII. of [12] and [13] because 
of its great importance in these fundamental theorems. (In [8] we examined the 
connection between the two axioms.) 

Theorem 2.4. Any space (plane) isometry can be obtained as the product of at 
most four reflections in plane (at most three reßections in line). 

([12] p. 58, [13] p. 43., only the case on the plane.) 
We start the classification of isometries with this theorem. Naturaly, we finish 

it. only after the axiom of Parallelism. After the classification it is worth remarking 
that any isometry can be obtained as the product of at most two of the following 
transformations: reflection in plane, reflection in line, reflection in point. (This 
statement is a simple corollary of classification.) 

3. Central dilatation 

In [12] and [13] the concept of central dilatation is defined after the Euclidean 
axiom of Parallelism and the theorems of parallel secants ([12] p. 110. [13] p. 105). 
Our definition is a little bit different from that, because we use negative ratio, too 
(as e.g. in [3], [4], [15]). We make this change for the sake of unity and brevity in 
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Paragraphs 5. and 6. Due to this change, there is a difference between the properties 
of central dilatation on the plane and on the space: it preserves orientation on space 
iff its ratio is positive, while it preserves orientation on plane with any ratio. For the 
sake of brevity in the definition we use oriented segments; we defined the operations 
related to them in the usual way. 

Definit ion 3.1. By central dilatation we mean the following mapping. Suppose 
that there is a point O and a 0) constant. The image of the point P is those 
P \ for which OP' = AO P. 

We shall use the notation No,A for this mapping. We make some other 
definitions. By invariant plane (line) of a mapping we mean a plane (straight line) 
which coincides with its image under the mapping. By the center of a mapping we 
mean a point, through which every straight line passing is invariant. To emphasize 
the analogies with the axioms of Reflection we list some properties of central 
dilatation. 

I. Any central dilatation is a line-preserving space (plane) transformation, which 
has a center; this point separates every other P-P' pair, iff A < 0. 

II. For any point O and any constant A(^ 0), there is a unique N o ^ . 
III. For any three collinear points O, P and P', so that P and P' differ from O, 

there is a unique central dilatation with center O, under which the image of 
P is P'. 

IV. For any point O and any two parallel lines a, a ' which are off O, but coplanar 
with it, there is a unique central dilatation with center O, under which the 
image of a is a ' . (Two coplanar lines are called parallel, if they coincide or do 
not meet.) 
(We need the Euclidean axiom of Parallelism only for the proof of line-

preserving property and statement IV.) 
These properties are just the analogues of the first four axioms of Reflection. 

The analogue of the fifth one will occur at the concept of similarity, in Theorem 
4.2. As in the case of axioms of Reflection, statements II., III. and IV. provide 
techniques to give a central dilatation; and the first one contains the most important 
(lion metric) properties of central dilatation. We declare these the most important 
ones because of the following theorem. 

Theorem 3.2. If a mapping on the Euclidean space (plane) is a line-preserving 
transformation with a center, then it can be got as a central dilatation. 

Proof of Theorem 3.2. Since mapping is a line-preserving transformation, any 
line is coplanar with its image, and the images of parallel lines are also parallel. 
Planes passing through the center are invariant, and the images of parallel planes 
are also parallel. Let O denote the center. O is fixed, since it is the point of 
intersection of invariant lines. Let us first assume that there is another fixed point, 
say C. Let a be a plane that contains C, and let ß be the plane that contains O, 
which is parallel to a . Since ß is invariant and the mapping preserves parallelism, 
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Q is also invariant. If every plane passing through C is invariant, then C is a center. 
Since there are two centers, we can fit two invariant lines on every point, so every 
point is fixed. In this case the mapping is the identity, which is a. central dilatation. 
Let us now assume that O is the only fixed point. First we shall show that any line, 
which is off O, is not invariant, but it is parallel to its image. If it were invariant, its 
points would be fixed. If it, intersected its image, their point of intersection would 

OP' . 
be fixed. Finally, the theorem of the parallel secants concludes that ~qJJ 18 constant 

for any O). So the mapping is No,a? the proof is completed. 

We think that it is also very important to emphasize the connection between 
the line-preserving property of the central dilatation and the Euclidean axiom of 
Parallelism in the lectures. In general, after the axiom of Parallelism, textbooks 
list some statements equivalent to the axiom, but generally the line-preserving 
property of the central dilatation is missing. In this treatment which is based on 
the axioms of Reflection and products, it would be important to mention this, too. 
The first reason for that is that the concept of similarity is (partially) based on the 
central dilatation. The other reason is, that the concept of isometry is based on the 
primitive concept of reflection in plane, whose line-preserving property is declared 
in an axiom (Rl) . We can prove easily the line-preserving property of the central 
dilatation by axiom of Parallelism ([12] p. 110, [13] p. 106). For the equivalence we 
need the following theorem. 

Theorem 3.3. If the statement of Euclidean axiom of Parallelism is false, then 
central dilatation is not line-preserving mapping. 

The proof of this theorem can be found e.g. in [7], where the basis of proof is 
a modell, while the following one does not use modell. 

Proof of Theorem 3.3. Let P be a point, e a line, and P ^ e. We shall work-
on the plane of P and e. Let m be the line, for which P £ m, and rn _L e, let 
C = rn n e, and f the line, for which P € / , and m _L / (Fig. 1). 

It is known that / does not meet e. Let g be another line through P, which 
does not meet e. It is obvious that the reflected image of g under the reflection in 
line m, does not meet e either. Let A be a point on g between e and / , let D denote 
the image of A under the reflection in line m, and let B — m H (AD), which is 
obviously an inner point of the segment PC. Let us consider the central dilatation 
with center P, which transforms B to C. The images of A and I) under this central 

( e 

Figure 1 
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dilatation remain between e and / , and they are separated by m. So, according to 
axioms of Order, they are not collinear with C. 

In [12] and [13] the product of central dilatations is worked out immediatelly 
after the investigation of the properties of central dilatation, before the definition 
of similarity ([12] p. 113, [13] p. 109). For the sake of unity, we choose the way 
which was used in [12], [13] and by us to observe isometries. Namely, we first deal 
with the general concept of similarity and the fundamental theorems related to it, 
and we shall observe special products only after these theorems. 

4. S imi lar i ty 

In [12] and [13] plane similarity is defined as a product of a central dilatation 
and an isometry ([12] p. 114, [13] p. 111). The definition for the case on the space 
is a little bit different: the factors of the product are in plural ([12] p. 200, [13] p. 
192). We choose the latter way for both cases. 

Def in i t ion 4.1. By space (plane) similarity we mean a product of central dilata-
tions and space (plane) isometries. 

We choose this way for two reasons. The first is that the analogy with the 
definition of isometry in 2.1 conies with the use of plural. The second is that this 
form gives immedatelly the closure of the set of similarities for composition. In [12] 
and [13] this statement ([12] p. 115, [13] p. I l l ) is derived from the following facts: 
a product of isometries is also an isometry ([12] p. 58, [13] p. 57), a product of 
central dilatations is either a central dilatation or a translation ([12] p. 113, [13] p. 
110). In [12] and [13] the concept of the ratio of similarity is defined in the classical 
way, namely, it is the constant ratio of corresponding segments. In our opinion, 
another way of definition fits better the Definiton 4.1. Namely, the modulus of the 
product of the ratios of the central dilatations involved in the product in Definition 
4.1 is taken as the ratio of similarity. 

The equivalence of Definition 4.1 and the classical one comes from the following 
facts. From the properties of isometry and central dilatation we get the statement: 
for the similarity defined by 4.1 the ratio of each corresponding segments is 
constant. On the other hand, the following theorem is valid. 

T h e o r e m 4.2. If the ratio of each corresponding segments related by a transfor-
mation is constant, then it can be got as a similarity. 

It is true, because it is easy to show that the given transformation is a product 
of an isometry and a central dilatation (e.g. [4], [10], [17]). 

We note that in secondary school similarity is defined as in [12] and [13] for the 
case on the plane, namely, as a product of a central dilatation and an isometry (e.g. 
[4]). So this transformation is a similarity in the sense of Definition 4.1, too. On the 
other hand, from Theorem 4.2 we get that every similarity in the sense of Definition 
4.1 is a product of a central dilatation and an isometry. This means that the two 
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definitions are equivalent. The second statement which gives the equivalence will 
occur later in Theorem 4.4, which will be important for this treatment from anot her 
point of wiew, too. 

After the examination of the different ways of definition, there follow the 
fundamental theorems on similarity. The simple properties of similarity (e.g. line-, 
ratio- and angle-preserving property) come directly from Definition 4.1, as the 
common properties of the factors of the product. The further observations are 
based on the following theorem, which is the analogue of Theorem 2.3 and axiom 
R5. 

Theorem 4.3. Suppose that Z ancl V are space (plane) fiags, P and Q are points 
on their ray. Then there exists a unique similarity, which transforms Z to V and P 
to Q. 

In [12] and [13] there is not a theorem like this. In the classical treatment the 
equivalent statement of Theorem 4.3 is the one which says that any two triangles 
(tetrahedra) whose corresponding sides (edges) have a constant ratio, are related 
by a unique similarity (e.g. [3], [15]); or this one: on the plane any two segments 
are related by just two similarities, a direct one and an opposite one (e.g. [3], [9]). 
We use the above Theorem 4.3 instead of these theorems, because it fits better this 
structure than the classical theorems mentioned. 

Proof of Theorem 4.3. First let us consider the isometry, M, which transforms 
Z to V (Theorem 2.3). Then we consider the central dilatation, whose center is the 
starting point of the ray of V, and which transforms M ( P ) to Q. The product of 
these transformations has the desired properties. If there is another similarity, then 
it is equal to the first product, due to the ratio- and angle-preserving properties.So 
for the sake of unity and consistency, in the sequel we shall use Theorem 4.3 for 
the investigation of similarities. 

From the construction involved in the previous proof, we get the following t wo 
important consequences. The first is the analogue of Theorem 2.4. 

Theorem 4.4. Any similarity can be obtained as a product of an isometry and a 
central dilatation, whose ratio is the ratio of the given similarity (so it is positive). 

Theorem 4.5. A similarity can be got as an isometry i f f its ratio is 1. 
These theorems have already been mentioned above when we discussed equi-

valence, but if we observe this structure on its own this is the right place for them. 

5. Classification of similarities 

We start with the classification t heorem for plane similarities. 

Theorem 5.1. Any plane similarity, which is not isometry, can be got either as a 
dilative rotation or as a dilative reflection. 



114 I. Krisztin Német 

(We regard the central dilatation as a dilative rotation with rotation angle 0°.) 

This theorem is not in [12] and [13], but the two special transformations are 
mentioned in [13] ([13] p. 111). This theorem is usually proved after the theorem 
on the fixed point of similarity. We observe these two questions together. 

There are many ways to prove the existence of the fixed point. The classical 
one—using parallelograms—is e.g. in [3], [6], [10], [15], [17]. There is another way 
to construct the fixed point—using circles—e.g. in [2], [9], [11], [16]. A proof based 
on continuity can be found e.g. in [2]. Also in [2] there is special construction for 
the case oil the plane. 

Here we give a proof of Theorem 5.1, which is in close connection with 
the structure that has been built above. It is based on the product-definition of 
similarity and isometry, and on Theorems 4.3 and 4.4. Some details in case II. are 
similar to the constuction in [2]. Our proof is more lengthy than the previously 
mentioned ones, but our aim is to make a consistent structure. We note that in the 
proof we use orientated segments and angles, we defined the operations related to 
them in the usual way; we denote the reflection in line a by T a ; we use the term 
"axis" for the fixed line of reflection in line; we make the products of transformations 
from right to left. 

Proof of Theorem 5.1. Let H be a similarity which is not isometry. From 
Theorem 4.4 we get that H = No,aM, where M is an isometry, A > 0, A ̂  1. We 
shall consider six cases depending on the type of M. 

I. If M is either the identity, a rotation about O, or a reflection in line passing 
through O, then proof is complete. 

II. If M is a reflection in line, M = T{>, O b, then let, m be the line, for 
which O E m, m _L 6, and B = b fl m (Fig. 2.). Let C be the point, for which 

BC = — -OB. C is fixed point of H. Let a be the line, for which C £ a, a \\ b. It 
A + 1 

is obvious that a is invariant line of H, and H interchanges the halfplanes bounded 
by a. Let P be a point on a {P ^ Q, and P' = H (P) . Since C is fixed, CP' = A CP. 
The similarity NC,AT0 also has these properties. Then let us consider the plane 
flag which contains the ray [CP) and one of the halfplanes bounded by a. From 
the results above we get that the images of this flag and P under H and Nc,ATa 

are the same. So according to Theorem 4.3 H = Nc,ATa . 

a h a b a b 

c ^ B 0 A ^ f 0 O A \ 
m m m AC B 

Figure 2. Figure 3. Figure 4. 
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We reduce the further cases to case II. in the following way. Translation 
and rotation, too - i s the product of two reflect ions in line, where one of the axes is 
part ially arbitrary. We observe how to take it, so that the fixed point of the product 
of the reflection in this line and No,A should be incident to the other axis. If it is 
satisfied, then H also fixes this point. In the case of glide reflection, we shall base 
our proof 011 the fact that it is the product of a translation and a reflection in line. 

III. If M is a translation, M = TbTa, a || b, then let m and B be as in II., 
A = in f la , and let C be the fixed point of N0,ATÖ (Fig. 3.). C is 011 a iff BC = BA 

(Fig. 4.), so iff OB = l^—AB. (Because, according to II., BC = A ~ 1 -OB and 
j _ A . __ . v , 0 , _ _ x + ] 

A ^ 1.) Instead of the original axes we take new ones for which the previous 
equation stands for OB. (We can construct the new B, b by using 0, A and the 
original AB segment.) So by the new axes we get that H fixes the new C. According 
to II. No ,AT 6 =Nc ,AT a , so it also comes that H = NC ,a-

Among rotations first we examine the half-turn, and then the other ones. 

IV. If M is a half-turn, M = T b T a , a _L 6, af]b = A, IC ± O, then let the new 
axes be (OA) and the line perpendicular to it through A" (Fig. 5.) According to 
11., the fixed point of No^T*, , C, lies on a, so H also fixes it. Moreover NO,ATÖ = 
N^ATC, where e is the line for which C G e and e || b, so H = NC,-a« 

V. If M is a rotation, M = T 6 T a , (a, b)L = <f>, <f> £ 90°, a n b = A , A ± O, 
then let, m, B and C be as in III., and let w = ((7vO),6)Z (Fig. 6.). 

\ 
\ 

b 

C 0 

\ 
\ 

a 
e 

c . r- / m 

oy 
(k 

Figure 5. 

C is on a iff 
tan LÓ OB 

tan (j) ~ CB 

according to II., BC = 

Figure (j. Figure 7. 

(Fig. 7.), so iff tana? = — t a n 0 . 
1 — A 

(Because, 

A + 1 
OB. Instead of the original axes we take new ones 

for which the previous equation holds for t anw. (We can construct the new w, b by 
using O, A and the original <f> angle.) So by the new axes we get that H fixes the 
new C. According to II. N o ^ T / , = Nc,AT e , where e is the same as in IV. (Fig. 
7.), so H = N c , A T e T a , C — e fi a and the angle of rotation is 2<f>. 

VI. If M is a glide reflection, M = T 6 T A T C , a ± c _L 6, then according to 
III. there exists a point A for which N 0 , A T 6 T ( 1 = N A , A (Fig. 8.). ( (OA) || c). 
According to II. there exists a point C and a line e for which N ^ a T c = Nc,AT e 

and C G e. So H = N C ) AT e . (According to IV. C G {OB).) 
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K, 
a 
>> 

B 
b 

•O 

C e 

Figure 8. 

Since there is not a further case for M, the proof is complete. It is obvious 
that the center of the central dilatation is the only fixed point of the product. In 
each case the proof also provides a way to construct this point. 

There follows the classification theorem for space similarities. In [13] this 
theorem is included, but its proof is missing ([13] p. 192). Recall that dilative 
rotation on the space is the product of a rotation about a line and a central 
dilatation whose center lies on the axis of the rotation. 

Theorem 5.2. Any space similarity, which is not isometry, can be got as a dilative 
rotation. 

(We regard the central dilatation as a dilative rotation with rotation angle 0°.) 

Proof of Theorem 5.2. The principle of the proof is the same as in the previous 
one so we do it breefly. First we put the given similarity into the form of NO,AM, 
and make classification according to the type of the M isometry. If M is either 
the identity, a reflection in plane, a translation, a rotation about a line, or a glide 
reflection, then we get—in the same way as in the corresponding case of the proof 
of Theorem 5.1—that the given similarity is a dilative rotation. (For reflection in 
plane and glide reflection the axis is the line passing through the fixed point and 
perpendicular to the fixed plane of the original reflection, the angle is 180°, and 
the ratio is —A. For rotation about line the new axis is the line passing through the 
fixed point and parallel to the original one, the angle and the ratio do not change. 
For translation and identity we get central dilatation also with the original ratio.) 
For those isometries which do not have corresponding case in the proof of Theorem 
5.1—namely, if M is either a rotatory reflection or a screw displacement—we get 
the desired result by using completed cases: either rotation about line and reflection 
in plane, or translation and rotation about line. We use the method which we used 
in case VI. in the proof of Theorem 5.1, where the question were reduced to cases 
II. and III. (For both cases the new axis is the line passing through the fixed point 
and parallel to the original one. For screw displacement the angle and the ratio do 
not change, for rotatory reflection the angle increases by 180° and the ratio is —A.) 
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6. Di latat ion 

Finally, we deal with the concept of dilatation. We examine here the question 
mentioned at the end of Paragraph 3.: product of central dilatations. 

In the classical treatment dilatation (or parallel similarity) is defined as a 
transformation, which transforms each line into a parallel line (e.g. [3], [5], [10], 
[18]). Here we give another definition which fits the structure using products (see 
Definitions 2.1 and 4.1). 

Definit ion 6.1. By dilatation we mean a product of central dilatations and 
translations. 

This definition is equivalent to the classical one, naturally. It is obvious that 
the dilatation 6.1 is a transformation and it transforms each line into a parallel line. 
On the other hand, it is involved e.g. in [3], [10], that if a transformation transforms 
each line into a parallel line, then it is either a central dilatation or a translation. 
(Those proofs refer to the case on the plane, but it is easy to extend them to t he 
space.) Besides the equivalence of the definitions these facts proove the following 
theorem, too: 

Theorem 6.2. Any dilatation can be got either as a central dilatation or as a 
translation. 

It is worth emphasizing this theorem for another reason, too. This is the 
analogue of Theorems 2.4 and 4.4. We can get this theorem in our structure in 
a different way, too: 

Proof of Theorem 6.2. According to Definition 4.1 the dilatations defined in 
6.1 are similarities, so we can apply our results on classification of isometries and 
similarities. Since the product transforms each line into a parallel line, if it is an 
isometry, then it is either the identity, a translation or a reflection in point, and if it 
is not an isometry, then according to Theorems 5.1 and 5.2 it is a dilative rotation 
with rotation angle 0°. Thus the theorem is proved, because every transformation 
mentioned except the translation is a central dilatation.If we examine the question 
in details, first we find that it is enough to examine products with two factors. If 
we observe the products of isometries, we find that the set containing the identity, 
translations and reflections in point, contains the product of any two. So we have 
to examine only products with central dilatation whose ratio is not 1 or —1. The 
product of such central dilatation and translation is not isometry, so according 
to the previous proof it is a central dilatation. We get the center as the point of 
intersection of two lines passing through corresponding points. The ot her case, in 
which the product is not isometry, is the product of two central dilatations with 
product of ratios neither 1 nor —1. We get the center similarly to the previous 
case. If the product of ratios is 1, then the line passing through the centers and 
the halfplanes bounded by that line are invariant. So the product is either the 
identity or a translation depending on the centers whether they coincide or not. 
If the product of the ratios is —1, then the mentioned halfpanes interchange with 
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their coplanar pair, so the product is a reflection in point. We get the center also 
in the way described above. 
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A C O M M E N T ON T H E D A R B O U X T R A N S F O R M A T I O N 

J. H. Caltenco, J. López Bonilla, M. A. Acevedo (Mexico) 

Abstract . It is known t h a t t h e D a r b o u x t r a n s f o r m a t i o n ( D T ) al lows us to c o n s t r u c t 

i sospect ra l po t en t ials in t h e f r a m e of ( he Schröd inger e q u a t i o n . Here we give a s i m p l e m a t h e m a t i c a l 

d e d u c t i o n for t h e D T . 

Introduction 

In the one-dimensional stationary case the Schrödinger equation is given by 
[1, 2] 

d2 

(1) - — 0 + »(*)</> = A0 

which is written in natural units taking — 1- The values of A represent the 
energy spectrum allowed for determinated boundary conditions and corresponding 
to the standard potential *i(.r). With the very useful Darboux transformation 
(DT) [3-6] we can generalize any specific standard potential and thus generate 
new interaction models with the same energy levels. The DT is related to the 
Sturm Liouville theory [7-10], and it is easy to see the implicit presence of DT in 
supersymmetric quantum mechanics [1, 2, 5, 11-15]. We suppose that (1) accepts 
the particular solution \j)\ for the eigenvalue Ai 

(2) " + u(x)x!> 1 = Ai^i 

then we employ ip\ as a "seed function" to construct the DT [3-5, 16]: 

(3) = = 

therefore (!) adopts the structure: 

(4) = \<f> 

with the generalized isospectral potential: 

(5) U(x) = u(x)-2-í-al 
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That is, the Schrödinger equation is covariant with respect to DT. Selecting 
other "seed functions" we can generate many DT-s and thus a great family of 
generalized potentials with the same energy spectrum. 

In the next section we show a simple procedure to motivate (3), (4) and (5), 
that is, we exhibit how the basic expressions of the DT are born. 

Darboux transformation 

If in (1) we introduce the new dependent variable y(x) = il>/0(x), where 0 is 
an arbitrary function for the time being, then this equation takes the form: 

(6) „ » + 2 £ I , ' + ( * - A I + £ - £ ) 1 , = 0 

because from (2) we have that u = Aj +ipi' ' /Vl- Therefore it is natural the election 
0 = that yields: 

é 

and reduces this equation to the form: 

(8) y'' 2——-y' + (A — Ai)y = 0 
ti 

if the definition of y written above is applied in deducing each of the equations of 

dx (7) and (8). Now we apply 4- to (8) and introduce the notation: 

(9) n(x) = ±y(z), = 

for thus to obtain the equation: 

(10) rj" + 2<x1r]' + (A - Ax + 2ax ')rj = 0 

Finally, in (10) we make a transformation similar to (7): 

(11) = ~ 
4>i 

Then this equation adopts the structure of (4) with the generalized isospectral 
potential U(x) = af — <T\' + Ai = u — 2aiin according with (5). Besides, from 
(7), (9) and (11) we have that 4> = ifti?) = V'iy' — which reproduces 
(3) q.e.d. 
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In the literature on DT there is not. an explicit, motivation for these important 
transformations of mathematical physics. Thus, the present Note was dedicated to 
a simple demonstration of the basic expressions of DT. 
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Abstract. In th i s p a p e r we inves t iga te two t h e o r e m s deal ing w i th t hose n a t u r a l n u m b e r s 

which can b e w r i t t e n as the s u m of two or m o r e c o n s e c u t i v e odd n u m b e r s . 

AMS Classification Number: 95U5Ü 

1. Introduction 

Olson [3] proved that a natural number n is the sum of two or more consecutive 
natural numbers if and only if n is not a power of 2. 

C. Ray and S. Harris [3] proved the following: 
The natural number n can be written as the sum of consecutive odd natural 

numbers 2r + 1, 2r + 3 , . . . , 2s — 1 if and only if 

n - s2 - r2 = (s - r){s + r). 

The natural number n is odd-summing if and only if either n is the product of 
two odd numbers, each greather than 1, or n is the product of two even numbers. 

Suppose that n = p\lpk
2

2 • • • p ', where p\,p2, ••••>Pt are distinct primes, p\ < 
P2 < • •' < Pti and each kt > U. In [3] the following statements have been proved: 

(i) If n is odd and is not a square then 

(fci+ l ) ( f c 2 + ! ) • • • ( * * + 1 ) ~ 2 
2 

representation of n exist. 
(ii) If n is odd square then 

(fci+ \ ) { k 2 + \ ) - - - { k t + \)- 1 
2 



126 E. Orosz 

representation of n exists. 
(iii) If pi = 2 and n is not a square then 

(fci - 1)(&2 + ! ) • • • {kt + 1) 
2 

representation of n exists. 
(iv) If pi = 2 and n is a square then 

(k\ — 1)(At2 + 1) • • • (A.'t + 1) + 1 
2 

representation of n exists. 
The natural number n has a unique representation as the sum of consecutive 

odd numbers if and only if n is the square of a prime number, if n is the cube of 
a prime number, if n is four times a prime number, or if n is the product of two 
different odd prime numbers. 

The author proved in [2] tha t no set of four consecutive natural numbers exists 
that are all odd-summing or that are all not odd-summing. 

The purpose of this paper is to form some new results of the properties of the 
odd-summing numbers. First we define by [2] and [3] the concept of these special 
numbers, then we give our theorems and proofs. 

2. Results and proofs 

Definition. All natural numbers that are the sum of two or more consecutive odd 
numbers are called odd-summing numbers. 

Remark. It is clear that all square numbers are odd-summing numbers but keep 
in mind that not all odd-summing numbers are square numbers, take 8 as a 
counterexample: 8 = 3 + 5. In this paper we denote the set of the odd-summing 
numbers by N0. 

Theorem 1. If n > 2 and k > 2 are integers then nkcan be written as the sum of 
n consecutive odd-numbers, (nk £ N0, or nk is an odd-summing number). 

Proof . Write nk as the sum of equal terms. 

(1) nk = nnk~l = n*-1 + n*"1 + • • • + 

Next we show, that the sum (1) can be written as the sum of consecutive odd 
numbers. Form pairs of the first and last terms, the second and the one but last 
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terms, and so on. We separate the proof into two parts according to the parity of 

1.1. If n is an even number then the terms are also even numbers, because 
k - 1 > 1. 

Subtract 1 from the first term of the middle pair and add 1 to the second 
term of the middle pair. Thus we get n k ~ l — 1 and n 4 1; are consecutive odd 
numbers. 

Similarly dencrease the — l)st and increase the i11-^ 4 l)st terms by the 
next odd number, 3 or 2 -1 + 1; the ( f - 2)th and ^ 4 2th by 5, or 2 • 2 + 1, and 
so on, at the end the f - ( f - 1) = 1st and the ^ f 1 4 (f - 1) = nth terms by 
2 ( f - l ) + l = n - l . 

We get from (1) 

nk = (n* - 1 - n + 1) + - n 4 3) + ... + (nk~l - 3) 4 (•nk~l - 1)+ 
(2) 

(n k ~ 1 4 1) + [nk~l 4 3) + • • • 4 {nk~x 4 n - 3) 4 (•nk~l 4 n - 1). 

The terms of (2) are odd, the difference of two consecutive terms is 2, the 
number of terms is 

(nk + n - 1) - (nk - n -f 1) 
(3) 1 + - 1 = n. 

1.2. If n is an odd number then the middle term of (1) is alone, the number 
of pairs is 

The middle term is the + 1 = ^ ^ t h one, the adjacent elements are 
and 

In this case the terms are odd numbers. So starting from the middle term we 
change the terms of pairs by 2, 4,..., = n - 1 so from (I) we get 

nk = (n 1 - n + 1) + (nk~1 - n + 3) + • • • + (n f e _ 1 - 4) + (;nk~ l - 2) + 
(4) 

nk~x + (n f c _ 1 + 2) + (n k ~ 1 + 4) + • • • + (nk~l +n- 3) + ( • n + n - 1). 

The number of terms is u, all terms are odd numbers, and the difference of adjacent 
terms is 2. Theorem 1 is proved. 
Note . Theorem 1 can be proved by a simpler method as well. Adding the n numbers 
—n 4- 1, — n + 3,..., n — 1 to the numbers of the sum we get: 

{nk~l - n + 1) 4 (n .^ 1 - n + 3) 4 • • • 4- 4 n - 3) 4 4 n- 1). 

The difference of the consecutive numbers in the sum is 2 and each of the numbers 
added are odd since k >2. 
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Theorem 2. If n > 1 then the n(n + l ) (n + 2)(n + 3) + 1 is an odd-summing 
number. 

Proof. The proof follows immediately from the fact that n(« + l ) (n+2) (n+3) + 1 = 
k2 for all natural numbers k > 1. 

If we add 1 to the product of four consecutive natural number then 

n(n + l)(n + 2 )(n + 3) + 1 =(n 2 + n)(n2 + 5n + 6) + 1 

= n 4 + n3 + 5 n3 + 5 n2 + 6 n2 + 6n + 1 

=n4 + 6n 3 + l l n 2 + 6n + 1 

holds. This can be written in the form 

[{n2 + 3 n) + l]2 ={n2 + 3 n)2 + 2(n2 + 3n) + 1 

=n4 + 6n 3 -f 9n2 + 2n2 -f 6n + 1 = n4 + 6n3 + l l n 2 + 6n + 1 

= n ( n + 1 )(n + 2) + (n + 3) + 1 = A-2. 

It is well known that a perfect square is an odd-summing number. Thus Theorem 
2 is proved. 

The converse of Theorem 2 does not hold. 

Remarks 

1. The proof of Theorem 1 furnishes an algorithm to find all terms of consecutive 
odd numbers that adds to nk. 

2. Theorem 1 and Theorem 2 can be proved by the results of C. Ray and S. 
Harris in [3]. 

3. If is a natural number then n(n+ l)(n-f 2)(n+3) and n ( n + l ) ( n + 2 ) ( n + 3 ) + l 
are consecutive odd-summing numbers. Theorem 2 amplifies and clarifies this 
fact. 
Examples: 
If n = 1 then l - 2 - 3 - 4 + l = 25, 25 = 1 + 3 + 5 + 7 + 9 and 24 = 11 + 13. 
If n = 2 then 2 -3 -4 -5 + 1 = 121 and 120 = 59 + 61 are odd-summing numbers. 
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